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Abstract 

 

Characterization of the polo-like kinase Cdc5p and its influence on mitosis and 

morphogenesis in Candida albicans.  

 

Amandeep Kaur Randhawa Glory, Ph.D. 

Concordia University, 2016 

 

Candida albicans is a commensal fungus in humans, but can cause infections with high 

mortality rates.  Cell proliferation and differentiation between yeast and hyphae are important for 

virulence and survival in the host.  An understanding of their regulation may reveal new targets 

for therapeutic strategies.  My work aimed to elucidate the regulation of mitosis in C. albicans, a 

poorly understood process, and focussed on characterizing the roles of a Polo-like kinase (Plk), 

Cdc5p.  Plks are critical regulators of many aspects of mitosis in diverse organisms.  Previous 

work demonstrated that depleting Cdc5p in C. albicans yeast resulted in a block in spindle 

elongation and mitosis, followed by formation of filaments and expression of hyphal-specific 

virulence genes, under yeast growth conditions.  However, the mechanisms underlying Cdc5p 

function, mitotic progression, formation of novel filaments and expression of virulence genes, 

remained unclear. 

 

In order to address these questions, I first investigated a putative Cdc5p target, the 

Anaphase-Promoting Complex/Cyclosome (APC/C).  In Chapter 2, I showed that APC/C co-

activators Cdc20p and Cdh1p had some conservation in mitotic function, and may lie 

downstream of Cdc5p.  However, additional novel features suggest variations in the mitotic 

circuitry.  

 

I next investigated the identity of the Cdc5p-depleted filaments, since this was 

controversial.  We hypothesized that the cells were elongated yeast buds that failed to switch 

from polar to isometric growth, but adapted a hyphal fate over time due to maintenance of 

polarized growth.  In Chapter 3, time course assays demonstrated that hyphal-diagnostic features 
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emerged in Cdc5p-depleted filaments at only later growth stages, in agreement with our 

hypothesis.  Our results expand on the strategies that C. albicans can utilize to modulate growth 

and virulence determinants.  

 

I further addressed the mechanisms of Cdc5p function during mitosis and morphogenesis 

in Chapter 4 by screening for interacting factors.  I discovered a novel, Candida-specific factor, 

CPI1 (C. albicans Plk-interacting protein), which was not essential for growth but required to 

maintain mitotic arrest and may interact with the splicesome.  Collectively, the work enhances 

our knowledge of mitotic regulation in C. albicans, and underscores variations in the regulatory 

circuitry that have important implications for controlling growth. 
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Ch. 1: INTRODUCTION 

 

1.1 The Eukaryotic Cell Cycle 

The cell cycle comprises a series of events that allows duplication of genetic material and 

its separation into two daughter cells (1).  In many eukaryotes, the cell cycle consists of 

interphase and mitosis (M), followed by cytokinesis.  Interphase is further divided into G1 (Gap 

1), S (synthetic) and G2 (Gap 2) sub-phases.  The G1 and G2 phases are associated with cell 

growth in many organisms (2), while S-phase is associated with duplication of the genetic 

material.  During mitosis, chromosomes are segregated into two daughter cells.  Proper cell cycle 

progression is crucial for normal growth; and deregulation of this process can lead to cancer (3).  

The cell cycle is also coordinated with development.  In systems ranging from yeast to humans, 

cells exit the cell cycle at particular stages in order to embark on a developmental pathway (4-7).  

It is thus important to have a comprehensive understanding of cell cycle circuitry and the 

mechanisms underlying its regulation.  To this end, significant advances have been made from 

studies in the model yeast systems Saccharomyces cerevisiae and Schizosaccharomyces pombe.  

Many factors and processes associated with cell cycle progression in these organisms are 

conserved in humans (8, 9).  However, organism with cell-type-specific features also exist (8), 

underscoring the complexity and evolutionary diversity in this fundamental biological process. 

 

 

1.2 Mitosis 

1.2.1 Overview  

Mitosis is a complex multistep process consisting of four sub-phases, including prophase, 

metaphase, anaphase and telophase.  In mammalian cells, prophase is characterized by nuclear 

envelope break down, chromatin condensation, and spindle formation.  In metaphase, 

chromosomes align at the center of the cells, and are held by spindle microtubules.  Sister 

chromatids start separating and move to opposite poles in anaphase.  Finally, during telophase, 

chromosomes at the opposite poles uncoil and the nuclear envelope re-assembles (1).  Similar 

features define mitotic stages in the model yeast S. cerevisiae, with the exception that the nuclear 

envelope does not fully break down, and spindle assembly is initiated earlier in S phase (10-12). 
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1.2.2 Regulation 

a. Cyclin Dependent Kinase/Cyclin B 

The regulation of mitosis is complex and involves transcriptional, post-transcriptional and 

post-translational mechanisms.  One key regulator is Mitosis Promoting Factor (MPF).  This 

consists of a Cyclin Dependent Kinase (CDK) associating with a mitotic cyclin.  In S. cerevisiae, 

the CDK/Cyclin B complex consists of Cdc28p/Clb2p.  A “Clb2” cluster of genes, which 

includes the B-type mitotic cyclin CLB2, are induced at the G2/M transition and are under control 

of the Mcm1p/Fkh2p/Ndd1p transcription factor complex (13).  The Cdc28p/Clb2p complex is 

initially inactive due to inhibitory phosphorylation by the kinase Swe1p.  However, when the 

phosphatase Mih1p removes the inhibitory phosphate, Cdc28p/Clb2p is activated and 

phosphorylates a number of targets to initiate entry into mitosis (Fig. 1.1), including Anaphase 

Promoting Complex/Cyclosome (APC/C) subunits (14) and factors required for spindle 

elongation (15), for example.   Cdc28p/Clb2p must be down-regulated in part through targeted 

degradation of Clb2p in order for cells to exit mitosis (16).  A similar situation exists in mammals, 

where Cyclin B associates with Cdk1 for entry into mitosis.  Cdk1/CyclinB is initially inactive 

due to phosphorylation by Wee1 and Myt1 kinases, but dephosphorylation by Cdc25 phosphatase 

promotes M phase entry (Fig. 1.1).  Once activated, Cdk1/CyclinB can boost its own activation 

by phosphorylating its regulatory kinases and phosphatases (17).  Targets of Cdk1/CyclinB 

include proteins associated with the nuclear lamina and Golgi apparatus as well as factors 

required for spindle assembly, chromosome condensation and APC/C regulation (18, 19).  

Similar to the situation in yeast, the activity must be down-regulated for mitotic exit, which is 

achieved in part through targeted degradation of Clb2p (16). 



 4 

        

Cdk1/Cyclin B 

Cdc28p/Clb2p 

Cdk1/Cyclin B 

Cdc28p/Clb2p 

Mitosis 

 P 

 Cdc25 

  Mih1p 
  Cdc25 

   Mih1p 

 P   P 

 Wee1 

 Myt1 

 Swe1p 

  Wee1 

  Myt1 

  Swe1p 

Plk1 

Cdc5p

  

Plk1 

Cdc5p
 	

 

Figure 1.1: Diagrammatic presentation for role of polo-like kinases in regulation of entry 

into M (mitosis) phase.  The polo like kinase Plk1 phosphorylates Cdc25 phosphatase, which in 

turn dephosphorylates Cdk1 in order to promote M phase.  On the contrary, Plk1 can 

dephosphorylate Wee1, Myt1 kinases, which in turn phosphorylate Cdk1 to inhibit entry into M 

phase.  S. cerevisiae orthologs are Cdc5p, Mih1p, Swe1p and Cdc28p/Clb2p for Plk1, Cdc25, 

Wee1/Myt1 and Cdk1/Cyclin B, respectively.  Human proteins are shown in black while S. 

cerevisiae proteins are shown in red. Figure based on Archambault and Glover, 2009 (17). 

 

 

b. Anaphase Promoting Complex/Cyclosome  

Another key regulator of mitosis is the Anaphase Promoting Complex/Cyclosome 

(APC/C), which targets mitotic regulators for degradation, thus allowing mitotic progression and 

mitotic exit.  The APC/C is an E3 ubiquitin ligase complex that targets degradation of proteins by 

addition of ubiquitin molecules.  Ubiquitin is added to proteins by E1-E3 ligases.  

Polyubiquitinated protein is then recognized by the 26S proteosome for degradation (20).  In S. 

cerevisiae, the APC/C is activated by phosphorylation via CDK/CyclinB (21) (Fig 1.2A).  It then 

requires association with co-activators, including Cdc20p and Cdh1p (22, 23).  Initially, the 

APC/C is under control of Cdc20p, and APC/C
Cdc20p

 targets degradation of proteins associated 

with the metaphase-to-anaphase transition and mitotic exit (24, 25).  A highly conserved Cdc20p 

target is Securin, or Pds1p in S. cerevisiae, which inhibits the enzyme Separase (Esp1p).  Securin 

must be degraded in order for Separase to cleave Cohesin (Scc1p) and permit separation of 

chromosomes during the metaphase-to-anaphase transition (26) (Fig 1.2B).   
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The APC/C also targets a portion of mitotic cyclin Clb2p for degradation, thus initiating 

down-regulation of CDK/CyclinB activity that is necessary for mitotic exit.  Towards the end of 

mitosis and during G1 phase, APC/C activity falls under control of the cofactor Cdh1p (Fig 1.2A).  

Cdh1p is held inactive by phosphorylation during most of the cell cycle.  However, during late 

mitosis, inactivation of Cdc28p/Clb2p by APC/C
Cdc20

 as well as dephosphorylation of Cdh1p by 

the phosphatase Cdc14p leads to Cdh1p activation (23, 27).  The APC/C
Cdh1p

 targets Cdc20p, the 

remainder of Clb2p and other factors for destruction, thus allowing exit from mitosis (22, 28) 

(Fig. 1.2B).  There is strong conservation in APC/C cofactors, targets and function (24, 29, 30).  

Intriguingly, APC/C activity extends beyond mitotic cell cycle control (22, 31), as Cdc20p and 

Cdh1p function is also important for the stability of factors involved in developmental processes 

including axonal growth (32, 33) and maintaining the differentiated state of neurons in the 

mammalian brain (34). 
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Figure 1.2: Activation and targets of Anaphase Promoting Complex /Cyclosome (APC/C) in 

S. cerevisiae.  (A) During mid-mitosis (metaphase-anaphase), APC/C is phosphorylated by 

Cyclin dependent kinase/mitotic cyclin Cdc28p/Clb2p complex.  Cdc20p binds and activates 

phosphorylated APC/C.  Cdh1p is held inactive from mid G1 to late mitosis through 

phosphorylation.  In late mitosis (anaphase-telophase) inhibitory phosphorylation of Cdh1p is 

removed due to degradation of Clb2p and it binds and thus activates APC/C.  (B) During mid-

mitosis, APC
Cdc20p

 targets degradation of securin Pds1p, for sister chromatid separation and 

mitotic cyclin Clb2p for mitotic exit.  During late mitosis, APC
Cdh1p

 targets Cdc20p, polo like 

kinase Cdc5p and Clb2p for mitotic exit. Figure 2A is based on Castro et al., 2005 (24). 
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c. Cdc Fourteen Early Anaphase Release and Mitotic Exit Network pathways 

The Cdc Fourteen Early Anaphase Release (FEAR) pathway in S. cerevisiae is required 

for releasing the phosphatase Cdc14p from the nucleolus and mitotic exit (Fig. 1.3A).  Prior to 

mitotic exit, Cdc14p remains sequestered in the nucleolus by Net1p.  At the onset of anaphase, 

FEAR pathway components Esp1p, Slk19p, and Spo12p (35) (Fig. 1.3A) function to inactivate 

the phosphatase PP2A, which enhances phosphorylation of Net1p and contributes to release of 

Cdc14p from the nucleolus (36).  The polo-like kinase Cdc5p is another FEAR component that 

directly interacts with Cdc14p and Esp1p and contributes to Cdc14p release at mid-mitosis (37, 

38).  A similar pathway has not been identified in mammals. 

 

The Mitotic Exit Network pathway (MEN) consists of several components that ultimately 

permit the cell to exit mitosis (Fig. 1.3B).  Within this pathway, Cdc5p acts to negatively regulate 

the GTPase-activating protein (GAP) complex Bub2p-Bfa1p.  This in turn negatively regulates 

the Ras-like Tem1p GTPase.  Tem1p is localized to the daughter spindle pole body and it is 

activated by Lte1p, a guanine nucleotide exchange factor (GEF) for Tem1p, once the daughter 

spindle pole enters the daughter cell.  Tem1p activates a protein kinase signaling cascade 

including Cdc15p, Dbf2p and Mob1p, which functions to release the remaining Cdc14p 

phosphatase from the nucleolus (39).  Cdc14p then dephosphorylates Sic1p, a CDK inhibitor, and 

Swi5p, a transcription factor for SIC1, resulting in down-regulation of Cdc28p/Clb2p activity.  

This is enhanced by Cdc14p-mediated dephosphorylation of the APC/C cofactor Cdh1p, which in 

turn targets the remaining Clb2p for degradation, resulting in mitotic exit (40).  Inactivation of 

mitotic cyclins also allows the assembly of pre-replicative complexes for the next cell cycle (41). 

In mammals, the regulation of mitotic exit is not yet fully defined (42).  Some MEN-like 

components exist, such as GAPCenA, a GTPase activating protein with homology to S. 

cerevisiae Bub2p (43) and Mob1 (44).  While human Mob1 influences mitotic exit, the role of 

GAPCenA is not clear (45).  Mammalian cells contain homologues of CDC14, but depletion does 

not lead to mitotic exit defects, and dephosphorylation of mitotic substrates is thought to rely on 

alternate phosphatases such as PP1 and PP2A (46). 
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Figure 1.3: Mitotic exit in S. cerevisiae involves release of Cdc14p through FEAR (Cdc14 

Fourteen Early Anaphase Release) and MEN (Mitotic Exit Network) pathways.  Cdc14p is 

held inactive in the nucleolus by inhibitor Net1p.  Once Net1p is phosphorylated, active Cdc14p 

is released from the nucleolus.  Active Cdc14p inhibits cyclin dependent kinase activity to 

facilitate mitotic exit. (A) Cdc5p, separase Esp1p and spindle protein Slk19p inactivate 

phosphatase PP2A
Cdc55

, leading to phosphorylation of Net1p.  Net1p is also directly 

phosphorylated by Cdc5p.  Nucleolar protein Spo12p inhibits FEAR inhibitor Fob1p.  (B) Cdc5p 

inhibits GTPase activating protein complex Bfa1p/Bub2p. GTPase Tem1p is activated by 

guanine nucleotide exchange factor Lte1p.  Active Tem1p activates Dbf2p/Mob1p complex 

through Cdc15p kinase, releasing Cdc14p from the nucleolus. 
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d. Polo-like kinases  

Another important and conserved regulator of mitosis is the Polo-like kinase (Plk) family 

of serine/threonine kinases, including Polo in Drosophila melanogaster, Cdc5p in S. cerevisiae, 

Plo1p in S. pombe, Plx1 in Xenopus laevis and PLK1-5 in mammals, for example (17).  Plks are 

defined by a kinase domain at the amino-terminus and a polo box domain (PBD) at the carboxyl 

terminus (47).  The PBD typically contains two conserved polo boxes that function as a single 

unit for binding Plk targets that were previously primed via phosphorylation by CDKs or by Plks 

(48, 49).  Plks also can interact with proteins in a phosphorylation-independent manner (50, 51).  

The kinase and PBD are separated by a linker domain that shows little sequence conservation but 

is important for localization in some cases (52). 

 

Plks are important for many stages of mitosis, including mitotic entry, spindle formation 

and function, chromosome segregation, mitotic exit, as well as septation and cytokinesis (53, 54) 

(Fig. 1.4).  For example, with respect to early mitotic events, Cdc5p in S. cerevisiae targets 

Swe1p for degradation via phosphorylation (55), leading to active Cdc28p/Clb2p, whereas in 

mammals, PLK1 phosphorylates and activates Cdc25C phosphatase, leading to the G2/M 

transition (56) (Fig. 1.1).  During spindle assembly and/or function, Cdc5p in S. cerevisiae 

influences microtubule growth and dynamics, and is required for the phosphorylation and proper 

modification of the spindle pole body components Nud1p, Slk19p, and Stu2p (57).  However, 

spindles can form in the absence of Cdc5p.  In contrast, PLK1 from mammals is crucial for 

spindle formation; down-regulation results in monopolar and abnormal spindles (58).  PLK1 is 

also required for centrosome maturation and promotes microtubule kinetochore attachments 

through phosphorylation of BubR1, for example, and silences the spindle checkpoint until proper 

attachment is achieved (58, 59).  Plk1 also regulates microtubule-stabilizing proteins, such as Asp, 

for aster and spindle formation (60).  During the metaphase-to-anaphase transition, Plks 

phosphorylate cohesin Scc1 to permit chromosome segregation.  For example, in S. cerevisiae, 

Cdc5p phosphorylation of Scc1p allows it to be further cleaved by Separase (61), resulting in 

sister chromatid separation.  In mammals, Scc1 and other cohesion subunit phosphorylation by 

PLK1 results in a loosening of cohesion/chromatid associations, and the dissociation of cohesins 

from chromosome arms at prophase and prometaphase (62).  During anaphase onset, the 

remaining cohesins around the centromeres are removed by Separase (63, 64).  Other functions of 
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Plks during early mitosis include phosphorylating APC/C subunits, resulting in APC/C activation 

(65, 66).  Cdc5p is also a component of the FEAR and MEN pathways described above (Fig. 

1.3A). 
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Figure 1.4: Functions of vertebrate Polo like kinase Plk1 in cell cycle.  Plk1 regulates 

multiple aspects of mitosis from mitotic entry, to spindle assembly, spindle elongation, APC/C 

regulation, mitotic exit and cytokinesis. 

 

 

During septation and cytokinesis, Plks function by phosphorylating regulators of Rho 

GTPases.  For example, Cdc5p phosphorylates the Rho1p GEF proteins Tus1p and Rom2p, 

thereby recruiting and activating Rho1p locally at the bud neck to promote the formation of a 

contractile actin ring at the future division site (67).  The polo box domain of Cdc5p also interacts 

with GAPs, including the Rho1p GAP Sac7p, which is involved in actin cytoskeleton 

organization, and the Cdc42p GAP Bem3p, a GTPase that controls establishment and 

maintenance of polarity and hence morphogenesis (67).  Cdc5p inhibits Cdc42p activity during 

mitotic exit/cytokinesis, which is required for recruitment of cytokinetic proteins Iqg1p and 

Inn1p for normal septum formation (68).   Similarly, PLK1 recruits the GEF Ect2p to the central 

spindle during anaphase that in turn allows accumulation of RhoA and assembly of the 

contractile ring (58, 69) (Fig. 1.5). 
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Figure 1.5: Polo-like kinases in cytokinesis. Human Plk1 and S. cerevisiae Cdc5p 

phosphorylate and activate Rho GAP or Rho GEF proteins, thereby recruiting and activating Rho 

locally at the middle of the cell or bud neck division site respectively to promote the formation of 

the contractile ring. Figure based on Petronczki et al., 2008 (69). 

 

 

Plks are regulated at many levels, although precise mechanisms remain elusive in many 

cases. CDC5 and PLK1 transcripts, for example, peak at the G2/M transition (70, 71), in part via 

the activity of forkhead transcription factors (13, 72, 73).  At the post-translational level, Plks can 

be activated by phosphorylation in the T-loop of the kinase domain (17, 71) via Aurora kinases 

(74, 75) and others that remain elusive (76).  Phosphorylation can also take place within the 

linker region.  In S. pombe, for example, recovery from TOR (target of rapamycin) and MAPK 

(mitogen activated protein kinase)-dependent nutrient-induced mitotic arrest involves Plo1p 

phosphorylation in the linker region via the Aurora kinase Ark, leading to localization at the 

spindle pole bodies and mitotic entry (77).  Plks can also be phosphorylated by CDK and STE20-

like kinases (78, 79).  Less is known about Plk dephosphorylation (17).  At the level of protein 

stability, Plks like Cdc5p and PLK1 are ubiquitinated by APC/C
Cdh1

 and targeted for destruction 

during anaphase, while Plo1p is stable throughout the cell cycle (17, 80, 81).  Plks are also 

regulated through dynamic localization, which is mediated in part by the PBD (82).  Most Plks 

localize to the centrosome, chromatin, kinetochore, central spindle, and midbody.  In yeast, they 

also localize to the spindle pole bodies, bud neck and medial ring (17, 83). 
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1.3 Candida albicans 

1.3.1 Opportunistic fungal pathogen of humans 

Candida albicans is one of the most common opportunistic fungal pathogens of humans.  

Although it exists as a commensal organism in the gastrointestinal or genitourinary tracts in 

healthy humans, an immunocompromised system can initiate pathogenesis (84, 85).  C. albicans 

infections can be superficial, including oral thrush and vaginitis.  However, in individuals 

undergoing cancer chemotherapy, organ transplant or containing HIV (86), systemic infections 

can occur, where C. albicans enters the bloodstream and invades organs such as the kidney, heart, 

and brain, for example  (87).  Candidemia, or invasive candidiasis, is the fourth most common 

cause of hospital-acquired infections (88, 89), associated with a 40% mortality rate, and resulted 

in annual Medicare costs exceeding $1 billion in the United States alone (90).  Current treatments 

for C. albicans infections include a limited number of azole, polyene, and echinocandin drugs.  

However, several of these have toxic side effects, and C. albicans is showing increasing drug 

resistance (91-93).  Thus, there is a strong need to identify new drug targets and enhance the 

current repertoire of therapeutic strategies.  To this end, a more comprehensive understanding of 

the biology of C. albicans, including factors that regulate growth and virulence is required. 

 

1.3.2 Virulence determining trait: Cell differentiation 

a. Cell types 

One aspect of C. albicans biology that is important for virulence is its ability to 

differentiate into different cell types, including different classes of yeast, pseudohyphae, hyphae, 

and chlamydospores (94, 95) (Fig. 1.6).  Yeast cells grow via budding that initiates at the G1/S 

transition of the cell cycle, and a ring of septins marks the future bud emergence site (Fig. 1.6).  

Initial bud outgrowth is polar and associated with a high concentration of actin patches, but 

switches to an isometric mode near mitosis, when the actin patches disperse evenly around the 

bud (96, 97).  Tips of yeast buds also contain a polarisome, which regulates actin filament 

formation at growth sites (98, 99).  Polarisome components, such as Spa2p, and Bud6p 

transiently localize to growing bud tips, then re-locate to the bud neck later in the cell cycle.  

Nuclear division takes place across the mother-bud neck, and cytokinesis follows the break down 

of the septin ring (100, 101).  Yeast cells can be classified as white, opaque or GUT 

(gastrointestinally induced transition) cells (95, 102).  White phase yeast cells are round to oval 
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in shape, and colonies appear creamy in color.  In contrast, opaque yeast are elongated, bean-

shaped cells with cell wall pimples that represent the mating-competent form of the organism, as 

they are homozygous at the mating-type locus.  Meiosis has not been reported in C. albicans; 

mated tetraploids undergo mitotic recombination and subsequent chromosome loss to restore the 

normal diploid state (103).  GUT cells resemble opaque cells except that they lack surface 

pimples and are adapted for commensal growth in the gut (102).  Chlamydospores are thick 

walled cells formed at the tips of suspensor cells and their function in the host is not yet clear (95, 

104) (Fig 1.6).  Filamentous cells in C. albicans include pseudohyphae and hyphae.  

Pseudohyphae are chains of elongated yeast cells with an extended G2 phase that do not separate 

after cytokinesis, and show constrictions at septation sites (101, 105).  They also contain septin 

rings at the initial bud site, a high concentration of actin patches and a polarisome in the bud tip 

during polarized growth.  These relocate to future septation sites near the onset of mitosis, and 

the nucleus divides across the bud neck (101).  Hyphae are distinct in that they maintain polarized 

growth and a high concentration of actin patches at the tip.  A transient septin band appears at the 

mother-germ tube neck, followed by formation of septin rings within the germ tube, where the 

first nuclear division takes place (88, 100, 101).  Hyphae can contain a polarisome, but also 

possess a proposed vesicle supply center, similar to the Spitzenkörper found in tips of 

filamentous fungal hyphae (106, 107).  The Spitzenkörper is visualized as a 3D spot at hyphal 

tips with FM4-64 staining, or through localization of Mlc1p (108), Sec4p (99), Sec2p (109) or 

Bni1p (108).  These factors are maintained at the growing tip and simultaneously localize to 

subapical septation sites.  Actin cables are oriented along the hyphal length and deliver vesicles 

and new cell wall/membrane material to the Spitzenkörper and growing tip (110).  Additional 

distinct characteristics of hyphae include the absence of constrictions at septation sites, the 

transient appearance of a septin band at the mother-germ tube neck followed by formation of 

septin rings within the germ tube (111), and mitosis occurring within the germ tube as opposed to 

the mother cell/germ tube junction (104). 

 

The ability to switch between cell types in different environments of the host is crucial for 

pathogenesis.  While the yeast form of C. albicans is proposed to be optimal for dissemination in 

the blood stream and for gut colonization, the pseudohyphal and hyphal forms may be more adept 

at invading host tissue and escaping immune cells including macrophages and neutrophils (112).  
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Mixed populations of cell types are found in infected tissues (113).  Mutants locked in one cell 

form are less virulent, supporting the notion that the ability to switch between cell types in 

different environments of the host is an important virulence-determining trait (114-116). 

 

 

     

Figure 1.6: Different cell types of C. albicans.  The yeast cells grow by budding and the nucleus 

divides across the septin ring, which is followed by cytokinesis resulting in two separate cells. 

The pseudohyphal cells also divide by budding; the nucleus divides at the septin ring but the cells 

do not separate resulting in chains of elongated cells. Hyphal cells form a germ tube with parallel 

walls in which the septum is formed.  The nucleus divides in the germ tube across the septum; 

one nucleus moves back in the mother cell while the other remains in the germ tube.  The 

polarized growth of buds in yeast and pseudohyphal forms is characterized by polarisome while 

in hyphal cells by the polarisome and Spitzenkörper. Figure source: Whiteway and Bachewich, 

2007 (104). 
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b.  Differentiation of hyphae: regulation by environmental signaling pathways 

Since cell differentiation is important for virulence, an understanding of the underlying 

mechanisms may reveal new targets for treating infection.  Cell differentiation in C. albicans is 

activated by different environmental cues (Fig. 1.7).  One form of differentiation that has been 

well studied is the yeast-to-hyphal transition.  While the yeast form is usually found under the 

conditions of low pH (4.0) and low temperature (30°C), slightly higher pH (6.0) and temperature 

(35°C) are associated with pseudohyphal growth.  Hyphal growth requires high temperature 

(37°C) in combination with signals such as high pH (7.0), serum, or alternate carbon sources, for 

example.  Iron deprivation, low nitrogen, high phosphate, starvation, oxidative stress and 

anaerobic conditions can also influence filamentation (120).  High temperature is sensed by the 

heat shock protein Hsp90p (117), whereas other hyphal-inducing cues are mediated by a diversity 

of signaling pathways, including MAPK and cAMP (cyclic adenosine monophosphate), for 

example (Fig. 1.7).  The transcription factor Efg1p is a common downstream effector of many of 

the pathways and considered a central regulator of hyphal formation; absence of Efg1p prevents 

hyphal growth under a diversity of conditions (118-120).  Efg1p in turn regulates expression of 

several hyphal-specific genes (HSGs); it sits on their promoters and recruits factors required for 

nucleosomal histone H4 acetylation and transcriptional activation under hyphal-inducing 

conditions (121).  HSGs include factors such as the cell wall adhesin protein Hwp1p, as well as 

other hyphal regulators including the transcription factor Ume6p (114, 122).  Yeast cells lacking 

Ume6p initiate but do not maintain hyphal growth, and UME6 overexpression can drive hyphal 

formation under yeast growth conditions (123).  Ume6p in turn maintains expression of HGC1, a 

cyclin-related factor that has no known role in the cell cycle but is required for hyphal 

development.  HGC1 is specifically expressed in hyphal cells, and interacts with the CDK 

Cdc28p to regulate several processes required for maintaining hyphal growth (124, 125) (Fig. 

1.8).  Many HSGs are also virulence factors, emphasizing the significance of co-regulation of 

morphogenesis and pathogenesis (126).  The yeast-to-hyphal transition is also under negative 

regulation, which involves the transcription factor complexes Tup1p/Nrg1p or Tup1p/Rfg1p (114, 

127) (Fig. 1.7).  Absence of TUP1 or NRG1, for example, results in filamentous growth under 

yeast growth conditions, and approximately half of the known HSGs are negatively regulated by 

these factors.  In addition, Nrg1p/Tup1p represses UME6 (123).  Despite their importance, it is 

still not clear how several negative regulators of the hyphal signaling pathways are in turn 
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controlled by environmental cues. 
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Figure 1.7: Environmental signaling pathways regulating the yeast-to-hyphal transition in 

C. albicans.  The most characterized pathways are Cph1-mediated MAPK and the Efg1-mediated 

cAMP pathways.  Ras1p lies upstream of both pathways.  The pH responsive pathway is 

mediated through Rim101p.  The matrix/embedded conditions mediate through Czf1p.  Negative 

regulation of the yeast to hyphal switch is regulated through Tup1p, Nrg1p or Rfg1p.  

Transcription factors are shown in rectangular boxes.  Dotted arrows indicate involvement of 

other additional factors, which are not in the figure. Figure based on Biswas et al., 2007 (120) 

and Sudbery, 2011 (149). 
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Figure 1.8: The hyphal signaling pathways to maintain hyphal growth and cell-cell 

attachment in C. albicans.  Hyphal germ tube evagination occurs in the absence of G1 cyclin 

Hgc1p and when cyclin dependent kinase Cdc28p is inhibited.  After germ tube evagination, 

Cdc28p/Hgc1p are required for polarized growth.  Long-term maintenance of polarized growth 

requires Ume6p.  The Cdc28p/Hgc1p complex inhibits Rga2p and thus activates master polarity 

regulator Cdc42p.  Cdc28p/Hgc1p also phosphorylates septin Sep7p inhibiting cell separation. 

Figure based on: Sudbery, 2011 (149) and Patricia et al., 2010 (). 

 

 

c. Differentiation of hyphae: mechanisms regulating polarized growth 

The multiple signaling pathways that mediate differentiation of yeast to hyphae must 

ultimately converge to control the mechanics of polarized hyphal growth, but our understanding 

of this level of the circuitry is not fully comprehended.  The Rho-GTPase Cdc42p is associated 

with regulating actin organization and is thus a master regulator of polarization (128-130).  In C. 

albicans, both CDC42 and its activating GEF, CDC24, are essential for hyphal growth (100, 101).  

Intriguingly, the Cdc42p inhibitory GAP Rga2p is prevented from localizing to hyphal tips via 

phosphorylation by Cdc28p/Hgc1p under hyphal-inducing conditions, thus permitting hyphal 

growth (125).  Cdc28p/Hgc1p also phosphorylates Efg1p, which targets it to promoters of genes 
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that repress cell separation in hyphae (124) (Fig. 1.8), as well as Sec2p, a secretory vesicle-

associated protein that is specifically localized to the Spitzenkörper in C. albicans hyphae (109).  

More recently, the transcription factor Fkh2p was shown to be phosphorylated in a specific 

manner by the kinase Cbk1p as well as Cdc28p in combination with a known G1 cyclin, Ccn1p, 

upon hyphal induction.  This is required for Fkh2p induction of genes associated with 

pathogenesis, host cell interaction and biofilm formation (131).  Thus, several aspects of the polar 

growth machinery in hyphae have been identified. Their regulation, as well as that of several 

virulence-related processes, requires an important cell cycle regulator, Cdc28p, which is 

functioning outside of a cell cycle context.   However, the upstream regulation of Cdc28p in 

response to hyphal-inducing conditions is not yet clear. 

 

1.3.3 Virulence-determining trait: Cell proliferation 

a.  Cell cycle in C. albicans: Overview 

Another aspect of the biology of C. albicans that is important for pathogenesis and allows 

survival in the host is cell proliferation, which is under control of the cell cycle.  However, our 

current understanding of the cell cycle in C. albicans is poor relative to model yeast systems 

including S. cerevisiae and S. pombe, due in part to difficulty in synchronizing the cells.   

However, Cote et al., 2009 (8) were able to synchronize opaque phase yeast cells through various 

manipulations, and obtained transcription profiles of cells as they passed through different cell 

cycle phases. The expression patterns showed similarity to but also many differences from the 

situations in S. cerevisiae and S. pombe.  Importantly, several genes of unknown function were 

modulated at each cell cycle stage, suggesting the possibility of novel features and regulation.  

Such factors could be exploited for the purposes of controlling growth of C. albicans. 

 

b.  Regulation of mitosis in C. albicans 

C. albicans contains homologues of many important mitotic regulators, but we currently 

have a poor understanding of their functions and the overall networks controlling mitosis.  For 

example, the regulation of the G2/M transition, FEAR and MEN pathways are not fully defined. 

Of the few conserved mitotic factors that have been characterized, mechanisms of action are not 

completely clear, and in some cases, differences in function compared to orthologues in S. 

cerevisiae are apparent, suggesting variations in the mitotic circuitry of C. albicans.   For 
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example, depletion of orthologues of the B-type cyclins Clb2p and Clb4p results in a block in 

mitosis during telophase, in contrast to earlier mitotic stages in S. cerevisiae (106).  C. albicans 

Clb4p is also important as an S-phase cyclin (132), in contrast to Clb5p in S. cerevisiae.  With 

respect to orthologues of MEN components, CDC14 is not essential in C. albicans; its absence 

does not interfere with late mitosis or septation, but results in defective cell separation (133).  In 

contrast, CDC14 is essential in S. cerevisiae, and cdc14 cells are arrested in late anaphase (134).  

DBF2 in C. albicans is an essential serine/threonine protein kinase involved in mitotic spindle 

formation, cytokinesis, septum formation, and exit from mitosis in C. albicans (135), while S. 

cerevsiae DBF2 is not  essential and required only for mitotic exit and cytokinesis (136).  On the 

other hand, the GTPase Tem1p is essential for mitotic exit, cytokinesis and cell separation in both 

S. cerevisiae and C. albicans, (137, 138).  At the time that I started my thesis work, there were no 

reports on APC/C function or regulation in C. albicans. 

 

c. The influence of a Polo-like kinase, Cdc5p, on mitosis and a novel polarized growth 

response in C. albicans 

C. albicans contains a homologue of another important regulator of mitosis, a Plk, called 

CDC5.  Previous work demonstrated that Cdc5p may have some conservation in governing 

mitosis in C. albicans, but also variations in function.   For example, C. albicans Cdc5p localized 

to the spindle pole bodies and chromatin, and its depletion resulted in an arrest in mitosis, similar 

to that reported for S. cerevisiae Cdc5p and other Plks.  However, the cells were arrested with 

short spindles (97), as opposed to a late telophase arrest in cdc5 cells of S. cerevisiae (139), 

suggesting some differences in function and mechanisms of action. 

 

Depletion of Cdc5p in C. albicans also resulted in a novel influence on morphogenesis in 

C. albicans.  Following repression of CDC5 and an arrest in mitosis, the yeast bud grew in a 

polarized manner, resulting in highly elongated filaments.  In contrast, absence of Plks in other 

systems results in a cessation of cell growth and proliferation.  For example, S. cerevisiae, cdc5 

cells arrest as large doublets (140).  Despite being under yeast-growth conditions, the filaments 

resembled hyphae in that they maintained polarized growth, lacked constrictions along their 

length, moved the nucleus from the mother yeast cell into the tube, required cyclase activity for 

elongation, and expressed some HSGs, many of which are virulence factors (97).  A constriction 
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was present at the bud neck, due to the fact that polarized growth originated at the yeast bud that 

emerged prior to the cell cycle block.  However, the filaments also are distinct from hyphae with 

respect to having wider diameters during earlier growth stages, forming in the absence of hyphal 

regulators Efg1p and Ras1p, expressing HSGs only at later stages of elongation (94, 97), and 

requiring the spindle checkpoint factor Bub2p for maintenance of polarized growth (97, 141).   

This filamentous growth may be a general response to a mitotic arrest in C. albicans, since it also 

occurs when mitosis is blocked through depletion of Clb2p, Hsp90p, and Rad52p, for example, or 

treatment with microtubule disrupting drugs such as nocodazole (106, 117, 142, 143).  However, 

a direct role for Cdc5p in influencing polar morphogenesis can not be ruled out, since the various 

treatments that affect mitotic progression could in turn influence Cdc5p activity, the Plk Plo1 in S. 

pombe has been linked to tip growth in a cell-cycle independent manner, and Cdc5p in S. 

cerevisiae can bind regulators of the actin cytoskeleton (67, 144).  The nature of the filaments 

produced through Cdc5p depletion and mitotic arrest remain elusive (107, 145). 

 

Blocking the C. albicans yeast cell cycle in other phases also results in polarized growth, 

but the filamentous cells are not identical.  For example, yeast cells depleted of the G1 cyclin 

Cln3p arrest in G1 phase, enlarge, then form filaments that are true hyphae based on several 

characteristics, including a requirement for the hyphal signaling pathway factors Efg1p and Ras1p 

(94) and the formation of unconstricted septa.  This suggests a relationship between the G1 phase 

of the yeast cell cycle and hyphal development in C. albicans, but the mechanisms remain unclear.  

Further, blocking yeast cells in S phase results in elongated cells (96, 146).  While they 

superficially resemble mitotic-arrested cells, they are different with respect to having much 

shorter lengths, distinct transcription profiles (96), and not requiring factors such as Bub2p (96, 

146).  

 

The filamentous cells that are produced through Cdc5p depletion or a block in mitosis 

may be important for survival in the host.  For example, maintenance of polarized growth in cells 

arrested in mitosis through depletion of Cdc5p or Hsp90p requires the spindle checkpoint factor 

Bub2p, unlike the situation in true hyphae or S-phase arrested yeast cells (97, 141).  Another 

spindle checkpoint factor, Mad2p, is required for filaments that form in response to nocodazole   

but not in true hyphae (142).  Intriguingly, BUB2 and MAD2 are not essential for yeast growth in 
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vitro, but MAD2 and another checkpoint factor, SWE1, are important for growth in vivo and for 

virulence (142, 147).  One model is that yeast cells experiencing a stress on the cell cycle in a 

host environment have the ability to grow in a polarized manner and express HSGs in order to 

escape that environment (96, 97, 145).  

 

Collectively, the data support the idea that Cdc5p is an important regulator of mitosis in C. 

albicans and that mitotic checkpoint-associated polarized growth may be important for 

pathogenesis within the host.  However, the precise roles of Cdc5p and the mechanisms 

controlling mitosis, associated polarized growth and expression of HSGs, which are normally 

under the control of environmental signaling pathways, remain unclear.  Previous work on 

filaments produced through depletion of Hsp90p identified the requirement of a novel pathway 

that included the transcription factor Hms1p (148).  However, the mechanisms underlying 

polarized growth and HSG expression in response to other treatments that specifically block 

mitosis, including Cdc5p depletion, are not clear.  Further, the nature of these polarized cells and 

any connection with true hyphae remain unknown (149). 

 

 

1.4 Objectives 

Differentiation and cell proliferation are crucial for virulence in C. albicans, but our 

understanding of the mechanisms that regulate these processes in the pathogen is far from 

complete.  To this end, we are interested in defining the functions of select mitotic regulators in 

order to construct a framework of the networks governing mitotic progression in C. albicans, and 

in exploring the mechanisms that underlie the unique relationship between mitotic progression, 

polarized growth and expression of virulence genes that exists in this organism. 

 

Our hypothesis is that Cdc5p in C. albicans employs conserved but also novel 

mechanisms to regulate mitosis, and influences morphogenesis in a manner that links mitosis 

with the developmental process of hyphal growth as a virulence-enhancing strategy.   My specific 

objectives include: a) Characterizing a putative downstream mitotic target of Cdc5p, the APC/C, 

and determining its contribution to mitotic regulation and possibly morphogenesis; b) Defining 

the nature of the filaments that form in response to Cdc5p-depletion and determining the novel 
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mechanisms by which mitosis is linked to polarized growth and virulence gene expression; and c) 

Determining the mechanisms of action of Cdc5p during mitosis and morphogenesis.  Through 

this work, we will gain significant insights into the control of cell proliferation in the pathogen, 

identify variations in eukaryotic mitotic regulatory circuits, and uncover novel circuitry linking 

mitosis with important virulence-determining traits. 
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Ch. 2: Orthologues of the APC/C coactivators Cdc20p and Cdh1p are important for mitotic 

progression and morphogenesis in Candida albicans.  

Chapter 2 demonstrates the first characterization of the Anaphase Promoting 

Complex/Cyclosome (APC/C) cofactors Cdc20p and Cdh1p during mitosis and morphogenesis in 

C. albicans.  The Anaphase-Promoting Complex/Cyclosome (APC/C) is a conserved regulator of 

mitosis.  In mid-mitosis, APC/C activity depends on Cdc20p, which targets proteins such as 

Securin associated with the metaphase-to-anaphase transition, and B-type cyclins related to 

mitotic exit, for degradation.  The APC/C then falls under the control of Cdh1p, which targets 

Cdc20p, Cdc5p, Clb2p and various spindle factors for destruction, thus allowing exit from 

mitosis (1).   Intriguingly, APC/C activity extends beyond mitotic cell cycle control (1) as 

Cdc20p and Cdh1p function is also important for the stability of factors involved in 

developmental processes (2, 3). Since the APC/C is crucial for mitotic progression in most 

systems, and is a target of Plks and the Spindle Assembly Checkpoint, we hypothesized that it 

may also be an important regulator of mitosis in C. albicans, and mediate in part the influence of 

Cdc5p.  We utilized genetic and biochemical approaches to demonstrate that Cdc20p has 

conservation in function in that it is required for the metaphase to anaphase transition and mitotic 

exit, and contributes to the degradation of the mitotic cyclin Clb2p.  Its absence also resulted in 

filaments identical to Cdc5p-depleted cells, suggesting that the factors lie in a pathway governing 

mitotic progression and associated polar growth.  The APC/C co-activator Cdh1p also showed 

conservation in being required for mitotic exit, but was novel in that cells lacking the factor were 

enlarged, unlike the situation in S. cerevisiae where cdh1 cells are very small.  This was the first 

report of APC/C function in mitosis and morphogenesis of C. albicans.  The results suggest 

variations in the mitotic networks between S. cerevisiae and C. albicans, which has important 

implications for controlling growth.  
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ABSTRACT 

The conserved anaphase-promoting complex/cyclosome (APC/C) mediates protein 

degradation during mitotic progression.  Conserved coactivators Cdc20p and Cdh1p regulate the 

APC/C during early to late mitosis and G1 phase.  Candida albicans is an important fungal 

pathogen of humans, and forms highly polarized cells when mitosis is blocked through depletion 

of the polo-like kinase (Plk) Cdc5p or other treatments.  However, the mechanisms governing 

mitotic progression and associated polarized growth in the pathogen are poorly understood.  In 

order to gain insights on these processes, we characterized C. albicans orthologues of Cdc20p 

and Cdh1p.  Cdc20p-depleted cells were blocked in early or late mitosis with elevated levels of 

Cdc5p and the mitotic cyclin Clb2p, suggesting that Cdc20p is essential and has some conserved 

functions during mitosis.  However, the yeast cells formed highly polarized buds rather than large 

doublets like S. cerevisiae cdc20 mutants, implying a distinct role in morphogenesis.  In 

comparison, cdh1 /cdh1 cells were viable, but showed enrichment of Clb2p and Cdc5p, 

suggesting that Cdh1p is important for mitotic exit.  The cdh1/cdh1 phenotype was pleiotropic, 

consisting of normal or enlarged yeast, pseudohyphae, and some elongated buds, whereas S. 

cerevisiae cdh1 yeast cells were reduced in size.  Thus, C. albicans Cdh1p may have some 

distinct functions.  Finally, absence of Cdh1p or Cdc20p had minor or no effect on hyphal 

development, respectively.  Overall, the results suggest that Cdc20p and Cdh1p may be APC/C 

activators that are important for mitosis but also morphogenesis in C. albicans.  Their novel 

features imply additional variations in function and underscore rewiring in the emerging mitotic 

regulatory networks of the pathogen.   
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2.1 INTRODUCTION 

Ubiquitin-mediated protein degradation plays a key role in regulating many stages of cell 

cycle progression.  E3 ubiquitin ligases cooperate with E1 ubiquitin activating and E2 ubiquitin 

conjugating enzymes to add ubiquitin residues to specific factors, thereby targeting them for 

degradation via the proteasome (4).  The APC/C represents an E3 ubiquitin ligase system that is 

crucial for controlling mitotic progression and maintenance of G1 phase (4).  The APC/C is 

required to reduce mitotic cyclin-dependent kinase (CDK) activity, separate sister chromatids, 

disassemble the mitotic spindle, and load DNA replication origins (5).  APC/C substrate 

specificity is determined by conserved coactivators, including Cdc20p and Cdh1p (4, 5).  Cdc20p 

targets the degradation of proteins associated with the metaphase to anaphase transition and 

mitotic exit.  In S. cerevisiae, this includes the securin Pds1p (6), and B-type cyclins such as 

Clb2p and Clb5p, for example (7-9).  In the absence of Cdc20p, S. cerevisiae cells arrest in 

metaphase (10) or in later stages of mitosis if Pds1p is also absent (11).  Towards the end of 

mitosis and during G1 phase, APC/C activity is regulated by Cdh1p, which maintains 

degradation of Clb2p and targets other mitotic regulators for destruction, including Cdc20p, the 

Plk Cdc5p, and various spindle factors (12-16).  CDH1 in S. cerevisiae is not essential, due to 

activity of the Cdc28p/Clb2p inhibitor Sic1p; cdh1 sic1 cells are not viable (17).  However, 

cdh1 cells grow slowly with mild delays in mitotic exit and abnormalities in spindle formation 

(17, 18).  The cells are small and accelerate expression of the ribonucleotide reductatse RNR1, 

demonstrating that Cdh1p has a negative influence on Start (19).  Intriguingly, APC/C activity 

extends beyond mitotic cell cycle control (4, 20), as Cdc20p and Cdh1p function is also 

important for the stability of factors involved in developmental processes, including axon growth 

and dendrite morphogenesis, for example (2, 3).  

 

Candida albicans is one of the most common fungal pathogens of humans, and exists in 

different forms, including white phase yeast, mating-competent opaque phase yeast, 

pseudohyphae, hyphae, or chlamydospores (21).  Differentiation is an important virulence-

determining trait, because mutants incapable of switching between cell types are significantly less 

pathogenic (22, 23).  The regulation of developmental events, including the yeast-to-hyphal 

switch for example, has been extensively investigated, and involves a diversity of environmental 
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cues and signaling pathways (21, 24-27).  However, the mechanisms governing basic cell 

proliferation, including mitotic progression, are much less understood.  Transcriptional responses 

of C. albicans yeast cells passing through mitosis show some similarity to those of S. cerevisiae 

cells (28, 29), but functional studies on many of the associated genes are lacking.  Of the few 

factors investigated, several show differences in function from their orthologues in S. cerevisiae, 

and influence morphogenesis.  For example, absence of the CDK Cdc28p results in a pleiotropic, 

filamentous phenotype (30), unlike in S. cerevisiae (10).  The two B-type cyclins in C. albicans, 

Clb2p and Clb4p, must be degraded for exit from mitosis (31), but unlike in S. cerevisiae, Clb2p 

is not required for mitotic entry; Clb2p-depleted cells arrest in telophase and form elongated buds.  

Expression of a non-degradable form of Clb2p also results in elongated buds in C. albicans (31).  

In contrast, Clb4p-depleted cells are delayed at earlier stages of mitosis, and form pseudohyphae.  

Clb4p was also shown to function as an S phase cyclin (32).  Absence of Sol1p, a functional 

homologue of the Cdc28p/Clb2p inhibitor Sic1p, resulted in transient elongated bud growth (33), 

while depletion of Mcm1p, a proposed transcriptional regulator of G2/M-associated genes in C. 

albicans (29), lead to the production of pseudohyphae followed by hyphae  (34).  Mitotic effects, 

however, were not reported in either case.  C. albicans has orthologues of Cdc14p phosphatase, 

which activates Cdh1p upon being released from the nucleolus by the Cdc14p Early Anaphase 

Release (FEAR) pathway and the Mitotic Exit Network (MEN) following degradation of Pds1p 

in S. cerevisiae (35-39), as well as the MEN kinase Dbf2p.   Both factors were important for 

mitotic exit and cell separation, but had additional novel functions and were differentially 

required for cell viability compared to the situation in S. cerevisiae (40, 41).  Cdc5p, a polo-like 

kinase associated with the MEN and FEAR pathways in S. cerevisiae (42), is required at earlier 

stages of mitosis in C. albicans, and its depletion resulted in elongated bud growth (43, 44), in 

contrast to the large doublet morphology of cdc5 null mutants in S. cerevisiae (45).  Mitotic 

spindle checkpoints are not well defined in C. albicans, but orthologues of Mad2p and Bub2p 

were found to be dispensable for yeast and hyphal growth (43, 46, 47), yet important for 

elongated bud growth associated with mitotic arrest (43, 46).  Thus, some key factors controlling 

mitosis have been identified in C. albicans, but a comprehensive picture of the mitotic regulatory 

networks is lacking.  

 

The roles of ubiquitin-mediated protein degradation in cell cycle progression of C. 
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albicans are also poorly understood.  The Skp, Cullin, F-box (SCF) E3 ubiquitin ligase complex 

targets degradation of proteins during G1/S to G2/M phases of the cell cycle in most systems, and 

orthologues of some components have been characterized in C. albicans, including Cdc4p, Grr1p 

and Cdc53p (33, 48-50).  Absence of these factors resulted in pseudohyphal and/or hyphal 

growth.  Specific cell cycle defects in the absence of Cdc4p or Cdc53p were not reported, but 

Grr1p influenced G1 cyclin stability, suggesting that SCF activity may be important for G1/S 

phase of the cell cycle (49).  APC/C activity, on the other hand, has not been investigated to date 

in C. albicans. 

 

 In order to gain more insights on the regulation of mitosis in C. albicans, and explore the 

link between mitotic progression and polarized morphogenesis, we characterized orthologues of 

APC/C activators Cdc20p and Cdh1p.  While both factors show some conservation in mitotic 

function, their novel features imply additional distinct roles.  Overall, our results suggest that the 

APC/C is important for mitosis and morphogenesis in C. albicans, and underscore variations in 

the mitotic regulatory networks of the pathogen.   

 

 

2.2 MATERIALS AND METHODS 

2.2.1 Strains, oligonucleotides, plasmids, culture conditions, RNA extraction 

Strains, oligonucleotides and plasmids used in this study are listed in Tables 2.1, 2.2 and 

2.3 respectively.  Strains were grown at 30ºC in synthetic minimal medium containing 0.67% 

yeast nitrogen base, 2% glucose and all amino acids.  For conditional expression of the MET3 

promoter, minimal inducing medium (-MC) lacking methionine and cysteine or minimal 

repressing medium (+MC) containing 2.5 mM methionine and 0.5 mM cysteine was utilized (51).  

Alternatively strains were grown in rich medium (YEPD) containing 1% yeast extract, 2% 

peptone and 2% dextrose (52).  To investigate cells under hyphal-inducing conditions, 10% fetal 

bovine serum (FBS) (Wisent Inc, St. Bruno, QC) was added to minimal or rich medium, and cells 

were incubated at 37ºC.   For phenotypic assays, strains were grown overnight, diluted into fresh 

medium to an O.D.600nm of 0.2, and collected after indicated times.  Total RNA extraction and 

Northern blotting were carried out as previously described (43). 
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Table 2.1: Candida albicans strains used in this study 

Strains Genotype        Source 

BWP17 ura3:imm434/ura3:imm434, his1::hisG/his1::hisG  Wilson  

  arg4::hisG/arg4::hisG      et al. 1999 

HCCA1 CDC20/cdc20::URA3      This study 

HCCA5 CDH1/cdh1::URA3       This study 

HCCA7 CDC5/cdc5::hisG       This study 

HCCA26 cdh1::URA3/MET3::CDH1-HIS1     This study 

HCCA45 cdh1::URA3/cdh1::HIS1      This study 

HHCA100 BWP17 pRM100 (URA3, HIS1     This study 

HHCA109 cdc20::URA3/MET3::CDC20-HIS1    This study 

HHCA118 cdc5::hisG/MET3::CDC5-ARG4`     This study 

HHCA131 cdc5::hisG/MET3::CDC5-ARG4     This study 

  CDH1/cdh1:;URA3 

HHCA143 cdc5::hisG/MET3::CDC5-ARG4     This study 

  cdh1:;HIS1/cdh1:;URA3 

HHCA153 cdh1::URA3/cdh1::ARG4      This study 

AG120  CDC5/CDC5-TAP-URA3      This study 

AG139  CLB2/CLB2-HA-HIS1      This study 

AG145  CDC20/cdc20::URA3, CLB2/CLB2-HA-HIS1   This study 

AG153  cdc20::URA3/MET3::CDC20-ARG4 CLB2/CLB2-HA-HIS1  This study  

AG191  cdc20::URA3/MET3::CDC20::HIS1    This study 

  CDC5/CDC5-TAP-ARG4 

AG262  cdh1::HIS1/cdh1::URA3, CDC5/CDC5-TAP-ARG4  This study 

AG268  cdh1::URA3/cdh1::HIS1 CLB2/CLB2-HA-ARG4   This study 

 

 

 

 

 

 

 

 

 

 

 



 38 

     Table 2.2: Oligonucleotides used in this study 

 

HCGS1  AGTCATTTCCATCCATCAGTCTAATCAACT  

HCGS1R GGATTGTAGTTGATCAATGATATGGATCTT  

HC2F GCTTATTTCCATTCAACTATAATACTTATTCAACCCCTAA 

CATTATGTCATTGGTATCTCCCAACAGTAAACCAACAAT 

TTATAGGGCGAATTGGA GCT C    

HC2R ATATGGTTTGCATTAAGTAAAATCGTTTGGTAGTGACCA 

CTCTTTGGTGGTTTTACAATGCCAAAATCGTTATTATAGA 

GGACGGTATCGATAAGCTTGA   

HCGS21F ATGTCATTGGTATCTCCCAACAGTAAACCA  

HCGS4B  TATATGTATTTCTGGTGCCGCACTAGGTAA  

HCGS22F AAGATCCATATCATTGATCAACTACAATCCGGATCCTGGA 

GGATGAGGAG    

HCGS22R  TGGTTTACTGTTGGGAGATACCAATGACATCATGTTTTCTG 

GGGAGGGTA    

HC3F  CTGTTTGAGACTCCTAGGTCGCCATCACGATCAACCAGA 

AGTCTAAATCCTCCCAAGTTGAACGAAATGGGTGCTATA 

CATATAGGGCGAATTGGAGCTC   

HC3R  CCCGTTTCAAAGAAGACATTTGGGTTCATTGTTGATTGAATT  

TCTGTATCAATTGGCTGCAGTTACTCCAGGACAACTTAGACG  

GTATCGATAAGCTTGA    

HC5F CTGTTTGAGACTCCTAGGTCGCCATCACGATCAACCAGA 

AGTCTAAATCCTCCCAAGTTGAACGAAATGGGTGCTATA 

CAGGAT CCTGGAGGATGAGGAG   

HC5R GATTTGCTTCCTCTTCTCTTCTAATTTCTATTTCATTATCAG  

CGTTTCTAGTGTTTCTCAAATCCGGTAGTATTTCCTCAT  

GTTTTCTGGGGAGGGTA    

HCGS7F  TCTATCAGCAGGTCATGAAGACTACAAACT  

HCGS7R2  AGATGTTCAACTCTTGATTAGTATGGATTG  

HCGS16F  TTCAAGTCGTTCAAGTGAAAGTGTCACATT  

HCGS16R  ATGACCAGGCCAATGGCTATATAATTCGAG  

HCGS17F AGACCTTCTAAGGACAATGCTATCCGTAATTATAGGGCGA 

ATTGGAGCTCTATAGGGCGAATTGGAGCTC  

HCGS17R  AATGTGACACTTTCACTTTCACTTGAACGACTTGAAGACG 

GTATC GAT AAG CTTGA    

HCGS13F TCGAGCAGGACCAATTGCGATGTAATCAAA   

HCGS13R  

HCGS14F 

 

GGTTAAACCTCTTTAATAATCAATGCTGGT  

ACCAGCATTGATTATTAAAGAGGTTTAACCGGATCCCCCCT   

TTAG TAAGA    

HCGS14R 

 
CTGTAAAGGTTGTGAACGAAGCGCCGACATGTTTTCTGGG 

GAGGGTA    
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HCGS15F ATG TCG GCG CTT CGT TCA CAA CCT TTA CAG     

HCGS15R 

HCGS32F 

HCGS32R 

HCGS33F 

HCGS33R 

 

HCGS34F 

HCGS34R 

AG1F 

 

 

AG1R 

 

 

AG2F 

AG2R 

AG4F 

AG4R 

AG5F 

 

 

AG5R 

 

 

AG6F 

AG6R 

AGHCURA3F 

 

AGHC22F 

 

AGHC-NAT-1F 

 

AGHC-NAT-1R 

 

AGHC22R 

TAA AGA ATC TAA CCT CTG GTT CAG ACA CTC 

CAGAAGAAGTGGTACCAAGC 

CTCTTCTGCTTCTGCTACCA 

TGGTAGCAGAAGCAGAAGAGCGGATCCCCGGGTTAATTAA 

ACCTAGATCCAATAGTCATCGAATTCCGGAATATTTATG 

AGAAAC 

GATGACTATTGG ATCTAGGT 

TCTGAAACATGATTG AGTAG 

TTTGAAGCAAGGAAACTTTCAGCATGAAAATGTTCCGGAC 

TGTATGGAGAAGATAATGGTCATCAAAGAAGCTATCAAGAA 

AAAAGCATTTAAAGAAGCTGGTCGACGGATCCCCGGGTT 

TATTATATCTCTTGTTTTATAATGAATATGGGCTACAGTTCA 

AATTTGCAAGTGTCTACTAAATAAAAGGATGTTTATTAGCAA 

CGTGAAAGTGGCA  

TAT TCGATGAATTCGAGCTCGTT 

GCCAGGGCGTTTAACTCAAA 

ATAGTTACGATTAGTGGTGG 

GGTCGACGGATCCCCGGGTTATACCCATACGATGTTCCTGAC 

TCGATGAATTCGAGCTCGTT 

ATCAGGAAGAGATTTGTTTGATGAACGATTATCGACCCATAGGC 

TAACATTAGAAGATGATGACGAAGAAGAAGAAATAGTGGTAGCA 

CAGAAGGAAGAGGGTCGACGGATCCCCGGGTT 

ATTATAGGGTAATGCACATAACTCATGTTCATCTTCTTTCATTTC 

CTCATTTATGCATTGTAAAGATAAGAACCTAGATCCAATAGTCAT 

CAAAACTTTATCGATGAATTCGAGCTCGTT 

GAAGTAGGGGAAAGAAGTCA 

AGTAGGACACCAATGGGTTG 

AAGATCCATATCATTGATCAACTACAATCCGGATCCGGATGG 

TATAAACG 

AAGATCCATATCATTGATCAACTACAATCCGGATCCCCCCTTT 

AGTAAGA 

AAGATCCATATCATTGATCAACTACAATCCAATTAACCCTCACT 

AAAGGG 

TGGTTTACTGTTGGGAGATACCAATGACATTAATACGACTC 

ACTATAGGG 

AAGATCCATATCATTGATCAACTACAATCCGGATCCCCCCTTTAG 

TAAGA    
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2.2.2 Strain construction 

A strain carrying a single copy of CDC5 under control of the MET3 promoter was created.  

The first copy of CDC5 (orf19.6010) was deleted from strain BWP17 using the URA3 blaster 

method as previously described (44, 53), followed by looping out of the URA3 marker and 

selection on 5’-fluorootic acid (Sigma-Aldrich, Oakville, ON) (44), resulting in strain HCCA7.  

The second copy of CDC5 was then placed under the regulation of the MET3 promoter, using a 

PCR fusion construct (54, 55).  Oligonucleotides HCGS13F and HCGS13R amplified 640 bp of 

5’ CDC5 flanking sequence from genomic DNA (gDNA), while oligonucleotides HCGS15F and 

HCGS15R amplified the CDC5 start site and 518 bp of downstream sequence.  Oligonucleotides 

HCGS14F and HCGS14R amplified an ARG4-MET3 fragment from plasmid pFA-ARG4-MET3 

(56).  The 3 resulting fragments were combined and amplified with oligonucleotides HCGS13F 

and HCGS15R, and the final promoter replacement construct was transformed into strain 

HCCA7, resulting in strain HCCA118.  In order to construct a strain containing a single copy of 

CDC20 under the control of the MET3 promoter, oligonucleotides HC2F and HC2R containing 

80 bp homology to the 5’ and 3’ CDC20 flanks, respectively, amplified URA3 from pBS-

CaURA3.  The product was transformed into strain BWP17, generating strain HCCA1.  To place 

the remaining copy of CDC20 under the control of a MET3 promoter, oligonucleotides HCGS1 

and HCGS1R amplified 515 bp of CDC20 5’ flanking sequence and oligonucleotides HCGS21F 

and HCGS4B amplified a fragment containing the CDC20 start site and 720 bp of downstream 

sequence.  A HIS1-MET3 fragment was amplified from plasmid pFA-HIS-MET3 (56) with 

oligonucleotides HCGS22F and HCGS22R.  The products were combined in a fusion PCR 

reaction with oligonucleotides HCGS1 and HCGS4B, and the resulting construct was 

Table 2.3: Plasmids used in this study            Source 

pRM100 pUC19 URA3,HIS1 J. Pla 

pBS-CaURA3 pBluescript URA3 A. J. P. Brown 

pBS-CaARG4 PBluescript ARG4 C. Bachewich 

pBS-CaHIS1 pBluescript HIS1 C. Bachewich  

pFA-HIS1-Met3p pFA HIS1-Met3p  Gola et al. 2003 

pFA-ARG4-Met3p pFA ARG4-Met3p Gola et al. 2003 

pFA-HIS1-Mal2p pFA HIS1-Mal2p Gola et al. 2003 
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transformed into strain HCCA1, resulting in strain HCCA109.  An isogenic control strain was 

created by transforming pRM100 into strain BWP17, creating strain HCCA100.  

 

In order to delete both copies of CDH1, oligonucleotides HC3F and HC3R containing 80 

bp of CDH1 5’ and 3’ flanking sequences, respectively, were used to amplify URA3 from 

plasmid pBS-CaURA3.  The resulting deletion construct was transformed into strain BWP17, 

generating strain HCCA5.  To replace the second copy of CDH1 with HIS1, oligonucleotides 

HCGS7F and HCGS7R2 amplified a 620 bp fragment homologous to the 5’ flank of CDH1, 

while oligonucleotides HCGS16F and HCGS16R amplified a 560 bp fragment homologous to the 

3’ flank.  Oligonucleotides HCGS17F and HCGS17R amplified a HIS1 fragment from plasmid 

pBS-CaHIS1.  The products were combined in a PCR reaction with oligonucleotides HCGS7F 

and HCGS16R, and the final construct was transformed into strain HCCA5, resulting in strain 

HCCA45.  A second deletion strain was constructed in a similar manner, except that the 

remaining CDH1 allele of strain HCCA5 was replaced with an ARG4 marker, resulting in strain 

HHCA153.  The ARG4-containing fragment was amplified from pBS-CaARG4 with 

oligonucleotides HC3F and HC3R.  In order to determine if Cdh1p was in the same functional 

pathway as Cdc5p, one copy of CDH1 was replaced with URA3, as described above, in strain 

HCCA118, resulting in strain HHCA131.  The second copy was replaced with HIS1, as described, 

resulting in strain HCCA143.  In order to confirm the CDH1 deletion phenotype, a strain carrying 

a single copy of CDH1 under control of the MET3 promoter was created.  Oligonucleotides 

HC5F and HC5R containing 80 bp homology to sequences upstream and downstream of the 

CDH1 start site, respectively, amplified a HIS1-MET3 fragment from pFA-HIS1-MET3 (56).  

The product was transformed into strain HCCA5, resulting in strain HCCA26.  All strains were 

confirmed by PCR and Southern blot analysis (data not shown).   

 

In order to tag Clb2p with three copies of hemagglutinin (HA), HA-HIS1 was amplified 

from plasmid pFA-HA-HIS1 (57) with oligonucleotides AG4F and AG4R.  The product was 

used as a template in a PCR fusion reaction with oligonucleotides AG5F and AG5R, which 

contained 100 bp homology to regions lying upstream and downstream from the stop codon of 

CLB2, respectively.  The fusion construct was transformed into strains BWP17 and HCCA1, 

generating strains AG139 and AG145, respectively.  The remaining copy of CDC20 in strain 
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AG145 was placed under the control of a MET3 promoter as described, with the exception of 

using an ARG4-MET3 fragment amplified from plasmid pFA-ARG4-MET3 (56) with 

oligonucleotides AGHC22F and HCGS22R.  The final fusion product was transformed into strain 

AG145, resulting in strain AG153.  Clb2p was similarly tagged with HA in strain HHCA45, with 

the exception of using pFA-HA-ARG4 (57) as a template with oligonucleotides AG4F and 

AG4R,  resulting in strain AG268.  In order to tag Cdc5p with TAP, PCR fragments containing 

either URA3 or ARG4 and 100 bp homology to sequences immediately up and downstream from 

the stop codon of CDC5 were created with oligonucleotides AG1F, AG1R and plasmids pFA-

TAP-URA3 or pFA-TAP-ARG4 (57).  PCR constructs were transformed into strains BWP17, 

HCCA109 and HCCA45, resulting in strains AG120, AG191 and AG262, respectively.  All 

tagged strains were confirmed by PCR and Western blotting. 

 

PCR reactions utilized Expand Long Template Polymerase (Roche Diagnostics, Laval, 

QC).  Cells were transformed using lithium acetate (56, 58) with modifications.  Transformation 

mixtures were incubated overnight at 30°C and heat shocked at 43°C for 15-60 min prior to 

plating on selective medium.  For increased transformation efficiency in the conditional CDC5 

strains, cells were grown overnight in minimal inducing medium lacking methionine and cysteine, 

then transferred into rich YEPD medium for at least 1.0 h prior to transformation.  

 

2.2.3 Cell staining, imaging 

To visualize nuclei, cells were fixed with 70% ethanol for a minimum of 1 h, stained with 

1 g/ml of 4’, 6’diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma-Aldrich) for 20 min, 

and washed with sterile water.  To visualize septa, fixed cells were subsequently stained with 2 

g/ml calcofluor white (Sigma-Aldrich) for 10 min.  For immunolocalization of -tubulin, 

overnight cultures of cells were diluted to an O.D.600nm of 0.2, and incubated for the indicated 

times in minimal or rich medium.  An equal volume of 2X fixative, containing 8% 

paraformaldehyde, 80 mM PIPES pH 7.0, 10 mM MgSO4, 50 mM EGTA, 8 mM AEBSF, 20 

g/ml leupeptin, and 2 M aprotinin was added to cells.  Following 20 min of fixation, cells were 

washed twice with chilled PE buffer (40 mM PIPES, 25 mM EGTA pH 7.0).  Cell walls were 

digested with 10 g/ml Zymolaze 100T in 1.2 M Sorbitol, 2% BSA, and protease inhibitors as 
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described for 30 min at 37ºC.  Cells were then rinsed twice with ice-cold PE buffer, 

permeabilized with ice-cold 0.1% Nonidet P-40 detergent for 5 min, and rinsed with PE buffer.  

Cells were incubated overnight at 4ºC in anti--tubulin antibody (DM1A, Sigma-Aldrich) (1:100) 

in PE buffer containing 0.05% sodium azide, and 2% BSA.  Cells were washed with PE buffer 

and incubated in sheep anti-mouse FITC secondary antibody  (Sigma-Aldrich) (1:100) in the dark 

for 2 h at room temperature.  Cells were then rinsed with PE buffer and stained with 1 g/ml 

DAPI for 20 min.  Cells were examined on a Leica DM6000B microscope (Leica Microsystems 

Canada Inc. Richmond Hill, ON) equipped with a Hamamatsu-ORCA ER camera (Hamamatsu 

Photonics, Hamamatsu City, Japan) using 63X, or 100X objectives and DAPI (460nm) or FITC 

(520nm) filters.  Images were captured with Openlab software (Improvision Inc, Perkin Elmer, 

Waltham, MS). 

 

2.2.4 Protein extraction and Western blotting 

Protein extracts were prepared according to Bensen et al., 2005 with some modifications.  

For assays involving conditional expression of CDC20, exponential phase cells grown in minimal 

inducing (-MC) medium were diluted to an O.D.600nm of 0.1 in either minimal repressing (+MC) 

or inducing medium, and collected after 3 or 6 h of incubation at 30C.  In order to determine the 

levels of Clb2p-HA and Cdc5p-TAP in cdh1/cdh1 cells, strains were incubated overnight in 

YEPD medium supplemented with 50 g/ml uridine.  A proportion of the overnight culture was 

collected, while the remaining cells were diluted to an O.D. 600nm of 0.1 in fresh YEPD, incubated 

at 30C, and collected at the indicated times.  Proportions of budded cells were scored for each 

time point.  Protein was extracted from cell pellets by adding 20 l of RIPA buffer (10 mM 

sodium phosphate, 1% Triton X 100, 0.1% SDS, 10 mM EDTA, 150 mM NaCl, pH 7.0, 1 mM 

AESBF, 5 ug/ml of leupeptin and 5 ug/ml of aprotinin) and 200 l of glass beads.  Cells were 

disrupted for 3 x 45 sec in a bead beater  (Biospec Products, Bartlesville, OK), with 2 min 

intervals on ice.  An additional 200 l of RIPA buffer was added, and the extracts were 

centrifuged at 13,500 rpm for 5 min at 4C.  The supernatants were collected and stored at -80C.  

Protein was quantified using the Bradford assay (Bio-Rad, Mississauga, ON), and 30 g were 

loaded onto SDS PAGE gels.  Proteins were transferred to PVDF membrane (Bio-Rad), and 

blocked with TBST (50 mM Tris, pH 7.5, 137 mM NaCl, 0.1% Tween-20) containing 5% skim 
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milk for 1 h.  Blots were washed 3 x 15 min in TBST, and incubated for 1.5 h in 0.4 g/ml anti-

HA antibody (12CA5, Roche) or 0.05 g/ml anti-TAP (Thermo Scientific Open Biosystems, 

Huntsville, AL) diluted in TBST.  Blots were rinsed 3 x 15 min in TBST and incubated for 1 h in 

a 1:10,000 dilution of horseradish peroxidase-conjugated secondary antibody.  After washing, 

blots were developed using ECL (GE Healthcare, VWR, Ville Mont-Royal, QC).  Blots were 

stripped and incubated with 0.2 g/ml of anti-PSTAIRE (Santa Cruz Biotechnology, Santa Cruz, 

CA) as a loading control. Western blots were quantified using ImageJ 

(http://rsb.info.nih.gov/ij/index.html), according to 

http:://lukemiller.org/index.php/2010/11/analyze-gels-and-westernblots-with-image-j/.  Briefly, 

band density for Cdc5p-TAP, Clb2p-HA or PSTAIRE in each lane of a single blot was divided 

by that of the first lane for the given protein, in order to determine relative densities.  The relative 

densities of Cdc5p-TAP or Clb2p-HA were then divided by the relative densities of PSTAIRE for 

the corresponding lane to obtain adjusted relative densities.  

 

2.2.5 Cell size measurements 

In order to determine the effect of deleting CDH1 on cell size, strains HHCA45 and 

HHCA100 were incubated in YEPD medium at 30C to an O.D.600nm of 0.8, sonicated, and fixed 

in 70% ethanol.  Approximately 20,000
 
cells were analysed by forward light scattering, using a 

Becton-Dickinson LSRII Analytic Flow Cytometer.  Alternatively, the lengths and widths were 

measured in approximately 100 cells in the yeast form, and multiplied to obtain values in m
2
.   

Measurements were taken from mother cells only, where the width corresponded to the widest 

part of the cell (59).  Axial ratios were measured by dividing the length by the width of cells.   

 

 

2.3 RESULTS 

2.3.1 Depletion of Cdc20p results in highly polarized growth of yeast buds under yeast 

growth conditions 

In order to further our understanding of how mitosis is regulated and linked to polarized 

morphogenesis in C. albicans, the potential involvement of APC/C activity was explored by 

characterizing orthologues of APC/C activators.  We first investigated CDC20 (orf19.122; 

http://www.candidagenome.org/), which shares 51% identity at the protein level with its 

http://rsb.info.nih.gov/ij/index.html
http://www.candidagenome.org/
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orthologue in S. cerevisiae.  CDC20 function was determined by constructing a strain carrying a 

single copy under control of the MET3 promoter (51).  Strains HHCA109 

(cdc20::URA3/MET3::CDC20-HIS1) and HCC100 (CDC20/CDC20 URA3+ HIS1+) were used 

for subsequent analyses.  When incubated at 30C for 2 days, both strains formed normal yeast 

colonies on solid inducing medium (-MC).  However, on repressing medium (+MC), cells 

depleted of Cdc20p generated filaments, while control cells formed smooth colonies and grew in 

the yeast form (Fig. 2.1A).  In liquid medium, the majority of cells depleted of Cdc20p for 3 h at 

30C were large-budded, many of which contained a short polarized extension.  By 7 h, the cells 

contained highly elongated buds (Table 2.4, Figs. 2.1B, 2.2A), indicating maintenance of 

polarized growth.  After 24 h, some cells contained constrictions and branches similar to 

pseudohyphae, and many were no longer viable, as shown with propidium iodide staining  (Fig. 

S2.1), suggesting that CDC20 may be an essential gene.  In contrast, cells from the control strain 

(HCCA100) grew in the yeast form in either inducing or repressing medium (Table 2.2, Fig. 

2.1B).  The Cdc20p-depleted phenotype differs from that of CDC20 null mutants in S. cerevisiae, 

which consist of large doublets (10).  However, the phenotype resembles that of Cdc5p-depleted 

cells, suggesting that Cdc20p and Cdc5p may lie in the same pathway that governs mitotic 

progression and influences elongated bud growth.  

 

        

Figure 2.1: Depletion of Cdc20p results in filament formation under yeast growth 

conditions.  (A) Strains HCCA109 (cdc20::URA3/MET3::CDC20-HIS1) and HCCA100 

(CDC20CDC20 URA3+ HIS1+) were grown overnight in inducing medium (-MC), streaked onto 

either solid inducing or repressing (+MC) medium, and incubated at 30C for 48 h.  (B) 

Overnight cultures of the same strains were diluted in liquid repressing or inducing medium, and 

incubated for 7 h at 30C.  Bar: 10 m.  
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Table 2.4: Number of nuclei
1
 and cell morphology

1
 in Cdc20p-depleted cells

2 

 

  

                                     Number of nuclei                               Cell morphology 

                           

                               1          2           3        Frag
3 

      Unbudded/         Large     Elongated  bud  

                small bud bud     

cdc20/  

MET3::CDC20 

0 h (n=236)            81.8       18.2       0            0              91.1               8.9                0 

3 h (n=173)            71.6       28.4       0            0             12.7               53.1             34.1 

6 h (n=216)            22.2       54.2      2.8         20.8           3.0               2.0               95.0 

       

CDC20/CDC20 

0 h (n=145)            95.0       4.8          0            0            93.1               6.9                 0 

3 h (n=120)            82.5       12.5        0            0     70.0               26.7               3.3 

6 h (n=132)            84.0       16.0        0            0            74.2               23.5               2.3 

 
1 
Values are expressed in %  

2 
Cells from strains HCCA109 (cdc20::URA3/MET3::CDC20-HIS1) and HCCA100 (CDC20/CDC20 URA3+ HIS1+) 

were incubated in repressing medium (+MC) at 30ºC and collected at indicated time points.  Cells were fixed and 

stained with DAPI. 
3
Fragmentation of chromosomes. 
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2.3.2 Cdc20p is required for early and late stages of nuclear division 

Since Cdc20p is required for the metaphase to anaphase transition and mitotic exit in S. 

cerevisiae (6, 11), we next determined whether Cdc20p in C. albicans influenced mitosis.  After 

3 h of Cdc20p depletion, when most cells were either large doublets or slightly elongated, 28.4% 

contained two nuclei, while 71.6% contained a single nucleus (Table 2.4, Fig. 2.2A).  In 72.6% of 

these cells, the nucleus was located in the mother cell with unsegregated chromosomes, 

suggesting a metaphase delay.  The single nucleus was located in the bud neck in the remaining 

cells.  At 6 h, when most cells were highly elongated, the majority contained two nuclei (Table 

2.4).   Nuclei were located exclusively in the filament of approximately 60% of these cells.  In 

contrast, control cells showed normal proportions of budding cells and number of nuclei at 6 h 

(Table 2.4, Fig. 2.2A).  To confirm the phase of mitosis in which Cdc20p is required, spindle 

patterns were analyzed by immunolocalizing -tubulin.  After 3 h in repressing medium, 

approximately 70% of cdc20/MET3::CDC20 cells were in mitosis, with  52.5% containing 

short rod-like metaphase spindles, and 18.5% containing long telophase spindles (Table 2.5, Fig. 

2.2B).  The remaining 29.0% of cells showed only spindle pole body staining, visualized as 

single or double spots, indicating cells were in interphase.  At 6 h, 70.9% of cells contained long 

spindles, although the presence of cytoplasmic microtubules interfered with quantification in 

some cells.  In contrast, fewer control cells contained mitotic spindles (Table 2.5).  These results 

suggest that depletion of Cdc20p leads to an initial delay at metaphase, followed by a block in 

telophase, implying a role for Cdc20p at both stages of mitosis.  In comparison, CDC20 mutants 

in S. cerevisiae arrest in metaphase with a single nucleus positioned at the bud neck (10).  In the 

absence of the securin Pds1p, however, the cells arrest in later stages of mitosis, consistent with 

an additional role during mitotic exit (9, 11, 60).  Our results further suggest that polarized 

growth upon Cdc20p depletion is associated with an initial delay in metaphase. 
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Figure 2.2: Cdc20p depletion results in a delay in metaphase and telophase. (A) Strains 

HCCA109 (cdc20::URA3/MET3::CDC20-HIS1) and HCCA100(CDC20/CDC20 URA3+ 

HIS1+) were diluted into inducing (-MC) or repressing medium (+MC) for the indicated times, 

fixed, and stained with DAPI.  (B) Strain HCCA109 was incubated in repressing or inducing 

medium for the indicated times, processed for immunolocalization of  tubulin, and stained with 

DAPI. Bar: 10 m. 
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Table 2.5: Spindle patterns
1
 in Cdc20p-depleted cells

2
  

  

 

               Interphase
3
                        Mitosis

4 

               early               late 

Strain  

cdc20/MET3::CDC20 

3 h (n=200)  29.0                       52.5                 18.5 

6 h (n= 320)                           16.3              12.8         70.9 

 

CDC20/CDC20 

3 h (n= 179)                           83.2              3.9                   12.8  

6 h (n= 154)                           77.2                      13.0                  9.7  

 

         
1 
Values are expressed in %. 

2 
Cells from strain HCCA109 (cdc20::URA3/MET3::CDC20-HIS1) and HCCA100 (CDC20/CDC20 URA3+ HIS1+) 

were incubated in repressing medium (+MC) for indicated times at 30ºC and processed for immunofluorescence of  

tubulin.   
3 
Cells containing single or double spots of tubulin representing spindle pole bodies without spindles indicated cells 

were in interphase.   
4 
Cells containing short rod-like spindles were in early mitosis, while those with longer spindles were in later stages 

of mitosis. 
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2.3.3 Cdc20p-depleted cells express HWP1 at later stages of growth 

 We previously demonstrated that cells depleted of Cdc5p expressed some hyphal-

associated genes, including HWP1, at later stages of growth (43, 44).  In order to determine 

whether Cdc20p-depleted cells showed a similar response, HWP1 expression was investigated by 

Northern blotting.  When incubated in inducing medium (-MC), exponential phase 

cdc20/MET3::CDC20 yeast cells did not demonstrate expression of HWP1 (Fig. 2.3).  

Incubation in repressing medium (+MC) for 6 h, which resulted in highly elongated buds, also 

did not induce HWP1 expression.  However, after 9 h in repressing medium, HWP1 was strongly 

expressed in cdc20/MET3::CDC20 cells, in contrast to control cells (CDC20/CDC20) under 

identical conditions (Fig. 2.3).  Thus, depletion of Cdc20p also results in delayed induction of a 

hyphal-associated gene.  

 

 

                                          
 

Figure 2.3: HWP1 is expressed in Cdc20p-depleted cells at later stages of growth.  Northern 

blot containing 20 g of total RNA extracted from exponential phase cells of strain HHCA109 

(cdc20::URA3/MET3::CDC20-HIS1) incubated in inducing medium (-MC) or when transferred 

to repressing medium (+MC) and incubated for the indicated times.  Control strain BWP17 

(CDC20/CDC20) was incubated in repressing medium for 9 h.  ACT1 was used as a loading 

control.   
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2.3.4 Cells lacking Cdh1p have a pleiotropic phenotype  

 Cdh1p regulates APC/C activity during late stages of mitosis and into G1 phase (9, 17, 18, 

61).  Orf19.2084 of C. albicans is annotated as CDH1 (http://www.candidagenome.org/), and 

shares 43.8% identity at the protein level with Cdh1p from S. cerevisiae.  In order to investigate 

CDH1 function, the alleles were sequentially replaced with URA3 and HIS1 markers, resulting in 

strain HCCA45.  When incubated on solid YEPD medium at 30C for two days, cdh1/cdh1 

colonies contained uneven edges, and were smaller in diameters and more elevated than control 

colonies (Fig. 2.4A).  When grown in liquid YEPD medium for 7 h, approximately 70% of 

cdh1/cdh1 cells were in a yeast form, while the remaining cells consisted of pseudohyphae 

and irregular-shaped elongated cells, as well as a small proportion of elongated buds (Fig. 2.4B, 

Table 2.6).  A few cells (2.5%) showed narrow diameters, similar to true hyphae.  In contrast, 

97.5% of CDH1/CDH1 cells grew in a normal yeast form (Fig. 2.4B, Table 2.6).  To confirm that 

the phenotype was due to absence of Cdh1p, a strain containing a single copy of CDH1 under 

control of the MET3 promoter was created (HHCA26).  When incubated in repressing medium 

(+MC) for 8 h, cdh1/MET3::CDH1 cells showed a pleiotropic phenotype, similar to 

cdh1/cdh1 cells, whereas the control strain (HCCA100) formed normal yeast  (Fig. S2.2).  

Some filamentation and abnormal cell morphologies were also observed in cdh1/MET3::CDH1 

cells in inducing medium, but at lower frequencies compared to repressing conditions, which 

may reflect overexpression of CDH1.  In S. cerevisiae, cells lacking Cdh1p were greatly reduced 

in size (19).  However, the length-by-width measurements C. albicans cells only in the yeast 

form were greater in the absence of Cdh1p (28.7  1.5 m
2
, s.e.m., n=110, HHCA45 vs. 18.0  

0.6 m
2
,
 
S.E.M, n=99, HHCA100) (Fig. S2.3).  Forward light scattering confirmed that absence 

of Cdh1p did not result in a subpopulation of smaller cells; rather, cells were either similar or 

larger in size than control cells (Fig. 2.4C).  Although the mean axial ratios did not greatly differ 

(1.31  0.03, n= 110, cdh1/cdh1 vs 1.41  0.03, n=99, CDH1/CDH1 cells), more 

cdh1/cdh1 cells demonstrated identical length and width measurements (19.1%, n=110, 

cdh1/cdh1 vs 7.0 %, n=99, CDH1/CDH1 cells), indicating a subpopulation of cells were more 

round.  Overall, the difference in phenotype from S. cerevisiae cdh1 cells (19) suggests that C. 

albicans Cdh1p may have some distinct functions. 

 

http://www.candidagenome.org/
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Figure 2.4: Cells lacking Cdh1p demonstrate a pleiotropic phenotype.  (A) Strains HCCA45 

(cdh1::URA3/cdh1::HIS1) and HCCA100 (CDH1/CDH1 URA3+ HIS1+) were incubated on 

YEPD plates for 48 h at 30 C.  (B) Strains incubated in liquid YEPD medium for 7 h and fixed. 

Bar: 10m.  (C) Strains incubated as in (B) were sonicated, fixed and subjected to forward (FSC-

A) light scattering.  
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Table 2.6: Proportion of CDH1-deleted cells
1
 exhibiting different morphologies 

 

 

     Yeast             Pseudohyphal
2
      Enlongated  

                       bud 

                     
             

cdh1/cdh1 

(n=212)                68.9             19.4                     11.7 

 

CDH1/CDH1 

(n=202)               96.5           3.5     0 

 
 

 1
Values expressed in %.  Overnight cultures of strains HCCA45 (cdh1:;URA3/cdh1::HIS1) and HCCA100 

(CDH1/CDH1 URA3+ HIS1+) were diluted into fresh YEPD medium, and incubated at 30C for 7 h. 
2 
Includes irregular-shaped, elongated cells and standard pseudohyphal cells (87). 

 

   

 

 

 

 

 

 

 

 



 54 

2.3.5 Cdh1p is important, but not essential, for nuclear division and septation 

 Cdh1p in S. cerevisiae is important for mitotic exit; its absence results in a higher number 

of cells with separated nuclei and elongated spindles (17, 18), as well as abnormalities in 

chromosome segregation and spindle structure (62).  To determine whether Cdh1p influenced 

mitosis in C. albicans, cells were incubated in YEPD for 7 h, fixed, processed for 

immunolocalization of -tubulin, and/or stained with DAPI and calcofluor.  In the absence of 

Cdh1p (HCCA45), slightly more cells contained long spindles compared to control cells 

(HCCA100) (30.8%, n=260 vs. 20.0%, n=240), suggesting a moderate delay in telophase.  

However, spindle microtubules appeared abnormal in some cells, and were often difficult to score 

due to abundant cytoplasmic microtubules (Fig. 2.5A).  Nuclear division was also deregulated in 

14.8% (n=216) of cdh1/cdh1 cells.  For example, two or more nuclei were present in 

unbudded yeast cells (5.1%), as well as in compartments of pseudohyphae and elongated buds 

(5.1%).  Another proportion of pseudohyphal cells (4.6%) lacked nuclei in some compartments.  

In contrast, 100% of control cells (n=200) contained a normal number of nuclei.  Notably, in 

6.9% of cdh1/cdh1 cells containing a single nucleus, the organelle was located across the bud 

neck (Fig. 2.5B), compared to 2.2% of control cells.  Calcofluor staining demonstrated that 

cdh1/cdh1 cells formed septa, but the presence of elongated and multi-budded cells (Fig. 2.5B) 

suggests some defects in cell separation.  In comparison, elongated buds and defects in 

cytokinesis were observed in S. cerevisiae cells overexpressing CDH1 or carrying a constitutively 

active form, but not when CDH1 was absent (17, 63).  Thus, most C. albicans cells lacking 

CDH1 undergo nuclear division, septation, and cell separation, but a proportion of cells showing 

defects in these processes, coupled with the moderate increase in the number of telophase 

spindles, suggests that Cdh1p in C. albicans may influence the regulation of mitotic exit.   
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Figure 2.5: Absence of Cdh1p results in some defects in nuclear division and spindle 

formation.  (A) Strains HCCA45 (cdh1::URA3/cdh1::HIS1) and HCCA100 (CDH1/CDH1) 

were incubated in YEPD medium for 7 h, fixed and stained with either DAPI or calcofluor.  (B) 

Strains were incubated as in (A), processed for immunolocalization of -tubulin and stained with 

DAPI.  Bars: 10m. 
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2.3.6 Clb2p and Cdc5p are elevated in Cdc20p and Cdh1p-depleted cells 

Cdc20p directs APC/C-dependent degradation of the cohesin Pds1p in S. cerevisiae, and 

contributes to initial degradation of the mitotic cyclin Clb2p (7, 60).  Cdh1p, on the other hand, 

activates APC/C-dependent degradation of Clb2p towards the end of mitosis and into G1 phase, 

and targets degradation of the Plk Cdc5p, as well as other factors including Cdc20p (7, 13-15, 17, 

64).  To determine whether Cdc20p and Cdh1p influence mitotic progression in C. albicans 

through similar means, we tagged Clb2p with HA and Cdc5p with TAP in strains lacking Cdc20p 

or Cdh1p.  Following depletion of Cdc20p (+MC), Clb2p-HA was elevated relative to levels in 

the same strain (AG153) under CDC20 inducing conditions (-MC), particularly at 3 h, as well as 

compared to control cells (AG139) grown in either inducing or repressing medium (Fig. 2.6A).  

In addition, Cdc5p-TAP was enriched in repressing vs inducing medium in 

cdc20/MET3::CDC20  cells (AG191), and compared to that in control cells (AG120) in either 

medium (Fig. 2.6A).  Untagged control strain BWP17 did not show any signal for either protein.  

These results suggest that Cdc20p influences the stability of Clb2p, as well as Cdc5p, consistent 

with the notion that Cdc20p-depleted cells were blocked in mitosis.  Since Cdh1p maintains 

degradation of Clb2p and Cdc5p into G1 phase in S. cerevisiae, we next investigated the levels of 

Clb2p-HA and Cdc5p-TAP in overnight cultures of cdh1/cdh1  (AG268, AG262) and 

CDH1/CDH1 (AG139, AG120) cells that were semi-synchronized in an unbudded state, and at 

subsequent time points after inoculation into fresh medium.  In overnight cultures, when 

approximately 90% of the cells were unbudded, the control strains showed very little signal for 

Cdc5p-TAP or Clb2p-HA.  However, as cells proceeded to bud, the levels of both proteins 

increased (Fig. 2.6B), consistent with both factors peaking later in the cell cycle (29, 65).  In 

contrast, overnight cultures of strains lacking Cdh1p, which contained similar proportions of 

unbudded cells as the control strains, demonstrated strong enrichment of Cdc5p-TAP and Clb2p-

HA (Fig. 2.6B).  Cdc5p-TAP levels continued to accumulate as more cells proceeded through the 

cell cycle, as expected if Cdh1p were important in targeting its degradation.  However, Clb2p-HA 

levels did not increase over time (Fig. 2.6B).  In comparison, both factors were strongly elevated 

in cdh1 cells of S. cerevisae (9, 14, 17, 18, 64).  These results suggest that C. albicans Cdh1p 

influences degradation of similar mitotic targets as its orthologue in S. cerevisiae.  However, the 

fact that Clb2p did not continue to accumulate with longer incubation periods suggests that 

additional factors may contribute to Clb2p degradation in the presence and/or absence of Cdh1p. 
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Figure 2.6: Clb2p and Cdc5p levels in cells lacking Cdc20p or Cdh1p.  Western blots 

determining the levels of Clb2p-HA and Cdc5p-TAP.  (A) Exponential phase cultures of strains 

AG191 (cdc20::URA3/MET3::CDC20::HIS1,CDC5/CDC5-TAP-ARG4),AG153 

(cdc20::URA3/MET3::CDC20-ARG4 CLB2/CLB2-HA-HIS1), AG139 (CLB2/CLB2-HA-HIS1) 

and AG120 (CDC5/CDC5-TAP-URA3) grown in  inducing medium (-MC) were diluted into 

fresh inducing or repressing medium (+MC) and collected at the indicated times.  Strain BWP17 

(+/+) was incubated in +MC medium for 6 h and included as an untagged control.  (B) Strains 

AG139 (CLB2/CLB2-HA-HIS1), AG120 (CDC5/CDC5-TAP-URA3), AG268 

(cdh1::URA3/cdh1::HIS1 CLB2/CLB2-HA-ARG4) and AG262 (cdh1::HIS1/cdh1::URA3, 

CDC5/CDC5-TAP-ARG4) were collected after overnight incubation in YEPD medium (time ‘0’), 

or after diluting into fresh YEPD medium and incubating for 1, 2 or 3 h.  Anti-PSTAIRE was 

used as a loading control.  Proportions of budded cells are indicated.  Density values represent 

adjusted relative density (see Materials and Methods). 
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2.3.7 Absence of Cdh1p does not influence Cdc5p-depleted polarized growth 

 Cdh1p lies downstream of Cdc5p function in S. cerevisiae, as the latter is a component of 

the FEAR and MEN pathways that act to release Cdc14p from the nucleolus and ultimately 

activate Cdh1p (35-39).  Cdh1p then acts back on Cdc5p by targeting it for degradation (14, 15).  

Since a small proportion of elongated buds were observed in C. albicans cells lacking CDH1, it is 

possible that Cdh1p contributes in part to the polarized growth response observed in Cdc5p-

depleted cells.  In order to address this question, both copies of CDH1 were deleted from a strain 

carrying a single copy of CDC5 under control of the MET3 promoter (HCCA143).  After 

incubation in repressing medium for 7 h, 80.2% of cells lacking CDH1 and depleted of Cdc5p 

contained elongated buds, compared to 91% of cells depleted of Cdc5p only (HCCA126) (see 

Table 5 in Chou et al., 2011).  Elongated cells in the two strains appeared similar, even after 24 h 

of Cdc5p depletion (see Fig. 7 in Chou et al., 2011).  In contrast, only 11.7% of cells lacking 

CDH1 (HHCA45) or 2.0 % of cells containing both CDH1 and CDC5 (HHCA100) demonstrated 

elongated buds (see Table 5 in Chou et al., 2011).  Thus, absence of Cdh1p did not result in 

synergistic effects with Cdc5p depletion, suggesting that the factors may lie in the same 

functional pathway in C. albicans.  

 

2.3.8 Cdc20p does not influence serum-induced hyphal growth, while Cdh1p has a moderate 

effect  

 Since Cdc20p and Cdh1p influence morphogenesis, we next investigated whether the factors 

were important for serum-induced hyphal formation.  The cdc20/MET3::CDC20 and control strains 

were first incubated in repressing medium at 30C for 2 h in order to deplete Cdc20p before addition 

of serum.  Cells were then transferred to fresh repressing medium with 10% serum and incubated at 

37C for 3 h.  Prior to the addition of serum, the majority of cells were either large doublets or 

slightly polarized (Table 2.4).  Exposure to serum resulted in the emergence of hyphae from 

elongated daughter buds or from one bud of large doublets (Fig. 2.7).  Hyphae resembled those of 

control cells, and were only moderately shorter in length  (41.2±1.2 µm, s.e.m n=56, compared to 

45.2 ± 2.2 µm, s.e.m; n=52), demonstrating that Cdc20p is not important for hyphal formation.  Since 

germ tubes emerged from yeast cells that were blocked in mitosis, and preferentially from a pre-

existing polarized site, the results also support the notion that hyphal induction can occur during 

mitosis (66).  Cdc20p was important for nuclear division in hyphal cells, since 89.3% (n=56) of cells 
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depleted of Cdc20p contained one nucleus, while 92.3% (n=52) of control cells contained two to 

three nuclei as well as septa.  In comparison, 70.5% (n=374) of cdh1/cdh1 cells were able to form 

hyphae when incubated in YEPD medium containing 10% serum for 3 h at 37C, compared to 91% 

(n=110) of control cells (Fig. 2.7).  The remaining cells were more pseudohyphal in appearance.  

Thus, Cdh1p may have a moderate effect on hyphal formation.   

 

                                            

Figure 2.7: Hyphal formation in the absence of Cdc20p or Cdh1p.  Strains HCCA109 

(cdc20::URA3/MET3::CDC20-HIS1) and HCCA100 (CDC20/CDC20 URA3+ HIS1+) were 

incubated in repressing medium for 2 h at 30C prior to transferring into fresh repressing medium 

containing 10% fetal bovine serum.  Cells were grown for 3 h at 37C.  Strains HCCA45 

(cdh1::URA3/cdh1::HIS1) and HCCA100 (CDH1/CDH1) were incubated  in YEPD medium 

containing 10% fetal bovine serum for 3 h at 37C. Bar: 10 m. 

 

 

2.4 DISCUSSION 

2.4.1 Cdc20p is important for the metaphase-to-anaphase transition and mitotic exit 

Our characterization of CDC20 and CDH1 provides the first picture of potential APC/C 

function in C. albicans.  Since Cdc20p-depleted cells were delayed in metaphase and telophase, 

and contained elevated levels of Clb2p, the results suggest that Cdc20p is required for the 

metaphase-to-anaphase transition and mitotic exit, consistent with the function of Cdc20p in S. 

cerevisiae (11, 15).  However, C. albicans lacks a sequence homologue of PDS1, or any other 
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known securin, which is a major target of Cdc20p (67, 68).  A unique Pds1p functional 

homologue may exist in C. albicans, as was found for the Sic1 homologue, Sol1p (33) and serve 

as a Cdc20p target.  Alternatively, Cdc20p may function through different mechanisms.  In other 

systems, blocking separase activity via Cdk/cyclin B-dependent phosphorylation can also inhibit 

anaphase progression, but this is thought to act in concert with securin and/or compensate for its 

loss (69-71).  Thus, Cdc20p is important for key stages of mitotic progression in C. albicans, as 

in other systems, but the absence of a conserved Pds1p/securin homologue suggests that it may 

target a different factor(s), consistent with other modes of cell cycle re-wiring in the pathogen (29, 

65).  The similar defects in mitosis and morphogenesis resulting from depletion of Cdc20p and 

Cdc5p suggest that these factors may lie in the same mitotic pathway.  In support of this, Cdc20p 

and Cdc5p directly or indirectly interact in S. cerevisiae (72) and higher organisms (73, 74), 

respectively.  Plks can also act upstream of the SAC factor Mad2p in other systems (75, 76), 

which binds and inactivates Cdc20p (77).  Our demonstration that Cdc5p-TAP increased during 

depletion of Cdc20p may be an indirect effect of mitotic arrest.  However, the decrease in Cdc5p-

TAP levels under CDC20-inducing conditions is intriguing, since there were no differences in 

growth rate (data not shown) or phenotype of cdc20/MET3::CDC20 vs CDC20/CDC20 cells in 

inducing medium.  The relationship between Cdc20p and Cdc5p and their precise roles in the 

mitotic regulatory networks of C. albicans are currently under investigation.   

 

2.4.2 Cdh1p influences mitotic exit but does not behave as a repressor of Start 

Our results demonstrate that Cdh1p influences Clb2p and Cdc5p degradation, and that a 

moderately higher proportion of cdh1/cdh1 cells contained telophase spindles, similar to the 

situation in S. cerevisiae.  Collectively this suggests that C. albicans Cdh1p is important for 

mitotic exit, and may target conserved factors during late stages of mitosis and G1 phase (7, 13-

15, 17, 64).  Since CDH1 is not essential, additional factors must be required for mitotic exit.  In 

S. cerevisiae, the Cdk inhibitor Sic1p contributes to this function; cdh1 sic1 cells are not 

viable and arrest in a large-budded state (17).  The C. albicans Sic1p homologue, Sol1p, is also 

not essential (33).  However, its role in mitosis was not determined, and the deletion phenotype 

consisted of most cells containing elongated buds when in exponential phase, but reverting to a 

yeast growth mode at higher cell density, unlike cdh1/cdh1 cells.  Sic1p and Cdh1p are 

activated by Cdc14p phosphatase in S. cerevisiae (78), which in turn is regulated by the FEAR 
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and MEN pathways (35-39).  Although Cdc14p is also important for Clb2p degradation and 

mitotic exit in C. albicans (40), its relationship with Cdh1p is not clear since cdc14/cdc14 

cells were defective in cell separation and did not form elongated buds.  Similarly, the MEN 

kinase Dbf2p does not appear to be tightly coordinated with Cdc14p, unlike in S. cerevisiae (28).  

 

Despite its conserved features, Cdh1p also demonstrated some variations in function.  

First, Clb2p was enriched in unbudded cdh1/cdh1 cells, but did not accumulate with longer 

incubation periods, in contrast to that seen with Cdc5p-TAP, or Clb2p levels in CDH1 mutants of 

S. cerevisiae (17).  This suggests that Cdh1p contributes to Clb2p degradation in C. albicans, but 

that another factor(s) may be involved and/or become more important in the absence of Cdh1p.   

Second, deletion of CDH1 did not reduce cell size, but resulted in yeast cell enlargement, in 

striking contrast to the situation in S. cerevisiae (19).  This phenotype is not consistent with a role 

in negatively regulating Start, unlike that demonstrated with S. cerevisiae Cdh1p.  The C. 

albicans cdh1/cdh1 phenotype shared more similarity with S. cerevisiae cells overexpressing 

CDH1 or carrying a constitutively active mutant (17, 63).  Thus, the results suggest that C. 

albicans Cdh1p has conserved and possibly novel functions, and underscore the notion that the 

pathways governing mitotic progression in C. albicans involve distinct features (40, 41, 44).    

Future investigations of Cdh1p targets and regulation will provide further insights on its roles and 

the mitotic circuitry of the pathogen.  

 

2.4.3 Cdc20p and Cdh1p influence yeast morphogenesis and polar growth patterns  

Our results demonstrate that elongated bud growth is coupled to mitotic defects caused by 

depletion of Cdc20p.  In contrast, absence of CDC20 (10) or other conditions that arrest mitosis 

in S. cerevisiae result in a yeast doublet morphology.  The polarized phenotype could arise from a 

defect in the ability of yeast buds to switch from apical to isometric growth (31), and Cdc20p 

may contribute to this process in C. albicans.  Other conditions that arrest mitosis, S or G2/M 

phase, or depletion of Hsp90p, result in similar elongated cells (31, 43, 44, 46, 47, 65, 79).  The 

common response is mediated by different cell cycle checkpoint factors, where investigated (65).   

For example, the DNA damage and replication checkpoint kinase Rad53p mediates filamentous 

growth in response to H2O2 and genotoxic stresses (80, 81), while the spindle checkpoint factors 

Bub2p and Mad2p are important for polarized growth in response to mitotic arrest (43, 46).   
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Intriguingly, Bub2p and Mad2p are dispensable for yeast and hyphal growth (43, 46), while 

Rad53p plays an additional role in hyphal development (62).  It’s not clear if the different 

checkpoints converge on a similar pathway or process to influence polarized bud growth (65),  

and the downstream targets remain elusive.  Since Cdc20p is a target of the checkpoint factor 

Mad2p in other systems (77), it may influence the stability of factors important for the polarized 

response in C. albicans.  It will be informative to determine whether inactivation of Cdc20p is a 

common feature of elongated bud growth induced by other conditions, or if it plays only an 

indirect role.  In S. cerevisiae, apical bud growth is associated with Cdc28p/G1 cyclin activity, 

while a switch to isometric growth occurs when Cdc28p associates with B-type cyclins like 

Clb2p (82, 83).  Down-regulation of Cdc28p/Clb2p activity, through activation of Swe1p-

dependent inhibitory phosphorylation of Cdc28p or other means, results in cell elongation (82, 

83).  However, yeast cell elongation in C. albicans may involve some different mechanisms, 

since Clb2p stabilization or absence induces the response (31), Clb2p was elevated in Cdc20p-

depleted cells, Swe1p is only partly required for elongated growth of Rad52p-depleted or 

hydroxyurea (HU)-treated cells (81, 84), and absence of Cdc20p and Cdh1p did not induce 

polarized growth in S. cerevisiae.  If the response is due to defects in switching to isometric bud 

growth, it is not clear why hyphal-associated genes, such as HWP1 (43, 84), become strongly 

induced.  It is possible that cell fate changes occur during later stages of polar growth (44), or 

checkpoints may activate a separate pathway with hyphal-like characteristics (65).  Indeed, 

specific RAD53 mutations prevent cell elongation but not cell cycle arrest in response to HU, 

implying a direct role in polarized growth (80).  Although the underlying mechanisms remain 

unclear, polarized bud growth may be important for pathogenesis (65), since the cells can express 

virulence factors (43, 84) , and absence of MAD2 (46), SWE1 (85) or TRX1 (81) reduces 

virulence.  

 

Cdh1p may contribute in part to cell elongation through its influence on mitotic 

progression.  However, our results suggest an additional role in hyphal morphogenesis.  The 

small proportion of cdh1/cdh1 cells unresponsive to serum could reflect cell-to-cell variations 

in the elevated levels of Clb2p, as overexpression of Clb2p or Clb4p compromises true hyphal 

growth (31).  Consistently, other factors important for mitotic exit in C. albicans influenced 

hyphal growth, albeit in a stronger manner (40, 41).  Although a pseudohyphal state can preclude 
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hyphal differentiation, as seen in cells lacking Gin4p, Hsl1p and Fkh2p (59, 86), staining 

cdh1/cdh1 cell walls prior to incubation in serum revealed that unresponsive cells were not all 

pseudohyphae (data not shown).  Thus, Cdh1p influences polarized morphogenesis in a complex 

manner.  The phenotype of cdh1/cdh1 cells could be a secondary response to defects in cell 

cycle progression, but it is intriguing that Cdh1p function is independently linked to 

developmental regulators in metazoans and in S. cerevisiae (4, 20).  

 

Overall, we have identified key factors that contribute to the regulatory networks 

governing mitosis and associated polar morphogenesis in C. albicans.  Our results highlight 

additional functional variations in important mitotic regulators compared to other systems, 

consistent with the emerging theme of cell cycle re-wiring in the pathogen (29, 65).   
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2.7 SUPPLEMENTARY DATA 

 

               

Figure S2.1: Cells depleted of Cdc20p lose viability by 24h.  Strain HCCA109 

(cdc20/MET3::CDC20) was incubated in repressing medium for 24 h.  Cells were collected and 

stained with propidium iodide (P.I.) for 24 h. Strain HCCA100 (CDC20/CDC20) grown for 24 h 

is included as a control.  Bar: 10m.  

 

                            

Figure S2.2: Repression of CDH1 results in a pleiotropic phenotype including some 

filamentous growth, while overexpression results in more moderate effects. Strains HCCA26 

(cdh1/MET3::CDH1) and HCCA100 (CDH1/CDH1) were incubated in inducing medium 

overnight, diluted in repressing (+MC) and inducing medium (-MC) and incubated for 8 h at 

30C. Bar: 15 m.   
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Figure S2.3: Length by width measurements of yeast form cells in the presence and absence 

of Cdh1p.  Strains HCCA45 (cdh1/cdh1) and HCCA100 (CDH1/CDH1) were incubated in 

YEPD medium for 7 h, and fixed.  The lengths and widths of cells only in the yeast form were 

measured from DIC images obtained with a 100x objective.    
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Ch. 3: Depletion of the mitotic kinase Cdc5p in C. albicans results in the formation of 

elongated buds that switch to the hyphal fate over time in a Ume6p-dependent manner.       

Chapter 3 addresses the nature of the filaments produced through depletion of Cdc5p, and 

the mechanisms by which blocking mitosis leads to a change in growth mode and expression of 

hyphal genes that are normally induced by environmental conditions.  The formation of filaments 

in C. albicans upon depletion of Cdc5p, or blocking mitosis through other means, is novel but the 

identity of the cells remains controversial (1).  Another study demonstrated that similar filaments 

arising from mitotic-blocked cells depleted of Hsp90p required a novel transcription factor, 

Hms1p (2).  Based on previous data, we hypothesized that the Cdc5p-depleted cells represented 

different cell forms in time, such that they were initially elongated buds due to defects in the 

yeast bud switching from polar to isometric growth in early mitosis, but switched to the hyphal 

fate in response to maintenance of polarized growth at the yeast bud.  In order to test this 

hypothesis, we conducted a time-course based analysis of aspects of the polar growth machinery 

in Cdc5p-depleted cells using cell imaging and biochemical approaches, and genetically tested 

for the requirement of hyphal signaling pathway regulators.  Cdc5p-depleted cells show hyphal-

diagnostic features at only later stages of polarized growth, and that these require induction of the 

core hyphal regulator UME6, but not HMS1.  Induction of UME6 in Cdc5p-depleted cells may 

occur in response to maintenance of polarized growth.  The results expand on the multiple 

strategies with which C. albicans can modulate growth mode and expression of virulence 

determinants.  This versatility may aid escape from stressful environments and promote survival 

in the host.  
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ABSTRACT 

 The fungal pathogen Candida albicans differentiates between yeast, hyphae and 

pseudohyphae in order to enhance survival in the human host.  Environmental cues induce hyphal 

development and expression of hyphal-specific genes.  Filaments also result from yeast cell cycle 

arrest, but the nature of these cells and their mechanisms of formation are less clear.  We 

previously demonstrated that depletion of the mitotic polo-like kinase Cdc5p resulted in the 

production of filaments under yeast growth conditions that were distinct from hyphae with 

respect to several criteria, yet expressed hyphal-specific genes at later stages.  In order to clarify 

the nature of these growth forms and their relationship to true hyphae, we conducted time course-

based investigations of aspects of the polar growth machinery, which can distinguish cell types.  

During later stages of Cdc5p depletion, the myosin light chain Mlc1p demonstrated a 

Spitzenkörper-like localization in the tips of some filaments, and the Cdc42p GAP Rga2p became 

hyper-phosphorylated, as in true hyphae.  Hyphal-specific genes HWP1, UME6 and HGC1 were 

strongly expressed at approximately the same time.  HWP1 expression was dependent on Ume6p, 

and absence of Ume6p or Hgc1p influenced late-stage filament integrity.  Finally, polarized 

growth and UME6 expression in Cdc5p-depleted cells were independent of the transcription 

factor Hms1p.  Thus, depleting Cdc5p generates elongated buds that switch to the hyphal fate 

over time through a mechanism that involves UME6 induction, possibly in response to 

maintenance of polarized growth.  The results expand on the multiple strategies with which C. 

albicans can modulate growth mode and expression of virulence determinants.  
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3.1 INTRODUCTION 

Candida albicans is one of the most common opportunistic fungal pathogens of humans. 

It exists as a commensal in the gastrointestinal or genitourinary tracts in healthy individuals, but 

can cause a range of infections under immune-compromised conditions (3-5), with mortality rates 

associated with systemic infections reaching as high as 60% (6-8).  

 

An important aspect of C. albicans biology in terms of virulence is its ability to 

differentiate into multiple cell types, including yeast, pseudohyphae, and hyphae.  The cells can 

be distinguished with respect to numerous features.  Yeast cells grow via budding that initiates at 

the G1/S transition of the cell cycle, and a ring of septins marks the future bud emergence site.  

Initial bud outgrowth is polar, and associated with a high concentration of actin patches, but 

switches to an isometric mode near mitosis, when the actin patches disperse evenly around the 

bud (9, 10).  Tips of yeast buds also contain a polarisome, which regulates actin filament 

formation at growth sites (11-13).  Polarisome components transiently localize to growing bud 

tips, then re-locate to the bud neck later in the cell cycle.  Nuclear division takes place across the 

mother-bud neck, and cytokinesis follows the break down of the septin ring (1, 14).  

Pseudohyphae are chains of elongated yeast cells with an extended G2 phase that do not separate 

after cytokinesis, and show constrictions at septation sites (14, 15).  They also contain septin 

rings at the initial bud site, and a high concentration of actin patches and a polarisome in the bud 

tip during polarized growth.  These relocate to future septation sites near the onset of mitosis, and 

the nucleus divides across the bud neck (14).  Filamentous hyphae are distinct in that they 

maintain polarized growth and a high concentration of actin patches at the tip.  A transient septin 

band appears at the mother-germ tube neck, followed by formation of septin rings within the 

germ tube, where the first nuclear division takes place (1, 14, 16).  Hyphae can contain a 

polarisome, but also possess a proposed vesicle supply center, similar to the Spitzenkörper found 

in tips of filamentous fungal hyphae (17, 18).  The Spitzenkörper is visualized as a 3D spot at 

hyphal tips with FM4-64 staining, or through localization of Mlc1p (12), Sec4p (13), Sec2p (11) 

or Bni1p (12).  These factors are maintained at the growing tip and simultaneously localize to 

subapical septation sites.  Hyphal tips are also distinct from yeast or pseudohyphal buds in that 

they exclude localization of Rga2p, a GTPase activating protein (GAP) for Cdc42p, the master 

regulator of actin polarization and polarity (19).  Rga2p is hyperphosphorylated in hyphae, which 
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results in down-regulation and exclusion from the tip, and consequently the continued 

maintenance of Cdc42p activity (19).  In contrast, Rga2p locates at the tips of small and medium 

yeast and pseudohyphal buds (19, 20).  Hyphae lack constrictions at septation sites, and do not 

have extended cell cycle phases like pseudohyphae, indicating that hyphal growth runs 

independently of the cell cycle (10, 21).  

 

The ability to switch between cell types in different environments of the host is crucial for 

pathogenesis (22, 23).  An understanding of the mechanisms that underlie cell differentiation may 

thus reveal new targets for treating infection.  The regulation of the yeast-to-hyphal switch has 

been extensively investigated, and requires elevated temperature in combination with other 

environmental cues (21, 24).  High temperature is sensed by the heat shock protein Hsp90p (25), 

whereas other cues are mediated by a diversity of signaling pathways, including MAPK and 

cAMP-based signaling, for example (24, 26).  An important downstream target required for 

hyphal formation under most inducing conditions is the transcription factor Efg1p, which in turn 

regulates expression of several hyphal-specific genes (HSGs), including the cell wall protein 

Hwp1p, and other hyphal regulators such as Ume6p (22, 27).  Yeast cells lacking Ume6p initiate 

but do not maintain hyphal growth, and UME6 overexpression can drive hyphal formation under 

yeast growth conditions (28).  Ume6p in turn maintains expression of HGC1, a cyclin-related 

factor that is specifically expressed in hyphal cells and required for maintaining hyphal growth 

(21, 29-31).  

 

C. albicans yeast cells can convert into additional filamentous growth forms in response 

to cell cycle arrest, in the absence of any hyphal-inducing environmental cues.  For example, if 

yeast cells are depleted of the G1 cyclin Cln3p and arrest in G1 phase, the cells first enlarge then 

form filaments that in many cases present clear characteristics of hyphae, such as polarized 

growth, nuclear division within the filament, unconstricted septa, and a requirement for the 

hyphal signaling pathway factors Efg1p and Ras1p (32, 33).  This suggests that a relationship 

exists between the G1 phase of the cell cycle and hyphal development in C. albicans, but the 

mechanisms remain unclear (21, 34).   

 

 



 76 

Blocking yeast cells in other cell cycle stages, including S, G2/M or M phase, also results 

in highly polarized growth (25, 35-42).  However, the nature of these cells is less clear.  For 

example, cells arrested in mitosis through depletion of the polo-like kinase Cdc5p resemble 

hyphae in that they maintain polarized growth, lack constrictions along their lengths, move the 

nucleus from the mother yeast cell into the tube, require cyclase activity, and express some HSGs 

(36, 37).  A constriction is present at the bud neck, due to the fact that polarized growth originates 

at the yeast bud that emerges prior to the cell cycle block.  However, the filaments are also 

distinct from hyphae in their initial widths, ability to form in the absence of Efg1p, and 

expression of HSGs exclusively at later stages of elongation (36, 37).  Further, maintenance of 

polarized growth requires the spindle checkpoint factor Bub2p, unlike the situation in true hyphae 

or S-phase arrested cells (37, 43).  Intriguingly, Bub2p and another spindle checkpoint factor, 

Mad2p, are required for polarized growth under other conditions that block mitosis, including 

depletion of the heat shock factor Hsp90p (43) or exposure to nocodazole (44), respectively.  

Further, checkpoint factors like Mad2p and Swe1p are required for virulence (44, 45).  Thus, not 

all polar growth forms in C. albicans are created in the same manner, and checkpoint-associated 

polarized growth may be important for pathogenesis in the host.  Previous work on filaments 

produced through depletion of Hsp90p identified the involvement of a novel pathway that 

included the transcription factor Hms1p (2).  However, the mechanisms underlying polarized 

growth and HSG expression in response to other treatments that specifically block mitosis, G2/M 

or S phase, are not clear.  Further, the nature of these polarized cells and any connection with true 

hyphae remain unknown (21).   

 

Here, we characterized polarized cells that form in response to a mitotic block induced by 

depletion of Cdc5p kinase.  Through investigating aspects of the polar growth machinery and 

exploring other hyphal-diagnostic features, we provide evidence that Cdc5p-depleted cells may 

initially represent elongated buds, but switch to the hyphal fate over time through a mechanism 

that involves Ume6p but is independent of Hms1p.  Our results extend the array of strategies in C. 

albicans for modulating growth form and HSG gene expression, which are important for 

virulence.  

 

 



 77 

3.2 MATERIALS AND METHODS 

3.2.1 Strains, oligonucleotides, plasmids and culture conditions  

Strains, oligonucleotides and plasmids used in this study are listed in Tables 3.1, 3.2 and 

3.3, respectively.  Strains were incubated in synthetic medium (0.7% yeast nitrogen base, 2.0 g 

adenine, 2.5 g uridine, 2.0 g tryptophan, 1.0 g histidine, 1.0 g arginine, 1.0 g methionine, 1.5 g 

tyrosine, 1.5 g isoleucine, 7.5 g valine, 1.5 g lysine, 2.5 g phenylalanine, 5.0 g glutamic acid, 10.0 

g threonine and 3.0 g leucine per 50 L) containing either 2.0% glucose (SD) or 2.0% sodium 

succinate (SS) to repress or induce expression from the PCK1 promoter, respectively (46).  

Alternatively, SD medium lacking (-MC) or containing (+MC) 2.5 mM methionine and 0.5 mM 

cysteine was utilized to induce or repress expression from the MET3 promoter, respectively (47).  

Other strains were grown in rich medium (YEPD) containing 1.0% yeast extract, 2.0% peptone 

and 2.0% dextrose.  Media were supplemented with 50.0 g/ml of uridine, except when URA3 

prototrophs were selected (48).  For hyphal induction, medium was supplemented with 10.0% 

fetal bovine serum (FBS) (Wisent Inc,) and cells were incubated at 37ºC.  Pseudohyphae were 

induced by incubating cells in YEPD or SS medium at 36ºC.  For most conditions, strains were 

grown overnight, diluted into fresh medium to an O.D.600nm of 0.1 to 0.2, and collected after 

indicated times.   For growth assays, the O.D.600nm was recorded at the indicated time intervals.  

Samples for RNA or protein analysis were collected at the indicated time points and stored at -

80C until extraction.  
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Table 3.1: Strains used in this study  

Strain Genotype Source 

RM1000  ura3Δ:: imm434/ura3Δ::1 imm434  his1Δ::hisG/his1Δ::hisG        Negredo et al.1997 

BWP17  ura3Δ::imm434/ura3Δ::imm434 his1Δ::hisG/his1Δ::hisG               Wilson et al., 1999 

 arg4Δ::hisG/arg4Δ::hisG  

SC5314 URA3/URA3, HIS1/HIS1 Fonzi and Irwin, 1993 

CB104 cdc5Δ::hisG/cdc5Δ::HIS1 PCK1::CDC5-URA3                  Bachewich et al., 2003 

CB105 cdc5Δ::hisG/cdc5Δ::HIS1 PCK1::CDC5-hisG                    Bachewich et al., 2003 

CB400 RM1000 (pRM100 URA3+, HIS1+)                                                        Bachewich et al., 2003 

CDC5-25         CDC5/cdc5Δ::hisG                                                                                   This study 

AG240  cdc5Δ::hisG/cdc5Δ::HIS1 PCK1::CDC5-hisG                    This study 

 MLC1/MLC1-GFP-URA3   

AG332  MLC1/MLC1-GFP-URA3                                                                        This study 

AG374  RGA2/RGA2-HA-URA3                                                                            This study 

AG379 cdc5Δ::hisG/cdc5Δ::HIS1 PCK1::CDC5-hisG                           This study 

 RGA2/RGA2-HA-URA3                         

AG500 cdc5Δ::hisG/MET3::CDC5-ARG4                                                         This study 

AG509  cdc5Δ::hisG/MET3::CDC5-ARG4                                                         This study 

AG518 cdc5Δ::hisG/MET3::CDC5-ARG4, UME6/ume6Δ::URA3                    This study 

AG530, 531 cdc5Δ::hisG/MET3::CDC5-ARG4, 

ume6Δ::URA3/ume6Δ::HIS1         

This study 

AG536, 540 cdc5Δ::hisG/MET3::CDC5-ARG4, HGC1/hgc1Δ::URA3                      This study 

AG547 AG509 pRM100 (URA3+HIS1+)             This study 

AG553 AG500 pRM100 (URA3+HIS1+)             This study 

AG574, 577 cdc5Δ::hisG/MET3::CDC5-ARG4, 

hgc1Δ::URA3/hgc1Δ::HIS1            

This study 

AG570, 572 cdc5Δ::hisG/MET3::CDC5-ARG4, HMS1/hms1Δ::URA3                      This study 

AG579-581 cdc5Δ::hisG/MET3::CDC5-ARG4, 

hms1Δ::URA3/hms1Δ::HIS1           

This study 
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Table 3.2: Oligonucleotides used in this study  

Name  Sequence  Source 

AG2R ATAGTTACGATTAGTGGTGG This study 

AG4F GGTCGACGGATCCCCGGGTTATACCCATACGATGTTCCTGAC Lavoie et al.,   

2008 

AG4R TCGATGAATTCGAGCTCGTT Lavoie et al., 

2008 

AG15F AGAATTTCCCGGGAGTTGCTTATTATTGAT This study 

AG15R TGGAAGTAAATTGAGGATATTGATGTTTGG This study 

AG16F CCAAACATCAATATCCTCAATTTACTTCCATATAGGGCGAAT

TGGAGCTC 

This study 

AG16R CCGTCAACCGTCAACCTGTTAATTCTTAATGACGGTATCGAT

AAGCTTGA 

This study 

AG17F ATTAAGAATTAACAGGTTGACGGTTGACGG This study 

AG17R TAAGGTTTAGACTTTTCCGTATGATGAAAC This study 

AG19F ATTAGAAACCAACAGAGGAA This study 

AG19R TTGTCGTAGTTGTTGAACTA This study 

AG20F ATGAGTTATTAAAAGGGGTCAATGTAACTTCTGATGGAAAT

GTGGATTATGTTGAA 

This study 

 TTTGTCAAATCAATTTTAGACCAAGGTGCTGGCGCAGGTGCT

TC 

 

AG20R TTGGCATATATTACTCTCCAAAGTAACTTATCAAGTACTACA

TAAAACTTCAAATAA 

This study 

 ACGGTATCCAATTCGAACAAGACCCGCATAGGCCACTAGTG

GA 

 

AG21F CAAGAAATCATCAACAGACC This study 

AG21R TCCGTCATCATAATTGGTGC This study 

AG52F AACTTTAGCGAAGGATGAATCCGGTGTAAAAGAAATGACCG

ATATGGGATTTAGAAATGA 

This study 

 TACAACAGAGTTACTATTGACAGAATCACATAGAATCTTTGG

TCGACGGATCCCCGGGTT  

 

AG52R TACCCAAAAAACAATTTAATACCATTGAATACTTGATCCGTA

ATGGACATAGAAAACTAGAA 

This study 

 ATGTATCTGAATCCACAACTAAAAGATATTCATTAACATCGA

TGAATTCGAGCTCGTT 

 

AG53R CTCTGCCAGGATACTACTTG This study 

AG66R GTACGTGTGATGATGATGAT This study 

AG75F AATTCTGTCCTCCTCCCCTCAAAGTTTCTA This study 

AG75R AAGTGTTGGGTATTGGTTTGATGCTTTGAT This study 

AG76F GAGAATGGAGAATGGAGAAAGATGTTGTTA This study 

AG76R GGACGAATAAAGGATACTTTCCAGTAGTGT This study 
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AG77F ATCAAAGCATCAAACCAATACCCAACACTTTATAGGGCGAA

TTGGAGCTC 

This study 

AG77R TAACAACATCTTTCTCCATTCTCCATTCTCGACGGTATCGAT

AAGCTTGA 

This study 

AG78F CCTATCCACATACATACACA This study 

AG78R CGGACTTTGTAGTAATCAAG This study 

AG88F ACCATCCACTTCAACTTACTTTTACACTTC This study 

AG88R ACCATCCACTTCAACTTACTTTTACACTTC This study 

AG89F GAGGAAAATGAAAGGGACCAATCTGTCTAT This study 

AG89R TTCCCGGCTAGTTTTTATATCCAGTGGATT This study 

AG90F ATCACTATCCCCTCCCTAAAAGAATAGTAGTATAGGGCGAA

TTGGAGCTC 

This study 

AG90R ATAGACAGATTGGTCCCTTTCATTTTCCTCGACGGTATCGAT

AAGCTTGA 

This study 

AG91F TGCTTCAAGACGTGACTTGG This study 

AG91R CACTTACTCCAGAAAATAGC This study 

AG92F ACACCAACAATGGTAATGGT This study 

AG92R CTAGTCTTAGTTGGAGCAGA This study 

AG93F AGCCAAACAGATACAGATAC This study 

AG93R TTTAGGGAGGGGATAGTGAT This study 

AG99F GACACACAAACAAACACCCC This study 

AG99R AGGTTGGTTTGGTTTGCTCT This study 

AG115F GGGTAAAGAG ATACCAAGAG This study 

AG115R AGTGTAATGGGTTTAGTTGC This study 

AG101F GTTGGGACTAGGATTGGTAAAGC Carlisle and  

Kadosh, 2010 

AG101R GATGTGGAGTAGACTTGGATAATGG Carlisle and  

Kadosh, 2010 

HHHWP1F CTAAACCAGCTGCTCCAAAAT This study 

HHHWP1R GTTGTTACCAGCACCTTCAAA This study 

ACT1-129F CATGGTTGGTATGGGTCAAAAA This study 

ACT1-104R TCAATTCTAATAACGAGGTGGTCTTTC This study 

HH08F TTCTGGCTCCAAATCATTTG This study 

HH08R TATAAGGCTGCATAACTAAG This study 

HC10F CGAGCAGGACCAATTGCGATGTAATCAAAATTGTTAACATG

AGTCTGTGTCTATTCGCCT 

This study 

 ACTACTAACCTTAGAGTGTTGGATCCCCCCTTTAGTAAGA  

HC10R GACAGGAGTAATGTTATTAGCTCTAGCATTGAGCTGGCCACT

ATTCAATGGCTGTAAAGG 

This study 

 TTGTGAACGAAGCGCCGACATGTTTTCTGGGGAGGGTA  

HC11F ACTATGAATAGAGAAAGCAG This study 
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Table 3.3: Plasmids used in this study 

Name Source 

pRM1000 J. Pla 

pBS-CaURA3 A.P.J. Brown 

pBS-CaHIS1 C. Bachewich 

pFA-ARG4-Met3p Gola et al., 2003 

pFA-HA-URA3 Lavoie et al., 2008 

pFA-GFP-URA3 Gola et al., 2003 

 

 

 

 

HCGS13F TCGAGCAGGACCAA TTGCGA TGT AA TCAAA Chou et al., 

2011 

HCGS13R GGTT AAACCTCTTT AA T AA TCAA TGCTGGT Chou et al., 

2011 

HCGS14F  ACCAGCATTGATTATTAAAGAGGTTTAACCGGATCCCCCCTT

TAGTAAGA 

Chou et al., 

2011 

HCGS14R CTGTAAAGGTTGTGAACGAAGCGCCGACATGTTTTCTGGGG

AGGGTA 

Chou et al., 

2011 

HCGS15F ATGTCGGCGCTTCGTTCACAACCTTTACAG Chou et al., 

2011 

HCGS15R TAAAGAATCTAACCTCTGGTTCAGACACTC Chou et al., 

2011 

HH43F ATGGTTACACCCGATTCAAC  This study 

HH08F TTCTGGCTCCAAATCATTTG This study 

HH08R TATAAGGCTGCATAACTAAG This study 

CaURA3F GGTAATACCGTAAAGAAACA This study 

CaMET3R TGGGGAGGGTATTTACTTTTAAAT This study 

CaARG4F ACTATGGATATGTTGGCTAC This study 

CaHIS1R ACTGGGATATCAGCTGCAGG This study 
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3.2.2 Strain Construction 

In order to tag the C-terminus of RGA2 with three copies of the hemagglutinin epitope 

(HA), an HA-URA3 cassette from plasmid pFA-HA-URA3 (49) was amplified with 

oligonucleotides AG4F and AG4R. The product was used as a template in a fusion PCR with 

oligonucleotides AG52F and AG52R, which contained 100 bp complementary to regions lying 

immediately upstream or downstream of the stop codon of RGA2, respectively. The fusion 

construct was transformed into strains RM1000 and CB105, resulting in strains AG374 and 

AG379, respectively.  In order to tag the C-terminus of MLC1 with Green Florescent Protein 

(GFP), the GFP-URA3 cassette from pFA-GFP-URA3 (50) was amplified using oligonucletides 

AG20F and AG20R, which contained 80 bp complementary to regions lying upstream or 

downstream of the stop codon of MLC1, respectively, and 20 bp corresponding to regions 

flanking GFP-URA3.  The PCR product was transformed into strains RM1000 and CB105, 

resulting in strains AG332 and AG240, respectively.  In order to create a strain containing a 

single copy of CDC5 under the control of the MET3 promoter in the BWP17 background, one 

copy of CDC5 was deleted using the URA3 blaster method (37, 51), followed by looping out of 

the URA3 marker and selection on 5’-fluoroorotic acid (Sigma-Aldrich), resulting in strain 

CDC5-25.  To place the second copy of CDC5 under control of the MET3 promoter, 

oligonucleotides HCGS13F and HCGS13R were used to amplify a 636 bp fragment lying 

upstream of the CDC5 start codon, while oligonucleotides HCGS15F and HCGS15R amplified a 

514 bp fragment immediately downstream of the start site.  Oligonucleotides HCGS14F and 

HCGS14R amplified an ARG4-MET3 fragment from plasmid pFA-ARG4-MET3 (50).  The three 

fragments were combined and the fusion product was amplified with oligonucleotides HCGS13F 

and HCGS15R.  The final construct was transformed into strain CDC5-25, resulting in strain 

AG509.  Alternatively, oligonucleotides HC10F and HC10R, which contain 80 bp of sequence 

upstream and downstream of the START codon of CDC5, respectively, were used to amplify an 

ARG4-MET3 cassette from pFA-ARG4-MET3 (50).  The product was transformed into strain 

CDC5-25, resulting in strain AG500.   In order to delete UME6, oligonucleotides AG15F and 

AG15R were used to amplify a 620 bp fragment lying upstream of the UME6 start codon, while 

oligonucleotides AG17F and AG17R amplified a 490 bp fragment lying downstream of the stop 

codon.  Oligonucleotides AG16F and AG16R amplified a URA3 fragment from plasmid pBS-

CaURA3 (A.J.P. Brown).  The products were combined in a PCR reaction with oligonucleotides 



 83 

AG15F and AG17R, and the final product was transformed into strain AG500, resulting in strain 

AG518. The second copy of UME6 was replaced with a HIS1-containing fusion product 

produced in a similar manner with the exception of utilizing pBS-CaHIS1 (C. Bachewich) with 

oligonucleotides AG16F and AG16R resulting in strains AG530 and AG531.  In order to delete 

HGC1, oligonucleotides AG75F and AG75R were used to amplify a 580 bp fragment lying 

upstream of the HGC1 start codon, while oligonucleotides AG76F and AG76R amplified a 670 

bp fragment lying downstream of the stop codon.  Oligonucleotides AG77F and AG77R 

amplified a URA3 fragment from plasmid pBS-CaURA3.  The products were combined and the 

fusion product was produced with oligonucleotides AG75F and AG76R.  The final product was 

transformed into strains AG500 and AG509, resulting in strains AG536 and AG540, respectively.  

The second copy of HGC1 was replaced with a HIS1-containing fusion product produced in a 

similar manner with the exception of utilizing pBS-CaHIS1 with oligonucleotides AG77F and 

AG77R.  The resulting strains included AG574 and AG577.  In order to delete HMS1, 

oligonucleotides AG88F and AG88R amplified a 680 bp fragment lying upstream of the HMS1 

Start codon, oligonucleotides AG89F and AG89R amplified a 490 bp fragment lying downstream 

of the Stop codon, and AG90F and AG90R amplified a URA3 fragment from plasmid pBS-

CaURA3.  The products were combined and the fusion product was produced with 

oligonucleotides AG88F and AG89R.  The final product was transformed into strains AG500 and 

509, resulting in strains AG570 and AG572, respectively.  The second copy of HMS1 was 

replaced with a HIS1-containing fusion product produced in a similar manner with the exception 

of utilizing pBS-CaHIS1 with oligonucleotides AG90F and AG90R. The resulting strains 

included AG579-AG581 and AG584-AG585, respectively.  In order to produce control strains 

that were isogenic to deletion strains with respect to markers, pRM100 (pUC19 URA3+, HIS+; J. 

Pla) was transformed into strains AG500 and AG509, resulting in strains AG553 and AG547, 

respectively.  Strains were confirmed for correct integration using PCR with oligonucleotide 

pairs AG21F and AG21R, (RGA2), CaURA3F and AG53R (MLC1), CaARG4F and AG2R, 

HC11F and CaMET3R (CDC5), AG19F and AG19R, AG19F and CaHIS1R, HH43F and 

AG66R (UME6), CaURA3F and AG78R, AG78F and CaHIS1R, HH08F and HH08R (HGC1), 

or CaURA3F and AG91R, AG91F and CaHIS1R, AG92F and AG92R (HMS1).  Deletion strains 

were also confirmed with Southern blotting, utilizing the DIG Hybridization System (Roche 

Diagnostics, Mannheim, Germany).  Genomic DNA was extracted according to Rose et al., 1990 
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(52).  DIG-labeled probes were prepared using oligonucleotides AG93F and AG93R, AG99F and 

AG99R, AG115F and AG115R to confirm hms1Δ/Δ, hgc1 Δ/Δ and ume6 Δ/Δ strains respectively. 

 

3.2.3 Northern blotting 

RNA was extracted with TRI-Reagent (Bioshop).  Briefly, pellets of cultures were 

lyophilized (53) in a freeze drier (ThermoSavant, ModulyoD) at -50
o
C.  The dried material was 

ground using a mortar and pestle (53).  Powder was transferred to occupy approximately 70.0-

80.0 l in an Eppendorf tube, and combined with 1.0 ml of TRI-Reagent.  RNA was subsequently 

extracted as previously described (54).  The final RNA pellet was re-precipitated with one-tenth 

volume of 3.0 M sodium acetate (pH 5.3) and three volumes of 95.0% ethanol.  A total of 20.0 g 

RNA was separated on a 1.0% gel, transferred to Zetaprobe membrane (BioRad), and incubated 

with 
32

P-labeled probes (T7 Quick Prime Kit, Amersham Pharmacia Biotech), as previously 

described (37, 54).  Probes consisted of approximately 700-800 bp fragments complementary to 

the open readings frames of HMS1, UME6, HWP1, HGC1 and ACT1, and were amplified with 

oligonucleotides AG92F and AG92R, AG101F and AG101R, HHHWP1F and HHHWP1R, 

HH08F and HH08R and ACT1-129F and ACT1-104R, respectively.  Northern blots were 

visualized with a phosphoimager (Typhoon Variable Mode Imager, GE Healthcare).  Blots were 

quantified as described previously (39). 

 

3.2.4 Protein extraction and Western blotting 

Protein extracts were prepared according to Liu et al., 2010 (53).  Extracted protein was 

quantified using the Bradford assay (Bio-Rad, Mississauga).  For protein samples treated with 

calf intestinal alkaline phosphatase (CIP) (New England Biolabs), EDTA and sodium vanadate 

were excluded from the HK extraction buffer.  Dephosphorylation of proteins was done using 

10U of CIP per 10.0 ug of protein at 37C for 90 min.  Western blotting was done as described 

previously (39).  Briefly, 20.0 g of protein was loaded onto an SDS-PAGE gel and after 

electrophoresis proteins were transferred to a polyvinylidene difluoride (PVDF) membrane 

(BioRad).  Membranes were blocked with Tris-buffered saline–Tween (TBST; 50 mM Tris [pH 

7.5], 137.0 mM NaCl, 0.1% Tween 20) containing 5.0% skim milk for 1.0 h.  Blots were washed 

three times for 15 min in TBST and incubated for 1.5 h in 0.4 μg/ml anti-HA antibody (12CA5; 

Roche) diluted in TBST.  Blots were rinsed three times for 15 min in TBST and incubated for 1.0 
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h in a 1:10,000 dilution of horseradish peroxidase-conjugated anti-mouse secondary antibody 

(KPL).  After washing, blots were developed using the Amersham ECL Western blotting analysis 

system (GE Healthcare).  Blots were stripped and incubated with 0.2 μg/ml of anti-PSTAIRE 

(Santa Cruz Biotechnology) as a loading control.  Western blots were quantified using ImageJ as 

described previously (39).  

 

3.2.5 Cell staining and imaging 

Cells were stained with filipin (Sigma) according to Martin and Konopka 2004 (55).  

Briefly, freshly dissolved filipin was added to 1.0 ml of cell culture to a final concentration of 

0.01 mg/ml.  Cultures were incubated for a further 10 min at room temperature in the dark, 

centrifuged for 1.0 min at 10 000 rpm, and washed with sterile water.  Cells were then mounted 

on slides and immediately examined on a Leica DM6000B microscope (Leica Microsystems 

Canada Inc., Richmond Hill, ON, Canada) equipped with a Hamamatsu-ORCA ER camera 

(Hamamatsu Photonics, Hamamatsu City, Japan) using either HCX PL APO 63x NA 1.40-0 oil 

or HCX PLFLUO TAR 100x NA 1.30-0.6 oil objectives and the DAPI (460nm) filter.  Images 

were captured with either Openlab software (Improvision Inc., Perkin-Elmer, Waltham, MA) or 

Volocity (Improvision Inc., Perkin-Elmer, Waltham, MA).  Propiodium iodide staining was 

carried out as previously described (35).  In order to visualize Mlc1p-GFP, liquid cultures of 

strain AG240 were first incubated in SS medium at 30°C overnight, washed with sterile water, 

diluted to a final O.D.600nm of 0.2 in fresh SS medium and incubated for 6.0 h at 30°C to produce 

yeast cells, 6.0 h at 36°C to form pseudohyphae, or 2.0 h at 37°C with the inclusion of 10.0% calf 

serum to induce hyphae.  In order to repress CDC5, overnight cultures were diluted into SD 

medium to a final O.D.600nm of 0.2 and incubated at 30°C for various times.  Cultures were 

centrifuged at 3 000 rpm for 1 min and media were removed until approximately 100.0 l 

remained.  Cells were resuspended, mounted on microscope slides and immediately visualized on 

the Leica DM6000B microscope, utilizing a GFP filter (chroma HQ41020 Narrow-band EGFP) 

and HCX PL APO 63x NA 1.40-0 oil or HCX PLFLUO TAR 100x NA 1.30-0.6 oil objectives.  

Alternatively, resuspended cells were mounted on a premade 2.0% ultrapure low melting point 

agarose (Invitrogen) pad on a microscope slide, onto which a coverslip was applied and sealed 

with VALAP (1:1:1 Vaseline: Laonolin: Paraffin).  Slides were immediately visualized with a 

Zeiss Confocal LSM 510 META/LSM 5 LIVE microscope, fitted with a Plan Apochromat 63/1.4 
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oil DIC objective (pixel size of 0.109 m).  Mlc1p-GFP was observed using the 488 nm diode 

laser and a LP505 emission filter.  Mlc1p-GFP localization was similarly observed when 

overnight cultures of cells were alternatively washed, diluted to a final O.D.600nm of 0.1 in 

selected media, applied to a premade agar pad on a microscope slide, which was then placed in 

moist chambers in incubators at the required temperatures.  At set times, a slide was removed, 

fitted with a cover slip as described, and immediately observed on the Zeiss Confocal microscope.  

For time-lapse imaging of Mlc1p-GFP, overnight cultures of cells were diluted into SD medium, 

applied to the agar pad and sealed as described, then mounted on the Zeiss Confocal microscope.  

Images were recorded every 30 min, and Z-stacks with a 0.1 μm step were acquired.  In order to 

localize Mlc1p-GFP and FM4-64 (Invitrogen) simultaneously, dye was added to cultures to a 

final concentration of 40.0 M (12) and cells were immediately mounted on microscope slides 

containing agar pads.  Mlc1p-GFP and FM4-64 labelling were visualized on the Zeiss Confocal 

LSM 510 microscope using the 488 nm diode laser (100 mW) with a BP 500-525 emission filter 

and the 532 nm diode laser with a LP 650 emission filter.  In order to obtain 3D images and carry 

out surface rendering of Mlc1p organization in the tips of cells, Z-stacks with a 0.1 μm step 

acquired with the Zeiss Confocal LSM 510 META/LSM 5 LIVE microscope and the surface 

rendering module of IMARIS 7.3 software (Bitplane, Switzerland, www.bitplane.com) were 

utilized.  The 3D volume rendering was applied equally for all pictures. The thresholding was 

based on local contrast; for the Spitzenkörper, a diameter of the largest sphere was equivalent to 

0.9 μm without smoothing (surface grain of 0.217 μm), whereas for the filament tube, a 

smoothing was applied (surface area detail level of 0.5 μm).  

 

 

3.3 RESULTS 

3.3.1 Enriched filipin staining is present in tips of Cdc5p-depleted filaments but also in 

incipient buds of yeast and pseudohyphae 

In order to define the nature of Cdc5p-depleted cells, we characterized aspects of the 

associated polar growth machinery.  Previous work demonstrated that tips of hyphae, but not 

yeast or pseudohyphae, contain enriched lipid rafts visualized with filipin stain (55).  If filaments 

produced through Cdc5p depletion were originally elongated yeast buds that switched to a hyphal 

fate over time, filipin may be present at the tips but at a later time point.  To address this 

http://www.bitplane.com/
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hypothesis, overnight cultures of CDC5 conditional (AG240; cdc5::hisG/cdc5::HIS1 

PCK1::CDC5-hisG) and control (AG332; CDC5/CDC5) strains were diluted into repressing 

medium (SD) and incubated at 30C for 0, 2, 4 or 6 h.  The control strain was also incubated in 

SD medium containing 10% serum at 37C to induce hyphae, or in SD medium at 36C to trigger 

formation of pseudohyphae.  Cells were then stained with filipin and visualized.  In serum-

induced cells, filipin was observed as an enriched signal in the tips of the majority of hyphae 

(Table 3.4, Fig. 3.1), as previously reported (55).  In comparison, cells depleted of Cdc5p for 2 h 

showed homogeneous staining on the cell periphery but enriched signal at tips of yeast buds (Fig. 

3.1).  By 4-6 h of Cdc5p depletion, when the majority of cells were elongated, an enriched filipin 

signal was observed at the tips (Table 3.4).  At similar time points, 100% of control cells were in 

the yeast form at various stages of budding.  However, the majority of small to medium-sized 

yeast buds at later time points also showed enriched filipin signal.  A localized spot of the filipin 

signal was observed in some yeast cells lacking buds, possibly corresponding to the incipient bud 

site, and control cells grown under pseudohyphal conditions also showed enriched filipin signal 

at the tips of small and medium-sized buds (Fig. 3.1).  Thus, polar sites of growth show enriched 

filipin staining, irrespective of cell type. It is not clear why our findings differ from those 

previously reported (55).  The enriched signal at yeast buds was not dependent on the type of 

medium used, since incubating control cells in YEPD gave similar results (data not shown).  

However, a consistently enriched signal was observed at tips only when the filipin solution was 

freshly prepared from powder as opposed to being thawed from a dissolved master stock.  Thus, 

our results suggest that enriched filipin signal can be found at polar growth sites in diverse cell 

types of C. albicans and is not specific to true hyphae.  Similar to our findings, enriched filipin 

signal is associated with yeast bud tips of Cryptococcus neoformans as well as in mating 

projections (56). 
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Figure 3.1: Tips of Cdc5p-depleted cells and young buds of yeast and pseudohyphae show 

enriched filipin staining, similar to hyphal tips.  Overnight cultures of strains AG240 

(cdc5::hisG/cdc5::HIS1 PCK1::CDC5-hisG, MLC1/MLC1-GFP-URA3) and AG332 

(CDC5/CDC5, MLC1/MLC1-GFP-URA3) grown at 30C in inducing medium (SS) were diluted 

into repressing medium (SD) and incubated at 30C for the indicated times.  Strain AG332 was 

also incubated in SD medium at 36C
 
for 6 h to promote pseudohyphal growth or SD medium 

supplemented with 10% FBS at 37C for 90 min. to induce hyphae.  Live cells were stained with 

filipin for 10 min, washed with sterile water and immediately examined by fluorescence 

microscopy.  Bars: 10 m. 
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Table 3.4: Proportion (%) of different cell morphologies and corresponding frequency of 

tip-enriched filipin signal in different cell types
1
.  

  

    

 Unbudded Small  

Bud
2
 

Medium  

Bud
2
 

Large  

Bud
2
 

Elongated  

Bud
2
 

Hyphae 

30C       

cdc5/PCK1::CDC5       

0 h (n=120) 59/0 1/1  33/0 5/0 2/0 0/0 

2 h (n=120) 19/0 15/15 34/28 13.5/12 18.5/17 0/0 

4 h (n=106) 0/0 0/0 0/0 0/0 100/96 0/0 

6 h (n=101) 0/0 0/0 0/0 0/0 100/84 0/0 

 

CDC5/CDC5       

0 h (n=106) 91/0 0/0 2/0 7/0 0/0 0/0 

2 h (n=123) 34/11
3
 17/17 24/24 25/25 0/0 0/0 

4 h (n=117) 10/7
3
 9.5/9.5 49.5/44.5 31/4 0/0 0/0 

6 h (n=117) 22/6
3
 13/13 35/31 30/0 0/0 0/0 

36C       

CDC5/CDC5       

(n=110) 3/0 17/17 41/35.5 39/4.5 0/0 0/0 

37C + serum       

CDC5/CDC5        

(n=35) 0/0 0/0 0/0 0/0 0/0 100/98 

       

 
1
Strains AG240 (cacdc5::hisG/cacdc5::HIS1 PCK1::CaCDC5-hisG, MLC1/MLC1-GFP-URA3) and AG332 

(MLC1/MLC1-GFP-URA3) were grown overnight at 30
0
C in inducing medium (SS), washed, diluted into repressing 

medium (SD) and incubated at 30C for set times. Cells of strain AG332 were grown at 36C for 4 h to promote 

pseudohyphal growth. Cells of strain AG332 were grown at 37C with media supplemented with 10% FBS for 1.5 h 

to induce hyphal growth.  Cells were stained with filipin for 10 min and analyzed by microscopy. Values represent 

percentage of cell morphology/percentage of those cells containing enriched filipin signal at a bud or filament tip.  
2
Buds scored as small were up to 0.25x in length that of the mother yeast cell, medium buds ranged from 0.25 to 0.5x 

the mother cell length, large buds were 0.5-1.0x the length of the mother yeast cell, and elongated buds contained 

lengths that were longer than that of the mother yeast cell.  
3
Non-budded

 
cells with a polar spot of filipin signal on the surface.  
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3.1.2 The myosin light chain Mlc1p is localized in a hyphal-specific manner in a proportion 

of Cdc5p-depleted cells 

Previous work demonstrated that tips of C. albicans hyphae were distinct from those of 

yeast or pseudohyphal buds in that they contained a vesicle supply center or Spitzenkörper, 

similar to that found in tips of hyphae in filamentous fungi (12, 21, 57, 58).  The Spitzenkörper in 

C. albicans hyphae was visualized as an FM4-64-staining, 3D spot just distal to or at the tip (12).  

The myosin light chain Mlc1p, the Rab GTPase Sec4p and its guanine nucleotide exchange factor 

(GEF), Sec2p, co-localize to this spot and are simultaneously found at subapical sites of septation 

(11-13).  In contrast, these factors initially localize as a crescent at the tips of growing yeast and 

pseudohyphal buds, then re-localize to the bud neck prior to septation (12, 13).  In order to clarify 

the nature of Cdc5p-depleted cells and elucidate mechanisms associated with their polarized 

growth, we explored the localization and organization of Mlc1p.  MLC1 was tagged at the C-

terminus with GFP in cells containing a single copy of CDC5 under control of the PCK1 

promoter (cdc5∆::hisG/PCK1::CDC5::HIS1, MLC1/MLC1-GFP-URA3; AG240)  (Fig. S3.1).   

We first investigated whether Mlc1p-GFP localized in the predicted manner under hyphal, yeast, 

and pseudohyphal conditions.  Cells were incubated in CDC5-inducing medium (SS) overnight, 

washed and diluted into fresh SS medium containing 10% serum and incubated at 37º C to induce 

hyphae, or in SS medium without serum at either 30C or 36C to produce yeast or 

pseudohyphae, respectively.  Under hyphal-inducing conditions, Mlc1p-GFP localized as a spot 

in the tips of germ tubes.  FM4-64 staining of hyphal tips proved difficult, but in some hyphae a 

spot at the tip colocalized with that of Mlc1p-GFP (Fig. 3.2A).  In yeast or pseudohyphal cells, 

Mlc1p-GFP localized either as a crescent in the tips of small buds, or at the bud neck (Fig. 3.2A).  

In addition, a spot of Mlc1p-GFP was observed in the tips of some incipient buds of yeast and 

pseudohyphae, where FM4-64 was also observed, suggesting that a Spitzenkörper-like structure 

was also present in these cells but only during very early stages of polarization, as previously 

reported (12, 13).  Thus, Mlc1p-GFP localized in a predictable manner in the different cell types.  

 

We next explored the localization of Mlc1p-GFP in cells depleted of Cdc5p.  After 

incubating the same strain (AG240) in repressing medium (SD) at 30C for 4 h, most cells were 

elongated with a mean length of 16.8 m  0.6 (s.e.m., n=100) and contained a constriction at the 

bud neck, due to polarization during mitosis from a preformed bud (37).  However, in two 
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separate trials, approximately 30% of cells contained a spot-like pattern of Mlc1p-GFP at the tips 

(Fig. 3.2A, Table 3.5).  Intriguingly, most of these cells demonstrated simultaneous Mlc1p-GFP 

localization in subapical regions, either at the bud neck or along the long axis of the filament, the 

latter of which could indicate deregulated attempts at septation (Fig. 3.2A).  The remaining cells 

showed Mlc1p-GFP at the tip in the form of a crescent and/or at the bud neck, or did not contain 

a signal (Table 3.5).  In order to determine whether the frequency of cells containing spots of 

Mlc1p-GFP in the tip increased over time, we next analyzed Mlc1p-GFP in cells depleted of 

Cdc5p for 12 h.  The total number of cells showing any signal was reduced, but approximately 

20% contained a spot pattern of Mlc1p-GFP at the tips (Table 3.5).  The spot was dynamic and 

would rapidly disappear with longer exposure time, comparable to that reported for Mlc1p-YFP 

in hyphal cells (11-13).  A similar localization of Mlc1p-GFP with FM4-64 was not frequent, but 

observed in some tips (Fig. 3.2B).  In order to confirm that the tip-localized spot of Mlc1p-GFP 

in Cdc5p-depleted cells was in a 3D organization (12), a 3D surface rendering of confocal image 

stacks was utilized.  The results demonstrate that the spots were present in all focal planes and 

corresponded to a 3D structure at the tip, similar to that found in serum-induced hyphae (Fig. 

3.2C) (12).  The mean volume of Mlc1p-GFP spots in Cdc5p-depleted cell tips was similar to that 

in hyphae (Fig. 3.2C).  The 3D rendering also confirmed the crescent organization of Mlc1p-GFP 

in other tips of Cdc5p-depleted cells (Fig. 3.2C).  Thus, a proportion of Cdc5p-depleted cells 

shows hyphal-specificity in Mlc1p-GFP localization.  However, the frequency of occurrence was 

not enhanced at 12 h depletion.  In order to obtain more refined information on the temporal 

dynamics of localization, Mlc1p-GFP was visualized in live cells over a time course of CDC5 

repression.  By 2 h, when cells were still in the yeast form and contained buds, Mlc1p-GFP was 

only detected at some bud necks (Fig. 3.2D).  At 3 h, some cells were polarized and displayed 

Mlc1p-GFP signal at the tips that was maintained for the duration of the time course (Fig. 3.2D).  

Analysis of the tips at higher magnification confirmed that Mlc1p-GFP was in the form of a spot 

in some filaments (Fig. 3.2D).  At 4 h, Mlc1p-GFP simultaneously appeared in subapical regions 

as short bands that often localized parallel to the long axis of the Cdc5p-depleted filaments.  

Mlc1p-GFP then localized as a perpendicular band, resembling that of a septum (Fig. 3.2D).  In 

other tips, Mlc1p-GFP was observed in a crescent organization (Fig. 3.2D) or no signal was 

present.  Collectively, these results demonstrate that at least a sub-population of Cdc5p-depleted 

cells show hyphal-specificity in Mlc1p-GFP organization, and this feature does not appear to be 
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associated with initial stages of polarized growth.  
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Figure 3.2: Mlc1p-GFP localization in Cdc5p-depleted cells.  (A) Overnight cultures of strain 

AG240 (cdc5::hisG/cdc5::HIS1 PCK1::CDC5-hisG, MLC1/MLC1-GFP-URA3) grown at 30C 

in inducing medium (SS) were diluted into fresh SS medium supplemented with 10% FBS at 

37C for 2 h to induce hyphae, SS medium at 36C for 5 h to promote pseudohyphal growth, or 

SD repressing medium at 30C for 4 h to deplete Cdc5p.  Prior to mounting on slides and 

imaging, FM4-64 was introduced to cell cultures.  (B) Cells depleted of Cdc5p as in (A) but for 6 

h.  Bars: 10 m.  (C) 3D imaging and volume measurements of Mlc1p-GFP signals in tips of 

serum-induced hyphae and Cdc5p-depleted cells prepared as described in (A).  The surface 

rendering module of the IMARIS 7.3 software was based on 0.1 μm step Z-stacks.  Student’s T-

tests were performed relative to the mean volume of Mlc1p-GFP spots in hyphae.  (D) Time 

course of Mlc1p-GFP localization in Cdc5p-depleted cells.  Strain AG240 was incubated in SS 

inducing medium as described in (A), transferred to a pre-made agarose pad consisting of SD 

repressing medium on a microscope slide, sealed with VALAP and visualized with LSM 510 

confocal microscope fitted with a x 63 objective. Images were recorded every 30 min, and Z 

stack series consisting of 0.1 μm steps were acquired.  
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Table 3.5: Mlc1p-GFP localization patterns in cells depleted of Cdc5p
1
.  

 

Tip                 Sub-apical                      Tip + sub-apical
2
 

 

Spot  Crescent 

No  

signal 

Bud-

neck Filament 

No 

signal 

Spot +  

bud-

neck 

Crescent +  

bud-neck 

Cdc5p  

depletion (h) 

       4  (n=107) 32.0 21.0 47.0 91.0 0 9.0 94.0    95.0 

    (n=112) 37.0 34.0 29.0 89.0 0 11.0 97.6    92.0 

       

   

  

          

12  (n=58) 22.5 3.5 74.0 N.D. 17.5 82.5 15.4      0 

      (n=54) 27.0 4.0 69.0 N.D.  35.0 65.0 33.3    50.0 

  

  
 

1
Strain AG240 (cdc5::hisG/cdc5::HIS1 PCK1::CDC5-hisG, MLC1/MLC1-GFP-URA3) was grown overnight at 

30C in inducing medium (SS), washed, diluted into repressing medium (SD) and incubated at 30C for 4 or 12 h. 

Values are expressed as percentage of total cells.  
2 
Of cells that contained signal in the tip,

 
percentage that simultaneously showed signal in subapical regions. 
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3.1.3 The Cdc42p GAP Rga2p shows an increase in phosphorylation and decrease in 

abundance during later stages of Cdc5p depletion  

Previous work demonstrated that Cdc28p/Hgc1p-dependent phosphorylation and down-

regulation of the Cdc42p GAP, Rga2p, were required for hyphal growth (19, 20).  This 

phosphorylation correlates with exclusion of Rga2p-GFP from the tips (19).  In contrast, Rga2p-

GFP is present in the tips of yeast and pseudohyphal buds (19).  An increase in Rga2p 

phosphorylation also occurs during initial yeast bud outgrowth, but this is transient and 

independent of Hgc1p (19).  In order to further address the nature of Cdc5p-depleted cells, we 

tagged RGA2 at the C-terminus with three copies of hemagglutinin (HA), resulting in strains 

AG374 (RGA2/RGA2-HA-URA3) and AG379 (cdc5::hisG/cdc5::HIS1 PCK1::CDC5-hisG, 

RGA2/RGA2-HA-URA3) (Fig. S3.2).  Overnight cultures of cells grown in SS inducing medium 

were diluted into fresh SS or SD repressing medium and incubated for various time periods at 

30C.  In SD medium, Rga2p-HA demonstrated a shift to a higher molecular weight by 6-7.5 h of 

Cdc5p depletion (Fig. 3.3A).  In contrast, Rga2p-HA in control cells did not show similar 

modifications (Fig. 3.3A).  In order to determine whether the band shift was due to an increase in 

phosphorylation, the experiment was repeated in the presence or absence of calf intestinal 

phosphatase (CIP).  When cells were incubated in repressing medium for 9 h, the Rga2p-HA 

band shift in Cdc5p-depleted cells was suppressed in the presence of CIP (Fig. 3.3B).  Rga2p-HA 

in control cells showed some CIP-dependent size reduction, suggesting a basal level of 

phosphorylation, but this was minor compared to that observed in Cdc5p-depleted cells.   

However, cells lacking Cdc5p also showed a decrease in the abundance of Rga2p-HA over time.    

In order to distinguish whether this was due to a decrease in protein expression/stability vs 

differences in gel loading, samples were separated on a higher concentration gel that allowed for 

detection of the lower molecular weight loading control protein Cdc28p.  In repressing medium, a 

decrease in Rga2p-HA intensity was observed at later time points, in contrast to that observed in 

control cells, and Cdc28p signal indicated that this was not due to differences in loading (Fig. 

S3.3).  Moreover, the intensity of Rga2p-HA signal was consistent between time points when 

cells were incubated in CDC5-inducing medium (Fig. S3.3), indicating that the effect was 

specific to depletion of Cdc5p.  Thus, in the absence of Cdc5p, Rga2p is modified at the level of 

phosphorylation and stability and/or expression, suggesting down-regulation of activity, as seen 

in true hyphae.  However, this occurs during later stages of CDC5 repression, consistent with the 
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hypothesis that the filaments may be elongated buds that switch to a hyphal fate over time.  

 

 

Figure 3.3: Rga2p undergoes a phosphorylation-dependent shift in Cdc5p-depleted cells. (A) 

Western blot of overnight cultures of strains AG374 (CDC5/CDC5, RGA2/RGA2-HA-URA3) and 

AG379 (cacdc5::hisG/cacdc5::HIS1 PCK1::CaCDC5-hisG, RGA2/RGA2-HA-URA3) that were 

grown in SS medium, diluted into SD repressing medium at 30C and collected at the indicated 

time points.  Strain AG374 was also incubated in SD medium supplemented with 10% Fetal 

Bovine Serum (FBS) for 2 h at 37C to induce hyphae.  (B) Western blot of select protein 

samples from (A) either in the presence (+) or absence (-) of calf intestinal alkaline phosphatase 

(CIP). 
 

 

3.1.4 A core regulator of hyphal growth, UME6, and other HSGs including HGC1 and  

HWP1 are induced in Cdc5p-depleted cells at or near hyphal-specific levels 

Ume6p is a core regulator of hyphal growth, as it controls many hyphal-specific genes 

(HSGs) and high levels of expression are sufficient to drive hyphal growth from yeast cells (28, 

59).  Our previous work involving time course-based transcription profiles of Cdc5p-depleted 

cells demonstrated that UME6 and other HSGs such as HGC1 and HWP1 are induced but only at 

later stages (36).  However, HSGs also can be expressed in pseudohyphae, albeit at levels lower 
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than those in hyphae (15, 60, 61).  In order to clarify whether expression levels of UME6, HWP1 

and HGC1 in Cdc5p-depleted cells were similar to those in hyphae, Northern blots were utilized 

to quantify expression during a time course of CDC5 repression.  Overnight cultures (CB104, 

CB400) were diluted into SD repressing medium and incubated at 30C for various periods of 

time.  Wild-type cells of strain SC5314 were also incubated in SD medium at 30C or 37C with 

the addition of 10% serum to obtain yeast and hyphal samples, respectively, for comparison.  

Expression was detectable by 7 h, where UME6 levels were higher than those of HGC1 or HWP1  

(Fig. 3.4).   Expression levels of all three genes continued to increase such that by 9-11 h of 

CDC5 repression, they were at or near those in serum-induced hyphae (Fig. 3.4).  Intriguingly, 

the period of induction correlated with that of Rga2p modifications, suggesting that major 

changes took place in the cells at this time, and that these are consistent with features of true 

hyphae.  

                       

Figure 3.4: UME6, HWP1 and HGC1 expression is induced at later time points of Cdc5p 

depletion. Overnight cultures of strains CB400 (URA3+HIS1+) and CB104 

(cacdc5Δ::hisG/cacdc5Δ:: HIS1/PCK1::CaCDC5-URA3) were transferred from SS to SD 

repressing medium and incubated at 30C for the indicated time points. Strain SC5314 (+/+) was 

also grown in either SD medium at 30C for 8 h to promote yeast growth (Y) or SD medium 

supplemented with 10% FBS at 37C for 2 h to induce hyphae (H).  ACT1 was used as loading 

control.  Density values represent adjusted relative densities and were calculated using ImageJ as 

described in Chou et al., 2011 (39). 
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3.1.5 Ume6p influences expression of HWP1 and morphology of Cdc5p-depleted filaments 

at later stages of growth 

If Cdc5p-depleted cells were elongated buds that adapted a hyphal fate over time, we 

predict that a regulator(s) of hyphal development should influence late stage Cdc5p-depleted 

growth and HSG expression.  Since Cdc5p-depleted filaments do not require the hyphal signaling 

pathway component Efg1p (37), but strongly induce UME6, we asked if this expression was 

functional and required for hyphal-specific features observed in the cells.  In order to address this 

question, both copies of UME6 were deleted from a CDC5-conditional strain, resulting in strains 

AG530 and AG531 (cdc5::hisG/MET3::CDC5-ARG4, ume6::URA3/ume6::HIS1) (Fig. S3.4).  

Overnight cultures of strains AG530 and the control strain AG553 (cdc5::hisG/MET3::CDC5-

ARG4, UME6/UME6, URA3+ HIS1+) were diluted into +MC repressing medium and incubated 

for various periods for morphology determination and RNA extraction.  In the absence of UME6, 

Cdc5p-depleted cells were able to grow in a polarized manner and the filaments resembled those 

of control cells at 6 h (Fig. 3.5) and later time points of 9 and 11 h (data not shown).  However, a 

clear difference in morphology was observed with longer incubation (14-24 h) in that the 

filaments appeared more wide, vacuolated, and surrounded by more cell debris compared to 

control cells (Fig. 3.5).  More cells also stained with propidium iodide, suggesting that loss of 

UME6 affects cell integrity (Fig. S3.6).  We next asked if Ume6p was required for expression of 

HWP1 in Cdc5p-depleted cells.  Northern blots of RNA obtained from strains AG530 and 

AG531 incubated in repressing medium for 11 h demonstrated that HWP1 expression was 

severely reduced in the absence of UME6 (Fig. 3.6).  HGC1 expression was also reduced, but to a 

lesser extent (Fig. 3.6).  Thus, Ume6p influences the morphology of late-stage Cdc5p-depleted 

cells, and influences HWP1 and HGC1 expression.  Since HGC1 was also induced in Cdc5p-

depleted cells, we asked if it influenced the Cdc5p-depleted cell phenotype.  Both copies of 

HGC1 were deleted from a CDC5 conditional strain, resulting in strains AG574 and AG577  

(cdc5::hisG/MET3::CDC5-ARG4, hgc1::URA3/hgc1::HIS1) (Fig S3.5).  In the absence of HGC1, 

Cdc5p-depleted cells could polarize and morphology was similar to control cells at early stages 

of growth (Fig. 3.5).   However, similar to cells lacking Ume6p, morphology was affected at later 

growth stages as cells appeared more vacuolated and stained more readily with propidium iodide 

(Fig. S3.6).  Absence of Hgc1p did not influence HWP1 or UME6 expression (Fig. 3.6), similar 

to that reported in true hyphae (30).  
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Thus, Ume6p and Hgc1p are important for morphology and integrity of later-stage 

Cdc5p-depleted filaments, and Ume6p is required for expression of HWP1 and in part, HGC1.  

Since similar features are found in true hyphae, the results support the model that Cdc5p-depleted 

cells may switch to the hyphal fate over time in a manner dependent on the hyphal regulators 

Ume6p and Hgc1p.   

                     

Figure 3.5: Absence of UME6 or HGC1 influences the shape and integrity of Cdc5p-

depleted filaments at only later stages of growth. Overnight cultures of strains AG553 

(cdc5Δ::hisG/MET3::CDC5-ARG4, URA3+ HIS1+, UME6/UME6, HGC1/HGC1), AG530 

(cdc5Δ::hisG/MET3::CDC5-ARG4, ume6Δ::URA3/ume6Δ::HIS1, HGC1/HGC1) and AG574 

(cdc5Δ::hisG/MET3::CDC5::ARG4, hgc1Δ::URA3/hgc1Δ::HIS, UME6/UME6) in -MC 

inducing medium were diluted into +MC repressing medium and incubated at 30C for 6 or 24 h. 

Samples at 6 h were fixed in 70% ethanol prior to viewing while 24 h samples were live when 

mounted on microscope slides. Bars: 10 m. 
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Figure 3.6: Expression levels of HWP1 and HGC1 are reduced in Cdc5p-depleted cells 

lacking UME6.  Overnight cultures of strains AG553, AG547 (cdc5::hisG/MET3::CDC5-ARG4 

URA3+HIS1+), AG530, AG531(cdc5::hisG/MET3::CDC5-ARG4  ume6::URA3/ume6::HIS1) 

and AG574, AG577 (cdc5::hisG/MET3::CDC5-ARG4  hgc1::URA3/hgc1::HIS1) were diluted 

into +MC repressing medium and incubated at 30C for 11 h.   ACT1 was used as loading 

control.  Density values represent adjusted relative densities and were calculated using ImageJ as 

described in Chou et al., 2011 (39). 
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3.1.6 Cdc5p-depleted cells do not require Hms1p for polarized growth or expression of 

UME6 and HWP1 

The regulation of UME6 is complex and not fully understood (62).  Under hyphal-

inducing conditions, its expression is controlled by transcription factors, such as Efg1p, that are 

under control of various environment-responsive signaling pathways (21, 24).  Since Cdc5p-

depleted cells adapt a hyphal fate at later stages of growth in the absence of hyphal-inducing 

environmental cues, the mechanisms underlying UME6 induction in these cells remain unclear.  

One possibility is a signaling pathway involving the transcription factor Hms1p, which links the 

heat shock protein Hsp90p to polar morphogenesis and expression of HSGs (2).  Hsp90p 

influences many cellular processes, including mitotic progression, and its absence results in 

highly polarized filaments that express several HSGs in a cAMP-dependent manner (2, 63), 

similar to that shown for cells resulting from depletion of Cdc5p (36, 37) or other factors that 

cause S or M phase arrest in C. albicans yeast cells (32, 38, 39, 42, 44, 64).  Hms1p binds 

promoters of five HSGs, including UME6, and its absence prevents polarized growth and 

strongly reduces HWP1 and UME6 expression in Hsp90p-compromised cells (2).  In order to 

determine whether the Cdc5p-depleted cell phenotype also requires Hms1p, both copies of HMS1 

were deleted from a CDC5 conditional strain, resulting in strains AG579, AG580 and AG581 

(cdc5::hisG/MET3::CDC5-ARG4, hms1::URA3/hms1::HIS1 cells) (Fig. S3.7).  In the absence of 

HMS1, Cdc5p-depleted cells were able to grow in a polar manner.  Filament morphology was 

similar to that of control cells, even at later time points, although some blunt tips were noted (Fig. 

3.7A).  The filaments did not display the loss of integrity as seen in the absence of Ume6p or 

Hgc1p  (Fig. 3.7A; Fig. S3.6).  Further, UME6 and HWP1 expression was not reduced in the 

absence of HMS1 (Fig. 3.7B).  Thus, Cdc5p-depleted cells grow in a polarized fashion and 

induce UME6 and HWP1 expression via alternate mechanisms. 
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Figure 3.7: Absence of HMS1 does not prevent polarized growth or expression of UME6 

and HWP1 in Cdc5p-depleted cells. (A) Overnight cultures of strains AG553 

(cdc5Δ::hisG/MET3::CDC5-ARG4, URA3+ HIS1+, HMS1/HMS1), and AG580 

(cdc5Δ::hisG/MET3::CDC5-ARG4, hms1Δ::URA3/hms1Δ::HIS1) were diluted into +MC 

repressing medium and incubated at 30C for 6 or  24 h.  Samples at 6 h were fixed in 70% 

ethanol while 24 h samples were observed live under the microscope. Bars: 10 m.   

(B) Overnight cultures of strains AG553, AG547 (cdc5::hisG/MET3::CDC5-ARG,  URA3+ 

HIS1+, HMS1/HMS1) and AG579, AG580 AG581 (cdc5::hisG/MET3::CDC5-ARG4  

hms1::URA3/hms1::HIS1) were diluted into +MC repressing medium and incubated at 30C for 

11 h.  Strain SC5314 (+/+) was also grown in +MC medium at either 30C for 8 h to promote 

yeast growth (Y) or supplemented with 10% FBS at 37C for 2 h to induce hyphae (H).  ACT1 

was used as loading control.  Density values represent adjusted relative (Rel.) densities and were 

calculated using ImageJ as described in Chou et al., 2011 (39). 
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3.4 DISCUSSION 

 Arresting yeast cells of C. albicans in mitosis results in the formation of filaments that 

maintain polarized growth and express HSGs, much like true hyphae.  However, the nature of 

these growth forms and the mechanisms underlying their generation has been elusive.  Here, we 

show that filaments produced through depletion of the mitotic polo-like kinase Cdc5p have 

characteristics of elongated buds during early stages of elongation, but demonstrate several 

features diagnostic of true hyphae at later growth stages, including Spitzenkörper-like 

localization of Mlc1p, phosphorylation of the Cdc42p GAP Rga2p, and strong expression of 

hyphal-associated genes such as UME6, HGC1, and HWP1.  HWP1 expression was strongly 

dependent on Ume6p, and absence of Ume6p or Hgc1p influenced the maintenance, but not 

initiation, of filament morphology and integrity.  Finally, polar growth and UME6 expression in 

Cdc5p-depleted cells were independent of Hms1p, unlike filaments produced through depletion 

of Hsp90p (2).  Thus, polar cells that form in response to Cdc5p depletion may initially represent 

elongated buds, but switch to the hyphal fate over time through a mechanism that involves a 

novel mode of UME6 induction.  

 

3.4.1 Cdc5p-depleted cells are elongated buds during initial stages of polarized growth 

We previously suggested that filaments produced through Cdc5p depletion were not 

hyphae during early growth stages based on their transcription profiles, a requirement for the 

spindle checkpoint factor Bub2p, and independence of the hyphal regulator Efg1p (36).  Our time 

course-based investigations of aspects of the polar growth machinery support this notion, and 

suggest that the cells may be elongated buds (36).  Unlike hyphal germ tubes, emerging tips of 

Cdc5p-depleted cells did not demonstrate a 3D spot-like localization of Mlc1p-GFP, and Rga2p 

was not hyperphosphorylated.  Further, Cdc5p-depleted filaments grew in a polar manner for an 

extended time in the absence of Ume6p or Hgc1p, unlike serum-induced germ tubes (28, 30, 59).   

Elongated bud formation could be due to defects in the ability of the bud to switch from polar to 

isometric growth.  In S. cerevisiae, yeast buds grow in a polar manner from G1/S to late G2 

phase of the cell cycle, and then switch to isometric growth (65).  The switch is regulated in part 

by the CDK Cdc28p falling under control of the B-type cyclin Clb2p, which in turn causes 

disassembly of the Cdc24p-Bem1p-Cla4p complex, a decrease in Cdc42p-GTP, and 

depolarization of actin patches (65, 66).  In C. albicans, yeast buds show similar growth patterns 
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but the precise timing and mechanisms underlying the depolarizing switch are not yet known (1, 

10, 12, 67).  Since C. albicans Cdc5p is required in early mitosis (36, 37), it is conceivable that 

its absence may influence the depolarization machinery.  In S. cerevisiae, absence of Cdc5p 

results in a large budded cell (68, 69), but overexpression (70) or Cdc5p mutations that 

deregulate septin organization or Swe1p function produce elongated buds, albeit not as long as 

those observed in C. albicans  (71-73).  Cdc5p also activates Rho1p at the division site, 

negatively regulates Cdc42p activity in late mitosis to permit cytokinesis, and physically interacts 

with the Cdc42p GAP Bem3p, demonstrating links between polo-like kinases and cytoskeletal 

and polarity-regulating factors (74, 75).  Further, the polo kinase Plo1p in S. pombe influences 

new and stress-induced polarized growth (76, 77).  Although the functions and targets of Cdc5p 

in C. albicans are not yet known, it is possible that Cdc5p depletion deregulates the bud growth 

pattern, resulting in elongated buds.   

 

3.4.2 Cdc5p-depleted cells may switch to the hyphal fate in a Ume6p-dependent manner 

Since Cdc5p-depleted cells expressed several HSGs at later stages of growth, we 

previously proposed that they became hyphal-like (36, 39).  However, pseudohyphae also express 

HSGs, albeit at reduced levels, questioning this hypothesis (15, 60, 61).  We now provide data 

that support the model that Cdc5p-depleted cells might switch to the hyphal fate over time.  First, 

Cdc5p-depleted cells express HSGs at later stages of development, including HWP1, UME6 and 

HGC1, at levels approximating those in serum-induced hyphae.  Second, the Cdc42p GAP Rga2p 

showed enhanced phosphorylation at approximately the same time as UME6 induction.  Rga2p 

hyperphosphorylation is also observed in serum-induced hyphae, which results in down-

regulation and a corresponding maintenance of Cdc42p at the hyphal tip (19, 20).  Although 

Rga2p is hyperphosphorylated in yeast, this is only observed during initial yeast bud outgrowth 

(19).  Since Rga2p was not detectably phosphorylated during early stages of Cdc5p depletion, 

when the cells were clearly polarizing, the phosphorylation observed at later time points can not 

be due to maintenance of phosphorylation associated with incipient bud growth.  Cdc5p-depleted 

cells also showed reduced levels of Rga2p, unlike the situation in serum-induced hyphae.  

Although novel, this reinforces the net effect of Rga2p down-regulation.  This protein depletion 

was not a global effect, since Cdc28p did not show detectable decreases in abundance during 

Cdc5p shut-off.  Third, absence of Ume6p and a known downstream target, Hgc1p, influenced 
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the morphology and integrity of Cdc5p-depleted cells at later stages of growth, and HWP1 

expression was dependent in large part on Ume6p.  Similarly, Ume6p and Hgc1p are required for 

maintenance, but not initiation, of serum-induced hyphal growth (30, 59).  Finally, a proportion 

of Cdc5p-depleted cells showed hyphal-specific features (12) in Mlc1p-GFP localization, 

including a 3D spot organization in the tip that could be maintained over time, and simultaneous 

localization at the tip and the bud neck or along the subapical region.  Many other cells contained 

a crescent organization of Mlc1p-GFP in the tip, like pseudohyphae, and by 12 h of Cdc5p 

depletion, fewer cells contained any signal.  These observations may be due to the dynamic 

nature of Mlc1p-GFP signal (12), possible differences in growth rate, and heterogeneity in the 

timing and extent to which a change in fate might take place.  Although the simultaneous 

localization of Mlc1p-GFP at the tip and in subapical regions could simply reflect a block in the 

cell cycle, a 3D spot organization in the tip implies that the cells were not all simply 

pseudohyphae.  Collectively, the data suggest that Cdc5p-depleted cells can adapt a hyphal fate, 

under low temperature and low pH conditions.   

 

The mechanisms underlying the emergence of hyphal-specific features in Cdc5p-depleted 

cells may involve the gradual induction of UME6.  Ume6p can regulate the transition from yeast 

to pseudohyphae to hyphae in a dose-dependent manner (61).  Maintenance, but not initiation, of 

hyphal growth requires induction of UME6, which in turn maintains expression of HSGs, 

including HGC1.  Hgc1p/Cdc28p activity in turn is required for Rga2p phosphorylation in true 

hyphae (19, 20).  At later stages of Cdc5p-depletion, UME6 was expressed while Rga2p was 

phosphorylated.  UME6 was required for HWP1 expression, and influenced filament 

morphogenesis, supporting the idea that gradual induction of UME6 may underlie the cell fate 

change.  In one model, expression of UME6 may induce HSGs, and Hgc1p in turn may interact 

with Cdc28p to help drive the switch to a hyphal fate.  Although it is not known if 

phosphorylation of Rga2p in Cdc5p-depleted cells requires Hgc1p, it is noteworthy that the 

timing of UME6 and HGC1 induction correlated with that of Rga2p phosphorylation.  We can 

not rule out the possibility that Rga2p down-regulation is the initiating cue, but this by itself can 

not generate polarized growth under yeast growth conditions; C. albicans cells lacking Rga2p or 

another Cdc42p GAP, Bem3p, grow as yeast and strains lacking both GAPs show hyperpolarized 

growth and some other hyphal features under pseudohyphal, but not yeast growth conditions (19, 
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20).  It is also possible that several initiating mechanisms are involved, as HGC1 expression was 

only partly dependent on Ume6p, as seen in true hyphae (20).  

 

3.4.3 Induction of UME6 in the absence of environmental cues or Hms1p suggests 

additional modes of regulation  

A critical question is how depletion of Cdc5p leads to induction of UME6.  To date, 

UME6 expression has been shown to be dependent on several environment-induced hyphal 

signaling pathway components, such as Efg1p, Tec1p, Cph1p and Eed1p, for example, and is 

repressed by Nrg1p and Tup1p (21, 28).  Alternatively, UME6 is induced by the transcription 

factor Hms1p in response to heat treatment or depletion of Hsp90p (63).  Intriguingly, Ume6p is 

stabilized under several hyphal-inducing conditions and can influence its own expression in a 

positive feedback loop (62, 78).  Since Cdc5p-depleted filaments form in the absence of hyphal-

inducing cues and Efg1p (37) and did not require Hms1p for polarized growth or UME6 

expression, induction of UME6 under these conditions involves alternative mechanisms.  Given 

the delayed emergence of hyphal features and expression patterns in these cells, one possibility 

involves maintenance of polarized growth and corresponding changes in actin.  Previous work 

demonstrated that stabilized actin contributes to upregulation of HWP1 expression in C. albicans, 

G-actin interacts with Cyr1p of the cAMP pathway, and tip localization of Cdc42p is associated 

with expression of the hyphal transcription program (79-82).  Maintaining polarized growth of a 

bud could result in modification of the actin cytoskeleton and associated regulators at the tip that 

in turn influence aspects of the hyphal signaling pathways.  Thus, similar to a block in G1 phase, 

arresting C. albicans yeast cells in mitosis may ultimately result in hyphal growth and expression 

of important virulence factors, albeit utilizing alternative initiating mechanisms.  Linking 

filamentous growth and associated gene expression patterns to perturbations in yeast cell cycle 

phase progression may provide an advantage for C. albicans in the presence of stresses that 

impinge on the cell cycle within the host environments (14, 35, 36, 43,44).  In summary, our 

results shed light on the nature of mitotic-arrested, Cdc5p-depleted cells, and expand on the 

multiple strategies with which C. albicans can modulate growth mode and expression of 

developmental factors, including UME6, which are important for pathogenesis.  

 

 



 107 

3.5 ACKNOWLEDGEMENTS  

The authors thank M. Whiteway for comments on the manuscript.  This work was 

supported by NSERC Discovery Grant N00944 to CB and NSERC PGSD Graduate Student 

Scholarship to AG. We would like to thank Centre for Microscopy and Cell Imaging (CMCI) at 

Concordia University for their help in microscopic pictures.  

 

 

3.6 REFERENCES 

1. Sudbery P, Gow N, Berman J. 2004. The distinct morphogenic states of Candida 

albicans. Trends in Microbiology 12:317-324. 

2. Shapiro RS, Sellam A, Tebbji F, Whiteway M, Nantel A, Cowen LE. 2012. Pho85, 

Pcl1, and Hms1 signaling governs Candida albicans morphogenesis induced by high 

temperature or Hsp90 compromise. Current Biology : CB 22:461-470. 

3. Dupont PF. 1995. Candida albicans, the opportunist. A cellular and molecular 

perspective. Journal of the American Podiatric Medical Association 85:104-115. 

4. Odds FC. 1985. Morphogenesis in Candida albicans. Critical Reviews in Microbiology 

12:45-93. 

5. Corner BE, Magee PT. 1997. Candida pathogenesis: unravelling the threads of 

infection. Current Biology : CB 7:R691-694. 

6. Boonyasiri A, Jearanaisilavong J, Assanasen S. 2013. Candidemia in Siriraj Hospital: 

epidemiology and factors associated with mortality. Journal of the Medical Association of 

Thailand = Chotmaihet thangphaet 96 Suppl 2:S91-97. 

7. Hsueh PR, Graybill JR, Playford EG, Watcharananan SP, Oh MD, Ja'alam K, 

Huang S, Nangia V, Kurup A, Padiglione AA. 2009. Consensus statement on the 

management of invasive candidiasis in Intensive Care Units in the Asia-Pacific Region. 

International Journal of Antimicrobial Agents 34:205-209. 

8. Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, Sollet JP, Carlet J, Reynes 

J, Rosenheim M, Regnier B, Lortholary O, AmarCand Study G. 2009. Epidemiology, 

management, and risk factors for death of invasive Candida infections in critical care: a 

multicenter, prospective, observational study in France (2005-2006). Critical Care 

Medicine 37:1612-1618. 

9. Staebell M, Soll DR. 1985. Temporal and spatial differences in cell wall expansion 

during bud and mycelium formation in Candida albicans. Journal of General 

Microbiology 131:1467-1480. 

10. Hazan I, Sepulveda-Becerra M, Liu H. 2002. Hyphal elongation is regulated 

independently of cell cycle in Candida albicans. Molecular Biology of the Cell 13:134-

145. 

11. Bishop A, Lane R, Beniston R, Chapa-y-Lazo B, Smythe C, Sudbery P. 2010. Hyphal 

growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-

Ccn1/Hgc1 kinase. The EMBO Journal 29:2930-2942. 

12. Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery P. 

2005. Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome 

found in yeast and pseudohyphae. Journal of Cell Science 118:2935-2947. 



 108 

13. Jones LA, Sudbery PE. 2010. Spitzenkorper, exocyst, and polarisome components in 

Candida albicans hyphae show different patterns of localization and have distinct 

dynamic properties. Eukaryotic Cell 9:1455-1465. 

14. Sudbery PE. 2001. The germ tubes of Candida albicans hyphae and pseudohyphae show 

different patterns of septin ring localization. Molecular Microbiology 41:19-31. 

15. Berman J. 2006. Morphogenesis and cell cycle progression in Candida albicans. Current 

Opinion in Microbiology 9:595-601. 

16. Warenda AJ, Konopka JB. 2002. Septin function in Candida albicans morphogenesis. 

Molecular Biology of the Cell 13:2732-2746. 

17. Gierz G, Bartnicki-Garcia S. 2001. A three-dimensional model of fungal 

morphogenesis based on the vesicle supply center concept. Journal of Theoretical Biology 

208:151-164. 

18. Virag A, Harris SD. 2006. The Spitzenkorper: a molecular perspective. Mycological 

Research 110:4-13. 

19. Zheng XD, Lee RTH, Wang YM, Lin QS, Wang Y. 2007. Phosphorylation of Rga2, a 

Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. Embo Journal 

26:3760-3769. 

20. Court H, Sudbery P. 2007. Regulation of Cdc42 GTPase activity in the formation of 

hyphae in Candida albicans. Molecular Biology of the Cell 18:265-281. 

21. Sudbery PE. 2011. Growth of Candida albicans hyphae. Nature reviews. Microbiology 

9:737-748. 

22. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 1997. 

Nonfilamentous C. albicans mutants are avirulent. Cell 90:939-949. 

23. Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. 2003. Engineered control of 

cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida 

albicans during infection. Eukaryotic Cell 2:1053-1060. 

24. Biswas S, Van Dijck P, Datta A. 2007. Environmental sensing and signal transduction 

pathways regulating morphopathogenic determinants of Candida albicans. Microbiology 

and Molecular Biology Reviews : MMBR 71:348-376. 

25. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen 

LE. 2009. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis 

via Ras1-PKA signaling. Current Biology : CB 19:621-629. 

26. Whiteway M, Bachewich C. 2007. Morphogenesis in Candida albicans. Annual Review 

of Microbiology 61:529-553. 

27. Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. 1997. Efg1p, an essential regulator of 

morphogenesis of the human pathogen Candida albicans, is a member of a conserved 

class of bHLH proteins regulating morphogenetic processes in fungi. The EMBO Journal 

16:1982-1991. 

28. Zeidler U, Lettner T, Lassnig C, Muller M, Lajko R, Hintner H, Breitenbach M, 

Bito A. 2009. UME6 is a crucial downstream target of other transcriptional regulators of 

true hyphal development in Candida albicans. FEMS Yeast Research 9:126-142. 

29. Carlisle PL, Kadosh D. 2010. Candida albicans Ume6, a filament-specific 

transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-

related protein. Eukaryotic Cell 9:1320-1328. 

30. Zheng X, Wang Y, Wang Y. 2004. Hgc1, a novel hypha-specific G1 cyclin-related 

protein regulates Candida albicans hyphal morphogenesis. The EMBO Journal 23:1845-

1856. 



 109 

31. Wang Y. 2009. CDKs and the yeast-hyphal decision. Current Opinion in Microbiology 

12:644-649. 

32. Bachewich C, Whiteway M. 2005. Cyclin Cln3p links G1 progression to hyphal and 

pseudohyphal development in Candida albicans. Eukaryotic Cell 4:95-102. 

33. Chapa y Lazo B, Bates S, Sudbery P. 2005. The G1 cyclin Cln3 regulates 

morphogenesis in Candida albicans. Eukaryotic Cell 4:90-94. 

34. Ofir A, Hofmann K, Weindling E, Gildor T, Barker KS, Rogers PD, Kornitzer D. 

2012. Role of a Candida albicans Nrm1/Whi5 homologue in cell cycle gene expression 

and DNA replication stress response. Molecular Microbiology 84:778-794. 

35. Atir-Lande A, Gildor T, Kornitzer D. 2005. Role for the SCFCDC4 ubiquitin ligase in 

Candida albicans morphogenesis. Molecular Biology of the Cell 16:2772-2785. 

36. Bachewich C, Nantel A, Whiteway M. 2005. Cell cycle arrest during S or M phase 

generates polarized growth via distinct signals in Candida albicans. Molecular 

Microbiology 57:942-959. 

37. Bachewich C, Thomas DY, Whiteway M. 2003. Depletion of a polo-like kinase in 

Candida albicans activates cyclase-dependent hyphal-like growth. Molecular Biology of 

the Cell 14:2163-2180. 

38. Bensen ES, Clemente-Blanco A, Finley KR, Correa-Bordes J, Berman J. 2005. The 

mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans. Molecular 

Biology of the Cell 16:3387-3400. 

39. Chou H, Glory A, Bachewich C. 2011. Orthologues of the anaphase-promoting 

complex/cyclosome coactivators Cdc20p and Cdh1p are important for mitotic progression 

and morphogenesis in Candida albicans. Eukaryotic Cell 10:696-709. 

40. Andaluz E, Ciudad T, Gomez-Raja J, Calderone R, Larriba G. 2006. Rad52 depletion 

in Candida albicans triggers both the DNA-damage checkpoint and filamentation 

accompanied by but independent of expression of hypha-specific genes. Molecular 

Microbiology 59:1452-1472. 

41. Devasahayam G, Chaturvedi V, Hanes SD. 2002. The Ess1 prolyl isomerase is required 

for growth and morphogenetic switching in Candida albicans. Genetics 160:37-48. 

42. Shi QM, Wang YM, Zheng XD, Lee RT, Wang Y. 2007. Critical role of DNA 

checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida 

albicans. Molecular Biology of the Cell 18:815-826. 

43. Senn H, Shapiro RS, Cowen LE. 2012. Cdc28 provides a molecular link between 

Hsp90, morphogenesis, and cell cycle progression in Candida albicans. Molecular 

Biology of the Cell 23:268-283. 

44. Bai C, Ramanan N, Wang YM, Wang Y. 2002. Spindle assembly checkpoint 

component CaMad2p is indispensable for Candida albicans survival and virulence in 

mice. Molecular Microbiology 45:31-44. 

45. Gale CA, Leonard MD, Finley KR, Christensen L, McClellan M, Abbey D, 

Kurischko C, Bensen E, Tzafrir I, Kauffman S, Becker J, Berman J. 2009. SLA2 

mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and 

Saccharomyces cerevisiae. Microbiology 155:3847-3859. 

46. Leuker CE, Sonneborn A, Delbruck S, Ernst JF. 1997. Sequence and promoter 

regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal 

pathogen Candida albicans. Gene 192:235-240. 

47. Care RS, Trevethick J, Binley KM, Sudbery PE. 1999. The MET3 promoter: a new 

tool for Candida albicans molecular genetics. Molecular Microbiology 34:792-798. 



 110 

48. Bensen ES, Filler SG, Berman J. 2002. A forkhead transcription factor is important for 

true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryotic Cell 1:787-

798. 

49. Lavoie H, Sellam A, Askew C, Nantel A, Whiteway M. 2008. A toolbox for epitope-

tagging and genome-wide location analysis in Candida albicans. BMC Genomics 9:578. 

50. Gola S, Martin R, Walther A, Dunkler A, Wendland J. 2003. New modules for PCR-

based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp 

of flanking homology region. Yeast 20:1339-1347. 

51. Fonzi WA, Irwin MY. 1993. Isogenic strain construction and gene mapping in Candida 

albicans. Genetics 134:717-728. 

52. Rose MD, Winston FM, Hieter P, Sherman F, Cold Spring Harbor Laboratory. 

Press. 1990. Methods in yeast genetics : a laboratory course manual. Cold Spring Harbor 

Laboratory Press, Cold Spring Harbor, N.Y. 

53. Liu HL, Osmani AH, Ukil L, Son S, Markossian S, Shen KF, Govindaraghavan M, 

Varadaraj A, Hashmi SB, De Souza CP, Osmani SA. 2010. Single-step affinity 

purification for fungal proteomics. Eukaryotic Cell 9:831-833. 

54. Mogilevsky K, Glory A, Bachewich C. 2012. The Polo-like kinase PLKA in Aspergillus 

nidulans is not essential but plays important roles during vegetative growth and 

development. Eukaryotic Cell 11:194-205. 

55. Martin SW, Konopka JB. 2004. Lipid raft polarization contributes to hyphal growth in 

Candida albicans. Eukaryotic Cell 3:675-684. 

56. Nichols CB, Fraser JA, Heitman J. 2004. PAK kinases Ste20 and Pak1 govern cell 

polarity at different stages of mating in Cryptococcus neoformans. Molecular Biology of 

the Cell 15:4476-4489. 

57. Harold FM. 1999. In pursuit of the whole hypha. Fungal Genetics and Biology : FG & B 

27:128-133. 

58. Harris SD. 2009. The Spitzenkorper: a signalling hub for the control of fungal 

development? Molecular Microbiology 73:733-736. 

59. Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, Lopez-

Ribot JL, Kadosh D. 2008. UME6, a novel filament-specific regulator of Candida 

albicans hyphal extension and virulence. Molecular Biology of the Cell 19:1354-1365. 

60. Carlisle PL, Kadosh D. 2013. A genome-wide transcriptional analysis of morphology 

determination in Candida albicans. Molecular Biology of the Cell 24:246-260. 

61. Carlisle PL, Banerjee M, Lazzell A, Monteagudo C, Lopez-Ribot JL, Kadosh D. 

2009. Expression levels of a filament-specific transcriptional regulator are sufficient to 

determine Candida albicans morphology and virulence. Proceedings of the National 

Academy of Sciences of the United States of America 106:599-604. 

62. Childers DS, Mundodi V, Banerjee M, Kadosh D. 2014. A 5' UTR-mediated 

translational efficiency mechanism inhibits the Candida albicans morphological 

transition. Molecular Microbiology 92:570-585. 

63. Shapiro RS, Zaas AK, Betancourt-Quiroz M, Perfect JR, Cowen LE. 2012. The 

Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. 

PloS One 7:e44734. 

64. Ciudad T, Andaluz E, Steinberg-Neifach O, Lue NF, Gow NA, Calderone RA, 

Larriba G. 2004. Homologous recombination in Candida albicans: role of CaRad52p in 

DNA repair, integration of linear DNA fragments and telomere length. Molecular 

Microbiology 53:1177-1194. 



 111 

65. Pruyne D, Bretscher A. 2000. Polarization of cell growth in yeast. I. Establishment and 

maintenance of polarity states. Journal of Cell Science 113 ( Pt 3):365-375. 

66. Howell AS, Lew DJ. 2012. Morphogenesis and the cell cycle. Genetics 190:51-77. 

67. Soll DR, Herman MA, Staebell MA. 1985. The involvement of cell wall expansion in 

the two modes of mycelium formation of Candida albicans. Journal of General 

Microbiology 131:2367-2375. 

68. Jacobs CW, Adams AE, Szaniszlo PJ, Pringle JR. 1988. Functions of microtubules in 

the Saccharomyces cerevisiae cell cycle. The Journal of Cell Biology 107:1409-1426. 

69. Slater ML. 1973. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the 

yeast cell cycle. Journal of Bacteriology 113:263-270. 

70. Song S, Grenfell TZ, Garfield S, Erikson RL, Lee KS. 2000. Essential function of the 

polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. 

Molecular and Cellular Biology 20:286-298. 

71. Park CJ, Song S, Lee PR, Shou W, Deshaies RJ, Lee KS. 2003. Loss of CDC5 

function in Saccharomyces cerevisiae leads to defects in Swe1p regulation and 

Bfa1p/Bub2p-independent cytokinesis. Genetics 163:21-33. 

72. Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra 

TD, Thorner J, Lee KS. 2004. Coupling morphogenesis to mitotic entry. Proceedings of 

the National Academy of Sciences of the United States of America 101:4124-4129. 

73. Song S, Lee KS. 2001. A novel function of Saccharomyces cerevisiae CDC5 in 

cytokinesis. The Journal of Cell Biology 152:451-469. 

74. Atkins BD, Yoshida S, Saito K, Wu CF, Lew DJ, Pellman D. 2013. Inhibition of 

Cdc42 during mitotic exit is required for cytokinesis. The Journal of Cell Biology 

202:231-240. 

75. Yoshida S, Kono K, Lowery DM, Bartolini S, Yaffe MB, Ohya Y, Pellman D. 2006. 

Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. 

Science 313:108-111. 

76. Grallert A, Patel A, Tallada VA, Chan KY, Bagley S, Krapp A, Simanis V, Hagan 

IM. 2013. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission 

yeast. Nature Cell Biology 15:88-95. 

77. Petersen J, Hagan IM. 2005. Polo kinase links the stress pathway to cell cycle control 

and tip growth in fission yeast. Nature 435:507-512. 

78. Lu Y, Su C, Solis NV, Filler SG, Liu H. 2013. Synergistic regulation of hyphal 

elongation by hypoxia, CO(2), and nutrient conditions controls the virulence of Candida 

albicans. Cell Host & Microbe 14:499-509. 

79. Bassilana M, Hopkins J, Arkowitz RA. 2005. Regulation of the Cdc42/Cdc24 GTPase 

module during Candida albicans hyphal growth. Eukaryotic Cell 4:588-603. 

80. Pulver R, Heisel T, Gonia S, Robins R, Norton J, Haynes P, Gale CA. 2013. Rsr1 

focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development 

in Candida albicans. Eukaryotic Cell 12:482-495. 

81. Wolyniak MJ, Sundstrom P. 2007. Role of actin cytoskeletal dynamics in activation of 

the cyclic AMP pathway and HWP1 gene expression in Candida albicans. Eukaryotic 

Cell 6:1824-1840. 

82. Zou H, Fang HM, Zhu Y, Wang Y. 2010. Candida albicans Cyr1, Cap1 and G-actin 

form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth. 

Molecular Microbiology 75:579-591. 



 112 

3.7 SUPPLEMENTARY FIGURES 

 

 

A                               B 

  MLC1   GFP  URA3 

 2.7 kb 

 480 bp 

  MLC1 

 AG21F 

     AG21R 

                         

   480 bp 

   2.7 kb 

A
G

2
4
0

 

A
G

3
3

2
 

kb kb 

3.0 

1.0 

6.0 

3.0 

1.0 

6.0 

 R
M

1
0

0
0

 

 R
M

1
0
0

0
 

 

Figure S3.1: PCR confirmation of MLC1/MLC1-GFP-URA3 strains. (A) Map and (B) 

ethidium-bromide stained gels showing products amplified with oligonucleotides AG21F and 

AG21R from strains RM1000 (MLC1/MLC1), AG240 (cacdc5::hisG/cacdc5::HIS1 

PCK1::CaCDC5-hisG, MLC1/MLC1-GFP-URA3) and AG332 (MLC1/MLC1-GFP-URA3). 
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Figure S3.2: Confirmation of RGA2/RGA2-HA-URA3 strains. (A) Map and ethidium-bromide 

stained gels showing products amplified with oligonucleotides CaURA3F and AG53R from 

strains AG374 (RGA2/RGA2-HA-URA3) and AG379 (cacdc5::hisG/cacdc5::HIS1 

PCK1::CaCDC5-hisG, RGA2/RGA2-HA-URA3). (B) Western blot confirmation of strains 

AG374 and AG379.   
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Figure S3.3: Rga2p-HA abundance in cells lacking vs. containing Cdc5p.  (A) Western blot 

of overnight cultures of strains AG374 (CDC5/CDC5, RGA2/RGA2-HA-URA3) and AG379 

(cacdc5::hisG/cacdc5::HIS1 PCK1::CaCDC5-hisG, RGA2/RGA2-HA-URA3) that were grown in 

SS medium, diluted into SD repressing medium at 30C and collected at the indicated time points.  

Strain AG374 was also incubated in SD medium supplemented with 10% Fetal Bovine Serum 

(FBS) for 2 h at 37C to induce hyphae. Samples were electrophoresed on a 10% SDS PAGE gel 

to allow for detection of Cdc28p (anti-PSTAIRE) as a loading control.  Density values represent 

adjusted relative densities and were calculated using ImageJ as described in Chou et al., 2011.  (B) 

Western blot of the same strains prepared as in (A) with the exception of dilution into fresh SS 

inducing medium.  
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Figure S3.4: Confirmation of strains lacking UME6. (A) Map and ethidium-bromide-stained 

DNA gel showing bands amplified with oligonucleotides AG101F and AG101R from strains 

BWP17 (UME6/UME6), AG518 (cdc5::hisG/MET3::CDC5::ARG4, UME6/ume6::URA3) and 

AG530 and AG531 (cdc5::hisG/MET3::CDC5::ARG4, ume6::URA3/ume6::HIS1).  (B) 

Southern blot. Digestion of gDNA with Xba1 produced a wild-type band of 8.5 kb, a 

ume6Δ::URA3 deletion band at 5.8 kb, and a ume6Δ::HIS1 deletion band 7.3 kb. Absence of the 

UME6 transcript in strains AG530 and AG531 was also confirmed by Northern blot (refer to Fig 

5B). 
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Figure S3.5: Confirmation of strains lacking HGC1. (A) Map and ethidium-bromide-stained 

DNA gel showing bands amplified with oligonucleotides HH08F and HH08R from strains 

BWP17, AG536 and AG540 (cdc5::hisG/MET3::CDC5::ARG4, HGC1/hgc1::URA3) and 

AG574 and AG577 (cdc5::hisG/MET3::CDC5::ARG4, hgc1::URA3/hgc1::HIS1). (B) Southern 

blot. Digestion of gDNA with Xba1 produced a wild type band of 10.3 kb, an hgc1Δ::URA3 

deletion band at 7.2 kb, and an hgc1Δ::HIS1 deletion band 9.2 kb. 
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Figure S3.6: Propidium-iodide staining of cells lacking Cdc5p in different mutant 

backgrounds. Overnight cultures of strains AG553 (cdc5Δ::hisG/MET3::CDC5-ARG4, URA3+ 

HIS1), AG530 (cdc5Δ::hisG/MET3::CDC5-ARG4, ume6Δ::URA3/ume6Δ::HIS1), AG574 

(cdc5Δ::hisG/MET3::CDC5-ARG4, hgc1Δ::URA3/hgc1Δ::HIS1) and AG580 

(cdc5Δ::hisG/MET3::CDC5-ARG4, hms1Δ::URA3/hms1Δ::HIS1) grown in inducing medium (-

MC) were diluted into repressing medium (+MC) and incubated at 30C for 14 h. Live cells were 

stained with propidium iodide (PI), washed with sterile water, and immediately examined by 

fluorescence microscopy. Bar: 10 m.  
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Figure S3.7: Confirmation of strains lacking HMS1. (A) Map and ethidium-bromide-stained 

DNA gel showing bands amplified with oligonucleotides AG92F and AG92R from strains 

BWP17 (HMS1/HMS1), AG570 and AG572 (cdc5::hisG/MET3::CDC5::ARG4, 

HMS1/hms1::URA3) and AG579 and AG580 (cdc5::hisG/MET3::CDC5::ARG4, 

hms1::URA3/hms1::HIS1). (B) Southern blot.  Digestion of gDNA with Nde1 produced a wild 

type band of 5.2 kb, an hms1Δ::URA3 deletion band at 2.4 kb, and an hms1Δ::HIS1 deletion band 

4.2 kb. (C) Northern blot showing HMS1 transcript in strains AG553 

(cdc5::hisG/MET3::CDC5::ARG4, URA3+ HIS1+) and SC5314 grown in yeast (8 h at 37C) or 

hyphal (2 h at 37C with 10% FBS) conditions, and absence of transcript in strains AG579, 

AG580 and AG581 (cdc5::hisG/MET3::CDC5::ARG4, hms1::URA3/hms1::HIS1).  rRNA 

stained with ethidium bromide is included as a loading control. 

 

 

Movie S1: Time course analysis of Mlc1p-GFP in cells depleted of Cdc5p. Strain AG240 was 

incubated in SS inducing medium as described in (A), transferred to a pre-made agarose pad 

consisting of SD repressing medium on a microscope slide, sealed with VALAP and visualized 

with LSM 510 confocal microscope fitted with a x 63 objective.  Images were recorded every 30 

min, and Z stack series consisting of 0.1 μm steps were acquired.  
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Ch. 4: Identification of a novel Polo-like kinase binding protein found specifically in the 

Candida genus of fungi that interacts with the spliceosome machinery. 

Chapter 4 addresses the mechanisms of Cdc5p function during mitosis and possibly 

morphogenesis in C. albicans, through identifying its interacting factors with affinity purification 

followed by mass spectrometry.  This work revealed a novel, previously uncharacterized protein, 

Orf19.3714p.  Orf19.3714p does not have any homologues in organisms other than Candida 

species, indicating that it is Candida-specific.  While not essential for yeast or hyphal growth, 

Cdc5p-depleted cells lacking Orf19.3714p were compromised in their ability to form long 

filaments, much like absence of the spindle factor checkpoint Bub2p, suggesting a possible 

influence on the spindle checkpoint.  Intriguingly, Orf19.3714p binds numerous proteins of the 

spliceosome complex, in a manner that may be dependent on Cdc5p or a block in mitosis.  We 

further completed a bioinformatic analysis of the spliceosome complex in C. albicans, which has 

not been investigated to date, and show that it is highly conserved in composition as compared to 

S. cerevisiae, with a few variations.  We thus identified a putative novel polo-like kinase 

interacting factor that is specific to Candida species.  We also provide the first evidence that 

polo-like kinase function may extend to regulation of RNA splicing.  We propose that Cdc5p 

may influence splicing in C. albicans via Orf19.3714p, which in turn influences factors required 

for mitotic arrest.  
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ABSTRACT 

 Polo-like kinases are critical, multi-functional regulators of mitosis found in organisms 

ranging from yeast to man and are subject to intensive investigation, yet we lack a complete 

understanding of their mechanisms of action, substrates, and forms of regulation.  We previously 

demonstrated that depletion of the polo-like kinase Cdc5p in C. albicans yeast cells impairs 

spindle elongation, resulting in a block in mitosis followed by initiation and maintenance of 

polarized growth from the yeast bud and induction of hyphal-specific genes.  In order to 

determine the mechanisms of action of Cdc5p in C. albicans, we identified its interacting proteins 

using affinity purification followed by mass spectrometry.  We show that Cdc5p binds a 

previously uncharacterized protein, Orf19.3714p, which is specific to Candida species. 

Orf19.3714p is not essential for yeast or hyphal growth in vitro, but is modified at the level of 

phosphorylation and abundance during a mitotic block, and is required in part for maintaining the 

polarized growth phenotype that occurs upon depletion of Cdc5p.  Cdc5p-depleted cells lacking 

Orf19.3714p also showed a higher abundance of rebudding from the mother yeast cell, 

suggesting a potential influence on mitotic checkpoint function.  Affinity purification of 

Orf19.3714p and mass spectrometry further demonstrated that Orf19.3714p interacts with a large 

number of proteins associated with the spliceosome in a manner that may be dependent on Cdc5p.  

Collectively, the data reveal a new interacting protein of the polo-like kinase family that is 

Candida-specific, and provide the first evidence for a possible link between polo-like kinase 

function and spliceosome activity.  
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4.1 INTRODUCTION  

 The Polo-like kinases (Plks) comprise a conserved subfamily of serine/threonine kinases 

that play critical roles in cell cycle regulation as well as in development.  Polo from Drosophila 

melanogaster represents the founding member of the family, and homologues were subsequently 

found in Caenorhabditis elegans (PLK1-3) (1, 2) Xenopus laevis (Plx1-3) (3, 4), and mammals 

(PLK1-5) (5, 6).  Fungi contain single homologues, such as Cdc5p in Saccharomyces cerevisiae 

(7), Plo1p in Schizosaccharomyces pombe (8), Cdc5p in Candida albicans (9), and PLKA in 

Aspergillus nidulans (PLKA) (10).  Plks are also found in Trypanosoma brucei (TbPlk) (11), but 

are absent in plants (6, 12). 

 

Plks are defined by a kinase domain in the amino-terminus and a polo box domain (PBD) 

in the carboxyl terminus (13).  In most Plks, the PBD contains two conserved polo boxes (14) 

that function as a phosphopeptide binding domain and target Plks to subcellular locations by 

binding to proteins that previously have been phosphorylated by cyclin dependent kinases (CDKs) 

or by a Plk (15, 16).  A consensus PBD binding motif for PLK1 consists of Ser-pSer/pThr-Pro/X 

(15), while an optimal phosphorylation consensus site consists of D/E-X-pS/pT-φ (17), where X 

is any amino acid and φ is hydrophobic amino acid.  Plks can also interact with proteins in a 

phosphorylation-independent manner (18).  The kinase and PBD are separated by a linker domain 

that shows little sequence conservation but is important for localization in some cases (19, 20).  

 

Plks have emerged as critical regulators of multiple aspects of mitosis, including mitotic 

entry, spindle formation, chromosome segregation, mitotic exit, cytokinesis or septation, as well 

as in nuclear shape (21-23).  For example, during the G2/M transition, PLK1 phosphorylates and 

activates CDC25C phosphatase, leading to mitotic entry (12, 24), while Cdc5p in S. cerevisiae 

targets Swe1p for degradation via phosphorylation, contributing to active Cdc28p/Clb2p and the 

G2/M transition (25).  PLK1 regulates microtubule-stabilizing proteins that are important for 

aster and spindle formation (26), and is required for centrosome maturation and microtubule-

kinetochore attachments (27, 28).  Cdc5p influences microtubule growth and dynamics (29) and 

is important for spindle orientation but not elongation (30).  During the metaphase-to-anaphase 

transition, PLK1 and Cdc5p phosphorylate the cohesin Scc1p to permit chromosome segregation 
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(31-34), as well as APC/C subunits, resulting in activation of the APC/C (35-38).  Cdc5p is also a 

component of the Cdc Fourteen Early Anaphase Release (FEAR) and Mitotic Exit Network 

(MEN) pathways, which function to control release of the phosphatase Cdc14p from its inhibitor, 

Net1p, in the nucleolus, thereby allowing dephosphorylation of mitotic CDK targets, inactivation 

of CDK itself, and mitotic exit (33).  In the FEAR pathway, Cdc5p interacts with Cdc14p and the 

Separase Esp1p (39).  Within the MEN pathway, Cdc5p negatively regulates the GTPase-

activating protein (GAP) complex Bub2p-Bfa1p (40).  During cytokinesis, PLK1 recruits the 

Guanine Nucleotide Exchange Factor (GEF) Ect2p to the central spindle during anaphase, which 

permits accumulation of the GTPase RhoA and assembly of the contractile ring (28, 41).  

Similarly, Cdc5p phosphorylates Rho1p GEF proteins that in turn activate Rho1p at the bud neck 

for contractile ring formation (42).  The PBD of Cdc5p also binds GAPs for Cdc42p and other 

factors that are involved in actin cytoskeleton organization (43).   In some cases, Plks exert their 

function through regulating transcription.  Plo1p, PLK1 and Cdc5p, for example, phosphorylate 

and activate transcription factors required for the M/G1 or G2/M transitions (44-47).  PLK1 can 

also regulate expression of genes coding for tRNA and 5S rRNA through phosphorylating Brf1p, 

a component of RNA Pol III (48).  

 

In addition to mitosis and cytokinesis, Plks can function in other cell cycle stages and in 

development (49-51).  For example, PLK3 from humans is involved in the regulation of the G1/S 

transition and entry into S phase (52).  Plks in mice, D. melanogaster and C. elegans are 

important in neuron differentiation, oocyte determination and meiosis, respectively (53-55) and 

PLKA from A. nidulans influences sexual development (10).  Further, Plo1p in S. pombe was 

linked to a role in polarized growth, as phosphorylation of Plo1p is required for resumption of 

cell tip growth after recovery from cell cycle arrest induced by certain stresses (20, 56, 57).   

 

Despite progress made in identifying numerous Plk functions and targets (13, 58, 59), a 

complete picture of their mechanisms of action and regulation is still lacking.  Moreover, some 

distinctions in function and sequence, as seen with Plks from filamentous fungi and 

Trypanosomes, for example, (10, 60), highlight organism-specific features, which could provide 

important insights on the evolution of the Plk family (6, 12, 61). 
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C. albicans is an opportunistic fungal pathogen of humans that can cause infections 

ranging from mucosal to systemic, the latter of which are associated with high mortality rates 

(62).  Current drug treatments can have several side effects (63-65), underlying the need to 

identify new factors that can be targeted for treating C. albicans infections.  One aspect of the 

biology of C. albicans that is important for virulence is its ability to differentiate into multiple 

cell types, including white phase yeast, mating-competent opaque-phase yeast, pseudohyphae, 

hyphae, chlamydospores, or gastrointestinally induced transition (GUT) cells (66).  C. albicans 

yeast cells are proposed to be ideal for dissemination in the blood stream, while the pseudohyphal 

and hyphal forms may be more advantageous for invading host tissue and escaping immune cells 

(67).  C. albicans mutants locked in one cell form have reduced virulence (68-70), underlying the 

importance of differentiation during  pathogenesis and the need to understand its regulation.  The 

circuitry governing the yeast-to-hyphal switch has been extensively investigated, and involves a 

diversity of signaling pathways that mediate the environmental cues (71, 72).  

 

Another aspect of C. albicans biology that is important for survival in the host and 

virulence is cell proliferation.  However, we lack a comprehensive understanding of the cell cycle 

in C. albicans.  Functional analyses of homologues of conserved mitotic regulators, including the 

CDK Cdc28p (73, 74), B-type cyclins Clb2p and Clb4p (89), APC/C cofactors Cdc20p and 

Cdh1p (75), Hsp90p (76, 77), MEN homologues Dbf2p, Tem1p and Cdc14p  (78-81) and spindle 

checkpoint factors Mad2p and Bub2p (76, 82, 83), for example, have provided some insight.  

However, several of these factors show variations in function in C. albicans compared to 

orthologues in S. cerevisiae (84-86), suggesting re-wiring in the mitotic circuitry.  Moreover, 

transcription profiles of C. albicans cells passing through mitosis showed some similarity to 

those in S. cerevisiae and S. pombe, but noted differences, including modulation of genes of 

unknown function (84), further raise the possibility of novel aspects of mitotic control in C. 

albicans.  

 

C. albicans contains a homologue of another conserved mitotic regulator, the polo-like 

kinase, Cdc5p.  Its depletion in yeast cells resulted in an early mitotic arrest with short spindles 

that were often mis-oriented (9).  While S. cerevisiae cells lacking Cdc5p arrested as large 
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doublets, C. albicans yeast cells lacking Cdc5p were novel in switching to a polarized mode of 

growth and forming filaments (9, 87).  These cells resemble hyphae in that they maintain 

polarized growth, lack constrictions along their length, move the nucleus from the mother yeast 

cell into the tube, require cyclase activity, and express some hyphal-specific genes (HSGs) that 

are virulence factors (9, 83).  However, the filaments are also distinct from hyphae with respect to 

having a wider diameter during early growth stages, forming in the absence of some key hyphal 

regulators, expressing HSGs at only later stages of elongation and in the absence of any 

environmental input, and requiring the spindle checkpoint factor Bub2p for maintenance of 

polarized growth (9, 88).  This growth response is not specific to Cdc5p depletion, as blocking 

mitosis through depletion of other essential genes (75, 77, 78, 89) or treatment with microtubule-

destabilizing drugs such as nocodazole (82) also results in polarized growth that, where tested, 

requires spindle checkpoint factors Bub2p or Mad2p (76, 82).  Arresting C. albicans yeast in S or 

G1 phase also results in polarized growth, but G1-phase arrested cells resemble true hyphae from 

their inception (88, 90), and S phase-arrested cells are not as highly elongated, do not require 

Bub2p and show different transcription profiles (9, 76).  Since checkpoint factors like Mad2p and 

Swe1p are required for virulence in C. albicans (82, 91), checkpoint-associated polarized growth 

may be physiologically relevant for survival in the host and for pathogenesis (9, 82, 83).  We 

recently provided evidence that suggests Cdc5p-depleted cells are initially elongated yeast buds 

but switch to a hyphal fate over time and initiate expression of HSGs in a novel, environment-

independent manner (Glory, 2015, in revision).  However, the mechanisms of action of Cdc5p in 

regulating mitosis and influencing polar bud growth in C. albicans remain unclear.  

 

In order to address this question, we attempted to identify potential Cdc5p-interacting 

factors using 2-step affinity purification followed by mass spectrometry.  Our work uncovered a 

previously uncharacterized protein, Orf19.3714p, which only has homologues in Candida species.  

Orf19.3714p is not essential for yeast or hyphal growth but is post-translationally modified in 

mitosis, required for Cdc5p-depleted polarized growth, and interacts with many RNA splicing 

machinery factors, including Prp19p and Brr1p.  Our results have thus identified a novel, 

Candida-specific Plk-interacting factor, and for the first time link a Plk to a possible function in 

RNA splicing.  
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4.2 MATERIALS AND METHODS 

4.2.1 Strains, oligonucleotides, plasmids and culture conditions  

 Strains, oligonucleotides and plasmids used in this study are listed in Tables 4.1, 4.2, and 

4.3 respectively.  Strains were incubated in synthetic medium (0.7% yeast nitrogen base, 2.0 g 

adenine, 2.5 g uridine, 2.0 g tryptophan, 1.0 g histidine, 1.0 g arginine, 1.0 g methionine, 1.5 g 

tyrosine, 1.5 g isoleucine, 7.5 g valine, 1.5 g lysine, 2.5 g phenylalanine, 5.0 g glutamic acid, 10.0 

g threonine and 3.0 g leucine per 50.0 L) containing either 2.0% glucose (92) or 2.0% sodium 

succinate (SS) to repress or induce expression from the PCK1 promoter, respectively (93).  

Alternatively, SD medium lacking (-MC) or containing (+MC) 2.5 mM methionine and 0.5 mM 

cysteine was utilized to induce or repress expression from the MET3 promoter, respectively (94).  

Other strains were grown in rich medium (YEPD) containing 1.0% yeast extract, 2.0% peptone 

and 2.0% dextrose.  For hyphal induction, medium was supplemented with 10.0% fetal bovine 

serum (FBS) (Wisent Inc, St. Bruno, QC) and cells were incubated at 37ºC.  For most conditions, 

strains were grown overnight, diluted into fresh medium to an O.D.600nm of 0.1 to 0.2, and 

collected after indicated times.  For growth assays, the O.D.600nm was recorded at the indicated 

time intervals.  Samples for RNA or protein analysis were collected at the indicated time points 

and stored at -80
o
C until extraction.  

 

For plate growth assays, Spider solid medium (95) consisted of 10.0 g of nutrient broth 

(EMD), 10.0 g mannitol (BDH, VWR), 2.0 g of K2HPO4 (Fisher Scientific) and 13.5 g agar 

(Bioshop) for 0.5 L medium.  The pH was adjusted to 7.5 and the medium was autoclaved.  

SLAD (Synthetic Low Ammonium Dextrose) plates (96) consisted of  0.8 g yeast nitrogen base 

without ammonia, supplemented with 50.0 M ammonium sulphate, 10.0 g dextrose, and 10.0 g 

of five times prewashed agarose with sterile water per 500.0 ml medium.  For serum plates, 

autoclaved YEPD agar medium prewarmed to 37C was supplemented with FBS to a final 

concentration of 10.0%.  
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Table 4.1: Strains used in this study 

Strain Genotype Source 

RM1000  
ura3Δ:: imm434/ura3Δ::1 imm434  

his1Δ::hisG/his1Δ::hisG        
Negredo et al.1997 

BWP17  ura3Δ::imm434/ura3Δ::imm434 his1Δ::hisG/his1Δ::hisG               Wilson et al., 1999 

 
arg4Δ::hisG/arg4Δ::hisG 

 
CAI4 ura3Δ::imm434/ura3Δ::1 imm434 Fonzi and Irwin, 1993 

SC5314 URA3/URA3, HIS1/HIS1 Fonzi and Irwin, 1993 

CB105 cdc5Δ::hisG/PCK1::CDC5-HIS1 Bachewich et al., 2003 

CB108 cdc5Δ::hisG/MET3::CDC5-URA3 Bachewich et al., 2003 

CB504 CAI4 (MET3::URA3+)  Bachewich et al., 2003 

HCCa7 CDC5/cdc5Δ::hisG Chou et al., 2011 

HCCa23 cdc20Δ::URA3/MET3::CDC20::HIS1 Chou et al., 2011 

AG180 cdc5Δ::hisG/CDC5-TAP-URA3 This study 

AG191 cdc20Δ::URA3/MET3::CDC20::HIS1,  Chou et al., 2011 

 
CDC5/CDC5-TAP-ARG4 

 AG500 cdc5Δ::hisG/MET3::CDC5-ARG4 Ch. 3 thesis 

AG517  ORF19.3714/ORF19.3714-HA-URA3 This study 

AG523 cacdc5Δ::hisG/PCK1::CDC5-HIS1,  This study 

 
ORF19.3714/ORF19.3714-HA-URA3 

 
AG614 CDC5/CDC5-MYC-HIS1 This study 

AG622 CDC5/CDC5-MYC-HIS1,  This study 

 
ORF19.3714/ORF19.3714-HA-URA3 

 
AG676 ORF19.3714/orf19.3714Δ::URA3 This study 

AG680  cdc5Δ::hisG/MET3::CDC5-ARG4,  This study 

 
ORF19.3714/orf19.3714Δ::URA3 

 
AG704  cdc20Δ::URA3/MET3::CDC20::HIS1,  This study 

 
ORF19.3714/ ORF19.3714-TAP-ARG4 

 
AG707  orf19.3714Δ::URA3/ORF19.3714-TAP-ARG4 This study 

AG717  cdc5Δ::hisG/MET3::CDC5-ARG4, This study 

 
 ORF19.3714/ ORF19.3714-TAP-URA3 

 
AG692, 694 orf19.3714Δ::URA3/orf19.3714Δ::HIS1 This study 

AG698, 700 cdc5Δ::hisG/MET3::CDC5-ARG4,  This study 

 
orf19.3714Δ::URA3/orf19.3714Δ::HIS1 

 
AG721, 722 orf19.3714Δ::URA3/orf19.3714Δ::HIS1,  This study 

 
pBS-ARG4-ORF19.3714 

 
AG727, 728 orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ARG4 This study 
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Table 4.2: Oligonucleotides used in this study 

Name Sequence Source 

AG1F TTTGAAGCAAGGAAACTTTCAGCATGAAAATG  This study 

 
TTCCGGACTGTATGGAGAAGATAATGGTCATCA 

 

 
AAGAAGCTATCAAGAAAAAAGCATTTAAAGAAGCT 

 
GGTCGACGGATCCCCGGGTT 

 
AG1R TATTATATCTCTTGTTTTATAATGAATATGGGCTACA This study 

 
GTTCAATTTGCAGTAGTACTACTAAATAAAAGGA 

 

 
TGTTTATTAGCAACGTGAAAGTGGCATAT 

 

 
TCGATGAATTCGAGCTCGTT 

 
AG2F GCCAGGGCGTTTAACTCAAA This study 

AG2R ATAGTTACGATTAGTGGTGG This study 

AG4F GGTCGACGGATCCCCGGGTTATACCCATAC Lavoie et al., 2008 

 
GATGTTCCTGAC 

 
AG4R TCGATGAATTCGAGCTCGTT Lavoie et al., 2008 

AG80F GAATCAAAAAAATGAAATGATTATGGATGTTGATTA This study 

 
TGAACTTACTATTAAAATGGTAGATAGTATTAGTCA 

 
AACGATAAATTCAATAATTGAATCATTAGGTCGACG 

 
GATCCCCGGGTT 

 
AG80R AGATAGATATAGCTAGTGAAAGTGAAGTAGAGG This study 

 
AAGGTGGTGTAGAGGAAGAAGCAAAAGTAAATA 

 

 
CTCCAAAAGACTAGCTAAACATAACTCTATA 

 

 
TAGTCGATGAATTCGAGCTCGTT 

 
AG81R GCTGATGAATATCCTCCTGA This study 

AG82F CCATGCCATTCAGGAAAATGGCCACTATAT This study 

AG82R GATCAGTTGATTCTGATTCAATAGGAGCAC This study 

AG83R GATAGTATATTAGTTGGACCTGTCCCCGTA This study 

AG84F GTGCTCCTATTGAATCAGAATCAACTGAT This study 

 
CTATAGGGCGAATTGGAGCTC 

 
AG85F GACTAGCTTGTTGCTTGTCT This study 

AG100F TGTTCCGGACTGTATGGAGAAGATAATGGTCA This study 

 
TCAAAGAAGCTATCAAGAAAAAAGCATTTAAAG 

 

 
AAGCTGGTGGTGGTCGGATCCCCGGGTTAATTAA 

 
AG100R TAATGAATATGGGCTACAGTTCAATTTGCAGT This study 

 
AGTACTACTAAATAAAAGGATGTTTATTAGC 

 

 
AACGTGAGAATTCCGGAATATTTATGAGAAAC 

 
AG111F CTGAACAAGGTGAGAGTAAC This study 

AG111R CTGTCACTGGCAATTCGTTC This study 

AG114F  GTACAAAATGAAAAAGACTACTATATAGAG This study 

AG114R CTCTATATAGTAGTCTTTTTCATTTTGTACGACGG This study 

 
TATCGATAAGCTTGA 
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AG116F CTAGTGTACTAGGGCGTAGA This study 

AG116R AAAGATACGCAGTTGGTAGC This study 

AG118R GGTGGTCTCGAGAATGGTGATGCAGTGGTGGA This study 

AG119F GGTGGTCCCGGGCTAGTGTACTAGGGCGTAGA This study 

AG120F GGGCTGTTCTTGTCGTTGTT This study 

ACT1-129F  CATGGTTGGTATGGGTCAAAAA Glory et al., 2014 

ACT1-104R TCAATTCTAATAACGAGGTGGTCTTTC Glory et al., 2014 

CaHIS1F CCTGCAGCTGATATCCCAGT This study 

CaHIS1R ACTGGGATATCAGCTGCAGG This study 

CaURA3F GGTAATACCGTAAAGAAACA Glory et al., 2014 

CaURA3R TTCAAATAAGCATTCCAACC This study 

CaARG4F ACTATGGATATGTTGGCTAC Glory et al., 2014 

 

 

  

Table 4.3: Plasmids used in this study 

Name Source 

pFA-TAP-UAR3 Lavoie et al., 2008 

pFA-TAP-ARG4  Lavoie et al., 2008 

pFA-HA-URA3  Lavoie et al., 2008 

pMG2093 (MYC-HIS1) Bensen et al., 2005 

pBS-CaURA3 A.J.P. Brown 

pBS-CaHIS1  C. Bachewich 

pBS-CaARG4  C. Bachewich 
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4.2.2 Composition of PCR reaction mixes for DNA constructs 

 The PCR reaction mixes for DNA construct amplification were composed of 0.6 μM 

oligonucleotides, 0.4 mM dNTPs, 50.0-100.0 ng of template, 3.75U of Expand Long Template 

Polymerase (Roche), and 1X Buffer 3. 

 

4.2.3 Composition of PCR screening reaction mixes 

PCR screening reaction mixes were composed of 0.6 μM of oligonucleotides, 0.4 mM of 

dNTPs, 50.0-60.0 ng of gDNA as template, 3.0 mM of MgCl2, 1X Taq Buffer with (NH4)2SO4 

and 1.0 U Taq DNA Polymerase (Fermentas).  

 

4.2.4 Strain Construction 

a. CDC5-TAP 

In order to tag the C-terminus of CDC5 with a tandem affinity purification (TAP) tag 

epitope (Protein A and Calmodulin-binding domain epitopes separated by a tobacco etch virus 

(TEV) protease cleavage site), the 2.3 kb TAP-URA3 cassette was amplified from 100.0 ng of 

plasmid pFA-TAP-URA3 (97) with oligonucleotides AG1F and AG1R, which contained 100 bp 

complementary to regions upstream and downstream from the stop codon of CDC5 respectively 

and 20 bp complementary to the plasmid.  The reaction conditions were as follows: 94
o
C for 4 

min, followed by 25 cycles of 94°C for 1 min, 40°C for 1 min, 68°C for 2 min, followed by a 7 

min extension at 68°C and storage at 4°C.  The construct was purified using PCR purification kit 

(OMEGA) and 4.0 g was transformed into strain HCCa7 (CDC5/cdc5Δ::hisG) resulting into 

strain AG180 (cdc5Δ::hisG/CDC5-TAP-URA3).  Similarly, a 2.9 kb TAP-ARG4 cassette was 

amplified from pFA-TAP-ARG4 and transformed into HCCa23 (cdc20Δ::URA3/ 

MET3::CDC20::HIS1) resulting into strain AG191 (cdc20Δ::URA3/MET3::CDC20::HIS1, 

CDC5/CDC5-TAP-ARG4). 

b. CDC5-MYC  

In order to tag the C-terminus of CDC5 with 13 copies of the myc epitope, the 3.8 kb 

MYC-HIS1 cassette was amplified from 100.0 ng of plasmid pMG2093 (89) with 

oligonucleotides AG100F and AG100R, which contained 70 bp complementary to regions lying 

upstream and downstream from the stop codon of CDC5 respectively and 20 bp complementary 

to the plasmid.  The reaction conditions were as follows: 94°C for 4 min, followed by 25 cycles 
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of 94°C for 1 min, 41°C for 1 min, 68°C for 3 min and 50 sec, followed by a 7 min extension at 

68°C and storage at 4°C.  The construct was purified and 4.0 g was transformed into strains 

RM1000 resulting in strain AG614 (CDC5/CDC5-MYC-HIS1).  

c. ORF19.3714-HA 

 In order to tag the C-terminus of ORF19.3714 with three copies of the hemagglutinin 

epitope (HA), the 1.7 kb HA-URA3 cassette was amplified from 50.0 ng of plasmid pFA-HA-

URA3 (97) with oligonucleotides AG4F and AG4R. The reaction conditions were as follows: 

94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 40°C for 30 sec, 68°C for 1 min and 40 

sec, followed by a 7 min extension at 68°C and storage at 4°C.  The 100.0 ng of the product was 

used as a template in a fusion PCR to amplify a final 1.9 kb fragment with oligonucleotides 

AG80F and AG80R, which contained 100 bp homology to regions lying upstream and 

downstream from the stop codon of ORF19.3714, respectively, and 20 bp homology to the 

template.  The reaction conditions were as follows: 94°C for 4 min, followed by 25 cycles of 

94°C for 1 min, 40°C for 1 min, 68°C for 1 min 55 sec, followed by a 7 min extension at 68°C 

and storage at 4°C. The fusion construct was purified and 4.2 g was transformed into strains 

RM1000 and CB105 (cacdc5Δ::hisG/PCK1::CDC5-HIS1) and AG614 (CDC5/CDC5-MYC-

HIS1), resulting in strains AG517 (ORF19.3714/ORF19.3714-HA-URA3) and AG523 

(cacdc5Δ::hisG/PCK1::CDC5-HIS1, ORF19.3714/ORF19.3714-HA-URA3) and AG622 

(CDC5/CDC5-MYC-HIS1, ORF19.3714/ORF19.3714-HA-URA3) respectively.  

d. ORF19.3714-TAP 

In order to TAP tag the C-terminal of ORF19.3714, 2.9 kb fragment was amplified from 

100.0 ng of pFA-TAP-ARG4 (97) using oligonucleotides AG80F and AG80R, which contained 

100 bp homology to regions lying upstream and downstream from the stop codon of ORF19.3714 

respectively.  The reaction conditions were as follows: 94°C for 4 min, followed by 25 cycles of 

94°C for 1 min, 40°C for 1 min, 68°C for 2 min and 55 sec, followed by a 7 min extension at 

68°C and storage at 4°C.  The purified product (5.0 g) was transformed into strains AG676 

(orf19.3714Δ::URA3) and HCCa23 (cdc20Δ::URA3/MET3::CDC20::HIS1) resulting in strains 

AG707  (orf19.3714Δ::URA3/ ORF19.3714-TAP-ARG4) and AG704 

(cdc20Δ::URA3/MET3::CDC20::HIS1, ORF19.3714/ ORF19.3714-TAP-ARG4) respectively.  In 

order to TAP tag ORF19.3714 using pFA-TAP-URA3, oligonucleotides AG80F and AG80R 

were used with above conditions except for extension time of 2 min 20 sec at 68
o
C to obtain a 2.3 
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kb fragment.  Purified product (5.0 g) was transformed into strain AG500 

(cdc5Δ::hisG/MET3::CDC5-ARG4) resulting in strain AG717 (cdc5Δ::hisG/MET3::CDC5-

ARG4, ORF19.3714/ ORF19.3714-TAP-URA3). 

e. orf19.3714Δ/Δ  

 In order to delete ORF19.3714, oligonucleotides AG82F and AG82R amplified a 480 bp 

fragment lying upstream of the ORF19.3714 start codon (5’ flank), while oligonucleotides 

AG114F and AG83R amplified a 612 bp fragment lying downstream of the stop codon (3’ flank) 

using 100.0 ng of BWP17 gDNA.  The reaction conditions were as follows: 94°C for 3 min, 

followed by 25 cycles of 94°C for 30 sec, 49°C for 30 sec, 68°C for 30 sec, followed by a 7 min 

extension at 68°C and storage at 4°C for 5’ flank.  For 3’ flank, the reaction conditions as follows: 

94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 45°C for 30 sec, 68°C for 40 sec, 

followed by a 7 min extension at 68°C and storage at 4°C.  Oligonucleotides AG84F and 

AG114R amplified a 1541 bp URA3 fragment (middle cassette) from plasmid pBS-CaURA3 

(A.J.P. Brown).  The reaction conditions were as follows: 94°C for 3 min, followed by 25 cycles 

of 94°C for 30 sec, 40°C for 30 sec, 68°C for 1 min and 35 sec, followed by a 7 min extension at 

68°C and storage at 4°C.  All the products (5’ flank: middle cassette: 3’ flank) were combined in 

a 1:3:1 ratio as template in a fusion PCR with oligonucleotides AG82F and AG83R.  The 

reaction conditions were as follows: 94°C for 3 min, followed by 10 cycles of 94°C for 30 sec, 

50°C for 30 sec, 68°C for 2 min and 35 sec, followed by 15 cycles of 94°C for 10 sec, 50°C for 

30 sec, 68°C for 2 min 35 sec with + 20 sec extension for each cycle, 69°C for 7 min and storage 

at 4°C.  The final 2.5 kb product was purified and 3.5 g was transformed into strains BWP17 

and AG500, resulting in strain AG676 (ORF19.3714/orf19.3714Δ::URA3) and AG680 

(cdc5Δ::hisG/MET3::CDC5-ARG4, ORF19.3714/orf19.3714Δ::URA3), respectively.  

 

The second copy of ORF19.3714 was replaced with a HIS1-containing fusion product 

produced in a similar manner with the exception of utilizing 100.0 ng of pBS-CaHIS1 (C. 

Bachewich) with oligonucleotides AG84F and AG114R, resulting in a 1.4 kb band.  The reaction 

conditions were as follows: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 40°C for 

30 sec, 68°C for 1 min and 35 sec, followed by a 7 min extension at 68°C and storage at 4°C.  All 

the products (5’ flank: middle cassette: 3’ flank) were combined in a 1:3:1 ratio as template in a 

fusion PCR with oligonucleotides AG82F and AG83R.  The reaction conditions were as follows: 
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94°C for 3 min, followed by 10 cycles of 94°C for 30 sec, 50°C for 30 sec, 68°C for 2 min and 25 

sec, followed by 15 cycles of 94°C for 10 sec, 50°C for 30 sec, 68°C for 2 min 25 sec with + 20 

sec extension for each cycle, 69°C for 7 min and storage at 4°C.  The final 2.4 kb product was 

purified and 3.2 g was transformed into AG676 and AG680 resulting in strains AG692, AG694 

(orf19.3714Δ::URA3/orf19.3714Δ::HIS1) and AG698, AG700 (cdc5Δ::hisG/MET3::CDC5-

ARG4, orf19.3714Δ::URA3/orf19.3714Δ::HIS1) respectively. 

f. Strains where ORF19.3714 was reintroduced  

 In order to create strains where ORF19.3714 was reintroduced, oligonucleotides AG119F 

and AG118R were used to amplify a 3949 bp fragment from 100 ng of gDNA that spanned 1840 

bp of sequence upstream of the start codon, the open reading frame, and 262 bp downstream of 

the stop codon of ORF19.3714.  The PCR conditions were as follows: 94°C for 3 min, followed 

by 30 cycles of 94°C for 30 sec, 47°C for 30 sec, 68°C for 3 min and 55 sec, followed by a 7 min 

extension at 68°C and storage at 4°C.  The 2.0 μg of purified PCR product was digested with 

XhoI and XmaI, utilizing 1X BSA, 1X Buffer 4, 40 U XhoI (NEB), and 20 U XmaI (NEB). The 

reaction was incubated at 37°C overnight.  In addition, 1.0 μg of plasmid pBS-ARG4 was 

similarly digested with XhoI, purified and then digested with XmaI.  The digestion products were 

purified, and used for ligations.  The ligation reaction mix was composed of a final concentration 

of 1X Ligase buffer, 200 U T4 DNA Ligase enzyme (New England BioLabs), 2.5 ng digested 

pBS-ARG4 and varied amounts of digested PCR product (0, 2.5, 5.0, 10.0, 20.0 ng) in a total 

volume of 10.0 μl.  The reactions were incubated at 16°C overnight.  The ligations were 

transformed into E. coli and random colonies were inoculated into 3.0 ml LB medium 

containing100.0 μg/ml ampicillin.  The samples were incubated at 37°C overnight, and plasmid 

DNA was extracted using the Plasmid Mini Kit I (OMEGA).  Purified plasmid was then digested 

with KpnI, which sits in pBS-ARG4.  The reactions were composed of 1X BSA, 1X Buffer 1, 20 

U KpnI (NEB), 100.0 ng of purified plasmid, and incubated at 37°C.  Positive integrations were 

confirmed by visualization of a 9008 bp vs a 5059 bp band on a DNA gel.  The positive circular 

plasmid with insert (E. coli strain AG21) was cut with PmlI before transforming into C. albicans 

strain AG692, resulting in strains AG721 and AG722 (orf19.3714Δ::URA3/orf19.3714Δ::HIS1, 

pBS-ARG4-ORF19.3714).  An isogenic strain was made by transforming uncut pBS-ARG4 into 

strain AG692 resulting in strains AG727 and AG728 (orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + 

pBS-ARG4). 
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4.2.5 PCR screening 

 In order to confirm, strains AG180 (cdc5Δ::hisG/CDC5-TAP-URA3) and AG191 

(cdc20Δ::URA3/MET3::CDC20-HIS1, CDC5/CDC5-TAP-ARG4), oligonucleotides AG2F and 

AG2R, which sit upstream and downstream of the region of integration, respectively, were used 

to  amplify a 417 bp CDC5, 2491 bp CDC5-TAP-URA3 or 3100 bp CDC5-TAP-ARG4 band.  The 

PCR conditions were as follows: 94
o
C for 3 min, followed by 30 cycles of 94°C for 30 sec, 38°C 

for 30 sec, 68°C for 2 min and 15 sec, followed by a 7 min extension at 72°C and storage at 4°C. 

In order to confirm strain AG614 (CDC5/CDC5-MYC-HIS1), oligonucleotides CaHIS1F, which 

sits in HIS1, and AG2R, which sits 420 bp downstream of the CDC5 Stop codon and the region 

of integration were used to amplify a 921 bp fragment.  The PCR conditions were as follows: 

95°C for 3 min, followed by 30 cycles of 95°C for 30 sec, 43°C for 30 sec, 72°C for 55 sec, 

followed by a 7 min extension at 72°C and storage at 4°C.  In order to confirm strains AG517 

(ORF19.3714/ORF19.3714-HA-URA3) and AG523 (cacdc5Δ::hisG/ PCK1::CDC5-HIS1, 

ORF19.3714/ORF19.3714-HA-URA3) and AG622 (CDC5/CDC5-MYC-HIS1, 

ORF19.3714/ORF19.3714-HA-URA3) oligonucleotides CaURA3F, which sits in URA3  and 

AG81R, which sits 190 bp below the region of integration in the downstream sequence of 

ORF19.3714 were used to amplify a  958 bp fragment.  The PCR conditions were as follows: 

95°C for 3 min, followed by 30 cycles of 95°C for 30 sec, 41°C for 30 sec, 72°C for 1 min and 40 

sec, followed by a 7 min extension at 72°C and storage at 4°C.  In order to confirm strains 

AG707  (orf19.3714Δ::URA3/ORF19.3714-TAP-ARG4) and AG704 

(cdc20Δ::URA3/MET3::CDC20-HIS1, ORF19.3714/ ORF19.3714-TAP-ARG4) for ORF19.3714-

TAP-ARG4 integration, oligonucleotides CaARG4F, which sits in ARG4 and AG81R, which sits 

downstream in ORF19.3714, 190 bp  below the region of integration, were used to amplify a 696 

bp fragment.  The PCR conditions were as follows: 95°C for 3 min, followed by 30 cycles of 

95°C for 30 sec, 43°C for 30 sec, 72°C for 40 sec, followed by a 7 min extension at 72°C and 

storage at 4°C.  In order to confirm the strain AG717 (cdc5Δ::hisG/MET3::CDC5-ARG4, 

ORF19.3714/ ORF19.3714-TAP-URA3), oligonucleotides CaURA3F and AG81R amplified a 

1153 bp fragment.  The PCR conditions were as follows: 95°C for 3 min, followed by 30 cycles 

of 95°C for 30 sec, 43°C for 30 sec, 72°C for 1 min and 10 sec, followed by a 7 min extension at 

72°C and storage at 4°C.  In order to confirm strains AG676 (ORF19.3714/orf19.3714Δ::URA3) 

and AG680 (cdc5Δ::hisG/MET3::CDC5-ARG4, ORF19.3714/orf19.3714Δ::URA3), 
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oligonucleotide AG85F, which sits 233 bp upstream of the Start of ORF19.3714, before  the 

region of integration, and CaURA3R, which sits in URA3, were used to amplify a 1991 bp 

fragment.  The PCR reaction mix was composed of 0.5 μM forward and reverse oligonucleotides, 

0.2 mM dNTPs, 50.0 ng of template, 1.0 U of Q5 High Fidelity DNA Polymerase (New England 

Biolabs), and 1X Q5 reaction buffer.  The PCR conditions were as follows: 98°C for 30 sec, 

followed by 30 cycles of 98°C for 10 sec, 59°C for 30 sec, 72°C for 1 min, followed by a 2 min 

extension at 72°C and storage at 4°C.  In order to confirm strains AG692, AG694, AG698, and 

AG700 oligonucleotides AG85F, which sits upstream of the Start codon of ORF19.3714, 233 bp 

upstream of the region of integration cassette, and CaHIS1R, which sits in HIS1, were used to 

amplify a 1280 bp fragment.  The PCR conditions were as follows: 95°C for 3 min, followed by 

30 cycles of 95°C for 30 sec, 45°C for 30 sec, 72°C for 1 min and 15 sec, followed by a 7 min 

extension at 72°C and storage at 4°C.  The absence of a wild type ORF19.3714 band in strains 

AG692, AG694, AG698, and AG700 was tested with oligonucleotides AG111F and AG111R 

that amplify a 840 bp fragment within the ORF.  The PCR conditions were as follows: 95°C for 3 

min, followed by 30 cycles of 95°C for 30 sec, 45°C for 30 sec, 72°C for 50 sec, followed by a 7 

min extension at 72°C and storage at 4°C.  In order to confirm strains AG721 and AG722 

(orf19.3714Δ::URA3/ orf19.3714Δ::HIS1, pBS-ARG4-ORF19.3714),  oligonucleotides AG120F, 

which sits in ORF19.3714 130 bp upstream of the region of integration and AG111R, which sits 

in ORF19.3714, were used to  amplify a  3360 bp fragment.  The PCR conditions were as follows: 

94°C for 3 min, followed by 30 cycles of 94°C for 30 sec, 47°C for 30 sec, 68°C for 3 min and 20 

sec, followed by a 7 min extension at 68°C and storage at 4°C. 

 

4.2.6 Southern blotting  

 The orf19.3714Δ/Δ strains were confirmed using Southern blotting with the DIG 

Hybridization System (Roche Diagnostics, Mannheim, Germany).  For this, gDNA was extracted 

according to Rose et al., 1990 (98), and digested with Spe1.  A DIG-labeled probe was prepared 

using oligonucleotides AG116F and AG116R to confirm strains AG676, AG690, AG692, AG694, 

AG698 and AG700. 

 

4.2.7 Northern blotting 

 RNA was extracted and Northern blotting was performed as previously described (9, 10).  
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Probes consisted of approximately 700-800 bp fragments complementary to the open readings 

frames of ORF19.3714 and ACT1 and were amplified with oligonucleotides AG111F and 

AG111R, and ACT1-129F and ACT1-104R, respectively.  Northern blots were visualized with a 

phosphoimager (Typhoon Variable Mode Imager, GE Healthcare).  Blots were quantified as 

described previously (75) using ImageJ. 

 

4.2.8 Protein extraction and Western blotting: 

 Protein extracts were prepared according to Liu et al., 2010 (99).  Extracted protein was 

quantified using the Bradford assay (Bio-Rad).  For protein samples treated with calf intestinal 

alkaline phosphatase (CIP) (New England Biolabs), EDTA and sodium vanadate were excluded 

from the HK extraction buffer.  Dephosphorylation of proteins was performed using 10 U of CIP 

per 10.0 μg of protein at 37C for 90 min.  Western blotting was done as described previously 

(75).  Briefly, 30.0 g of protein was loaded onto SDS-PAGE gels and proteins were transferred 

to a polyvinylidene difluoride (PVDF) membrane (BioRad).  Membranes were blocked with Tris-

buffered saline–Tween (TBST; 50 mM Tris (98), 137.0 mM NaCl, 0.1% Tween 20) containing 

5.0 % skim milk for 1.0 h.  Blots were washed three times for 15 min in TBST and incubated for 

1.5 h in 0.4 μg/ml anti-HA antibody (12CA5; Roche) or 1.5 h in 0.2 μg/ml anti-TAP antibody 

(Thermo Scientific) or overnight at 4°C in 2.5 μg/ml anti-c-MYC (Roche) diluted in TBST or 

overnight at 4°C in 1.0 μg/ml of anti-myc (Santa Cruz) diluted in TBST supplemented with 2.0% 

milk.  Blots were rinsed three times for 15 min in TBST and incubated for 1.0 h in a 0.04 μg/ml 

of horseradish peroxidase-conjugated secondary antibody anti-mouse (KPL) or anti-rabbit (Santa 

Cruz).  After washing, blots were developed using ECL (GE Healthcare; Amersham ECL 

Western blotting analysis system). Blots were stripped and incubated with 0.2 μg/ml of anti-

PSTAIRE (Santa Cruz Biotechnology) as a loading control. Western blots were quantified using 

ImageJ as described previously (75).  

 

4.2.9 Co-Immuoprecipitation  

 Overnight cultures of strains were diluted into 1.0 L of YEPD medium and incubated in 

30°C until the O.D.
600nm reached 0.8-1.0.  The cultures were centrifuged for 4 min at 2095 g 

(Allegra X-12R Centrifuge Beckman Coulter; CAN 605169-AA), and the pellet was immersed in 

liquid nitrogen or dry ice and stored at -80°C.  Protein was extracted as described above (99).  
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For co-immunoprecipitation, Mono HA 11 Affinity beads (Covance) or c-MYC beads (9E10) AC 

(Santa Cruz) were used.  The beads were pre-washed using HK buffer (99) three times by 

centrifuging at 1500 X g (Thermo Electron Microlite RF) for 2 min at 4°C.  Approximately 40.0 

μl of prewashed beads (bead volume) were combined with 40.0 mg of protein, and incubated 

overnight at 4°C.  The beads were washed 3 times in 1.0 ml HK buffer, and protein was eluted 

twice from the beads, first by boiling in 50.0 μl of 1X SDS sample buffer (50.0 mM Tris pH 6.8, 

2.0% SDS, 0.01% Bromophenol blue, 10.0% Glycerol, 100.0 mM DTT) for 10 min, followed by 

boiling in 40.0 μl of 1 X SDS loading buffer.  Eluted samples were centrifuged for 2 min at 

15700 g (Eppendorf; Centrifuge 5415 D) at room temperature and combined.  On SDS PAGE 

gels for Western blotting, 30.0 μl of eluate and 30.0 μg of whole cell extract were loaded.  

Western blotting was performed as described above. 

 

4.2.10 One-step affinity purification for identification of phosphorylation sites 

 For MET3 and PCK1 regulated strains, overnight cultures grown in -MC or SS medium 

were washed and diluted to an O.D.600 nm of 0.3 in +MC or SD medium respectively and grown 

at 30°C for 4.0 h.  Pellets were collected, protein was extracted (99), and approximately 100.0 mg 

was incubated with prewashed of IgG Sepharose 6 Fast Flow (GE Healthcare) or Mono HA 11 

Affinity beads (Covance) (1:1 slurry in HK buffer; 50 μl of bead volume) overnight at 4°C.  

Beads were washed 3 times by centrifuging at 1500 g for 2 min at 4°C and protein was eluted by 

boiling in 60.0 followed by 50.0 μl 1X SDS PAGE buffer for the first and second elution, 

respectively.  Eluates were separated on 1.5 mm SDS PAGE gels, and stained with Coomassie 

blue.  Gel pieces corresponding to 100.0 kDa were excised and sent for processing and analysis 

via Orbitrap LC/MS (IRIC, University of Montreal).  On a separate SDS PAGE gel, 5.0 μl of the 

eluate was separated and Western blotting was performed to confirm that Orf19.3714p appeared 

as multiple bands starting at approximately 100 kDa before sending the samples for mass 

spectrometry. 

 

4.2.11 Two Step Affinity Purification 

 Affinity purification was carried out according to Rigaut et al. 1999 (100) and Liu et al. 

2010 (99), with some modifications.  Overnight cultures of TAP-tagged and isogenic control 

strains were inoculated in YEPD medium at 30°C, diluted to an O.D.600nm of 0.15 into 2.0 L of 
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YEPD medium, and collected at an O.D.600nm of 0.8-1.0 by centrifugation for 4 min at 2095 g.  

For MET3-regulated strains, overnight cultures grown in -MC medium were washed and diluted 

to an O.D.600nm of 0.3 in +MC medium.  Pellets were collected after 4.0 h and frozen in liquid 

nitrogen or dry ice and stored at -80°C.  Protein was extracted as described previously (99).  For 

the first step of the affinity purification, approximately 200.0-250.0 mg of protein from cultures 

grown in YEPD medium or 100.0 mg from cultures grown in +MC medium were pre-cleared by 

adding pre-washed, 500.0 μl bead volume of Sepharose 6B (Sigma) beads (1:1 slurry in HK 

buffer) The beads were removed by centrifuging at 600.0 g for 2 

min at 4°C.  The protein extract was then incubated with prewashed IgG Sepharose 6 Fast Flow 

(GE Healthcare) (1:1 slurry in HK buffer; 250.0 μl bead volume) for 4.0 h or overnight at 4°C.  

The bead-extract mix was poured into a Poly-Prep Chromatography Column (Bio-Rad) and beads 

were washed twice with 10.0 ml ice cold IPP300 buffer (25.0 mM Tris-HCl pH 8.0, 300.0 mM 

NaCl, 0.1% NP-40), once with 10.0 ml IPP150 buffer (25.0 mM Tris-HCl pH 8.0, 150.0 mM 

NaCl, 0.1% NP-40) and once with 10.0 ml TEV CB (25.0 mM Tris-HCl pH 8.0, 150.0 mM NaCl, 

0.1% NP-40, 0.5 mM EDTA and 1.0 mM DTT).  Beads were incubated with 1.0 ml TEV CB 

buffer containing 50.0 U of Ac-TEV protease (Invitrogen) in 

rotation.  The eluate (1.0 ml) was collected in a new column and beads were washed with another 

1.0 ml TEV CB buffer.  To the final 2.0 ml eluate, add 6.0 ml of CBB (25.0 mM Tris-HCl pH 8.0, 

150.0 mM NaCl, 1.0 mM Mg acetate, 1.0 mM Imidazole, 2.0 mM CaCl2), 24.0 μl of 1.0 M CaCl2 

and prewashed 150.0 μl bead volume of Calmodulin Sepharose 4B (GE Healthcare) (1:1 slurry in 

CBB buffer; 150.0 μl bead volume) and rocked for 1.0 

with 1.0 ml CBB (0.1% NP-40), and once with 1.0 ml CBB (0.02% NP-40).  Protein was eluted 

from the beads by two separate additions of 1.0 ml CEB (25.0 mM Tris-HCl pH 8.0, 150.0 mM 

NaCl, 0.02% NP-40, 1.0 mM Mg acetate, 1.0 mM Imidazole, 20.0 mM EGTA, 10.0 mM β-

mercaptoethanol).  The elutions were combined and protein was precipitated by adding 1/4 

volume of 50% room temperature trichloroacetic acid (TCA) (Sigma).  The samples were 

incubated on ice for 30 min, centrifuged at 16,000 g for 10 min at 4°C.  The protein pellet was 

washed with 1.0 ml of pre-chilled 80.0% acetone.  Acetone was removed after centrifugation at 

16000 g for 10 min at 4°C, and the samples were air-dried on ice for approximately 1.0 h until all 

acetone evaporated.  The pellet was re-suspended in 30.0 μl 1 X SDS sample buffer and boiled 

for 10 min.  The sample was loaded on an SDS-PAGE gel for silver staining (Bio-Rad) or run on 
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an SDS PAGE gel until the sample just entered the resolving gel (99).  The latter gel was stained 

with Coomassie blue (Bio-Rad).  The gel pieces corresponding to tagged and untagged strains 

were cut and sent for processing and analysis via Orbitrap LC/MS (IRIC, University of Montreal).  

 

4.2.12 Plate growth assays  

 Overnight cultures of strains BH420 (URA3+ HIS1+ ARG4+), AG721, AG722 

(orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ORF19.3714-ARG4), AG727 and AG728 

(orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ARG4) in YEPD were diluted to O.D.600nm of 

0.08 in sterile water and 5.0 l of serial dilutions of 5X, 25X, 125X, 625X and 3125X were 

plated on YEPD and incubated at 30°C, 37°C or 42°C for 3 days.  Serial dilutions on YEPD 

plates supplemented with 20.0 M Calcoflour, 0.04% SDS or 1.5 M Sorbitol were incubated at 

30°C for 3 days.  Serial dilutions on YEPD plates supplemented with 25.0 mM hydroxyurea 

(HU), 0.01% MMS, 6.0 mM hydrogen peroxide (H2O2), 15.0 mM caffeine, or 10.0 nM 

rapamycin were incubated at 30°C for 48.0 h.  For YEPD plates supplemented with 10.0% foetal 

bovine serum, Spider or SLAD plates, overnight cultures of strains BH420, AG721, AG727 in 

YEPD were diluted to an O.D.600nm of 0.005 in sterile water, 1.5 l was added to 3.5 l of water, 

and the total 5.0 l volume was plated.  Plates were incubated at 37°C for 5-7 days.  

 

4.2.13 Cell staining and imaging 

For Differential Interference Contrast (DIC) microscopy, cells were fixed in 70.0% 

ethanol for at least 1.0 h, washed twice with sterile water, and mounted on slides.  To visualize 

nuclei, cells fixed in 70.0% ethanol were stained with 1.0 μg/ml of 4′,6′-diamidino-2-

phenylindole dihydrochloride (DAPI; Sigma-Aldrich) for 20 min, and washed with sterile water 

(75).  Cells were then mounted on slides and examined on a Leica DM6000B microscope (Leica 

Microsystems Canada Inc., Richmond Hill, ON, Canada) equipped with a Hamamatsu-ORCA 

ER camera (Hamamatsu Photonics, Hamamatsu City, Japan) using either HCX PL APO 63x NA 

1.40-0 oil or HCX PLFLUO TAR 100x NA 1.30-0.6 oil objectives and the DAPI (460-nm) filter.  

Images were captured with Volocity software (Improvision Inc., Perkin-Elmer, Waltham, MA). 
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4.3 RESULTS  

4.3.1 Identification of Cdc5p-interacting factors reveals a previously uncharacterized 

protein, Orf19.3714p 

 The Plk Cdc5p in C. albicans is required for early stages of mitotic progression and 

influences yeast bud morphogenesis, but its mechanisms of action remain unknown.  In order to 

address this question, we identified Cdc5p-interacting proteins using affinity purification and 

mass spectrometry.  Strains carrying a copy of CDC5 tagged at the C-terminus with a TAP tag 

were created (AG180: cdc5::hisG/CDC5-TAP-URA3) (Fig. 4.1A-B).  Western blotting 

demonstrated that Cdc5p-TAP was expressed (Fig. 4.1C), and growth rates and yeast cell 

morphology of strain AG180 were normal (Fig. 4.1D, E).  Thus, Cdc5p-TAP was considered 

functional and strains AG180 and BWP17 (CDC5/CDC5) were used for subsequent 

investigations.  Following protein extraction and two-step affinity purification, a silver-stained 

gel demonstrated protein enrichment in the tagged vs. untagged strain (data not shown).  The 

affinity purification was then repeated and samples were run just into the resolving portion of an 

SDS PAGE gel to allow for band compaction (99).  After staining with Coomassie blue (Fig. 4.2), 

gel pieces were sent for analysis via Orbitrap LC/MS (IRIC, University of Montreal).  The most 

abundant number of peptides corresponded to Cdc5p, followed by Cdc7p (Table 4.4), the 

catalytic component of the Dbf4p-Cdc7p kinase complex that is important for initiation of DNA 

replication (101, 102) and a known Cdc5p-interacting protein in S. cerevisiae (103).  Remaining 

factors were represented by two peptides each, including members of the Hsp70p family of 

chaperones and a putative karyopherin  (Orf19. 2489p), homologues of which bind Cdc5p in S. 

cerevisiae (104-106).  Proteins not previously known to bind Plks included ribosomal proteins 

(Rps5p, Rps17bp), as well as the uncharacterized proteins Orf19.3714p and Orf19.5287p (Table 

4.5).  

 

In order to enhance the detection of Cdc5p-interacting factors, we repeated the affinity 

purification from synchronized cells blocked in mitosis, through depletion of Cdc20p.  We 

previously demonstrated that Cdc5p was enriched under these conditions (75).  For this, 

overnight cultures of strains AG191 (cdc20::URA3/MET3::CDC20::HIS1, CDC5/CDC5-TAP-

ARG4) (75) and an isogenic control strain BH420 (URA3+, HIS1+, ARG4+) were diluted into 



 140 

repressing medium (+MC) for 4 h to deplete Cdc20p.  Affinity purification of Cdc5p followed by 

mass spectrometry analysis revealed a higher abundance of peptides corresponding to Cdc5p 

compared to the previous trial (Table 4.5).   Cdc7p and Dbf4p, which bind Cdc5p in S. cerevisiae 

(18, 107) were also highly enriched.  The heat shock protein Hsp70p, as well as ribosomal and 

translational factors also co-purified (Table 4.5).  Intriguingly, the uncharacterized protein 

Orf19.3714p was enriched relative to that in exponential-phase cells, and represented by the same 

number of peptides as Dbf4p (Table 4.5), suggesting a strong interaction.  Thus, Cdc5p in C. 

albicans may interact with the Cdc7p-Dbf4p complex, similar to the situation in S. cerevisiae, but 

also uncharacterized factors, suggesting novel functions.  
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Figure 4.1: Confirmation of Cdc5p-TAP strains.  (A) Map showing a PCR screening strategy 

to confirm correct integration of the TAP-containing construct.  Vertical black lines designate the 

area of the transforming DNA construct.  Oligonucleotides AG2F and AG2R generated a 0.4 kb 

CDC5 wild-type or a 2.4 kb CDC5-TAP-URA3 band. (B) Ethidium bromide-stained DNA gel 

showing positive strains AG180 (cdc5Δ::hisG/CDC5-TAP-URA3) and the negative control strain 

BWP17 (CDC5/CDC5).  (C) Western blot containing 30 g of whole cell protein extracts from 

strains AG180 and BWP17 (+/+) incubated with anti-TAP antibody.  (D) Growth curve of 

strains AG180 and HCCa7 (CDC5/cdc5Δ::hisG) incubated in YEPD medium at 30C, 

represented by O.D.600nm over time.  (E) Phenotype of strains BWP17, AG180, HHCa7 and 

AG120 (CDC5/CDC5-TAP-URA3) incubated in YEPD medium at 30C for 8 h. Bar: 10 m. 
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Figure 4.2: Coomassie-stained gel of tandem affinity-purified Cdc5p and control samples. 

Protein extracted from 2 L cultures of exponential-growing strains AG180 (cdc5Δ::hisG/CDC5-

TAP-URA3) and BWP17 (CDC5/CDC5) were subjected to tandem affinity purification (99).  

Elutions were TCA precipitated, separated on an SDS PAGE gel into the resolving gel for band 

compaction, and stained with Coomassie blue.  MWM: molecular weight marker. 
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Table 4.4: Orbitrap LC/MS analysis of putative Cdc5p-interacting proteins in exponential 

growing cells
1
 

 

Protein ID Gene name
4
 Present  Number  Protein description

4
 

    in 

control
2
 

of  

peptides
3
 

  

CAL0005042 CDC5/ 

ORF19.6010 

No 16 Polo-like kinase; member of 

conserved Mcm1p regulon; 

depletion causes defects 

    in spindle elongation and Cdc35p- 

dependent filamentation 

CAL0005945 CDC7/ 

ORF19.3561 

No 5 Possibly an essential gene, 

putative kinase; cell-cycle 

regulated periodic mRNA 

    expression 

CAL0001101 ORF19.3714 No 2 Uncharacterized ORF 

CAL0001639 ORF19.2489 No 2 Uncharacterized ORF; Putative 

karyopherin beta;  

    repressed by nitric oxide 

CAL0000989 RPS5/ 

ORF19.4336 

No 2 Ribosomal protein S5; 

macrophage/ pseudohyphal 

-induced after 16 h; genes 

    encoding cytoplasmic ribosomal 

subunits, translation factors 

CAL0004332 KAR2/ 

ORF19.2013 

No 2 Similar to Hsp70 family 

chaperones; role in translocation 

of proteins into the endoplasmic 

reticulum 

CAL0001208 SSA2/ 

ORF19.1065 

No 2 HSP70 family chaperone; cell 

wall fractions; antigenic 

CAF0006947 RPS17B/ 

ORF19.2329.1 

No 2 Ribosomal protein 17B; 

downregulated upon phagocytosis 

by murine macrophages 

CAL0000006 HSP70/ 

ORF19.4980 

No 2 Putative hsp70 chaperone; role in 

entry into host cells; heat-shock 

CAL0005101 TUB2/ 

ORF19.6034 

No 2 Beta-tubulin; functional homolog 

of S. cerevisiae Tub2 

CAL0001367 SSB1/ 

ORF19.6367 

No 2 HSP70 family heat shock protein; 

mRNA in yeast and germ tubes 

 
1
Approximately 172 mg protein extracts from 2 L cultures of strains AG180 (cdc5/CDC5-TAP) and BWP17 

(CDC5/CDC5) were subjected to tandem affinity purification (Rigaut et al. 1999, Lui et al., 2010). Elutions were 

TCA-precipitated, run until just entering the resolving portion of an SDS PAGE gel (Lui et al., 2010) stained with 

Coomassie blue, cut from the gel, and analysed using an LTQ-OrbitrapElite with nano-ESI.  

2Peptides identified in both the tagged and the untagged control strains were excluded from the results.
 
 

3
Peptides at a frequency of 1 were excluded from the results.  

4
Gene names and descriptions were obtained from the Candida Genome Database (http://www.candidagenome.org/). 

http://www.candidagenome.org/
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Table 4.5: Orbitrap LC/MS analysis of putative Cdc5p-interacting proteins in cells blocked 

in mitosis
1
 

 

Protein ID Gene name
4
 Present Number  Protein description

4
 

    in  

control
2
 

of 

peptides
3
 

  

CAL0005042 CDC5/ORF9.6010 No 33 Polo-like kinase; member of 

conserved Mcm1 regulon; 

    depletion causes defects in spindle 

elongation and Cdc35 dependent 

    filamentation 

CAL0005945 CDC7/ORF19.3561 No 12 Possibly an essential gene,Putative 

kinase; cell- cycle regulated 

    periodic mRNA expression 

CAL0002629 DBF4/ORF19.5166 No 10 Uncharacterized, putative Cdc7p-

Dbf4p kinase, complex regulatory 

subunit cell-cycle regulated 

    periodic mRNA expression 

CAL0001101 ORF19.3714 No 10 Uncharacterized 

CAL0006304 RPL3/ORF19.1601 No 4 Ribosomal protein, large subunit 

CAL0005746 CEF3 /ORF19.4152 No 3 Translation elongation factor 3, 

predicted C-term nucleotide- 

    binding active site 

CAL0000006 HSP70/ORF19.4980 No 3 Putative hsp70 chaperone; role into 

in entry host cells 

CAL0004511 TUB1/ORF19.7308 No 2 Alpha-tubulin, complements cold-

sensitivity of S. cerevisiae 

    tub1 mutant 

CAL0000989 RPS5/ORF19.4336 No 2 Ribosomal protein S5; 

macrophage/ pseudohyphal 

    -induced after 16 h 

CAL0003652 ORF19.5287 No 2 Uncharacterized 
 

1
Approximately 102 mg protein extracts from 2 L cultures of AG191 (cdc20/MET3::CDC20, CDC5/CDC5-TAP) 

and BH420 (CDC5/CDC5) strains were subjected to tandem affinity purification (Rigaut et al. 1999, Lui et al., 2010). 

Elutions were TCA-precipitated and run just into the resolving portion of an SDS PAGE gel (Lui et al., 2010). The 

compressed bands were stained with Coomassie blue, cut from the gel, and analysed using an LTQ-OrbitrapElite 

with nano-ESI. 
2
Peptides identified in both the tagged and the untagged control strains were excluded from the results.  

3
Peptides at a frequency of 1 were excluded from the results. 

4
Gene names and descriptions were obtained from the Candida Genome Database (http://www.candidagenome.org/).  

 

 

 

 

 

 

http://www.candidagenome.org/


 144 

 Since Orf19.3417p represents a potential novel Plk interacting factor, we focused 

subsequent investigations on this protein.  In order to confirm that Orf19.3714p physically 

interacts with Cdc5p, we performed a co-immunoprecipitation.  For this, CDC5 and ORF19.3714 

were tagged with 13 copies of MYC or 3 copies of HA at the C-terminus, resulting in strains 

AG614 (CDC5/CDC5-MYC-HIS1) or AG517 (ORF19.3714/ORF19.3714-HA-URA3) 

respectively (Fig. 4.3).  Next, ORF19.3714 was tagged with HA in strain AG614, resulting in 

strain AG622 (CDC5/CDC5-MYC-HIS1, ORF19.3714/ORF19.3714-HA-URA3).  Although PCR 

screening indicated correct integration of the constructs (Fig. 4.3), only Cdc5p-MYC was 

detected in Western blots of whole cell extracts (Fig. 4.4A).  In order to determine whether this 

was due to low expression, we attempted to enrich Orf19.3714p-HA through affinity-purification.  

Under these conditions, Western blotting revealed an intense band of higher molecular weight 

than expected (100 kDa vs. 70 kDa).  When this band was removed from the gel and analyzed 

with mass spectrometry, the presence of Orf19.3714p was confirmed (data not shown), 

suggesting post-translational modifications.  When Orf19.3714p-HA was precipitated with anti-

HA beads from strain AG622, Cdc5p-MYC co-purified (Fig. 4.4A).  Moreover, Cdc5p-MYC 

was not detected from precipitations carried out in the control strain AG614.  In reverse co-

immunoprecipitation using anti-MYC beads, a faint band representing Orf19.3714p-HA was 

visible in the double-tagged strain, unlike in the control (Fig. 4.4B).  Although whole cell extracts 

demonstrated faint bands when incubated with anti-HA antibody, these were of a different pattern 

than observed in the immuno-precipitate, and are likely non-specific.  Thus, the data support a 

physical interaction between Cdc5p and Orf19.3714p. 

 

Many Plk targets contain a polo box domain (PBD) binding motif, which consists of Ser-

pSer/pThr-Pro/X (15), and/or an optimal Plk1 phosphorylation consensus site, consisting of D/E-

X-pS/T-φ-X- D/E (17) or D/E/N-X-pS/T-φ (108), where X is any amino acid and φ is a 

hydrophobic amino acid.  If Orf19.3714p were a substrate of Cdc5p, we predict that it may 

contain similar motifs.  Sequence analysis revealed that Orf19.3714p contains nine PBD binding 

motifs and eleven Plk1 phosphorylation consensus sites.  In comparison, Cdc7p and Dbf4p 

contain two or four, or zero or three, respectively (Fig. 4.5).  Collectively, the data suggest that 

Orf19.3714p may be a target of Cdc5p.  
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Figure 4.3: Confirmation of ORF19.3714-HA and CDC5-MYC strains. (A) Map showing a 

PCR screening strategy to confirm correct integration of the HA and MYC-containing constructs, 

respectively. Vertical black lines designate the area of the transforming DNA construct. 

Oligonucleotides CaURA3F and AG81R or CaHIS1F and AG2R generate a 958 bp 

ORF19.3714-HA-URA3 band or a 921 bp CDC5-MYC-HIS1 band, respectively (B) Ethidium 

bromide-stained DNA gel showing positive strains AG517 (ORF19.3714/ORF19.3714-HA-

URA3), AG614 (CDC5/CDC5-MYC-HIS1), AG622 (CDC5/CDC5-MYC-HIS1, 

ORF19.3714/ORF19.3714-HA-URA3), AG523 (cacdc5Δ::hisG, ORF19.3714/ ORF19.3714-HA-

URA3), and the control strain BWP17 (CDC5/CDC5, ORF19.3714/ORF19.3714; +/+). 
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Figure 4.4: Co-immunoprecipitation confirming an interaction between Cdc5p and 

Orf19.3714p. Western blots of whole cell extracts (WCE) and immune-precipitates using αHA-

IP (A) or αMYC-IP (B) beads. A total of 45 mg of protein from strains AG517 (ORF19.3714/ 

ORF19.3714-HA-URA3), AG614 (CDC5/CDC5-MYC-HIS1) and AG622 (CDC5/CDC5-MYC-

HIS1, ORF19.3714/ ORF19.3714-HA-URA3) were incubated overnight with 45 l of beads. 

Samples were processed for Western blotting. 

 

                                   

Figure 4.5: Plk phosphorylation and Polo box domain-binding sites in Orf19.3714p, Cdc7p 

and Dbf4p from C. albicans.  Conserved phosphorylation sites from Plk1 (highlighted in red or 

green) are D/E/N-X-pS/T-φ (108) (highlighted in red) or D/E-X-pS/T-φ-X- D/E (17) (highlighted 

in green) where X = any amino acid; φ = hydrophobic amino acid. Conserved Polo box binding 

site (highlighted in yellow) is S-pS/T-P (15). Common amino acids between Plk phosphorylation 

and PBD binding sites are highlighted in blue.  



 147 

4.3.2 Orf19.3714p is a fungal-specific protein found primarily in Candida species 

 In order to determine the significance of the interaction between Cdc5p and Orf19.3714p, 

a bioinformatic analysis of Orf19.3714p was conducted.  A BlastP search using NCBI 

(http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&L

INK_LOC=blasthome) did not identify any sequence orthologues outside of fungi (data not 

shown).  When using the Fungal Blast option in the Saccharomyces Genome Database (SGD) 

(http://www.yeastgenome.org/) against protein databases of all sequenced fungi, thirty-four hits 

were revealed, the top five of which corresponded to Candida species (Table 4.6).  An additional 

hit in Scheffersomyces stipites corresponded to a BRIGHT/ARID domain-containing protein.   

This domain is found in a family of DNA binding proteins that play roles in embryonic 

development, cell lineage gene regulation and cell cycle control (109-111).  However, this motif 

was not present in Orf19.3714p.  Intriguingly, S. cerevisiae lacks a homologue, with the closest 

hit being YKR041W (SGD ID: S000001749; E value=0.031) (Table 4.6), which is 

uncharacterized but localizes to the mitotic spindle (112).  A phylogenetic tree was then 

constructed using ClustalW2-Phylogeny 

(http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=  

clustalw2_phylogeny&sequence=clustalo-I20140826-180245-0622-20601651-pg) (113) for all 

15 sequences obtained from an NCBI Blastp search against fungi that were aligned with the 

Clustal Omega multiple alignment tool (http://www.ebi.ac.uk/Tools/ msa/clustalo/).  

Orf19.3714p grouped most closely with orthologues from C. dubleniensis, C. tropicalis and C. 

maltosa (Fig 4.6), which inhabit guts of humans, beetles, or both (114-116).  Notably, C. 

glabarata did not contain a homologue, and it does not group within the clade containing C. 

albicans.  Thus, Orf19.3714p is a fungal-specific protein with closest homologues found 

predominantly in Candida species.   

http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://www.yeastgenome.org/
http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=%20%20clustalw2_phylogeny&sequence=clustalo-I20140826-180245-0622-20601651-pg
http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=%20%20clustalw2_phylogeny&sequence=clustalo-I20140826-180245-0622-20601651-pg
http://www.ebi.ac.uk/Tools/%20msa/clustalo/
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Table 4.6: Fungal Protein Blast (Blastp) search in Saccharomyces Genome Database  (SGD) 

using Orf19.3714p
1
. 

Sequences producing significant alignments 

 

Score 

(bits) 

E-value 

 

ref|XP_711053.1| hypothetical protein CaO19.3714 [Candida albicans 

SC5314] 
785.1 9.30E-229 

emb|CAX40295.1| conserved hypothetical protein [Candida dubliniensis 

CD36... 
294.4 4.80E-164 

gb|EER32719.1| predicted protein [Candida tropicalis MYA-3404] 182.8 9.60E-91 

gb|EMG50075.1| hypothetical protein G210_4910, partial [Candida 

maltosa ... 
148 1.80E-79 

emb|CCG23050.1| hypothetical protein CORT_0D02020 [Candida 

orthopsilosis] 
123.7 1.70E-63 

gb|EDK45146.1| hypothetical protein LELG_03325 [Lodderomyces 

elongisporu... 
110 2.80E-49 

gb|ABN67876.2| DNA-binding proteins Bright/BRCAA1/RBP1 and 107.8 4.60E-43 

related proteins containing BRIGHT domain [Scheffersomyces stipitis….. 
  

emb|CAG84736.2| DEHA2A10164p [Debaryomyces hansenii CBS767] 101.5 1.60E-29 

gb|EEQ40644.1| hypothetical protein CLUG_04772 [Clavispora 

lusitaniae AT... 
79.3 8.60E-24 

gb|EDK37891.2| hypothetical protein PGUG_01989 [Meyerozyma 

guilliermondi... 
55.7 7.60E-22 

ref|XP_004202544.1| Piso0_001385 [Millerozyma farinosa CBS 7064] 69.1 1.40E-19 

gb|EGW34027.1| hypothetical protein SPAPADRAFT_59439, partial 

[Spathaspo... 
41.3 9.00E-14 

ref|XP_006686021.1| hypothetical protein CANTEDRAFT_134293 

[Candida tenuis AT… 
56.5 6.20E-11 

gb|EDO15314.1| hypothetical protein Kpol_448p1 [Vanderwaltozyma 

polyspor... 
46.9 4.30E-05 

emb|CCH46051.1| hypothetical protein BN7_5639 [Wickerhamomyces 

ciferrii] 
38.5 0.0051 

emb|CCF55770.1| hypothetical protein KAFR_0A03350 [Kazachstania 

africana ... 
37.1 0.012 

gb|EHN01393.1| YKR041W-like protein [Saccharomyces cerevisiae x 

Saccharo... 
34.6 0.031 

emb|CAR27662.1| ZYRO0D03718p [Zygosaccharomyces rouxii] 33.6 0.042 

emb|CCE61780.1| hypothetical protein TPHA_0B01080 [Tetrapisispora 

phaffii... 
37.8 0.078 

gb|EJT44913.1| YKR041W-like protein [Saccharomyces kudriavzevii 

IFO 1802... 
35.7 0.096 

emb|CCD23556.1| hypothetical protein NDAI_0B05230 [Naumovozyma 

dairenensi... 
36.4 0.1 

gb|EDO04898.1| predicted protein [Sclerotinia sclerotiorum 1980 UF-70] 39.6 0.19 

gb|ESW98551.1| hypothetical protein HPODL_04175 [Ogataea 

parapolymorpha ... 
30.1 0.3 

http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#XP_711053.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#ABN67876.2
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#CAG84736.2
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EEQ40644.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EDK37891.2
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#XP_004202544.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EGW34027.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#XP_006686021.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EDO15314.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#CCH46051.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#CCF55770.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EHN01393.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#CAR27662.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#CCE61780.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EJT44913.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#CCD23556.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EDO04898.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#ESW98551.1
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emb|CCA41099.1| hypothetical protein PP7435_Chr4-0949 

[Komagataella pasto... 
32.5 0.34 

gb|EQB61141.1| hypothetical protein NAPIS_ORF01278 [Nosema apis 

BRL 01] 
31.8 0.43 

gb|ESZ96896.1| hypothetical protein SBOR_2690 [Sclerotinia borealis 

F-41... 
37.4 0.74 

gb|EMD63823.1| hypothetical protein COCSADRAFT_37572 [Bipolaris 

sorokini... 
38.1 0.76 

gb|EGA78039.1| YKR041W-like protein [Saccharomyces cerevisiae 

Vin13] 
33.6 0.77 

emb|CCE93985.1| hypothetical protein TDEL_0H01260 [Torulaspora 

delbruecki... 
31.1 0.8 

emb|CCE65312.1| hypothetical protein TPHA_0K01790 [Tetrapisispora 

phaffii... 
38.9 0.89 

gb|EIW62567.1| hypothetical protein TRAVEDRAFT_99513, partial 

[Trametes ... 
29.3 0.96 

emb|CDH15510.1| uncharacterized protein ZBAI_07297 

[Zygosaccharomyces bai... 
31.5 0.98 

gb|EME44852.1| hypothetical protein DOTSEDRAFT_70792 

[Dothistroma septos... 
35.3 0.98 

gb|ETS82393.1| hypothetical protein PFICI_04269 [Pestalotiopsis fici 

W10... 
28.6 0.99 

 

1
Orf19.3714p sequence from CGD (http://www.candidagenome.org/) was subjected to Fungal Blast search against 

all the available protein sequences of fungi in SGD (http://www.yeastgenome.org/) using default parameters.  
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http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#ESZ96896.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EMD63823.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EGA78039.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#CCE93985.1
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http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EIW62567.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#CDH15510.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#EME44852.1
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl#ETS82393.1
http://www.candidagenome.org/
http://www.yeastgenome.org/
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Figure 4.6: Neighbour-joining tree for Orf19.3714p using Clustal Omega. The Orf19.3714p 

sequence from the Candida Genome Database was enter into NCBI Blastp and compared against 

fungi. The sequences of the all the 15 hits obtained were retrieved from NCBI GenBank and 

aligned in a Clustal multiple sequence alignment. Clustal Omega was used to obtain the 

phylogenetic tree.  

 

 

4.3.3 Orf19.3714p is hyperphosphorylated in mitotic-arrested cells, and enriched in 

response to Cdc5p depletion, but reduced upon depletion of Cdc20p 

 If Orf19.3714p is a target of Cdc5p, we predict that it may be post-translationally 

modified in the presence vs. absence of Cdc5p.  To test this possibility, ORF19.3714 was tagged 

at the C-terminus with three copies of HA in the CDC5 conditional strain CB105 

(cacdc5::hisG/cacdc5::HIS1 PCK1::CaCDC5-hisG) (9), resulting in strain AG523 

(cacdc5::hisG/cacdc5::HIS1 PCK1::CaCDC5-hisG, ORF19.3714/ ORF19.3714-HA-URA3) (Fig. 

4.3).  Overnight cultures of strains AG523 and AG517 (ORF19.3714/ ORF19.3714-HA-URA3) 

were diluted into fresh inducing (SS) or repressing (SD) (92) medium and incubated at 30°C for 4 

h (SD) (92) or until the O.D.600nm reached 0.8. (SS).  Western blots of affinity-purified samples 

demonstrated that Orf19.3714p migrated in a similar manner in SS and SD medium in strain 

AG517 (Fig. 4.7A).  However, strain AG523 demonstrated that Orf19.3714p migrated as 

multiple bands of higher molecular weight in SD repressing medium that lacked Cdc5p vs. in SS 

inducing medium (Fig. 4.7A).  In order to determine whether the band shift was due to 
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phosphorylation, the experiment was repeated in the presence or absence of CIP.  CIP treatment 

reduced the appearance of multiple bands for Orf19.3714p-HA in SD medium (Fig. 4.7B).  Some 

CIP-dependent size reduction was also observed in strain AG517 (Fig. 4.7B), suggesting a basal 

level of phosphorylation, but this was minor compared to that observed in Cdc5p-depleted cells.  

Thus, Orf19.3714p undergoes hyperphosphorylation under Cdc5p-depleted conditions.  
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Figure 4.7: Orf19.3714p undergoes a phosphorylation-dependent shift in Cdc5p-depleted 

cells.  (A) Overnight cultures of strains AG517 (ORF19.3714/ ORF19.3714-HA-URA3) and 

AG523 (cacdc5Δ::hisG, ORF19.3714/ ORF19.3714-HA-URA3) were diluted into either inducing 

SS or repressing SD medium, and collected after 4 h in SD or in exponential phase in SS. Whole 

cell extracts were incubated with anti-HA beads at 4C overnight. (B) Anti-HA beads from (A) 

were treated with (+) or without (-) calf intestinal phosphatase (CIP).   

 

 



 152 

In order to determine whether phosphorylation was specific to Cdc5p depletion vs. being 

a general response to a mitotic block, Orf19.3714p mobility was investigated in cells depleted of 

the Anaphase Promoting Complex/Cyclosome (APC/C) co-factor Cdc20p (75).  For this, 

ORF19.3714 was TAP-tagged at the C-terminus in a CDC20 conditional strain (75), resulting in 

strain AG704 (cdc20Δ::URA3/MET3::CDC20-HIS1, ORF19.3714/ ORF19.3714-TAP-ARG4) 

(Fig. 4.8A, B).  For comparison, ORF19.3714 was also TAP-tagged in a CDC5 conditional and 

an ORF19.3714 heterozygous strain, resulting in strains AG717 (cdc5Δ::hisG/MET3::CDC5-

ARG4, ORF19.3714/ ORF19.3714-TAP-URA3) and AG707 (orf19.3714Δ::URA3/ORF19.3714-

TAP-ARG4) respectively, (Fig. 4.8A, B).  The growth rate of strain AG707 containing a single 

allele of ORF19.3714 tagged with TAP was similar to a control strain BH415 (URA3+ ARG4+), 

suggesting that the protein was functional (Fig. 4.8C).  Intriguingly, Western blotting 

demonstrated that Orf19.3714p-TAP was detectable in whole cell extracts (Fig. 4.8D), unlike the 

HA-tagged protein.  The ability to detect Orf19.3714p in whole cell extracts could be due to 

higher sensitivity of the anti-TAP vs. anti-HA antibody, and precluded the need to affinity-purify 

the protein for visualization.  Thus, overnight cultures of strains were diluted into fresh inducing 

(-MC) or repressing (+MC) medium and incubated at 30C for 4 h, collected, and processed for 

Western blotting.  In Cdc20p-depleted cells, Orf19.3714p-TAP migrated as several higher 

molecular weight bands, although the effect was not as strong and the signal was less intense as 

that observed in Cdc5p-depleted cells  (Fig. 4.9A).  In contrast, Orf19.3714p-TAP migrated as a 

single lower molecular weight band in inducing medium and in control cells in either inducing or 

repressing medium (Fig. 4.9A-C).  CIP-treatment of samples confirmed that the band shifts were 

due to phosphorylation (Fig. 4.9B, C).  Further, when samples were separated on a higher 

concentration gel that allowed for detection of the lower molecular weight loading control protein 

Cdc28p, normalization of intensity levels confirmed that Orf19.3714p-TAP was reduced in 

Cdc20p-depleted cells, but enriched in Cdc5p-depleted cells (Fig. 4.9D). 
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Figure 4.8: Confirmation of Orf19.3714p-TAP strains.  (A) Map showing a PCR screening 

strategy to confirm correct integration of the TAP-containing construct. Vertical black lines 

designate the area of the transforming DNA construct. Oligonucleotides CaARG4 and AG81R 

generated a 696 bp ORF19.3714-TAP-ARG4 band while oligonucleotides CaURA3F and AG81R 

generated a 1153 bp ORF19.3714-TAP-URA3 band. (B) Ethidium bromide-stained DNA gels 

showing positive strains AG704 (cdc20Δ::URA3/MET3::CDC20-HIS1, ORF19.3714/ 

ORF19.3714-TAP-ARG4), AG717 (cdc5Δ::hisG/MET3::CDC5-ARG4, ORF19.3714/ 

ORF19.3714-TAP-URA3), AG707 (orf19.3714Δ::URA3/ORF19.3714-TAP-ARG4)  and BWP17 

(ORF19.3714/ORF19.3714). (C) Growth curves showing the mean O.D.600nm  S.E.M from 3 

different trials of strains BH415 (URA3+ ARG4+) and AG707 incubated in YPD medium at 

30°C over time. (D) Western blot containing 30 g of whole cell protein extracts from strains 

AG707, AG706 and BWP17 incubated with anti-TAP antibody.  
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Figure 4.9: Orf19.3714p-TAP is phosphorylated in Cdc20p and Cdc5p-depleted cells, and 

shows a decrease or increase in abundance, respectively.  (A) Overnight cultures of strains 

AG707 (orf19.3714Δ::URA3/ORF19.3714-TAP-ARG4), AG704 

(cdc20Δ::URA3/MET3::CDC20-HIS1, ORF19.3714/ ORF19.3714-TAP-ARG4), and AG717 

(cdc5Δ::hisG/MET3::CDC5-ARG4, ORF19.3714/ ORF19.3714-TAP-URA3) were washed and 

diluted into repressing (+MC) or inducing (-MC) medium and collected after 4 h at 30
o
C.  Protein 

was extracted and samples were processed for Western blot.  (B, C) Protein samples from (A) 

were treated with  (+) or without (-) alkaline calf intestinal phosphatase (CIP).  (D) Overnight 

cultures of strains AG707, AG704 and AG717 were diluted into +MC medium and collected 

after 4h at 30C.  Protein samples were separated on a 10% SDS-PAGE gel and probed with anti-

TAP or loading control anti-PSTAIRE antibodies.  Quantification was performed with ImageJ 

(75). 
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In order to determine whether the levels of ORF19.3714 were modified at the transcript 

level under Cdc5p-depleted conditions, Northern blotting was performed.  Overnight cultures of 

CDC5 conditional (CB108; cdc5Δ::hisG/MET3::CDC5-URA3) and control (CB504; 

CDC5/CDC5, pMET3-URA3) (9) strains were diluted into repressing (+MC) medium and 

collected at given time points.  Wild type cells of strain SC5314 (+/+) were also incubated in 

+MC medium at 30C, or 37C with the addition of 10% serum, to obtain yeast and hyphal 

samples, respectively, for comparison.  ORF19.3714 expression was not significantly increased 

at 4 h of repression, despite the increase in protein abundance observed at this time.  Moderate 

increases were noted at 7 and 9 h of Cdc5p depletion, but not at 11 h.  ORF19.3714 was also 

moderately reduced in hyphae vs. yeast cells (Fig. 4.10).  Thus, expression of ORF19.3714 at the 

mRNA level does not correlate with the changes in the level of protein that take place upon a 

block in mitosis.  Collectively the data thus suggest that Orf19.3714p undergoes post-

translational modifications under conditions that block mitosis, including hyper-phosphorylation, 

and changes in abundance, where it is enriched in the absence of Cdc5p, but reduced under 

Cdc20p-depleted conditions. 
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Figure 4.10: ORF19.3714 does not show significant changes in expression during Cdc5p 

depletion, but is moderately reduced in serum-induced hyphae.  Overnight cultures of strains 

CB504 (CDC5/CDC5 + pMET3-URA3) and CB108 (cdc5Δ::hisG/MET3::CDC5-URA3) were  

diluted into repressing medium (+MC) and collected at indicated time points.  Control strain 

SC5314 (+/+) was grown in +MC for 2h at 30C to promote yeast growth (Y) and pre-warmed 

+MC supplemented with 10% FBS for 2h at 37C to promote hyphal growth (H).  ACT1 was 

used as loading control.  Quantification was performed with ImageJ (75). 
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In order to identify the sites on Orf19.3714p that may be phosphorylated in response to a 

mitotic block, Orf19.3714p was purified from strains AG523  (cacdc5::hisG/cacdc5::HIS1 

PCK1::CaCDC5-hisG, ORF19.3714/ ORF19.3714-HA-URA3) and AG517 (ORF19.3714/ 

ORF19.3714-HA-URA3) that were incubated in repressing (SD) (92) medium for 4 h at 30C.  

Gel pieces containing Orf19.3714p were cut and processed for mass spectrometry and phospho-

peptide identification.  Orf19.3714p from control cells was not phosphorylated.  However, in 

Cdc5p-depleted cells, eight phosphorylated peptides were identified, five of which were the same 

sequence (LESTPISQSTPASSR) but phosphorylated on different residues (Table 4.7).  Two 

phosphorylated amino acids were within Plk consensus polo box binding sites, and one was 

found within a Plk consensus phosphorylation site (Fig. 4.11).  Two others were within minimal 

CDK consensus phosphorylation sites, Ser/Thr-Pro (S/T-P) (117).  Of the other three peptides 

(AQPQPQPQQTSSSSSSK; ASSPPPLQQQQQQKPR; TITTHESESESEQGESNEINIK) (Table 

4.7), one was phosphorylated within a Plk consensus PBD site that overlapped with a minimal 

CDK consensus phosphorylation site (data not shown).  However, the fact that Orf19.3714p was 

significantly enriched in mitotic-blocked  (sixty-one peptides) vs. exponential phase (seventeen 

peptides) cells, precludes an accurate comparison of detectable phospho-peptides between 

samples.  Thus, we repeated the experiment with the exception of doubling the amount of input 

protein for the control strain and using TAP-tagged strains (AG707; (orf19.3714::URA3/ 

ORF19.3714-TAP-ARG4 and  AG717; cdc5 Δ::hisG/MET3::CDC5-ARG4, ORF19.3714/ 

ORF19.3714-TAP-URA3).  However, only two phospho-peptides were identified in Cdc5p-

depleted cells, and one of the two peptides was also present in the control strain (Table 4.7).  

Thus, the nature of the hyperphosphorylation of Orf19.3714p upon a mitotic block remains 

unclear, although it is notable that Orf19.3714p contains a total of sixteen consensus CDK 

phosphorylation sites (data not shown).  
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Table 4.7: Orbitrap LC/MS identification of phosphorylation sites in Orf19.3714p in the 

presence vs. absence of Cdc5p
1 
 

Genotype (strain) Protein ID Gene name
2 

 Number Phosphorylated 

       of peptides
3
  peptide sequence

4
 

    
 

ORF19.3714/ CAL0001101 ORF19.3714 17 None 

ORF19.3714-HA 

   
 

(AG517) 

   
 

cdc5Δ/PCK1::CDC5 CAL0001101 ORF19.3714 61 LESTPISQSTPASSR 

ORF19.3714/ 

   

+Phospho (ST)-S9; 

ORF19.3714-HA 

   

LESTPISQSTPASSR 

(AG523) 

   

+Phospho (ST)-T10; 

    

LESTPISQSTPASSR 

    

+Phospho (ST)-S14; 

    

LESTPISQSTPASSR 

    

+Phospho (ST)-S13; 

    

LESTPISQSTPASSR 

    

+Phospho (ST)-S3; 

    

AQPQPQPQQTSSSSSSK 

    

+Phospho (ST)-S11; 

    

ASSPPPLQQQQQQKPR 

    

+ Phospho (ST)-S3; 

    

TITTHESESESEQGESNE

INIK+ Phospho (ST)-T4 

orf19.3714Δ/ CAL0001101 ORF19.3714 15 ASSPPPLQQQQQQKPR 

ORF19.3714-TAP 

   

+Phospho (ST)-S2; 

(AG707) 

   

ASSPPPLQQQQQQKPR 

    

+ Phospho (ST)-S3; 

cdc5Δ/MET3::CDC5 CAL0001101 ORF19.3714 10 ASSPPPLQQQQQQKPR 

ORF19.3714/ 

   

+ Phospho (ST)-S3; 

ORF19.3714-TAP 

   
 

(AG717)         
 

1
Strains AG517 (ORF19.3714/ORF19.3714-HA-URA3) and AG523 (cdc5Δ::hisG/PCK1::CDC5-HIS1, 

ORF19.3714/ORF19.3714-HA-URA3) grown in SD medium for 4h while AG707 (orf19.3714 

Δ::URA3/ORF19.3714-TAP-ARG4) and AG717 (cdc5Δ::hisG/MET3::CDC5-ARG4, ORF19.3714/ORF19.3714-

TAP-URA3) grown in +MC medium for 4h were subjected to tandem affinity purification (99, 100). Approximately 

90 mg protein extracts from AG517 and AG523 while 115 mg X 2 of protein extracts from AG707 and 115 mg of 

protein extract from AG717 were incubated with 40 l of anti-HA and 50 l anti-TAP beads respectively. Proteins 

were eluted from beads by boiling in sample buffer and run on SDS PAGE gel and stained with Coomassie blue, gel 

bands were cut from approximately 65-110 and 90-125 kDa for strains AG517, AG523 and AG707, AG717 

respectively.  
2
Gene names were obtained from the Candida Genome Database (http://www.candidagenome.org/). 

3
Peptides corresponding to other genes/ORFs except Orf19.3714p were excluded from the table.  

4
Phosphorylated peptides were analysed using an LTQ-OrbitrapElite with nano-ESI. 

http://www.candidagenome.org/
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A 

 

Figure 4.11: Identification of phosphorylated amino acids in Orf19.3714p in the absence of 

Cdc5p.  Peptides (in yellow) and amino acids residues (in green) identified in Orf19.3714p 

purified from strain AG523 (cacdc5Δ::hisG, ORF19.3714/ ORF19.3714-HA-URA3) grown in 

repressing SD medium at 30C for 4 h.  About 87 mg of protein extract was incubated with 40 ul 

of anti-HA beads overnight at 4C. Samples were eluted by boiling, separated on an SDS-PAGE 

gel and stained with Coomassie.  Gel bands corresponding to approximately100kDa were cut for 

mass spectrometry.  

 

4.3.4 ORF19.3714 is not essential for yeast vegetative growth or required for yeast cellular 

responses to a variety of stress conditions 

 In order to explore the function of Orf19.3714p, we utilized a genetic approach and 

deleted both copies of the gene from strain BWP17, resulting in strains AG692 and AG694 

(orf19.3714::URA3/orf19.3714::HIS1) (Fig. 4.12A,B).  Since the cells were viable, a control 

strain was constructed by re-introducing a copy of ORF19.3714 into strain AG692, resulting in 

strains AG721 and AG722 (orf19.3714::URA3/orf19.3714::HIS1  pBS-ORF19.3714-ARG4) (Fig. 

4.12C).  A deletion strain isogenic for markers was also constructed by transforming strain 

AG692 with circular pBS-CaARG4, resulting in strains AG727 and AG728  (orf19.3714::URA3 

/orf19.3714::HIS1 + pBS-ARG4).  In the absence of Orf19.3714p, yeast cell proliferation and 

phenotype were similar to those of control strains (Fig. 4.13).  On solid medium, colony growth 

and morphology also did not show any significant differences (Fig. 4.14).  We next asked if the 

absence of Orf19.3714p influenced yeast cellular responses to a diversity of stress and 

environmental conditions.  Serial dilutions of strains were spotted on solid YEPD medium and 

incubated at 30, 37 or 42C to test for temperature sensitivity, YEPD containing 20 M 

Calcoflour, 0.04% SDS, or 1.0 M sorbitol to test for responses to cell wall stress and changes in 
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osmolarity, 30 mM hydroxyurea (HU) or 0.03% methanomethysulphate  (MMS) to investigate 

sensitivity to DNA replication and damage stress, respectively, 15 mM caffeine or 10 nM 

rapamycin to determine sensitivity to defective TOR pathway function, 6 mM hydrogen peroxide 

to determine sensitivity to oxidative stress (95), or 125 g/ml benomyl to test for sensitivity to 

microtubule destabilization.  However, absence of Orf19.3714p did not have an effect on growth 

or morphology under any conditions tested (Fig. 4.14).    
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Figure 4.12: Confirmation of an orf19.3714Δ/Δ and ORF19.3714 complement strains. (A) 

Map and ethidium- bromide-stained DNA gel showing an 840 bp band for wild type 

ORF19.3714 in strain BWP17 (+/+), AG676 (ORF19.3714/orf19.3714Δ::URA3) and AG680 

(cdc5Δ::hisG/MET3::CDC5-ARG4, ORF19.3714/orf19.3714Δ::URA3) and absence of bands in 

strains AG692, AG694 (orf19.3714Δ::URA3/ orf19.3714Δ::HIS1) and AG698, AG700 

(cdc5Δ::hisG/MET3::CDC5-ARG4, orf19.3714ΔΔ::URA3/ orf19.3714Δ::HIS1) using 

oligonucleotides AG111F and AG111R. (B) Map and Southern blot confirming construction of 

strains. Digestion of gDNA with SpeI produced a wild type band of 6.3 kb, an 

orf19.3714Δ::URA3 deletion band at 3.2 kb, and an orf19.3714Δ::HIS1 deletion band 5.7 kb. (C) 

PCR map and ethidium- bromide-stained DNA gel showing a 3.3 kb band for wild type 

ORF19.3714 in strains BWP17, AG721 (orf19.3714::URA3/orf19.3714::HIS1  pBS-

ORF19.3714-ARG4)), and absence of a band for strain AG692 using oligonucleotides AG120F 

and AG111R. 
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Figure 4.13: Absence of Orf19.3714p does not influence yeast growth or morphology.  (A) 

Overnight cultures of strains BH420 (ORF19.3714/ORF19.3714, URA3+ HIS1+ ARG4+), 

AG721, 722 (orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ORF19.3714-ARG4), and AG727, 

728 (orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ARG4) were diluted into fresh YEPD 

medium at 30C and OD.600nm was recorded at indicated times.  (B) Overnight cultures of strains 

AG553 (cdc5Δ::hisG/MET3::CDC5-ARG4, URA3+ HIS1+) and AG698, 700 

(cdc5Δ::hisG/MET3::CDC5-ARG4, orf19.3714Δ::URA3/orf19.3714Δ::HIS1) were diluted into –

MC inducing medium at 30C and OD.600nm was recorded at indicated times.  (C) Strains in (A) 

at 7 h were fixed in 70% EtOH prior to imaging. Bar: 10 m.  
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AG721 (orf19.3714Δ/Δ + ORF19.3714)               

AG727 (orf19.3714Δ/Δ)   

AG728 (orf19.3714Δ/Δ ) 

AG722 (orf19.3714Δ/Δ +  ORF19.3714) 

 

                        
	

30oC   37oC   42oC 

  Calcoflour (20uM)      SDS (0.04%)   Sorbitol (1.5M) 

        HU (25mM)     MMS (0.01%)      H2O2 (6 mM) 

 

                        
	

 Benomyl (125 µg/ml)     Caffeine (15 mM)    Rapamycin (10 nM) 

 

Figure 4.14: Orf19. 3714p is not required for yeast growth responses to a variety of 

environmental and chemical conditions.  Overnight cultures of strains BH420 

(ORF19.3714/ORF19.3714, URA3+ HIS1+ ARG4+), AG721, AG722 

(orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ORF19.3714-ARG4), and AG727 and AG728 

(orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ARG4) in YEPD medium were diluted to an 

O.D600nm of 0.08 and serial dilutions were plated on solid YEPD medium and incubated at 30, 37, 

or 42°C for 48 h, on YEPD medium supplemented with 20 M Calcoflour, 0.04% SDS or 1.5 M 

sorbitol and incubated at 30°C for 48 h,  25 mM HU, 0.01% MMS, 6 mM hydrogen peroxide 

(H2O2), 15 mM caffeine, 125 g/ml benomyl or 10 nM rapamycin and incubated at 30°C for 48 h. 

Top panel shows the order of strains plated. 
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4.3.5 Orf19.3714p is not required for hyphal development, but influences filamentous 

growth in response to Cdc5p depletion 

In order to determine whether Orf19.3714p was required for polarized growth, strains 

were tested for their ability to form hyphae in response to a diversity of hyphal-inducing 

conditions.  Overnight cultures of strains BH420 (URA3+ HIS1+ ARG4+), AG722 

(orf19.3714::URA3/orf19.3714::HIS1  pBS-ORF19.3714-ARG4)  and AG728 

(orf19.3714::URA3/orf19.3714::HIS1 + pBS-ARG4) grown in YEPD medium at 30C were 

diluted and spotted onto nitrogen-limiting solid SLAD, Spider, or YEPD medium supplemented 

with 10% serum, and incubated at 37C for three to five days (118) (96) (95).  Orf19.3714p was 

not required for hyphae produced under any of these conditions (Fig. 4.15A).  In order to 

determine whether absence of Orf19.3714p influenced hyphal growth under liquid-inducing 

conditions, strains were diluted into liquid YEPD containing 10% serum and incubated at 37C.  

However, hyphae were able to form and were indistinguishable from those that formed in control 

cells (Fig. 4.15B).  Hyphae were also able to form when incubated in liquid Spider medium at 

37C (data not shown).  

 

Since Orf19.3714p may be a substrate for Cdc5p, we next asked if its absence would 

affect polarized growth that occurs in cells depleted of Cdc5p (9).  For this, strains AG553 

(cdc5Δ::hisG/MET3::CDC5-ARG4 +URA3+ HIS1+) and AG700 (cdc5Δ::hisG/MET3::CDC5-

ARG4, orf19.3714Δ::URA3/ orf19.3714Δ::HIS1) (Fig. 4.12) were diluted into repressing medium 

(+MC) and fixed at set times.  In the absence of Orf19.3714p, polarized growth could still take 

place, but the filaments were often short and irregular in shape and/or showing multiple buds (Fig. 

4.16A  and 4.16C).  This effect was not due to any growth defects as the cells lacking 

Orf19.3714p showed normal yeast growth rates under Cdc5p-inducing conditions (Fig. 4.13B).  

Intriguingly, after 4 h of Cdc5p depletion, 17.8% (n=157) of cells lacking Orf19.3714p showed 

re-budding from the mother yeast cell that previously formed an elongated bud, compared to 

3.1% (n=191) of cells with Orf19.3714p.  After 7 h of Cdc5p depletion, 81.3% (n=139) of cells 

lacking Orf19.3714p were rebudding from the mother yeast cell, compared to 11.5% (n=130) of 

cells containing Orf19.3714p.  Rebudding from the mother yeast cell can reflect escape from a 

mitotic block (83, 119, 120), although cells stained with DAPI did not reveal obvious differences 

in the number of nuclei per cell (Fig. 4.16B).  Similar results were obtained when the spindle 
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checkpoint factor Bub2p was depleted from Cdc5p (83), suggesting that Orf19.3714p might 

influence a mitotic checkpoint function.  

 

In order to determine whether this effect was specific to Cdc5p depletion and/or mitotic 

arrest, strains were diluted into YEPD supplemented with 200 mM HU and incubated at 30C for 

7 h, conditions which block the cell cycle in S phase and also induce filament formation in C. 

albicans (83).  Filaments appeared similar in all strains (Fig. 4.16D), indicating that Orf19.3714p 

is not required for polarized growth in response to an S phase arrest. Intriguingly, absence of 

Bub2p also did not influence HU-induced polarized growth (83).  Thus, Orf19.3714p is important 

for maintaining polarized growth in response to Cdc5p depletion, and this may be related to a 

role in influencing the mitotic checkpoint.   
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Figure 4.15: Orf19.3714p is not required for hyphal development under a variety of 

hyphae-inducing conditions.  (A) Overnight cultures of strains BH420 (URA3+ HIS1+ ARG4+), 

AG721, 722 (orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ORF19.3714-ARG4), and AG727, 

728 (orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ARG4) in YEPD medium were diluted to an 

O.D600nm of 0.005 in sterile water, 1.5 l was combined with 3.5  l of water, and the 5 l volume 

was plated on 10% serum, Spider, or SLAD plates and incubated at 37°C for 5 days.  (B) 

Overnight cultures of strains from (A) were diluted to an O.D600nm of 0.2 in either pre-warmed 

YEPD supplemented with 10% fetal bovine serum and incubated at 37°C for 2 h.  Cells were 

fixed in 70% ethanol and processed for microscopy.  Bars: 10 m. 
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Figure 4.16: Orf19.3714p is required for maintaining filamentous growth in mitotic-

arrested cells depleted of Cdc5p, but not S-phase arrested cells treated with hydroxyurea.  

(A, B, C) Overnight cultures of strains AG553 (cdc5Δ::hisG/MET3::CDC5-ARG4, URA3+ 

HIS1+) and AG700 (cdc5Δ::hisG/MET3::CDC5-ARG4, orf19.3714Δ::URA3/orf19.3714Δ::HIS1) 

were diluted into either  +MC or –MC medium and incubated for 4 h or 8 h at 30°C.  Cells were 

collected at indicated time points, fixed in 70% ethanol and (B) stained with DAPI.  (C) Strains 

AG553 and AG700 from (A) at 6 h in +MC.  Arrows indicate daughter cells budding from the 

mother cell.  (D) Strains BH420 (ORF19.3714/ORF19.3714, URA3+ HIS1+ ARG4+), AG722 

(orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ORF19.3714-ARG4), and AG728 

(orf19.3714Δ::URA3/orf19.3714Δ::HIS1 + pBS-ARG4) were incubated in YEPD medium 

supplemented with 200 mM hydroxyurea (HU) for 7 h at 30°C.  Cells were fixed in 70% ethanol 

and processed for microscopy.  Bars: 10 m  
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4.3.6 Identification of Orf19.3714p-interacting factors through affinity purification and 

mass spectrometry reveals spliceosome complex proteins 

In order to gain more information on the function of Orf19.3714p, we identified its 

interacting proteins using two-step affinity purification followed by mass spectrometry with 

strains AG707 (orf19.3714::URA3/ ORF19.3714-TAP-ARG4) and control strain BH415 (URA3+ 

ARG4+).  The most abundant co-purifying peptides corresponded to Cdc5p, providing additional 

support for an interaction between the two proteins (Table 4.8).  Gene Ontology (GO) Term 

analysis (http://www.candidagenome.org/) of the 44 co-purifying peptides (Table 4.9) 

demonstrated that they were significantly enriched in functions associated with RNA splicing and 

ribonucleoprotein complex assembly and subunit organization.  Specific factors included 

Orf19.3098p, a homologue of the RNA-dependent ATPase RNA helicase Brr2p that is required 

for spliceosome activation via disrupting U4/U6 base-pairing in native snRNPs (121, 122), Orf19. 

6740p, a homologue of Prp19p that is also involved in activation of the spliceosome (123, 124), 

and other splicing-associated and RNA helicase factors such as Prp8p, and Ded1p, for example.  

Additional peptides corresponded to ribosomal-associated proteins, a putative karyopherin  that 

is involved in nuclear import of ribosomal and histone proteins (Orf19. 2489) and Hsp70p, all of 

which also co-purified with Cdc5p (Tables 4.4, 4.5).  Intriguingly, the hyphal regulator Efg1p, 

the Mitogen-Activated Protein Kinase (MAPK) Pbs2p, and several uncharacterized factors were 

also present (Table 4.8).    

 

 The fact that Orf19.3714p bound many spliceosome factors suggests that it may be a 

component or regulator of this complex.  The spliceosome is a large ribonucleoprotein (RNP) 

complex required for splicing introns from precursor mRNA (125). The most common type 

consists of U1, U2, U4/U6, and U5 small nuclear RNPs (snRNPs) and more than 100 non-snRNP 

proteins.  The spliceosome is well conserved but its composition and function have not been 

extensively investigated in C. albicans.  In order to construct a preliminary framework, the C. 

albicans genome was screened for homologues of spliceosome and associated proteins in S. 

cerevisiae (Table S4.1).  Homologues for most factors were identified, except for two NineTeen 

Complex (NTC) proteins, including SNT309 and NTC20, as well as the U1 snRNP protein 

Snu56p, the Retention and Splicing (RES) complex protein Pml1p, the disassembly protein Ntr2p, 

the U2 snRNP protein Ysf3p and the U4/U6.U5 snRNP protein Spp381p.  Thus, C. albicans 

http://www.candidagenome.org/
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shows strong conservation in the spliceosome composition, including homologues of core 

complex factors, although a few differences exist.  

 

To test whether the presence of Cdc5p impacted the putative protein interactions of 

Orf19.3714p, we repeated the affinity purification under conditions of Cdc5p depletion.  Cultures 

of strains AG713 (cdc5::hisG/MET3::CDC5::ARG4,  orf19.3714::URA3/ORF19.3714-TAP-

HIS1) and the control strain BH420 (URA3+ HIS1+, ARG4+) were diluted into +MC medium 

for 4 h to deplete Cdc5p, and processed for affinity purification followed by mass spectrometry 

analysis.  While some factors were still present, including proteins associated with the ribosome 

(ORF19.3504, ORF19.7217), the nuclear pore complex (ORF19.4683, ORF19.4627), Hsp70p, 

and an uncharacterized protein, Orf19.928p, the majority of factors previously identified were 

absent (Table 4.10).  Thus, the association between Orf19.3714p and proteins involved in the 

spliceosome may be Cdc5p dependent, although we cannot rule out that this is due to a mitotic 

block.  The results suggest for the first time that a Plk function may extend to RNA splicing, in 

part through interacting with the novel protein Orf19.3714p in C. albicans.  
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Table 4.8: Orbitrap LC/MS analysis of putative Orf19.3714p-interacting proteins in 

exponentially growing cells
1 

 

Protein ID Gene name
4
 Present Number  Protein description

4
 

    

 in  

control
2
 

of  

peptides
3
   

CAL0001101 ORF19.3714 No 53 Uncharacterized 

CAL0005042 CDC5/ORF19.6010 No 28 Polo-like kinase; member of  

    

conserved Mcm1 regulon,  

    

 depletion causes defects in  

spindle elongation and Cdc35- 

-dependent filamentation 

CAL0001532 ORF19.3098 No 20 Uncharacteized, Predicted RNA  

    

-dependent ATPase RNA helicase 

CAL0004852 ORF19.6740 No 17 Uncharacterized, Ortholog(s)  

    

have ubiquitin-protein ligase  

    

activity and role in generation of  

catalytic spliceosome for 

first transesterification step 

    

fractions, at hyphal surface,  

not yeast cells 

CAL0003115 SNU114/ORF19.144 No 14 Uncharacterized, Protein similar  

    

to S. cerevisiae Snu114p, which  

    

is an RNA helicase involved in  

pre-mRNA splicing; likely to be  

essential for growth 

CAL0001639 ORF19.2489 No 12 Uncharacterized, Putative  

CAL0004832 DED1/ORF19.7392 No 11 

karyopherin beta 

Uncharacterized, Predicted ATP- 

    

 dependent RNA helicase; 

RNA strand annealing activity 

CAL0002209 PRP8/ORF19.6442 No 10 Uncharacterized, Protein similar  

    

 to S. cerevisiae Prp8, 

a component of the snRNP  

CAL0001259 RPS3/ORF19.6312 No 8 

complex 

Uncharacterized, Ribosomal  

CAL0005977 CDC19/ORF19.3575 No 8 

protein, Hog1 induced 

Pyruvate kinase at yeast cell  

CAL0004402 PMA1/ORF19.5383 No 7 

surface; hyphal growth role 

Plasma membrane protein 

CAL0001392 ORF19.3037 No 7 Uncharacterized, Putative  

CAL0004426 ORF19.5391 No 7 

poly(A)-binding protein 

Uncharacterized, Predicted  

    

RNA splicing and ER to 
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CAL0004009 VMA2/ORF19.6634 No 6 

Golgi transport protein 

Vacuolar protein 

CAL0005101 TUB2/ORF19.6034 No 6 Beta-tubulin 

CAL0001367 SSB1/ORF19.6367 No 5 Hsp70 family heat shock protein 

CAL0001348 ARX1/ORF19.3015 No 5 Uncharacterized, Putative  

    

ribosomal large subunit 

CAL0004351 HGT6/ORF19.2020 No 5 

biogenesis protein 

Glucose transporter, stress  

CAL0000146 TFP1/ORF19.1680 No 5 

response 

Uncharacterized, Subunit of  

CAL0006304 RPL3/ORF19.1601 No 4 

vacuolar H+-ATPase 

Ribosomal protein, large subunit 

CAL0000561 ORF19.6271 No 4 Uncharacterized, Ortholog(s)  

    

 have role in mRNA splicing, 

CAL0000906 EFG1/ORF19.610 No 3 

via spliceosome and nucleus 

Required for hyphal growth,  

    

cell-wall gene regulation; 

CAL0002245 RNR21/ORF19.5801 No 3 

roles in adhesion, virulence 

Uncharacterized, Ribonucleo- 

CAL0006335 ILV2/ORF19.1613 No 3 

sidediphosphate reductase 

Putative acetolactate synthase,  

    

induced by amino 

CAL0003655 PET9/ORF19.930 No 3 

acid starvation 

Mitochondrial ADP/ATP carrier  

    

protein involved in ATP 

CAL0001161 GPD2/ORF19.691 No 3 

biosynthesis 

Surface protein, core stress  

CAL0000928 CWC22/ORF19.1771 No 3 

response, oxidative stress 

Spliceosome-associated protein 

CAL0003731 ORF19.4659 No 3 Ortholog(s) have RNA binding  

    

 activity, role in mRNA 

CAL0006116 ORF19.5525 No 3 

splicing, via spliceosome 

Putative oxidoreductase 

CAL0000006 HSP70/ORF19.4980 No 2 Putataive hsp70 chaperone; 

    

role in entry into host cells; 

CAL0006022 RPT6/ORF19.3593 No 2 

heat-shock 

Putative ATPase of the 19S  

    

regulatory particle of the  

CAL0006026 TIF4631/ORF19.3599 No 2 

26S proteasome 

Uncharacterized, Putative  

CAL0004814 PBS2/ORF19.7388 No 2 

translation initiation factor 

MAPK kinase; role in osmotic  

    

and oxidative stress 

CAL0003677 PDB1/ORF19.5294 No 2 

responses Hog1 stress 

Uncharacterized, Putative pyru-  
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CAL0005454 OAC1/ORF19.7411 No 2 

vate dehydrogenase 

Uncharacterized, Putative  

    

mitochondrial inner 

CAL0005689 RPT1/ORF19.441 No 2 

membrane transporter 

Uncharacterized, Putative 26S  

CAL0001034 SAM2/ORF19.657 No 2 

proteasome regulatory subunit 

S-adenosylmethionine synthetase;  

    

localizes to surface of  

hyphae not yeast cells,   

CAL0000250 GUT1/ORF19.558 No 2 

Hog1-induced 

Uncharacterized, Putative  

CAL0003304 ORF19.6583 No 2 

glycerol kinase 

Uncharacterized 

CAL0001665 ORF19.5040 No 2 Uncharacterized, Ortholog(s)  

    

have nucleocytoplasmic  

CAL0004080 ORF19.6660 No 2 

transporter activity 

Uncharacterized 

CAL0001339 ORF19.6354 No 2 Uncharacterized 

CAL0003634 ORF19.928 No 2 Uncharacterized 
 

1
Approximately 159 mg protein extracts from 2 L cultures of AG707 (orf19.3714::URA3/ORF19.3714-TAP-ARG4) 

and BH415 (URA3+ ARG4+) strains were subjected to tandem affinity purification (Rigaut et al. 1999, Lui et al., 

2010). Elutions were TCA-precipitated and run just into the resolving portion of an SDS PAGE gel (Lui et al., 2010). 

The compressed bands were stained with Coomassie blue, cut from the gel, and analyzed using an LTQ-

OrbitrapElite with nano-ESI.  
2
Peptides identified in both the tagged and the untagged control strains were excluded from the results.  

3
Peptides at a frequency of 1 were excluded from the results. 

4
Gene names and descriptions were obtained from the Candida Genome Database (http://www.candidagenome.org/). 

http://www.candidagenome.org/
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Table 4.9: Enriched functional categories of proteins that interact with Orf19.3714p
1
  

Gene Ontology 

term 

Cluster 

Freq
2
 

Backgd 

Freq
3
 

Corrected 

P-value 

FD rate 

(%) 
Genes 

      mRNA splicing 

via spliceosome 

8/44 

(18.2%) 

100/6517 

(1.5%) 

0.00011 0 CWC22, PRP8, SNU114, 

ORF19.3098, ORF19.4659, 

     ORF19.5319, ORF19.6271, 

ORF19.6740 

 

RNA splicing, 

via transesteri- 

fication reac- 

tions with 

8/44 

(18.2%) 

101/6517 

(1.5%) 

0.00012 0 SNU114, CWC22, PRP8, 

ORF19.3098, ORF19.4659, 

ORF19.6271, ORF19.6740, 

ORF19.5391 

bulged 

adenosine as 

nucleophile 

 

     

RNA splicing, 

via transesteri- 

fication 

reactions 

8/44 

(18.2%) 

105/6517 

(1.6%) 

0.00017 0 SNU114, CWC22, PRP8, 

ORF19.3098, ORF19.4659, 

ORF19.5391, ORF19.6271, 

ORF19.6740 

      

RNA splicing 8/44 

(18.2%) 

115/6517 

(1.8%) 

0.00034 0 SNU114, CWC22, PRP8, 

ORF19.3098, ORF19.4659, 

     ORF19.5391, ORF19.6271, 

ORF19.6740 

 

Organic 

substance 

metabolic 

process 

34/44 

(77.3%) 

2892/6517 

(44.4%) 

0.00381 0 SSA2, SNU114, RPL3, ILV2, 

TFP1, CWC22, ORF19.3098, 

CDC19, RPT6, TIF4631, RPT1, 

SSB1, HSP70, PDB1, PMA1,  

PBS2, DED1, PET9, GPD2, 

GUT1, RNR21, CDC5, TUB2, 

orf19.6271, RPS3, PRP8, SAM2, 

VMA2, 

     ORF19.6740, ORF19.5040 

     ORF19.3037, ORF19.5525, 

ORF19.5391, ORF19.4659 

      

Ribonucleoprote

in complex 

assembly 

7/44 

(15.9%) 

117/6517 

(1.8%) 

0.00497      0 SNU114, RPL3, PRP8, TIF4631, 

ORF19.3098 ORF19.5391, 

ORF19.6740 
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mRNA 

processing 

8/44 

(18.2%) 

166/6517 

(2.5%) 

0.00544       0 ORF19.6271, ORF19.4659 

SNU114, CWC22, PRP8, 

ORF19.3098, ORF19.6740, 

     ORF19.5391,  

 

Spliceosomal 

conformational 

changes to  

 

4/44 

(9.1%) 

 

23/6517 

(0.4%) 

 

0.00653 

 

0 

 

SNU114, PRP8, ORF19.3098, 

ORF19.6740 

generate 

catalytic 

conformation 

     

 

Ribonucleoprote

in complex 

subunit 

 

7/44 

(15.9%) 

 

123/6517 

(1.9%) 

 

0.00691 

 

0 

 

SNU114, RPL3, ORF19.3098, 

TIF4631, ORF19.5391, PRP8, 

ORF19.6740 

organization      

 

Macromolecular 

complex subunit 

organization 

 

13/44 

(29.5%) 

 

540/6517 

(8.3%) 

 

0.01581 

 

0 

 

SNU114, RPL3, ORF19.3098, 

RPT6, TIF4631,RPT1, 

ORF19.5040, ORF19.5391, 

CDC5, TUB2, PRP8, 

ORF19.6740, PBS2 

      

      

Primary 

metabolic 

process 

32/44 

(72.7%) 

2758/6517 

(42.3%) 

0.01828 0 SSA2, SNU114, RPL3, ILV2, 

TFP1, CWC22. ORF19.3098, 

CDC19, RPT6, TIF4631, 

     RPT1, ORF19.4659, PET9 

     HSP70, PDB1, PMA1, 

ORF19.5391, ORF19.5525, 

     GUT1, RNR21, CDC5, TUB2, 

ORF19.6271, RPS3, DED1, 

     SSB1, PRP8, SAM2, VMA2, 

ORF19.6740, GPD2, PBS2 

      

Nucleocytoplas-

mic transport 

7/44 

(15.9%) 

145/6517 

(2.2%) 

0.02011 0.17 ORF19.2489, ARX1, 

ORF19.3037, ORF19.5040, 

     RPS3, SSB1, PBS2 

 

 

Nuclear 

transport 

 

7/44 

(15.9%) 

 

146/6517 

(2.2%) 

 

0.02102 

 

0.15 

 

ORF19.2489, ARX1, 

ORF19.3037, ORF19.5040, 

     RPS3, SSB1, PBS2 
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Macromolecular 

complex 

assembly 

11/44 

(25.0%) 

402/6517 

(6.2%) 

0.0231 0.14 SNU114, RPL3, ORF19.3098, 

RPT6, TIF4631, RPT1, 

ORF19.5391, CDC5, TUB2, 

 

Interaction with 

host 

 

5/44 

(11.4%) 

 

62/6517 

(1.0%) 

 

0.0242 

 

0.13 

 

SSA2, CDC19, HSP70, EFG1, 

SSB1 

      

Cellular 

macromolecular 

complex 

assembly 

10/44 

(22.7%) 

355/6517 

(5.4%) 

0.04163 0.12 SNU114, RPL3, ORF19.3098, 

RPT6, TIF4631, RPT1, 

ORF19.5391, TUB2, PRP8, 

ORF19.6740 

      

Cellular 

metabolic 

process 

32/44 

(72.7%) 

2856/6517 

(43.8%) 

0.04181 0.12 SSA2, SNU114, RPL3, ILV2, 

TFP1, CWC22, ORF19.6740, 

GPD2, PBS2, DED1, PET9  

     ORF19.3098, CDC19, RPT6, 

TIF4631, RPT1, SAM2, VMA2 

     ORF19.4659, HSP70, PDB1, 

PMA1, ORF19.5391, PRP8, 

     ORF19.5525, GUT1, RNR21, 

CDC5, TUB2, RPS3, SSB1 

     ORF19.6271  

      

Ribonucleoprote

in complex 

biogenesis 

10/44 

(22.7%) 

355/6517 

(5.4%) 

0.04262 0.11 SNU114, RPL3, ARX1, 

ORF19.3098, TIF4631,  

RPS3, SSB1, PRP8, 

ORF19.6740, ORF19.5391 

      

Metabolic 

process 

34/44 

(77.3%) 

3187/6517 

(48.9%) 

0.04771 0.11 SSA2, SNU114, RPL3, ILV2, 

TFP1, CWC22, ORF19.3037, 

     ORF19.3098, CDC19, RPT6, 

TIF4631, RPT1, ORF19.4659 

     HSP70, ORF19.5040, PDB1, 

PMA1, ORF19.5391, PET9, 

     , GUT1, RNR21, CDC5, TUB2, 

ORF19.6271, RPS3, GPD2, 

     SSB1, PRP8, SAM2, VMA2, 

ORF19.6740, PBS2, DED1 

     , ORF19.5525, 

 

mRNA 

metabolic 

process 

 

8/44 

(18.2%) 

 

225/6517 

(3.5%) 

 

0.0483 

 

0.1 

 

SNU114, CWC22, PRP8, 

ORF19.3098, ORF19.4659, 

ORF19.5391, ORF19.6271, 

     

 ORF19.6740 
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Positive 

regulation of 

response to 

stimulus 

6/44 

(13.6%) 

118/6517 

(1.8%) 

0.05593 0.1 CDC19, HSP70, CDC5, EFG1, 

SSB1, PBS2 

      

Response to host 

defenses 

4/44 

(9.1%) 

43/6517 

(0.7%) 

0.0825 0.09 CDC19, HSP70, EFG1, SSB1 

      

Nucleobase-

containing 

compound 

19/44 

(43.2%) 

1246/6517 

(0.7%) 

0.09272 0.25 SNU114, TFP1, CWC22, 

ORF19.3098, RPT6, SAM2, 

VMA2, ORF19.6740 

metabolic 

process 

    TIF4631, ORF19.4659, PMA1, 

ORF19.5391, ORF19.5525 

     , RNR21, CDC5, TUB2, 

ORF19.6271, SSB1, PRP8 

           

      
1
The 44 peptides identified in Table 9 were subjected to Gene Ontology (GO) term finder in CGD 

(http://www.candidagenome.org/) for all process function. 
2
The number of genes belonging to GO term out of the total number of genes subjected to the search engine.  

3
The numbers of genes belonging to C. albicans genome in that GO term out of the total number of genes in C. 

albicans genome.  

Freq= Frequency; Backgd= Background; FD= False discovery

http://www.candidagenome.org/
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Table 4.10: Orbitrap LC/MS analysis of putative Orf19.3714p-interacting proteins in cells 

blocked in mitosis
1 

 

Protein ID Gene name
4
 Presence Number  Protein description

4
 

    

 in 

control
2
 

of 

Peptides
3
   

CAL0001101 ORF19.3714 No 55 Uncharacterized 

CAL0005657 TDH3/ORF19.6814 No 10 NAD-linked glyceraldehyde-3- 

    

phosphate dehydrogenase 

CAL0005202 PDC11/ORF19.2877 No 9 Pyruvate decarboxylase; on 

    

 hyphal not yeast cell surface 

CAL0004558 TEF1/ORF19.1435 No 5 Translation elongation factor 

    

 1-alpha; at cell surface 

CAL0000006 HSP70/ORF19.4980 No 4 Putative hsp70 chaperone; role in 

    

 entry into host cells; heat-shock 

CAL0001571 ACT1/ORF19.5007 No 4 Actin; at polarized growth site in 

    

 budding and hyphal cells 

CAL0000516 GLT1/ORF19.6257 No 4 Putative glutamate synthase 

CAL0005977 CDC19/ORF19.3575 No 4 Pyruvate kinase at yeast cell  

    

surface, hyphal growth role 

CAL0001178 CIT1/ORF19.4393 No 2 Citrate synthase, Efg1-regulated 

    

 under yeast, not hyphal growth 

CAL0003522 PKH2/ORF19.5224 No 2 Putative serine/threonine  

CAL0005101 TUB2/ORF19.6034 No 2 

protein kinase  

Beta-tubulin; functional ScTub2 

CAL0005346 CDC46/ORF19.5487 No 2 

homolog 

Uncharacterized, Putative  

    

 hexameric MCM complex  

subunit 

CAL0003820 MLP1/ORF19.4683 No 2 Uncharacterized, Ortholog(s)  

    

have ribo-nucleoprotein  

complex binding activity 

CAL0005770 RPL23A/ORF19.3504 No 2 Uncharacterized, Ribosomal  

CAL0003773 RPL4B/ORF19.7217 No 2 

protein  

Ribosomal protein  

CAL0003646 ORF19.4627 No 2 

Uncharacterized, Ortholog(s)  

have structural constituent of  

    

nuclear pore activity 

CAL0006178 ORF19.5552 No 2 Uncharacterized, Putative  

    

transcriptional regulator of  

CAL0003634 ORF19.928 No 2 

reductase genes ribonucleotide  

Uncharacterized 
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1
Approximately 99 mg protein extracts from 2 L cultures of AG713 (cdc5::hisG/MET3::CDC5-ARG4, 

orf19.3714::URA3/ORF19.3714-TAP-HIS1) and BH420 (URA3+, HIS1+, ARG4+) strains were subjected to tandem 

affinity purification (Rigaut et al. 1999, Lui et al., 2010). Elutions were TCA-precipitated and run just into the 

resolving portion of an SDS PAGE gel (Lui et al., 2010). The compressed bands were stained with Coomasie blue, 

cut from the gel, and analysed using an LTQ-OrbitrapElite with nano-ESI.  
2
Peptides identified in both the tagged and the untagged control strains were excluded from the results.  

3
Peptides at a frequency of 1 were excluded from the results.  

4
Gene names and descriptions were obtained from the Candida Genome Database (http://www.candidagenome.org/). 

 
 

 

 

http://www.candidagenome.org/
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4.4 DISCUSSION 

Depletion of the Plk Cdc5p in C. albicans yeast cells impairs spindle elongation, resulting 

in a block in mitosis followed by initiation and maintenance of polarized growth from the yeast 

bud and induction of hyphal-specific virulence genes (9).   Although Plks are conserved and have 

multiple cell cycle functions, not all substrates have been identified, and some species-specificity 

in function and sequence is emerging (10, 126, 127).  In order to determine the mechanisms of 

action of Cdc5p in mitosis and morphogenesis in C. albicans, we identified its interacting 

proteins using affinity purification followed by mass spectrometry.  Our work reveals a new 

interacting protein of the Plk family that is Candida-specific, and provides the first evidence for a 

possible link between Plk function and spliceosome activity.  

 

4.4.1 Orf19.3714p is a novel interacting protein of Cdc5p 

 Plks have many functions and, accordingly, many interacting factors (33, 58, 128).  In S. 

cerevisiae, a variety of approaches revealed 103 proteins that physically bind Cdc5p (30, 87, 129-

132).  Although not many binding partners were identified in a given single screen (104), 41 

Cdc5p-interacting proteins were identified in cells blocked in meiosis, including the kinase 

Cdc7p, its regulatory unit Dbf4p, various cohesins, APC/C, and 26S proteasomes subunits (105).  

Although few proteins co-purified with Cdc5p from C. albicans, even in cells blocked in mitosis, 

Orf19.3714p was one of the most highly abundant factor.  An interaction with Cdc5p was 

confirmed by co-immunoprecipitation and through affinity purification of Orf19.3714p.  

Orf19.3714p may be a substrate of Cdc5p due to the fact that it contains several consensus PBD 

and Plk phosphorylation sites (15, 17, 108), and was required in part to maintain the Cdc5p-

depleted phenotype.  However, Plks can bind proteins via non-canonical sequences, and 

phosphorylation of substrates is not always required for an interaction (133).  It remains to be 

seen whether Cdc5p phosphorylates Orf19.3714p.  Co-precipitation of other factors with Cdc5p, 

including Cdc7p and Dbf4p, validates the experimental approach since these proteins bind Cdc5p 

in S. cerevisiae (134, 135).  In addition to regulating DNA replication initiation, Cdc7p/Dbf4p 

repress Cdc5p to prevent premature activation of key substrates in the MEN (18).  The functions 

of Cdc7p and Dbf4p are not fully characterized in C. albicans, but Dbf4p was reported to 

suppress hyphal growth (136), and absence of CDC7 or DBF4 resulted in filamentation (137).  It 

remains unclear if the interaction between Cdc5p and Cdc7/Dbf4p in C. albicans reflects a 
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functional relationship similar to the situation in S. cerevisiae. 

   

The only sequence homologues of Orf19.3714p exist in other Candida species.  A notable 

exception is C. glabrata, which is in the clade of S. cerevisiae (138, 139).  Since it is one of the 

most abundant binding partners of Cdc5p, and C. albicans contains divergent, functional 

homologues of some cell cycle factors, including the SIC1 homologue, SOL1 (140, 141), 

Orf19.3714p may be a divergent form of a known protein that binds Cdc5p in S. cerevisiae.  C. 

albicans has sequence homologues to all Cdc5p-binding proteins in S. cerevisiae, except NDD1, 

a regulator of transcription at the G2/M transition (45), PRM3, a regulator of nuclear envelope 

fusion during karyogamy (142), and YDL186W, a protein of unknown function (Table S4.2).  

However, unlike Orf19.3714p, none of these proteins interact with spliceosome factors.  Thus, 

we conclude that Orf19.3714p represents a novel interacting protein within the Plk family.  

 

4.4.2 Orf19.3714p may be important for mitosis and mitotic checkpoints 

 Since Orf19.3714p does not share sequence homology with any characterized protein, and 

its absence did not affect yeast or hyphal growth, the function of this protein is elusive.  However, 

it may be important for or during mitosis based on several lines of evidence.  First, Orf19.3741p 

binds Cdc5p, an important mitotic regulator.  Second, Orf19.3714p is hyperphosphorylated when 

mitosis is arrested through depletion of Cdc5p or Cdc20p.  Third, Orf19.3714p abundance is 

modulated during a block in mitosis, where it is enriched in the absence of Cdc5p but reduced 

when Cdc20p is depleted, suggesting regulation at the level of protein stability.  Fourth, absence 

of Orf19.3714p in Cdc5p-depleted cells resulted in re-budding of the mother yeast cell, a 

characteristic of cells escaping from a mitotic block (83, 143, 144).  Similar results were 

observed in Cdc5p-depleted cells lacking a homologue of the spindle checkpoint factor BUB2 

(83).  In contrast, absence of Orf19.3714p had no effect on cells that were blocked in S phase 

with HU.  This suggests that Orf19.3714p may influence mitotic checkpoints.  In S. cerevisiae, 

the spindle checkpoint pathway consists of MPS1, BUB1, BUB3, MAD1, MAD2, and MAD3 

(145).  It responds to defects in spindle microtubule attachment to kinetochores, which in turn 

inhibit activity of APC/C-Cdc20 and the metaphase-anaphase transition (146).  The spindle 

position checkpoint consists of BFA1-BUB2, CDC5, and KIN4, and is activated when the mitotic 

spindle fails to align along the mother-daughter axis (147).  S. cerevisiae cells treated with 
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nocodazole show re-budding if BUB2 is absent, due to precocious activation of mitotic exit (148).  

The mitotic checkpoint pathways are not well defined in C. albicans (82, 83) but homologues of 

all components exist except for MAD3, which is a paralog of BUB1 that arose due to genome 

duplication in S. cerevisiae (149).  Intriguingly, MAD2 and another checkpoint factor in C. 

albicans, SWE1, are not essential for yeast or hyphal growth in vitro, similar to ORF19.3714, but 

are important for growth in vivo as strains lacking either of these genes are avirulent in mouse 

models of infection (82, 91).  This suggests that checkpoint factors, and checkpoint-associated 

polarized growth demonstrated by C. albicans cells upon mitotic arrest, are important for growth 

and virulence in the host (9, 75, 88, 150).  Thus, Orf19.3714p may be important for mitosis, 

possibly through influencing the mitotic checkpoints.  It will be important to test whether 

Orf19.3714p is required for growth and virulence in vivo.  

 

4.4.3 Orf19.3714p may be associated with the spliceosome and potentially link Plk function 

to spliceosome activity 

The main interacting factors of Orf19.3714p included several spliceosome-associated 

proteins, suggesting that Orf19.3714p is a component or regulator of this complex.  The 

spliceosome is a large RNP complex that is required for splicing introns from precursor mRNA 

(125).  The most common type that processes U2-type introns consists of U1, U2, U4/U6, and U5 

small nuclear RNPs (snRNPs) and over 100 non-snRNP proteins.  The composition and structure 

of the spliceosome is dynamic, and several RNA helicases are involved in its assembly and 

disassembly (151).  After Cdc5p, the most enriched co-purifying proteins of Orf19.3714p 

included Orf19.3098p, a homologue of the RNA-dependent ATPase RNA helicase Brr2p that is 

required for spliceosome activation via disrupting U4/U6 base-pairing in native snRNPs (121, 

122), Orf19.6740p, a homologue of Prp19p that is in turn a component of the NTC required for 

activation of the spliceosome (123, 124), Snu114p, a GTPase that activates Brr1p (152), and 

other splicing-associated and RNA helicase factors such as Prp8p, for example.  The spliceosome 

composition has not been systematically investigated in C. albicans, except for the snRNAs U1, 

U2, U4, U5 and U6, and only 6% of the C. albicans genome contains introns (153, 154).  A 

comparison of the C. albicans genome with that of S. cerevisiae revealed homologues of most 

spliceosome proteins (Table S4.1), except for two NTC complex factors, including SNT309 and 

NTC20, as well as the U1 snRNP protein Snu56p, the RES complex protein Pml1p, and the 
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disassembly protein Ntr2p.  Thus, Orf19.3714p may be a novel component or regulator of the 

spliceosome, although we cannot rule out the possibility that it is a divergent form of a known 

spliceosome component.  Intriguingly, when Orf19.3714p was purified from cells lacking Cdc5p, 

most spliceosome factors did not co-purify.  This suggests that Cdc5p may influence the 

interaction between Orf19.3714p and the spliceosomal components, although this may 

alternatively be due to a block in mitosis.  Identification of Orf19.3714p-interacting factors from 

Cdc20p-depleted cells may help clarify this issue.  

 

Based on the data, we propose a model whereby Orf19.3714p is a spliceosome-associated 

protein regulated in part by Cdc5p that influences efficient splicing of factors that include 

regulators of the mitotic checkpoints and/or mitotic exit.  In agreement with this, depletion of 

various spliceosome proteins in other organisms can influence mitotic progression through 

deregulating splicing of messages encoding for spindle, kinetochore and M phase proteins, for 

example (155, 156).  Intriguingly, HeLa cells treated with taxol can escape mitotic arrest when 

specific spliceosome components are down-regulated, and absence of the individual factors 

without taxol treatment results in cell cycle delays (157).  Importantly, absence of spliceosome 

factors can differentially affect splicing of transcripts (158-160).  The few C. albicans genes 

containing introns fall within the functional categories of microtubules, ribosomes, meiosis, 

splicing, mitochondrial respiration and protein degradation (154, 161).  Notably, specific genes 

include factors that influence mitotic progression, including TUB1,2 and 4, CDC14, TEM1, 

FKH2, CDC28 and PHO85, for example (154).  However, we can not rule out a splicing-

independent role for Orf19.3714p, as has been demonstrated for other splicing components 

including the NTC/Prp19p complex (162), nor the possibility that Orf19.3714p is itself a mitotic 

regulator that in turn binds and regulates the spliceosome, as demonstrated for Bub3p in 

fibroblast cells (163).   It is not clear if Orf19.3714p function is required prior to or during 

mitosis.  Although transcription and splicing are generally down-regulated during mitosis, 

transcription can still occur as seen with RNA polymerase II-dependent transcription of 

centromere satellite transcripts that help regulate the mitotic kinetochore (164).  However, the 

post-translational modifications of Orf19.3714p during a mitotic block suggest regulation during 

this stage that may be either positive or negative.  One possibility is that phosphorylation 

normally occurs before or during mitosis to influence activity and/or stability via targeted 
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degradation.  This may be carried out in part by Cdc5p but also other kinases such as CDK, due 

to the presence of 1 perfect (S/T-P-X-R/K) and 15 partial (S/T-P) consensus CDK sites (data not 

shown), several consensus PLK phosphorylation sites, and the fact that Orf19.3714p was hyper-

phosphorylated in the absence of Cdc5p or Cdc20p.  If Cdc5p is required for the activation of the 

APC/C, similar to the situation in S. cerevisiae (165), this could explain the enrichment of 

Orf19.3714p in cells lacking Cdc5p.  Alternatively, the decrease in abundance of Orf19.3714p 

when Cdc20p is depleted may be due to an active APC/C under control of other factors such as 

Cdh1p.  Indeed, Cdh1p is active, albeit at a reduced level, during metaphase even in the absence 

of Cdc20p in S. cerevisiae (148, 166).  It will be informative to determine the levels and 

phosphorylation of Orf19.3714p during a normal cell cycle, and identify the associated regulatory 

mechanisms.  

 

Although numerous kinases are involved in regulating core spliceosome components and 

accessory proteins, often to repress their activity for mitosis (167), our data suggest for the first 

time that a Plk may be linked to the spliceosome.  Intriguingly, transcription profiles of cells 

depleted of Cdc5p show modulation of several spliceosome components (88).  Future 

experiments involving RNA sequencing on strains with or without ORF19.3714 as well as CDC5 

will provide important insights on this model.   

 

In summary, our results extend the current repertoire of putative substrates and functions 

of Plks, which comprise an important and conserved family of cell cycle regulators.  The fact that 

Orf19.3714p is a novel, fungal-specific protein has critical implications for the development of 

new therapeutic strategies and controlling growth of the organism, particularly if it is found to be 

essential for growth in vivo like many other factors that influence cell cycle checkpoints in C. 

albicans.  Our work also opens the doors for investigations of the spliceosome, its link to Plk 

function, and post-transcriptional regulation of processes affecting growth in C. albicans, which 

remain poorly explored areas.  
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4.7 SUPPLEMENTARY DATA 

Table S4.1: Spliceosomal proteins in S. cerevisiae and orthologs in C. albicans
1 

S. cerevisiae                            C. albicans 

Systemic name Standard name Assembly Identifier Systemic name 

Sm proteins 

 

  

 YER029C SMB1 ORF19.2621 Uncharacterized 

YGR074W SMD1 ORF19.7673 Uncharacterized (SMD1) 

YLR275W SMD2 ORF19.5486.1 SMD2 

YLR147C SMD3 ORF19.4146 SMD3 

YOR159C SME1 ORF19.4205.1 SME1 

YPR182W SMX3 ORF19.4340 Uncharacterized 

YFL017W-A SMX2 ORF19.836.1 Uncharacterized 

 

U1 snRNP proteins 

 

  

 YML046W PRP39 OR19.1492 PRP39 

YGR013W SNU71 OR19.1491 Uncharacterized (SNU71) 

YKL012W PRP40 OR19.3250 Uncharacterized (PRP40) 

YDR235W PRP42 OR19.4374 PRP42 

YHR086W NAM8 OR19.1876 Uncharacterized (NAM8) 

YDR240C SNU56 NO HIT 

 YIL061C SNP1 OR19.6866 Uncharacterized (U1-70K) 

YBR119W MUD1 OR19.7375 Uncharacterized (USA1) 

YDL087C LUC7 OR19.3116 EXM2 (LUC7) 

YLR298C YHC1 OR19.5492 Uncharacterized (YHC1) 

 

U2 snRNP proteins 

 

  

 YML049C RSE1 ORF19.5391 Uncharacterized (SAP130) 

YMR288W HSH155 ORF19.2675 Uncharacterized (HSH155) 

YDL030W PRP9 ORF19.3178 Uncharacterized (PRP9) 

YMR240C CUS1 ORF19.7581 Uncharacterized (CUS1) 

YJL203W PRP21 ORF19.4659 Uncharacterized (SAP114) 

YDL043C PRP11 ORF19.4724 Uncharacterized (SAP62) 

YPL213W LEA1 ORF19.1260 LEA1 

YOR319W HSH49 ORF19.2261 

Uncharacterized (SAP49, 

HSH49) 

YIR009W MSL1 ORF19.4748 Uncharacterized (MSL1) 

YPR094W RDS3 ORF19.2230 Uncharacterized 

YNL138W-A YSF3 NO HIT 
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U5 snRNP proteins 

 

  

 YHR165C PRP8 ORF19.6442 PRP8 

YER172C BRR2 ORF19.3098 Uncharacterized (BRR2) 

YKL173W SNU114 ORF19.144 SNU114 

YBR055C PRP6 ORF19.6356 Uncharacterized (PRP6) 

YDR243C PRP28 ORF19.672 Uncharacterized (PRP28) 

YHR156C LIN1 ORF19.2368 Uncharacterized (LIN1) 

YPR082C DIB1 ORF19.1975 Uncharacterized (DIB1) 

 

U4/U6 snRNP proteins   

 YGR091W PRP31 ORF19.1296 Uncharacterized (PRP31) 

YDR473C PRP3 ORF19.910 PRP3 

YPR178W PRP4 ORF19.7343 Uncharacterized (PRP4) 

YEL026W SNU13 ORF19.5885 Uncharacterized (SNU13) 

 

U4/U6.U5 snRNP proteins   

 YOR308C SNU66 ORF19.4326 Uncharacterized (SNU66) 

YFR005C SAD1 ORF19.2608 ADH5 (SAD1) 

YBR152W SPP381 NO HIT 

 YGR075C PRP38 ORF19.2303 FGR16 (PRP38) 

YDL098C SNU23 ORF19.1548 SNU23 

 

Lsm proteins 
 

  

 YER112W LSM4 ORF19.6458.1 Uncharacterized  

YNL147W LSM7 ORF19.2639.1 Uncharacterized  

YJR022W LSM8 ORF19.4305.1 Uncharacterized  

YBL026W LSM2 ORF19.514 SNP3 

YER146W LSM5 ORF19.7256 Uncharacterized (LSM5) 

YLR438C-A LSM3 ORF19.6135.1 SMX4 

YDR378C LSM6 ORF19.7509.2 LSM6 

RES complex 
 

  

 YGL174W BUD13 ORF19.4964 Uncharacterized  

YLR016C PML1 NO HIT 

 YIR005W IST3 (SNU17) ORF19.1045 Uncharacterized (IST3) 

 

NTC/Prp19 complex 

 

  

 YDR416W SYF1 ORF19.2893 Uncharacterized (SYF1) 

YLR117C CLF1 ORF19.332 Uncharacterized (CLF1) 

YMR213W CEF1 ORF19.4799 CEF1 

YLL036C PRP19 ORF19.6740 Uncharacterized (PRP19) 

YJR050W ISY1 ORF19.6685 ISY1 

YGR129W SYF2 ORF19.7139 Uncharacterized  
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YPR101W SNT309 NO HIT 

 YBR188C NTC20 NO HIT 

  

NTC-Related Proteins   

 YPL151C PRP46 ORF19.5413 Uncharacterized (PRP46) 

YAL032C PRP45 ORF19.5513 PRP45 

YBR065C ECM2 ORF19.5364 Uncharacterized (ECM2) 

YDL209C CWC2 ORF19.674 Uncharacterized (CWC2) 

YDR163W CWC15 ORF19.6360 Uncharacterized (CWC15) 

YCR063W BUD31 ORF19.4855 BUD31 

 

Early Splicing Factors   

 YBR237W PRP5 ORF19.6831 PRP5 

YPR152C 

 

ORF19.5976 Uncharacterized  

 

Known Spilcing Factors   

 YNR011C PRP2 ORF19.5865 Uncharacterized (PRP2) 

YOR148C SPP2 ORF19.7620 Uncharacterized  

YKL095W YJU2 ORF19.5465 Uncharacterized (YJU2) 

YDR482C CWC21 ORF19.4875 Uncharacterized (CWC21) 

YGR278W CWC22 ORF19.1771 CWC22 

YLR323C CWC24 ORF19.2105 Uncharacterized (CWC24) 

YPL064C CWC27 ORF19.1735 Uncharacterized  

YGL128C CWC23 ORF19.3785 Uncharacterized  

YNL245C CWC25 ORF19.1281 Uncharacterized (CWC25) 

 

Step 2 Proteins 

 

  

 YDR364C CDC40 (PRP17) ORF19.6347 Uncharacterized (CDC40) 

YER013W PRP22 ORF19.4033 PRP22 

YKR086W PRP16 ORF19.2818 Uncharacterized (PRP16) 

YDR088C SLU7 ORF19.6827 SLU7 

YGR006W PRP18 ORF19.2112 Uncharacterized (PRP18) 

 

Disassembly proteins   

 YGL120C PRP43 ORF19.1687 Uncharacterized (PRP43) 

YLR424W SPP382 ORF19.2980 Uncharacterized (TIP39) 

YKR022C NTR2 NO HIT 

  

CBP Proteins 

 

  

 YMR125W STO1 ORf19.387 GCR3 

YPL178W CBC2 ORF19.763 Uncharacterized (CBC2) 
 

1
Systemic names of Spliceosomal proteins from Fabrizio et al., 2009 (168) in S. cerevisiae were plugged in SGD 

(http://www.yeastgenome.org/) to obtain the standard name, which was then plugged in CGD 

(http://www.candidagenome.org/) to obtain orthologos in C. albicans. Aliases are shown in brackets. 

http://www.yeastgenome.org/
http://www.candidagenome.org/
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Table S4.2: Cdc5p interacting proteins in S. cerevisiae and orthologs in C. albicans
1
. 

S. cerevisiae C. albicans 

Gene Systematic 

Name Gene Name 

Assembly 

identifier number Standard name 

YNL172W APC1 ORF19.6046 APC1 

YDL008W APC11 ORF19.7644 Uncharacterized (APC11) 

YLR127C APC2 ORF19.6821 Uncharacterized (APC2) 

YDR118W APC4 ORF19.5692 Uncharacterized  

YLR102C APC9 ORF19.5804 HYU1 

YPL255W BBP1 ORF19.6027 Uncharacterized  

YJR053W BFA1 ORF19.6080 BFA1 

YMR055C BUB2 ORF19.5827 BUB2 

YJR076C CDC11 ORF19.5691 CDC11 

YHR107C CDC12 ORF19.3013 CDC12 

YFR028C CDC14 ORF19.4192 CDC14 

YAR019C CDC15 ORF19.3545 CDC15 

YKL022C CDC16 ORF19.1792 Uncharacterized (CDC16) 

YFR036W CDC26 ORF19.5617 Uncharacterized  

YBL084C CDC27 ORF19.3231 CDC27 

YBR160W CDC28 ORF19.3856 CDC28 

YDL126C CDC48 ORF19.2340 CDC48 

YDL017W CDC7 ORF19.3561 CDC7 

YGL003C CDH1 ORF19.2084 CDH1 

YMR012W CLU1 ORF19.51 Uncharacterized (CLU1) 

YPR013C CMR3 ORF19.217 Uncharacterized  

YNL225C CNM67 ORF19.6213 SUI2 

YKL049C CSE4 ORF19.6163 CSE1 

YGR092W DBF2 ORF19.1223 DBF2 

YDR052C DBF4 ORF19.5166 DBF4 

YDR273W DON1 ORF19.448 CUE5  

YAL026C DRS2 ORF19.6778 Uncharacterized (DRS2) 

YGR098C ESP1 ORF19.3356 ESP1 

YNL068C FKH2 ORF19.5389 FKH2 

YBR045C GIP1 ORF19.3109 Uncharacterized  

YER133W GLC7 ORF19.6285 GLC7 

YEL017W GTT3 ORF19.3430 Uncharacterized (BUD21) 
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YDL223C HBT1 ORF19.4072 IFF6 

YMR032W HOF1 ORF19.5664 HOF1 

YJL057C IKS1 ORF19.428 Uncharacterized (IKS1) 

YJL106W IME2 ORF19.2395 IME2 

YJL051W IRC8 ORF19.1334 Uncharacterized  

YIL026C IRR1 ORF19.7232 IRR1 

YPR067W ISA2 ORF19.6811 ISA2 

YDR229W IVY1 ORF19.6152 Uncharacterized  

YLR347C KAP95 ORF19.3681 Uncharacterized (KAP95) 

YAL018C LDS1 ORF19.6405 Uncharacterized  

YDR439W LRS4 ORF19.5373  Uncharacterized (POL98, POL0) 

YHR121W LSM12 ORF19.3698 Uncharacterized 

YER106W MAM1 ORF19.7440 HST6 

YDL003W MCD1 ORF19.7634 MCD1 

YMR036C MIH1 ORF19.3071 MIH1 

YHR015W MIP6 ORF19.3037 Uncharacterized (PAB1) 

YBR098W MMS4 ORF19.3648 Uncharacterized 

YDL028C MPS1 ORF19.7293 MPS1 

YJL019W MPS3 ORF19.2763 Uncharacterized  

YDR386W MUS81 ORF19.4206 Uncharacterized (MUS81) 

YLR457C NBP1 ORF19.3387 Uncharacterized (POL90) 

YIL144W NDC80 ORF19.2827 Uncharacterized (TID3) 

YOR372C NDD1 NO HIT 

 YJL076W NET1 ORF19.267 Uncharacterized  

YNL175C NOP13 ORF19.6766 NOP13 

YDR432W NPL3 ORF19.7238 NPL3 

YOR373W NUD1 ORF19.6789 Uncharacterized (NUD1) 

YMR076C PDS5 ORF19.2216 PDS5 

YPL154C PEP4 ORF19.1891 APR1 (PEP4) 

YNL102W POL1 ORF19.5873 POL1 

YPL192C PRM3 NO HIT 

 YDL006W PTC1 ORF19.4785 PTC1 

YPL153C RAD53 ORF19.6936 RAD53 

YDR217C RAD9 ORF19.4275 RAD9 

YPR007C REC8 ORF19.776 Uncharacterized (SPO69) 

YPR115W RGC1 ORF19.3505 Uncharacterized 

YHR027C RPN1 ORF19.4956 RPN1 

YIL075C RPN2 ORF19.5260 RPN2 

YKL145W RPT1 ORF19.441 RPT1 

YDR394W RPT3 ORF19.5793 PR26 
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YOR259C RPT4 ORF19.482 RPT4 

YOR117W RPT5 ORF19.3123 RPT5 

YGL048C RPT6 ORF19.3593 RPT6 

YLR357W RSC2 ORF19.2964 Uncharacterized (RSC2) 

YGL175C SAE2 ORF19.4988 Uncharacterized  

YOR195W SLK19 ORF19.6763 SLK19 

YFL008W SMC1 ORF19.4367 SMC1 

YJL074C SMC3 ORF19.262 SMC3 

YDR477W SNF1 ORF19.1936 SNF1 

YGL115W SNF4 ORF19.5768 SNF4 

YDR356W SPC110 ORF19.2629 USO1 

YAL047C SPC72 ORF19.6583 Uncharacterized 

YHR172W SPC97 ORF19.708 Uncharacterized (SPC97) 

YHR014W SPO13 ORF19.3877 Uncharacterized  

YNL189W SRP1 ORF19.5682 Uncharacterized (SRP1) 

YNL209W SSB2 ORF19.6367 SSB1  

YHR184W SSP1 ORF19.3173 Uncharacterized (SSP120) 

YLR045C STU2 ORF19.6610 Uncharacterized (STU2) 

YBR231C SWC5 ORF19.5772 Uncharacterized (AOR1) 

YJL187C SWE1 ORF19.4867 SWE1 

YML064C TEM1 ORF19.3001 TEM1 

YML085C TUB1 ORF19.7308 TUB1 

YLR425W TUS1 ORF19.6842 TUS1 

YLL039C UBI4 ORF19.6771 UBI4 

YIL031W ULP2 ORF19.4353 ULP2 

YDL186W YDL186W NO HIT 

 YHR097C YHR097C ORF19.1658 Uncharacterized  

YPR058W YMC1 ORF19.4447 YMC1 

YOR192C-A YOR192C-A ORF19.2538 PTC2 

YPL150W YPL150W ORF19.4518 Uncharacterized  

YPR174C YPR174C ORF19.4713 Uncharacterized  
 

1
A list of 103 Cdc5p physical interactors were obtained from SGD (http://www.yeastgenome.org/).  Each 

gene name was plugged in CGD (http://www.candidagenome.org/) to obtain orthologs in C. albicans.  For 

genes, where no hit was obtained in CGD, protein sequence was retrieved from SGD and plugged in CGD 

Blast (http://www.candidagenome.org/cgi-bin/compute/blast_clade.pl).  Aliases are shown in brackets. 

 

 

 

http://www.yeastgenome.org/
http://www.candidagenome.org/
http://www.candidagenome.org/cgi-bin/compute/blast_clade.pl
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Ch. 5: Discussion 

Candida albicans is a leading human fungal pathogen that can cause systemic infections 

associated with high mortality rates (1).  In order to enhance the small repertoire of therapeutic 

treatments, there is a strong need to identify new drug targets.  This in turn requires 

comprehensive knowledge of the regulation of fungal cell proliferation in the host and virulence 

determinants.  My work aimed to further our understanding of the networks governing mitosis in 

C. albicans, with a focus on the roles of a conserved mitotic regulator, the Plk Cdc5p, as well as 

to elucidate how mitosis is linked to a novel form of polar growth and expression of virulence 

genes.  Previous work showed that depletion of Cdc5p in C. albicans yeast cells impaired spindle 

elongation and blocked mitosis, but cells subsequently formed filaments that expressed hyphal-

specific virulence genes under yeast growth conditions (2).  In contrast, cells of most other 

organisms cease growth and proliferation upon mitotic arrest.  The results in C. albicans 

demonstrated a novel link between mitosis and morphogenesis.  However, we knew very little 

about the regulation of these processes and the mechanisms of Cdc5p action in C. albicans.  

Further, the nature of the filaments that formed in response to a mitotic block and the 

mechanisms driving their formation and virulence gene expression were elusive.  My work 

addressed these questions and provided significant new insights on (a) the networks controlling 

mitotic progression in C. albicans; (b) the strategies that C. albicans can utilize to modulate 

growth mode and expression of virulence genes; and (c) the function and targets of Plks, 

including a fungal-specific factor. 

 

 

5.1 The APC/C cofactors Cdc20p and Cdh1p employ conserved and novel mechanisms of 

action during mitosis and morphogenesis in C. albicans, and may mediate in part Cdc5p 

function.  

The APC/C is a conserved regulator of mitosis that targets specific mitotic regulators for 

destruction (3) and is regulated in part by Plks (4).  Based on this, we hypothesized that the 

APC/C may be important for mitosis in C. albicans and may mediate, in part, Cdc5p function.  

Through investigating homologues of APC/C cofactors Cdc20p and Cdh1p, we provided the first 

characterization of APC/C function in C. albicans.  These factors showed some conservation in 
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function in targeting a mitotic cyclin for degradation, and in influencing the metaphase-to-

anaphase transition and mitotic exit.  However, the data suggested that these proteins also have 

novel functions or mechanisms of action.  First, C. albicans lacks a sequence homologue of a 

securin, a target of Cdc20p in organisms ranging from yeast to humans that prevents the enzyme 

separase from cleaving cohesion, which in turn adheres sister chromatids.  Cdc20p may thus 

target a different factor(s) in C. albicans, consistent with other modes of cell cycle re-wiring in 

this organism (5).  Intriguingly, another student in the lab affinity-purified the C. albicans 

separase, and one interacting factor is a novel, Candida-specific protein with some characteristics 

of a securin (S. Sparapani, data unpublished).  Second, cells lacking Cdh1p were enlarged.  In 

contrast, S. cerevisiae cdh1 cells were significantly reduced in size, implying a role in 

negatively regulating Start (6).  The absence of human or mouse homologue of CDH1, FZR1, 

similarly resulted in a decrease in G1 phase (7).  These results enhance our knowledge of the 

circuitry controlling mitosis in C. albicans, and suggest variations compared to other systems, 

including humans, which have important implications for controlling growth and therapeutic 

potential.   

 

Our results also suggest that Cdc20p and Cdh1p may lie downstream of Cdc5p, and 

influence morphogenesis in C. albicans.  For example, depletion of Cdc20p resulted in defects in 

mitosis and morphogenesis similar to those in Cdc5p-depleted cells, suggesting that the factors 

lie in a similar pathway governing mitotic progression and polarized growth.  In support of this, 

Plks regulate Cdc20p directly or indirectly in other systems (8, 9).  Plks also can act upstream of 

the Spindle Assembly Checkpoint (SAC) factor Mad2p, which binds and inactivates Cdc20p (10, 

11).  Cdh1p also lies downstream of Cdc5p function in S. cerevisiae, as Cdc5p is a component of 

the FEAR and MEN pathways that act to release Cdc14p from the nucleolus and ultimately 

activate Cdh1p (12, 13).  Cdh1p then acts on Cdc5p by targeting it for degradation.  The absence 

of Cdh1p did not phenocopy the absence of Cdc5p in C. albicans yeast cells.  However, the high 

proportion of filamentous cells in the former, coupled with the absence of synergistic effects 

when CDH1 was deleted from Cdc5p-depleted cells, suggests that Cdh1p may lie downstream of 

Cdc5p function in C. albicans, albeit not as a direct target.  Future investigations will involve 

elucidating the mechanisms of action of Cdc20p and Cdh1p by identifying their targets, screening 

these for potential cell cycle and polarity regulatory functions, and defining the relationships 
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between Cdc5p, Cdc20p and Cdh1p. 

 

 

5.2 Cdc5p-depleted filaments are elongated buds that transition to the hyphal fate over time 

in a Ume6p-dependent manner. 

The nature and physiological significance of the filaments that formed in response to 

Cdc5p depletion, or by blocking mitosis through other means including depletion of Cdc20p, 

have been controversial (14, 15).  Further, the mechanisms underlying the formation and 

expression of hyphal virulence genes, in the absence of normal environmental cues, were unclear.  

One study demonstrated that filament formation and expression of some hyphal-specific genes in 

response to Hsp90p depletion and a block in mitosis were mediated by a novel signaling pathway 

involving the transcription factor, Hms1p (16).  However, Hsp90p has multiple targets.  Further, 

these and other studies that characterized mitotic arrest-induced filaments were performed at a 

single time point, sometimes as late as 24 h after the initial gene shut-off or treatment (17-19).   

Based on previous results obtained from Cdc5p-depleted filaments (2, 20), we proposed that due 

to defects in the yeast bud switching from polar to isometric growth in early mitosis, mitotic-

arrested filaments were initially elongated buds but adapted the hyphal fate later in time due to 

maintenance of polarized growth.  This in turn could provide an advantage for the organism in 

terms of survival in the host and being able to escape environments that were imposing a mitotic 

stress.  I tested this hypothesis by conducting the first time-course based analysis of the polar 

growth machinery and requirement for specific hyphal regulatory factors in mitotic-arrested cells.  

My findings indicated that hyphal-specific features emerged at only later stages of growth, 

supporting the hypothesis.  For example, I detected hyphal-specific organization of the myosin 

light chain Mlc1p, hyperphosphorylation of the Cdc42p GAP Rga2p, and expression of hyphal-

specific genes including the transcription factors UME6 and HGC1, and the cell wall protein 

HWP1, in only later stage Cdc5p-depleted filaments, with the latter being dependent on the 

presence of Ume6p.  Further, absence of Ume6p or Hgc1p influenced filament integrity and 

morphology only after an extended period of Cdc5p depletion.  Finally, I demonstrated that 

polarized growth and UME6 expression in Cdc5p-depleted cells were independent of the 

transcription factor Hms1p.  We suggest that induction of UME6, a core hyphal regulator, may 

occur in response to maintenance of polarized growth and enhanced actin polymerization at the 
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polar tip.  Consistent with this, previous work demonstrated that cellular actin can influence 

cAMP production, which is important for hyphal gene expression, via a sensor/effector apparatus 

including G actin and adenylyl cyclase components (21).  Further, actin dynamics can influence 

expression of hyphal-specific genes, such as HWP1 (22).  

 

An important question stemming from these results is how the yeast bud may maintain 

polarized growth to initiate filament formation and allow the subsequent transition to the hyphal 

fate.   In S. cerevisiae, yeast buds grow in a polar manner from G1/S to late G2 phase of the cell 

cycle, and then switch to isometric growth (23). The switch is regulated in part by the CDK 

Cdc28p falling under the control of the B-type cyclin Clb2p, which in turn causes disassembly of 

the Cdc24p-Bem1p-Cla4p complex, a decrease in Cdc42p-GTP, and depolarization of actin 

patches (23, 24).  In C. albicans, yeast buds show similar growth patterns but the precise timing 

and mechanisms underlying the depolarizing switch are not yet known (25, 26).  Our results 

provide new insights in this area and suggest that Cdc5p may influence the yeast bud growth 

pattern.  A direct role is possible based on the fact that Plks can regulate cytoskeletal and 

polarity-regulating factors in other organisms including S. cerevisiae (27, 28).  Polarity-

regulatory factors were not uncovered in our Cdc5p protein interaction screen for C. albicans, but 

this does not rule out direct effects, as the screen was likely not saturated.  Alternatively, Cdc5p’s 

influence on yeast bud growth may be indirect.  Indeed, depletion of Cdc20p similarly influenced 

the bud growth pattern.  In this case, perhaps Cdc20p targets factor(s) that are important for the 

yeast bud transitioning from polar to isometric growth.  If Cdc5p helps to activate Cdc20p, this 

could explain the similar effect on yeast bud growth in the absence of either factor.  

 

Collectively our results clarify the nature of the cells produced through depletion of 

Cdc5p, underscore the concept that not all filamentous growth forms in C. albicans are created 

equal, and thus expand on the multiple strategies C. albicans can utilize for modulating growth 

mode and expression of virulence determinants. The ability of yeast cells to grow in a polarized 

fashion when experiencing a stress in mitosis, as opposed to arresting as a large doublet like non-

pathogenic yeasts including S. cerevisiae do, coupled with a transition to the hyphal fate that 

includes strong expression of many virulence genes, would clearly provide an advantage for the 

organism to escape a stressful environment and enhance survival in the host.  This is underscored 
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by the fact that the response requires mitotic checkpoints, and checkpoint factors such as Mad2p 

and Swe1p are required for growth in vivo and for virulence (29, 30).  In this way, mitotic 

progression can be coupled to a polarized growth mode and the hyphal program.  Future work 

will focus on elucidating the regulation of the polar-to-isometric growth switch in yeast buds, 

which has not been defined in C. albicans, exploring the potential contributions of Cdc5p and 

Cdc20p in this process, and clarifying the mechanisms by which maintenance of polarized 

growth of the yeast bud leads to induction of a core hyphal regulator, UME6.  

 

 

5.3 Orf19.3714p is a novel, Candida-specific Plk-interacting factor that may be important 

for mitotic checkpoints in C. albicans. 

 Our results extend the repertoire of Plk substrates, and demonstrate that one is specific to 

Candida species and may be important for the mitotic checkpoints, which has strong therapeutic 

potential.  Orf19.3714p was one of the most abundant proteins co-purifying with Cdc5p.  Genetic 

approaches demonstrated that ORF19.3714 was not essential for yeast or hyphal growth, but cells 

depleted of Cdc5p and lacking Orf19.3714p showed rebudding, suggesting an escape from the 

mitotic block.  Similar results were obtained with the absence of the spindle factor checkpoint 

Bub2p (20).  Further, Orf19.3714p was post-translationally modified in cells blocked in mitosis.  

Coupled with the fact that Orf.19.3714p is a predominant interacting factor of a mitotic Plk, the 

data suggest that Orf19.3714p may contribute to the maintenance of the mitotic checkpoints. 

Orf19.3714p may be a substrate of Cdc5p due to the fact that it contains several consensus PBD 

and Plk phosphorylation sites (31, 32), and was required in part to maintain the Cdc5p-depleted 

phenotype.  Plks bind mitotic checkpoint pathway components in other systems (33, 34).  

However, Orf19.3714p is not likely to be a divergent form of a known checkpoint component, 

since C. albicans contains homologues of all mitotic checkpoint pathway components in the 

related S. cerevisiae.  Novel, organism-specific binding proteins of Plks have been reported 

previously in other systems.  For example, the Plk TbPLK in the trypanosome T. brucei binds 

trypanosome-specific proteins that associate with the cytoskeleton (35) and the basal body (36).  

However, TbPLK lacks conserved Plk residues involved in substrate binding, and strictly 

functions during cytokinesis, not mitosis.  We thus propose that Orf19.3714p represents a novel 

Plk-interacting protein that influences the mitotic checkpoints.  
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 The fact that Orf19.3714p is novel, fungal-specific and influences the mitotic checkpoint 

has critical implications for the development of new therapeutic strategies, particularly if it is 

found to be essential for growth in vivo like many other factors that influence cell cycle 

checkpoints in C. albicans (29, 30).  The identification of new therapeutic drugs involves 

screening small compounds that may target virulence-determining traits, such as the yeast-to-

hyphal transition, cell proliferation or other processes (37, 38), or proteins that are important for 

these processes.  Future work will involve testing the importance of Orf19.3714p for growth and 

virulence in vivo using deletion strains in an in vivo model of mouse infection, and initiating 

screens for small molecule interactions.  

 

 

5.4 Orf19.3714p is associated with the spliceosome and potentially links Plk function to 

RNA splicing.  

 Our finding that Orf19.3714p also co-precipitated with numerous proteins of the 

spliceosome complex suggests that Orf19.3714p may play a role in RNA splicing.  Orf19.3714p 

may be a novel component or regulator of the spliceosome, although we cannot rule out the 

possibility that it is a divergent form of a known spliceosome component.  Spliceosome function 

and post-transcriptional regulation of mitosis and other processes in C. albicans remain poorly 

explored areas.  Our first systematic analysis of putative spliceosome composition in C. albicans 

demonstrates strong conservation compared to the model yeast S. cerevisiae and humans (data 

not shown).  However, differences including absence of some factors and the involvement of at 

least one novel protein, Orf19.3714p, suggest organism-specific features in this important 

regulatory complex.  Since the majority of the interactions between Orf19.3714p and 

spliceosome proteins were lost in the absence of Cdc5p, the data suggest for the first time that Plk 

function may extend to regulation of RNA splicing.  This provides yet another example of 

potential variation in cell cycle factor function in C. albicans.  

Based on the data, we propose a model whereby Orf19.3714p is a spliceosome-associated 

protein regulated in part by Cdc5p, which influences efficient splicing of factors including 

regulators of the mitotic checkpoints and/or mitotic exit.  In agreement with this, depletion of 

various spliceosome proteins in other organisms can influence mitotic progression through 
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deregulating splicing of messages encoding for spindle, kinetochore and M phase proteins, for 

example (39) and absence of spliceosome factors can differentially affect splicing of transcripts 

(40, 41).  Further, C. albicans genes containing introns have functions associated with 

microtubules, ribosomes, meiosis, splicing, mitochondrial respiration, protein degradation (42) 

and mitotic progression (43).  Another possibility is that Orf19.3714p itself functions as a mitotic 

regulator, perhaps in the mitotic checkpoint pathway, but also can bind to and regulate the 

spliceosome, comparable to the situation with Bub3p in fibroblasts (44). 

 

 Future work will involve confirming interactions between Orf19.3714p and various 

spliceosome proteins using co-immunoprecipitation, repeating the affinity purification of 

Orf19.3714p in cells depleted of Cdc20p vs Cdc5p, sequencing RNA for strains with or without 

Orf19.3714p and Cdc5p to obtain evidence for an influence on splicing, localizing Orf19.3714p 

to help further deduce its function, conducting in vivo growth and virulence assays using mouse 

models for infection, and analyzing the levels and phosphorylation status of  

Orf19.3714p during the course of a normal cell cycle and under different growth and stress 

conditions to glean information on its regulation.   

 

 

5.5 Summary  

In summary, my investigations provide the first characterization of APC/C co-factors 

Cdc20p and Cdh1p in C. albicans, and suggest that they are important for mitotic progression, 

influence morphogenesis and may lie downstream of Cdc5p.  I also clarify the nature of the 

polarized cells that form in response to Cdc5p depletion and uncover a new mechanism by which 

yeast cell mitosis may be linked to the hyphal regulatory program and expression of virulence 

genes.  Finally, I provide new insights on Plk function and mechanisms of action by identifying a 

novel, fungal-specific interacting protein of Cdc5p, Orf19.3714p, which may contribute to 

spliceosome function.  This work further underscores the emerging theme of variation in cell 

cycle factor function and circuitry in C. albicans (2, 45-49), broadens our understanding of how 

basic growth and cell division are controlled in this organism, reveals new factors and pathways 

that could be targeted for the purposes of controlling growth of the pathogen, and sets the stage 

for future investigations of post-transcriptional regulation at the level of RNA splicing, which 
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remains a poorly explored area in C. albicans biology. 
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