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Abstract

Numerical Analysis and Experiments on the Acoustics of Conch Shells Modelled as

Spiral Cavities

Rasoul Morteza Pouraghdam

The wave propagation behavior in spiral cavity of a conch shell is studied. A conch shell

consists of a spiral inner cavity where if excited by lip-vibration, a highly resonating sound with

harmonic modes is produced. In order to understand how sound is generated in a conch shell, we

used X-ray tomography scans to model the shell’s unwrapped inner cavity and measured how well

the model matches the experimental data.

Experiments were carried out in a semi-anechoic chamber where the conch shell was played using:

(i). Lip-excitation (ii). Loudspeaker sine-sweep excitation and (iii). Excitation using an electro-

pneumatic transducer. The recorded sounds were analyzed in terms of their frequency components

and directivity of the emanating sound.

Moreover, we approximated a shell’s inner spiral cavity to a straight tube based on the X-ray data

measurements, and to affirm its validity, we compare the resonance modes of the approximated

straight tube to the modes recorded from the lip-excited conch shell.

Finally, we study wave propagation in conical and exponential spiral strings and tubes in more

general cases, where numerical simulation is carried out whenever the theoretical solutions are hard

to find. In the case of the strings, we also computed the resonance modes as well as the time-

dependent behaviour.
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Chapter 1

Introduction and Literature Review

The core motivation behind this thesis is understanding how sound is generated from the conch

shell. The conch shell is one of the earliest brass-like instruments used by mankind, played in dif-

ferent parts of the world for various purposes such as coded communication, signaling purposes and

also as a musical instrument. Conch shells are widely used in countries such as in India and Japan

during ceremonies and rituals. [1] We first commence by stating the existing acoustic theories on

wave propagation along a flexible string and inside cylindrical, conical and exponential tubes/pipes.

1.1 Wave motion along a string

Vibrating strings have been a topic of study for a long time. Pythagoras claimed that if a string

is divided into two segments of a particular ratio like 2:1, 3:1 etc. the produced sound by the string

is more pleasing to the ear. We know that an excited string produces modes, sometimes referred to

as normal modes and they depend upon the string’s mass, length, applied tension and also the end

conditions (like fixed-open or fixed-fixed). [2] In music a string is excited in different ways, such as

by bowing, plucking or striking and thus the string vibration will usually be a combination of several

vibration modes. For instance if a string is excited near its center, the resulting resonance spectrum

will show a fundamental and only odd integer multiples of that fundamental frequency. However

here we will attempt to derive the one-dimensional wave equation by considering an amount of

force applied to a string element (figure 1.1). Consider a uniform string with linear density µ being
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Figure 1.1: String element of length ds subject to a tension T .

subject to a tension T in newtons. There will be a net force dF which restores the string segment

dl back to its equilibrium, which is equal to the difference of the tension’s y component at the two

ends of the string segment:

dFy = (Tsinθ)x+dx − (Tsinθ)x (1)

Applying a Taylor’s series expansion to the first term in the equation and after simplification we

obtain:

dFy =
∂(Tsinθ)

∂x
dx (2)

Since our problem is in a small element scale, we can consider that the displacement in the y

direction is small and thus, we have sinθ ≈ tanθ = ∂y
∂x

:

dFy =
T ∂y
∂x

∂x
dx = T

∂2y

∂x2
dx (3)

We also have m = µdl, the string segment mass, and therefore:

T
∂2y

∂x2
dx = µdl

∂2y

∂t2
(4)
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Finally by taking dl ≈ dx and defining the wave speed as c =
√

T
µ

:

∂2y

∂t2
=
T

µ

∂2y

∂x2
= c2

∂2y

∂x2
(5)

This is known as the wave equation. The general solution to this equation is given by d’Alembert(1717-

1783):

y = f(ct− x) + g(ct+ x) (6)

where arbitrary functions f and g represent a wave quantity traveling to the right and left respec-

tively, with a velocity c.

When we refer to resonance modes, it is important to describe the notion of standing waves.

Assuming the wave solution to be harmonic, we have f(ct−x) = A1sin(ωt−kx)+B1sin(ωt−kx)

and g(ct+ x) = A2sin(ωt+ kx) +B2cos(ωt+ kx), thus:

y = f(ct−x)+g(ct+x) = A1sin(ωt−kx)+B1sin(ωt−kx)+A2sin(ωt+kx)+B2cos(ωt+kx)

(7)

where k = ω
c

is the wave number.

Considering a string of length L, fixed at both of its ends (x = 0, x = L) with the boundary

condition y(x = 0, t) = 0 implicating that A1 = −A2 and B1 = −B2, we have:

y = 2A1sin(kx)cos(ωt)− 2B1sin(kx)sin(ωt) = 2sin(kx)[A1cos(ωt)−Bsin(ωt)] (8)

The second boundary condition y(x = L, t) = 0 requires the term sin(kx) at x = L to be zero.

Therefore kL = ωL
c

= nπ, and therefore ω = nπc
L

and since ω = 2πf we have:

fn =
nc

2L
(9)

known as the "modes" of the string, which are also harmonic because all the modes are integer

multiples of the fundamental frequency f = c
2L corresponding to n = 1.

3



1.2 Infinite cylindrical tube

In this section we take a look at wave propagation inside an infinite pipe of circular cross section.

The wavefronts in such an enclosure is planar and the direction of propagation is along the tube’s

axis. We also assume the tube’s walls to be rigid, perfectly smooth and insulating thus having no

effect on wave propagation. A pressure wave (taking the direction of propagation as x) is of the

form: p(x, t) = p0e
j(ωt−kx). An important quantity regarding wave propagation in tubes is the

acoustic volume flow Q, which can be found from p = ρcQ
S

where p is the acoustic pressure, ρ the

air density, c the speed of sound in air and S the tube’s cross-section area. Therefore we have:

Q(x, t) =
pS

ρc
ej(ωt−kx) (10)

We can now find the acoustic impedance of the tube from:

Z(x) =
p(x, t)

Q(x, t)
=
ρc

S
(11)

We now attempt to solve the wave equation for our geometry. Naturally, we would choose to derive

the wave equation in cylindrical coordinates (r,Φ, x) where x is basically the height of the cylinder

if it is taken to be vertically positioned. Taking the tube’s cross-section radius as r0 with the tube’s

surface to be rigid, we have ∂p
∂r r=r0

= 0 as the boundary condition on the surface since there is no

flow normal to the tube’s outer surface. The wave equation in cylindrical coordinates is given as:

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂φ2
+
∂2p

∂x2
=

1

c2
∂2p

∂t2
(12)

which has the solution: [3]

pmn(r, φ, x) = pcossin(mφ)Jm(
πqmnr

r0
)ej(ωt−kmnx) (13)

where Jm is the Bessel function and qmn defined by the boundary condition on the wall so that

J ′
m(πqmn) = 0 with integers m and n starting from 0. The (m,n) index indicates the nodal circles

4



(n) and nodal diameters m of the acoustic pressure. Thus the wave vector kmn is defined as:

k2mn = (
ω

c
)2 − (

πqmn

r0
) (14)

We can see that in the plane mode (m = n = 0) we obtain the well known definition of the wave

number k = k00 = ω
c

. For higher modes the angular frequency ω must be larger than the critical

value of ωc =
πqmnc
r0

.

However since tubes are always of finite length used in real applications, we must cover the case of

finite cylindrical tubes.

1.3 Finite cylindrical tubes

In the case of a finite cylindrical pipe, we will have wave reflection from the tube’s end (re-

gardless of the end being open or closed). Since in musical applications tubes are mostly coupled

to a driver, we can start by finding the input impedance with a finite load impedance ZL at its end.

Consider the tube to be of length L with a terminating impedance Zx=L = ZL. Since the wave

quantity is a superposition of two separate quantities travelling to the right and left with a certain

amplitude, the wave will be of the form (assuming plane waves only):

p(x, t) = Aej(ωt−kx) +Bej(ωt+kx) (15)

Using Newton’s second law, we know that the pressure and flow in a cylindrical tube are related by:

∂p

∂x
= − ρ

S

∂Q

∂t
(16)

From equation 15 we have:

jk(Bejkx −Ae−jkx)ejwt = − ρ

S

∂Q

∂t
(17)

5



After integration, we obtain:

Q(x, t) =
S

ρc
[Aej(ωt−kx) −Bej(ωt+kx)] (18)

The complex quantity B
A

helps define the power reflected from the terminating impedance ZL. We

know by definition that:

ZL =
p(L, t)

Q(L, t)
(19)

And the characteristic wave impedance is defined as:

Zc =
ρc

S
(20)

It can be found that:

B

A
= e−2jkLZL − Zc

ZL + Zc
(21)

Thus taking the norm 2 of the complex ratio, we obtain the reflected power:

R =

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

=

∣

∣

∣

∣

ZL − Zc

ZL + Zc

∣

∣

∣

∣

(22)

Depending on the value of ZL we have either no reflection R = 0 (ZL = Zc) or complete reflection

R = 1 (ZL = 0 or ZL = ∞). We will also have perfect reflection if ZL is imaginary but since often

ZL has a non-zero real part, the wave propagation will be lossy.

We now proceed to finding the resonance modes in our system. The impedance at x = 0 also known

as the input impedance is given by:

ZIN =
p(x = 0, t)

Q(x = 0, t)
= Zc

A+B

A−B
= Zc

ZLcoskL+ jZcsinkL

jZLsinkL+ ZccoskL
(23)

The expression can be reduced based on the low-frequency approximation, where if ZL = 0 (open

end):

ZIN = jZctankL (24)
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And if ZL = ∞ (closed end):

ZIN = −jZccotkL (25)

It must be noted that the case of ZL = 0 cannot be exactly produced physically. We may now find

the resonance frequencies by applying the boundary condition that the input end is also open, more

specifically ZIN = 0. Thus in the case of the terminated pipe (ZL = ∞), cotkL = 0 and thus:

ωopen−ended =
(2n− 1)πc

2L
(26)

which is equivalent to:

fopen−ended =
(2n− 1)c

4L
(27)

corresponding to odd integer multiples of quarter wavelengths, and for an open-open tube we have

tankL = 0 resulting in:

ωopen−open =
nπc

L
⇔ fopen−open =

nc

2L
(28)

corresponding to integer multiples of the fundamental frequency f0 =
c
2L

1.4 Finite conical horn

Horns are usually defined as a closed conduit of larger length compared to its lateral dimensions.

[4] We attempt to find the resonance modes inside a finite conical tube of length L. Olson [5] gave

the following expression for the input impedance of a conical horn of cross-section area S1 at x = x1

and S2 at x = x2 with L = x2 − x1:

ZIN =
ρc

S1

jZL
sink(L−θ2)

sinθ2
+ ρc

S2
sinkL

ZL
sink(L+θ1−θ2)
sinθ1sinθ2

− jρc
S2

sink(L+θ1)
sinθ1

(29)

7



with (θ1, θ2) = (tan−1kx1, tan
−1kx2). We now examine the input impedance based on the tube’s

enclosure. For an open end ZL = 0 (either the wide or the narrow end of the tube) we obtain:

ZIN = j
ρc

S1

sinkLsinθ

sink(L+ θ1)
(30)

Based on which end is considered to be open, the input impedance will be different since the sign

of L and the magnitude of θ1 will vary. We clearly see that by taking the input impedance zero,

sinkL = 0 which gives us the set of resonance modes f = nc
2L which is the same as in the case of

an open cylindrical tube of length L.

However if ZL = ∞, we have sink(L+ θ1) = 0 which requires:

kL+ kθ1 = nπ ⇔ kL = nπ − tan−1kx1 (31)

For a cone measured from its narrow end (throat), L > 0 and tan−1kx1 < π
2 we see that the

resonance modes are higher than those of a cylinder of equal length L. For a nearly complete

tapering cone (x2 < x1), we have kx1 � 1, therefore approximating tan−1kx1 ≈ kx1 and since

L = x2 − x1, from the previous equation we obtain kx2 = nπ, meaning that the resonance modes

are the same as those of an open cylinder of length x2. We will not cover the case of cones with a

termination at the mouth since they’re not useful in musical acoustic applications.

1.5 Exponential Horn

Exponential horns make up portions of internal brass instrument bores. We take the radius to be

a function of r = Aemx where m is the growth rate. To come up with the pressure profile inside the

horn, we first introduce "Webster’s Horn Equation", which in its simplest form can be written as:

1

S

∂

∂x
(S
∂p

∂x
) =

1

c2
∂2p

∂t2
(32)

8



where S(x) is the horn’s cross-sectional area at distance x. Substituting p = ψS
1

2 and assuming

simple harmonic motion (p(x) = ψ(x)ejωt), Webster’s equation can be re-written as:

∂2ψ

∂x2
+ ((

ω

c
)2 − 1

r

∂2r

∂x2
)ψ = 0 (33)

Considering the exponential horn geometry, we have 1
r
∂2r
∂x2

= m2 and therefore equation 33 be-

comes:

∂2ψ

∂x2
+ ((

ω

c
)2 −m2)ψ = 0 (34)

With a sound pressure profile of the form:

p(x) = e−mxej(ωt−
√
k2−m2x2) (35)

with k = ω
c

the wave number. In exponential horns waves can propagate above a cut-off frequency

of fc = mc
2 with a dispersive (frequency dependent) phase velocity of c√

1−(ωc
ω
)2

. Below the cut-

off frequency the horn transmits nothing with the throat impedance being purely reactive (waves

are exponentially damped). Without getting into details, it must be said that exponential horns are

efficient sound radiators above the cut-off frequency. Of course exponential horns are not directly

used in brass instruments due to lack of resonance modes, however the flared cross-sections in brass

instruments enhance sound radiation in the same manner. Exponential horns were widely used in

the past, such as in gramophones, amplifying the sound when electronic amplification methods were

absent. They are still being used in many public signaling devices as efficient sound detectors with

a microphone placed at the horn’s apex.

1.6 Conch shell inner cavity approximation by a straight duct

The earliest study on conch shell acoustics was done by Bhat [6] where it was claimed that

the conch shell produces a resonating sound if a harmonic of the driver’s frequency (lip-vibration)

matches the shell’s cavity fundamental resonance. In this case the spectrum of the conch sound dis-

played clear harmonics of a fundamental frequency. Therefore the idea rose that, maybe the inner

9



spiral cavity can be approximated by a straight tube with increasing cross-sectional area.

Bhat incorporated a very simple measurement to approximate the inner spiral cavity length by mea-

suring the outer surface spiral with a string. The measurement validated the resonance modes,

however this study was very preliminary and sought deeper analysis.

Bhat, Taylor and Prasad [7] went further by geometrically modelling the conch shell inner cavity

with the help of X-ray tomography scans, in addition to spectrum analysis. They used X-ray scans

(Sagittal point of view) to measure the cavity spiral radius at each π turn, as well as the radius-

height profile of the spiral. Using the radius-angle data, they were able to fit piecewise conical or

Archimedes spirals to the global cavity spiral, and find the total spiral length by integrating piece-

wise spiral lengths using:

L =

∫

dL =
√

dx2 + dy2 + dz2 (36)

where (dx, dy) = (r cos(dθ), r sin(dθ)) with dz(r) being a function of the radius. They obtained a

length of 51cm on their conch shell sample which was interestingly close to a rough length estima-

tion of a wrapped string around the outer surface of the shell. Then they used the following formula

to obtain the theoretical resonance modes of an equivalent conical horn:

fn =
nc

2(L+ 0.6(rthroat + rmouth))
(37)

However due to the presence of the player’s lips the term rthroat was neglected. Also since the

wave is reflected before the final flare of the horn, the acoustic length of the horn is shorter than the

physical length of the tube and thus the term rmouth was safely ignored as well. Using the radii and

spiral length data at each π turn, they recreated the major (horizontal) radius-spiral length profile

in which they found that the cavity flare begins somewhere near 39cm and thus the fundamental

frequency of a 39cm duct is f = 440Hz (corresponding to the A4 note). This corresponded well

with the recorded resonance modes of the shell (approximately 440Hz and its harmonics). They

claimed that this supports the idea that standing waves reflect back before the final flare of a tube. In

chapter two, we provide more details on this procedure in addition to new measurements. Rath and

Naik [8] by using X-ray scans discovered that the conch shell geometry contains Fibonacci patterns.

The Fibonacci sequence is generated by fn+1 = fn+ fn−1 with f0 = 0, f1 = 1 and n = 1, 2, 3, ....
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It is worth nothing that the Fibonacci pattern is also present in many elements of nature such as in

plant growth, leaf patterns, floral petals and stems. They found the spiral curve of a nautilus shell to

have the formation of a Fibonacci rectangle. They also found that with the proper selection points

inside a conch shell cavity, the ratio of the consecutive measurements fall close to the golden ratio

(
√
5−1
2 ). We also verified this finding on our own sample which is explained in chapter 2.

1.7 Conch shell acoustic model - conical spiral cavity geometry

Rath and Naik [9] went further by coming up with a theoretical acoustic model for the conch

shell using the recorded resonance modes. They claimed that the conch shell cavity is essentially a

wrapped conical horn and thus, acoustic models pertinent to the conical horn may be applied to the

conch shell as well. We briefly present their derivations in finding the resonance modes.

For a conical horn it is natural to derive the wave equation in spherical coordinates:

∇2p =
1

c2
∂2p

∂t2
(38)

where the radial part of the equation (corresponding to the first term in the Laplacian term) is given

by:

∂2P

∂ρ2
=

1

c2
∂2P

∂t2
(39)

where P = ρp. By considering the time-independent version of the equation (a.k.a. the Helmholtz

Equation) we have:

∂2P

∂ρ2
+ k2P = 0 (40)

where k = ω
c

is the wave number. The solutions to the equation are of the form:

P = e±ikρ ⇔ p =
e±ikρ

ρ
(41)

Applying the boundary condition p(ρ = ρ2) = 0 where ρ2 corresponds to the open end of the cone,

the solution will be of form:

p(ρ) =
sin kl

ρ
(42)

11



where l = ρ − ρ2. Since the throat is usually driven by lip-excitation, it can be considered as a

closed end. We know that in a truncated cone with one closed end (throat) and the mouth being

open, the resonance modes fall into the odd harmonics of a closed-open cylinder. In fact, Ayers et

al. [10] found that as the ratio of the input to output diameters of a truncated cone increases, the

resonance modes deviate from the harmonics of an open-open cylinder, to non-harmonic modes

during the transitional regime, and finally to the odd harmonics of a closed-end cylinder of the same

length. Therefore, Rath and Naik also argued that since the conch shell is played at the throat where

a closed end is considered, the resonance modes in the shell must also be odd harmonics i.e.:

fn =
(2n+ 1)c

4l
(43)

Based on some simple calculations, they found the shell’s effective length to be l = 4πR where R

is the open end (mouth) radius corresponding to a spiral having a total of 8π turns. Therefore the

final expression for the resonance modes is given by:

fn = (2n+ 1)
c

16πR
(44)

However they also recorded the sample conch shell spectrum and found the presence of harmonics

of the fundamental mode (both odd and even multiples of the fundamental). However the equation

above only suggests the presence of odd multiples of the fundamental mode. The explanation for

this phenomenon which they provided is that lip-vibration acts like a sinusoidal vibration then the

whole reed plus shell system is simultaneously an open-open and closed-open system, in which case

all harmonic modes can be created. However we do want to note that Rath and Naik’s explanation

may not be always true, considering that many other systems also have non-harmonic resonance

modes but can produce harmonic modes when driven by lip-vibration as lip-vibration or reed me-

chanics in general are highly non-linear.

12



1.8 Conch shell acoustic model based on Webster’s horn equation

In 2010, Rath and Naik [11] came up with a more rigorous conch shell acoustic model based on

Webster’s horn equation, which we will review on the core points here. Webster’s horn equation in

its general form is given by [12]:

ψ̈ = c2(∇2ψ + (~∇ψ).~∇(lnS)) (45)

As for describing the conch shell cavity geometry, it is wound around the collumella as a growing

spiral in the θ and z directions thus the cylindrical coordinate system is applied (ρ, θ, z). They

considered the spiral to have the general form of ρ = kθ in the x − y plane and h = lz being the

height of the spiral with growth factors k and l. The central spiral (passing by the center of origin

of the cross-section) defined by ρ = kθ, thus the inner and outer spirals being ρin = (k − λ)θ

and ρout = (k + λ)θ, respectively. Thus the varying diameter of the cross-section is obtained by:

d = ρout − ρin = 2λθ. The spiral length element in the z-direction being defined as dz = lz, the

cross section radius can be defined as:

r2 = (λθ)2 + (lz)2 (46)

and consequently the cross-section area:

S = λ′θ2 + l′z2 (47)

where λ′ = λ2 and l′ = l2.

Furthermore, they assumed harmonic motion i.e. ψ(ρ, θ, z, t) = ψ(ρ, θ, z)ejωt. Therefore ψ̈ =

−ω2ψ(ρ, θ, z) and Webster’s equation can be reduced to:

∇2ψ + (~∇ψ).~∇(lnS) = −ω
2

c2
ψ (48)
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Then replacing the ∇ operators with the respective expressions in cylindrical coordinates yields:

[
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
]+

1

ρ2
∂2

∂θ2
+
∂2

∂z2
]ψ2+[ρ

∂ψ

∂ρ
+
θ

ρ

∂ψ

∂θ
+k

∂ψ

∂z
].[ρ

∂

∂ρ
+
θ

ρ

∂

θ
+ l

∂

∂z
]lnS+

ω2

c2
ψ = 0 (49)

However they took S to be independent of the variable ρ, thus all the ρ derivatives in the expression

above are cancelled out. After further simplification, they obtained:

[
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
] +

1

ρ2
∂ψ

∂θ

2λ′θ

S
+
∂ψ

∂z

2l′z

S
+
ω2

c2
ψ = 0 (50)

Additionally by re-writing the term S as:

S = λ′θ2 + l′z2 = λ′θ2(1 +
lz2

λ′θ2
) (51)

To further simplify the equations, they took the approximation that the spiral growth in the z-

direction is much smaller than in the x− y plane thus l′z2

λ′θ2
converges to zero and can be neglected,

in which case, the following terms in equation 50 can be reduced as:

1

ρ2
(
∂ψ

∂θ
)
2λ′θ

S
≈ 1

ρ2
(
∂ψ

∂θ
)
2

θ
(52)

as well as:

∂ψ

∂z

2l′z

S
≈ 0 (53)

Therefore equation 50 is finally reduced down to:

1

ρ

∂

∂ρ
(ρ
∂ψ

∂ρ
) +

1

ρ2
∂2ψ

∂θ2
+
∂2ψ

∂z2
+

1

ρ2
(
∂ψ

∂θ
)
2

θ
+
ω2

c2
ψ = 0 (54)

Further simplification yields:

∂2ψ

∂ρ2
+

1

ρ2
∂ψ

∂ρ
+

1

ρ2
∂2ψ

∂θ2
+

1

ρ2
2

θ

∂ψ

∂θ
+
∂2ψ

∂z2
+
ω2

c2
ψ = 0 (55)
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By using the method of separation of variables (ψ = R(ρ)Θ(θ)Z(z)), the equation above is trans-

formed into:

1

R

∂2R

∂ρ2
+

1

ρR

∂R

∂ρ
+

1

Θρ2
∂2Θ

∂θ2
+

1

ρ2
2

Θθ

∂Θ

∂θ
+

1

Z

∂2Z

∂z2
+
ω2

c2
= 0 (56)

Taking:

1

Z

∂2Z

∂z2
= −m2 (57)

yields the Z-component solution Z = e±jmz . By using the substitution ω2

c2
−m2 = γ2, equation 56

can be rewritten as:

1

R

∂2R

∂ρ2
+

1

ρR

∂R

∂ρ
+

1

Θρ2
∂2Θ

∂θ2
+

1

ρ2
2

Θθ

∂Θ

∂θ
+ γ2 = 0 (58)

Multiplying the whole equation by ρ2 results in:

ρ2

R

∂2R

∂ρ2
+
ρ

R

∂R

∂ρ
+

1

Θ

∂2Θ

∂θ2
+

2

Θθ

∂Θ

∂θ
+ γ2ρ2 = 0 (59)

Similar to the Z-component, it is assumed that:

1

Θ

∂2Θ

∂θ2
+

2

Θθ

∂Θ

∂θ
= −α2 (60)

Multiplying by Θ results in:

∂2Θ

∂θ2
+

2

θ

∂Θ

∂θ
+ α2Θ = 0 (61)

By reducing the equation above in general form to standard form, the Θ-component solution can be

found as:

Θ =
e±jαθ

θ
(62)

Finally the radial equation can be simplified to:

ρ2

R

∂2R

∂ρ2
+
ρ

R

∂R

∂ρ
+ (γ2ρ2 − α2) = 0 (63)
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where if multiplied by R will result in:

ρ2
∂2R

∂ρ2
+ ρ

∂R

∂ρ
+ (γ2ρ2 − α2)R = 0 (64)

This is a Bessel differential equation, being free of the parameters k and l. Thus the complete

solution is given by:

ψ(ρ, θ, z, t) = CJα(ργ)
e±jαθ

θ
e±jmzejωt (65)

where C is a constant of integration. Now further boundary conditions can be applied as the

impedance is zero at the open end corresponding to z = zL. We know by definition for an ir-

rotational and unsteady flow that:

p = −σ∂ψ
∂t

(66)

where p is the acoustic pressure and σ the medium density. This equation relates the pressure to the

velocity potential in acoustics. We derived before that Z = p
Su̇

where u̇ is the velocity and therefore

one can find:

Z =
jωσψ

Su̇
(67)

The fact that Z = 0 at the open end requires each one of the independent functions R,Θ, Z to be

zero as well. Starting from the Z-component solution, a general solution can be written as:

Z = amcos(mz) + bmsin(mz) (68)

Taking am = 0, Z(z = zL) = 0 requires sin(mzL) = 0 thus:

m =
n1π

zL
(69)

with n1 as an integer. Similarly for the Θ function, Θ(θ) = 0 when sin(αθ) = 0 and therefore:

α =
n2π

θ
(70)
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where n2 is an integer.

From this point onwards, although we do not necessarily agree with the methodology applied in the

paper to evaluate the solution constants, we will mention them regardless. They considered their

conch shell sample to include a spiral cavity of four turns; corresponding to θ = 8π revolution.

Therefore we also have:

α =
n2

8
(71)

Furthermore we have:

ω

c
=

√

γ2 +m2 =

√

γ2 +
n21π

2

z2L
(72)

where taking n = 0 cancels the frequency growth limiting it to ω
c
= γ. We know that Jα(γρ) = 0 at

ρ = ρL corresponding to the open end (mouth). Here the authors selectively choose the parameters

p and α so that the zeros of Jα(γα) give harmonic resonance modes. This is based on the conclusion

that since the recorded modes are harmonic, thus p = 4 and α = 1
2 based on which we will see

the derivation of harmonic modes. However we believe this logic to be artificial as the resonance

modes of a system could be non-harmonic, but produce harmonic modes when excited by nonlinear

lip-vibration. Nevertheless we continue with their derivations. For the values of p and α given above

we have:

J 1

2

(γρL) =
1√
πγρL

sin(γρL) (73)

The zeroes occur when γρL = n3π with n3 being an integer. Thus taking n3 = 1 yields in:

γρL = π ⇔ f =
c

2ρL
(74)

Therefore the shell’s resonance modes being given by fn = nc
2ρL

.

1.9 Exponential spiral string acoustics

Finally in 2014, Chatterjee and Nayak [13] provided a straightforward study on 1-D wave prop-

agation in an exponential spiral geometry. They considered a spiral in polar coordinates having the
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following radius profile:

r = rte
µθ (75)

where rt corresponds to the initial radius (throat radius if considering the conch shell spiral), and µ

being the spiral growth factor. µ can also be expressed as a function of the number of spiral turns n

(n could also be non-integer):

µ =
1

2πn
ln(

rm

rt
) (76)

where rm is the final end radius (mouth radius in terms of conch shell spiral). The spiral length can

also be computed from the relation L =
∫ 2πn
0 dl where dl =

√

r2 + (dr
dθ
)2dθ. For a logarithmic or

exponential spiral, the total length will be:

L =

√

1 +
1

µ2
(rm − rt) (77)

Now the wave equation in 2-D polar coordinates is derived:

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
− 1

c2
∂2ψ

∂t2
= 0 (78)

since r and θ are directly related, the θ derivatives can be substituted by the r derivatives using:

∂2ψ

∂θ2
= µ2r2

∂2ψ

∂r2
+ µ2r

∂ψ

∂r
(79)

Using Helmholtz time-independent version of the wave equation and using the substitution above,

the radial part of the equation can be written as:

r2
d2ψ(r)

dr2
+ r

dψ(r)

dr
+ k2r2ψ(r) = 0 (80)

where k2 = ω2

c2(1+µ2)
. It can be noted that the partial derivatives are replaced by direct derivatives

as the radial component of the solution is considered.

Comparing the new expression for the wave number k and comparing it to the classic definition of

k = ω
c

, we can see that the extra term 1
1+µ2

scales the frequencies. The dispersion relation thus
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depends on the geometry of the spiral (i.e. the spiral’s growth factor µ). It was previously noted that

µ and n have an inverse relation, thus the higher n is, the closer the new dispersion relation gets to

the quantity ω
c

.

Equation 80 is a Bessel differential equation and thus the solution is given in terms of the Bessel

and Neumann functions as:

ψ(r) = AJ0(kr) +BN0(kr) (81)

where J0 and N0 are the Bessel and Neumann functions of order 0, respectively. It is also worth

noting that this case is similar to the derivation of the wave equation in polar coordinates, where in

both cases a Bessel differential equation is to be solved.

To evaluate the constants A and B, the authors considered two different boundary conditions.

The first being a spiral string fixed at both of its ends, we have ψ(r = rt) = ψ(r = rm) = 0,

therefore the solution will take the form:

ψ =
∑

n=1

Cn[cosδJ0(knr) + sinδN0(knr)]cos(ωnt) (82)

where δ is taken such that the boundary condition at r = rm is satisfied, leading to:

tanδ = − J0(knrm)

N0(knrm)
(83)

To find the values of kn which satisfy the equation above, the following equation must be solved:

cosδJ0(knrt) + sinδN0(knrt) = 0 (84)

The authors numerically computed 5 values of kn for n = 1, 2, 3, 4, 5 with a fixed value of rm = 1

and few values of rt = 0.1, 0.2, 0.3, 0.4, 0.5.

The next boundary condition is when there exists an oscillation at the input of the string (r = rt) but

rigidly fixed at the end (r = rm). It was taken that ψ(r = rt, t) = Fcos(Ωt) and ψ(r = rm, t) = 0.

As previously explained, the solution is a combination of Bessel and Neumann functions:

ψ(r) = C[cosδJ0(kr) + sinδN0(kr)]cos(Ωt) (85)
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where C and δ must be evaluated. From the B.C. at r = rm it is obtained:

tanδ = − J0(krm)

N0(krm)
(86)

And from the B.C. at r = rt it is found that:

C =
F

cosδJ0(krt) + sinδN0(krt)
(87)

where the authors claim that C cannot be evaluated at resonance and the solution cannot be found

theoretically.

In this chapter we reviewed key acoustic theories on cylindrical, conical and exponential ducts.

We also reviewed four different acoustic models for the conch shell: i) Approximation by a straight

duct ii) The conch shell modelled as a conical spiral cavity iii) A model based on Webster’s horn

equation and iv) The shell’s cavity modelled as an exponential spiral string. In the next chapter we

will present our experiments on the conch shell where we geometrically modelled the shell’s cavity

using X-ray scans and performed spectrum analysis in different excitation cases.
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Chapter 2

Experiments

We saw from the early studies by Bhat [6] [7] that by using X-ray tomography scans one can

geometrically model the inner spiral cavity of a conch shell. We attempted to re-verify using our

own sample, which is of the "Turbinella Pyrum" family of shells. Our shell had the throat cut in

order to facilitate playing the shell, and was of rigid material suitable for wave propagation inside.

In the first section of this chapter, we will provide details on how the geometry of the spiral cavity

was deduced from the X-ray scans, as well as the presence of Fibonacci patterns within the cavity.

It is worth mentioning that there are a few advanced mathematical models for the conch shell ge-

ometry, such as the following parametrization by von Seggern [14]:

x = [a(1− ν

2π
)(1 + cosu) + c]cos(nν) (88)

y = [a(1− ν

2π
)(1 + cosu) + c]sin(nν) (89)

z =
bν

2π
+ asinu(1− ν

2π
) (90)

where parameters u, ν ∈ [0, 2π], a, b, c as arbitrary constants and n an integer. However as it

is clear, such geometrical models are not useful for acoustic applications as they overcomplicate

mathematical derivations with no workarounds.
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Figure 2.2: Sagittal view.

Angle Radius 1 Height Radius 2-R Radius 2-L Radius 3-T Radius 3-B

0 10.57mm 58.22mm 2.69mm 4.46mm 8.09mm 8.01mm

π 12.97mm 55.31mm 3.61mm 6.24mm 10.62mm 10.33mm

2π 17.26mm 48.37mm 3.84mm 6.70mm 15.31mm 11.74mm

3π 21.69mm 41.07mm 6.69mm 9.04mm 16.11mm 16.68mm

4π 27.67mm 27.60mm 7.32mm 10.18mm 21.75mm 20.15mm

5π 35.48mm 19.50mm 8.68mm 14.30mm 28mm 27.11mm

6π 43.20mm 0mm 12.42mm 14.65mm 36.50mm 49.59mm

Table 2.1: Radius 1 corresponds to the spiral’s radius at each π turn. Height corresponds to the

relative spiral turn at each turn. Radius 2-R corresponds to the minor axis’s right side radius of

the cross-section, where Radius 2-L corresponds to the axis’s left side radius of the cross-section.

Radius 3-T and 3-B correspond to the major axis’s top and bottom radius of the cross-section,

respectively.
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Figure 2.3: Axial view.

Figure 2.4: Coronal view.
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spiral cavity, we approximated piecewise portions of the spiral using conical spirals of form ρ = αθ

where the parameter α may vary based on the portion of spiral in consideration. For our sample, we

came up with the following profile: For θ1 = [0, 4π], ρ1 = 0.125θ1 + 1.05 and for θ2 = [4π, 6π],

ρ2 = 0.225θ2. A fit of these conical spirals to the measured data on a 2-D polar plane is shown in

the figure 2.6.

Figure 2.6: Piecewise spiral fit to the measured radii on 2-D polar plane.

Furthermore, the radius-height profile is also plotted, where a second order polynomial fit is

applied. We approximated z(ρ) = p1ρ
2 + p2ρ+ p3 where (p1, p2, p3) = (−0.079,−1.331, 7.342)

with a fit goodness of R-square = 0.9922. Using equation 36, we found the total spiral length to be

approximately equal to 55cm. In addition, the major and minor axes radii profiles are also plotted

which show the profile of the unwrapped spiral cavity.

26



Figure 2.7: Minor radius-cavity length profile of the conch shell.

Figure 2.8: Major radius-cavity length profile of the conch shell.
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Figure 2.9: Height-radius profile of the conch shell. The negative radii values only indicate the

shell’s actual geometry. The second order polynomial height-radius fit is obtained using the radii

absolute values.

As we see from figures 2.7 and 2.8, there is no sudden appearance of a flare in the cross-section

profile and thus it is safe to assume that the standing wave is actually reflected at the end of the

cavity, and not before it. This also means that the acoustical length is taken to be approximately

equal to the physical length of 55cm. To support this assumption, we also did a spectrum analysis

of the resonance modes.

2.2 Spectrum Analysis

We excited the conch shell in 3 different ways: (i). Loudspeaker sine sweep (ii). Electro-

Pneumatic Transducer and (iii). Lip-vibration. We also attempted a square wave sweep measure-

ment which contains harmonics, however due to the fact that the shell’s response gave no useful

information, the results on that are not included. The MATLAB codes corresponding to the full

geometrical modelling of the shell are provided in Appendix A.
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Figure 2.10: The Turbinella Pyrum resonance modes at 372, 716, 1080, 1450 and 1830 Hz

2.2.1 Loudspeaker Sine Sweep Measurement

The sine sweep tests were done by attaching a small loudspeaker to the throat of the conch shell.

The settings for the sine sweep were a frequency span of 100 − 2000Hz and a time duration of 1

second. As it can be seen from figure 2.10, the resonance modes are approximately harmonics of

the fundamental frequency of 372Hz, however, shifted and with margins of error due to the fact

that the spiral cavity geometry is not perfect. But the spectrum does indicate that the spiral cavity

may be a wrapped conical tube around a central stem. [1]

2.2.2 Electro-Pneumatic Transducer (EPT)

In this setup the conch shell was excited by an Electro-pneumatic transducer, operating at 52Hz.

The motivation behind this measurement was to see how the shell would respond to a different

type of excitation and how closely the EPT can simulate the reed mechanics of lip-vibration. The

output spectrum displayed 3k + 4 multiples of the driver frequency (52Hz) and provided a clear

pattern. However not much more information can be deduced due to the non-linear nature of the

EPT excitation.
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Figure 2.11: Frequency spectrum for lip-vibration, resonance modes at 372, 716, 1080, 1450 and

1830Hz.

2.2.3 Lip-vibration

When we played the shell with lip excitation, clear harmonic resonance modes were present

with the first 5 modes being: 315, 626, 944, 1.26K and 1.57K Hz. We previously approximated

the conch shell’s acoustics to those of a 55cm conical tube. If the conical tube’s output to input

diameter ratio is small enough (which is the case as seen from the radii profiles), the resonance

modes of a 55cm conical tube will derive from fn = nc
2L where L = 55cm. Therefore the first five

estimated frequencies will be: 312, 624, 936, 1.25K and 1.56K Hz. It can be seen from table 2.2

that there is strong correspondance between the estimated frequencies and the resonance modes of

the lip-excited shell. This further supports the assumption that a conch shell’s spiral cavity acoustics

may be approximated by an equivalent conical tube with the appropriate dimensions.

2.2.4 Input Impedance

An important characteristic of musical instruments are their input impedances. In chapter 1, we

saw how the derivation of input impedances of frusta of various geometries could lead to important
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Loudspeaker EPT Lip-vibration Estimation

372 52 315 312

716 208 626 624

1.08K 364 944 936

1.45K 520 1.26K 1.25K

1.83K 676 1.57K 1.56K

Table 2.2: Resonance modes of the Turbinella Pyrum conch shell in different excitation cases (in

Hertz). The estimated resonance frequencies correspond to the theoretical resonance modes of an

equivalent conical tube to the shell’s spiral cavity.

results such as the resonance modes and the impulse response of the system. Due to the irregular

geometry of the conch shell, a theoretical derivation of its input impedance is difficult. However it

can be experimentally measured using an input impedance measuring device. The one used in our

case applied a basic sine sweep up to 4000Hz and the result is displayed in figure2.12. The first five

resonance peaks are 313, 623, 972, 1339, 1665Hz which compared with the estimated resonance

modes and those recorded from lip-vibration (table 2.2). There is good enough correspondence,

although the resonance harmonicity starts getting weaker after the first two modes.

Figure 2.12: Input impedance of the conch shell - resonance modes at 313, 623, 972, 1339, 1665Hz
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It is also worth mentioning that since we measured the input impedance, knowing the maximum

frequency (4000Hz), the frequency-step (df = 0.2Hz) and consequently the number of frequency

evaluation points, we can also compute the impulse response of the shell based on the inverse fast

Fourier transform (IFFT) of the input impedance. The impulse response shows how the shell out-

put reacts to a very short input signal (impulse), in other words the shell’s time-dependent reaction

characterizing the shell’s dynamic behavior.

We also want to note that we tried approximating the input impedance of the shell by computing

the input impedance of several concatenated conical/cylindrical tubes via digital waveguide mod-

elling. However the computed input impedance did not match the measured impedance which is

attributable to the irregularity of the shell’s geometry. In order to maintain the scope of the study

focused, we will omit getting into the details of digital waveguide modelling of musical bores.

Figure 2.13: Impulse response of the conch shell.

2.3 Directivity-Pattern

Directivity measurements of the loudspeaker and EPT-driven conch shell in both horizontal and

vertical alignments inside a semi-anechoic chamber were carried out. The chamber dimensions
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were 164" x 120" x 96" (Length x Width x Height) with 3 panels wide and 4 panels long, where

standard acoustic foam wedges of approximately 10 cm thickness was used. The wall and ceiling

panels were 40" x 96" and 40" x 116" large, respectively. The shell was positioned at the center of

the room, mounted on a tripod with the loudspeaker attached to the shell’s throat. The recording

microphone was placed 1.35 m in front of the shell’s mouth to capture the output. The loudspeaker

was driven at a frequency near the shell’s cavity resonance (approximately 300Hz) and the shell

was rotated at 60◦ angular increments about both its longitudinal and transverse axes in order to

obtain the 2-D 360◦ directivity pattern (in both Horizontal and Vertical alignments of the shell).

A similar setup was used for the EPT driver. Based on the recorded magnitudes, the conch shell

sample proved to be an omni-directional (direction-independent) sound radiator at frequencies near

its cavity resonance. The horizontal or vertical alignments made no considerable difference.

Degree LS-H LS-V EPT-H EPT-V

0 73.7 73.9 55.1 55.1

60 73.1 72.8 53.4 53.5

120 73.1 72.2 53.0 52.5

180 73.6 72.8 53.9 53.0

240 74.6 73.6 55.2 54.3

300 74.5 73.6 53.9 53.2

Table 2.3: The captured output magnitude (in dB) for the loudspeaker (LS) and EPT excitations at

310 Hz in both horizontal (H) and vertical (V) alignments.
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Chapter 3

Theory and Numerical Analysis

3.1 Wave propagation analysis in spiral geometries

In this section we take a look at wave propagation in spiral geometries from a more numerical

point of view which seems to be lacking in the studies done so far. We start from a simple case

of 3-D time-independent wave propagation inside an exponential spiral string. The core difference

between this case and the one covered by Nayak [13] is that here we consider the presence of an

extra variable height z, where Nayak derived the equations in 2-D polar coordinates, not considering

the effect of height in wave propagation.

We still have a spiral of profile r = rte
µθ where rt is the initial radius and µ the spiral growth

factor. Additionally, we consider the spiral height profile to be of form z = αr where α is basically

a tapering parameter. The spiral length is determined from:

L =

∫

dl =

∫

√

r2 + (
dr

dθ
)2 + (

dz

dθ
)2dθ (91)

We have dr
dθ

= rtµe
µθ and dz

dθ
= αrtµe

µθ. Therefore it can be easily found that:

L =

√

1 + α2 +
1

µ2
(rm − rt) (92)

where rm is the final radius. We see that the spiral length and the taper parameter α are directly

proportionate.
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We now attempt to derive the time-independent wave equation in 3-D cylindrical coordinates for

our given geometry:

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+
∂2ψ

∂z2
+ k2ψ = 0 (93)

Since θ and z are both directly related to the radius r, we have ∂2ψ
∂θ2

= µ2r2 ∂
2ψ
∂r2

+ µ2r ∂ψ
∂r

and

∂2ψ
∂z2

= 1
µ2z2

∂2ψ
∂z2

− 1
µz2

∂ψ
∂θ

. After substituting the two terms into equation 90 and upon simplifying,

we obtain (radial part of equation):

d2ψ

dr2
+
λ

r

dψ

dr
+ κ2ψ = 0 (94)

where κ2 = k2

1+µ2+ 1

α2

with k = ω
c

and λ = 1+µ2

1+µ2+ 1

α2

. Equation 91 can be solved based on the

transformed version of the Bessel differential equation given by Bowman (1958), where for an

equation of the type:

x2
d2y

dx2
+ (2p+ 1)x

dy

dx
+ (a2x2r + β2)y = 0 (95)

The solution is given by:

y = x−p[C1J q

r
(
a

r
xr) + C2Y q

r
(
a

r
xr)] (96)

where q =
√

p2 − β2. Therefore the solution for equation 91 is:

ψ = r
1−λ
2 [C1Jp(κ) + C2Yp(κr)] (97)

In order to evaluate the constants C1 and C2 we can use the boundary conditions of ψ(r = rt) = 1

a constant input to the string, and ψ(r = rm) = 0, the string being fixed at the end. In that case we

have:

C2 =
1

r
−p
t [Yp(krt)− Yp(krm)Jp(krt)

Jp(krm) ]
(98)

C1 = −C2
Yp(krm)

Jp(krm)
(99)

In figure 3.1 we have plotted the solution over 100 space-steps.
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Figure 3.1: Solution to equation 94 for µ = 0.4, α = 1.3 and f = 100Hz

We also plot the profile of the term (κ
k
)2 as a function of the number of spiral turns n (µ and n

being related by equation 76):

Figure 3.2: Profile of the ratio (κ
k
)2 in terms of spiral turns n, for different initial radii values rt.
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Figure 3.3: Profile of the ratio (κ
k
)2 in terms of spiral turns n, with the varying parameter α.

The MATLAB codes used in this section are provided in Appendix A.

3.2 Time-dependent behavior of wave propagation in a spiral geome-

try

Until now, most of the theoretical derivations were based on the fact that a lip-excited shell

produces harmonic resonance modes. The theories were either adjusted or derived in a way to satisfy

that condition. However due to the non-linearity of the lips reed mechanics, such approach may

not be optimal although correlates well with experiments and existing acoustic theories. Another

deficiency is the fact that the time-dependent behavior of the wave propagation inside the shell was

mostly neglected since the wave equation was derived in its time-independent form (Helmholtz

equation). We attempted to numerically simulate the time-domain behavior of wave propagation in

a conch shell using finite difference techniques. We also extended the study case to 3-D profiling of

a spiral geometry.
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3.2.1 Exponential spiral string

We define an exponential spiral geometry of ρ = ρte
µθ with a height profile z = αρ which

we have dealt with earlier. We will derive the wave equation in cylindrical coordinates, in adding a

damping term ν ∂ψ
∂t

:

c2{1
ρ

∂ψ

∂ρ
+
∂2ψ

∂ρ2
+

1

ρ2
∂2ψ

∂θ2
+
∂2ψ

∂z2
} =

∂2ψ

∂t2
+ ν

∂ψ

∂t
(100)

Replacing the θ and z derivatives in terms of ρ derivatives simplifying the equation results in:

∂2ψ

∂ρ2
+
λ

ρ

∂ψ

∂ρ
− ζ

∂2ψ

∂t2
− η

∂ψ

∂t
= 0 (101)

where:

λ =
1 + µ2

1 + µ2 + 1
α2

(102)

ζ =
1

c2(1 + µ2 + 1
α2 )

(103)

η =
ν

c2(1 + µ2 + 1
α2 )

(104)

In order to display the wave propagation in both time and space domains, we attempt to solve the

equation numerically. Since the equation is hyperbolic, naturally an explicit finite difference scheme

centered in time and space is applied, also known as the three-point central difference scheme [15].

Defining the space the time meshes as ρn = n∆ρ and tk = k∆t, respectively with n and k integers

and dρ and dt the space and time steps, respectively. Therefore the numerical scheme is defined as:

∂ψ

∂ρ
≈ ψkn+1 − ψkn−1

2∆ρ

∂2ψ

∂ρ2
≈ ψkn+1 − 2ψkn + ψkn−1

∆ρ2
(105)

∂ψ

∂t
≈ ψk+1

n − ψk−1
n

2∆t

∂2ψ

∂t2
≈ ψk+1

n − 2ψkn + ψk−1
n

∆t2
(106)

Substituting these terms into equation 98 and after simplification, we obtain:

ψk+1
n = −(c1 +

c2

n
)ψkn+1 + 2(c1 − c3)ψ

k
n + (

c2

n
− c1)ψ

k
n−1 + (c3 − c4)ψ

k−1
n (107)
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c1 = (−∆ρ2(
ζ

∆t2
+

η

2∆t
))−1 c2 =

−λ
2∆ρ2( ζ

∆t2
+ η

2∆t)
(108)

c3 =
−ζ

∆t2( ζ
∆t2

+ η
2∆t)

c4 =
−η

2∆t( ζ
∆t2

+ η
2∆t)

(109)

The solution at time step k = 0 requires the value of ψ−1
n which physically does not exist (since

time cannot be negative) however mathematically, we can approximate the quantity by using the

initial velocity condition g(ρ) as:

ψ−1
n ≈ ψ1

n − 2∆tg(ρn) (110)

Therefore the value of ψ1
n can be expressed independent of the term ψ−1

n as:

ψ1
n = − c1 +

c2
n

1− c3 + c4
ψ0
n+1 + 2

c1 − c3

1− c3 + c4
ψ0
n +

c2
n
− c1

1− c3 + c4
ψ0
n−1 − 2∆t

c3 − c4

1− c3 + c4
g(ρn) (111)

We took ρn = [0, 1, 2, ..., L]dρ and tk = [0, 1, 2, ..., T ]dt where L = 102, T = 104, dρ = 1 and

dt = 10−3. The wave velocity was taken as the standard velocity at room temperature as 347m
s

and

an initial velocity condition of g = 0.

For the time domain representation, we chose boundary conditions of ψ(ρ = 0, t) = sin(2πft)

where f = 50Hz the input sine frequency, and ψ(r = L, t) = 0 as the string is fixed at the end. We

saw a reflecting wave from ρ = 0 and ρ = L travelling back and forth.
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Figure 3.4: Time-domain representation of wave propagation in the exponential spiral string at

several time instances.

Since we have access to the time-domain data at all spatial positions on the string, we easily

calculated the frequency spectrum of the output wave at ρ = L− 1 = 99, where we considered the

set of boundary conditions of ψ(ρ = 0, t) = 1 at constant input and ψ(ρ = L, t) = 0 at the fixed

end. Figure 3.5 displays the resonance modes in an exponential spiral string of length L = 100.

The spectrum provides the important fact that the resonance modes are not harmonics of integer

multiples of a fundamental frequency. However each two consecutive modes have approximately a

constant frequency difference of 2.9Hz. More important than the ratio of the modes to each other,

the fact that the system introduces inharmonicity is significant in terms of Musical acoustics.
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Figure 3.5: Exponential spiral string output resonance mode (ρ = 99). The first six mode frequen-

cies are: 2.61, 5.51, 8.4, 11.28, 14.15, 17.02Hz

3.2.2 Conical spiral string

We proceed with a similar method used for the exponential spiral. We define the spiral and

height profiles as ρ = αθ and z = βρ. Therefore ∂2ψ
∂θ2

= α2 ∂2ψ
∂ρ2

and ∂2ψ
∂z2

= 1
β2

∂2ψ
∂ρ2

. Equation 97

can be re-written as:

f(ρ)
∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
− 1

c2
∂2ψ

∂t2
− ν

c2
∂ψ

∂t
= 0 (112)

where f(ρ) = 1
β2 + α2

ρ2
+ 1. Applying the same central difference scheme will result in:

ψk+1
n =

c2(n)

c1
ψkn+1 +

c3(n)

c1
ψkn +

c4(n)

c1
ψkn−1 +

c5

c1
ψk−1
n (113)

c1 =
1

(c∆t)2
+

ν

2∆tc2
c2(n) =

1

2n∆ρ2
+
f(ρn)

∆ρ2
(114)

c3(n) = −2
f(ρn)

∆ρ2
+

2

(c∆t)2
c4(n) = − 1

2n∆ρ2
+
f(ρn)

∆ρ2
(115)
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c5 = − 1

(c∆t)2
+

ν

2∆tc2
(116)

However we need the value of ψ−1
n to evaluate ψ1

n, which by using the initial velocity condition

approximation, we obtain:

ψ1
n =

c2(n)
c1

ψ0
n+1 +

c3(n)
c1

ψ0
n − 2 c5(n)

c1
∆tg(rn)

1− c5(n)
c1

(117)

We used the same space and time mesh parameters as for the exponential spiral case.

Figure 3.6: Time-domain representation of wave propagation in the conical spiral string at several

time instances.

It can be seen from the output spectrum that the resonance modes of the conical spiral string are

neither harmonic, where each two consecutive mode have a frequency difference of 3.2Hz. Thus

this system also produces inharmonicity and not immediately suitable for musical applications.
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Figure 3.7: Conical spiral string output resonance mode (ρ = 99). The first six mode frequencies

are: 2.99, 6.19, 9.39, 12.58, 15.78, 18.98Hz

The numerical simulation MATLAB codes for both the conical and exponential spiral strings

are provided in Appendix A.

3.3 Exponential spiral tube - Webster’s horn equation

We previously saw that Rath and Naik [11] derived Webster’s horn equation for a conical spiral

geometry since the conch shell cavity is more accurately modelled as a tube with a cross-section

rather than a wrapped string. Here we attempt to follow the same method for an exponential spiral

tube (assuming harmonic motion). We will assume the cross-section of the tube to have a circular

profile.

We assume the spiral passing through the center of the cross-section of the tube defined by ρ =

αeµθ. Therefore the outer and inner spirals may be defined as ρ1 = (α+δ)eµθ and ρ2 = (α−δ)eµθ.

Therefore the cross-section radius can be obtained from ρ1−ρ2
2 = δeµθ. We also define the height

profile as ξ = βz thus defining a small height difference as dξ = βdz, the total cross-section area
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will be equal to:

S = π(δ2e2µθ + β2z2) (118)

Substituting S into Webster’s horn equation gives us:

∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+

1

ρ2
∂2ψ

∂θ2
+
∂2ψ

∂z2
+

1

ρ2
∂ψ

∂θ

2µδ2e2µθ

δ2e2µθ + β′2z2
+
∂ψ

∂z

2β′2z

δ2e2µθ + β′2z2
+ k2ψ = 0 (119)

In order to further simplify the equation, we assume that the spiral growth in the x−y plane is much

larger than in the z direction, i.e. δ2e2µθ � β2z2. Therefore we obtain:

∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+

1

ρ2
∂2ψ

∂θ2
+

2µ

ρ2
∂ψ

∂θ
+
∂2ψ

∂z2
+ k2ψ = 0 (120)

Assuming that the solution is separable and ψ(ρ, θ, z, t) = R(ρ)Θ(θ)Z(z)ejωt, equation 117 be-

comes:

1

R

∂2R

∂ρ2
+

1

ρR

∂R

∂ρ
+

1

ρ2Θ

∂2Θ

∂θ2
+

2µ

ρ2Θ

∂Θ

∂θ
+

1

Z

∂2Z

∂z2
+ k2 = 0 (121)

The Z component solution can be derived from:

1

Z

∂2Z

∂z2
= −l2 (122)

where if we assume the equation to have a solution of form Z = ecz , it can be easily found that

Z = e±jlz . Inserting the Z solution back into equation 118 and multiplying the whole by ρ2 gives:

ρ2

R

∂2R

∂ρ2
+
ρ

R

∂R

∂ρ
+

1

Θ

∂2Θ

∂θ2
+

2µ

Θ

∂Θ

∂θ
+ ρ2(k2 − l2) = 0 (123)

The Θ component of the solution can be found from:

1

Θ

∂2Θ

∂θ2
+

2µ

Θ

∂Θ

∂θ
= −p2 (124)

Multiplying by Θ gives:

∂2Θ

∂θ2
+ 2µ

∂Θ

∂θ
+ p2Θ = 0 (125)
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Assuming that µ > α, the solution for equation 122 becomes:

Θ(θ) = e(−µ±
√
µ2−α2)θ (126)

Finally the radial solution can be derived as we substitute the Θ solution into equation 120:

ρ2

R

∂2R

∂ρ2
+
ρ

R

∂R

∂ρ
+ (ρ2(k2 − l2)− p2) = 0 (127)

Multiplying by R gives:

ρ2
∂2R

∂ρ2
+ ρ

∂R

∂ρ
+ (ρ2(k2 − l2)− p2)R = 0 (128)

Based on Bowman’s formulation of the Bessel differential equation, we finally can find the radial

and thus the complete solution:

R(ρ) = AJp(
√

k2 − l2ρ) +BYp(
√

k2 − l2ρ) (129)

where A and B are constants. The complete solution is given as the product of the independent

functions R, Θ, Z and ejωt:

ψ = (AJp(
√

k2 − l2ρ) +BYp(
√

k2 − l2ρ))e(−µ±
√
µ2−α2)θe±jlzejωt (130)

The evaluation of the constants A and B heavily depend on the applied boundary conditions.
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Chapter 4

Conclusions and Future Work

4.1 Summary of the Work

In this thesis we first provided an overview of how resonance modes are created in cylindri-

cal, conical and exponential bores as they nearly make up the majority of tubes used in crafting

musical instruments. Then we conducted a geometrical modelling of a sample conch shell inner

cavity with X-ray tomography scans, based on early studies by Bhat et al. [6] [7] Furthermore, we

conducted spectrum analysis and directivity measurements on the conch shell where the shell was

excited in three different ways (Lip-vibration, Loudspeaker and Electro-pneumatic transducer). We

also reviewed two different theoretical acoustic models of the conch shell by Rath and Naik [9] [11]

where the time independent Helmholtz equation was derived for the given spiral geometry, as well

as the derivation of Webster’s horn equation for a conical spiral tube. A similar study was also done

by Chatterjee and Nayak [13] where we extended their work to the general case of a 3-D spiral of

conical and exponential profiles. We numerically simulated the wave propagation in such geome-

tries with finite difference techniques and computed the output spectra of such systems. We finally

applied Rath and Naik’s study on modelling using the Webster’s horn equation to an exponential

spiral tube.
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4.2 Conclusions

Based on the analytical and experimental investigations described in the previous chapters, we

draw the following conclusions:

(1) The inner cavity of a conch shell can be acoustically modelled as a wrapped conical bore

due to similar acoustic properties, as well as the conical tube profile once the inner cavity is

mathematically unwrapped.

(2) The inner cavity growth of the conch shell displays signs of the Fibonacci pattern.

(3) The shell produces clear harmonics when excited adaptively by player’s lips, and we corre-

lated the recorded spectrum resonance modes to the theoretical mode estimations with ac-

ceptable correspondence. However the shell input impedance was found to be non-harmonic.

(4) The directivity measurements suggest that the shell is an omni-directional sound radiator

(transmitting signals uniformly in all directions) near its cavity resonance, explaining why it

was often used in the past for signalling purposes.

(5) Based on the numerical analysis, the 3-D exponential and conical spiral strings exhibit inhar-

monicity and thus the output is not suitable for musical applications.

(6) A general solution to the exponential spiral tube model based on Webster’s horn equation is

derived but with constants to be evaluated with appropriate boundary conditions.

4.3 Future Work

The investigations described in this thesis open the scope for new and further investigations:

(1) Finite element modelling (FEM) of wave propagation inside a conch shell with its cross-

section geometrical irregularities being taken into consideration.

(2) Further theoretical derivations to the solution to the exponential spiral tube case need to be

done, with numerical simulation being carried out.
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(3) It was explained how the shell recordings were carried out in a semi-anechoic chamber. An

interesting idea is to evaluate the conch shell sound when the shell is played in open space

where factors such as reverberation and background noise will play an important role in how

the sound is perceived.

(4) Use of conch shell drivers in reverberation chambers could be explored.

(5) Use of conch shell loudspeakers in public address applications could be explored in view of

its uniform directivity.
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Appendix A

MATLAB Codes

A.0.1 Geometrical Modelling

t_height_radius.m

1 % Rasou l M. P . Aghdam

2 % MIE Depar tment − Concordia U n i v e r s i t y

3 % 2014−2016

4

5 %%% Height−Radius p r o f i l e o f t h e conch s h e l l c a v i t y %%%

6

7 c l e a r a l l

8 c l o s e a l l

9 c l c

10

11 R = [ 1 0 . 5 7 7 12 .970 17 .269 21 .692 27 .678 35 .483 4 3 . 2 0 6 ] / 1 0 ; %

R a d i i

12 H = [ 5 8 . 2 2 5 55 .316 48 .373 41 .079 27 .604 19 .506 0 ] / 1 0 ; % He i g h t

13

14 Rtop = [ 1 2 . 9 7 0 21 .692 3 5 . 4 8 3 ] / 1 0 ;

15 Rbot = −[10.577 17 .269 27 .678 4 3 . 2 0 6 ] / 1 0 ;
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16

17 Htop = [ 5 5 . 3 1 6 41 .079 1 9 . 5 0 6 ] / 1 0 ;

18 Hbot = [ 5 8 . 2 2 5 48 .373 27 .604 0 ] / 1 0 ;

19

20 f i g u r e

21 hold on

22 [ xData , yData ] = p r e p a r e C u r v e D a t a ( Rbot , Hbot ) ;

23 f t = f i t t y p e ( ’ po ly2 ’ ) ;

24 [ f i t r e s u l t , go f ] = f i t ( xData , yData , f t ) ;

25 h = p l o t ( f i t r e s u l t , xData , yData ) ;

26 s e t ( h , ’ l i n e w i d t h ’ , 1 . 5 )

27

28 [ xData2 , yData2 ] = p r e p a r e C u r v e D a t a ( Rtop , Htop ) ;

29 f t 2 = f i t t y p e ( ’ po ly2 ’ ) ;

30 [ f i t r e s u l t 2 , gof2 ] = f i t ( xData2 , yData2 , f t 2 ) ;

31 h2 = p l o t ( f i t r e s u l t 2 , xData2 , yData2 ) ;

32 s e t ( h2 , ’ l i n e w i d t h ’ , 1 . 5 )

33 x l a b e l ( ’ Rad ius ( cm ) ’ )

34 y l a b e l ( ’ He i g h t ( cm ) ’ )

35 t i t l e ( ’ Second o r d e r p o l y n o m i a l f i t t o r a d i u s and h e i g h t d a t a ’ )

36 gr id on

t_spiralfit.m

1 % Rasou l M. P . Aghdam

2 % MIE Depar tment − Concordia U n i v e r s i t y

3 % 2014−2016

4

5 %%% S p i r a l f i t t o t h e conch s h e l l s p i r a l c a v i t y %%%

6
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7 c l o s e a l l

8 c l e a r a l l

9 c l c

10

11 R = [ 1 0 . 5 7 7 12 .970 17 .269 21 .692 27 .678 35 .483 4 3 . 2 0 6 ] / 1 0 ;

12 t h e t a P = [0 pi 2∗ pi 3∗ pi 4∗ pi 5∗ pi 6∗ pi ] ;

13 t h e t a 1 = 0 : 0 . 0 1 : 4 ∗ pi −0 .01 ;

14 t h e t a 2 = 4∗ pi : 0 . 0 1 : 6 ∗ pi ;

15 r1 = 0 .125∗ t h e t a 1 + 1 0 . 5 7 7 / 1 0 ;

16 r2 = 0 .225∗ t h e t a 2 ;

17

18 po lar ( t h e t a P , R , ’ s ’ )

19 hold on

20 po lar ( t h e t a 1 , r1 , ’ o ’ )

21 po lar ( t h e t a 2 , r2 , ’ o ’ )

22 t i t l e ( ’ C o n i c a l s p i r a l f i t t o t h e conch s h e l l 2−D c a v i t y ’ )

t_spirallength.m

1 % Rasou l M. P . Aghdam

2 % MIE Depar tment − Concordia U n i v e r s i t y

3 % 2014−2016

4

5 %%% Computa t ion o f t h e conch s h e l l s p i r a l l e n g t h %%%

6

7 c l e a r a l l

8 c l o s e a l l

9 c l c

10
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11 % C o n s t a n t s i n t h e second o r d e r p o l y n o m i a l r e l a t i n g t h e s p i r a l

h e i g h t and

12 % r a d i u s − z ( r ) = p1∗ r ^2 + p2∗ r + p3 => dz ( r ) = 2∗p1∗ r + p2

13 p1 = −0.07913;

14 p2 = −1.331;

15 p3 = 7 . 3 4 2 ;

16

17 t h e t a 1 = 0 : 4∗ pi −0 .01 ;

18 r1 = 0 .125∗ t h e t a 1 + 1 0 . 5 7 7 / 1 0 ;

19 t h e t a 2 = 4∗ pi : 6∗ pi ;

20 r2 = 0 .225∗ t h e t a 2 ;

21

22 L1 = @( t h e t a 1 ) s q r t ( ( ( 0 . 1 2 5 ∗ t h e t a 1 + 1 0 . 5 7 7 / 1 0 ) .∗ cos ( t h e t a 1 ) ) . ^ 2

+ ( ( 0 . 1 2 5 ∗ t h e t a 1 + 1 0 . 5 7 7 / 1 0 ) .∗ s i n ( t h e t a 1 ) ) . ^ 2 + (2∗ p1 ∗ ( 0 . 1 2 5∗

t h e t a 1 + 1 0 . 5 7 7 / 1 0 ) + p2 ) . ^ 2 ) ;

23 L2 = @( t h e t a 2 ) s q r t ( ( ( 0 . 2 2 5 ∗ t h e t a 2 ) .∗ cos ( t h e t a 2 ) ) . ^ 2 + ( ( 0 . 2 2 5 ∗

t h e t a 2 ) .∗ s i n ( t h e t a 2 ) ) . ^ 2 + (2∗ p1 ∗ ( 0 . 2 2 5∗ t h e t a 2 ) + p2 ) . ^ 2 ) ;

24

25 % p i e c e w i s e c a l c u l a t i o n o f t h e s p i r a l l e n g t h

26

27 Len1 = i n t e g r a l ( L1 , 0 , 4∗ pi −0.01) ;

28 Len2 = i n t e g r a l ( L2 , 4∗ pi , 6∗ pi ) ;

29

30 L = Len1+Len2 ;

31 di s p ( L ) ;

t_vertical_radius.m

1 % Rasou l M. P . Aghdam

2 % MIE Depar tment − Concordia U n i v e r s i t y
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3 % 2014−2016

4

5 %%% Conch s h e l l s p i r a l c a v i t y v e r t i c a l r a d i u s p r o f i l e as a

f u n c t i o n o f c a v i t y l e n g t h %%%

6

7 c l e a r a l l

8 c l o s e a l l

9 c l c

10

11 TopR = [ 8 . 0 9 7 10 .621 15 .317 16 .114 21 .751 28 3 6 . 5 0 2 ] / 1 0 ;

12 BotR = −[8.016 10 .335 11 .744 16 .683 20 .158 27 .112 4 9 . 5 9 6 ] / 1 0 ;

13

14 Len = [0 6 . 1 9 1 3 . 3 9 2 1 . 6 3 3 0 . 9 8 4 2 . 5 2 5 6 . 1 8 ] ;

15

16 hold on

17 [ xData , yData ] = p r e p a r e C u r v e D a t a ( Len , TopR ) ;

18 f t = f i t t y p e ( ’ po ly2 ’ ) ;

19 [ f i t r e s u l t , go f ] = f i t ( xData , yData , f t ) ;

20 h = p l o t ( f i t r e s u l t , xData , yData ) ;

21 s e t ( h , ’ l i n e w i d t h ’ , 1 . 5 ) ;

22

23 [ xData2 , yData2 ] = p r e p a r e C u r v e D a t a ( Len , BotR ) ;

24 f t 2 = f i t t y p e ( ’ po ly2 ’ ) ;

25 [ f i t r e s u l t 2 , gof2 ] = f i t ( xData2 , yData2 , f t 2 ) ;

26 h2 = p l o t ( f i t r e s u l t 2 , xData2 , yData2 ) ;

27 s e t ( h2 , ’ l i n e w i d t h ’ , 1 . 5 ) ;

28 x l a b e l ( ’ C a v i t y Length ( cm ) ’ )

29 y l a b e l ( ’ Rad ius ( cm ) ’ )
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30 gr id on

31 t i t l e ( ’ Cross−s e c t i o n major ( v e r t i c a l ) a x i s p r o f i l e ’ )

t_horizontal_radius.m

1 % Rasou l M. P . Aghdam

2 % MIE Depar tment − Concordia U n i v e r s i t y

3 % 2014−2016

4

5 %%% H o r i z o n t a l r a d i u s p r o f i l e as a f u n c t i o n o f t h e c a v i t y l e n g t h

%%%

6

7 c l o s e a l l

8 c l e a r a l l

9 c l c

10

11 RightR = [ 2 . 6 9 9 3 . 6 1 9 3 . 8 4 9 6 . 6 9 8 7 . 3 2 8 8 . 6 8 7 1 2 . 4 2 2 ] / 1 0 ;

12 Lef tR = −[4.469 6 . 2 4 9 6 . 7 0 4 9 . 0 4 7 10 .188 14 .305 1 4 . 6 5 6 ] / 1 0 ;

13

14 Len = [0 6 . 1 9 1 3 . 3 9 2 1 . 6 3 3 0 . 9 8 4 2 . 5 2 5 6 . 1 8 ] ; % S p i r a l l e n g t h a t

each t u r n

15

16 hold on

17 [ xData , yData ] = p r e p a r e C u r v e D a t a ( Len , RightR ) ;

18 f t = f i t t y p e ( ’ po ly2 ’ ) ;

19 [ f i t r e s u l t , go f ] = f i t ( xData , yData , f t ) ;

20 h = p l o t ( f i t r e s u l t , xData , yData ) ;

21 s e t ( h , ’ l i n e w i d t h ’ , 1 . 5 )

22

23 [ xData2 , yData2 ] = p r e p a r e C u r v e D a t a ( Len , Lef tR ) ;
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24 f t 2 = f i t t y p e ( ’ po ly2 ’ ) ;

25 [ f i t r e s u l t 2 , gof2 ] = f i t ( xData2 , yData2 , f t 2 ) ;

26 h2 = p l o t ( f i t r e s u l t 2 , xData2 , yData2 ) ;

27 s e t ( h2 , ’ l i n e w i d t h ’ , 1 . 5 )

28 x l a b e l ( ’ C a v i t y Length ( cm ) ’ )

29 y l a b e l ( ’ Rad ius ( cm ) ’ )

30 gr id on

31 t i t l e ( ’ Cross−s e c t i o n minor ( h o r i z o n t a l ) a x i s p r o f i l e ’ )

A.0.2 Numerical Simulation

t_bessel.m

1 % Rasou l M. P . Aghdam

2 % MIE Depar tment − Concordia U n i v e r s i t y

3 % 2014−2016

4

5 %%% S o l u t i o n t o t h e t ime−i n d e p e n d e n t wave e q u a t i o n d e r i v e d f o r a

3−D e x p o n e n t i a l s p i r a l s t r i n g %%%

6

7 c l o s e a l l

8 c l e a r a l l

9 c l c

10

11 f = 10 0 ; % f r e q u e n c y

12 omega = 2∗ pi ∗ f ;

13

14 mu = 0 . 4 ;

15 a l p h a = 1 . 3 ;

16 lambda = (1 + mu^2 ) / ( 1 + mu^2 + 1 / a l p h a ^2 ) ;
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17 p = ( lambda − 1) / 2 ;

18 c = 34 7 ; % wave v e l o c i t y

19 k = omega / ( c∗ s q r t (1 + mu^2 + 1 / a l p h a ^ 2 ) ) ;

20

21 r i = 0 . 5 ;

22 r0 = 10 0 ;

23 r = r i : 0 . 0 1 : r0 ;

24

25 c2 = 1 / ( ( r i ^(−p ) ) ∗ ( b e s s e l y ( p , k∗ r i ) − ( b e s s e l y ( p , k∗ r0 ) / b e s s e l j ( p , k

∗ r0 ) ) ∗ b e s s e l j ( p , k∗ r i ) ) ) ;

26 c1 = −c2 ∗ ( b e s s e l y ( p , k∗ r0 ) / b e s s e l j ( p , k∗ r0 ) ) ;

27

28 y = ( r .^( −p ) ) . ∗ ( c1∗ b e s s e l j ( p , k∗ r ) + c2∗ b e s s e l y ( p , k∗ r ) ) ;

29

30 p l o t ( r , y , ’ l i n e w i d t h ’ , 1 . 5 ) ;

31 gr id on

32 a x i s t i g h t

33 x l a b e l ( ’ Rad ius ’ )

34 y l a b e l ( ’ S o l u t i o n ’ )

35 % s a v e f i g ( ’ f i g ’ ) ;

36 t i t l e ( ’ \ mu = 0 . 4 , \ a l p h a = 1 . 3 , f = 100Hz ’ )

37

38 f i g u r e ( 2 )

39 r i = 0 . 1 ;

40 r0 = 1 ;

41 hold on

42 f o r a l p h a = 1 : 0 . 1 : 2

43 n = 0 . 1 : 0 . 0 1 : 5 ;

58



44 mu2 = ( 1 . / ( 2 ∗ pi ∗n ) ) ∗ l o g ( r0 / r i ) ;

45 o u t = 1 . / ( 1 + mu2 . ^ 2 + 1 / a l p h a ^2 ) ;

46 gr id on

47 x l a b e l ( ’ n ’ )

48 y l a b e l ( ’ ( \ kappa / k ) ^2 ’ )

49 p l o t ( n , out , ’ l i n e w i d t h ’ , 1 . 2 5 )

50 t i t l e ( ’ V a r i a t i o n o f t a p e r f a c t o r \ a lpha , r_m = 1 , r _ t = 0 . 1 ’ )

51 end

t_conical.m

1 % Rasou l M. P . Aghdam

2 % MIE Depar tment − Concordia U n i v e r s i t y

3 % 2014−2016

4

5 %%% Numer ica l s i m u l a t i o n o f wave p r o p a g a t i o n i n a 3−D c o n i c a l

s p i r a l s t r i n g %%%

6

7 c l o s e a l l ; c l e a r a l l ; c l c ;

8

9 % space mesh %

10 Nx = 10 1 ;

11 dx = 1 ; % space−s t e p

12 x = ( 0 : Nx−1)∗dx ;

13

14 % t i m e mesh %

15 T = 100001; % t o t a l number o f t i m e s t e p s

16 d t = 0 . 0 0 1 ; % time−S t e p

17 t = ( 0 : T−1)∗ d t ;

18
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19 c = 3 4 7 . 2 3 ; % wave v e l o c i t y

20 nu = 0 . 0 1 ; % wave damping

21 a l p h a = 1 . 4 ; % s p i r a l s c a l e

22 beta = 0 . 6 5 ; % s p i r a l z s c a l e

23 f = 5 0 ; % s i n e i n p u t f r e q u e n c y

24 s = T / f ;

25

26 u = z e r o s ( T , Nx ) ; % s o l u t i o n i n i t i a l i z a t i o n

27 % u ( : , 1 ) = ones ( T , 1 ) ; % boundary c o n d i t i o n a t x=0

28 u ( 1 : s , 1 ) = s i n (2∗ pi ∗ f ∗ t ( 1 : s ) ) ; % s i n e i n p u t boundary c o n d i t i o n a t

x=0

29 v0 = 0 ; % i n i t i a l v e l o c i t y c o n d i t i o n g ( x )

30

31 % e q u a t i o n c o n s t a n t s %

32 fn = 1 + 1 / ( beta ^ 2 ) + ( a l p h a ^ 2 ) . / ( x . ^ 2 ) ; % v e c t o r

33 c1 = 1 / ( ( c∗ d t ) ^2 ) + nu / ( 2 ∗ d t ∗c ^ 2 ) ;

34 c2 = fn / ( dx ^2 ) + 1 . / ( 2 ∗ x∗dx ) ; % v e c t o r

35 c3 = −2∗ fn / ( dx ^ 2 ) + 2 / ( ( c∗ d t ) ^2 ) ; % v e c t o r

36 c4 = fn / ( dx ^2 ) − 1 . / ( 2 ∗ x∗dx ) ; % v e c t o r

37 c5 = −1/ ( ( c∗ d t ) ^2 ) + nu / ( 2 ∗ ( c ^2 ) ∗ d t ) ;

38

39 % CTCS f i n i t e d i f f e r e n c e scheme %

40

41 f o r i = 2 : Nx−1

42 u ( 2 , i ) = ( ( c2 ( i ) / c1 ) . ∗ u ( 1 , i +1) + ( c3 ( i ) / c1 ) . ∗ u ( 1 , i ) + ( c4 ( i ) /

c1 ) .∗ u ( 1 , i −1) − 2∗ d t ∗ ( c5 / c1 ) . ∗ v0 ) /(1− c5 / c1 ) ;

43 end

44

60



45 f o r j = 2 : T−1

46 f o r i = 2 : Nx−1

47 u ( j +1 , i ) = ( c2 ( i ) / c1 ) . ∗ u ( j , i +1) + ( c3 ( i ) / c1 ) . ∗ u ( j , i ) + (

c4 ( i ) / c1 ) .∗ u ( j , i −1) + ( c5 / c1 ) ∗u ( j −1, i ) ;

48 end

49 end

50 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

51

52 p l o t _ t i m e s = [51 151 1501 7 5 0 1 ] ;

53

54 f o r i = 1 : 4

55

56 hold on ;

57 s u b p l o t ( 2 , 2 , i ) ;

58 k = p l o t _ t i m e s ( i ) ;

59 p l o t ( x , u ( k , : ) , ’ l i n e w i d t h ’ , 2 ) ;

60 gr id on ;

61 a x i s ( [ min ( x ) max ( x ) −1.5 1 . 5 ] ) ;

62 x l a b e l ( ’ Rad ius \ rho ’ ) ;

63 y l a b e l ( ’Wave Ampl i tude ’ ) ;

64 t i t l e s t r i n g = [ ’ Time = ’ , num2str ( t ( k ) ) , ’ second ’ ] ;

65 t i t l e ( t i t l e s t r i n g ) ;

66 % h=gca ;

67 % g e t ( h , ’ F o n t S i z e ’ )

68 % s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

69 % f h = f i g u r e ( i ) ;

70 % s e t ( fh , ’ c o l o r ’ , ’ wh i t e ’ ) ;

71
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72

73 end

74 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

75 % Movie f o r t h e t r a v e l l i n g wave

76

77 % f o r j = 1: T

78 % p l o t ( x , u ( j , : ) , ’ l i n e w i d t h ’ , 2 ) ;

79 % g r i d on ;

80 % a x i s ( [ min ( x ) max ( x ) −2 2 ] ) ;

81 % x l a b e l ( ’ Rad ius \ rho ’ , ’ f o n t S i z e ’ , 1 4 ) ;

82 % y l a b e l ( ’ Wave Ampl i tude ’ , ’ f o n t S i z e ’ , 1 4 ) ;

83 % t i t l e s t r i n g = [ ’ Time s t e p = ’ , num2s t r ( j ) , ’ Time = ’ , num2s t r (

t ( j ) ) , ’ second ’ ] ;

84 % t i t l e ( t i t l e s t r i n g , ’ f o n t s i z e ’ , 1 4 ) ;

85 % h=gca ;

86 % g e t ( h , ’ F o n t S i z e ’ )

87 % s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

88 % f h = f i g u r e ( 5 ) ;

89 % s e t ( fh , ’ c o l o r ’ , ’ wh i t e ’ ) ;

90 % F=g e t f r a m e ;

91 %

92 % end

93 %

94 % movie ( F , T )

95 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

96

97 % E = s u r f ( x , t , u )

98 % E . L i n e S t y l e = ’ : ’
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99 % %E . EdgeColor = ’ none ’

100 % colormap hsv

101 % l i g h t i n g gouraud

102 % m a t e r i a l s h i n y

103 % x l a b e l ( ’ D i s ta nc e ’ )

104 % y l a b e l ( ’ Time ( s ) ’ )

105 % z l a b e l ( ’ Ampl i tude ’ )

106

107 % f r e q u e n c y domain p l o t t i n g %

108 % vec = u ( : , 1 0 0 ) ;

109 % Y = f f t ( vec ) ;

110 % T = l e n g t h ( vec ) ;

111 % P2 = abs ( Y / T ) ;

112 % P1 = P2 ( 1 : f l o o r ( T / 2 ) +1) ;

113 % P1 ( 2 : end −1) = 2∗P1 ( 2 : end −1) ;

114 % Fs = 1 / d t ; % s a m p l i n g f r e q u e n c y

115 % f q = [ 0: Fs / ( T−2) : Fs / 2 ] ;

116 % % p l o t ( f q ( 1 : 2 5 0 ) , P1 ( 1 : 2 5 0 ) ) ;

117 % p l o t ( fq , abs ( Y ( 1 : T / 2 ) ) , ’ L ineWidth ’ , 2 ) ;

118 % x l i m ( [ 1 5 0 ] ) ;

119 % g r i d on

120 % x l a b e l ( ’ Frequency ( Hz ) ’ ) ;

121 % y l a b e l ( ’ Magnitude ’ ) ;

122 % t i t l e ( [ ’ C o n i c a l S p i r a l − \ a lpha = ’ , num2s t r ( a lpha ) , ’ \ b e t a =

’ , num2s t r ( b e t a ) , ’ \ nu = ’ , num2s t r ( nu ) ] ) ;

t_exponential.m

1 % Rasou l M. P . Aghdam

2 % MIE Depar tment − Concordia U n i v e r s i t y
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3 % 2014−2016

4

5 %%% Numer ica l s i m u l a t i o n o f wave p r o p a g a t i o n i n a 3−D e x p o n e n t i a l

s p i r a l s t r i n g %%%

6

7 c l o s e a l l ; c l e a r a l l ; c l c ;

8

9 % space mesh %

10 Nx = 10 1 ;

11 dx = 1 ; % space−s t e p

12 x = ( 0 : Nx−1)∗dx ;

13

14 % t i m e mesh %

15 T = 100001; % t o t a l number o f t i m e s t e p s

16 d t = 0 . 0 0 1 ; % time−S t e p

17 t = ( 0 : T−1)∗ d t ;

18

19 c = 3 4 7 . 2 3 ; % wave v e l o c i t y

20 mu = 0 . 4 ; % s p i r a l growth f a c t o r

21 nu = 0 . 0 1 ; % wave damping

22 a l p h a = 0 . 8 ; % s p i r a l z s c a l e

23 f = 5 0 ; % s i n e i n p u t f r e q u e n c y

24 s = T / f ;

25

26 u = z e r o s ( T , Nx ) ; % s o l u t i o n i n i t i a l i z a t i o n

27 % u ( : , 1 ) = ones ( T , 1 ) ; % boundary c o n d i t i o n a t x=0

28 u ( 1 : s , 1 ) = s i n (2∗ pi ∗ f ∗ t ( 1 : s ) ) ; % s i n e i n p u t boundary c o n d i t i o n a t

x=0
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29 v0 = 0 ; % i n i t i a l v e l o c i t y c o n d i t i o n g ( x )

30

31 % e q u a t i o n c o n s t a n t s %

32 lambda = (1 + mu^2 ) / ( 1 + mu^2 + 1 / a l p h a ^2 ) ;

33 z e t a = 1 / ( c ^2∗ (1 + mu^2 + 1 / a l p h a ^ 2 ) ) ;

34 e t a = nu∗ z e t a ;

35 c0 = z e t a / d t ^2 − e t a / ( 2 ∗ d t ) ;

36 c1 = −1/ ( ( dx ^ 2 ) ∗ c0 ) ;

37 c2 = −lambda / ( 2 ∗ ( dx ^2 ) ∗ c0 ) ;

38 c3 = −z e t a / ( ( d t ^2 ) ∗ c0 ) ;

39 c4 = −e t a / ( 2 ∗ d t ∗ c0 ) ;

40

41 % CTCS f i n i t e d i f f e r e n c e scheme %

42

43 f o r i = 2 : Nx−1

44 u ( 2 , i ) = u ( 1 , i +1)∗(−c1 /(1− c3+c4 ) − c2 / ( i ∗(1− c3+c4 ) ) ) + u ( 1 , i )

∗ (2∗ c1−2∗c3 ) /(1− c3+c4 ) + u ( 1 , i −1)∗(−c1 /(1− c3+c4 ) + c2 / ( i

∗(1− c3+c4 ) ) ) + 2∗ d t ∗v0 ∗ ( c4−c3 ) /(1− c3+c4 ) ;

45 end

46

47 f o r j = 2 : T−1

48 f o r i = 2 : Nx−1

49 u ( j +1 , i ) = −c1 ∗ ( u ( j , i +1)−2∗u ( j , i ) +u ( j , i −1) ) − ( c2 / i ) ∗ ( u ( j

, i +1) − u ( j , i −1) ) − 2∗ c3∗u ( j , i ) + u ( j −1, i ) ∗ ( c3−c4 ) ;

50 end

51 end

52 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

53
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54 p l o t _ t i m e s = [51 151 1501 7 5 0 1 ] ;

55

56 f o r i = 1 : 4

57

58 hold on

59 s u b p l o t ( 2 , 2 , i ) ;

60 k = p l o t _ t i m e s ( i ) ;

61 p l o t ( x , u ( k , : ) , ’ l i n e w i d t h ’ , 2 ) ;

62 gr id on ;

63 a x i s ( [ min ( x ) max ( x ) −1.5 1 . 5 ] ) ;

64 x l a b e l ( ’ Rad ius \ rho ’ ) ;

65 y l a b e l ( ’Wave Ampl i tude ’ ) ;

66 t i t l e s t r i n g = [ ’ Time = ’ , num2str ( t ( k ) ) , ’ second ’ ] ;

67 t i t l e ( t i t l e s t r i n g ) ;

68 % h=gca ;

69 % g e t ( h , ’ F o n t S i z e ’ )

70 % s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

71 % f h = f i g u r e ( i ) ;

72 % s e t ( fh , ’ c o l o r ’ , ’ wh i t e ’ ) ;

73 %

74 end

75 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

76 % Movie f o r t h e t r a v e l l i n g wave

77

78 % f o r j = 1: T

79 % p l o t ( x , u ( j , : ) , ’ l i n e w i d t h ’ , 2 ) ;

80 % g r i d on ;

81 % a x i s ( [ min ( x ) max ( x ) −0.2 0 . 2 ] ) ;
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82 % x l a b e l ( ’ X a x i s ’ , ’ f o n t S i z e ’ , 1 4 ) ;

83 % y l a b e l ( ’ Wave Ampl i tude ’ , ’ f o n t S i z e ’ , 1 4 ) ;

84 % t i t l e s t r i n g = [ ’ Time s t e p = ’ , num2s t r ( j ) , ’ Time = ’ , num2s t r (

t ( j ) ) , ’ second ’ ] ;

85 % t i t l e ( t i t l e s t r i n g , ’ f o n t s i z e ’ , 1 4 ) ;

86 % h=gca ;

87 % g e t ( h , ’ F o n t S i z e ’ )

88 % s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

89 % f h = f i g u r e ( 5 ) ;

90 % s e t ( fh , ’ c o l o r ’ , ’ wh i t e ’ ) ;

91 % F=g e t f r a m e ;

92 %

93 % end

94 %

95 % movie ( F )

96 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

97

98 % E = s u r f ( x , t , u )

99 % E . L i n e S t y l e = ’ : ’

100 % %E . EdgeColor = ’ none ’

101 % colormap hsv

102 % l i g h t i n g gouraud

103 % m a t e r i a l s h i n y

104 % x l a b e l ( ’ D i s ta nc e ’ )

105 % y l a b e l ( ’ Time ( s ) ’ )

106 % z l a b e l ( ’ Ampl i tude ’ )

107

108 % f r e q u e n c y domain p l o t t i n g %
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109 % vec = u ( : , 1 0 0 ) ;

110 % Y = f f t ( vec ) ;

111 % T = l e n g t h ( vec ) ;

112 % P2 = abs ( Y / T ) ;

113 % P1 = P2 ( 1 : f l o o r ( T / 2 ) +1) ;

114 % P1 ( 2 : end −1) = 2∗P1 ( 2 : end −1) ;

115 % Fs = 1 / d t ; % s a m p l i n g f r e q u e n c y

116 % f q = [ 0: Fs / ( T−2) : Fs / 2 ] ;

117 % % p l o t ( f q ( 1 : 2 5 0 ) , P1 ( 1 : 2 5 0 ) ) ;

118 % p l o t ( fq , abs ( Y ( 1 : T / 2 ) ) , ’ L ineWidth ’ , 2 ) ;

119 % x l i m ( [ 1 3 0 ] ) ;

120 % g r i d on

121 % x l a b e l ( ’ Frequency ( Hz ) ’ ) ;

122 % y l a b e l ( ’ Magnitude ’ ) ;

123 % t i t l e ( [ ’ E x p o n e n t i a l S p i r a l − \ mu = ’ , num2s t r ( mu ) , ’ \ a lpha =

’ , num2s t r ( a lpha ) , ’ \ nu = ’ , num2s t r ( nu ) ] ) ;
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