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ABSTRACT 

 

A Cloud Platform-as-a-Service for Multimedia 

Conferencing Service Provisioning  

Ahmad Ferdous Bin Alam 

Multimedia Conferencing is the real-time exchange of media content (e.g. voice, video and text) 

between multiple participants. It is the basis of a wide range of conferencing applications such as 

massively multi-player online games and distance learning applications. For faster development 

as well as cost efficiency, developers of such conferencing applications can use conferencing 

services (e.g. dial-in audio conference) provided by third-parties. However, the third-party service 

providers face several challenges with respect to conferencing service provisioning (i.e. service 

development, deployment and management). One challenge is mastering complex low-level 

details of conferencing technologies, protocols and their interactions. Another challenge is 

resource elasticity. Number of conference participants varies during runtime. So resource 

utilization in an elastic manner is a critical factor to achieve cost efficiency. 

Cloud Computing can help tackle these challenges. It is a paradigm for swiftly provisioning a 

shared pool of configurable resources (e.g. services, applications, network and storage) on 

demand. It has three main service models: Infrastructure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS) and Software-as-a-Service (SaaS). Using a PaaS, service providers can provision 
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conferencing services easily and offer them as SaaS. Nonetheless, cloud-based provisioning of 

conferencing services still remains a big challenge due to the shortcomings of existing PaaS. 

In this thesis, a PaaS architecture for conferencing service provisioning is proposed. It is based on 

a business model from the state of the art. It relies on conferencing IaaSs that, instead of VMs, 

offer conferencing substrates (e.g. dial-in signaling, video mixer and audio mixer). The 

conferencing PaaS enables composition of new conferences from substrates on the fly. Moreover, 

it provides conferencing service providers, who are experienced in programming, with high-level 

interfaces to abstract the internal complexities of conferencing. In order for PaaS to scale ongoing 

conferences elastically, an algorithm is also presented in this thesis. The conferencing PaaS is 

prototyped and performance measurements are made. The proposed algorithm’s performance is 

also evaluated.  
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Chapter 1 

1. Introduction 

In this chapter we first provide an overview of the key concepts related to our research such as 

Multi-party Multimedia Conferencing, and Cloud Computing with a focus on Platform-as-a-

Service. Then the motivation and problem statement are discussed. A summary of thesis 

contributions is also presented. The chapter concludes with an outline of how this thesis is 

organized. 

1.1     Definitions 

We provide definitions of four key concepts that are related to our research on conferencing PaaS. 

1.1.1     Multi-party Multimedia Conferencing 

Multi-party multimedia conferencing is the real-time exchange of media content (e.g. voice, video, 

text) between multiple participants [1]. It is an important component of many conferencing 

applications such as massively multiplayer online games, audio/video conference, distance 

learning applications, etc. There are several models to operate conferencing applications, for 

instances, dial-in, dial-out and ad-hoc. The first two are scheduled conferencing models. In a dial-

in conference, participants join the conference themselves, whereas the conference server invites 

participants in a dial-out conference according to the planned time [2]. In ad-hoc conferencing 

model, a participant of a point-to-point call creates a new conference and then adds new 

participants [3]. 
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1.1.2    Conferencing Service Provisioning 

A conferencing service offers full-fledged conferencing functionality, for instances, dial-in audio 

conferencing, dial-out video conferencing with floor control, etc. Conferencing applications 

consume conferencing services, which are provisioned and then offered by third-party service 

providers. Conferencing service provisioning refers to the entire lifecycle of the conferencing 

service, i.e. development, deployment and management [4]. 

1.1.3     Cloud Computing 

Cloud Computing is a paradigm for swiftly provisioning a shared pool of configurable resources 

(network, storage, application, services) on demand. It allows provisioning resources with minimal 

management effort and on a pay-per-use basis [5]. Since cloud computing allows us to easily 

access and use virtualized resources, we can adjust provisioned resources dynamically, meaning 

we can scale with ease which makes optimum resource utilization feasible [6].  

It has three main service models: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) 

and Software-as-a-Service (SaaS). IaaS provides computing, storage and networking infrastructure 

through virtualized hardware resources. PaaS adds level of abstraction to the infrastructure. In 

addition to managing the infrastructure as needed under the hood, it provides the software 

environment to easily and rapidly develop, build, deploy and maintain applications or services. 

Once the services are deployed and run on PaaS, they can be offered to other applications or end-

users as SaaS on a pay-per-use basis. 
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1.1.4     Platform-as-a-Service 

PaaS is defined as an enabler for the service providers to develop and deploy their services onto the 

cloud without worrying about underlying infrastructure [5]. It provides the service development 

and hosting environment out of the box. It also acts as an abstraction level on top of virtualized 

infrastructure, provisioning resources on demand during execution of running services [6]. In 

short, PaaS facilitates service provisioning which consists of the whole lifecycle of a service, i.e. 

service development, deployment and management (start, stop, scaling). Notable examples of PaaS 

are Google App Engine, Microsoft Azure, Cloud Foundry etc. 

1.2     Motivation and Problem Statement 

Conferencing is an indispensable component of many conferencing applications such as massively 

multiplayer online games, distance learning and audio/video conference. For cost efficiency and 

faster development, developers of conferencing applications can use conferencing services. Third-

party service providers can provision such services using a PaaS and then offer them as SaaS. 

However, service providers face several challenges with respect to conferencing service 

provisioning. One of them is that development of conferencing services requires a steep learning 

curve - gaining adequate knowledge of complex conferencing concepts, protocols and different 

technologies - that makes service development costly and time-consuming. Another challenge is to 

scale running conferences on demand. Number of participants changes during the conference. So 

resource elasticity is crucial to minimize cost. Conferencing service providers will be benefitted 

from a conferencing PaaS that deals with these challenges. 
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In order to realize such a conferencing PaaS, we need a sound architecture that enables easy 

conferencing service provisioning. Also, we need algorithms that makes large-scale conference 

possible by utilizing resources efficiently in an elastic manner. In particular, we need an algorithm 

that enables PaaS to provision resources on demand on IaaS. 

1.3     Thesis Contributions 

The thesis contributions are as follows: 

 A set of requirements on the conferencing PaaS 

 Analysis of the state of the art with an evaluation summary based on our set of 

requirements. 

 A general architecture of a conferencing PaaS 

 An algorithm for the conferencing PaaS to scale running conferences on demand. 

 Implementation architecture, a proof of concept prototype, and performance evaluation. 

1.4     Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 2 discusses the key concepts related to our research domain in more details. 

Chapter 3 introduces the scenarios and the set of requirements on a conferencing PaaS derived 

from the scenarios. The state of the art is also evaluated against the requirements. 
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Chapter 4 presents the proposed architecture for a conferencing PaaS. Architectural components as 

well as the proposed interfaces are discussed. 

Chapter 5 presents an algorithm for the conferencing PaaS to scale running conferences on 

demand. 

Chapter 6 describes the implementation architecture and technologies used for the proof-of-

concept prototype. Then performance measurements evaluating the architecture as well as 

simulation results evaluating the algorithm are discussed. 

Chapter 7 concludes the thesis by giving a summary of the overall contributions and identifies 

future research directions. 
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Chapter 2 

2. Background 

This chapter presents the background concepts relevant to research domain of this thesis. The 

following concepts are explained: multi-party multimedia conferencing, cloud computing, 

platform-as-a-service (PaaS), conferencing substrates and conferencing service provisioning. 

2.1     Multi-party Multimedia Conferencing 

In this section we provide an overview of Multi-party Multimedia Conferencing. We first briefly 

introduce the concept of conferencing. A short description of its key technical components follows. 

We also discuss different types of conferencing at the end. 

2.1.1     A Brief Introduction to Conferencing 

Conferencing is the conversational exchange of media content (e.g. voice, video, text) between 

multiple participants [1]. Some examples of applications, where conferencing is an indispensable 

component, are audio/video conference, distance learning, massively multiplayer online games, 

etc. Conferencing is resource-intensive. Moreover, conferences can vary in size (number of 

participants), for instance, from several hundreds to thousands of participants. 

Conferencing can be operated in one of several models, for instances, dial-in, dial-out and ad-hoc. 

In a dial-in conference, users join the conference themselves, while the conference server calls up 

participants in a dial-out conference according to the predefined time [2]. In ad-hoc conferencing 

model, one participant of an ongoing point-to-point call creates a new conference and then adds 
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new participants [3]. Typically dial-in and dial-out conferences are pre-arranged, whereas ad-hoc 

conferences are not.  

2.1.2     Architectural Components of Conferencing 

A typical conference is comprised of the following key architectural components (depicted in 

Figure 2-1): Signaling, Media Handling and Conference Control. 

 

Figure 2-1: Key Architectural Components of Conferencing 

 Signaling: In order for a conference participant to be able to communicate with other 

participants, there should be a mechanism through which the participants’ locations or 

addresses can be known. Moreover, the exchange of media among multiple participants in 

a conference requires that the participants negotiate capabilities such as acceptable media 

format, bit rate, etc. In addition to that, a client device or software also needs to inform the 

address at which it expects media from other participants. Signaling entity addresses these 

aspects. This entity establishes session with each participant. It also takes care of capability 

negotiation, session modification and termination. Communication between conference 

end-points and signaling entity follows standardized protocols. Examples of signaling 

protocols are Session Initiation Protocol (SIP) [7], H.323 [8]. 
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 Media Handling: This entity deals with media transmission, mixing and transcoding. A 

participant in a multi-party conference receives media data from the other participants. It is 

not efficient if media data from other participants is received individually. A more efficient 

approach is to receive a single media stream that is a combination of media data streams 

from all other participants. The process of combining multiple incoming media streams of 

the same type into a single output stream is called mixing. The mixer usually generates 

multiple output streams – one for each participant – having incoming streams of all 

participants except the target participant. 

Conference end-points (devices, softwares) differ in their media capabilities in terms of 

media format, resolution, bit rate, frame rate, etc. Conference participants may use different 

kinds of end-points such as mobile devices, desktop software, dedicated conferencing 

devices whose media capabilities vary greatly. For example, mobile end-points need a 

lower video resolution than desktop clients. So media handling entity should take this into 

consideration. It should transform the incoming media stream into a stream appropriate for 

the target client. The process of converting media content between different media formats 

is called transcoding. Before transmitting media to participants, transcoder converts the 

media stream to a format compatible with the target conferencing client device or software. 

The two most widely used protocols for media transmission are Real-time Transport 

Protocol (RTP) and RTP Control Protocol (RTCP). RTP is used to deliver the media data 

and RTCP is used to get feedback from clients and to monitor quality of media 

transmission [9]. Secure Real-time Transport Protocol (SRTP) is used when confidentiality, 

message authentication, and replay protection to RTP and RTCP traffic are needed [10]. 
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 Conference Control: Conference control provides advanced capabilities such as floor 

control and policy control. 

 Policy Control: Conference Policy is the complete set of rules governing a 

particular conference. That means each conference is always associated with a 

conference policy. The rules in conference policy can be as simple as a list of 

allowed participants in a conference. They can also be complex, for instances, time-

of-day-based rules on participation, and conditional rules on the presence of other 

participants. There is no restriction on the type of rules that can be included in a 

conference policy. 

Policy Control entity stores and manipulates the conference policy. When a new 

participant requests to join a conference, this entity determines if that participant is 

allowed or not based on policy. Similarly, a participant may be removed from the 

conference if conference policy is changed not to allow that participant in the 

conference. 

Mechanism to manipulate conference policy is not standardized. It can be through 

web applications or voice applications, non-SIP-specific protocols or proprietary 

protocols [11]. Conference Policy Control Protocol [12] remained as an IETF draft 

and eventually expired. 

 Floor Control: A conference usually has shared resources, for instances, right to 

talk and input access to a video channel. It is often necessary to control who can 

provide input to or has access to the shared resources. A floor is an individual 

temporary access or manipulation permission for a specific shared resource (or 
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group of resources) [13]. Floor control is a mechanism to manage joint or exclusive 

access to shared resources in a conference. 

Floor policy can be moderator-controlled or autonomous. In the former case, a user 

(not necessarily a participant in the conference), called floor chair, manages a floor. 

In the latter case, the decisions (grant or revoke floor) are made automatically based 

on predefined policy. An example of protocol for floor control is Binary Floor 

Control Protocol [14]. 

For any conferencing applications, Signaling and Media Handling are essential parts. Conference 

Control component can be added to provide more capabilities and control. 

2.1.3    Key Conferencing Technologies 

In this section we present two most common and popular conferencing technologies – one is the 

conventional SIP-based conferencing and the other is emerging WebRTC-based conferencing. 

2.1.4.1    Traditional SIP-based Conferencing 

Session Initiation Protocol (SIP)-based conferencing is the most widespread solution for 

conferencing. SIP, an application layer protocol developed by IETF, is used as signaling protocol 

for multi-media communication sessions. It has been reused in other IETF standards to provide 

signaling and control functionalities for a large range of multimedia communications including 

voice, data, images, messaging, presence, file transfers etc. [15]. 

SIP-based conferencing technology relies on a suite of IETF protocols used together to realize 

conferencing. In traditional SIP-based conferencing system, besides signaling protocol SIP, 

RTP/RTCP protocols are used for media transmission and BFCP for floor control. When media 
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handling entity is separate from signaling entity, media control protocols are needed for 

communication between these two entities. Examples of media control protocols developed by 

IETF are Media Gateway Control Protocol (MGCP) [16], Media Control Channel Framework 

[17], Media Server Control Markup Language (MSCML) Protocol [18]. 

IETF specification on SIP-based conferencing [11] describes several possible architectures. One of 

them is centralized architecture as depicted in figure 2-2. In the figure, focus is the signaling entity 

as we have discussed in section 2.1.2. Mixer belongs to Media Handling entity. 

 

Figure 2-2: Centralized Architecture of SIP-based Conferencing [11] 

 

Another architecture separates media handling entity from signaling entity as shown in the 

following figure 2-3. In this figure, signaling entity belongs to the Application Server on the left 

and media handling entity is the “Conf. Cmpnt.” component on the right. 
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Figure 2-3: Separate Media Handling and Signaling Components [11] 

2.1.4.2    WebRTC-based Conferencing 

There has been an increasing interest in adding real-time voice and video communication 

capabilities to browsers because there are numerous use-cases where a web application user may 

need real-time multimedia communication. For example, a collaboration web application where 

team members visiting the same internal project web page could auto-join a video conferencing 

application embedded in that web page. Another example is an enterprise website where a visitor 

can start voice conversations with the enterprise' customer service agent from that website. The 

development of such web applications having multimedia communication capabilities was difficult 

due to browsers' lack of support for real-time multimedia communication capabilities. 

The W3C WebRTC and the IETF RTCWEB working groups are jointly working to define both the 

application programming interfaces (APIs) and the underlying communication protocols for the 

setup and management of a reliable communication path between next-generation web browsers. 
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The technology resulting from efforts of these two standardization bodies is known as Web Real-

Time Communication (WebRTC) [15]. The IETF and W3C are working on different but 

complementary aspects. The IETF is working for identification and definition of network related 

aspects, including control protocols, connection establishment and management, and selection of 

the most suitable media codecs. On the other hand, the W3C focuses on the definition of 

JavaScript APIs, mechanisms in order for browsers to have secure access to input devices, and the 

network protocols chosen for communication [15]. 

The realization of integrating real-time multimedia communication into web browsers has proved 

revolutionary in the world of telecommunications and renders traditional SIP-based conferencing 

as 'legacy' because the latter did not envisage web browser among the set of supported end-points 

[15]. With the advent of WebRTC, web developers can now easily embed real-time multimedia 

communication in their websites using fairly simple high-level APIs, enabling the users to have 

voice and video conversation without installing any plug-in in the browser. 

WebRTC focuses on peer-to-peer communication between browsers and does not provide any 

particular mechanism to realize multiparty conferencing. So in a WebRTC-based conference with 

no intermediate entity, each browser has to receive and handle the media streams generated by the 

other browsers, as well as deliver its own generated media streams to the other browsers. The 

application-level topology is a mesh network in this case. Although the mechanism is simple, it is 

not efficient in terms of network bandwidth and the use-case is not suitable for low-bandwidth 

mobile devices. 

WebRTC-based conferencing usually relies upon a star topology where each peer connects to a 

dedicated server responsible for negotiating parameters with every other peer in the network, 

mixing the media streams, distributing the proper (mix of) streams to each and every peer 
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participating in the conference [19]. However, this essentially introduces a centralized 

infrastructure in the WebRTC peer-to-peer communication model. Several approaches and models 

for WebRTC-based multiparty conferencing have been studied in [20], [21], [22]. 

From the network communication point of view, WebRTC defines the protocol stack only for 

media plane. To avoid redundancy and to maximize compatibility with established technologies, it 

does not specify any particular signaling protocol and leaves it to the application developer [23]. It 

also does not address the conference control aspects (policy control, floor control). Regarding 

media plane protocols, WebRTC requires Secure Real-time Transport Protocol (SRTP) for 

encrypting and delivering the media streams and Datagram Transport Layer Security (DTLS) 

protocol for secure exchange of encryption keys (key management) [24]. Audio codecs G.711 and 

Opus, video codecs VP8 and H.264 are mandatory for the WebRTC end-points to implement. In 

order to establish peer-to-peer media path, WebRTC-enabled end-points must be aware of 

Interactive Connectivity Establishment (ICE) protocol. WebRTC also requires both RTP and 

RTCP streams be multiplexed on the same port. 

The openness of WebRTC on signaling plane as well as security layer and multiplexing 

requirement added to media plane pose challenges for interworking between conventional SIP-

based and the emerging WebRTC-based conferencing systems. By introducing signaling gateway 

and media gateway, the interworking between SIP-based and Web-RTC based end-points can be 

made possible [15] [24]. 



15 | P a g e  
 

2.2     Cloud Computing 

In this section we present a general overview of Cloud Computing. We start with its definition 

followed by the key benefits that Cloud Computing offers. We also discuss its different service 

models. 

2.2.1    Definition of Cloud Computing 

Cloud computing has been defined in several ways. NIST (US National Institute of Standards and 

Technology) defines [5] it as “model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction”. Vaquero et al. [6] has provided an integrative 

definition of cloud computing based on the 20 previous definitions available at that time. The 

authors define cloud computing as a “large pool of easily usable and accessible virtualized 

resources that can be dynamically reconfigured to adjust to a variable load (scale), allowing for 

an optimum resource utilization. This pool of resources is typically exploited by a pay-per-use 

model in which guarantees are offered by the infrastructure provider by means of customized 

SLAs”. This definition covers three main characteristics - resource pooling, rapid elasticity and 

measured services. However, it does not mention two other key characteristics of cloud computing 

- on-demand self-service (computing resources can always be used without human interaction with 

infrastructure service provider) and broad network access (access to computing resources over 

network). NIST definition covers all essential characteristics of Cloud Computing. 
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2.2.2    Benefits of Cloud Computing 

Cloud Computing offers several important benefits. They are: 

 Scalability: Virtually unlimited scalability is possible because of the massive capacity 

offered by the cloud providers [25]. Services hosted on the cloud can be easily scaled 

which is very useful in the event of rapid service demand change. 

 Elasticity: It refers to a system’s capability of adapting to variable workload by 

provisioning and de-provisioning resources in an autonomic manner [26]. 

 Reliability: Services running on the cloud should meet several desired requirements such 

as Quality of Service (QoS), availability, performance, fault tolerance, etc. These 

requirements are regulated under the framework of Service Level Agreement (SLA) 

between cloud service providers and customers. SLAs contain the details of the service as 

well as penalty for violations [25]. 

 Multi-tenancy: Cloud providers can serve multiple customers by assigning and 

reassigning the virtualized and physical resources dynamically according to demand. It 

facilitates resource sharing resulting in optimum resource utilization and cost. 

 On-demand self-service: Customers can provision cloud resources any time without 

human interaction with the cloud service providers [27]. 

 Pay-per-use Model: Customers are charged only for the amount of resources they 

consumed. This measurement parameter can vary based on the services offered. For 
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instance, usage of a virtual machine (of a particular configuration) per hour, number of 

users consuming a service, etc. [28]. 

 Easy access: Customers can easily access provisioned resources over network through 

various types of devices. 

2.2.3    Service Models of Cloud Computing 

Cloud Computing has three main service models [6] – Infrastructure-as-a-Service (IaaS), Platform-

as-a-Service (PaaS) and Software-as-a-Service (SaaS). Figure 2-4 illustrates the service models: 

 

Figure 2-4: Service Models of Cloud Computing [29] 

2.2.3.1    Infrastructure-as-a-Service (IaaS) 

Among the three service models, IaaS provides resources with the lowest level of abstraction. 

Examples of typical IaaS services are computing, storage and network [25]. Users access the 

underlying infrastructures through the provisioned virtual machines (VMs). Heterogeneous 
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resources can co-exist on the same hardware system by using virtualization technology. IaaS 

provides resource and cost efficiency through shared resources and multi-tenancy. Examples of 

well-known IaaS providers are Amazon EC2, Google Compute Engine, Rackspace etc. 

2.2.3.2    Platform-as-a-Service (PaaS) 

Platform-as-a-Service is discussed in detail in the next section 2.3.  

2.2.3.3    Software-as-a-Service (SaaS) 

This model provides services with highest level of abstraction. SaaS services can be consumed in 

two ways - by end-users directly and by third-party applications through APIs. From end-users’ 

perspective, SaaS is a convenient alternative to applications that need to be run locally on a PC 

because they can easily access the service through web browser. From third-party application 

providers’ point of view, they can start using SaaS services immediately without having to spend 

for capital expenditure. SaaS users have no control over the underlying infrastructure, application 

or services. Examples of SaaS services include Salesforce.com, Google docs etc. 

2.3     Platform-as-a-Service (PaaS) 

In this section we first present the available definitions of Platform-as-a-Service. Then we describe 

its various advantages. 

2.3.1   Definition of PaaS 

NIST defines Platform-as-a-Service as a service model providing capability to the consumer "to 

deploy onto the cloud infrastructure consumer-created or acquired applications created using 
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programming languages, libraries, services, and tools supported by the provider" [5].  Boniface et 

al. [30] defines PaaS as "the provision of a development platform and environment providing 

services and storage, hosted in the cloud". The consumer cannot manage or control the underlying 

cloud infrastructure such as network, servers, operating systems, or storage. However, the 

applications deployed and possibly their hosting environment configurations can be controlled by 

the consumer [5].  

PaaS provides platform resources on top of infrastructure in order to provision applications. 

Application provisioning encompasses the whole life cycle of applications i.e. application 

development, deployment and management. For development phase, PaaS provides developers 

with different programming platforms, languages, frameworks and even for different application 

domains (e.g. big data analytics in IBM Bluemix PaaS). For deployment phase, PaaS instantiates 

runtime environment for hosting the application. Application execution is part of application 

management. For application management phase, PaaS provides automated operations to start, stop 

and scale applications, to monitor applications’ status as well as associated QoS parameters. 

Examples of open-source PaaS are Cloud Foundry, Apache Stratos, Red Hat's OpenShift Online. 

Notable proprietary PaaS examples include Google App Engine, Amazon's AWS Elastic 

Beanstalk, Heroku, Salesforce.com's App Cloud, Oracle Cloud Platform, Red Hat's OpenShift 

Enterprise, Pivotal CF, IBM Bluemix. 

2.3.2    Advantages Offered by PaaS 

PaaS facilitates the entire application life cycle by offering the underlying services for application 

development, deployment and management [31]. 
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2.3.2.1    Rapid Application Development 

PaaS can facilitate application development for both professional and non-professional developers 

[31], meaning it can help developers develop applications easily and rapidly, regardless of their 

programming experience. To this end, PaaS can provide user interfaces as well as application 

programming interfaces (API). Two examples of user interfaces are IDE plug-in such as Eclipse 

plug-in and graphical user interfaces where application features can be selected by the developer. 

The former is for developers with programming experience whereas the latter for developers 

without programming experience. The PaaS APIs enable application developers to take advantage 

of different services offered by PaaS such as database, analytics etc. 

2.3.2.2    Easy and Fast Application Deployment 

Developers can deploy applications on PaaS without having to worry about the complexity of 

purchasing and managing the underlying hardware and software layers [30]. Moreover, it 

eliminates the burden of maintaining three different environments (a development environment, a 

test environment and a production environment) as in the on-premises software development 

model [31]. PaaS offers the same hosting environment for all stages and thus reduces the 

deployment time. 

2.3.2.3    Efficient Application Management 

PaaS provides easy user interfaces for application start, stop and scaling. In additional to that, PaaS 

can also provide auto-scalability, reliability and security, built-in integration with web services and 

databases, and support for deep instrumentation of application (such as resource usage) and of user 
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activity [31]. These features make application management a lot easier and faster. However, not all 

features are provided by all PaaS providers. 

2.3.3    Example of Existing PaaS 

In this section, we look at a notable example of existing PaaS – Cloud Foundry. It is an open-

source Platform-as-a-Service. Since its inception, maintaining openness and extensibility has been 

a key design goal. It provides mechanisms to extend support for new programming languages and 

frameworks, application services, underlying infrastructures [32]. 

By default, Cloud Foundry supports various programming languages (e.g. Java, JavaScript, Ruby, 

Go, PHP, Python) as well as popular platforms and frameworks of those languages (e.g. Spring, 

Node.js) [33]. It provides a mechanism called buildpack through which support for new 

programming languages, frameworks can be added to the platform. Buildpacks for the supported 

languages are provided out of the box. Custom buildpacks can be developed to add new 

programming language support [34]. With regard to application development, Cloud Foundry is 

minimalistic. However, IBM Bluemix – a PaaS based on Cloud Foundry – extends application 

development support by providing boilerplate projects and codes for different types of applications 

(e.g. web, mobile backend, IoT) [35], which developers can use to get started quickly. 

With regard to application deployment, Cloud Foundry not only builds and prepares environment 

for hosting applications, but also provides some common application services such as databases, 

messaging service, application metrics, and application logging. In order to make provisioning of 

these application services easy, Cloud Foundry supports a marketplace from where users can 

choose and provision services for their applications [36]. This feature is also extensible. User 

provided services can be integrated into the platform through service broker API [37]. 
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With regard to application management, Cloud Foundry provides Command Line Interface called 

CF CLI. Developers use it to build, test, deploy, scale and manage the applications. This tool is 

used to maintain the entire life-cycle of applications. Plug-ins can be developed and added to 

default CF CLI to support additional custom commands [38]. Cloud Foundry also provides a plug-

in for Eclipse IDE as an alternative to CF CLI [39]. With this Eclipse plug-in, developers can 

provision applications (develop, deploy and manage) without leaving their development 

environment. 

In order to be independent of underlying infrastructure, Cloud Foundry provides an interface called 

Cloud Provider Interface (CPI). It is a set of APIs that deployment tools of Cloud Foundry need to 

implement for the targeted infrastructure [40]. By default, Cloud Foundry can be deployed on 

OpenStack, AWS, vSphere/vCloud using a deployment tool named BOSH [41]. To deploy Cloud 

Foundry on a new IaaS, a developer only needs to extend BOSH tool for that IaaS by 

implementing Cloud Provider Interface. 

2.4    Conferencing Substrates 

This thesis follows a business model [1] from the state of the art, which proposes six roles: 

Connectivity provider, broker, conferencing substrate providers, conferencing infrastructure 

providers, conferencing platform providers and conferencing service providers. An important 

concept in this business model is conferencing substrates which are defined as fine-grained 

building blocks of conferencing. They can be virtualized and shared by multiple conferences for 

resource efficiency purposes. Substrates can be atomic or composite. Examples of atomic 

substrates are dial-out signaling, video mixer, floor control etc. Examples of composite substrates 

include dial-out video conferencing and dial-in audio conferencing. Different kinds of conferences 
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can be created by composing different conferencing substrates on the fly. For example, a dial-in 

signaling substrate and a video mixer substrate can be composed to create a dial-in video 

conference. 

Among the six roles of the business model followed, this thesis focuses on conferencing service 

providers, conferencing platform providers and conferencing infrastructure providers. It is assumed 

that the substrate provider plays the role of the conferencing infrastructure provider as well. It is 

also assumed that conferencing infrastructure providers provide atomic conferencing substrates. 

2.5    Conferencing Service Provisioning 

A conferencing service offers conferencing that comprises of the mandatory conferencing 

components (signaling and media) and may include optional components (e.g. floor control). 

Examples of conferencing services include dial-in audio conference and dial-out video conference 

with floor control. Contrary to this, an application where conferencing is an important part is 

referred to as conferencing application. Examples of conferencing applications are massively 

multi-player online games, distance learning applications etc. Third-party service providers can 

provision and offer conferencing services which conferencing application developers can use in 

their applications. Conferencing service provisioning entails the whole lifecycle of the service, 

which consists of service development, deployment and management. Using a conferencing PaaS, 

the service providers provision conferencing services and offer them as SaaS. Third-party 

conferencing applications (e.g. game and distance learning) consume conferencing services offered 

as SaaS. 

In contrast, by using conventional PaaS, application developers can provision applications (e.g. 

mobile back-end applications and web applications) and offer them as SaaS, which third-party 
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applications (e.g. game, web applications, mobile applications) can use. Thus, conferencing service 

provisioning using a conferencing PaaS is analogous to application provisioning using a 

conventional PaaS. 

2.6     Chapter Summary 

In this chapter we discussed the background concepts which are related to this thesis. First we 

introduced the concept of Multi-party Multimedia conferencing, its key architectural components, 

different types of conferencing and two key conferencing technologies. It was followed by a 

discussion of Cloud Computing, its different definitions, benefits and three main service models. 

Finally we discussed Platform-as-a-Service (PaaS), its capabilities and advantages and also two 

existing PaaS Cloud Foundry and Google App Engine. 
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Chapter 3 

3. Scenarios, Requirements and State of the Art Evaluation 

This chapter includes four sections. In the first section, we discuss two motivating scenarios for a 

conferencing PaaS that service providers use to provision conferencing services. In the second 

section, we derive requirements on conferencing PaaS from these scenarios. Conference scaling is 

an important feature of this PaaS. Therefore, we also derive a set of specific requirements on the 

conference scaling algorithm. In the third section, we review and evaluate the state of the art based 

on our set of requirements. Finally, we summarize the chapter. 

3.1     Scenarios 

The motivating scenarios that we present in this section cover all phases of conferencing service 

provisioning. The phases are service development, deployment and management. Service 

execution is part of the management. The first motivating scenario covers conferencing service 

development and deployment. The second scenario relates to conferencing service execution and 

shows how running services handle conference life-cycle, i.e., conference creating, starting, scaling 

and stopping. Before describing the scenarios, we first present the involved actors. 

3.1.1    Actors 

Figure 3-1 illustrates the motivating scenarios. The actors in the scenarios are: 



26 | P a g e  
 

 

Figure 3-1: Conferencing Service Provisioning in the Cloud 

1) Conferencing application developers: We consider developers of three conferencing 

applications – (i) a game using dial-in audio conferencing, (ii) a distance learning program 

using dial-out audio conferencing, and (iii) a plain conferencing application offering dial-

out video conference with floor control. 

2) Conferencing service providers: They provision conferencing services and offer them as 

SaaS to conferencing application developers. Service providers are assumed to have 

programming expertise. They are also knowledgeable about the high-level aspects of 

conferencing such as different kinds of conference models (e.g. dial-in, dial-out, and ad-

hoc), media (e.g. audio, video, and text), conferencing technologies (e.g. SIP-based and 

WebRTC) and conference control (e.g. floor control and policy control). However, the 

service provider may not be an expert in complex details of conferencing protocols. 
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We consider two service providers. One provider offers conferencing service A that 

supports both dial-in and dial-out audio conferences. The distance learning and the game 

applications consume service A. The other provider offers dial-out video conference with 

floor control (service B), used by the plain conferencing application. 

3) Conferencing PaaS providers: They offer conferencing PaaS to service providers for easy 

conferencing service provisioning. In the motivating scenarios, only one conferencing 

PaaS, offered by a PaaS provider, is considered. 

4) Conferencing IaaS providers: We have reused a business model for cloud-based 

conferencing from the state of the art [1]. It relies on Conferencing IaaS that, instead of 

virtual machines, provides fine-grained, sharable and virtualized conferencing building 

blocks named substrates (e.g. dial-in signaling, audio mixer, floor control). The 

conferencing PaaS can provision these conferencing substrates to create new conferences. 

In this scenario, we assume that the conferencing PaaS has prior knowledge of the existing 

conferencing IaaSs and their offered substrates. 

We consider three conferencing IaaS providers. The first IaaS provides dial-in signaling 

and dial-out signaling substrates. The second IaaS offers audio mixer and video mixer 

substrates. The last IaaS provides floor control substrate. 

3.1.2    Conferencing Service Development and Deployment Scenario 

In this scenario, we consider the development and deployment of conferencing service A that 

supports both dial-in audio and dial-out audio conferencing. We assume that service A targets only 

WebRTC-based end-points. 
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The conferencing PaaS facilitates conferencing service provisioning by providing high-level 

interfaces, including a set of abstract conferencing service development APIs that service providers 

can use while writing code. An API may require one or more parameters. For example, create 

conference API requires several parameters such as conference model, media, conferencing 

technology that the target end-points support and whether the application needs conference control. 

Figure 3-2 depicts the scenario of conferencing service development and deployment. In this 

scenario, while developing the conferencing service A, the service provider uses high-level create 

conference API in the code to handle requests from the service consumers to create new 

conferences. Necessary API parameters including media audio, and conferencing technology 

WebRTC are also passed. Regarding the parameter conference model, dial-in and dial-out are 

passed to the API when the service receives requests from the game and the distance learning 

applications, respectively. The API invocation with appropriate values of parameters happen 

during execution, which will be discussed in the next scenario. 

Conferencing Service 
Provider

Conferencing PaaS

Develop conferencing service A using conferencing 
Service Development APIs (e.g., createConference).

Provide conferencing Service Development APIs

Deploy conferencing service A

 

Figure 3-2: Conferencing Service Development and Deployment Scenario 
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After the service provider finishes developing the conferencing service, another high-level 

interface, such as a GUI provided by the conferencing PaaS, is used to deploy and to start the 

service in the PaaS. 

3.1.3    Conferencing Service Execution Scenario 

Figure 3-3 depicts the scenario of conferencing service execution. In this scenario, we assume that 

the conferencing service A is running in the conferencing PaaS. Consider that the conferencing 

service receives from the game application a request to create a new conference. In order to handle 

such requests, the service provider has already used in the code the create conference API 

provided by the conferencing PaaS. Therefore, that API is invoked during runtime. Conferencing 

PaaS, in response to this API invocation, creates a new dial-in audio conference by using necessary 

substrates offered by conferencing IaaSs. In this scenario, it provisions dial-in substrate from the 

first conferencing IaaS and audio mixer substrate from the second IaaS. 
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Conferencing 
IaaS 1

Conferencing 
IaaS 2

create conference 
(dial-in, audio)

Conferencing 
PaaS

Game 
App

Conferencing 
Service A 

executed in PaaS

API.createConference({

  model: dial-in,

  media: audio,

  technology: WebRTC,

  ...

});

allocate dial-in signaling substrate

allocate audio mixer substrate

create conference on the allocated substrate

create conference on the allocated substrate

scale created conference as necessary

scale created conference as necessary

Conference starts,
participants join and leave during the conference ...

 

Figure 3-3: Conferencing Service Execution Scenario 

The conference gets started at the scheduled time. During the conference, as more participants 

(game players) join the conference (the game), PaaS needs to scale up the conference to 

accommodate more participants. In a similar manner, as participants leave the conference, PaaS 

scales down the conference to minimize cost. This helps maintain the pay-per-use principle of 

Cloud Computing. However, elastic conference scaling requires an algorithm that conferencing 

PaaS performs to scale the conference up or down during runtime. Conferencing PaaS uses the 

algorithm to determine when to scale and the new conference size. 
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3.2     Requirements 

In this section, we first present the general requirements on the conferencing PaaS. Then we 

discuss the specific requirements on conference scaling algorithm.  

3.2.1    Requirements on the Conferencing PaaS 

The following four requirements on the conferencing PaaS are derived from the motivating 

scenarios described in section 3.1. The first requirement is derived from the conferencing service 

development and deployment scenario. The last three are derived from the conferencing service 

execution scenario. 

1) High-level Interfaces for Service Providers: The conferencing PaaS interfaces should 

enable the service providers to provision new services without having to deal with the complexities 

of conferencing components and their interactions. The interfaces should also be flexible enough 

for creating complex and novel conferencing services (e.g. a dial-in video conference with five 

minutes of chat per hour). This requirement is discussed in [42] for conferencing application 

providers. 

2) Composition of Conferences from Substrates: When a conferencing service receives a 

request to create a new conference, the PaaS should determine necessary substrates, select 

appropriate conferencing IaaSs providing those substrates and then compose the requested 

conference from the selected substrates. This requirement is discussed in [43] for application layer 

instead of platform layer. 

3) Elastic Scalability: The conferencing PaaS, in collaboration with the conferencing IaaSs, 

should scale the ongoing conferences in response to the fluctuating number of participants. This 
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allows the PaaS to gain cost efficiency and to follow the pay-per-use principle. This requirement is 

discussed in [43] and [44]. The conferencing PaaS should be able to scale as much as required by 

the most demanding conferencing application. For example, massively multi-player online games 

are one of the most demanding applications with hundreds of thousands participants [45]. 

4) Quality of Service: Meeting Quality of Service (QoS) requirements, such as latency, jitter 

and throughput, is critical as conferencing services are real-time. This thesis focuses on the latency 

of operations performed during a conference (e.g. participant joining and setting floor chair). This 

requirement is discussed in [46], [47] and [48]. 

3.2.2    Requirements on the Conference Scaling Algorithm 

In the business model [1] that we reuse in this thesis, the abstraction level of services offered by 

conferencing IaaS is substrate – which is an abstraction level higher than virtual machine. So 

instead of CPU or memory, the conferencing PaaS uses conference size (maximum number of 

participants) as the parameter for scaling conferences. For example, to scale up a conference, the 

PaaS increases the conference size unlike conventional PaaS which increases CPU and/or memory. 

When the conferencing PaaS scales an ongoing conference, it specifies the new conference size. 

Now an important factor in scaling is whether participants are likely to join or leave or stay in 

conference, in other words, the number of participants in near future. In this thesis, we assume that 

a prediction model is given as input to the conference scaling algorithm. This model predicts the 

number of participants in conference for future time instances. Depending on the quantity of 

predicted number of participants’ increase or decrease in near future, the most appropriate time 

instances to scale need to be determined. 
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The first requirement is that the conference scaling algorithm should be able to determine the 

future time instances of scaling as well as the corresponding conference sizes. The corresponding 

conference sizes depend on predicted number of participants. Conferencing PaaS executes the 

algorithm and uses the obtained information to scale the conferences. 

Conferencing IaaSs, upon receiving scaling requests from the PaaS, scale the substrates. This may 

require horizontal or vertical scaling of its internal resources which takes some time. So there is a 

delay between receipt of scaling request and its actual realization. The second requirement is that 

conference scaling algorithm should take into account this constraint of delay. 

The third requirement is that the conference scaling algorithm should maximize resource efficiency 

by minimizing over-provisioning in terms of number of participants. This means the algorithm 

should minimize the difference between number of participants that the running conference can 

support and the number of participants that we may have in the conference. This resource 

efficiency results into cost optimization. 

The fourth requirement is that the conference scaling algorithm should have a response time 

acceptable by the application which is using the conferencing service. This means the algorithm 

should be efficient in order for the conferencing PaaS to scale the ongoing conferences in a timely 

manner. The runtime complexity of the algorithm directly corresponds to processing time needed 

by PaaS to perform the algorithm. Since conferencing applications are real-time, the processing 

time should be in milliseconds, i.e. less than a second. 
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3.3     State of the Art Evaluation 

In this section, we review and evaluate the state of the art for a conferencing PaaS. We divide the 

state of the art into three sub-sections. The first sub-section reviews the existing architectures 

related to cloud-based conferencing. The second sub-section discusses existing PaaS solutions. The 

third sub-section reviews the existing algorithms to scale conference in a cloud environment 

3.3.1    Cloud-based Conferencing Architectures 

In this section we first review systems or architectures for cloud-based conferencing proposed in 

the literature. Then we review some representative commercial cloud-based conferencing 

solutions.  

3.3.1.1    Cloud-based Conferencing Architectures in Literature 

Reference [43] discusses feasibility of cloud-based conferencing and proposes a high-level 

framework for that. It divides the proposed cloud-based conferencing system into four layers: 

physics, virtualization, platform and application layers. Platform layer consumes virtualized 

resources (computing, storage and networking) from IaaS only to host services. The framework 

presented in the paper follows principles of Service Oriented Architecture (SOA). The SOA layers 

span across PaaS and SaaS which is depicted figure 3-4: 
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Figure 3-4: SOA Layers of Cloud Conferencing [43] 

In figure 3-4, conferencing services and their composition process are handled in the application 

layer. However, when we evaluate it against our requirements on conferencing PaaS, high-level 

interfaces for the conferencing service providers are not provided. It claims benefit of scalability, 

but does not discuss how this can be achieved for conferencing services. It also does not provide 

any experimental data on QoS for cloud-based conferencing system. 

Reference [42] presents an approach for providing video conference as web service and names 

their implemented system Nuve. It proposes a set of a high-level SaaS interfaces (REST APIs) 

offered by conferencing service providers. Third-party conferencing applications can consume 

these SaaS in order for their users to join virtual conference rooms and collaborate with audio, 

video, etc. It also proposes a REST architecture which is depicted in figure 3-5. 
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Figure 3-5: REST Architecture of Nuve [42] 

However, it does not address how conferencing service providers could provision these SaaS. In 

other words, it does not provide high-level interfaces for conferencing service providers. Neither 

does it discuss conference composition, elastic scalability and QoS. 

Reference [44] presents an architecture of virtualized infrastructure for cloud-based conferencing. 

Figure 3-6 depicts the infrastructure architecture proposed in [44]. It follows the same business 

model [1] that we reuse in this thesis. The infrastructure depends on fine-grained sharable 

virtualized conferencing substrates (e.g. dial-in signaling, video mixer), which can scale elastically. 

It also proposes PaaS/IaaS interfaces rooted in substrates. These characteristics make the 

infrastructure suitable for use by a conferencing PaaS. However, the PaaS-level issues including 
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the interfaces for service providers and the composition of conference substrates are not taken into 

account. Neither do they provide QoS measurements for conference runtime operations. 

 

Figure 3-6: Architecture of conferencing IaaS [44] 

Reference [46] advocates that video conference be delivered as a cloud service. In order for the 

video conference cloud service providers to utilize the inter-datacenter network in an efficient way, 

it proposes a new application layer protocol named Airlift. Its objective is maximizing total 

throughput in the inter-datacenter network across all conferences while meeting end-to-end delay 

constraints. The problem it deals with is related to a particular QoS parameter, namely throughput. 

However, the other important requirements of conferencing service provisioning including high-

level interfaces for service providers, conference composition and elastic scalability are not 

addressed. 
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Reference [47] proposes a cloud-based transcoding framework to achieve scalable and efficient 

video adaptation for mobile devices. It introduces a prediction-based scheduling algorithm to 

optimize both latency requirement and cloud utility cost for mobile clients. It focuses on scalability 

and QoS issues for a particular conferencing substrate, namely media transcoder. However, it does 

not address high-level interfaces for conferencing service providers and conference composition. 

Reference [48] presents a cloud-based media mixer which performs mixing in a distributed way 

over the network compared to single node Multipoint Control Unit (MCU) used by traditional 

multi-party conferencing. It proposes heuristic algorithms for optimizing the virtual mixer 

topology that is adapted to the particular set of clients and servers available in the cloud. Similar to 

[46], its focus is related to a particular QoS parameter, namely delay between end-points. 

Nonetheless, conferencing service provisioning issues including high-level interfaces for service 

providers, conference composition and elastic scalability are not discussed. 

3.3.1.2    Cloud-based Conferencing Products in the Market 

Vidyo provides a software platform and development environment named VidyoWorks™ [49], 

which conferencing service providers can use. For service development, it provides development 

SDK as well as APIs. However, for deployment and management, it does not provide any high-

level interface. Rather the service providers themselves have to deploy and manage the 

conferencing services. Vidyo does not set any limit on the number of participants in a conference. 

But elastic scalability is not included in its list of capabilities [50]. Measurements for QoS are not 

publicly available, either. 

Cisco WebEx Meetings and other conferencing products [51] are offered as Software-as-a-Service 

(SaaS). These conferencing services benefit from Cisco's proprietary infrastructure named Cisco 
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WebEx Cloud. However, information is not available as to how the offered conferencing services 

are provisioned.  WebEx family of products are claimed to be scalable but they support a 

maximum of 1000 participants [52] in a conference. 

Blue Jeans [53] is a video conferencing service offered as SaaS. Information is not publicly 

available as to how Blue Jeans, the service provider, provisions the video conferencing service. 

QoS measurements for its offered service is also unavailable. In spite of its claim to be cloud-

based, it supports a maximum of only 100 conference participants [54] and does not meet the 

requirement of elastic scalability. 

3.3.2    PaaS Solutions 

In this section, we review some widely used open-source as well as commercial Platform-as-a-

Service solutions. Review of each PaaS solution is followed by evaluation against our set of 

requirements on conferencing PaaS. 

Aneka [55] is a Platform-as-a-Service for provisioning scalable distributed applications that are 

developed using .NET framework. It can provision Windows based machines from both private 

and public infrastructure providers. But it is portable over different platforms and operating 

systems. For application development, Aneka provides Software Development Kit (SDK) and a 

rich set of APIs for expressing the business logic of distributed applications using the preferred 

programming abstractions (e.g. task, thread, MapReduce job). For application deployment and 

management, it provides necessary tools. However, the interfaces are not suitable for conferencing 

service provisioning. Aneka can scale distributed applications in an elastic manner. Therefore, 

conferencing services cannot be scaled elastically using Aneka. Its architecture does not address 

conference composition from substrates and conferencing QoS. 
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Cloud Foundry [32] is one of the most popular open-source Platform-as-a-Service. It has gathered 

support from many big companies such as EMC, HP, IBM, Intel, Pivotal, SAP, VMware as well as 

40 other organizations. Its architecture is open and extensible, making it possible to integrate 

support for new programming frameworks, application services and underlying IaaS. It does not 

provide high-level interfaces for provisioning conferencing services. Neither does it address 

conference composition and QoS. It supports scaling of application instances but does not address 

elastic scaling of conferences. 

Notable examples of commercial PaaS solutions are Google App Engine [56], Heroku [57], AWS 

Elastic Beanstalk [58], Salesforce.com's App Cloud [59], Red Hat's OpenShift Enterprise [60], 

Pivotal CF [61], IBM Bluemix [62], etc. None of these PaaS supports conferencing service 

provisioning. Therefore, they also do not address conference composition and conferencing QoS 

requirements. They provide scaling of only application instances and do not support conference 

scaling. 

Table 3-1 summarizes the evaluation of existing works related to conferencing PaaS. The column 

value “Not addressed’ means the related work does not deal with the requirement whereas “No” 

means the related work deals with the requirement but does not meet it. “Yes” means the 

requirement is fully satisfied by the related work. “Partially satisfied” indicates that the related 

work deals with and satisfies only parts of the whole requirement. 
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Requirements 

Related 

work 

High-level 

interfaces 

Composition of 

conferences from 

substrates 

Elastic 

scalability of 

conferences 

Quality of 

Service 

C
lo
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d

-b
as

ed
 C

o
n
fe
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n
ci

n
g
 A

rc
h
it

ec
tu

re
s 

[43] No No Not addressed 
Not 

addressed 

[42] No Not addressed Not addressed 
Not 

addressed 

[44] Not addressed Not addressed Yes 
Not 

addressed 

[46] Not addressed Not addressed Not addressed 
Partially 

satisfied 

[47] Not addressed Not addressed 
Partially 

satisfied 

Partially 

satisfied 

[48] Not addressed Not addressed Not addressed 
Partially 

satisfied 

[49] 
Partially 

satisfied 
Not addressed No 

Not 

addressed 

[51] Not addressed Not addressed No 
Not 

addressed 

[53] Not addressed Not addressed No 
Not 

addressed 

P
aa

S
 

S
o
lu

ti
o
n
s [55] No Not addressed No 

Not 

addressed 

[32] No Not addressed No 
Not 

addressed 

 

Table 3-1: Summary of Evaluation of the Related Works for Conferencing PaaS 
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3.3.3    Conference Scaling Algorithms 

In this section, we review the existing works in literature that tackle the problem of elastic resource 

provisioning for scalable multi-party multimedia conferencing. The existing works vary in 

granularity of elasticity. Some of the existing works have coarse-grained elasticity (e.g. virtual 

machine instance, application instance) while the others have fine-grained elasticity (e.g. CPU 

instance, memory, storage). 

Conferencing is an important part of Massively Multiplayer Online Games (MMOGs). Reference 

[63] presents a cloud-based dynamic resource provisioning middleware named CloudDReAM 

(Dynamic Resource Allocation Middleware) targeting MMOGs. The game developer first defines 

the most important load metrics (e.g. CPU or bandwidth usage) as well as their underloaded and 

overloaded threshold values. CloudDReAM continuously monitors those load metrics. Resource 

scaling is triggered when a threshold value is reached. The authors also propose two algorithms for 

resource scaling - each corresponding to a load event (underloaded or overloaded). Based on the 

detected load event, CloudDReAM performs one of the two algorithms which initiates load 

balancing and subsequently virtual machines are added to or removed from the system. When 

evaluated against the requirements on conference scaling algorithm, the granularity of scaling in 

CloudDReAM (virtual machine) is different from our target granularity (number of players that a 

game can support which is analogous to conference size). The two algorithms proposed do not take 

VM instantiation time into account. So it does not satisfy our first and second requirements on 

conference scaling algorithm. The remaining requirements also are not addressed. 

Reference [64] proposes an elastic resource scaling scheme called PRedictive Elastic reSource 

Scaling (PRESS). The objective is to minimize waste of resources in order to optimize resource 
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provisioning costs without violating service level objectives (SLOs). It does not assume advanced 

application profiling, model calibration or deep understanding of the application; rather it monitors 

usage of resources (CPU, memory, bandwidth). Based on the observed resource usage, it predicts 

future resource demand and scale accordingly. Two complementary resource demand prediction 

techniques are also proposed. When compared with the requirements on conference scaling 

algorithm, the granularity for resource scaling (e.g CPU, memory) does not match with our desired 

granularity (conference size). Resource provisioning delay also is not considered. It therefore does 

not satisfy the first and second requirements. It maximizes resource efficiency by minimizing 

waste of resources but the granularity considered (CPU, memory) does not match with ours 

(conference size). So the third constraint is only partially satisfied. The authors show good 

response time for their proposed approach of elastic resource scaling. 

Reference [65] presents a system called CloudScale that can automate fine-grained elastic resource 

scaling for multi-tenant cloud infrastructures. It addresses two key problems in prediction-driven 

dynamic resource scaling. The first problem is under- and over-estimation errors. It provides two 

complementary under-estimation error handling schemes, namely online adaptive padding and 

reactive error correction. The second problem is that scaling up can lead to conflicts among 

resource demand of applications that are co-located on the same host. Because the sum of 

resources required by co-located applications can exceed the maximum that a host can provide. In 

order to resolve the second problem, it uses a conflict prediction model to estimate when the 

conflict will happen, how serious the conflict will be (conflict degree) and how long the conflict 

will last (conflict duration). It proposes two techniques – one is handling the conflict locally by 

mitigating SLO violations and the other is predictive VM migration. The first technique is used 
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when conflict degree is small and duration is short. Otherwise expensive VM migration is 

performed to avoid the conflict.  

When it is evaluated against the requirements on conference scaling algorithm, granularity of 

elasticity considered in the paper does not match with our desired one. It also does not consider the 

resource provisioning delay in the proposed schemes. Thus it does not meet the first and second 

requirements on conference scaling algorithm. It attempts to achieve resource efficiency by 

minimizing waste of resources, though on a different granularity. So the third requirement is only 

partially satisfied. The proposed schemes and techniques show good response time which satisfies 

our fourth requirement. 

Reference [66] proposes a lightweight scaling (LS) algorithm to provision resources for 

applications in an elastic way. It targets transaction-based multitier applications where QoS can be 

assessed based on the application's response time to each incoming request. The algorithm is given 

the upper and lower bounds of the required response time of an application. When the observed 

response time is greater than the upper bound, it performs Lightweight Scaling Up (LSU) 

algorithm. On the contrary, when it detects response time smaller than the lower bound, it performs 

Lightweight Scaling Down (LSD) algorithm. The LSU algorithm first tries self-healing scaling 

which is removing an idle resource from one VM and allocating it to an overloaded VM on the 

same physical machine. Then it performs resource-level scaling which is allocating resources 

(CPU, memory) available on a physical machine to an overloaded VM to scale it up. If the 

required range of response time cannot be achieved through self-healing scaling and resource-level 

scaling, then the algorithm performs VM-level scaling. On the other hand, the Lightweight Scaling 

Down (LSD) algorithm first attempts VM-level scaling down, then performs resource-level scaling 

down. Thus the algorithm incorporates fine-grained (resource-level e.g. CPU, memory etc.) as well 
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as coarse-grained (VM-level) approaches in order to achieve elastic resource scaling. However, it 

takes a completely reactive approach. 

Because of the difference in granularity of elasticity, it does not meet the first requirement on 

conference scaling algorithm. The second requirement also is not satisfied as the proposed 

algorithm does not take resource provisioning delay into account. The algorithm aims at achieving 

resource efficiency by allocating just enough resources to meet the target range of response time; 

but scaling is done using a different granularity. So it partially meets the third requirement. The 

authors provide experimental results proving the algorithm’s acceptable response time. So the 

fourth requirement is satisfied. 

Table 3-2 summarizes evaluation of related works for conferencing scaling algorithm. The 

meaning of column values “Yes”, “No”, “Not Addressed”, “Partially Satisfied” are the same as in 

table 3-1. Based on our review of the state of the art for both conferencing PaaS and conference 

scaling algorithm, to the best of our knowledge, there is no conferencing PaaS that fulfills our 

requirements completely. In addition to that, there is no conference scaling algorithm that satisfies 

the requirements. Some of the works cover part of our requirements but none of them meet all the 

requirements completely. 

Requirements 

 

Related 

work 

Time instances 

of scaling and 

corresponding 

conference size 

Scaling delay 

Minimization 

of waste of 

resources in 

terms of 

number of 

participants 

Response Time 

[63] No No Not addressed Not addressed 

[64] No No Partially Yes 
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satisfied 

[65] No No 
Partially 

satisfied 
Yes 

[66] No No 
Partially 

satisfied 
Yes 

Table 3-2: Summary of Evaluation of Related Works for Conferencing Scaling Algorithm 

3.4     Chapter Summary 

In this chapter, we presented two motivating scenarios for conferencing PaaS. Then we derived the 

set of requirements based on the scenarios presented. We divided the requirements into two 

groups: requirements on conferencing PaaS and requirements on conference scaling algorithm. 

Next we reviewed and evaluated the state of the art based on the requirements. Finally we come to 

the conclusion that none of the existing works evaluated in the state of the art meets all of the 

requirements completely. 
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Chapter 4 

4. Proposed Architecture 

In the previous chapter, we derived a set of requirements on a conferencing PaaS. In this chapter, 

we propose architecture for a conferencing PaaS based on the requirements. We start by explaining 

the overall architecture. Next, to help conferencing service providers develop different types of 

conferencing services easily, we propose a set of conferencing Service Development APIs. Then, 

for a conferencing service, we describe illustrative scenarios of service development, deployment 

and execution. Next, we discuss how the requirements are met by the architecture. Finally, we 

summarize this chapter. 

4.1     Overall Architecture 

In this section, we first discuss the architectural principles that we follow to design the proposed 

architecture for a conferencing PaaS. Then we describe the architectural components. 

4.1.1    Architectural Principles 

The first architectural principle is related to composition of conferencing substrates, which are 

sharable, virtualized and fine-grained building blocks of conferencing. Two widely used 

compositional approaches are orchestration and choreography [67]. The former is a centralized 

approach, allowing a central entity to control the component services and their interactions. In 

contrast, the latter allows the component services to collaborate in a decentralized manner. The 

first principle of our architecture is to adopt the orchestration approach for the substrate 

composition because it provides PaaS with a greater control on the substrates and their interactions. 



48 | P a g e  
 

This helps in provisioning complex conferencing services, for example, dial-in audio conference 

with text-chat for five minutes per hour. 

The second principle is to use high-level PaaS/IaaS interfaces rooted in substrates. It contributes to 

easy conference composition from substrates. This principle also enables PaaS to request IaaSs for 

scaling conferences in terms of conference size, instead of VM resources. Scaling by PaaS in terms 

of conference size allows IaaSs, which manage the VMs hosting substrates, to make decisions 

about necessary VM resource allocation in response to changed conference size. In addition, it 

helps PaaS to bill in terms of conference size, which is more intuitive than VM for the service 

providers. 

The third principle is to extend the existing PaaS architectures such as Aneka [55] and Cloud 

Foundry [32]. This allows us to reuse the existing PaaS for the conferencing PaaS implementation. 

4.1.2    Architectural Components 

The proposed architecture consists of a repository and five components, as shown in figure 4-1. 

These components deal with three key facets: (i) Conferencing services, (ii) conferences and (iii) 

substrate information. 



49 | P a g e  
 

 

Figure 4-1: Overall Architecture of Conferencing PaaS 

1) Components Related to Conferencing Services: 

This facet includes service development, deployment and management. Conferencing PaaS 

GUIs and APIs component extends application provisioning front-end of regular PaaS 

architectures by providing a set of conferencing Service Development APIs. Management 

(Services and PaaS) and Service Hosting and Execution components are reused from 

conventional PaaS architectures. 
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Conferencing PaaS GUIs and APIs component provides tools for the conferencing service 

providers. For easy development, service providers use high-level Service Development 

APIs (discussed in section 4.2), which is novel in this architecture. They also use GUI for 

service deployment and management, such as starting, updating and stopping services. 

Management (Services and PaaS) component manages the conferencing services and 

monitors their QoS and SLAs. Service Hosting and Execution component hosts the 

conferencing services. It allocates necessary PaaS resources (e.g. server runtime and 

database drivers) and prepares execution environment before hosting.  

Management (Services and PaaS) component receives request from the conferencing PaaS 

GUI for service deployment and management. It deploys and executes services in Service 

Hosting and Execution component and manages them during execution.  

2) Components Related to Conferences: 

This facet concerns conference composition and management of created conferences 

including elastic scaling. Conference Orchestration and Management component creates 

and manages conferences. More explicitly, it performs the following five tasks: 

i) It determines the necessary substrate types and their associated requirements by 

using, for instance, syntactic matching with the categorized API parameters (discussed in 

section 4.2). 

ii) Given the requirements of a substrate, it selects the most suitable conferencing IaaS, 

by using an algorithm. Existing algorithms for cloud service selection, which has been 

formulated as a multi-criteria decision problem [68], can be reused in this context. Service 
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selection approaches and algorithms from the state of the art consider various factors, such 

as cost [69][70] and multiple QoS constraints [71]. Some existing works also consider 

service composition aspect, for example, transactional properties and QoS characteristics 

[72], reliability [73] and SLAs [74] of composite service. 

iii) It orchestrates conferences from substrates and executes them. Note that 

conferences are executed in this component. In contrast, the conferencing services that 

create conferences are executed in the Service Hosting and Execution component. We 

assume that conferencing IaaSs expose substrates as RESTful web services as in [44]. 

Therefore, existing approaches and techniques [75] for RESTful web service orchestration 

can be reused. This component uses dynamic binding instead of static because 

conferencing PaaS selects the most suitable substrates on the fly.  

iv) It manages the composed conferences. For example, it can add or remove video 

from a conference. 

v) It monitors the current size of each running conference to make decisions about 

scaling. If needed, it requests conferencing IaaSs to scale in terms of conference size. 

However, this decision-making process requires new conference scaling algorithms. 

Conferencing IaaS Handler component handles all communications between the 

conferencing PaaS and the conferencing IaaSs. It realizes the high-level conferencing 

PaaS/IaaS interfaces proposed in [44], which is reused in this work. 

Conference Orchestration and Management component receives requests from 

conferencing services, which are running in Service Hosting and Execution component. 

Based on the requests received (e.g. create a conference and stop a conference), it takes 
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actions and communicates with IaaSs via Conferencing IaaS Handler. Note that 

Conference Orchestration and Management is a novel component while Conferencing IaaS 

Handler is an extension of IaaS communication component in conventional PaaS 

architectures. 

3) Components Related to Substrate Information: 

To select the best conferencing IaaS for a given substrate, PaaS needs certain information 

about that substrate, such as substrate type, price, SLA and QoS. Conferencing PaaS 

provider uses a GUI in Conferencing PaaS GUIs and APIs component to manage (e.g. add, 

remove, update) such information of the substrates. The information is stored in the 

Substrate Information Repository. 

4.2    Conferencing Service Development APIs 

In order to facilitate conferencing service development by the service providers, Conferencing 

PaaS GUIs and APIs component include Service Development APIs. In this section, the proposed 

development APIs are discussed. 

Three principles are followed to design the proposed APIs. The first principle is leveraging basic 

conferencing concepts (e.g. conference, participant, media and floor) in the API design. This helps 

in achieving an abstraction level higher than conferencing components (e.g. signaling, media mixer 

and media transcoder) and their complex interactions. The second principle is categorizing API 

parameters, which helps service providers to easily understand a conference’s mandatory and 

optional aspects, required API parameters for each aspect and dependencies among parameters. 
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The third principle is the use of RESTful design. It is standard-based, lightweight and flexible for 

data representation. It also allows to describe the APIs in a generic way. 

Using the first principle, we determine the necessary data-set for RESTful API design. The data-set 

includes conference, participant, media (e.g. audio, video and text), floor and subconference 

(conference within a conference). The REST resources and their hierarchy can be easily derived 

then. The top level REST resource, which the service providers deal with, is list of conferences. 

Each individual conference resource has several subordinate resources such as list of participants, 

list of media, list of floor and list of subconferences. 

Table 4-1 delineates the proposed APIs. It shows the REST resources along with the operations for 

each. The request parameters and the response contents are also listed. 

REST 

Resource 
Operation 

HTTP action and 

resource URI 

Request body 

parameters 

Most 

important 

info in 

response 

List of 

Conferences 

Create  

conference 
POST: /conferences 

Conference model, 

media, 

floor control, 

technology, 

conference size, 

QoS requirements, 

etc. 

ID and URI of 

created 

conference 

Read IDs of all 

running 

conferences 

GET:/conferences None 

List of 

conference IDs 

and URIs 

Conference 

Read info of a 

conference 

GET:/conferences/ 

{conferenceId} 
None 

Conference 

description and 

status 

Terminate a 

conference 

DELETE:/conferences/ 

{conferenceId} 
None 

Success or 

failure 

indication 

List of 

participants 

Add a 

participant 

POST:/conferences/ 

{conferenceId}/participa

nts 

Participant 

description: name, 

URI 

ID and URI of 

new participant 
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Read: IDs of 

all participants 

in a conference 

GET:/conferences/ 

{conferenceId}/participa

nts 

None 

List of 

participant IDs 

and URIs 

Participant 

Remove 

participant 

from a 

conference 

DELETE:/conferences/ 

{conferenceId}/participa

nts/ {participantId} 

None 

Success or 

failure 

indication 

Read 

description and 

status of a 

conference 

participant 

GET:/conferences/ 

{conferenceId}/ 

participants/{participant

Id} 

None 

Participant 

status (joined 

or not), name, 

URI 

List of media 

Add a new 

media later to a 

conference 

(e.g. going 

from audio to 

video 

conference) 

POST:/conferences/ 

{conferenceId}/ media 

Description of 

media (e.g. frame 

rate, resolution, bit 

rate, codec, latency 

requirement) 

ID and URI of 

new media 

Get all media 

used in a 

conference 

(e.g. video 

conference has 

2 media- audio 

and video) 

GET:/conferences/ 

{conferenceId}/ media 
None 

List of IDs and 

URIs of media 

used. These 

subordinate 

resources are 

automatically 

created when a 

conference is 

first 

instantiated. 

Media 

Remove media 

from a 

conference 

(e.g. going 

from video to 

audio 

conference) 

DELETE:/conferences/ 

{conferenceId}/media/ 

{mediaId} 

None 

Success or 

failure 

indication 

Read info of a 

specific media 

used in a 

conference 

GET:/conferences/ 

{conferenceId}/media/ 

{mediaId} 

None 

Description of 

media (e.g. 

frame rate, 

resolution, bit 

rate) 

List of floors Add a floor 
POST:/conferences/ 

{conferenceId}/floors 

Floor description: 

chair, floor 

participants 

ID and URI of 

new floor 

added 
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Read IDs of all 

floors in the 

conference 

GET:/conferences/ 

{conferenceId} /floors 
None 

List of floor 

IDs and URIs 

Floor 

Remove a floor 

DELETE:/conferences/ 

{conferenceId}/ floors/ 

{floorId} 

None 

Success or 

failure 

indication 

Read info of a 

conference 

floor 

GET:/conferences/ 

{conferenceId}/ floors/ 

{floodId} 

None 

Floor 

description: 

chair, floor 

participants, 

floor requests 

List of floor 

chairs 

Add a new 

floor chair 

POST:/conferences/ 

{conferenceId}/floors/{f

loorId} /floorChairs 

Floor chair 

description: name, 

URI 

ID and URI of 

new floor chair 

Read IDs of 

floor chairs 

GET:/conferences/ 

{conferenceId}/ floors/ 

{floorId}/ floorChairs 

None 

IDs and URIs 

of existing 

floor chairs 

Floor chair 
Remove a floor 

chair 

DELETE:/conferences/ 

{conferenceId}/floors/{f

loorId} 

/floorChairs/{floorChair

Id} 

None 

Success or 

failure 

indication 

List of floor 

participants 

Add a 

participant to a 

floor 

POST:/conferences/ 

{conferenceId}/floors/{f

loodId} 

/floorParticipants 

Description of  

floor participant: 

name, URI 

ID and URI of 

new floor 

participant 

Read IDs of all 

floor 

participants 

GET:/conferences/ 

{conferenceId}/floors 

/{floodId} 

/floorParticipants 

None 

List of floor 

participant IDs 

and URIs 

Floor 

participant 

Remove 

participant 

from a floor 

DELETE:/conferences/ 

{conferenceId}/floors 

/{floodId} 

/floorParticipants 

/{floorParticipantId} 

None 

Success or 

failure 

indication 

List of floor 

requests 

Make a floor 

request 

POST:/conferences/ 

{conferenceId}/floors 

/{floodId} 

/floorRequests/ 

Description of floor 

request: 

ID of floor 

participant who 

requested floor, 

timestamp of 

request 

ID and URI of 

new floor 

request 

Read IDs of 

floor requests 

not handled yet 

GET:/conferences/ 

{conferenceId}/floors 

/{floodId} 

/floorRequests/ 

None 

List of floor 

request IDs 

and URIs 
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Floor request 

Grant floor 

PUT:/conferences/ 

{conferenceId}/floors 

/{floodId} 

/floorRequests 

/{floorRequestId} 

Status: granted 

Success or 

failure 

indication 

Deny floor 

DELETE:/conferences/ 

{conferenceId}/floors/{f

loodId} 

/floorRequests/{floorRe

questId} 

None 

Success or 

failure 

indication 

List of 

subconferences 

Create a 

subconference 

POST:/conferences 

/{conferenceId} 

/subconferences 

List of participant 

IDs to add to the 

subconference 

ID and URI of 

subconference 

Read IDs of all 

existing 

subconferences 

GET:/conferences 

/{conferenceId} 

/subconferences 

None 

List of sub-

conference IDs 

and URIs 

Subconference 

Read 

information of 

a 

subconference 

GET:/conferences 

/{conferenceId} 

/subconferences 

/{subconferenceId} 

None 

List of 

participants in 

the sub-

conference, 

creation time 

etc. 

Remove 

subconference 

DELETE: /conferences 

/{conferenceId} 

/subconferences 

/{subconferenceId} 

None 

Success or 

failure 

indication 

Add a 

participant 

PUT:/conferences 

/{conferenceId} 

/subconferences 

/{subconferenceId} 

/participants 

/{participantId} 

None 

Success or 

failure 

indication 

Remove a 

participant 

DELETE:/conferences 

/{conferenceId} 

/subconferences 

/{subconferenceId} 

/participants 

/{participantId} 

None 

Success or 

failure 

indication 

 

Table 4-1: Conferencing Service Development APIs 

The categorization of API parameters is shown in table 4-2. This table highlights that, to create a 

conference, the service providers must choose and specify the mandatory conferencing aspects - 
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one of the three conference models, at least one media and the conferencing technology. It also 

shows the conditional dependencies of parameters. For example, for WebRTC-based conferencing, 

signaling protocol must be specified, as WebRTC standard does not mandate any particular 

signaling protocol [76]. 

 
Categories of 

Parameters 
Example Values 

Mandatory 

Aspects 

Conference 

Model 

Pre-

arranged 

conference 

Dial-in conference 

Dial-out conference 

Ad-hoc conference 

Media At least one of audio, video and text 

Conferencing 

Technology 

SIP-based 

Signaling 

protocol 

SIP by default. No need to 

specify. 

Audio 

encodings 

No mandatory encodings. So, 

must specify. 

Video 

encodings 

No mandatory encodings. So, 

must specify. 

WebRTC-

based 

Signaling 

protocol 

No mandatory protocol. So, must 

specify. 

Audio 

encodings 

Mandatory: G.711 and Opus. Can 

specify additional. 

Video 

encodings 

Mandatory: H.264 and VP8. Can 

specify additional. 

Hybrid 

(SIP-based 

+ 

WebRTC-

based) 

Mandatory protocols and encodings from both 

technologies apply. Can specify additional. 

Optional 

Aspects 

Floor control 
At least one floor control policy, e.g. chair-moderated and round-

robin. 

Subconference Enabled or not 
 

Table 4-2: Categorization of API Parameters 

The parameters that the service providers can change during runtime are italicized. For example, 

the service provider can add instant messaging to an audio conference or can remove video from 

an audio/video conference. However, the conference must have at least one media. A special case 
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is conferencing technology where it is possible only to upgrade from SIP-based or WebRTC-based 

conferencing to hybrid conferencing. 

4.3     Illustrative Scenario 

The illustrative scenario consists of several actors. The first actor is a game application where 

players can talk anytime but can have private text chat for only 5 minutes per hour. The second 

actor is a service provider offering dial-in audio conferencing service with text chat available only 

for a certain period of time. The third actor is the conferencing PaaS that subscribes to three 

conferencing IaaSs A, B and C. The discovery and subscription of the IaaSs are assumed to occur 

offline. IaaS A and B offer dial-in signaling and audio mixer substrates; IaaS C offers an instant 

messaging substrate. Conferencing IaaSs represent the fourth actor in this scenario. 

We divide the scenario into two parts. The first part concerns conferencing service development 

and deployment. It illustrates how service providers can use the development APIs to develop 

complex conferencing services easily. The second part relates to conferencing service execution. It 

shows how the conferencing PaaS creates a conference when the game application sends requests 

to the service. 

Both parts of the scenario demonstrates the relevant interactions among the different architectural 

components of the proposed conferencing PaaS architecture. Although the scenario constitutes a 

subset of all the functionalities of the conferencing PaaS, it helps understand how the proposed 

architecture works and facilitates conferencing service provisioning. 
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4.3.1    Conferencing Service Development and Deployment 

In this scenario, we assume that the service provider wants to develop a WebRTC-based 

conferencing service. The targeted conferencing end-points are capable of handling signaling 

protocol JSEP (JavaScript Session Establishment Protocol) and can process at least the mandatory 

audio and video codecs specified by WebRTC standard. We also assume that dial-in substrate 

offered by IaaSs support WebRTC technology. 

The service provider uses high-level conferencing service development APIs in the code. In order 

to handle requests from service consumers to create conferences, the create conference API is 

used. The API returns an ID after successful creation of a conference. When conference is started, 

the service receives a notification from the PaaS. We assume that the conferencing service enables 

private text chat 30 minutes after the conference is started. So, when the conference started 

notification is received, the service provider uses a regular timer function (available in most 

programming languages) to enable text chat after 30 minutes. The service provider uses another 

API add media to add instant messaging to the conference for 5 minutes. A pseudo-code for this 

conferencing service is shown in figure 4-2. 
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Figure 4-2: Pseudo-code of dial-in audio conferencing service 

When the service provider finishes developing the service, a Conferencing PaaS GUI, such as a 

simple command line interface (CLI), is used to deploy the service in the PaaS. The GUI conveys 

the command to Management (Services and PaaS) component, which deploys the service in 

collaboration with Service Hosting and Execution component. The interactions of components are 

illustrated in figure 4-3. After the service is deployed, the service provider, using the same 

conferencing PaaS GUI, starts the service. 
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Figure 4-3: Conferencing Service Deployment Scenario 

4.3.3    Conferencing Service Execution 

Once the service is started, it can receive requests for creating new conferences. Figure 4-4 depicts 

the interactions when the service receives a request from the game application for creating a 

conference. For brevity, the game application actor is omitted in the figure. The service first 

invokes the create conference API in order to create a dial-in audio conference. The service 

provider used this API in the code to handle such conference creation requests. Handling of API 

invocation is delegated to Conference Orchestration and Management component, which 

determines necessary substrates (dial-in and audio mixer substrates) and selects appropriate IaaSs. 

It is assumed that it selects IaaS A for dial-in signaling and IaaS B for audio mixer substrates. 

Next, it requests IaaSs, via Conferencing IaaS Handler, to activate the substrates. Interactions for 

substrate activation are not shown in the figure. After activation, Conference Orchestration and 

Management component orchestrates a new dial-in audio conference from substrates and then 

executes it. The orchestrated conference represents a full-fledged conference. It creates individual 
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conferences on the substrates it is composed of. Finally, the ID of the full-fledged conference is 

returned to the game.  

 

Figure 4-4: Conferencing Service Execution Scenario 
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The created conference is a scheduled conference. So the individual conferences on the dial-in and 

audio mixer substrates get started at the specified time. The conferencing PaaS receives 

notifications from the IaaSs. When both individual conferences on the substrates have started, the 

PaaS notifies the conferencing service that the conference has started. The conferencing service 

receives this notification and sets a timer to enable private text chat to the conference after 30 

minutes. For brevity, the notifications from IaaSs to the PaaS and to the service are not shown in 

the figure. 

The service invokes another API add media after the timer goes off. Using the API, the service 

adds instant messaging to the conference for 5 minutes. Conference Orchestration and 

Management component selects IaaS C for instant messaging substrate, activates a substrate on 

IaaS C and modifies the conference to add instant messaging. On the new substrate, individual 

conference is created for 5 minutes and existing participants are added. The conferencing service 

as well as the game application are notified that text chat has been enabled. Then, participants can 

start exchanging text messages. After 5 minutes, the individual conference created on the instant 

messaging substrate is terminated. The PaaS receives conference termination notification from 

IaaS C. Conference Orchestration and Management component modifies the conference again to 

exclude instant messaging. The conferencing PaaS can keep the instant messaging substrate 

activated for other conferences. It can also decide to deactivate the substrate. 

4.4     How the Proposed Architecture Meets the Requirements 

The proposed architecture of conferencing PaaS satisfies all the requirements mentioned in chapter 

3. First, it provides high-level interfaces for provisioning conferencing services by service 

providers who have programming expertise. For service development, it provides necessary APIs 
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that abstract complexities of conferencing. Moreover, it provides GUI for service deployment and 

management. Second, Conference Orchestration and Management entity as well as Substrate 

Information Repository collaborate to determine necessary substrates, select the most suitable 

conferencing IaaSs offering those substrates and compose the substrates into a conferences. Thus, 

the requirement of conference composition from substrates is met by the proposed architecture. 

Third, in order to ensure elastic scalability of conferences, Conference Orchestration and 

Management component in the architecture monitors the running conferences and performs 

conference scaling algorithm (discussed in chapter 5). If needed, it requests conferencing IaaSs to 

scale the ongoing conferences. The PaaS/IaaS interaction interfaces chosen from the state of the art 

include API for conferencing PaaS to make such requests to IaaS. Fourth, the architecture has 

components for monitoring and managing both conferencing services and conferences created. The 

PaaS/IaaS interfaces include interfaces for receiving QoS status notification. Based on the QoS 

status, conferencing PaaS can take necessary actions, for example, changing conferencing IaaS for 

a substrate. Measurements for conference runtime operations (e.g. participant joining time), 

discussed in chapter 6, show that the end-to-end delay is acceptable. Therefore, the architecture 

meets the requirement of QoS. 

4.5     Chapter Summary 

In this chapter, we presented the proposed architecture for a conferencing PaaS. We discussed 

architectural principles that we followed in our design, the main components in our architecture 

and then the proposed conferencing service development APIs. Next we provided an illustrative 

scenario, showing how different components of the proposed architecture communicate with each 

other and how the proposed APIs can help the service providers easily develop conferencing 
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services. Finally we explained how the proposed architecture fulfills the requirements we set in 

chapter 3. The proposed architecture meets all the requirements on conferencing PaaS whereas the 

state of the art does not meet all of them. For example, the proposed architecture satisfies the 

requirement of high-level interfaces for conferencing service providers which related works [32], 

[42], [43] and [55] do not satisfy. Related work [43] does not meet the requirement of composition 

of conferences from substrates. The requirement of elastic scalability of conferences is also not met 

by related works [32], [49], [51], [53] and [55]. The proposed conferencing PaaS architecture 

meets these requirements. It also meet the requirement of QoS when related works [46], [47] and 

[48] only partially satisfies the QoS requirement. 

The validation of the proposed conferencing PaaS architecture will be discussed in chapter 6. 
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Chapter 5 

5. Conference Scaling Algorithm 

In the previous chapter, we propose a conferencing PaaS architecture. The Conference 

Orchestration and Management component of this architecture is responsible for scaling the 

ongoing conferences in an elastic manner. For elastic scalability, that component needs to run 

efficient conference scaling algorithm. In this chapter, we first discuss the problem of conference 

scaling and motivate the need of an algorithm for this with the help of an example. Then we 

formally state the problem and analyze the nature of the problem. Based on the problem analysis, 

we then propose a dynamic programming algorithm. After that, we present another greedy 

algorithm which is faster but produces suboptimal result. Finally, we summarize the chapter. 

5.1    Problem Background and Motivation 

During a conference, the allocated conference size should be large enough to accommodate all 

conference participants at any point in time. On one hand, as more participants join, the conference 

needs to be scaled up. On the other hand, as participants leave the conference, the conference needs 

to be scaled down; otherwise resources are wasted. 

In the cloud-based conferencing business model [1] that we reuse, conferencing IaaS provides 

substrates, such as dial-in signaling, audio mixer, and video mixer. Conferencing PaaS creates and 

activates the necessary substrates and then composes conferences from them. During the 

conference execution, PaaS requests IaaSs to scale these substrates as participants join and leave. 

On the conferencing IaaS side, conference scaling is not instantaneous. Once PaaS requests for 
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scaling, IaaS needs to perform several functions to realize the request, which takes a certain 

amount of time. This results in a time lag between sending a scaling request from PaaS and its 

actual realization in IaaS. Therefore, PaaS cannot send a new scaling request before the current 

scaling request is met. Hence the time lag constraint should be considered when decisions about 

scaling are made in the PaaS. We can schedule scaling if we know the prospective number of 

participants ahead of time. 

We assume that a prediction model is available before the conference is started. It provides number 

of participants during different future time slots. The prediction model can be developed using 

statistical models of the user growth of cloud services [77] and using the past history of a time-

series [78]. The prediction model enables the conferencing PaaS to look ahead and see how 

number of participants in a conference changes over time and helps it to decide if conference needs 

to be scaled or not. As the input (number of participants over time) to the conference scaling 

algorithm is provided by the prediction model, the algorithm’s output will be as good as the 

accuracy of the prediction model. Note that the same prediction model may not be used for 

different types of conferencing applications. For example, the trends of joining and leaving 

participants in a conventional audio/video conference and in an online game are not the same and 

may need different prediction models. 

Consider a scenario where predicted numbers of participants are 

{15, 30, 50, 80, 100, 150, 180,250}  at intervals of one time slot. During the first time slot, there 

will be a maximum of 15 participants, during the second time slot, 15 more participants will join 

the conference and the number of participants will be 30 and so on. 
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For simplicity, we assume that the time lag for scaling is a multiple of time slots and in the 

scenario, we assume it to be 3 time slots. If scaling request is made at the start of the first time slot, 

the scaled conference is available during the fourth time slot. Therefore, to accommodate predicted 

number of participants during the fourth time slot, scaling request has to be made during the first 

time slot. 1 When the duration of time slot and that of scaling time lag are equal, the problem is 

trivial because conferencing PaaS can send scaling request just before the next time slot. 

Therefore, in this problem, the time lag’s value is greater than one time slot. 

For each time slot, the PaaS can decide to scale the conference or to continue with the current 

conference size. If it decides to scale, it also needs to decide the new conference size. Depending 

on the time slots during which decisions are made to scale the conference, multiple scaling 

schedules are possible. 

Two possible scaling schedules are shown in Table 5-1. Due to the scaling time lag, the first three 

time slots must be accommodated with an initial large enough conference size, which we call 

initial conference size. In both schedules, the initial conference size is assumed to be 50. In 

schedule 1, scaling up is requested, denoted as 𝑈(𝑛𝑒𝑤 𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑖𝑧𝑒), for increased 

conference size of 150 at the first time slot, which can accommodate time slots from 4 to 6. There 

will be a maximum of 80 and 100 participants during time slots 4 and 5, respectively. Therefore, 

wasted resources in terms of number of participants in schedule 1 is 245 (with initial conference 

size 50: 50 – 15 + 50 - 30 = 55; first scaling to 150: 150 – 80 + 150 – 100 = 120; second scaling to 

250: 250 – 180 = 70). In schedule 2, total wasted resource is 265 (with initial conference size 50: 

                                                           
1 To avoid repetition, we shall state “scaling during a time slot”, which will mean “scaling at the 

start of a time slot”. 
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50 – 15 + 50 – 30 = 55; first scaling to 180: 180 – 80 + 180 – 100 + 180 - 150). Therefore, 

schedule 1 is better than schedule 2. 

Time slot 1 2 3 4 5 6 7 8 

Predicted number 

of participants 

15 30 50 80 100 150 180 250 

Schedule 1 𝑈(150) -  - 𝑈(250) - - - - 

Schedule 2 𝑈(180) - -  𝑈(250) - - - 
 

Table 5-1: An example of predicted number of participants in a conference 

For the sake of argument, if the predicted number of participants during the eighth time slot would 

have been 300 instead of 250, then 𝑈(250) would have been 𝑈(300). In this case, schedule 2 

would be better than schedule 1 with schedule 1 resulting in 295 wasted resources, whereas, 

schedule 2 results in 265 wasted resources. 

In order to achieve cost efficiency, we want to compute a scaling schedule that minimizes waste of 

resources in terms of difference between allocated conference size and predicted number of 

participants. 

5.2    Problem Statement 

Given 𝑛 time slots, 𝑇 = {1, 2, 3, … … , 𝑛 − 1, 𝑛}, 𝑃 =  {𝑝1, 𝑝2, 𝑝3, . . .  . . .  , 𝑝𝑛−1, 𝑝𝑛} are the 

expected number of conference participants, such that, there will be a maximum of 𝑝𝑖 participants 

during time slot 𝑖. It is assumed that 𝑃 is provided by a prediction model before the conference is 

started. The time slots in 𝑇 are equal in length, that is, duration of time slot 𝑖 equals that 

of 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. 
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Upon receiving a scaling request from conferencing PaaS, conferencing IaaS allocates or 

deallocates resources, which takes a certain time. Thus, there is a time lag, denoted as 𝛿, at IaaS 

layer between the time of receiving the scaling request and the time of having the conference 

scaled according to the request. Conferencing IaaS is assumed to scale the conferences within the 

stipulated time lag without affecting QoS requirements of conferencing. In order to make the 

problem simpler, two assumptions are made about the time lag 𝛿. First, it is a multiple of time 

slots. Second, time lags for scaling up and scaling down are equal. With these assumptions, if 

scaling is requested at the beginning of time slot 𝑖, the scaled conference is available at time 

slot 𝑖 + 𝛿. For example, if 𝛿 is 3 time slots and scaling is requested during time slot 2, the scaled 

conference is available at time slot 5.  

Given 𝑇, 𝑃 and 𝛿, the goal is to compute an optimal scaling schedule 𝑅,such that amount of wasted 

resources in terms of number of participants is minimized. 

The value of 𝛿 can vary for different IaaSs. If a conferencing PaaS provisions services from 

multiple IaaSs, then it just computes an optimal schedule for each value of 𝛿 corresponding to the 

different IaaSs. Table 5-2 delineates the notations used in the problem. 

Notation Definition 

𝑇 Time slots, 𝑇 = {1, 2, 3, … … , 𝑛 − 1, 𝑛} 

𝑃 Expected number of conference participants {𝑝1, 𝑝2, 𝑝2, . . .  . . .  , 𝑝𝑛−1, 𝑝𝑛} such that 
during time slot 𝑖, there is a maximum of 𝑝𝑖  participants for 1 ≤ 𝑖 ≤ 𝑛. 

𝛿 The time lag, stipulated in conferencing IaaSs’ Service Level Agreement (SLA), for 
meeting scaling request. 

𝑅 A scaling schedule {𝑟1, 𝑟2, … … , 𝑟𝑛−𝛿}, where 

𝑟𝑖 = {
𝑚 > 0, if scaling is requested for 𝑚 participants during time slot 𝑖

0, otherwise
 

𝑆 Allocated conference sizes, 𝑆 = {𝑠1, 𝑠2, 𝑠3, … … , 𝑠𝑛−1, 𝑠𝑛}, where 𝑠𝑖is the allocated size 
during time slot 𝑖. The values of 𝑠𝑖 can vary depending on scaling schedule 𝑅. Here, 𝑠1 is 
the initial conference size. 
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Table 5-2: List of notations 

Constraints: 

The first constraint is that, due to time lag 𝛿 at conferencing IaaS, two consecutive scaling requests 

from conferencing PaaS must be separated by 𝛿. In a scaling schedule 𝑅 = {𝑟1, 𝑟2, 𝑟3, … … , 𝑟𝑛−𝛿}, if 

one scaling request is made during time slot 𝑖 and the next during 𝑘, that is, if 𝑟𝑖 > 0, 𝑟𝑖+1 =

0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0, then 𝑘 − 𝑖 ≥ 𝛿 ∀ 1 ≤ 𝑖 < 𝑘 ≤ 𝑛 − 𝛿. 

The second constraint is that, the allocated conference size during time slot 𝑖, 𝑠𝑖 ∈ 𝑆, must 

accommodate the predicted number of participants 𝑝𝑖 ∈ 𝑃, that is, 𝑠𝑖 ≥ 𝑝𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛. 

Given a scaling schedule 𝑅 = {𝑟1, 𝑟2, 𝑟3, … … , 𝑟𝑛−𝛿−1} and predicted number of participants 𝑃 =

{𝑝1, 𝑝2, … … , 𝑝𝑛}, the values of 𝑠𝑖 ∈ 𝑆 can be derived. If the first scaling request is made during 

time slot 𝑘, that is, if 𝑟1 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0, then the allocated conference size, 𝑠𝑗 =

max  {𝑝𝑗} ∀ 1 ≤ 𝑗 < 𝑘 + 𝛿. 

If one scaling request is made during time slot 𝑖 and the next one during 𝑘, that is, if 𝑟𝑖 > 0, 𝑟𝑖+1 =

0, 𝑟𝑖+2 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0, then the allocated conference size from time slot (𝑖 +

𝛿) to (𝑘 + 𝛿 − 1) will equal 𝑟𝑖. Therefore,  𝑠𝑗 = 𝑟𝑖 ∀  𝑖 + 𝛿 ≤ 𝑗 < 𝑘 + 𝛿, where 𝑟𝑖 > 0, 𝑟𝑖+1 =

0, 𝑟𝑖+2 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0. 

Both cases of 𝑠𝑗  can be summarized as follows: 

𝑠𝑗 = {
max {𝑝𝑗}, ∀ 1 ≤ 𝑗 < 𝑘 + 𝛿, when 𝑟1 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0

𝑟𝑖,   𝑖 + 𝛿 ≤ 𝑗 < 𝑘 + 𝛿, when 𝑟𝑖 > 0, 𝑟𝑖+1 = 0, 𝑟𝑖+2 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0
 

Objective: 
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The allocated conference sizes 𝑆 = {𝑠1, 𝑠2, … … , 𝑠𝑛} for time slots 𝑇 =  {𝑡1, 𝑡2, … … , 𝑡𝑛} can be 

computed from a scaling schedule 𝑅 = {𝑟1, 𝑟2, 𝑟3, … … , 𝑟𝑛−𝛿} and predicted number of 

participants 𝑃 = {𝑝1, 𝑝2, … … , 𝑝𝑛}. Waste of resources during time slot 𝑖 is the difference between 

allocated conference size 𝑠𝑖  and predicted number of participants 𝑝𝑖, that is, (𝑠𝑖 − 𝑝𝑖). The 

objective is to compute an optimal scaling schedule, which minimizes the amount of wasted 

resources during the entire conference, i.e., the sum of differences between allocated conference 

size,  𝑠𝑖 ∈ 𝑆 and predicted number of participants, 𝑝𝑖 ∈ 𝑃 for 1 ≤ 𝑖 ≤ 𝑛, that is, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ 𝑠𝑖 − 𝑝𝑖

𝑛

𝑖=1

) 

5.3    Problem Analysis 

In order to determine the minimum amount of wasted resources for time slots from 𝑖 to 𝑗, 

where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, the amounts of wasted resources for all possible time ranges in-between 

time slot 𝑖 and  𝑗 (inclusive) are required. To determine amount of wasted resources, number of 

participants as well as allocated conference size are needed. Predicted number of participants 𝑃 is 

an input to the problem. As for allocated conference size, it depends on an optimal scaling 

schedule, which needs to be computed. However, according to the second constraint, the allocated 

conference size for time slot 𝑖 must be greater than or equal to predicted number of participants for 

that time slot. Therefore, required conference size for time slots from 𝑖 to 𝑗 must be greater than or 

equal to predicted numbers of participants {𝑝𝑖, 𝑝𝑖+1, … … , 𝑝𝑗−1, 𝑝𝑗}.  

Let 𝑐[𝑖, 𝑗] denote the required conference size for time slots from 𝑖 to 𝑗. In order to satisfy the 

second constraint, which is 𝑠𝑖 ≥ 𝑝𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛, required conference size is the maximum number 
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of participants predicted from time slot 𝑖 to 𝑗. Therefore, 𝑐[𝑖, 𝑗] can be computed using the 

following equation. 

𝑐[𝑖, 𝑗] = 𝑚𝑎𝑥 {𝑝𝑘}  ∀ 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑗 ≤ 𝑛  … … … (1) 

Let 𝑤[𝑖, 𝑗] denote the amount of wasted resources from time slot 𝑖 to 𝑗 when one and only one 

scaling request accommodates predicted number of participants from time slot 𝑖 to 𝑗. From Eq. (1), 

it is clear that the conference must be scaled to size 𝑐[𝑖, 𝑗]. Thus the value of 𝑤[𝑖, 𝑗] can be 

computed as in Eq. (2). 

𝑤[𝑖, 𝑗] = ∑(𝑐[𝑖, 𝑗] − 𝑝𝑘)

𝑗

𝑘=𝑖

  ∀ 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑗 ≤ 𝑛 … … … (2) 

A trivial case is 𝑖 = 𝑗 where 𝑤[𝑖, 𝑖] = 0 because 𝑐[𝑖, 𝑖] equals 𝑝𝑖. 

Let 𝑚[𝑖, 𝑗] denote minimum amount of wasted resources for time slots from 𝑖 to 𝑗. This is the cost 

of optimal solution of the problem for time slots from 𝑖 to 𝑗. Note that, 𝑚[𝑖, 𝑗] may result from 

multiple scaling requests. 𝑚[𝑖, 𝑗] may be achieved by a single scaling request that accommodates 

participants for all time slots from 𝑖 to 𝑗. 𝑚[𝑖, 𝑗] may also be achieved by having one scaling 

request accommodating participants for time slots from 𝑖 to 𝑘 and later scaling request(s) 

accommodating participants for the remaining time slots from 𝑘 + 1 to 𝑗. Therefore, when the cost 

of an optimal solution to 𝑚[𝑖, 𝑗] involve more than one scaling requests, the following can be 

stated: 

𝑚[𝑖, 𝑗] = 𝑤[𝑖, 𝑘] + 𝑚[𝑘 + 1, 𝑗]    … … … (3) 

From Eq. (3), it is clear that in order to find 𝑚[𝑖, 𝑗], the range of time slots must be split between 

time slots 𝑘 and 𝑘 + 1 for some integer 𝑘 in the range 𝑖 + 𝛿 − 1 ≤ 𝑘 < 𝑗. Finding minimum waste 

of resources for time slots from 𝑖 to 𝑗 involves finding minimum waste of resources for the time 
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slots that are accommodated by subsequent scaling requests. The solution to the problem is 

essentially reduced to finding the solution to a smaller subproblem. Thus, the problem shows 

optimal substructure property. 

Proof of the Problem’s Optimal Substructure Property: 

The optimal substructure property of the problem is proved as follows. Suppose, to achieve 

minimum waste of resources from time slot 𝑖 to 𝑗, the time range is split between time 

slot 𝑘 and 𝑘 + 1, meaning, this split leads to an optimal solution for 𝑚[𝑖, 𝑗]. Then the solution to 

the subproblem 𝑚[𝑘 + 1, 𝑗] must be an optimal one. Because, if there were a solution to the 

subproblem that leads to less waste of resources, then solution to the original problem would have 

resulted into less waste of resources than the optimum. This contradicts the assumption that 𝑚[𝑖, 𝑗] 

is an optimal solution. Thus, the solution to the subproblem 𝑚[𝑘 + 1, 𝑗] must be an optimal 

solution. 

Overlapping Subproblems Property: 

Let 𝑘1, 𝑘2 and 𝑘2 denote three of the many time slots in between the time slots 𝑖 and 𝑗, that is, 𝑖 <

𝑘1 < 𝑘2 < 𝑘3 < 𝑗. This is illustrated in figure 5-1. Assume that the time slots 𝑖, 𝑘1, 𝑘2, 𝑘3 and 𝑗 are 

separated by at least 𝛿, that is, 𝑘1 − 𝑖 ≥ 𝛿, 𝑘2 − 𝑘1 ≥ 𝛿, 𝑘3 − 𝑘2 ≥ 𝛿. To find an optimal solution 

to 𝑚[𝑖, 𝑗], three possible splits around 𝑘1, 𝑘2 and 𝑘3 time slots are possible, which lead to 

subproblems 𝑚[𝑘1 + 1, 𝑗], 𝑚[𝑘2 + 1] and 𝑚[𝑘3 + 1, 𝑗], respectively. While solving 

subproblem 𝑚[𝑘1 + 1, 𝑗], two possible splits are around 𝑘2 and 𝑘3 as 𝑘1 < 𝑘2 < 𝑘3 < 𝑗, which 

leads to subproblems 𝑚[𝑘2 + 1, 𝑗], 𝑚[𝑘3 + 1, 𝑗]. While solving subproblem 𝑚[𝑘2 + 1, 𝑗], one 

possible split is around 𝑘3 as 𝑘2 < 𝑘3 < 𝑗, which leads to subproblem 𝑚[𝑘3 + 1, 𝑗]. Thus, it is 
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observed that the same subproblems, such as 𝑚[𝑘2 + 1, 𝑗] and 𝑚[𝑘3 + 1, 𝑗] are solved repeatedly. 

Therefore, this problem demonstrates the overlapping subproblems property. 

 

Figure 5-1: Overlapping subproblems 

Proof of Overlapping Subproblems property: 

The overlapping subproblems property can be proved as follows. We follow the scenario in figure 

5-1. Finding optimal solutions to both 𝑚[𝑖, 𝑗] and 𝑚[𝑘1 + 1, 𝑗] must lead to subproblem 𝑚[𝑘2 +

1, 𝑗]. If 𝑚[𝑘2 + 1, 𝑗] were not a subproblem of 𝑚[𝑖, 𝑗] and 𝑚[𝑘1 + 1, 𝑗], then 𝑘2 − 𝑖 < 𝛿 and 𝑘2 −

𝑘1 < 𝛿, respectively. This contradicts the assumptions that  𝑘2 − 𝑘1 ≥ 𝛿. In addition to that, 𝑘1 −

𝑖 ≥ 𝛿 and 𝑘2 > 𝑘1, then 𝑘2 − 𝑖 ≥ 𝛿. Thus, 𝑚[𝑘2 + 1] is a subproblem of both 𝑚[𝑖, 𝑗] and 𝑚[𝑘1 +

1, 𝑗]. 

The problem thus shows two hallmark properties (optimal substructure and overlapping 

subproblems) of an optimization problem that can be solved by dynamic programming. In the next 

section, we provide an overview of dynamic programming. For the sake of continuity, we analyze 

the problem further in this section and provide the problem’s recurrence relation below. 

Recurrence Relation: 
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Now, in order to apply dynamic programming, the minimum waste of resources 𝑚[𝑖, 𝑗] is defined 

recursively as follows. If 𝑖 = 𝑗, the problem is trivial. Similar to the trivial case of of Eq. (2), there 

is only one time slot to consider and hence minimum waste of resources is zero, that is, 𝑚[𝑖, 𝑖] =

0 for 𝑖 = 1,2, … , 𝑛. When 𝑖 < 𝑗, minimum waste of resources can be achieved by either one or 

multiple scaling requests. So, the minimum of the two waste of resources for these two cases is 

chosen. When one scaling request results in the minimum waste of resources, 𝑚[𝑖, 𝑗] equals 𝑤[𝑖, 𝑗] 

because that scaling request accommodates all time slots from 𝑖 to 𝑗. When multiple scaling 

requests lead to the minimum waste of resources, Eq. (3) applies. However, Eq. (3) assumes that 

the value of 𝑘 is known, when it is unknown. Number of possible values for 𝑘 is 𝑗 − 𝑖 − 𝛿 + 1, 

which are 𝑖 + 𝛿 − 1, 𝑖 + 𝛿, 𝑖 + 𝛿 + 1, … … , 𝑗 − 1. The optimal solution to 𝑚[𝑖, 𝑗] chooses one of 

these values of 𝑘.Thus, 𝑚[𝑖, 𝑗] can be defined recursively as follows: 

𝑚[𝑖, 𝑗] = {
0,                                                                 if  𝑖 = 𝑗

min
𝑖+𝛿−1≤𝑘<𝑗

{𝑤[𝑖, 𝑗], 𝑤[𝑖, 𝑘] + 𝑚[𝑘 + 1, 𝑗]} , if 𝑖 < 𝑗 … … … (4) 

The range of values for 𝑘 is dictated by the first constraint of time lag. 

Minimum waste of resources for all time slots 𝑇 can be derived from Eq. (4) as follows: 

𝑚[1, 𝑛] = {
0,                                                                   if  𝑛 = 1

min
𝛿≤𝑘<𝑛

{𝑤[1, 𝑛], 𝑤[1, 𝑘] + 𝑚[𝑘 + 1, 𝑛]} , if 𝑛 > 1  … … … (5) 

In our analysis of the problem, we have observed that the problem demonstrates two hallmark 

properties of dynamic programming, that is, optimal substructure and overlapping subproblems. 

We have proven the recurrence relation of the optimal substructure property. We have also defined 

the minimum waste of resources 𝑚[𝑖, 𝑗] recursively. In the next section, we design a dynamic 

programming algorithm to solve the problem where we memoize the solutions to subproblems and 
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reach an optimal value of 𝑚[1, 𝑛] from its subproblems. We also show how a scaling 

schedule {𝑟1, 𝑟2, … … , 𝑟𝑛−𝛿} can be constructed from the values of 𝑚[𝑖, 𝑗]. 

5.4    Proposed Dynamic Programming Algorithm 

In this sub-section, we first give a brief overview of dynamic programming. Then we provide a 

high-level view of the proposed dynamic programming algorithm for conference scaling. Next, 

detailed description of the algorithm and the analysis of its time complexity are presented. 

5.4.1    A Brief Overview of Dynamic Programming 

Dynamic programming [79] divides a problem into many smaller subproblems and reaches an 

optimal solution to the problem by combining the solutions to the subproblems. However, the 

subproblems may overlap, meaning the same subproblem may occur as a subproblem of two 

different larger subproblems. Therefore, instead of repeatedly solving the overlapping 

subproblems, dynamic programming solves each subproblem only once and stores the results in a 

table for future lookup. 

Dynamic programming is typically used in optimization problems. The problems that can be 

solved by applying dynamic programming must have two characteristics. The first characteristic is 

optimal substructure property, meaning if a solution to a problem is optimal, then the solutions to 

its subproblems must be optimal. The second characteristic is overlapping subproblems, that is, 

subproblems share subsubproblems. 
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5.4.2    High Level View 

Based on the equations derived in section 5.3, the following is a high-level view of the dynamic 

programming algorithm. 

1. For all possible time ranges [𝑖, 𝑗] where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, compute required conference sizes 

and store in a table 𝑐. 

2. For all possible time ranges [𝑖, 𝑗] where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, compute waste of resources if a 

time range is accommodated by only one scaling request. Store the results in a table 𝑤. 

3. Now consider accommodating a time range with one or more scaling requests. If more than 

one scaling requests results in minimum waste of resources, there will be an optimal split 

of that time range. Using the tables 𝑐 and 𝑤, compute minimum waste of resources for all 

possible time ranges. Store the optimal splits in table 𝐾 and the minimum waste of 

resources in table 𝑚. 

4. Using the table 𝐾 that stores optimal splits, construct an optimal scaling schedule and 

compute initial conference size. 

5.4.3    Detailed Algorithm Description 

Compute Required Conference Sizes: 

The procedure for computing required conference sizes for time slots from 𝑖 to 𝑗, where 1 ≤ 𝑖 ≤

𝑗 ≤ 𝑛, uses Eq. (1) in section 5.3. It is described below. 

COMPUTE-REQUIRED-CONFERENCE-SIZES (𝑃, 𝑛) 

1. let 𝑐[1 … 𝑛, 1 … 𝑛] be a new table that stores required conference sizes for all possible time ranges 
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2. for 𝑖 = 1 to 𝑛 

3.         𝑚𝑎𝑥 = − ∞ 

4.         for 𝑗 = 𝑖 to 𝑛 

5.                 if 𝑃[𝑗] > 𝑚𝑎𝑥 

6.                         𝑚𝑎𝑥 = 𝑃[𝑗] 

7.                 𝑐[𝑖, 𝑗] = 𝑚𝑎𝑥 

8. return   𝑐 

Procedure COMPUTE-REQUIRED-CONFERENCE-SIZES takes predicted number of 

participants 𝑃 and number of time slots 𝑛 as input. It computes the required conference sizes for all 

possible time ranges, stores the results in a table and finally outputs the table. 

Compute Waste of Resources: 

The following procedure computes waste of resources for all possible time ranges when a single 

scaling request accommodates predicted numbers of participants for that time range, i.e., time slots 

from 𝑖 to 𝑗, where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. It uses Eq. (2) in section 5.3. 

COMPUTE-WASTE-OF-RESOURCES (𝑃, 𝑛, 𝑐) 

1. let 𝑤[1 … 𝑛, 1 … 𝑛] be a new table that stores waste of resources when a single scaling request 

accommodates the whole time range. 

2. for 𝑖 = 1 to 𝑛 

3.         𝑤[𝑖, 𝑖] = 0 

4.         for 𝑗 = 𝑖 + 1 to 𝑛 

5.                 𝑤[𝑖, 𝑗] = 𝑤[𝑖, 𝑗 − 1] + (𝑐[𝑖, 𝑗] − 𝑐[𝑖, 𝑗 − 1]) × (𝑗 − 𝑖) + (𝑐[𝑖, 𝑗] − 𝑃[𝑗]) 

6. return  𝑤 

 

Compute Minimum Waste of Resources: 

The following procedure computes minimum waste of resources for all possible time ranges 

(considering both single and multiple scaling requests). It also computes optimal splits or divisions 

of time slots that lead to the minimum waste of resources, so that an optimal scaling schedule can 

be constructed later. 
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COMPUTE-MIN-WASTE-RESOURCES (𝑃, 𝑛, 𝛿, 𝑐, 𝑤) 

1. let 𝑚[1 … 𝑛, 1 … 𝑛] and  𝐾[1 … 𝑛, 1 … 𝑛] be two new tables. 𝑚 will store minimum waste of 

resources for all possible time ranges, where a time range can be accommodated by multiple scaling 

requests. 𝐾 will store the next optimal split for all possible time ranges. 

2. for 𝑖 = 1 to 𝑛 

3.        for 𝑗 = 𝑖 to 𝑛 

4.               𝑚[𝑖, 𝑗] = ∞ 

5.               𝐾[𝑖, 𝑗] = −1 

6. 𝑚𝑖𝑛 _𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑤𝑎𝑠𝑡𝑒 = RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES (𝑃, 𝛿, 𝑐, 𝑤, 𝑚, 𝐾, 1,

𝑛) 

7. return 𝑚 and 𝐾 

The following recursive algorithm uses Eq. (4), which is the recurrence relation of this conference 

scaling problem. 

RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES (𝑃, 𝛿, 𝑐, 𝑤, 𝑚, 𝐾, 𝑖, 𝑗) 

1. if 𝑚[𝑖][𝑗] ≠ ∞ 

2.        return 𝑚[𝑖][𝑗] 

3. else if 𝑖 = 𝑗 

4.        𝑚[𝑖][𝑖] = 0 

5.        𝐾[𝑖][𝑖] = 𝑖 

6.        return  𝑚[𝑖][𝑗] 

7. else 

8.        𝑚𝑖𝑛 = 𝑤[𝑖][𝑗] 

9.        min _𝑘 = 𝑗 

10.        for 𝑘 = 𝑖 + 𝛿 − 1 to 𝑗 − 1 

11.               𝑚𝑖𝑛2 = 𝑤[𝑖][𝑘] + RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES (𝑃, 𝛿, 𝑐, 𝑤, 𝑚, 𝐾, 𝑘 +

1, 𝑗) 

12.               if 𝑚𝑖𝑛2 < 𝑚𝑖𝑛 

13.                             𝑚𝑖𝑛 = 𝑚𝑖𝑛2 

14.                             min _𝑘 = 𝑘 
15.        𝑚[𝑖][𝑗] = 𝑚𝑖𝑛 

16.        𝐾[𝑖][𝑗] = min _𝑘 

17.        return  𝑚[𝑖][𝑗] 

Construct Optimal Schedule: 

The following algorithm constructs an optimal schedule 𝑅. It uses a table which stores next 

optimal split of time slots for all possible time ranges. 
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CONSTRUCT-OPTIMAL-SCHEDULE (𝑛, 𝛿, 𝐾) 

1. 𝑘 = 𝐾[1][𝑛] 
2. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒 = 𝑐[1][𝑘] 

3. let 𝑅[1 … 𝑛] be a new array to store scaling schedule. 

4. for 𝑖 = 1 to 𝑛 

5.        𝑅[𝑖] = 0 
6. RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE (𝑛, 𝛿, 𝐾, 𝑘 + 1, 𝑛) 

7. return  𝑅 and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒 

The following procedure recursively constructs scaling schedule from a given table 𝐾, which 

stores next optimal split of time slots for all possible time ranges. 

RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE (𝑛, 𝛿, 𝐾, 𝑖, 𝑗) 

1. 𝑘 = 𝐾[𝑖][𝑗] 

2. if 𝑘 = 𝑛 

3.        𝑅[𝑖 − 𝛿] = 𝑐[𝑖][𝑗] 

4. else  

5.        𝑅[𝑖 − 𝛿] = 𝑐[𝑖][𝑘] 

6.        RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE (𝑛, 𝛿, 𝐾, 𝑘 + 1, 𝑗) 

5.4.4    Time Complexity Analysis 

Both COMPUTE-REQUIRED-CONFERENCE-SIZES procedure and COMPUTE-WASTE-OF-

RESOURCES procedure have nested loops. The outer loop iterates at most 𝑛 times in both 

procedures. The inner loop iterates at most  𝑛 − 𝑖 + 1 times and 𝑛 − 𝑖 times in COMPUTE-

REQUIRED-CONFERENCE-SIZES procedure and COMPUTE-WASTE-OF-RESOURCES 

procedure, respectively. Therefore, the running time of both procedures is 𝑂(𝑛2). 

RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES procedure solves each subproblem only 

once. Because it returns result immediately when the subproblem is already solved and 

𝑚[𝑖][𝑗] stores the result (lines 1 to 2). Lines 3 to 6 deals with the case when the subproblem is 

trivial because 𝑖 = 𝑗, that is, minimum waste of resources is zero when only one time slot is 

considered. Apart from these two cases, it iterates for (𝑗 − 𝑖 − 𝛿 + 1) times in order to find an 
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optimal waste of resources and the associated value of 𝑘. To solve the problem of size 𝑛, i.e. when 

𝑖 = 1, 𝑗 = 𝑛, it iterates (𝑛 − 𝛿) times (line 10), making recursive calls for subproblems of sizes 

𝑛 − 𝛿, 𝑛 − 𝛿 − 1, 𝑛 − 𝛿 − 2, … … , 3, 2, 1. Similarly, to solve a subproblem of size 𝑛 − 𝛿, i.e. 

when 𝑖 = 𝛿 + 1, 𝑗 = 𝑛, the procedure iterates 𝑛 − 2𝛿 times (line 10) for subproblems of sizes 𝑛 −

2𝛿, 𝑛 − 2𝛿 − 1, 𝑛 − 2𝛿 − 3, … … , 3, 2, 1.Therefore, the total number of iterations (lines 10 to 14) 

over all recursive calls leads to an arithmetic series (𝑛 − 𝛿) + (𝑛 − 2𝛿) + (𝑛 − 3𝛿) + ⋯ + 𝑥, 

where 𝑥 is 𝑛 modulo 𝛿. The series gives a total of 𝑂(𝑛2) iterations. Hence, the running time of 

RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES procedure is O(𝑛2). 

COMPUTE-MIN-WASTE-RESOURCES procedure has nested loops in lines 3 and 4, resulting 

in 𝑂(𝑛2) running time. Call to RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES procedure 

also adds 𝑂(𝑛2) running time. Therefore, the running time of COMPUTE-MIN-WASTE-

RESOURCES procedure is 𝑂(𝑛2). 

RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE procedure calls recursively in line 6. In 

each call, the subproblem size is reduced by at least 𝛿, because the next earliest scaling after this 

can be requested after 𝛿 time slots. Therefore, RECURSIVE-CONSTRUCT-OPTIMAL-

SCHEDULE procedure is called at most (
𝑛

𝛿
+ 1) times. Thus, the running time of RECURSIVE-

CONSTRUCT-OPTIMAL-SCHEDULE procedure is 𝑂(𝑛). 

CONSTRUCT-OPTIMAL-SCHEDULE procedure has a loop in line 4, which contributes to 𝑂(𝑛) 

running time. The single call to RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE procedure 

adds 𝑂(𝑛) running time. Therefore, the running time of CONSTRUCT-OPTIMAL-SCHEDULE 

procedure is 𝑂(𝑛). 



83 | P a g e  
 

The procedures used in the algorithm have running time at most 𝑂(𝑛2) and there is no iteration of 

the high-level procedures used in the algorithm. Therefore, the running time of the algorithm 

is 𝑂(𝑛2). 

5.5    An Alternative Greedy Algorithm 

The time complexity of the proposed dynamic programming algorithm is 𝑂(𝑛2). This algorithm 

produces an optimal solution. However, for comparison purpose, we develop an alternative greedy 

algorithm which is faster but produces a sub-optimal solution. This section starts with a brief 

overview of greedy algorithm. Then the greedy heuristic used is motivated with an example. 

Finally, a high-level view of the greedy algorithm is presented. The appendix to this thesis contains 

the detailed description and time complexity analysis of the proposed greedy algorithm. 

5.5.1    A Brief Overview of Greedy Algorithm 

Greedy algorithm [79] is usually used to solve optimization problems. While solving a problem, it 

always makes a choice that seems best at the moment. In other words, it hopes to reach globally 

optimal solution by making locally optimal choices. However, this heuristic strategy does not 

always lead to an optimal solution. 

While making locally optimal choices, a greedy algorithm may depend on choices made so far. 

However, it does not depend on any future choices. This is in contrast to dynamic programming, 

which solves all subproblems before making a choice. Greedy algorithm makes a choice and 

proceeds to the next subproblem. A dynamic programming algorithm solves a problem in bottom-

up manner. On the other hand, a greedy algorithm usually advances in a top-down fashion while 

making greedy choices one by one. 
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5.5.2    Motivation for the Greedy Heuristic Used 

Given the problem statement in the beginning of this chapter, a naïve approach of scaling a 

conference in terms of number of participants is to request scaling after every 𝛿 time slots, where 

 𝛿 is the time lag. Consider the following predicted number of participants. Figure 5-2 depicts the 

change in number of participants over time. 

𝑃 = {… , 10, 25, 35, 40, 60, 70, 75, 85, 95, 110, 90, 70, 45, 40, 30, 20, 15, … }. 

 

Figure 5-2: An example of predicted number of participants 

In this example of 𝑃, the number of participants first increases up to 110, then starts decreasing. It 

is assumed that 𝛿 = 5. The naïve approach does not take the changes in 𝑃 over time into account. 

As a result of this, as illustrated in figure 5-3(a), it is possible to send scaling request (scaling up to 

110) to accommodate time slots from 16 to 20. The next scaling request (scaling down to 90) is 

made to accommodate time slots from 21 to 25. Waste of resources for the first scaling request is 

∑ 110 − 𝑃𝑖
20
𝑖=16  = 115. Waste of resources for the second scaling request is ∑ 90 − 𝑃𝑖

25
𝑖=21  = 175. 

Thus, total waste of resources in naïve approach is 290 (115+175). In this approach, the required 

10

25

35
40

60

70
75

85

95

110

90

70

45
40

30

20
15

0

10

20

30

40

50

60

70

80

90

100

110

120

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

P
re

d
ic

te
d

 n
u

m
b

er
 o

f 
p

ar
ti

ci
p

an
ts

Time slot



85 | P a g e  
 

number of participants for both scaling requests are chosen from two of the time slots (20 and 21) 

near the local maxima. 

It is possible to optimize waste of resources by choosing, instead of two, only one time slot near 

the maxima, such that the maxima and its nearby time slots are accommodated. Figure 5-3(b) 

illustrates this case. Keeping the maxima in the middle, time slots from 18 to 22 (scaling up to 110) 

are accommodated by one scaling request 𝑠2. The previous scaling request 𝑠1 (scaling up to 75) 

accommodates time slots up to 17. The next one 𝑠3 (scaling down to 45) covers time slots from 23 

to 27. To compare with waste of resources for the naïve approach, we shall calculate waste for 

time slots from 16 to 25. Waste of resources from time slots 16 to 17 by 𝑠1 is ∑ 75 − 𝑃𝑖
17
𝑖=16  = 5, 

by  𝑠2 is ∑ 110 − 𝑃𝑖
22
𝑖=18  = 100, by s3 is ∑ 45 − 𝑃𝑖

25
𝑖=23  = 20. Therefore, the total waste of resources 

is 145 (5+120+20), which is less than the naïve scaling approach (290). The same observation 

applies to local minima. This local extrema optimization will lead to a better global optimization 

than the naïve scaling approach when the number of participants increases and decreases over 

time. 
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Figure 5-3: (a) Scaling with naive approach (b) Scaling with extrema optimization 

Using this local extrema optimization heuristic, a greedy algorithm can be designed. 

5.5.3    High Level View 

Following is the high-level view of the proposed greedy algorithm: 

HIGH-LEVEL-GREEDY-OPTIMIZATION(𝑷, 𝒏, 𝜹) 

1. Divide 𝑃, predicted numbers of participants into upward and downward slopes. Upward 

slope consists of consecutive time slots with non-decreasing number of participants. 

Downward slope consists of consecutive time slots with decreasing number of participants. 

2. Schedule scaling requests around local maxima (upward slope on the left and downward 

slope on the right) as well as local minima (downward slope on the left and upward slope 

on the right). 
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3. Schedule scaling requests for the time slots which are not accommodated by step 2, 

following the naïve scaling approach. 

An edge case is that predicted number of participants drops sharply after reaching local maxima 

(or rise sharply after local minima). In that case, keeping the local maxima in the middle of 

accommodated time slots results in more waste of resources than the naïve approach. This is 

demonstrated in figure 5-4. Therefore, in step 2, the waste of resources needs to be checked before 

deciding to schedule around local extrema. 

 

Figure 5-4: (a) Waste of resources is 115  (b) Waste of resources is 140 

5.6    Chapter Summary 

In this chapter, we address the problem of conferencing scaling. We formally state the problem and 

analyze it. Then we present two algorithms to minimize waste of resources in terms of number of 
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participants. One is a dynamic programming (DP) algorithm and it provides an optimal scaling 

schedule. We discuss the algorithm in details and analyze its time complexity. The other is a 

greedy algorithm. It provides a suboptimal schedule but is faster. We present a high-level view of 

the greedy algorithm and leave the details in appendix. According to the requirements on 

conference scaling algorithm, the proposed algorithms are practical when they can produce output 

within a second for the given input size. The measurements of the proposed conference scaling 

algorithms, discussed in the next chapter, show that they perform well below one second for a big 

enough input size of 100 time slots. 
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Chapter 6 

6. Validation:  Prototype and Evaluation 

In chapter 4, we have proposed a general architecture of conferencing PaaS for multimedia 

conferencing service provisioning. In chapter 5, we propose algorithms to scale conferences in an 

elastic manner while minimizing waste of resources in terms of number of participants. In this 

chapter, we discuss the design of software architecture of conferencing PaaS, a prototype to 

validate the software architecture, the performance measurements of the prototype as well as the 

proposed algorithms. 

This chapter first presents the overall software architecture of conferencing PaaS. This is followed 

by a discussion of proof-of-concept prototype. Next, the prototype setup and performance 

measurements are discussed. After that, performance measurements of the proposed conference 

scaling algorithm are described. Lastly, the chapter summary is presented. 

6.1     Overall Software Architecture 

Figure 6-1 shows the overall software architecture that we propose for conferencing service 

provisioning. This software architecture is derived from the general architecture (discussed in 

chapter 4) by breaking down the components of general architecture into smaller software 

components. In the next sub-sections, the software components of each high-level component in 

general architecture are described. This is followed by a sub-section that illustrates the interactions 

among the software components. Conferencing IaaS Handler and Substrate Info Repository 

components remain the same as in general architecture. Therefore, their discussion is omitted. 
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Figure 6-1: Software architecture of conferencing PaaS 

6.1.1     Conferencing PaaS GUIs and APIs 

The components include Service Development APIs, Service Management GUI and Substrates 

Support Management GUI. The components Service Development APIs and Substrates Support 

Management GUI are extensions to typical PaaS software architecture. 

Conferencing platform providers use Substrates Support Management GUI to manage (e.g., add, 

remove, update) information of the substrates that they have subscribed to. Conferencing service 

providers use Service Development APIs and Service Management GUI. Conferencing PaaS 

provides the service providers with Service Development APIs as a programming library (e.g., JAR 

file in Java and NPM module in JavaScript). Conferencing service providers, who have 
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programming expertise, can use this library to easily develop conferencing services. For service 

deployment and management, conferencing service providers use Service Management GUI. The 

GUI can be as simple as a command line interface (CLI). 

6.1.2     Management (Services & PaaS) 

The components are Service Lifecycle Manager, Hosting Environment Lifecycle Manager, Service 

SLA Manager and PaaS Governance. These are typical management components in conventional 

PaaS architectures. Service Lifecycle Manager receives requests from Service Management GUI 

and takes actions based on the type of the received requests. It manages different lifecycle events 

such as conferencing service deployment, execution and stop. Hosting Environment Lifecycle 

Manager is responsible for managing PaaS resources (e.g., runtime, DBMS instance) used to host 

services. It also monitors and controls lifecycle of different PaaS components. Service SLA 

Manager monitors the services' performances, compares them with the stipulated SLA of 

conferencing PaaS and takes actions (e.g., scaling up service instances) as necessary. PaaS 

Governance relates to user authentication and authorization, billing etc. 

6.1.3    Service Hosting & Execution 

The components are Service Hosting & Execution Container and Hosting Environment Manager. 

Similar to software components in Management (Services & PaaS), these two components are also 

typical of traditional PaaS software architectures. The deployed services are stored and executed in 

Service Hosting & Execution Container. Hosting Environment Manager is responsible for 

preparing environment for hosting conferencing services. 
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6.1.4    Conference Orchestration and Management 

The components include Substrate Selector, Substrate Orchestration Engine, Conference 

Execution Engine, Conference Scaling Decision Maker and Conference Manager. All of these 

software components are novel to the proposed software architecture. Substrate Selector chooses 

the most suitable conferencing IaaS, given the substrate requirements. Substrate Orchestration 

Engine composes the selected substrates into a full-fledged conference. Conference Execution 

Engine hosts the conferences. Conference Scaling Decision Maker monitors running conferences 

and requests scaling when needed. Conference Manager receives requests from northbound 

component and coordinates other subcomponents to serve the requests. 

6.1.5    Operational Procedures 

Based on the proposed software architecture, two procedures for a dial-in audio conference are 

illustrated in this sub-section. One procedure is conferencing service development and deployment. 

The other procedure pertains to conferencing service execution and only conference creation is 

illustrated for brevity. 

Figure 6-2 shows interactions of software components for conferencing service development and 

deployment. Conferencing service provider uses Conferencing Service Development APIs to 

develop the service. Once the service is developed, service provider deploys the service in 

conferencing PaaS. 
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Figure 6-2: Interactions of software components for conferencing service development and deployment 

After the dial-in audio conferencing service is started, it can receive requests from the conferencing 

applications such as game applications. Figure 6-3 illustrates the interactions for creating a 

conference when the service receives such a request. 
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Figure 6-3: Interactions of software components for creating a conference 

6.2     Prototype 

This subsection first presents the implemented scenario. The implementation scope and the 

prototype architecture are then discussed. Next, the software tools used for prototype 

implementation are described briefly. 

6.2.1    Implemented Scenario 

The prototype implements subset of both scenarios discussed in chapter 3 – (1) conferencing 

service development and deployment and (2) conferencing service execution. The implemented 

scenario includes a service provider offering dial-in audio conferencing service and a game 

application consuming that service. The scenario also includes the conferencing PaaS and two 

conferencing IaaSs – both providing dial-in signaling and audio mixer substrates. While 
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developing the game application, the developer uses dial-in audio conferencing SaaS API provided 

by the conferencing service provider. The service provider uses a conferencing PaaS to develop 

and deploy the dial-in audio conferencing service. During execution, the service receives request 

from the game application to create and manage conferences. The conferencing PaaS provisions 

substrates from the two conferencing IaaSs. The subscription to conferencing IaaSs by the 

conferencing PaaS is done offline. Two use-cases are considered. In one use-case, conferencing 

PaaS selects substrates from the same IaaS. In the other use-case, substrates are selected from 

different IaaSs. 

6.2.2    Implementation Scope 

A subset of the components from the proposed software architecture is implemented in the 

prototype. In Conferencing PaaS GUIs and APIs, a subset of APIs from the proposed 

Conferencing Service Development APIs, which is needed to perform measurements, is 

implemented. Service Management GUI is also implemented to deploy and start the service. 

Substrates Support Management GUI is not implemented as we assume that conferencing PaaS 

subscribes to two conferencing IaaSs for dial-in signaling and audio mixer substrates. In 

Management (Services & PaaS), all components except Service SLA Manager are implemented to 

host and execute the service. Service SLA Manager is not implemented as the prototype scenario 

considered do not require this component.  

In Conference Orchestration & Management layer, Conference Manager, Substrate Orchestration 

Engine and Conference Execution Engine are implemented to create, host and execute conferences. 

Substrate Selector is not implemented. Because, in one use-case, we assume that conferencing 

PaaS selects both dial-in signaling and audio mixer substrates from the same IaaS. In the other use-
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case, conferencing PaaS is assumed to select one IaaS for dial-in signaling substrate and the other 

IaaS for audio mixer substrate. Conference Scaling Decision Maker component is not implemented 

as the prototype scenario does not cover runtime scaling of conferences. However, the proposed 

conference scaling algorithm is evaluated with different test cases and its performance 

measurements are discussed later in this chapter. 

Conferencing IaaS Handler implements a subset of Conferencing PaaS/IaaS interfaces that are 

necessary for realizing the prototype scenario. 

For proof-of-concept prototype, the REST requests from the game application to the dial-in audio 

conferencing service to create conferences are simulated by open-source REST clients. 

A colleague in Telecommunications Service Engineering (TSE) Lab, who is working on 

conferencing IaaS, has implemented a stripped-down version of conferencing IaaS. This IaaS 

implementation is used in the prototype. 

6.2.3    Prototype Description 

Figure 6-4 shows the prototype architecture. Cloud Foundry PaaS [32] is extended to implement 

the conferencing PaaS prototype. Cloud Foundry provides the implementation of typical PaaS 

components. The components which are specific to conferencing PaaS are implemented using 

other open-source libraries and frameworks. 
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Figure 6-4: Prototype architecture of conferencing PaaS 

Service Development APIs are implemented and exposed as a Node.js [80] module. Conferencing 

service provider imports this module and uses the APIs to develop conferencing services. Service 

Management GUI is reused from Cloud Foundry. The components of Management (Services & 

PaaS) and Service Hosting & Execution layers are also reused from Cloud Foundry. The 

conferencing service is deployed and executed in Cloud Foundry. 

For Substrate Orchestration Engine and Conference Execution Engine components, open-source 

Camunda tool [81] is reused. In this prototype, the platform provider orchestrates the conferences 

as a BPMN workflow and stores in a workflow repository of Substrate Orchestration Engine. 

Upon receiving request to create a conference, appropriate workflow is selected based on the 
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createConference API parameters. Since we use only dial-in audio conference in the prototype, 

only one workflow was created. The workflow is configured with the selected conferencing IaaSs 

and deployed in Conference Execution Engine. 

Conference Manager and Conferencing IaaS Handler are implemented as REST servers using 

Express.js framework [82]. Advanced REST Client [83] is used to simulate conferencing SaaS API 

invocations by the game. 

6.2.4    Software Tools 

This section briefly discusses the software tools used in prototype implementation. 

6.2.4.1    Cloud Foundry 

Cloud Foundry [32] is one of the most popular free and open-source Platform-as-a-Service. We 

reuse and extend it to implement the conferencing PaaS prototype. Of many languages and 

frameworks that it supports for development, we use JavaScript language and Node.js runtime 

[80]. For deployment, Cloud Foundry provides a command line interface named CF CLI [84] that 

we reuse for service deployment. The software components in Management (Services & PaaS) and 

Service Hosting & Execution layers, which we implement in conferencing PaaS prototype, are 

reused from different Cloud Foundry components. 

6.2.4.2    Camunda 

Camunda [81] is a free and open-source implementation of BPMN engine. The Business Process 

Model and Notation (BPMN) [85] is the de-facto standard for graphical representation of the 

business processes or workflows. Moreover, BPMN supports orchestration of RESTful web 
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services with a concept of service task. In our prototype, the workflow is created graphically using 

Camunda BPMN Modeler and then stored in a workflow repository. During conference 

orchestration, the workflow is instantiated, configured with the selected IaaSs and then executed in 

Conference Execution Container. This container is implemented by reusing Camunda BPMN 

Engine, a process execution engine. 

6.2.4.3    Node.js 

Node.js [80] is a widely used free and open-source cross-platform JavaScript runtime. It adopts an 

event-driven, asynchronous I/O approach which makes it lightweight. It is used to develop server-

side applications in JavaScript language. There are a lot of popular libraries and frameworks based 

on Node.js runtime. One of them is Express.js [82]web application framework. It is very 

lightweight and can be used to implement REST servers as well as clients. In conferencing PaaS 

prototype, Express.js is used to develop the dial-in audio conferencing service. It is also used to 

implement Conference Manager component in Conference Orchestration & Management layer 

and Conferencing IaaS Handler component. 

6.2.4.4    OpenStack 

OpenStack is a collection of open source software projects that cloud providers can use to setup 

and run their infrastructure. It has a community with researchers, developers and enterprises, with a 

common goal to create simple, scalable and feature-rich infrastructure [86]. OpenStack provides 

services such as compute, object storage and block storage. It also has identify service and VM 

image service. It provides a graphical dashboard for managing virtual machines and networks. 
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6.2.4.5    SAVI testbed 

Smart Applications on Virtual Network (SAVI) [87] is collaboration among Canadian industry, 

academia, research and education networks. Its goal is to investigate key elements of future 

application platforms. The SAVI testbed provides flexible, virtualized converged infrastructure to 

support experimental research. This testbed is implemented using OpenStack. The conferencing 

PaaS prototype is deployed on SAVI testbed. 

6.2.4.5    Additional Software Tools 

Advanced Rest Client [83] is a graphical tool used to test REST APIs. It is an extension of 

Google's chrome browser. In conferencing PaaS, the game application's invocations of the 

conferencing service SaaS APIs are simulated with Advanced REST client. CF NISE installer [88] 

is a tool to install Cloud Foundry easily on a single machine. Since conferencing PaaS prototype is 

implemented by extending Cloud Foundry, the Cloud Foundry components are installed on a 

SAVI testbed VM using CF NISE installer. 

6.3     Prototype Setup and Performance Measurements 

This sub-section starts with a short description of the prototype setup. It then discusses the 

performance metrics and the results. 

6.3.1    Prototype Setup 

The conferencing PaaS prototype along with conferencing IaaSs are deployed on SAVI testbed. 

Conferencing PaaS prototype is deployed on two VMs. One VM hosts the Cloud Foundry 

instance. The other VM hosts the conferencing PaaS-specific components (e.g., Conference 



101 | P a g e  
 

Manager, Conferencing IaaS Handler). Each of these two VMs have 8 GB RAM, 4 vCPUs, 80 

GB storage and runs Ubuntu 14.04 operation system. 

The conferencing IaaSs are hosted on separate VMs. The IaaSs provision the substrates 

dynamically on machines with 4 GB RAM and two vCPUs running Ubuntu 14.04 LTS. 

6.3.2    Performance Measurements 

In this section, we first describe the performance comparison scenarios. Next, performance metrics 

and the results obtained from the conferencing PaaS prototype are presented. It is noteworthy that 

in the prototype setup, the conferencing PaaS and conferencing IaaSs are in the same SAVI testbed 

network. In a real world scenario, they can be spread across different geographical locations. This 

will add external network latency to the measurements. However, as discussed later in this sub-

section, the observations comparing between different scenarios, are not affected. 

6.3.2.1    Comparison Scenarios 

Three performance comparison scenarios are considered. Two of them concern cloud-based 

conferencing, where conferencing PaaS is leveraged. 

i) Non-cloud conferencing (NCC): Resources are allocated beforehand in this scenario. 

Therefore, there may always be some idle and unutilized resources. 

ii) Cloud single IaaS provider (CSIP): Conferencing PaaS selects the required substrates 

for a conference from the same IaaS. It is assumed that the conferencing IaaSs host the 

substrates on a single VM in this scenario. 
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iii) Cloud multiple IaaS provider (CMIP): Conferencing PaaS chooses substrates from 

different IaaSs. Since substrates are from different IaaSs, they are hosted on separate 

VMs. 

6.3.2.2    Performance metrics 

The following three metrics are considered. These metrics help validate that the proposed 

conferencing PaaS architecture meets the requirement of QoS. 

i) Conference start time: This is the time required to get a conference ready upon the 

receipt of a request. It is calculated from the time conferencing service receives a 

request to create a conference to the time it receives a response. 

ii) Participant joining time: This is the time required to add a participant to a running 

conference. 

iii) Resource allocation: This is the total amount of allocated resources, such as RAM and 

CPU, to accommodate all participants. This metric pertains to only cloud-based 

scenarios as resources are allocated upfront in non-cloud scenario. We consider RAM 

to compare resource allocation. 

The above performance metrics include response time or delay of two conference runtime 

operations – conference start time and participant joining time. Since cloud-based conferencing has 

virtualization overhead as well as notification overhead between cloud layers, it is possible that 

delay in cloud-based scenarios is higher than that in non-cloud conferencing. Therefore, it is 

necessary to measure resource allocation (the third metric) to see the benefits of resource 

efficiency provided by cloud-based conferencing. 
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6.3.2.3    Performance Results 

Figure 6-5 shows the comparison of conference start times. NCC takes the least time to start a new 

conference because it does not have virtualization overhead. Cloud-based scenarios (CSIP and 

CMIP) take longer because VMs need to be instantiated for substrates. Since substrates need to 

connect over network in CMIP, it takes more time than in CSIP. 

 

Figure 6-5: Average conference start time 

Comparison of participant joining time is depicted in figure 6-6. Participant joining time is the 

least in NCC. Cloud-based scenarios take more time because of the notification overhead between 

IaaSs, PaaS and the game server. When a new participant joins the conference, conferencing IaaS 

notifies conferencing PaaS, which forwards the notification to the game server. However, this is a 

one-time operation for a participant and does not contribute to the participant’s communication 

delay. Moreover, based on International Telecommunication Union (ITU) standards [89], this time 

is acceptable as long as it is below 400 msec. Participant joining time of the two cloud-based 

scenarios are close as IaaSs can notify PaaS in parallel. This shows that the proposed architecture 

satisfies the QoS requirement. 
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Figure 6-6: Average participant joining time 

Although in cloud-based scenarios, conference start time and participant joining time are more 

than those in NCC, it helps to achieve resource efficiency and reduce costs. Figure 6-7 shows the 

allocated amount of RAM for a conference with between 1 and 3000 participants.  To simulate 

conference scaling, conference size is increased by 200 participants every 10 minutes. The results 

are based on the observed resource usage per participant. IaaSs are assumed to scale up and out 

VMs while maintaining QoS requirements. In NCC, there are always some idle and non-utilized 

resources because of upfront resource provisioning. Hence, it is not shown in the figure. CSIP 

scales better than CMIP (i.e. allocates less resources) for smaller conferences whereas CMIP wins 

for bigger conferences, because in CMIP, substrates are hosted on separate VMs as they are chosen 

from different IaaSs. For smaller conferences, it leads to more VMs and more non-utilizable 

resources (e.g., resources consumed by operating system) than in CSIP. However, with the 

increase of conference size, CMIP achieves better scalability because of the less VMs and more 

utilizable resources than in CSIP. 
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Figure 6-7: Resource Allocation Evaluation 

6.4    Conference Scaling Algorithm and Performance Measurements 

This section starts with a discussion of implementation of conference scaling algorithms (Dynamic 

Programming algorithm and Greedy algorithm). Next, the performance comparison metrics and the 

results are presented. 

6.4.1    Algorithm Implementation and Test Sets 

The conference scaling algorithms are implemented in C++. A few C++ 11 standard libraries, such 

as chrono, are used. Therefore, C++ 11 standard is enabled while compiling the implementation 

using GNU Compiler Collection (gcc). 

Five large test sets, which represent predicted number of participants provided by the assumed 

prediction model, are generated. Each test set consists of 100 time slots. The values of predicted 

number of participants at different time slots are chosen using random integer generator. 
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6.4.2    Performance Metrics 

In chapter 5, we propose a dynamic programming algorithm that produces optimal result i.e., 

minimum waste of resources in terms of number of participants. We also propose a faster greedy 

algorithm but it produces suboptimal result. We consider the following three metrics to compare 

these two algorithms: 

i) Effects of scaling time lag (delta) on waste of resources in terms of number of 

participants: If the time lag (delta) between consecutive scaling requests increases, 

less number of scaling requests can be made. With decreased scaling requests, the 

elasticity also decreases. Therefore, with increase of time lag value, waste of resources 

is expected to increase for both algorithms. 

ii) Elastic allocation of conference sizes: As the predicted number of participants varies 

over time, the conference sizes allocated by the proposed dynamic programming and 

the greedy algorithms should also increase and decrease accordingly. 

iii) Running time: The time complexity of the proposed DP algorithm is polynomial 

whereas that of the proposed greedy algorithm is linear. This should be reflected in the 

graph when we plot the calculated running time of the algorithms. For each test set, we 

calculate the running times in milliseconds for both algorithms. Each individual test set 

is divided into 10 parts, with increment of 10 time slots. 

In chapter 3, we derived four requirements on conference scaling algorithm. Among the three 

metrics above, the first two metrics relate to the third requirement of minimizing waste of 

resources. The third metric (running time) pertains to the fourth requirement of acceptable 
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response time. We do not need performance metrics for the first two requirements. Because the 

outputs of the proposed algorithms include when to scale (future time slots) and how much to 

scale (conference size to allocate). They also consider scaling time lag while scheduling scaling 

requests. 

6.4.3    Performance Results 

The results obtained from evaluating the conferencing algorithms are described below: 

i) Effects of scaling time lag (𝜹) on waste of resources in terms of number of 

participants: Figure 6-8 shows that, with increase of scaling time lag, waste of 

resources increase for both algorithms. This observation is aligned with the expectation 

for this metric discussed in the previous sub-section. It also shows that the greedy 

algorithm, as a result of being sub-optimal, leads to more waste of resources.  

 

Figure 6-8: Effects of scaling time lag (δ) on waste of resources in terms of number of participants 
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Figure 6-9 shows the difference in resource wastage between the DP and the greedy 

algorithm. The difference does not follow any particular pattern because minimization 

of resource wastage in greedy algorithm is affected by the value of delta as well as the 

variable trends of P, predicted number of participants. Note that the proposed greedy 

algorithm tries to minimize resource waste around the local maxima and minima, 

taking time lag 𝛿 value into consideration. However, when 𝛿 is 2, the difference is very 

small compared to higher 𝛿 values. Because with delta of 2, it is possible to scale at 

every other time slot, which leads to greater optimization by both algorithms and results 

into very small difference.  

 

Figure 6-9: Difference in waste of resources between DP and greedy algorithms 

ii) Elastic allocation of conference sizes: Figure 6-10 and 6-11 derived from 

measurements demonstrate that the proposed algorithms ensure elasticity. 

Figure 6-12 shows the comparison of allocated conference sizes between DP and 

greedy algorithms. Since DP algorithm produces the optimal result, allocated 
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conference size by DP algorithm is less than that by greedy algorithm most of the time. 

However, when DP algorithm allocates more than the greedy one, it does so to avoid 

local optimization, while striving to achieve global optimization of wasted resource. 

For example, in figure 6-12, greedy algorithm allocates less than DP between time slots 

25 and 30. Between time slots 20 and 40, predicted number of participants has three 

spikes at time slots 25, 32 and 38 (referring to figure 6-10 and 6-11). The greedy 

algorithm is myopic and minimizes waste locally for the first spike. In doing so, it 

could not optimize the subsequent spikes due to time lag constraint. On the other hand, 

the DP algorithm optimizes globally, leading to less waste of resources in the long 

term.  

 

Figure 6-10: Elastic conference size allocation by DP algorithm 
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Figure 6-11: Elastic conference size allocation by greedy algorithm 

 

Figure 6-12: Comparison of elastic conference size allocation between DP and greedy algorithms 

iii) Running time: Figure 6-13 derived from the measurements of running time 

demonstrates the proposed greedy algorithm is polynomial and the greedy algorithm is 

linear. The X-axis is the number of time slots and the Y-axis is the running time. The 
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vertical bar shows the confidence interval with 95% confidence level. The figure shows 

that, with increase of time slots, the running time increases according to the time 

complexities of the algorithms. 

 

Figure 6-13: Comparison of running time between DP and greedy algorithms 

The above performance results demonstrate the trade-offs between the proposed DP and greedy 

algorithms for conference scaling. While the greedy algorithm is faster, the DP algorithm produces 

better scaling. Waste of resources incurred by the schedule of greedy algorithm depends on two 

factors – value of time lag and trend of predicted number of participants over time. Future works 

with the greedy algorithm includes adding more heuristics and determining an upper bound of 

waste of resources for the greedy algorithm. 
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6.5     Chapter Summary 

In this chapter, we have presented software architecture of conferencing PaaS. We have explained 

the software components and their interactions for two scenarios. We have also discussed the 

prototype and the software tools used to implement the prototype. Then we presented the 

performance measurements of the prototype with the comparison scenarios, performance metrics 

and results. After that, we have evaluated performances of the proposed conference scaling 

algorithms. The performances of DP and greedy algorithms for conference scaling are compared. 

In the next chapter, we shall summarize contribution of this thesis and then propose several future 

research directions. 
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Chapter 7 

7. Conclusion and Future Work 

In this chapter, we summarize the contributions of this thesis. We also provide several research 

directions for future works on conferencing PaaS. 

7.1    Contribution Summary 

Multimedia Conferencing is an important part of a wide range of conferencing applications such as 

massively multi-player online games and distance learning applications. Conferencing application 

developers can use third-party conferencing services (e.g., dial-out video conference, dial-in audio 

conference) to speed up development and to save cost. However, conferencing service 

provisioning (i.e. service development, deployment and management) still remains very difficult 

for the conferencing service providers. One challenge is that service providers need to know the 

complicated low-level details of conferencing technologies, protocols and their interactions. 

Another challenge is elastic resource provisioning. Participants join and leave during the 

conference. In order to achieve cost efficiency, it is critical to allocate and deallocate resources in 

an elastic manner. 

This thesis relies on a business model from the state of the art. In addition to the conventional roles 

broker and connectivity provider, the business model followed consists of the following roles: 

conferencing service provider, conferencing platform provider, conferencing infrastructure 

provider, conferencing substrate provider. This thesis has focused on conferencing PaaS provider 

role. It is assumed that conferencing infrastructure provider also plays the role of substrate 



114 | P a g e  
 

provider. From a motivating scenario for cloud-based conferencing service provisioning, we have 

derived a set of requirements on the conferencing PaaS. We have also derived requirements on 

conference scaling algorithm, which conferencing PaaS performs to scale conferences in an elastic 

manner. We have reviewed the state of the art and evaluated them against the requirements. We 

have found that none of them meets all of our requirements. 

We have proposed a conferencing PaaS architecture that facilitates conferencing service 

provisioning. As part of this architecture, a set of high-level service development APIs for the 

conferencing service providers is also proposed. Thus, the proposed architecture tackles the 

challenge of service providers to master low-level conferencing details. For another challenge 

elastic conference scaling, we have designed two algorithms. One of them produces optimal 

scheduling of scaling requests, given the predicted number of participants for a certain period of 

time. The other algorithm is faster but gives suboptimal scheduling. 

We have designed a software architecture based on the proposed general architecture of 

conferencing PaaS. A prototype is implemented to validate the architecture. The implemented 

scenario includes a conferencing service provider offering dial-in audio conferencing service, a 

game application consuming that service, a conferencing PaaS and two conferencing IaaSs 

providing dial-in signaling and audio mixer substrates. For performance evaluation, three 

comparison scenarios (non-cloud conferencing and two cloud-based conferencing scenarios) have 

been considered. Performance results show resource efficiency of cloud-based conferencing with 

acceptable penalty in response times. The proposed conference scaling algorithms are implemented 

and evaluated with large test sets. They are compared for different scenarios (different time lag 

constraint, different sizes of test set). Evaluation shows that both of them ensures elastic 

conference scaling with different trade-offs (speed versus optimal result). 
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7.2    Future Work 

In the proposed conferencing PaaS architecture, management of conferencing service SLA is 

included as part of a bigger management component. One interesting research direction is to 

explore the SLA issues specific to conferencing services and to extend the proposed architecture. 

Conferencing substrates are offered as web services by conferencing IaaS providers. This thesis 

assumes that subscription of different substrate services by the conferencing PaaS provider is done 

offline. A future work is to integrate substrate discovery into the conferencing PaaS architecture. 

After executing conferencing services in the PaaS, the service providers publish their services for 

the conferencing application developers. In future, the issues involved in automatic publication of 

executed conferencing services can be investigated and the conferencing PaaS architecture can be 

extended for that. 

Before creating a requested conference, conferencing PaaS selects the most suitable IaaSs that 

provides the necessary substrates. A future work is to investigate existing cloud service selection 

algorithms that can be reused for substrate selection. There are a few future works related to the 

proposed conference scaling algorithms. They are relaxing assumption of time lag constraint being 

a multiple of time slot duration, adding more heuristics to improve the proposed greedy algorithm 

and deriving upper bound for the waste of resources. 

While designing conference scaling algorithms, this thesis assumes that a prediction model 

provides the future number of participants in a conference. A future work is to investigate the 

issues involved in designing suitable prediction models for different types of conferencing. 
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Appendix 

1. Detailed Description of the Proposed Greedy Algorithm for Conference Scaling 

The main algorithm corresponds directly to the steps in high-level view of the algorithm. 

GREEDY-OPTIMIZATION-SUBOPTIMAL (𝑃, 𝑛, 𝛿) 

1. (𝑠𝑙𝑜𝑝𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠) = DIVIDE-INTO-SLOPES(𝑃, 𝑛, 𝛿) 

2. 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = SCHEDULE-EXTREMA(𝑃, 𝑛, 𝛿, 𝑠𝑙𝑜𝑝𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠) 

3. 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = SCHEDULE-NAIVE(𝑃, 𝑛, 𝛿, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

Each step of this main algorithm uses some other procedures, which will be described next. The 

first procedure is DIVIDE-INTO-SLOPES. 

DIVIDE-INTO-SLOPES (𝑃, 𝑛, 𝛿) 

1. Let 𝑠𝑙𝑜𝑝𝑒𝑠 be the list of slopes found in 𝑃 

2. 𝑠𝑡𝑎𝑟𝑡 =  𝛿 + 1 

3. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠 = 0 

4. Until 𝑠𝑡𝑎𝑟𝑡 < 𝑛 

5.         (𝑢𝑝𝑤𝑎𝑟𝑑_𝑠𝑙𝑜𝑝𝑒_𝑓𝑜𝑢𝑛𝑑, 𝑒𝑛𝑑) = CHECK-UPWARD-SLOPE(𝑠𝑡𝑎𝑟𝑡, 𝑃, 𝑛) 

6.         If upward slope is not found 

7.                 (𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑_𝑠𝑙𝑜𝑝𝑒_𝑓𝑜𝑢𝑛𝑑, 𝑒𝑛𝑑) = CHECK-DOWNWARD-SLOPE(𝑠𝑡𝑎𝑟𝑡, 𝑃, 𝑛) 

8.         Add (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) to list 𝑠𝑙𝑜𝑝𝑒𝑠 

9.         𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠 + 1 

10.         𝑠𝑡𝑎𝑟𝑡 = 𝑒𝑛𝑑 
11. Return (𝑠𝑙𝑜𝑝𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠) 

DIVIDE-INTO-SLOPES iterates over the predicted number of participants, looking for upward or 

downward slopes. After finding a slope, it adds the slope’s starting and ending time slot number to 

the list. CHECK-UPWARD-SLOPE and CHECK-DOWNWARD-SLOPE procedures are as 

follows: 

CHECK-UPWARD-SLOPE (𝑠𝑡𝑎𝑟𝑡, 𝑃, 𝑛) 

1. 𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡 + 1 
2. Until 𝑒𝑛𝑑 ≤ 𝑛 and 𝑃[𝑒𝑛𝑑] ≥ 𝑃[𝑒𝑛𝑑 − 1] 
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3.         𝑒𝑛𝑑 = 𝑒𝑛𝑑 + 1 
4. If 𝑒𝑛𝑑 > 𝑠𝑡𝑎𝑟𝑡 + 1 

5.         Return (𝑦𝑒𝑠, 𝑒𝑛𝑑 − 1) 

6. else return (𝑛𝑜, −1) 

CHECK-DOWNWARD-SLOPE (𝑠𝑡𝑎𝑟𝑡, 𝑃, 𝑛) 

1. 𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡 + 1 
2. Until 𝑒𝑛𝑑 ≤ 𝑛 and 𝑃[𝑒𝑛𝑑] < 𝑃[𝑒𝑛𝑑 − 1] 

3.         𝑒𝑛𝑑 = 𝑒𝑛𝑑 + 1 
4. If 𝑒𝑛𝑑 > 𝑠𝑡𝑎𝑟𝑡 + 1 

5.         Return (𝑦𝑒𝑠, 𝑒𝑛𝑑 − 1) 

6. else return (𝑛𝑜, −1) 

Both of the above procedures differ only on line 8. CHECK-UPWARD-SLOPE checks for non-

decreasing sequence whereas CHECK-DOWNWARD-SLOPE does for decreasing sequence.  

After dividing the time slots into a list of slopes, the next step is to schedule the time slots near 

extrema. SCHEDULE-EXTREMA performs this task and is described below: 

SCHEDULE-EXTREMA (𝑃, 𝑛, 𝛿, 𝑠𝑙𝑜𝑝𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠) 

1. Initialize a list 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[1 … 𝑛] with 𝑛𝑖𝑙 

2. 𝑚𝑖𝑛_𝑙𝑒𝑓𝑡 = 𝛿 + 1 

3. 𝑚𝑖𝑛_𝑟𝑖𝑔ℎ𝑡 =
(𝛿+1)

2
 

4. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 = 1 
5. Until 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 < 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠 

6.         𝑙𝑒𝑓𝑡 = 𝑠𝑙𝑜𝑝𝑒𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒] 

7.         𝑟𝑖𝑔ℎ𝑡 = 𝑠𝑙𝑜𝑝𝑒𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 + 1] 

8.         𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑓𝑡 = 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑 − 𝑙𝑒𝑓𝑡. 𝑠𝑡𝑎𝑟𝑡 + 1 

9.         𝑡𝑜𝑡𝑎𝑙_𝑟𝑖𝑔ℎ𝑡 = 𝑟𝑖𝑔ℎ𝑡. 𝑒𝑛𝑑 − 𝑟𝑖𝑔ℎ𝑡. 𝑠𝑡𝑎𝑟𝑡 + 1 

10.         If 𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑓𝑡 ≥ 𝑚𝑖𝑛_𝑙𝑒𝑓𝑡 and 𝑡𝑜𝑡𝑎𝑙_𝑟𝑖𝑔ℎ𝑡 ≥ 𝑚𝑖𝑛_𝑟𝑖𝑔ℎ𝑡 

11.                 𝑥 = COMPUTE-WASTE-NAIVE(𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑) 

12.                 𝑦 = COMPUTE-WASTE-EXTREMA(𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑) 

13.                 If 𝑦 < 𝑥 

14.                                 𝑚𝑖𝑑_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 = 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑 

15.                                 𝑙𝑒𝑓𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 = 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑 −
𝛿

2
 

16.                                 𝑟𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 = 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑 + (
𝛿+1

2
) − 1 

17.                                 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑙𝑒𝑓𝑡𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡
–  𝛿] = 

𝑚𝑎𝑥(𝑃[𝑚𝑖𝑑_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡], 𝑃[𝑙𝑒𝑓𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡], 𝑃[𝑟𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡]) 

18.        𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 + 1 
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19. Return 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 

Each extrema consists of a left slope and a right slope. For example, in case of local maxima, there 

is an upward slope on the left and a downward slope on the right. A local maxima is followed by a 

local minima and vice versa. SCHEDULE-EXTREMA iterates over each slope, taking the current 

slope as the left slope and the next one as the right slope. In order to deal with edge cases, such as 

sharp rise or fall after extrema value, it also assesses the waste of resources and then schedules 

only if the waste is optimized using extrema optimization. 

The helper procedures COMPUTE-WASTE-NAÏVE and COMPUTE-WASTE-EXTREMA are 

straight-forward. In order to compute total waste of resources at the end of a slope, these just add 

the difference with the maximum number of participants. These two procedures are given below: 

COMPUTE-WASTE-NAÏVE (𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑) 

1. 𝑠𝑡𝑎𝑟𝑡 = 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑 − 𝛿 + 1 

2. 𝑒𝑛𝑑 = 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑 

3. 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑚𝑎𝑥(𝑃[𝑠𝑡𝑎𝑟𝑡], 𝑃[𝑒𝑛𝑑]) 

4. 𝑤𝑎𝑠𝑡𝑒 = 0 

5. for 𝑖 = 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑 

6.         𝑤𝑎𝑠𝑡𝑒 = 𝑤𝑎𝑠𝑡𝑒 + (𝑙𝑎𝑟𝑔𝑒𝑠𝑡 − 𝑃[𝑖]) 

7. Return 𝑤𝑎𝑠𝑡𝑒 

COMPUTE-WASTE-EXTREMA (𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑) 

1. 𝑚𝑖𝑑 = 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑 

2. 𝑠𝑡𝑎𝑟𝑡 = 𝑚𝑖𝑑 −
𝛿

2
 

3. 𝑒𝑛𝑑 = 𝑚𝑖𝑑 + (
𝛿+1

2
) −1 

4. 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑚𝑎𝑥(𝑃[𝑠𝑡𝑎𝑟𝑡], 𝑃[𝑚𝑖𝑑], 𝑃[𝑒𝑛𝑑]) 

5. 𝑤𝑎𝑠𝑡𝑒 = 0 
6. For 𝑖 = 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑 

7.         𝑤𝑎𝑠𝑡𝑒 = 𝑤𝑎𝑠𝑡𝑒 + (𝑙𝑎𝑟𝑔𝑒𝑠𝑡 − 𝑃[𝑖]) 

8. Return 𝑤𝑎𝑠𝑡𝑒 

After scheduling the local extrema, the last step is to schedule the remaining time slots using the 

naïve scaling approach. SCHEDULE-NAIVE procedure performs this and is described below: 
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SCHEDULE-NAIVE (𝑃, 𝑛, 𝛿, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

1. 𝑓𝑖𝑟𝑠𝑡 = NEXT-SCHEDULED-TIME-SLOT(1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛) 

2. If 𝑓𝑖𝑟𝑠𝑡 is 𝑛𝑖𝑙 

3.         𝑚 = 𝑛 − 𝛿 

4.         𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =
𝑚+𝛿−1

𝛿
 

5.         SCHEDULE-INTERVAL(𝑃, 𝑛, 𝛿, 𝛿 + 1, 𝑛, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

6. else SCHEDULE-BEFORE-FIRST(𝑃, 𝑛, 𝛿, 𝑓𝑖𝑟𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

7.         𝑙𝑎𝑠𝑡 = SCHEDULE-BEFORE-LAST(𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

8.         SCHEDULE-AFTER-LAST(𝑃, 𝑛, 𝛿, 𝑙𝑎𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

SCHEDULE-NAIVE procedure finds the first time slot at which a scaling request has been 

scheduled. If there is none, it means no scaling request has been scheduled using extrema 

optimization approach. Therefore, the whole conference is scheduled using the naïve scaling 

approach. On the other hand, if a scheduled time slot 𝑓𝑖𝑟𝑠𝑡 is found, the naïve scaling approach is 

applied in three steps. First, schedules are made to accommodate the beginning time slots till 

𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1. Second, the time slots between the first and the last schedule, which are not 

accommodated yet, are covered. Last, the time slots after the last schedule are accommodated. 

Next, the helper procedures used in SCHEDULE-NAIVE are described. The first helper procedure 

is NEXT-SCHEDULED-TIME-SLOT. Given the starting time slot, it iterates until it either finds a 

scheduled time slot or hits the end. The complete procedure is given below. 

NEXT-SCHEDULED-TIME-SLOT (𝑠𝑡𝑎𝑟𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛) 

1. for 𝑖 = 𝑠𝑡𝑎𝑟𝑡 to 𝑛 

2.         If 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑖] is not 𝑛𝑖𝑙 

3.                 Return 𝑖 

4. Return 𝑛𝑖𝑙 

Given total scaling requests, a starting and an ending time slots, the next helper procedure 

SCHEDULE-INTERVAL schedules the given number of scaling requests between the starting and 

the ending time slots using the naïve scaling approach. The complete SCHEDULE-INTERVAL 

procedure is given below. 
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SCHEDULE-INTERVAL (𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

1. for 𝑖 = 1 to 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 

2.         𝑥 = 𝑠𝑡𝑎𝑟𝑡 
3.         If this is the last scaling request 

4.                 𝑦 = 𝑒𝑛𝑑 
5.         Else 𝑦 = 𝑠𝑡𝑎𝑟𝑡 + 𝛿 − 1 

6.         𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑠𝑡𝑎𝑟𝑡 − 𝛿] = MAX-PARTICIPANTS(𝑃, 𝑛, 𝑥, 𝑦) 

7.         𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑡𝑎𝑟𝑡 +  𝛿 

On line 6, SCHEDULE-INTERVAL procedure uses another helper procedure MAX-

PARTICIPANTS which calculates the maximum predicted participant, given a range of time slots. 

This helper procedure is straight-forward and is given below: 

MAX-PARTICIPANTS (𝑃, 𝑛, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) 

1. 𝑚𝑎𝑥 = −1 

2. for 𝑖 = 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑 

3.         if 𝑃[𝑖] > 𝑚𝑎𝑥 

4.                 𝑚𝑎𝑥 = 𝑃[𝑖] 
5. Return 𝑚𝑎𝑥 

The next important helper procedure used by SCHEDULE-NAIVE is SCHEDULE-BEFORE-

FIRST. It is described below: 

SCHEDULE-BEFORE-FIRST (𝑃, 𝑛, 𝛿, 𝑓𝑖𝑟𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

1. 𝑚_𝑡𝑒𝑚𝑝 = 𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1 

2. 𝑚 = 𝑚_𝑡𝑒𝑚𝑝 − 𝛿 

3. If 𝑚 ≥ 𝛿 

4.         𝑠𝑡𝑎𝑟𝑡 = 𝛿 + 1 
5.         𝑒𝑛𝑑 = 𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1 

6.         𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =
𝑚

𝛿
 

7.         SCHEDULE-INTERVAL(𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

SCHEDULE-BEFORE-FIRST procedure schedules the targeted time slots by reusing helper 

procedure SCHEDULE-INTERVAL. Line 1 and 2 calculates the number of time slots that need to 

be scheduled. The first scaling request is scheduled on time slot 𝑓𝑖𝑟𝑠𝑡, meaning this scaling will 

accommodate time slots from 𝑓𝑖𝑟𝑠𝑡 + 𝛿. Therefore, SCHEDULE-BEFORE-FIRST procedure 
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needs to take care of time slots up to 𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1 (line 1). However, the initial conference size 

covers the first 𝛿 time slots (line 2). Because of the time lag constraint, there must be at least 𝛿 

time slots that need to be scheduled. Otherwise, those time slots have to be accommodated by the 

initial conference size. This is checked on line 3. Line 4 sets the starting time slot for the interval. 

The first 𝛿 time slots are accommodated by the initial conference size. Therefore, the starting time 

slot is 𝛿 + 1. As discussed already, the ending time slot is 𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1 and set on line 5. Line 6 

calculates the total number of required scaling requests. Line 7 uses SCHEDULE-INTERVAL to 

schedule scaling requests within the given range of time slots. 

Another important helper procedure used by SCHEDULE-NAIVE is SCHEDULE-AFTER-LAST. 

It is given below: 

SCHEDULE-AFTER-LAST (𝑃, 𝑛, 𝛿, 𝑙𝑎𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

1. 𝑚 = 𝑛 − (𝑙𝑎𝑠𝑡 + 2 ∗ 𝛿) + 1 

2. If 𝑚 > 0 

3.        𝑠𝑡𝑎𝑟𝑡 = 𝑙𝑎𝑠𝑡 + 2 ∗ 𝛿 

4.        𝑒𝑛𝑑 = 𝑛 

5.        𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =
𝑚+𝛿−1

𝛿
 

6.        SCHEDULE-INTERVAL(𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

The last time slot 𝑙𝑎𝑠𝑡, which has a scaling request scheduled, accommodates time slots from 

𝑙𝑎𝑠𝑡 + 𝛿 to 𝑙𝑎𝑠𝑡 + 2 ∗ 𝛿 − 1. SCHEDULE-AFTER-LAST procedure schedules time slots 

from 𝑙𝑎𝑠𝑡 + 2 ∗ 𝛿 to 𝑛, where 𝑛 is the total number of time slots. Line 1 calculates the number of 

time slots that need to be scheduled. If there is at least one time slot, line 3 and 4 sets the starting 

and the ending time slots. Line 5 calculates the total scaling requests required. The remaining time 

slots 𝑚 may not be evenly divisible by 𝛿. This means that we may have time slots fewer than 𝛿 at 

the end, which should be accommodated as well. That’s why 𝛿 − 1 is added to 𝑚 on line 5 to 

round up to the nearest total scaling requests. 
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The last helper procedure used in SCHEDULE-NAIVE is SCHEDULE-BEFORE-LAST. Given 

the first time slot which is scheduled by the extrema optimization approach, it iterates forward till 

the last time slot scheduled by SCHEDULE-EXTREMA. While performing iteration, it schedules 

the time slots which are not accommodated yet. The complete SCHEDULE-BEFORE-LAST 

procedure is described below: 

SCHEDULE-BEFORE-LAST (𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

1. 𝑙𝑒𝑓𝑡 = 𝑠𝑡𝑎𝑟𝑡 

2. 𝑟𝑖𝑔ℎ𝑡 = NEXT-SCHEDULED-TIME-SLOT(𝑙𝑒𝑓𝑡 + 1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛) 

3. Until 𝑟𝑖𝑔ℎ𝑡 is not 𝑛𝑖𝑙 

4.        𝑚 = (𝑟𝑖𝑔ℎ𝑡 + 𝛿 − 1) − (𝑙𝑒𝑓𝑡 + 2 ∗ 𝛿) + 1 

5.        If 𝑚 > 0 

6.               If 𝑚 ≥ 𝛿 

7.                      𝑥 = 𝑙𝑒𝑓𝑡 + 2 ∗ 𝛿 

8.                      𝑦 = 𝑟𝑖𝑔ℎ𝑡 + 𝛿 − 1 

9.                      𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =
𝑦−𝑥+1

𝛿
 

10.                      SCHEDULE-INTERVAL(𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

11.               Else  

12.                      𝑥 = 𝑙𝑒𝑓𝑡 + 𝛿 

13.                      𝑦 = 𝑟𝑖𝑔ℎ𝑡 + 𝛿 − 1 

14.                      𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑙𝑒𝑓𝑡] = MAX-PARTICIPANTS(𝑃, 𝑛, 𝑥, 𝑦) 

15.        𝑙𝑒𝑓𝑡 = 𝑟𝑖𝑔ℎ𝑡 

16.        𝑟𝑖𝑔ℎ𝑡 = NEXT-SCHEDULED-TIME-SLOT(𝑙𝑒𝑓𝑡 + 1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛) 

17. Return 𝑙𝑒𝑓𝑡 

During each iteration, SCHEDULE-BEFORE-LAST procedure takes two consecutive time 

slots 𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡 scheduled by SCHEDULE-EXTREMA procedure. Then it calculates the 

number of time slots which are not accommodated yet. If more than 𝛿 time slots need to be 

accommodated, new scaling requests has to be scheduled. For fewer than 𝛿 time slots, the scaling 

request scheduled on the 𝑙𝑒𝑓𝑡 has to be updated. 

Line 1 and 2 sets the initial values of 𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡. Lines 3 to 16 iterates over the scaling 

requests scheduled by SCHEDULE-EXTREMA. Line 4 calculates the number of time slots that 
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are not accommodated by SCHEDULE-EXTREMA. Schedule at time slot 𝑙𝑒𝑓𝑡 covers time slots 

from 𝑙𝑒𝑓𝑡 + 𝛿 to 𝑙𝑒𝑓𝑡 + 2 ∗ 𝛿 − 1. Schedule at time slot 𝑟𝑖𝑔ℎ𝑡 covers time slots starting 

from 𝑟𝑖𝑔ℎ𝑡 + 𝛿. Therefore, time slots from 𝑙𝑒𝑓𝑡 + 2 ∗ 𝛿 to 𝑟𝑖𝑔ℎ𝑡 + 𝛿 − 1 need to be 

accommodated. If more than 𝛿 time slots need to be accommodated, lines 7 to 10 add new scaling 

requests to the schedule. Otherwise, it is not possible to add a new scaling request due to the time 

lag constraint. So, lines 12 to 14 updates the schedule on the 𝑙𝑒𝑓𝑡. 

After SCHEDULE-EXTREMA and SCHEDULE-NAIVE procedures schedules scaling requests, 

the initial conference size can be calculated easily. INITIAL-CONFERENCE-SIZE procedure 

returns the initial size. It finds the first time slot 𝑓𝑡𝑠 at which a scaling request is scheduled. Then it 

just checks the maximum participants from the first time slot to 𝑓𝑡𝑠 + 𝛿 − 1. The complete 

INITIAL-CONFERENCE-SIZE procedure is given below: 

INITIAL-CONFERENCE-SIZE(𝑃, 𝑛, 𝛿, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

1. 𝑓𝑡𝑠 = NEXT-SCHEDULED-TIME-SLOT(1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛) 

2. 𝑠𝑖𝑧𝑒 = MAX-PARTICIPANTS(𝑃, 𝑛, 1, 𝑓𝑡𝑠 + 𝛿 − 1) 

3. Return 𝑠𝑖𝑧𝑒 

2. Time Complexity Analysis of the Proposed Greedy Algorithm 

In order to derive the time complexity of the greedy algorithm GREEDY-OPTIMIZATION-

SUBOPTIMAL, the time complexities of the used procedures are determined first. Figure 5-5 

shows the call graph of GREEDY-OPTIMIZATION-SUBOPTIMAL algorithm and figure 5-6 

shows the call graph for SCHEDULE-NAIVE procedure. Following a bottom-up approach, time 

complexities of the procedures in figure 5-5 will be determined first. Next, the procedures in figure 

5-6 will be determined. 
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Figure A-1: Call graph of GREEDY-OPTIMIZATION-SUBOPTIMAL algorithm 

 

Figure A-2: Call graph of SCHEDULE-NAIVE procedure 

Both CHECK-UPWARD-SLOPE and CHECK-DOWNWARD-SLOPE iterates at most (𝑛 −

𝑠𝑡𝑎𝑟𝑡) times, which gives their running time 𝑂(𝑛). DIVIDE-INTO-SLOPES procedure iterates 

from lines 4 to 10. However, at line 10, increment in iteration is a direct result of checking slopes 

at lines 5 and 7. Since the iteration counter 𝑠𝑡𝑎𝑟𝑡 jumps from one slope to the next, DIVIDE-

INTO-SLOPES iterates at most n times. Therefore, the runtime complexity is 𝑂(𝑛). 
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Both COMPUTE-WASTE-NAIVE and COMPUTE-WASTE-EXTREMA procedures iterate at 

most 𝛿 times. So, their runtime complexity is 𝑂(𝛿). SCHEDULE-EXTREMA iterates over each 

slope from lines 5 to 18. On line 11 and 12, COMPUTE-WASTE-NAIVE and COMPUTE-

WASTE-EXTREMA procedures are used, which for each iteration, contributes 2𝛿 to runtime 

complexity. Given 𝑛 time slots and time lag 𝛿, maximum number of slopes can be 
𝑛

𝛿
. So the time 

complexity of SCHEDULE-EXTREMA is  𝑂 ((
𝑛

𝛿
) ∗ 2𝛿) = 𝑂(2𝑛) = 𝑂(𝑛). 

To derive the time complexity of SCHEDULE-NAIVE, we use call graph in figure 5-6.  NEXT-

SCHEDULED-TIME-SLOT iterates at most (𝑛 − 𝑠𝑡𝑎𝑟𝑡 + 1) times. So, its runtime complexity 

is 𝑂(𝑛). MAX-PARTICIPANTS iterates at most (𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡 + 1) times. So, its runtime 

complexity is 𝑂(𝑛). 

SCHEDULE-INTERVAL iterates for 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 times. Given 𝑛 time slots and time 

lag 𝛿, the maximum number of scaling requests possible is
𝑛

𝛿
. For each iteration, the call to MAX-

PARTICIPANTS(𝑃, 𝑛, 𝑥, 𝑦) contributes 2𝛿 to runtime complexity, because (𝑦 − 𝑥 + 1) < 2𝛿. So, 

the time complexity of SCHEDULE-INTERVAL is 𝑂 ((
𝑛

𝛿
) ∗ 2𝛿) = 𝑂(2𝑛) = 𝑂(𝑛). 

SCHEDULE-BEFORE-FIRST and SCHEDULE-AFTER-LAST procedures do not have iteration 

and uses SCHEDULE-INTERVAL. Therefore, their time complexities will be the same as 

SCHEDULE-INTERVAL, which is 𝑂(𝑛). 

SCHEDULE-BEFORE-LAST procedure iterates only over the time slots scheduled by 

SCHEDULE-EXTREMA. Maximum number of such time slots can be the maximum number of 

slopes. During each iteration, SCHEDULE-BEFORE-LAST procedure uses either SCHEDULE-
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INTERVAL or MAX-PARTICIPANTS procedure. In either case, the time slots not 

accommodated by SCHEDULE-EXTREMA in-between 𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡 (lines 7-8 and lines 12-

13) are iterated. Then, the iteration jumps to the next slope (line 15). Thus, call to SCHEDULE-

INTERVAL or MAX-PARTICIPANTS contributes at most 𝑛 to the runtime complexity over all 

iterations. However, the call to NEXT-SCHEDULED-TIME-SLOT procedure costs another full 

iteration from left to right time slot, contributing n to the runtime complexity over all iterations. As 

NEXT-SCHEDULED-TIME-SLOT, SCHEDULE-INTERVAL and MAX-PARTICIPANTS are 

called in the same iteration, the runtime complexity will be added. Therefore, the complexity of 

SCHEDULE-BEFORE-LAST procedure is 𝑂(𝑛 + 𝑛) = 𝑂(2𝑛) = 𝑂(𝑛). 

SCHEDULE-NAIVE uses NEXT-SCHEDULED-TIME-SLOT, SCHEDULE-INTERVAL, 

SCHEDULE-BEFORE-FIRST, SCHEDULE-AFTER-LAST and SCHEDULE-BEFORE-LAST 

procedures without any iteration. Therefore, its time complexity is the maximum of the complexity 

of the procedures, which is 𝑂(𝑛). 

Now that we know the runtime complexity of all three steps of GREEDY-OPTIMIZATION-

SUBOPTIMAL algorithm, we can derive its complexity. The algorithm uses the main steps 

without any iteration. The complexity is then the maximum of the complexity of the main steps, 

which is 𝑂(𝑛).  
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