
i | P a g e

A Cloud Platform-as-a-Service for Multimedia

Conferencing Service Provisioning

Ahmad Ferdous Bin Alam

A Thesis

in

The Department

of

Computer Science & Software Engineering

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

July 2016

© Ahmad Ferdous Bin Alam, 2016

ii | P a g e

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ahmad Ferdous Bin Alam

Entitled: “A Cloud Platform-as-a-Service for Multimedia Conferencing Service

Provisioning” and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 ___ Chair

 Dr. S. Bergler

 ___ Examiner

 Dr. T. Eavis

 ___ Examiner

 Dr. E. Shihab

 ___ Supervisor

 Dr. R. Glitho

Approved by: ___

 Chair of Department or Graduate Program Director

____________2016 __________________________

 Dean of Faculty

iii | P a g e

ABSTRACT

A Cloud Platform-as-a-Service for Multimedia

Conferencing Service Provisioning

Ahmad Ferdous Bin Alam

Multimedia Conferencing is the real-time exchange of media content (e.g. voice, video and text)

between multiple participants. It is the basis of a wide range of conferencing applications such as

massively multi-player online games and distance learning applications. For faster development

as well as cost efficiency, developers of such conferencing applications can use conferencing

services (e.g. dial-in audio conference) provided by third-parties. However, the third-party service

providers face several challenges with respect to conferencing service provisioning (i.e. service

development, deployment and management). One challenge is mastering complex low-level

details of conferencing technologies, protocols and their interactions. Another challenge is

resource elasticity. Number of conference participants varies during runtime. So resource

utilization in an elastic manner is a critical factor to achieve cost efficiency.

Cloud Computing can help tackle these challenges. It is a paradigm for swiftly provisioning a

shared pool of configurable resources (e.g. services, applications, network and storage) on

demand. It has three main service models: Infrastructure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS) and Software-as-a-Service (SaaS). Using a PaaS, service providers can provision

iv | P a g e

conferencing services easily and offer them as SaaS. Nonetheless, cloud-based provisioning of

conferencing services still remains a big challenge due to the shortcomings of existing PaaS.

In this thesis, a PaaS architecture for conferencing service provisioning is proposed. It is based on

a business model from the state of the art. It relies on conferencing IaaSs that, instead of VMs,

offer conferencing substrates (e.g. dial-in signaling, video mixer and audio mixer). The

conferencing PaaS enables composition of new conferences from substrates on the fly. Moreover,

it provides conferencing service providers, who are experienced in programming, with high-level

interfaces to abstract the internal complexities of conferencing. In order for PaaS to scale ongoing

conferences elastically, an algorithm is also presented in this thesis. The conferencing PaaS is

prototyped and performance measurements are made. The proposed algorithm’s performance is

also evaluated.

v | P a g e

Acknowledgments

It is good to have an end to journey toward; but it is the journey that matters, in the end. I would

like to express my deepest gratitude to Dr. Roch Glitho, my thesis supervisor, for guiding me

throughout the journey of this thesis and for believing in me when I was lost. I would also like to

thank Dr. Sami Yangui and Dr. Mohammad Ali Salahuddin for their valuable time, help and

advices on different parts of this thesis.

It was a great pleasure to work with my colleagues at Telecommunications Service Engineering

(TSE) lab. I would like to thank Abbas Soltanian for his cooperation and encouragement.

I am grateful to Dr. T. Eavis and Dr. E. Shihab for serving as members of my thesis committee. I

also thank Dr. S. Bergler for serving as the chair at my thesis defense.

I am grateful to Dr. Roch Glitho and Concordia University for their financial support and for

giving me the opportunity to work in research.

Last but not the least, I would like to thank my loving and caring wife, Farah Sheherin, who

sacrificed her job to accompany me in Canada. I appreciate her continuous support very much.

vi | P a g e

Table of Contents

1. Introduction ... 1

1.1 Definitions ... 1

1.1.1 Multi-party Multimedia Conferencing ... 1

1.1.2 Conferencing Service Provisioning ... 2

1.1.3 Cloud Computing ... 2

1.1.4 Platform-as-a-Service ... 3

1.2 Motivation and Problem Statement ... 3

1.3 Thesis Contributions ... 4

1.4 Thesis Organization... 4

2. Background .. 6

2.1 Multi-party Multimedia Conferencing .. 6

2.1.1 A Brief Introduction to Conferencing .. 6

2.1.2 Architectural Components of Conferencing ... 7

2.1.3 Key Conferencing Technologies ... 10

2.1.4.1 Traditional SIP-based Conferencing ... 10

2.1.4.2 WebRTC-based Conferencing .. 12

2.2 Cloud Computing .. 15

2.2.1 Definition of Cloud Computing ... 15

2.2.2 Benefits of Cloud Computing .. 16

2.2.3 Service Models of Cloud Computing .. 17

2.2.3.1 Infrastructure-as-a-Service (IaaS) ... 17

2.2.3.2 Platform-as-a-Service (PaaS) .. 18

2.2.3.3 Software-as-a-Service (SaaS) ... 18

2.3 Platform-as-a-Service (PaaS) .. 18

2.3.1 Definition of PaaS .. 18

vii | P a g e

2.3.2 Advantages Offered by PaaS ... 19

2.3.2.1 Rapid Application Development... 20

2.3.2.2 Easy and Fast Application Deployment .. 20

2.3.2.3 Efficient Application Management ... 20

2.3.3 Example of Existing PaaS ... 21

2.4 Conferencing Substrates ... 22

2.5 Conferencing Service Provisioning .. 23

2.6 Chapter Summary .. 24

3. Scenarios, Requirements and State of the Art Evaluation ... 25

3.1 Scenarios ... 25

3.1.1 Actors... 25

3.1.2 Conferencing Service Development and Deployment Scenario 27

3.1.3 Conferencing Service Execution Scenario .. 29

3.2 Requirements ... 31

3.2.1 Requirements on the Conferencing PaaS .. 31

3.2.2 Requirements on the Conference Scaling Algorithm .. 32

3.3 State of the Art Evaluation .. 34

3.3.1 Cloud-based Conferencing Architectures .. 34

3.3.1.1 Cloud-based Conferencing Architectures in Literature .. 34

3.3.1.2 Cloud-based Conferencing Products in the Market .. 38

3.3.2 PaaS Solutions ... 39

3.3.3 Conference Scaling Algorithms... 42

3.4 Chapter Summary .. 46

4. Proposed Architecture ... 47

4.1 Overall Architecture .. 47

4.1.1 Architectural Principles ... 47

4.1.2 Architectural Components ... 48

4.2 Conferencing Service Development APIs.. 52

4.3 Illustrative Scenario... 58

viii | P a g e

4.3.1 Conferencing Service Development and Deployment .. 59

4.3.3 Conferencing Service Execution ... 61

4.4 How the Proposed Architecture Meets the Requirements .. 63

4.5 Chapter Summary .. 64

5. Conference Scaling Algorithm .. 66

5.1 Problem Background and Motivation .. 66

5.2 Problem Statement ... 69

5.3 Problem Analysis ... 72

5.4 Proposed Dynamic Programming Algorithm ... 77

5.4.1 A Brief Overview of Dynamic Programming ... 77

5.4.2 High Level View ... 78

5.4.3 Detailed Algorithm Description .. 78

5.4.4 Time Complexity Analysis .. 81

5.5 An Alternative Greedy Algorithm.. 83

5.5.1 A Brief Overview of Greedy Algorithm .. 83

5.5.2 Motivation for the Greedy Heuristic Used .. 84

5.5.3 High Level View ... 86

5.6 Chapter Summary ... 87

6. Validation: Prototype and Evaluation ... 89

6.1 Overall Software Architecture .. 89

6.1.1 Conferencing PaaS GUIs and APIs .. 90

6.1.2 Management (Services & PaaS) ... 91

6.1.3 Service Hosting & Execution .. 91

6.1.4 Conference Orchestration and Management ... 92

6.1.5 Operational Procedures .. 92

6.2 Prototype ... 94

6.2.1 Implemented Scenario ... 94

6.2.2 Implementation Scope ... 95

6.2.3 Prototype Description .. 96

ix | P a g e

6.2.4 Software Tools ... 98

6.2.4.1 Cloud Foundry .. 98

6.2.4.2 Camunda ... 98

6.2.4.3 Node.js .. 99

6.2.4.4 OpenStack ... 99

6.2.4.5 SAVI testbed ... 100

6.2.4.5 Additional Software Tools .. 100

6.3 Prototype Setup and Performance Measurements ... 100

6.3.1 Prototype Setup.. 100

6.3.2 Performance Measurements .. 101

6.3.2.1 Comparison Scenarios .. 101

6.3.2.2 Performance metrics ... 102

6.3.2.3 Performance Results ... 103

6.4 Conference Scaling Algorithm and Performance Measurements 105

6.4.1 Algorithm Implementation and Test Sets .. 105

6.4.2 Performance Metrics .. 106

6.4.3 Performance Results .. 107

6.5 Chapter Summary .. 112

7. Conclusion and Future Work ... 113

7.1 Contribution Summary ... 113

7.2 Future Work ... 115

Appendix ... 116

1. Detailed Description of the Proposed Greedy Algorithm for Conference Scaling 116

2. Time Complexity Analysis of the Proposed Greedy Algorithm 123

Bibliography ... 127

x | P a g e

List of Figures

Figure 2-1: Key Architectural Components of Conferencing... 7

Figure 2-2: Centralized Architecture of SIP-based Conferencing [11] .. 11

Figure 2-3: Separate Media Handling and Signaling Components [11] ... 12

Figure 2-4: Service Models of Cloud Computing [29] ... 17

Figure 3-1: Conferencing Service Provisioning in the Cloud ... 26

Figure 3-2: Conferencing Service Development and Deployment Scenario 28

Figure 3-3: Conferencing Service Execution Scenario ... 30

Figure 3-4: SOA Layers of Cloud Conferencing [48] .. 35

Figure 3-5: REST Architecture of Nuve [49] ... 36

Figure 3-6: Architecture of conferencing IaaS [50] .. 37

Figure 4-1: Overall Architecture of Conferencing PaaS ... 49

Figure 4-2: Pseudo-code of dial-in audio conferencing service ... 60

Figure 4-3: Conferencing Service Deployment Scenario ... 61

Figure 4-4: Conferencing Service Execution Scenario ... 62

Figure 5-1: Overlapping subproblems .. 75

Figure 5-2: An example of predicted number of participants ... 84

Figure 5-3: (a) Scaling with naive approach (b) Scaling with extrema optimization 86

Figure 5-4: (a) Waste of resources is 115 (b) Waste of resources is 140 87

Figure 6-1: Software architecture of conferencing PaaS .. 90

Figure 6-2: Interactions of software components for conferencing service development and

deployment .. 93

Figure 6-3: Interactions of software components for creating a conference 94

Figure 6-4: Prototype architecture of conferencing PaaS ... 97

Figure 6-5: Average conference start time.. 103

Figure 6-6: Average participant joining time .. 104

Figure 6-7: Resource Allocation Evaluation... 105

Figure 6-8: Effects of scaling time lag (δ) on waste of resources in terms of number of

participants .. 107

Figure 6-9: Difference in waste of resources between DP and greedy algorithms 108

Figure 6-10: Elastic conference size allocation by DP algorithm... 109

Figure 6-11: Elastic conference size allocation by greedy algorithm ... 110

Figure 6-12: Comparison of elastic conference size allocation between DP and greedy algorithms

... 110

Figure 6-13: Comparison of running time between DP and greedy algorithms 111

xi | P a g e

List of Tables

Table 3-1: Summary of Evaluation of the Related Works for Conferencing PaaS 41

Table 3-2: Summary of Evaluation of Related Works for Conferencing Scaling Algorithm 46

Table 4-1: Conferencing Service Development APIs ... 56

Table 4-2: Categorization of API Parameters ... 57

Table 5-1: An example of predicted number of participants in a conference 69

Table 5-2: List of notations ... 71

xii | P a g e

Acronyms and abbreviations

API Application Programming Interface

BFCP Binary Floor Control Protocol

CF Cloud Foundry

CLI Command Line Interface

DP Dynamic Programming

DTLS Datagram Transport Layer Security

GUI Graphical User Interface

IaaS Infrastructure-as-a-Service

ICE Interactive Connectivity Establishment

IETF Internet Engineering Task Force

MGCP Media Gateway Control Protocol

MSCML Media Server Control Markup Language

NIST National Institute of Standards and Technology

PaaS Platform-as-a-Service

QoS Quality of Service

REST Representational State Transfer

RTP Real-time Transport Protocol

xiii | P a g e

RTCP RTP Control Protocol

SaaS Software-as-a-Service

SIP Session Initiation Protocol

SLA Service Level Agreement

SOA Service Oriented Architecture

SRTP Secure Real-time Transport Protocol

VM Virtual Machine

W3C World Wide Web Consortium

WebRTC Web Real-Time Communication

1 | P a g e

Chapter 1

1. Introduction

In this chapter we first provide an overview of the key concepts related to our research such as

Multi-party Multimedia Conferencing, and Cloud Computing with a focus on Platform-as-a-

Service. Then the motivation and problem statement are discussed. A summary of thesis

contributions is also presented. The chapter concludes with an outline of how this thesis is

organized.

1.1 Definitions

We provide definitions of four key concepts that are related to our research on conferencing PaaS.

1.1.1 Multi-party Multimedia Conferencing

Multi-party multimedia conferencing is the real-time exchange of media content (e.g. voice, video,

text) between multiple participants [1]. It is an important component of many conferencing

applications such as massively multiplayer online games, audio/video conference, distance

learning applications, etc. There are several models to operate conferencing applications, for

instances, dial-in, dial-out and ad-hoc. The first two are scheduled conferencing models. In a dial-

in conference, participants join the conference themselves, whereas the conference server invites

participants in a dial-out conference according to the planned time [2]. In ad-hoc conferencing

model, a participant of a point-to-point call creates a new conference and then adds new

participants [3].

2 | P a g e

1.1.2 Conferencing Service Provisioning

A conferencing service offers full-fledged conferencing functionality, for instances, dial-in audio

conferencing, dial-out video conferencing with floor control, etc. Conferencing applications

consume conferencing services, which are provisioned and then offered by third-party service

providers. Conferencing service provisioning refers to the entire lifecycle of the conferencing

service, i.e. development, deployment and management [4].

1.1.3 Cloud Computing

Cloud Computing is a paradigm for swiftly provisioning a shared pool of configurable resources

(network, storage, application, services) on demand. It allows provisioning resources with minimal

management effort and on a pay-per-use basis [5]. Since cloud computing allows us to easily

access and use virtualized resources, we can adjust provisioned resources dynamically, meaning

we can scale with ease which makes optimum resource utilization feasible [6].

It has three main service models: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)

and Software-as-a-Service (SaaS). IaaS provides computing, storage and networking infrastructure

through virtualized hardware resources. PaaS adds level of abstraction to the infrastructure. In

addition to managing the infrastructure as needed under the hood, it provides the software

environment to easily and rapidly develop, build, deploy and maintain applications or services.

Once the services are deployed and run on PaaS, they can be offered to other applications or end-

users as SaaS on a pay-per-use basis.

3 | P a g e

1.1.4 Platform-as-a-Service

PaaS is defined as an enabler for the service providers to develop and deploy their services onto the

cloud without worrying about underlying infrastructure [5]. It provides the service development

and hosting environment out of the box. It also acts as an abstraction level on top of virtualized

infrastructure, provisioning resources on demand during execution of running services [6]. In

short, PaaS facilitates service provisioning which consists of the whole lifecycle of a service, i.e.

service development, deployment and management (start, stop, scaling). Notable examples of PaaS

are Google App Engine, Microsoft Azure, Cloud Foundry etc.

1.2 Motivation and Problem Statement

Conferencing is an indispensable component of many conferencing applications such as massively

multiplayer online games, distance learning and audio/video conference. For cost efficiency and

faster development, developers of conferencing applications can use conferencing services. Third-

party service providers can provision such services using a PaaS and then offer them as SaaS.

However, service providers face several challenges with respect to conferencing service

provisioning. One of them is that development of conferencing services requires a steep learning

curve - gaining adequate knowledge of complex conferencing concepts, protocols and different

technologies - that makes service development costly and time-consuming. Another challenge is to

scale running conferences on demand. Number of participants changes during the conference. So

resource elasticity is crucial to minimize cost. Conferencing service providers will be benefitted

from a conferencing PaaS that deals with these challenges.

4 | P a g e

In order to realize such a conferencing PaaS, we need a sound architecture that enables easy

conferencing service provisioning. Also, we need algorithms that makes large-scale conference

possible by utilizing resources efficiently in an elastic manner. In particular, we need an algorithm

that enables PaaS to provision resources on demand on IaaS.

1.3 Thesis Contributions

The thesis contributions are as follows:

 A set of requirements on the conferencing PaaS

 Analysis of the state of the art with an evaluation summary based on our set of

requirements.

 A general architecture of a conferencing PaaS

 An algorithm for the conferencing PaaS to scale running conferences on demand.

 Implementation architecture, a proof of concept prototype, and performance evaluation.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 discusses the key concepts related to our research domain in more details.

Chapter 3 introduces the scenarios and the set of requirements on a conferencing PaaS derived

from the scenarios. The state of the art is also evaluated against the requirements.

5 | P a g e

Chapter 4 presents the proposed architecture for a conferencing PaaS. Architectural components as

well as the proposed interfaces are discussed.

Chapter 5 presents an algorithm for the conferencing PaaS to scale running conferences on

demand.

Chapter 6 describes the implementation architecture and technologies used for the proof-of-

concept prototype. Then performance measurements evaluating the architecture as well as

simulation results evaluating the algorithm are discussed.

Chapter 7 concludes the thesis by giving a summary of the overall contributions and identifies

future research directions.

6 | P a g e

Chapter 2

2. Background

This chapter presents the background concepts relevant to research domain of this thesis. The

following concepts are explained: multi-party multimedia conferencing, cloud computing,

platform-as-a-service (PaaS), conferencing substrates and conferencing service provisioning.

2.1 Multi-party Multimedia Conferencing

In this section we provide an overview of Multi-party Multimedia Conferencing. We first briefly

introduce the concept of conferencing. A short description of its key technical components follows.

We also discuss different types of conferencing at the end.

2.1.1 A Brief Introduction to Conferencing

Conferencing is the conversational exchange of media content (e.g. voice, video, text) between

multiple participants [1]. Some examples of applications, where conferencing is an indispensable

component, are audio/video conference, distance learning, massively multiplayer online games,

etc. Conferencing is resource-intensive. Moreover, conferences can vary in size (number of

participants), for instance, from several hundreds to thousands of participants.

Conferencing can be operated in one of several models, for instances, dial-in, dial-out and ad-hoc.

In a dial-in conference, users join the conference themselves, while the conference server calls up

participants in a dial-out conference according to the predefined time [2]. In ad-hoc conferencing

model, one participant of an ongoing point-to-point call creates a new conference and then adds

7 | P a g e

new participants [3]. Typically dial-in and dial-out conferences are pre-arranged, whereas ad-hoc

conferences are not.

2.1.2 Architectural Components of Conferencing

A typical conference is comprised of the following key architectural components (depicted in

Figure 2-1): Signaling, Media Handling and Conference Control.

Figure 2-1: Key Architectural Components of Conferencing

 Signaling: In order for a conference participant to be able to communicate with other

participants, there should be a mechanism through which the participants’ locations or

addresses can be known. Moreover, the exchange of media among multiple participants in

a conference requires that the participants negotiate capabilities such as acceptable media

format, bit rate, etc. In addition to that, a client device or software also needs to inform the

address at which it expects media from other participants. Signaling entity addresses these

aspects. This entity establishes session with each participant. It also takes care of capability

negotiation, session modification and termination. Communication between conference

end-points and signaling entity follows standardized protocols. Examples of signaling

protocols are Session Initiation Protocol (SIP) [7], H.323 [8].

8 | P a g e

 Media Handling: This entity deals with media transmission, mixing and transcoding. A

participant in a multi-party conference receives media data from the other participants. It is

not efficient if media data from other participants is received individually. A more efficient

approach is to receive a single media stream that is a combination of media data streams

from all other participants. The process of combining multiple incoming media streams of

the same type into a single output stream is called mixing. The mixer usually generates

multiple output streams – one for each participant – having incoming streams of all

participants except the target participant.

Conference end-points (devices, softwares) differ in their media capabilities in terms of

media format, resolution, bit rate, frame rate, etc. Conference participants may use different

kinds of end-points such as mobile devices, desktop software, dedicated conferencing

devices whose media capabilities vary greatly. For example, mobile end-points need a

lower video resolution than desktop clients. So media handling entity should take this into

consideration. It should transform the incoming media stream into a stream appropriate for

the target client. The process of converting media content between different media formats

is called transcoding. Before transmitting media to participants, transcoder converts the

media stream to a format compatible with the target conferencing client device or software.

The two most widely used protocols for media transmission are Real-time Transport

Protocol (RTP) and RTP Control Protocol (RTCP). RTP is used to deliver the media data

and RTCP is used to get feedback from clients and to monitor quality of media

transmission [9]. Secure Real-time Transport Protocol (SRTP) is used when confidentiality,

message authentication, and replay protection to RTP and RTCP traffic are needed [10].

9 | P a g e

 Conference Control: Conference control provides advanced capabilities such as floor

control and policy control.

 Policy Control: Conference Policy is the complete set of rules governing a

particular conference. That means each conference is always associated with a

conference policy. The rules in conference policy can be as simple as a list of

allowed participants in a conference. They can also be complex, for instances, time-

of-day-based rules on participation, and conditional rules on the presence of other

participants. There is no restriction on the type of rules that can be included in a

conference policy.

Policy Control entity stores and manipulates the conference policy. When a new

participant requests to join a conference, this entity determines if that participant is

allowed or not based on policy. Similarly, a participant may be removed from the

conference if conference policy is changed not to allow that participant in the

conference.

Mechanism to manipulate conference policy is not standardized. It can be through

web applications or voice applications, non-SIP-specific protocols or proprietary

protocols [11]. Conference Policy Control Protocol [12] remained as an IETF draft

and eventually expired.

 Floor Control: A conference usually has shared resources, for instances, right to

talk and input access to a video channel. It is often necessary to control who can

provide input to or has access to the shared resources. A floor is an individual

temporary access or manipulation permission for a specific shared resource (or

10 | P a g e

group of resources) [13]. Floor control is a mechanism to manage joint or exclusive

access to shared resources in a conference.

Floor policy can be moderator-controlled or autonomous. In the former case, a user

(not necessarily a participant in the conference), called floor chair, manages a floor.

In the latter case, the decisions (grant or revoke floor) are made automatically based

on predefined policy. An example of protocol for floor control is Binary Floor

Control Protocol [14].

For any conferencing applications, Signaling and Media Handling are essential parts. Conference

Control component can be added to provide more capabilities and control.

2.1.3 Key Conferencing Technologies

In this section we present two most common and popular conferencing technologies – one is the

conventional SIP-based conferencing and the other is emerging WebRTC-based conferencing.

2.1.4.1 Traditional SIP-based Conferencing

Session Initiation Protocol (SIP)-based conferencing is the most widespread solution for

conferencing. SIP, an application layer protocol developed by IETF, is used as signaling protocol

for multi-media communication sessions. It has been reused in other IETF standards to provide

signaling and control functionalities for a large range of multimedia communications including

voice, data, images, messaging, presence, file transfers etc. [15].

SIP-based conferencing technology relies on a suite of IETF protocols used together to realize

conferencing. In traditional SIP-based conferencing system, besides signaling protocol SIP,

RTP/RTCP protocols are used for media transmission and BFCP for floor control. When media

11 | P a g e

handling entity is separate from signaling entity, media control protocols are needed for

communication between these two entities. Examples of media control protocols developed by

IETF are Media Gateway Control Protocol (MGCP) [16], Media Control Channel Framework

[17], Media Server Control Markup Language (MSCML) Protocol [18].

IETF specification on SIP-based conferencing [11] describes several possible architectures. One of

them is centralized architecture as depicted in figure 2-2. In the figure, focus is the signaling entity

as we have discussed in section 2.1.2. Mixer belongs to Media Handling entity.

Figure 2-2: Centralized Architecture of SIP-based Conferencing [11]

Another architecture separates media handling entity from signaling entity as shown in the

following figure 2-3. In this figure, signaling entity belongs to the Application Server on the left

and media handling entity is the “Conf. Cmpnt.” component on the right.

12 | P a g e

Figure 2-3: Separate Media Handling and Signaling Components [11]

2.1.4.2 WebRTC-based Conferencing

There has been an increasing interest in adding real-time voice and video communication

capabilities to browsers because there are numerous use-cases where a web application user may

need real-time multimedia communication. For example, a collaboration web application where

team members visiting the same internal project web page could auto-join a video conferencing

application embedded in that web page. Another example is an enterprise website where a visitor

can start voice conversations with the enterprise' customer service agent from that website. The

development of such web applications having multimedia communication capabilities was difficult

due to browsers' lack of support for real-time multimedia communication capabilities.

The W3C WebRTC and the IETF RTCWEB working groups are jointly working to define both the

application programming interfaces (APIs) and the underlying communication protocols for the

setup and management of a reliable communication path between next-generation web browsers.

13 | P a g e

The technology resulting from efforts of these two standardization bodies is known as Web Real-

Time Communication (WebRTC) [15]. The IETF and W3C are working on different but

complementary aspects. The IETF is working for identification and definition of network related

aspects, including control protocols, connection establishment and management, and selection of

the most suitable media codecs. On the other hand, the W3C focuses on the definition of

JavaScript APIs, mechanisms in order for browsers to have secure access to input devices, and the

network protocols chosen for communication [15].

The realization of integrating real-time multimedia communication into web browsers has proved

revolutionary in the world of telecommunications and renders traditional SIP-based conferencing

as 'legacy' because the latter did not envisage web browser among the set of supported end-points

[15]. With the advent of WebRTC, web developers can now easily embed real-time multimedia

communication in their websites using fairly simple high-level APIs, enabling the users to have

voice and video conversation without installing any plug-in in the browser.

WebRTC focuses on peer-to-peer communication between browsers and does not provide any

particular mechanism to realize multiparty conferencing. So in a WebRTC-based conference with

no intermediate entity, each browser has to receive and handle the media streams generated by the

other browsers, as well as deliver its own generated media streams to the other browsers. The

application-level topology is a mesh network in this case. Although the mechanism is simple, it is

not efficient in terms of network bandwidth and the use-case is not suitable for low-bandwidth

mobile devices.

WebRTC-based conferencing usually relies upon a star topology where each peer connects to a

dedicated server responsible for negotiating parameters with every other peer in the network,

mixing the media streams, distributing the proper (mix of) streams to each and every peer

14 | P a g e

participating in the conference [19]. However, this essentially introduces a centralized

infrastructure in the WebRTC peer-to-peer communication model. Several approaches and models

for WebRTC-based multiparty conferencing have been studied in [20], [21], [22].

From the network communication point of view, WebRTC defines the protocol stack only for

media plane. To avoid redundancy and to maximize compatibility with established technologies, it

does not specify any particular signaling protocol and leaves it to the application developer [23]. It

also does not address the conference control aspects (policy control, floor control). Regarding

media plane protocols, WebRTC requires Secure Real-time Transport Protocol (SRTP) for

encrypting and delivering the media streams and Datagram Transport Layer Security (DTLS)

protocol for secure exchange of encryption keys (key management) [24]. Audio codecs G.711 and

Opus, video codecs VP8 and H.264 are mandatory for the WebRTC end-points to implement. In

order to establish peer-to-peer media path, WebRTC-enabled end-points must be aware of

Interactive Connectivity Establishment (ICE) protocol. WebRTC also requires both RTP and

RTCP streams be multiplexed on the same port.

The openness of WebRTC on signaling plane as well as security layer and multiplexing

requirement added to media plane pose challenges for interworking between conventional SIP-

based and the emerging WebRTC-based conferencing systems. By introducing signaling gateway

and media gateway, the interworking between SIP-based and Web-RTC based end-points can be

made possible [15] [24].

15 | P a g e

2.2 Cloud Computing

In this section we present a general overview of Cloud Computing. We start with its definition

followed by the key benefits that Cloud Computing offers. We also discuss its different service

models.

2.2.1 Definition of Cloud Computing

Cloud computing has been defined in several ways. NIST (US National Institute of Standards and

Technology) defines [5] it as “model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”. Vaquero et al. [6] has provided an integrative

definition of cloud computing based on the 20 previous definitions available at that time. The

authors define cloud computing as a “large pool of easily usable and accessible virtualized

resources that can be dynamically reconfigured to adjust to a variable load (scale), allowing for

an optimum resource utilization. This pool of resources is typically exploited by a pay-per-use

model in which guarantees are offered by the infrastructure provider by means of customized

SLAs”. This definition covers three main characteristics - resource pooling, rapid elasticity and

measured services. However, it does not mention two other key characteristics of cloud computing

- on-demand self-service (computing resources can always be used without human interaction with

infrastructure service provider) and broad network access (access to computing resources over

network). NIST definition covers all essential characteristics of Cloud Computing.

16 | P a g e

2.2.2 Benefits of Cloud Computing

Cloud Computing offers several important benefits. They are:

 Scalability: Virtually unlimited scalability is possible because of the massive capacity

offered by the cloud providers [25]. Services hosted on the cloud can be easily scaled

which is very useful in the event of rapid service demand change.

 Elasticity: It refers to a system’s capability of adapting to variable workload by

provisioning and de-provisioning resources in an autonomic manner [26].

 Reliability: Services running on the cloud should meet several desired requirements such

as Quality of Service (QoS), availability, performance, fault tolerance, etc. These

requirements are regulated under the framework of Service Level Agreement (SLA)

between cloud service providers and customers. SLAs contain the details of the service as

well as penalty for violations [25].

 Multi-tenancy: Cloud providers can serve multiple customers by assigning and

reassigning the virtualized and physical resources dynamically according to demand. It

facilitates resource sharing resulting in optimum resource utilization and cost.

 On-demand self-service: Customers can provision cloud resources any time without

human interaction with the cloud service providers [27].

 Pay-per-use Model: Customers are charged only for the amount of resources they

consumed. This measurement parameter can vary based on the services offered. For

17 | P a g e

instance, usage of a virtual machine (of a particular configuration) per hour, number of

users consuming a service, etc. [28].

 Easy access: Customers can easily access provisioned resources over network through

various types of devices.

2.2.3 Service Models of Cloud Computing

Cloud Computing has three main service models [6] – Infrastructure-as-a-Service (IaaS), Platform-

as-a-Service (PaaS) and Software-as-a-Service (SaaS). Figure 2-4 illustrates the service models:

Figure 2-4: Service Models of Cloud Computing [29]

2.2.3.1 Infrastructure-as-a-Service (IaaS)

Among the three service models, IaaS provides resources with the lowest level of abstraction.

Examples of typical IaaS services are computing, storage and network [25]. Users access the

underlying infrastructures through the provisioned virtual machines (VMs). Heterogeneous

18 | P a g e

resources can co-exist on the same hardware system by using virtualization technology. IaaS

provides resource and cost efficiency through shared resources and multi-tenancy. Examples of

well-known IaaS providers are Amazon EC2, Google Compute Engine, Rackspace etc.

2.2.3.2 Platform-as-a-Service (PaaS)

Platform-as-a-Service is discussed in detail in the next section 2.3.

2.2.3.3 Software-as-a-Service (SaaS)

This model provides services with highest level of abstraction. SaaS services can be consumed in

two ways - by end-users directly and by third-party applications through APIs. From end-users’

perspective, SaaS is a convenient alternative to applications that need to be run locally on a PC

because they can easily access the service through web browser. From third-party application

providers’ point of view, they can start using SaaS services immediately without having to spend

for capital expenditure. SaaS users have no control over the underlying infrastructure, application

or services. Examples of SaaS services include Salesforce.com, Google docs etc.

2.3 Platform-as-a-Service (PaaS)

In this section we first present the available definitions of Platform-as-a-Service. Then we describe

its various advantages.

2.3.1 Definition of PaaS

NIST defines Platform-as-a-Service as a service model providing capability to the consumer "to

deploy onto the cloud infrastructure consumer-created or acquired applications created using

19 | P a g e

programming languages, libraries, services, and tools supported by the provider" [5]. Boniface et

al. [30] defines PaaS as "the provision of a development platform and environment providing

services and storage, hosted in the cloud". The consumer cannot manage or control the underlying

cloud infrastructure such as network, servers, operating systems, or storage. However, the

applications deployed and possibly their hosting environment configurations can be controlled by

the consumer [5].

PaaS provides platform resources on top of infrastructure in order to provision applications.

Application provisioning encompasses the whole life cycle of applications i.e. application

development, deployment and management. For development phase, PaaS provides developers

with different programming platforms, languages, frameworks and even for different application

domains (e.g. big data analytics in IBM Bluemix PaaS). For deployment phase, PaaS instantiates

runtime environment for hosting the application. Application execution is part of application

management. For application management phase, PaaS provides automated operations to start, stop

and scale applications, to monitor applications’ status as well as associated QoS parameters.

Examples of open-source PaaS are Cloud Foundry, Apache Stratos, Red Hat's OpenShift Online.

Notable proprietary PaaS examples include Google App Engine, Amazon's AWS Elastic

Beanstalk, Heroku, Salesforce.com's App Cloud, Oracle Cloud Platform, Red Hat's OpenShift

Enterprise, Pivotal CF, IBM Bluemix.

2.3.2 Advantages Offered by PaaS

PaaS facilitates the entire application life cycle by offering the underlying services for application

development, deployment and management [31].

20 | P a g e

2.3.2.1 Rapid Application Development

PaaS can facilitate application development for both professional and non-professional developers

[31], meaning it can help developers develop applications easily and rapidly, regardless of their

programming experience. To this end, PaaS can provide user interfaces as well as application

programming interfaces (API). Two examples of user interfaces are IDE plug-in such as Eclipse

plug-in and graphical user interfaces where application features can be selected by the developer.

The former is for developers with programming experience whereas the latter for developers

without programming experience. The PaaS APIs enable application developers to take advantage

of different services offered by PaaS such as database, analytics etc.

2.3.2.2 Easy and Fast Application Deployment

Developers can deploy applications on PaaS without having to worry about the complexity of

purchasing and managing the underlying hardware and software layers [30]. Moreover, it

eliminates the burden of maintaining three different environments (a development environment, a

test environment and a production environment) as in the on-premises software development

model [31]. PaaS offers the same hosting environment for all stages and thus reduces the

deployment time.

2.3.2.3 Efficient Application Management

PaaS provides easy user interfaces for application start, stop and scaling. In additional to that, PaaS

can also provide auto-scalability, reliability and security, built-in integration with web services and

databases, and support for deep instrumentation of application (such as resource usage) and of user

21 | P a g e

activity [31]. These features make application management a lot easier and faster. However, not all

features are provided by all PaaS providers.

2.3.3 Example of Existing PaaS

In this section, we look at a notable example of existing PaaS – Cloud Foundry. It is an open-

source Platform-as-a-Service. Since its inception, maintaining openness and extensibility has been

a key design goal. It provides mechanisms to extend support for new programming languages and

frameworks, application services, underlying infrastructures [32].

By default, Cloud Foundry supports various programming languages (e.g. Java, JavaScript, Ruby,

Go, PHP, Python) as well as popular platforms and frameworks of those languages (e.g. Spring,

Node.js) [33]. It provides a mechanism called buildpack through which support for new

programming languages, frameworks can be added to the platform. Buildpacks for the supported

languages are provided out of the box. Custom buildpacks can be developed to add new

programming language support [34]. With regard to application development, Cloud Foundry is

minimalistic. However, IBM Bluemix – a PaaS based on Cloud Foundry – extends application

development support by providing boilerplate projects and codes for different types of applications

(e.g. web, mobile backend, IoT) [35], which developers can use to get started quickly.

With regard to application deployment, Cloud Foundry not only builds and prepares environment

for hosting applications, but also provides some common application services such as databases,

messaging service, application metrics, and application logging. In order to make provisioning of

these application services easy, Cloud Foundry supports a marketplace from where users can

choose and provision services for their applications [36]. This feature is also extensible. User

provided services can be integrated into the platform through service broker API [37].

22 | P a g e

With regard to application management, Cloud Foundry provides Command Line Interface called

CF CLI. Developers use it to build, test, deploy, scale and manage the applications. This tool is

used to maintain the entire life-cycle of applications. Plug-ins can be developed and added to

default CF CLI to support additional custom commands [38]. Cloud Foundry also provides a plug-

in for Eclipse IDE as an alternative to CF CLI [39]. With this Eclipse plug-in, developers can

provision applications (develop, deploy and manage) without leaving their development

environment.

In order to be independent of underlying infrastructure, Cloud Foundry provides an interface called

Cloud Provider Interface (CPI). It is a set of APIs that deployment tools of Cloud Foundry need to

implement for the targeted infrastructure [40]. By default, Cloud Foundry can be deployed on

OpenStack, AWS, vSphere/vCloud using a deployment tool named BOSH [41]. To deploy Cloud

Foundry on a new IaaS, a developer only needs to extend BOSH tool for that IaaS by

implementing Cloud Provider Interface.

2.4 Conferencing Substrates

This thesis follows a business model [1] from the state of the art, which proposes six roles:

Connectivity provider, broker, conferencing substrate providers, conferencing infrastructure

providers, conferencing platform providers and conferencing service providers. An important

concept in this business model is conferencing substrates which are defined as fine-grained

building blocks of conferencing. They can be virtualized and shared by multiple conferences for

resource efficiency purposes. Substrates can be atomic or composite. Examples of atomic

substrates are dial-out signaling, video mixer, floor control etc. Examples of composite substrates

include dial-out video conferencing and dial-in audio conferencing. Different kinds of conferences

23 | P a g e

can be created by composing different conferencing substrates on the fly. For example, a dial-in

signaling substrate and a video mixer substrate can be composed to create a dial-in video

conference.

Among the six roles of the business model followed, this thesis focuses on conferencing service

providers, conferencing platform providers and conferencing infrastructure providers. It is assumed

that the substrate provider plays the role of the conferencing infrastructure provider as well. It is

also assumed that conferencing infrastructure providers provide atomic conferencing substrates.

2.5 Conferencing Service Provisioning

A conferencing service offers conferencing that comprises of the mandatory conferencing

components (signaling and media) and may include optional components (e.g. floor control).

Examples of conferencing services include dial-in audio conference and dial-out video conference

with floor control. Contrary to this, an application where conferencing is an important part is

referred to as conferencing application. Examples of conferencing applications are massively

multi-player online games, distance learning applications etc. Third-party service providers can

provision and offer conferencing services which conferencing application developers can use in

their applications. Conferencing service provisioning entails the whole lifecycle of the service,

which consists of service development, deployment and management. Using a conferencing PaaS,

the service providers provision conferencing services and offer them as SaaS. Third-party

conferencing applications (e.g. game and distance learning) consume conferencing services offered

as SaaS.

In contrast, by using conventional PaaS, application developers can provision applications (e.g.

mobile back-end applications and web applications) and offer them as SaaS, which third-party

24 | P a g e

applications (e.g. game, web applications, mobile applications) can use. Thus, conferencing service

provisioning using a conferencing PaaS is analogous to application provisioning using a

conventional PaaS.

2.6 Chapter Summary

In this chapter we discussed the background concepts which are related to this thesis. First we

introduced the concept of Multi-party Multimedia conferencing, its key architectural components,

different types of conferencing and two key conferencing technologies. It was followed by a

discussion of Cloud Computing, its different definitions, benefits and three main service models.

Finally we discussed Platform-as-a-Service (PaaS), its capabilities and advantages and also two

existing PaaS Cloud Foundry and Google App Engine.

25 | P a g e

Chapter 3

3. Scenarios, Requirements and State of the Art Evaluation

This chapter includes four sections. In the first section, we discuss two motivating scenarios for a

conferencing PaaS that service providers use to provision conferencing services. In the second

section, we derive requirements on conferencing PaaS from these scenarios. Conference scaling is

an important feature of this PaaS. Therefore, we also derive a set of specific requirements on the

conference scaling algorithm. In the third section, we review and evaluate the state of the art based

on our set of requirements. Finally, we summarize the chapter.

3.1 Scenarios

The motivating scenarios that we present in this section cover all phases of conferencing service

provisioning. The phases are service development, deployment and management. Service

execution is part of the management. The first motivating scenario covers conferencing service

development and deployment. The second scenario relates to conferencing service execution and

shows how running services handle conference life-cycle, i.e., conference creating, starting, scaling

and stopping. Before describing the scenarios, we first present the involved actors.

3.1.1 Actors

Figure 3-1 illustrates the motivating scenarios. The actors in the scenarios are:

26 | P a g e

Figure 3-1: Conferencing Service Provisioning in the Cloud

1) Conferencing application developers: We consider developers of three conferencing

applications – (i) a game using dial-in audio conferencing, (ii) a distance learning program

using dial-out audio conferencing, and (iii) a plain conferencing application offering dial-

out video conference with floor control.

2) Conferencing service providers: They provision conferencing services and offer them as

SaaS to conferencing application developers. Service providers are assumed to have

programming expertise. They are also knowledgeable about the high-level aspects of

conferencing such as different kinds of conference models (e.g. dial-in, dial-out, and ad-

hoc), media (e.g. audio, video, and text), conferencing technologies (e.g. SIP-based and

WebRTC) and conference control (e.g. floor control and policy control). However, the

service provider may not be an expert in complex details of conferencing protocols.

27 | P a g e

We consider two service providers. One provider offers conferencing service A that

supports both dial-in and dial-out audio conferences. The distance learning and the game

applications consume service A. The other provider offers dial-out video conference with

floor control (service B), used by the plain conferencing application.

3) Conferencing PaaS providers: They offer conferencing PaaS to service providers for easy

conferencing service provisioning. In the motivating scenarios, only one conferencing

PaaS, offered by a PaaS provider, is considered.

4) Conferencing IaaS providers: We have reused a business model for cloud-based

conferencing from the state of the art [1]. It relies on Conferencing IaaS that, instead of

virtual machines, provides fine-grained, sharable and virtualized conferencing building

blocks named substrates (e.g. dial-in signaling, audio mixer, floor control). The

conferencing PaaS can provision these conferencing substrates to create new conferences.

In this scenario, we assume that the conferencing PaaS has prior knowledge of the existing

conferencing IaaSs and their offered substrates.

We consider three conferencing IaaS providers. The first IaaS provides dial-in signaling

and dial-out signaling substrates. The second IaaS offers audio mixer and video mixer

substrates. The last IaaS provides floor control substrate.

3.1.2 Conferencing Service Development and Deployment Scenario

In this scenario, we consider the development and deployment of conferencing service A that

supports both dial-in audio and dial-out audio conferencing. We assume that service A targets only

WebRTC-based end-points.

28 | P a g e

The conferencing PaaS facilitates conferencing service provisioning by providing high-level

interfaces, including a set of abstract conferencing service development APIs that service providers

can use while writing code. An API may require one or more parameters. For example, create

conference API requires several parameters such as conference model, media, conferencing

technology that the target end-points support and whether the application needs conference control.

Figure 3-2 depicts the scenario of conferencing service development and deployment. In this

scenario, while developing the conferencing service A, the service provider uses high-level create

conference API in the code to handle requests from the service consumers to create new

conferences. Necessary API parameters including media audio, and conferencing technology

WebRTC are also passed. Regarding the parameter conference model, dial-in and dial-out are

passed to the API when the service receives requests from the game and the distance learning

applications, respectively. The API invocation with appropriate values of parameters happen

during execution, which will be discussed in the next scenario.

Conferencing Service
Provider

Conferencing PaaS

Develop conferencing service A using conferencing
Service Development APIs (e.g., createConference).

Provide conferencing Service Development APIs

Deploy conferencing service A

Figure 3-2: Conferencing Service Development and Deployment Scenario

29 | P a g e

After the service provider finishes developing the conferencing service, another high-level

interface, such as a GUI provided by the conferencing PaaS, is used to deploy and to start the

service in the PaaS.

3.1.3 Conferencing Service Execution Scenario

Figure 3-3 depicts the scenario of conferencing service execution. In this scenario, we assume that

the conferencing service A is running in the conferencing PaaS. Consider that the conferencing

service receives from the game application a request to create a new conference. In order to handle

such requests, the service provider has already used in the code the create conference API

provided by the conferencing PaaS. Therefore, that API is invoked during runtime. Conferencing

PaaS, in response to this API invocation, creates a new dial-in audio conference by using necessary

substrates offered by conferencing IaaSs. In this scenario, it provisions dial-in substrate from the

first conferencing IaaS and audio mixer substrate from the second IaaS.

30 | P a g e

Conferencing
IaaS 1

Conferencing
IaaS 2

create conference
(dial-in, audio)

Conferencing
PaaS

Game
App

Conferencing
Service A

executed in PaaS

API.createConference({

 model: dial-in,

 media: audio,

 technology: WebRTC,

 ...

});

allocate dial-in signaling substrate

allocate audio mixer substrate

create conference on the allocated substrate

create conference on the allocated substrate

scale created conference as necessary

scale created conference as necessary

Conference starts,
participants join and leave during the conference ...

Figure 3-3: Conferencing Service Execution Scenario

The conference gets started at the scheduled time. During the conference, as more participants

(game players) join the conference (the game), PaaS needs to scale up the conference to

accommodate more participants. In a similar manner, as participants leave the conference, PaaS

scales down the conference to minimize cost. This helps maintain the pay-per-use principle of

Cloud Computing. However, elastic conference scaling requires an algorithm that conferencing

PaaS performs to scale the conference up or down during runtime. Conferencing PaaS uses the

algorithm to determine when to scale and the new conference size.

31 | P a g e

3.2 Requirements

In this section, we first present the general requirements on the conferencing PaaS. Then we

discuss the specific requirements on conference scaling algorithm.

3.2.1 Requirements on the Conferencing PaaS

The following four requirements on the conferencing PaaS are derived from the motivating

scenarios described in section 3.1. The first requirement is derived from the conferencing service

development and deployment scenario. The last three are derived from the conferencing service

execution scenario.

1) High-level Interfaces for Service Providers: The conferencing PaaS interfaces should

enable the service providers to provision new services without having to deal with the complexities

of conferencing components and their interactions. The interfaces should also be flexible enough

for creating complex and novel conferencing services (e.g. a dial-in video conference with five

minutes of chat per hour). This requirement is discussed in [42] for conferencing application

providers.

2) Composition of Conferences from Substrates: When a conferencing service receives a

request to create a new conference, the PaaS should determine necessary substrates, select

appropriate conferencing IaaSs providing those substrates and then compose the requested

conference from the selected substrates. This requirement is discussed in [43] for application layer

instead of platform layer.

3) Elastic Scalability: The conferencing PaaS, in collaboration with the conferencing IaaSs,

should scale the ongoing conferences in response to the fluctuating number of participants. This

32 | P a g e

allows the PaaS to gain cost efficiency and to follow the pay-per-use principle. This requirement is

discussed in [43] and [44]. The conferencing PaaS should be able to scale as much as required by

the most demanding conferencing application. For example, massively multi-player online games

are one of the most demanding applications with hundreds of thousands participants [45].

4) Quality of Service: Meeting Quality of Service (QoS) requirements, such as latency, jitter

and throughput, is critical as conferencing services are real-time. This thesis focuses on the latency

of operations performed during a conference (e.g. participant joining and setting floor chair). This

requirement is discussed in [46], [47] and [48].

3.2.2 Requirements on the Conference Scaling Algorithm

In the business model [1] that we reuse in this thesis, the abstraction level of services offered by

conferencing IaaS is substrate – which is an abstraction level higher than virtual machine. So

instead of CPU or memory, the conferencing PaaS uses conference size (maximum number of

participants) as the parameter for scaling conferences. For example, to scale up a conference, the

PaaS increases the conference size unlike conventional PaaS which increases CPU and/or memory.

When the conferencing PaaS scales an ongoing conference, it specifies the new conference size.

Now an important factor in scaling is whether participants are likely to join or leave or stay in

conference, in other words, the number of participants in near future. In this thesis, we assume that

a prediction model is given as input to the conference scaling algorithm. This model predicts the

number of participants in conference for future time instances. Depending on the quantity of

predicted number of participants’ increase or decrease in near future, the most appropriate time

instances to scale need to be determined.

33 | P a g e

The first requirement is that the conference scaling algorithm should be able to determine the

future time instances of scaling as well as the corresponding conference sizes. The corresponding

conference sizes depend on predicted number of participants. Conferencing PaaS executes the

algorithm and uses the obtained information to scale the conferences.

Conferencing IaaSs, upon receiving scaling requests from the PaaS, scale the substrates. This may

require horizontal or vertical scaling of its internal resources which takes some time. So there is a

delay between receipt of scaling request and its actual realization. The second requirement is that

conference scaling algorithm should take into account this constraint of delay.

The third requirement is that the conference scaling algorithm should maximize resource efficiency

by minimizing over-provisioning in terms of number of participants. This means the algorithm

should minimize the difference between number of participants that the running conference can

support and the number of participants that we may have in the conference. This resource

efficiency results into cost optimization.

The fourth requirement is that the conference scaling algorithm should have a response time

acceptable by the application which is using the conferencing service. This means the algorithm

should be efficient in order for the conferencing PaaS to scale the ongoing conferences in a timely

manner. The runtime complexity of the algorithm directly corresponds to processing time needed

by PaaS to perform the algorithm. Since conferencing applications are real-time, the processing

time should be in milliseconds, i.e. less than a second.

34 | P a g e

3.3 State of the Art Evaluation

In this section, we review and evaluate the state of the art for a conferencing PaaS. We divide the

state of the art into three sub-sections. The first sub-section reviews the existing architectures

related to cloud-based conferencing. The second sub-section discusses existing PaaS solutions. The

third sub-section reviews the existing algorithms to scale conference in a cloud environment

3.3.1 Cloud-based Conferencing Architectures

In this section we first review systems or architectures for cloud-based conferencing proposed in

the literature. Then we review some representative commercial cloud-based conferencing

solutions.

3.3.1.1 Cloud-based Conferencing Architectures in Literature

Reference [43] discusses feasibility of cloud-based conferencing and proposes a high-level

framework for that. It divides the proposed cloud-based conferencing system into four layers:

physics, virtualization, platform and application layers. Platform layer consumes virtualized

resources (computing, storage and networking) from IaaS only to host services. The framework

presented in the paper follows principles of Service Oriented Architecture (SOA). The SOA layers

span across PaaS and SaaS which is depicted figure 3-4:

35 | P a g e

Figure 3-4: SOA Layers of Cloud Conferencing [43]

In figure 3-4, conferencing services and their composition process are handled in the application

layer. However, when we evaluate it against our requirements on conferencing PaaS, high-level

interfaces for the conferencing service providers are not provided. It claims benefit of scalability,

but does not discuss how this can be achieved for conferencing services. It also does not provide

any experimental data on QoS for cloud-based conferencing system.

Reference [42] presents an approach for providing video conference as web service and names

their implemented system Nuve. It proposes a set of a high-level SaaS interfaces (REST APIs)

offered by conferencing service providers. Third-party conferencing applications can consume

these SaaS in order for their users to join virtual conference rooms and collaborate with audio,

video, etc. It also proposes a REST architecture which is depicted in figure 3-5.

36 | P a g e

Figure 3-5: REST Architecture of Nuve [42]

However, it does not address how conferencing service providers could provision these SaaS. In

other words, it does not provide high-level interfaces for conferencing service providers. Neither

does it discuss conference composition, elastic scalability and QoS.

Reference [44] presents an architecture of virtualized infrastructure for cloud-based conferencing.

Figure 3-6 depicts the infrastructure architecture proposed in [44]. It follows the same business

model [1] that we reuse in this thesis. The infrastructure depends on fine-grained sharable

virtualized conferencing substrates (e.g. dial-in signaling, video mixer), which can scale elastically.

It also proposes PaaS/IaaS interfaces rooted in substrates. These characteristics make the

infrastructure suitable for use by a conferencing PaaS. However, the PaaS-level issues including

37 | P a g e

the interfaces for service providers and the composition of conference substrates are not taken into

account. Neither do they provide QoS measurements for conference runtime operations.

Figure 3-6: Architecture of conferencing IaaS [44]

Reference [46] advocates that video conference be delivered as a cloud service. In order for the

video conference cloud service providers to utilize the inter-datacenter network in an efficient way,

it proposes a new application layer protocol named Airlift. Its objective is maximizing total

throughput in the inter-datacenter network across all conferences while meeting end-to-end delay

constraints. The problem it deals with is related to a particular QoS parameter, namely throughput.

However, the other important requirements of conferencing service provisioning including high-

level interfaces for service providers, conference composition and elastic scalability are not

addressed.

38 | P a g e

Reference [47] proposes a cloud-based transcoding framework to achieve scalable and efficient

video adaptation for mobile devices. It introduces a prediction-based scheduling algorithm to

optimize both latency requirement and cloud utility cost for mobile clients. It focuses on scalability

and QoS issues for a particular conferencing substrate, namely media transcoder. However, it does

not address high-level interfaces for conferencing service providers and conference composition.

Reference [48] presents a cloud-based media mixer which performs mixing in a distributed way

over the network compared to single node Multipoint Control Unit (MCU) used by traditional

multi-party conferencing. It proposes heuristic algorithms for optimizing the virtual mixer

topology that is adapted to the particular set of clients and servers available in the cloud. Similar to

[46], its focus is related to a particular QoS parameter, namely delay between end-points.

Nonetheless, conferencing service provisioning issues including high-level interfaces for service

providers, conference composition and elastic scalability are not discussed.

3.3.1.2 Cloud-based Conferencing Products in the Market

Vidyo provides a software platform and development environment named VidyoWorks™ [49],

which conferencing service providers can use. For service development, it provides development

SDK as well as APIs. However, for deployment and management, it does not provide any high-

level interface. Rather the service providers themselves have to deploy and manage the

conferencing services. Vidyo does not set any limit on the number of participants in a conference.

But elastic scalability is not included in its list of capabilities [50]. Measurements for QoS are not

publicly available, either.

Cisco WebEx Meetings and other conferencing products [51] are offered as Software-as-a-Service

(SaaS). These conferencing services benefit from Cisco's proprietary infrastructure named Cisco

39 | P a g e

WebEx Cloud. However, information is not available as to how the offered conferencing services

are provisioned. WebEx family of products are claimed to be scalable but they support a

maximum of 1000 participants [52] in a conference.

Blue Jeans [53] is a video conferencing service offered as SaaS. Information is not publicly

available as to how Blue Jeans, the service provider, provisions the video conferencing service.

QoS measurements for its offered service is also unavailable. In spite of its claim to be cloud-

based, it supports a maximum of only 100 conference participants [54] and does not meet the

requirement of elastic scalability.

3.3.2 PaaS Solutions

In this section, we review some widely used open-source as well as commercial Platform-as-a-

Service solutions. Review of each PaaS solution is followed by evaluation against our set of

requirements on conferencing PaaS.

Aneka [55] is a Platform-as-a-Service for provisioning scalable distributed applications that are

developed using .NET framework. It can provision Windows based machines from both private

and public infrastructure providers. But it is portable over different platforms and operating

systems. For application development, Aneka provides Software Development Kit (SDK) and a

rich set of APIs for expressing the business logic of distributed applications using the preferred

programming abstractions (e.g. task, thread, MapReduce job). For application deployment and

management, it provides necessary tools. However, the interfaces are not suitable for conferencing

service provisioning. Aneka can scale distributed applications in an elastic manner. Therefore,

conferencing services cannot be scaled elastically using Aneka. Its architecture does not address

conference composition from substrates and conferencing QoS.

40 | P a g e

Cloud Foundry [32] is one of the most popular open-source Platform-as-a-Service. It has gathered

support from many big companies such as EMC, HP, IBM, Intel, Pivotal, SAP, VMware as well as

40 other organizations. Its architecture is open and extensible, making it possible to integrate

support for new programming frameworks, application services and underlying IaaS. It does not

provide high-level interfaces for provisioning conferencing services. Neither does it address

conference composition and QoS. It supports scaling of application instances but does not address

elastic scaling of conferences.

Notable examples of commercial PaaS solutions are Google App Engine [56], Heroku [57], AWS

Elastic Beanstalk [58], Salesforce.com's App Cloud [59], Red Hat's OpenShift Enterprise [60],

Pivotal CF [61], IBM Bluemix [62], etc. None of these PaaS supports conferencing service

provisioning. Therefore, they also do not address conference composition and conferencing QoS

requirements. They provide scaling of only application instances and do not support conference

scaling.

Table 3-1 summarizes the evaluation of existing works related to conferencing PaaS. The column

value “Not addressed’ means the related work does not deal with the requirement whereas “No”

means the related work deals with the requirement but does not meet it. “Yes” means the

requirement is fully satisfied by the related work. “Partially satisfied” indicates that the related

work deals with and satisfies only parts of the whole requirement.

41 | P a g e

Requirements

Related

work

High-level

interfaces

Composition of

conferences from

substrates

Elastic

scalability of

conferences

Quality of

Service

C
lo

u
d

-b
as

ed
 C

o
n
fe

re
n
ci

n
g
 A

rc
h
it

ec
tu

re
s

[43] No No Not addressed
Not

addressed

[42] No Not addressed Not addressed
Not

addressed

[44] Not addressed Not addressed Yes
Not

addressed

[46] Not addressed Not addressed Not addressed
Partially

satisfied

[47] Not addressed Not addressed
Partially

satisfied

Partially

satisfied

[48] Not addressed Not addressed Not addressed
Partially

satisfied

[49]
Partially

satisfied
Not addressed No

Not

addressed

[51] Not addressed Not addressed No
Not

addressed

[53] Not addressed Not addressed No
Not

addressed

P
aa

S

S
o
lu

ti
o
n
s [55] No Not addressed No

Not

addressed

[32] No Not addressed No
Not

addressed

Table 3-1: Summary of Evaluation of the Related Works for Conferencing PaaS

42 | P a g e

3.3.3 Conference Scaling Algorithms

In this section, we review the existing works in literature that tackle the problem of elastic resource

provisioning for scalable multi-party multimedia conferencing. The existing works vary in

granularity of elasticity. Some of the existing works have coarse-grained elasticity (e.g. virtual

machine instance, application instance) while the others have fine-grained elasticity (e.g. CPU

instance, memory, storage).

Conferencing is an important part of Massively Multiplayer Online Games (MMOGs). Reference

[63] presents a cloud-based dynamic resource provisioning middleware named CloudDReAM

(Dynamic Resource Allocation Middleware) targeting MMOGs. The game developer first defines

the most important load metrics (e.g. CPU or bandwidth usage) as well as their underloaded and

overloaded threshold values. CloudDReAM continuously monitors those load metrics. Resource

scaling is triggered when a threshold value is reached. The authors also propose two algorithms for

resource scaling - each corresponding to a load event (underloaded or overloaded). Based on the

detected load event, CloudDReAM performs one of the two algorithms which initiates load

balancing and subsequently virtual machines are added to or removed from the system. When

evaluated against the requirements on conference scaling algorithm, the granularity of scaling in

CloudDReAM (virtual machine) is different from our target granularity (number of players that a

game can support which is analogous to conference size). The two algorithms proposed do not take

VM instantiation time into account. So it does not satisfy our first and second requirements on

conference scaling algorithm. The remaining requirements also are not addressed.

Reference [64] proposes an elastic resource scaling scheme called PRedictive Elastic reSource

Scaling (PRESS). The objective is to minimize waste of resources in order to optimize resource

43 | P a g e

provisioning costs without violating service level objectives (SLOs). It does not assume advanced

application profiling, model calibration or deep understanding of the application; rather it monitors

usage of resources (CPU, memory, bandwidth). Based on the observed resource usage, it predicts

future resource demand and scale accordingly. Two complementary resource demand prediction

techniques are also proposed. When compared with the requirements on conference scaling

algorithm, the granularity for resource scaling (e.g CPU, memory) does not match with our desired

granularity (conference size). Resource provisioning delay also is not considered. It therefore does

not satisfy the first and second requirements. It maximizes resource efficiency by minimizing

waste of resources but the granularity considered (CPU, memory) does not match with ours

(conference size). So the third constraint is only partially satisfied. The authors show good

response time for their proposed approach of elastic resource scaling.

Reference [65] presents a system called CloudScale that can automate fine-grained elastic resource

scaling for multi-tenant cloud infrastructures. It addresses two key problems in prediction-driven

dynamic resource scaling. The first problem is under- and over-estimation errors. It provides two

complementary under-estimation error handling schemes, namely online adaptive padding and

reactive error correction. The second problem is that scaling up can lead to conflicts among

resource demand of applications that are co-located on the same host. Because the sum of

resources required by co-located applications can exceed the maximum that a host can provide. In

order to resolve the second problem, it uses a conflict prediction model to estimate when the

conflict will happen, how serious the conflict will be (conflict degree) and how long the conflict

will last (conflict duration). It proposes two techniques – one is handling the conflict locally by

mitigating SLO violations and the other is predictive VM migration. The first technique is used

44 | P a g e

when conflict degree is small and duration is short. Otherwise expensive VM migration is

performed to avoid the conflict.

When it is evaluated against the requirements on conference scaling algorithm, granularity of

elasticity considered in the paper does not match with our desired one. It also does not consider the

resource provisioning delay in the proposed schemes. Thus it does not meet the first and second

requirements on conference scaling algorithm. It attempts to achieve resource efficiency by

minimizing waste of resources, though on a different granularity. So the third requirement is only

partially satisfied. The proposed schemes and techniques show good response time which satisfies

our fourth requirement.

Reference [66] proposes a lightweight scaling (LS) algorithm to provision resources for

applications in an elastic way. It targets transaction-based multitier applications where QoS can be

assessed based on the application's response time to each incoming request. The algorithm is given

the upper and lower bounds of the required response time of an application. When the observed

response time is greater than the upper bound, it performs Lightweight Scaling Up (LSU)

algorithm. On the contrary, when it detects response time smaller than the lower bound, it performs

Lightweight Scaling Down (LSD) algorithm. The LSU algorithm first tries self-healing scaling

which is removing an idle resource from one VM and allocating it to an overloaded VM on the

same physical machine. Then it performs resource-level scaling which is allocating resources

(CPU, memory) available on a physical machine to an overloaded VM to scale it up. If the

required range of response time cannot be achieved through self-healing scaling and resource-level

scaling, then the algorithm performs VM-level scaling. On the other hand, the Lightweight Scaling

Down (LSD) algorithm first attempts VM-level scaling down, then performs resource-level scaling

down. Thus the algorithm incorporates fine-grained (resource-level e.g. CPU, memory etc.) as well

45 | P a g e

as coarse-grained (VM-level) approaches in order to achieve elastic resource scaling. However, it

takes a completely reactive approach.

Because of the difference in granularity of elasticity, it does not meet the first requirement on

conference scaling algorithm. The second requirement also is not satisfied as the proposed

algorithm does not take resource provisioning delay into account. The algorithm aims at achieving

resource efficiency by allocating just enough resources to meet the target range of response time;

but scaling is done using a different granularity. So it partially meets the third requirement. The

authors provide experimental results proving the algorithm’s acceptable response time. So the

fourth requirement is satisfied.

Table 3-2 summarizes evaluation of related works for conferencing scaling algorithm. The

meaning of column values “Yes”, “No”, “Not Addressed”, “Partially Satisfied” are the same as in

table 3-1. Based on our review of the state of the art for both conferencing PaaS and conference

scaling algorithm, to the best of our knowledge, there is no conferencing PaaS that fulfills our

requirements completely. In addition to that, there is no conference scaling algorithm that satisfies

the requirements. Some of the works cover part of our requirements but none of them meet all the

requirements completely.

Requirements

Related

work

Time instances

of scaling and

corresponding

conference size

Scaling delay

Minimization

of waste of

resources in

terms of

number of

participants

Response Time

[63] No No Not addressed Not addressed

[64] No No Partially Yes

46 | P a g e

satisfied

[65] No No
Partially

satisfied
Yes

[66] No No
Partially

satisfied
Yes

Table 3-2: Summary of Evaluation of Related Works for Conferencing Scaling Algorithm

3.4 Chapter Summary

In this chapter, we presented two motivating scenarios for conferencing PaaS. Then we derived the

set of requirements based on the scenarios presented. We divided the requirements into two

groups: requirements on conferencing PaaS and requirements on conference scaling algorithm.

Next we reviewed and evaluated the state of the art based on the requirements. Finally we come to

the conclusion that none of the existing works evaluated in the state of the art meets all of the

requirements completely.

47 | P a g e

Chapter 4

4. Proposed Architecture

In the previous chapter, we derived a set of requirements on a conferencing PaaS. In this chapter,

we propose architecture for a conferencing PaaS based on the requirements. We start by explaining

the overall architecture. Next, to help conferencing service providers develop different types of

conferencing services easily, we propose a set of conferencing Service Development APIs. Then,

for a conferencing service, we describe illustrative scenarios of service development, deployment

and execution. Next, we discuss how the requirements are met by the architecture. Finally, we

summarize this chapter.

4.1 Overall Architecture

In this section, we first discuss the architectural principles that we follow to design the proposed

architecture for a conferencing PaaS. Then we describe the architectural components.

4.1.1 Architectural Principles

The first architectural principle is related to composition of conferencing substrates, which are

sharable, virtualized and fine-grained building blocks of conferencing. Two widely used

compositional approaches are orchestration and choreography [67]. The former is a centralized

approach, allowing a central entity to control the component services and their interactions. In

contrast, the latter allows the component services to collaborate in a decentralized manner. The

first principle of our architecture is to adopt the orchestration approach for the substrate

composition because it provides PaaS with a greater control on the substrates and their interactions.

48 | P a g e

This helps in provisioning complex conferencing services, for example, dial-in audio conference

with text-chat for five minutes per hour.

The second principle is to use high-level PaaS/IaaS interfaces rooted in substrates. It contributes to

easy conference composition from substrates. This principle also enables PaaS to request IaaSs for

scaling conferences in terms of conference size, instead of VM resources. Scaling by PaaS in terms

of conference size allows IaaSs, which manage the VMs hosting substrates, to make decisions

about necessary VM resource allocation in response to changed conference size. In addition, it

helps PaaS to bill in terms of conference size, which is more intuitive than VM for the service

providers.

The third principle is to extend the existing PaaS architectures such as Aneka [55] and Cloud

Foundry [32]. This allows us to reuse the existing PaaS for the conferencing PaaS implementation.

4.1.2 Architectural Components

The proposed architecture consists of a repository and five components, as shown in figure 4-1.

These components deal with three key facets: (i) Conferencing services, (ii) conferences and (iii)

substrate information.

49 | P a g e

Figure 4-1: Overall Architecture of Conferencing PaaS

1) Components Related to Conferencing Services:

This facet includes service development, deployment and management. Conferencing PaaS

GUIs and APIs component extends application provisioning front-end of regular PaaS

architectures by providing a set of conferencing Service Development APIs. Management

(Services and PaaS) and Service Hosting and Execution components are reused from

conventional PaaS architectures.

50 | P a g e

Conferencing PaaS GUIs and APIs component provides tools for the conferencing service

providers. For easy development, service providers use high-level Service Development

APIs (discussed in section 4.2), which is novel in this architecture. They also use GUI for

service deployment and management, such as starting, updating and stopping services.

Management (Services and PaaS) component manages the conferencing services and

monitors their QoS and SLAs. Service Hosting and Execution component hosts the

conferencing services. It allocates necessary PaaS resources (e.g. server runtime and

database drivers) and prepares execution environment before hosting.

Management (Services and PaaS) component receives request from the conferencing PaaS

GUI for service deployment and management. It deploys and executes services in Service

Hosting and Execution component and manages them during execution.

2) Components Related to Conferences:

This facet concerns conference composition and management of created conferences

including elastic scaling. Conference Orchestration and Management component creates

and manages conferences. More explicitly, it performs the following five tasks:

i) It determines the necessary substrate types and their associated requirements by

using, for instance, syntactic matching with the categorized API parameters (discussed in

section 4.2).

ii) Given the requirements of a substrate, it selects the most suitable conferencing IaaS,

by using an algorithm. Existing algorithms for cloud service selection, which has been

formulated as a multi-criteria decision problem [68], can be reused in this context. Service

51 | P a g e

selection approaches and algorithms from the state of the art consider various factors, such

as cost [69][70] and multiple QoS constraints [71]. Some existing works also consider

service composition aspect, for example, transactional properties and QoS characteristics

[72], reliability [73] and SLAs [74] of composite service.

iii) It orchestrates conferences from substrates and executes them. Note that

conferences are executed in this component. In contrast, the conferencing services that

create conferences are executed in the Service Hosting and Execution component. We

assume that conferencing IaaSs expose substrates as RESTful web services as in [44].

Therefore, existing approaches and techniques [75] for RESTful web service orchestration

can be reused. This component uses dynamic binding instead of static because

conferencing PaaS selects the most suitable substrates on the fly.

iv) It manages the composed conferences. For example, it can add or remove video

from a conference.

v) It monitors the current size of each running conference to make decisions about

scaling. If needed, it requests conferencing IaaSs to scale in terms of conference size.

However, this decision-making process requires new conference scaling algorithms.

Conferencing IaaS Handler component handles all communications between the

conferencing PaaS and the conferencing IaaSs. It realizes the high-level conferencing

PaaS/IaaS interfaces proposed in [44], which is reused in this work.

Conference Orchestration and Management component receives requests from

conferencing services, which are running in Service Hosting and Execution component.

Based on the requests received (e.g. create a conference and stop a conference), it takes

52 | P a g e

actions and communicates with IaaSs via Conferencing IaaS Handler. Note that

Conference Orchestration and Management is a novel component while Conferencing IaaS

Handler is an extension of IaaS communication component in conventional PaaS

architectures.

3) Components Related to Substrate Information:

To select the best conferencing IaaS for a given substrate, PaaS needs certain information

about that substrate, such as substrate type, price, SLA and QoS. Conferencing PaaS

provider uses a GUI in Conferencing PaaS GUIs and APIs component to manage (e.g. add,

remove, update) such information of the substrates. The information is stored in the

Substrate Information Repository.

4.2 Conferencing Service Development APIs

In order to facilitate conferencing service development by the service providers, Conferencing

PaaS GUIs and APIs component include Service Development APIs. In this section, the proposed

development APIs are discussed.

Three principles are followed to design the proposed APIs. The first principle is leveraging basic

conferencing concepts (e.g. conference, participant, media and floor) in the API design. This helps

in achieving an abstraction level higher than conferencing components (e.g. signaling, media mixer

and media transcoder) and their complex interactions. The second principle is categorizing API

parameters, which helps service providers to easily understand a conference’s mandatory and

optional aspects, required API parameters for each aspect and dependencies among parameters.

53 | P a g e

The third principle is the use of RESTful design. It is standard-based, lightweight and flexible for

data representation. It also allows to describe the APIs in a generic way.

Using the first principle, we determine the necessary data-set for RESTful API design. The data-set

includes conference, participant, media (e.g. audio, video and text), floor and subconference

(conference within a conference). The REST resources and their hierarchy can be easily derived

then. The top level REST resource, which the service providers deal with, is list of conferences.

Each individual conference resource has several subordinate resources such as list of participants,

list of media, list of floor and list of subconferences.

Table 4-1 delineates the proposed APIs. It shows the REST resources along with the operations for

each. The request parameters and the response contents are also listed.

REST

Resource
Operation

HTTP action and

resource URI

Request body

parameters

Most

important

info in

response

List of

Conferences

Create

conference
POST: /conferences

Conference model,

media,

floor control,

technology,

conference size,

QoS requirements,

etc.

ID and URI of

created

conference

Read IDs of all

running

conferences

GET:/conferences None

List of

conference IDs

and URIs

Conference

Read info of a

conference

GET:/conferences/

{conferenceId}
None

Conference

description and

status

Terminate a

conference

DELETE:/conferences/

{conferenceId}
None

Success or

failure

indication

List of

participants

Add a

participant

POST:/conferences/

{conferenceId}/participa

nts

Participant

description: name,

URI

ID and URI of

new participant

54 | P a g e

Read: IDs of

all participants

in a conference

GET:/conferences/

{conferenceId}/participa

nts

None

List of

participant IDs

and URIs

Participant

Remove

participant

from a

conference

DELETE:/conferences/

{conferenceId}/participa

nts/ {participantId}

None

Success or

failure

indication

Read

description and

status of a

conference

participant

GET:/conferences/

{conferenceId}/

participants/{participant

Id}

None

Participant

status (joined

or not), name,

URI

List of media

Add a new

media later to a

conference

(e.g. going

from audio to

video

conference)

POST:/conferences/

{conferenceId}/ media

Description of

media (e.g. frame

rate, resolution, bit

rate, codec, latency

requirement)

ID and URI of

new media

Get all media

used in a

conference

(e.g. video

conference has

2 media- audio

and video)

GET:/conferences/

{conferenceId}/ media
None

List of IDs and

URIs of media

used. These

subordinate

resources are

automatically

created when a

conference is

first

instantiated.

Media

Remove media

from a

conference

(e.g. going

from video to

audio

conference)

DELETE:/conferences/

{conferenceId}/media/

{mediaId}

None

Success or

failure

indication

Read info of a

specific media

used in a

conference

GET:/conferences/

{conferenceId}/media/

{mediaId}

None

Description of

media (e.g.

frame rate,

resolution, bit

rate)

List of floors Add a floor
POST:/conferences/

{conferenceId}/floors

Floor description:

chair, floor

participants

ID and URI of

new floor

added

55 | P a g e

Read IDs of all

floors in the

conference

GET:/conferences/

{conferenceId} /floors
None

List of floor

IDs and URIs

Floor

Remove a floor

DELETE:/conferences/

{conferenceId}/ floors/

{floorId}

None

Success or

failure

indication

Read info of a

conference

floor

GET:/conferences/

{conferenceId}/ floors/

{floodId}

None

Floor

description:

chair, floor

participants,

floor requests

List of floor

chairs

Add a new

floor chair

POST:/conferences/

{conferenceId}/floors/{f

loorId} /floorChairs

Floor chair

description: name,

URI

ID and URI of

new floor chair

Read IDs of

floor chairs

GET:/conferences/

{conferenceId}/ floors/

{floorId}/ floorChairs

None

IDs and URIs

of existing

floor chairs

Floor chair
Remove a floor

chair

DELETE:/conferences/

{conferenceId}/floors/{f

loorId}

/floorChairs/{floorChair

Id}

None

Success or

failure

indication

List of floor

participants

Add a

participant to a

floor

POST:/conferences/

{conferenceId}/floors/{f

loodId}

/floorParticipants

Description of

floor participant:

name, URI

ID and URI of

new floor

participant

Read IDs of all

floor

participants

GET:/conferences/

{conferenceId}/floors

/{floodId}

/floorParticipants

None

List of floor

participant IDs

and URIs

Floor

participant

Remove

participant

from a floor

DELETE:/conferences/

{conferenceId}/floors

/{floodId}

/floorParticipants

/{floorParticipantId}

None

Success or

failure

indication

List of floor

requests

Make a floor

request

POST:/conferences/

{conferenceId}/floors

/{floodId}

/floorRequests/

Description of floor

request:

ID of floor

participant who

requested floor,

timestamp of

request

ID and URI of

new floor

request

Read IDs of

floor requests

not handled yet

GET:/conferences/

{conferenceId}/floors

/{floodId}

/floorRequests/

None

List of floor

request IDs

and URIs

56 | P a g e

Floor request

Grant floor

PUT:/conferences/

{conferenceId}/floors

/{floodId}

/floorRequests

/{floorRequestId}

Status: granted

Success or

failure

indication

Deny floor

DELETE:/conferences/

{conferenceId}/floors/{f

loodId}

/floorRequests/{floorRe

questId}

None

Success or

failure

indication

List of

subconferences

Create a

subconference

POST:/conferences

/{conferenceId}

/subconferences

List of participant

IDs to add to the

subconference

ID and URI of

subconference

Read IDs of all

existing

subconferences

GET:/conferences

/{conferenceId}

/subconferences

None

List of sub-

conference IDs

and URIs

Subconference

Read

information of

a

subconference

GET:/conferences

/{conferenceId}

/subconferences

/{subconferenceId}

None

List of

participants in

the sub-

conference,

creation time

etc.

Remove

subconference

DELETE: /conferences

/{conferenceId}

/subconferences

/{subconferenceId}

None

Success or

failure

indication

Add a

participant

PUT:/conferences

/{conferenceId}

/subconferences

/{subconferenceId}

/participants

/{participantId}

None

Success or

failure

indication

Remove a

participant

DELETE:/conferences

/{conferenceId}

/subconferences

/{subconferenceId}

/participants

/{participantId}

None

Success or

failure

indication

Table 4-1: Conferencing Service Development APIs

The categorization of API parameters is shown in table 4-2. This table highlights that, to create a

conference, the service providers must choose and specify the mandatory conferencing aspects -

57 | P a g e

one of the three conference models, at least one media and the conferencing technology. It also

shows the conditional dependencies of parameters. For example, for WebRTC-based conferencing,

signaling protocol must be specified, as WebRTC standard does not mandate any particular

signaling protocol [76].

Categories of

Parameters
Example Values

Mandatory

Aspects

Conference

Model

Pre-

arranged

conference

Dial-in conference

Dial-out conference

Ad-hoc conference

Media At least one of audio, video and text

Conferencing

Technology

SIP-based

Signaling

protocol

SIP by default. No need to

specify.

Audio

encodings

No mandatory encodings. So,

must specify.

Video

encodings

No mandatory encodings. So,

must specify.

WebRTC-

based

Signaling

protocol

No mandatory protocol. So, must

specify.

Audio

encodings

Mandatory: G.711 and Opus. Can

specify additional.

Video

encodings

Mandatory: H.264 and VP8. Can

specify additional.

Hybrid

(SIP-based

+

WebRTC-

based)

Mandatory protocols and encodings from both

technologies apply. Can specify additional.

Optional

Aspects

Floor control
At least one floor control policy, e.g. chair-moderated and round-

robin.

Subconference Enabled or not

Table 4-2: Categorization of API Parameters

The parameters that the service providers can change during runtime are italicized. For example,

the service provider can add instant messaging to an audio conference or can remove video from

an audio/video conference. However, the conference must have at least one media. A special case

58 | P a g e

is conferencing technology where it is possible only to upgrade from SIP-based or WebRTC-based

conferencing to hybrid conferencing.

4.3 Illustrative Scenario

The illustrative scenario consists of several actors. The first actor is a game application where

players can talk anytime but can have private text chat for only 5 minutes per hour. The second

actor is a service provider offering dial-in audio conferencing service with text chat available only

for a certain period of time. The third actor is the conferencing PaaS that subscribes to three

conferencing IaaSs A, B and C. The discovery and subscription of the IaaSs are assumed to occur

offline. IaaS A and B offer dial-in signaling and audio mixer substrates; IaaS C offers an instant

messaging substrate. Conferencing IaaSs represent the fourth actor in this scenario.

We divide the scenario into two parts. The first part concerns conferencing service development

and deployment. It illustrates how service providers can use the development APIs to develop

complex conferencing services easily. The second part relates to conferencing service execution. It

shows how the conferencing PaaS creates a conference when the game application sends requests

to the service.

Both parts of the scenario demonstrates the relevant interactions among the different architectural

components of the proposed conferencing PaaS architecture. Although the scenario constitutes a

subset of all the functionalities of the conferencing PaaS, it helps understand how the proposed

architecture works and facilitates conferencing service provisioning.

59 | P a g e

4.3.1 Conferencing Service Development and Deployment

In this scenario, we assume that the service provider wants to develop a WebRTC-based

conferencing service. The targeted conferencing end-points are capable of handling signaling

protocol JSEP (JavaScript Session Establishment Protocol) and can process at least the mandatory

audio and video codecs specified by WebRTC standard. We also assume that dial-in substrate

offered by IaaSs support WebRTC technology.

The service provider uses high-level conferencing service development APIs in the code. In order

to handle requests from service consumers to create conferences, the create conference API is

used. The API returns an ID after successful creation of a conference. When conference is started,

the service receives a notification from the PaaS. We assume that the conferencing service enables

private text chat 30 minutes after the conference is started. So, when the conference started

notification is received, the service provider uses a regular timer function (available in most

programming languages) to enable text chat after 30 minutes. The service provider uses another

API add media to add instant messaging to the conference for 5 minutes. A pseudo-code for this

conferencing service is shown in figure 4-2.

60 | P a g e

Figure 4-2: Pseudo-code of dial-in audio conferencing service

When the service provider finishes developing the service, a Conferencing PaaS GUI, such as a

simple command line interface (CLI), is used to deploy the service in the PaaS. The GUI conveys

the command to Management (Services and PaaS) component, which deploys the service in

collaboration with Service Hosting and Execution component. The interactions of components are

illustrated in figure 4-3. After the service is deployed, the service provider, using the same

conferencing PaaS GUI, starts the service.

61 | P a g e

Figure 4-3: Conferencing Service Deployment Scenario

4.3.3 Conferencing Service Execution

Once the service is started, it can receive requests for creating new conferences. Figure 4-4 depicts

the interactions when the service receives a request from the game application for creating a

conference. For brevity, the game application actor is omitted in the figure. The service first

invokes the create conference API in order to create a dial-in audio conference. The service

provider used this API in the code to handle such conference creation requests. Handling of API

invocation is delegated to Conference Orchestration and Management component, which

determines necessary substrates (dial-in and audio mixer substrates) and selects appropriate IaaSs.

It is assumed that it selects IaaS A for dial-in signaling and IaaS B for audio mixer substrates.

Next, it requests IaaSs, via Conferencing IaaS Handler, to activate the substrates. Interactions for

substrate activation are not shown in the figure. After activation, Conference Orchestration and

Management component orchestrates a new dial-in audio conference from substrates and then

executes it. The orchestrated conference represents a full-fledged conference. It creates individual

62 | P a g e

conferences on the substrates it is composed of. Finally, the ID of the full-fledged conference is

returned to the game.

Figure 4-4: Conferencing Service Execution Scenario

63 | P a g e

The created conference is a scheduled conference. So the individual conferences on the dial-in and

audio mixer substrates get started at the specified time. The conferencing PaaS receives

notifications from the IaaSs. When both individual conferences on the substrates have started, the

PaaS notifies the conferencing service that the conference has started. The conferencing service

receives this notification and sets a timer to enable private text chat to the conference after 30

minutes. For brevity, the notifications from IaaSs to the PaaS and to the service are not shown in

the figure.

The service invokes another API add media after the timer goes off. Using the API, the service

adds instant messaging to the conference for 5 minutes. Conference Orchestration and

Management component selects IaaS C for instant messaging substrate, activates a substrate on

IaaS C and modifies the conference to add instant messaging. On the new substrate, individual

conference is created for 5 minutes and existing participants are added. The conferencing service

as well as the game application are notified that text chat has been enabled. Then, participants can

start exchanging text messages. After 5 minutes, the individual conference created on the instant

messaging substrate is terminated. The PaaS receives conference termination notification from

IaaS C. Conference Orchestration and Management component modifies the conference again to

exclude instant messaging. The conferencing PaaS can keep the instant messaging substrate

activated for other conferences. It can also decide to deactivate the substrate.

4.4 How the Proposed Architecture Meets the Requirements

The proposed architecture of conferencing PaaS satisfies all the requirements mentioned in chapter

3. First, it provides high-level interfaces for provisioning conferencing services by service

providers who have programming expertise. For service development, it provides necessary APIs

64 | P a g e

that abstract complexities of conferencing. Moreover, it provides GUI for service deployment and

management. Second, Conference Orchestration and Management entity as well as Substrate

Information Repository collaborate to determine necessary substrates, select the most suitable

conferencing IaaSs offering those substrates and compose the substrates into a conferences. Thus,

the requirement of conference composition from substrates is met by the proposed architecture.

Third, in order to ensure elastic scalability of conferences, Conference Orchestration and

Management component in the architecture monitors the running conferences and performs

conference scaling algorithm (discussed in chapter 5). If needed, it requests conferencing IaaSs to

scale the ongoing conferences. The PaaS/IaaS interaction interfaces chosen from the state of the art

include API for conferencing PaaS to make such requests to IaaS. Fourth, the architecture has

components for monitoring and managing both conferencing services and conferences created. The

PaaS/IaaS interfaces include interfaces for receiving QoS status notification. Based on the QoS

status, conferencing PaaS can take necessary actions, for example, changing conferencing IaaS for

a substrate. Measurements for conference runtime operations (e.g. participant joining time),

discussed in chapter 6, show that the end-to-end delay is acceptable. Therefore, the architecture

meets the requirement of QoS.

4.5 Chapter Summary

In this chapter, we presented the proposed architecture for a conferencing PaaS. We discussed

architectural principles that we followed in our design, the main components in our architecture

and then the proposed conferencing service development APIs. Next we provided an illustrative

scenario, showing how different components of the proposed architecture communicate with each

other and how the proposed APIs can help the service providers easily develop conferencing

65 | P a g e

services. Finally we explained how the proposed architecture fulfills the requirements we set in

chapter 3. The proposed architecture meets all the requirements on conferencing PaaS whereas the

state of the art does not meet all of them. For example, the proposed architecture satisfies the

requirement of high-level interfaces for conferencing service providers which related works [32],

[42], [43] and [55] do not satisfy. Related work [43] does not meet the requirement of composition

of conferences from substrates. The requirement of elastic scalability of conferences is also not met

by related works [32], [49], [51], [53] and [55]. The proposed conferencing PaaS architecture

meets these requirements. It also meet the requirement of QoS when related works [46], [47] and

[48] only partially satisfies the QoS requirement.

The validation of the proposed conferencing PaaS architecture will be discussed in chapter 6.

66 | P a g e

Chapter 5

5. Conference Scaling Algorithm

In the previous chapter, we propose a conferencing PaaS architecture. The Conference

Orchestration and Management component of this architecture is responsible for scaling the

ongoing conferences in an elastic manner. For elastic scalability, that component needs to run

efficient conference scaling algorithm. In this chapter, we first discuss the problem of conference

scaling and motivate the need of an algorithm for this with the help of an example. Then we

formally state the problem and analyze the nature of the problem. Based on the problem analysis,

we then propose a dynamic programming algorithm. After that, we present another greedy

algorithm which is faster but produces suboptimal result. Finally, we summarize the chapter.

5.1 Problem Background and Motivation

During a conference, the allocated conference size should be large enough to accommodate all

conference participants at any point in time. On one hand, as more participants join, the conference

needs to be scaled up. On the other hand, as participants leave the conference, the conference needs

to be scaled down; otherwise resources are wasted.

In the cloud-based conferencing business model [1] that we reuse, conferencing IaaS provides

substrates, such as dial-in signaling, audio mixer, and video mixer. Conferencing PaaS creates and

activates the necessary substrates and then composes conferences from them. During the

conference execution, PaaS requests IaaSs to scale these substrates as participants join and leave.

On the conferencing IaaS side, conference scaling is not instantaneous. Once PaaS requests for

67 | P a g e

scaling, IaaS needs to perform several functions to realize the request, which takes a certain

amount of time. This results in a time lag between sending a scaling request from PaaS and its

actual realization in IaaS. Therefore, PaaS cannot send a new scaling request before the current

scaling request is met. Hence the time lag constraint should be considered when decisions about

scaling are made in the PaaS. We can schedule scaling if we know the prospective number of

participants ahead of time.

We assume that a prediction model is available before the conference is started. It provides number

of participants during different future time slots. The prediction model can be developed using

statistical models of the user growth of cloud services [77] and using the past history of a time-

series [78]. The prediction model enables the conferencing PaaS to look ahead and see how

number of participants in a conference changes over time and helps it to decide if conference needs

to be scaled or not. As the input (number of participants over time) to the conference scaling

algorithm is provided by the prediction model, the algorithm’s output will be as good as the

accuracy of the prediction model. Note that the same prediction model may not be used for

different types of conferencing applications. For example, the trends of joining and leaving

participants in a conventional audio/video conference and in an online game are not the same and

may need different prediction models.

Consider a scenario where predicted numbers of participants are

{15, 30, 50, 80, 100, 150, 180,250} at intervals of one time slot. During the first time slot, there

will be a maximum of 15 participants, during the second time slot, 15 more participants will join

the conference and the number of participants will be 30 and so on.

68 | P a g e

For simplicity, we assume that the time lag for scaling is a multiple of time slots and in the

scenario, we assume it to be 3 time slots. If scaling request is made at the start of the first time slot,

the scaled conference is available during the fourth time slot. Therefore, to accommodate predicted

number of participants during the fourth time slot, scaling request has to be made during the first

time slot. 1 When the duration of time slot and that of scaling time lag are equal, the problem is

trivial because conferencing PaaS can send scaling request just before the next time slot.

Therefore, in this problem, the time lag’s value is greater than one time slot.

For each time slot, the PaaS can decide to scale the conference or to continue with the current

conference size. If it decides to scale, it also needs to decide the new conference size. Depending

on the time slots during which decisions are made to scale the conference, multiple scaling

schedules are possible.

Two possible scaling schedules are shown in Table 5-1. Due to the scaling time lag, the first three

time slots must be accommodated with an initial large enough conference size, which we call

initial conference size. In both schedules, the initial conference size is assumed to be 50. In

schedule 1, scaling up is requested, denoted as 𝑈(𝑛𝑒𝑤 𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑖𝑧𝑒), for increased

conference size of 150 at the first time slot, which can accommodate time slots from 4 to 6. There

will be a maximum of 80 and 100 participants during time slots 4 and 5, respectively. Therefore,

wasted resources in terms of number of participants in schedule 1 is 245 (with initial conference

size 50: 50 – 15 + 50 - 30 = 55; first scaling to 150: 150 – 80 + 150 – 100 = 120; second scaling to

250: 250 – 180 = 70). In schedule 2, total wasted resource is 265 (with initial conference size 50:

1 To avoid repetition, we shall state “scaling during a time slot”, which will mean “scaling at the

start of a time slot”.

69 | P a g e

50 – 15 + 50 – 30 = 55; first scaling to 180: 180 – 80 + 180 – 100 + 180 - 150). Therefore,

schedule 1 is better than schedule 2.

Time slot 1 2 3 4 5 6 7 8

Predicted number

of participants

15 30 50 80 100 150 180 250

Schedule 1 𝑈(150) - - 𝑈(250) - - - -

Schedule 2 𝑈(180) - - 𝑈(250) - - -

Table 5-1: An example of predicted number of participants in a conference

For the sake of argument, if the predicted number of participants during the eighth time slot would

have been 300 instead of 250, then 𝑈(250) would have been 𝑈(300). In this case, schedule 2

would be better than schedule 1 with schedule 1 resulting in 295 wasted resources, whereas,

schedule 2 results in 265 wasted resources.

In order to achieve cost efficiency, we want to compute a scaling schedule that minimizes waste of

resources in terms of difference between allocated conference size and predicted number of

participants.

5.2 Problem Statement

Given 𝑛 time slots, 𝑇 = {1, 2, 3, … … , 𝑛 − 1, 𝑛}, 𝑃 = {𝑝1, 𝑝2, 𝑝3, , 𝑝𝑛−1, 𝑝𝑛} are the

expected number of conference participants, such that, there will be a maximum of 𝑝𝑖 participants

during time slot 𝑖. It is assumed that 𝑃 is provided by a prediction model before the conference is

started. The time slots in 𝑇 are equal in length, that is, duration of time slot 𝑖 equals that

of 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

70 | P a g e

Upon receiving a scaling request from conferencing PaaS, conferencing IaaS allocates or

deallocates resources, which takes a certain time. Thus, there is a time lag, denoted as 𝛿, at IaaS

layer between the time of receiving the scaling request and the time of having the conference

scaled according to the request. Conferencing IaaS is assumed to scale the conferences within the

stipulated time lag without affecting QoS requirements of conferencing. In order to make the

problem simpler, two assumptions are made about the time lag 𝛿. First, it is a multiple of time

slots. Second, time lags for scaling up and scaling down are equal. With these assumptions, if

scaling is requested at the beginning of time slot 𝑖, the scaled conference is available at time

slot 𝑖 + 𝛿. For example, if 𝛿 is 3 time slots and scaling is requested during time slot 2, the scaled

conference is available at time slot 5.

Given 𝑇, 𝑃 and 𝛿, the goal is to compute an optimal scaling schedule 𝑅,such that amount of wasted

resources in terms of number of participants is minimized.

The value of 𝛿 can vary for different IaaSs. If a conferencing PaaS provisions services from

multiple IaaSs, then it just computes an optimal schedule for each value of 𝛿 corresponding to the

different IaaSs. Table 5-2 delineates the notations used in the problem.

Notation Definition

𝑇 Time slots, 𝑇 = {1, 2, 3, … … , 𝑛 − 1, 𝑛}

𝑃 Expected number of conference participants {𝑝1, 𝑝2, 𝑝2, , 𝑝𝑛−1, 𝑝𝑛} such that
during time slot 𝑖, there is a maximum of 𝑝𝑖 participants for 1 ≤ 𝑖 ≤ 𝑛.

𝛿 The time lag, stipulated in conferencing IaaSs’ Service Level Agreement (SLA), for
meeting scaling request.

𝑅 A scaling schedule {𝑟1, 𝑟2, … … , 𝑟𝑛−𝛿}, where

𝑟𝑖 = {
𝑚 > 0, if scaling is requested for 𝑚 participants during time slot 𝑖

0, otherwise

𝑆 Allocated conference sizes, 𝑆 = {𝑠1, 𝑠2, 𝑠3, … … , 𝑠𝑛−1, 𝑠𝑛}, where 𝑠𝑖is the allocated size
during time slot 𝑖. The values of 𝑠𝑖 can vary depending on scaling schedule 𝑅. Here, 𝑠1 is
the initial conference size.

71 | P a g e

Table 5-2: List of notations

Constraints:

The first constraint is that, due to time lag 𝛿 at conferencing IaaS, two consecutive scaling requests

from conferencing PaaS must be separated by 𝛿. In a scaling schedule 𝑅 = {𝑟1, 𝑟2, 𝑟3, … … , 𝑟𝑛−𝛿}, if

one scaling request is made during time slot 𝑖 and the next during 𝑘, that is, if 𝑟𝑖 > 0, 𝑟𝑖+1 =

0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0, then 𝑘 − 𝑖 ≥ 𝛿 ∀ 1 ≤ 𝑖 < 𝑘 ≤ 𝑛 − 𝛿.

The second constraint is that, the allocated conference size during time slot 𝑖, 𝑠𝑖 ∈ 𝑆, must

accommodate the predicted number of participants 𝑝𝑖 ∈ 𝑃, that is, 𝑠𝑖 ≥ 𝑝𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛.

Given a scaling schedule 𝑅 = {𝑟1, 𝑟2, 𝑟3, … … , 𝑟𝑛−𝛿−1} and predicted number of participants 𝑃 =

{𝑝1, 𝑝2, … … , 𝑝𝑛}, the values of 𝑠𝑖 ∈ 𝑆 can be derived. If the first scaling request is made during

time slot 𝑘, that is, if 𝑟1 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0, then the allocated conference size, 𝑠𝑗 =

max {𝑝𝑗} ∀ 1 ≤ 𝑗 < 𝑘 + 𝛿.

If one scaling request is made during time slot 𝑖 and the next one during 𝑘, that is, if 𝑟𝑖 > 0, 𝑟𝑖+1 =

0, 𝑟𝑖+2 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0, then the allocated conference size from time slot (𝑖 +

𝛿) to (𝑘 + 𝛿 − 1) will equal 𝑟𝑖. Therefore, 𝑠𝑗 = 𝑟𝑖 ∀ 𝑖 + 𝛿 ≤ 𝑗 < 𝑘 + 𝛿, where 𝑟𝑖 > 0, 𝑟𝑖+1 =

0, 𝑟𝑖+2 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0.

Both cases of 𝑠𝑗 can be summarized as follows:

𝑠𝑗 = {
max {𝑝𝑗}, ∀ 1 ≤ 𝑗 < 𝑘 + 𝛿, when 𝑟1 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0

𝑟𝑖, 𝑖 + 𝛿 ≤ 𝑗 < 𝑘 + 𝛿, when 𝑟𝑖 > 0, 𝑟𝑖+1 = 0, 𝑟𝑖+2 = 0, … … , 𝑟𝑘−1 = 0, 𝑟𝑘 > 0

Objective:

72 | P a g e

The allocated conference sizes 𝑆 = {𝑠1, 𝑠2, … … , 𝑠𝑛} for time slots 𝑇 = {𝑡1, 𝑡2, … … , 𝑡𝑛} can be

computed from a scaling schedule 𝑅 = {𝑟1, 𝑟2, 𝑟3, … … , 𝑟𝑛−𝛿} and predicted number of

participants 𝑃 = {𝑝1, 𝑝2, … … , 𝑝𝑛}. Waste of resources during time slot 𝑖 is the difference between

allocated conference size 𝑠𝑖 and predicted number of participants 𝑝𝑖, that is, (𝑠𝑖 − 𝑝𝑖). The

objective is to compute an optimal scaling schedule, which minimizes the amount of wasted

resources during the entire conference, i.e., the sum of differences between allocated conference

size, 𝑠𝑖 ∈ 𝑆 and predicted number of participants, 𝑝𝑖 ∈ 𝑃 for 1 ≤ 𝑖 ≤ 𝑛, that is,

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ 𝑠𝑖 − 𝑝𝑖

𝑛

𝑖=1

)

5.3 Problem Analysis

In order to determine the minimum amount of wasted resources for time slots from 𝑖 to 𝑗,

where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, the amounts of wasted resources for all possible time ranges in-between

time slot 𝑖 and 𝑗 (inclusive) are required. To determine amount of wasted resources, number of

participants as well as allocated conference size are needed. Predicted number of participants 𝑃 is

an input to the problem. As for allocated conference size, it depends on an optimal scaling

schedule, which needs to be computed. However, according to the second constraint, the allocated

conference size for time slot 𝑖 must be greater than or equal to predicted number of participants for

that time slot. Therefore, required conference size for time slots from 𝑖 to 𝑗 must be greater than or

equal to predicted numbers of participants {𝑝𝑖, 𝑝𝑖+1, … … , 𝑝𝑗−1, 𝑝𝑗}.

Let 𝑐[𝑖, 𝑗] denote the required conference size for time slots from 𝑖 to 𝑗. In order to satisfy the

second constraint, which is 𝑠𝑖 ≥ 𝑝𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛, required conference size is the maximum number

73 | P a g e

of participants predicted from time slot 𝑖 to 𝑗. Therefore, 𝑐[𝑖, 𝑗] can be computed using the

following equation.

𝑐[𝑖, 𝑗] = 𝑚𝑎𝑥 {𝑝𝑘} ∀ 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑗 ≤ 𝑛 … … … (1)

Let 𝑤[𝑖, 𝑗] denote the amount of wasted resources from time slot 𝑖 to 𝑗 when one and only one

scaling request accommodates predicted number of participants from time slot 𝑖 to 𝑗. From Eq. (1),

it is clear that the conference must be scaled to size 𝑐[𝑖, 𝑗]. Thus the value of 𝑤[𝑖, 𝑗] can be

computed as in Eq. (2).

𝑤[𝑖, 𝑗] = ∑(𝑐[𝑖, 𝑗] − 𝑝𝑘)

𝑗

𝑘=𝑖

 ∀ 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑗 ≤ 𝑛 … … … (2)

A trivial case is 𝑖 = 𝑗 where 𝑤[𝑖, 𝑖] = 0 because 𝑐[𝑖, 𝑖] equals 𝑝𝑖.

Let 𝑚[𝑖, 𝑗] denote minimum amount of wasted resources for time slots from 𝑖 to 𝑗. This is the cost

of optimal solution of the problem for time slots from 𝑖 to 𝑗. Note that, 𝑚[𝑖, 𝑗] may result from

multiple scaling requests. 𝑚[𝑖, 𝑗] may be achieved by a single scaling request that accommodates

participants for all time slots from 𝑖 to 𝑗. 𝑚[𝑖, 𝑗] may also be achieved by having one scaling

request accommodating participants for time slots from 𝑖 to 𝑘 and later scaling request(s)

accommodating participants for the remaining time slots from 𝑘 + 1 to 𝑗. Therefore, when the cost

of an optimal solution to 𝑚[𝑖, 𝑗] involve more than one scaling requests, the following can be

stated:

𝑚[𝑖, 𝑗] = 𝑤[𝑖, 𝑘] + 𝑚[𝑘 + 1, 𝑗] … … … (3)

From Eq. (3), it is clear that in order to find 𝑚[𝑖, 𝑗], the range of time slots must be split between

time slots 𝑘 and 𝑘 + 1 for some integer 𝑘 in the range 𝑖 + 𝛿 − 1 ≤ 𝑘 < 𝑗. Finding minimum waste

of resources for time slots from 𝑖 to 𝑗 involves finding minimum waste of resources for the time

74 | P a g e

slots that are accommodated by subsequent scaling requests. The solution to the problem is

essentially reduced to finding the solution to a smaller subproblem. Thus, the problem shows

optimal substructure property.

Proof of the Problem’s Optimal Substructure Property:

The optimal substructure property of the problem is proved as follows. Suppose, to achieve

minimum waste of resources from time slot 𝑖 to 𝑗, the time range is split between time

slot 𝑘 and 𝑘 + 1, meaning, this split leads to an optimal solution for 𝑚[𝑖, 𝑗]. Then the solution to

the subproblem 𝑚[𝑘 + 1, 𝑗] must be an optimal one. Because, if there were a solution to the

subproblem that leads to less waste of resources, then solution to the original problem would have

resulted into less waste of resources than the optimum. This contradicts the assumption that 𝑚[𝑖, 𝑗]

is an optimal solution. Thus, the solution to the subproblem 𝑚[𝑘 + 1, 𝑗] must be an optimal

solution.

Overlapping Subproblems Property:

Let 𝑘1, 𝑘2 and 𝑘2 denote three of the many time slots in between the time slots 𝑖 and 𝑗, that is, 𝑖 <

𝑘1 < 𝑘2 < 𝑘3 < 𝑗. This is illustrated in figure 5-1. Assume that the time slots 𝑖, 𝑘1, 𝑘2, 𝑘3 and 𝑗 are

separated by at least 𝛿, that is, 𝑘1 − 𝑖 ≥ 𝛿, 𝑘2 − 𝑘1 ≥ 𝛿, 𝑘3 − 𝑘2 ≥ 𝛿. To find an optimal solution

to 𝑚[𝑖, 𝑗], three possible splits around 𝑘1, 𝑘2 and 𝑘3 time slots are possible, which lead to

subproblems 𝑚[𝑘1 + 1, 𝑗], 𝑚[𝑘2 + 1] and 𝑚[𝑘3 + 1, 𝑗], respectively. While solving

subproblem 𝑚[𝑘1 + 1, 𝑗], two possible splits are around 𝑘2 and 𝑘3 as 𝑘1 < 𝑘2 < 𝑘3 < 𝑗, which

leads to subproblems 𝑚[𝑘2 + 1, 𝑗], 𝑚[𝑘3 + 1, 𝑗]. While solving subproblem 𝑚[𝑘2 + 1, 𝑗], one

possible split is around 𝑘3 as 𝑘2 < 𝑘3 < 𝑗, which leads to subproblem 𝑚[𝑘3 + 1, 𝑗]. Thus, it is

75 | P a g e

observed that the same subproblems, such as 𝑚[𝑘2 + 1, 𝑗] and 𝑚[𝑘3 + 1, 𝑗] are solved repeatedly.

Therefore, this problem demonstrates the overlapping subproblems property.

Figure 5-1: Overlapping subproblems

Proof of Overlapping Subproblems property:

The overlapping subproblems property can be proved as follows. We follow the scenario in figure

5-1. Finding optimal solutions to both 𝑚[𝑖, 𝑗] and 𝑚[𝑘1 + 1, 𝑗] must lead to subproblem 𝑚[𝑘2 +

1, 𝑗]. If 𝑚[𝑘2 + 1, 𝑗] were not a subproblem of 𝑚[𝑖, 𝑗] and 𝑚[𝑘1 + 1, 𝑗], then 𝑘2 − 𝑖 < 𝛿 and 𝑘2 −

𝑘1 < 𝛿, respectively. This contradicts the assumptions that 𝑘2 − 𝑘1 ≥ 𝛿. In addition to that, 𝑘1 −

𝑖 ≥ 𝛿 and 𝑘2 > 𝑘1, then 𝑘2 − 𝑖 ≥ 𝛿. Thus, 𝑚[𝑘2 + 1] is a subproblem of both 𝑚[𝑖, 𝑗] and 𝑚[𝑘1 +

1, 𝑗].

The problem thus shows two hallmark properties (optimal substructure and overlapping

subproblems) of an optimization problem that can be solved by dynamic programming. In the next

section, we provide an overview of dynamic programming. For the sake of continuity, we analyze

the problem further in this section and provide the problem’s recurrence relation below.

Recurrence Relation:

76 | P a g e

Now, in order to apply dynamic programming, the minimum waste of resources 𝑚[𝑖, 𝑗] is defined

recursively as follows. If 𝑖 = 𝑗, the problem is trivial. Similar to the trivial case of of Eq. (2), there

is only one time slot to consider and hence minimum waste of resources is zero, that is, 𝑚[𝑖, 𝑖] =

0 for 𝑖 = 1,2, … , 𝑛. When 𝑖 < 𝑗, minimum waste of resources can be achieved by either one or

multiple scaling requests. So, the minimum of the two waste of resources for these two cases is

chosen. When one scaling request results in the minimum waste of resources, 𝑚[𝑖, 𝑗] equals 𝑤[𝑖, 𝑗]

because that scaling request accommodates all time slots from 𝑖 to 𝑗. When multiple scaling

requests lead to the minimum waste of resources, Eq. (3) applies. However, Eq. (3) assumes that

the value of 𝑘 is known, when it is unknown. Number of possible values for 𝑘 is 𝑗 − 𝑖 − 𝛿 + 1,

which are 𝑖 + 𝛿 − 1, 𝑖 + 𝛿, 𝑖 + 𝛿 + 1, … … , 𝑗 − 1. The optimal solution to 𝑚[𝑖, 𝑗] chooses one of

these values of 𝑘.Thus, 𝑚[𝑖, 𝑗] can be defined recursively as follows:

𝑚[𝑖, 𝑗] = {
0, if 𝑖 = 𝑗

min
𝑖+𝛿−1≤𝑘<𝑗

{𝑤[𝑖, 𝑗], 𝑤[𝑖, 𝑘] + 𝑚[𝑘 + 1, 𝑗]} , if 𝑖 < 𝑗 … … … (4)

The range of values for 𝑘 is dictated by the first constraint of time lag.

Minimum waste of resources for all time slots 𝑇 can be derived from Eq. (4) as follows:

𝑚[1, 𝑛] = {
0, if 𝑛 = 1

min
𝛿≤𝑘<𝑛

{𝑤[1, 𝑛], 𝑤[1, 𝑘] + 𝑚[𝑘 + 1, 𝑛]} , if 𝑛 > 1 … … … (5)

In our analysis of the problem, we have observed that the problem demonstrates two hallmark

properties of dynamic programming, that is, optimal substructure and overlapping subproblems.

We have proven the recurrence relation of the optimal substructure property. We have also defined

the minimum waste of resources 𝑚[𝑖, 𝑗] recursively. In the next section, we design a dynamic

programming algorithm to solve the problem where we memoize the solutions to subproblems and

77 | P a g e

reach an optimal value of 𝑚[1, 𝑛] from its subproblems. We also show how a scaling

schedule {𝑟1, 𝑟2, … … , 𝑟𝑛−𝛿} can be constructed from the values of 𝑚[𝑖, 𝑗].

5.4 Proposed Dynamic Programming Algorithm

In this sub-section, we first give a brief overview of dynamic programming. Then we provide a

high-level view of the proposed dynamic programming algorithm for conference scaling. Next,

detailed description of the algorithm and the analysis of its time complexity are presented.

5.4.1 A Brief Overview of Dynamic Programming

Dynamic programming [79] divides a problem into many smaller subproblems and reaches an

optimal solution to the problem by combining the solutions to the subproblems. However, the

subproblems may overlap, meaning the same subproblem may occur as a subproblem of two

different larger subproblems. Therefore, instead of repeatedly solving the overlapping

subproblems, dynamic programming solves each subproblem only once and stores the results in a

table for future lookup.

Dynamic programming is typically used in optimization problems. The problems that can be

solved by applying dynamic programming must have two characteristics. The first characteristic is

optimal substructure property, meaning if a solution to a problem is optimal, then the solutions to

its subproblems must be optimal. The second characteristic is overlapping subproblems, that is,

subproblems share subsubproblems.

78 | P a g e

5.4.2 High Level View

Based on the equations derived in section 5.3, the following is a high-level view of the dynamic

programming algorithm.

1. For all possible time ranges [𝑖, 𝑗] where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, compute required conference sizes

and store in a table 𝑐.

2. For all possible time ranges [𝑖, 𝑗] where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, compute waste of resources if a

time range is accommodated by only one scaling request. Store the results in a table 𝑤.

3. Now consider accommodating a time range with one or more scaling requests. If more than

one scaling requests results in minimum waste of resources, there will be an optimal split

of that time range. Using the tables 𝑐 and 𝑤, compute minimum waste of resources for all

possible time ranges. Store the optimal splits in table 𝐾 and the minimum waste of

resources in table 𝑚.

4. Using the table 𝐾 that stores optimal splits, construct an optimal scaling schedule and

compute initial conference size.

5.4.3 Detailed Algorithm Description

Compute Required Conference Sizes:

The procedure for computing required conference sizes for time slots from 𝑖 to 𝑗, where 1 ≤ 𝑖 ≤

𝑗 ≤ 𝑛, uses Eq. (1) in section 5.3. It is described below.

COMPUTE-REQUIRED-CONFERENCE-SIZES (𝑃, 𝑛)

1. let 𝑐[1 … 𝑛, 1 … 𝑛] be a new table that stores required conference sizes for all possible time ranges

79 | P a g e

2. for 𝑖 = 1 to 𝑛

3. 𝑚𝑎𝑥 = − ∞

4. for 𝑗 = 𝑖 to 𝑛

5. if 𝑃[𝑗] > 𝑚𝑎𝑥

6. 𝑚𝑎𝑥 = 𝑃[𝑗]

7. 𝑐[𝑖, 𝑗] = 𝑚𝑎𝑥

8. return 𝑐

Procedure COMPUTE-REQUIRED-CONFERENCE-SIZES takes predicted number of

participants 𝑃 and number of time slots 𝑛 as input. It computes the required conference sizes for all

possible time ranges, stores the results in a table and finally outputs the table.

Compute Waste of Resources:

The following procedure computes waste of resources for all possible time ranges when a single

scaling request accommodates predicted numbers of participants for that time range, i.e., time slots

from 𝑖 to 𝑗, where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. It uses Eq. (2) in section 5.3.

COMPUTE-WASTE-OF-RESOURCES (𝑃, 𝑛, 𝑐)

1. let 𝑤[1 … 𝑛, 1 … 𝑛] be a new table that stores waste of resources when a single scaling request

accommodates the whole time range.

2. for 𝑖 = 1 to 𝑛

3. 𝑤[𝑖, 𝑖] = 0

4. for 𝑗 = 𝑖 + 1 to 𝑛

5. 𝑤[𝑖, 𝑗] = 𝑤[𝑖, 𝑗 − 1] + (𝑐[𝑖, 𝑗] − 𝑐[𝑖, 𝑗 − 1]) × (𝑗 − 𝑖) + (𝑐[𝑖, 𝑗] − 𝑃[𝑗])

6. return 𝑤

Compute Minimum Waste of Resources:

The following procedure computes minimum waste of resources for all possible time ranges

(considering both single and multiple scaling requests). It also computes optimal splits or divisions

of time slots that lead to the minimum waste of resources, so that an optimal scaling schedule can

be constructed later.

80 | P a g e

COMPUTE-MIN-WASTE-RESOURCES (𝑃, 𝑛, 𝛿, 𝑐, 𝑤)

1. let 𝑚[1 … 𝑛, 1 … 𝑛] and 𝐾[1 … 𝑛, 1 … 𝑛] be two new tables. 𝑚 will store minimum waste of

resources for all possible time ranges, where a time range can be accommodated by multiple scaling

requests. 𝐾 will store the next optimal split for all possible time ranges.

2. for 𝑖 = 1 to 𝑛

3. for 𝑗 = 𝑖 to 𝑛

4. 𝑚[𝑖, 𝑗] = ∞

5. 𝐾[𝑖, 𝑗] = −1

6. 𝑚𝑖𝑛 _𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑤𝑎𝑠𝑡𝑒 = RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES (𝑃, 𝛿, 𝑐, 𝑤, 𝑚, 𝐾, 1,

𝑛)

7. return 𝑚 and 𝐾

The following recursive algorithm uses Eq. (4), which is the recurrence relation of this conference

scaling problem.

RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES (𝑃, 𝛿, 𝑐, 𝑤, 𝑚, 𝐾, 𝑖, 𝑗)

1. if 𝑚[𝑖][𝑗] ≠ ∞

2. return 𝑚[𝑖][𝑗]

3. else if 𝑖 = 𝑗

4. 𝑚[𝑖][𝑖] = 0

5. 𝐾[𝑖][𝑖] = 𝑖

6. return 𝑚[𝑖][𝑗]

7. else

8. 𝑚𝑖𝑛 = 𝑤[𝑖][𝑗]

9. min _𝑘 = 𝑗

10. for 𝑘 = 𝑖 + 𝛿 − 1 to 𝑗 − 1

11. 𝑚𝑖𝑛2 = 𝑤[𝑖][𝑘] + RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES (𝑃, 𝛿, 𝑐, 𝑤, 𝑚, 𝐾, 𝑘 +

1, 𝑗)

12. if 𝑚𝑖𝑛2 < 𝑚𝑖𝑛

13. 𝑚𝑖𝑛 = 𝑚𝑖𝑛2

14. min _𝑘 = 𝑘
15. 𝑚[𝑖][𝑗] = 𝑚𝑖𝑛

16. 𝐾[𝑖][𝑗] = min _𝑘

17. return 𝑚[𝑖][𝑗]

Construct Optimal Schedule:

The following algorithm constructs an optimal schedule 𝑅. It uses a table which stores next

optimal split of time slots for all possible time ranges.

81 | P a g e

CONSTRUCT-OPTIMAL-SCHEDULE (𝑛, 𝛿, 𝐾)

1. 𝑘 = 𝐾[1][𝑛]
2. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒 = 𝑐[1][𝑘]

3. let 𝑅[1 … 𝑛] be a new array to store scaling schedule.

4. for 𝑖 = 1 to 𝑛

5. 𝑅[𝑖] = 0
6. RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE (𝑛, 𝛿, 𝐾, 𝑘 + 1, 𝑛)

7. return 𝑅 and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒

The following procedure recursively constructs scaling schedule from a given table 𝐾, which

stores next optimal split of time slots for all possible time ranges.

RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE (𝑛, 𝛿, 𝐾, 𝑖, 𝑗)

1. 𝑘 = 𝐾[𝑖][𝑗]

2. if 𝑘 = 𝑛

3. 𝑅[𝑖 − 𝛿] = 𝑐[𝑖][𝑗]

4. else

5. 𝑅[𝑖 − 𝛿] = 𝑐[𝑖][𝑘]

6. RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE (𝑛, 𝛿, 𝐾, 𝑘 + 1, 𝑗)

5.4.4 Time Complexity Analysis

Both COMPUTE-REQUIRED-CONFERENCE-SIZES procedure and COMPUTE-WASTE-OF-

RESOURCES procedure have nested loops. The outer loop iterates at most 𝑛 times in both

procedures. The inner loop iterates at most 𝑛 − 𝑖 + 1 times and 𝑛 − 𝑖 times in COMPUTE-

REQUIRED-CONFERENCE-SIZES procedure and COMPUTE-WASTE-OF-RESOURCES

procedure, respectively. Therefore, the running time of both procedures is 𝑂(𝑛2).

RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES procedure solves each subproblem only

once. Because it returns result immediately when the subproblem is already solved and

𝑚[𝑖][𝑗] stores the result (lines 1 to 2). Lines 3 to 6 deals with the case when the subproblem is

trivial because 𝑖 = 𝑗, that is, minimum waste of resources is zero when only one time slot is

considered. Apart from these two cases, it iterates for (𝑗 − 𝑖 − 𝛿 + 1) times in order to find an

82 | P a g e

optimal waste of resources and the associated value of 𝑘. To solve the problem of size 𝑛, i.e. when

𝑖 = 1, 𝑗 = 𝑛, it iterates (𝑛 − 𝛿) times (line 10), making recursive calls for subproblems of sizes

𝑛 − 𝛿, 𝑛 − 𝛿 − 1, 𝑛 − 𝛿 − 2, … … , 3, 2, 1. Similarly, to solve a subproblem of size 𝑛 − 𝛿, i.e.

when 𝑖 = 𝛿 + 1, 𝑗 = 𝑛, the procedure iterates 𝑛 − 2𝛿 times (line 10) for subproblems of sizes 𝑛 −

2𝛿, 𝑛 − 2𝛿 − 1, 𝑛 − 2𝛿 − 3, … … , 3, 2, 1.Therefore, the total number of iterations (lines 10 to 14)

over all recursive calls leads to an arithmetic series (𝑛 − 𝛿) + (𝑛 − 2𝛿) + (𝑛 − 3𝛿) + ⋯ + 𝑥,

where 𝑥 is 𝑛 modulo 𝛿. The series gives a total of 𝑂(𝑛2) iterations. Hence, the running time of

RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES procedure is O(𝑛2).

COMPUTE-MIN-WASTE-RESOURCES procedure has nested loops in lines 3 and 4, resulting

in 𝑂(𝑛2) running time. Call to RECURSIVE-COMPUTE-MIN-WASTE-RESOURCES procedure

also adds 𝑂(𝑛2) running time. Therefore, the running time of COMPUTE-MIN-WASTE-

RESOURCES procedure is 𝑂(𝑛2).

RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE procedure calls recursively in line 6. In

each call, the subproblem size is reduced by at least 𝛿, because the next earliest scaling after this

can be requested after 𝛿 time slots. Therefore, RECURSIVE-CONSTRUCT-OPTIMAL-

SCHEDULE procedure is called at most (
𝑛

𝛿
+ 1) times. Thus, the running time of RECURSIVE-

CONSTRUCT-OPTIMAL-SCHEDULE procedure is 𝑂(𝑛).

CONSTRUCT-OPTIMAL-SCHEDULE procedure has a loop in line 4, which contributes to 𝑂(𝑛)

running time. The single call to RECURSIVE-CONSTRUCT-OPTIMAL-SCHEDULE procedure

adds 𝑂(𝑛) running time. Therefore, the running time of CONSTRUCT-OPTIMAL-SCHEDULE

procedure is 𝑂(𝑛).

83 | P a g e

The procedures used in the algorithm have running time at most 𝑂(𝑛2) and there is no iteration of

the high-level procedures used in the algorithm. Therefore, the running time of the algorithm

is 𝑂(𝑛2).

5.5 An Alternative Greedy Algorithm

The time complexity of the proposed dynamic programming algorithm is 𝑂(𝑛2). This algorithm

produces an optimal solution. However, for comparison purpose, we develop an alternative greedy

algorithm which is faster but produces a sub-optimal solution. This section starts with a brief

overview of greedy algorithm. Then the greedy heuristic used is motivated with an example.

Finally, a high-level view of the greedy algorithm is presented. The appendix to this thesis contains

the detailed description and time complexity analysis of the proposed greedy algorithm.

5.5.1 A Brief Overview of Greedy Algorithm

Greedy algorithm [79] is usually used to solve optimization problems. While solving a problem, it

always makes a choice that seems best at the moment. In other words, it hopes to reach globally

optimal solution by making locally optimal choices. However, this heuristic strategy does not

always lead to an optimal solution.

While making locally optimal choices, a greedy algorithm may depend on choices made so far.

However, it does not depend on any future choices. This is in contrast to dynamic programming,

which solves all subproblems before making a choice. Greedy algorithm makes a choice and

proceeds to the next subproblem. A dynamic programming algorithm solves a problem in bottom-

up manner. On the other hand, a greedy algorithm usually advances in a top-down fashion while

making greedy choices one by one.

84 | P a g e

5.5.2 Motivation for the Greedy Heuristic Used

Given the problem statement in the beginning of this chapter, a naïve approach of scaling a

conference in terms of number of participants is to request scaling after every 𝛿 time slots, where

 𝛿 is the time lag. Consider the following predicted number of participants. Figure 5-2 depicts the

change in number of participants over time.

𝑃 = {… , 10, 25, 35, 40, 60, 70, 75, 85, 95, 110, 90, 70, 45, 40, 30, 20, 15, … }.

Figure 5-2: An example of predicted number of participants

In this example of 𝑃, the number of participants first increases up to 110, then starts decreasing. It

is assumed that 𝛿 = 5. The naïve approach does not take the changes in 𝑃 over time into account.

As a result of this, as illustrated in figure 5-3(a), it is possible to send scaling request (scaling up to

110) to accommodate time slots from 16 to 20. The next scaling request (scaling down to 90) is

made to accommodate time slots from 21 to 25. Waste of resources for the first scaling request is

∑ 110 − 𝑃𝑖
20
𝑖=16 = 115. Waste of resources for the second scaling request is ∑ 90 − 𝑃𝑖

25
𝑖=21 = 175.

Thus, total waste of resources in naïve approach is 290 (115+175). In this approach, the required

10

25

35
40

60

70
75

85

95

110

90

70

45
40

30

20
15

0

10

20

30

40

50

60

70

80

90

100

110

120

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

P
re

d
ic

te
d

 n
u

m
b

er
 o

f
p

ar
ti

ci
p

an
ts

Time slot

85 | P a g e

number of participants for both scaling requests are chosen from two of the time slots (20 and 21)

near the local maxima.

It is possible to optimize waste of resources by choosing, instead of two, only one time slot near

the maxima, such that the maxima and its nearby time slots are accommodated. Figure 5-3(b)

illustrates this case. Keeping the maxima in the middle, time slots from 18 to 22 (scaling up to 110)

are accommodated by one scaling request 𝑠2. The previous scaling request 𝑠1 (scaling up to 75)

accommodates time slots up to 17. The next one 𝑠3 (scaling down to 45) covers time slots from 23

to 27. To compare with waste of resources for the naïve approach, we shall calculate waste for

time slots from 16 to 25. Waste of resources from time slots 16 to 17 by 𝑠1 is ∑ 75 − 𝑃𝑖
17
𝑖=16 = 5,

by 𝑠2 is ∑ 110 − 𝑃𝑖
22
𝑖=18 = 100, by s3 is ∑ 45 − 𝑃𝑖

25
𝑖=23 = 20. Therefore, the total waste of resources

is 145 (5+120+20), which is less than the naïve scaling approach (290). The same observation

applies to local minima. This local extrema optimization will lead to a better global optimization

than the naïve scaling approach when the number of participants increases and decreases over

time.

86 | P a g e

Figure 5-3: (a) Scaling with naive approach (b) Scaling with extrema optimization

Using this local extrema optimization heuristic, a greedy algorithm can be designed.

5.5.3 High Level View

Following is the high-level view of the proposed greedy algorithm:

HIGH-LEVEL-GREEDY-OPTIMIZATION(𝑷, 𝒏, 𝜹)

1. Divide 𝑃, predicted numbers of participants into upward and downward slopes. Upward

slope consists of consecutive time slots with non-decreasing number of participants.

Downward slope consists of consecutive time slots with decreasing number of participants.

2. Schedule scaling requests around local maxima (upward slope on the left and downward

slope on the right) as well as local minima (downward slope on the left and upward slope

on the right).

87 | P a g e

3. Schedule scaling requests for the time slots which are not accommodated by step 2,

following the naïve scaling approach.

An edge case is that predicted number of participants drops sharply after reaching local maxima

(or rise sharply after local minima). In that case, keeping the local maxima in the middle of

accommodated time slots results in more waste of resources than the naïve approach. This is

demonstrated in figure 5-4. Therefore, in step 2, the waste of resources needs to be checked before

deciding to schedule around local extrema.

Figure 5-4: (a) Waste of resources is 115 (b) Waste of resources is 140

5.6 Chapter Summary

In this chapter, we address the problem of conferencing scaling. We formally state the problem and

analyze it. Then we present two algorithms to minimize waste of resources in terms of number of

88 | P a g e

participants. One is a dynamic programming (DP) algorithm and it provides an optimal scaling

schedule. We discuss the algorithm in details and analyze its time complexity. The other is a

greedy algorithm. It provides a suboptimal schedule but is faster. We present a high-level view of

the greedy algorithm and leave the details in appendix. According to the requirements on

conference scaling algorithm, the proposed algorithms are practical when they can produce output

within a second for the given input size. The measurements of the proposed conference scaling

algorithms, discussed in the next chapter, show that they perform well below one second for a big

enough input size of 100 time slots.

89 | P a g e

Chapter 6

6. Validation: Prototype and Evaluation

In chapter 4, we have proposed a general architecture of conferencing PaaS for multimedia

conferencing service provisioning. In chapter 5, we propose algorithms to scale conferences in an

elastic manner while minimizing waste of resources in terms of number of participants. In this

chapter, we discuss the design of software architecture of conferencing PaaS, a prototype to

validate the software architecture, the performance measurements of the prototype as well as the

proposed algorithms.

This chapter first presents the overall software architecture of conferencing PaaS. This is followed

by a discussion of proof-of-concept prototype. Next, the prototype setup and performance

measurements are discussed. After that, performance measurements of the proposed conference

scaling algorithm are described. Lastly, the chapter summary is presented.

6.1 Overall Software Architecture

Figure 6-1 shows the overall software architecture that we propose for conferencing service

provisioning. This software architecture is derived from the general architecture (discussed in

chapter 4) by breaking down the components of general architecture into smaller software

components. In the next sub-sections, the software components of each high-level component in

general architecture are described. This is followed by a sub-section that illustrates the interactions

among the software components. Conferencing IaaS Handler and Substrate Info Repository

components remain the same as in general architecture. Therefore, their discussion is omitted.

90 | P a g e

Figure 6-1: Software architecture of conferencing PaaS

6.1.1 Conferencing PaaS GUIs and APIs

The components include Service Development APIs, Service Management GUI and Substrates

Support Management GUI. The components Service Development APIs and Substrates Support

Management GUI are extensions to typical PaaS software architecture.

Conferencing platform providers use Substrates Support Management GUI to manage (e.g., add,

remove, update) information of the substrates that they have subscribed to. Conferencing service

providers use Service Development APIs and Service Management GUI. Conferencing PaaS

provides the service providers with Service Development APIs as a programming library (e.g., JAR

file in Java and NPM module in JavaScript). Conferencing service providers, who have

91 | P a g e

programming expertise, can use this library to easily develop conferencing services. For service

deployment and management, conferencing service providers use Service Management GUI. The

GUI can be as simple as a command line interface (CLI).

6.1.2 Management (Services & PaaS)

The components are Service Lifecycle Manager, Hosting Environment Lifecycle Manager, Service

SLA Manager and PaaS Governance. These are typical management components in conventional

PaaS architectures. Service Lifecycle Manager receives requests from Service Management GUI

and takes actions based on the type of the received requests. It manages different lifecycle events

such as conferencing service deployment, execution and stop. Hosting Environment Lifecycle

Manager is responsible for managing PaaS resources (e.g., runtime, DBMS instance) used to host

services. It also monitors and controls lifecycle of different PaaS components. Service SLA

Manager monitors the services' performances, compares them with the stipulated SLA of

conferencing PaaS and takes actions (e.g., scaling up service instances) as necessary. PaaS

Governance relates to user authentication and authorization, billing etc.

6.1.3 Service Hosting & Execution

The components are Service Hosting & Execution Container and Hosting Environment Manager.

Similar to software components in Management (Services & PaaS), these two components are also

typical of traditional PaaS software architectures. The deployed services are stored and executed in

Service Hosting & Execution Container. Hosting Environment Manager is responsible for

preparing environment for hosting conferencing services.

92 | P a g e

6.1.4 Conference Orchestration and Management

The components include Substrate Selector, Substrate Orchestration Engine, Conference

Execution Engine, Conference Scaling Decision Maker and Conference Manager. All of these

software components are novel to the proposed software architecture. Substrate Selector chooses

the most suitable conferencing IaaS, given the substrate requirements. Substrate Orchestration

Engine composes the selected substrates into a full-fledged conference. Conference Execution

Engine hosts the conferences. Conference Scaling Decision Maker monitors running conferences

and requests scaling when needed. Conference Manager receives requests from northbound

component and coordinates other subcomponents to serve the requests.

6.1.5 Operational Procedures

Based on the proposed software architecture, two procedures for a dial-in audio conference are

illustrated in this sub-section. One procedure is conferencing service development and deployment.

The other procedure pertains to conferencing service execution and only conference creation is

illustrated for brevity.

Figure 6-2 shows interactions of software components for conferencing service development and

deployment. Conferencing service provider uses Conferencing Service Development APIs to

develop the service. Once the service is developed, service provider deploys the service in

conferencing PaaS.

93 | P a g e

Service
Lifecycle
Manager

Hosting
Environment

Manager

uses APIs to develop conferencing service

Service
Management

GUI

Conferencing
Service

Provider

Service
Development

APIs

deploy

deploy conferencing service

prepare hosting environment

Service
Hosting &
Execution
Container

install runtime for the new
conferencing service

deploy the conferencing service

Figure 6-2: Interactions of software components for conferencing service development and deployment

After the dial-in audio conferencing service is started, it can receive requests from the conferencing

applications such as game applications. Figure 6-3 illustrates the interactions for creating a

conference when the service receives such a request.

94 | P a g e

Substrate
Orchestration

Engine

Conference
Execution

Engine

create conference
(API parameters)

Substrate
Selector

Conferencing
Service

running in
PaaS

Conference
Manager

Conferencing
IaaS Handler

determine necessary substrates
by syntactic matching with API
parameters provided

select the most suitable conferencing IaaSs
(info of necessary substrates)

provision substrates (info of selected conferencing IaaSs)

orchestrate conference (info of provisioned substrates)

execute orchestrated conference

Figure 6-3: Interactions of software components for creating a conference

6.2 Prototype

This subsection first presents the implemented scenario. The implementation scope and the

prototype architecture are then discussed. Next, the software tools used for prototype

implementation are described briefly.

6.2.1 Implemented Scenario

The prototype implements subset of both scenarios discussed in chapter 3 – (1) conferencing

service development and deployment and (2) conferencing service execution. The implemented

scenario includes a service provider offering dial-in audio conferencing service and a game

application consuming that service. The scenario also includes the conferencing PaaS and two

conferencing IaaSs – both providing dial-in signaling and audio mixer substrates. While

95 | P a g e

developing the game application, the developer uses dial-in audio conferencing SaaS API provided

by the conferencing service provider. The service provider uses a conferencing PaaS to develop

and deploy the dial-in audio conferencing service. During execution, the service receives request

from the game application to create and manage conferences. The conferencing PaaS provisions

substrates from the two conferencing IaaSs. The subscription to conferencing IaaSs by the

conferencing PaaS is done offline. Two use-cases are considered. In one use-case, conferencing

PaaS selects substrates from the same IaaS. In the other use-case, substrates are selected from

different IaaSs.

6.2.2 Implementation Scope

A subset of the components from the proposed software architecture is implemented in the

prototype. In Conferencing PaaS GUIs and APIs, a subset of APIs from the proposed

Conferencing Service Development APIs, which is needed to perform measurements, is

implemented. Service Management GUI is also implemented to deploy and start the service.

Substrates Support Management GUI is not implemented as we assume that conferencing PaaS

subscribes to two conferencing IaaSs for dial-in signaling and audio mixer substrates. In

Management (Services & PaaS), all components except Service SLA Manager are implemented to

host and execute the service. Service SLA Manager is not implemented as the prototype scenario

considered do not require this component.

In Conference Orchestration & Management layer, Conference Manager, Substrate Orchestration

Engine and Conference Execution Engine are implemented to create, host and execute conferences.

Substrate Selector is not implemented. Because, in one use-case, we assume that conferencing

PaaS selects both dial-in signaling and audio mixer substrates from the same IaaS. In the other use-

96 | P a g e

case, conferencing PaaS is assumed to select one IaaS for dial-in signaling substrate and the other

IaaS for audio mixer substrate. Conference Scaling Decision Maker component is not implemented

as the prototype scenario does not cover runtime scaling of conferences. However, the proposed

conference scaling algorithm is evaluated with different test cases and its performance

measurements are discussed later in this chapter.

Conferencing IaaS Handler implements a subset of Conferencing PaaS/IaaS interfaces that are

necessary for realizing the prototype scenario.

For proof-of-concept prototype, the REST requests from the game application to the dial-in audio

conferencing service to create conferences are simulated by open-source REST clients.

A colleague in Telecommunications Service Engineering (TSE) Lab, who is working on

conferencing IaaS, has implemented a stripped-down version of conferencing IaaS. This IaaS

implementation is used in the prototype.

6.2.3 Prototype Description

Figure 6-4 shows the prototype architecture. Cloud Foundry PaaS [32] is extended to implement

the conferencing PaaS prototype. Cloud Foundry provides the implementation of typical PaaS

components. The components which are specific to conferencing PaaS are implemented using

other open-source libraries and frameworks.

97 | P a g e

Figure 6-4: Prototype architecture of conferencing PaaS

Service Development APIs are implemented and exposed as a Node.js [80] module. Conferencing

service provider imports this module and uses the APIs to develop conferencing services. Service

Management GUI is reused from Cloud Foundry. The components of Management (Services &

PaaS) and Service Hosting & Execution layers are also reused from Cloud Foundry. The

conferencing service is deployed and executed in Cloud Foundry.

For Substrate Orchestration Engine and Conference Execution Engine components, open-source

Camunda tool [81] is reused. In this prototype, the platform provider orchestrates the conferences

as a BPMN workflow and stores in a workflow repository of Substrate Orchestration Engine.

Upon receiving request to create a conference, appropriate workflow is selected based on the

98 | P a g e

createConference API parameters. Since we use only dial-in audio conference in the prototype,

only one workflow was created. The workflow is configured with the selected conferencing IaaSs

and deployed in Conference Execution Engine.

Conference Manager and Conferencing IaaS Handler are implemented as REST servers using

Express.js framework [82]. Advanced REST Client [83] is used to simulate conferencing SaaS API

invocations by the game.

6.2.4 Software Tools

This section briefly discusses the software tools used in prototype implementation.

6.2.4.1 Cloud Foundry

Cloud Foundry [32] is one of the most popular free and open-source Platform-as-a-Service. We

reuse and extend it to implement the conferencing PaaS prototype. Of many languages and

frameworks that it supports for development, we use JavaScript language and Node.js runtime

[80]. For deployment, Cloud Foundry provides a command line interface named CF CLI [84] that

we reuse for service deployment. The software components in Management (Services & PaaS) and

Service Hosting & Execution layers, which we implement in conferencing PaaS prototype, are

reused from different Cloud Foundry components.

6.2.4.2 Camunda

Camunda [81] is a free and open-source implementation of BPMN engine. The Business Process

Model and Notation (BPMN) [85] is the de-facto standard for graphical representation of the

business processes or workflows. Moreover, BPMN supports orchestration of RESTful web

99 | P a g e

services with a concept of service task. In our prototype, the workflow is created graphically using

Camunda BPMN Modeler and then stored in a workflow repository. During conference

orchestration, the workflow is instantiated, configured with the selected IaaSs and then executed in

Conference Execution Container. This container is implemented by reusing Camunda BPMN

Engine, a process execution engine.

6.2.4.3 Node.js

Node.js [80] is a widely used free and open-source cross-platform JavaScript runtime. It adopts an

event-driven, asynchronous I/O approach which makes it lightweight. It is used to develop server-

side applications in JavaScript language. There are a lot of popular libraries and frameworks based

on Node.js runtime. One of them is Express.js [82]web application framework. It is very

lightweight and can be used to implement REST servers as well as clients. In conferencing PaaS

prototype, Express.js is used to develop the dial-in audio conferencing service. It is also used to

implement Conference Manager component in Conference Orchestration & Management layer

and Conferencing IaaS Handler component.

6.2.4.4 OpenStack

OpenStack is a collection of open source software projects that cloud providers can use to setup

and run their infrastructure. It has a community with researchers, developers and enterprises, with a

common goal to create simple, scalable and feature-rich infrastructure [86]. OpenStack provides

services such as compute, object storage and block storage. It also has identify service and VM

image service. It provides a graphical dashboard for managing virtual machines and networks.

100 | P a g e

6.2.4.5 SAVI testbed

Smart Applications on Virtual Network (SAVI) [87] is collaboration among Canadian industry,

academia, research and education networks. Its goal is to investigate key elements of future

application platforms. The SAVI testbed provides flexible, virtualized converged infrastructure to

support experimental research. This testbed is implemented using OpenStack. The conferencing

PaaS prototype is deployed on SAVI testbed.

6.2.4.5 Additional Software Tools

Advanced Rest Client [83] is a graphical tool used to test REST APIs. It is an extension of

Google's chrome browser. In conferencing PaaS, the game application's invocations of the

conferencing service SaaS APIs are simulated with Advanced REST client. CF NISE installer [88]

is a tool to install Cloud Foundry easily on a single machine. Since conferencing PaaS prototype is

implemented by extending Cloud Foundry, the Cloud Foundry components are installed on a

SAVI testbed VM using CF NISE installer.

6.3 Prototype Setup and Performance Measurements

This sub-section starts with a short description of the prototype setup. It then discusses the

performance metrics and the results.

6.3.1 Prototype Setup

The conferencing PaaS prototype along with conferencing IaaSs are deployed on SAVI testbed.

Conferencing PaaS prototype is deployed on two VMs. One VM hosts the Cloud Foundry

instance. The other VM hosts the conferencing PaaS-specific components (e.g., Conference

101 | P a g e

Manager, Conferencing IaaS Handler). Each of these two VMs have 8 GB RAM, 4 vCPUs, 80

GB storage and runs Ubuntu 14.04 operation system.

The conferencing IaaSs are hosted on separate VMs. The IaaSs provision the substrates

dynamically on machines with 4 GB RAM and two vCPUs running Ubuntu 14.04 LTS.

6.3.2 Performance Measurements

In this section, we first describe the performance comparison scenarios. Next, performance metrics

and the results obtained from the conferencing PaaS prototype are presented. It is noteworthy that

in the prototype setup, the conferencing PaaS and conferencing IaaSs are in the same SAVI testbed

network. In a real world scenario, they can be spread across different geographical locations. This

will add external network latency to the measurements. However, as discussed later in this sub-

section, the observations comparing between different scenarios, are not affected.

6.3.2.1 Comparison Scenarios

Three performance comparison scenarios are considered. Two of them concern cloud-based

conferencing, where conferencing PaaS is leveraged.

i) Non-cloud conferencing (NCC): Resources are allocated beforehand in this scenario.

Therefore, there may always be some idle and unutilized resources.

ii) Cloud single IaaS provider (CSIP): Conferencing PaaS selects the required substrates

for a conference from the same IaaS. It is assumed that the conferencing IaaSs host the

substrates on a single VM in this scenario.

102 | P a g e

iii) Cloud multiple IaaS provider (CMIP): Conferencing PaaS chooses substrates from

different IaaSs. Since substrates are from different IaaSs, they are hosted on separate

VMs.

6.3.2.2 Performance metrics

The following three metrics are considered. These metrics help validate that the proposed

conferencing PaaS architecture meets the requirement of QoS.

i) Conference start time: This is the time required to get a conference ready upon the

receipt of a request. It is calculated from the time conferencing service receives a

request to create a conference to the time it receives a response.

ii) Participant joining time: This is the time required to add a participant to a running

conference.

iii) Resource allocation: This is the total amount of allocated resources, such as RAM and

CPU, to accommodate all participants. This metric pertains to only cloud-based

scenarios as resources are allocated upfront in non-cloud scenario. We consider RAM

to compare resource allocation.

The above performance metrics include response time or delay of two conference runtime

operations – conference start time and participant joining time. Since cloud-based conferencing has

virtualization overhead as well as notification overhead between cloud layers, it is possible that

delay in cloud-based scenarios is higher than that in non-cloud conferencing. Therefore, it is

necessary to measure resource allocation (the third metric) to see the benefits of resource

efficiency provided by cloud-based conferencing.

103 | P a g e

6.3.2.3 Performance Results

Figure 6-5 shows the comparison of conference start times. NCC takes the least time to start a new

conference because it does not have virtualization overhead. Cloud-based scenarios (CSIP and

CMIP) take longer because VMs need to be instantiated for substrates. Since substrates need to

connect over network in CMIP, it takes more time than in CSIP.

Figure 6-5: Average conference start time

Comparison of participant joining time is depicted in figure 6-6. Participant joining time is the

least in NCC. Cloud-based scenarios take more time because of the notification overhead between

IaaSs, PaaS and the game server. When a new participant joins the conference, conferencing IaaS

notifies conferencing PaaS, which forwards the notification to the game server. However, this is a

one-time operation for a participant and does not contribute to the participant’s communication

delay. Moreover, based on International Telecommunication Union (ITU) standards [89], this time

is acceptable as long as it is below 400 msec. Participant joining time of the two cloud-based

scenarios are close as IaaSs can notify PaaS in parallel. This shows that the proposed architecture

satisfies the QoS requirement.

104 | P a g e

Figure 6-6: Average participant joining time

Although in cloud-based scenarios, conference start time and participant joining time are more

than those in NCC, it helps to achieve resource efficiency and reduce costs. Figure 6-7 shows the

allocated amount of RAM for a conference with between 1 and 3000 participants. To simulate

conference scaling, conference size is increased by 200 participants every 10 minutes. The results

are based on the observed resource usage per participant. IaaSs are assumed to scale up and out

VMs while maintaining QoS requirements. In NCC, there are always some idle and non-utilized

resources because of upfront resource provisioning. Hence, it is not shown in the figure. CSIP

scales better than CMIP (i.e. allocates less resources) for smaller conferences whereas CMIP wins

for bigger conferences, because in CMIP, substrates are hosted on separate VMs as they are chosen

from different IaaSs. For smaller conferences, it leads to more VMs and more non-utilizable

resources (e.g., resources consumed by operating system) than in CSIP. However, with the

increase of conference size, CMIP achieves better scalability because of the less VMs and more

utilizable resources than in CSIP.

105 | P a g e

Figure 6-7: Resource Allocation Evaluation

6.4 Conference Scaling Algorithm and Performance Measurements

This section starts with a discussion of implementation of conference scaling algorithms (Dynamic

Programming algorithm and Greedy algorithm). Next, the performance comparison metrics and the

results are presented.

6.4.1 Algorithm Implementation and Test Sets

The conference scaling algorithms are implemented in C++. A few C++ 11 standard libraries, such

as chrono, are used. Therefore, C++ 11 standard is enabled while compiling the implementation

using GNU Compiler Collection (gcc).

Five large test sets, which represent predicted number of participants provided by the assumed

prediction model, are generated. Each test set consists of 100 time slots. The values of predicted

number of participants at different time slots are chosen using random integer generator.

0

2000

4000

6000

8000

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801

R
A

M
 (

M
B

)

Number of Participants

CSIP CMIP

106 | P a g e

6.4.2 Performance Metrics

In chapter 5, we propose a dynamic programming algorithm that produces optimal result i.e.,

minimum waste of resources in terms of number of participants. We also propose a faster greedy

algorithm but it produces suboptimal result. We consider the following three metrics to compare

these two algorithms:

i) Effects of scaling time lag (delta) on waste of resources in terms of number of

participants: If the time lag (delta) between consecutive scaling requests increases,

less number of scaling requests can be made. With decreased scaling requests, the

elasticity also decreases. Therefore, with increase of time lag value, waste of resources

is expected to increase for both algorithms.

ii) Elastic allocation of conference sizes: As the predicted number of participants varies

over time, the conference sizes allocated by the proposed dynamic programming and

the greedy algorithms should also increase and decrease accordingly.

iii) Running time: The time complexity of the proposed DP algorithm is polynomial

whereas that of the proposed greedy algorithm is linear. This should be reflected in the

graph when we plot the calculated running time of the algorithms. For each test set, we

calculate the running times in milliseconds for both algorithms. Each individual test set

is divided into 10 parts, with increment of 10 time slots.

In chapter 3, we derived four requirements on conference scaling algorithm. Among the three

metrics above, the first two metrics relate to the third requirement of minimizing waste of

resources. The third metric (running time) pertains to the fourth requirement of acceptable

107 | P a g e

response time. We do not need performance metrics for the first two requirements. Because the

outputs of the proposed algorithms include when to scale (future time slots) and how much to

scale (conference size to allocate). They also consider scaling time lag while scheduling scaling

requests.

6.4.3 Performance Results

The results obtained from evaluating the conferencing algorithms are described below:

i) Effects of scaling time lag (𝜹) on waste of resources in terms of number of

participants: Figure 6-8 shows that, with increase of scaling time lag, waste of

resources increase for both algorithms. This observation is aligned with the expectation

for this metric discussed in the previous sub-section. It also shows that the greedy

algorithm, as a result of being sub-optimal, leads to more waste of resources.

Figure 6-8: Effects of scaling time lag (δ) on waste of resources in terms of number of participants

108 | P a g e

Figure 6-9 shows the difference in resource wastage between the DP and the greedy

algorithm. The difference does not follow any particular pattern because minimization

of resource wastage in greedy algorithm is affected by the value of delta as well as the

variable trends of P, predicted number of participants. Note that the proposed greedy

algorithm tries to minimize resource waste around the local maxima and minima,

taking time lag 𝛿 value into consideration. However, when 𝛿 is 2, the difference is very

small compared to higher 𝛿 values. Because with delta of 2, it is possible to scale at

every other time slot, which leads to greater optimization by both algorithms and results

into very small difference.

Figure 6-9: Difference in waste of resources between DP and greedy algorithms

ii) Elastic allocation of conference sizes: Figure 6-10 and 6-11 derived from

measurements demonstrate that the proposed algorithms ensure elasticity.

Figure 6-12 shows the comparison of allocated conference sizes between DP and

greedy algorithms. Since DP algorithm produces the optimal result, allocated

109 | P a g e

conference size by DP algorithm is less than that by greedy algorithm most of the time.

However, when DP algorithm allocates more than the greedy one, it does so to avoid

local optimization, while striving to achieve global optimization of wasted resource.

For example, in figure 6-12, greedy algorithm allocates less than DP between time slots

25 and 30. Between time slots 20 and 40, predicted number of participants has three

spikes at time slots 25, 32 and 38 (referring to figure 6-10 and 6-11). The greedy

algorithm is myopic and minimizes waste locally for the first spike. In doing so, it

could not optimize the subsequent spikes due to time lag constraint. On the other hand,

the DP algorithm optimizes globally, leading to less waste of resources in the long

term.

Figure 6-10: Elastic conference size allocation by DP algorithm

110 | P a g e

Figure 6-11: Elastic conference size allocation by greedy algorithm

Figure 6-12: Comparison of elastic conference size allocation between DP and greedy algorithms

iii) Running time: Figure 6-13 derived from the measurements of running time

demonstrates the proposed greedy algorithm is polynomial and the greedy algorithm is

linear. The X-axis is the number of time slots and the Y-axis is the running time. The

111 | P a g e

vertical bar shows the confidence interval with 95% confidence level. The figure shows

that, with increase of time slots, the running time increases according to the time

complexities of the algorithms.

Figure 6-13: Comparison of running time between DP and greedy algorithms

The above performance results demonstrate the trade-offs between the proposed DP and greedy

algorithms for conference scaling. While the greedy algorithm is faster, the DP algorithm produces

better scaling. Waste of resources incurred by the schedule of greedy algorithm depends on two

factors – value of time lag and trend of predicted number of participants over time. Future works

with the greedy algorithm includes adding more heuristics and determining an upper bound of

waste of resources for the greedy algorithm.

112 | P a g e

6.5 Chapter Summary

In this chapter, we have presented software architecture of conferencing PaaS. We have explained

the software components and their interactions for two scenarios. We have also discussed the

prototype and the software tools used to implement the prototype. Then we presented the

performance measurements of the prototype with the comparison scenarios, performance metrics

and results. After that, we have evaluated performances of the proposed conference scaling

algorithms. The performances of DP and greedy algorithms for conference scaling are compared.

In the next chapter, we shall summarize contribution of this thesis and then propose several future

research directions.

113 | P a g e

Chapter 7

7. Conclusion and Future Work

In this chapter, we summarize the contributions of this thesis. We also provide several research

directions for future works on conferencing PaaS.

7.1 Contribution Summary

Multimedia Conferencing is an important part of a wide range of conferencing applications such as

massively multi-player online games and distance learning applications. Conferencing application

developers can use third-party conferencing services (e.g., dial-out video conference, dial-in audio

conference) to speed up development and to save cost. However, conferencing service

provisioning (i.e. service development, deployment and management) still remains very difficult

for the conferencing service providers. One challenge is that service providers need to know the

complicated low-level details of conferencing technologies, protocols and their interactions.

Another challenge is elastic resource provisioning. Participants join and leave during the

conference. In order to achieve cost efficiency, it is critical to allocate and deallocate resources in

an elastic manner.

This thesis relies on a business model from the state of the art. In addition to the conventional roles

broker and connectivity provider, the business model followed consists of the following roles:

conferencing service provider, conferencing platform provider, conferencing infrastructure

provider, conferencing substrate provider. This thesis has focused on conferencing PaaS provider

role. It is assumed that conferencing infrastructure provider also plays the role of substrate

114 | P a g e

provider. From a motivating scenario for cloud-based conferencing service provisioning, we have

derived a set of requirements on the conferencing PaaS. We have also derived requirements on

conference scaling algorithm, which conferencing PaaS performs to scale conferences in an elastic

manner. We have reviewed the state of the art and evaluated them against the requirements. We

have found that none of them meets all of our requirements.

We have proposed a conferencing PaaS architecture that facilitates conferencing service

provisioning. As part of this architecture, a set of high-level service development APIs for the

conferencing service providers is also proposed. Thus, the proposed architecture tackles the

challenge of service providers to master low-level conferencing details. For another challenge

elastic conference scaling, we have designed two algorithms. One of them produces optimal

scheduling of scaling requests, given the predicted number of participants for a certain period of

time. The other algorithm is faster but gives suboptimal scheduling.

We have designed a software architecture based on the proposed general architecture of

conferencing PaaS. A prototype is implemented to validate the architecture. The implemented

scenario includes a conferencing service provider offering dial-in audio conferencing service, a

game application consuming that service, a conferencing PaaS and two conferencing IaaSs

providing dial-in signaling and audio mixer substrates. For performance evaluation, three

comparison scenarios (non-cloud conferencing and two cloud-based conferencing scenarios) have

been considered. Performance results show resource efficiency of cloud-based conferencing with

acceptable penalty in response times. The proposed conference scaling algorithms are implemented

and evaluated with large test sets. They are compared for different scenarios (different time lag

constraint, different sizes of test set). Evaluation shows that both of them ensures elastic

conference scaling with different trade-offs (speed versus optimal result).

115 | P a g e

7.2 Future Work

In the proposed conferencing PaaS architecture, management of conferencing service SLA is

included as part of a bigger management component. One interesting research direction is to

explore the SLA issues specific to conferencing services and to extend the proposed architecture.

Conferencing substrates are offered as web services by conferencing IaaS providers. This thesis

assumes that subscription of different substrate services by the conferencing PaaS provider is done

offline. A future work is to integrate substrate discovery into the conferencing PaaS architecture.

After executing conferencing services in the PaaS, the service providers publish their services for

the conferencing application developers. In future, the issues involved in automatic publication of

executed conferencing services can be investigated and the conferencing PaaS architecture can be

extended for that.

Before creating a requested conference, conferencing PaaS selects the most suitable IaaSs that

provides the necessary substrates. A future work is to investigate existing cloud service selection

algorithms that can be reused for substrate selection. There are a few future works related to the

proposed conference scaling algorithms. They are relaxing assumption of time lag constraint being

a multiple of time slot duration, adding more heuristics to improve the proposed greedy algorithm

and deriving upper bound for the waste of resources.

While designing conference scaling algorithms, this thesis assumes that a prediction model

provides the future number of participants in a conference. A future work is to investigate the

issues involved in designing suitable prediction models for different types of conferencing.

116 | P a g e

Appendix

1. Detailed Description of the Proposed Greedy Algorithm for Conference Scaling

The main algorithm corresponds directly to the steps in high-level view of the algorithm.

GREEDY-OPTIMIZATION-SUBOPTIMAL (𝑃, 𝑛, 𝛿)

1. (𝑠𝑙𝑜𝑝𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠) = DIVIDE-INTO-SLOPES(𝑃, 𝑛, 𝛿)

2. 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = SCHEDULE-EXTREMA(𝑃, 𝑛, 𝛿, 𝑠𝑙𝑜𝑝𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠)

3. 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = SCHEDULE-NAIVE(𝑃, 𝑛, 𝛿, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

Each step of this main algorithm uses some other procedures, which will be described next. The

first procedure is DIVIDE-INTO-SLOPES.

DIVIDE-INTO-SLOPES (𝑃, 𝑛, 𝛿)

1. Let 𝑠𝑙𝑜𝑝𝑒𝑠 be the list of slopes found in 𝑃

2. 𝑠𝑡𝑎𝑟𝑡 = 𝛿 + 1

3. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠 = 0

4. Until 𝑠𝑡𝑎𝑟𝑡 < 𝑛

5. (𝑢𝑝𝑤𝑎𝑟𝑑_𝑠𝑙𝑜𝑝𝑒_𝑓𝑜𝑢𝑛𝑑, 𝑒𝑛𝑑) = CHECK-UPWARD-SLOPE(𝑠𝑡𝑎𝑟𝑡, 𝑃, 𝑛)

6. If upward slope is not found

7. (𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑_𝑠𝑙𝑜𝑝𝑒_𝑓𝑜𝑢𝑛𝑑, 𝑒𝑛𝑑) = CHECK-DOWNWARD-SLOPE(𝑠𝑡𝑎𝑟𝑡, 𝑃, 𝑛)

8. Add (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) to list 𝑠𝑙𝑜𝑝𝑒𝑠

9. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠 + 1

10. 𝑠𝑡𝑎𝑟𝑡 = 𝑒𝑛𝑑
11. Return (𝑠𝑙𝑜𝑝𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠)

DIVIDE-INTO-SLOPES iterates over the predicted number of participants, looking for upward or

downward slopes. After finding a slope, it adds the slope’s starting and ending time slot number to

the list. CHECK-UPWARD-SLOPE and CHECK-DOWNWARD-SLOPE procedures are as

follows:

CHECK-UPWARD-SLOPE (𝑠𝑡𝑎𝑟𝑡, 𝑃, 𝑛)

1. 𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡 + 1
2. Until 𝑒𝑛𝑑 ≤ 𝑛 and 𝑃[𝑒𝑛𝑑] ≥ 𝑃[𝑒𝑛𝑑 − 1]

117 | P a g e

3. 𝑒𝑛𝑑 = 𝑒𝑛𝑑 + 1
4. If 𝑒𝑛𝑑 > 𝑠𝑡𝑎𝑟𝑡 + 1

5. Return (𝑦𝑒𝑠, 𝑒𝑛𝑑 − 1)

6. else return (𝑛𝑜, −1)

CHECK-DOWNWARD-SLOPE (𝑠𝑡𝑎𝑟𝑡, 𝑃, 𝑛)

1. 𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡 + 1
2. Until 𝑒𝑛𝑑 ≤ 𝑛 and 𝑃[𝑒𝑛𝑑] < 𝑃[𝑒𝑛𝑑 − 1]

3. 𝑒𝑛𝑑 = 𝑒𝑛𝑑 + 1
4. If 𝑒𝑛𝑑 > 𝑠𝑡𝑎𝑟𝑡 + 1

5. Return (𝑦𝑒𝑠, 𝑒𝑛𝑑 − 1)

6. else return (𝑛𝑜, −1)

Both of the above procedures differ only on line 8. CHECK-UPWARD-SLOPE checks for non-

decreasing sequence whereas CHECK-DOWNWARD-SLOPE does for decreasing sequence.

After dividing the time slots into a list of slopes, the next step is to schedule the time slots near

extrema. SCHEDULE-EXTREMA performs this task and is described below:

SCHEDULE-EXTREMA (𝑃, 𝑛, 𝛿, 𝑠𝑙𝑜𝑝𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠)

1. Initialize a list 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[1 … 𝑛] with 𝑛𝑖𝑙

2. 𝑚𝑖𝑛_𝑙𝑒𝑓𝑡 = 𝛿 + 1

3. 𝑚𝑖𝑛_𝑟𝑖𝑔ℎ𝑡 =
(𝛿+1)

2

4. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 = 1
5. Until 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 < 𝑡𝑜𝑡𝑎𝑙_𝑠𝑙𝑜𝑝𝑒𝑠

6. 𝑙𝑒𝑓𝑡 = 𝑠𝑙𝑜𝑝𝑒𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒]

7. 𝑟𝑖𝑔ℎ𝑡 = 𝑠𝑙𝑜𝑝𝑒𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 + 1]

8. 𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑓𝑡 = 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑 − 𝑙𝑒𝑓𝑡. 𝑠𝑡𝑎𝑟𝑡 + 1

9. 𝑡𝑜𝑡𝑎𝑙_𝑟𝑖𝑔ℎ𝑡 = 𝑟𝑖𝑔ℎ𝑡. 𝑒𝑛𝑑 − 𝑟𝑖𝑔ℎ𝑡. 𝑠𝑡𝑎𝑟𝑡 + 1

10. If 𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑓𝑡 ≥ 𝑚𝑖𝑛_𝑙𝑒𝑓𝑡 and 𝑡𝑜𝑡𝑎𝑙_𝑟𝑖𝑔ℎ𝑡 ≥ 𝑚𝑖𝑛_𝑟𝑖𝑔ℎ𝑡

11. 𝑥 = COMPUTE-WASTE-NAIVE(𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑)

12. 𝑦 = COMPUTE-WASTE-EXTREMA(𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑)

13. If 𝑦 < 𝑥

14. 𝑚𝑖𝑑_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 = 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑

15. 𝑙𝑒𝑓𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 = 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑 −
𝛿

2

16. 𝑟𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 = 𝑙𝑒𝑓𝑡. 𝑒𝑛𝑑 + (
𝛿+1

2
) − 1

17. 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑙𝑒𝑓𝑡𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡
– 𝛿] =

𝑚𝑎𝑥(𝑃[𝑚𝑖𝑑_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡], 𝑃[𝑙𝑒𝑓𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡], 𝑃[𝑟𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡])

18. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑙𝑜𝑝𝑒 + 1

118 | P a g e

19. Return 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

Each extrema consists of a left slope and a right slope. For example, in case of local maxima, there

is an upward slope on the left and a downward slope on the right. A local maxima is followed by a

local minima and vice versa. SCHEDULE-EXTREMA iterates over each slope, taking the current

slope as the left slope and the next one as the right slope. In order to deal with edge cases, such as

sharp rise or fall after extrema value, it also assesses the waste of resources and then schedules

only if the waste is optimized using extrema optimization.

The helper procedures COMPUTE-WASTE-NAÏVE and COMPUTE-WASTE-EXTREMA are

straight-forward. In order to compute total waste of resources at the end of a slope, these just add

the difference with the maximum number of participants. These two procedures are given below:

COMPUTE-WASTE-NAÏVE (𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑)

1. 𝑠𝑡𝑎𝑟𝑡 = 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑 − 𝛿 + 1

2. 𝑒𝑛𝑑 = 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑

3. 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑚𝑎𝑥(𝑃[𝑠𝑡𝑎𝑟𝑡], 𝑃[𝑒𝑛𝑑])

4. 𝑤𝑎𝑠𝑡𝑒 = 0

5. for 𝑖 = 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑

6. 𝑤𝑎𝑠𝑡𝑒 = 𝑤𝑎𝑠𝑡𝑒 + (𝑙𝑎𝑟𝑔𝑒𝑠𝑡 − 𝑃[𝑖])

7. Return 𝑤𝑎𝑠𝑡𝑒

COMPUTE-WASTE-EXTREMA (𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑)

1. 𝑚𝑖𝑑 = 𝑙𝑒𝑓𝑡_𝑠𝑙𝑜𝑝𝑒_𝑒𝑛𝑑

2. 𝑠𝑡𝑎𝑟𝑡 = 𝑚𝑖𝑑 −
𝛿

2

3. 𝑒𝑛𝑑 = 𝑚𝑖𝑑 + (
𝛿+1

2
) −1

4. 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑚𝑎𝑥(𝑃[𝑠𝑡𝑎𝑟𝑡], 𝑃[𝑚𝑖𝑑], 𝑃[𝑒𝑛𝑑])

5. 𝑤𝑎𝑠𝑡𝑒 = 0
6. For 𝑖 = 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑

7. 𝑤𝑎𝑠𝑡𝑒 = 𝑤𝑎𝑠𝑡𝑒 + (𝑙𝑎𝑟𝑔𝑒𝑠𝑡 − 𝑃[𝑖])

8. Return 𝑤𝑎𝑠𝑡𝑒

After scheduling the local extrema, the last step is to schedule the remaining time slots using the

naïve scaling approach. SCHEDULE-NAIVE procedure performs this and is described below:

119 | P a g e

SCHEDULE-NAIVE (𝑃, 𝑛, 𝛿, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

1. 𝑓𝑖𝑟𝑠𝑡 = NEXT-SCHEDULED-TIME-SLOT(1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛)

2. If 𝑓𝑖𝑟𝑠𝑡 is 𝑛𝑖𝑙

3. 𝑚 = 𝑛 − 𝛿

4. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =
𝑚+𝛿−1

𝛿

5. SCHEDULE-INTERVAL(𝑃, 𝑛, 𝛿, 𝛿 + 1, 𝑛, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

6. else SCHEDULE-BEFORE-FIRST(𝑃, 𝑛, 𝛿, 𝑓𝑖𝑟𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

7. 𝑙𝑎𝑠𝑡 = SCHEDULE-BEFORE-LAST(𝑃, 𝑛, 𝛿, 𝑙𝑒𝑓𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

8. SCHEDULE-AFTER-LAST(𝑃, 𝑛, 𝛿, 𝑙𝑎𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

SCHEDULE-NAIVE procedure finds the first time slot at which a scaling request has been

scheduled. If there is none, it means no scaling request has been scheduled using extrema

optimization approach. Therefore, the whole conference is scheduled using the naïve scaling

approach. On the other hand, if a scheduled time slot 𝑓𝑖𝑟𝑠𝑡 is found, the naïve scaling approach is

applied in three steps. First, schedules are made to accommodate the beginning time slots till

𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1. Second, the time slots between the first and the last schedule, which are not

accommodated yet, are covered. Last, the time slots after the last schedule are accommodated.

Next, the helper procedures used in SCHEDULE-NAIVE are described. The first helper procedure

is NEXT-SCHEDULED-TIME-SLOT. Given the starting time slot, it iterates until it either finds a

scheduled time slot or hits the end. The complete procedure is given below.

NEXT-SCHEDULED-TIME-SLOT (𝑠𝑡𝑎𝑟𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛)

1. for 𝑖 = 𝑠𝑡𝑎𝑟𝑡 to 𝑛

2. If 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑖] is not 𝑛𝑖𝑙

3. Return 𝑖

4. Return 𝑛𝑖𝑙

Given total scaling requests, a starting and an ending time slots, the next helper procedure

SCHEDULE-INTERVAL schedules the given number of scaling requests between the starting and

the ending time slots using the naïve scaling approach. The complete SCHEDULE-INTERVAL

procedure is given below.

120 | P a g e

SCHEDULE-INTERVAL (𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

1. for 𝑖 = 1 to 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

2. 𝑥 = 𝑠𝑡𝑎𝑟𝑡
3. If this is the last scaling request

4. 𝑦 = 𝑒𝑛𝑑
5. Else 𝑦 = 𝑠𝑡𝑎𝑟𝑡 + 𝛿 − 1

6. 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑠𝑡𝑎𝑟𝑡 − 𝛿] = MAX-PARTICIPANTS(𝑃, 𝑛, 𝑥, 𝑦)

7. 𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑡𝑎𝑟𝑡 + 𝛿

On line 6, SCHEDULE-INTERVAL procedure uses another helper procedure MAX-

PARTICIPANTS which calculates the maximum predicted participant, given a range of time slots.

This helper procedure is straight-forward and is given below:

MAX-PARTICIPANTS (𝑃, 𝑛, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)

1. 𝑚𝑎𝑥 = −1

2. for 𝑖 = 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑

3. if 𝑃[𝑖] > 𝑚𝑎𝑥

4. 𝑚𝑎𝑥 = 𝑃[𝑖]
5. Return 𝑚𝑎𝑥

The next important helper procedure used by SCHEDULE-NAIVE is SCHEDULE-BEFORE-

FIRST. It is described below:

SCHEDULE-BEFORE-FIRST (𝑃, 𝑛, 𝛿, 𝑓𝑖𝑟𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

1. 𝑚_𝑡𝑒𝑚𝑝 = 𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1

2. 𝑚 = 𝑚_𝑡𝑒𝑚𝑝 − 𝛿

3. If 𝑚 ≥ 𝛿

4. 𝑠𝑡𝑎𝑟𝑡 = 𝛿 + 1
5. 𝑒𝑛𝑑 = 𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1

6. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =
𝑚

𝛿

7. SCHEDULE-INTERVAL(𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

SCHEDULE-BEFORE-FIRST procedure schedules the targeted time slots by reusing helper

procedure SCHEDULE-INTERVAL. Line 1 and 2 calculates the number of time slots that need to

be scheduled. The first scaling request is scheduled on time slot 𝑓𝑖𝑟𝑠𝑡, meaning this scaling will

accommodate time slots from 𝑓𝑖𝑟𝑠𝑡 + 𝛿. Therefore, SCHEDULE-BEFORE-FIRST procedure

121 | P a g e

needs to take care of time slots up to 𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1 (line 1). However, the initial conference size

covers the first 𝛿 time slots (line 2). Because of the time lag constraint, there must be at least 𝛿

time slots that need to be scheduled. Otherwise, those time slots have to be accommodated by the

initial conference size. This is checked on line 3. Line 4 sets the starting time slot for the interval.

The first 𝛿 time slots are accommodated by the initial conference size. Therefore, the starting time

slot is 𝛿 + 1. As discussed already, the ending time slot is 𝑓𝑖𝑟𝑠𝑡 + 𝛿 − 1 and set on line 5. Line 6

calculates the total number of required scaling requests. Line 7 uses SCHEDULE-INTERVAL to

schedule scaling requests within the given range of time slots.

Another important helper procedure used by SCHEDULE-NAIVE is SCHEDULE-AFTER-LAST.

It is given below:

SCHEDULE-AFTER-LAST (𝑃, 𝑛, 𝛿, 𝑙𝑎𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

1. 𝑚 = 𝑛 − (𝑙𝑎𝑠𝑡 + 2 ∗ 𝛿) + 1

2. If 𝑚 > 0

3. 𝑠𝑡𝑎𝑟𝑡 = 𝑙𝑎𝑠𝑡 + 2 ∗ 𝛿

4. 𝑒𝑛𝑑 = 𝑛

5. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =
𝑚+𝛿−1

𝛿

6. SCHEDULE-INTERVAL(𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

The last time slot 𝑙𝑎𝑠𝑡, which has a scaling request scheduled, accommodates time slots from

𝑙𝑎𝑠𝑡 + 𝛿 to 𝑙𝑎𝑠𝑡 + 2 ∗ 𝛿 − 1. SCHEDULE-AFTER-LAST procedure schedules time slots

from 𝑙𝑎𝑠𝑡 + 2 ∗ 𝛿 to 𝑛, where 𝑛 is the total number of time slots. Line 1 calculates the number of

time slots that need to be scheduled. If there is at least one time slot, line 3 and 4 sets the starting

and the ending time slots. Line 5 calculates the total scaling requests required. The remaining time

slots 𝑚 may not be evenly divisible by 𝛿. This means that we may have time slots fewer than 𝛿 at

the end, which should be accommodated as well. That’s why 𝛿 − 1 is added to 𝑚 on line 5 to

round up to the nearest total scaling requests.

122 | P a g e

The last helper procedure used in SCHEDULE-NAIVE is SCHEDULE-BEFORE-LAST. Given

the first time slot which is scheduled by the extrema optimization approach, it iterates forward till

the last time slot scheduled by SCHEDULE-EXTREMA. While performing iteration, it schedules

the time slots which are not accommodated yet. The complete SCHEDULE-BEFORE-LAST

procedure is described below:

SCHEDULE-BEFORE-LAST (𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

1. 𝑙𝑒𝑓𝑡 = 𝑠𝑡𝑎𝑟𝑡

2. 𝑟𝑖𝑔ℎ𝑡 = NEXT-SCHEDULED-TIME-SLOT(𝑙𝑒𝑓𝑡 + 1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛)

3. Until 𝑟𝑖𝑔ℎ𝑡 is not 𝑛𝑖𝑙

4. 𝑚 = (𝑟𝑖𝑔ℎ𝑡 + 𝛿 − 1) − (𝑙𝑒𝑓𝑡 + 2 ∗ 𝛿) + 1

5. If 𝑚 > 0

6. If 𝑚 ≥ 𝛿

7. 𝑥 = 𝑙𝑒𝑓𝑡 + 2 ∗ 𝛿

8. 𝑦 = 𝑟𝑖𝑔ℎ𝑡 + 𝛿 − 1

9. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =
𝑦−𝑥+1

𝛿

10. SCHEDULE-INTERVAL(𝑃, 𝑛, 𝛿, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

11. Else

12. 𝑥 = 𝑙𝑒𝑓𝑡 + 𝛿

13. 𝑦 = 𝑟𝑖𝑔ℎ𝑡 + 𝛿 − 1

14. 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑙𝑒𝑓𝑡] = MAX-PARTICIPANTS(𝑃, 𝑛, 𝑥, 𝑦)

15. 𝑙𝑒𝑓𝑡 = 𝑟𝑖𝑔ℎ𝑡

16. 𝑟𝑖𝑔ℎ𝑡 = NEXT-SCHEDULED-TIME-SLOT(𝑙𝑒𝑓𝑡 + 1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛)

17. Return 𝑙𝑒𝑓𝑡

During each iteration, SCHEDULE-BEFORE-LAST procedure takes two consecutive time

slots 𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡 scheduled by SCHEDULE-EXTREMA procedure. Then it calculates the

number of time slots which are not accommodated yet. If more than 𝛿 time slots need to be

accommodated, new scaling requests has to be scheduled. For fewer than 𝛿 time slots, the scaling

request scheduled on the 𝑙𝑒𝑓𝑡 has to be updated.

Line 1 and 2 sets the initial values of 𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡. Lines 3 to 16 iterates over the scaling

requests scheduled by SCHEDULE-EXTREMA. Line 4 calculates the number of time slots that

123 | P a g e

are not accommodated by SCHEDULE-EXTREMA. Schedule at time slot 𝑙𝑒𝑓𝑡 covers time slots

from 𝑙𝑒𝑓𝑡 + 𝛿 to 𝑙𝑒𝑓𝑡 + 2 ∗ 𝛿 − 1. Schedule at time slot 𝑟𝑖𝑔ℎ𝑡 covers time slots starting

from 𝑟𝑖𝑔ℎ𝑡 + 𝛿. Therefore, time slots from 𝑙𝑒𝑓𝑡 + 2 ∗ 𝛿 to 𝑟𝑖𝑔ℎ𝑡 + 𝛿 − 1 need to be

accommodated. If more than 𝛿 time slots need to be accommodated, lines 7 to 10 add new scaling

requests to the schedule. Otherwise, it is not possible to add a new scaling request due to the time

lag constraint. So, lines 12 to 14 updates the schedule on the 𝑙𝑒𝑓𝑡.

After SCHEDULE-EXTREMA and SCHEDULE-NAIVE procedures schedules scaling requests,

the initial conference size can be calculated easily. INITIAL-CONFERENCE-SIZE procedure

returns the initial size. It finds the first time slot 𝑓𝑡𝑠 at which a scaling request is scheduled. Then it

just checks the maximum participants from the first time slot to 𝑓𝑡𝑠 + 𝛿 − 1. The complete

INITIAL-CONFERENCE-SIZE procedure is given below:

INITIAL-CONFERENCE-SIZE(𝑃, 𝑛, 𝛿, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)

1. 𝑓𝑡𝑠 = NEXT-SCHEDULED-TIME-SLOT(1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑛)

2. 𝑠𝑖𝑧𝑒 = MAX-PARTICIPANTS(𝑃, 𝑛, 1, 𝑓𝑡𝑠 + 𝛿 − 1)

3. Return 𝑠𝑖𝑧𝑒

2. Time Complexity Analysis of the Proposed Greedy Algorithm

In order to derive the time complexity of the greedy algorithm GREEDY-OPTIMIZATION-

SUBOPTIMAL, the time complexities of the used procedures are determined first. Figure 5-5

shows the call graph of GREEDY-OPTIMIZATION-SUBOPTIMAL algorithm and figure 5-6

shows the call graph for SCHEDULE-NAIVE procedure. Following a bottom-up approach, time

complexities of the procedures in figure 5-5 will be determined first. Next, the procedures in figure

5-6 will be determined.

124 | P a g e

Figure A-1: Call graph of GREEDY-OPTIMIZATION-SUBOPTIMAL algorithm

Figure A-2: Call graph of SCHEDULE-NAIVE procedure

Both CHECK-UPWARD-SLOPE and CHECK-DOWNWARD-SLOPE iterates at most (𝑛 −

𝑠𝑡𝑎𝑟𝑡) times, which gives their running time 𝑂(𝑛). DIVIDE-INTO-SLOPES procedure iterates

from lines 4 to 10. However, at line 10, increment in iteration is a direct result of checking slopes

at lines 5 and 7. Since the iteration counter 𝑠𝑡𝑎𝑟𝑡 jumps from one slope to the next, DIVIDE-

INTO-SLOPES iterates at most n times. Therefore, the runtime complexity is 𝑂(𝑛).

125 | P a g e

Both COMPUTE-WASTE-NAIVE and COMPUTE-WASTE-EXTREMA procedures iterate at

most 𝛿 times. So, their runtime complexity is 𝑂(𝛿). SCHEDULE-EXTREMA iterates over each

slope from lines 5 to 18. On line 11 and 12, COMPUTE-WASTE-NAIVE and COMPUTE-

WASTE-EXTREMA procedures are used, which for each iteration, contributes 2𝛿 to runtime

complexity. Given 𝑛 time slots and time lag 𝛿, maximum number of slopes can be
𝑛

𝛿
. So the time

complexity of SCHEDULE-EXTREMA is 𝑂 ((
𝑛

𝛿
) ∗ 2𝛿) = 𝑂(2𝑛) = 𝑂(𝑛).

To derive the time complexity of SCHEDULE-NAIVE, we use call graph in figure 5-6. NEXT-

SCHEDULED-TIME-SLOT iterates at most (𝑛 − 𝑠𝑡𝑎𝑟𝑡 + 1) times. So, its runtime complexity

is 𝑂(𝑛). MAX-PARTICIPANTS iterates at most (𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡 + 1) times. So, its runtime

complexity is 𝑂(𝑛).

SCHEDULE-INTERVAL iterates for 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 times. Given 𝑛 time slots and time

lag 𝛿, the maximum number of scaling requests possible is
𝑛

𝛿
. For each iteration, the call to MAX-

PARTICIPANTS(𝑃, 𝑛, 𝑥, 𝑦) contributes 2𝛿 to runtime complexity, because (𝑦 − 𝑥 + 1) < 2𝛿. So,

the time complexity of SCHEDULE-INTERVAL is 𝑂 ((
𝑛

𝛿
) ∗ 2𝛿) = 𝑂(2𝑛) = 𝑂(𝑛).

SCHEDULE-BEFORE-FIRST and SCHEDULE-AFTER-LAST procedures do not have iteration

and uses SCHEDULE-INTERVAL. Therefore, their time complexities will be the same as

SCHEDULE-INTERVAL, which is 𝑂(𝑛).

SCHEDULE-BEFORE-LAST procedure iterates only over the time slots scheduled by

SCHEDULE-EXTREMA. Maximum number of such time slots can be the maximum number of

slopes. During each iteration, SCHEDULE-BEFORE-LAST procedure uses either SCHEDULE-

126 | P a g e

INTERVAL or MAX-PARTICIPANTS procedure. In either case, the time slots not

accommodated by SCHEDULE-EXTREMA in-between 𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡 (lines 7-8 and lines 12-

13) are iterated. Then, the iteration jumps to the next slope (line 15). Thus, call to SCHEDULE-

INTERVAL or MAX-PARTICIPANTS contributes at most 𝑛 to the runtime complexity over all

iterations. However, the call to NEXT-SCHEDULED-TIME-SLOT procedure costs another full

iteration from left to right time slot, contributing n to the runtime complexity over all iterations. As

NEXT-SCHEDULED-TIME-SLOT, SCHEDULE-INTERVAL and MAX-PARTICIPANTS are

called in the same iteration, the runtime complexity will be added. Therefore, the complexity of

SCHEDULE-BEFORE-LAST procedure is 𝑂(𝑛 + 𝑛) = 𝑂(2𝑛) = 𝑂(𝑛).

SCHEDULE-NAIVE uses NEXT-SCHEDULED-TIME-SLOT, SCHEDULE-INTERVAL,

SCHEDULE-BEFORE-FIRST, SCHEDULE-AFTER-LAST and SCHEDULE-BEFORE-LAST

procedures without any iteration. Therefore, its time complexity is the maximum of the complexity

of the procedures, which is 𝑂(𝑛).

Now that we know the runtime complexity of all three steps of GREEDY-OPTIMIZATION-

SUBOPTIMAL algorithm, we can derive its complexity. The algorithm uses the main steps

without any iteration. The complexity is then the maximum of the complexity of the main steps,

which is 𝑂(𝑛).

127 | P a g e

Bibliography

[1] R. H. Glitho, “Cloud-based multimedia conferencing: Business model, research agenda, state-

of-the-art,” in Commerce and Enterprise Computing (CEC), 2011 IEEE 13th Conference on,

2011, pp. 226–230.

[2] P. Koskelainen, H. Schulzrinne, and X. Wu, “A SIP-based conference control framework,” in

Proceedings of the 12th international workshop on Network and operating systems support

for digital audio and video, 2002, pp. 53–61.

[3] J. Rosenberg and H. Schulzrinne, “Models for Multi Party Conferencing in SIP.” [Online].

Available: https://tools.ietf.org/html/draft-ietf-sipping-conferencing-models-01. [Accessed:

01-Jun-2016].

[4] M. Jacobs and P. Leydekkers, “Specification of synchronization in multimedia conferencing

services using the TINA lifecycle model,” Distrib. Syst. Eng., vol. 3, no. 3, p. 185, 1996.

[5] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.

[6] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds:

towards a cloud definition,” ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50–

55, 2008.

[7] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley,

and E. Schooler, “SIP: session initiation protocol,” 2002.

[8] H. Liu and P. Mouchtaris, “Voice over IP signaling: H. 323 and beyond,” Commun. Mag.

IEEE, vol. 38, no. 10, pp. 142–148, 2000.

[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for

real-time applications,” 2003.

[10] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, “The secure real-time

transport protocol (SRTP),” 2004.

[11] J. Rosenberg, RFC 4353—A framework for conferencing with the session initiation

protocol. February, 2006.

[12] H. Khartabil, P. Koskelainen, and A. Niemi, “The conference policy control protocol

(CPCP),” Draft-Ietf-Xcon-Cpcp-01 Work Prog., 2004.

[13] P. Koskelainen, X. Wu, H. Schulzrinne, and J. Ott, “Requirements for floor control

protocols,” 2006.

[14] G. Camarillo, K. Drage, and J. Ott, “The binary floor control protocol (BFCP),” 2006.

[15] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “On the seamless interaction

between webRTC browsers and SIP-based conferencing systems,” Commun. Mag. IEEE, vol.

51, no. 4, pp. 42–47, 2013.

[16] F. Andreasen, M. Arango, C. Huitema, R. Kumar, S. Pickett, I. Elliott, B. Foster, and A.

Dugan, “Media gateway control protocol (MGCP) version 1.0,” 2003.

[17] C. Boulton, S. McGlashan, and T. Melanchuk, “Media Control Channel Framework,”

2011.

[18] J. Van Dyke, E. Burger, and A. Spitzer, “Media Server Control Markup Language

(MSCML) and Protocol,” 2007.

[19] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “Performance analysis of the

Janus WebRTC gateway,” in Proceedings of the 1st Workshop on All-Web Real-Time

Systems, 2015, p. 4.

128 | P a g e

[20] P. Rodríguez Pérez, J. Cerviño Arriba, I. Trajkovska, and J. Salvachúa Rodríguez,

“Advanced Videoconferencing based on WebRTC,” 2012.

[21] L. Lopez Fernandez, M. P. Diaz, R. Benitez Mejias, F. J. Lopez, J. Santos, and others,

“Catalysing the success of WebRTC for the provision of advanced multimedia real-time

communication services,” in Intelligence in Next Generation Networks (ICIN), 2013 17th

International Conference on, 2013, pp. 23–30.

[22] W. Elleuch, “Models for multimedia conference between browsers based on WebRTC,” in

Wireless and Mobile Computing, Networking and Communications (WiMob), 2013 IEEE 9th

International Conference on, 2013, pp. 279–284.

[23] B. Sredojev, D. Samardzija, and D. Posarac, “WebRTC technology overview and

signaling solution design and implementation,” in Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 2015 38th International Convention

on, 2015, pp. 1006–1009.

[24] P. Segec, P. Paluch, J. Papán, and M. Kubina, “The integration of WebRTC and SIP: way

of enhancing real-time, interactive multimedia communication,” in Emerging eLearning

Technologies and Applications (ICETA), 2014 IEEE 12th International Conference on, 2014,

pp. 437–442.

[25] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing: principles and paradigms,

vol. 87. John Wiley & Sons, 2010.

[26] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing: What It Is,

and What It Is Not.,” in ICAC, 2013, pp. 23–27.

[27] I. Sriram and A. Khajeh-Hosseini, “Research agenda in cloud technologies,” ArXiv Prepr.

ArXiv10013259, 2010.

[28] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research

challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18, 2010.

[29] “What is platform as a service (PaaS)?” [Online]. Available:

http://www.thoughtsoncloud.com/2014/02/what-is-platform-as-a-service-paas/. [Accessed:

04-Nov-2015].

[30] M. Boniface, B. Nasser, J. Papay, S. C. Phillips, A. Servin, X. Yang, Z. Zlatev, S. V.

Gogouvitis, G. Katsaros, K. Konstanteli, and others, “Platform-as-a-service architecture for

real-time quality of service management in clouds,” in Internet and Web Applications and

Services (ICIW), 2010 Fifth International Conference on, 2010, pp. 155–160.

[31] V. Gonçalves and P. Ballon, “Adding value to the network: Mobile operators’ experiments

with Software-as-a-Service and Platform-as-a-Service models,” Telemat. Inform., vol. 28, no.

1, pp. 12–21, 2011.

[32] “Cloud Foundry Overview.” [Online]. Available:

http://docs.cloudfoundry.org/concepts/overview.html. [Accessed: 04-Nov-2015].

[33] “Buildpacks.” [Online]. Available: http://docs.cloudfoundry.org/buildpacks/index.html.

[Accessed: 04-Nov-2015].

[34] “Custom Buildpacks.” [Online]. Available:

http://docs.cloudfoundry.org/buildpacks/custom.html. [Accessed: 04-Nov-2015].

[35] “Boilerplates.” [Online]. Available:

https://www.ng.bluemix.net/docs/starters/boilerplates.html. [Accessed: 05-Nov-2015].

[36] “Services Overview.” [Online]. Available:

http://docs.cloudfoundry.org/devguide/services/. [Accessed: 04-Nov-2015].

129 | P a g e

[37] “Service Broker API v2.7.” [Online]. Available:

http://docs.cloudfoundry.org/services/api.html. [Accessed: 04-Nov-2015].

[38] “Using cf CLI Plugins.” [Online]. Available:

http://docs.cloudfoundry.org/devguide/installcf/use-cli-plugins.html. [Accessed: 04-Nov-

2015].

[39] “Cloud Foundry Eclipse Plugin.” [Online]. Available:

https://docs.cloudfoundry.org/buildpacks/java/sts.html. [Accessed: 05-Nov-2015].

[40] “BOSH.” [Online]. Available: https://bosh.io/docs/about.html. [Accessed: 04-Nov-2015].

[41] “Deploying Cloud Foundry.” [Online]. Available:

http://docs.cloudfoundry.org/deploying/. [Accessed: 04-Nov-2015].

[42] P. Rodríguez, D. Gallego, J. Cerviño, F. Escribano, J. Quemada, and J. Salvachúa, “Vaas:

Videoconference as a service,” in Collaborative Computing: Networking, Applications and

Worksharing, 2009. CollaborateCom 2009. 5th International Conference on, 2009, pp. 1–11.

[43] J. Li, R. Guo, and X. Zhang, “Study on service-oriented Cloud conferencing,” in

Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International

Conference on, 2010, vol. 6, pp. 21–25.

[44] F. Taheri, J. George, F. Belqasmi, N. Kara, and R. Glitho, “A cloud infrastructure for

scalable and elastic multimedia conferencing applications,” in Network and Service

Management (CNSM), 2014 10th International Conference on, 2014, pp. 292–295.

[45] M. Marzolla, S. Ferretti, and G. D’angelo, “Dynamic resource provisioning for cloud-

based gaming infrastructures,” Comput. Entertain. CIE, vol. 10, no. 1, p. 4, 2012.

[46] Y. Feng, B. Li, and B. Li, “Airlift: Video conferencing as a cloud service using inter-

datacenter networks,” in Network Protocols (ICNP), 2012 20th IEEE International

Conference on, 2012, pp. 1–11.

[47] R. Cheng, W. Wu, Y. Lou, and Y. Chen, “A cloud-based transcoding framework for real-

time mobile video conferencing system,” in Mobile Cloud Computing, Services, and

Engineering (MobileCloud), 2014 2nd IEEE International Conference on, 2014, pp. 236–245.

[48] J. Liao, C. Yuan, W. Zhu, P. Chou, and others, “Virtual mixer: Real-time audio mixing

across clients and the cloud for multiparty conferencing,” in Acoustics, Speech and Signal

Processing (ICASSP), 2012 IEEE International Conference on, 2012, pp. 2321–2324.

[49] “VidyoWorksTM Integrated Vidyo Enabled Applications.” [Online]. Available:

http://info.vidyo.com/rs/vidyo/images/WP-VidyoWorks.pdf. [Accessed: 08-Nov-2015].

[50] “VidyoWorksTM Datasheet.” [Online]. Available: http://www.vidyo.com/wp-

content/uploads/2013/12/DS-VidyoWorks.pdf. [Accessed: 08-Nov-2015].

[51] “Web Conferencing: Unleash the Power of Secure, Real-Time Collaboration.” [Online].

Available: http://www.webex.com/includes/documents/security_webex.pdf. [Accessed: 08-

Nov-2015].

[52] “WebEx Event Center - Pricing.” [Online]. Available:

http://www.webex.com/products/webinars-and-online-events.html#pricing. [Accessed: 08-

Nov-2015].

[53] “Blue Jeans : Saas Video Conferencing.” [Online]. Available:

https://www.bluejeans.com/video-collaboration/saas-video-conferencing. [Accessed: 09-Nov-

2015].

[54] “Blue Jeans Data Sheet.” [Online]. Available:

http://bluejeans.com/sites/default/files/pdf/BJN-Datasheet.pdf. [Accessed: 09-Nov-2015].

130 | P a g e

[55] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for .NET-based cloud

computing,” High Speed Large Scale Sci. Comput., vol. 18, pp. 267–295, 2009.

[56] “What Is Google App Engine?” [Online]. Available:

https://cloud.google.com/appengine/docs/whatisgoogleappengine?hl=en. [Accessed: 05-Nov-

2015].

[57] “Heroku - Cloud Application Platform.” [Online]. Available: https://www.heroku.com/.

[Accessed: 10-Nov-2015].

[58] “What Is Elastic Beanstalk and Why Do I Need It? - Elastic Beanstalk.” [Online].

Available: http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html. [Accessed:

10-Nov-2015].

[59] “Salesforce App Cloud | The Leading Enterprise PaaS | Salesforce Developers.” [Online].

Available: https://developer.salesforce.com/platform. [Accessed: 10-Nov-2015].

[60] “OpenShift Enterprise 3.” [Online]. Available: https://enterprise.openshift.com.

[Accessed: 10-Nov-2015].

[61] “Pivotal Cloud Foundry.” [Online]. Available: http://pivotal.io/platform. [Accessed: 10-

Nov-2015].

[62] “IBM Bluemix - Create, Deploy, Manage Your Applications in the Cloud.” [Online].

Available: http://www.ibm.com/cloud-computing/bluemix/index-b.html. [Accessed: 10-Nov-

2015].

[63] A. Pessoa Negralo, M. Adaixo, L. Veiga, and P. Ferreira, “On-Demand Resource

Allocation Middleware for Massively Multiplayer Online Games,” in Network Computing

and Applications (NCA), 2014 IEEE 13th International Symposium on, 2014, pp. 71–74.

[64] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for cloud

systems,” in Network and Service Management (CNSM), 2010 International Conference on,

2010, pp. 9–16.

[65] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource scaling for multi-

tenant cloud systems,” in Proceedings of the 2nd ACM Symposium on Cloud Computing,

2011, p. 5.

[66] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource scaling for cloud

applications,” in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on, 2012, pp. 644–651.

[67] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu, “Web services

composition: A decade’s overview,” Inf. Sci., vol. 280, pp. 218–238, 2014.

[68] Z. ur Rehman, F. K. Hussain, and O. K. Hussain, “Towards Multi-criteria Cloud Service

Selection,” in 2011 Fifth International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing (IMIS), 2011, pp. 44–48.

[69] W. Zeng, Y. Zhao, and J. Zeng, “Cloud Service and Service Selection Algorithm

Research,” in Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary

Computation, New York, NY, USA, 2009, pp. 1045–1048.

[70] L. Zhao, Y. Ren, M. Li, and K. Sakurai, “Flexible service selection with user-specific QoS

support in service-oriented architecture,” J. Netw. Comput. Appl., vol. 35, no. 3, pp. 962–973,

May 2012.

[71] T. Yu and K.-J. Lin, “Service Selection Algorithms for Composing Complex Services

with Multiple QoS Constraints,” in Service-Oriented Computing - ICSOC 2005, B.

Benatallah, F. Casati, and P. Traverso, Eds. Springer Berlin Heidelberg, 2005, pp. 130–143.

131 | P a g e

[72] J. El Hadad, M. Manouvrier, and M. Rukoz, “TQoS: Transactional and QoS-Aware

Selection Algorithm for Automatic Web Service Composition,” IEEE Trans. Serv. Comput.,

vol. 3, no. 1, pp. 73–85, Jan. 2010.

[73] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, and C.-H. Chen, “Dynamic web service selection for

reliable web service composition,” Serv. Comput. IEEE Trans. On, vol. 1, no. 2, pp. 104–116,

2008.

[74] H. Wada, P. Champrasert, J. Suzuki, and K. Oba, “Multiobjective Optimization of SLA-

Aware Service Composition,” in IEEE Congress on Services - Part I, 2008, 2008, pp. 368–

375.

[75] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino, “RESTful service

composition at a glance: A survey,” J. Netw. Comput. Appl., vol. 60, pp. 32–53, 2016.

[76] S. Loreto and S. P. Romano, “Real-Time Communications in the Web: Issues,

Achievements, and Ongoing Standardization Efforts.,” IEEE Internet Comput., vol. 16, no. 5,

2012.

[77] G. Zhao, J. Liu, Y. Tang, W. Sun, F. Zhang, X. Ye, and N. Tang, “Cloud computing: A

statistics aspect of users,” in IEEE International Conference on Cloud Computing, 2009, pp.

347–358.

[78] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-scaling techniques for

elastic applications in cloud environments,” Dep. Comput. Archit. Technol. Univ. Basque

Ctry. Tech Rep EHU-KAT-IK-09-12, 2012.

[79] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms, vol.

6. MIT press Cambridge, 2001.

[80] “Node.js.” [Online]. Available: https://nodejs.org/en/. [Accessed: 25-Jun-2016].

[81] “camunda BPM.” [Online]. Available: https://github.com/camunda. [Accessed: 27-Feb-

2016].

[82] “expressjs/express,” GitHub. [Online]. Available: https://github.com/expressjs/express.

[Accessed: 25-Jun-2016].

[83] “Advanced REST client.” [Online]. Available:

https://chrome.google.com/webstore/detail/advanced-rest-

client/hgmloofddffdnphfgcellkdfbfbjeloo. [Accessed: 27-Feb-2016].

[84] “cloudfoundry/cli,” GitHub. [Online]. Available: https://github.com/cloudfoundry/cli.

[Accessed: 25-Jun-2016].

[85] M. Chinosi and A. Trombetta, “BPMN: An introduction to the standard,” Comput. Stand.

Interfaces, vol. 34, no. 1, pp. 124–134, Jan. 2012.

[86] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison of open-source cloud

management platforms: OpenStack and OpenNebula,” in 2012 9th International Conference

on Fuzzy Systems and Knowledge Discovery (FSKD), 2012, pp. 2457–2461.

[87] “Smart Applications on Virtual Infrastructure.” [Online]. Available:

http://www.savinetwork.ca/. [Accessed: 27-Feb-2016].

[88] “yudai/cf_nise_installer,” GitHub. [Online]. Available:

https://github.com/yudai/cf_nise_installer. [Accessed: 25-Jun-2016].

[89] O. T. Time, “Itu-t recommendation g. 114,” ITU-T May, 2000.

