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ABSTRACT 

 

The Influence of Operational Sex Ratio on the Intensity of Competition in Reindeer 

(Rangifer tarandus) during Rut: An Experimental Approach 

 

Franco M. Alo 

We examined how manipulating operational sex ratio (OSR: the ratio of reproductively 

active males to fertilizable females), could affect the intensity of competition in reindeer 

(Rangifer tarandus) using an experimental approach to test mating systems theory on the very 

first field study on large mammals of its kind. Study was conducted at the Kutuharju Reindeer 

Research Station where we had access to a herd of semi-domesticated reindeer. We manipulated 

OSR on two levels in two enclosures, a female biased treatment (3�:6� = OSR 0.5) and a sex 

balanced treatment (3�:3� = OSR 1). Female reindeer were injected with 1 ml of estrumate 

prior to a trial to promote early and synchronized oestrous to assure competition among our 1.5-

year-old males. We predicted that with increasing OSR, male-male aggression would increase 

and courtship behaviours would decrease, unless males adopted alternative mating tactics. 

Conversely, female-female aggression was predicted to decrease with increasing OSR. The 

propensity for males to act agonistically was predicted to increase with increasing OSR. Male-

male rate of aggression did not differ between treatments. Female-female rate of aggression was 

found to decrease significantly with increasing OSR. Propensity to act agonistically was not 

significantly different between treatments. 1.5-year-old males may be too young and 

inexperienced to behave predictably. We conclude that the intensity of competition cannot be 

predicted at the group level based on OSR alone, though some trends emerged.  
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INTRODUCTION 

 

Competition for access to mates is quintessential in the pursuit to increase an individual’s 

reproductive success. Of the various types of competition, probably the most common amongst 

mammals is contest competition (Andersson & Iwasa 1996). Sexual selection, the evolution of 

adaptations that increase the mating success of certain individuals over others of the same sex 

and species, arises primarily from male-male competition and female mate choice (Clutton-

Brock 2007). The rate at which sexual traits evolve, depends largely on the outcome of 

competition and thus, the mating system observed has important consequences on the bearing of 

sexual selection. Polygyny for example, where males copulate with multiple females, promotes 

the potential presence of a given individual’s genes being more prominent in the next generation 

due to high reproductive effort amongst males (Clutton-Brock & McAuliffe 2009). 

Understanding the mechanisms of intra-specific competition involved in a certain species, can 

thus provide predictive power on the outcome of competition and approaches regarding its 

manipulation (Andersson & Iwasa 1996).  

 

Secondary sexual traits 

It is theorized in Darwin’s (1871) Descent of Man that mammalian males who exhibit 

ornamentation and high sexual dimorphism, compete intensely thereby designating them active 

strategists, while females tend to have a lower cost expenditure in this domain, giving the 

impression of being more passive. Darwin’s theory then contrasts males as being mate limited, 

whilst females are resource limited and predator averse (Bro-Jørgensen 2011) thus explaining 

why males compete more intensely while females are responsible for mate choice. It is believed 

that females who have reduced or no ornaments and who compete less intensely, do so to 

maintain fecundity or parental investment as these traits are energy exhaustive (Clutton-Brock 

2009). These predictive frameworks direct the interactions that constitute mating systems.  
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Mating systems 

Mating systems are numerous, and to a degree depend greatly on the spatial and temporal 

aggregation of many resources (Clutton-Brock 1989). The degree of monopolization of those 

resources determines the variation in mating success of individuals (Emlen & Oring 1977). Of 

the array of mating bonds possible (e.g. monogamy, polyandry, polygyny, and promiscuity), 

reindeer, our study species, belong to the 90% of mammals that are polygynous (Clutton-Brock 

1989). Though their mating behaviours may change in response to environmental and social 

fluxes, principals remains the same; males need to acquire females and females need to acquire 

resources in order to maximize their reproductive fitness (Clutton-Brock 2007). Female 

aggregation in patches of high resource availability is thought to be at the forefront for the 

evolution of polygyny, where males can then access multiple females at one site (Bebié & 

McElligott 2006), generating conflict between males resulting in competition for access to mates 

(Clutton-Brock 2007). 

 

Sexual selection 

What is often not accounted for regardless of sex is how the operational sex ratio (OSR: 

ratio of reproductively active males to fertilizable females) of a population may affect the 

behaviour and interactions of those animals (Emlen & Oring 1977; Reynolds 1996; Grant & 

Foam 2002). Quantifying sexual selection to predict an adaptive framework for mating systems 

has proven to be difficult for large mammals due to obvious logistical constraints surrounding 

their manipulation in natural or semi-natural settings (Clutton-Brock & McComb 1993). Most 

papers deal primarily with males of taxa with small bodied animals in controlled environments 

(Weir et al. 2011). By using an experimental approach, we hope to contribute to the 

understanding of mating system theories, which has been largely untested and which may prove 

powerful if trends are consistent across taxa. Moreover, few studies to date have paid 

considerable attention to female mating strategies (Cotton et al. 2006), an aspect that we have 

incorporated in our design. Indeed, females play an important role in shaping sexual selection 

and may not be as passive as formerly thought (Clutton-Brock & McComb 1993; Cotton et al. 

2006; Bebié & McElligott 2006; Clutton-Brock & McAuliffe 2009; Pérez-González & 

Carranza 2011; Bro-Jørgensen 2011).  
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As OSR becomes increasingly biased towards a given sex, that sex will experience an 

increase in intraspecific competition (Clutton-Brock & Vincent 1991; Andersson & Iwasa 

1996; Lindenfors et al. 2007; Clutton-Brock 2007) though an effect is not always detected, as 

discovered in the Alpine newt (Triturus alpestis)(Denoël et al. 2005). Jirotkul (1999b) 

demonstrated that the strength of sexual selection in male Trinidadian guppies (Poecilia 

reticulata) decreased when population density increased, owing to reduced courtship behaviour 

at a controlled OSR and increased mate competition and mate choice due to higher encounter 

rates at high population densities. Manipulating population density, group size, and OSR have all 

led to numerous controversial evidence on their effects when considering the theory of sexual 

selection (Kvarnemo & Ahnesjo 1996; Jirotkul 1999a; 1999b; Head et al. 2007; Klug et al. 

2008; Sprenger et al. 2011). As such, we have kept male density and male age structure 

constant throughout the experiment, manipulating only the OSR. In recent years, it has been 

suggested in the literature that perhaps of equal interest is not only measuring the frequency of 

competitive behaviour, but rather addressing the more central question of when should 

individuals compete for mates. The propensity to act agonistically, i.e. the likelihood to engage 

in an agonistic behaviour given the opportunity during an encounter, measured as a rate, would 

more accurately reflect competition pressures and could be used to assess the strength of sexual 

selection across varying OSR (de Jong et al. 2012). Given more opportunities to act 

agonistically or given a reduction in the ratio of females to males with increasing OSR, 

propensity for males to act agonistically should increase (de Jong et al. 2012). This measure is 

therefore necessary to assess when individuals deem it necessary to act agonistically and take an 

opportunity to do so rather than invest time in other behaviours thereby reflecting the effect of 

varying competition pressures.  

Reindeer, are sexually dimorphic like most other mammals (Eisenberg 1981; Clutton-

Brock 1989; McElligott et al. 2001; Lindenfors et al. 2007). As part of their elaborate social 

structure, male reproductive effort is directly related to female receptivity during the breeding 

season (rut) where few receptive females means few males reproducing successfully. 

Furthermore, as a result of varying competitive pressures, males may be forced to alter their 

mating tactics to suit a particular strategy. New male mating strategies (i.e. the number of 

approaches to acquiring a mate) may thus emerge to comply with varying population dynamics 

in order to insure maximum fitness is attained. As an example of a mating strategy, young 



 4 

subordinate reindeer males may stay with a female group and await the decline in sexual activity 

of a high-ranking male before attempting to mate (Røed et al. 2002). This is also the case in 

bighorn sheep Ovis canadensis (Pelletier et al. 2006), topi antelopes Damaliscus lunatus (Bro-

Jørgensen & Pangle 2010), fallow deer Dama dama (Clutton-Brock & McComb 1993), and 

red deer Cervus elaphus (Carranza et al. 1990). Most managed ungulate populations tend to be 

female-biased among adults (Ginsberg & Milner Gulland 1994; Holand et al. 2006), thus 

having a low OSR implying greater mating opportunities for every individual male, at a cost. 

Studies have shown that adult male reindeer may lose up to 15% of their body mass during the 

rut (Holand et al. 2006; Tennenhouse et al. 2011; Holand et al. 2012). This somatic cost is 

considerable and is the outcome of devoting a substantial amount of energy to reproductive effort 

and agonistic behaviours when competing for females (Mysterud et al. 2003; Tennenhouse et 

al. 2011).  

 

Costs associated to reproduction and competition 

It is suggested that somatic and reproductive costs are a result of varying male rutting 

behaviour influenced by age (Mysterud et al. 2003; Holand et al. 2006), density (Sprenger et 

al. 2011), and group composition (Tennenhouse et al. 2011). Group composition, the number of 

males present in a herd (mature or young), dictates both the intensity and competitive strategy 

used by old dominant male reindeer (Tennenhouse et al. 2011). Unlike old dominant male 

reindeer, young males have higher capital breeding strategy constraints (Kojola 1991) meaning 

that unfavourable investment in early or late reproductive effort in light of females preferring 

larger adult males may simply be futile if unsuccessful (Holand et al. 2006). The presence of 

young males alone leads to higher somatic costs and stress in female groups due to increased 

levels of harassment (Clutton-Brock et al. 1996; Holand et al. 2006). Regardless of age, as the 

OSR becomes increasingly biased towards any particular sex, the most abundant sex will 

experience a higher intensity of competition and reduced courtship behaviours as the resource 

they are interested in is in limited supply (Kvarnemo & Ahnesjo 1996). Until now, surprisingly 

few field studies have investigated the effect of OSR on competitive behaviour in the field while 

controlling for the aforementioned caveats (Weir et al. 2011).  
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Agonistic behaviour 

Agonistic behaviour may take many forms; from an energetically costly chase to a low 

intensity interaction such as sparring (Tennenhouse et al. 2011). In reindeer, the variation in 

observed agonistic behaviour is dependent on social status, age, and experience (Isvaran 2005; 

Tennenhouse et al. 2011). Harems (female aggregation in ungulates with one or more males) 

are typically controlled by the largest and highest ranking male individual (Lindenfors et al. 

2007). Older dominant males are more likely to win fights due to age and experience. Younger 

subordinate males are more prone to using harassment, forced mating, and even sneaking (Røed 

et al. 2002; Isvaran 2005) to avoid challenging superior competitors (Pelletier et al. 2006). 

Female reindeer frequently aggregate into harems to decrease the level of harassment from such 

males though at the cost of increasing foraging competition between females (L’Italien et al. 

2012). Holand et al. (2012) describes reindeer males as having a mating strategy comprised of 

four main tactics decreasing in energetic cost accordingly, as well as potential gains: Dominant, 

Wannabe, Satellite, and Sneaker. Understanding how the presence of these mating tactics differs 

between OSR levels may shed light on the evolution of such tactics. 

 

Objectives and predictions 

Here using an experimental approach, we examine the effects of manipulating OSR on 

the strength of competition in reindeer, as manifested mainly by agonistic behaviour in 1.5-year-

old males. To our knowledge, this is the first study to explore the effects of manipulating OSR 

on competitive behaviour in a field setting in a large mammal. Prior to reaching that conclusion, 

we performed a Web of Science query using the following words: “operational sex ratio” + 

“OSR” + “vertebrates” removing matches with “cells” + “human” due to the epidemiological 

nature of the results. This search revealed 50 matches of which 21 papers dealt with fish, the 

remaining dealing primarily with primates and amphibians and none on ungulates. As such, our 

aim is to determine if manipulating OSR on two levels will lead to variable strengths of 

competition in R. tarandus. We will test for the key predictions that (i) male-male aggression 

will increase with OSR whereas female-female aggression will decrease; (ii) courtship rate and 

duration will either decrease with OSR because of increased male-male competition or increase 
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if males adopt alternative mating tactics (e.g. Sneaking); and (iii) propensity to act agonistically 

will increase with OSR.  
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METHODS 

 

Reindeer and study area 

A group of semi-domesticated reindeer was monitored during the rut from 14 September 

– 15 October 2015 at the Kutuharju Reindeer Research Station near Kaamanen, Finland (69˚N, 

27°E). All individuals, including calves, were weighed to the nearest 0.1 kg and ear tagged. For 

this experiment, our reindeer were assigned to one of two experimental enclosures, at random. 

These areas are generally characterized by birch (Betula spp.) and Scots pine (Pinus sylvestris) 

forests amongst the many bogs and lakes covering vast topographically diverse plateaus 

(L’Italien et al. 2012; Djaković et al. 2014).  

We used ESRI (Environmental Systems Resource Institute)® ArcMap™ 10.0 to calculate 

percent dominant land cover type using the ‘zonal histogram’ tool to determine if there were 

significant differences between enclosures. Land cover imagery of the study area was acquired 

from Landsat 8 at a 30 m spatial resolution. A map of the enclosures was rendered using 152 

coordinate data points collected from enclosure 1 and 197 coordinate data points collected from 

enclosure 2. Readings were taken every 16 ± 4 m using a Magellan Triton™ 300 GPS set to 

lat/long (deg.ddddd) coordinate system and the WGS84 map datum (Figure 1). Enclosure 1 

(perimeter = 2.47 km, area = 0.41 km2) was composed of 54 % treeless peatland and mire, 16 % 

mesic/submesic mountain birch, 12 % mesic/submesic young forest, 8 % mesic/submesic old 

growth and mature forest, 5 % water system, 4 % forested peatland and mire, and < 1 % nutrient-

poor/dry old growth and mature forest. Enclosure 2 (perimeter = 3.03 km, area = 0.54 km2) was 

composed of 42 % treeless peatland and mire, 17 % forest peatland and mire, 17 % 

mesic/submesic mountain birth, 14 % mesic/submesic young forest, 5 % mesic/submesic old 

growth and mature forest, 3 % water system, < 1 % nutrient-poor/dry old growth and mature 

forest, and < 1 % infrastructure area. Both enclosures were adjacent to each other and shared 

approximately 0.40 km of fencing. Though enclosures shared part of their Northern (enclosure 1) 

and Southern (enclosure 2) fence, no adequate solution was found to deter reindeer from 

obtaining any visual stimulus from conspecifics between treatments. Furthermore, this would not 

have inhibited any olfactory information transmission and thus total prevention of any type of 

interaction was not possible.  
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Experimental design 

We manipulated OSR on two levels (3�:6�, 3�:3� hereby referred to as 0.5 and 1 

respectively) to assess its degree of influence on the intensity of intraspecific competition. In 

total, there were 6 male reindeer (age, 1.5-years-old; pre-rut mean weight ± SD = 75.5 ± 2.89 kg) 

and 36 female reindeer (age, range: 2.5 – 5.5-years-old; pre-trial mean weight ± SD = 79.4 ± 

10.80 kg). Male age and density was kept constant so that any effect of treatment (OSR 0.5 or 

OSR 1) may be independent of these variables. The six 1.5-year-old males were fitted with very 

high frequency (VHF) collars so that they may be located within enclosures using radio 

telemetry. To assure independence of errors, the same 6 males were shuffled and chosen at 

random every trial, to be separated into two groups of 3 into either enclosure 1 or 2. In contrast, 9 

females were replaced every day 0, corresponding with the day preceding the start of a new trial. 

On day 0 females were also weighed (i.e. pre-trial). Males on the other hand were weighed pre-

rut (September 22nd), mid-rut (October 4th), and post-rut (October 19th) to evaluate any changes 

in mass gain/loss during trials (N = 4) corresponding to pre-study weight, mid-study weight, and 

post-study weight. Every trial consisted of 5 treatment days in both enclosures corresponding 

each to one OSR level (OSR 0.5 or OSR 1), with a total of 4 trials being performed over the 

length of the study. 

We used systematic randomization with a Latin square design to vary the levels of OSR 

among our enclosures between trials. Our focus was on interspersion over strict randomization 

due solely to limitations of experimental design and lack of intra-trial replication with the aim to 

avoid getting segregated layouts. Though this introduces a small amount of bias, interspersion 

was expected to at least remove any potential for nondemonic intrusion and an effect of 

treatment which clearly would be false positive (Hurlbert 1984). What is being replicated here 

is not the treatments, but the samples within single level of the treatment.  

 

Ethics statement 

In addition to data collection, animals were handled safely in accordance with the 

agreement from the Animal Ethics and Care certificate provided by Concordia University 

(AREC-30000303) and by the Finnish National Advisory Board on Research Ethics. Dr. Mauri 
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Nieminen, a senior Finnish reindeer research scientist, was granted permission by a local 

veterinarian in Kaamanen, Finland, to administer hormone injections to our experimental 

females, under professional supervision.  

 

Estrumate injections 

On day 0 of every trial, nine females were injected intramuscularly with 1 ml of 

estrumate® (cloprestenol sodium), an analogue of prostaglandin for cattle, to promote early 

oestrous. They were then separated into their respective treatments at random, and allowed one 

day to acclimate with the new group before any data collection ensued. During a reindeer’s 

breeding season, behaviour normally progressively intensifies until peak rut (when most females 

are in oestrous)(Holand et al. 2006; Body et al. 2014). Successful activation of estrumate meant 

that every trial was a miniaturized breeding season, motivating the males to not lose interest in 

the females thereby inducing rut-like behaviour. No experimental females were injected during 

trial 4 as their collection was unfortunately delayed during the season, putting them at risk of 

abortion if treated with estrumate while already having been copulated with. As a solution, we 

attempted to choose the youngest female reindeer for trial 4 as there exists a positive correlation 

between age of female reindeer and birth-weight of calves as related to time at conception 

(Eloranta & Nieminen 1986). Younger females are more prone to being in oestrous and 

conceived with near the end of rut (trial 4). All experimental females were held in a paddock 

absent of males prior to their given trials to avoid copulation. Due to insufficient available forage 

in the paddock, experimental females were fed 2 kg individual –1 day –1 of supplementary dried 

commercial reindeer pellets (Poron-Herkku, Rehuraisio, Finland). 

 

Behavioural measures 

Group composition 

Upon entering the enclosures, we recorded our arrival time and that of finding the first 

group. Our average search time was calculated across treatments and trials (mean ± 95% CI = 

15.1 ± 2.5 min). We defined a group as being a cluster of individuals consisting of at least two 

individuals (male or female), 100 m from each other, which are synchronized in their activities 
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(i.e. feeding/resting/walking/standing) and separated 100 m from another cluster of individuals 

(Tennenhouse et al. 2011). With the fission-fusion dynamics of a group being very plastic, a 

new group composition was recorded any time individuals fused or parted for longer than 10 

minutes. Following group compositions, throughout the day, groups were assessed for 1 of 4 

possible mating tactics (see (Holand et al. 2012)). These counts were then transformed into 

presence/absence data. The total number of group compositions completed per day by any of the 

three observers was an indirect measure of how dispersed or clustered individuals were from 

each other in any given treatment. Group size and capacity (number of individuals present/ total 

number of individuals possible) were extracted from group composition data to determine how 

likely fission-fusion dynamics in a given OSR would change. 

 

Propensity 

As has been previously noted in the literature (de Jong et al. 2012), measuring the 

frequency of agonistic interactions may not be the most representative when comparing the 

effect of OSR between two or more experimental treatment levels. Our interest was to quantify 

how often an opportunity to act agonistically was taken and whether changes in OSR would lead 

to changes in propensity. Propensity addresses the question, when should individuals compete 

for mates (de Jong et al. 2012)? We initially assessed through repeated observations a minimum 

radius for all individuals, in which an encounter would indisputably lead to an agonistic 

interaction between two reindeer. That distance was then slightly inflated as to capture more 

behaviour due to the uncertainty of using a standalone measurement that was to be fixed over 

time.  

We used a radius of 2 meters for all males, and unfortunately, could not apply the same 

or any suitable distance to females as they were frequently found foraging within one body 

length of each other. If males entered each other’s 2 meter radius and left without engaging in 

any agonistic behaviour, we scored that interaction a 0 for lack of engagement (i.e. the absence 

of an agonistic interaction given the opportunity). Conversely, an interaction that occurred 

between males inside this 2 meter radius was given a score of 1, signifying an agonistic 

interaction occurred. In this manner, number of engagements over total number of encounters 

(presence/absence of agonistic interactions within 2 meters between 2 individuals) resulted in our 
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propensity measurement. An interval of 15 seconds was used to differentiate between any two 

given encounters, whereby the same individuals from a previous encounter needed to be more 

than 2 meters away from each other after the allotted time. If both individuals were within a 2 

meter radius after the time interval and still no new agonistic interaction occurred, it was 

considered a new encounter. Propensity was measured during any of the two following sampling 

techniques.   

 

Behavioural sampling 

Behavioural sampling with continuous measuring was conducted in blocks of 15 minutes. 

Half the group or more had to be visible for sampling to ensue. Any missing individuals were 

excluded accordingly in relation to total time sampled. In this manner, we got an estimate of 

mean time every individual was sampled and pooled by sex and treatment level at the end of the 

day. Behaviours of interest were directly related to mating tactics and/or agonistic interactions 

such as but not limited to: follow, court, attempted copulation, chase, displace, fight, spar, head 

threats (see (Tennenhouse et al. 2012) for definitions). Furthermore, related behaviours were 

grouped into two main categoriess to facilitate statistical analysis. These categories were 

agonistic (chases, displacements, spars, fights, head threats), and courtship (follow, attempted 

copulation, herd, court) behaviours. Bush thrashing was an individual display behaviour treated 

as such. Though initially part of the study, courtship duration was repeatedly difficult to measure 

despite the behaviour being ostentatious yet often extremely brief. As a substitute, a measure of 

courtship rate was calculated as the frequency of courtship behaviours divided by observation 

time. Where applicable, we documented interactions between individuals as either male-male 

(M:M), female-female (F:F), female-male (F:M) and male-female (M:F). 

 

Focal sampling 

Due to the nature of manipulating OSR and its potential impact on the intensity of 

competition, of relevance was observing if the male daily budget activity differed between 

treatment levels. Increased competition pressures might lead to a higher daily percentage of 

resting as a plausible corollary. Females are known to devote most of their time to foraging 
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(Uccheddu et al. 2015) and were largely of interest as to how active/rest times differed between 

treatments. No focal observations were performed on females allowing us to have a larger 

reported number of male observations (78 focals/ OSR corresponding to about 19.39 hours/OSR). 

We recorded whether a focal male was either feeding/resting/walking/standing/other every 15 

seconds over a fifteen-minute block (Table 1). Any behaviour during focal or behavioural 

sampling that was of interest (despite not being part of the recording technique) was documented 

ad libitum (e.g. flehming, grunting).  

 

Social hierarchy  

All possible pairs of agonistic interactions were recorded and organized in a matrix with a 

winner and loser being identified. A loser was described as an individual being chased or 

displaced by another individual during an agonistic interaction. The individual doing the chasing 

or displacing was designated the winner. Improved Landau’s index of linearity (De Vries 1998) 

was generated for each matrix and the rank of each individual was determined from the 

reordered matrices, all using Matman 1.1 for Windows (Noldus 1998). Ranks were given values 

ranging 1 to 3, with 1 representing the least dominant male and 3 representing the most dominant 

male.  

 

Inter observer reliability 

Due to the multitude of sampling and recording techniques used in this experiment, we 

used data collected from simultaneous observations to investigate inter-observer reliability. In all 

three cases, we calculated the index of concordance for behavioural sampling measurements and 

the Pearson correlation coefficients for focal sampling measurements between the 3 pairs of 

observers (Martin & Bateson 1993). 

 

Statistical analysis  

To examine differences between observed behavioural measures, we mainly used 

generalized linear mixed models (GLMM). A noteworthy exception was using a one sample 

paired t-test to assess if there were notable differences in mass gain of male reindeer individuals 
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over the rut and a Welch two sample t-test to determine if there were differences between the 

numbers of mating tactics observed between treatments. 

To determine the intensity of intra- and inter-sexual interactions, our response variables 

analyzed were: agonistic, bush thrashing, courtship behaviours from behavioural sampling, 

group composition and mating tactic, activity budget during focal sampling and propensity for 

both behavioural and focal sampling. Units of observation during statistical analysis were 

behavioural data pooled by day (n range = 40 – 160). Our GLMMs always had ‘treatment group’ 

as a random effect. Treatment group was defined as a group of reindeer under one OSR 

treatment in one trial. As such, we had 8 groups over 4 trials and were able to rule out any 

differences between groups due to non-independence of observations (Thiele & Markussen 

2012). This was of utmost importance since males were only shuffled between trials and not 

replaced. GLMMs were fit by maximum likelihood with Laplace Approximation.  As we dealt 

predominantly with count data, those models had a z-transformed offset for average time spent 

observing day-1 to correct for scaling variable issues (Bolker et al. 2009). Agonistic, bush 

thrashing, courtship, group composition, group ratio, group capacity and focal behaviours were 

all response variables fitted with a Poisson distribution with log link function.  Mating tactics 

presence/absence, propensity and rest/active time response variables were fitted with a binomial 

distribution with logit link function. In case of over or under dispersion, GLMM was fitted with 

quasi-Poisson/binomial distribution. 

To examine the relationship between response variables and determine if group means of 

a set of behaviours varied between treatments, we ran a multivariate analysis of variance 

(MANOVA). MANOVAs were done as a precursor to analyzing differences between individual 

behaviours if any. This was performed for focal sampling and behavioural sampling given the 

affinity for reindeer to perform only one behaviour not simultaneous with another. Irrespective of 

the response variables of interest, we always selected the most parsimonious model (Burnham 

& Anderson 1998), computed by comparing the Akaike information criterion corrected (AICc) 

using the function ‘AICctab’ from the  ‘bbmle’ package (Ben Bolker & Team 2014). Fixed 

effects varied from model to model with the exception of OSR always being included. Note that 

for the results of all models, mean estimates are reported with their standard deviations and 

parameter estimates with their standard errors. In our agonistic model, intraspecific interactions 
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were all compared against M:M with parameter estimates and standard errors stated for the 

interaction term. When evaluating the differences in bush thrashing rates between treatment 

levels, the interactions between OSR and sex were included to the quasi-Poisson model. The 

female biased treatment (OSR 0.5) was set as a control for all models since a group with 33% 

males most closely resembled the proportions you would find in managed reindeer herds 

(Tennenhouse et al. 2011).  

All analyses were performed in R version 3.2.2, R Core Team (2015). The significance 

level was set to 0.05. 
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RESULTS 

 

Male social hierarchy and body mass 

 The change in mass of males over the length of the study was not-significant (pre-mid: 

t(5) = -0.18, p = 0.86; pre-post: t(5) = 0.66, p = 0.60; mid-post: t(5) = 1.75, p = 0.14). Independent of 

OSR, male social hierarchy was revealed to be highly linear in each group with a Landau’s 

linearity index h’ (corrected) of 1 (Table 2). Consistently in every trial, the two highest-ranking 

individuals were R25 and R29. They lost the most weight over 27 days (-0.185 kg/day and -

0.074 kg/day, respectively) though this was non-significant when compared to all individuals 

change in mass (Table 3). By random chance alone, both these male reindeer (R25 and R29) 

were never present in the same treatment level.  

 

Agonistic interactions 

 Male-male aggression did not increase with increasing OSR (estimate ± SE; β = -0.02 ± 

0.35, p = 0.955; Table 4), while female-female aggression did decrease significantly with 

increasing OSR (β = -1.06 ± 0.49, p = 0.034; Figure 2). Female-male aggression was frequent at 

a rate significantly lower than male-male aggression independent of OSR (β = -2.78 ± 0.84, p = 

0.001; Figure 2). Among the agonistic behaviour category, not all behaviours were observed at 

equal rates (MANOVA: F(1,158) = 2.4, p = 0.011). Female displacements were the most frequently 

observed agonistic interaction and differed significantly between OSR, being more prominent in 

the 0.5 treatment (F(1,158) = 5.03,  p = 0.0263; Table 5). Independent of OSR, rate of 

displacements and sparring were found to be significantly lower in female-male than male-male 

interactions independent of OSR (β = -2.70 ± 0.66, p < 0.001; β = -3.06 ± 1.14, p = 0.009). As 

would have been anticipated, male-male rate of sparring was also significantly higher than 

female-male rate of sparring independent of OSR (β = -3.06 ± 1.14, p = 0.009). Female-male rate 

of head threats were significantly lower than male-male head threats, independent of OSR (β = -

2.15 ± 0.66, p = 0.001). Conversely, male-female head threat rate was significantly lower than 

female-female head threat rate independent of OSR (β = -1.79 ± 0.49, p < 0.001). 
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Display behaviour 

There was no difference in bush thrashing rates between OSR levels (p = 0.505). We did 

find a relationship between bush thrashing rates and OSR when the interaction between sexes 

and OSR was included in our model (β = 1.17 ± 0.37, p = 0.002) where females in OSR 1 bush 

thrashed significantly less than females in OSR 0.5 (β = -1.35 ± 0.54, p = 0.015; Figure 3). In 

OSR 0.5 alone, females bush thrashed significantly more than males (β = 1.16 ± 0.36, p = 0.006). 

 

Courting interactions 

 The rate of courtship behaviours did not differ between OSR levels (p = 0.546). 

Nonetheless, mean male attempted copulations were significantly lower in OSR 1 (β = -2.06 ± 

0.92, p = 0.026; Figure 4). Neither following, courting, or herding rates were significantly 

different between treatments (all p > 0.05).  

 

Mating tactics and group compositions 

 Irrespective of the tactic observed, presence or absence of any discrete mating tactic 

documented was similar between OSR levels (t(158)= 0.81, p = 0.422; Table 6). Wannabe, 

Satellite, and Sneaker mating tactics were, however, less present as compared to the Dominant 

mating tactic (Wannabe: β = -2.71 ± 0.80, p < 0.001; Satellite: β = -2.43 ± 0.78, p = 0.001; 

Sneaker: β = -2.19 ± 0.77, p = 0.004; Figure 5), and this independent of OSR. 

There was no difference in the number of group compositions completed daily by any of 

the observers in any given OSR (p = 0.890; mean ± SE = 2.53 ± 0.36). Nonetheless, in any given 

group composition, we found fewer females per group in OSR 1 compared to the number of 

females in OSR 0.5 (β = -0.45 ± 0.10, p = 0.004). Granted that there was no significant 

difference in the number of individuals present per mating group independent of treatment, 

despite fewer total individuals in OSR 1 (p = 0.081), OSR 1 was significantly closer to harboring 

all potential individuals per group than OSR 0.5 (β = 0.99 ± 0.33, p = 0.030). 
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Propensity 

There was a significant difference in mean encounter rates between trials (F(3,32) = 4.79,  

p = 0.007; Figure 6), though no significant difference existed between treatment levels (p = 

0.448). As could be expected, there was a positive relationship between agonistic engagements 

and number of encounters (β = 0.41 ± 0.04, p < 0.001; Figure 7). In spite of differences between 

individual components required to measure propensity, the willingness for males to act 

agonistically did not differ significantly between OSR levels (p = 0.261). 

 

Focal sampling and rest/active periods 

Upon comparing all focal behaviours independent of OSR, there were initially some clear 

contrasts (Figure 8). There were significant differences between the means of the five possible 

focal behaviours of interest (t(779) = 20.22, p < 0.001; Figure 9) independent of OSR (p = 0.179) 

with eating being the most frequent recorded behaviour. In regards to active/rest periods of male 

and female reindeer, there was neither a significant difference between sexes, OSR, or an 

interaction of sex and OSR (all p > 0.05; Figure 10).  
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DISCUSSION 

 

In the absence of older dominant males  

Most ungulate studies have explored the effect of OSR on mixed-age groups with 

females known to prefer larger bodied males (McElligott et al. 2001). Our 1.5-year-old males 

did not gain or lose a significant amount of mass during the experiment though they started at 

various weights. The two individuals that were repeatedly the most dominant (R25, R29) were 

not necessarily the heaviest or largest (Appendix A). With the absence of older dominant males, 

younger males could no longer rely on less risky mating tactics such as Sneaking (Mysterud et 

al. 2003). To gain control over a harem and increase their reproductive success, they may have to 

shift to the Dominant mating tactic although their herding ability and display is not fully 

developed (Holand et al. 2006). Female harassment by young males was still present though 

older males were absent in the group (Uccheddu et al. 2015). The question is then, why haven’t 

our males reacted as predicted with increasing OSR when all knowledge of competition in a 

polygynous species should point in the direction of increased male-male agonistic interactions 

(Kvarnemo & Ahnesjo 1996)?  After all, the opportunity for sexual selection should be greatest 

amongst male-biased OSR where an increased variance between individuals leads to differing 

rates or reproductive success (Mills & Reynolds 2003). 

If male rank status was plastic, we presumed we could ‘reset’ male-male dynamics every 

trial, reinvigorating intraspecific competition through female estrumate injections. Regardless of 

the strong linearity (Appendix B) present in our social hierarchy, two individuals were 

consistently the most dominant throughout the trials. Rank status may not be as plastic as 

formerly thought and often the dominant individual in a group may be infrequently replaced by a 

subdominant. This is the case in mixed age groups, where there is greater variance in 

reproductive success (McElligott et al. 2001). With males from one year to the next having 

larger body and antler sizes leaving the older larger male reindeer with a significant competitive 

advantage (Lindenfors et al. 2007). It is for this reason that in a study with no varying age 

among males, we hypothesized that similar weights and body size would lead to fiercer 

competition for dominance as no individual had a clear competitive advantage.  
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In the presence of older dominant males, young reindeer males have been found to gain a 

significant amount of weight in comparison to their older counterparts as they typically avoid 

competing larger older males and instead feed and hedge their bets the following rut where a 

larger body size is favorable in asserting dominance (Mysterud et al. 2003; Tennenhouse et al. 

2011). Instead we found no significant change in body mass in our 1.5-year-old males during the 

entirety of the rut. Rather than increasing their energy allocation to feeding as previously 

mentioned, it may be possible that without older males, individuals spent more time in 

competitive behaviour though there was no difference between treatments. The absence of 

varying male age groups in a herd is highly unnatural among wild and even semi-domestic 

populations of reindeer (L’Italien et al. 2012). It was necessary however to address one of the 

OSRs caveats, age structure. 

Male mating tactics observed between treatments were not significantly different from 

one another, though ‘Wannabe’, ‘Satellite’, and ‘Sneaking’ were present at significantly lower 

values than the ‘Dominant’ mating tactic. The most abundant mating tactic observed was the 

‘Dominant’ tactic as this above all else is the minimal requirement for having the opportunity to 

control a harem as stated by resource-defense theory (Clutton-Brock 1989). With male density 

constant between treatment levels, we did not expect to see alternate mating tactics surpass the 

frequency of the observed Dominant tactic (Isvaran 2005). Nonetheless, this is contrary to 

prediction (ii) where we had hoped to see an increase in alternate mating tactics in OSR 1 had 

there not been an increase in male-male agonistic interactions as expected. As we move from 

‘Dominant’ to ‘Wannabe’ to ‘Satellite’ and ‘Sneaker’, there should be a decrease in the energy 

dedicated to such a tactic following a decrease in potential gain. In the face of higher competitive 

pressures, it may be more beneficial to adopt a tactic which is perhaps less beneficial in terms of 

potential direct access to mates yet has a lower energy expenditure. 

In an attempt to relate mating tactics observed to group composition and the 

fission/fusion dynamics of such groups, there did not appear to be a trend in the number of 

individuals present in a group and the tactics observed independent of treatment. Groups 

independent of treatment were almost constantly at capacity thereby reflecting their native OSR. 

As previously suggested by Body et al. (2014), this may be indicative of the tendency for 

females to decrease harassment by adhering to a group which has a high ranking male. 
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Additionally, as male reproductive fitness is strongly correlated to the stability of their groups, a 

group with fewer fission dynamics is ultimately beneficial to both male and female with the 

exception of lower ranking males which need to compete with the dominant male of the group or 

avoid them by adopting alternate mating tactics (Body et al. 2014). 

Whether a male chooses to avoid or engage in an agonistic bout can be determined 

through our measure of propensity. Though the propensity to behave agonistically was not 

different in either OSR over the length of the study with no support for prediction (iii), we did 

witness an interesting change in the encounter rates between trials and this was consistent across 

OSR levels. As the number of encounters increase somewhat linearly, there are greater 

opportunities to engage in an agonistic interaction between two males. As the onset of the rut 

progressed through time, encounter rates steadily diminished where they dipped at trial 3 before 

suddenly increasing in trial 4 to similar initial rates as trial 1. The data for trial 3 is interesting in 

that the dates, 5 – 9th October, agree with potential natural peak rut behaviour, or so we would 

conclude based on previous studies (Body et al. 2014) indicating that peak rut can last for 

approximately five days coinciding with the length of a single trial (Pérez-González & 

Carranza 2011). The timing of the natural rut altogether is dependent on resource availability 

during the summer (Djaković et al. 2012). Without an assessment of  last summer’s resources at 

the Kutuharju Reindeer Research Station, one can only speculate on the above statement. The 

use of estrumate was meant to counter behaviour that was phenologically distributed over the 

natural rut and instead provide miniaturized versions of a rut within trials; to be confirmed once 

we have received the paternity results of our experimental males. Female reindeer may only be 

sexually receptive for one to two days (Ropstad 2000). Thus successful expression of estrumate 

in female reindeer would mean that males have a very sensitive time period to profit from 

receptive females. 

Encounter rates dipping during trial 3 suggest that, at what was potentially peak natural 

rut, M:M agonistic interactions were at their lowest implying that the dominant male who tried to 

repeatedly court, herd, follow, and copulate with females was practically unchallenged.  

Alternatively, it is possible that our 2 meter male radius used for our propensity measurement 

was too small to capture all behaviours. At peak rut, dominant males should act maximally to 

defend their resource (females) by engaging in costly agonistic behaviour such as chases, 
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displacements, and fights (Tennenhouse et al. 2011). These behaviours might be engaged at 

distances greater than 2 meters in which case our sampling methods would have failed to capture 

said behaviour. If this is so, it would insinuate that the territory size of males can fluctuate during 

the rut following a Gaussian distribution where at peak rut dominant males are less likely to 

allow subdominants to approach them at risk of being overthrown and losing their resources. We 

thereby recognize deJong (2012) in affirming that propensity is an indicator of the intensity of 

competition by assessing the number of opportunities taken to act agonistically between 

individuals. On the other hand we can now delve into the topic of personality in subdominants 

and dominant males based on propensity alone where a higher propensity score may indicate risk 

prone individuals and a lower propensity score might indicate risk averse individuals (Strong 

2015). 

Unable to control for any of the OSR caveats with females (age, density, group 

composition), it remained that we had significant evidence to support that F:F agonistic 

behaviour decreased with increasing OSR (Kvarnemo & Ahnesjo 1996). Though Kvanermo & 

Ahnesjo (1996) used a different calculation for OSR (number of of males/number of males + 

females), increasing OSR still signifies a reduction in both the intensity of competition between 

females and female mate choice. Female mate choice in itself is difficult to prove. Are the 

females being more aggressive towards each other to attract the dominant male or are they 

simply defending and claiming a food resource patch? This study does reinforce the female 

foraging competition hypothesis where an increase in the number of reindeer females per group 

(i.e. increased density) leads to more time spent doing other related social behaviours (Uccheddu 

et al. 2015) as supported by the fact that F:F rates of aggression (i.e. disturbance) and bush 

thrashing in OSR 0.5 were significantly higher than F:F rates of aggression in OSR 1. It has been 

repeatedly suggested that females do play an important role in mating dynamics (Andersson & 

Iwasa 1996; Jirotkul 1999a; Young et al. 2010), information that should bear more weight on 

experimental research on the study of mating systems though the literature is inherently male 

biased.   

It must not be forgotten that these 1.5-year-old reindeer males have recently become 

sexually mature and are in their first rut with no prior experience on how to engage in M:M 

agonistic interactions (Tennenhouse et al. 2012), or courting for that matter and even considered 
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immature (L’Italien et al. 2012). There was not a single account of mate guarding or scent 

marking (male who urinates on hind legs to assert dominance) and a very late emergence of 

flehmen (when male expose their vomeronasal organ to air as a means of courting) which are all 

behaviours normally present in older dominant males (Isvaran 2005). Regardless of potential 

immaturity and inexperience, we propose that the lowest rate of agonistic interactions observed, 

between F:M, is caused by the necessity for females to remain sexually receptive and avoid 

deterring a potential mate, even if that mate is a young male. 

Seemingly contrary to predictions from theory (Emlen & Oring 1977; Kvarnemo & 

Ahnesjo 1996), we found that males courted more in the female-biased OSR. This study adds to 

a growing body of evidence that the frequencies of different competitive behaviours do not react 

uniformly to a change in OSR or density. It does however reinforce the concept that males who 

compete more intensely are then at a better advantage to court and copulate though prediction (ii) 

was not supported in this respect. Bush thrashing, a poorly understood display behaviour, was 

present at the highest rates in OSR 0.5 by females. Reiterating, females in OSR 0.5 also had 

higher rates of aggression than females from OSR 1. It is therefore possible that subdominant 

females in OSR 0.5 were actively bush thrashing to attract males. It is unlikely that females were 

bush thrashing simply to remove the velvet from their antlers as there was no difference in bush 

thrashing rates between trials with velvet shedding most often observed during early rut (Adams 

et al. 2001).  We also observed that upon bush thrashing, usually a pine sapling, reindeer would 

lick the sap from the damaged bark as a way to potentially ingest a nutrient otherwise not present 

in their main food source. This type of behaviour was so predictable that a certain height of 

sapling was as expected almost always bush thrashed by reindeer. Bush thrashing may therefore 

serve as a public display of attention for females, while Adams et al. (2001) show that males 

may do this as a form of scent marking in synchrony with oestrous.  

Less predictable was the rate and frequency of attempted copulations. In total there were 

28 attempted copulations recorded, including the ad libitum data. Based on an average of 7 hours 

a day spent in enclosures and a total of 118.9 hours of behavioural sampling completed between 

observers, the frequency of witnessing an attempted copulation was approximately 1 for every 

4.25 hours of observation time or 0.2 attempted copulations/hour. This low rate may be due to 

the fact that during what is recorded as cervid peak rut hours, 1600 – 1930 hours, we had a 
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tendency to be absent in the second half of that period due to the distance from the research 

station the enclosures were located and a quick occurring dusk (Carranza et al. 1990). 

Specifically, this poses a problem as with 36 females, we have less than the number of attempted 

copulations required to confidently say that every female was potentially copulated with. In 

addition, most attempted copulations observed were focused on a select few females per trial as 

if certain females would be more attractive to males than others. 

Due to females spending as past research mentions, roughly 75% of their time feeding 

(Djaković et al. 2014),  the motivation behind focal sampling was to determine what males were 

doing on average with their time. With no significant trend between OSR levels, it was found 

that males foraged on average 63% of the time. This value is believed to be lower than if our 

experimental males were among a mixed age group where young males generally avoid 

confrontation with larger dominant males (Tennenhouse et al. 2012), potentially indicating that 

young male and all aged female foraging rates would be similar. The fact that it is lower is 

indicative of the increased agonistic interactions we were able to instil by manipulating OSR 

with 1.5-year-old male reindeers whereby they shifted from a less costly/risky mating tactic of 

Sneaking, to asserting themselves and attempting to overthrow a dominant individual (Mysterud 

et al. 2003). However, with such a high percentage of eating as a substitute to engaging in other 

behaviours more prone to increasing ones reproductive success (agonistic/courtship), the 

conclusion must be drawn that 1.5-year-old males as previously noted are somewhat immature, 

inexperienced, and have not yet fully developed strong mating tactics (Pérez-González & 

Carranza 2011; Holand et al. 2012; Tennenhouse et al. 2012). In regards to how the time of 

male behaviour was partitioned during focal sampling, our interests in activity budget also led us 

to analyze if the highly competitive nature in one OSR over the other meant more time resting. It 

was found that independent of OSR, males and females rested, on average, the same amount of 

time. Though statistically non-significant, females rested slightly longer than males and this 

independently of OSR. Biologically, the inferences we can deduct are that females as the limiting 

resource during the rut, control the activity of a harem (Bro-Jørgensen 2011). A male who rests 

before a female is at a disadvantage if a mating opportunity presents itself and should thereby 

remain active until all females have ceased to forage and rest. Even then, males would 

sometimes harass females to get up and attempt to copulate. 
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 In light of synthesizing results and addressing our predictions, there was support to show 

that (i) F:F agonistic interactions decreased with increasing OSR but no support to show that 

M:M agonistic interactions increased with OSR. We acknowledge that our number of replicates 

were few and that this may have underpowered our statistical inferences. Without statistically 

significant differences in courtship rates between OSR levels, we had no support for prediction 

(ii) which suggested courtship rate would either decrease with OSR because of increased M:M 

competition or increase if males adopted alternative mating tactics (e.g. Sneaking). No 

alternative mating tactics were adopted at significant rates, with Dominant being the most 

frequent mating tactic in both OSRs. Finally, (iii) propensity to act agonistically did not increase 

with OSR and was therefore not a supported prediction. More care should be given when 

choosing an individual radius to assess opportunity. As we have experienced based on this study, 

underrepresenting a measurement might mean a lack of evidence to detect an effect between 

treatments. 

With future work aimed at replicating this study with 2.5-year-old reindeer males, it will 

be interesting to see if our few emerging trends persist, or if age as we might think, can really be 

a factor in how male reindeer interact in the face of manipulating OSR.  
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TABLES 

Table 1: Mean male activity budget across trials (N = 4) for focal observations (15 min = 60 

instanteous sampling events every 15 s).  

Activity Mean frequency (out of 60) % 
Rest 3 5.00 
Walk 11 18.33 
Stand 5 8.33 
Eat 38 63.33 
Other 3 5.00 
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Table 2: Male social hierarchy relationships based on matrix total represented by total number of agonistic interactions in a given trial 

at a given OSR. All Chi-square values for the individual matrices were undefined with p-values > 0.05. 

Trial OSR Matrix total Directional consistency index 

1 0.5 68 0.765 
1 1 143 0.874 
2 0.5 78 0.974 
2 1 145 0.931 
3 0.5 98 1.000 
3 1 88 0.977 
4 0.5 210 0.981 
4 1 58 0.931 
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Table 3: Male reindeer mass rate of change over 27 days encompassing pre-rut, mid-rut, and 

post-rut periods designated here as pre-study, mid-study, and post-study.  

 

Reindeer 
ID 

Rank* Pre-study 
mass (kg) 

Mid-study 
mass (kg) 

Post-study 
mass (kg) 

Change in mass  
(27 days, kg/day) 

R25 6 75 73 70 -0.185 
R29 5 79 77 77 -0.074 
R24 4 71 75 75 0.148 
R22 3 78 79 78 0.000 
R01 2 74 74 73 -0.037 
R19 1 76 76 76 0.000 
* Rank 6 is designated to the most dominant individual and subsequently dominance decreases 
with rank with 1 being the lowest ranking individual. 
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Table 4: Parameter estimates ± standard errors (SE) for agonistic interactions. All interactions 

(noted by “int”) are in contrast to OSR 0.5 and M:M. Bold p-values indicate statistical 

significance (α = 0.05). 

Parameter Estimate ± SE DF t-value p-value 
OSR 1 -0.021 ± 0.348 6 -0.059 0.955 
int F:F 0.0345 ± 0.283 146 0.122 0.903 
int F:M -2.777 ± 0.839 146 -3.311 0.001 
int M:F -0.473 ± 0.323 146 -1.464 0.145 
OSR 1 x int F:F -1.058 ± 0.495 146 -2.140 0.034 
OSR 1 x int F:M 0.452 ± 1.093 146 0.413 0.679 
OSR 1 x int M:F -0.428 ± 0.502 146 -0.853 0.395 
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Table 5: Agonistic interactions observed between treatments (OSR 0.5 and 1) and between four 

possible sex:sex interaction types over 4 trials. Values reported as frequencies.  

OSR Interaction 
Agonistic behaviours 

Displacements Chases Sparrs Fights Head threats 

0.5 M:M 214 32 111 4 54 

1 M:M 178 44 90 11 67 

0.5 F:F 251 7 9 0 149 

1 F:F 90 3 1 1 43 

0.5 F:M 14 0 8 0 6 

1 F:M 20 1 4 0 14 

0.5 M:F 191 36 8 0 26 

1 M:F 124 15 5 0 17 
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Table 6: Comparing presence/absence (p/a) scores of male mating tactics observed each day in a 

mating group in every OSR level. A value of 0 indicates the absence of a mating tactic and a 

value of 1 indicates the presence of a mating tactic.  

OSR p/a Tactic ∑ 
Dominant Wannabe Satellite Sneaker 

0.5 0 4 15 14 13 46 
1 0 6 13 13 19 51 
0.5 1 16 5 6 7 34 
1 1 14 7 7 1 29 
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FIGURES 

 

Figure 1: Map of enclosures and their constituting dominant land cover types at the Kutuharju 

Reindeer Research Station. Red lines represent the boundaries of each enclosure with enclosure 1 

and 2 sharing ~ 0.40 km of fencing. 
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Figure 2: Daily mean rate of agonistic behaviours based on four possible interactions (M:M, F:F, 

F:M, M:F) between OSR levels (0.5, 1). Closed black circles represent outliers while the red 

asterisks are above significant interactions with p-values < 0.05. 
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Figure 3: Hourly mean rate of bush thrashing based on interactions between OSR:Sex. Closed 

black circles represent outliers while the red asterisks are above significant interactions with p-

values < 0.05.
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Figure 4: Hourly mean rate of attempted copulations between OSR. Closed black circles 

represent outliers while open diamonds represent group means. The red asterisks are above 

significant interactions with p-values < 0.05. 
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Figure 5: Male mating tactics represented as the number of occurrences (counts) summed up 

from presence/absence data for each day of every trial. Closed black circles represent outliers 

while the red asterisks are above male mating tactics with p-values < 0.05. 
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Figure 6: Encounter rates measured as the number of encounters between two individuals within 

a 2 m radius which did and did not result in an agonistic engagement. Rate is calculated as a 

mean per hour. Closed black circles represent outliers. 
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Figure 7: Relationship between number of engagements in relation to encounter frequency. The 

black dots represent all data collected from the field for both number of engagements and 

number of encounters during all trials (N = 4). The blue line represents the model predictions and 

the grey area represents the 95% confidence interval.
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Figure 8: Male focal observations quantifying and comparing proportions of a witnessed behaviour over time (t = 15 minutes). Each 

bar represents one focal observation (N = 150) in any given treatment on one individual. Behaviours organized from most prominent 

to least (left – right). 
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Figure 9: Mean male activities tallied over the length of the experiment (N = 4). Bars represent 

mean values for all individuals in a treatment over a 4 week observation period.
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Figure 10: Rest/active periods of both male and female reindeer. Rest/active times were 

computed for every individual and pooled daily by sex and OSR level over the length of the 

experiment (N = 4).  

 



 

 

APPENDIX 

 

Appendix A: Male reindeer rate of mass gain/loss based on final ranks established through MatMan 6 x 6 matrix. Pre-rut weight 

(September 22nd) was taken before the study began. Mid-rut weight (October 4th) was taken after trial 2, Post-rut weight (October 19th) 

was taken a few days after the end of trial 4. All individuals had the opportunity to interact with each other throughout the experiment 

with the exception of R25 (rank 6) and R29 (rank 5) by random chance alone. Their final ranks were determined solely on the number 

of agonistic wins and losses throughout the experiment (see Appendix B).  
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Appendix B: These matrices represent male-male agonistic interactions between three males every trial in every OSR. Due to the 

non-significant p-values from the MatMan table, we felt it necessary to include the matrices to show how the social hierarchy reflected 

is highly linear and this has biological significance. When read from left to right, choose a reindeer ID and the value to the right 

indicate the number of won agonistic interactions to the male reindeer ID in the same column as the value. When read from top to 

bottom, choose a reindeer ID and the value indicates the number of lost agonistic interactions to the male reindeer ID in that row.  

Trial	1	OSR	0.5	 R19	 R24	 R29	
 

Trial	1	OSR	1	 R01	 R22	 R25	
R19	 *	 4	 0	

 
R01	 *	 3	 2	

R24	 24	 *	 4	
 

R22	 19	 *	 4	
R29	 17	 19	 *	

 
R25	 70	 45	 *	

         Trial	2	OSR	0.5	 R19	 R24	 R25	
 

Trial	2	OSR	1	 R01	 R22	 R29	
R19	 *	 0	 0	

 
R01	 *	 3	 1	

R24	 10	 *	 1	
 

R22	 28	 *	 1	
R25	 24	 43	 *	

 
R29	 68	 44	 *	

         Trial	3	OSR	0.5	 R22	 R24	 R29	
 

Trial	3	OSR	1	 R01	 R19	 R25	
R22	 *	 0	 0	

 
R01	 *	 3	 0	

R24	 9	 *	 0	
 

R19	 1	 *	 0	
R29	 48	 41	 *	

 
R25	 57	 27	 *	

         Trial	4	OSR	0.5	 R22	 R24	 R25	
 

Trial	4	OSR	1	 R01	 R19	 R29	
R22	 *	 0	 0	

 
R01	 *	 9	 0	

R24	 45	 *	 2	
 

R19	 2	 *	 0	
R25	 57	 106	 *	

 
R29	 26	 21	 *	

 


