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Abstract 

 

The use of Filamentous Fungi Myceliophthora heterothallica for  

Heterologous Protein Production 

 

Corinne Darmond 

 

 The goal of this research was the development of an expression system using a 

thermophilic host organism for heterologous protein production. Mycothermus thermophilus, 

Myceliophthora thermophila and Myceliophthora heterothallica were chosen as candidate host 

organisms due to their high production of extracellular proteins under cultured conditions and 

their ability to grow in wide range of pH. Of particular interest is Myceliophthora heterothallica, 

an organism largely unexplored as a host organism, which holds the potential of using sexual 

mating in strains development. Transformation of the host organism was done by means of 

polyethylene glycol mediated transformation using cotransformation with a selection plasmid 

containing the selectable marker amdS and an expression plasmid containing heterologous 

xylanase genes. Six different promoters were tested to drive the expression of xylanase genes of 

interest in order to assess the production of heterologous proteins under different conditions. 

These promoters included PglaA from Aspergillus niger, PgpdA, PpmoA, PcbdA, PagdA from 

Myceliophthora thermophila, and PagdB from Myceliophthora heterothallica. The level of 

expression in the transformants was estimated using levels of xylanase activity observed using 

both a xylanase spot assay and BCA assay. Production of a heterologous xylanase from 

Aspergillus niger were obtained with constructs containing PagdB from Myceliophthora 

heterothallica CBS375.69. Transformants containing the construct PagdB - ANxynA showed an 

80 fold increase in xylanase activity 24 hours after induction by sucrose, over transformants who 

had been transformed with the selection plasmid alone. Yields remained low and the 

heterologous protein could only be detected by mass spectrometry rather than by SDS-PAGE. 

However this research demonstrates that Myceliophthora heterothallica has potential as host 

organism for heterologous protein production and provides not only a thermophilic host 

organism, but one with sexual mating system as well.  
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1 Introduction 

1.1 Choice of filamentous fungi for heterologous protein production 

 The use of fungal enzymes in the food and wine [1, 2], biofuel, pulp and paper and 

agricultural industries [3] are widespread. Since most fungi naturally produce only small 

quantities of enzymes of interest [4, 5] efficient fungal expression systems are being developed. 

The genomes of fungal organisms are being mined in view of further exploiting their proteins for 

commercial uses. High levels of target proteins are needed for the characterization of these 

potentially commercially interesting enzymes. Fungal production systems are not only being 

used to produce heterologous fungal proteins, but also proteins from human, animal, plant and 

bacterial sources. In April 2014, the Association of Manufacturers and Formulators of Enzyme 

Products (AMFEP) reported the commercialization of over 248 different enzymes, 50% of which 

were produced by filamentous fungi. Over 53% of the fungal enzymes were produced by various 

Aspergillus species. Another 23% were produced by various Trichoderma species. The 

mycoCLAP (https://mycoclap.fungalgenomics.ca/mycoCLAP/), which provides information on 

characterized lignocellulose-active proteins of fungal origin, also offers an overview of the host 

organisms that are used for the production of heterologous enzymes. As of spring of 2015, 79% 

of the heterologously produced proteins reported in mycoCLAP utilized an Aspergillus species 

as a host organism. An additional 14% of heterologous enzymes were produced by a 

Trichoderma species. It is important to realize, however, that a single host organism may not be 

suitable for all proteins of interest. Heterologous protein production may fail in a certain host, 

due to poor gene expression, improper protein folding, faulty glycosylation, sensitivity to 

proteases, or different codon preferences between host organism and the native organism of the 

gene of interest. In these cases, a second host organism can certainly be tried in hopes of a more 

favorable outcome. 

 In order to develop a new expression system, methods that have previously been tried, 

what has been successful, and what is feasible with the resources available are all issues which 

must be addressed. The choice of organism, method of transformation, method of selection of 

successful transformants, and choice of an efficient promoter for expression of the protein of 

interest, must all be decided upon. 

file:///C:/Users/corinne/Desktop/Thesis/(https:/mycoclap.fungalgenomics.ca/mycoCLAP/
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1.1.1 Use of Aspergillus as a host organism  

  The Aspergillus genus comprises over two hundred species but only a few have been 

used as production organisms. Transformation and gene cloning into Aspergillus began in the 

early 1980's [6, 7]. Since then much work has gone into improving yields of both fungal and 

non-fungal heterologous proteins. The development of expression systems for Aspergillus, and 

factors affecting their expression and protein production have been reviewed by Lubbertozzi et 

al. [8]. The most common species for genetic manipulations to date are A. niger and A. oryzae. 

Recently, Culleton et al. [9] showed that A. vadensis has an advantage over A. niger for 

recombinant protein production, since it does not acidify its culture medium as it grows [10]. 

This is desirable for some heterologous enzymes which may be pH sensitive and may be 

rendered inactive in acidic media. It has been reported that A. vadensis produces a lower level of 

extracellular proteases than other Aspergillus species [10] resulting in superior levels of 

heterologous proteins compared to that of A. niger [11, 12]. In other species of Aspergillus, the 

problem of proteases and their effect on protein yields, are being addressed through the use of 

protease-deficient strains [13], disruption of protease genes [14] and pH control of protease 

activity in the extracellular environment[15]. Despite the high secreting potential of Aspergillus, 

efforts are being made to increase production past the currently capabilities. For example, Yoon 

et al. [16] mutated the AoVPS10 gene in A. oryzae, which codes for a sorting receptor of vacuolar 

proteins, in order to obtain an increased production of bovine chymosin and human lysozyme 

proteins. Studies investigating the role of chaperone and foldase genes involved in the secretory 

pathway of A. niger have also been investigated [17-19] in order to devise new methods of 

increasing heterologous protein production. 

1.1.2 Use of Trichoderma as a host organism 

  Trichoderma reesei is known for its innate capacity for production and secretion of high 

amounts of hydrolytic enzymes, specifically cellulases. The hyper-secreting mutant T. 

reesei RUT-C30 (ATCC 56765) is reported to be the strain most often used in academic research 

for production of homologous and heterologous proteins [20]. Peterson and Nevalainen [20] 

provided an in-depth review of the development of this strain over the course of thirty years, and 

its performance as a host for heterologous protein production. They concluded that although 
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titers of up to 100 g/L of a native mixture of cellulases can be produced from Trichoderma, 

production of heterologous protein remains at the hundreds of mg/L level [20]. Jorgensen et al. 

[21] provided a new expression system in Trichoderma where the ade2 gene, involved in the 

biosynthetic pathway of purines, is replaced by a expression cassette containing a gene of 

interest. The transformants which lack ade2 gene produce pink pigments that allow for reliable 

detection of transformants. To increase homologous recombination efficiency, their expression 

system also includes a mutation in the tku70 gene which is involved in non-homologous end 

joining [21]. Many groups working with Trichoderma are expanding the list of effective native 

promoters, both constitutive and inducible [22-25]. Commonly used promoters such as cbh1 are 

being optimized [26, 27] in order to increase expression. Dual promoters for co-expression of 

heterologous genes is also being investigated [28]. Protease-deficient strains are being developed 

[29] and silencing of highly expressed genes to improve output of heterologous proteins has been 

explored [30]. 

1.1.3 Use of Penicillium as a host organism  

 Penicillium is used commercially as a production organism for production of native 

proteins [31]. Its potential for production of heterologous proteins has been investigated since the 

1990s [32]. Penicillium chrysogenum was first evaluated for heterologous protein production by 

Queener et al. [32] who used a isopenicillin N-synthetase gene promoter to express the cefE gene 

from Streptomyces clavuligerus. P. chrysogenum has also been used as a host organism by 

Graessle et al. [33] who fused a fungal xylanase gene to human tear lipocalin cDNA and placed 

it under the control of a native repressible acid phosphatase promoter. To further advance the use 

of Penicillium funiculosum as an industrial production organism, Belshaw et al. [34] evaluated a 

histone H4 promoter for the heterologous expression of a reporter bacterial β-glucuronidase 

(GUS) and a homologous xylanase genes. Penicillium canescens was used as a host organism by 

Abianova et al. [35] to express a heterologous laccase using an inducible β-galactosidase 

promoter. Recently, Teixeira et al. [36] used P. canescens as a host with the gpdA promoter from 

Aspergillus nidulans, in the hopes of finding another suitable promoter for heterologous protein 

production in this organism. Yields of over a thousand fold increase over natural levels [36] open 

the door to further studies for expression of heterologous genes in this species. Also in P. 

canescens, Vinetsksky et al. [37] introduced the xlnR gene from A. niger to investigate its 
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possible regulation of both the axhA promoter and bgaS promoter. 

1.1.4 Use of Myceliophthora as a host organism 

 The thermophilic organism Myceliophthora thermophila, also known by the name of 

Sporotrichum thermophile or Chrysosporium lucknowensense C1, was developed a production 

organism by Dyadic (http://www.dyadic.com/), a producer and supplier of commercial enzymes. 

The C1 technology is now owned by DuPont Industrial Biosciences 

(http://biosciences.dupont.com/) following the sale of Dyadic's Industrial Technology to DuPont. 

The biotechnological potential of this organism has not gone unnoticed in academia. Many 

papers have been published in the last five years characterizing specific enzymes of M. 

thermophila [38-41]. The effect of enzyme mixtures on a variety of substrates have also been 

investigated [13, 42, 43]. Reviews covering genomic, transcriptomic and proteomic analysis 

of M. thermophila's lignocellulolytic enzymes are available [40, 44, 45]. Comparisons between 

closely related strains and synergy between enzymes of M. thermophila and enzyme mixtures 

from other organisms have also been published [13, 46]. Improvements in the classification of 

Myceliophthora species have been made in order to provide clarification of the genetic diversity 

existing between members of this genus [46-48]. Many of these papers mention the 

biotechnological potential of non-proprietary strains of M. thermophila but the organism is not 

used as such in those works. Only recently has a paper been published, beyond those related to 

the establishment of C1 as patented platform organism for Dyadic [49, 50], showing gene 

disruption techniques for M. thermophila [51]. Much of this interest lies in the fact that M. 

thermophila is a thermophilic organism. The enzymes which thermophilic organisms produce are 

generally more thermostable than enzymes those produced by mesophilic organisms and hence 

valuable in industry [52].  

1.1.5 Use of other filamentous fungi as production organism 

  The AMFE (http://www.amfep.org/ ) lists Mucor javanicus as a production organism for 

commercial production of a homologous lipase triacylglycerol. From the literature, it is Mucor 

circinelloides, a closely related species, which is used as a host for homologous and heterologous 

protein production [53-62].  

 A few members of the Fusarium genus have also been used for protein production. 

http://www.dyadic.com/
http://biosciences.dupont.com/
http://www.amfep.org/
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Commercially, Fusarium venenatum is used to produce both homologous proteases involved in 

milk clotting, and a heterologous cellobiose dehydrogenase native to Microdochium sp. (AMFE, 

2014). Laboratory strains used for heterologous protein production include Fusarium oxysporum 

for the expression of transalodase genes from Saccharomyces cerevisiae and Pichia stipitis [63, 

64]. Fusarium verticillioides [65] and Fusarium venenatum are the host organisms used for 

glucoamylase production [66] as well as expression of a serine carboxypeptidase originating 

from A. oryzae [67]. Fusarium graminearum A3/5 has been used for production of trypsin 

from F. oxysporum [68]. 

 Ongoing research in laboratory settings is also being conducted using other filamentous 

fungi to find alternate suitable hosts for heterologous protein production. Some promising 

examples are listed in Table 1. 
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Table 1. Host organisms under development 

Host Organism Donor Organism Product Ref 

Talaromyces cellulolyticus Pyrococcus sp. Cellulase [69] 

Ganoderma lucidum --- Vector expression 

system developed 

[70] 

Ashbya gossypii Aspergillus niger β-galactosidase [71] 

Cryptococcus neoformans Magnaporthe oryzae 

chrysovirus 1 strain A 

MoCV1-A ORF4 [72] 

Phanerochaete sordida 

YK-624 

Pleurocybella porrigens Lectin [73] 

Coprinopsis cinerea Ganoderma sinense Immunomodulatory 

protein FIP-gsi 

[74] 

Pseudozyma flocculosa Ustaliga maydis; 

Pseudozymatsu kubaensis 

GFP reporter [75] 

Lentinula edodes Escherichia coli Intron1 GPD-GUS [76] 

Hypholoma sublateritium  Agaricus bisporus GFP reporter [77] 

Phanerochaete 

chrysosporium 

Dichomitus squalens Manganese peroxidase [78] 

Coprinus cinereus  Pleurotus ostreatus Manganese peroxidase [79] 

Acremonium chrysogenum Bacterial Cephalosporin C 

Acylase 

[80] 

Acremonium chrysogenum Human Thromobomodulin  [80] 

Podospora anserina Human Ribosomal protein  

(rig gene) 

[81] 
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1.2 Methods for fungal transformation 

 Many methods are available for fungal transformation, but some fungal species may be 

more suited to a particular method. Other factors which may come into play when choosing a 

transformation method are the cost associated with the methodology used and the amount of 

transforming DNA needed. Finchman [82] gives an overview of the history of DNA mediated 

transformation and the use of protoplasts for fungal transformations. Case et al. [83] discuss the 

use of exogenous DNA and glucanase, the cell wall digesting enzyme, for the transformation of 

fungal protoplasts. According to Ruiz-Diez [84], transformation systems have now been 

developed in all phyla of fungi, although the approaches used remain diverse given that no one 

method is suitable for all fungal families [84]. 

 Currently many enzyme or enzyme mixtures are commercially available for digesting the 

cell wall from filamentous fungi and exposing the protoplast. For many years, labs relied on 

Novozyme 234, a cell-wall-digesting enzyme mixture from Trichoderma viride, to carry out this 

task. Novozyme has rebranded their original product in favor of an enzyme mixture, VinoTaste® 

Pro (http://www.novozymes.com), containing both polygalacturonase and β-glucanase (exo-1,3). 

Also available from Clontech, Yatalase is an enzyme mixture prepared from cell culture 

supernatants of Corynebacterium sp. OZ-21 (http://www.clontech.com). Their commercial 

preparation consists mainly of chitinase, chitobiase and β-1, 3-glucanase and is meant 

specifically for protoplast preparation from filamentous fungi. Zymo Research also offers an 

enzyme mixture, Zymolyase, which is capable of digesting both yeast and fungal cell walls. 

Their product is prepared from Arthrobacter luteus and consists of enzyme activities: β-1, 3-

glucan laminaripentao-hydrolase and β-1, 3-glucanase (https://www.zymoresearch.com).   

 Low regeneration rates of fungal protoplasts are common. For example, regeneration 

rates of 10% or lower are reported in N. crassa [85]. Regeneration rates for all fungal protoplasts 

are affected by variables such as digestion time and temperature at the protoplast generation 

stage, as well as type and molarity of the osmotic stabilizers used to maintain the protoplast 

population [86]. 

1.2.1 Protoplast transformation by PEG and by lithium acetate 

 Exposure of the protoplast to polyethylene-glycol (PEG) changes the permeability of the 

http://www.novozymes.com/
http://www.clontech.com/
https://www.zymoresearch.com/
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cell membrane and renders the cell amiable to the incorporation of exogenous DNA by 

endocytosis. The molecular mechanism by which this occurs in yeasts is explored by Kawai et 

al. [87]. They proposed that PEG is indispensable for the attachment of DNA to the cellular 

membrane thus increasing the uptake of the DNA by endocytosis and increasing transformation 

efficiency. PEG-mediated transformation remains a widely used method for fungal 

transformation due to the ease of the procedure and adaptability for processing several samples 

simultaneously [84, 88]. The use of lithium acetate in yeast and E. coli transformation was first 

described by Ito et al. [89] who found that the transformation efficiency was increased when 

combined with PEG. The use of lithium acetate for fungal transformation has been adapted for 

use in filamentous fungi including N. crassa [90], Coprinus cireus [91] and Ustilago violacea 

[92].  

1.2.2 Electroporation 

 Electroporation involves the use of short pulses of high amplitude electric fields in order 

to cause short-term, reversible permeability of the cell membrane [84, 93]. This temporary 

alteration in permeability is what allows the uptake of exogenous DNA [84, 93]. The method can 

be applied to conidia as well as protoplasts [94, 95], although a cell wall weakening agent, such 

as a glucuronidase from Helix pomatia (http://www.sigmaaldrich.com), is required when using 

conidial preparations [96]. Trials in filamentous fungus began with N. crassa [94] and have 

become, according to Ruiz-Diez [84], one of the leading methods for fungal transformation. 

Many papers had been published in which the ideal field strength, capacitance, and pulse length 

were investigated [94, 96-98]. It appears that when the ideal settings are exceeded, a decrease in 

transformation efficiency occurs [98]. Ozeki et al. [93] performed a comparison of various 

transformation methods in A. niger, which included PEG mediated transformation, and both 

conidial and protoplast electroporation. They also assessed a variety of variables, including 

pretreatment of protoplast, and the use of integrative vectors versus non integrative plasmids. 

The highest transformation efficiencies were obtained with non integrative plasmid DNA using 

electroporation of pretreated conidia [93].  

 

http://www.sigmaaldrich.com/
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ozeki%20K%5BAuthor%5D&cauthor=true&cauthor_uid=7765715
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1.2.3 Agrobacterium mediated transformation (AMT) 

 Agrobacterium tumefaciens, a gram-negative plant pathogenic bacterium, transfers part 

of its DNA to the host. Until now, it had most often been used when more common methods of 

transformation had failed for a particular species of fungus, but seems to be picking up in 

popularity, judging by the number of published studies in which this method is used. Degroot et 

al. [99] were the first to demonstrate that this method, widely used for transformation in plants, 

could be applied to filamentous fungus. Michielse et al. [100] elaborated on the transfer 

mechanism involved in this system. A summary of fungal species in which this method had been 

applied is provided by this group, but it was made clear that the protocol must be optimized to 

obtain optimal transformation frequencies in each fungal species [100]. The types of 

optimization which appear to have the greatest effects on transformation frequencies include the 

length of co-cultivation between the fungal organism and the A. tumefaciens, as well as the  ratio 

of fungal conidia to bacterium [101].   

 Early adopters of this method were Gouka et al. [102], who used A. tumefaciens for the 

transformation of Aspergillus awamori to express a heterologous Fusarium solani pisi cutinase 

gene. In 2004, Godio et al. [77] transformed the basidiomycete Hypholoma sublateritium using 

A. tumefaciens. Using agrobacterium mediated transformation (AMT), they induced expression 

with constructs driven by promoters solely from other basidiomycete species [77]. More 

recently, Ma et al. [103] introduced a β-glucosidase I gene from Penicillium decumbens into a T. 

reesei strain by AMT. Shortly thereafter, Lv et al. [104] developed a transformation system in T. 

reesei in using this method of transformation. Insertion of heterologous genes by AMT were 

shown to be stably inherited in Flammulina velutipes by Cho et al. [105]. Recently AMT has 

been used in a ku70 deletion mutant of M. thermophila for targeted gene deletion [51]. 

1.2.4 Biolistic 

 The biolistic transformation method for the delivery of DNA into host cells involves the 

use of DNA coated with gold or tungsten. The targeting DNA is projected into host cells at high 

velocities using a helium gun particle delivery system. This method of transformation was first 

employed in N. crassa by Armaleo et al. in 1990 [106]. Transformation in other fungal 

organisms such as Trichoderma sp. [107-109], Cryptococcus neoformans [110] and A. nidulans 
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[111] followed. A study in A. nidulans by Barcellos et al. [112] revealed transformants produced 

by this method to be unstable. The authors observed that the level of mitotic instability was 

affected by the site of integration of the exogenous DNA into different sectors of host's 

chromosomal DNA [112]. In addition, a comparison of different transformation methods in 

Aspergillus giganteus by Meyer et al. [113] showed the biolistic method to be inefficient for this 

strain. Furthermore, the need for specialized equipment renders this method out of reach for 

some labs. 

1.2.5 Use of shock waves for fungal transformation 

 The latest method for transformation of filamentous fungi is the use of underwater shock 

waves generated by a piezoelectric generator [114]. The generator produces waves by excitation 

of piezoelectric crystals arranged on a concave aluminum structure. When these waves are 

produced, they cause a transitory increase in cell membrane permeability and heterologous DNA 

can then be introduced into the cell [115, 116]. Magaña-Ortíz [114] was the first to attempt this 

type of transformation into filamentous fungus such as A. niger, T. reesei, Phanerochaete 

chrysosporium and F. oxysporum. Contrary to transformations using AMT, all four of these 

species showed high transformation efficiencies when underwater shock waves were used. 

Although the amount of DNA tested for this approach (50-200 µg/ml) showed very little effect 

on the number of transformants, the total amount of DNA needed for this method of 

transformation is substantially higher than that used for other methods [114]. A follow up to this 

first study showed that tandem shock waves, rather than single pulse shock waves increased the 

number of transformants depending on the delay between tandem pulses [117]. More work is 

needed to determine if the amount of heterologous material can be reduced or if DNA 

degeneration associated with this method will continue to necessitate high levels of transforming 

DNA. Additional advantages of this method include the ability to transform intact conidia 

without cell wall digestion, minimal species to species optimization, and high transformation 

frequencies. The disadvantages included high concentrations of transforming DNA, as well as 

the high initial cost of the shock wave generator. 
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1.3 Vectors for transforming DNA 

1.3.1 Use of autonomously replicating vectors 

 The isolation of the AMA1 from A. nidulans, a chromosomal replicator sequence, has 

made it possible to construct autonomously replicating plasmids for fungal transformation 

resulting in high transformation frequencies [118-121]. Although transformants carrying the 

plasmids containing the 6.1 Kb AMA1 sequence were initially thought to be mitotically unstable 

[120], this was not found to be the case by Fierro et al. [122] in P. chrysogenum and A. nidulans. 

Studies in P. chrysogenum using truncated AMA1 sequences reveal that the deletion of a 0.6 Kb 

region present between two inverted repeats will decrease mitotic stability and copy number of 

the plasmid in the host organism [122]. Truncations of the inverted repeat present in the AMA1 

sequence were found to negatively affect transformation efficiency and autonomous replication 

of the plasmid [122]. In a paper by Storms et al. [123], plasmids containing the AMA1 sequence 

without the central spacer resulted in transformation efficiencies 8 to 15 fold higher in A. niger 

than when an integrative plasmid without the AMA1 sequence was inserted into the same host.  

 The AMA1 sequence has been used in the transformation of a variety of fungal host 

organisms with mixed success. Bruckner et al. [124] introduced the AMA1 sequence into their 

vector for the transformation of Gibberella fujikuroi with only a 2-fold increase in efficiency and 

inefficient replication of the AMA1 carrying plasmid within the host organism. In Zalerion 

arboricola, Kelly et al. [125] saw a 3-fold increase in the transformation efficiency but no 

autonomous replication of the AMA1 carrying plasmid in the host. When the AMA1 sequence 

was used for transformation in P. canescens results were much more favourable, with a 2000-

fold improvement in transformation efficiency and full ability of the plasmid to replicate 

autonomously in the host organism being reported [126]. The presence of AMA1 in 

Penicillium nalgiovense transforming plasmids was also beneficial as a 60-fold improvement 

transformation efficiency was observed compared to when an integrative plasmid containing the 

sequence was used [127]. Fierro et al. [122, 127] observed that in P. nalgiovense, a monomeric 

form of the AMA1 carrying plasmid was more common than in P. chrysogenum where 

multimeric forms prevailed. Furthermore, the mitotic stability of the monomeric AMA1 

autonomously replicating plasmid in P. nalgiovense was reported to be superior to that observed 

in the closely related organism P. chrysogenum [127]. 
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1.3.2 Integrative vectors: Use of integrating plasmids versus homologous recombination 

 In order to achieve homologous recombination in fungi, exogenous DNA must be flanked 

with regions homologous to the gene targeted for deletion or replacement. These integrative 

vectors, either linear or contained within a circular plasmid, can be assembled in vitro by overlap 

PCR or by ligation. A region of homology of up to 2 Kb on either side of the target gene is 

typically used [128] in order to obtain homologous recombination frequencies ranging from 0 %-

30% [129, 130]. The length of the homologous sequence is known to affect homologous 

recombination rates, as does the locus at which recombination is attempted [129]. In filamentous 

fungi, homologous recombination can be improved by using non-homologous end joining mutant 

strains [129, 131]. As a result, end joining mutants in over 14 different species have created 

[132]. Despite the low transformation rates, gene replacement remains an interesting option for 

heterologous protein production, especially if the gene product targeted for replacement is 

known to be produced in high quantities. Its removal decreases the metabolic demands on the 

host organism, facilitating production and secretion of the heterologous protein [133]. 

 An advantage of using integrating plasmids which are randomly inserted into the host 

genome is the possibility of multi-copy integration. Multi-copy integration has been 

demonstrated to increase expression of genes of interest until a certain number of copies are 

inserted [36, 134, 135]. However, if too many copies are introduced, a decrease in the general 

health of host organism occurs and the correlation between copy number and productivity ceases 

[136]. Multiple copies of the expression cassette in transformants do not always guarantee 

greater product yields. In a paper by Harkki et al. [137], the number of integrated expression 

plasmid in Trichoderma ranged from 1-10, but showed no correlation with the amount of 

heterologous mammalian protein secreted. Verdoes et al. [138] demonstrated that although there 

was an increase in GLA production by transformants carrying multiple copies of the glaA gene, 

final protein production was controlled at the transcriptional level in A. niger. The site of non-

homologous integration seems to have a greater impact on yield than does copy number in fungi 

[136, 137, 139, 140]. In the study by Harkki et al. [137], transformants where cellulase 

production had been disrupted by the integrative plasmid showed increased yields of the target 

protein, demonstrating that the site of integration was crucial in affecting productivity. Since the 

method of transformation may affect copy number, it follows that the method employed for 

transformation can influence the final yields of a target protein[129]. PEG-mediated protoplast 



13 | P a g e  

 

transformation generates many more multi-copy integrations than an agrobacterium-mediated 

integration [129]. Early trials by shockwave integration revealed that most transformants result 

in single copy integration, with only a few transformants carrying two copies of the integrative 

DNA [114]. 

1.3.3 Cotransformation of plasmids 

 Cotransformation of two different plasmids into a single cell has been shown to work at 

high frequencies in Schizosaccharomyces pombe [141]. It has also demonstrated to be successful 

in Trichoderma [137], Aspergillus [137, 142-146] and Penicillium [147-149]. Reported rates of 

cotransformation varied widely with rates being reported as low as 10% in some trials [142] and 

as high as 80% in others [137]. It has been shown that each transformant integrates with varying 

copy numbers but also integrates randomly at different locations within the host genome [137]. 

Wernars et al. [146] demonstrated that the molar ratio of the two vectors as well as each of their 

concentrations affected the cotransformation frequency in the host organism. It has also been 

suggested by Miao et al. [150] that only a sub-population of host cells are rendered competent 

for transformation and that this subpopulation will be amiable to the uptake of both the selection 

and expression vectors. The fact that not all cells are competent for transformation has been 

confirmed by Pandit and Russo [151] who used a heterokaryotic strain of  N. crassa to confirm 

uptake of exogenous DNA in only one of the two nuclei but not both. 

1.4 Choice of selection marker 

1.4.1 Dominant selectable markers 

 The easy identification of transformed versus non-transformed cells is reliant on a variety 

of selectable markers. Dominant selectable markers are those which confer resistance to a 

substance via transformational DNA. Some of these markers have been shown to be applicable 

across a large array of fungal species. An advantage to the use of dominant selectable markers is 

that very little genomic knowledge of the host organism is required. A list of antibiotic resistance 

markers, which falls into the category of dominant selectable markers, is provided in Table 2.   

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Wernars%20K%5BAuthor%5D&cauthor=true&cauthor_uid=3312958
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Table 2. Dominant selectable markers 

Dominant  

selectable marker 

Gene 

name 

Associated gene  

function Source Organism 
Ref 

Benomyl bml β-tubulin structural gene Neurospora crassa [152] 

Carboxin 

resistance 

cbxR succinate dehydrogenase 

iron-sulphursubunit 

Ustilago maydis [153] 

Glufosinate 

resistance 

bar phosphinothricin 

acetyltransferase 

Streptomyces sp. [154] 

Hygromycin hph hygromycin 

phosphotransferase 

Escherichia coli [155] 

Neomycin / 

Geneticin 

neo aminoglycoside 3'-

phosphotransferase 

Escherichia coli K12 [156, 157] 

Nourseothricin nat1 nourseothricin 

acetyltransferase 

Streptomyces noursei [158] 

Oligomycin oliC31 ATP synthase (subunit 9) Apergillus nidulans [159] 

Phleomycin / 

Bleomycin 

Sh ble glycopeptide binding 

protein 

Streptoalloteichus 

hindustanus 

[160, 161] 

Pyrithiamine 

resistance 

ptrA mutated thiamine 

metabolism gene 

Apergillus oryzae [162] 

Sulfonylurea 

resistance 

sur acetolactate synthase gene Magnaporthe grisea [163] 
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1.4.2 Auxotrophic markers 

  Auxotrophic mutants requiring nutritional additives to thrive make ideal organisms for 

selection if they are amiable to complementation by a vector able to confer prototrophic 

properties to transformants. If nutritional auxotrophs for a species of interest have not yet been 

identified and isolated, then the process of creating and purifying such mutants may take a 

considerable amount of time. Creation of auxotrophic mutants by chemical or UV mutagenesis 

has the disadvantage of inducing random mutations throughout the genome, rather than solely in 

specific target genes, which may decrease the overall health of the organism [164]. Creating a 

gene knockout or disruption mutant for a specific gene requires knowledge of the pathway in 

which it is found in order to assure that no alternative pathways can compensate for the loss or 

disruption of the target gene. In addition, knowledge of the DNA sequence flanking the target 

gene is required. Nonetheless, many auxotrophy fungal strains, many of which are amino acid 

auxotrophs, are amiable to complementation which will revert the organism back to prototrophy. 

Some of the most common amino acid based selection markers are listed in Table 3. 

 Rather than a review of an exhaustive list of selection markers available, this section 

focuses on bidirectional selection markers since they can be used either as positive or negative 

selection method. Of particular interest is amdS selection, simply because many wild type fungi 

are unable to utilize acetamide as a source of nitrogen because they do not inherently possess a 

gene homologous to the amdS gene from A. nidulans. In other fungal strains, the amdS gene is 

present but expression is low, resulting in poor growth on acetamide [165]. Hence the wild type 

for these fungus can be utilized without the creation of a mutant is not necessary for amdS based 

selection [166]. A list of bidirectional markers is provided in Table 4. 
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Table 3. Amino acid based selection markers 

Selection 

method 

Gene 

name Associated gene function Source Organism 
Ref 

Adenine 

prototrophy adeA 

Phosphoribosylaminoimidazolesuccino 

carboxamide synthase Aspergillus oryzae 

[167] 

Adenine 

prototrophy adeB 

phosphoribosylaminoimidazole 

carboxylase Aspergillus oryzae 

[167] 

Arginine 

prototrophy argB ornithine carbamoyltransferase 

Aspergillus 

nidulans 

[168] 

Arginine 

prototrophy agaA arginase Aspergillus niger 

[169] 

Leucine 

prototrophy leuA alpha-isopropylmalate isomerase 

Mucor 

circinelloides  

[170] 

Leucine 

prototrophy leu1 alpha-isopropylmalate isomerase Rhizopus niveus 

[171] 

Methionine 

prototrophy met2-1 homoserine O-acetyltransferase 

Muccor 

circinelloides 

[172] 

Tryptophan 

prototrophy trp1  tryptophan biosynthetic pathway gene 

Schizophyllum 

commune  

[173] 

Tryptophan 

prototrophy trpC  tryptophan biosynthetic pathway gene 

Penicillium 

chrysogenum 

[174] 
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Table 4. Bidirectional selection markers 

Positive / negative 

selection method 

Gene 

name 

Associated gene 

function 

Source 

Organism 
Ref 

Acetamide utilization / 

Fluoroacetamide 

sensitivity 

 

amdS acetamidase Apergillus 

nidulans 

[175] 

Acetate utilization / 

Fluoroacetate sensitivity 

acuA acetyltransferase Ustilago 

maydis 

[176] 

Inorganic sulfur 

utilization /  

Selenate resistance 

 

sC 

 

ATP sulfurylase 

 

Apergillus 

nidulans 

 

[177] 

Nitrate utilisation/ 

Chlorate sensitivity 

 

niaD 

 

Nitrate reductase 

 

Apergillus 

nidulans 

 

[178] 

Pyrimidine prototrophy /  

5-fluorocytosine 

sensitivity 

 

Uracil / uridine 

prototrophy /  

5-fluoroorotic acid 

sensitivity 

 

Cdase 

 

 

ura3 

 

 

cytosine deaminase 

 

 

orotidine 5'-phosphate 

decarboxylase 

 

Saccharomyces 

cerevisiae 

 

Saccharomyces 

cerevisiae 

 

[179] 

 

 

[180] 

Uracil / uridine 

prototrophy /  

5-fluoroorotic acid 

sensitivity  

 

pyrG 

 

orotidine 5'-phosphate 

decarboxylase 

 

Aspergillus 

nidulans 

 

[181, 182] 

Uridine prototrophy /  

5-fluoroorotic acid 

sensitivity  

pyrE orotate 

phosphoribosyl 

transferase 

Thermus 

thermophilus 

[183] 

Uridine prototrophy /  

5-fluoroorotic acid 

sensitivity  

pyrF orotidine-5'-

monophosphate 

decarboxylase 

Thermus 

thermophilus 

[183] 

Uridine prototrophy /  

5-fluoroorotic acid 

sensitivity  

pyr2 orotate 

phosphoribosyl 

transferase 

Trichoderma 

reesei   

[21] 

Uridine prototrophy /  

5-fluoroorotic acid 

sensitivity  

pyr4 orotidine-5'-

monophosphate 

decarboxylase 

Neurospora 

crassa 

[184] 
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 Transforming vectors can be designed such that they carry both a marker for positive 

selection and a marker for negative selection. This system of dual selection markers was 

employed by Michielse et al. [100] in order to confirm whether their integrative vector was being 

inserted at the intended homologous site, or whether it was undergoing random integration. In 

this study, the pyrG gene in Aspergillus awamori was targeted for gene replacement by amdS 

through a homologous recombination strategy, in which the amdS gene provided a positive 

selection method. Flanking the gene replacement cassette, which consisted of the amdS gene and 

homologous DNA to target region, the hygromycin resistance gene, hph, was added as a negative 

selection marker. Transformants able to thrive on acetamide as the sole source of nitrogen but 

sensitive to hygromycin indicated homologous integration of the gene replacement cassette. 

Transformants with both the ability to grow on acetamide and having resistance to hygromycin 

demonstrated that random integration of the entire transforming vector had occurred. A similar 

dual selection marker system had been utilized by Takahashi et al. in Aspergillus sojae [185]. In 

this study, gene disruption by homologous recombination was confirmed using pyrG as a 

positive selection marker since the host strain was initially pyrG
-
. A mutant oliC31 gene 

encoding  for a mutant form of subunit 9 of the F1FO-ATPase was used as a negative selection 

marker to weed out transformants which contained ectopic/ random integration of the 

transforming DNA since the presence of oliC31 also confers resistance to oligomycin. More 

recently, Jorgensen et al. [21] used a different approach to dual selection in T. reesei to assure 

homologous integration of their expression cassette. Instead of positive and negative selection 

markers, they used a combination of positive selection and coloration of the transformed colony 

in order to confirm integration at the target locus. Transformants were selected on uridine 

deficient media since transformants revert to prototrophy due to the presence of a pyr2 gene in 

the transforming vector. However it was the reddish colour of the transformants which insured 

proper homologous integration rather than ectopic integration. Unique in its phenotype, mutants 

of the ade2 gene, chosen as the target locus for incorporation of the vector, produce colonies 

with a reddish appearance [21].  

 To overcome the limited number of functional selective markers for any given species, 

systems whereby the selective marker can be excised and recycled for the next round of 

transformation have been developed. Marker recycling systems have proven invaluable when 

multiple rounds of gene deletion/ gene disruption are required. Marker excision can be achieved 
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in a variety of ways, including the creation of self-excising selection cassettes, utilization of a 

cre/loxP, FLP/FRT or βrec/six recombination system. The cre/loxP sequences were originally 

derived from bacteriophage P1, the FLP/FRT sequences from a yeast plasmid whereas the 

βrec/six recombination system is a bacterial recombination system.  

 Design of a self-excising selectable marker cassette necessitates that the selectable 

marker be flanked on each side by tandem repeat sequences. Homologous recombination events 

between these two repeats will enable the excision of the selectable marker along with one of the 

repeats. Cells no longer containing the selectable gene marker can be counter-selected, thus the 

host organism is ready for the next round of transformation using the same selectable marker 

cassette. Marker recycling was first utilized by Alini et al. [186] in yeast whereby a ura3 gene 

was  excised in order enable the disruption of a second gene using the same selection marker. 

This method of marker recycling has been utilized in T. reesei by Hartl and Seiboth [187], who 

were able to excise a pyr4 selection marker flanked by two direct repeats of a bleomycin gene. 

Similar excision strategies have been utilized in Aspergillus [188, 189].  

 Krappmann et al. [190] utilized a cre recombinase mediated approach for excision of a 

selectable marker cassette in Aspergillus fumigatus. This approach involved designing a selection 

cassette with loxP acceptor sites flanking both sides of the fragment slated for excision. Excision 

occurs only in the presence of cre recombinase whose expression was placed under the control of 

an inducible promoter on a separate plasmid. Counter selection was applied to select for 

successful excision events and the same selection marker could then be utilized for successive 

transformations. cre/ loxP marker excision has also been demonstrated to be a suitable 

bioengineering tool in other filamentous fungal organisms such as N. crassa [191].   

  Kopke et al. [192] utilized a FLP/FRT recombination system for marker recycling in P. 

chrysogenum and in Sordaria macrospora. Initially their approach closely resembled the 

cre/loxP recombinase system described above in that two separate plasmids were utilized for 

incision /excision events in P. chrysogenum. The first plasmid carried a nourseothricin resistance 

gene nat1, flanked on either side by FRT sequences. The gene coding for FLP recombinase, was 

then introduced via a second plasmid to induce excision of the nat1 selection gene. The system 

was later amended to a one step process by creation a self-excising marker cassette in which the 

FRT sites flanked both the resistance gene marker and the Pcflp gene. An inducible promoter 

allowed for the control of the expression of the Pcflp recombinase gene and hence provided 

http://aem.asm.org/search?author1=Katarina+Kopke&sortspec=date&submit=Submit
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control over the excision of the entire cassette. Counter selection provided a host organism in 

which no heterologous genes remained. The same marker excision system was then used in S. 

macrospora to demonstrate that the FLP/FRT recombinase system can be applied to other 

filamentous fungi.  

 Also available as a self-excising marker system is the βrec/six system first used by 

Hartmann et al. in A. fumigatus [193]. The self-excising cassette designed for this study included 

a β-rec recombinase-encoding gene placed between a xylanase inducible promoter and a trpC 

transcription terminator sequence, along with a dominant selectable marker ptrA. This cassette 

flanked on either side by recombinase-binding sites referred to as six sites. After a passage on 

xylose containing plates, the transformants, originally shown to contain the cassette in its 

entirety, was shown to have excised the selection marker. Szewczyk et al. [194, 195] 

successfully use this marker excision system in N. crassa. 

 On a different note, the importance of marker selection for heterologous protein 

production is demonstrated by Lubertozzi et al. [196]. They compared the expression levels in 

single copy number transformants, of isolates obtained either with trpC, niaD or argB selection 

[196]. Each was paired with both the constitutive promoter gpdA and the inducible promoter 

alcA. Results showed that transformants containing the same promoter but with different 

selection markers exhibited different levels of expression. For example, transformants obtained 

using trpC selection showed three times less expression than transformants obtained with argB 

selection with the same promoter and same plasmid copy number.  

1.5 Promoters  

 The efficient production of heterologous proteins requires the use of strong promoters, 

either constitutive or inducible. Although these can be heterologous promoters rather than native 

promoters, they must be recognizable by the host organism to induce expression and protein 

production. If relatively little is known about the transcriptome of a specific species, using a 

promoter which has been shown to be functional across a large variety of organisms, such as the 

gpdA constitutive promoter from A. nidulans or the glaA inducible promoter from A. niger may 

increase the chances of obtaining adequate production of the protein of interest. The 

glyceraldehyde-3-phosphate dehydrogenase (gpdA) promoter from A. nidulans is one of the most 

widely used constitutive promoters for recombinant protein production in members of the 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Hartmann%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20656854
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szewczyk%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23246910
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Aspergillus genus. [197]. Although PgpdA has successfully been used as a heterologous 

promoter in organisms such as T. reesei [21], the heterologous use of gpdA promoter has some 

limitations. Godio et al. [77] demonstrated that for the transformation of basidiomycete 

Hypholoma sublateritium, plasmids carrying promoters from other basidiomycetes showed good 

transformation efficiencies whereas plasmids carrying ascomycetes promoters did not.  

 Yields of heterologous proteins may be increased by selecting gpgA promoters native to 

the host organism rather than a heterologous gpdA promoter. This was demonstrated by Culleton 

et al. [197] who compared protein production in A. vadensis of an α-arabinofuranosidase from F. 

oxysporum either induced by the A. nidulans gpdA promoter or by five different native 

promoters, including a native gpdA promoter. Results showed a threefold increase in activity 

levels of the heterologous protein induced with the native gpdA promoter over that of the gpdA 

promoter from A. nidulans. Both native and heterologous gpdA promoters continue to be used to 

drive expression of heterologous proteins across a wide range of fungal organisms. 

 The maltose inducible glaA promoter from A. niger has mostly been used heterologously 

in closely related Aspergillus species. It has also successfully been used to drive expression of 

native wild type and mutant WdCDC42 genes in the human pathogenic fungus Wangiella 

dermatitidis [198], demonstrating cross-genus recognition of the glaA promoter. 

 The cellulose-inducible native cbh1 promoters have been used for heterologous protein 

production in T. reesei, T. viride and M. thermophila [27, 49, 199, 200]. In each of these studies 

native cbh1 promoter sequences were utilized to drive expression of the protein of interest. Using 

cbh1 to drive expression, yields of heterologous proteins were reported to be in the g/L range for 

production of an α-amylase protein from A. oryzae in T. viride [200], and for production of 

a human IgG antibody fused to a glucoamylase carrier in M. thermophila [49]. The production of 

a heterologous acid phosphatase from A. niger in T. reesei increased 240-fold in the host 

organism with a cbhB promoter compared to production in its native organism [199].  

 Increasing heterologous protein production can be achieved by duplication of promoter 

binding sites in the expression plasmids used for transformation. Liu et al. [201] designed 

integrative expression plasmids containing an increasing number of repeats of a region upstream 

of the glaA gene, coined region I, for transformation into A. niger. This region contains an 

activator protein binding site including the protein binding motif CCAAT, which is known to be 

essential for high expression of many fungal genes [201]. In this study, the number of repeats 



22 | P a g e  

 

integrated increased from two to eight, with an increase in expression of the heterologous gene 

clearly observed by Northern blot analysis [201]. Similarly, repeats of the upstream region of the 

cbh1 promoter, including the CCAAT motif and an ace2 cellulase activator binding site, were 

used in the construction of the expression plasmid for T. reesei [202]. An increase in activity of 

the heterologous β-glucuronidase (GUS) reporter protein was seen when 2 and 4 copies of the 

modified promoter region was used, but failed to increase further when six copies were used 

[202]. This limitation has previously been described by Verdoes et al. [140] who demonstrated 

that a depletion of the transcription factors negatively affected the production of both native 

glucoamylase and that of the heterologous GUS reporter protein when multiple copies of a glaA 

promoter region were used. To contravene this limitation, the use of two different promoters for 

the expression of a single heterologous protein has been suggested by Miyauchi et al. [203]. The 

promoter regions of both egl2 and cbh2 genes, including the binding sites for their distinct 

regulatory factors, have been integrated on separate expression plasmids to test their potential as 

efficient promoters for heterologous gene expression in T. reesei. Of their four vector designs, 

two included a secretion signal, one of two promoters under study and a gene coding for 

thermophilic xylanase enzyme. The other two vectors also included a cellulose -binding module 

and linker fragments in the hopes of increasing yields of the xylanase. Results indicate that all 

isolates transformed with the vectors containing cbh2 promoters showed xylanase activity. Of 

the isolates transformed with vectors containing the egl2 promoters however, only 30% showed 

activity if the vector design without the cellulose binding module and linker fragments was used. 

In isolates where the vector containing the cellulose-binding module and linker fragments was 

used, that number dropped to 25% of isolates showing xylanase activity. Large variations in the 

xylanase activity were reported with all vector designs. Their future plans include the integration 

of both promoters on a single plasmid in order to observe the effect on production of the 

heterologous protein [203]. Alternately, transcriptions factors can be overexpressed as was done 

by Valerious et al .[204] in S. cerevisiae in order to upregulate transcription of a HIS7 gene. 

 

1.6 Sexual genetics in industrial organisms 

 Most of the production strains of filamentous fungi used in industry have long been 

considered asexual. Thus strain improvement by random mutagenesis using physical mutagenic 

agents such as X-rays, UV-rays and gamma rays have been used [205, 206]. Alternately 
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chemical mutagenic agents such as nitrous acid or ethyl methane sulfonate (EMS) can be 

employed [206, 207]. Unfortunately these mutagenic agents do not exclusively target loci which 

will generate the desired increase in production of the enzyme or other product of interest, but 

will also contribute to a general decline of overall strain health. As for strain improvement using 

recombinant technology, the process is lengthy, arduous, and often fails to increase production of 

a desired product. Increasingly, information about the presence two different mating types in 

ascomycete fungi is being brought forth. Thus, the assumptions which have been held with 

respect to their inability for sexual mating are being challenged.  

 Metzenberg and Glass [208] studied the sexual cycle of fungi using a heterothallic strain 

of Neuroscora crassa in which two opposite mating types, A and a, were identified. They 

observed that the crossing of two distinct mating types resulted in the formation of mitotic 

ascospores as well as the appearance of fruiting bodies. They also noted that although the 

sequences associated with the different mating types were found at the same chromosomal 

position, the DNA sequences themselves, called idiomorphs, were quite distinct from each other. 

In 2009, Seidl et al. [209] reported that the industrial workhorse T. reesei QM6a, considered 

asexual for over 50 years, in fact contains a MAT1-2 mating type locus. Furthermore, in looking 

at natural isolates of H. jecorina, they were able to identify a mating type counterpart, MAT1-1. 

They successfully induce sexual reproduction of T. reesei QM6a which resulted in the 

production of ascospores. They concluded that T. reesei QM6a is a sterile female unable to 

produce fruiting bodies, but still able to function as a male mating partner. The authors attribute 

the loss of female fertility, was attributed to years of subcultivation in laboratory settings [209]. 

In a review of the industrially relevant genus, Aspergillus [210], Bennett [210] discusses the 

finding of MAT1 and MAT2 loci in several Aspergillus species. The presence of genes necessary 

for development of ascocarps and other genes related to sexual reproduction in ascomycetes, 

leads the author to question whether heterothallic species of Aspergillus are more common than 

previously thought [210]. Recently, Bohm et al. [211] described conditions under which a sexual 

cycle in Penicillium chrysogenum was induced. They were able to confirm that recombination 

events had occurred during the sexual cycle, from both a molecular and phenotypic standpoint 

[211]. They found that the MAT1-1–1 mating-type gene, in addition to controlling sexual 

identity, also played a role in the control of genes associated with hyphal morphology, formation 

of conidia, and most importantly from an industrial perspective, penicillin production [211]. 
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Hutchinson et al. [212] not only identified both conserved and unique regions in M. 

heterothallica which play a role in mating capabilities of this species, but also but also compared 

its mating mechanism to that of other species within the Sordariales family. Furthermore, they 

determined that although optimal growth temperature for M. heterothallica is 45°C, a much 

lower temperature of 29°C is necessary for optimal ascocarp development.   

1.7 Rationale 

 Given that M. thermophila has recently been the focus of much interest due to its high 

levels of secretion of a multitude of native enzymes, the lack of a greater number of publications 

where Myceliophthora is used as a host organism for heterologous protein production, is 

surprising. Only recently in a paper by Xu et al. [51], was M. thermophila ATCC 42464 

employed to this end. However, the potential of closely related M. heterothallica as a host 

organism, which offers two different mating types and thus, the possibility of crossing two 

genetically engineered strains, remains unexplored so far.  

 The overall aim of this project was the development of an expression system using a 

thermophilic host organism for heterologous protein production. In addition, the choice organism 

was required to be a high producer of extracellular proteins under cultured conditions and a have 

wide ranging pH profile. Mycothermus thermophilus, also known as Scytalidium thermophilum, 

Myceliophthora thermophila and Myceliophthora heterothallica all met these requirements. 

Although all three of these organisms were selected as candidates for this project, of particular 

interest was Myceliophthora heterothallica which has the added advantage of being a sexual 

organism. Hence, this opened the door to the possibility of crossing engineered strains further 

down the line.  

 The sexual crossing in industrial strains of fungal organisms offers more than one 

advantage as a tool for strain improvement. First, industrial strains whose overall health has been 

weakened by iterative rounds of mutagenesis, can potentially be revived by a round of sexual 

crossing. Screening of progeny can yield isolates which retain the desired trait, such as high 

protein production, without the loss of function seen in the progenitors, which may have led, for 

example, to the need for nutritional additives. Furthermore, sexual crossing of two mating types 

can be set up between isolates with different desirable traits. Screening of the progeny may 

potentially to isolates containing both of these advantageous traits due to meiotic recombination. 
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In addition, Van den Brink et al. [46] demonstrated that when a cross was set up between two 

different mating types of M. heterothallica, selected progeny showed increased 

cellobiohydrolase activity than either of their parents. These examples demonstrate how 

recombination events, occurring across the organisms' entire genome, can provide a wide array 

of genetic variation in the progeny. The resulting F1 generation can then be screened for desired 

traits including increased protein production, specific regain of function, and presence of 

multiple desired traits in the select offspring.   

2 Materials and Methods  

2.1 Strain identification and maintenance 

 Both Myceliophthora heterothallica and Mycothermus thermophilus fungal strains used 

for this project were obtained from the Fungal Biodiversity Centre, KNAW-CBS. (M. 

heterothallica: CBS 375.69, CBS 202.75; Mycothermus thermophilus: CBS 627.91). 

Myceliophthora thermophila ATCC 42464 was obtained from the American Type Culture 

Collection. All strains were maintained on YPSS agar (0.4% (w/v) yeast extract, 1.5% (w/v) 

soluble starch, 0.1% (w/v) K2HPO4, 0.05% (w/v) MgSO4, 1.5% (w/v) agar, pH 7.0) at 45°C. 

Spores were collected from week-old agar plates and resuspended in 0.02% (v/v) Tween 

80/0.5% (v/v) saline solution. 

 

2.2 Crossing of opposing mating types of Myceliophthora heterothallica  

 Crosses were set up between Myceliophthora heterothallica CBS 375.69 and 

Myceliophthora heterothallica CBS 202.75 on both YPSS agar plates and on Mycobroth agar 

plates (10g/l soytone, 40g/l D-glucose, 1ml/l trace element solution, pH adjusted to 5.0 with 

HCl). Plates were placed shielded from light and grown at 37°C for six days. On the sixth day of 

incubation a small amount of material was scraped from the area containing a dark line at the 

junction where the two strains met and observed under the microscope in order to verify 

presence of ascospores by microscopy. 
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2.3  Protoplast generation protocol 

 Protoplasts were generated using 1.0-2.0 g of mycelia from 18-24 hour cultures grown in 

10x TDM (0.5 M KH2PO4, 1 M MgSO4, 0.1 M CaCl2.2H2O, thiamine-HCl (1 mg/ml), L-

asparagine monohydrate and trace element solution containing 2 mM ferrous sulphate, 1 mM 

cupric sulphate, 10 mM manganese sulphate monohydrate, 5 mM cobalt chloride hexahydrate ) 

[213] containing 2% (w/v) glucose as a carbon source. Mycelia were harvested by filtering 

through Miracloth (Calbiochem, San Diego, CA, USA) and washing with 2 volumes of 0.6 M 

MgSO4. Mycelia were transferred to a sterile 50 ml conical tube and resuspended in a solution 

containing 1.2 M MgSO4, 10 mM Na2HPO4 , 10 mM NaH2PO4, and 0.375 g VinoTaste® Pro per 

gram of mycelia (http://www.novozymes.com) as a source of β-glucanase enzyme. After 3 hours 

at 30°C with shaking at 150 rpm, protoplasts were isolated by layering equal volumes of digested 

mycelial suspension and ice cold 0.6 M sorbitol, 0.1 M Tris-HCl pH 7.0. Tubes were centrifuged 

at 3000 g for 20 minutes at 4°C. Protoplasts, trapped at the interface, were harvested from the 

interface and resuspended in 1 ml of 1.2 M sorbitol.  

2.4 Transformation protocol 

 Transformation was performed using 200 µl of protoplast suspension, 20 µl 0.4 M 

aurintricarboxylic acid, 4-5 µg of each plasmid DNA for cotransformation, and a 100 µl of 20% 

(v/v) polyethyleneglycol (PEG) solution containing 16.7 mM CaCl2 and 3.3 mM Tris-HCl pH 

7.5. The preparation was incubated at room temperature for 10 minutes followed by addition of 

1.5 ml 60% (v/v) PEG solution containing 50 mM CaCl2 and 10 mM Tris-HCl pH 7.5. After a 

20-minute incubation at room temperature, 5 ml of 1.2 M sorbitol was added and the tubes were 

centrifuged at 3000 g for 10 minutes at 22°C. The supernatant was discarded and the pellet was 

resuspended in 1 ml of 1.2 M sorbitol, 10 mM CaCl2, 10 mM Tris-HCl, pH 7.5. 

2.5 Assessment of sensitivity to antibiotics  

 Wells of a 24-well plate (Costar cat# 3524) were filled with 1 ml of 10x TDM containing 

2% (w/v) glucose and were inoculated with 1x10
6
 spores/ml. Increasing concentrations of 

Hygromycin B and Geneticin ranging from 0 µg/ml to 10 µg/ml in gradual increments were 

prepared. 100µl of each of the dilutions were added to the wells. Plates were covered, placed in a 

http://www.novozymes.com/
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humidity chamber and in an incubator at 37°C. They were assessed for growth daily for one 

week. 

2.6 Selection of transformants  

 Transformed protoplasts were plated on regeneration media containing 34% (w/v) 

sucrose, 2.0% (w/v) agar, 2.5% (v/v) stock solution A, 2.5% (v/v) stock solution B, and 0.1% 

(v/v) Hunter's trace element solution. Stock solution A contained 120 g NaNO₃, 10.4 g KCl, 30.4 

g KH₂PO₄, and 22.5 ml of 4M KOH for a total volume of 500 ml in ddH₂O. Stock solution B 

contained 10.4 g MgSO₄.7H₂O for a total volume of 500 ml ddH₂O. The Hunter's trace element 

solution contained 2.2 g ZnSO4-7H2O, 1.1 g H3BO3, 0.5 g FeSO4-7H2O, 0.17 g CoCL2-6H2O, 

0.16 g CuSO4-5H2O, 0.5 g MnCl2-4H2O, 0.15 g Na2MoO4-2H2O, and 5.0 g EDTA per 100 ml 

total volume. For selection of amdS transformants 0.7% (v/v) 1.5 M acetamide solution was 

added to the media. For selection of pyrG
-
 transformants stock solution A without NaNO3 was 

used and 20 mM uracil, 100 mM uridine, and 1.5 mg/ml 5-Fluoroorotic acid were added. 

2.7 Vector for homologous recombination 

 A homologous recombination vector was constructed for pyrG gene replacement using 

amdS from A. nidulans as a selectable marker. About 1.3 Kb of 5' and 3' regions flanking pyrG 

of M. heterothallica CBS 375.69 were amplified by PCR. A repeat of the 3' region flanking pyrG 

was added to the construct for self-excision of the selection vector (Figure 1).  
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Figure 1. Schematic representation of M. heterothallica CBS 375.69 pyrG replacement by 

amdS construct 

A. Representation of pyrG region of WT M. heterothallica CBS375.69 genome 

B. pyrG replacement by amdS construct  

C. Representation M. heterothallica after hypothetical homologous recombination of construct 

D. Representation M. heterothallica after hypothetical self-excision event 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 | P a g e  

 

2.8 Selection plasmid pGAMD 

The plasmid used for positive selection of transformed organisms can be seen in Figure 2 and 

was provided by Dr. R. Storms from Concordia University, Department of Biology. 

 

 

 

 

 

Figure 2. Integrative selection plasmid containing the amdS gene from A. nidulans 

Positive selection is based on ability of transformants in which pGAMD has been integrated  

to utilize acetamide as the sole source of nitrogen. The amdS gene is under control of its native 

promoter (courtesy of Dr. R. Storms). 
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2.9 Construction of expression vectors 

2.9.1 Construction of expression cassettes 

 Plasmid ANIp7 [123] was as a template for the construction of expression vectors for 

transformation of M. thermophila and M. heterothallica. This plasmid initially contained the 

glaA promoter (PglaA) region from A. niger to drive expression of heterologous proteins. The 

promoter was replaced by promoter region of five different genes from M. thermophila and M. 

heterothallica (Table 5). Primers were designed to amplify the 1 Kb region upstream of the start 

codon from the genes listed above and to contain AatII and FseI restriction sites on the ends. 

Once band size was verified on gel, a PCR clean-up was performed using Qiagen PCR 

purification Kit (cat# 28104) and eluted with 35 µl of 10 mM Tris-HCl pH 8.0. A double digest 

with FseI and AatII (https://www.neb.ca/) was done at 37°C for two hours for both the amplified 

promoters and the original ANIp7 vector. Digested products were precipitated using one volume 

of sample: 0.1 volume of 3 M sodium acetate and two volumes of 95% (v/v) ethanol. Samples 

were resuspended in 10 mM Tris-HCl pH 8.0. Ligation was performed using an insert to vector 

molar ratio of 3.0 - 3.3: 1. Ligation reaction was performed overnight at 16°C using T4 ligase 

from NEB (Cat# M0202S). Ligated products were transformed into E. coli DH5α competent cell 

as per the NEB protocol. Plasmids containing the six different promoters are shown below 

(Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.neb.ca/
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Table 5. Promoters used in expression cassettes 

Organism Gene model ID 

Promoter 

name 

A. niger CBS 513.88 An03g06550 PglaA 

M. thermophila ATCC 42464 MYCTH_2114025 PpmoA 

M. thermophila ATCC 42464 MYCTH_2311855 PgpdA 

M. thermophila ATCC 42464 MYCTH_111388 PcbdA 

M. thermophila ATCC 42464 MYCTH_2303065 PagdA 

M. heterothallica CBS 375.69  PagdB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Aspni_DSM_1&id=158641
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Spoth2&id=2114025
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Spoth2&id=2311855
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Spoth2&id=111388
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Spoth2&id=2303065
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Figure 3. Integrative plasmids containing six alternate promoters 

Expression plasmids each containing one of six promoters tested in order to drive the expression 

and subsequent production and excretion of heterologous proteins.  
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2.9.2 Ligation-independent cloning of target genes 

 For the insertion of heterologous genes of interest, xylanase genes from a variety of 

organisms were inserted into the plasmids containing promoters listed above using LIC cloning. 

Both annealing vector and insert were amplified using primers designed with identical LIC 

sequences.  

 

The vector primer sequences used were: 

Forward primer: GCCGTCCGTCGCCGTCCTTCACCGACCGCGACGGTG 

Reverse primer: GCCGGTGTTTTGTTGCTGGGGAGGTTATGGCAGAAGGGGATTC 

 

The insert primer sequences used were : 

Forward primer: CCCCAGCAACAAAACACCGGCTCAGCAATGGTTCAGA 

TCAAGGTAGC 

Reverse primer: GAAGGACGGCGACGGACGGCTCTAGAGAGCATTTGCGATAGC  

 

 The various genes of interested inserted into the expression plasmid are identified in 

Table 6. Amplification products were treated overnight at 37°C with DpnI (https://www.neb.ca/) 

to get rid of all traces of the original plasmid by digesting methylated DNA but leaving PCR 

amplified DNA intact. Next PCR cleanup was performed using Millipore clean up filter plate 

(Cat# LSKMPCR10) (http://www.emdmillipore.com) to remove all traces of primers and 

unincorporated dNTP. The amplified vector and inserts were treated separately with T4 DNA 

polymerase exonuclease (New England Biolabs, Cat# M0203S) in a 20 µl reaction containing 

300 ng of amplified DNA, 2 µl NEBuffer2, 0.8 µl 100 µM DTT, 2 µl 25 mM dTTP for the 

reaction mixture containing the vector or dATP for the reaction containing the amplified genes of 

interest, 1.25 µl of T4 Polymerase NEB (3 U/ml) and dH2O to 20 µl. The annealing reaction was 

performed at 22°C for 30 minutes, followed by inactivation of the exonuclease at 75°C for 20 

minutes [214]. An annealing reaction was set up between the vector and GOI annealing in a 10 

µl annealing reaction using 1:1 and a 2:1 insert to vector molar ratio in parallel with 100-150 ng 

total DNA. The reaction was incubated at room temperature for 30 minutes. The annealed 

reaction product was then used to transform E. coli DH5α competent cells.  

 

https://www.neb.ca/
http://www.emdmillipore.com/
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Table 6. Genes of interest inserted into expression plasmid 

Organism Gene model ID 

Gene 

name 

A. niger NRRL3 NRRL3_08708 ANxynA 

A. niger CBS 513.88 ASPNI_158107 ANxynB 

T. terrestris NRRL 8126 THITE_2107799 TtxynA 

T. terrestris NRRL 8126 THITE_2117649 TtxynB 

T. terrestris NRRL 8126 THITE_2118148 TtxynC 

M. thermophila ATCC 42464 MYCTH_99786 MtxynA 

S. thermophilum CBS 625.91 SCYTH2p4_007856 StxynA 

P. herpotrichoides CBS 494.80 Psehe2p4_001268 PhxynA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Aspni_NRRL3_1&id=8708
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Aspni_DSM_1&id=158107
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Thite2&id=2107799
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Thite2&id=2117649
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Thite2&id=2118148
http://genome.jgi.doe.gov/cgi-bin/dispGeneModel?db=Spoth2&id=99786
http://genome.fungalgenomics.ca/new_gene_model_pages/
http://genome.fungalgenomics.ca/new_gene_model_pages/
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2.10 Screening and verification of positive clones 

 Screening for positive clones in order to verify the insertion of the alternate promoters in 

the expression plasmid was performed by colony PCR. Primers located within each of the 

promoters regions were used, except for verification of PagdA. For PagdA verification, the 

forward primer was positioned in pyrG  in the expression plasmid and the reverse primer was 

positioned in TtglaA. The sequence of the primers used for identification of positive clones and 

expected band size can be seen in Table 7. 
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Table 7. PCR primers used for verification of alternate promoter insertion 

Promoter 

ID 

Primer 

ID 
Primer Sequence 

Expected 

band size 

(bp) 

PpmoA 160F2 AATTGACGTCCTGGCGAGGATGATCG 1025 

 180R 
GCCGGTGTTTTGTTGCTGGGGACGTGATGTCGCTGC

TCAG 
 

    

PgpdA 172F2 GACATCGGACGTCAGC 862 

 183R 
GCCGGTGTTTTGTTGCTGGGGAGATTTCTGTGATGT

GGGGAGG 
 

    

PcbdA 162F2 AATTGACGTCGGACCTTCGGAGGCG 1015 

 181R 
GCCGGTGTTTTGTTGCTGGGGACTTGGATCGCAGAG

ACTGG 
 

    

PagdA 668F ACGGTGTCTGTATTTCCGGA 1276 

 647R CTTACGAGAAAAGAGTTGGACTTTG  

    

PagdB 168F2 AATTGACGTCCCAATTGGTGCACGATG 1067 

 182R 
GCCGGTGTTTTGTTGCTGGGGAGGTTAATTATGGCA

GAAGGGG 
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 Verification of proper insertion of the promoters was also confirmed using restriction 

enzymes. Digestions were performed and fragments run on an agarose gel to assure resulting 

fragments were of the proper size. The restriction enzymes selected and expected band sizes after 

digestion were as follows: 

 

SfoI for PpmoA; expected bands 2086 bp and 3827 bp 

XhoI for PgpdA; expected bands 4178 bp and 1539 bp 

SphI for PcbdA; expected bands 1595 bp and 4281 bp 

PstI for PagdA; expected bands 3932 bp, 1674 bp and 375 bp  

SacI for PagdB; expected bands 1658 bp, 3773 bp and 497 bp 

 

 Screening for positive clones after LIC cloning was performed by colony PCR. The 668F 

forward primer was positioned in pyrG  in the expression plasmid and the 647R reverse primer 

was positioned in TtglaA. The expected sizes of the bands for colony PCR screen with these 

primers can be seen in Table 8.  

 

The primer sequences used for screening for positive clones after LIC cloning were: 

668F ACGGTGTCTGTATTTCCGGA 

647R CTTACGAGAAAAGAGTTGGACTTTG 
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Table 8. Expected sizes for colony PCR screen after LIC Cloning for insertion GOI in 

expression plasmid 

Promoter 

ID. 
GOI 

Gene only 

(bp) 

Promoter only 

(bp) 

LIC seq. 

(bp) 

Expected size 

(bp) 

PglaA ANxynA 984 744 43 1771 

 TtxynA 687 744 43 1474 

 TtxynB 1188 744 43 1975 

 TtxynC 1110 744 43 1897 

PpmoA ANxynA 984 1274 43 2301 

 TtxynA 687 1274 43 2004 

 TtxynB 1188 1274 43 2505 

 TtxynC 1110 1274 43 2427 

 MtxynA 825 1274 43 2142 

 ANxynB 765 1274 43 2082 

 StxynA 1104 1274 43 2421 

 PhxynA 1086 1274 43 2403 

PcbdA ANxynA 984 1247 43 2274 

 TtxynA 687 1247 43 1977 

 TtxynB 1188 1247 43 2478 

 TtxynC 1110 1247 43 2400 

 MtxynA 825 1247 43 2115 

 ANxynB 765 1247 43 2055 

 StxynA 1104 1247 43 2394 

 PhxynA 1086 1247 43 2376 

PagdA ANxynA 984 1301 43 2328 

 TtxynA 687 1301 43 2031 

 TtxynB 1188 1301 43 2532 

 TtxynC 1110 1301 43 2454 

 MtxynA 825 1301 43 2169 

 ANxynB 765 1301 43 2109 

 StxynA 1104 1301 43 2448 

 PhxynA 1086 1301 43 2430 

PagdB ANxynA 984 1289 43 2316 

 TtxynA 687 1289 43 2019 

 TtxynB 1188 1289 43 2520 

 TtxynC 1110 1289 43 2442 

 MtxynA 825 1289 43 2157 

 ANxynB 765 1289 43 2097 

 StxynA 1104 1289 43 2436 

 PhxynA 1086 1289 43 2418 
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PgpdA ANxynA 984 1171 43 2198 

 TtxynA 687 1171 43 1901 

 TtxynB 1188 1171 43 2402 

 TtxynC 1110 1171 43 2324 

 MtxynA 825 1171 43 2039 

 ANxynB 765 1171 43 1979 

 StxynA 1104 1171 43 2318 

 PhxynA 1086 1171 43 2300 
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2.11 Verification of insertion of plasmids into fungal hosts 

 For verification of co-transformation of plasmids into the fungal host, gDNA was 

extracted from fungal isolates using QiaAmp DNA minikit (cat# 51304) from Qiagen. The 

extracted gDNA was used for PCR amplification. Internal amdS primers were used for 

verification of insertion of the selection plasmid and primers located in the promoter and 

terminator region of the gene of interest were used for verification of insertion of the expression 

plasmid. 

 

Primers used for verification of PGAMD insertion: 

21F:  ACCGGAACAACCACGCTCGTG 

22R:  CAAAGCCGGTGCCGTCTTCTACG 

 

For verification of expression plasmid insertion: 

283F:  TGCCCTCATCCCCATCCTTTAACTATAGC 

133R:  GATTCGTCGCCTAATGTCTCG 

2.12 Screening of transformants expressing cloned genes 

2.12.1 Media and set up for stationary cultures 

 Liquid cultures were grown in 10x TDM and a 2% (w/v) carbon source depending on the 

promoter (2% (w/v) sucrose and 10% (w/v) sucrose for PagdA and PagdB; 2% (w/v) 

carboxymethyl cellulose (CMC) for PcbdA and PpmoA; 2% (w/v) glucose for PgpdA; and 2% 

(w/v)  maltose and 15% (w/v) maltose for PglaA). Cultures were prepared in a 96 well format 

with 250 µl liquid media / well. Wells were inoculated using sterile toothpick to transfer spores 

and mycelia from colonies on regeneration plates to the liquid culture plates. The plates were 

incubated at 37°C for 5 - 7 days in order to assure the appearance of mycelial mats atop of each 

well. 

2.12.2 Spotting Assay protocol 

 Plates for spotting assay were prepared with 0.15% (w/v) Remazol Brilliant Blue R−D-

Xylan,1.5% (w/v) agar (w/v), in 100 mM citrate pH 5.0 (RBB xylan plates). Positive controls 
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were prepared using an in-house xylanase. For the control a 5x serial dilution was done in 10 

mM citrate buffer for final dilution of 3125X. Culture supernatants were centrifuged twice at 

16000 g for 20 minutes at 4°C to precipitate spores and mycelia. Next, 3 µl of cleared 

supernatant from liquid cultures or control xylanase was spotted on the RBB xylan plates. Plates 

were incubated overnight at 37°C. 

2.12.3 Shaking cultures 

 Liquid cultures were grown in 10x TDM containing 2% (w/v) carbon source depending 

on the promoter (2% (w/v) sucrose for PagdA and PagdB; 2% (w/v) CMC for PcbdA and 

PpmoA; 2% (w/v) glucose for PgpdA; and 2% (w/v) maltose PglaA). Cultures containing 25 ml 

of culture media were inoculated with 10
6
 spores per ml and incubated at 45°C with agitation at 

220 rpm in 250 ml Erlenmeyer flasks. Cultures were grown for 24 to 96 hours or for 4 to 48 

hours depending on the purpose of the assay. 

2.12.4 Induction Experiment 

 For the induction experiment 25 ml liquid cultures flasks containing with 10x TDM and 

2% (w/v) glucose were inoculated with 1x10
6
 spores/ml from M. heterothallica isolates #3 and 

#16 containing the PagdB - ANxynA construct. Cultures were grown overnight at 45°C and 

mycelia was washed in 10x TDM at 24 hours. I then divided the mycelial pellet into pellets of 1g 

each and added them to flasks containing 10x TDM containing 2% (w/v) sucrose and to fresh 

10x TDM containing 2% (w/v) glucose. Samples of the supernatant were taken and centrifuged 

at 4 hours, 6 hours, 8 hours, 12 hours and 24 hours. 

2.12.5 Protein determination  

 Total protein concentration in culture supernatant was determined using Bradford 

Reagent kit (Biorad Quickstart Bradford Protein Assay; Cat# 5000201). 

2.12.6 BCA assay for determining reducing sugar release 

 Xylanase activity was measured by BCA assay using 0.4% (w/v) birch-wood xylan 

(Sigma-Aldrich; Cat# 95588) as the substrate. Activity at pH 5.5 was examined using 3 µl of 

extracellular supernatant was mixed with 10 µl of substrate. The mixture was incubation for 1 
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hour at 40°C. The reducing sugars produced in the reaction mixture were measured using a 

bicinchoninic acid-containing solution alongside xylose standards. Absorbance was measured by 

spectrophotometer at 562 nm. One unit of xylanase activity was defined as the quantity of 

enzyme required to liberate 1 μmol of xylose equivalent per minute at 40°C. 

2.12.7 Concentration of samples and buffer exchange 

 Concentration of samples was performed using 10K Nanosep centrifugal tubes (Pall 

Corporation) for small volumes ≤1 ml. For concentrating 25 ml liquid culture supernatants 

Vivaspin (10,000 MWCO) 20 ml centrifugal concentrators were used for the first set of 

experiments. The buffer exchange was done using 10 mM citrate buffer. Concentration of 

subsequent large volume supernatant cultures were done by TCA precipitation. The TCA 

precipitation of samples was done using 4 volumes of cold 20% (v/v) Trichloroacetic acid with 

20mM DTT in 80% (v/v) acetone. The samples were left to precipitate on ice for 60 minutes. 

The tubes were then centrifuged at 3200g for 30 minutes at 4° C. The supernatant was removed 

by decanting. The samples were rinsed using -20°C prechilled to 80% (v/v) acetone  with 20mM 

DTT , vortexed and incubated at -20°C for 30 minutes. The protein was recovered by 

centrifugation at 3200g  for 30 minutes at 4°C and the supernatant was removed by decanting. 

The pellet was air dried 5 minutes under a chemical hood and resuspended.  

2.13 Protein detection 

2.13.1 SDS-PAGE 

 SDS-PAGE was performed in 12% (v/v) polyacrylamide gel slabs. Samples containing 5 

to 15 g of protein was mixed with 10 µl sample loading buffer made from 450 µl Laemmli 

buffer (Bio_Rad #1610737), and 50 µl 3.5 M DTT. The samples were then denatured at 95°C for 

5 minutes. The 20 µl of denatured sample was loaded into the wells. Samples were run into the 

gel for 50 minutes at 160 volts. Proteins were stained with 0.1% (w/v) Coomassie Brilliant blue 

or by silver nitrate depending on the initial amount of protein loaded. 

2.13.2 Preparation of samples for mass spectrometer 

 Gel segments corresponding to size of expected recombinant protein were cut from SDS-
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PAGE gel, chopped into 1 mm x 1 mm pieces and resuspended in 1% (v/v) acetic acid. 

Coomassie distaining was done by a series of washes in ammonium bicarbonate and acetonitrile. 

Samples were dehydrated at room temperature for 10 minutes and 10 mM DDT was added. 

Alkylation was done using iodoacetamide. Trypsin was added to each sample and the reaction 

mixture was incubated for 18 hours at 37 °C. Extraction solution containing 50% (v/v) 

acetonitrile, 1% (v/v) trifluoroacetic acid and 49% H2O was added to the samples and rounds of 

desalting was done using C18 ziptips™ (Millipore, Billerica, MA). Eluted peptides were dried in 

a SpeedVac and resuspended in a 60 μl solution containing 5% (v/v) acetonitrile and 0.1% (v/v) 

formic acid.  

2.13.3 LC–MS/MS analysis  

 Samples were sent to Dr. M. Di Falco at Concordia University for LC-MS/MS analysis 

where 5 µl of digested peptide was loaded onto a PicoFrit column (New Objective, Woburn, 

MA) connected to a LTQ-Orbitrap Velos mass spectrometer (Thermo-Fisher, San Jose, CA). 

Peptide separation was done using a linear gradient generated by an Easy-LC II Nano-HPLC 

system (Thermo-Fisher).  

3 Results  

3.1 Mycothermus thermophilus 

 In order to confirm that Mycothermus thermophilus CBS 627.91 met the requirements of 

a suitable host organism, temperature and pH profiles were performed. Assays were done to 

assess the level of enzymatic activity in the extracellular media using culture supernatants. 

Results show that this organism grows optimally at 45°C with a temperature range between 22°C 

and 55°C. The pH range for this species on YPSS agar is between pH 4 and pH 11 with optimum 

at pH 8. The ability of Mycothermus thermophilus to thrive at alkaline conditions prompted us to 

attempt to develop a genetic transformation system for this organism. The liquid cultures showed 

more than 700 µg/ml of secreted protein after 72 hours when grown in 10x TDM containing 2% 

(w/v) barley at pH 8. Enzymatic assays show high levels of cellulase, xylanase and α-amylase 

activity (Figure 4). The results from these experiments validated the use of Mycothermus 

thermophilus CBS 627.91 as a potential host organism. 
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 The organism was assessed for the ease with which it could be protoplasted in order to 

evaluated whether PEG-mediated transformation of protoplasts was possible for this species. I 

found protoplast generation with Mycothermus thermophilus to be problematic since only some 

of spores used for inoculation germinated. The remaining spores were swept up by the growing 

network of mycelia as the culture grew. These conidia were partially digested by the β-glucanase 

along with the mycelia and made the true protoplasts difficult to differentiate from the partially 

digested conidia. As an alternative, I attempted to digest the conidia alone. I started with the 

usual amount of 0.5 g of β-glucanase in 11 ml of conidial suspension in osmotic media, but 

spiked the solution with 0.5 g more β-glucanase after 4 hours and 8 hours of digestion. However 

this resulted in a mixed population of conidia at different stages of digestion, even after 24 hours 

of β-glucanase digestion. I used a variety of methods to rid the culture of ungerminated conidia 

including low speed centrifugation, filtering through glass wool and sub culturing at different 

concentrations in order to obtain a conidia-free culture. Ultimately the best method was a 1% 

(v/v) subculture, which yielded clean protoplast suspensions from which to work. Overall, this 

organism required additional manipulation and additional time as compared to the other 

candidates, before a clean preparation of protoplasts could be obtained.  

 Potential methods of selection were evaluated in order to find a suitable selection marker 

for detection of Mycothermus thermophilus transformants. Acetamide selection was the method 

of selection I originally had in mind for this species. Preliminary tests indicated that this was not 

possible since agar cultures using the wild-type strain showed no disadvantage when grown on 

acetamide as the sole source of nitrogen compared to growth using asparagine or NaNO3 as the 

nitrogen source. Next, I considered pyrG selection for this organism. Unfortunately, I found that 

the protoplast regeneration media needed both starch and 0.1% yeast extract. Unfortunately, 

yeast extract was shown to provide the cultures with a source of uracil or uridine when I 

performed a control experiment using A. niger_N402 pyrG
+ 

and A. niger_N593 pyrG
-
 strains. 

This eliminated the possibility of using positive pyrG selection after reintegration of pyrG on an 

expression vector even if a pyrG
-
 strain could be generated. Although negative selection of 

pyrG
+ 

using
 
5' FOA remained an option, pyrG could not be used as a bidirectional selection 

marker. Given that this organism has very stringent nutritional requirements and was more 

difficult to protoplast, it was dropped as a potential host organism. 
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Figure 4. Protein levels and enzymatic activity of Mycothermus thermophilus in liquid 

cultures 

A. Total protein concentration of Mycothermus thermophilus culture supernatant when grown in 

10x TDM containing 2% (w/v) barley 

B. Cellulase activity of culture supernatant of Mycothermus thermophilus culture supernatant 

when grown in 10x TDM containing 2% (w/v) barley 

C. Xylanase activity of culture supernatant of Mycothermus thermophilus culture supernatant 

when grown in 10x TDM containing 2% (w/v) barley 

D. α amylase activity of culture supernatant of Mycothermus thermophilus culture supernatant 

when grown in 10x TDM containing 2% (w/v) starch 

For Figures A - C :                       Culture grown at pH 5.5,                 Culture grown at pH 8; 

                                                      Culture grown at pH 9;                   Culture grown at pH 10;        

Assay buffer at pH 5.5 for all activity assays 
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3.2 Myceliophthora heterothallica and Myceliophthora thermophila 

3.2.1 Growth profiles for M . thermophila and M. heterothallica  

 I evaluated M. thermophila and M. heterothallica as candidate host organisms by 

performing temperature and pH profiles and by performing assays using culture supernatants. 

Results showed that both of these organisms grow optimally at 45°C with a temperature range 

between 30°C and 50°C. The pH range at which I observed growth on agar plates was between 

pH 4 and pH 12 but with decreased growth above pH 11. Results of the temperature and pH 

profiles of M. heterothallica CBS 375.69 are shown in Figure 5 and Figure 6.  I assayed cultured 

supernatants of both M. heterothallica and M. heterothallica. The amounts of secreted protein in 

M. thermophila culture supernatants is shown below (Figure 8) as are the levels of cellulase 

activity and xylanase activity in cultures grown in 10x TDM containing either 2% (w/v) barley 

or 2% (w/v) alfalfa. Results of assays done using culture supernatants show average levels of 

total extracellular proteins and average levels of xylanase and cellulase activity. These organisms 

were retained as potential hosts nonetheless since early protoplast generation trials were 

promising as were potential methods of transformation.   

 Since M. heterothallica is known to be a sexual species, crosses using strains of opposite 

mating types were performed in order to see whether ascocarps could be obtained. Results of the 

crosses between M. heterothallica CBS 375.69  and M. heterothallica CBS 202.75 on both YPSS 

agar plates and Mycobroth plates can be seen in Figures 7A and 7B. The formation of ascocarps 

can be seen at the junction line between the two strains. A small amount of material was scraped 

from the area containing dark lines at the junction of the two strains and placed on slides in order 

to visualize the ascocarps and ascospores under a microscope.  Both of these structures, which 

can be seen in Figures 7C -7E, confirm the sexual nature of this species.  
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Figure 5. Temperature profile of M. heterothallica CBS 375.69 

Growth of M. heterothallica CBS 375.69 at 48 hours post inoculation with 2x 10
4
 spores/plate 

on Mycobroth. 
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Figure 6. pH profile for M. heterothallica CBS 375.69 

Growth of M. heterothallica CBS 375.69 at 48 hours post-inoculation with 1x 10
5
 spores/plate 

on YPSS at 45°C.  
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Figure 7. Mating of Myceliophthora heterothallica 

A.  Cross between Myceliophthora heterothallica CBS 202.75 on left hand side of petri dish and 

Myceliophthora heterothallica CBS 375.69 on right hand side using YPSS agar plate. 

B. Cross between Myceliophthora heterothallica CBS 202.75 on left hand side of petri dish and 

Myceliophthora heterothallica CBS 375.69 on right hand side using Mycobroth agar plate. 

C. and D. Material collected from dark junction line between the two strains was resuspended in 

10x TDM  before being placed on a microscope slide; 400X magnification 

E. Dry material collected from dark junction line between the two strains was placed directly on 

a microscope slide; 400X magnification 
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Figure 8. Protein level and enzymatic activity of M. thermophila in liquid cultures 

A. Total protein concentration of M .thermophila culture supernatant when grown in 10x TDM 

containing 2% (w/v) barley, 2% (w/v) alfalfa or 2% (w/v) glucose 

B. Cellulase activity of culture supernatant of M .thermophila culture supernatant when grown 

in 10x TDM containing 2% (w/v) barley or 2% (w/v) alfalfa 

C. Xylanase activity of culture supernatant of M .thermophila s culture supernatant when grown 

in 10x TDM containing 2% (w/v) barley or 2% (w/v) alfalfa 
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3.2.2 Verification of insertion of alternate promoters into the expression plasmid 

 In order to verify that the PglaA promoter had been replaced by the alternate promoters in 

the expression plasmid, colony PCRs were performed. Results show amplification of fragments 

of sizes corresponding to the expected sizes for each of the alternate promoters indicating that 

the original PglaA promoter had been replaced as expected. Furthermore, digestions using 

restrictions enzymes which were performed in order to confirm the findings of the colony PCR. 

Different restriction enzymes were chosen for each of the constructs such that the expected 

fragments sizes differed between the expression plasmid containing PglaA and the expression 

plasmid containing each of the alternate promoters. Results from the colony PCR can be seen in 

Figure  9 and results of the digestions can be seen in Figure 10. These results show that the 

replacement of PglaA by alternate promoters in the expression plasmid had occured as intended. 
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Figure 9. Verification of proper replacement of PglaA by alternate promoters by colony 

PCR 

A. Amplification of fragment of expected size of 1052 bp indicates presence of PpmoA in 

expression plasmid 

B. Amplification of fragment of expected size of 1015 bp indicates presence of PcbdA in 

expression plasmid 

C. Amplification of fragment of expected size of 1067 bp indicates presence of PagdB in 

expression plasmid 

D. Amplification of fragment of expected size of 862 bp indicates presence of PgpdA in 

expression plasmid 

E. Amplification of fragment of expected size of 1276 bp indicates presence of PagdA in 

expression plasmid 
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Figure 10. Verification of insertion of alternate promoters in expression plasmid using 

restriction enzymes 

A. Enzyme SfoI cuts only once in expression plasmid containing PglaA resulting in one 

fragment of 5642 bp. The same enzyme cuts twice expression plasmid containing PpmoA 

resulting in fragments of expected sizes of 2086 bp and 3827 bp.  

B. Enzyme SphI cuts only once in expression plasmid containing PglaA resulting in one 

fragment of 5642 bp. The same enzyme cuts twice in expression plasmid containing PcbdA 

resulting in fragments of expected sizes of 1595 bp and 4281 bp. 

C. Enzyme SacI cuts twice in expression plasmid containing PglaA resulting in fragments of 

1869 bp and 3773 bp. The same enzyme cuts three times in expression plasmid containing 

PagdB resulting in fragments of expected sizes of 1658 bp, 3773 bp and 497 bp.  

D. Enzyme XhoI cuts only once in expression plasmid containing PglaA resulting in one 

fragment of 5642 bp. The same enzyme cuts twice in expression plasmid containing PgpdA 

resulting in fragments of expected sizes of 4178 bp and 1539 bp.  

E. PstI cuts three times in expession plasmid containing PagdA resulting in fragments of 

expected sizes of 3932 bp, 1674 bp and 375 bp  

 

A B C D E 
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3.2.3 Protoplast generation 

 In order to assess the ease with which protoplasts could be generated for M. 

heterothallica, as well as determining regeneration rates for this species, some preliminary tests 

were performed. A preparation of protoplast was obtained by digestion of mycelia from 18-hour 

cultures. For the digestion of 2.0 g of harvested mycelia, 0.5 g of β-glucanase was used. The 

above preparations were checked under a microscope every hour in order to access the progress 

of the digestion. The mycelia was found to be >90% digested after 2.5 - 3 hours at 30°C (Figure 

11). The starting 2.0 g of mycelia generated between 10
7
 and 10

8 
protoplasts as determined by  

cell counts using a haemocytometer. I performed initial tests to evaluate to the regeneration rate 

of M. heterothallica protoplasts on non-selective regeneration media. Results of these tests 

showed regeneration rates ranging from 3.5% to 30.5% with an average regeneration rate of 

18.48% based on the number of total protoplast plated. These numbers are based on regeneration 

of non-transformed protoplasts and are summarized below (Table 9). Despite relatively low 

regeneration rates, these results indicated that I would ultimate have enough protoplast able to 

regenerate for potential transformation. 
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Figure 11. M. heterothallica CBS 375.69 before and after β-glucanase digestion 

A. 18 hours M. heterothallica culture in 10x TDM containing 2% (w/v) glucose showing healthy 

mycelia 

B. Generation of protoplast from M. heterothallica mycelia; culture after 3 hours digestion at 

30°C with β-glucanase 
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Table 9. Evaluation of regeneration rates for untransformed protoplasts of  

M. heterothallica on non-selective regeneration media 

Experiment # 
Regeneration rate on 

NSRM (%) 

1 24.1 

2 27.4 

3 30.3 

4 8.98 

5 3.47 

6 21.06 

7 14.04 

Average regeneration rate (%) 18.48 
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3.2.4 Selection of transformants 

 As a method of selection transformants for M. heterothallica and M. thermophila, I 

considered the use of Hygromycin B or Geneticin for positive selection of transformants. I set up 

kill curves for Myceliophthora heterothallica with the antibiotics using 1 x10
6
 spores/well and 

increasing dosses of the antibiotics up to 1 mg/ml. Results show that both M. heterothallica CBS 

375.69 and M. heterothallica CBS 202.75 are most sensitive to Hygromycin B. Cultures 

containing 500 µg/ml or more of this antibiotic showed very little background growth even after 

a week in liquid culture. Kill curves using Geneticin showed that a full 1 mg/ml concentration 

was needed in order to control background levels of growth. A summary of results is shown in 

Table 10. Since the organisms were more sentsitive to Hygromycin B, this antibiotic would have 

been used for selection over Geneticin if a different option had not been available.  
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Table 10. Summary of antibiotic kill curves for M. heterothallica CBS 375.69 and M. 

heterothallica CBS 202.75 

  

              Hygromycin (µg/ml) 0.75  1.0  1.5  3.0  5.0  7.5  10.0  

M. heterothallica CBS 375.69 + + + + - - - 

M. heterothallica CBS 202.75 + + + + - - - 

        

                   Geneticin (µg/ml) 0.75  1.0  1.5  3.0  5.0  7.5  10.0  

M. heterothallica CBS 375.69 + + + + + + - 

M. heterothallica CBS 202.75 + + + + + + - 

 

 

   +   Growth observed with use of 100µl of concentration listed in table 

   -    No growth observed with use of 100µl of concentration listed in table 
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 I also considered using pyrG as a selection marker for the selection M. heterothallica 

transformants. Hence, I designed gene replacement vector construct for the pyrG gene 

replacement using acetamide selection as I was considering using pyrG selection. When I 

introduced this linear vector into M. heterothallica, transformants were obtained only when 

acetamide selection alone was applied. Since pyrG
-
 colonies were not expected to survive 

without uracil and / or uridine supplementations, both uracil and uridine were added to the 

acetamide plates. However their addition provided an additional source of nitrogen for the 

organism. This resulted in a high level of background on the acetamide plates that contained 

uracil and uridine, although two phenotypically different types of colonies were seen on the 

double selection plates (Figure 12). Since double selection left me with the inability to 

distinguish true homologous recombination transformants, negative selection was applied by 

cherry picking the few colonies which were whiter and fluffier in their appearance and 

transferring them onto 5'FOA 1 mg/ml plates. Alternately, I resuspended all colonies on the 

acetamide plus uracil/uridine plates and transferred to the 5'FOA plates with the presumption that 

only true transformants would survive. Neither of these methods resulted in colonies on the 

5'FOA plates. Since I was able to obtain colonies through acetamide selection but not through 

5'FOA selection, I assumed that ectopic integration of the vector had occurred rather than the 

desired gene replacement. Thus my efforts attempting to replace pyrG with amdS were 

unsuccessful. 
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Figure 12. Two phenotypically different colonies of M. heterothallica CBS 375.69 

transformants acetamide selection plates 

Transformants growing on acetamide selection plate also containing uracil and uridine for the 

complementation of pyrG
-  

isolates
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 Ultimately, selection on acetamide alone was shown to be the best method of selection 

for Myceliophthora. Figure 13 shows that M. heterothallica was unable to grow when acetamide 

was the only source of nitrogen provided, whereas the organism flourished when provided with 

sodium nitrate for nitrogen consumption.  

 I performed co-transformations using a selection plasmid containing amdS and a non-

selectable expression plasmid for the expression of genes of interest. These co-transformations 

yielded transformants which could then be screened on the basis activity to verify integration of 

the expression plasmid. Positive selection on acetamide plates showed faint background and 

transformants were easily distinguishable in M. heterothallica at three days post transformation. 

M. thermophila showed higher background but I was able to distinguish transformants 

nonetheless (Figure 14). Thus, the choice of using amdS as a selection marker was made. 
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Figure 13. M. heterothallica CBS 375.69 grown on agars containing different nitrogen sources 

A. M. heterothallica cultures with NaNO3 as a nitrogen source 

B. M. heterothallica cultures with acetamide as a nitrogen  
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Figure 14. M. heterothallica CBS 375.69 transformed protoplasts on selective regeneration 

plates 

A. M. heterothallica protoplasts transformed with no DNA and regenerated on acetamide plates  

B. M. heterothallica protoplasts transformed with pGAMD and regenerated on acetamide plates  
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3.2.5 Transformation of M. heterothallica and M. thermophila     

 In my transformation experiments, regeneration rates on non-selective regeneration 

media (NSRM) decreased in protoplasts having undergone the transformation protocol as 

compared to those which did not undergo manipulation other than isolation. This reduction can 

be attributed to damage caused to the cell membrane of the protoplasts by the PEG solution and 

by loss of cells with each wash. Although M. heterothallica CBS 375.69 was the best performer 

among the strains tried, overall transformation efficiency remained low. Table 11 provides a 

summary of results for the strains used. The average transformation efficiency was calculated 

from the number of transformants obtained on selective regeneration media (SRM) per µg of the 

selection plasmid pGAMD used.  
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Table 11. Regeneration rates and transformation efficiencies for M. heterothallica and      

M. thermophila 

 

% 

Regeneration 

rate on 

NSRM 

Transformation Efficiency  

(#Transformants/µg of 

selection plasmid) 

# of 

Transformations 

Performed 

M. heterothallica 

CBS 375.75 6.15 ± 6.74 15.34 ± 10.06 14 

M. heterothallica 

CBS 202.75 6.47 ± 5.39 0.99 ± 0.46 7 

M. thermophila 

ATCC 42464 n/a 4.28 ± 2.38 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 | P a g e  

 

  Since uptake of the selection vector does not guarantee uptake of the non-selectable 

plasmid, the co-transformation rate was assessed using selected isolates from the acetamide 

selection plates. The gDNA was extracted using mycelia from these isolates and was used to test 

for both the presence of the amdS selection vector and for the presence of the gene of interest in 

the expression vector. Co-transformation rates as assessed by colony PCR are shown in Figure 

15. This experiment was performed on three different batches of transformants. In all of the 24 

transformants verified, both plasmids were confirmed by PCR to be present. Since these results 

showed that co-transformation rates approach 100% for this strain, I decided to screen 

transformants on the basis of xylanase activity only for the presence of the gene of interest.   
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Figure 15. Verification of plasmid insertions 

A. Verification of insertion of selection plasmid using amdS internal primers  

     Lanes 1&2 Non transformed M. heterothallica control 

     Lanes 3&4 M. heterothallica transformed using selection plasmid only 

     Lanes 5&6 M. heterothallica transformed using selection and expression plasmids 

B. Verification of insertion of expression plasmid using primers flanking ANxynA  

     on the expression plasmid 

     Lanes 1&2 Non transformed M. heterothallica control 

     Lanes 3&4 Verification of insertion of expression plasmid using primers flanking  

     ANxynA on the expression plasmid 

All pairs for each of the above verifications are technical replicates. 
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 In order to verify the stability of the insertion, I passaged several transformants for three 

generations on acetamide selection plates. A second analysis by PCR amplification of the 

transforming plasmids confirmed the presence of both plasmids in all third-generation 

transformants as can be seen in Figure 16. Note that although one sample failed to show a band 

corresponding to the presence of amdS in Figure 16A section III, that lane is a technical replicate 

of lane 5, thus the presence of selection plasmid in that transformant is confirmed. In addition, 

that particular transformant continued to thrive on acetamide plates. I performed similar stability 

experiments on transformants in which xylanases from other organisms were introduced into M. 

heterothallica. Only one transformant, in which the presence of a xylanase from M. thermophila 

was initially confirmed, was no longer detected after three passages on acetamide selection plates 

(Figure 16). Overall, these results indicate that the insertion of the plasmids into the host genome 

are fairly stable. 
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Figure 16. Stability of insertion 

A. Verification of stability of selection plasmid using amdS after 3 passages on selective media 

       I. Technical replicates of non transformed M. heterothallica control 

       II. Technical replicates of M. heterothallica transformed using selection plasmid only 

       III. M. heterothallica transformed using selection and expression plasmids. The first two 

lanes are technical replicates, as are the third and fourth lane. The last sample in this 

category does not contain a technical replicate. 

B. Verification of stability of expression plasmid using primers flanking genes of interest after 3 

passages on selective media 

       I.-V. M. heterothallica transformed using selection plasmid and expression plasmids 

containing different genes of interest. The first position in the set is always a non-

transformed control and the next two positions for each gene of interest are technical 

replicates of each other.              
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3.2.6 Use of the maltose inducible promoter PglaA from A. niger in the expression 

plasmid 

 Since the original Anip7 plasmid contained the glucoamylase promoter PglaA from A. 

niger, it was the first promoter to be tried in the expression cassettes which I used for the 

transformation of M. heterothallica CBS 202.75 and M. heterothallica CBS 375.69. In all of my 

initial plasmid constructs, the glaA promoter was fused to a different xylanase. The xylanases 

used in the expression plasmids were a TtxynA gene, a TtxynB gene, a TtxynC gene and a 

ANxynA gene. Co-transformation using each of these plasmids along with pGAMD for selection 

yielded variable numbers of transformants as shown in Table 12. It must be noted that for 

transformations with the plasmids containing a T. terrestris xylanase, I used a total of 21 - 29 µg 

of transforming DNA with a selection plasmid to expression plasmid ratio of 3:1. For all other 

transformations a 1:1 ratio between the two plasmids was respected with 5 µg of the selection 

plasmid and 5 µg of the expression plasmid being used. My goal was to see whether increasing 

amounts of transforming expression DNA would results in a higher yield of the protein of 

interest. Instead the number of selectable transformants seems to have decreased due to the 

change in the usual ratio, however the decrease may also be attributed to the change in M. 

heterothallica strain used for the transformation (See Table 12). Ultimately, the original 1:1 

ration between the selection plasmid and expression plasmid was used for all subsequent 

experiments. 
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Table 12. Summary of transformation trials using vectors containing PglaA 

Organism used 

Expression 

Construct used 

Selection plasmid 

to Expression 

plasmid ratio 

# of 

Transformants 

obtained 

M. heterothallica CBS 375.69 PglaA - ANxynA 1:1 77 

M. heterothallica CBS 202.75 PglaA - TtxynA 1:3 6 

M. heterothallica CBS 202.75 PglaA - TtxynB 1:3 7 

M. heterothallica CBS 202.75 PglaA - TtxynC 1:3 5 
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 To verify whether the isolates growing on the selection plates were able to produced the 

heterologous xylanase, I grew selected isolates using culture media containing the inducer. The 

isolates transformed with plasmids containing the glaA maltose inducible promoter were grown 

both in 10x TDM containing 2% (w/v) maltose and 15% (w/v) maltose. I used culture 

supernatants which were cleared by centrifugation to assess protein content by Bradford assay. 

Total protein levels remained below 100 µg/ml of total protein in both culture conditions. I 

assayed the supernatant from selected isolates for activity using both a xylanase spot assay and 

BCA xylanase assay. The xylanase spot assay failed to detect any candidates showing a greater 

level of xylanase activity than the control. These results were confirmed by BCA xylanase assay. 

In order to verify that the protein of interest was not been produced but simply inactive, I did a 

TCA precipitation of the protein in the supernatant. I then loaded 12 µg of each sample onto an 

SDS-PAGE gel and stained the gels using 0.1% (w/v) Coomassie Brilliant Blue. As shown 

below (Figure 17), the gels did not reveal bands corresponding to the size of the proteins of 

interest, thus confirming that the heterologous protein of interest was not present in the culture 

supernatants of isolates tested.  
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Figure 17. SDS_PAGE: Supernatants of isolates transformed with vectors containing 

PglaA 

M. Molecular ladder showing protein bands of known sizes 

I. M. heterothallica CBS 202.75 transformed with pGAMD  

II. M. heterothallica CBS 202.75 transformed with pGAMD + PglaA - MtxynA; Arrow indicates 

position of expected band corresponding to size of heterologous protein of 24.34 KDa  

III M. heterothallica CBS 202.75 transformed with pGAMD + PglaA - MtxynB; Arrow indicates 

position of expected band corresponding to size of heterologous protein of 41.05 KDa 

IV. M. heterothallica CBS 202.75 transformed with pGAMD + PglaA - MtxynC; Arrow 

indicates position of expected band corresponding to size of heterologous protein of 42.20 

KDa 
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3.2.7 Use of Myceliophthora promoters in the expression plasmid 

 In order to assess whether promoters within the same genus as the host organism would 

give rise to the production of proteins of interest, the next set of promoters which I considered 

were all from the genus Myceliophthora. PgpdA, the glyceraldehyde 3-phosphate dehydrogenase 

constitutive promoter from M. thermophila was among that set. Since Myceliophthora was 

originally selected as a host organism in part due to due to its ability to produce and secrete 

copious amounts of cellulases, it was imperative that I try using cellulose-inducible promoters as 

a tool for production of heterologous proteins. PpmoA, a monooxygenase promoter and PcbdA, a 

cellobiose dehydrogenase promoter, also both native to M. thermophila were hence selected. 

Both of the corresponding genes showed high levels of expression under any growth conditions 

in which cellulose was readily available such as CMC or Solka-Floc® [45]. Each of the above 

promoters was used to induce expression of a GH10 xylanase from A. niger (ANxynA). In 

addition, both M. thermophila and M. heterothallica were transformed using the PpmoA - 

ANxynA and PcbdA - ANxynA constructs along with the pGAMD selection plasmid. The last two 

promoters which I assessed were the GH13 α-glycosidase sucrose-inducible promoters from both 

M. thermophila and M. heterothallica. I transformed M. heterothallica CBS 375.69 using 

plasmids containing PagdA from M. thermophila to induce expression of five different 

heterologous xylanases. The expression plasmids used for transformation contained PagdA - 

ANxynA, PagdA - MtxynA, PagdA - ANxynB, PagdA - StxynA, or PagdA - PhxynA constructs. All 

transformations were performed using the pGAMD selection plasmid as well as one of the 

expression plasmids listed above. Expression of heterologous ANxynA and MtxynA was also 

attempted using α-glucosidase promoter from M. heterothallica (PagdB). I conducted 

transformation experiments using M. thermophila ATCC 42464, M. heterothallica CBS 375.69, 

and M. heterothallica CBS 202.75 as host organisms. The number of transformants obtained on 

acetamide selection plates from each of the transformation experiments can be seen in Table 13.  
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Table 13. Number of transformants obtained on acetamide selection plates for each host 

strain 

Expression plasmid 

construct 

M. thermophila 

ATCC 42464 

M. heterothallica 

CBS 375.69 

M. heterothallica 

CBS 202.75 

PgpdA - ANxynA 26 72 n/a 

PpmoA - ANxynA 26 70 n/a 

PcbdA - ANxynA 33 75 n/a 

PagdA - ANxynA n/a 56 n/a 

PagdA - MtxynA n/a 160 n/a 

PagdA - ANxynB n/a 128 n/a 

PagdA - StxynA n/a 71 n/a 

PagdA - PhxynA n/a 51 n/a 

PagdB - ANxynA 28 25 3 

PagdB - MtxynA 9 16 3 

 

 

 

 

 

 

 

 

 

 

 

 



76 | P a g e  

 

 In order to test whether the transformants were able to produce the heterologous proteins 

when induced, selected isolates were grown using the appropriate culture media. For 

transformants obtained which contained the gpdA promoter in the expression plasmid, I grew 

selected isolates in stationary 10x TDM cultures containing 2% (w/v) glucose. Transformants 

which contained cellulose-inducible promoters PpmoA and PcbdA, were grown in 10x TDM 

containing 2% (w/v) CMC. As a control they were also grown in parallel in non-inducible 

culture media 10x TDM containing 2% (w/v) glucose. Both types of culture media for the 

PpmoA and PcbdA transformants contained wells where no growth was seen at all and may be 

due poor inoculations since isolates contained mostly mycelia with very little sporulation. To 

screen for production and secretion of heterologous xylanases in transformants containing the 

PagdA or PagdB constructs, isolates were grown in 10x TDM containing 2% (w/v) sucrose. For 

PagdB, the same isolates were grown in parallel in 10x TDM containing 10% (w/v) sucrose in 

order to determine whether higher activity levels of the heterologous proteins could be seen with 

higher concentration of the inducer in the media. Culture supernatants were sampled from day 

four to day seven post inoculation and centrifuged in order to obtain cleared supernatants free of 

spores or mycelia. Cleared supernatants were tested for xylanase activity both by xylanase spot 

assay and by BCA assay and total protein levels were assessed by Bradford assay. The number 

of isolates screened by xylanase spot assay for each transformation and the number of possible 

positive candidates obtained in each assay can be seen in Table 14. 
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Table 14. Candidates detected by xylanase spot assay 

 

M. thermophila ATCC 

42464  

M. heterothallica CBS 

375.69 

M. heterothallica CBS 

202.75 

Expression 

plasmid 

construct 

Isolates    

screened 

+ve 

candidates 

Isolates 

screened 

+ve 

candidates 

Isolates 

screened 

+ve 

candidates 

PgpdA - 

ANxynA 
20 0 24 6 - - 

PpmoA - 

ANxynA 
24 

not 

distinguished 

from WT 

24 

not 

distinguished 

from WT 

- - 

PcbdA - 

ANxynA 
24 

not 

distinguished 

from WT 

24 

not 

distinguished 

from WT 

- - 

PagdA - 

ANxynA 
- - 12 3 - - 

PagdA - 

MtxynA 
- - 12 2 - - 

PagdA - 

ANxynB 
- - 12 2 - - 

PagdA - 

StxynA 
- - 12 1 - - 

PagdA - 

PhxynA 
- - 12 2 - - 

PagdB - 

ANxynA 
12 2 12 4 3 0 

PagdB -

MtxynA 
9 1 12 0 3 0 
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 To evaluate whether to transformed isolates produced increased amounts of total protein, 

Bradford protein assays were done using culture supernatants of the isolates. In culture 

supernatants from isolates containing the PgpdA - ANxynA total protein levels varied from 43 

ng/µl to 139 ng/µl, which was no higher than protein level found in culture supernatants of 

control isolates. No positive candidates were identified using the xylanase spot assay for M. 

thermophila, however in M. heterothallica 6 cultures seemed to show increased activity (Figure 

18). I was unconvinced by these results since one of the pGAMD only controls also showed the 

same level of xylanase activity as estimated by the size of the clearing zone on the RBB xylan 

plate. For this reason, I then regrew these 6 candidates in 10x TDM containing 2% (w/v) glucose 

and retested for activity. Results from the xylanase spot assay using 3µl of cleared supernatant 

showed no xylanase activity this time.  

 When 10x TDM containing 2% (w/v) CMC was used as a culture media for 

transformants containing PpmoA and PcbdA, very large clearing zones appeared on the RBB 

xylan plates in all wells in which growth had been observed. Since the clearing zone were so 

large, individuals samples were indistinguishable from each other. I then did a 1 in 25 dilution of 

the supernatants- and respotted fresh RBB xylan plates for easier visualization of results. 

Unfortunately, all samples including the controls showed equal xylanase activity making it 

impossible to differentiate transformants producing the A. niger xylanase ANxynA along with 

native xylanases from isolates producing only native xylanases (Figure 19). This holds true for 

isolates transformed with constructs containing either the PpmoA promoter or the PcbdA 

promoter. The samples in which no activity is seen, correlate to wells of the stationary culture 

which failed to grow. Since the xylanase spot assay was not sensitive enough to differentiate 

isolates producing the A. niger xylanase, I also screened using a BCA xylanase assay whereby 

activity was determined by comparing the total amount reducing sugars present in the reaction 

mixture before and after an incubation at 40°C in the presence of extracellular xylanases. One 

unit of xylanase activity was defined as the quantity of enzyme required to liberate 1 μmol of 

xylose equivalent per minute at 40°C. Xylanase activity of supernatants from transformants 

containing either PpmoA - ANxynA or PcbdA - ANxynA with the pGAMD selection plasmid 

were tested for increased activity compared to activity of supernatants from isolates transformed 

with pGAMD only. Culture conditions were identical for all groups. None of the selected 

PpmoA - ANxynA or PcbdA - ANxynA candidates showed increased xylanase activity when 
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assessed by BCA assay either. 

 In addition, I precipitated proteins by TCA and loaded the resuspended samples on an 

SDS-PAGE gel to verify whether the protein of interest could be located on the gel. The 

supernatants of the shake cultures from the 6 candidates were used. Although I intended to load 

15 µg of protein per sample, this amount was not attainable for all samples since the total protein 

content in some of these cultures was so low. The gels did not reveal a band corresponding to the 

protein of interest. 

 In order to verify that the protein of interest was not present in amounts too low to be 

detected on an SDS-PAGE gel, I sent the supernatant samples to be analyzed by mass 

spectrometry. The GH10 xylanase from A. niger ANXynA was not detected in any of the 

samples by this method either. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 | P a g e  

 

 

Figure 18. Xylanase spot assay on RBB xylan plate: PgpdA transformants 

A. Supernatants from cultures of Myceliophthora thermophila isolates transformed with the 

selection plasmid only. 

B.&C. Supernatants from cultures of Myceliophthora thermophila isolates transformed with the 

selection plasmid and with the PgpdA - ANxynA expression plasmid. 

D. In house xylanase control with 1 in 5 serial dilutions  
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Figure 19. Xylanase spot assay on RBB xylan plates: PpmoA and PcbdA transformants  

3µl of 1/25 diluted supernatants from cultures of isolates grown on 10x TDM containing 2% 

(w/v) CMC were spotted on RBB plates 

A. M. heterothallica CBS 375.69 PpmoA - ANxynA candidate transformants 

B. M. thermophila CBS 375.69 PcbdA - ANxynA candidate transformants  

C. M. heterothallica CBS 375.69 PpmoA - ANxynA candidate transformants  

D. M. thermophila CBS 375.69 PcbdA - ANxynA candidate transformants 
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 I also evaluated the GH13 α-glycosidase sucrose-inducible promoters from both M. 

thermophila and M. heterothallica since expression data showed high levels of α-glucosidase 

when induced by sucrose (Concordia University, Dr. Tsang's lab, unpublished data). I compared 

the 1 Kb region upstream of the start codon of GH13 α-glucosidase in M. heterothallica against 

the M. thermophila ATCC 42464 databases at JGI. This was done to assure that the promoter 

region from the intended GH13 α-glucosidase in M. heterothallica had been selected since both 

species contains many GH13s, two of which sit on chromosome 3. The greatest homology of the 

M. heterothallica 1 Kb α-glucosidase promoter region was with the promoter PagdA, the α-

glucosidase residing in the telomeric region of chromosome 3. Results show 87% identity 

between the promoter regions of the two species. The alignment also shows 7% gap between the 

two sequences (Figure 20). 
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Myceliophthora thermophila ATCC 42464 chromosome 3, complete sequence 

Sequence ID: gb|CP003004.1|Length: 5062665Number of Matches: 7 

Related Information 
Range 1: 4608 to 5532GenBankGraphicsNext MatchPrevious Match 

Alignment statistics fo r match #1 

Score Expect Identities Gaps 

 

1213 bits(1344) 0.0 856/980(87%) 75/980(7%) 

 

Query  2     TGATGAACCGTTCCTGAGCTGGTGTGAGTAGCGTGACTGCTGGAGCTTCGTCCCAAATTG  61 

             ||||||||||||| |||||||||||||| ||||||| ||||||||||||||||||||||| 

Sbjct  5532  TGATGAACCGTTCTTGAGCTGGTGTGAGCAGCGTGAGTGCTGGAGCTTCGTCCCAAATTG  5473 

 

Query  62    CCCCC-GACTTC---------TCTGCTTCTGGGTCCTTCTGCAGAGCGTGCATCCTTTGC  111 

             ||||| ||||||         ||| ||||||||||||||||||||| ||||||||| ||| 

Sbjct  5472  CCCCCCGACTTCCGAGTCCCCTCTACTTCTGGGTCCTTCTGCAGAGAGTGCATCCTCTGC  5413 

 

Query  112   TACCTCATTGACACGTGCTGGTTA---CTTTGAATCGGGAACCGAGAGGGGAAGACCCGG  168 

             ||||||||||||||||||||||||   |||||||||||||||||||||||||||||| || 

Sbjct  5412  TACCTCATTGACACGTGCTGGTTAATACTTTGAATCGGGAACCGAGAGGGGAAGACCTGG  5353 

 

Query  169   GGTTCGCATTCCCCATGGGGCCGCGAGCCATATCAGGGGATAAGTGGGGACTGCCCAACT  228 

             ||||||||||||||||||||| |||||||| ||||||||||||||||||||||||| ||  

Sbjct  5352  GGTTCGCATTCCCCATGGGGCTGCGAGCCACATCAGGGGATAAGTGGGGACTGCCCTAC-  5294 

 

Query  229   ATAATCCGTATACTACGGAGCGTATATGCGGATTACATACATACAAGACCCGGTCGTGTC  288 

                   |||||      |||||||                   ||||||||||||  ||| 

Sbjct  5293  ------CGTATC-----GAGCGTA-------------------CAAGACCCGGTCTCGTC  5264 

 

Query  289   GCTATTAGCGTTCTGCCGCGCCATGTTAGCAAGACCGAGAGGCTCTCTCGGCACTGTGTC  348 

             |||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||  

Sbjct  5263  GCTATTAGCGTTCTGCCGCGCCATGTTAGCAAGACCGAGAAGCTCTCTCGGCACTGTGTT  5204 

 

Query  349   GTATCGGCCCGACAATTTTCTCCACGTGCAGGATCGGGGACATGCGTACACCGGCTGAGC  408 

             |||||||||||||||||||||||||||||||||||||||||||| ||| |||||||     

Sbjct  5203  GTATCGGCCCGACAATTTTCTCCACGTGCAGGATCGGGGACATGTGTATACCGGCT----  5148 

 

Query  409   CTAACACGCGGTAGTGTAGAATTTGCTGTCGGCCCGACATAGGACCAATTAAAACGTAAG  468 

                 ||||||  ||||||| ||||||||||||||||||||||||||||| |||||||||| 

Sbjct  5147  ----CACGCGACAGTGTAGGATTTGCTGTCGGCCCGACATAGGACCAATCAAAACGTAAG  5092 

 

Query  469   TTTGTCGGTCCGACAATAGACGAATCACACATGCAGCTTGCCAATAACTGACCCCTCTTG  528 

             ||||||||||||||||||||| |||||||||||||||||||||||||   |||||||||| 

Sbjct  5091  TTTGTCGGTCCGACAATAGACAAATCACACATGCAGCTTGCCAATAA---ACCCCTCTTG  5035 

 

Query  529   TAGCGTCTCTGAATTGCCATTCCTGGTAGCGCCATTCC-CCAACCATTA------GAATA  581 

             |  |||| |||||||||| || |||||||||||||||| ||||||||||      ||||| 

Sbjct  5034  TTACGTCCCTGAATTGCCTTTTCTGGTAGCGCCATTCCACCAACCATTACGGATAGAATA  4975 

 

Query  582   TCACGTTTTGCCCGTGCCGCAGCGACCGACACCTTTGTCTTGCTAGCATGGACCTACCGG  641 

             ||||||||| |||||||||||||||||||||| |||||||||||| |||||||||||||| 

http://www.ncbi.nlm.nih.gov/nucleotide/347009717?report=genbank&log$=nuclalign&blast_rank=1&RID=FNCFX8V2014
http://www.ncbi.nlm.nih.gov/nucleotide/347009717?report=genbank&log$=nuclalign&blast_rank=1&RID=FNCFX8V2014&from=4608&to=5532
http://www.ncbi.nlm.nih.gov/nucleotide/347009717?report=genbank&log$=nuclalign&blast_rank=1&RID=FNCFX8V2014&from=4608&to=5532
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Sbjct  4974  TCACGTTTTACCCGTGCCGCAGCGACCGACACTTTTGTCTTGCTATCATGGACCTACCGG  4915 

 

Query  642   ACACAGCTGTCGGTCCGGCATGGTCGATCAACTCCGCTTGCTCTACAGGGCCCGCCAGGC  701 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4914  ACACAGCTGTCGGTCCGGCATGGTCGATCAACTCCGCTTGCTCTACAGGGCCCGCCAGGC  4855 

 

Query  702   GGTGCTATGAGAGGCCGTGGGTGGACTAGGCGTGGTGTTGCTCCAGCTGCGCCTGTACAT  761 

             |||||| ||||||||||||| |||||| |||||| ||||||||| ||||||||||||  | 

Sbjct  4854  GGTGCTGTGAGAGGCCGTGGTTGGACTTGGCGTGCTGTTGCTCCTGCTGCGCCTGTATGT  4795 

 

Query  762   ACATATGTACATACTGTGGTACATAATTACTCCACCAATGCGGCGTTGGCATGGGATAAA  821 

             ||   ||||  ||     |||||    ||||||||||||||||||||| || |||||||| 

Sbjct  4794  AC---TGTATGTA----TGTACA----TACTCCACCAATGCGGCGTTGACACGGGATAAA  4746 

 

Query  822   AGCGATGCGAGGTCGTTGGTTGCTTGGAGTTGCTGTGCCTCTCCTTCCTCTTCATCCATA  881 

             ||||||||||| ||||||||||||||||||||| |||||||||||||||||| ||||||| 

Sbjct  4745  AGCGATGCGAGCTCGTTGGTTGCTTGGAGTTGCCGTGCCTCTCCTTCCTCTTTATCCATA  4686 

 

Query  882   CTCTATTTCTTTTGAACAGACCTTCATTCTTCTTGACCGAGAAATCGTTAATCATCGTCA  941 

             |||  |||||| | |||||||||||||||||||||||||| || |||||||||||||||| 

Sbjct  4685  CTC--TTTCTTCTAAACAGACCTTCATTCTTCTTGACCGAAAAGTCGTTAATCATCGTCA  4628 

 

Query  942   AATTTCCATTCAtttttttt  961 

             |||||||||||||||||||| 

Sbjct  4627  AATTTCCATTCATTTTTTTT  4608 

 

 

Figure 20. Blast results of 1 Kb region upstream of GH13 α-glucosidase from M. 

heterothallica CBS375.69 against M. thermophila ATCC42464 database 

Homology between promoter region of GH13 MYCTH_2303065 and promoter region of GH13 

α-glucosidase in M. heterothallica shows over 87% identity but contains gaps. 
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 The xylanase spot assay performed to assess xylanase activity show clearing zones of 

increased diameter for a few transformants containing the PagdA promoter from M. thermophila. 

Results from the xylanase spot assays can be seen below (Figure 21). I also performed a BCA 

xylanase assay on the supernatants of the candidates having PagdA as a promoter. 

Disappointingly, the isolate having the largest clearing zone in the spotting assay did not show 

increased xylanase activity in the BCA assay. 

 The xylanase spot assay revealed candidates showing clearing zones of increased 

diameter for a number of isolates containing the PagdB promoter region from M. heterothallica 

as well. Selected results from the xylanase spot assays can be seen below (Figure 22). Based on 

day 2 to day 6 RBB xylan plate results, I selected candidates to be regrown in liquid shake 

cultures in 25 ml flask containing 10x TDM containing 10% (w/v) sucrose. Cleared supernatants 

were re-spotted on RBB xylan plates and used for a BCA assay in order to confirm increased 

xylanase activity in selected candidates from the spot assay. The M. thermophila transformant #9 

containing PagdB - ANxynA which gave by far the largest clearing zone on the RBB xylan plate, 

also gave the highest values for xylanase activity in the BCA assay. For this sample 259 mU/ml 

of xylanase activity was detected compared to no detectable activity in samples containing only 

the selection vector. Increased xylanase activity in two M. heterothallica transformants, #3 and 

#16 containing PagdB - ANxynA was also confirmed. 
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Figure 21. Xylanase spot assay on RBB xylan plate: PagdA transformants 

3µl cleared supernatants from cultures of isolates grown on 10x TDM with 2% (w/v) sucrose  

 and were spotted on RBB plates; Transformants contain expression plasmids with the  

GH13 α-glucosidase promoter (PagdA) from M. thermophila. The arrows indicate the isolates 

showing the most xylanase activity for each of the genes of interest.  

A. M. heterothallica CBS 375.69 transformed with pGAMD only 

B. M. heterothallica CBS 375.69 PagdA - ANxynA candidate transformants 

C. M. heterothallica CBS 375.69 PagdA - MtxynA candidate transformants 

D. M. heterothallica CBS 375.69 PagdA - ANxynB candidate transformants 

E. M. heterothallica CBS 375.69 PagdA -StxynA candidate transformants 

F. M. heterothallica CBS 375.69 PagdA -PhxynA candidate transformants 

G. In house xylanase; positive control with 1/5 serial dilutions 
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Figure 22. Xylanase spot assay on RBB xylan plate: PagdB transformants 

3µl cleared supernatants from cultures of isolates grown on 10x TDM containing 10% (w/v) 

sucrose and were spotted on RBB plates; Transformants contain expression plasmids with the  

GH13 α-glucosidase promoter (PagdB) from M. heterothallica. 

A1  M. thermophila transformed with pGAMD only 

A2  M. thermophila transformed with PagdB - ANxynA  

A3  M. thermophila transformed with PagdB - MtxynA  

B1  M. heterothallica CBS 375.69 transformed with pGAMD only 

B2  M. heterothallica CBS 375.69 transformed with PagdB - ANxynA  

B3  M. heterothallica CBS 375.69 transformed with PagdB - MtxynA  

C1  M. heterothallica CBS 202.75 transformed with PagdB - ANxynA  

       or PagdB - MtxynA  

D1  In house xylanase; positive control with 1/5 serial dilutions 
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 In order to confirm that this activity was truly induced by sucrose, I cleared supernatants 

were tested for xylanase activity both by spot assay and by BCA assay. As I expected, samples 

grown in glucose failed to show any activity. RBB xylan spot assay results clearly indicate that 

xylanase activity is induced by sucrose only in the transformants containing the PagdB - ANxynA 

plasmid but fails to be activated under transformants containing the selection plasmid only 

(Figure 23). The BCA xylan assays done with the same culture supernatants confirmed these 

results (Figure 24). At 24 hours post induction a 82.4 and a 77.8 fold increase in xylanase 

activity for isolates #16 and isolate #3 respectively, could be seen for the isolates containing 

PagdB - ANxynA construct compared to the control isolate transformed with only the selection 

vector. Although both the BCA and Xylanase spot assay clearly indicate that transformants 

produce the xylanase of interest, the protein remains elusive on an SDS-PAGE gel. I precipitated 

proteins in the supernatants of the RBB xylan candidates by TCA and loaded onto 12% (v/v) 

acrylamide SDS-PAGE gels. The heterologous protein from A. niger (ANXynA) had an 

expected size of 35.49 KDa and the xylanase from M. thermophila (MtXynA) of 24.21 KDa. 

Despite the sensitivity of silver nitrate staining, gels loaded with 2µg total protein per well, failed 

to reveal a band which could potentially be the heterologous proteins (Figure 25). Results of 

zymograms done using non denatured supernatants from confirmed transformants failed to 

expose the position of the protein. These results indicate that heterologous protein production 

induced with the α-glucosidase promoters remains low in the host organism Myceliophthora. 
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Figure 23. Induction assay for M. heterothallica CBS 375.69 transformants in glucose 

versus sucrose 

M. heterothallica CBS 375.69 transformants containing with PGAMD + PagdB - ANxynA or 

PGMDS alone were grown 24 hours in 10x TDM containing 2% (w/v) glucose followed by 

induction in fresh 10x TDM containing 2% (w/v) glucose versus induction by 10x TDM 

containing 2% (w/v) sucrose. 
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Figure 24. BCA xylanase assay for M. heterothallica CBS 375.69 transformants following 

induction with different substrates 

PGAMD only control transformants show no xylanase activity 24 hours after induction with 

sucrose whereas transformants with PGAMD + PagdB - ANxynA show increased xylanase 

activity 24 hours after induction with glucose. 
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Figure 25. SDS-PAGE: Supernatants of isolates transformed with vectors containing 

PagdB 

Lane 1. M. thermophila transformed with pGAMD only 

Lanes 2 & 3. M. thermophila transformed with pGAMD + PagdB - ANxynA  

Lanes 4 & 5. M. thermophila transformed with pGAMD + PagdB - MtxynA  

Lane 6. M. heterothallica CBS 375.65 transformed with pGAMD only 

Lanes 7 - 9. M. heterothallica CBS 375.65 transformed with pGAMD + PagdB - ANxynA  

Lanes 10 - 12. M. heterothallica CBS 375.65 transformed with pGAMD + PagdB - MtxynA  
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 Since the presence of the heterologous protein ANXynA was confirmed in M. 

thermophila and M. heterothallica by both spot assay and BCA assay, but could not be located 

on a gel, I selected one transformant for analysis by mass spectrometry. The supernatants from 

M. heterothallica isolate #16 at 4 hour post induction by sucrose as well as the glucose control 

were the samples chosen for this analysis. Supernatants from the same culture conditions but 

transformed with the pGMDS selection vector only were sent as a control as well. Results clearly 

show the presence of the heterologous xylanase ANXynA in the sucrose induction media for M. 

heterothallica isolate #16, but not in glucose. The isolate which had been transformed with the 

pGMDS selection vector only did not contain the heterologous protein under either the glucose 

or the sucrose induction conditions (Table 15). It must be noted that the peptides from the 

supernatants were searched against the M. thermophila database rather than M. heterothallica 

since the latter had not yet been fully sequenced and assembled but that peptides were 

recognized anyhow as the two organisms are so closely related. 
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Table 15. Mass spectrometry results 

A. Absence of heterologous ANXynA in M. heterothallica when induced by glucose  

Description Annotation 
# Unique 

Peptides 
Score Coverage 

# 

Peptides 

Spoth2p4_001172 Enolase 17 93.59 35.16 15 

Spoth2p4_007238 
Putative endo-1,3(4)-

beta-glucanase 2 
18 10.28 5.20 3 

Spoth2p4_003720 
1,3-beta-

glucanosyltransferase gel1 
9 42.61 23.57 9 

Spoth2p4_008301 Chitinase 8 5.30 4.71 2 

Spoth2p4_010931 
Ornithine 

carbamoyltransferase, 

mitochondrial 

6 13.17 15.32 4 

Spoth2p4_005075 Hypothetical protein 1 2.59 22.22 1 

Spoth2p4_005017 Protein ecm33 9 29.13 17.91 7 

Spoth2p4_006544 Chitinase 9 3.06 3.29 1 

Spoth2p4_003453 
Fructose-bisphosphate 

aldolase 
6 26.64 13.46 4 

Spoth2p4_004533 
1,3-beta-

glucanosyltransferase gel4 
10 27.19 12.20 6 

Spoth2p4_006438 Exo-1,3-beta-glucanase 12 24.66 12.69 8 

Aspni_57436 endo-1,4-beta-xylanase - - - - 

Spoth2p4_010593 Glucoamylase 9 33.32 13.80 6 

Spoth2p4_005331 
Probable glucan endo-

1,3-beta-glucosidase eglC 
10 51.09 17.04 8 

Spoth2p4_002025 
Probable aspartate-

semialdehyde 

dehydrogenase 

5 14.46 17.13 5 
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B. Presence of heterologous ANXynA in M. heterothallica when induced by sucrose 

Description    Annotation 
# Unique 

Peptides 
Score Coverage 

#  

Peptides 

Spoth2p4_001172 Enolase 17 - - - 

Spoth2p4_007238 
Putative endo-1,3(4)-beta-

glucanase 2 
18 135.62 24.72 17 

Spoth2p4_003720 
1,3-beta-

glucanosyltransferase gel1 
9 18.88 14.10 4 

Spoth2p4_008301 Chitinase 8 38.93 20.35 6 

Spoth2p4_010931 
Ornithine 

carbamoyltransferase, 

mitochondrial 

6 - - - 

Spoth2p4_005075 hypothetical protein 1 - - - 

Spoth2p4_005017 Protein ecm33 9 27.32 16.17 6 

Spoth2p4_006544 Chitinase 9 72.08 19.95 9 

Spoth2p4_003453 
Fructose-bisphosphate 

aldolase 
6 

   

Spoth2p4_004533 
1,3-beta-

glucanosyltransferase gel4 
10 42.95 19.14 10 

Spoth2p4_006438 Exo-1,3-beta-glucanase 12 53.07 16.92 11 

Aspni_57436 endo-1,4-beta-xylanase 6 21.31 18.65 6 

Spoth2p4_010593 Glucoamylase 9 41.98 16.26 8 

Spoth2p4_005331 
Probable glucan endo-1,3-

beta-glucosidase eglC 
10 47.16 17.28 9 

Spoth2p4_002025 
Probable aspartate-

semialdehyde 

dehydrogenase 

5 - - - 
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4 Discussion 

4.1 Choice of host organism 

 One of the requirements of a host organism is that it be fairly easy to culture, preferably 

with minimal nutritional requirements. Of particular interest are sources of carbon and nitrogen 

on which the organism can easily thrive. M. thermophiles growth media of choice is YPSS in 

which the carbon source is soluble starch. YPSS contains yeast extract which provides the 

organism with a source of nitrogen in the form of peptone. Unfortunately, yeast extract also seem 

provide a source of uracil or uridine when tested with A. niger N_402 and its pyrG 
- 
mutant 

N_593.The attempts I made to replace starch with another carbon source met with poor results. 

Both M. thermophila and M. heterothallica grow easily in 10x TDM containing 2% (w/v) 

glucose and requires no other rich nutritional additives. 

 Although I eventually was able to obtain a clean preparation of M. thermophiles 

protoplasts, the protocol adapted for this species required an extra day in the workflow over that 

of both M. thermophila and M. heterothallica. The generation of protoplasts in the later two 

species required no particular adaptation of the standard protocol used for transformation of A. 

niger. Spores will fully germinate under standard culture conditions and produce enough 

mycelial biomass for protoplast generation within 18 hours of inoculation.  

 Although the above aspects of Mycothermus thermophilus cultures are certainly 

deterrents for using Mycothermus thermophilus as a host organism, the final choice of M. 

heterothallica as a host organism was swayed by the fact that this organism has both positive and 

negative mating types [215]. The possibility of being able to cross two genetically engineered 

strains to obtain a double mutant was taken into considerations. This holds a great deal of 

importance since sexual crossing in currently used industrial strains of fungi is not common. Van 

den Brink et al. [46] showed that mating between two compatible mating types produced 

progeny with AFLP banding patterns showing varying degrees of mixing of the two parental 

strains. Furthermore, selected progeny showed increased enzymatic activity compared to the 

parental strains [46]. In addition, Hutchinson et al. demonstrated independent assortment of 

mating types using genetic markers when crossing M. heterothallica CBS strains 203.75 and 

202.75 [212] . Roughly half of the progeny obtained from their crosses showed non-parental 

genotypes for each of the genetic markers. In keeping with this information, I alternated between 
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M. heterothallica CBS 375.69 a negative mating type, and M. heterothallica CBS 202.75, a 

positive mating type, for this body of work. Since M. thermophila has already shown to be a 

successful host organism for heterologous protein production by Dyadic, I used this species in 

parallel with M. heterothallica. 

4.2 Method of transformation  

 Although I obtained transformants by PEG mediated transformation of protoplasts, low 

regeneration rates and low transformation frequencies in both species of Myceliophthora (Table 

9 and 11) suggest that perhaps a different method would result a higher success rate. The use of 

agrobacterium mediated transformation has very recently been investigated for as a tool for 

genetic manipulation of M. thermophila by Xu et al. [51]. They report a 0.145% transformation 

frequency using a ku70 deletion mutant which is more than three times the adjusted 

transformation frequency obtained here using PEG mediated transformation (Table 11). 

Moreover, they reported a rate of 97% for the successful deletion of pyrG in ku70 deletion 

mutant when using AMT for gene disruption [51]. Considering that my attempts at replacing 

pyrG with amdS by PEG mediated transformation was unsuccessful, AMT certainly warrants 

consideration.  

4.3 Method of selection 

 Initially my plan for a method of selection was to replace pyrG by amdS by homologous 

recombination. The linear construct designed included a 3' prime repeat region for the eventual 

excision of amdS (Figure 1). Transformants in which this disruption had been successful would 

initially thrive on acetamide as a nitrogen source and be resistant to 5' FOA. Once amdS was 

excised, this strategy would allow the use of both pyrG and/or amdS on an expression plasmid in 

a pyrG
-
 mutant of M. heterothallica. Revertants could be selected on the basis of uracil and 

uridine auxotrophy or by their ability to utilize acetamide as a nitrogen source. 

 I based this strategy on a model which had previously been successful in M. thermophila 

and for which Visser et al. [49] had reported homologous recombination frequencies reaching 1 -

2% . In fact, even greater rates of homologous rates could be achieved in ∆ku70 mutants but with 

a drastic decrease in cotransformation rates when ∆ku70 strains were used [49]. Given the 

success of the strategy in their hands, the question as to why I was unable to generate similar 
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results must be addressed. First, my low regeneration rates are partially to blame. Average 

regeneration of non-transformed protoplasts on NSRM was almost three times that of 

regeneration of transformed protoplast on the same regeneration plates. Aside from cell loss at 

each wash step in the protocol, PEG treatment of the protoplast preparation may be an issue. 

Results from control transformations performed with no transforming DNA whatsoever show the 

same low regeneration rates as those performed with 5 - 10 µg of transforming DNA. Given the 

success rate of Ozeki et al. [93] discussed above, trials using electroporation as a method of 

transformation are an option. Beyond that, regeneration rates of non-transformed protoplasts may 

also be improved by adjusting the molarity of the protoplast resuspension buffer or decreasing 

digestion times in β-glucanase [86].  

 Although the low regeneration rates observed may indeed have contributed to my 

inability to obtain pyrG deleted mutants, I should still have obtained some transformants. I 

started with transformations with 200 µl of 1x10
7
 protoplasts/ml cell preparation. Supposing I 

had regeneration rates even of 1% and rates of homologous recombination frequency of 0.001%, 

I would expect to get roughly 200 colonies. So why were none obtained? Ultimately, the 

problem lies with the amount of transforming DNA. The individual fragments of the construct 

shown in Figure 1 were stitched together by overlap PCR. The PCR for the original fragments 

gave very clean strong bands. The nested PCR however yielded only very weak product of the 

expected size of 6.3 Kb. I tried three different pairs of nested PCR primers, with only one of 

them yielding any band at all. Multiple PCRs were done in order to pool the product before PCR 

clean up and gel extraction of the 6.3 Kb band, however even this gave low concentrations of 

below 50 ng/µl. The maximum volume of transforming DNA called for in the protocol was of 20 

µl per transformation. Increasing the volume beyond that would mean upsetting the delicate 

osmotic balance in the transformation reaction and lower protoplast regeneration even more. If 

one considers that the transformation efficiency using 5 µg of selection plasmid was only of 

15.34 transformants/µg, then 1 µg or less of a linear vector for homologous recombination was 

just not sufficient for gene disruption of pyrG. Perhaps a workflow using digestion and ligation 

would yield higher concentrations of the final vector and increase the chances of obtaining a 

pyrG
-
 mutant. 

 Antibiotic resistance using Geneticin or Hygromycin B for positive selection of 

transformants were also methods which I considered. Although Myceliophthora was sensitive to 
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these antibiotics, a high concentration was needed in order to reduce background, especially 

when using Geneticin. Despite concerns about high levels of background and possible false 

positives, the use of Hygromycin B was a feasible option. The high costs of the antibiotic 

however, led to the pursuit of a different selection method. 

 Positive selection using amdS was clearly the best option. Transformants into which 

pGAMD had been integrated grew well within three days with little visible background (Figure 

13 and Figure 14). Cotransformation with a non-selectable expression plasmid gave rates of 

cotransformation approaching 100% and this method was the one I ultimately deemed to be the 

most suitable approach. 

4.4 Choice of promoters  

 For this study the first promoter I tried was the heterologous glucoamylase promoter from 

A. niger (PglaA) which is induced by the presence of starch in the culture media. Although 

transformants were shown by PCR to contain both the selection and expression vectors, 

screening results failed to detect an isolate showing xylanase activity due to the presence of 

heterologous protein ANXynA. Two methods were used to induce production of the protein. The 

first was by growing candidates in directly starch based media and alternatively I grew them in 

glucose first, then transferring mycelia to the starch based media. I performed spot assays to 

detect xylanase activity in the culture supernatants at regular intervals but no xylanase producing 

candidates were detected. Since RNA expression was not verified, it is not possible to determine 

if the heterologous glaA promoter is recognized. The presence of mRNA species corresponding 

to the gene of interest would indicate that gene expression is not to blame. Rather, the problem 

may lie with codon preferences of the host organism [133], improper glycosylation, or in the 

folding and maturation of the protein [216]. Ultimately, the exact reason why the heterologous 

protein was not produced is not relevant here since production and excretion into the 

extracellular media is the goal. Since the presence of the heterologous protein was not detected, 

other promoters were explored. 

 In part because recognition of the heterologous glaA promoter was unconfirmed in M. 

heterothallica, I then chose a M. thermophila gpdA promoter used to drive expression of the 

heterologous proteins in the expression plasmids. Although xylanase spot assay seemed to 

produce candidates by day 4, a control isolate carrying the selection plasmid only, showed a 
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similar clearing zone (Figure 18). In addition, the BCA assay done to confirm increase xylanase 

activity in the candidates, showed no difference between isolates transformed with pGAMD only 

and those co-transformed with both plasmids. In all likelihood, all of the isolates showing a 

clearing zone on the RBB xylan plate were simply samples in which clearing of the supernatant 

by centrifugation was incomplete. Either residual spores or bits of mycelia remained and were 

induced to produce native xylanase in response to the xylan present on the RBB plate. Thus the 

halo seen on the plate is not due to the presence of any heterologous xylanase in the supernatant. 

It is possible that the heterologous PgpdA from A. nidulans would have been a stronger promoter 

with which to drive expression of the heterologous protein.  

 As cellobiohydrolase I constitutes a large percentage of enzymes secreted by M. 

thermophila, its promoter, induced by cellulose, was used by Visser et al.[49] to drive the 

expression of recombinant proteins in their high cellulase (HC) C1 strain. In the present study, I 

introduced two different cellulose induced promoters, PpmoA and PcbdA, individually into the 

expression plasmid to drive the expression of the heterologous proteins. Seemingly, the cellulose 

based media used induced the production of many native genes. Not only were control isolates 

bearing only pGAMD indistinguishable from isolates having undergone cotransformation with 

the expression plasmid, but candidates producing the heterologous xylanase were not 

identifiable. Such high background levels are problematic with not only with respect to 

identification of candidates but also with purification of the protein of interest. The effect of a 

cellulose inducer on a wide array of native genes is not restricted Myceliophthora. Expression of 

native cellobiohydrolases, endo-β-glucanases and xylanases by T. reesei in cellulose based media 

is discussed by Li et al. [24] who advocate the development of a strong constitutive promoter 

instead of the frequently used cbh1 promoter for precisely this reason. Furthermore, they point 

out that production of the protein of interest is subject to catabolic repression when inducible 

cbh1 is used as a promoter [24] .  

 M. thermophila C1 was also recently shown to possess lytic polysaccharide 

monooxygenase (LPMO) on which the organism relies on to degrade both cellulases and 

xylanases [217]. The promoter PpmoA was tried as a driver for production of the protein of 

interest, however no candidates were identified. Similarly to cbh1, this inducible promoter 

requires a cellulose inducer which will trigger production of too many enzymes, making the 

target difficult to identify. 
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 The fusion of a tag to the protein of interest may be an interesting option in systems 

where heterologous protein production is masked by an multitude of confounding proteins 

triggered by the induction. Bergquist et al. [218] incorporated a 6x-His tag into their 

transforming vector for the production of a heterologous family 11 xylanase by T. reesei. In this 

study the promoter used was cbh1 to drive expression but the purification of the target protein 

was facilitated by the presence of the His-tag.  

 Finally, I tested two α-glucosidase promoters in the expression vectors used to transform 

M. thermophila and M. heterothallica . The first of these two promoters is native to M. 

thermophila (PagdA), and the second a native M. heterothallica α-glucosidase promoter (PagdB) 

homologous to the first. The α-glucosidase promoters were selected since expression levels in M. 

thermophila of Spoth2_2303065 were extremely high in sucrose, but low in every other carbon 

source. Based on expression data, over 1500-fold expression over background levels are 

expected when induced by sucrose (Concordia University, Dr. Tsang's lab, unpublished data). 

Although both of these promoters generated candidates showing xylanase activity on the RBB 

xylan plates, only the isolates containing the PagdB constructs were confirmed to produce the 

heterologous protein of interest. Although at first thought it is tempting to advance that the 

PagdA promoter from M. thermophila was less a efficient promoter than that of M. 

heterothallica due to the slight variations between the two regions, it must be pointed out that the 

procedure for the validation of the candidates differed. The candidates transformed with vectors 

containing the PagdB promoter were regrown in 10% (w/v) sucrose rather than the initial 2% 

(w/v) sucrose. A closer look at the spot assay of the PagdA candidates (Figure 21) shows isolate 

#3 containing PagdA - ANxynB having a clearing zone of similar diameter and intensity to that of 

the M. thermophila isolate #9 containing PagdB - ANxynB constructs. It is possible that had this 

candidate been regrown in 10% (w/v) sucrose and retested in the same manner as the PagdB 

candidates, then the outcome may have been more positive. It should also be pointed out that 

none of the control isolates demonstrated any kind of xylanase activity, so it is unlikely that the 

cause of such a large and intense clearing zone be due to improperly cleared supernatants in this 

batch. Without further testing, my suspicion that both promoters are equally as efficient remains 

unsubstantiated.  
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4.5 Increasing yields of heterologous protein 

  Many methods have been used in order to increase heterologous production in fungal 

hosts. One possible method involves optimization of the media to either increase hyphal growth, 

control pH or to delay conidiation. Transport of extracellular proteins in fungi has been 

demonstrated to primarily take place at the hyphal tips [219-222] and so fungal morphology in 

culture can affect total yield of the target protein. Qin et al. [223] demonstrated that the deletion 

of brlA in P. decumbens not only suppressed conidiation but also resulted in increased levels of 

expression and activity of cellulases. These mutants also displayed increase branching as 

compared to the wild type. In N. crassa the use of hyper-branching strains has also shown to 

increase the amount of extracellular proteins produced [224]. Similarly, in a study by Bocking et 

al. [225], the production of glucoamylase was increased in A. oryzae mutants showing a highly 

branched morphology. Gyamerah et al. [226] found that they could increase the production of 

hen egg-white lysozyme in A. niger by controlling pH during growth. In effect, they found that 

by maintaining a constant pH of 4.0, the amount of proteases in culture were reduced thus 

positively increasing the yield of the intended protein [226]. Xu et al [227] observed that when 

the morphology of the submerged A. niger cultures changed from free mycelia to mycelial 

pellets, a decrease in the amount of extracellular protease activity was recorded. Along with the 

decrease in proteases, an increase in the amount of reporter GFP protein was noted [227]. With 

respect to my M. thermophila and M. heterothallica cultures, early conidiation was a factor and 

may have affected the amount of heterologous protein produced. Conidiation of in submerged 

liquid cultures when grown in either glucose or sucrose based media showed signs of conidiation 

sometime between 24 to 28 hours with budding seen at the ends of hyphae. By the end of 44 

hours, my cultures were largely a collection of conidia mingled amongst mycelia in various 

stages of decay. I employed a few strategies to delay conidiation including reducing culturing 

temperatures from 45°C to 37°C and reducing inoculation concentrations from 1x10
6
 spores/ ml 

of culture to 1x10
5
 spores/ ml, with very little effect with respect to delay in the onset of 

conidiation. Moderate success was obtained by increasing sucrose concentrations in the culture 

media from 2% (w/v) to 10% (w/v) sucrose. In 10% (w/v) sucrose submerged liquid cultures, 

although conidia were still abundant, increased amounts of healthy mycelia were still present in 

the cultures at 48 hours and beyond. The increased health of the cultures 10% (w/v) sucrose was 

particularly visible in M. heterothallica CBS 375.69 as compared to M. thermophila. Although 
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manipulation of the culture media did have some success in delaying conidiation, the method 

employed by Qin et al. [223] of deletion of genes involved in the conidiation pathway would 

most likely have a greater effect on the yield of the heterologous proteins of interest. 

 Another widely used method of increasing heterologous protein production is the 

disruption of proteases and the use of protease deficient mutant strains. Yoon et al. [228] 

disrupted ten protease genes in A. oryzae which resulted in a 30% and 35% of recombinant 

human lysozyme (HLY) and bovine chymosin (CHY) production respectively. The use of A. 

vadensis has shown promise as a host for heterologous protein production due to its low levels of 

native proteases [10]. Although the mass spectrometry results obtained for the 4 hour 

supernatants of the PagdB - ANxynA constructs did not reveal high levels of proteases, it may be 

that later time points would have revealed proteases to be a factor affecting yields of the 

heterologous protein. Furthermore, it has been noted by Li et al. [24] that induction using 

cellulose based media may induce the production of extracellular proteases as well. It is likely 

that had the two cellulose inducible promoters tried in this body of work (PpmoA and PcbdA) 

had yielded identifiable candidates, then proteases may have in fact been a limiting factor in the 

amount of heterologous protein obtained. 

 Although cotransformation of the selection and expression plasmids has had good 

success in the scope of this project, the effect of adding the chosen mode of selection into the 

expression plasmid remains unexplored. I suspect that doing so would enable the amount of 

expression plasmid used for transformation to double without doubling the total amount of 

transforming DNA. In this way, the delicate balance of the transformation reaction is not upset. 

This method would serve to perhaps increase copy numbers of the expression plasmid integrated 

into the host. With cotransformation approaching 100%, a minimum of one copy of the selection 

plasmid and one copy of the expression plasmid is assumed. It would be interesting to assess if 

combining selection and expression constructs into the same plasmid, while maintaining the 

amount of total transforming DNA at 10 µg/ transformation reaction, would increase the number 

of multi copy integration of the expression construct. This in turn may lead to higher levels of 

production of the heterologous protein as demonstrated by others [36, 134-136]. 

 Tsuboi et al. [229] employed yet a different approach in order to achieve a 30-fold 

increase in activity of a heterologously expressed GUS reporter in A. oryzae. In this study, 

improvements were made to the native enolase promoter (PenoA) by introducing multiple 
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tandem repeats of conserved elements in the promoter region of several amylolytic enzymes of 

this organism. The conserved areas targeted as repeat elements in their construct included both a 

starch responsive element known to bind to a transcription factor and the CCAAT box of the 

protein binding motif [229]. Since multiple repeats of the CCAAT box has also been shown to be 

an effective method of increasing heterologous protein production in both A. niger and T. reesei, 

a similar approach could potentially be used with the α-glucosidase promoters of M. thermophila 

and M. heterothallica once the core promoter region is identified in the selected promoters.    

 The 5' region flanking protein Mycth_2303065, the GH13 α-glucosidase from M. 

thermophila contains both a sugar-like transporter protein (Mycth_50903) and a putative 

transcription factor (Mycth_2303067). Designing an expression construct which includes the 

conserved domains of one or both of these elements could potentially affect the yield of 

heterologous protein. Mycth_2303067 contains two conserved domains one of which is a 33 bp 

Zn(2)Cys(6) DNA binding domain , and the other is identified as a 398 bp fungal transcription 

regulatory middle homology region. Mycth_50903 also contains two conserved domains. The 

first domain is identified as a Major Facilitator Super Family (MFS) and the other as a sugar 

porter sub-family of MFS. In order to identify which, if any, of these domains has the greatest 

effect on the production of the heterologous protein in the expression plasmids, a series of 

constructs containing these domains alone or in various combinations, need to be designed and 

tested. 

 Evidently a plethora of other promoters are available to drive expression of proteins of 

interest. It is possible that higher yields of heterologous proteins may be achieved using either 

novel promoters or ones commonly found in the literature. The use of Pcbh1 for over expression 

of native genes or to drive expression of heterologous proteins has had success in T. reesei, T. 

viride, A. fumigatus, A. cellulolyticus and M. thermophila [27, 49, 199, 200, 230, 231]. Visser et 

al. compared expression of cbh1 by Northern analysis to that of two other genes before deciding 

on this promoter for their expression vectors designated for the high cellulase production 

strain[49]. In all probability, just as I observed when using the cellulose inducible promoters 

PpmoA and PcbdA, using Pcbh1 would induce expression of high levels of native enzymes and 

high levels of background can be expected [24].  

 The evaluation of other constitutive promoters has merits as well. The promoter of 

translational elongation factor (Pef -1α) in M. thermophila (JGIDB: Mycth_ 2298136 ), for 
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example, is a good candidate. This gene is highly expressed in all of carbon sources tested, 

including glucose. (unpublished data, Dr. A. Tsang's lab). Li et al. [24] had selected promoters 

from pyruvate decarboxylate (Ppdc )and enolase (Peno) as well as Pgpd in their search of a 

strong constitutive promoter for T. reesei . Their selection was based on expression levels of 

these genes in response to increasing levels of glucose. 

 The original objective of this work was to develop an expression system for heterologous 

protein production in a thermophilic fungal host organism for cases when cloning in A. niger 

fails to produce a protein of interest or when it is produced but inactive. For large part of this 

work, a xylanase from A. niger (ANXynA) was the enzyme I utilized as the target protein for 

heterologous protein production in M. thermophila and M. heterothallica. It was selected not 

because production is poor in its natural host but because it is known to be a highly robust 

enzyme with activity ranging from pH 2 to pH 9 with optimal activity at pH 5.0 (Courtesy of 

Annie Bellemare at Concordia University in Dr. A. Tsang's lab). Now that the M. heterothallica 

expression system has been shown work with this reliable enzyme, genes of interest which could 

not be expressed or produced in A. niger can be tried in M. thermophila with the assurance that 

although yields are low, the expression system is functional. To this end, I have prepared 

plasmids containing the constructs PagdB - GOI which are ready to be used for transformation in 

M. heterothallica. The heterologous genes of interest are xylanases from M. thermophiles,  

originally known as Scytalidium thermophilum, (StxynA) and a xylanase from 

Pseudocercosporella herpotrichoides (PhxynA). Although the M. thermophila expression system 

has also been validated with xlnC, the original interest in M. heterothallica due to its mating 

potential remains. For this reason, I would recommend that any follow-up work continue in M. 

heterothallica.  
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5 Conclusion 

 The filamentous fungus M. heterothallica is a feasible choice as a host for heterologous 

protein production. PEG mediated transformation of protoplasts has been shown to work but 

regeneration rates of transformed protoplasts remain low at 6.67%. Alternate methods of 

transformation should be considered including electroporation of conidia and agrobacterium 

mediated transformation. Although cotransformation of selection and expression plasmids has 

been extremely successful, adding amdS selection to the expression plasmids may increase copy 

number integration of the expression plasmid and may increase production of the heterologous 

protein of interest. A pyrG knock out strain was not produced but can be re-attempted if higher 

concentrations of transforming DNA can be generated to that end. Furthermore, it is 

recommended that the low regeneration rates be addressed before a subsequent attempt is made. 

Production of a heterologous protein has been achieved when expression is driven by the native 

α-glucosidase promoter but yields remain low. Modifications of the promoter by way of multiple 

repeats of the CCAAT box or by the integration of a conserved region of a cis-regulatory 

transcription factor should be considered. Alternately, other novel or common promoters can be 

tried both inducible and constitutive. Genes of interest whose expression and production have 

failed in A. niger can be inserted into M. thermophila via the developed expression plasmid. This 

would determine if a host organism in which pH and temperature profiles differs from that of A. 

niger is more favorable for the production of these enzymes of interest. Lastly, two mutant 

strains of opposing mating types can be crossed in the hopes of obtaining a double mutant. 

 Much work still remains to be done in order for M. heterothallica to be used as a host 

organism for heterologous protein production on a commercial scale. However, this body of 

work demonstrates the potential of this organism for such a purpose, with the added benefit over 

M. thermophila due to its sexual mating potential. 
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