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ABSTRACT
Free vibration and dynamic instability analyses of doubly-tapered rotating laminated
composite beams

Saemul Seraj

Due to the outstanding engineering properties, such as high strength/stiffness to weight
ratios, capability to be stiff at one location and flexible at another location and favorable fatigue
characteristics, doubly-tapered composite beam is used in the rotating structures such as helicopter
rotor blades and wind turbine blades. Due to its distinct characteristics from static beam and wide
range of applications, rotating beam requires a comprehensive research to understand its dynamic
response. Design of mechanical components using doubly-tapered composite beams requires a
better understanding of their behavior in free vibration and their dynamic instability. In the present
thesis, free vibration and dynamic instability analyses of doubly-tapered rotating cantilever
composite beams are conducted considering three different types of vibrations (out-of-plane
bending, in-plane bending and axial). Rayleigh-Ritz approximate method based on classical
lamination theory has been employed to formulate the free vibration problem and solve it.
Bolotin’s method is applied to determine the instability regions. Numerical and symbolic
computations have been performed using the software MATLAB. The results for natural
frequencies have been validated using Finite Element Analysis (FEA) tool ANSYS. A
comprehensive parametric study is conducted in order to understand the effects of various design
parameters. Moreover, critical speed of doubly-tapered rotating composite beam is determined and
change of critical speed due to double-tapering is investigated. Also, change in maximum
deflection due to rotational velocity and double-tapering is observed in this thesis. The material

chosen in this thesis for numerical calculations is NCT-301 graphite-epoxy prepreg.
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Chapter-1

Introduction, literature review and scope of the thesis

1.1  Vibration analysis of rotating structure

Numerous engineering applications involve high speed rotating structures, which rotate
about a symmetrical axis. Especially aerospace industries and wind energy plants use such
structures. Due to distinct alteration from static beam and wide range of applications, rotating beam
required a comprehensive research to understand the dynamic response of this physical system.
The fundamental difference between rotating and non-rotating beams is the presence of centrifugal
acceleration and Coriolis effects due to angular velocity, which significantly affect the dynamic
behavior of rotating beam. Importantly vibration characteristic is altered due to the consideration
of angular velocity.

Vibration is a time dependent undesirable fluctuating motion from a state of equilibrium.
More explicitly vibration may cause fatigue failure in a machine element due to repetitive stress
development in a structure. In the case of rotating structures such as wind turbines, gas turbines,
helicopter rotors and aircraft propellers that are often idealized as rotating beams, vibration
increases fiercely due to rotating unbalance. In rotating beam, uneven distributed load due to
rotation, displaces the center of pressure which results in unpleasant vibration. Free vibration of a
rotating element referred to as vibration due to initial displacement which does not undergo any
external force. Whenever this natural frequency of free vibration coincides with the frequency of

external load (forced vibration) a resonance may occur which accelerates the vibration excessively



and leads to failure of the structure. This devastating effect can be avoided by analyzing vibration
properly.
1.2 Dynamic instability analysis of rotating structure

Dynamic instability is a problem concerning with the structural behavior due to parametric
vibration. This is a new branch of research study that provides engineers for the design of a
structural member considering time-dependent load referred to as parametric excitation. In a
rotating beam, parametric excitation can be caused by in-plane periodic load or by introducing
periodic rotational velocity. Mechanical structures that operate within the instability region, will
experience parametric resonance. This incident reduces the durability of structure and leads to
unpredictable failure.

Especially in an aircraft engine or in wind turbine, rotating blade experiences periodic
aerodynamic load which changes the constant angular velocity to pulsating angular velocity. The
excitation frequency involve in pulsating load may coincide with the natural frequency of free
vibration and blade becomes dynamically unstable from nominal position.

Dynamic instability analysis has opened a new way to accurately design an engineering
application, which is more similar to a practical appearance in the field. Although parametric
vibration might not have an immediate effect, but it is a future threat for fatigue failure, if they
continue to act. Therefore, dynamic instability analysis introduces a method to prevent the
parametric vibration which is necessary to design a structure precisely which is out of immediate

maintenance.

1.3 Composite material in rotating structure
A structural material where two or more constituents composed at macroscopic level and

constituents are not soluble in each other is called composite material. One of the constituents in



composite material generally is continuous phase, called matrix and another is discontinuous phase
called reinforcing material that may be in the form as fibers, particles or flakes. Fiber reinforced
composite materials are often made in the form of a thin layer, which is called lamina. The different
layers of the lamina are permanently bonded together under heat and pressure using a hot press or
autoclave. Fiber orientation in each lamina and stacking sequences of layers can be chosen so as
to achieve the desired strength and stiffness for specific applications. Nowadays composite
materials are widely used in different applications such as aircraft and space structures,
automobiles, submarine structure, sports equipment and medical prosthetic devices, in the
structural form of bar, beam and plate.

The use of composite structure in the design of mechanical systems has been increasing
fast during the last few years due to the recent technological advances. Composite material has
outstanding engineering properties, such as high strength/stiffness to weight ratios and favorable
fatigue characteristics and due to this reason composite material is used in the design of rotating
structure such as aircraft engine blades, helicopter rotor blades and wind turbine blades. Some
specific applications such as helicopter blades, robot arms, turbine blades and satellite antenna
need to be stiff at one location and flexible at another location. A typical example is a helicopter
rotor blade, where a progressive variation in the thickness of the blade is required to provide high
stiffness at the hub and flexibility in the middle of blade length to accommodate for flapping. This
type of structure is formed by terminating or dropping off plies at the specified location to reduce
the stiffness of that structure which is called tapered composite structure [6]. These elastic tailoring
properties and more significant weight saving than commonly used laminated components allow
an increasing use of tapered composite in commercial and military aircrafts. The first commercial

composite rotor blade yoke assembly made of glass-fiber (S-2 glass)/epoxy composite was



fabricated at Bell helicopter Textron that provides more safety and endures several times more
flight hours than traditional titanium or steel. The structural configuration possibilities provided
by fiber reinforced composite materials are vital to enhance the dynamic behavior of rotating
beams operating in complex environmental conditions. As a result of the mentioned advances in

composite materials, the structural design concepts have changed substantially.

1.4  Rayleigh-Ritz method

Deriving the governing differential equations of a physical system is a complicated task
and finding exact solutions to the governing differential equations is usually even more formidable.
In order to solve such equations, approximate methods of analysis provide a convenient, alternative
method for finding solutions. The Rayleigh-Ritz method is such a method, typically used in the
literature and referred to as classical variational method.

Lord Rayleigh was an English Physicist, published his renowned book Theory of Sound in
1877. He explained the calculation method to determine fundamental natural frequency of a
continuous system such as strings, bars, beams, membranes and plate in his book. The principle of
Rayleigh’s method is based on assuming the mode shape and equating the maximum potential and
kinetic energies in a cycle of motion.

In 1908, Walter Ritz used principle of multiple admissible displacement functions to
determine the frequencies and mode shapes of any structural member. He demonstrated his method
by determining the natural frequency of a completely free square plate. Consequently, Rayleigh
used the same principle in his book and another publication. After a while, many researchers used
this method some calling it the ‘Ritz method’ and others the ‘Rayleigh-Ritz’ method.

Rayleigh-Ritz method has gained the popularity in last few decades to accurately determine

the natural frequencies and mode shapes of vibration of continuous systems, especially if the exact



solution is not available. This method becomes more applicable after the discovery of digital
computer. The success of this method in a boundary value problem or in an eigenvalue problem
depends on accurately assuming the solution in the form of series of approximate displacement
functions which must satisfy the geometric boundary conditions.

The mathematical basis of Finite Element Method (FEM) first comes from Rayleigh-Ritz
method. The Rayleigh-Ritz (R-R) method discretize the structure by assuming solution in form of
series instead of discretization by dividing into elements (FEM). One of the disadvantages of Finite
Element Method is that one can only compute the displacement at locations where elements are
connected (called ‘nodes’) and the displacement within the element is unknown. The Rayleigh-
Ritz method overcome this problem by assuming single displacement field that spans the entire
structure.

This thesis uses the Rayleigh-Ritz method to solve the eigenfrequency problem of a

rotating composite beam and uses Finite Element Analysis tool — ANSYS to validate the results.

1.5  Finite Element Method

Since structural configurations were changing rapidly during the last few years, the existing
methods were generally insufficient to deal with the variety and complexity of the new structural
shapes. It was in this circumstance that the Finite Element Method (FEM) emerged as recognizable
modern method in the mid-1980s.

The greatest advantage of FEM is its ability to deal with arbitrary geometry, boundary
conditions as well as arbitrary shape of non-homogeneous materials that are made up of numerous
different material regions. The analysis of laminated composite beam is usually based on four
approaches those are classical theory of elasticity, theory of mechanics of materials, variational

statement and strain energy statement. The governing equations of motions are generally non-



linear partial differential equations those are difficult to solve in the closed form. But the powerful
numerical technique, Finite Element Method (FEM) made possible the analysis of complex
structures such as tapered composite beam with the help of modern digital computers. The basic
idea of the Finite Element Method is to find the approximate solution of complicated problem by
replacing it with a simpler one. The speed of convergence and accuracy of the results obtained by
finite element method are strongly dependent on the selected element type. In Conventional Finite
Element (CFE), a beam element is modeled using two nodes at the ends where each node has two
degrees of freedom (displacement and rotation). The beam should be divided into a large number
of elements to achieve the accurate results. Higher-order Finite Element (HOFE) overcomes these
difficulties considering four degrees of freedom (displacement, rotation, curvature and gradient of
curvature) per node. In this thesis work, ANSYS® software is used which solves vibrational

problems of complex structural shapes using Finite Element Method.

1.6 Literature review

A detailed literature review can be made to explore the contributions of researchers
analyzing the vibration and stability of rotating beam. Composite material is a new inclusion on
this specific type of engineering application. Before usage of composite material, homogeneous
material has been used by researcher/engineer to build any complex machine structure but
methodology to analyze has been revealed. In recent years researcher using composite material to
design and analyze a rotating blade but geometry of a blade was restricted in uniform shape in
most of the works. Researchers started analyzing tapered composite beam or plate but they are
also limited to static condition. Following topic presents prehistory of vibration and dynamic

instability analysis of rotating composite beam.



1.6.1 Free vibration analysis of rotating composite beam

Southwell and Gough [46] were the first to estimate the modal characteristics of rotating
cantilever beams, using the energy method. This method was simple and widely used by engineers
who want to design rotating blades. In 1958, Scilhansl [47] used Ritz method and derived the
equations of motion of rotating cantilever beams and obtained more accurate model to estimate
the natural frequencies. These analytical models were introduced in the early stage of the rotating
beam research. Using this method large number of numerical analysis have been performed by
many researchers around the world (see, for instance, Putter and Manor [48], Yoo and Shin [23],
Kuo and Lin [49]). However, all these results are involved with rotating beams problem that is
made of isotropic material.

Vibration characteristics of non-rotating composite structures were investigated in many
previous works (Abarcar and Cunniff [50], Miller and Adams [51]), where most of the works were
conducted for out-of-plane bending (transverse) vibration and rotary inertia effect has been
ignored. Few researchers (Hodges et al [22], Krishnaswamy et al [52]) included shear deformation
and rotary inertia effect in their analysis. Reddy [3], Berthelot [2] and Jones [4] have found the
exact solutions for the free vibrations of uniform laminated composite beams. Few works have
been found those are conducted for in-plane bending vibration (Hassan et al [40] and Vebil [41]).

Several engineering components, such as turbine blade or helicopter rotor blade usually
have non-uniform geometry. Therefore, determination of dynamic characteristics of non-uniform
rotating composite beam has greater practical importance. Ganesan and Zabihollah [11] analyzed
the free vibration and buckling of uniform-width thickness-tapered composite beams using both
conventional and advanced finite element formulations. They used two nodes per element and four

degrees of freedom per node (deflection, slope, curvature, derivative of curvature) in the advanced



finite element formulations. Nabi and Ganesan [53] developed a general finite element formulation
based on a first-order shear deformation theory with 16 degrees of freedom per element to study
the free vibration characteristics of laminated composite beams. They also conducted a parametric
study on the influence of beam geometry and boundary conditions on the natural frequencies of
the beam. Eftakher [14] conducted free and forced vibration analysis of uniform-width thickness-
tapered laminated composite beams using Rayleigh-Ritz method and conventional and advanced
finite element formulations. He used two nodes per element and four degrees of freedom per node
in the advanced finite element formulation. Vijay [54], Pooya [13] and Mohammad [55] conducted
the free and forced vibration analysis of thickness-tapered width-tapered laminated composite
beams using Rayleigh-Ritz method, Conventional Finite Element Method and Hierarchical Finite
Element Method, respectively.

Most of the vibration analyses of rotating composite beam were restricted to uniform shape.
Yoo et al [23] investigated the flap wise bending vibration of uniform composite laminated beam
using Rayleigh-Ritz method in conjunction with Timoshenko beam theory. Chandiramani et al.
[26] also conducted research on rotating composite beam using higher order shear deformation
theory for hollow boxed beam. Coriolis effect has been ignored in their work. Kim et al. [24]
considered Coriolis effect on a piezoelectric fiber composite beam to analyze the free vibration.
Finite Element Method has been used in that case. Kaya et al. [21, 25] used differential transformed
method to determine natural frequencies of axial and bending vibrations of rotating uniform
Piezolaminated composite beam. Carrera [20] established a refined structural theory called Carrera
Unified Formulation to do analysis for free vibration of rotating composite beam. Bakhtiari-Nejad
et al. [19] determined fundamental frequency of free vibration considering nonlinear Von-Karman

displacement theory. They have used differential transformed method to formulate the problem.



1.6.2 Dynamic instability analysis of rotating composite beam

Dynamic instability analysis of a beam subjected to periodic loads is an important and
advanced research topic. A number of research works can be traced to parametric resonance or
dynamic instability of isotropic non-rotating beam. Bolotin [31] first comprehensively reviewed
the research of dynamic instability problems in case of bar, plate and shell. Hyun and Yoo [56]
studied the dynamic stability of an axially oscillating cantilever beam considering the stiffness
variation. The dynamic stability of a rotating beam subjected to base excitation was investigated
by Tan et al. [57].

With a few exceptions, most of these studies have addressed the axially oscillating
problem. On the other hand, Yoo et al. [58] analyzed the dynamics of a rotating cantilever beam.
They presented a linear modeling method for the dynamic analysis of a flexible beam undergoing
overall motion. Based on this modeling method, Chung and Yoo [38] derived the partial
differential equations of motion for a rotating cantilever beam and discretized by the Galerkin
method to investigate the natural frequencies and time responses. This study investigates the
dynamic stability for the flap wise motion of a cantilever beam by using the method of multiple
scales, when the beam oscillates in the rotational direction.

In relation to composite materials, Saravia et al. [34] first investigated the dynamic stability
behavior of thin-walled rotating composite beams using Finite Element Method. Lin and Chen
[35] studied the dynamic stability of a rotating composite beam with a constrained damping layer
subjected to axial periodic loads. Chen et al. [59] investigated the dynamic stability of rotating
composite shafts under axial periodic loads. Chattopadhyay and Radu [36] studied the dynamic

instability of composite laminates using a higher order theory.



1.7  Objective of this thesis
The main objectives of the present study are the following:

1. To investigate the free vibration response in out-of-plane bending, in-plane bending and axial
vibrations of doubly-tapered rotating cantilever composite beam using Rayleigh-Ritz method
and FEA tool ANSYS.

2. To investigate the dynamic instability due to periodic rotational velocity of doubly-tapered
rotating cantilever composite beam considering out-of-plane bending, in-plane bending and
axial vibrations.

3. To conduct a comprehensive parametric study on the effects of rotational velocity, hub radius,
double-taper ratio, taper configuration and laminate configurations on the free vibration and
dynamic instability of the doubly-tapered rotating cantilever composite beams.

4. To perform a detailed comparative study between out-of-plane bending and in-plane bending
vibrations, in order to identify the fundamental frequency, first critical speed, maximum

displacement and width of instability region.

1.8  Layout of this thesis

The present chapter provides a brief introduction and literature survey on free vibration
and dynamic instability analysis of laminated composite beams.

Chapter-2 is dedicated for free vibration and dynamic instability analyses of out-of-plane
bending vibration of doubly-tapered rotating cantilever laminated composite beams using
Rayleigh-Ritz method based on classical lamination theory. In the first part of Chapter 2, free
vibration analysis is conducted considering different parameters such as rotational velocity, hub
radius to beam length ratio, ply drop-off, double-taper ratio, stacking sequence and different taper

configurations. Mode shapes and critical speed are also determined for doubly-tapered composite
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beam. Determined natural frequencies are compared and validated with existing results obtained
using Conventional Finite Element Method (CFEM) and FEA tool ANSYS. In the second part of
this chapter dynamic instability analysis using Bolotin’s method is carried out for out-of-plane
bending vibration of doubly-tapered composite beam subjected to time varying rotational speed.
Boundaries between stable and unstable regions are determined in terms of resonance frequency
and amplitude factor. Variation of width of instability region is compared for different parameters
such as rotational velocity, double-taper ratio and stacking sequence.

In Chapter-3, free vibration and dynamic instability analyses for in-plane and axial
vibrations of doubly-tapered rotating laminated composite beam are carried out using Rayleigh-
Ritz method. Results for natural frequencies are compared and validated with existing reference
and Finite Element Analysis tool ANSYS. Coriolis term and rotary inertia effect have been
ignored. Variation of natural frequency and the width of instability region have been analyzed for
different parameters changes. Mode shapes and critical speed are also determined in this chapter.

In Chapter-4, a detailed comparative study is presented between out-of-plane bending and
in-plane bending vibrations, in order to identify the fundamental frequency, critical speed,
maximum displacement and largest width of instability region. Different taper configurations are
also considered for this analysis.

Chapter 5 brings the thesis to its end by providing an overall conclusion of the present work

and some recommendations for future work.
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Chapter-2
Free vibration and dynamic instability analyses of doubly-tapered rotating laminated

composite beams for out-of-plane bending vibration

2.1 Introduction

Free vibration and dynamic instability analyses of rotating laminated composite beam is
an engineering research field of extensive interest. Laminated composite beam has the property to
keep the required strength by having less weight, which has foremost importance in aerospace,
mechanical and automotive structures. Recently, composite laminate which has a taper profile in
both thickness and width throughout its length is increasingly being used in aerospace industry
and wind energy sector as rotating element such as helicopter blade or wind turbine blade.
Geometric non-linearity in the composite beam provides the provision to control the vibration. In
this chapter, free vibration analysis for out-of-plane bending of thickness-and-width-tapered
laminated composite beam is conducted using Rayleigh-Ritz method and also the dynamic
instability analysis is carried out. Commercial Finite Element Analysis tool ANSYS is used to
validate the results. NCT-301 Graphite/Epoxy prepreg has been chosen to conduct the numerical

analysis, which is available in the laboratory of Concordia Centre for Composites (CONCOM).

2.2  Description of the rotating beam

Consider a laminated composite beam of length L, which is attached to a hub of radius R,
as shown in the Figure 2.1 in Cartesian coordinates. The hub rotates about its axis at a constant
angular speed Q rad/s. The origin for the coordinates is taken at the edge of the hub. The x-axis
coincides with the neutral axis of the beam, the z-axis is parallel to the axis of rotation and the y-
axis lies in the plane of rotation.
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Figure 2.1 Doubly-tapered rotating composite beam

View on y-z plane illustrates beam changing the thickness from h, to h; and changing its width
from b, to b, over the length L. The laminated composite beam consists of N layers, numbered
from the lower to the upper face. To study the out-of-plane bending vibration, x-y plane is chosen
as mid-surface and reference plane. Half of the layers of laminated beam are in positive z-direction
and the other half are in negative z-direction. Half of the width is in positive y-direction and the
other half is in negative y-direction.

Any system with mass and elasticity can undergo free vibration. Free vibration analysis of
the above composite beam requires associated equation of motion. The Lagrange’s equation can
be used to obtain the equation of motion of this physical system. To use this equation, total strain
energy, including work done by the centrifugal force and kinetic energy of the system, needs to be
determined. Energies of any complex system can be formulated using approximated solution
methods such as Galerkin method or Rayleigh-Ritz method to determine the natural frequencies
in free vibration. In this thesis, Rayleigh-Ritz method is used to determine the natural frequencies
of doubly-tapered rotating laminated composite beam. This method uses series of shape functions
to obtain fundamental frequencies more accurately. The success of this method depends on the

choice of the shape functions that should satisfy the geometric boundary conditions.

13



2.3 Energy formulation using Rayleigh-Ritz method

2.3.1 Strain energy

Strain energy is the energy stored by a system undergoing deformation. Considering that
the beam’s length to thickness ratio is high, Classical Laminate Theory (CLT) can be used to
determine the strain energy which assumes that transverse shear strains are zero and neglects z-

direction stress, that is 0,,* = 0, and y,,* = y,,* = 0. Therefore, strain energy for a laminate

with N layers can be written as:

1
U= 2¥=1Efff(o-xxkgxxk + ayykgyyk + Txykyxyk) dx dy dz (2-1)

where o,,* and ayyk denote the stresses in corresponding layer along the x and y directions,
respectively, &,,* and eyyk denote the strain in corresponding layer along x and y directions,
respectively. Txyk is shear stress and nyk is shear strain in the corresponding layer acting on the
x-y plane.

As shown in the Figure 2.1, a doubly-tapered laminated composite beam has length L,
width of ply changes from b, to b, and the ply lies between h; and h;_,, then the strain energy
equation can be written as:

b(x)
1L ~— rh
U=%k=130y | bw fhkk_l(o-xxkgxxk + 0yy ey K + Toy Yy ®) dz dy dx (2.2)
2

Here, for linearly width-tapered beam the variable width b(x) can be defined as:

b(x) = by — L (2.3)

For a thickness-tapered laminated beam, h, is the distance from mid-plane to top of the k-th lamina
and hy,_; is the distance from mid-plane to bottom of the k-th lamina. Expressions for h;, and h,_;
depend on different types of internal mid-plane tapered laminates obtained by configuring the ply

drop-off at different locations of the laminate (see Appendix-A).

14



Considering plane stress assumption [5], stresses in the k-th ply are written as follows:

O-xxk gxxk

k k
ayy" | = [Q¥] [&yy (2.4)
Txyk yxyk

Q1 012" Qu6"
here, [Q¥] = Q21k szk stk (2.5)
Q61" Q62" Qos”

[Q¥] is transformed reduced stiffness matrix of a composite ply, which is a function of mechanical
properties of composite material and the transformation matrices due to fiber angle (8) and
laminate taper angle (¢) [12]. For resin plies in taper configurations, [Q*] is replaced with [Q,esin],

which can be defined by the mechanical properties of resin as:

E VE
|[1—v2 1-v2 0 }
vE E
[Qresin] = 11-vz2 1-p2 0 | (2-6)
E
| 0 0 2(1+v)J

In equation (2.4) strains in a ply for out-of-plane bending deformation can be defined as:

du [ -2
exxk 0x } | 0x? |
k vy 2w
R I P ey @)
yxyk [% + %J [_2 62WOJ
oy 0x 0xdy

where [¢°] is mid-plane strain matrix and [k] is curvature matrix for out-of-plane bending
deformation. u,, v, and w, are mid-plane displacements corresponding to x, y and z directions,
respectively.

Substituting equation (2.7) into equation (2.4), the stress-strain relation leads to:

ayy*| = [Q¥] [€°] + z[Q] [K] (2.8)
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Substituting g,,*, 0,,,* and 7,,,* in equation (2.2), strain energy equation becomes:
NlL@hk ke ky2 ke ky2 ke, ky2 k. k., k
u :Zk=15f0 f_@fhk_l(Qll (&xx )"+ Q22 (gyy )° + Qss (ny )+ 2Q12 Exx Eyy +
2

2Q16k€xxkyxyk + 2Q26k£yykyxyk) dz dy dx (2-9)
For pure out-of-plane bending deformation, ¢,,,*and y,,,* are can be neglected. Also neglecting

small axial mid-plane displacement u,, strain energy expression simplifies to:
U=z S e [ Qui (2222 dz dy dx (2.10)
-2 Mgy dx
From Classical Laminate Theory:

SNy [ 721" dz = Dy (%) (211)
where, Dy (x) is the first coefficient of bending stiffness matrix for out-of-plane bending. Using
equation (2.11) and integrating with respect to y across the width of the laminate, equation (2.10)
becomes:

U =2 J b(x) Dyy (1) (2 wo (x, 1)) 2dlx (2.12)
To use Rayleigh-Ritz method, out-of-plane bending displacement is assumed as:

wo(x, t) = XiZ; 0:(x)q:(t) (213)
where, @;(x) is approximate shape function for out-of-plane bending deformation. Any compact
set of admissible functions that satisfy the geometric boundary conditions of the beam can be used
as the shape functions and g;(t) is generalized coordinate where t refers to time and m is number
of terms in w,. After using Rayleigh-Ritz approximation for out-of-plane bending displacement,

equation (2.12) leads to:

U= 3m N2 [ b)Dys () (j— ¢i<x>> (j— asj(x)) G(Dq; (O dx (2.14)
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Finally,

U= Zmlzj =15 ql Kijq; (2.15)

Here,
Kij = [} b(x)D11(x)8;" ()8," (x)dx (2.16)

2.3.2 Work done by the centrifugal force

When the free end of a cantilever rotating beam deflects transversely (out-of-plane
bending), particles of the beam have a small axial displacement due to centrifugal force. The work
done by this centrifugal force and corresponding axial displacement produces centrifugal stiffening
that has effects on the natural frequency of free vibration. This axial displacement can be expressed

in terms of transverse displacement as:

du = ds — dx = \/(dx)z + (32 dx) — dx = dx( |1+ ("W")2 D~ 2ED2x (217)

Here dx is the length of an undeformed infinitesimal beam element and ds is the deformed arc

length of the infinitesimal beam element shown in the Figure 2.2.

(a) (b)

Figure 2.2 (a) Transversely deflected cantilever beam, (b) Geometrical representation

If P(x) is the centrifugal force at any point x, then work done by this centrifugal force in doubly-
tapered laminated composite beam can be written as:

W =P(x)*u (2.18)
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Or:
W =11 P)(Ewo(x, £))2dx (2.19)
270 ax 0N '
Here, P(x) for the doubly-tapered laminate can be written as:

P(x) = [ b(8) p,(5)Q(R + x + 8)dS (2.20)

b(x)-b

Here, b(5) = b(x) — L § is variable width of a ply within x and L (shown in Figure 2.3),

L—x
pL(8) = XN_1 pr(hi (8) — hye_1(8)), where (hy (8) — hy_1(8)) is variable distance between top

and bottom faces of a ply within x and L (see Appendix-D) and p,, is mass density of ply.

Y l< N|
A . -_|7 T l
> o)
GE v vl 5 .
o
I — |
| L [

Figure 2.3 Doubly-tapered rotating composite beam (x-y plane view)

Substituting Rayleigh-Ritz approximate function, equation (2.19) can be written as:

W= S S [ PO 0,00 5= 8,(0)q: () (t)dx (221)
Finally,
W= N ik, (222)
Here,
KCi; = [ P(0)®; (x)0; (x)dx (2.23)

2.3.3 Kinetic energy
The kinetic energy of an elastic body depends on the mass of the body as well as its

velocity. The kinetic energy of a doubly-tapered rotating composite beam can be expressed as:
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b(x)
1 0L ——

T = Jo [ dpb(O(G2 + V2 + V%) dydx (2.24)
2

Here, p, = X:¥_; px (hx — hi—1) denotes the mass per unit length per unit width of the laminated
beam and V,, V;,, and V, are the velocity components in X, y and z directions, respectively. The
velocity vector gives the velocity components of an object with its direction. The velocity vector
of any point in a rotating composite beam can be expressed as [16]:

l7=‘;—f+QIE X {(R+x +up)i+vj +wk} =Z—1t‘i+g—’t’j+2—v:k+m€ X {(R+x +up)i+
vj + wk} (2.25)

where u, v and w are the displacements in x, y and z directions, respectively and 7 is position

vector after deformation. i, j and k are unit vectors in x, y and z directions, respectively. Neglecting

~ ~

displacement in y direction and applying vector cross-product formula (k x k = 0,k x i = j, k x
j = —1), equation (2.25) can be written as:
I7=g—‘t‘i+Q(R+x+uo)j+(;—”:l€ (2.26)
Therefore, velocity components in three directions are:
2 2
ucza—j,vyzn(R+x+uo) andeza—V: (2.27)

From Classical Laminate Theory and neglecting small axial mid-plane displacement one can get:

u(x, t) = —z 200 (2.28)
w(x, t) = wy(x, t) (2.29)

Using equation (2.27) to (2.29) into the equation (2.24), the kinetic energy equation of a doubly-

tapered rotating laminated composite beam becomes:

T abe(L) + R (e @30)
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According to Euler-Bernoulli theory for thin beam, rotary inertia terms can be neglected [3], then

the equation (2.30) for kinetic energy becomes:

T=1f pr(x){(%)z + Q2(R + x)?}dx (2.31)
After using Rayleigh-Ritz approximation, equation (2.31) simplifies to
T =31 ST [ pub(0)8:(0)8;()4,(0)6,(Ddx +5 [ pb()QP(R + x)%dx  (2.32)
Finally,
T =31 3 G(OMyG,(t) +5 [} pub()Q?(R + x)?dx (2.33)
Here,

My = [} pLb(x)0,(x)0;(x)dx (2.34)

2.3.4 Equation of motion
Equation of motion describes a physical system as a function of time. For this particular

free vibration problem, Lagrange’s equation can be written as [44]:

C(E) -+ =0i=1.m (2.35)

at\og.) 3¢, ' oa;

Substituting U, W and T from equations (2.15), (2.22) and (2.33), respectively into the equation
(2.35), gives a set of m equations that can be written in matrix form as

[M1{g} + ([K] + [K°D{q} = {0} (2.36)

where, [M], [K], [K€] and {q} are mass matrix, stiffness matrix, stiffness matrix due to centrifugal
action and system displacement vector, respectively (see Appendix-C).

To find the natural frequency of a structure, the solution of the equation (2.36) can be assumed as

{q) = {Q)eV™Tet (2.37)

where, {Q} is the mode shape (eigen) vector and w is the natural frequency of the out-of-plane

bending vibration. Using equation (2.37), equation (2.36) leads to:
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(([K]+ K€1) — ;" [MD{Q}eY™T" = {0} (2:38)
Equation (2.38) is an eigenvalue problem and can be solved to determine the natural frequencies

of the doubly-tapered rotating cantilever laminated composite beam.

2.4  Boundary condition and approximate shape function

Rayleigh-Ritz method uses series of shape functions where each function gives the result
for each mode, which means that the number of natural frequencies and modes depend on the
number of shape functions used. This method serves best depending on the choice of the shape
functions that must satisfy the geometric boundary conditions.
Rotating structure such as helicopter rotor blade or wind turbine blade is usually attached with the
hub at one side and the other side is free. For a beam of length L, that is fixed at one end and free

at the other end, the boundary conditions are [2,3]:

aWO

aWO
ox

= 0and

(x=0) 0x l(x=L)

%0 (2.39)

WO(x:O) = 0, Wo(sz) * 0,

Various trial functions can satisfy this boundary condition. One of the simple polynomial functions
is [10]:

0,(x) =, i=123..m (2.40)

2.5  Validation and results

Rayleigh-Ritz formulation for free vibration analysis described above has been developed
using MATLAB for validation and numerical analysis. Validation of results have been performed
by comparing the existing results available in the literature and the results obtained using ANSYS.
Results available for non-rotating tapered composite beam have been compared with the results of
the present work for free vibration response. In the case of rotating composite beam, ANSY'S result

has been compared with the present work. First three natural frequencies are taken into account to
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perform the validation. Four different taper configurations (see Appendix-A) are considered for
validation and numerical analysis. Validation of results for isotropic material are given in

Appendix-E. Following flowchart is considered as a required step to validate the final result.

STEP1 STEP 2 STEP 3
Result Result Result
verification verification verification
for rotating for thickness- for doubly-
uniform tapered tapered
composite rotating rotating
beam composite composite

I> beam I> beam

Figure 2.4 Flowchart for required validation steps

The geometric parameters and mechanical properties of the material used are listed below.

Table 2.1 Mechanical properties of unidirectional NCT-301 graphite-epoxy prepreg [55]

Longitudinal modulus (E;) 113.9 GPa
Transverse modulus (E,) 7.985 GPa
E; =E, 7.985 GPa
In-plane shear modulus (G,) 3.137 GPa
Out-of-plane shear modulus (G,3) | 2.852 GPa
Density of fiber (p) 1480 kg/m?®
Major Poisson’s ratio (vy5) 0.288
Minor Poisson’s ratio (v,4) 0.018

Table 2.2 Mechanical properties of resin material [55]

Elastic modulus (E) 3.93 GPa
Shear modulus (G) 1.034 GPa
Density of resin (p;.) 1000 kg/m?®
Major Poisson’s ratio (v) 0.37
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Rotational and geometric parameters used for steps 1 to 3 are given below:

Table 2.3 Rotational parameters used in validation and numerical analysis

Rotational Velocity, Q | 0, 50, 100, 200 rad/s
Hub radius, R 0.025m

Table 2.4 Geometric properties used in validation and numerical analysis

Length of beam, L 0.25m

Individual ply thickness, h,;, | 0.000125 m

Width of beam, b, 0.02m

Laminate stacking sequence [0/90]es, [0]1ss, [90]18s, [0/45/-45]es

All the laminates used in this thesis have symmetrical stacking sequence. In this thesis
thickness-tapering in the laminated beam is described by the number of ply drop-off (S). Thickness

taper angle and number of ply drop-off are related by the following equation:

o = tan—l(e)ﬂ) (2.41)
- .

Here, ¢ is thickness taper angle, S is number of ply drop-off, L is length of the beam and h,,,,, is

individual ply thickness.
Width-tapering is described by width-ratio (r;,) as:
(2.42)

Here, b, is width of beam at fixed side and b, is width of beam at free side.

2.5.1 Finite element program-ANSYS

The commercial finite element program ANSYS 15.0 Workbench platform has been
chosen to perform the modal analysis. Modal analysis for a rotating beam problem is a pre-stressed
analysis where static analysis has to be done before modal analysis to set up the boundary condition
and rotational load. ANSYS Composite PrepPost (ACP) has been used to model the different taper
configurations in laminated composite beams. Four-node layered shell element (SHELL 181) is
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employed in the modeling to describe the bending vibrations of laminated beams. The beams are
discretized using the finite element (SHELL 181) shown in Figure 2.5, available in the commercial
package ANSYS 15.0. This element has 4 nodes (I, J, K and L are shown in Figure 2.5) and six
degrees of freedom at each node: translations in the nodal x, y and z directions and rotations about
the nodal x, y, and z-axes. The circled number in Figure 2.8 represents the element faces. The
choice of SHELL 181 element type is based on layered applications of a structural shell model and

the type of results that need to be calculated.

Tranguizr Opiion
{nct recommended)

Figure 2.5 Geometry of finite element- SHELL181 [28]

2.5.2 Validation step-1: Rotating uniform composite beam

In this validation step non-rotating and rotating uniform composite beams are considered.
In Table 2.5, first three out-of-plane bending natural frequencies determined for non-rotating
clamped-free uniform composite beam using Rayleigh-Ritz (R-R) method, are compared with the
exact solution, ANSYS results and existing results obtained using Conventional Finite Element
Method (CFEM). Results obtained using different number of terms in Rayleigh-Ritz approximate
shape function are also listed in Table 2.5. It shows that as the number of terms increases the results
become more accurate. In Table 2.6, first three out-of-plane bending natural frequencies for
rotating clamped-free uniform composite beam have been compared with ANSYS results. Beam

length, width, thickness of the lamina and hub radius are given in Tables 2.3 and 2.4. Mechanical
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properties of composite material are given in Table 2.1. Different stacking sequences are
considered to compare the results. The mode shapes associated with the frequencies of [0/90]os
and [0/45-45]es non-rotating laminated beams are illustrated in Figures 2.6 and 2.7 respectively,
and these are deduced from ANSY'S for the first three out-of-plane bending natural frequencies.

Table 2.5 Natural frequencies (Hz) of non-rotating uniform cantilever composite beam

Stacking R-R R-R RR | CPEM | Exact | ANSYS
Sequence Mode | solution solution | solution [13] solution
(3terms) | (7 terms) | (8 terms)

1%t 77.49 77.47 77.47 77.51 77.99 77.34

[0/90]9s 2nd 489.9 485.5 485.5 485.6 485.4 481.2
31 2603.1 1359.8 1359.4 | 1360.1 | 1359.2 1333.4

1% 27.09 27.08 27.08 27.06 27.08 27.02

[90]18s 2nd 171.2 169.7 169.6 169.8 169.7 169.5

31 909.9 475.3 474.8 4754 | 475.2 476.2

1% 102.3 102.3 102.3 102.3 102.3 101.8

[0]1ss 2 646.7 640.9 640.6 641.1 | 6409 629.0
3 3436.5 1795.1 1793.23 | 1795.4 1794.8 1725.5

1% 77.56 77.57 77.69 77.67 77.58 69.78

[0/45/-45]es | 2" 490.5 486.1 486.7 486.2 487.4 434.9
31 2606.6 1361.6 1362.3 | 1361.9 | 13614 1211.0

In Table 2.5, the formula for exact solution given by [2]
w; =5 Jl;:H (2.43)

has been used where, p;—1,3 = 3.516,22.034,61.701 for first three natural frequencies, L is the
length of the beam, H is the thickness of the laminate, p is the mass density of the composite
material and Dy, is the first coefficient in bending stiffness matrix of composite laminate. The
comparison has been made with the existing results [13], that used Conventional Finite Element
Method considering the cylindrical bending theory. Total of 10 elements were used to get the
convergence in the result with exact solution, considering two degrees of freedom per node and

four degrees of freedom per element.
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2" Mode
481.2 Hz

15t Mode
77.34 Hz

3 Mode
1333.4 Hz

Figure 2.6 The first three out-of-plane bending vibration modes of non-rotating uniform
cantilever composite beam with [0/90]es stacking sequence

2" Mode

1% Mode 434.9 Hz

69.78 Hz

39 Mode
1211.0 Hz

Figure 2.7 The first three out-of-plane bending vibration modes of non-rotating uniform

cantilever composite beam with [0/45/-45]es stacking sequence
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Table 2.6 Natural frequencies (Hz) of rotating uniform cantilever composite beam

Q =50 rad/s Q =100 rad/s Q =200 rad/s
Stacking R-R R-R R-R
Sequence Mode | Solution | ANSYS | Solution | ANSYS | Solution | ANSYS
(8 terms) (8 terms) (8 terms)

1%t 78.02 77.89 79.65 79.52 85.83 85.70

[0/90]os 2nd 486.0 481.7 487.4 483.13 493.1 488.9
3rd 1360.3 1334.0 1361.7 1335.4 1367.3 1341.2

1%t 28.61 28.55 32.77 32.72 45.62 45,58

[90]18s 2nd 171.1 170.9 175.1 174.9 190.4 190.2

3rd 476.7 4775 480.7 481.5 496.5 497.3

1%t 102.7 102.2 103.9 103.5 108.8 108.3

[0]1ss 2nd 641.3 629.4 642.4 630.5 646.7 634.9
3rd 1795.5 1725.8 1796.5 1726.9 1800.8 1731.4

1%t 78.12 70.39 79.75 72.19 85.92 78.99

[0/45/-45]ss 2nd 486.6 435.5 488.1 437.1 493.7 443.4
3rd 1362.1 1211.5 1363.5 1213.1 1369.2 1219.5

As expected, results for both non-rotating and rotating uniform composite beams are showing

very good agreement between the results obtained from R-R method, ANSY'S and other sources.

2.5.3 Validation step-2: Thickness-tapered rotating cantilever composite beam

In this validation step, thickness-tapering in beam profile is considered. In Table 2.7, first
three out-of-plane bending natural frequencies obtained using Rayleigh-Ritz method for a non-
rotating thickness-tapered uniform-width composite beam are validated with ANSYS and existing
results obtained using CFEM. The comparison has been performed for a clamped-free beam which
has 20 plies at the fixed side and 4 plies have been dropped to obtain Taper Configuration-A (See
Appendix A). The beam length, beam width and thickness of lamina are given in Table 2.4.
Mechanical properties of composite and resin material are given in Table 2.1 and 2.2, respectively.
Number of terms used in R-R method, in this case, is 8. Figure 2.8 shows the first three mode

shapes associated with the natural frequencies given in Table 2.7.
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Table 2.7 Natural frequencies (Hz) of non-rotating thickness-tapered cantilever composite beam

Stacking No. of Mode R-R | ANSYS | CFEM
Sequence | ply drop-off, S Solution [13]

1% 45.631 | 45.510 | 39.950

[0/90]ss 4 2nd 263.74 | 261.82 | 229.02

3rd 720.93 | 715.40 | 624.68

2" Mode

1% Mode 261.82 Hz

45.51 Hz

39 Mode
715.40 Hz

Figure 2.8 The first three out-of-plane bending vibration modes of non-rotating thickness-

tapered cantilever composite beam with [0/90]ss stacking sequence

In Table 2.7, results from the R-R method are showing excellent agreement with ANSYS
results. Table 2.8 provides further comparison between ANSYS and R-R solutions for first three
natural frequencies of non-rotating clamped-free beam with taper Configuration-A. Three different
numbers of ply drop-off are considered, validating the results for two different stacking sequences.

In this case, the number of terms in approximate shape function is 8.
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Table 2.8 Natural frequencies (Hz) of non-rotating thickness-tapered cantilever composite beam

for Configuration-A

Stackin R-R ANSYS | Stackin R-R ANSYS
Sequencg(le S | Mode solution Sequenc% S | Mode solution

1% 78.15 77.88 18 27.30 27.22

2 | 2 479.2 473.8 2 | 2 167.4 166.9

3 1333.2 1304.5 3rd 465.6 465.6

1% 79.64 79.03 18 27.80 27.81

[0/90]ss | 6 | 2d 466.2 458.4 [90]es | 6 | 2 162.5 161.9

3 1279.3 1245.3 3rd 4458 445.0

18 81.24 80.26 18 28.36 28.77

10| 2 452.1 444.6 10| 2 157.4 157.7

3 1221.8 1189.9 3rd 424.9 425.8

Following Tables 2.9 and 2.10 compare the results for thickness-tapered beam for rotating
condition considering three different numbers of ply drop-off. Table 2.9 shows the results for
Configuration-A and Table 2.10 is for Configurations B, C and D. Stacking sequence for both
tables are [90]1ss. Hub radius is taken as 0.025 m. Results are compared for three different rotational
velocities. All four configurations show that first natural frequency increases when the number of
ply drop-off increases and second and third natural frequencies decrease as the number of ply drop-
off increases except for Configuration-D. Figures 2.9 and 2.10 show the mode shapes of first three
out-of-plane bending natural frequencies for Configurations B and D, respectively, when

thickness-tapered beam rotating at 200 rad/s with 10 drop-off plies.
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Table 2.9 Natural frequencies (Hz) of rotating thickness-tapered cantilever composite beam for

Configuration-A

No. of R-R | ANSYS R-R | ANSYS| R-R | ANSYS
ply drop- | Mode | solution solution solution
off, S Q =50 Rad/s Q =100 Rad/s Q =200 Rad/s
1% 28.83 28.77 32.98 32.93 45.82 | 45.78
2 2n 168.7 | 168.55 | 172.8 172.6 188.1 187.9

31 466.9 467.86 | 4710 | 47191 | 486.8 487.7
1% 29.32 29.30 33.45 33.40 46.27 46.20
6 2nd 163.9 163.7 168.0 167.8 183.5 183.3
31 447.8 448.0 451.3 | 452.07 | 467.2 468.0
1% 29.87 29.80 33.98 33.92 46.78 46.70
10 2nd 158.8 158.6 162.9 162.7 178.6 178.4
31 426.3 427.0 430.4 431.1 446.5 447.2

Table 2.10 Natural frequencies (Hz) of thickness-tapered rotating composite beam for
Configurations B, C and D

R-R ANSYS R-R ANSYS R-R ANSYS
Configuration | S | Mode | solution solution solution

Q=0rad/s Q=50 rad/s Q =200 rad/s

1% 27.61 27.69 29.14 29.21 46.14 46.19

6 2nd 163.6 161.1 165.0 162.5 184.9 182.0

3" 450.5 442.8 451.9 4442 472.2 464.2

B 1% 28.09 28.18 29.61 29.70 46.59 46.67

10 2nd 159.8 154.8 161.2 156.2 1815 176.0

3 434.4 418.4 435.8 419.7 456.6 439.9

1% 27.61 27.69 29.14 29.22 46.14 46.20

6 2nd 163.5 161.1 165.0 162.5 184.8 182.1

3 450.4 442.9 451.8 4445 472.2 464.2

C 1% 28.07 28.21 29.60 29.73 46.58 46.69

10 2nd 159.7 154.9 161.1 156.3 181.4 176.1

3" 434.1 418.6 435.6 420.0 456.3 440.1

1% 29.57 27.66 31.0 29.19 47.36 46.18

6 2nd 175.5 161.0 176.8 162.4 1955 182.0

31 483.5 442.7 484.8 444.0 503.9 464.0

D 1% 31.25 28.11 32.62 29.63 48.56 46.62

10 2nd 179.7 154.6 181.0 156.0 199.28 175.7

31 490.2 417.7 491.4 419.1 510.0 439.3
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2" Mode

st
1* Mode 176.0 Hz

46.67 Hz

3 Mode
439.9 Hz

Figure 2.9 The first three out-of-plane bending vibration modes of rotating (200 rad/s) thickness-

tapered cantilever composite beam ([90]1ss) with Configuration-B

2" Mode
175.7 Hz

15t Mode
46.62 Hz

39 Mode
439.3 Hz

Figure 2.10 The first three out-of-plane bending vibration modes of rotating (200 rad/s)

thickness-tapered cantilever composite beam ([90]1ss) with Configuration-D
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2.5.4 Validation step-3: Doubly-tapered rotating cantilever composite beam

In the last validation step, width-tapering is included in beam geometry along with the
thickness-tapering. Results for beam with 18 ply drop-off have been compared with ANSY'S for
different values of width-ratio and for different thickness-taper configurations. The length of the
clamped-free beam is 25 cm and width at fixed side is 2 cm. Stacking sequence is [90]uss.
Rotational velocity is 200 rad/s. In Tables 2.11 and 2.12, ‘0 rad/s’ as rotational velocity is
describing the non-rotating condition. Unit width-ratio (r;, = 1) and ‘0’ drop-off ply are describing
the uniform-width and uniform-thickness in the beam, respectively. Table 2.11 compares the
results for taper Configuration-A and Table 2.12 compares the results for the other three
configurations. One fact to be noted is that up to 2 ply drop-off, all configurations are same as
Configuration-A and number of ply drop-off in Configuration-D cannot be more than half of total
plies. Both Tables 2.11 and 2.12 show that first three natural frequencies increase as the width-
ratio decreases. For any specific width-ratio, second and third natural frequencies decrease as the
thickness-tapering increases while the first natural frequency increases with thickness-tapering.
For both tables, number of terms in approximate shape function is 8.

Table 2.11 Natural frequencies (Hz) of doubly-tapered rotating cantilever composite beam for

Configuration-A

No. of ply drop-off, S 0 18
Configura Mod R-R | ANSYS | R-R | ANSYS | R-R | ANSYS | R-R | ANSYS
X ode
-tion " Q=0rad/s Q =200 rad/s Q=0rad/s Q =200 rad/s

1% | 46.75 | 46.62 | 60.09 | 59.98 | 49.99 | 49.82 | 63.41 | 63.27

01| 2 12102 | 209.6 | 222.7 | 222.1 | 180.9 | 180.3 | 194.8 | 194.2

3¢ [ 5247 | 523.3 | 536.8 | 5355 | 420.2 | 419.2 | 433.8 | 432.9

1% ] 33.23 | 33.15 | 49.85 | 49.80 | 35.94 | 35.83 | 52.53 | 52.44

A 05| 2™ |181.1| 180.8 | 198.4 | 198.1 | 155.3 | 154.9 | 173.9 | 173.6

3" | 486.8 | 486.4 | 504.1 | 503.7 | 388.1 | 387.9 | 406.9 | 406.7

1%t | 27.08 | 27.02 | 45.62 | 45.58 | 29.66 | 29.56 | 48.00 | 47.92

1.0 2" ]169.7 | 169.5 | 190.4 | 190.2 | 1455 | 1453 | 167.3 | 167.1

39 | 4753 | 476.2 | 496.4 | 497.3 | 377.8 | 378.5 | 400.0 | 400.7
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Table 2.12 Natural frequencies (Hz) of doubly-tapered rotating cantilever composite beam for
Configurations B, C and D

Number of ply drop-off, S 18
Width R-R R-R
Configuration | ratio, | Mode | Solution ANSYS Solution ANSYS
Tp Q=0rad/s Q =200 rad/s
18 49.57 49.25 63.04 62.85
0.1 2nd 187.0 175.6 201.2 189.6
3rd 440.9 406.4 455.0 420.1
18 35.13 35.65 51.90 52.36
B 0.5 2nd 160.5 150.9 180.1 169.5
3rd 408.2 375.7 427.9 394.3
18 28.86 29.44 47.40 47.88
1.0 2nd 150.5 141.4 1735 163.1
3rd 397.5 366.4 421.1 388.4
18 49.50 49.44 63.00 63.01
0.1 2nd 186.1 176.0 200.4 190.0
3rd 438.4 407.3 452.6 421.0
18 35.07 35.78 51.88 52.46
C 0.5 2nd 159.8 151.3 179.4 169.9
3rd 405.9 376.5 425.7 395.2
18 28.82 29.55 47.39 48.00
1.0 2nd 149.8 141.8 172.9 163.4
3rd 395.4 367.3 419.0 389.2
18 49.18 48.72 62.53 62.41
0.1 2nd 194.8 174.2 208.4 188.3
3rd 468.1 403.7 481.5 4175
1% 34.88 35.29 51.52 52.09
D 0.5 2nd 167.4 149.8 186.2 168.5
3rd 433.7 373.2 4525 391.9
1% 28.59 29.11 47.05 47.65
1.0 2nd 156.9 140.4 179.0 162.2
3rd 422.8 363.8 445 4 386.0

Figures 2.11 and 2.12 show the mode shapes for taper Configuration-A with width-ratio
0.5 and for taper Configuration-C with width-ratio 0.1, respectively. Both beams are rotating at
200 rad/s with 18 drop-off ply. From Tables 2.11 and 2.12, it can be stated that results from R-R
method have very good agreement with ANSY'S results, which offers further analysis to study the
influence of different parameters (related to beam’s geometry and composite configuration) on
natural frequency.
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2" Mode

1 Mode 190.0 Hz

63.01 Hz

3 Mode
421.0 Hz

Figure 2.11 The first three out-of-plane bending vibration modes of doubly-tapered (S =
18,1, = 0.1) rotating (200 rad/s) cantilever composite beam ([90]1ss) with Configuration-C

15t Mode
52.44 Hz

2" Mode
173.6 Hz

39 Mode
406.7 Hz

Figure 2.12 The first three out-of-plane bending vibration modes of doubly-tapered (S =
18,1, = 0.5) rotating (200 rad/s) cantilever composite beam ([90]1ss) with Configuration-A
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2.6 Mode shapes determination

Having the eigenvectors obtained from equation (2.38), one can have the mode shapes of
doubly-tapered cantilever laminated composite beams. From Figures 2.13 to 2.15, first three mode
shapes of non-rotating and rotating (200 rad/s) doubly-tapered (S = 18,1, = 0.1) cantilever
laminated composite beams (Configuration-A) are compared with non-rotating and rotating (200
rad/s) uniform cantilever composite beams. The length of the clamped-free beam is 25 cm, width
at fixed side is 2 cm and hub radius is .025 m. Stacking sequence is [90]1ss. It shows, that except
for the first mode of the uniform beam, mode shapes are same for non-rotating and rotating
conditions. Also, one can observe that for the first and second modes, maximum displacement of
the uniform beam is higher than that of the doubly-tapered beam and for the third mode doubly-
tapered beam has higher maximum displacement than that of the uniform beam. In Figures 2.13 to

2.15, bold solid straight lines represent the neutral position of the beam.
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— — — Rotating uniform
04| Non-rotating doubly-tapered

————— Rotating doubly-tapered

S
o
e —

pre)
c
o
€
o
o
®
o
0
T O ————r
o
(2]
1S9
o
>
[2)
c
©
S
-

Modal

0.2+ ——— -

0.4 .

1 | | | 1 | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

Figure 2.13 First mode shape of uniform and doubly-tapered cantilever composite beams for

non-rotating and rotating conditions
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Figure 2.14 Second mode shape of uniform and doubly-tapered cantilever composite beams for

non-rotating and rotating conditions
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Figure 2.15 Third mode shape of uniform and doubly-tapered cantilever composite beams for

non-rotating and rotating conditions
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Figure 2.16 illustrates the mode shapes for rotating (200 rad/s) doubly-tapered cantilever
laminated composite beam considering different taper configurations. It shows that for first three
modes, maximum displacement for Configuration-D is highest and maximum displacement for
Configuration-C is the lowest among all the configurations considered. In Figure 2.16, bold solid

straight line represents the neutral position of the beam.
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Figure 2.16 First three mode shapes of rotating doubly-tapered cantilever composite beams for

different taper configurations
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2.7  Free vibration analysis

Natural frequencies of free vibration for doubly-tapered cantilever rotating laminated
composite beam are influenced by different parameters associated with the geometry of the beam
and the rotational velocity. Different graphs can be plotted to understand the behavior of natural
frequency with respect to different parameters. Mechanical properties of materials used to do the

analysis are given in Tables 2.1 and 2.2.

2.7.1 Effect of rotational velocity

To understand the influence of rotational velocity on natural frequencies, five different
types of beams are considered where one has uniform-thickness and uniform-width, and four
others are doubly-tapered (S = 18,1,= 0.1) beams with four different configurations. All the
beams have same length. One end of 25 cm long beam is mounted on a hub of radius 0.025 m and
the other end is free. The beam width is 2 cm at fixed side. Stacking sequence of the laminated
beam is [90]uss at fixed side.

Figures 2.17 to 2.19 show the variation of first three natural frequencies of 5 selected beams
for various rotational velocities. It can be stated from the Figures 2.17 to 2.19 that natural
frequencies for all the selected beams increase as the rotational velocity increases. Figure 2.17 for
first natural frequency shows that doubly-tapered beams with any configuration have much higher
natural frequency than uniform-thickness and uniform-width composite beam. Also, it can be
stated that taper Configuration-A has the highest natural frequency of the first mode in both non-
rotating and rotating conditions. Figures 2.18 and 2.19 for second and third natural frequencies,
respectively, show uniform beam has the highest natural frequency at high rotational velocity
wherein for third natural frequency uniform beam has highest natural frequency in both rotating

and non-rotating conditions.
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Figure 2.17 Effect of rotational velocity on first natural frequency
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Figure 2.18 Effect of rotational velocity on second natural frequency
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Effect of rotational velocity

T T T T T T

580 F ——&— Uniform |
——&— Doubly-tapered (Configuration-A)

560 - —%— Doubly-tapered (Configuration-B) |
—*—— Doubly-tapered (Configuration-C)

540 - —=2— Doubly-tapered (Configuration-D) pA

3" Natural Frequency (Hz)

0 50 100 150 200 250 300 350 400 450 500
Rotational velocity (rad/s)

Figure 2.19 Effect of rotational velocity on third natural frequency

2.7.2 Effect of hub radius to beam length ratio

Figures 2.20 to 2.22 show the behavior of natural frequencies with respect to different
values of hub radius to beam length ratio (R/L). This analysis is conducted on a doubly-tapered
(S = 18,1,= 0.1) rotating beam which has same length, same stacking sequence, same width at
fixed side and same boundary condition as that of previous analysis discussed in section 2.7.1. The
variation of first three natural frequencies is shown for different hub radius. The hub is constantly
rotating at 200 rad/s. Four different taper configurations are considered for this analysis.

From Figures 2.20 to 2.22 it can be understood that natural frequencies increase with
increase of hub radius to beam length ratio. For the first natural frequency, Configuration-A is
giving the highest value while Configuration-D gives the highest value for the second and third

natural frequencies.
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Figure 2.22 Effect of hub radius to beam length ratio on third natural frequency

2.7.3 Effect of ply drop-off (thickness-tapering)

Thickness-tapering in composite laminate can provide variable stiffness through the length
of the beam. Also, the thickness that is gradually decreasing towards the tip gives better design to
handle the aerodynamic load. Following Figures 2.23 to 2.25 show the variation of the first three
natural frequencies of a thickness-tapered-and-uniform-width rotating composite beam with
respect to number of ply drop-off. The relation between the number of ply drop-off and thickness
taper angle is given by equation (2.41). The beam length, stacking sequence at fixed side, beam
width at fixed side and boundary condition are taken as that of previous analysis discussed in
section 2.7.2. In this case, the width - ratio is 1 (uniform-width). Hub radius is 0.025 m, which is

rotating at 200 rad/s. The variation is plotted for 0 to 30 ply drop-off.
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From Figures 2.23 to 2.25 for first three natural frequencies, one can observe that
Configuration-D has highest natural frequency as long as the ratio between overall stiffness to
mass of plies increases. Overall stiffness of composite laminate of Configuration-D starts to
decrease after 12 ply drop-off as the resin pocket, takes place near to the outer surface of the
laminate. Number of ply drop-off in Configuration-D is limited to half of the total number of plies.
Figure 2.23 depicts that first natural frequency of Configuration-A, B and C increase with number
of ply drop-off, but Figures 2.24 and 2.25 for second and third natural frequencies, respectively,
for Configuration-A, B and C show that natural frequencies decrease as the number of ply drop-

off increases.

Effect of thickness tapering
T T

51 T | T
—&&— Configuration-A
—FB— Configuration-B

50 |- Configuration-C 7
——— Configuration-D

N
©
T
|

15! Natural Frequency (Hz)
EN A
~ oo

N
o
[
|

45 | | | | |
5 10 15 20 25 30

No. of ply of drop-off (S)

Figure 2.23 Effect of thickness tapering on first natural frequency
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2.7.4 Effect of double-tapering

Double-tapering affects the natural frequency of rotating beam. Especially width-tapering
can remove more material from the beam compared to thickness-tapering. This has an effect on
the overall stiffness and mass of the beam. Following Figures 2.26 to 2.28 show the effect on
natural frequencies due to double-tapering in a rotating composite beam. This beam has same
length, stacking sequence, hub radius and rotational velocity as that of previous analysis for
thickness tapering in section 2.7.3. The width of the beam is 2 cm on the fixed side. Figures 2.26
to 2.28 illustrate the variation of natural frequencies for double tapering in which, double-tapering

is described as

Double taper ratio = rs—b (2.44)

where, 1y, is width-ratio and S is number of ply drop-off. Number of ply drop-off and corresponding

width-ratio used in Figures 2.26 to 2.28 are listed below:

Table 2.13 Number of ply drop-off and corresponding width-ratio to obtain double-taper ratio

Number of ply drop- Width- Double-taper
off, S ratio, ratio
2 0.9 2.222
4 0.8 5.000
6 0.7 8.571
8 0.6 13.33
10 0.5 20.00
12 0.4 30.00
14 0.3 46.67
16 0.2 80.00
18 0.1 180.0
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Figure 2.26 shows that first natural frequency for all configurations increase as the double-
tapering increases. Among all the taper configurations, Configuration-D has the highest value for
first three natural frequencies. Figures 2.27 and 2.28 for second and third natural frequencies,
respectively, indicate that natural frequencies for Configuration-D start to decrease after certain
double-taper ratio, which is due to dominating effect of thickness-tapering on natural frequencies
(see Figures 2.24 and 2.25). Also, from Figures 2.27 and 2.28, one can see that second and third
natural frequencies for Configuration-A, B and C start to increase after certain double-taper ratio,
which is due to dominating effect of width-tapering on natural frequencies. One can see from
Tables 2.11 and 2.12 that width-tapering significantly increases the first three natural frequencies

of out-of-plane bending vibration.
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2.8  Critical speed determination

Critical speed is a certain rotating speed that excites the natural frequency of a rotating
structure, which can be a rotating blade, gear or shaft. At the critical speed, angular velocity of a
rotating structure approaches the natural frequency and structure starts to resonate which
exceedingly increases the vibration.

Campbell diagram is one of the methods to obtain the critical speed of a rotating object.
Campbell diagram plot the natural frequency of the object for various rotating speeds, where the
intersection of the natural frequency curve and forcing frequency line, is the critical speed. Forcing
frequency is the frequency of a rotating part which is equal to the number of vanes/blades of the
rotating part times the RPM. Besides the Campbell diagram, there is another method to determine
the critical speed, which is called direct method. In the direct method, the critical speeds are taken
when one of the natural frequencies at a specific speed is equal to the forcing frequency. The
forcing frequency can be written in terms of rotating speed as [44]:

wr = nid (2.45)
where, n is number of rotating blade. For example, in a four-bladed helicopter rotor n = 4.
To determine the critical speed using direct method, equation (2.36) can be written as:
[M]{g} + ([K] + Q*[K*]){q} = {0} (2.46)
where, Q?[K*¢] is stiffness matrix due to centrifugal action. The solution of the equation (2.46)
can be assumed as:
{q} = (QoJeis* (2.47)
Using equations (2.45), (2.46) and (2.47), one can get

([K] + Q*([K*€]) — n2Q*[M]){Qo}e™* = {0} (2.48)

48



The above equation has a nontrivial solution if |[K] + Q%([K¢] — n?[M]| becomes singular. As a
result, the equation can be simplified as the generalized eigenvalue problem and takes the form as:
Q*(n?*[M] = [K*D{Qo} = [K]{Qo} (2.49)

The eigenvalues Q are in complex form; the real part of (0 gives the critical speed.

2.8.1 Numerical results and Campbell diagram

To study the critical speed of doubly-tapered rotating cantilever composite beam, four
different types of beams are taken as follows: 1) Uniform-thickness and Uniform-width (U-U), 2)
Uniform-thickness and Width-taper (U-W), 3) Thickness-and-Width taper (doubly-tapered) (T-
W) and 4) Thickness-taper and Uniform-width (T-U). All four beams are 25 cm in length, attached
to a hub of radius 0.025 m and width is 2 cm at fixed side. For width-tapered beams (U-W and T-
W), width-ratio is 0.1. For thickness-tapered beams (T-W and T-U) ply drop-off number is 18. All
the beams have [90]ss stacking sequence. The Campbell diagram is drawn for first natural
frequency to obtain the first critical speed.

In Figure 2.29 one can observe that thickness-and-width taper (doubly-tapered) beam has
highest critical speed that means operating speed for doubly-tapered beam is higher than other
types of beams. From Figure 2.29, it can also be stated that doubly-tapered beam with
Configuration-A has the highest operating speed. Critical speeds obtained using the direct method
and Campbell diagram are listed in Table 2.14.

In Figure 2.30, only beam with Configuration-A (T-W) is considered to understand the
effect of stacking sequences in critical speed. It can be understood from the Campbell diagram and
results from direct method (listed in Table 2.15) that stacking sequence with unidirectional ply

([0]1ss) has the highest critical speed and stacking sequence ([90]1ss) has the lowest critical speed.

49



Campbell Diagram
| |

N
o

f
:

P

'

15! Natural Frequency (Hz)
N
o

—— (U-U)
—+&— Configuration-A(T-W)
—— Configuration-A(T-U)
S v
Configuration-B
oS —>— Configuration-B
Configuration-C
—<}— Configuration-C
—¥— Configuration-D(T-W)
—+— Configuration-D(T-U)

T-W)
T-U)
T-W)
T-U)

A\

_ = XA~

Forcing Freq. Line (n=4)
1

10 20 30 40 50 60 70 80
Rotational Velocity (rad/s)

Figure 2.29 Critical speed determination using Campbell diagram

Table 2.14 Critical speeds (rad/s) obtained using different methods

Type of beam Direct method | Campbell diagram

u-u 44.45 44.46

U-Ww 76.88 76.90
Configuration-A (T-W) 82.90 82.91
Configuration-A (T-U) 49.16 49.19
Configuration-B (T-W) 81.67 81.69
Configuration-B (T-U) 47.50 47.53
Configuration-C (T-W) 81.55 81.56
Configuration-C (T-U) 47.44 47.46
Configuration-D (T-W) 80.98 80.98
Configuration-D (T-U) 47.02 47.04
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Figure 2.30 Campbell diagram for doubly-tapered beam with different stacking sequences

Table 2.15 Critical speeds (rad/s) for different stacking sequences

Stacking sequence Direct method | Campbell diagram
[0/90]es 235.68 235.70
[90]1ss 82.900 82.910
[O]ass 305.90 305.90
[0/45/-45]6s 232.46 232.50
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2.9  Dynamic instability analysis

A rotating structure can experience dynamic instability due to periodic rotational velocity.
When a cantilever beam swings periodically, that is oscillating about the axis of rotation, the
dynamic bending stiffness varies harmonically that causes transverse vibrations with gradually
increasing amplitudes that are often called dynamic instability or parametric instability. This large
amplitude vibration could damage the rotating structure. A cantilever beam with time-dependent
rotary oscillation can be regarded as a parametric excitation system [31].

The periodic rotational velocity ((t)) can be employed in equation of motion instead of
constant rotational velocity Q.In equation (2.36), square of constant rotational velocity is
multiplied with all the coefficients of stiffness matrix [K¢]that is due to centrifugal action.
Introducing periodic rotational velocity in equation (2.36) leads to:

[M1{G} + (K] + Q@2 [KDiq} = {0} (2.50)
where, Q2(t)[K*¢] is time dependent stiffness matrix due to centrifugal action.

If periodic rotational velocity is considered for the system, dynamic instability can be
observed. The periodic rotational velocity can be written in terms of static and dynamic rotational
terms and parametric resonance frequency.

Q(t) = Qo + Qqsinbyt (2.51)

Here, Q, is mean or static value of periodic rotational velocity, Q, is amplitude of periodic

rotational velocity, 6, is parametric resonance frequency and ¢ is time. The amplitude of periodic

rotational velocity (€;) can be defined by a measure of the mean value of rotational velocity (Q,)
as:

Q= B Qg (2.52)

where, B is amplitude factor. Therefore, periodic rotational velocity can be expressed as:
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Q(t) = Qo + B Qosinb,t (2.53)
Substituting Q(t) in equation (2.50) one can get:

[M1{G} + ([K] + <QOZ +20,°Bsind,t + “"2’32 (1- COSZHpt)> [K*D{q} =0 (2.54)

This is a Mathieu type equation that can describe the instability behavior of a rotating beam with
a periodic rotational load. Dynamic instability occurs only within certain regions on the resonance
frequency-driving amplitude plane. The boundaries of the regions of instability on this plane

represent periodic solutions of the equations of motion. Dynamic instability region separated from

stable region by periodic solutions with period T = Z—” and 2T = ;—". The solutions with period 2T
4 4

are of greater practical importance as the widths of these unstable regions are usually larger than
those associated with the solutions having period of T [32].
To find the periodic solution with period 2T, Bolotin’s first approximation [31] can be

considered. The periodic solutions with period 2T can be sought in the form:

rOpt

o . (1Ot

(@} = Zi21as. [ }sin (B2) + {byJeos (Z2)] (255)
Taking one-term solution and differentiating two times with respect to time t,

.. 0p° _(Bpt)  6,° O,t

(G} = [- 2 {aysin () = 2= {by}cos ()] (2.56)
After substituting {q} and {G} in equation (2.55) and simplifying through trigonometric formula

. . . - . (Opt Opt\ .
(see Appendix B) and finally comparing the coefficients of sin (T) and cos (T) in the
governing equation, two equations can be found:
(Opt)

For sin (T)

- 9%2 [M1{a,} + [K1{ai} + [K€1Q0*{as} + [K*C100° B{b1} + “"Tﬁz [K*]{a;} =0 (2.57)
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0,t
For cos (%):

~ 2 (M) + [KIBY + [K 1062, + K107 Bla) + L2 (k)b =0 (258)

Equations (2.58) and (2.59) can be written in the matrix form as

~ % (M) + [K] + [K°C) 0% + 22 (k€ [K*€10,28 @] - g
[K*1026 %5 (] 4 [K] + K102 + 2B ey HPu)
(2.59)
For non-trivial solution determinant of the matrix coefficients must be zero.
6p” «C10 2 4 20°B% [poxC «C10 2
———[M] + [K]+ [K**]Q" + —=—[K""] [K**1Q0°B
det 4 2 0 2 202 =0
[K*€100%B =2 (M) + [K] + [K*€100" + 22,5 (K]
(2.60)
After expanding the determinant and solving for 6,2, two equations can be found as:
0,> = (4[KC1Q0% + 4[K*€1Q0°B + 2[K*€1Qy° B2 + 4[K])/[M] (2.61)
and 6,° = (4[K*C1Q0% — 4[K*1Q0°B + 2[K*€]Q0° B2 + 4[K])/[M] (2.62)

Equations (2.61) and (2.62) can be solved as eigenvalue problems where each eigenvalue sz is
the square of parametric resonance frequency which gives the boundary between stable and
unstable regions in resonance frequency-driving amplitude plane. Equations (2.61) and (2.62) give

upper and lower boundaries of the instability region, respectively.

2.9.1 Validation
To investigate the accuracy of above formulation a graph has been plotted using MATLAB
to find the instability region where the upper and lower boundaries are determined from the

eigenvalues of equations (2.61) and (2.62), respectively. In this graph vertical axis represents the
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Y. o . . -
parametric ratio (2—2) which is the resonance frequency of the parametric exciting system divided

by doubled fundamental frequency of free vibration. Subscript ‘i’ is mode number. The horizontal
axis represents the amplitude of the periodic rotational velocity.

Figures 2.31, 2.33 and 2.34 show the instability regions for first three out-of-plane bending
vibration modes for a doubly-tapered rotating cantilever composite beam with different taper
configurations. The mean value of angular velocity is 50 rad/s. The beam is 25 cm long and has 2
cm width at fixed side and the width-ratio is 0.1. The hub radius is taken as 0.025 m. The ply
thickness is 0.125 mm and stacking sequence is [90]1ss with 18 ply drop-off. Mechanical properties
chosen for composite and resin materials are given in Tables 2.1 and 2.2, respectively.

From Figures 2.31, 2.33 and 2.34, one can see that area inside the upper and lower

boundary lines are unstable regions where the width of instability region increases with amplitude
. . (7] .. .
factor. If any parametric point (3, 2—::_) of the structural system is in these unstable regions, the
l

system becomes dynamically unstable. In order to verify such a statement, the modal response
q;(t) of the beam can be determined for any parametric point using Mathieu-Hill equation (2.54).
Modal response q;(t) should keep increasing with time when the beam is unstable. The Mathieu-

Hill equation given in (2.54) can be converted to the first order matrix differential form as:

=[5 (2.69)

Qo?
2

where, [K*] = [K] + <QOZ + ZQOZ,BSiant + i (1 - C0529pt)> [K*¢], and [I] is mXm

{9}

identity matrix. Setting Y :[
Y J {q}

in equation (2.63), yields:

Y = f(Y,t) (2.64)
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First order matrix differential equation (2.64) can be solved using fourth-order Runge-Kutta
method [33, 45]. The solution gives the time response g; for 1 to m modes.

In Figure 2.32, modal responses of three different points (P1, P2 and P3 shown in Figure

rad

2.31) are given for first vibrational mode, where points P1(8, = 653.96T,ﬁ =0.4),P3 (0, =

rad rad

634.73 T’B = 0.6) are located in the stable region and P2(68,, = 644.35 T,ﬁ = 0.5) is located

in unstable region for the doubly-tapered beam with Configuration-A. The modal response of
points P1 and P2 are confined in a scope of about 0.02 m, while that of point P2 increases rapidly
and exceeds 10 m in the same duration. Hence, the structural system corresponding to points P1
and P3 is dynamically stable, but that corresponding to point P2 is dynamically unstable. Also, it
can be understood from Figures 2.31, 2.33 and 2.34, that beam with Configuration-D has smallest
width of instability region among all the tapered configurations considered and Configuration-A

has largest width of instability region.
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Figure 2.31 Instability region for first out-of-plane bending mode of doubly-tapered beam
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Figure 2.32 Modal response g, (t) for the parametric points P1, P2 and P3
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Figure 2.33 Instability region for second out-of-plane bending mode of doubly-tapered beam
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Figure 2.34 Instability region for third out-of-plane bending mode of doubly-tapered beam
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2.10 Instability analysis considering different system parameters

In addition, to the dynamic and static parameters of rotation, the stability of a doubly-
tapered composite cantilever beam is also affected by different geometric parameters such as
length, hub radius, thickness-taper angle and width-ratio. The stacking sequence also has an effect
on instability region. Following graphs will show the effect on the instability region with respect
to different parameters. The analysis is conducted by considering taper Configuration-A and
Configuration-D. Also, the analysis is conducted for first three modes which have greater practical
importance because of their corresponding three lowest natural frequencies and parametric
resonance frequencies. Mechanical properties of materials used to do the analysis are given in

Tables 2.1 and 2.2.

2.10.1 Effect of mean rotational velocity

The increase of mean rotational velocity in time-varying rotational load increase the
resonance frequency in a doubly-tapered rotating cantilever beam that affects the dynamic
instability characteristics. Figures 2.35 to 2.37 show the effect on dynamic instability due to change
in mean rotational velocity. In this case, a 25 cm long doubly-tapered (S = 18,7, = 0.1) rotating
cantilever composite beam is mounted on a hub. Hub radius is taken as 0.025 m. The beam width
is 2 cm at fixed side. The stacking sequence is [90]1ss at fixed side. The individual ply thickness is
0.125 mm.

The following three graphs for first three modes of out-of-plane bending vibration clearly
show that instability region increases as the mean rotational velocity increases. It means that the
mean rotational velocity increases rotating beam becomes more unstable. Also, following three
graphs for first three modes of out-of-plane bending vibration show that the width of instability

region for Configuration-D is smaller than the width of instability region for Configuration-A.
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Figure 2.37 Effect of mean rotational velocity on instability region of third mode

2.10.2 Effect of hub radius to beam length ratio

Although hub radius has no effect on the mass of the rotating beam, but it has an effect on
the stiffness caused by centrifugal action. Therefore final result changes due to change of hub
radius. Figures 2.38 to 2.40, illustrate the variation of instability region due to change in the ratio
of hub radius over beam length (R/L). The doubly-tapered beam (S = 18,7, = 0.1) has same

length, same stacking sequence, same width at fixed side and same boundary condition as that of

previous section 2.10.1. The mean rotational velocity in this case is 50 rad/s.

The following three graphs for first three modes of out-of-plane bending vibration show
that width of instability region increases as the ratio of hub radius to beam length increases and

the width of instability region for Configuration-D is smaller than the width of instability region

for Configuration-A.
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Figure 2.39 Effect of hub radius to beam length ratio on instability region of second mode
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Figure 2.40 Effect of hub radius to beam length ratio on instability region of third mode

2.10.3 Effect of double-tapering

To understand the effect of double tapering on dynamic instability, double-taper ratio has
been introduced again in this section. Double-taper ratio is defined in equation (2.44). Figures 2.41
to 2.43 show the variation of instability region for three different values of double-taper ratio. The
beam length, width at fixed side, stacking sequence and mean rotational velocity is taken as same
as that of previous section 2.10.2. The hub radius, in this case, is 0.025 m.

From Figures 2.41 to 2.43 it can be easily stated that increase of double-taper ratio
decreases the width of instability region for first three modes of out-of-plane bending vibration.
More clearly, increase of double-tapering decreases the risk of dynamic instability for out-of-plane
bending vibration. Also, following three graphs for first three modes of out-of-plane bending
vibration show that the width of instability region for Configuration-D is smaller than the width of

instability region for Configuration-A.
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Figure 2.43 Effect of double-tapering on instability region of third mode

2.10.4 Effect of stacking sequence

To understand the influence of stacking sequence on dynamic instability of a doubly-
tapered beam, four different stacking sequences were considered in this section. The doubly-
tapered (S = 18,1, = 0.1) rotating cantilever composite beam is considered in this section which
has same length, same width at fixed side, same hub radius and same mean rotational velocity as
that of previous section 2.10.3.

From Figures 2.44 to 2.46, it can be observed that for both Configuration-A and
Configuration-D, unidirectional ply stacking sequence ([0]1ss) has less width of instability region
whereas [90]1ss has highest width of instability region. Cross-ply laminate [0/90]es and angle-ply
laminate [-45/45/0]es Stacking sequences have the almost same width of instability regions, but

greater than that of unidirectional stacking sequence and less than that of [90]1ss stacking sequence.
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Figure 2.45 Effect of stacking sequence on instability region of second mode
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Figure 2.46 Effect of stacking sequence on instability region of third mode

2.11  Summary

In this chapter, first, free vibration analysis for out-of-plane bending has been carried out
for a doubly-tapered rotating cantilever composite beam. Rayleigh-Ritz approximate method
based on Classical Lamination Theory has been employed to formulate the free vibration problem.
The results for first three natural frequencies are validated with existing reference and FEA
software ANSYS. Upon completing the validation, effects of different parameters such as ply
drop-off, width-taper ratio, rotational velocity and stacking sequence of laminate have been
investigated. Based on the results obtained, Configuration-A (See Appendix-A) has lowest natural
frequency as this configuration has largest amount of resin pockets among the four configurations,
which results in the lowest stiffness and Configuration-D has highest natural frequency as this
configuration has lower volume of resin pockets and also they are placed farther from the center

that leads to higher contribution to the stiffness. As expected, natural frequencies increase with the
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rotational velocity. As the double-tapering increase, natural frequency also increases. After free
vibration analysis, critical speed has been determined for various types of beams. In this case,
doubly-tapered beam has the highest critical speed (operating speed) than uniform beam. Also,
beam with unidirectional ply stacking sequence has highest critical speed.

In the second part of this chapter, dynamic instability analysis for out-of-plane bending
vibration has been performed for a periodic rotational velocity. Bolotin’s method has been used to
determine the resonance frequency which represents the boundaries of the instability region in the
parametric plane. Modal response has been investigated at different locations of stable and
unstable regions to validate the formulation. Based on the results obtained, Configuration-D has
smallest width of instability region among all the tapered configurations considered and
Configuration-A has largest width of instability region. After validation, various graphs have been
plotted to study the effects of different parameters on the instability region by considering
Configuration-A and Configuration-D. It has been observed that width of instability region
increases with mean rotational velocity. Also, width of instability region increase as the hub radius
increases. Increase of double-tapering both reduce the width of instability region. Unidirectional
ply stacking sequence [0]1ss has smallest width of the instability region while stacking sequence

[90]1ss has largest width of the instability region.
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Chapter - 3
Free vibration and dynamic instability analyses of doubly-tapered rotating laminated

composite beam for in-plane bending and axial vibrations

3.1 Introduction

A beam with two cross-sectional planes of symmetry (x-y and x-z planes, Figure 2.1) may
undergo bending vibration in either on both of the two planes of symmetry. Bending with respect
to x-y plane is called out-of-plane bending (as discussed in chapter-2) and bending with respect to
x-z plane is called in-plane bending. In this chapter, free vibration and dynamic instability analyses
for in-plane bending vibration and axial (stretching) vibration of a doubly-tapered rotating
cantilever composite beam are conducted. Centrifugal loading component due to rotational
velocity affects the in-plane bending vibration and the axial vibration. In addition to the rotation,
tapering on the beam geometry brings significant change on the natural frequencies of in-plane
bending and axial vibrations. In the first part of this chapter, free vibration analyses for in-plane
bending and axial vibrations of doubly-tapered laminated composite beam are carried out using
Rayleigh-Ritz method. Then, dynamic instability analysis is conducted applying Bolotin’s method.
Commercial Finite Element Analysis tool ANSYS is used for validation purpose. NCT-301

Graphite/Epoxy prepreg has been chosen as the material to perform the numerical analysis.
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3.2  Energy formulation using Rayleigh-Ritz method

3.2.1 Strain energy

Based on the beam description given in section 2.2, following Figure 3.1 can be considered
to determine the strain field in the case when the beam is deformed in the lamination plane (x-y
plane). In Figure 3.1, M is any arbitrary point in the lamination plane of the beam and u,, v, are
axial and lateral mid-plane displacements, respectively. Using Classical Lamination Theory

(CLT), strain in x-direction can be expressed by the mid-plane strain and the curvature in the x-y

plane.

Figure 3.1 Deformation of beam in the lamination plane (x-y plane)

From Figure 3.1, strain in x-direction can be written as:

gxxk =B _ y@ (3.1)

0x dx2
Substituting &,,* in equation (2.9) and neglecting ¢,,,* and y,,*, strain energy expression leads

to:

N 1L @ hy k O0ug 62170 2
U= S0 a1 Qi - y 22 az dy dx (32)
2

ox
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From Classical Laminate Theory:

h
o1 Sy Quidz = A (%) (3.3)
where, A;1(x) is the first coefficient of stretching stiffness matrix. Using equation (3.3) and due

to cross sectional plane of symmetry in x-y plane, equation (3.2) leads to:

= 2 [y 141 (ObE) (o (v, t))z + Ay () 22 <a o2, t)) Y (3.4)

Using the Rayleigh-Ritz method, mid-plane displacements u, and v, can be assumed as:
U (x,t) = iy @i (0)q2: () 3.5)
vo(x, t) = X%y B3;(x)q3;(t) (3.6)
where, @,; and @5; are approximate shape functions for axial and in-plane bending displacements
respectively and q,;(t) and g5;(t) are corresponding generalized coordinates. Substituting

equations (3.5) and (3.6) in equation (3.4) one can get:

U= BI Zea s fy A (D) (50200 (3502100 a2 (D25(0) +

Ay () 2 (axz O3 (x )) (;’— ¢3j<x>> 43:()q3;(£)}x 3.7)

Equation (3.7) can be written as:

Z 12 =1, (QZL ij QZ}'I'QBl ij q3]) (38)

where,
U = [ A1 (D)0 5 (X0 (x)dx (3.9)
Ky = fy A () 2207, (00" (1) dx (3.10)
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3.2.2 Work done by centrifugal force
In the case of in-plane bending vibration, rotating cantilever beam deflects laterally along
with small axial displacement due to centrifugal force. By expressing small axial displacement in
terms of lateral displacement (v,), work done by this centrifugal force can be written as:
W =2 [ P(x) (o= vo (x, 1)) dx (3.11)
Here, P(x) is given by equation (2.21). After applying the Rayleigh-Ritz approximate
displacement function, equation (3.11) leads to:
W =3 S 2 [ PO o 05:(2) = 83,0 q5(O)q5;(Ddx - (3.12)
Equation (3.12) can be written as:
w=3xmn, Z;'n=1%QiK1iijIj (3.13)
where,

Kiy™ = [} P(0)®'5,(x)'5;(x)dx (3.14)

3.2.3 Kinetic Energy
Considering the velocity vector from equation (2.25) and neglecting displacement in z-

direction one can get:
V=G —ani+ G+ R +x +up))j (3.15)
Therefore, velocity components in x, y and z directions are:
u v
Vx=E—Qv,Vy=E+Q(R+x+u0)andVZ=0 (3.16)
Using Figure 3.1, one can write:

u(x, t) = u,(x,t) — yaa—xvo(x, t) (3.17)

v(x, t) = vy(x,t) (3.18)
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Using equations (3.16), (3.17) and (3.18) into equation (2.25), kinetic energy equation of a doubly-

tapered rotating composite beam can be written as:

2
_f [Pearz (% - yﬂ - Qvo) dydx + - f [rer, (av" + QR +x + uo)) dydx

b(x)/2 PL axdt b)/2 PL
(3.19)
Neglecting rotary inertia terms (y 2~ —
simplifies to:
= %LL b(x)p. {(%)2 + szoz} dx
+2 0 b0pL {BD)? + %up? + 20%up(R + ) + 20(R + 1) 22+ 02(R + x)*}dx  (3.20)

After applying the Rayleigh-Ritz approximate displacement function one can write:

anL(c) aqz,(t)

T =37 ST G [ pub ()@ () B () 2252 Z22 gy 4

LY b ()03, (0) B3 () ZO D gy 4 2% ) b () Q2056082 ()20 (D)2 (D lx +
> Iy PLb()Q?85:(x)83; ()31 (D3 (Ddx + [ pb Q2 (R + X)B2(x) g (D) dlx +
[ 2pb ()R + )05 () 2259 d) +1 [ p b (0)0? (R + x)%dx (3.21)
Equation (3.21) can be written as:

. 1, . 1 1
T=%I20 1( i M qz; + 5 Qsi M;;"qs; + EQZiKijcuCIZj +EQ3iK2ijCUQ3j + Fiqy +

Iy Qpub () (R + x)Ba; (x)d3:dx) + 3 [ pLb()Q(R + x)2dx (3.22)

where,
"= [ b ()02 (X) By (x)dx (3.23)
My = [ pub(x)®s;(x)Bs;(x)dx (3.24)
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Kij™ = [ pLb(x)Q20;(x) B, (x)dx (3.25)
Kyi = [} pub(x)Q203,(x)@s3;(x)dx (3.26)
F; = [ pub(0)Q*(R + )B4 (x)dx (3.27)
3.2.4 Equations of motion
To get the equations of motion for axial vibration and in-plane bending vibration,

Lagrange’s equation can be used. Using Lagrange’s equation for two generalized coordinates, one

can get two sets of matrix equations. For g,;(t), Lagrange’s equation can be written as:

d (8T 9T | 3 (U+w) _ .
dt(%_) T+ T = 0 i=1.m (3.28)

and for gs;(t), Lagrange’s equation can be written as:

4(IT_ 0T owsw) _ -
dt(aqsi) o+ T = 0 i=1.m (3.29)

Substituting U, W and T from equations (3.8), (3.13) and (3.22), respectively, into the equations

(3.28) and (3.29) and neglecting the load vector {F} for free vibration analysis, one can get two
sets of equations of motion in matrix form as follows:

[M“1{d.} + (IK*] = [K““D{q.} = {0} (3.30)

[M¥1{Gs} + ([K”] + [K, ] — [K2*"D{qs} = {0} (3.31)

where, [M¥], [K*], [K*] and {q,} are mass matrix, global stiffness matrix, softening matrix due

to centrifugal action and system displacement vector, respectively, for the axial vibration and [M"],

[KY], [K:"], [K2"] and {q3} are mass matrix, global stiffness matrix, stiffness matrix due to

centrifugal action, softening matrix due to centrifugal action and system displacement vector,

respectively, for the in-plane bending vibration. Equations (3.30) and (3.31) can be written in

matrix form as:
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[M*]  [O] 1[{d2}] , [LK™]—[K“] [0] {g2}] _
T e R ™S e e W | o R U RS
Shortly written as:
[M**1{q} + [K**1{q} = {0} (3.33)
uvy] — [Mu] [0] uvl — [Ku]_[Kcu] [0] ~1
wnere, 41 = [ ] 0= [0 e 4 ) ] 20 @)=
[{CIZ}
{a:3)
The solution of equation (3.33) can be assumed in the form
{q) = {Q)e Vet (3.34)

where, {@} is the mode shape (eigen) vector and w is the natural frequency. Substituting equation
(3.34) into the equation (3.33) yields:

([K*] - w?[M*]{Q} = {0} (3.35)
Equation (3.35) is an eigenvalue problem and can be solved to determine the natural frequencies
of axial vibration and in-plane bending vibration for a doubly-tapered rotating cantilever laminated
composite beam. The natural frequencies of axial vibration and natural frequencies of in-plane
bending vibration determined from equation (3.35) can be distinguished by obtaining the

corresponding mode shapes.

3.3  Boundary conditions and approximate shape functions

Rayleigh-Ritz method is the extension of Rayleigh's method that provides a means of
obtaining a more accurate value for the fundamental frequency as well as approximations for the
high frequencies and mode shapes. In this method single shape function is replaced by a series of
shape functions. The success of the method depends on the choice of the shape functions that

should satisfy the geometric boundary conditions.
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In the case of axial vibration for a beam of length L, that is fixed at one end and free at the other
end, boundary conditions are [10]:
Uo ey = 00 Uo(peyy # 0 (3.36)
The approximate shape function for axial displacement that satisfies the boundary condition, is
0(x) = ()" i=123..m (3.37)
In the case of in-plane bending vibration for a beam of length L, that is fixed at one end and free

at the other end, the boundary conditions are:

= 9% = 9%
Vox=0) = O Voryory * 0, 5 ey 0and —- o) #0 (3.38)

The approximate shape function that satisfies the boundary condition given in equation (3.38), is

3:(x) = O, i=123..m (3.39)

3.4  Validation and results

The formulation described in section 3.2 has been developed using MATLAB for the
validation of results and numerical analysis. Validation of results has been performed by
comparing the existing results available in the literature and the results obtained using the FEA
tool ANSYS. Due to absence of Coriolis term and due to the cross-sectional plane of symmetry
being in x-y plane, natural frequencies obtained from equation (3.35) are for pure in-plane bending
and pure axial vibrations. To validate the results obtained from Rayleigh-Ritz method, the first
three in-plane bending and the first two pure axial natural frequencies are taken into account. In
ANSYS, SHELL-181 element is used to discretize the beam. ANSYS Composite PrepPost (ACP)

has been used to model the different taper configurations of the composite beam.
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3.4.1 Validation step-1: Rotating uniform composite beam

In this validation step, natural frequencies of non-rotating and rotating uniform cantilever
composite beams are validated. In Table 3.1, natural frequencies for non-rotating uniform
cantilever composite beam obtained using Rayleigh-Ritz (R-R) method, ANSYS and existing
results are listed and compared. The existing results obtained from [40], used an exact formula,
which is based on Euler-Bernoulli beam theory [40]. In Table 3.1, length of the beam is 400 mm
and width is 40 mm. The total thickness of the laminate is 3.2 mm and all the layers have same
thickness. The result of R-R solution method converges for 7 terms in the approximate shape
function. Mechanical properties of the material used are given in [40].

Table 3.1 Natural frequencies (Hz) of in-plane bending and axial vibrations for non-rotating

uniform cantilever composite beam using different methods

Stacking Vibration Mode R-R Reference ANSYS
sequence type solution [40]

In-plane 1t 158.47 156.50 154.63

bending 2nd 993.10 980.80 901.77

[0/90]2s 31 2781.5 2747.0 2302.0

Axial 15t 2452.5 - 2426.0

2nd 7357.4 - 7286.6

In-plane 15t 148.03 140.20 139.67

bending 2" 927.67 879.00 842.25

[45/-45/0/90]s 31 2598.3 2462.0 2236.8

Axial 1t 2290.9 - 2176.5

2N 6872.7 - 6533.8

The mode shapes associated with the natural frequencies of the first three in-plane bending
and first two axial vibrations of [0/90]2s laminated composite beam obtained using ANSYS, are
illustrated in Figures 3.2 and 3.3, respectively. Mode shapes obtained using R-R method are given
in section 3.5.

In Table 3.2, first three in-plane bending and first two axial natural frequencies for rotating

clamped-free uniform composite beam have been compared with ANSYS results. In this case,
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beam length, width, thickness of the lamina and hub radius are taken from Tables 2.3 and 2.4.

Mechanical properties of composite material are given in Table 2.1.

2" Mode
901.77 Hz

1%t Mode
154.63 Hz

39 Mode
2302 Hz

Figure 3.2 First three in-plane bending vibration mode shapes of non-rotating uniform cantilever

composite beam obtained using ANSY'S

2" Mode

1%t Mode 7286.6 Hz

2426 Hz

Figure 3.3 First two axial vibration mode shapes of non-rotating uniform cantilever composite
beam obtained using ANSY'S
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Table 3.2 Natural frequencies (Hz) of in-plane bending and axial vibrations of rotating uniform
cantilever composite beam

] ] ) R-R R-R R-R
S?(:aﬁl((elnnc% Vl?rat(;on Mode | solution ANSYS solution ANSYS solution ANSYS
g yp Q=0rad/s Q=100 rad/s Q=200 rad’s

1% 120.35 | 120.04 | 120.72 | 120.40 | 121.81 | 121.48

Lr;r‘]’(;?;'e 2" | 75421 | 732.76 | 755.28 | 733.76 | 758.46 | 736.94
[90] 18 9 730 [ 21124 | 19806 | 2113.6 | 1981.0 | 2117.1 | 19852
Al 150 | 23282 | 23232 | 23281 | 2323.1 | 23279 | 2322.7

2" 6984.5 | 6977.0 | 6984.4 | 6976.8 | 6984.4 | 6976.3

In Tables 3.1 and 3.2, natural frequencies of in-plane bending and axial vibrations of non-
rotating and rotating cantilever uniform composite beams, respectively, show very good agreement

between R-R method, ANSYS and existing results.

3.4.2 Validation step-2: Thickness-tapered rotating cantilever composite beam

In this validation step, natural frequencies of non-rotating and rotating thickness-tapered
cantilever composite beams obtained using the R-R method are compared with ANSY'S results for
in-plane bending and axial vibrations. In Table 3.3, natural frequencies of non-rotating thickness-
tapered cantilever composite beam are listed. Four different taper configurations with two different
numbers of ply drop-off are considered to compare the results between R-R method and ANSYS.
In Table 3.3, non-rotating condition is defined by ‘0 rad/s’. The beam length, width and hub radius
are given in Table 2.4. Mechanical properties of composite and resin materials are given in Tables
2.1 and 2.2, respectively. Number of terms used in approximate shape function, in this case, is 7.
Stacking sequence for the composite laminate is [90]1ss.

In Table 3.3, results for thickness-tapered composite beam show excellent agreement
between R-R method and ANSY'S. First three in-plane bending and first two axial vibration mode
shapes of rotating (200 rad/s) thickness-tapered (S = 10, Configuration-A) cantilever composite

beam obtained using ANSYSS are illustrated in Figures 3.4 and 3.5, respectively.
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Table 3.3 Natural frequencies (Hz) of in-plane bending and axial vibrations of non-rotating and

rotating thickness-tapered cantilever composite beam for different taper configurations

Configuration | S Mode |_RR | ANSYS | R-R | ANSYS | R-R | ANSYS
Q= 0rad/s Q =100 rad/s Q =200 rad/s

2| 1 [123.69 | 123.70 | 124.09 | 124.06 |125.29 | 125.11

S | 2] 758.24 | 736.64 | 759.31 | 737.65 | 762.51 | 740.68

6 | =39]21102] 1976.2 | 21114 | 1977.3 | 2114.9 | 1980.6

< | 1% [ 2366.9 | 2365.8 | 2366.9 | 2365.7 | 2366.7 | 2365.3

A Z [ 2] 6970.2 | 6958.9 | 6970.1 | 6958.7 | 6970.1 | 6958.2
2| 1t [125.78 | 126.81 | 126.20 | 127.16 | 127.47 | 128.20

= 2" 760.77 | 739.95 | 761.80 | 740.93 | 765.05 | 743.88

10 | £]39]2109.0 | 1972.9 | 2110.2 | 19740 | 2113.7 | 1977.2

< | 1% [ 2390.8 | 2401.3 | 2390.8 | 2401.2 | 2390.6 | 2400.8

Z | 27| 6962.4 | 69456 | 6962.4 | 69455 | 6962.3 | 6944.9

2| 11[121.02 | 126.36 | 121.39 | 126.71 | 12248 | 127.75

= 2" 758.44 | 742.65 | 759.50 | 743.64 | 762.67 | 746.61

6 | =[39]21243[ 1985.1 [ 2125.4 | 1986.2 | 2128.9 | 1989.4

S | 1% [ 2332.5 | 2402.6 | 2332.5| 2402.5 |2332.2 | 2402.2

B Z [ 2] 6997.5 | 6987.6 | 6997.5 | 6987.4 | 6997.5 | 6986.9
@ | 1t [121.68 | 132.17 | 122.04 | 13251 |123.12 | 13352

= | 2" 76255 | 753.11 | 763.60 | 754.06 | 766.75 | 756.89

10 | =[39[2135.8] 1994.6 | 2136.9 | 1995.7 |2140.4 | 1998.7

S | 1% [ 2333.3 | 2474.4 | 2333.3 | 2474.3 | 2333.1 | 2474.0

Z [2]7000.0 | 7013.7 | 6999.9 | 70135 |6999.9 | 7013.0

2| 1t [120.57 | 126.36 | 120.94 | 126.70 | 122.03 | 127.75

S | 2| 755.63 | 742.65 | 756.69 | 743.64 | 759.87 | 746.61

6 | =39]2116.4 | 1985.1 | 21175 | 1986.2 | 2121.0 | 1989.4

S | 1% [ 2332.5 | 2402.6 | 2332.5| 2402.5 |2332.3 | 2402.2

c Z | 2" 6997.5 | 6987.6 | 6997.5 | 6987.4 | 6997.5 | 6986.9
@ 1% | 120.62 | 132.17 |120.98 | 13251 [122.07 | 133.52

= | 2" 755.89 | 753.11 | 756.95 | 754.06 | 760.13 | 756.89

10 | £]39]2117.1| 1994.6 | 21183 ] 1995.7 | 2121.7 | 1998.7

S | 1% [ 2333.3 | 24744 | 2333.3 | 2474.3 |2333.1 | 24740

Z | 2" 7000.0 | 7013.7 | 6999.9 | 70135 |6999.9 | 7013.0

2| 11 [121.90 | 126.36 | 122.27 | 126.70 |123.35 | 127.75

= 2" 764.00 | 742.65 | 765.00 | 743.64 | 768.15 | 746.61

6 | =[39]2139.7| 1985.1 | 2140.9 | 1986.2 | 2144.3 | 1989.4

S | 1% [2193.1 | 2402.6 | 2193.0 | 2402.5 |2192.8 | 2402.2

> Z [ 2] 6579.2| 6987.6 | 6579.2 | 6987.4 | 6579.1 | 6986.9
2| 1t [123.01 | 132.17 | 123.37 | 13251 | 124.44 | 13352

= 2" 770.86 | 753.11 | 771.90 | 754.06 | 775.02 | 756.89

10 | =[39[2159.1 | 1994.6 | 2160.2 | 1995.7 |2163.6 | 1998.7

S | 1% [ 2159.4 | 2474.4 | 2159.3 | 2474.3 | 2159.2 | 2474.0

Z [ 2] 6478.2] 7013.7 | 6478.2 | 70135 |6478.1 | 7013.0
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15t Mode
128.20 Hz

2" Mode
743.88 Hz

39 Mode
1977.2 Hz

Figure 3.4 First three in-plane bending vibration mode shapes of rotating thickness-tapered

cantilever composite beam obtained using ANSYS

2" Mode

1 Mode 6944.9 Hz

2400.8 Hz

Figure 3.5 First two axial vibration mode shapes of rotating thickness-tapered cantilever

composite beam obtained using ANSYS
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3.4.3 Validation step-3: Doubly-tapered rotating cantilever composite beam

In this validation step, rotating doubly-tapered cantilever composite beam is considered to
validate the R-R results with ANSY'S results. Different values of width-ratio are considered for
different thickness-taper configurations. The length of the cantilever beam is 25 cm and width at
the fixed side is 2 cm. Stacking sequence is [90]1ss. Rotational velocity is 200 rad/s. In Tables 3.4
and 3.5, ‘0 rad/s’ as rotational velocity is describing the non-rotating condition. In Table 3.4, unit
width-ratio (r, = 1) and ‘0’ ply drop-off are describing the uniform-width and uniform-thickness
in the composite beam, respectively. Table 3.4 validates the results for taper Configuration-A and
Table 3.5 validates the results for Configurations B, C and D. For both tables, number of terms in
approximate shape function is 8. Figures 3.6 and 3.7 show the mode shapes for in-plane bending
and axial vibrations of rotating (200 rad/s) doubly-tapered (r, = 0.1,S = 18) beam which has
taper Configuration-A.

Table 3.4 Natural frequencies (Hz) of in-plane bending and axial vibrations of non-rotating and
rotating doubly-tapered cantilever composite beam for Configuration-A

No. of ply drop-off, S 0 18
R-R ANSYS R-R ANSYS R-R ANSYS R-R ANSYS
Q =0rad/s Q =200 rad/s Q =0rad/s Q =200 rad/s

1t | 158.50 | 159.23 | 160.15 | 161.14 | 167.87 | 175.02 | 169.77 | 176.87
2" | 511.08 | 509.56 | 515.04 | 514.25 | 519.50 | 522.58 | 523.50 | 526.93
3 [ 1124.7 | 1116.6 | 1129.2 | 1121.7 | 11285 | 1118.8 | 1133.1 | 1123.6
1%t | 3265.6 | 3257.0 | 3265.4 | 3256.6 | 3373.3 | 3430.9 | 3373.2 | 3430.6
2" | 7637.8 | 7623.1 | 7637.7 | 7622.6 | 7630.1 | 7608.2 | 7630.0 | 7607.8
1%t | 130.90 | 130.81 | 132.00 | 132.46 | 140.16 | 146.49 | 141.61 | 148.05
2" [ 627.00 | 621.02 | 630.82 | 625.39 | 636.70 | 635.76 | 640.57 | 639.65
39 |1618.1 | 1562.8 | 1622.4 | 1567.5 | 1617.8 | 1557.5 | 1622.2 | 1561.8
1%t | 2659.0 | 2652.8 | 2658.8 | 2652.4 | 2768.8 | 2833.4 | 2768.6 | 2833.1
2" | 7117.4 | 7106.2 | 7117.3 | 7105.6 | 7095.0 | 7067.1 | 7095.0 | 7066.6
1%t | 120.35 | 120.04 | 121.81 | 121.48 | 129.70 | 135.68 | 131.51 | 137.01
2" | 754.21 | 732.76 | 758.46 | 736.94 | 765.50 | 749.57 | 769.81 | 753.22
3 | 2112.4 | 1980.6 | 2117.1 | 1985.2 | 2107.4 | 1965.8 | 2112.1 | 1969.8
15t | 2328.2 | 2323.2 | 2327.9 | 2322.7 | 2434.6 | 2499.2 | 2434.4 | 2498.8
2" | 6984.5 | 6977.0 | 6984.4 | 6976.3 | 6950.2 | 6918.1 | 6950.1 | 6917.4

T Mode

0.1

0.5

Configuration-A

1.0

Axial|In-plane |Axial In-plane |Axial [In-plane
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Table 3.5 Natural frequencies (Hz) of in-plane bending and axial vibrations of non-rotating and

rotating doubly-tapered (S = 18) cantilever composite beams for Configurations B, C and D

] Mode R-R | ANSYS R-R | ANSYS

b 0 rad/s 200 rad/s
o [ 1t | 159.06 | 187.20 | 161.03 | 189.00
= | 29[ 51290 | 54134 | 517.61 | 54550
01| = [39] 11287 | 11483 | 11339 | 11529
= | 1t | 32771 | 36115 | 32769 | 36112
m Z [ 29[ 76647 | 78155 | 76646 | 78151
L o [ 150 | 13497 | 15813 | 136.06 | 159.62
2 = [ 29 ] 64657 | 660.78 | 650.30 | 664.42
€ |o5| = [37] 16687 | 16012 | 16729 | 1605.1
=2 = | 1t | 26683 | 29971 | 2668.2 | 2996.7
€ Z |27 | 71424 | 72551 | 71424 | 7254.6
S o [ 150 | 12410 | 14691 | 12553 | 148.18
< [29 ] 77779 | 78049 | 78191 | 783.86
10| £ [ 39| 21785 | 20227 | 21829 | 20263
= | 1% | 23365 | 26483 | 2336.1 | 2647.8
Z | 2@ 7009.1 | 71008 | 7009.0 | 7100.2
o | 1t | 159006 | 186.17 | 160.70 | 187.99
= | 29| 51288 | 54184 | 516.82 | 545.97
01| = [ 39| 11286 | 11387 | 11331 | 11433
= | 1t | 32771 | 36147 | 32769 | 36144
O Z [ 29 | 76647 | 78203 | 76646 | 7819.9
z o | 1 | 13134 | 15813 | 13245 | 159.62
S 3 [ 27| 62919 | 660.78 | 633.01 | 664.42
o 05| £ | 39| 16238 1601.2 1628.1 1605.1
> = | 10 | 26684 | 29971 | 26682 | 2996.7
= Z |27 | 71424 | 72551 | 71424 | 7254.6
3 o | 1% | 12077 | 14691 | 122.22 | 148.8
= | 2@ | 756.87 | 780.49 | 761.10 | 783.86
10 L= [89]21199 | 20227 | 21245 | 20263
= | 1t | 23363 | 26483 | 2336.1 | 264738
Z |2 ]77009.0 | 7100.8 | 7009.0 | 7100.2
o [ 150 | 150.33 | 187.20 | 152.07 | 189.00
= [ 29 ] 48470 | 541.35 | 48890 | 54550
01| = [ 39 ] 10667 | 11484 | 10715 | 11529
= | 1t | 30972 | 36115 | 3097.1 | 3611.2
X [ 29 | 72440 | 78155 | 72439 | 78151
Dé g[8 [ 12413 | 15813 [ 12531 | 15062
S = [ 29[ 59465 | 660.79 | 598.70 | 664.42
® 05| = [ 39 ] 15347 | 16012 | 1539.2 | 1605.1
= = | 1t | 25219 | 29971 | 2521.7 | 2996.7
= Z | 29| 67504 | 72552 | 6750.3 | 72547
S o | 10 | 11414 | 14691 | 11568 | 148.18
< [29 ] 715632 | 78049 | 719.80 | 783.87
Lo S [ 3% ] 20035 | 20227 [ 20084 | 20263
Tl = 1t 22081 | 26483 | 22079 | 264738
Z | 29| 66243 | 71008 | 66242 | 7100.3
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2" Mode
526.93 Hz

15t Mode
176.87 Hz

39 Mode
1123.6 Hz

Figure 3.6 First three in-plane bending vibration mode shapes of doubly-tapered rotating

cantilever composite beam (Configuration-A) obtained using ANSYS

2" Mode
7607.8 Hz

15t Mode
3430.6 Hz

Figure 3.7 First two axial vibration mode shapes of doubly-tapered rotating cantilever composite
beam (Configuration-A) obtained using ANSYS

3.5  Mode shapes determination
Having the eigenvectors obtained from equation (3.35), one can have the mode shapes of

doubly-tapered (L =25cm,by =2cm,1, =0.1,5 =18) rotating cantilever laminated
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([90],gs) composite beams for in-plane bending and axial vibrations. In Figures 3.8 and 3.9, mode
shapes of non-rotating and rotating (200 rad/s) uniform cantilever composite beams and doubly-
tapered cantilever laminated composite beams (Configuration-A) are illustrated, respectively.
They show that except the first mode, mode shapes are the same for non-rotating and rotating
conditions. Also, one can observe that due to absence of Coriolis term and due to the cross-
sectional plane of symmetry, mode shapes obtained are uncoupled and among the first six mode
shapes obtained from equation (3.35), the first, second, third and fifth are in-plane bending
vibration modes and fourth, sixth are axial vibration modes. Also, for doubly-tapered composite
beam among the first eight mode shapes, the first, second, third, fourth, sixth and seventh are in-
plane bending vibration modes and fifth and eighth are axial vibration modes. Also, it can be
understood from Figures 3.8 and 3.9 that the maximum displacements for uniform beam are higher

than that of the doubly-tapered beam in both non-rotating and rotating conditions.

| Man-rotating ——-— Fatating |
1st Mode 2n Mode % 10-3 3 Mode
= 0.6 2 0.05 £2
g A £ g
o 7 Q 8
8 04 718 E
é- /'/ g‘ 0 %0
T 0.2 3 =
3 3 3
o 2 S
2 0 ‘ < .0.05 2 -
0 0.5 1 0 0.5 1 0 0.5 1
x/L x/L x/L
4th Mode % 10-4 5t Mode 6t Mode
206 = 1 £ 0.01
o ]
& £ £
o o 3]
§0.4 S g 0
2 80 2
%o.z S %om
3 % Ee]
S <] <]
0 = =.0.02
0 0.5 1 0 0.5 1 0 0.5 1
x/L x/L x/L

Figure 3.8 Mode shapes of non-rotating and rotating uniform cantilever composite beam
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Figure 3.9 Mode shapes of non-rotating and rotating doubly-tapered cantilever composite beam

Figure 3.10 illustrates the first three in-plane bending and first two axial mode shapes for
rotating (200 rad/s) doubly-tapered cantilevered laminated composite beam considering different
taper configurations. It shows that for every mode, mode shapes are almost same for
Configuration-B, C and D and maximum displacement for Configuration-A is the lowest among

all the configurations considered.
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Figure 3.10 First three in-plane bending and first two axial vibrational mode shapes of rotating

doubly-tapered beams for different taper configurations
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3.6 Free vibration analysis

In this section, a set of graphs are plotted to understand the influences of different system
parameters on the natural frequencies of in-plane bending and axial vibrations. Mechanical
properties of materials used in this section are given in Tables 2.1 and 2.2.
3.6.1 Effect of rotational velocity

In order to understand the effect of rotational velocity on the natural frequencies of in-plane
bending and axial vibrations, five different types of cantilever beams are considered where one
has uniform-thickness and uniform-width, and four others are doubly-tapered (S = 18,1, = 0.1)
beams with four different taper configurations. The beam length, width at fixed side and hub radius
are given in Table 2.3 and Table 2.4. The stacking sequence of the laminated beam is [90]ss.

Figures 3.11 and 3.12, illustrate the variation of the first three in-plane bending and the
first two axial natural frequencies, respectively, for various rotational velocities. It can be stated
from the Figure 3.11 that for uniform or doubly-tapered beam, first three natural frequencies of in-
plane bending vibration increase as the rotational velocity increases. Figure 3.12 for axial vibration
illustrates that first two natural frequencies slightly decrease as the rotational velocity increases.
Figure for first natural frequency of in-plane bending vibration and first two natural frequencies of
axial vibrations show that doubly-tapered beam with any configuration has higher natural
frequencies than uniform composite beam in both rotating and non-rotating conditions. Figure 3.11
for second and third natural frequencies of in-plane bending vibration shows that uniform
composite beam has higher natural frequency than doubly-tapered beam in both rotating and non-
rotating conditions. Also, it can be stated that, except for the second natural frequency of axial
vibration, taper Configuration-A has the highest natural frequency and for both vibrational modes,

Configuration-D has lowest natural frequency.
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Figure 3.11 Effect of rotational velocity on the natural frequencies of in-plane bending vibration

‘ —— Uniform —H— Doubly tapered (Config-A) —#— Doubly tapered (Config-B) —%— Doubly tapered (Config-C) —#— Doubly tapered (Conﬁg-D}‘

3500

H

m
m
m
m

= = H—F
= = L= p = |

% [

od

3
¥
X}
g
¥
¥
kg
¥
¥

3000

2500

kg

Vo
A

0]

o
O

(0]

o
A

O]

o)
A

©
(O]

0]

D

0 100 200 300

400
Rotational Velocity (rad/s)

500

7000

2" Axial
Natural Frequency (Hz)

6600

7800 |
76007
7400

© 72007

6800 [

p—O—10—0—06606606—6666——
100 200 300 400 500

Rotational Velocity (rad/s)

Figure 3.12 Effect of rotational velocity on the natural frequencies of axial vibration
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3.6.2 Effect of hub radius to beam length ratio

In this section, doubly-tapered (S = 18,1, = 0.1) rotating cantilever composite beams
with four different taper configurations are considered to investigate the effect of hub radius to
beam length ratio (R/L) on the natural frequencies of in-plane bending vibration. The rotating
doubly-tapered beams have the same length, same stacking sequence and same width at the fixed
side as that of section 3.6.1. The rotating velocity of the beam is 200 rad/s. In Figure 3.13, the
variation of first three natural frequencies with respect to different values of hub radius to beam
length ratio is illustrated. It can be understood from this figure that first three natural frequencies

of in-plane bending vibration increase as the hub radius to beam length ratio increases.
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ﬁ ﬁ ®© o o — —
L D m = A
L1706 ——o 0O P 2T 5t ]
35 > T2 B8 ———— %%
S 2165 1 §8
29 2 8 510
Tl B @B 05
€ g 160 1 €09
St 3L 500
ot | | ek
T3 k% T B3, N e
A S 150 1 W S 3 7 e A
145 : : ' 480 : : :
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
R/L R/L
1150
N
=)
£ ¢ ® =71
T >
S o
2o
Q35
QT |
§@ 100
ol
£g
[~ S # % * 3
z
1050 : : -
0.05 0.1 0.15 0.2
R/L

Figure 3.13 Effect of (R/L) on the natural frequencies of in-plane bending vibration
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3.6.3 Effect of double-tapering

In this section, the effects of double-tapering on the natural frequencies of in-plane bending
and axial vibrations of a rotating cantilever composite beam are studied. The beam length, width
at fixed side, stacking sequence and rotating velocity are taken as that of previous section 3.6.2.
Hub radius is taken as 0.025 m.

Figures 3.15 and 3.16 show that the first natural frequency of in-plane bending and first
two natural frequencies of axial vibrations for all the configurations increase as the double-tapering
increases. On the other hand, second and third natural frequencies of in-plane bending vibration
decrease as the double-tapering increases. Among all the taper configurations, Configuration-A
gives the highest natural frequencies of in-plane bending and axial vibrations for higher double-

taper ratio.
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Figure 3.14 Effect of double-tapering on the natural frequencies of in-plane bending vibration
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Figure 3.15 Effect of double-tapering on the natural frequencies of axial vibration

3.7 Critical speed determination

To obtain the critical speed of a doubly-tapered rotating cantilever composite beam for in-
plane bending vibration, one can consider the equation (3.31) and follow the procedure discussed
in section 2.8. Only the first natural frequency of in-plane bending vibration is considered to obtain
the first critical speed as first natural frequency of axial vibration is much higher than the first
natural frequency of in-plane bending vibration. In this section, Campbell diagram and the direct
method both are considered to determine the critical speeds. To compare the critical speed of
doubly-tapered cantilever composite beam, four different types of beams are taken as that of
section 2.8.1.

In Figure 3.17 one can observe that doubly-tapered beam has highest critical speed that
means operating speed for doubly-tapered beam is higher than other types of beams. From Figure
3.17, also, it can be stated that doubly-tapered beam with Configuration-A has the highest
operating speed and consequently Configurations B, C and D take the other positions. Critical

speeds obtained using the direct method and Campbell diagram are listed in Table 3.6.
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Campbell Diagram
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Figure 3.16 Critical speed determination from Campbell diagram for in-plane bending vibration

Table 3.6 Critical speeds (rad/s) calculated using different methods for in-plane bending

vibration
Type of beam Direct method | Campbell diagram

U-u 191.14 191.10

U-W 253.10 253.40
Configuration-A (T-W) 269.05 269.30
Configuration-A (T-U) 206.78 206.50
Configuration-B (T-W) 253.99 253.80
Configuration-B (T-U) 191.81 191.60
Configuration-C (T-W) 253.99 253.80
Configuration-C (T-U) 191.81 191.60
Configuration-D (T-W) 240.05 240.70
Configuration-D (T-U) 181.29 181.70
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In Figure 3.18, only beam with configuration-A (T-W) is considered to understand the
effect of laminate stacking sequence on critical speed. It can be understood from the Campbell
diagram and results from direct method (listed in Table 3.7) that stacking sequence with

unidirectional ply ([0]1ss) has the highest critical speed.
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Figure 3. 17 Critical speed determination from Campbell diagram for in-plane bending vibration

for different stacking sequences

Table 3.7 Critical speed (rad/s) for different stacking sequences for in-plane bending vibration

Stacking sequence Direct method | Campbell diagram
[0/90]es 554.00 554.00
[90]1ss 269.05 269.30
[O]1ss 704.47 705.50
[0/45/-45]6s 535.17 535.40
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3.8 Dynamic instability analysis
Dynamic instability analysis can be carried out when a rotating structure experiences in-
plane bending and axial vibrations. Periodic rotational velocity will result in a parametric
excitation on the rotating beam. Periodic rotational velocity can be introduced into the equations
of motion for in-plane bending and axial vibration problem, which is given in equation (3.33). The
equation (3.33) can be expressed as:
(M 1{G} + ([K**] + Q(0)*[Ka DG} = {0} (3.40)

[K*] [0] e _ [P [0]
where, [K*V*] = [ ]and Kyl = [ . .
FET= oy el Ml =1 o) i — i
If periodic rotational velocity is employed in the system, dynamic instability can be

observed. The region of dynamic instability can be found through Bolotin’s method. Substituting

Q(t) from equation (2.54) into the equation (3.40) yields:
[M*]{q} + {[K’“’*] + <QOZ + 2Q0°Bsinb,t + @ (1- COSZHpt)> [KQ*]} {G=0 (3.41)

In order to find the periodic matrix solution of this Mathieu type equation with period 2T one can
take Bolotin’s first approximation [31], and the periodic matrix solution with period 2T can be

sought in the form:

(@)= 2155 Harsin (“2) + {b,Jcos (2] (3.42)

Taking one term solution and differentiating two times with respect to time t, leads to

. 6,
(6} = - 2 (andsin (25) - 22 (b, 3cos (&2)) (3.43)
After substituting {g} and {q} in equation (3.41) and following the same procedure given in section

2.9, one can get two equations for resonance frequency:
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6" = (4[Ka"100° + 4[Kn"1Q0"B + 2[Ka"100° 7 + 4[K™*])/[M™] (3.44)
0," = (41Ka"1Q0° — 4[Kq"1Q0° B + 2[Kq"100% B + 4[K¥""]) /[M*] (3.45)
Equations (3.44) and (3.45) can be solved as eigenvalue problems where each eigenvalue sz IS
the square of parametric resonance frequency which gives the boundary between stable and
unstable regions in resonance frequency-driving amplitude plane for a system that experiences in-
plane bending and axial vibrations. Equations (3.44) and (3.45) give upper and lower boundaries

of the instability region, respectively.

3.9 Instability analysis considering different system parameters

Different system parameters (i.e. rotational velocity, hub radius, double-taper ratio and
stacking sequence) and different taper conigurations have influences on the dynamic instability of
a rotating structure that is vibrating in axial and in-plane bending motions. Following graphs
illustrate the effects of various parameter on the width of instability region. The analysis is
conducted using taper Configuration A and D. Also, the analysis is conducted considering first
three in-plane bending and first two axial vibrational modes. Mechanical properties for composite
and resin materials are given in Table 2.1 and 2.2, respectively.
3.9.1 Effect of different taper configurations

Figures 3.18 and 3.19 show the instability regions for first three in-plane bending and first
two axial vibrational modes, respectively, for a doubly-tapered (L = 25cm,by =2 cm,S =
18,1, = 0.1, R = .025 m) rotating cantilever composite beam with different taper configurations.
The mean value of angular velocity is 50 rad/s and the stacking sequence is [90]1ss. From Figure
3.18 for first three modes of in-plane bending vibration, it can be stated that beam with
Configuration-D has largest width of instability region and Configuration-B has smallest width of
instability region. Also, from Figure 3.19 for first two modes of axial vibration, it can be stated
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that beam with Configuration-D has largest width of instability region and Configuration-A has

smallest width of instability region.
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Figure 3.18 Effect of different taper configurations on the widths of instability regions for first

three modes of in-plane bending vibration
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3.9.2 Effect of mean rotational velocity

Figures 3.20 and 3.21 illustrate the behavior of the instability region due to increase of
mean rotational velocity for first three modes of in-plane bending and first two modes of axial
vibrations, respectively, for a doubly-tapered (L =25cm,by =2cm,S =18,1, =0.1,R =
.025 m) cantilever composite beam. The stacking sequence is [90]1ss. From Figures 3.20 and 3.21,
one can observe that for first three modes of in-plane bending and first two modes of axial

vibrations, width of instability region increases as the rotational velocity increases and the width
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of instability region for Configuration-A is less than the width of instability region for

Configuration-D.
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Figure 3.21 Effect of mean rotational velocity on the widths of instability regions for first two

modes of axial vibration

3.9.3 Effect of hub radius to beam length ratio

Figures 3.22 and 3.23, illustrate the variation of width of instability region due to changes
in the ratio of hub radius over beam length (R/L). The doubly-tapered (S = 18,7, = 0.1) rotating
cantilever composite beam has the same length, same stacking sequence and same width at the
fixed side as that of previous section 3.9.2. The mean value of rotational velocity is 50 rad/s. Figure
3.22 for first three modes of in-plane bending vibration shows that the width of instability region
increases as the ratio of hub radius to beam length increases. Figure 3.23 for first two modes of

axial vibration shows that hub radius has no effect on the dynamic instability of axial vibration.
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Also, it can be understood from Figures 3.22 and 3.23, that the width of instability region for

Configuration-A is less than the width of instability region for Configuration-D.
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Figure 3.23 Effect of hub radius to beam length ratio on the widths of instability regions for first

two modes of axial vibration

3.9.4 Effect of double-tapering

Figures 3.24 and 3.25 show the variation of width of instability region for three different
values of double-taper ratio (S/r,). The beam length, width at fixed side, stacking sequence and
mean rotational velocity are taken as same as that of previous section 3.9.3. The hub radius, in this
case, is 0.025 m. From Figure 3.24 for first three modes of in-plane bending vibration, it can be
stated that increase of double-taper ratio (increase of double-tapering) increases the width of
instability region. Figure 3.25 for the first two modes of axial vibration illustrates that increase of

double-taper ratio decreases the width of instability region. Also, it can be understood from Figures
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3.24 and 3.25, that the width of instability region for Configuration-A is less than the width of

instability region for Configuration-D.
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Figure 3.24 Double-tapering effect on the widths of instability regions for first three modes of

in-plane bending vibration
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Figure 3.25 Double-tapering effect on the width of instability regions for first two modes of

axial vibration

3.9.5 Effect of stacking sequence

In this section, effect of laminate stacking sequence on dynamic instability of in-plane
bending and axial vibrations are studied. The doubly-tapered (S = 18,7, = 0.1) rotating
cantilever composite beam has the same length, same width at fixed side, same hub radius and
same mean rotational velocity as that of previous section 3.9.4. From Figure 3.26 for first two
modes of axial vibration, it can be observed that Configuration-A follow the same consequence as
that of in-plane bending vibration but in the case of Configuration-D, cross-ply stacking sequence

[0/90]es has smallest width of instability regions and on the other hand, stacking sequence [90]xss
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and [-45/45/0]es have largest width of instability region. From Figure 3.27 for first three modes of
in-plane bending vibration, it can be observed that unidirectional ply stacking sequence [0]1ss has
smallest width of instability regions and on the other hand, stacking sequence [90].ss has largest
width of instability region. Cross-ply laminate stacking sequence [0/90]ss and angle-ply laminate
stacking sequence [-45/45/0]es have almost same width of instability region. Also, it can be noticed
from Figure 3.27, that except for the stacking sequence [90]1ss, the width of instability region for

Configuration-D is less than the width of instability region for Configuration-A.

Axial- 15 mode

1.000001 )
(o) g - —==C] N
= 1 — e — :
© - A
{59 = =
© 0.999999
5
g 0999998 I | & 1jg0)9s
© | —a—
E 0.999997 [90]18s Configuration-A
o —¥—onas Configuration-D
0.999996 [ | s (ni45145]6s ¢
L 1 | | 1 | g
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Amplitude factor
Axial- 2"¥ mode
10000002 F e gge——BemET S
) :
7 1
1 S8
.9 0.9999998
5
£ 0.9999996 —&— [0/90)9s =
o —&— [90]18s : TS
S
& 0.9999994 | Configuration-A &
o —F—[0j1Es || ——.— Configuration-D
0.9999992 |- | —*— [0/45/-45]6s

. I | 1 I I | 1 ) :\=
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Amplitude factor

Figure 3.26 Effect of stacking sequence on the widths of instability regions for first two modes

of axial vibration
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3.10 Summary

In this chapter, in the first part, the free vibration analysis for in-plane bending and axial
vibrations have been investigated for a doubly-tapered rotating cantilever composite beam.
Rayleigh-Ritz method based on the Classical Lamination Theory was considered to formulate the
problem. MATLAB was used to develop the formulation. The results from R-R method were
validated with commercial FEA tool ANSY'S. Upon completing the validation, effects of different
parameters such as rotational velocity, hub radius, double-taper ratio and stacking sequence on the
natural frequencies of in-plane bending and axial vibrations of composite beam are carried out.
Based on the results obtained, Configuration-A has highest natural frequencies and Configuration-
D has lowest natural frequencies for both in-plane bending and axial vibrations in non-rotating and
rotating conditions. It has been observed that rotating velocity significantly increases the natural
frequencies of in-plane bending vibration, but natural frequencies of axial vibration slightly
decrease due to increase of the rotational velocity. Also, It has been observed that double-tapering
increases natural frequencies of in-plane bending and axial vibrations. After the free vibration
analysis, critical speed was determined for various types of beams. In this case, doubly-tapered
beam has the highest critical speed (operating speed) than uniform beam. Also, beam with
unidirectional ply stacking sequence [0]1ss has highest critical speed.

In the second part of this chapter, dynamic instability analysis for in-plane bending and
axial vibrations has been performed by considering the periodic rotational velocity. Bolotin’s
method was used to obtain the boundaries of instability region. Different graphs have been plotted
to study the effects of different parameters and different taper configurations on the instability
region. Based on the results obtained, for in-plane bending vibration, Configuration-B has smallest

width of instability region and Configuration-D has largest width of instability region and for axial
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vibration Configuration-D has largest width of instability region and Configuration-A has smallest
width of instability region. The width of instability region increases with rotational velocity for
both in-plane bending and axial vibrational modes. Also, the width of instability region increases
with hub radius for in-plane bending vibration. Increase of double-tapering increases the width of
instability region for in-plane bending vibration. On the other hand, increase of double-tapering
decreases the width of instability region of axial vibration. Unidirectional ply stacking sequence
[0]1ss has the smallest width of instability region while stacking sequence [90]1ss has largest width

of instability region for both in-plane bending and axial vibrational modes.
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Chapter - 4
Comparative study between out-of-plane bending and in-plane bending vibrations of

doubly-tapered rotating composite beam

4.1 Introduction

In chapters 2 and 3, out-of-plane and in-plane bending vibrations of doubly-tapered rotating
cantilever composite beam were analyzed, respectively. Chapters 2 and 3 were organized so as to
focus on the effects of different parameters on the natural frequencies and instability regions of
out-of-plane and in-plane bending vibrations, respectively. Moreover, critical speeds were also
determined for both out-of-plane and in-plane bending vibrations.

In this chapter, a comparative study is conducted between out-of-plane and in-plane
bending vibrations, in order to: 1) obtain the fundamental natural frequencies of the beam in non-
rotating and rotating conditions, 2) identify the significant vibration to determine the first critical
speeds, 3) compare the maximum displacements of out-of-plane bending and in-plane bending
vibrations, and 4) compare the instability regions of out-of-plane bending and in-plane bending
vibrations. To perform this comparative study, a doubly-tapered cantilever composite beam with
four different taper configurations is considered. The length of the beam, width at fixed side, width
ratio, number of ply drop-off, stacking sequence and the rotational velocity are mentioned in the
respective sections. The hub radius is taken as 10 percent of the length of the beam. The material
chosen is NCT/301 graphite-epoxy. The mechanical properties of the material are listed in Tables

2.1 and 2.2.
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4.2  Fundamental frequency consideration

The fundamental frequency is defined as the lowest natural frequency of a structural
system. To identify the fundamental frequencies in non-rotating and rotating doubly-tapered
beams (b, = 2cm,S = 18,1, = 0.1,[90],4,), first natural frequencies of out-of-plane and in-
plane bending vibrations are plotted with respect to different values of rotational velocity and
different values of beam length. Only the first natural frequencies of out-of-plane bending and in-
plane bending vibrations are considered to obtain the fundamental frequency as first natural
frequency of axial vibration is much higher than the first natural frequencies of out-of-plane
bending and in-plane bending vibrations.

In Figure 4.1, it is shown that in both non-rotating and rotating conditions, when the beam
length is small, first natural frequency of in-plane bending vibration is much higher than the first
natural frequency of out-of-plane bending vibration. That means for a small length of doubly-
tapered beam, out-of-plane vibration is significant and that gives the fundamental frequency for
non-rotating and rotating conditions. On the other hand, when the beam length is high (above 80
cm) and the rotational velocity is high, then the first natural frequency of out-of-plane bending
vibration becomes higher than the first natural frequency of in-plane bending vibration. This
implies that for higher beam length and for higher rotational velocity in-plane bending vibration

is significant and that gives the fundamental frequency.
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Figure 4.1 First natural frequencies of out-of-plane bending and in-plane bending vibrations
with respect to rotational velocity and beam length

In Figures 4.2 and 4.3, second and third natural frequencies of out-of-plane bending and
in-plane bending vibrations, respectively, are also plotted with respect to different values of

rotational velocity and different values of beam length. From Figures 4.2 and 4.3, it can be
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understood that increase of beam length decreases the second and third natural frequencies of out-

of-plane and in-plane bending vibrations of doubly-tapered rotating cantilever composite beam.
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Figure 4.2 Second natural frequencies of out-of-plane bending and in-plane bending vibrations

with respect to rotational velocity and beam length
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Figure 4.3 Third natural frequencies of out-of-plane bending and in-plane bending vibrations

with respect to rotational velocity and beam length

In Figures 4.4 and 4.5, first and second natural frequencies of axial vibration are plotted,
respectively, with respect to different values of rotational velocity and different values of beam

length. From Figures 4.4 and 4.5, it can be understood that increase of beam length decreases the
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first and second natural frequencies of axial vibration of doubly-tapered rotating cantilever

composite beam.
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4.3  Critical speed consideration

In order to identify the significant vibrating motion for determining the critical speed of
doubly-tapered rotating composite beam (L =2m,by =4cmm, =0.1,S = 18,[90]45), @
Campbell diagram is plotted by considering first natural frequencies of out-of-plane and in-plane
bending vibrations.

In Figure 4.6, it is shown that out-of-plane bending vibration is significant to determine the
first critical speed when multiple (n = 2,3,4 ...) rotating elements (i.e. blade in helicopter rotor
system) are considered. On the other hand, for a single-bladed (n = 1) rotor system, in-plane
bending vibration becomes significant. In Figure 4.6, OP denotes out-of-plane bending vibration

and IP denotes in-plane bending vibration.
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Figure 4.6 Campbell diagram for doubly-tapered composite beam considering out-of-plane (OP)

and in-plane (IP) bending vibrations
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4.4  Maximum displacement consideration

In Figures 4.7 and 4.8, first three mode shapes of non-rotating and rotating (50 rad/s)
doubly-tapered cantilevered laminated composite beams (L =2m,by, =4 cm,r, =0.1,S =
18,[90]gs), are plotted, respectively, for out-of-plane and in-plane bending vibrations. From both
figures, maximum displacements are observed from corresponding mode shapes of out-of-plane
bending and in-plane bending vibrations.

From Figure 4.7, it is shown that in non-rotating condition except for the third modes of
any configuration and second mode of Configuration-D, the maximum displacements of out-of-
plane bending vibration are higher than the maximum displacements of in-plane bending vibration.

In Figure 4.8, it is shown that in rotating condition except for the second and third modes
of Configuration-D, the maximum displacements of in-plane bending vibration are higher than the

maximum displacements of out-of-plane bending vibration.
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Figure 4.7 First three mode shapes of out-of-plane and in-plane bending vibrations (non-rotating)
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Figure 4.8 First three mode shapes of out-of-plane and in-plane bending vibrations for rotational
speed of 200 rad/s
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45  Instability region consideration

In Figures 4.9 to 4.11, first three instability regions of a doubly-tapered composite beam
(L=2m,by =4cm,m, =0.1,5 = 18,[90],gs), are plotted in a three-dimensional parametric
plane for out-of-plane and in-plane bending vibrations. In Figures 4.9 to 4.11, it is shown that for
all configurations and for all modes, the width of instability region increases as the amplitude
factor (f) and mean rotational velocity (£2,) increase. Also, one can observe that instability region
of out-of-plane bending vibration is much larger than that of the in-plane bending vibration. Based
on the results obtained, for out-of-plane bending vibration, Configuration-D has the smallest width
of instability region among all the tapered configurations considered and Configuration-A has the
largest width of instability region (section 2.9.1) and for in-plane bending vibration, Configuration-
B has the smallest width of instability region and Configuration-D has the largest width of
instability region (section 3.9.1).

In Figure 4.12, spacing between the first three instability regions of out-of-plane bending
vibration and first three instability regions of in-plane bending vibration are investigated by
considering four different taper configurations. In this graph vertical axis represents the amplitude
factor of periodic rotational velocity and the horizontal axis represents the resonance frequency. It
is shown that for all the taper configurations, space between two consecutive instability regions of
out-of-plane bending vibration is less than the spacing between two consecutive instability regions
of in-plane bending vibration. Also, from Figure 4.12, it can be understood that first instability
region of in-plane bending vibration has the smallest width of instability region and third instability

region of out-of-plane bending vibration has the largest width of instability region.
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taper configurations
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4.6 Summary

In this chapter, a comparative study has been performed between out-of-plane and in-plane
bending vibrations of a rotating doubly-tapered cantilever composite beam. The results for first
three natural frequencies of out-of-plane and in-plane bending vibrations are compared for
different cases. The results are extracted from the Rayleigh-Ritz method. Upon completing the
investigation, it is shown that in non-rotating condition natural frequency of in-plane bending
vibration is higher than the natural frequency of out-of-plane bending vibration, but with the
increase of beam length and rotational velocity, the natural frequency of out-of-plane bending
vibration becomes higher than the natural frequency of in-plane bending vibration. Also, it has
been investigated that the first natural frequency of out-of-plane bending vibration is significant to
determine the first critical speed, for a multi-bladed rotor system and first natural frequency of in-
plane bending vibration is significant when the rotor system has a single blade. In non-rotating
condition except for the third mode of any configurations and second mode of Configuration-D,
maximum displacements of out-of-plane bending vibration are higher than the maximum
displacements of in-plane bending vibration. In rotating condition except for the second and third
modes of Configuration-D, maximum displacements of in-plane bending vibration are higher than
the maximum displacements of out-of-plane bending vibration. It is shown that for all
configurations and for all modes, the width of instability region increases as the amplitude factor
and mean rotational velocity increase. Also, one can observe that width of instability region of out-
of-plane bending vibration is larger than the width of instability region of in-plane bending
vibration and spacing between two consecutive instability regions of out-of-plane bending
vibration is less than the spacing between two consecutive instability regions of in-plane bending

vibration.
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Chapter -5

Conclusion and future work

5.1 Major contribution

In the present thesis, free vibration and dynamic instability analyses of doubly-tapered
rotating cantilever composite beams are conducted for three different types of vibrations (out-of-
plane bending, in-plane bending and axial). Rayleigh-Ritz method based on classical lamination
theory has been employed to formulate the free vibration problem. Bolotin’s method is applied to
determine the instability regions. Numerical and symbolic computations have been performed
using MATLAB. The results for natural frequencies have been validated using FEA tool ANSYS.

A comprehensive parametric study is conducted in order to understand the effects of
various parameters such as rotational velocity, hub radius, ply drop-off, double taper ratio and
stacking sequence on the natural frequency of free vibration and instability regions of the doubly-
tapered composite beams. Four different thickness-tapering configurations (Configurations A, B,
C and D) were considered in the analysis.

Moreover, critical speed of a rotating doubly-tapered composite beam is determined and
change of critical speed due to double-tapering is investigated. Also, change of maximum
deflection due to rotational velocity and double-tapering is studied in this thesis. The material
chosen in this thesis is NCT-301 graphite-epoxy prepreg, which is available in the laboratory of

Concordia Centre for Composites (CONCOM).
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5.2  Conclusions
The work done in this thesis has provided some conclusions on the performance and design

of the rotating composite beam. The most important and principal conclusions of the study on free

vibration analysis are given in the following:

> In order to obtain results using Rayleigh-Ritz method, it has shown that increase of the number
of terms in approximate shape function increases the accuracy of results. In this thesis, results
found with 7 and 8 terms in approximate shape functions of Rayleigh-Ritz method, matched
well with the results obtained by using Conventional Finite Element Method, exact solution
(for uniform beam) and ANSYS for uniform and doubly-tapered composite beams.

» Double-tapering increases the first natural frequencies of out-of-plane bending, in-plane
bending and axial vibrations for both rotating and non-rotating cantilever composite beams.

> Increase of rotational velocity increases the natural frequencies of out-of-plane and in-plane
bending vibrations, and on the other hand, increase of the rotational velocity slightly decreases
the natural frequencies of axial vibration. In non-rotating condition, natural frequencies of in-
plane bending vibration are higher than the natural frequencies of out-of-plane bending
vibration, but at higher rotating speed and higher beam’s length, natural frequencies of out-of-
plane bending vibration becomes higher than the natural frequencies of in-plane bending
vibration.

> It has been observed that the increase of the length of a doubly-tapered rotating cantilever
composite beam decreases the natural frequencies of out-of-plane and in-plane bending
vibrations.

» Increase of hub radius increases the natural frequencies of out-of-plane and in-plane bending

vibrations for a constantly rotating doubly-tapered cantilever composite beam.
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» For a doubly-tapered composite beam with different stacking sequences, it has been noticed
that the laminate with only ‘0’ degree fiber orientation gives highest natural frequencies and
laminate with only ‘90’ degree fiber orientation gives lowest natural frequency.

> Based on the results obtained for out-of-plane bending vibration of doubly-tapered rotating
cantilever composite beam, Configuration D has the highest natural frequencies and is the most
stiff configuration, Configuration C and Configuration B have the second highest and the third
highest natural frequencies respectively. Configuration A has the lowest natural frequencies
and is the least stiff configuration among all the considered configurations. In case of in-plane
bending vibration, Configuration-A has the highest natural frequencies and Configuration-D
has the lowest natural frequencies. Configuration-B and Configuration-C have almost same
natural frequencies that lie in between natural frequencies of Configuration-A and
Configuration-D.

> It has been observed that there is no significant change in the mode shapes when the beam
starts to rotate from static condition. Based on the mode shapes plot it can be stated that for
non-rotating condition maximum displacement of out-of-plane bending vibration is higher than
the maximum displacement of in-plane bending vibration, and for rotating condition maximum
displacement of in-plane bending vibration is higher than the maximum displacement of out-
of-plane bending vibration.

» It has been investigated that, in order to determine the first critical speed, first natural frequency
of out-of-plane bending vibration is significant for a multi-bladed rotor system and first natural

frequency of in-plane bending vibration is important when the rotor system has a single blade.
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The important conclusions of dynamic instability analysis due to time varying rotational velocity

are given in the following:

> It has been seen that increase of mean rotational velocity increases the width of instability
region for out-of-plane bending, in-plane bending and axial vibrations of a doubly-tapered
cantilever composite beam. Also, for any specific mean rotational velocity, increase of
amplitude of time varying rotational speed increases the width of instability regions for all
three vibrational motions.

» From the parametric study, it has been found that increase of hub radius increases the widths
of instability regions of out-of-plane and in-plane bending vibrations and hub radius has no
effect on the dynamic instability of axial vibration.

> Double-tapering of the composite beam decreases the widths of instability regions of out-of-
plane bending and axial vibrations, but on the other hand double-tapering increases the width
of instability region of in-plane bending vibration.

» Based on the results obtained, Configuration-D has the smallest width of instability region and
Configuration-A has the largest width of instability region for out-of-plane bending vibration.
For in-plane bending vibration, Configuration-B has the smallest width of instability region
and Configuration-D has the largest width of instability region. For axial vibration,
Configuration-D has the largest width of instability region and Configuration-A has the
smallest width of instability region.

» It has been noticed that the laminate with only ‘0’ degree fiber orientation gives the smallest
width of instability region and laminate with only ‘90’ degree fiber orientation gives the largest

width of instability region for any type of vibrational motion.
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5.3

It has been found that instability region of out-plane bending vibration is larger than the
instability region of in-plane bending vibration.

It has been studied that the spacing between two consecutive instability regions of out-of-plane
bending vibration is less than the space between two consecutive instability regions of in-plane

bending vibration.

Recommendations for future work

The study of free vibration and dynamic instability of doubly-tapered rotating composite

beam can be continued in the future studies on these following recommendations:

>

Free vibration and dynamic instability analyses of rotating doubly-tapered cantilever
composite beam presented in this thesis can be performed for thick laminate considering First-
order Shear Deformation Theory (FSDT).

Damping can be introduced in the free vibration and dynamic instability analyses of doubly-
tapered rotating composite beam.

Transient and random vibration analyses can be performed on doubly-tapered rotating
composite beam.

Free vibration and dynamic instability analyses of rotating doubly-tapered cantilever
composite beam presented in this thesis can be extended for rotating doubly-tapered open

cylindrical shell.
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APPENDIX-A

Configuration-A

In Figure A.1, taper Configuration-A is shown where drop-off composite plies are replaced
with isotropic resin material. Figure A.2 shows the cross-sectional view of a beam has taper

Configuration-A for 24 ply drop-off which is developed in ANSYS.

z X

 J

Composite Ply

Y N P ) / Resin

ho/2

hk

\\

e Imaginary resin plies

Figure A.2: Cross-sectional view of taper Configuration-A developed in ANSYS

In taper Configuration-A, expressions of h;, and h;_4 for composite plies are (Figure A.1):

he = —x * tan() — =2+ hyy, + k (A1)
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hi_1 = —x *tan(e) — % + hpyy * (kK — 1) (A.2)
Here, ¢ is the thickness-taper angle. Sign of ¢ can be ‘positive’ or ‘negative’ depends on the
position of ply in top or bottom of z co-ordinate, respectively.
k =1,2,3....N,where N is number of layers in the laminate
h,1y is thickness of lamina and hy (= hy,;,, * N) is thickness of the laminate in thick side.
Resin pocket can be assumed as combination of imaginary resin plies which have same length as
composite lamina but have variable thickness (Figure A.3). Expressions of h;, and hj_, for

imaginary resin plies are:

N h
h, = —x*tan(si;z*(z—k))—f-l—hply*k (A3)
hy_q = —x*tan(s%*(%+1—k))—%+hmy*(k—1) (A.4)

Here, sign of ¢ is positive and k lies between (? +1)to (%), where S is number of ply drop-

off.

kth

Figure A.3: Geometry of top half resin pocket in configuration-A

A graph can be plotted using equations (A.1)-(A.4) to validate these equations where x ranging

from O to L. Figure A.4 illustrates a 25 cm long thickness-tapered composite laminate which has
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12 plies at thick side, where 6 plies is dropped and replaced with resin material. Solid line
represents thickness boundary of composite plies and dashed line represents thickness boundary

of resin plies.

<107 Configuration-A

Ply Location

0] 0.05 0.1 0.15 0.2 0.25
Length of beam

Figure A.4: Graphical representation of expressions for h; and hj_4
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Configuration-B

—

/I/

Figure A.5: Geometry of taper Configuration-B

—_Resin pocket

Composite plies

Figure A.6: Taper Configuration-B developed in ANSYS Composite PrepPost (ACP)
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Configuration-C:

Figure A.7: Geometry of taper Configuration-C

e Composite plies

Resin pocket

Figure A.8: Taper configuration-C developed in in ANSYS Composite PrepPost (ACP)
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Configuration-D:

Figure A.9: Geometry of taper configuration-D

Resin pocket

Figure A.10: Taper configuration-D developed in in ANSYS Composite PrepPost (ACP)
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APPENDIX-B

After introducing periodic rotational velocity, equation of motion (2.36) becomes:

[M1{G} + ([K] + Q*(©)[K*“D{q} = {0} B.1
Here,
[M] is mass matrix
[K] is stiffness matrix due to elastic deformation
Q2(t)[K*¢] is time dependent stiffness matrix due to centrifugal action
{q} is generalized coordinate vector
Q(t) is periodic rotational velocity.
Now substituting periodic rotational velocity Q(t) = Qg + B Qysinft in equation B.1 one can

have:

[M]{G} + ([K] + <902 + 20,°Bsind,t + “02’32 (1- coszept)> [K*D{g} =0 B.2

To find the periodic solution with period 2T we will take Bolotin’s first approximation [30], the

periodic solutions with period 2T can be sought in the form:

0,t
(@} = 52155 [{ar)sin (F2) + (b )eos (“2°)] B.3
Taking one-term solution and differentiating two times with respect to time t,
.. % _(Bpt)  6,° O,t
{@} = [-—{as}sin (%) — ——{b1}cos (%)] B.4

After substituting {q} and {¢} in equation B.2 one can have:

, 2 2p2
M ]{—g—alsm (9;’ ) blcos (%)} + {[K] + (Q° + Zﬂozﬁsmept + QOZB (1-

cos20,t))[K }{alsln( ) + b;c os( ;t)} =0 B.5
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. (Ot Ot . : .
To compare the coefficient of sin (%) and cos (%) one can use following trigonometric

formula:
6 6 30
sin(8yt)sin () =3 cos (%) = Jeos (5 B.6
Sin(ept)COS (Lt) = ls(_n (Lt + lSln (3 pt) B?
2 2 2 2 2
6 3 56
COS(ZBPt)sm (Lt) = _lSlTl _pt) +lSlTl( Pt) 88
2 2 2 2 2
6 6 56
COS(ZH{,’)COS (%t) = %COS (%) + %COS ( Zpt) B9

Using these formula from B.6 to B.9, one can write the equation B.5 as:

[M] {_HTZalsm (Hzt) _ 6’%Fblcos (92t)} +[K] {alsin (%) + bycos (%)} +
(K100 a1SlTl( ) + QOZblcos( )} + 20,2 ,3611 cos (0 ) _ 20,2 ,3a1 . (39,, ) .

+

. (Opt 9t
ZQO ﬁbl Sln( ) + 290 ﬁbl Si (362pt) + Qozﬁzalzsm(Tp) N 902ﬁ2b12605(%)

30pt 50pt 30t 50t
Qozﬁzalsin(Tp) Qozﬁzalsin<Tp) Qozﬁzblcos(Tp) Qozﬁzblcos(Tp)
4 4 4 4

=0 B.10

Finally comparing the coefficient of sm( ) and cos( ) in the governing equation one can get
two equations as below:

. (Opt)
For sin (T)

~ 2 M@y} + [KMar} + [K€100%ar} + [KE1002B (b} + 2L [KC{a,} = 0 B.11

0>

% [M)(by} + (K1 + (K107 (b1} + K102 Blar} + 2L [KC1{by} = 0 B.12

Equations B.11 and B.12 can be written in the matrix form as
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— 2 [M] + [K] + [K€1Q02 + 2 E- [k €] [K€100%B [{al} .
[K€100%8 % (] + K] + [KE102 + 2 ey | P
B.13
For non-trivial solution determinant of the matrix coefficients must be zero.
9 2 Q 202
2 () + [eE10,? 4 22 ey [K€100°B ]
der) : 6, T
| (K108 — = (M1 + [K] + [K€)Q0? + —— [K ]
B.14
After expanding the determinant and solving for 8,2, two equations can be found as:
6,> = (4[K€1Q0% + 4[KC10%B + 2[K€1Q0*B? + 4[K])/[M] B.15
0,> = (4[K€1Q0% — 4[KC10°B + 2[K€1Q0°B? + 4[K])/[M] B.16

Equations B.15 and B.16 can be solved as eigenvalue problems where each eigenvalue 0,,2 is the

square of parametric resonance frequency which gives the boundary between stable and unstable
regions in resonance frequency-driving amplitude plane. Equations B.15 and B.16 give upper and

lower boundaries of the instability region, respectively.
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APPENDIX-C

Example calculation of [M], [K] and [K¢]:
Substituting @; (x) = (%)”1 and @;(x) = (%)1'+1 in K;;, K¢;jand M;; given in chapter-2, one can

get,

f b(x)D1; (x) (axz )Hl) (axz ¢ )”1) dx = —ij(i”:j“) fOL b(x)Dy; (X)) 2dx

(C.1)
Ky = [ P& (E) & G 1)dx = DD 1Fp iy )it ax 2
My = [ pLb ()G dx = [ pyb(x) D)+ +2dx (C.3)
For m = 2 in Rayleigh-Ritz approximate series, U, W and T (given in chapter-2) becomes:
U= %(qi=1K11qj=1 + qi=1K129j=2 + qi=2K21q =1 + qi=2K22q;=7) (C.49)
W= %(Qi=1KC11CIj=1 + qi=1K€12q=2 + 42K 21qj=1 + 4i=2K€220=2) (C.5)
T =2 (qiesMirGje1 + QieaMizjcz + GieaMarGjoy + Gi=2Mazdjo2) (C.6)

Now using Lagrange’s equation for m = 2, one can get:

it(a('a-T )_ aa-T ang-JrW) 0
i( (qalT:l) 3 gl;l a(gl:;/) = {0} (C.7)

t a('Ii=2 a‘h:z afIi=2

M4 M12] %] [K11 K12] K¢, 0
.+ = C.8
[M21 M2 114, K1 Kz K¢y K22 ] [0] (C.8)
Shortly written as:

[M]{g} + ([K] + [K°D{q} = {0} (C.9)
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Using equation C.1 to C.3, for N layers in composite laminate one can write:

L x* x°
74 5
1= [ | B 5| ax
’ Ve
. 4 12x
_ O
K1 = [ bDu@) |y s dn
° 5 I8
L [4x*  6x°]
T
[KC]:fP(x)[6x3 9t dx
N S
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APPENDIX-D

Centrifugal force calculation

Centrifugal force calculation for composite ply and resin pocket (resin plies) in a doubly-tapered
laminate are described below:

For composite ply:

From chapter-2 centrifugal force is

P(x) = 7 b(8) p,(5)Q(R + x + 8)dé D.1
pL(8) = XN_1 pr(hi(8) — hye—1(8)), where (hy (8) — hy_1(8)) is variable distance between top
and bottom faces of a ply within x and L. For composite plies difference between top and bottom
face does not vary along the length, which implies

hi (6) — hy—1(8) = hy — hy—q

Here, h;, and h;_; for composite plies given at Appendix A. Substituting b(8) (given in chapter-
2) and (hy(6) — hy—1(6)) in equation D.1, finally one can get:
P(x) = 1—12prZ(Lbe + 3Rb,x + 2b,x? + 4Lb, — Lbyx + 6Rb, — 3Rbyx + 2b,x — 2byx?* +
2Lby + 6Rby + 4box)hyypy, (L — x) D.2
Centrifugal force at any point x for a composite ply in taper laminate can be calculated using

equation D.2. For example, if composite ply has following property:

Table D.1: Property of composite ply

Length of ply, L 0.25m
Individual ply thickness, h,;, | 0.000125 m
Width of ply, by 0.02m
Width ratio, rp, = :—L 01to1l

0
Rotational Velocity, Q 200 rad/s
Hub radius, R 0.025 m
Density (py) 1480 kg/m?®
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Then centrifugal force (P) can be plotted in 3D plane with respect to any point x and width-ratio

in the ply:

Figure D.1: Centrifugal force at any point x in the composite ply
Maximum centrifugal force P(x = 0) for a uniform width (1, = 1) ply also can be calculated
using exact formula of centrifugal force.

Exact formula of centrifugal force is
P=mﬂzr=p*b0*hply*L*Qz*(R+§) D.3
Here,

m(= p * by * hy;,, * L) is mass of the beam.
r=R+ g) Is distance from center of rotation to center of mass.

Using the ply property given in table D.1 one can get, P = 5.55 N. Which comply with figure D.1.
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For resin ply (Configuration-A):

In resin ply difference between top and bottom faces vary along the length (See Appendix A).

Therefore
hi(6) = —6 tan(A) + hy (D.4)
and hi-1(6) = =6 tan(B) + hy_4 (D.5)
Here, A =%*(g—k) and B =%*(§+ 1—k)
Finally
hi(8) — hg—1(6) = —(x + 6) tan(4) — (x + ) tan(B) + hy,, (D.6)

Substituting hy (6) — hy—1(6) in equation D.1 one can get:

P(x) =
1 P Q2 b, (Lrb —xr, —L +x) (L —x)3 (tan(B) —tan(A4))
4 L
1 ( p Q2 b, (xrb + L —x) (tan(B) —tan(A4))
3 L
p Q2 b, (Lrb —xr, —L —i—x) (xtan(B) —xtan(4) + hply)
+ L(L—2)
p Q2 b, (Lrb —xr, —L -I—x) (tan(B) —tan(4)) (R + x)
+ TATASES (L —2x
1 ( p Q2 b, (xrb +L —x) (xtan(B) —xtan(4) + hply)
2 L
[ p Q2 b, (xrb + L —x) (tan(B) —tan(4))
+ L

p Q2 b, (Lrb —xr,—L —i—x) (xtan(B) —xtan(4) + hph}) ]

/40 2 A

(D.7)
Centrifugal force at any point x for a resin ply in tapered laminate can be calculated using equation

D.7.
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APPENDIX-E

Validation of Rayleigh-Ritz solution for isotropic material

To validate the results for isotropic material, following exact solution can be used for non-rotating

clamped-free uniform beam [10]:

Ki / El
(OF} ZE m (El)

where, u;—1,3 = 3.516,22.034,61.701 for first three natural frequencies, L is the length of the

beam, A(= byhy) is the cross sectional area of the beam, p is the mass density of the isotropic

3
material, I(= %) is the moment of inertia of the beam cross section and E is the young modulus

of isotropic material.

Table E.1 Mechanical properties of Steel and Aluminum [29]

Material ——» Steel (AISI 1059) | Aluminum

Elastic modulus (E) 200 GPa 68 GPa
Density (p) 7870 kg/m?® 2698 kg/m?®

Poisson’s ratio (v) 0.29 0.36

The Rayleigh-Ritz energy formulation for composite material that described in section 2.3 can be
used for isotropic material by considering same mechanical properties in all three directions
(e.g. E; = E, =E; =Eand vy, =v,; =v). In Table E.2, first three out-of-plane bending
natural frequencies determined for non-rotating clamped-free uniform isotropic beam using
Rayleigh-Ritz (R-R) method, are compared with the exact solution and ANSY S results. The beam

is 25 cm long and width is 2 cm. The thickness of the beam is 4.5 mm.
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R-R Exact
Material Mode | solution . ANSYS
solution
(8 terms)
1% 61.265 58.632 59.105
Steel 2"d 383.94 367.44 369.91
3 1075.4 1028.9 1034.0
1% 62.587 58.391 59.179
Aluminum 2nd 398.23 365.92 370.40
3 1098.6 1024.7 1035.5

Table E.2 Natural frequencies (Hz) of non-rotating clamped-free uniform isotropic beam

As expected, results obtained from R-R method for non-rotating uniform isotropic beam is
showing very good agreement with the results obtained from ANSYS and exact solution.

In Table E.3, first three out-of-plane bending natural frequencies determined for rotating clamped-
free uniform isotropic beam using Rayleigh-Ritz (R-R) method, are compared with ANSYS
results. The hub radius is taken as 2.5 cm.

Table E.3 Natural frequencies (Hz) of rotating clamed-free uniform isotropic beam

Material | Mode I—RR | ANSYS| R-R | ANSYS| R-R [ ANSYS
Q=0 rad/s Q=100 rad/s Q=200 rad/s

15t 61.265 | 59.105 | 63.99 | 61.941 | 71.535]| 69.735

Steel 2nd 383.94 | 369.91 |386.4 | 372.42 |393.51| 379.86
3rd 1075.4 | 1034.0 | 1077.8 | 1036.5 | 1084.9 | 1043.9

15t 62.587 | 59.179 | 65.260 | 62.021 | 72.671 | 69.830

Aluminum | 2" 392.23 | 370.40 | 394.59 | 372.91 | 401.60 | 380.36
3 1098.6 | 1035.5 | 1100.9 | 1038.0 | 1107.9 | 1045.4

In Table E.4, first three out-of-plane bending natural frequencies determined for four different
types of rotating clamped-free isotropic beams using Rayleigh-Ritz (R-R) method, are compared
with ANSYS results. In this case, the width of the beam at fixed side is (b, =) 2 cm and the

thickness at fixed side is (hy=) 4.5 mm.
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Table E.4 Natural frequencies (Hz) of rotating clamped-free uniform isotropic beam

R-R |ANSYS| R-R [ANSYS

Type of beam Material | Mode 0=0 rad/s 0=200 tad/s
1% 61.265 | 59.105 | 71.535 | 69.735
Steel 2nd 383.94 | 369.91 | 393.51 | 379.86
Uniform Thickness 3rd 1075.4 | 1034.0 | 1084.9 | 1043.9
- Uniform width 1%t | 62.587 | 59.179 | 72.671 | 69.830

(h, = hgy, b, = by) | Aluminum | 2™ | 392.23 | 370.40 | 401.60 | 380.36
3d | 1098.6 | 1035.5 | 1107.9 | 1045.4
18t | 75.190 | 72.474 | 83.946 | 81.557

_ _ Steel 2" |7409.82 | 394.60 | 417.72 | 402.83
Uniform Thickness 39 | 11015 | 1058.3 | 1109.3 | 1066.4
- Tapered Width 10 | 76.813 | 72.531 | 85.403 | 81.637

(h, = hy, by, = %) Aluminum | 2@ | 418.66 | 395.02 | 426.40 | 403.26
30 | 11253 | 1059.6 | 1132.9 | 1067.7
1% | 66.626 | 64.140 | 76.761 | 74.653

_ Steel 2" | 319.16 | 307.30 | 329.36 | 317.91
Tapered Thickness - 39 | 82355 | 792.61 | 833.58 | 803.04
Uniform Width 1 [ 68.064 | 64.126 | 78.014 | 74.673

(hy =22, b, =by) | Aluminum [ 2" | 326.05 | 307.41 | 336.04 | 318.05
39 | 841.32 | 793.23 | 851.14 | 803.69
10 | 11145 | 107.15 | 118.16 | 114.14
Steel 2 | 396.89 | 381.56 | 403.28 | 388.23
Doubly-Tapered 3 | 917.02 | 880.82 | 923.19 | 887.26
(h, = % b, = ’1’—3 1% | 113.85 | 107.07 | 120.43 | 114.09
Aluminum | 2™ | 40545 | 381.45 | 411.71 | 388.14

39 | 036.81 | 880.77 | 942.85 | 887.22

In Figures E.1 to E.3, first three natural frequencies of out-of-plane bending vibration are plotted
for five different types of beams with respect to rotational velocity to compare the natural
frequencies of the composite beam and isotropic beam. From Figures E.1 to E.3, it can be stated
that, fiber orientation in the plies and double-tapering in the composite beam provide better design
options compared to the beam made with isotropic material. Also, from Figures E.1 to E.2, one
can see that natural frequencies of isotropic and composite beams increase with rotational velocity,
which implies that rotational velocity (centrifugal force) increases the total stiffness of the

composite and isotropic beams in case of out-of-plane bending vibration.
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Effect of rotational velocity
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Figure E.1 Variation of first natural frequency of out-of-plane bending vibration for different

types of rotating beams

Effect of rotational velocity
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Figure E.2 Variation of second natural frequency of out-of-plane bending vibration for different

types of rotating beams
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Effect of rotational velocity
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Figure E.3 Variation of third natural frequency of out-of-plane bending vibration for different

types of rotating beams

In Figures E.4 to E.6, first three instability regions of out-of-plane bending vibration due to
periodic rotational velocity, are plotted for three different types of doubly-tapered beams to
compare the widths of instability regions for composite beam and isotropic beam. The mean value
of rotational velocity is taken as 50 rad/s. From Figures E.4 to E.6, it can be stated that, doubly-
tapered composite beam has less width of instability region compared to the doubly-tapered

isotropic beam.
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Parametric Ratio

Figure E.4 First instability regions of out-of-plane bending vibration for different types of

Parametric Ratio

Figure E.5 Second instability regions of out-of-plane bending vibration for different types of
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Instability region - 3"4 Mode
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Figure E.6 Third instability regions of out-of-plane bending vibration for different types of
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