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ABSTRACT 

Free vibration and dynamic instability analyses of doubly-tapered rotating laminated 

composite beams  

Saemul Seraj 

Due to the outstanding engineering properties, such as high strength/stiffness to weight 

ratios, capability to be stiff at one location and flexible at another location and favorable fatigue 

characteristics, doubly-tapered composite beam is used in the rotating structures such as helicopter 

rotor blades and wind turbine blades. Due to its distinct characteristics from static beam and wide 

range of applications, rotating beam requires a comprehensive research to understand its dynamic 

response. Design of mechanical components using doubly-tapered composite beams requires a 

better understanding of their behavior in free vibration and their dynamic instability. In the present 

thesis, free vibration and dynamic instability analyses of doubly-tapered rotating cantilever 

composite beams are conducted considering three different types of vibrations (out-of-plane 

bending, in-plane bending and axial). Rayleigh-Ritz approximate method based on classical 

lamination theory has been employed to formulate the free vibration problem and solve it. 

Bolotin’s method is applied to determine the instability regions. Numerical and symbolic 

computations have been performed using the software MATLAB. The results for natural 

frequencies have been validated using Finite Element Analysis (FEA) tool ANSYS. A 

comprehensive parametric study is conducted in order to understand the effects of various design 

parameters. Moreover, critical speed of doubly-tapered rotating composite beam is determined and 

change of critical speed due to double-tapering is investigated. Also, change in maximum 

deflection due to rotational velocity and double-tapering is observed in this thesis. The material 

chosen in this thesis for numerical calculations is NCT-301 graphite-epoxy prepreg. 
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Chapter-1 

Introduction, literature review and scope of the thesis 

 

 

1.1       Vibration analysis of rotating structure 

Numerous engineering applications involve high speed rotating structures, which rotate 

about a symmetrical axis. Especially aerospace industries and wind energy plants use such 

structures. Due to distinct alteration from static beam and wide range of applications, rotating beam 

required a comprehensive research to understand the dynamic response of this physical system. 

The fundamental difference between rotating and non-rotating beams is the presence of centrifugal 

acceleration and Coriolis effects due to angular velocity, which significantly affect the dynamic 

behavior of rotating beam. Importantly vibration characteristic is altered due to the consideration 

of angular velocity.  

Vibration is a time dependent undesirable fluctuating motion from a state of equilibrium. 

More explicitly vibration may cause fatigue failure in a machine element due to repetitive stress 

development in a structure. In the case of rotating structures such as wind turbines, gas turbines, 

helicopter rotors and aircraft propellers that are often idealized as rotating beams, vibration 

increases fiercely due to rotating unbalance. In rotating beam, uneven distributed load due to 

rotation, displaces the center of pressure which results in unpleasant vibration. Free vibration of a 

rotating element referred to as vibration due to initial displacement which does not undergo any 

external force. Whenever this natural frequency of free vibration coincides with the frequency of 

external load (forced vibration) a resonance may occur which accelerates the vibration excessively 
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and leads to failure of the structure. This devastating effect can be avoided by analyzing vibration 

properly. 

1.2       Dynamic instability analysis of rotating structure 

Dynamic instability is a problem concerning with the structural behavior due to parametric 

vibration. This is a new branch of research study that provides engineers for the design of a 

structural member considering time-dependent load referred to as parametric excitation. In a 

rotating beam, parametric excitation can be caused by in-plane periodic load or by introducing 

periodic rotational velocity. Mechanical structures that operate within the instability region, will 

experience parametric resonance. This incident reduces the durability of structure and leads to 

unpredictable failure.  

Especially in an aircraft engine or in wind turbine, rotating blade experiences periodic 

aerodynamic load which changes the constant angular velocity to pulsating angular velocity. The 

excitation frequency involve in pulsating load may coincide with the natural frequency of free 

vibration and blade becomes dynamically unstable from nominal position.  

  Dynamic instability analysis has opened a new way to accurately design an engineering 

application, which is more similar to a practical appearance in the field. Although parametric 

vibration might not have an immediate effect, but it is a future threat for fatigue failure, if they 

continue to act. Therefore, dynamic instability analysis introduces a method to prevent the 

parametric vibration which is necessary to design a structure precisely which is out of immediate 

maintenance.  

1.3 Composite material in rotating structure 

A structural material where two or more constituents composed at macroscopic level and 

constituents are not soluble in each other is called composite material. One of the constituents in 
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composite material generally is continuous phase, called matrix and another is discontinuous phase 

called reinforcing material that may be in the form as fibers, particles or flakes. Fiber reinforced 

composite materials are often made in the form of a thin layer, which is called lamina. The different 

layers of the lamina are permanently bonded together under heat and pressure using a hot press or 

autoclave. Fiber orientation in each lamina and stacking sequences of layers can be chosen so as 

to achieve the desired strength and stiffness for specific applications. Nowadays composite 

materials are widely used in different applications such as aircraft and space structures, 

automobiles, submarine structure, sports equipment and medical prosthetic devices, in the 

structural form of bar, beam and plate. 

The use of composite structure in the design of mechanical systems has been increasing 

fast during the last few years due to the recent technological advances. Composite material has 

outstanding engineering properties, such as high strength/stiffness to weight ratios and favorable 

fatigue characteristics and due to this reason composite material is used in the design of rotating 

structure such as aircraft engine blades, helicopter rotor blades and wind turbine blades. Some 

specific applications such as helicopter blades, robot arms, turbine blades and satellite antenna 

need to be stiff at one location and flexible at another location. A typical example is a helicopter 

rotor blade, where a progressive variation in the thickness of the blade is required to provide high 

stiffness at the hub and flexibility in the middle of blade length to accommodate for flapping. This 

type of structure is formed by terminating or dropping off plies at the specified location to reduce 

the stiffness of that structure which is called tapered composite structure [6]. These elastic tailoring 

properties and more significant weight saving than commonly used laminated components allow 

an increasing use of tapered composite in commercial and military aircrafts. The first commercial 

composite rotor blade yoke assembly made of glass-fiber (S-2 glass)/epoxy composite was 
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fabricated at Bell helicopter Textron that provides more safety and endures several times more 

flight hours than traditional titanium or steel. The structural configuration possibilities provided 

by fiber reinforced composite materials are vital to enhance the dynamic behavior of rotating 

beams operating in complex environmental conditions. As a result of the mentioned advances in 

composite materials, the structural design concepts have changed substantially. 

1.4       Rayleigh-Ritz method 

Deriving the governing differential equations of a physical system is a complicated task 

and finding exact solutions to the governing differential equations is usually even more formidable. 

In order to solve such equations, approximate methods of analysis provide a convenient, alternative 

method for finding solutions. The Rayleigh-Ritz method is such a method, typically used in the 

literature and referred to as classical variational method. 

Lord Rayleigh was an English Physicist, published his renowned book Theory of Sound in 

1877. He explained the calculation method to determine fundamental natural frequency of a 

continuous system such as strings, bars, beams, membranes and plate in his book. The principle of 

Rayleigh’s method is based on assuming the mode shape and equating the maximum potential and 

kinetic energies in a cycle of motion. 

In 1908, Walter Ritz used principle of multiple admissible displacement functions to 

determine the frequencies and mode shapes of any structural member. He demonstrated his method 

by determining the natural frequency of a completely free square plate. Consequently, Rayleigh 

used the same principle in his book and another publication. After a while, many researchers used 

this method some calling it the ‘Ritz method’ and others the ‘Rayleigh-Ritz’ method. 

Rayleigh-Ritz method has gained the popularity in last few decades to accurately determine 

the natural frequencies and mode shapes of vibration of continuous systems, especially if the exact 
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solution is not available. This method becomes more applicable after the discovery of digital 

computer. The success of this method in a boundary value problem or in an eigenvalue problem 

depends on accurately assuming the solution in the form of series of approximate displacement 

functions which must satisfy the geometric boundary conditions.  

The mathematical basis of Finite Element Method (FEM) first comes from Rayleigh-Ritz 

method. The Rayleigh-Ritz (R-R) method discretize the structure by assuming solution in form of 

series instead of discretization by dividing into elements (FEM). One of the disadvantages of Finite 

Element Method is that one can only compute the displacement at locations where elements are 

connected (called ‘nodes’) and the displacement within the element is unknown. The Rayleigh-

Ritz method overcome this problem by assuming single displacement field that spans the entire 

structure.  

This thesis uses the Rayleigh-Ritz method to solve the eigenfrequency problem of a 

rotating composite beam and uses Finite Element Analysis tool – ANSYS to validate the results.  

1.5       Finite Element Method 

Since structural configurations were changing rapidly during the last few years, the existing 

methods were generally insufficient to deal with the variety and complexity of the new structural 

shapes. It was in this circumstance that the Finite Element Method (FEM) emerged as recognizable 

modern method in the mid-1980s. 

The greatest advantage of FEM is its ability to deal with arbitrary geometry, boundary 

conditions as well as arbitrary shape of non-homogeneous materials that are made up of numerous 

different material regions. The analysis of laminated composite beam is usually based on four 

approaches those are classical theory of elasticity, theory of mechanics of materials, variational 

statement and strain energy statement. The governing equations of motions are generally non-
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linear partial differential equations those are difficult to solve in the closed form. But the powerful 

numerical technique, Finite Element Method (FEM) made possible the analysis of complex 

structures such as tapered composite beam with the help of modern digital computers. The basic 

idea of the Finite Element Method is to find the approximate solution of complicated problem by 

replacing it with a simpler one. The speed of convergence and accuracy of the results obtained by 

finite element method are strongly dependent on the selected element type. In Conventional Finite 

Element (CFE), a beam element is modeled using two nodes at the ends where each node has two 

degrees of freedom (displacement and rotation). The beam should be divided into a large number 

of elements to achieve the accurate results. Higher-order Finite Element (HOFE) overcomes these 

difficulties considering four degrees of freedom (displacement, rotation, curvature and gradient of 

curvature) per node. In this thesis work, ANSYS® software is used which solves vibrational 

problems of complex structural shapes using Finite Element Method. 

1.6       Literature review 

A detailed literature review can be made to explore the contributions of researchers 

analyzing the vibration and stability of rotating beam. Composite material is a new inclusion on 

this specific type of engineering application. Before usage of composite material, homogeneous 

material has been used by researcher/engineer to build any complex machine structure but 

methodology to analyze has been revealed. In recent years researcher using composite material to 

design and analyze a rotating blade but geometry of a blade was restricted in uniform shape in 

most of the works. Researchers started analyzing tapered composite beam or plate but they are 

also limited to static condition. Following topic presents prehistory of vibration and dynamic 

instability analysis of rotating composite beam. 
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1.6.1 Free vibration analysis of rotating composite beam 

Southwell and Gough [46] were the first to estimate the modal characteristics of rotating 

cantilever beams, using the energy method. This method was simple and widely used by engineers 

who want to design rotating blades. In 1958, Scilhansl [47] used Ritz method and derived the 

equations of motion of rotating cantilever beams and obtained more accurate model to estimate 

the natural frequencies. These analytical models were introduced in the early stage of the rotating 

beam research. Using this method large number of numerical analysis have been performed by 

many researchers around the world (see, for instance, Putter and Manor [48], Yoo and Shin [23], 

Kuo and Lin [49]). However, all these results are involved with rotating beams problem that is 

made of isotropic material. 

Vibration characteristics of non-rotating composite structures were investigated in many 

previous works (Abarcar and Cunniff [50], Miller and Adams [51]), where most of the works were 

conducted for out-of-plane bending (transverse) vibration and rotary inertia effect has been 

ignored. Few researchers (Hodges et al [22], Krishnaswamy et al [52]) included shear deformation 

and rotary inertia effect in their analysis. Reddy [3], Berthelot [2] and Jones [4] have found the 

exact solutions for the free vibrations of uniform laminated composite beams. Few works have 

been found those are conducted for in-plane bending vibration (Hassan et al [40] and Vebil [41]).  

Several engineering components, such as turbine blade or helicopter rotor blade usually 

have non-uniform geometry. Therefore, determination of dynamic characteristics of non-uniform 

rotating composite beam has greater practical importance.  Ganesan and Zabihollah [11] analyzed 

the free vibration and buckling of uniform-width thickness-tapered composite beams using both 

conventional and advanced finite element formulations. They used two nodes per element and four 

degrees of freedom per node (deflection, slope, curvature, derivative of curvature) in the advanced 
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finite element formulations. Nabi and Ganesan [53] developed a general finite element formulation 

based on a first-order shear deformation theory with 16 degrees of freedom per element to study 

the free vibration characteristics of laminated composite beams. They also conducted a parametric 

study on the influence of beam geometry and boundary conditions on the natural frequencies of 

the beam. Eftakher [14] conducted free and forced vibration analysis of uniform-width thickness-

tapered laminated composite beams using Rayleigh-Ritz method and conventional and advanced 

finite element formulations. He used two nodes per element and four degrees of freedom per node 

in the advanced finite element formulation. Vijay [54], Pooya [13] and Mohammad [55] conducted 

the free and forced vibration analysis of thickness-tapered width-tapered laminated composite 

beams using Rayleigh-Ritz method, Conventional Finite Element Method and Hierarchical Finite 

Element Method, respectively. 

Most of the vibration analyses of rotating composite beam were restricted to uniform shape. 

Yoo et al [23] investigated the flap wise bending vibration of uniform composite laminated beam 

using Rayleigh-Ritz method in conjunction with Timoshenko beam theory. Chandiramani et al. 

[26] also conducted research on rotating composite beam using higher order shear deformation 

theory for hollow boxed beam. Coriolis effect has been ignored in their work. Kim et al. [24] 

considered Coriolis effect on a piezoelectric fiber composite beam to analyze the free vibration. 

Finite Element Method has been used in that case. Kaya et al. [21, 25] used differential transformed 

method to determine natural frequencies of axial and bending vibrations of rotating uniform 

Piezolaminated composite beam. Carrera [20] established a refined structural theory called Carrera 

Unified Formulation to do analysis for free vibration of rotating composite beam. Bakhtiari-Nejad 

et al. [19] determined fundamental frequency of free vibration considering nonlinear Von-Karman 

displacement theory. They have used differential transformed method to formulate the problem. 
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1.6.2 Dynamic instability analysis of rotating composite beam 

Dynamic instability analysis of a beam subjected to periodic loads is an important and 

advanced research topic. A number of research works can be traced to parametric resonance or 

dynamic instability of isotropic non-rotating beam. Bolotin [31] first comprehensively reviewed 

the research of dynamic instability problems in case of bar, plate and shell. Hyun and Yoo [56] 

studied the dynamic stability of an axially oscillating cantilever beam considering the stiffness 

variation. The dynamic stability of a rotating beam subjected to base excitation was investigated 

by Tan et al. [57]. 

With a few exceptions, most of these studies have addressed the axially oscillating 

problem. On the other hand, Yoo et al. [58] analyzed the dynamics of a rotating cantilever beam. 

They presented a linear modeling method for the dynamic analysis of a flexible beam undergoing 

overall motion. Based on this modeling method, Chung and Yoo [38] derived the partial 

differential equations of motion for a rotating cantilever beam and discretized by the Galerkin 

method to investigate the natural frequencies and time responses. This study investigates the 

dynamic stability for the flap wise motion of a cantilever beam by using the method of multiple 

scales, when the beam oscillates in the rotational direction.  

In relation to composite materials, Saravia et al. [34] first investigated the dynamic stability 

behavior of thin-walled rotating composite beams using Finite Element Method. Lin and Chen 

[35] studied the dynamic stability of a rotating composite beam with a constrained damping layer 

subjected to axial periodic loads. Chen et al. [59] investigated the dynamic stability of rotating 

composite shafts under axial periodic loads. Chattopadhyay and Radu [36] studied the dynamic 

instability of composite laminates using a higher order theory. 
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1.7       Objective of this thesis 

The main objectives of the present study are the following:  

1. To investigate the free vibration response in out-of-plane bending, in-plane bending and axial 

vibrations of doubly-tapered rotating cantilever composite beam using Rayleigh-Ritz method 

and FEA tool ANSYS. 

2. To investigate the dynamic instability due to periodic rotational velocity of doubly-tapered 

rotating cantilever composite beam considering out-of-plane bending, in-plane bending and 

axial vibrations. 

3. To conduct a comprehensive parametric study on the effects of rotational velocity, hub radius, 

double-taper ratio, taper configuration and laminate configurations on the free vibration and 

dynamic instability of the doubly-tapered rotating cantilever composite beams.  

4. To perform a detailed comparative study between out-of-plane bending and in-plane bending 

vibrations, in order to identify the fundamental frequency, first critical speed, maximum 

displacement and width of instability region. 

1.8       Layout of this thesis 

The present chapter provides a brief introduction and literature survey on free vibration 

and dynamic instability analysis of laminated composite beams. 

Chapter-2 is dedicated for free vibration and dynamic instability analyses of out-of-plane 

bending vibration of doubly-tapered rotating cantilever laminated composite beams using 

Rayleigh-Ritz method based on classical lamination theory. In the first part of Chapter 2, free 

vibration analysis is conducted considering different parameters such as rotational velocity, hub 

radius to beam length ratio, ply drop-off, double-taper ratio, stacking sequence and different taper 

configurations. Mode shapes and critical speed are also determined for doubly-tapered composite 
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beam. Determined natural frequencies are compared and validated with existing results obtained 

using Conventional Finite Element Method (CFEM) and FEA tool ANSYS. In the second part of 

this chapter dynamic instability analysis using Bolotin’s method is carried out for out-of-plane 

bending vibration of doubly-tapered composite beam subjected to time varying rotational speed. 

Boundaries between stable and unstable regions are determined in terms of resonance frequency 

and amplitude factor. Variation of width of instability region is compared for different parameters 

such as rotational velocity, double-taper ratio and stacking sequence. 

In Chapter-3, free vibration and dynamic instability analyses for in-plane and axial 

vibrations of doubly-tapered rotating laminated composite beam are carried out using Rayleigh-

Ritz method. Results for natural frequencies are compared and validated with existing reference 

and Finite Element Analysis tool ANSYS. Coriolis term and rotary inertia effect have been 

ignored. Variation of natural frequency and the width of instability region have been analyzed for 

different parameters changes. Mode shapes and critical speed are also determined in this chapter. 

In Chapter-4, a detailed comparative study is presented between out-of-plane bending and 

in-plane bending vibrations, in order to identify the fundamental frequency, critical speed, 

maximum displacement and largest width of instability region. Different taper configurations are 

also considered for this analysis.  

Chapter 5 brings the thesis to its end by providing an overall conclusion of the present work 

and some recommendations for future work. 
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Chapter-2 

Free vibration and dynamic instability analyses of doubly-tapered rotating laminated 

composite beams for out-of-plane bending vibration 

 

2.1       Introduction 

Free vibration and dynamic instability analyses of rotating laminated composite beam is 

an engineering research field of extensive interest. Laminated composite beam has the property to 

keep the required strength by having less weight, which has foremost importance in aerospace, 

mechanical and automotive structures. Recently, composite laminate which has a taper profile in 

both thickness and width throughout its length is increasingly being used in aerospace industry 

and wind energy sector as rotating element such as helicopter blade or wind turbine blade. 

Geometric non-linearity in the composite beam provides the provision to control the vibration. In 

this chapter, free vibration analysis for out-of-plane bending of thickness-and-width-tapered 

laminated composite beam is conducted using Rayleigh-Ritz method and also the dynamic 

instability analysis is carried out. Commercial Finite Element Analysis tool ANSYS is used to 

validate the results. NCT-301 Graphite/Epoxy prepreg has been chosen to conduct the numerical 

analysis, which is available in the laboratory of Concordia Centre for Composites (CONCOM). 

2.2       Description of the rotating beam  

Consider a laminated composite beam of length 𝐿, which is attached to a hub of radius 𝑅, 

as shown in the Figure 2.1 in Cartesian coordinates. The hub rotates about its axis at a constant 

angular speed Ω rad/s. The origin for the coordinates is taken at the edge of the hub. The 𝑥-axis 

coincides with the neutral axis of the beam, the 𝑧-axis is parallel to the axis of rotation and the 𝑦-

axis lies in the plane of rotation.                
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Figure 2.1 Doubly-tapered rotating composite beam 

View on 𝑦-𝑧 plane illustrates beam changing the thickness from ℎ0 to ℎ𝐿 and changing its width 

from 𝑏0 to 𝑏𝐿 over the length 𝐿. The laminated composite beam consists of N layers, numbered 

from the lower to the upper face. To study the out-of-plane bending vibration, 𝑥-𝑦 plane is chosen 

as mid-surface and reference plane. Half of the layers of laminated beam are in positive 𝑧-direction 

and the other half are in negative 𝑧-direction. Half of the width is in positive 𝑦-direction and the 

other half is in negative 𝑦-direction. 

Any system with mass and elasticity can undergo free vibration. Free vibration analysis of 

the above composite beam requires associated equation of motion. The Lagrange’s equation can 

be used to obtain the equation of motion of this physical system. To use this equation, total strain 

energy, including work done by the centrifugal force and kinetic energy of the system, needs to be 

determined. Energies of any complex system can be formulated using approximated solution 

methods such as Galerkin method or Rayleigh-Ritz method to determine the natural frequencies 

in free vibration. In this thesis, Rayleigh-Ritz method is used to determine the natural frequencies 

of doubly-tapered rotating laminated composite beam. This method uses series of shape functions 

to obtain fundamental frequencies more accurately. The success of this method depends on the 

choice of the shape functions that should satisfy the geometric boundary conditions.  
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2.3       Energy formulation using Rayleigh-Ritz method 

2.3.1 Strain energy  

Strain energy is the energy stored by a system undergoing deformation. Considering that 

the beam’s length to thickness ratio is high, Classical Laminate Theory (CLT) can be used to 

determine the strain energy which assumes that transverse shear strains are zero and neglects 𝑧-

direction stress, that is 𝜎𝑧𝑧
𝑘 = 0, and 𝛾𝑥𝑧

𝑘 = 𝛾𝑦𝑧
𝑘 = 0. Therefore, strain energy for a laminate 

with N layers can be written as: 

        𝑈 = ∑
1

2
∭(𝜎𝑥𝑥

𝑘𝜀𝑥𝑥
𝑘 + 𝜎𝑦𝑦

𝑘𝜀𝑦𝑦
𝑘 + 𝜏𝑥𝑦

𝑘𝛾𝑥𝑦
𝑘) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑁

𝑘=1    (2.1) 

where 𝜎𝑥𝑥
𝑘 and 𝜎𝑦𝑦

𝑘 denote the stresses in corresponding layer along the 𝑥 and 𝑦 directions, 

respectively, 𝜀𝑥𝑥
𝑘 and 𝜀𝑦𝑦

𝑘 denote the strain in corresponding layer along 𝑥 and 𝑦 directions, 

respectively. 𝜏𝑥𝑦
𝑘 is shear stress and 𝛾𝑥𝑦

𝑘 is shear strain in the corresponding layer acting on the 

𝑥-𝑦 plane. 

As shown in the Figure 2.1, a doubly-tapered laminated composite beam has length 𝐿, 

width of ply changes from 𝑏0 to 𝑏𝐿 and the ply lies between ℎ𝑘 and ℎ𝑘−1, then the strain energy 

equation can be written as: 

𝑈 = ∑
1

2
∫ ∫ ∫ (𝜎𝑥𝑥

𝑘𝜀𝑥𝑥
𝑘 + 𝜎𝑦𝑦

𝑘𝜀𝑦𝑦
𝑘 + 𝜏𝑥𝑦

𝑘𝛾𝑥𝑦
𝑘)

ℎ𝑘

ℎ𝑘−1

𝑏(𝑥)

2

−
𝑏(𝑥)

2

𝐿

0
𝑑𝑧 𝑑𝑦 𝑑𝑥𝑁

𝑘=1                    (2.2) 

Here, for linearly width-tapered beam the variable width 𝑏(𝑥) can be defined as: 

        𝑏(𝑥) = 𝑏0 −
(𝑏0−𝑏𝐿)

𝐿
𝑥                 (2.3) 

For a thickness-tapered laminated beam, ℎ𝑘 is the distance from mid-plane to top of the k-th lamina 

and ℎ𝑘−1 is the distance from mid-plane to bottom of the k-th lamina. Expressions for ℎ𝑘 and ℎ𝑘−1 

depend on different types of internal mid-plane tapered laminates obtained by configuring the ply 

drop-off at different locations of the laminate (see Appendix-A).  
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Considering plane stress assumption [5], stresses in the k-th ply are written as follows: 

     [

𝜎𝑥𝑥
𝑘

𝜎𝑦𝑦
𝑘

𝜏𝑥𝑦
𝑘

] = [𝑄𝑘] [

𝜀𝑥𝑥
𝑘

𝜀𝑦𝑦
𝑘

𝛾𝑥𝑦
𝑘

]        (2.4) 

here,      [𝑄𝑘] = [

𝑄11
𝑘 𝑄12

𝑘 𝑄16
𝑘

𝑄21
𝑘 𝑄22

𝑘 𝑄26
𝑘

𝑄61
𝑘 𝑄62

𝑘 𝑄66
𝑘

]        (2.5) 

[𝑄𝑘] is transformed reduced stiffness matrix of a composite ply, which is a function of mechanical 

properties of composite material and the transformation matrices due to fiber angle (𝜃) and 

laminate taper angle (𝜑) [12]. For resin plies in taper configurations, [𝑄𝑘] is replaced with [𝑄𝑟𝑒𝑠𝑖𝑛], 

which can be defined by the mechanical properties of resin as: 

                                         [𝑄𝑟𝑒𝑠𝑖𝑛] =

[
 
 
 
 

𝐸

1−𝑣2

𝑣𝐸

1−𝑣2 0

𝑣𝐸

1−𝑣2

𝐸

1−𝑣2 0

0 0
𝐸

2(1+𝑣)]
 
 
 
 

           (2.6) 

In equation (2.4) strains in a ply for out-of-plane bending deformation can be defined as: 

[

𝜀𝑥𝑥
𝑘

𝜀𝑦𝑦
𝑘

𝛾𝑥𝑦
𝑘

] = [𝜀0] + 𝑧[𝑘] =

[
 
 
 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥 ]
 
 
 
 

+ 𝑧

[
 
 
 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦]
 
 
 
 

                (2.7) 

where [𝜀0] is mid-plane strain matrix and [𝑘] is curvature matrix for out-of-plane bending 

deformation. 𝑢0, 𝑣0 and 𝑤0 are mid-plane displacements corresponding to 𝑥, 𝑦 and 𝑧 directions, 

respectively. 

Substituting equation (2.7) into equation (2.4), the stress-strain relation leads to: 

[

𝜎𝑥𝑥
𝑘

𝜎𝑦𝑦
𝑘

𝜏𝑥𝑦
𝑘

] = [𝑄𝑘] [𝜀0] + 𝑧[𝑄𝑘] [𝑘]    (2.8) 
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Substituting 𝜎𝑥𝑥
𝑘 , 𝜎𝑦𝑦

𝑘 and 𝜏𝑥𝑦
𝑘 in equation (2.2), strain energy equation becomes: 

𝑈 = ∑
1

2
∫ ∫ ∫ (𝑄11

𝑘(𝜀𝑥𝑥
𝑘)2 + 𝑄22

𝑘(𝜀𝑦𝑦
𝑘)2 + 𝑄66

𝑘(𝛾𝑥𝑦
𝑘)2 + 2𝑄12

𝑘𝜀𝑥𝑥
𝑘𝜀𝑦𝑦

𝑘 +
ℎ𝑘

ℎ𝑘−1

𝑏(𝑥)

2

−
𝑏(𝑥)

2

𝐿

0
𝑁
𝑘=1

2𝑄16
𝑘𝜀𝑥𝑥

𝑘𝛾𝑥𝑦
𝑘 + 2𝑄26

𝑘𝜀𝑦𝑦
𝑘𝛾𝑥𝑦

𝑘) 𝑑𝑧 𝑑𝑦 𝑑𝑥      (2.9) 

For pure out-of-plane bending deformation, 𝜀𝑦𝑦
𝑘and 𝛾𝑥𝑦

𝑘 are can be neglected. Also neglecting 

small axial mid-plane displacement 𝑢0, strain energy expression simplifies to: 

𝑈 = ∑
1

2
∫ ∫ ∫ 𝑄11

𝑘(−𝑧
𝜕2𝑤0

𝜕𝑥2 )2ℎ𝑘

ℎ𝑘−1

𝑏(𝑥)

2

−
𝑏(𝑥)

2

𝐿

0
𝑑𝑧 𝑑𝑦 𝑑𝑥𝑁

𝑘=1    (2.10) 

From Classical Laminate Theory: 

∑ ∫ 𝑧2𝑄11
𝑘
𝑑𝑧 = 𝐷11(𝑥)

ℎ𝑘

ℎ𝑘−1

𝑁
𝑘=1     (2.11) 

where, 𝐷11(𝑥) is the first coefficient of bending stiffness matrix for out-of-plane bending. Using 

equation (2.11) and integrating with respect to 𝑦 across the width of the laminate, equation (2.10) 

becomes: 

𝑈 =
1

2
∫ 𝑏(𝑥)𝐷11(𝑥)(

𝜕2

𝜕𝑥2 𝑤0(𝑥, 𝑡))2𝑑𝑥
𝐿

0
   (2.12) 

To use Rayleigh-Ritz method, out-of-plane bending displacement is assumed as: 

         𝑤0(𝑥, 𝑡) = ∑ ∅𝑖(𝑥)𝑞𝑖(𝑡)
𝑚
𝑖=1                   (2.13) 

where, ∅𝑖(𝑥) is approximate shape function for out-of-plane bending deformation. Any compact 

set of admissible functions that satisfy the geometric boundary conditions of the beam can be used 

as the shape functions and 𝑞𝑖(𝑡) is generalized coordinate where 𝑡 refers to time and 𝑚 is number 

of terms in 𝑤0. After using Rayleigh-Ritz approximation for out-of-plane bending displacement, 

equation (2.12) leads to: 

𝑈 = ∑ ∑
1

2
∫ 𝑏(𝑥)𝐷11(𝑥) (

𝜕2

𝜕𝑥2
∅𝑖(𝑥))(

𝜕2

𝜕𝑥2
∅𝑗(𝑥))𝑞𝑖(𝑡)𝑞𝑗(𝑡)𝑑𝑥

𝐿

0
𝑚
𝑗=1

𝑚
𝑖=1       (2.14) 
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Finally,    

𝑈 = ∑ ∑
1

2
𝑞𝑖𝐾𝑖𝑗𝑞𝑗

𝑚
𝑗=1

𝑚
𝑖=1          (2.15) 

Here,    

    𝐾𝑖𝑗 = ∫ 𝑏(𝑥)𝐷11(𝑥)∅𝑖
′′(𝑥)∅𝑗

′′(𝑥)𝑑𝑥
𝐿

0
        (2.16) 

2.3.2 Work done by the centrifugal force 

            When the free end of a cantilever rotating beam deflects transversely (out-of-plane 

bending), particles of the beam have a small axial displacement due to centrifugal force. The work 

done by this centrifugal force and corresponding axial displacement produces centrifugal stiffening 

that has effects on the natural frequency of free vibration. This axial displacement can be expressed 

in terms of transverse displacement as: 

𝑑𝑢 = 𝑑𝑠 − 𝑑𝑥 = √(𝑑𝑥)2 + (
𝜕𝑤0

𝜕𝑥
𝑑𝑥)

2

− 𝑑𝑥 = 𝑑𝑥(√1 + (
𝜕𝑤0

𝜕𝑥
)
2

− 1) ≈
1

2 
(
𝜕𝑤0

𝜕𝑥
)2𝑑𝑥   (2.17) 

Here 𝑑𝑥 is the length of an undeformed infinitesimal beam element and 𝑑𝑠 is the deformed arc 

length of the infinitesimal beam element shown in the Figure 2.2. 

         

Figure 2.2 (a) Transversely deflected cantilever beam, (b) Geometrical representation 

If 𝑃(𝑥) is the centrifugal force at any point 𝑥, then work done by this centrifugal force in doubly-

tapered laminated composite beam can be written as:    

     𝑊 = 𝑃(𝑥) ∗ 𝑢                     (2.18) 

(a) (b) 

𝒅𝒙 

𝝏𝒘𝟎

𝝏𝒙
𝒅𝒙 
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Or:             

     𝑊 =
1

2
∫ 𝑃(𝑥)(

𝜕

𝜕𝑥
𝑤0(𝑥, 𝑡))2𝑑𝑥

𝐿

0
      (2.19) 

Here, 𝑃(𝑥) for the doubly-tapered laminate can be written as:          

                𝑃(𝑥) = ∫ 𝑏(𝛿)
𝐿−𝑥

0
𝜌𝐿(𝛿)Ω2(𝑅 + 𝑥 + 𝛿)𝑑𝛿       (2.20)  

Here, 𝑏(𝛿) = 𝑏(𝑥) −
𝑏(𝑥)−𝑏𝐿

𝐿−𝑥
𝛿 is variable width of a ply within 𝑥 and 𝐿 (shown in Figure 2.3), 

𝜌𝐿(𝛿) = ∑ 𝜌𝑘(ℎ𝑘(𝛿) − ℎ𝑘−1(𝛿))𝑁
𝑘=1 , where (ℎ𝑘(𝛿) − ℎ𝑘−1(𝛿)) is variable distance between top 

and bottom faces of a ply within 𝑥 and 𝐿 (see Appendix-D) and 𝜌𝑘 is mass density of ply. 

 

Figure 2.3 Doubly-tapered rotating composite beam (x-y plane view) 

Substituting Rayleigh-Ritz approximate function, equation (2.19) can be written as:    

                            𝑊 = ∑ ∑
1

2
∫ 𝑃(𝑥)

𝜕

𝜕𝑥
∅𝑖(𝑥)

𝜕

𝜕𝑥
∅𝑗(𝑥)𝑞𝑖(𝑡)𝑞𝑗(𝑡)𝑑𝑥

𝐿

0
𝑚
𝑗=1

𝑚
𝑖=1       (2.21) 

Finally,    

     𝑊 = ∑ ∑
1

2
𝑞𝑖𝐾

𝐶
𝑖𝑗𝑞𝑗

𝑚
𝑗=1

𝑚
𝑖=1       (2.22) 

Here,  

                       𝐾𝐶
𝑖𝑗 = ∫ 𝑃(𝑥)∅𝑖

′(𝑥)∅𝑗
′(𝑥)𝑑𝑥

𝐿

0
     (2.23) 

2.3.3 Kinetic energy 

The kinetic energy of an elastic body depends on the mass of the body as well as its 

velocity. The kinetic energy of a doubly-tapered rotating composite beam can be expressed as: 
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𝑇 =
1

2
∫ ∫ 𝜌𝐿𝑏(𝑥)(𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2)𝑑𝑦𝑑𝑥
𝑏(𝑥)

2

−
𝑏(𝑥)

2

𝐿

0
                   (2.24) 

Here, 𝜌𝐿 = ∑ 𝜌𝑘(ℎ𝑘 − ℎ𝑘−1)
𝑁
𝑘=1  denotes the mass per unit length per unit width of the laminated 

beam and 𝑉𝑥,  𝑉𝑦 and  𝑉𝑧  are the velocity components in x, y and z directions, respectively. The 

velocity vector gives the velocity components of an object with its direction. The velocity vector 

of any point in a rotating composite beam can be expressed as [16]:                        

�⃗� =
𝜕𝑟 

𝜕𝑡
+ Ω�̂� × {(𝑅 + 𝑥 + 𝑢0)𝑖̇̂ + 𝑣𝑗̇̂ + 𝑤�̂�} =

𝜕𝑢

𝜕𝑡
𝑖̇̂ +

𝜕𝑣

𝜕𝑡
𝑗̇̂ +

𝜕𝑤

𝜕𝑡
�̂� + Ω�̂�  × {(𝑅 + 𝑥 + 𝑢0)𝑖̇̂ +

𝑣𝑗̇̂ + 𝑤�̂�}               (2.25)    

where 𝑢, 𝑣 and 𝑤 are the displacements in 𝑥, 𝑦 and 𝑧 directions, respectively and 𝑟 ⃗⃗  is position 

vector after deformation. 𝑖̇̂, 𝑗̇̂ and �̂� are unit vectors in 𝑥, 𝑦 and 𝑧 directions, respectively. Neglecting 

displacement in 𝑦 direction and applying vector cross-product formula (�̂� × �̂� = 0, �̂� × 𝑖̇̂ = 𝑗̇̂, �̂� ×

𝑗̇̂ = −𝑖̇̂), equation (2.25) can be written as: 

   �⃗� =
𝜕𝑢

𝜕𝑡
𝑖̇̂ + Ω(𝑅 + 𝑥 + 𝑢0)𝑗̇̂ +

𝜕𝑤

𝜕𝑡
�̂�    (2.26) 

Therefore, velocity components in three directions are:                                                                              

                                                    𝑉𝑥 =
𝜕𝑢

𝜕𝑡
, 𝑉𝑦 = Ω(𝑅 + 𝑥 + 𝑢0)  and  𝑉𝑧 =

𝜕𝑤

𝜕𝑡
         (2.27) 

From Classical Laminate Theory and neglecting small axial mid-plane displacement one can get: 

𝑢(𝑥, 𝑡) = −𝑧
𝜕𝑤0(𝑥,𝑡)

𝜕𝑥
     (2.28) 

        𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡)         (2.29) 

Using equation (2.27) to (2.29) into the equation (2.24), the kinetic energy equation of a doubly-

tapered rotating laminated composite beam becomes: 

                                         𝑇 =
1

2
∫ 𝜌𝐿𝑏(𝑥){(

𝜕𝑤0

𝜕𝑡
)
2

+ Ω2(𝑅 + 𝑥)2 + (−𝑧
𝜕2𝑤0

𝜕𝑥𝜕𝑡
)2}𝑑𝑥

𝐿

0
       (2.30) 
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According to Euler-Bernoulli theory for thin beam, rotary inertia terms can be neglected [3], then 

the equation (2.30) for kinetic energy becomes:       

               𝑇 =
1

2
∫ 𝜌𝐿𝑏(𝑥){(

𝜕𝑤0

𝜕𝑡
)
2

+ Ω2(𝑅 + 𝑥)2}𝑑𝑥
𝐿

0
                (2.31) 

After using Rayleigh-Ritz approximation, equation (2.31) simplifies to                                        

    𝑇 = ∑ ∑
1

2
∫ 𝜌𝐿𝑏(𝑥)∅𝑖(𝑥)∅𝑗(𝑥)𝑞�̇�(𝑡)𝑞�̇�(𝑡)𝑑𝑥

𝐿

0
𝑚
𝑗=1 +

1

2
 ∫ 𝜌𝐿𝑏(𝑥)Ω2(𝑅 + 𝑥)2𝑑𝑥

𝐿

0
𝑚
𝑖=1    (2.32) 

Finally, 

                               𝑇 = ∑ ∑
1

2
 𝑞�̇�(𝑡)𝑀𝑖𝑗𝑞�̇�(𝑡)

𝑚
𝑗=1

𝑚
𝑖=1  +

1

2
 ∫ 𝜌𝐿𝑏(𝑥)Ω2(𝑅 + 𝑥)2𝑑𝑥

𝐿

0
       (2.33) 

Here, 

                                                 𝑀𝑖𝑗 = ∫ 𝜌𝐿𝑏(𝑥)∅𝑖(𝑥)∅𝑗(𝑥)𝑑𝑥
𝐿

0
      (2.34) 

2.3.4 Equation of motion 

Equation of motion describes a physical system as a function of time. For this particular 

free vibration problem, Lagrange’s equation can be written as [44]: 

  
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞�̇�
) −

𝜕 𝑇

𝜕𝑞𝑖
+

𝜕 (𝑈+𝑊)

𝜕𝑞𝑖
= 0 , 𝑖 = 1. .𝑚         (2.35) 

Substituting 𝑈, 𝑊 and 𝑇 from equations (2.15), (2.22) and (2.33), respectively into the equation 

(2.35), gives a set of m equations that can be written in matrix form as 

[𝑀]{�̈�} + ([𝐾] + [𝐾𝐶]){𝑞} = {0}    (2.36) 

where, [𝑀], [𝐾], [𝐾𝐶] and {𝑞} are mass matrix, stiffness matrix, stiffness matrix due to centrifugal 

action and system displacement vector, respectively (see Appendix-C). 

To find the natural frequency of a structure, the solution of the equation (2.36) can be assumed as 

  {𝑞} = {𝑄}𝑒√−1𝜔𝑡       (2.37) 

where, {𝑄} is the mode shape (eigen) vector and 𝜔 is the natural frequency of the out-of-plane 

bending vibration. Using equation (2.37), equation (2.36) leads to: 
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(([𝐾] + [𝐾𝐶]) − 𝜔𝑖
2
[𝑀]){𝑄}𝑒√−1𝜔𝑡 = {0}     (2.38) 

Equation (2.38) is an eigenvalue problem and can be solved to determine the natural frequencies 

of the doubly-tapered rotating cantilever laminated composite beam.  

2.4       Boundary condition and approximate shape function 

Rayleigh-Ritz method uses series of shape functions where each function gives the result 

for each mode, which means that the number of natural frequencies and modes depend on the 

number of shape functions used. This method serves best depending on the choice of the shape 

functions that must satisfy the geometric boundary conditions. 

Rotating structure such as helicopter rotor blade or wind turbine blade is usually attached with the 

hub at one side and the other side is free. For a beam of length 𝐿, that is fixed at one end and free 

at the other end, the boundary conditions are [2,3]: 

𝑤0(𝑥=0) = 0,𝑤0(𝑥=𝐿)
≠ 0,  

𝜕𝑤0

𝜕𝑥
|
(𝑥=0)

= 0 𝑎𝑛𝑑  
𝜕𝑤0

𝜕𝑥
|
(𝑥=𝐿)

≠ 0   (2.39) 

Various trial functions can satisfy this boundary condition. One of the simple polynomial functions 

is [10]: 

∅𝑖(𝑥) = (
𝑥

𝐿
)𝑖+1 , 𝑖 = 1,2,3…𝑚    (2.40) 

2.5       Validation and results 

Rayleigh-Ritz formulation for free vibration analysis described above has been developed 

using MATLAB for validation and numerical analysis. Validation of results have been performed 

by comparing the existing results available in the literature and the results obtained using ANSYS. 

Results available for non-rotating tapered composite beam have been compared with the results of 

the present work for free vibration response. In the case of rotating composite beam, ANSYS result 

has been compared with the present work. First three natural frequencies are taken into account to 
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perform the validation. Four different taper configurations (see Appendix-A) are considered for 

validation and numerical analysis. Validation of results for isotropic material are given in 

Appendix-E. Following flowchart is considered as a required step to validate the final result.   

         

Figure 2.4 Flowchart for required validation steps 

The geometric parameters and mechanical properties of the material used are listed below. 

Table 2.1 Mechanical properties of unidirectional NCT-301 graphite-epoxy prepreg [55] 

Longitudinal modulus (𝐸1) 113.9 GPa 

Transverse modulus (𝐸2) 7.985 GPa 

𝐸3 = 𝐸2 7.985 GPa 

In-plane shear modulus (𝐺12) 3.137 GPa 

Out-of-plane shear modulus (𝐺23) 2.852 GPa 

Density of fiber (𝜌𝑓) 1480 kg/m3 

Major Poisson’s ratio (𝜐12) 0.288 

Minor Poisson’s ratio (𝜐21) 0.018 

 

Table 2.2 Mechanical properties of resin material [55] 

Elastic modulus (𝐸) 3.93 GPa 

Shear modulus (𝐺) 1.034 GPa 

Density of resin (𝜌𝑟) 1000 kg/m3 

Major Poisson’s ratio (υ) 0.37 

STEP 1

Result 
verification 
for rotating 

uniform  
composite 

beam

STEP 2

Result 
verification 

for thickness-
tapered 
rotating 

composite 
beam 

STEP 3

Result 
verification 
for doubly-

tapered 
rotating 

composite 
beam 
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Rotational and geometric parameters used for steps 1 to 3 are given below: 

Table 2.3 Rotational parameters used in validation and numerical analysis 

Rotational Velocity, Ω 0, 50, 100, 200 rad/s 

Hub radius, 𝑅 0.025 m 

 

Table 2.4 Geometric properties used in validation and numerical analysis 

Length of beam, 𝐿 0.25 m 

Individual ply thickness, ℎ𝑝𝑙𝑦 0.000125 m 

Width of beam, 𝑏0 0.02 m 

Laminate stacking sequence [0/90]9s , [0]18s, [90]18s, [0/45/-45]6s 

All the laminates used in this thesis have symmetrical stacking sequence. In this thesis 

thickness-tapering in the laminated beam is described by the number of ply drop-off (𝑆). Thickness 

taper angle and number of ply drop-off are related by the following equation: 

𝜑 = 𝑡𝑎𝑛−1(
(
𝑆

2
) ℎ𝑝𝑙𝑦

𝐿
)     (2.41) 

Here, 𝜑 is thickness taper angle, 𝑆 is number of ply drop-off, 𝐿 is length of the beam and ℎ𝑝𝑙𝑦 is 

individual ply thickness. 

Width-tapering is described by width-ratio (𝑟𝑏) as: 

𝑟𝑏 =
𝑏𝐿

𝑏0
       (2.42) 

Here, 𝑏0 is width of beam at fixed side and 𝑏𝐿  is width of beam at free side. 

2.5.1    Finite element program-ANSYS 

The commercial finite element program ANSYS 15.0 Workbench platform has been 

chosen to perform the modal analysis. Modal analysis for a rotating beam problem is a pre-stressed 

analysis where static analysis has to be done before modal analysis to set up the boundary condition 

and rotational load. ANSYS Composite PrepPost (ACP) has been used to model the different taper 

configurations in laminated composite beams. Four-node layered shell element (SHELL 181) is 
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employed in the modeling to describe the bending vibrations of laminated beams. The beams are 

discretized using the finite element (SHELL 181) shown in Figure 2.5, available in the commercial 

package ANSYS 15.0. This element has 4 nodes (I, J, K and L are shown in Figure 2.5) and six 

degrees of freedom at each node: translations in the nodal x, y and z directions and rotations about 

the nodal x, y, and z-axes. The circled number in Figure 2.8 represents the element faces. The 

choice of SHELL 181 element type is based on layered applications of a structural shell model and 

the type of results that need to be calculated. 

 

Figure 2.5 Geometry of finite element- SHELL181 [28] 

2.5.2     Validation step-1: Rotating uniform composite beam 

             In this validation step non-rotating and rotating uniform composite beams are considered. 

In Table 2.5, first three out-of-plane bending natural frequencies determined for non-rotating  

clamped-free uniform composite beam using Rayleigh-Ritz (R-R) method, are compared with the 

exact solution, ANSYS results and existing results obtained using Conventional Finite Element 

Method (CFEM). Results obtained using different number of terms in Rayleigh-Ritz approximate 

shape function are also listed in Table 2.5. It shows that as the number of terms increases the results 

become more accurate. In Table 2.6, first three out-of-plane bending natural frequencies for 

rotating clamped-free uniform composite beam have been compared with ANSYS results. Beam 

length, width, thickness of the lamina and hub radius are given in Tables 2.3 and 2.4. Mechanical 
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properties of composite material are given in Table 2.1. Different stacking sequences are 

considered to compare the results. The mode shapes associated with the frequencies of [0/90]9s 

and [0/45-45]6s non-rotating laminated beams are illustrated in Figures 2.6 and 2.7 respectively, 

and these are deduced from ANSYS for the first three out-of-plane bending natural frequencies. 

Table 2.5 Natural frequencies (Hz) of non-rotating uniform cantilever composite beam 

Stacking 

Sequence 
Mode 

R-R 

solution 

(3 terms) 

R-R 

solution 

(7 terms) 

R-R 

solution 

(8 terms) 

CFEM 

[13] 

Exact 

solution 

ANSYS 

 

 

[0/90]9s 

1st 77.49 77.47 77.47 77.51 77.99 77.34 

2nd 489.9 485.5 485.5 485.6 485.4 481.2 

3rd 2603.1 1359.8 1359.4 1360.1 1359.2 1333.4 

 

[90]18s 

1st 27.09 27.08 27.08 27.06 27.08 27.02 

2nd 171.2 169.7 169.6 169.8 169.7 169.5 

3rd 909.9 475.3 474.8 475.4 475.2 476.2 

 

[0]18s 

1st 102.3 102.3 102.3 102.3 102.3 101.8 

2nd 646.7 640.9 640.6 641.1 640.9 629.0 

3rd 3436.5 1795.1 1793.23 1795.4 1794.8 1725.5 

 

[0/45/-45]6s 

1st 77.56 77.57 77.69 77.67 77.58 69.78 

2nd 490.5 486.1 486.7 486.2 487.4 434.9 

3rd 2606.6 1361.6 1362.3 1361.9 1361.4 1211.0 

 

In Table 2.5, the formula for exact solution given by [2]      

     𝜔𝑖 =
𝜇𝑖

2𝜋𝐿2 √
𝐷11

𝜌𝐻
        (2.43) 

has been used where, 𝜇𝑖=1,2,3 = 3. 516, 22.034, 61.701 for first three natural frequencies, 𝐿 is the 

length of the beam, 𝐻 is the thickness of the laminate, 𝜌 is the mass density of the composite 

material and 𝐷11 is the first coefficient in bending stiffness matrix of composite laminate. The 

comparison has been made with the existing results [13], that used Conventional Finite Element 

Method considering the cylindrical bending theory. Total of 10 elements were used to get the 

convergence in the result with exact solution, considering two degrees of freedom per node and 

four degrees of freedom per element. 
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Figure 2.6 The first three out-of-plane bending vibration modes of non-rotating uniform 

cantilever composite beam with [0/90]9s stacking sequence 

 

 

Figure 2.7 The first three out-of-plane bending vibration modes of non-rotating uniform 

cantilever composite beam with [0/45/-45]6s stacking sequence 

1st Mode 

77.34 Hz 

2nd Mode 

481.2 Hz 

3rd Mode 

1333.4 Hz 

1st Mode 

69.78 Hz 

 

2nd Mode 

434.9 Hz 

 

3rd Mode 

1211.0 Hz 
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Table 2.6 Natural frequencies (Hz) of rotating uniform cantilever composite beam 

Stacking 

Sequence 

 

Mode 

Ω = 50 rad/s Ω = 100 rad/s Ω = 200 rad/s 

R-R 

Solution 

(8 terms) 

ANSYS 

R-R 

Solution 

(8 terms) 

ANSYS 

R-R 

Solution 

(8 terms) 

ANSYS 

 

[0/90]9s 

1st 78.02 77.89 79.65 79.52 85.83 85.70 

2nd 486.0 481.7 487.4 483.13 493.1 488.9 

3rd 1360.3 1334.0 1361.7 1335.4 1367.3 1341.2 

 

[90]18s 

1st 28.61 28.55 32.77 32.72 45.62 45.58 

2nd 171.1 170.9 175.1 174.9 190.4 190.2 

3rd 476.7 477.5 480.7 481.5 496.5 497.3 

 

[0]18s 

1st 102.7 102.2 103.9 103.5 108.8 108.3 

2nd 641.3 629.4 642.4 630.5 646.7 634.9 

3rd 1795.5 1725.8 1796.5 1726.9 1800.8 1731.4 

 

[0/45/-45]6s 

1st 78.12 70.39 79.75 72.19 85.92 78.99 

2nd 486.6 435.5 488.1 437.1 493.7 443.4 

3rd 1362.1 1211.5 1363.5 1213.1 1369.2 1219.5 

As expected, results for both non-rotating and rotating uniform composite beams are showing 

very good agreement between the results obtained from R-R method, ANSYS and other sources.  

2.5.3 Validation step-2: Thickness-tapered rotating cantilever composite beam 

In this validation step, thickness-tapering in beam profile is considered. In Table 2.7, first 

three out-of-plane bending natural frequencies obtained using Rayleigh-Ritz method for a non-

rotating thickness-tapered uniform-width composite beam are validated with ANSYS and existing 

results obtained using CFEM. The comparison has been performed for a clamped-free beam which 

has 20 plies at the fixed side and 4 plies have been dropped to obtain Taper Configuration-A (See 

Appendix A). The beam length, beam width and thickness of lamina are given in Table 2.4. 

Mechanical properties of composite and resin material are given in Table 2.1 and 2.2, respectively. 

Number of terms used in R-R method, in this case, is 8. Figure 2.8 shows the first three mode 

shapes associated with the natural frequencies given in Table 2.7. 
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Table 2.7 Natural frequencies (Hz) of non-rotating thickness-tapered cantilever composite beam 

Stacking 

Sequence 

No. of 

ply drop-off, 𝑆 
Mode 

R-R 

Solution 

ANSYS 

 

CFEM 

[13] 

 

[0/90]5s 

 

 

4 

 

1st 45.631 45.510 39.950 

2nd 263.74 261.82 229.02 

3rd 720.93 715.40 624.68 

 

 

 

Figure 2.8 The first three out-of-plane bending vibration modes of non-rotating thickness-

tapered cantilever composite beam with [0/90]5s stacking sequence 

In Table 2.7, results from the R-R method are showing excellent agreement with ANSYS 

results. Table 2.8 provides further comparison between ANSYS and R-R solutions for first three 

natural frequencies of non-rotating clamped-free beam with taper Configuration-A. Three different 

numbers of ply drop-off are considered, validating the results for two different stacking sequences. 

In this case, the number of terms in approximate shape function is 8. 

 

 

 

 

1st Mode 

45.51 Hz 

 

2nd Mode 

261.82 Hz 

 

3rd Mode 

715.40 Hz 
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Table 2.8 Natural frequencies (Hz) of non-rotating thickness-tapered cantilever composite beam 

for Configuration-A 

Stacking 

Sequence 
𝑆 Mode 

R-R 

solution 

ANSYS 

 

Stacking 

Sequence 
𝑆 Mode 

R-R 

solution 

ANSYS 

 

 

 

[0/90]9s 

 

 

 

2 

 

1st 78.15 77.88 

 

 

[90]18s 

 

 

 

2 

 

1st 27.30 27.22 

2nd 479.2 473.8 2nd 167.4 166.9 

3rd 1333.2 1304.5 3rd 465.6 465.6 

 

6 

 

1st 79.64 79.03  

6 

 

1st 27.80 27.81 

2nd 466.2 458.4 2nd 162.5 161.9 

3rd 1279.3 1245.3 3rd 445.8 445.0 

 

10 

 

1st 81.24 80.26  

10 

 

1st 28.36 28.77 

2nd 452.1 444.6 2nd 157.4 157.7 

3rd 1221.8 1189.9 3rd 424.9 425.8 

 

Following Tables 2.9 and 2.10 compare the results for thickness-tapered beam for rotating 

condition considering three different numbers of ply drop-off. Table 2.9 shows the results for 

Configuration-A and Table 2.10 is for Configurations B, C and D.  Stacking sequence for both 

tables are [90]18s. Hub radius is taken as 0.025 m. Results are compared for three different rotational 

velocities. All four configurations show that first natural frequency increases when the number of 

ply drop-off increases and second and third natural frequencies decrease as the number of ply drop-

off increases except for Configuration-D. Figures 2.9 and 2.10 show the mode shapes of first three 

out-of-plane bending natural frequencies for Configurations B and D, respectively, when 

thickness-tapered beam rotating at 200 rad/s with 10 drop-off plies. 
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Table 2.9 Natural frequencies (Hz) of rotating thickness-tapered cantilever composite beam for 

Configuration-A 

No. of 

ply drop-

off, 𝑆 

 

Mode 

R-R 

solution 

ANSYS 

 

R-R 

solution 

ANSYS 

 

R-R 

solution 

ANSYS 

 

Ω = 50 Rad/s Ω = 100 Rad/s Ω = 200 Rad/s 

 

2 

 

1st 28.83 28.77 32.98 32.93 45.82 45.78 

2nd 168.7 168.55 172.8 172.6 188.1 187.9 

3rd 466.9 467.86 471.0 471.91 486.8 487.7 

 

6 

 

1st 29.32 29.30 33.45 33.40 46.27 46.20 

2nd 163.9 163.7 168.0 167.8 183.5 183.3 

3rd 447.8 448.0 451.3 452.07 467.2 468.0 

 

10 

 

1st 29.87 29.80 33.98 33.92 46.78 46.70 

2nd 158.8 158.6 162.9 162.7 178.6 178.4 

3rd 426.3 427.0 430.4 431.1 446.5 447.2 

 

Table 2.10 Natural frequencies (Hz) of thickness-tapered rotating composite beam for 

Configurations B, C and D 

 

Configuration 

 

𝑆 

 

Mode 

R-R 

solution 

ANSYS 

 

R-R 

solution 

ANSYS 

 

R-R 

solution 

ANSYS 

 

Ω = 0 rad/s Ω = 50 rad/s Ω = 200 rad/s 

 

 

B 

 

 

6 

 

1st 27.61 27.69 29.14 29.21 46.14 46.19 

2nd 163.6 161.1 165.0 162.5 184.9 182.0 

3rd 450.5 442.8 451.9 444.2 472.2 464.2 

 

10 

 

1st 28.09 28.18 29.61 29.70 46.59 46.67 

2nd 159.8 154.8 161.2 156.2 181.5 176.0 

3rd 434.4 418.4 435.8 419.7 456.6 439.9 

 

 

C 

 

 

6 

 

1st 27.61 27.69 29.14 29.22 46.14 46.20 

2nd 163.5 161.1 165.0 162.5 184.8 182.1 

3rd 450.4 442.9 451.8 444.5 472.2 464.2 

 

10 

 

1st 28.07 28.21 29.60 29.73 46.58 46.69 

2nd 159.7 154.9 161.1 156.3 181.4 176.1 

3rd 434.1 418.6 435.6 420.0 456.3 440.1 

 

 

D 

 

 

6 

 

1st 29.57 27.66 31.0 29.19 47.36 46.18 

2nd 175.5 161.0 176.8 162.4 195.5 182.0 

3rd 483.5 442.7 484.8 444.0 503.9 464.0 

 

10 

 

1st 31.25 28.11 32.62 29.63 48.56 46.62 

2nd 179.7 154.6 181.0 156.0 199.28 175.7 

3rd 490.2 417.7 491.4 419.1 510.0 439.3 
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Figure 2.9 The first three out-of-plane bending vibration modes of rotating (200 rad/s) thickness-

tapered cantilever composite beam ([90]18s) with Configuration-B 

 

 

 

Figure 2.10 The first three out-of-plane bending vibration modes of rotating (200 rad/s) 

thickness-tapered cantilever composite beam ([90]18s) with Configuration-D 

1st Mode 

46.67 Hz 

 

2nd Mode 

176.0 Hz 

 

3rd Mode 

439.9 Hz 

 

1st Mode 

46.62 Hz 

 

2nd Mode 

175.7 Hz 

 

3rd Mode 

439.3 Hz 
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2.5.4 Validation step-3: Doubly-tapered rotating cantilever composite beam 

In the last validation step, width-tapering is included in beam geometry along with the 

thickness-tapering. Results for beam with 18 ply drop-off have been compared with ANSYS for 

different values of width-ratio and for different thickness-taper configurations. The length of the 

clamped-free beam is 25 cm and width at fixed side is 2 cm. Stacking sequence is [90]18s. 

Rotational velocity is 200 rad/s. In Tables 2.11 and 2.12, ‘0 rad/s’ as rotational velocity is 

describing the non-rotating condition. Unit width-ratio (𝑟𝑏 = 1) and ‘0’ drop-off ply are describing 

the uniform-width and uniform-thickness in the beam, respectively. Table 2.11 compares the 

results for taper Configuration-A and Table 2.12 compares the results for the other three 

configurations. One fact to be noted is that up to 2 ply drop-off, all configurations are same as 

Configuration-A and number of ply drop-off in Configuration-D cannot be more than half of total 

plies. Both Tables 2.11 and 2.12 show that first three natural frequencies increase as the width-

ratio decreases. For any specific width-ratio, second and third natural frequencies decrease as the 

thickness-tapering increases while the first natural frequency increases with thickness-tapering. 

For both tables, number of terms in approximate shape function is 8. 

Table 2.11 Natural frequencies (Hz) of doubly-tapered rotating cantilever composite beam for 

Configuration-A 

No. of ply drop-off, 𝑆 0 18 

Configura

-tion 
𝑟𝑏  Mode 

R-R ANSYS R-R ANSYS R-R ANSYS R-R ANSYS 

Ω = 0 rad/s Ω = 200 rad/s Ω = 0 rad/s Ω = 200 rad/s 

 

A 

 

 

0.1 

 

1st 46.75 46.62 60.09 59.98 49.99 49.82 63.41 63.27 

2nd 210.2 209.6 222.7 222.1 180.9 180.3 194.8 194.2 

3rd 524.7 523.3 536.8 535.5 420.2 419.2 433.8 432.9 

 

0.5 

 

1st 33.23 33.15 49.85 49.80 35.94 35.83 52.53 52.44 

2nd 181.1 180.8 198.4 198.1 155.3 154.9 173.9 173.6 

3rd 486.8 486.4 504.1 503.7 388.1 387.9 406.9 406.7 

1.0 

1st 27.08 27.02 45.62 45.58 29.66 29.56 48.00 47.92 

2nd 169.7 169.5 190.4 190.2 145.5 145.3 167.3 167.1 

3rd 475.3 476.2 496.4 497.3 377.8 378.5 400.0 400.7 
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Table 2.12 Natural frequencies (Hz) of doubly-tapered rotating cantilever composite beam for 

Configurations B, C and D 

Number of ply drop-off, 𝑆 18 

 

Configuration 

Width 

ratio, 

𝑟𝑏 

 

Mode 

R-R 

Solution 
ANSYS 

R-R 

Solution 
ANSYS 

Ω = 0 rad/s Ω = 200 rad/s 

 

 

 

 

B 

 

 

0.1 

 

1st 49.57 49.25 63.04 62.85 

2nd 187.0 175.6 201.2 189.6 

3rd 440.9 406.4 455.0 420.1 

 

0.5 

 

1st 35.13 35.65 51.90 52.36 

2nd 160.5 150.9 180.1 169.5 

3rd 408.2 375.7 427.9 394.3 

 

1.0 

1st 28.86 29.44 47.40 47.88 

2nd 150.5 141.4 173.5 163.1 

3rd 397.5 366.4 421.1 388.4 

C 

 

0.1 

 

1st 49.50 49.44 63.00 63.01 

2nd 186.1 176.0 200.4 190.0 

3rd 438.4 407.3 452.6 421.0 

 

0.5 

 

1st 35.07 35.78 51.88 52.46 

2nd 159.8 151.3 179.4 169.9 

3rd 405.9 376.5 425.7 395.2 

 

1.0 

1st 28.82 29.55 47.39 48.00 

2nd 149.8 141.8 172.9 163.4 

3rd 395.4 367.3 419.0 389.2 

 

 

 

 

D 

 

 

0.1 

 

1st 49.18 48.72 62.53 62.41 

2nd 194.8 174.2 208.4 188.3 

3rd 468.1 403.7 481.5 417.5 

 

0.5 

 

1st 34.88 35.29 51.52 52.09 

2nd 167.4 149.8 186.2 168.5 

3rd 433.7 373.2 452.5 391.9 

 

1.0 

1st 28.59 29.11 47.05 47.65 

2nd 156.9 140.4 179.0 162.2 

3rd 422.8 363.8 445.4 386.0 

 

Figures 2.11 and 2.12 show the mode shapes for taper Configuration-A with width-ratio 

0.5 and for taper Configuration-C with width-ratio 0.1, respectively. Both beams are rotating at 

200 rad/s with 18 drop-off ply. From Tables 2.11 and 2.12, it can be stated that results from R-R 

method have very good agreement with ANSYS results, which offers further analysis to study the 

influence of different parameters (related to beam’s geometry and composite configuration) on 

natural frequency. 
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Figure 2.11 The first three out-of-plane bending vibration modes of doubly-tapered (𝑆 =

18, 𝑟𝑏 = 0.1) rotating (200 rad/s) cantilever composite beam ([90]18s) with Configuration-C 

 

 

Figure 2.12 The first three out-of-plane bending vibration modes of doubly-tapered (𝑆 =

18, 𝑟𝑏 = 0.5) rotating (200 rad/s) cantilever composite beam ([90]18s) with Configuration-A 

1st Mode 

63.01 Hz 

 

2nd Mode 

190.0 Hz 

 

3rd Mode 

421.0 Hz 

 

1st Mode 

52.44 Hz 

 

2nd Mode 

173.6 Hz 

 

3rd Mode 

406.7 Hz 
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2.6     Mode shapes determination 

Having the eigenvectors obtained from equation (2.38), one can have the mode shapes of 

doubly-tapered cantilever laminated composite beams. From Figures 2.13 to 2.15, first three mode 

shapes of non-rotating and rotating (200 rad/s) doubly-tapered (𝑆 = 18, 𝑟𝑏 = 0.1) cantilever 

laminated composite beams (Configuration-A) are compared with non-rotating and rotating (200 

rad/s) uniform cantilever composite beams. The length of the clamped-free beam is 25 cm, width 

at fixed side is 2 cm and hub radius is .025 m. Stacking sequence is [90]18s. It shows, that except 

for the first mode of the uniform beam, mode shapes are same for non-rotating and rotating 

conditions. Also, one can observe that for the first and second modes, maximum displacement of 

the uniform beam is higher than that of the doubly-tapered beam and for the third mode doubly-

tapered beam has higher maximum displacement than that of the uniform beam. In Figures 2.13 to 

2.15, bold solid straight lines represent the neutral position of the beam. 

 

Figure 2.13 First mode shape of uniform and doubly-tapered cantilever composite beams for 

non-rotating and rotating conditions 
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o
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Figure 2.14 Second mode shape of uniform and doubly-tapered cantilever composite beams for 

non-rotating and rotating conditions 

 

Figure 2.15 Third mode shape of uniform and doubly-tapered cantilever composite beams for 

non-rotating and rotating conditions 
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Figure 2.16 illustrates the mode shapes for rotating (200 rad/s) doubly-tapered cantilever 

laminated composite beam considering different taper configurations. It shows that for first three 

modes, maximum displacement for Configuration-D is highest and maximum displacement for 

Configuration-C is the lowest among all the configurations considered. In Figure 2.16, bold solid 

straight line represents the neutral position of the beam. 

         

         

 

Figure 2.16 First three mode shapes of rotating doubly-tapered cantilever composite beams for 

different taper configurations 
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2.7     Free vibration analysis 

Natural frequencies of free vibration for doubly-tapered cantilever rotating laminated 

composite beam are influenced by different parameters associated with the geometry of the beam 

and the rotational velocity. Different graphs can be plotted to understand the behavior of natural 

frequency with respect to different parameters. Mechanical properties of materials used to do the 

analysis are given in Tables 2.1 and 2.2. 

2.7.1 Effect of rotational velocity 

To understand the influence of rotational velocity on natural frequencies, five different 

types of beams are considered where one has uniform-thickness and uniform-width, and four 

others are doubly-tapered (𝑆 = 18, 𝑟𝑏= 0.1) beams with four different configurations. All the 

beams have same length. One end of 25 cm long beam is mounted on a hub of radius 0.025 m and 

the other end is free. The beam width is 2 cm at fixed side. Stacking sequence of the laminated 

beam is [90]18s at fixed side.  

Figures 2.17 to 2.19 show the variation of first three natural frequencies of 5 selected beams 

for various rotational velocities. It can be stated from the Figures 2.17 to 2.19 that natural 

frequencies for all the selected beams increase as the rotational velocity increases. Figure 2.17 for 

first natural frequency shows that doubly-tapered beams with any configuration have much higher 

natural frequency than uniform-thickness and uniform-width composite beam. Also, it can be 

stated that taper Configuration-A has the highest natural frequency of the first mode in both non-

rotating and rotating conditions. Figures 2.18 and 2.19 for second and third natural frequencies, 

respectively, show uniform beam has the highest natural frequency at high rotational velocity 

wherein for third natural frequency uniform beam has highest natural frequency in both rotating 

and non-rotating conditions.  
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Figure 2.17 Effect of rotational velocity on first natural frequency 

 

Figure 2.18 Effect of rotational velocity on second natural frequency 
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Figure 2.19 Effect of rotational velocity on third natural frequency 

2.7.2    Effect of hub radius to beam length ratio  

Figures 2.20 to 2.22 show the behavior of natural frequencies with respect to different 

values of hub radius to beam length ratio (𝑅/𝐿). This analysis is conducted on a doubly-tapered 

(𝑆 = 18, 𝑟𝑏= 0.1) rotating beam which  has same length, same stacking sequence, same width at 

fixed side and same boundary condition as that of previous analysis discussed in section 2.7.1. The 

variation of first three natural frequencies is shown for different hub radius. The hub is constantly 

rotating at 200 rad/s. Four different taper configurations are considered for this analysis.  

From Figures 2.20 to 2.22 it can be understood that natural frequencies increase with 

increase of hub radius to beam length ratio. For the first natural frequency, Configuration-A is 

giving the highest value while Configuration-D gives the highest value for the second and third 

natural frequencies.  
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Figure 2.20 Effect of hub radius to beam length ratio on first natural frequency 

 

Figure 2.21 Effect of hub radius to beam length ratio on second natural frequency 
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Figure 2.22 Effect of hub radius to beam length ratio on third natural frequency 

2.7.3    Effect of ply drop-off (thickness-tapering) 

Thickness-tapering in composite laminate can provide variable stiffness through the length 

of the beam. Also, the thickness that is gradually decreasing towards the tip gives better design to 

handle the aerodynamic load. Following Figures 2.23 to 2.25 show the variation of the first three 

natural frequencies of a thickness-tapered-and-uniform-width rotating composite beam with 

respect to number of ply drop-off. The relation between the number of ply drop-off and thickness 

taper angle is given by equation (2.41). The beam length, stacking sequence at fixed side, beam 

width at fixed side and boundary condition are taken as that of previous analysis discussed in 

section 2.7.2. In this case, the width - ratio is 1 (uniform-width). Hub radius is 0.025 m, which is 

rotating at 200 rad/s. The variation is plotted for 0 to 30 ply drop-off.  
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From Figures 2.23 to 2.25 for first three natural frequencies, one can observe that 

Configuration-D has highest natural frequency as long as the ratio between overall stiffness to 

mass of plies increases. Overall stiffness of composite laminate of Configuration-D starts to 

decrease after 12 ply drop-off as the resin pocket, takes place near to the outer surface of the 

laminate. Number of ply drop-off in Configuration-D is limited to half of the total number of plies. 

Figure 2.23 depicts that first natural frequency of Configuration-A, B and C increase with number 

of ply drop-off, but Figures 2.24 and 2.25 for second and third natural frequencies, respectively, 

for Configuration-A, B and C show that natural frequencies decrease as the number of ply drop-

off increases.  

 

Figure 2.23 Effect of thickness tapering on first natural frequency 
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Figure 2.24 Effect of thickness tapering on second natural frequency 

 

Figure 2.25 Effect of thickness tapering on third natural frequency 
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2.7.4    Effect of double-tapering 

Double-tapering affects the natural frequency of rotating beam. Especially width-tapering 

can remove more material from the beam compared to thickness-tapering. This has an effect on 

the overall stiffness and mass of the beam. Following Figures 2.26 to 2.28 show the effect on 

natural frequencies due to double-tapering in a rotating composite beam. This beam has same 

length, stacking sequence, hub radius and rotational velocity as that of previous analysis for 

thickness tapering in section 2.7.3. The width of the beam is 2 cm on the fixed side. Figures 2.26 

to 2.28 illustrate the variation of natural frequencies for double tapering in which, double-tapering 

is described as  

    𝐷𝑜𝑢𝑏𝑙𝑒 𝑡𝑎𝑝𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑆

𝑟𝑏
      (2.44) 

where, 𝑟𝑏 is width-ratio and 𝑆 is number of ply drop-off. Number of ply drop-off and corresponding 

width-ratio used in Figures 2.26 to 2.28 are listed below: 

Table 2.13 Number of ply drop-off and corresponding width-ratio to obtain double-taper ratio 

Number of ply drop-

off, 𝑆 

Width-

ratio, 𝑟𝑏 

Double-taper 

ratio 

2 0.9 2.222 

4 0.8 5.000 

6 0.7 8.571 

8 0.6 13.33 

10 0.5 20.00 

12 0.4 30.00 

14 0.3 46.67 

16 0.2 80.00 

18 0.1 180.0 
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Figure 2.26 shows that first natural frequency for all configurations increase as the double-

tapering increases. Among all the taper configurations, Configuration-D has the highest value for 

first three natural frequencies. Figures 2.27 and 2.28 for second and third natural frequencies, 

respectively, indicate that natural frequencies for Configuration-D start to decrease after certain 

double-taper ratio, which is due to dominating effect of thickness-tapering on natural frequencies 

(see Figures 2.24 and 2.25). Also, from Figures 2.27 and 2.28, one can see that second and third 

natural frequencies for Configuration-A, B and C start to increase after certain double-taper ratio, 

which is due to dominating effect of width-tapering on natural frequencies. One can see from 

Tables 2.11 and 2.12 that width-tapering significantly increases the first three natural frequencies 

of out-of-plane bending vibration. 

 

Figure 2.26 Effect of double-tapering on first natural frequency 
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Figure 2.27 Effect of double-tapering in second natural frequency 

 
Figure 2.28 Effect of double-tapering in third natural frequency 
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2.8       Critical speed determination 

Critical speed is a certain rotating speed that excites the natural frequency of a rotating 

structure, which can be a rotating blade, gear or shaft. At the critical speed, angular velocity of a 

rotating structure approaches the natural frequency and structure starts to resonate which 

exceedingly increases the vibration.  

Campbell diagram is one of the methods to obtain the critical speed of a rotating object. 

Campbell diagram plot the natural frequency of the object for various rotating speeds, where the 

intersection of the natural frequency curve and forcing frequency line, is the critical speed. Forcing 

frequency is the frequency of a rotating part which is equal to the number of vanes/blades of the 

rotating part times the RPM. Besides the Campbell diagram, there is another method to determine 

the critical speed, which is called direct method. In the direct method, the critical speeds are taken 

when one of the natural frequencies at a specific speed is equal to the forcing frequency. The 

forcing frequency can be written in terms of rotating speed as [44]: 

𝜔𝑓 = 𝑛Ω     (2.45) 

where, 𝑛 is number of rotating blade. For example, in a four-bladed helicopter rotor 𝑛 = 4. 

To determine the critical speed using direct method, equation (2.36) can be written as: 

              [𝑀]{�̈�} + ([𝐾] + Ω2[𝐾∗𝐶]){𝑞} = {0}   (2.46) 

where, Ω2[𝐾∗𝐶] is stiffness matrix due to centrifugal action. The solution of the equation (2.46) 

can be assumed as: 

      {𝑞} = {𝑄0}𝑒
𝑖𝜔𝑓𝑡     (2.47) 

Using equations (2.45), (2.46) and (2.47), one can get 

    ([𝐾] + Ω2([𝐾∗𝐶]) − 𝑛2Ω2[𝑀]){𝑄0}𝑒
𝑖𝑛Ω𝑡 = {0}   (2.48) 
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The above equation has a nontrivial solution if |[𝐾] + Ω2([𝐾𝐶] − 𝑛2[𝑀]| becomes singular. As a 

result, the equation can be simplified as the generalized eigenvalue problem and takes the form as: 

Ω2(𝑛2[𝑀] − [𝐾∗𝐶]){𝑄0} = [𝐾]{𝑄0}    (2.49) 

The eigenvalues Ω are in complex form; the real part of Ω gives the critical speed. 

2.8.1 Numerical results and Campbell diagram 

To study the critical speed of doubly-tapered rotating cantilever composite beam, four 

different types of beams are taken as follows: 1) Uniform-thickness and Uniform-width (U-U), 2) 

Uniform-thickness and Width-taper (U-W), 3) Thickness-and-Width taper (doubly-tapered) (T-

W) and  4) Thickness-taper and Uniform-width (T-U). All four beams are 25 cm in length, attached 

to a hub of radius 0.025 m and width is 2 cm at fixed side. For width-tapered beams (U-W and T-

W), width-ratio is 0.1. For thickness-tapered beams (T-W and T-U) ply drop-off number is 18. All 

the beams have [90]18s stacking sequence. The Campbell diagram is drawn for first natural 

frequency to obtain the first critical speed.  

In Figure 2.29 one can observe that thickness-and-width taper (doubly-tapered) beam has 

highest critical speed that means operating speed for doubly-tapered beam is higher than other 

types of beams. From Figure 2.29, it can also be stated that doubly-tapered beam with 

Configuration-A has the highest operating speed. Critical speeds obtained using the direct method 

and Campbell diagram are listed in Table 2.14. 

In Figure 2.30, only beam with Configuration-A (T-W) is considered to understand the 

effect of stacking sequences in critical speed. It can be understood from the Campbell diagram and 

results from direct method (listed in Table 2.15) that stacking sequence with unidirectional ply 

([0]18s) has the highest critical speed and stacking sequence ([90]18s) has the lowest critical speed. 
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Figure 2.29 Critical speed determination using Campbell diagram 

Table 2.14 Critical speeds (rad/s) obtained using different methods 

Type of beam Direct method Campbell diagram 

U-U 44.45 44.46 

U-W 76.88 76.90 

Configuration-A (T-W) 82.90 82.91 

Configuration-A (T-U) 49.16 49.19 

Configuration-B (T-W) 81.67 81.69 

Configuration-B (T-U) 47.50 47.53 

Configuration-C (T-W) 81.55 81.56 

Configuration-C (T-U) 47.44 47.46 

Configuration-D (T-W) 80.98 80.98 

Configuration-D (T-U) 47.02 47.04 
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Figure 2.30 Campbell diagram for doubly-tapered beam with different stacking sequences 

Table 2.15 Critical speeds (rad/s) for different stacking sequences 

Stacking sequence Direct method Campbell diagram 

[0/90]9s 235.68 235.70 

[90]18s 82.900 82.910 

  [0]18s 305.90 305.90 

[0/45/-45]6s 232.46 232.50 
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2.9     Dynamic instability analysis 

A rotating structure can experience dynamic instability due to periodic rotational velocity. 

When a cantilever beam swings periodically, that is oscillating about the axis of rotation, the 

dynamic bending stiffness varies harmonically that causes transverse vibrations with gradually 

increasing amplitudes that are often called dynamic instability or parametric instability. This large 

amplitude vibration could damage the rotating structure. A cantilever beam with time-dependent 

rotary oscillation can be regarded as a parametric excitation system [31].  

The periodic rotational velocity (Ω(𝑡)) can be employed in equation of motion instead of 

constant rotational velocity Ω. In equation (2.36), square of constant rotational velocity is 

multiplied with all the coefficients of stiffness matrix [𝐾𝐶] that is due to centrifugal action. 

Introducing periodic rotational velocity in equation (2.36) leads to: 

[𝑀]{�̈�} + ([𝐾] + Ω2(𝑡)[𝐾∗𝐶]){𝑞} = {0}   (2.50) 

where, Ω2(𝑡)[𝐾∗𝐶] is time dependent stiffness matrix due to centrifugal action. 

If periodic rotational velocity is considered for the system, dynamic instability can be 

observed. The periodic rotational velocity can be written in terms of static and dynamic rotational 

terms and parametric resonance frequency. 

Ω(𝑡) = Ω0 + Ω1𝑠𝑖𝑛𝜃𝑝𝑡                                              (2.51) 

Here, Ω0 is mean or static value of periodic rotational velocity, Ω1 is amplitude of periodic 

rotational velocity, 𝜃𝑝 is parametric resonance frequency and 𝑡 is time. The amplitude of periodic 

rotational velocity (Ω1) can be defined by a measure of the mean value of rotational velocity (Ω0) 

as: 

Ω1 =  𝛽 Ω0     (2.52) 

where, 𝛽 is amplitude factor. Therefore, periodic rotational velocity can be expressed as: 
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Ω(𝑡) = Ω0 + 𝛽 Ω0𝑠𝑖𝑛𝜃𝑝𝑡    (2.53) 

Substituting Ω(𝑡) in equation (2.50) one can get: 

[𝑀]{�̈�} + ([𝐾] + (Ω0
2 + 2Ω0

2𝛽𝑠𝑖𝑛𝜃𝑝𝑡 +
Ω0

2𝛽2

2
(1 − 𝑐𝑜𝑠2𝜃𝑝𝑡)) [𝐾∗𝐶]){𝑞} = 0               (2.54) 

This is a Mathieu type equation that can describe the instability behavior of a rotating beam with 

a periodic rotational load. Dynamic instability occurs only within certain regions on the resonance 

frequency-driving amplitude plane. The boundaries of the regions of instability on this plane 

represent periodic solutions of the equations of motion. Dynamic instability region separated from 

stable region by periodic solutions with period 𝑇 =
2𝜋

𝜃𝑝
 and 2𝑇 =

4𝜋

𝜃𝑝
. The solutions with period 2𝑇 

are of greater practical importance as the widths of these unstable regions are usually larger than 

those associated with the solutions having period of 𝑇 [32]. 

To find the periodic solution with period 2𝑇, Bolotin’s first approximation [31] can be 

considered. The periodic solutions with period 2𝑇 can be sought in the form: 

 {𝑞} = ∑ [{𝑎𝑟}𝑠𝑖𝑛 (
𝑟𝜃𝑝𝑡

2
) + {𝑏𝑟}c𝑜𝑠 (

𝑟𝜃𝑝𝑡

2
)]∞

𝑟=1,3,5…     (2.55) 

Taking one-term solution and differentiating two times with respect to time t, 

{�̈�} = [−
𝜃𝑝

2

4
{𝑎1}𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) −

𝜃𝑝
2

4
{𝑏1}c𝑜𝑠 (

𝜃𝑝𝑡

2
)]   (2.56) 

After substituting {𝑞} and {�̈�} in equation (2.55) and simplifying through trigonometric formula 

(see Appendix B) and finally comparing the coefficients of 𝑠𝑖𝑛 (
𝜃𝑝𝑡

2
) and c𝑜𝑠 (

𝜃𝑝𝑡

2
) in the 

governing equation, two equations can be found: 

For 𝑠𝑖𝑛 (
𝜃𝑝𝑡

2
): 

−
𝜃𝑝

2

4
[𝑀]{𝑎1} + [𝐾]{𝑎1} + [𝐾∗𝐶]Ω0

2{𝑎1} + [𝐾∗𝐶]Ω0
2𝛽{𝑏1} +

Ω0
2𝛽2

2
[𝐾∗𝐶]{𝑎1} = 0    (2.57) 
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For c𝑜𝑠 (
𝜃𝑝𝑡

2
): 

−
𝜃𝑝

2

4
[𝑀]{𝑏1} + [𝐾]{𝑏}1 + [𝐾∗𝐶]Ω0

2{𝑏1} + [𝐾∗𝐶]Ω0
2𝛽{𝑎1} +

Ω0
2𝛽2

2
[𝐾∗𝐶]{𝑏1} = 0   (2.58) 

Equations (2.58) and (2.59) can be written in the matrix form as 

[
−

𝜃𝑝
2

4
[𝑀] + [𝐾] + [𝐾∗𝐶]Ω0

2 +
Ω0

2𝛽2

2
[𝐾𝐶] [𝐾∗𝐶]Ω0

2𝛽

[𝐾∗𝐶]Ω0
2𝛽 −

𝜃𝑝
2

4
[𝑀] + [𝐾] + [𝐾∗𝐶]Ω0

2 +
Ω0

2𝛽2

2
[𝐾∗𝐶]

] [
{𝑎1}
{𝑏1}

] = {0}  

                          (2.59) 

For non-trivial solution determinant of the matrix coefficients must be zero.  

𝑑𝑒𝑡 [
−

𝜃𝑝
2

4
[𝑀] + [𝐾] + [𝐾∗𝐶]Ω0

2 +
Ω0

2𝛽2

2
[𝐾∗𝐶] [𝐾∗𝐶]Ω0

2𝛽

[𝐾∗𝐶]Ω0
2𝛽 −

𝜃𝑝
2

4
[𝑀] + [𝐾] + [𝐾∗𝐶]Ω0

2 +
Ω0

2𝛽2

2
[𝐾∗𝐶]

] = 0 

                         (2.60)  

After expanding the determinant and solving for 𝜃𝑝
2, two equations can be found as: 

𝜃𝑝
2 = (4[𝐾∗𝐶]Ω0

2 + 4[𝐾∗𝐶]Ω0
2𝛽 + 2[𝐾∗𝐶]Ω0

2𝛽2 + 4[𝐾])/[𝑀]                      (2.61) 

and              𝜃𝑝
2 = (4[𝐾∗𝐶]Ω0

2 − 4[𝐾∗𝐶]Ω0
2𝛽 + 2[𝐾∗𝐶]Ω0

2𝛽2 + 4[𝐾])/[𝑀]                     (2.62) 

Equations (2.61) and (2.62) can be solved as eigenvalue problems where each eigenvalue 𝜃𝑝
2
 is 

the square of parametric resonance frequency which gives the boundary between stable and 

unstable regions in resonance frequency-driving amplitude plane. Equations (2.61) and (2.62) give 

upper and lower boundaries of the instability region, respectively. 

2.9.1 Validation 

To investigate the accuracy of above formulation a graph has been plotted using MATLAB 

to find the instability region where the upper and lower boundaries are determined from the 

eigenvalues of equations (2.61) and (2.62), respectively. In this graph vertical axis represents the 
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parametric ratio (
𝜃𝑝

2𝜔𝑖
) which is the resonance frequency of the parametric exciting system divided 

by doubled fundamental frequency of free vibration. Subscript ‘i’ is mode number. The horizontal 

axis represents the amplitude of the periodic rotational velocity. 

Figures 2.31, 2.33 and 2.34 show the instability regions for first three out-of-plane bending 

vibration modes for a doubly-tapered rotating cantilever composite beam with different taper 

configurations. The mean value of angular velocity is 50 rad/s. The beam is 25 cm long and has 2 

cm width at fixed side and the width-ratio is 0.1. The hub radius is taken as 0.025 m. The ply 

thickness is 0.125 mm and stacking sequence is [90]18s with 18 ply drop-off. Mechanical properties 

chosen for composite and resin materials are given in Tables 2.1 and 2.2, respectively. 

From Figures 2.31, 2.33 and 2.34, one can see that area inside the upper and lower 

boundary lines are unstable regions where the width of instability region increases with amplitude 

factor. If any parametric point (𝛽,
𝜽𝒑

2𝜔𝑖
) of the structural system is in these unstable regions, the 

system becomes dynamically unstable. In order to verify such a statement, the modal response 

𝑞𝑖(𝑡) of the beam can be determined for any parametric point using Mathieu-Hill equation (2.54). 

Modal response 𝑞𝑖(𝑡) should keep increasing with time when the beam is unstable. The Mathieu-

Hill equation given in (2.54) can be converted to the first order matrix differential form as: 

[
{�̈�}
{�̇�}

] = [
[0] −[𝑀]−1[𝐾∗]
[𝐼] [0]

] [
{�̇�}
{𝑞}

]                          (2.63) 

where, [𝐾∗] = [𝐾] + (Ω0
2 + 2Ω0

2𝛽𝑠𝑖𝑛𝜃𝑝𝑡 +
Ω0

2𝛽2

2
(1 − 𝑐𝑜𝑠2𝜃𝑝𝑡)) [𝐾∗𝐶], and [𝐼] is 𝑚 × 𝑚 

identity matrix. Setting 𝑌 = [
{�̇�}
{𝑞}

]  in equation (2.63), yields:     

     �̇� = 𝑓(𝑌, 𝑡)                       (2.64) 



56 

 

First order matrix differential equation (2.64) can be solved using fourth-order Runge-Kutta 

method [33, 45]. The solution gives the time response 𝑞𝑖 for 1 to 𝑚 modes. 

In Figure 2.32, modal responses of three different points (P1, P2 and P3 shown in Figure 

2.31) are given for first vibrational mode, where points P1(𝜃𝑝 = 653.96
𝑟𝑎𝑑

𝑠
, 𝛽 = 0.4), P3 (𝜃𝑝 =

634.73
𝑟𝑎𝑑

𝑠
, 𝛽 = 0.6) are located in the stable region and P2(𝜃𝑝 = 644.35

𝑟𝑎𝑑

𝑠
, 𝛽 = 0.5) is located 

in unstable region for the doubly-tapered beam with Configuration-A. The modal response of 

points P1 and P2 are confined in a scope of about 0.02 m, while that of point P2 increases rapidly 

and exceeds 10 m in the same duration. Hence, the structural system corresponding to points P1 

and P3 is dynamically stable, but that corresponding to point P2 is dynamically unstable. Also, it 

can be understood from Figures 2.31, 2.33 and 2.34, that beam with Configuration-D has smallest 

width of instability region among all the tapered configurations considered and Configuration-A 

has largest width of instability region. 

 
Figure 2.31 Instability region for first out-of-plane bending mode of doubly-tapered beam 

 

Unstable region 

Stable region 

Stable region 

P1(0.4, 1.02) 

P2(0.5, 1.005) 

P3(0.6, 0.99) 
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a)  Point P1 

 

b)  Point P2 

 

c)  Point P3 

Figure 2.32 Modal response 𝑞1(𝑡) for the parametric points P1, P2 and P3 
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Figure 2.33 Instability region for second out-of-plane bending mode of doubly-tapered beam 

 

Figure 2.34 Instability region for third out-of-plane bending mode of doubly-tapered beam 
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2.10     Instability analysis considering different system parameters 

In addition, to the dynamic and static parameters of rotation, the stability of a doubly-

tapered composite cantilever beam is also affected by different geometric parameters such as 

length, hub radius, thickness-taper angle and width-ratio. The stacking sequence also has an effect 

on instability region. Following graphs will show the effect on the instability region with respect 

to different parameters. The analysis is conducted by considering taper Configuration-A and 

Configuration-D. Also, the analysis is conducted for first three modes which have greater practical 

importance because of their corresponding three lowest natural frequencies and parametric 

resonance frequencies. Mechanical properties of materials used to do the analysis are given in 

Tables 2.1 and 2.2. 

2.10.1 Effect of mean rotational velocity 

The increase of mean rotational velocity in time-varying rotational load increase the  

resonance frequency in a doubly-tapered rotating cantilever beam that affects the dynamic 

instability characteristics. Figures 2.35 to 2.37 show the effect on dynamic instability due to change 

in mean rotational velocity. In this case, a 25 cm long doubly-tapered (𝑆 = 18, 𝑟𝑏 = 0.1) rotating 

cantilever composite beam is mounted on a hub. Hub radius is taken as 0.025 m. The beam width 

is 2 cm at fixed side. The stacking sequence is [90]18s at fixed side. The individual ply thickness is 

0.125 mm.  

The following three graphs for first three modes of out-of-plane bending vibration clearly 

show that instability region increases as the mean rotational velocity increases. It means that the 

mean rotational velocity increases rotating beam becomes more unstable. Also, following three 

graphs for first three modes of out-of-plane bending vibration show that the width of instability 

region for Configuration-D is smaller than the width of instability region for Configuration-A. 
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Figure 2.35 Effect of mean rotational velocity on instability region of first mode 

 

Figure 2.36 Effect of mean rotational velocity on instability region of second mode 
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Figure 2.37 Effect of mean rotational velocity on instability region of third mode 

2.10.2  Effect of hub radius to beam length ratio 

Although hub radius has no effect on the mass of the rotating beam, but it has an effect on 

the stiffness caused by centrifugal action. Therefore final result changes due to change of hub 

radius. Figures 2.38 to 2.40, illustrate the variation of instability region due to change in the ratio 

of hub radius over beam length (𝑅/𝐿). The doubly-tapered beam (𝑆 = 18, 𝑟𝑏 = 0.1) has same 

length, same stacking sequence, same width at fixed side and same boundary condition as that of 

previous section 2.10.1. The mean rotational velocity in this case is 50 rad/s.  

The following three graphs for first three modes of out-of-plane bending vibration show 

that width of instability region increases as the ratio of hub radius to beam length increases and 

the width of instability region for Configuration-D is smaller than the width of instability region 

for Configuration-A. 
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Figure 2.38 Effect of hub radius to beam length ratio on instability region of first mode 

 

Figure 2.39 Effect of hub radius to beam length ratio on instability region of second mode 
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Figure 2.40 Effect of hub radius to beam length ratio on instability region of third mode 

2.10.3  Effect of double-tapering 

To understand the effect of double tapering on dynamic instability, double-taper ratio has 

been introduced again in this section. Double-taper ratio is defined in equation (2.44). Figures 2.41 

to 2.43 show the variation of instability region for three different values of double-taper ratio. The 

beam length, width at fixed side, stacking sequence and mean rotational velocity is taken as same 

as that of previous section 2.10.2. The hub radius, in this case, is 0.025 m.  

From Figures 2.41 to 2.43 it can be easily stated that increase of double-taper ratio 

decreases the width of instability region for first three modes of out-of-plane bending vibration. 

More clearly, increase of double-tapering decreases the risk of dynamic instability for out-of-plane 

bending vibration. Also, following three graphs for first three modes of out-of-plane bending 

vibration show that the width of instability region for Configuration-D is smaller than the width of 

instability region for Configuration-A. 
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Figure 2.41 Effect of double-tapering on instability region of first mode 

 

Figure 2.42 Effect of double-tapering on instability region of second mode 
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Figure 2.43 Effect of double-tapering on instability region of third mode 

2.10.4  Effect of stacking sequence 

To understand the influence of stacking sequence on dynamic instability of a doubly-

tapered beam, four different stacking sequences were considered in this section. The doubly-

tapered (𝑆 = 18, 𝑟𝑏 = 0.1) rotating cantilever composite beam is considered in this section which 

has same length, same width at fixed side, same hub radius and same mean rotational velocity as 

that of previous section 2.10.3. 

From Figures 2.44 to 2.46, it can be observed that for both Configuration-A and 

Configuration-D, unidirectional ply stacking sequence ([0]18s) has less width of instability region 

whereas [90]18s has highest width of instability region. Cross-ply laminate [0/90]9s and angle-ply 

laminate [-45/45/0]6s stacking sequences have the almost same width of instability regions, but 

greater than that of unidirectional stacking sequence and less than that of [90]18s stacking sequence. 
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Figure 2.44 Effect of stacking sequence on instability region of first mode 

 

Figure 2.45 Effect of stacking sequence on instability region of second mode 
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Figure 2.46 Effect of stacking sequence on instability region of third mode 

2.11     Summary 

In this chapter, first, free vibration analysis for out-of-plane bending has been carried out 

for a doubly-tapered rotating cantilever composite beam. Rayleigh-Ritz approximate method 

based on Classical Lamination Theory has been employed to formulate the free vibration problem. 

The results for first three natural frequencies are validated with existing reference and FEA 

software ANSYS. Upon completing the validation, effects of different parameters such as ply 

drop-off, width-taper ratio, rotational velocity and stacking sequence of laminate have been 

investigated. Based on the results obtained, Configuration-A (See Appendix-A) has lowest natural 

frequency as this configuration has largest amount of resin pockets among the four configurations, 

which results in the lowest stiffness and Configuration-D has highest natural frequency as this 

configuration has lower volume of resin pockets and also they are placed farther from the center 

that leads to higher contribution to the stiffness. As expected, natural frequencies increase with the 
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rotational velocity. As the double-tapering increase, natural frequency also increases. After free 

vibration analysis, critical speed has been determined for various types of beams. In this case, 

doubly-tapered beam has the highest critical speed (operating speed) than uniform beam. Also, 

beam with unidirectional ply stacking sequence has highest critical speed.  

In the second part of this chapter, dynamic instability analysis for out-of-plane bending 

vibration has been performed for a periodic rotational velocity. Bolotin’s method has been used to 

determine the resonance frequency which represents the boundaries of the instability region in the 

parametric plane. Modal response has been investigated at different locations of stable and 

unstable regions to validate the formulation. Based on the results obtained, Configuration-D has 

smallest width of instability region among all the tapered configurations considered and 

Configuration-A has largest width of instability region. After validation, various graphs have been 

plotted to study the effects of different parameters on the instability region by considering 

Configuration-A and Configuration-D. It has been observed that width of instability region 

increases with mean rotational velocity. Also, width of instability region increase as the hub radius 

increases. Increase of double-tapering both reduce the width of instability region. Unidirectional 

ply stacking sequence [0]18s has smallest width of the instability region while stacking sequence 

[90]18s has largest width of the instability region. 
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Chapter - 3 

Free vibration and dynamic instability analyses of doubly-tapered rotating laminated 

composite beam for in-plane bending and axial vibrations 

 

3.1       Introduction 

            A beam with two cross-sectional planes of symmetry (𝑥-𝑦 and 𝑥-𝑧 planes, Figure 2.1) may 

undergo bending vibration in either on both of the two planes of symmetry. Bending with respect 

to 𝑥-𝑦 plane is called out-of-plane bending (as discussed in chapter-2) and bending with respect to 

𝑥-𝑧 plane is called in-plane bending. In this chapter, free vibration and dynamic instability analyses 

for in-plane bending vibration and axial (stretching) vibration of a doubly-tapered rotating 

cantilever composite beam are conducted. Centrifugal loading component due to rotational 

velocity affects the in-plane bending vibration and the axial vibration. In addition to the rotation, 

tapering on the beam geometry brings significant change on the natural frequencies of in-plane 

bending and axial vibrations.  In the first part of this chapter, free vibration analyses for in-plane 

bending and axial vibrations of doubly-tapered laminated composite beam are carried out using 

Rayleigh-Ritz method. Then, dynamic instability analysis is conducted applying Bolotin’s method. 

Commercial Finite Element Analysis tool ANSYS is used for validation purpose. NCT-301 

Graphite/Epoxy prepreg has been chosen as the material to perform the numerical analysis.  
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3.2       Energy formulation using Rayleigh-Ritz method 

3.2.1 Strain energy  

Based on the beam description given in section 2.2, following Figure 3.1 can be considered 

to determine the strain field in the case when the beam is deformed in the lamination plane (𝑥-𝑦 

plane). In Figure 3.1, 𝑀 is any arbitrary point in the lamination plane of the beam and 𝑢0, 𝑣0 are 

axial and lateral mid-plane displacements, respectively. Using Classical Lamination Theory 

(CLT), strain in 𝑥-direction can be expressed by the mid-plane strain and the curvature in the 𝑥-𝑦 

plane. 

 

Figure 3.1 Deformation of beam in the lamination plane (x-y plane) 

From Figure 3.1, strain in 𝑥-direction can be written as: 

𝜀𝑥𝑥
𝑘 =

𝜕𝑢0

𝜕𝑥
− 𝑦

𝜕2𝑣0

𝜕𝑥2
       (3.1) 

Substituting 𝜀𝑥𝑥
𝑘 in equation (2.9) and neglecting 𝜀𝑦𝑦

𝑘 and 𝛾𝑥𝑦
𝑘, strain energy expression leads 

to: 

𝑈 = ∑
1

2
∫ ∫ ∫ 𝑄11

𝑘(
𝜕𝑢0

𝜕𝑥
− 𝑦

𝜕2𝑣0

𝜕𝑥2
)2ℎ𝑘

ℎ𝑘−1

𝑏(𝑥)

2

−
𝑏(𝑥)

2

𝐿

0
𝑑𝑧 𝑑𝑦 𝑑𝑥𝑁

𝑘=1   (3.2) 
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From Classical Laminate Theory:         

        ∑ ∫  𝑄11
𝑘𝑑𝑧 = 𝐴11(𝑥) 

ℎ𝑘

ℎ𝑘−1

𝑁
𝑘=1          (3.3) 

where, 𝐴11(𝑥) is the first coefficient of stretching stiffness matrix. Using equation (3.3) and due 

to cross sectional plane of symmetry in 𝑥-𝑦 plane, equation (3.2) leads to: 

  𝑈 =
1

2
∫ {𝐴11(𝑥)𝑏(𝑥) (

𝜕

𝜕𝑥
𝑢𝑜(𝑥, 𝑡))

2

+ 𝐴11(𝑥)
(𝑏(𝑥))3

12
(

𝜕2

𝜕𝑥2 𝑣0(𝑥, 𝑡))

2

}𝑑𝑥
𝐿

0
           (3.4)  

Using the Rayleigh-Ritz method, mid-plane displacements 𝑢0 and 𝑣0 can be assumed as:  

                                          𝑢0(𝑥, 𝑡) = ∑ ∅2𝑖(𝑥)𝑞2𝑖(𝑡)
𝑚
𝑖=1         (3.5) 

𝑣0(𝑥, 𝑡) = ∑ ∅3𝑖(𝑥)𝑞3𝑖(𝑡)
𝑚
𝑖=1      (3.6) 

where, ∅2𝑖 and ∅3𝑖 are approximate shape functions for axial and in-plane bending displacements 

respectively and 𝑞2𝑖(𝑡) and 𝑞3𝑖(𝑡) are corresponding generalized coordinates. Substituting 

equations (3.5) and (3.6) in equation (3.4) one can get: 

𝑈 = ∑ ∑
1

2
∫ {𝐴11(𝑥)𝑏(𝑥) (

𝜕

𝜕𝑥
∅2𝑖(𝑥)) (

𝜕

𝜕𝑥
∅2𝑗(𝑥)) 𝑞2𝑖(𝑡)𝑞2𝑗(𝑡) +

𝐿

0
𝑚
𝑗=1

𝑚
𝑖=1

                                 𝐴11(𝑥)
(𝑏(𝑥))

3

12
(

𝜕2

𝜕𝑥2 ∅3𝑖(𝑥)) (
𝜕2

𝜕𝑥2 ∅3𝑗(𝑥)) 𝑞3𝑖(𝑡)𝑞3𝑗(𝑡)}𝑑𝑥      (3.7) 

Equation (3.7) can be written as:   

𝑈 = ∑ ∑
1

2
(𝑞2𝑖 𝐾𝑖𝑗

𝑢 𝑞2𝑗 + 𝑞3𝑖  𝐾𝑖𝑗
𝑣 𝑞3𝑗)

𝑚
𝑗=1

𝑚
𝑖=1                          (3.8) 

where, 

          𝐾𝑖𝑗
𝑢 = ∫ 𝐴11(𝑥)𝑏(𝑥)∅′

2𝑖(𝑥)∅′
2𝑗(𝑥)𝑑𝑥

𝐿

0
        (3.9) 

            𝐾𝑖𝑗
𝑣 = ∫ 𝐴11(𝑥)

(𝑏(𝑥))3

12
∅′′

3𝑖(𝑥)∅′′
3𝑗(𝑥)𝑑𝑥

𝐿

0
                      (3.10) 
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3.2.2 Work done by centrifugal force     

In the case of in-plane bending vibration, rotating cantilever beam deflects laterally along 

with small axial displacement due to centrifugal force. By expressing small axial displacement in 

terms of lateral displacement (𝑣0), work done by this centrifugal force can be written as: 

𝑊 =
1

2
∫ 𝑃(𝑥)(

𝜕

𝜕𝑥
𝑣0(𝑥, 𝑡))2𝑑𝑥

𝐿

0
                            (3.11) 

Here, 𝑃(𝑥) is given by equation (2.21). After applying the Rayleigh-Ritz approximate 

displacement function, equation (3.11) leads to:    

𝑊 = ∑ ∑
1

2
∫ 𝑃(𝑥)

𝜕

𝜕𝑥
∅3𝑖(𝑥)

𝜕

𝜕𝑥
∅3𝑗(𝑥)𝑞3𝑖(𝑡)𝑞3𝑗(𝑡)𝑑𝑥

𝐿

0
𝑚
𝑗=1

𝑚
𝑖=1             (3.12) 

Equation (3.12) can be written as:    

𝑊 = ∑ ∑
1

2
𝑞𝑖𝐾1𝑖𝑗

𝑐𝑣𝑞𝑗
𝑚
𝑗=1

𝑚
𝑖=1          (3.13) 

where,   

      𝐾1𝑖𝑗
𝑐𝑣 = ∫ 𝑃(𝑥)∅′

3𝑖(𝑥)∅′
3𝑗(𝑥)𝑑𝑥

𝐿

0
     (3.14) 

3.2.3 Kinetic Energy 

Considering the velocity vector from equation (2.25) and neglecting displacement in z-

direction one can get: 

�⃗� = (
𝜕𝑢

𝜕𝑡
− Ω𝑣)𝑖̇̂ + (

𝜕𝑣

𝜕𝑡
+ Ω(𝑅 + 𝑥 + 𝑢0))𝑗̇̂   (3.15) 

Therefore, velocity components in 𝑥, 𝑦 and 𝑧 directions are:                                                                              

                                               𝑉𝑥 =
𝜕𝑢

𝜕𝑡
− Ω𝑣, 𝑉𝑦 =

𝜕𝑣

𝜕𝑡
+ Ω(𝑅 + 𝑥 + 𝑢0) and 𝑉𝑧 = 0         (3.16) 

Using Figure 3.1, one can write:    

          𝑢(𝑥, 𝑡) = 𝑢𝑜(𝑥, 𝑡) − 𝑦
𝜕

𝜕𝑥
𝑣0(𝑥, 𝑡)              (3.17) 

       𝑣(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡)                (3.18) 
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Using equations (3.16), (3.17) and (3.18) into equation (2.25), kinetic energy equation of a doubly-

tapered rotating composite beam can be written as: 

𝑇 =
1

2
∫ ∫ 𝜌𝐿 (

𝜕𝑢0

𝜕𝑡
− 𝑦

𝜕2𝑣0

𝜕𝑥𝜕𝑡
− Ω𝑣0)

2

𝑑𝑦𝑑𝑥
𝑏(𝑥)/2

−𝑏(𝑥)/2
+

1

2
∫ ∫ 𝜌𝐿 (

𝜕𝑣0

𝜕𝑡
+ Ω(𝑅 + 𝑥 + 𝑢0))

2

𝑑𝑦𝑑𝑥
𝑏(𝑥)/2

−𝑏(𝑥)/2

𝐿

0

𝐿

0
  

                                                  (3.19) 

Neglecting rotary inertia terms (𝑦
𝜕2𝑣0

𝜕𝑥𝜕𝑡
) and Coriolis term (2Ω

𝜕𝑢0

𝜕𝑡
𝑣0), the kinetic energy equation 

simplifies to: 

𝑇 =
1

2
∫ 𝑏(𝑥)𝜌𝐿 {(

𝜕𝑢0

𝜕𝑡
)
2

+ Ω2𝑣0
2} 𝑑𝑥

𝐿

0

 

+
1

2
∫ 𝑏(𝑥)𝜌𝐿 {(

𝜕𝑣0

𝜕𝑡
)2 + Ω2𝑢0

2 + 2Ω2𝑢0(𝑅 + 𝑥) + 2Ω(𝑅 + 𝑥)
𝜕𝑣0

𝜕𝑡
+ Ω2(𝑅 + 𝑥)2} 𝑑𝑥

𝐿

0
       (3.20) 

After applying the Rayleigh-Ritz approximate displacement function one can write: 

𝑇 = ∑ ∑ (
1

2
∫ 𝜌𝐿𝑏(𝑥)∅2𝑖(𝑥)∅2𝑗(𝑥)

𝜕𝑞2𝑖(𝑡)

𝜕𝑡

𝜕𝑞2𝑗(𝑡)

𝜕𝑡
𝑑𝑥 +

𝐿

0
𝑚
𝑗=1

𝑚
𝑖=1

1

2
∫ 𝜌𝐿𝑏(𝑥)∅3𝑖(𝑥)∅3𝑗(𝑥)

𝜕𝑞3𝑖(𝑡)

𝜕𝑡

𝜕𝑞3𝑗(𝑡)

𝜕𝑡
𝑑𝑥

𝐿

0
+

1

2
∫ 𝜌𝐿𝑏(𝑥)Ω2∅2𝑖(𝑥)∅2𝑗(𝑥)𝑞2𝑖(𝑡)𝑞2𝑗(𝑡)𝑑𝑥

𝐿

0
+

1

2
∫ 𝜌𝐿𝑏(𝑥)Ω2∅3𝑖(𝑥)∅3𝑗(𝑥)𝑞3𝑖(𝑡)𝑞3𝑗(𝑡)𝑑𝑥

𝐿

0
+ ∫ 𝜌𝐿𝑏(𝑥)Ω2(𝑅 + 𝑥)∅2𝑖(𝑥)𝑞2𝑖(𝑡)𝑑𝑥

𝐿

0
+

                          ∫ Ω𝜌𝐿𝑏(𝑥)(𝑅 + 𝑥)∅3𝑖(𝑥)
𝜕𝑞3𝑖(𝑡)

𝜕𝑡
𝑑𝑥) +

1

2
∫ 𝜌𝐿𝑏(𝑥)Ω2(𝑅 + 𝑥)2𝑑𝑥

𝐿

0

𝐿

0
                (3.21) 

Equation (3.21) can be written as: 

𝑇 = ∑ ∑ (
1

2
 �̇�2𝑖  𝑀𝑖𝑗

𝑢�̇�2𝑗 +
1

2
 �̇�3𝑖 𝑀𝑖𝑗

𝑣�̇�3𝑖 +
1

2
𝑞2𝑖𝐾𝑖𝑗

𝑐𝑢𝑞2𝑗 +
1

2
𝑞3𝑖𝐾2𝑖𝑗

𝑐𝑣𝑞3𝑗 + 𝐹𝑖𝑞2𝑖 +𝑚
𝑗=1

𝑚
𝑖=1

                            ∫ Ω𝜌𝐿𝑏(𝑥)(𝑅 + 𝑥)∅3𝑖(𝑥)�̇�3𝑖𝑑𝑥) +
1

2
∫ 𝜌𝐿𝑏(𝑥)Ω2(𝑅 + 𝑥)2𝑑𝑥

𝐿

0

𝐿

0
    (3.22) 

where,  

𝑀𝑖𝑗
𝑢 = ∫ 𝜌𝐿𝑏(𝑥)∅2𝑖(𝑥)∅2𝑗(𝑥)𝑑𝑥

𝐿

0
       (3.23) 

𝑀𝑖𝑗
𝑣 = ∫ 𝜌𝐿𝑏(𝑥)∅3𝑖(𝑥)∅3𝑗(𝑥)𝑑𝑥

𝐿

0
      (3.24) 
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𝐾𝑖𝑗
𝑐𝑢 = ∫ 𝜌𝐿𝑏(𝑥)Ω2∅2𝑖(𝑥)∅2𝑗(𝑥)𝑑𝑥

𝐿

0
     (3.25) 

𝐾2𝑖𝑗
𝑐𝑣 = ∫ 𝜌𝐿𝑏(𝑥)Ω2∅3𝑖(𝑥)∅3𝑗(𝑥)𝑑𝑥

𝐿

0
      (3.26)    

𝐹𝑖 = ∫ 𝜌𝐿𝑏(𝑥)Ω2(𝑅 + 𝑥)∅2𝑖(𝑥)𝑑𝑥
𝐿

0
                  (3.27)  

3.2.4 Equations of motion 

To get the equations of motion for axial vibration and in-plane bending vibration, 

Lagrange’s equation can be used. Using Lagrange’s equation for two generalized coordinates, one 

can get two sets of matrix equations. For 𝑞2𝑖(𝑡), Lagrange’s equation can be written as: 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�2𝑖
) −

𝜕 𝑇

𝜕𝑞2𝑖
+

𝜕 (𝑈+𝑊)

𝜕𝑞2𝑖
= 0 , 𝑖 = 1. .𝑚     (3.28) 

and for 𝑞3𝑖(𝑡), Lagrange’s equation can be written as: 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�3𝑖
) −

𝜕 𝑇

𝜕𝑞3𝑖
+

𝜕 (𝑈+𝑊)

𝜕𝑞3𝑖
= 0 , 𝑖 = 1. .𝑚     (3.29) 

Substituting 𝑈, 𝑊 and 𝑇 from equations (3.8), (3.13) and (3.22), respectively, into the equations 

(3.28) and (3.29) and neglecting the load vector {𝐹} for free vibration analysis, one can get two 

sets of equations of motion in matrix form as follows: 

           [𝑀𝑢]{�̈�2} + ([𝐾𝑢] − [𝐾𝑐𝑢]){𝑞2} = {0}                    (3.30)  

   [𝑀𝑣]{�̈�3} + ([𝐾𝑣] + [𝐾1
𝑐𝑣] − [𝐾2

𝑐𝑣]){𝑞3} = {0}     (3.31)  

where, [𝑀𝑢], [𝐾𝑢], [𝐾𝑐𝑢] and {𝑞2} are mass matrix, global stiffness matrix, softening matrix due 

to centrifugal action and system displacement vector, respectively, for the axial vibration and [𝑀𝑣], 

[𝐾𝑣], [𝐾1
𝑐𝑣], [𝐾2

𝑐𝑣] and {𝑞3} are mass matrix, global stiffness matrix, stiffness matrix due to 

centrifugal action, softening matrix due to centrifugal action and system displacement vector, 

respectively, for the in-plane bending vibration. Equations (3.30) and (3.31) can be written in 

matrix form as: 
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[
[𝑀𝑢] [0]

[0] [𝑀𝑣]
] [

{�̈�2}
{�̈�3}

] + [
[𝐾𝑢] − [𝐾𝑐𝑢] [0]

[0] [𝐾𝑣] + [𝐾1
𝑐𝑣] − [𝐾2

𝑐𝑣]
] [

{𝑞2}
{𝑞3}

] = {0}    (3.32) 

Shortly written as: 

[𝑀𝑢𝑣]{�̈̃�} + [𝐾𝑢𝑣]{�̃�} = {0}     (3.33) 

where, [𝑀𝑢𝑣] = [
[𝑀𝑢] [0]

[0] [𝑀𝑣]
] , [𝐾𝑢𝑣] = [

[𝐾𝑢] − [𝐾𝑐𝑢] [0]

[0] [𝐾𝑣] + [𝐾1
𝑐𝑣] − [𝐾2

𝑐𝑣]
] and {�̃�} =

[
{𝑞2}
{𝑞3}

].  

The solution of equation (3.33) can be assumed in the form      

     {�̃�} = {�̃�}𝑒√−1𝜔𝑡       (3.34) 

where, {�̃�} is the mode shape (eigen) vector and 𝜔 is the natural frequency. Substituting equation 

(3.34) into the equation (3.33) yields: 

([𝐾𝑢𝑣] − 𝜔2[𝑀𝑢𝑣]){�̃�} = {0}    (3.35) 

Equation (3.35) is an eigenvalue problem and can be solved to determine the natural frequencies 

of axial vibration and in-plane bending vibration for a doubly-tapered rotating cantilever laminated 

composite beam. The natural frequencies of axial vibration and natural frequencies of in-plane 

bending vibration determined from equation (3.35) can be distinguished by obtaining the 

corresponding mode shapes. 

3.3       Boundary conditions and approximate shape functions 

Rayleigh-Ritz method is the extension of Rayleigh's method that provides a means of 

obtaining a more accurate value for the fundamental frequency as well as approximations for the 

high frequencies and mode shapes. In this method single shape function is replaced by a series of 

shape functions. The success of the method depends on the choice of the shape functions that 

should satisfy the geometric boundary conditions. 
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In the case of axial vibration for a beam of length 𝐿, that is fixed at one end and free at the other 

end, boundary conditions are [10]:         

     𝑢0(𝑥=0) = 0, 𝑢0(𝑥=𝐿)
≠ 0          (3.36) 

The approximate shape function for axial displacement that satisfies the boundary condition, is 

            ∅2𝑖(𝑥) = (
𝑥

𝐿
)𝑖 , 𝑖 = 1,2,3…𝑚      (3.37) 

In the case of in-plane bending vibration for a beam of length 𝐿, that is fixed at one end and free 

at the other end, the boundary conditions are:       

           𝑣0(𝑥=0) = 0, 𝑣0(𝑥=𝐿)
≠ 0,  

𝜕𝑣0

𝜕𝑥
|
(𝑥=0)

= 0 and  
𝜕𝑣0

𝜕𝑥
|
(𝑥=𝐿)

≠ 0     (3.38) 

The approximate shape function that satisfies the boundary condition given in equation (3.38), is 

         ∅3𝑖(𝑥) = (
𝑥

𝐿
)𝑖+1 , 𝑖 = 1,2,3…𝑚       (3.39) 

3.4       Validation and results 

The formulation described in section 3.2 has been developed using MATLAB for the 

validation of results and numerical analysis. Validation of results has been performed by 

comparing the existing results available in the literature and the results obtained using the FEA 

tool ANSYS. Due to absence of Coriolis term and due to the cross-sectional plane of symmetry 

being in 𝑥-𝑦 plane, natural frequencies obtained from equation (3.35) are for pure in-plane bending 

and pure axial vibrations. To validate the results obtained from Rayleigh-Ritz method, the first 

three in-plane bending and the first two pure axial natural frequencies are taken into account. In 

ANSYS, SHELL-181 element is used to discretize the beam. ANSYS Composite PrepPost (ACP) 

has been used to model the different taper configurations of the composite beam.  
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3.4.1 Validation step-1: Rotating uniform composite beam 

In this validation step, natural frequencies of non-rotating and rotating uniform cantilever 

composite beams are validated. In Table 3.1, natural frequencies for non-rotating uniform 

cantilever composite beam obtained using Rayleigh-Ritz (R-R) method, ANSYS and existing 

results are listed and compared. The existing results obtained from [40], used an exact formula, 

which is based on Euler-Bernoulli beam theory [40]. In Table 3.1, length of the beam is 400 mm 

and width is 40 mm. The total thickness of the laminate is 3.2 mm and all the layers have same 

thickness. The result of R-R solution method converges for 7 terms in the approximate shape 

function. Mechanical properties of the material used are given in [40]. 

Table 3.1 Natural frequencies (Hz) of in-plane bending and axial vibrations for non-rotating 

uniform cantilever composite beam using different methods 

Stacking 

sequence 

Vibration 

type 
Mode 

R-R 

solution 

Reference 

[40] 

ANSYS 

 

[0/90]2s 

In-plane 

bending 

1st 158.47 156.50 154.63 

2nd 993.10 980.80 901.77 

3rd 2781.5 2747.0 2302.0 

Axial 
1st 2452.5 - 2426.0 

2nd 7357.4 - 7286.6 

[45/-45/0/90]s 

In-plane 

bending 

1st 148.03 140.20 139.67 

2nd 927.67 879.00 842.25 

3rd 2598.3 2462.0 2236.8 

Axial 
1st 2290.9 - 2176.5 

2nd 6872.7 - 6533.8 

 

The mode shapes associated with the natural frequencies of the first three in-plane bending 

and first two axial vibrations of [0/90]2s laminated composite beam obtained using ANSYS, are 

illustrated in Figures 3.2 and 3.3, respectively. Mode shapes obtained using R-R method are given 

in section 3.5. 

In Table 3.2, first three in-plane bending and first two axial natural frequencies for rotating 

clamped-free uniform composite beam have been compared with ANSYS results. In this case, 
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beam length, width, thickness of the lamina and hub radius are taken from Tables 2.3 and 2.4. 

Mechanical properties of composite material are given in Table 2.1. 

 

 

Figure 3.2 First three in-plane bending vibration mode shapes of non-rotating uniform cantilever 

composite beam obtained using ANSYS 

 

 

Figure 3.3 First two axial vibration mode shapes of non-rotating uniform cantilever composite 

beam obtained using ANSYS 

 

1st Mode 

154.63 Hz 
 

2nd Mode 

901.77 Hz 
 

3rd Mode 

2302 Hz 
 

1st Mode 

2426 Hz 

 

2nd Mode 

7286.6 Hz 
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Table 3.2 Natural frequencies (Hz) of in-plane bending and axial vibrations of rotating uniform 

cantilever composite beam 

Stacking 

Sequence 

Vibration 

type 
Mode 

R-R 

solution 
ANSYS 

R-R 

solution 
ANSYS 

R-R 

solution 
ANSYS 

Ω = 0 rad/s Ω = 100 rad/s Ω = 200 rad/s 

[90]18s 

In-plane 

bending 

1st 120.35 120.04 120.72 120.40 121.81 121.48 

2nd 754.21 732.76 755.28 733.76 758.46 736.94 

3rd 2112.4 1980.6 2113.6 1981.0 2117.1 1985.2 

Axial 
1st 2328.2 2323.2 2328.1 2323.1 2327.9 2322.7 

2nd 6984.5 6977.0 6984.4 6976.8 6984.4 6976.3 

 

In Tables 3.1 and 3.2, natural frequencies of in-plane bending and axial vibrations of non-

rotating and rotating cantilever uniform composite beams, respectively, show very good agreement 

between R-R method, ANSYS and existing results.  

3.4.2 Validation step-2: Thickness-tapered rotating cantilever composite beam 

In this validation step, natural frequencies of non-rotating and rotating thickness-tapered 

cantilever composite beams obtained using the R-R method are compared with ANSYS results for 

in-plane bending and axial vibrations. In Table 3.3, natural frequencies of non-rotating thickness-

tapered cantilever composite beam are listed. Four different taper configurations with two different 

numbers of ply drop-off are considered to compare the results between R-R method and ANSYS. 

In Table 3.3, non-rotating condition is defined by ‘0 rad/s’. The beam length, width and hub radius 

are given in Table 2.4. Mechanical properties of composite and resin materials are given in Tables 

2.1 and 2.2, respectively. Number of terms used in approximate shape function, in this case, is 7. 

Stacking sequence for the composite laminate is [90]18s. 

In Table 3.3, results for thickness-tapered composite beam show excellent agreement 

between R-R method and ANSYS. First three in-plane bending and first two axial vibration mode 

shapes of rotating (200 rad/s) thickness-tapered (𝑆 = 10, Configuration-A) cantilever composite 

beam obtained using ANSYS are illustrated in Figures 3.4 and 3.5, respectively. 
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Table 3.3 Natural frequencies (Hz) of in-plane bending and axial vibrations of non-rotating and 

rotating thickness-tapered cantilever composite beam for different taper configurations 

Configuration S Mode 
R-R ANSYS R-R ANSYS R-R ANSYS 

Ω = 0 rad/s Ω = 100 rad/s Ω = 200 rad/s 

A 

 

6 

 

In
-p

la
n
e 1st 123.69 123.70 124.09 124.06 125.29 125.11 

2nd 758.24 736.64 759.31 737.65 762.51 740.68 

3rd 2110.2 1976.2 2111.4 1977.3 2114.9 1980.6 

A
x
ia

l 

1st 2366.9 2365.8 2366.9 2365.7 2366.7 2365.3 

2nd 6970.2 6958.9 6970.1 6958.7 6970.1 6958.2 

 

10 

 

In
-p

la
n
e 1st 125.78 126.81 126.20 127.16 127.47 128.20 

2nd 760.77 739.95 761.80 740.93 765.05 743.88 

3rd 2109.0 1972.9 2110.2 1974.0 2113.7 1977.2 

A
x
ia

l 

1st 2390.8 2401.3 2390.8 2401.2 2390.6 2400.8 

2nd 6962.4 6945.6 6962.4 6945.5 6962.3 6944.9 

B 

 

6 

 

In
-p

la
n
e 1st 121.02 126.36 121.39 126.71 122.48 127.75 

2nd 758.44 742.65 759.50 743.64 762.67 746.61 

3rd 2124.3 1985.1 2125.4 1986.2 2128.9 1989.4 

A
x
ia

l 

1st 2332.5 2402.6 2332.5 2402.5 2332.2 2402.2 

2nd 6997.5 6987.6 6997.5 6987.4 6997.5 6986.9 

 

10 

 

In
-p

la
n
e 1st 121.68 132.17 122.04 132.51 123.12 133.52 

2nd 762.55 753.11 763.60 754.06 766.75 756.89 

3rd 2135.8 1994.6 2136.9 1995.7 2140.4 1998.7 

A
x
ia

l 

1st 2333.3 2474.4 2333.3 2474.3 2333.1 2474.0 

2nd 7000.0 7013.7 6999.9 7013.5 6999.9 7013.0 

C 

 

6 

 

In
-p

la
n
e 1st 120.57 126.36 120.94 126.70 122.03 127.75 

2nd 755.63 742.65 756.69 743.64 759.87 746.61 

3rd 2116.4 1985.1 2117.5 1986.2 2121.0 1989.4 

A
x
ia

l 

1st 2332.5 2402.6 2332.5 2402.5 2332.3 2402.2 

2nd 6997.5 6987.6 6997.5 6987.4 6997.5 6986.9 

 

10 

 

In
-p

la
n
e 1st 120.62 132.17 120.98 132.51 122.07 133.52 

2nd 755.89 753.11 756.95 754.06 760.13 756.89 

3rd 2117.1 1994.6 2118.3 1995.7 2121.7 1998.7 

A
x
ia

l 

1st 2333.3 2474.4 2333.3 2474.3 2333.1 2474.0 

2nd 7000.0 7013.7 6999.9 7013.5 6999.9 7013.0 

D 

 

6 

 

In
-p

la
n
e 1st 121.90 126.36 122.27 126.70 123.35 127.75 

2nd 764.00 742.65 765.00 743.64 768.15 746.61 

3rd 2139.7 1985.1 2140.9 1986.2 2144.3 1989.4 

A
x
ia

l 

1st 2193.1 2402.6 2193.0 2402.5 2192.8 2402.2 

2nd 6579.2 6987.6 6579.2 6987.4 6579.1 6986.9 

 

10 

 

In
-p

la
n
e 1st 123.01 132.17 123.37 132.51 124.44 133.52 

2nd 770.86 753.11 771.90 754.06 775.02 756.89 

3rd 2159.1 1994.6 2160.2 1995.7 2163.6 1998.7 

A
x
ia

l 

1st 2159.4 2474.4 2159.3 2474.3 2159.2 2474.0 

2nd 6478.2 7013.7 6478.2 7013.5 6478.1 7013.0 
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Figure 3.4 First three in-plane bending vibration mode shapes of rotating thickness-tapered 

cantilever composite beam obtained using ANSYS 

 

Figure 3.5 First two axial vibration mode shapes of rotating thickness-tapered cantilever 

composite beam obtained using ANSYS 

 

 

1st Mode 

128.20 Hz 

 

2nd Mode 

743.88 Hz 

 

3rd Mode 

1977.2 Hz 

 

1st Mode 

2400.8 Hz 
 

2nd Mode 
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3.4.3 Validation step-3: Doubly-tapered rotating cantilever composite beam 

In this validation step, rotating doubly-tapered cantilever composite beam is considered to 

validate the R-R results with ANSYS results. Different values of width-ratio are considered for 

different thickness-taper configurations. The length of the cantilever beam is 25 cm and width at 

the fixed side is 2 cm. Stacking sequence is [90]18s. Rotational velocity is 200 rad/s. In Tables 3.4 

and 3.5, ‘0 rad/s’ as rotational velocity is describing the non-rotating condition. In Table 3.4, unit 

width-ratio (𝑟𝑏 = 1) and ‘0’ ply drop-off are describing the uniform-width and uniform-thickness 

in the composite beam, respectively. Table 3.4 validates the results for taper Configuration-A and 

Table 3.5 validates the results for Configurations B, C and D. For both tables, number of terms in 

approximate shape function is 8. Figures 3.6 and 3.7 show the mode shapes for in-plane bending 

and axial vibrations of rotating (200 rad/s) doubly-tapered (𝑟𝑏 = 0.1, 𝑆 = 18) beam which has 

taper Configuration-A. 

Table 3.4 Natural frequencies (Hz) of in-plane bending and axial vibrations of non-rotating and 

rotating doubly-tapered cantilever composite beam for Configuration-A 

No. of ply drop-off, 𝑆  0 18 

 

 
𝒓𝒃 Mode 

R-R ANSYS R-R ANSYS R-R ANSYS R-R ANSYS 

Ω = 0 rad/s Ω = 200 rad/s Ω = 0 rad/s Ω = 200 rad/s 

 

 

 

 

0.1 

 

In
-p

la
n
e 1st 158.50 159.23 160.15 161.14 167.87 175.02 169.77 176.87 

2nd 511.08 509.56 515.04 514.25 519.50 522.58 523.50 526.93 

3rd 1124.7 1116.6 1129.2 1121.7 1128.5 1118.8 1133.1 1123.6 

A
x
ia

l 

1st 3265.6 3257.0 3265.4 3256.6 3373.3 3430.9 3373.2 3430.6 

2nd 7637.8 7623.1 7637.7 7622.6 7630.1 7608.2 7630.0 7607.8 

 

0.5 

 

In
-p

la
n
e 1st 130.90 130.81 132.00 132.46 140.16 146.49 141.61 148.05 

2nd 627.00 621.02 630.82 625.39 636.70 635.76 640.57 639.65 

3rd 1618.1 1562.8 1622.4 1567.5 1617.8 1557.5 1622.2 1561.8 

A
x
ia

l 

1st 2659.0 2652.8 2658.8 2652.4 2768.8 2833.4 2768.6 2833.1 

2nd 7117.4 7106.2 7117.3 7105.6 7095.0 7067.1 7095.0 7066.6 

 

1.0 In
-p

la
n
e 1st 120.35 120.04 121.81 121.48 129.70 135.68 131.51 137.01 

2nd 754.21 732.76 758.46 736.94 765.50 749.57 769.81 753.22 

3rd 2112.4 1980.6 2117.1 1985.2 2107.4 1965.8 2112.1 1969.8 

A
x
ia

l 

1st 2328.2 2323.2 2327.9 2322.7 2434.6 2499.2 2434.4 2498.8 

2nd 6984.5 6977.0 6984.4 6976.3 6950.2 6918.1 6950.1 6917.4 

C
o
n
fi

g
u
ra

ti
o
n

-A
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Table 3.5 Natural frequencies (Hz) of in-plane bending and axial vibrations of non-rotating and 

rotating doubly-tapered (𝑆 = 18) cantilever composite beams for Configurations B, C and D 

 𝒓𝒃 Mode 
R-R ANSYS R-R ANSYS 

0 rad/s 200 rad/s 

 

 

 

 

0.1 

 

In
 p

la
n

e 1st 159.06 187.20 161.03 189.00 

2nd 512.90 541.34 517.61 545.50 

3rd 1128.7 1148.3 1133.9 1152.9 

A
x

ia
l 

1st 3277.1 3611.5 3276.9 3611.2 

2nd 7664.7 7815.5 7664.6 7815.1 

 

0.5 

 

In
 p

la
n

e 1st 134.97 158.13 136.06 159.62 

2nd 646.57 660.78 650.30 664.42 

3rd 1668.7 1601.2 1672.9 1605.1 
A

x
ia

l 

1st 2668.3 2997.1 2668.2 2996.7 

2nd 7142.4 7255.1 7142.4 7254.6 

1.0 In
 p

la
n

e 1st 124.10 146.91 125.53 148.18 

2nd 777.79 780.49 781.91 783.86 

3rd 2178.5 2022.7 2182.9 2026.3 

A
x

ia
l 

1st 2336.5 2648.3 2336.1 2647.8 

2nd 7009.1 7100.8 7009.0 7100.2 

 

 

 

 

0.1 

 

In
 p

la
n

e 1st 159.06 186.17 160.70 187.99 

2nd 512.88 541.84 516.82 545.97 

3rd 1128.6 1138.7 1133.1 1143.3 

A
x

ia
l 

1st 3277.1 3614.7 3276.9 3614.4 

2nd 7664.7 7820.3 7664.6 7819.9 

 

0.5 

 

In
 p

la
n

e 1st 131.34 158.13 132.45 159.62 

2nd 629.19 660.78 633.01 664.42 

3rd 1623.8 1601.2 1628.1 1605.1 

A
x

ia
l 

1st 2668.4 2997.1 2668.2 2996.7 

2nd 7142.4 7255.1 7142.4 7254.6 

 

1.0 

In
 p

la
n

e 1st 120.77 146.91 122.22 148.18 

2nd 756.87 780.49 761.10 783.86 

3rd 2119.9 2022.7 2124.5 2026.3 

A
x

ia
l 

1st 2336.3 2648.3 2336.1 2647.8 

2nd 7009.0 7100.8 7009.0 7100.2 

 

 

 

 

0.1 

 

In
 p

la
n

e 1st 150.33 187.20 152.07 189.00 

2nd 484.70 541.35 488.90 545.50 

3rd 1066.7 1148.4 1071.5 1152.9 

A
x

ia
l 

1st 3097.2 3611.5 3097.1 3611.2 

2nd 7244.0 7815.5 7243.9 7815.1 

 

0.5 

 

In
 p

la
n

e 1st 124.13 158.13 125.31 159.62 

2nd 594.65 660.79 598.70 664.42 

3rd 1534.7 1601.2 1539.2 1605.1 

A
x

ia
l 

1st 2521.9 2997.1 2521.7 2996.7 

2nd 6750.4 7255.2 6750.3 7254.7 

 

1.0 

In
 p

la
n

e 1st 114.14 146.91 115.68 148.18 

2nd 715.32 780.49 719.80 783.87 

3rd 2003.5 2022.7 2008.4 2026.3 

A
x

ia
l 

1st 2208.1 2648.3 2207.9 2647.8 

2nd 6624.3 7100.8 6624.2 7100.3 

 

C
o
n
fi

g
u
ra

ti
o
n

-D
 

C
o
n
fi

g
u
ra

ti
o
n

-B
 

C
o
n
fi

g
u
ra

ti
o
n

-C
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Figure 3.6 First three in-plane bending vibration mode shapes of doubly-tapered rotating 

cantilever composite beam (Configuration-A) obtained using ANSYS 

 

 

Figure 3.7 First two axial vibration mode shapes of doubly-tapered rotating cantilever composite 

beam (Configuration-A) obtained using ANSYS 

3.5     Mode shapes determination 

Having the eigenvectors obtained from equation (3.35), one can have the mode shapes of 

doubly-tapered (𝐿 = 25 cm, 𝑏0 = 2 cm, 𝑟𝑏 = 0.1 , 𝑆 = 18) rotating cantilever laminated 

1st Mode 

176.87 Hz 
 

2nd Mode 

526.93 Hz 
 

3rd Mode 

1123.6 Hz 
 

1st Mode 

3430.6 Hz 
 

2nd Mode 

7607.8 Hz 
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([90]18𝑠) composite beams for in-plane bending and axial vibrations. In Figures 3.8 and 3.9, mode 

shapes of non-rotating and rotating (200 rad/s) uniform cantilever composite beams and doubly-

tapered cantilever laminated composite beams (Configuration-A) are illustrated, respectively. 

They show that except the first mode, mode shapes are the same for non-rotating and rotating 

conditions. Also, one can observe that due to absence of Coriolis term and due to the cross-

sectional plane of symmetry, mode shapes obtained are uncoupled and among the first six mode 

shapes obtained from equation (3.35), the first, second, third and fifth are in-plane bending 

vibration modes and fourth, sixth are axial vibration modes. Also, for doubly-tapered composite 

beam among the first eight mode shapes, the first, second, third, fourth, sixth and seventh are in-

plane bending vibration modes and fifth and eighth are axial vibration modes. Also, it can be 

understood from Figures 3.8 and 3.9 that the maximum displacements for uniform beam are higher 

than that of the doubly-tapered beam in both non-rotating and rotating conditions.  

     

                                                 

        

Figure 3.8 Mode shapes of non-rotating and rotating uniform cantilever composite beam 
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Figure 3.9 Mode shapes of non-rotating and rotating doubly-tapered cantilever composite beam 

Figure 3.10 illustrates the first three in-plane bending and first two axial mode shapes for 

rotating (200 rad/s) doubly-tapered cantilevered laminated composite beam considering different 

taper configurations. It shows that for every mode, mode shapes are almost same for 

Configuration-B, C and D and maximum displacement for Configuration-A is the lowest among 

all the configurations considered. 
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Figure 3.10 First three in-plane bending and first two axial vibrational mode shapes of rotating 

doubly-tapered beams for different taper configurations 
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3.6     Free vibration analysis  

In this section, a set of graphs are plotted to understand the influences of different system 

parameters on the natural frequencies of in-plane bending and axial vibrations. Mechanical 

properties of materials used in this section are given in Tables 2.1 and 2.2. 

3.6.1 Effect of rotational velocity 

In order to understand the effect of rotational velocity on the natural frequencies of in-plane 

bending and axial vibrations, five different types of cantilever beams are considered where one 

has uniform-thickness and uniform-width, and four others are doubly-tapered (𝑆 = 18, 𝑟𝑏 = 0.1) 

beams with four different taper configurations. The beam length, width at fixed side and hub radius 

are given in Table 2.3 and Table 2.4. The stacking sequence of the laminated beam is [90]18s.  

Figures 3.11 and 3.12, illustrate the variation of the first three in-plane bending and the 

first two axial natural frequencies, respectively, for various rotational velocities. It can be stated 

from the Figure 3.11 that for uniform or doubly-tapered beam, first three natural frequencies of in-

plane bending vibration increase as the rotational velocity increases. Figure 3.12 for axial vibration 

illustrates that first two natural frequencies slightly decrease as the rotational velocity increases. 

Figure for first natural frequency of in-plane bending vibration and first two natural frequencies of 

axial vibrations show that doubly-tapered beam with any configuration has higher natural 

frequencies than uniform composite beam in both rotating and non-rotating conditions. Figure 3.11 

for second and third natural frequencies of in-plane bending vibration shows that uniform 

composite beam has higher natural frequency than doubly-tapered beam in both rotating and non-

rotating conditions. Also, it can be stated that, except for the second natural frequency of axial 

vibration, taper Configuration-A has the highest natural frequency and for both vibrational modes, 

Configuration-D has lowest natural frequency. 



89 

 

    

       

 

Figure 3.11 Effect of rotational velocity on the natural frequencies of in-plane bending vibration 

 

        

Figure 3.12 Effect of rotational velocity on the natural frequencies of axial vibration        
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3.6.2    Effect of hub radius to beam length ratio 

    In this section, doubly-tapered (𝑆 = 18, 𝑟𝑏 = 0.1) rotating cantilever composite beams 

with four different taper configurations are considered to investigate the effect of hub radius to 

beam length ratio (𝑅/𝐿) on the natural frequencies of in-plane bending vibration. The rotating 

doubly-tapered beams have the same length, same stacking sequence and same width at the fixed 

side as that of section 3.6.1. The rotating velocity of the beam is 200 rad/s. In Figure 3.13, the 

variation of first three natural frequencies with respect to different values of hub radius to beam 

length ratio is illustrated. It can be understood from this figure that first three natural frequencies 

of in-plane bending vibration increase as the hub radius to beam length ratio increases. 

         

       

 

Figure 3.13 Effect of (R/L) on the natural frequencies of in-plane bending vibration 

1
s

t 
In

-p
la

n
e

 b
e

n
d

in
g

 
N

a
tu

ra
l 

F
re

q
u

e
n

c
y

 (
H

z
) 

2
n

d
 In

-p
la

n
e

 b
e

n
d

in
g

 
N

a
tu

ra
l 

F
re

q
u

e
n

c
y

 (
H

z
) 

3
rd

 In
-p

la
n

e
 b

e
n

d
in

g
 

N
a

tu
ra

l 
F

re
q

u
e

n
c

y
 (

H
z

) 



91 

 

3.6.3    Effect of double-tapering 

In this section, the effects of double-tapering on the natural frequencies of in-plane bending 

and axial vibrations of a rotating cantilever composite beam are studied. The beam length, width 

at fixed side, stacking sequence and rotating velocity are taken as that of previous section 3.6.2. 

Hub radius is taken as 0.025 m.  

Figures 3.15 and 3.16 show that the first natural frequency of in-plane bending and first 

two natural frequencies of axial vibrations for all the configurations increase as the double-tapering 

increases. On the other hand, second and third natural frequencies of in-plane bending vibration 

decrease as the double-tapering increases. Among all the taper configurations, Configuration-A 

gives the highest natural frequencies of in-plane bending and axial vibrations for higher double-

taper ratio.  

 

  

 
Figure 3.14 Effect of double-tapering on the natural frequencies of in-plane bending vibration 
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Figure 3.15 Effect of double-tapering on the natural frequencies of axial vibration 

3.7     Critical speed determination 

To obtain the critical speed of a doubly-tapered rotating cantilever composite beam for in-

plane bending vibration, one can consider the equation (3.31) and follow the procedure discussed 

in section 2.8. Only the first natural frequency of in-plane bending vibration is considered to obtain 

the first critical speed as first natural frequency of axial vibration is much higher than the first 

natural frequency of in-plane bending vibration. In this section, Campbell diagram and the direct 

method both are considered to determine the critical speeds. To compare the critical speed of 

doubly-tapered cantilever composite beam, four different types of beams are taken as that of 

section 2.8.1.  

In Figure 3.17 one can observe that doubly-tapered beam has highest critical speed that 

means operating speed for doubly-tapered beam is higher than other types of beams. From Figure 

3.17, also, it can be stated that doubly-tapered beam with Configuration-A has the highest 

operating speed and consequently Configurations B, C and D take the other positions. Critical 

speeds obtained using the direct method and Campbell diagram are listed in Table 3.6. 
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Figure 3.16 Critical speed determination from Campbell diagram for in-plane bending vibration 

Table 3.6 Critical speeds (rad/s) calculated using different methods for in-plane bending 

vibration 

Type of beam Direct method Campbell diagram 

U-U 191.14 191.10 

U-W 253.10 253.40 

Configuration-A (T-W) 269.05 269.30 

Configuration-A (T-U) 206.78 206.50 

Configuration-B (T-W) 253.99 253.80 

Configuration-B (T-U) 191.81 191.60 

Configuration-C (T-W) 253.99 253.80 

Configuration-C (T-U) 191.81 191.60 

Configuration-D (T-W) 240.05 240.70 

Configuration-D (T-U) 181.29 181.70 
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In Figure 3.18, only beam with configuration-A (T-W) is considered to understand the 

effect of laminate stacking sequence on critical speed. It can be understood from the Campbell 

diagram and results from direct method (listed in Table 3.7) that stacking sequence with 

unidirectional ply ([0]18s) has the highest critical speed. 

 
Figure 3. 17 Critical speed determination from Campbell diagram for in-plane bending vibration 

for different stacking sequences 

Table 3.7 Critical speed (rad/s) for different stacking sequences for in-plane bending vibration 

Stacking sequence Direct method Campbell diagram 

[0/90]9s 554.00 554.00 

[90]18s 269.05 269.30 

[0]18s 704.47 705.50 

[0/45/-45]6s 535.17 535.40 
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3.8     Dynamic instability analysis 

           Dynamic instability analysis can be carried out when a rotating structure experiences in-

plane bending and axial vibrations. Periodic rotational velocity will result in a parametric 

excitation on the rotating beam. Periodic rotational velocity can be introduced into the equations 

of motion for in-plane bending and axial vibration problem, which is given in equation (3.33). The 

equation (3.33) can be expressed as: 

[𝑀𝑢𝑣]{�̈̃�} + ([𝐾𝑢𝑣∗] + Ω(𝑡)2[𝐾Ω
∗]){�̃�} = {0}   (3.40) 

where,  [𝐾𝑢𝑣∗] = [
[𝐾𝑢] [0]

[0] [𝐾𝑣]
] and [𝐾Ω

∗] = [
−[𝐾𝑐𝑢∗] [0]

[0] [𝐾1
𝑐𝑣∗] − [𝐾2

𝑐𝑣∗]
]  

If periodic rotational velocity is employed in the system, dynamic instability can be 

observed. The region of dynamic instability can be found through Bolotin’s method. Substituting 

Ω(𝑡) from equation (2.54) into the equation (3.40) yields: 

[𝑀𝑢𝑣]{�̈̃�} + {[𝐾𝑢𝑣∗] + (Ω0
2 + 2Ω0

2𝛽𝑠𝑖𝑛𝜃𝑝𝑡 +
Ω0

2𝛽2

2
(1 − 𝑐𝑜𝑠2𝜃𝑝𝑡)) [𝐾Ω

∗]} {�̃�} = 0   (3.41)    

In order to find the periodic matrix solution of this Mathieu type equation with period 2𝑇 one can 

take Bolotin’s first approximation [31], and the periodic matrix solution with period 2𝑇 can be 

sought in the form: 

{�̃�}= ∑ [{𝑎𝑟}𝑠𝑖𝑛 (
𝑟𝜃𝑝𝑡

2
) + {𝑏𝑟}c𝑜𝑠 (

𝑟𝜃𝑝𝑡

2
)]∞

𝑟=1,3,5…    (3.42) 

Taking one term solution and differentiating two times with respect to time 𝑡, leads to 

{�̈̃�} = [−
𝜃𝑝

2

4
{𝑎1}𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) −

𝜃𝑝
2

4
{𝑏1}c𝑜𝑠 (

𝜃𝑝𝑡

2
)]   (3.43) 

After substituting {�̃�} and {�̈̃�} in equation (3.41) and following the same procedure given in section 

2.9, one can get two equations for resonance frequency: 
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𝜃𝑝
2 = (4[𝐾Ω

∗]Ω0
2 + 4[𝐾Ω

∗]Ω0
2𝛽 + 2[𝐾Ω

∗]Ω0
2𝛽2 + 4[𝐾𝑢𝑣∗])/[𝑀𝑢𝑣]                (3.44) 

𝜃𝑝
2 = (4[𝐾Ω

∗]Ω0
2 − 4[𝐾Ω

∗]Ω0
2𝛽 + 2[𝐾Ω

∗]Ω0
2𝛽2 + 4[𝐾𝑢𝑣∗])/[𝑀𝑢𝑣]                (3.45) 

Equations (3.44) and (3.45) can be solved as eigenvalue problems where each eigenvalue 𝜃𝑝
2
 is 

the square of parametric resonance frequency which gives the boundary between stable and 

unstable regions in resonance frequency-driving amplitude plane for a system that experiences in-

plane bending and axial vibrations. Equations (3.44) and (3.45) give upper and lower boundaries 

of the instability region, respectively. 

3.9    Instability analysis considering different system parameters 

           Different system parameters (i.e. rotational velocity, hub radius, double-taper ratio and 

stacking sequence) and different taper conigurations have influences on the dynamic instability of 

a rotating structure that is vibrating in axial and in-plane bending motions. Following graphs 

illustrate the effects of various parameter on the width of instability region. The analysis is 

conducted using taper Configuration A and D. Also, the analysis is conducted considering first 

three in-plane bending and first two axial vibrational modes. Mechanical properties for composite 

and resin materials are given in Table 2.1 and 2.2, respectively. 

3.9.1 Effect of different taper configurations 

            Figures 3.18 and 3.19 show the instability regions for first three in-plane bending and first 

two axial vibrational modes, respectively, for a doubly-tapered (𝐿 = 25 𝑐𝑚, 𝑏0 = 2 𝑐𝑚, 𝑆 =

18, 𝑟𝑏 = 0.1, 𝑅 = .025 𝑚) rotating cantilever composite beam with different taper configurations. 

The mean value of angular velocity is 50 rad/s and the stacking sequence is [90]18s. From Figure 

3.18 for first three modes of in-plane bending vibration, it can be stated that beam with 

Configuration-D has largest width of instability region and Configuration-B has smallest width of 

instability region. Also, from Figure 3.19 for first two modes of axial vibration, it can be stated 
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that beam with Configuration-D has largest width of instability region and Configuration-A has 

smallest width of instability region. 

 

 

 

Figure 3.18  Effect of different taper configurations on the widths of instability regions for first 

three modes of in-plane bending vibration 
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Figure 3.19 Effect of different taper configurations on the widths of instability regions for first 

two modes of axial vibration 

3.9.2 Effect of mean rotational velocity 

            Figures 3.20 and 3.21 illustrate the behavior of the instability region due to increase of 

mean rotational velocity for first three modes of in-plane bending and first two modes of axial 

vibrations, respectively, for a doubly-tapered (𝐿 = 25 𝑐𝑚, 𝑏0 = 2 𝑐𝑚, 𝑆 = 18, 𝑟𝑏 = 0.1, 𝑅 =

.025 𝑚) cantilever composite beam. The stacking sequence is [90]18s. From Figures 3.20 and 3.21, 

one can observe that for first three modes of in-plane bending and first two modes of axial 

vibrations, width of instability region increases as the rotational velocity increases and the width 
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of instability region for Configuration-A is less than the width of instability region for 

Configuration-D. 

 

Figure 3.20 Effect of mean rotational velocity on the widths of instability regions for first three 

modes of in-plane bending vibration 
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Figure 3.21 Effect of mean rotational velocity on the widths of instability regions for first two 

modes of axial vibration 

3.9.3 Effect of hub radius to beam length ratio 

Figures 3.22 and 3.23, illustrate the variation of width of instability region due to changes 

in the ratio of hub radius over beam length (𝑅/𝐿). The doubly-tapered (𝑆 = 18, 𝑟𝑏 = 0.1)  rotating 

cantilever composite beam has the same length, same stacking sequence and same width at the 

fixed side as that of previous section 3.9.2. The mean value of rotational velocity is 50 rad/s. Figure 

3.22 for first three modes of in-plane bending vibration shows that the width of instability region 

increases as the ratio of hub radius to beam length increases. Figure 3.23 for first two modes of 

axial vibration shows that hub radius has no effect on the dynamic instability of axial vibration. 
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Also, it can be understood from Figures 3.22 and 3.23, that the width of instability region for 

Configuration-A is less than the width of instability region for Configuration-D. 

 

Figure 3.22 Effect of hub radius to beam length ratio on the widths of instability regions for first 

three modes of in-plane bending vibration 
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Figure 3.23 Effect of hub radius to beam length ratio on the widths of instability regions for first 

two modes of axial vibration 

3.9.4 Effect of double-tapering 

Figures 3.24 and 3.25 show the variation of width of instability region for three different 

values of double-taper ratio (𝑆/𝑟𝑏). The beam length, width at fixed side, stacking sequence and 

mean rotational velocity are taken as same as that of previous section 3.9.3. The hub radius, in this 

case, is 0.025 m. From Figure 3.24 for first three modes of in-plane bending vibration, it can be 

stated that increase of double-taper ratio (increase of double-tapering) increases the width of 

instability region. Figure 3.25 for the first two modes of axial vibration illustrates that increase of 

double-taper ratio decreases the width of instability region. Also, it can be understood from Figures 
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3.24 and 3.25, that the width of instability region for Configuration-A is less than the width of 

instability region for Configuration-D. 

 

Figure 3.24 Double-tapering effect on the widths of instability regions for first three modes of 

in-plane bending vibration 
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Figure 3.25 Double-tapering effect on the width of instability regions for first two modes of 

axial vibration 

3.9.5 Effect of stacking sequence 

In this section, effect of laminate stacking sequence on dynamic instability of in-plane 

bending and axial vibrations are studied. The doubly-tapered (𝑆 = 18, 𝑟𝑏 = 0.1) rotating 

cantilever composite beam has the same length, same width at fixed side, same hub radius and 

same mean rotational velocity as that of previous section 3.9.4. From Figure 3.26 for first two 

modes of axial vibration, it can be observed that Configuration-A follow the same consequence as 

that of in-plane bending vibration but in the case of Configuration-D, cross-ply stacking sequence 

[0/90]9s has smallest width of instability regions and on the other hand, stacking sequence [90]18s 
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and [-45/45/0]6s have largest width of instability region. From Figure 3.27 for first three modes of 

in-plane bending vibration, it can be observed that unidirectional ply stacking sequence [0]18s has 

smallest width of instability regions and on the other hand, stacking sequence [90]18s has largest 

width of instability region. Cross-ply laminate stacking sequence [0/90]9s and angle-ply laminate 

stacking sequence [-45/45/0]6s have almost same width of instability region. Also, it can be noticed 

from Figure 3.27, that except for the stacking sequence [90]18s, the width of instability region for 

Configuration-D is less than the width of instability region for Configuration-A.  

 

 

Figure 3.26 Effect of stacking sequence on the widths of instability regions for first two modes 

of axial vibration 
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Figure 3.27 Effect of stacking sequence on the widths of instability regions for first three modes 

of in-plane bending vibration 
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3.10      Summary  

             In this chapter, in the first part, the free vibration analysis for in-plane bending and axial 

vibrations have been investigated for a doubly-tapered rotating cantilever composite beam. 

Rayleigh-Ritz method based on the Classical Lamination Theory was considered to formulate the 

problem. MATLAB was used to develop the formulation. The results from R-R method were 

validated with commercial FEA tool ANSYS. Upon completing the validation, effects of different 

parameters such as rotational velocity, hub radius, double-taper ratio and stacking sequence on the 

natural frequencies of in-plane bending and axial vibrations of composite beam are carried out. 

Based on the results obtained, Configuration-A has highest natural frequencies and Configuration-

D has lowest natural frequencies for both in-plane bending and axial vibrations in non-rotating and 

rotating conditions. It has been observed that rotating velocity significantly increases the natural 

frequencies of in-plane bending vibration, but natural frequencies of axial vibration slightly 

decrease due to increase of the rotational velocity. Also, It has been observed that double-tapering 

increases natural frequencies of in-plane bending and axial vibrations. After the free vibration 

analysis, critical speed was determined for various types of beams. In this case, doubly-tapered 

beam has the highest critical speed (operating speed) than uniform beam. Also, beam with 

unidirectional ply stacking sequence [0]18s has highest critical speed. 

In the second part of this chapter, dynamic instability analysis for in-plane bending and 

axial vibrations has been performed by considering the periodic rotational velocity. Bolotin’s 

method was used to obtain the boundaries of instability region. Different graphs have been plotted 

to study the effects of different parameters and different taper configurations on the instability 

region. Based on the results obtained, for in-plane bending vibration, Configuration-B has smallest 

width of instability region and Configuration-D has largest width of instability region and for axial 
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vibration Configuration-D has largest width of instability region and Configuration-A has smallest 

width of instability region. The width of instability region increases with rotational velocity for 

both in-plane bending and axial vibrational modes. Also, the width of instability region increases 

with hub radius for in-plane bending vibration. Increase of double-tapering increases the width of 

instability region for in-plane bending vibration. On the other hand,  increase of double-tapering 

decreases the width of instability region of axial vibration. Unidirectional ply stacking sequence 

[0]18s has the smallest width of instability region while stacking sequence [90]18s has largest width 

of instability region for both in-plane bending and axial vibrational modes. 
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Chapter - 4 

Comparative study between out-of-plane bending and in-plane bending vibrations of 

doubly-tapered rotating composite beam 

 

4.1       Introduction 

In chapters 2 and 3, out-of-plane and in-plane bending vibrations of doubly-tapered rotating 

cantilever composite beam were analyzed, respectively. Chapters 2 and 3 were organized so as to 

focus on the effects of different parameters on the natural frequencies and instability regions of 

out-of-plane and in-plane bending vibrations, respectively. Moreover, critical speeds were also 

determined for both out-of-plane and in-plane bending vibrations.  

In this chapter, a comparative study is conducted between out-of-plane and in-plane 

bending vibrations, in order to: 1) obtain the fundamental natural frequencies of the beam in non-

rotating and rotating conditions, 2) identify the significant vibration to determine the first critical 

speeds, 3) compare the maximum displacements of out-of-plane bending and in-plane bending 

vibrations, and 4) compare the instability regions of out-of-plane bending and in-plane bending 

vibrations. To perform this comparative study, a doubly-tapered cantilever composite beam with 

four different taper configurations is considered. The length of the beam, width at fixed side, width 

ratio, number of ply drop-off, stacking sequence and the rotational velocity are mentioned in the 

respective sections. The hub radius is taken as 10 percent of the length of the beam. The material 

chosen is NCT/301 graphite-epoxy. The mechanical properties of the material are listed in Tables 

2.1 and 2.2. 
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4.2       Fundamental frequency consideration 

The fundamental frequency is defined as the lowest natural frequency of a structural 

system. To identify the fundamental frequencies in non-rotating and rotating doubly-tapered 

beams (𝑏0 = 2 𝑐𝑚, 𝑆 = 18, 𝑟𝑏 = 0.1, [90]18𝑠), first natural frequencies of out-of-plane and in-

plane bending vibrations are plotted with respect to different values of rotational velocity and 

different values of beam length. Only the first natural frequencies of out-of-plane bending and in-

plane bending vibrations are considered to obtain the fundamental frequency as first natural 

frequency of axial vibration is much higher than the first natural frequencies of out-of-plane 

bending and in-plane bending vibrations. 

In Figure 4.1, it is shown that in both non-rotating and rotating conditions, when the beam 

length is small, first natural frequency of in-plane bending vibration is much higher than the first 

natural frequency of out-of-plane bending vibration. That means for a small length of doubly-

tapered beam, out-of-plane vibration is significant and that gives the fundamental frequency for 

non-rotating and rotating conditions. On the other hand, when the beam length is high (above 80 

cm) and the rotational velocity is high, then the first natural frequency of out-of-plane bending 

vibration becomes higher than the first natural frequency of in-plane bending vibration. This 

implies that for higher beam length and for higher rotational velocity in-plane bending vibration 

is significant and that gives the fundamental frequency.  
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Figure 4.1 First natural frequencies of out-of-plane bending and in-plane bending vibrations 

with respect to rotational velocity and beam length 

In Figures 4.2 and 4.3, second and third natural frequencies of out-of-plane bending and 

in-plane bending vibrations, respectively, are also plotted with respect to different values of 

rotational velocity and different values of beam length. From Figures 4.2 and 4.3, it can be 
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understood that increase of beam length decreases the second and third natural frequencies of out-

of-plane and in-plane bending vibrations of doubly-tapered rotating cantilever composite beam. 

 

 

       

  
 

Figure 4.2 Second natural frequencies of out-of-plane bending and in-plane bending vibrations 

with respect to rotational velocity and beam length 
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Figure 4.3 Third natural frequencies of out-of-plane bending and in-plane bending vibrations 

with respect to rotational velocity and beam length 

In Figures 4.4 and 4.5, first and second natural frequencies of axial vibration are plotted, 

respectively, with respect to different values of rotational velocity and different values of beam 

length. From Figures 4.4 and 4.5, it can be understood that increase of beam length decreases the 
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first and second natural frequencies of axial vibration of doubly-tapered rotating cantilever 

composite beam. 

    

 

Figure 4.4 First natural frequency of axial vibration with respect to rotational velocity and beam 

length 
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Figure 4.5 Second natural frequency of axial vibration with respect to rotational velocity and 

beam length 
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4.3       Critical speed consideration 

In order to identify the significant vibrating motion for determining the critical speed of 

doubly-tapered rotating composite beam (𝐿 = 2 𝑚, 𝑏0 = 4 𝑐𝑚 𝑟𝑏 = 0.1, 𝑆 = 18, [90]18𝑠), a 

Campbell diagram is plotted by considering first natural frequencies of out-of-plane and in-plane 

bending vibrations. 

In Figure 4.6, it is shown that out-of-plane bending vibration is significant to determine the 

first critical speed when multiple ( 𝑛 = 2,3,4…) rotating elements (i.e. blade in helicopter rotor 

system) are considered. On the other hand, for a single-bladed (𝑛 = 1) rotor system, in-plane 

bending vibration becomes significant. In Figure 4.6, OP denotes out-of-plane bending vibration 

and IP denotes in-plane bending vibration. 

 

Figure 4.6 Campbell diagram for doubly-tapered composite beam considering out-of-plane (OP) 

and in-plane (IP) bending vibrations 

 

First Critical Speed for out-

of-plane bending vibration 

First Critical Speed for in-

plane bending vibration 
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4.4       Maximum displacement consideration 

In Figures 4.7 and 4.8, first three mode shapes of non-rotating and rotating (50 rad/s) 

doubly-tapered cantilevered laminated composite beams (𝐿 = 2 𝑚, 𝑏0 = 4 𝑐𝑚, 𝑟𝑏 = 0.1, 𝑆 =

18, [90]18𝑠), are plotted, respectively, for out-of-plane and in-plane bending vibrations. From both 

figures, maximum displacements are observed from corresponding mode shapes of out-of-plane 

bending and in-plane bending vibrations.  

From Figure 4.7, it is shown that in non-rotating condition except for the third modes of 

any configuration and second mode of Configuration-D, the maximum displacements of out-of-

plane bending vibration are higher than the maximum displacements of in-plane bending vibration.  

In Figure 4.8, it is shown that in rotating condition except for the second and third modes 

of Configuration-D, the maximum displacements of in-plane bending vibration are higher than the 

maximum displacements of out-of-plane bending vibration. 
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Figure 4.7 First three mode shapes of out-of-plane and in-plane bending vibrations (non-rotating) 
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Figure 4.8 First three mode shapes of out-of-plane and in-plane bending vibrations for rotational 

speed of 200 rad/s 
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4.5       Instability region consideration 

In Figures 4.9 to 4.11, first three instability regions of a doubly-tapered composite beam 

(𝐿 = 2 𝑚, 𝑏0 = 4 𝑐𝑚, 𝑟𝑏 = 0.1, 𝑆 = 18, [90]18𝑠), are plotted in a three-dimensional parametric 

plane for out-of-plane and in-plane bending vibrations. In Figures 4.9 to 4.11, it is shown that for 

all configurations and for all modes, the width of instability region increases as the amplitude 

factor (𝛽) and mean rotational velocity (Ω0) increase. Also, one can observe that instability region 

of out-of-plane bending vibration is much larger than that of the in-plane bending vibration. Based 

on the results obtained, for out-of-plane bending vibration, Configuration-D has the smallest width 

of instability region among all the tapered configurations considered and Configuration-A has the 

largest width of instability region (section 2.9.1) and for in-plane bending vibration, Configuration-

B has the smallest width of instability region and Configuration-D has the largest width of 

instability region (section 3.9.1). 

In Figure 4.12, spacing between the first three instability regions of out-of-plane bending 

vibration and first three instability regions of in-plane bending vibration are investigated by 

considering four different taper configurations. In this graph vertical axis represents the amplitude 

factor of periodic rotational velocity and the horizontal axis represents the resonance frequency. It 

is shown that for all the taper configurations, space between two consecutive instability regions of 

out-of-plane bending vibration is less than the spacing between two consecutive instability regions 

of in-plane bending vibration. Also, from Figure 4.12, it can be understood that first instability 

region of in-plane bending vibration has the smallest width of instability region and third instability 

region of out-of-plane bending vibration has the largest width of instability region. 
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Figure 4.9 First instability regions of out-of-plane and in-plane bending vibrations for different 

taper configurations 
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Figure 4.10 Second instability regions of out-of-plane and in-plane bending vibrations for 

different taper configurations 
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Figure 4.11 Third instability regions of out-of-plane and in-plane bending vibrations for 

different taper configurations 
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Figure 4.12 Spacing between the first three instability regions of out-of-plane and of in-plane 

bending vibration for different taper configurations. 
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4.6       Summary  

In this chapter, a comparative study has been performed between out-of-plane and in-plane 

bending vibrations of a rotating doubly-tapered cantilever composite beam. The results for first 

three natural frequencies of out-of-plane and in-plane bending vibrations are compared for 

different cases. The results are extracted from the Rayleigh-Ritz method. Upon completing the 

investigation, it is shown that in non-rotating condition natural frequency of in-plane bending 

vibration is higher than the natural frequency of out-of-plane bending vibration, but with the 

increase of beam length and rotational velocity, the natural frequency of out-of-plane bending 

vibration becomes higher than the natural frequency of in-plane bending vibration. Also, it has 

been investigated that the first natural frequency of out-of-plane bending vibration is significant to 

determine the first critical speed, for a multi-bladed rotor system and first natural frequency of in-

plane bending vibration is significant when the rotor system has a single blade. In non-rotating 

condition except for the third mode of any configurations and second mode of Configuration-D, 

maximum displacements of out-of-plane bending vibration are higher than the maximum 

displacements of in-plane bending vibration. In rotating condition except for the second and third 

modes of Configuration-D, maximum displacements of in-plane bending vibration are higher than 

the maximum displacements of out-of-plane bending vibration. It is shown that for all 

configurations and for all modes, the width of instability region increases as the amplitude factor 

and mean rotational velocity increase. Also, one can observe that width of instability region of out-

of-plane bending vibration is larger than the width of instability region of in-plane bending 

vibration and spacing between two consecutive instability regions of out-of-plane bending 

vibration is less than the spacing between two consecutive instability regions of in-plane bending 

vibration. 
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Chapter - 5 

Conclusion and future work 

 

 

5.1       Major contribution 

In the present thesis, free vibration and dynamic instability analyses of doubly-tapered 

rotating cantilever composite beams are conducted for three different types of vibrations (out-of-

plane bending, in-plane bending and axial). Rayleigh-Ritz method based on classical lamination 

theory has been employed to formulate the free vibration problem. Bolotin’s method is applied to 

determine the instability regions. Numerical and symbolic computations have been performed 

using MATLAB. The results for natural frequencies have been validated using FEA tool ANSYS.  

A comprehensive parametric study is conducted in order to understand the effects of 

various parameters such as rotational velocity, hub radius, ply drop-off, double taper ratio and 

stacking sequence on the natural frequency of free vibration and instability regions of the doubly-

tapered composite beams. Four different thickness-tapering configurations (Configurations A, B, 

C and D) were considered in the analysis.  

Moreover, critical speed of a rotating doubly-tapered composite beam is determined and 

change of critical speed due to double-tapering is investigated. Also, change of maximum 

deflection due to rotational velocity and double-tapering is studied in this thesis. The material 

chosen in this thesis is NCT-301 graphite-epoxy prepreg, which is available in the laboratory of 

Concordia Centre for Composites (CONCOM). 
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5.2       Conclusions 

The work done in this thesis has provided some conclusions on the performance and design 

of the rotating composite beam. The most important and principal conclusions of the study on free 

vibration analysis are given in the following: 

 In order to obtain results using Rayleigh-Ritz method, it has shown that increase of the number 

of terms in approximate shape function increases the accuracy of results. In this thesis, results 

found with 7 and 8 terms in approximate shape functions of Rayleigh-Ritz method, matched 

well with the results obtained by using Conventional Finite Element Method, exact solution 

(for uniform beam) and ANSYS for uniform and doubly-tapered composite beams. 

 Double-tapering increases the first natural frequencies of out-of-plane bending, in-plane 

bending and axial vibrations for both rotating and non-rotating cantilever composite beams. 

 Increase of rotational velocity increases the natural frequencies of out-of-plane and in-plane 

bending vibrations, and on the other hand, increase of the rotational velocity slightly decreases 

the natural frequencies of axial vibration. In non-rotating condition, natural frequencies of in-

plane bending vibration are higher than the natural frequencies of out-of-plane bending 

vibration, but at higher rotating speed and higher beam’s length, natural frequencies of out-of-

plane bending vibration becomes higher than the natural frequencies of in-plane bending 

vibration. 

 It has been observed that the increase of the length of a doubly-tapered rotating cantilever 

composite beam decreases the natural frequencies of out-of-plane and in-plane bending 

vibrations.  

 Increase of hub radius increases the natural frequencies of out-of-plane and in-plane bending 

vibrations for a constantly rotating doubly-tapered cantilever composite beam.  
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 For a doubly-tapered composite beam with different stacking sequences, it has been noticed 

that the laminate with only ‘0’ degree fiber orientation gives highest natural frequencies and 

laminate with only ‘90’ degree fiber orientation gives lowest natural frequency. 

 Based on the results obtained for out-of-plane bending vibration of doubly-tapered rotating 

cantilever composite beam, Configuration D has the highest natural frequencies and is the most 

stiff configuration, Configuration C and Configuration B have the second highest and the third 

highest natural frequencies respectively. Configuration A has the lowest natural frequencies 

and is the least stiff configuration among all the considered configurations. In case of in-plane 

bending vibration, Configuration-A has the highest natural frequencies and Configuration-D 

has the lowest natural frequencies. Configuration-B and Configuration-C have almost same 

natural frequencies that lie in between natural frequencies of Configuration-A and 

Configuration-D. 

 It has been observed that there is no significant change in the mode shapes when the beam 

starts to rotate from static condition. Based on the mode shapes plot it can be stated that for 

non-rotating condition maximum displacement of out-of-plane bending vibration is higher than 

the maximum displacement of in-plane bending vibration, and for rotating condition maximum 

displacement of in-plane bending vibration is higher than the maximum displacement of out-

of-plane bending vibration. 

 It has been investigated that, in order to determine the first critical speed, first natural frequency 

of out-of-plane bending vibration is significant for a multi-bladed rotor system and first natural 

frequency of in-plane bending vibration is important when the rotor system has a single blade. 
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The important conclusions of dynamic instability analysis due to time varying rotational velocity 

are given in the following: 

 It has been seen that increase of mean rotational velocity increases the width of instability 

region for out-of-plane bending, in-plane bending and axial vibrations of a doubly-tapered 

cantilever composite beam. Also, for any specific mean rotational velocity, increase of 

amplitude of time varying rotational speed increases the width of instability regions for all 

three vibrational motions. 

 From the parametric study, it has been found that increase of hub radius increases the widths 

of instability regions of out-of-plane and in-plane bending vibrations and hub radius has no 

effect on the dynamic instability of axial vibration. 

 Double-tapering of the composite beam decreases the widths of instability regions of out-of-

plane bending and axial vibrations, but on the other hand double-tapering increases the width 

of instability region of in-plane bending vibration. 

 Based on the results obtained, Configuration-D has the smallest width of instability region and 

Configuration-A has the largest width of instability region for out-of-plane bending vibration. 

For in-plane bending vibration, Configuration-B has the smallest width of instability region 

and Configuration-D has the largest width of instability region. For axial vibration, 

Configuration-D has the largest width of instability region and Configuration-A has the 

smallest width of instability region. 

 It has been noticed that the laminate with only ‘0’ degree fiber orientation gives the smallest 

width of instability region and laminate with only ‘90’ degree fiber orientation gives the largest 

width of instability region for any type of vibrational motion. 
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 It has been found that instability region of out-plane bending vibration is larger than the 

instability region of in-plane bending vibration. 

 It has been studied that the spacing between two consecutive instability regions of out-of-plane 

bending vibration is less than the space between two consecutive instability regions of in-plane 

bending vibration. 

5.3       Recommendations for future work 

The study of free vibration and dynamic instability of doubly-tapered rotating composite 

beam can be continued in the future studies on these following recommendations: 

 Free vibration and dynamic instability analyses of rotating doubly-tapered cantilever 

composite beam presented in this thesis can be performed for thick laminate considering First-

order Shear Deformation Theory (FSDT). 

 Damping can be introduced in the free vibration and dynamic instability analyses of doubly-

tapered rotating composite beam. 

 Transient and random vibration analyses can be performed on doubly-tapered rotating 

composite beam. 

 Free vibration and dynamic instability analyses of rotating doubly-tapered cantilever 

composite beam presented in this thesis can be extended for rotating doubly-tapered open 

cylindrical shell. 
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APPENDIX-A 

Configuration-A 

In Figure A.1, taper Configuration-A is shown where drop-off composite plies are replaced 

with isotropic resin material. Figure A.2 shows the cross-sectional view of a beam has taper 

Configuration-A for 24 ply drop-off which is developed in ANSYS.  

 

Figure A.1: Geometry of taper Configuration-A 

 

Figure A.2: Cross-sectional view of taper Configuration-A developed in ANSYS                           

In taper Configuration-A, expressions of 𝒉𝒌 and 𝒉𝒌−𝟏 for composite plies are (Figure A.1): 

     ℎ𝑘 = −𝑥 ∗ 𝑡𝑎𝑛(𝜑) −
ℎ0

2
+ ℎ𝑝𝑙𝑦 ∗ 𝑘                       (A.1) 

 N 

6 

5 

4 

3 

2 

1 

 

Inclined composite plies 

Imaginary resin plies 

𝜑 
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  ℎ𝑘−1 = −𝑥 ∗ 𝑡𝑎𝑛(𝜑) −
ℎ0

2
+ ℎ𝑝𝑙𝑦 ∗ (𝑘 − 1)     (A.2) 

Here, 𝜑 is the thickness-taper angle. Sign of 𝜑 can be ‘positive’ or ‘negative’ depends on the 

position of ply in top or bottom of 𝑧 co-ordinate, respectively. 

𝑘 = 1,2,3… .𝑁, where N is number of layers in the laminate 

ℎ𝑝𝑙𝑦 is thickness of lamina and ℎ0(= ℎ𝑝𝑙𝑦 ∗ 𝑁) is thickness of the laminate in thick side. 

Resin pocket can be assumed as combination of imaginary resin plies which have same length as 

composite lamina but have variable thickness (Figure A.3). Expressions of ℎ𝑘 and ℎ𝑘−1 for 

imaginary resin plies are: 

        ℎ𝑘 =  −𝑥 ∗ 𝑡𝑎𝑛 (
𝜑

𝑆/2
∗ (

𝑁

2
− 𝑘)) −

ℎ0

2
+ ℎ𝑝𝑙𝑦 ∗ 𝑘           (A.3) 

                                 ℎ𝑘−1 = −𝑥 ∗ 𝑡𝑎𝑛 (
𝜑

𝑆/2
∗ (

𝑁

2
+ 1 − 𝑘)) −

ℎ0

2
+ ℎ𝑝𝑙𝑦 ∗ (𝑘 − 1)        (A.4) 

Here, sign of 𝜑 is positive and 𝑘 lies between (
𝑁−𝑆

2
+ 1) to (

𝑁+𝑆

2
), where 𝑆 is number of ply drop-

off. 

 

 

Figure A.3: Geometry of top half resin pocket in configuration-A 

A graph can be plotted using equations (A.1)-(A.4) to validate these equations where 𝑥 ranging 

from 0 to 𝐿. Figure A.4 illustrates a 25 cm long thickness-tapered composite laminate which has 

𝝋

𝑺/𝟐
∗ (

𝑵

𝟐
− 𝒌) 

𝒙 

𝜑 
 

 
𝜑 
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12 plies at thick side, where 6 plies is dropped and replaced with resin material. Solid line 

represents thickness boundary of composite plies and dashed line represents thickness boundary 

of resin plies. 

 

Figure A.4: Graphical representation of expressions for 𝒉𝒌 and 𝒉𝒌−𝟏 
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Configuration-B 

 

Figure A.5: Geometry of taper Configuration-B 

 

 

Figure A.6: Taper Configuration-B developed in ANSYS Composite PrepPost (ACP) 
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Resin pocket  
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Configuration-C: 

 

Figure A.7: Geometry of taper Configuration-C 

 

 

Figure A.8: Taper configuration-C developed in in ANSYS Composite PrepPost (ACP) 
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Configuration-D: 

 

Figure A.9: Geometry of taper configuration-D 

 

 

Figure A.10: Taper configuration-D developed in in ANSYS Composite PrepPost (ACP) 
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APPENDIX-B 

After introducing periodic rotational velocity, equation of motion (2.36) becomes:   

                                      [𝑀]{�̈�} + ([𝐾] + Ω2(𝑡)[𝐾∗𝐶]){𝑞} = {0}                    B.1  

Here,  

[𝑀] is mass matrix 

[𝐾] is stiffness matrix due to elastic deformation 

Ω2(𝑡)[𝐾∗𝐶] is time dependent stiffness matrix due to centrifugal action 

{𝑞} is generalized coordinate vector 

Ω(𝑡) is periodic rotational velocity. 

Now substituting periodic rotational velocity Ω(𝑡) = Ω0 + 𝛽 Ω0𝑠𝑖𝑛𝜃𝑡 in equation B.1 one can 

have: 

[𝑀]{�̈�} + ([𝐾] + (Ω0
2 + 2Ω0

2𝛽𝑠𝑖𝑛𝜃𝑝𝑡 +
Ω0

2𝛽2

2
(1 − 𝑐𝑜𝑠2𝜃𝑝𝑡)) [𝐾∗𝐶]){𝑞} = 0                   B.2 

To find the periodic solution with period 2𝑇 we will take Bolotin’s first approximation [30], the 

periodic solutions with period 2𝑇 can be sought in the form: 

{𝑞} = ∑ [{𝑎𝑟}𝑠𝑖𝑛 (
𝑟𝜃𝑝𝑡

2
) + {𝑏𝑟}c𝑜𝑠 (

𝑟𝜃𝑝𝑡

2
)]∞

𝑟=1,3,5…     B.3 

Taking one-term solution and differentiating two times with respect to time t, 

{�̈�} = [−
𝜃𝑝

2

4
{𝑎1}𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) −

𝜃𝑝
2

4
{𝑏1}c𝑜𝑠 (

𝜃𝑝𝑡

2
)]   B.4 

After substituting {𝑞} and {�̈�}  in equation B.2 one can have: 

[𝑀]{−
𝜃𝑝

2

4
𝑎1𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) −

𝜃𝑝
2

4
𝑏1c𝑜𝑠 (

𝜃𝑝𝑡

2
)} + {[𝐾] + (Ω0

2 + 2Ω0
2𝛽𝑠𝑖𝑛𝜃𝑝𝑡 +

Ω0
2𝛽2

2
(1 −

𝑐𝑜𝑠2𝜃𝑝𝑡))[𝐾𝐶]}{𝑎1𝑠𝑖𝑛 (
𝜃𝑝𝑡

2
) + 𝑏1c𝑜𝑠 (

𝜃𝑝𝑡

2
)} = 0                                                                        B.5        
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To compare the coefficient of 𝑠𝑖𝑛 (
𝜃𝑝𝑡

2
) and 𝑐𝑜𝑠 (

𝜃𝑝𝑡

2
) one can use following trigonometric 

formula: 

𝑠𝑖𝑛(𝜃𝑝𝑡)𝑠𝑖𝑛 (
𝜃𝑝𝑡

2
) =

1

2
𝑐𝑜𝑠 (

𝜃𝑝𝑡

2
) −

1

2
𝑐𝑜𝑠 (

3𝜃𝑝𝑡

2
)   B.6 

𝑠𝑖𝑛(𝜃𝑝𝑡)𝑐𝑜𝑠 (
𝜃𝑝𝑡

2
) =

1

2
𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) +

1

2
𝑠𝑖𝑛 (

3𝜃𝑝𝑡

2
)   B.7 

𝑐𝑜𝑠(2𝜃𝑝𝑡)𝑠𝑖𝑛 (
𝜃𝑝𝑡

2
) = −

1

2
𝑠𝑖𝑛 (

3𝜃𝑝𝑡

2
) +

1

2
𝑠𝑖𝑛 (

5𝜃𝑝𝑡

2
)   B.8 

𝑐𝑜𝑠(2𝜃𝑡)𝑐𝑜𝑠 (
𝜃𝑝𝑡

2
) =

1

2
𝑐𝑜𝑠 (

3𝜃𝑝𝑡

2
) +

1

2
𝑐𝑜𝑠 (

5𝜃𝑝𝑡

2
)   B.9 

Using these formula from B.6 to B.9, one can write the equation B.5 as: 

[𝑀] {−
𝜃𝑝

2

4
𝑎1𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) −

𝜃𝑝
2

4
𝑏1c𝑜𝑠 (

𝜃𝑝𝑡

2
)} + [𝐾] {𝑎1𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) + 𝑏1c𝑜𝑠 (

𝜃𝑝𝑡

2
)} + 

[𝐾𝐶]{{Ω0
2𝑎1𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) + Ω0

2𝑏1𝑐𝑜𝑠 (
𝜃𝑝𝑡

2
)} + 2Ω0

2𝛽𝑎1
1

2
𝑐𝑜𝑠 (

𝜃𝑝𝑡

2
) − 2Ω0

2𝛽𝑎1
1

2
𝑐𝑜𝑠 (

3𝜃𝑝𝑡

2
) +

2Ω0
2𝛽𝑏1

1

2
𝑠𝑖𝑛 (

𝜃𝑝𝑡

2
) + 2Ω0

2𝛽𝑏1
1

2
𝑠𝑖𝑛 (

3𝜃𝑝𝑡

2
) +

Ω0
2𝛽2𝑎1𝑠𝑖𝑛(

𝜃𝑝𝑡

2
)

2
+

Ω0
2𝛽2𝑏1𝑐𝑜𝑠(

𝜃𝑝𝑡

2
)

2
+

Ω0
2𝛽2𝑎1𝑠𝑖𝑛(

3𝜃𝑝𝑡

2
)

4
−

Ω0
2𝛽2𝑎1𝑠𝑖𝑛(

5𝜃𝑝𝑡

2
)

4
−

Ω0
2𝛽2𝑏1𝑐𝑜𝑠(

3𝜃𝑝𝑡

2
)

4
−

Ω0
2𝛽2𝑏1𝑐𝑜𝑠(

5𝜃𝑝𝑡

2
)

4
= 0      B.10 

Finally comparing the coefficient of 𝑠𝑖𝑛 (
𝜃𝑡

2
) and c𝑜𝑠 (

𝜃𝑡

2
) in the governing equation one can get 

two equations as below: 

For 𝑠𝑖𝑛 (
𝜃𝑝𝑡

2
): 

−
𝜃𝑝

2

4
[𝑀]{𝑎1} + [𝐾]{𝑎1} + [𝐾𝐶]Ω0

2{𝑎1} + [𝐾𝐶]Ω0
2𝛽{𝑏1} +

Ω0
2𝛽2

2
[𝐾𝐶]{𝑎1} = 0       B.11 

For c𝑜𝑠 (
𝜃𝑝𝑡

2
): 

−
𝜃𝑝

2

4
[𝑀]{𝑏1} + [𝐾]{𝑏}1 + [𝐾𝐶]Ω0

2{𝑏1} + [𝐾𝐶]Ω0
2𝛽{𝑎1} +

Ω0
2𝛽2

2
[𝐾𝐶]{𝑏1} = 0        B.12 

Equations B.11 and B.12 can be written in the matrix form as 
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[
−

𝜃𝑝
2

4
[𝑀] + [𝐾] + [𝐾𝐶]Ω0

2 +
Ω0

2𝛽2

2
[𝐾𝐶] [𝐾𝐶]Ω0

2𝛽

[𝐾𝐶]Ω0
2𝛽 −

𝜃𝑝
2

4
[𝑀] + [𝐾] + [𝐾𝐶]Ω0

2 +
Ω0

2𝛽2

2
[𝐾𝐶]

] [
{𝑎1}
{𝑏1}

] = {0}  

                            B.13 

For non-trivial solution determinant of the matrix coefficients must be zero.  

𝑑𝑒𝑡

[
 
 
 
 −

𝜃𝑝
2

4
[𝑀] + [𝐾] + [𝐾𝐶]Ω0

2 +
Ω0

2𝛽2

2
[𝐾𝐶] [𝐾𝐶]Ω0

2𝛽

[𝐾𝐶]Ω0
2𝛽 −

𝜃𝑝
2

4
[𝑀] + [𝐾] + [𝐾𝐶]Ω0

2 +
Ω0

2𝛽2

2
[𝐾𝐶]

]
 
 
 
 

= 0 

                  B.14  

After expanding the determinant and solving for 𝜃𝑝
2, two equations can be found as: 

𝜃𝑝
2 = (4[𝐾𝐶]Ω0

2 + 4[𝐾𝐶]Ω0
2𝛽 + 2[𝐾𝐶]Ω0

2𝛽2 + 4[𝐾])/[𝑀]                         B.15 

             𝜃𝑝
2 = (4[𝐾𝐶]Ω0

2 − 4[𝐾𝐶]Ω0
2𝛽 + 2[𝐾𝐶]Ω0

2𝛽2 + 4[𝐾])/[𝑀]                        B.16 

Equations B.15 and B.16 can be solved as eigenvalue problems where each eigenvalue 𝜃𝑝
2
 is the 

square of parametric resonance frequency which gives the boundary between stable and unstable 

regions in resonance frequency-driving amplitude plane. Equations B.15 and B.16 give upper and 

lower boundaries of the instability region, respectively. 
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APPENDIX-C 

Example calculation of [𝑀], [𝐾] and [𝐾𝐶]: 

Substituting ∅𝑖(𝑥) = (
𝑥

𝐿
)𝑖+1 and ∅𝑗(𝑥) = (

𝑥

𝐿
)𝑗+1 in 𝐾𝑖𝑗 , 𝐾

𝐶
𝑖𝑗 and 𝑀𝑖𝑗  given in chapter-2, one can 

get, 

𝐾𝑖𝑗 = ∫ 𝑏(𝑥)𝐷11(𝑥) (
𝜕2

𝜕𝑥2 (
𝑥

𝐿
)𝑖+1) (

𝜕2

𝜕𝑥2 (
𝑥

𝐿
)𝑗+1)𝑑𝑥 =

𝑖𝑗(𝑖𝑗+𝑖+𝑗+1)

𝐿4 ∫ 𝑏(𝑥)𝐷11(𝑥)(
𝑥

𝐿
)𝑖+𝑗−2𝑑𝑥

𝐿

0

𝐿

0
   

(C.1) 

𝐾𝐶
𝑖𝑗 = ∫ 𝑃(𝑥)(

𝜕

𝜕𝑥
(
𝑥

𝐿
)
𝑖+1

)(
𝜕

𝜕𝑥
(
𝑥

𝐿
)𝑗+1)𝑑𝑥

𝐿

0
=

(𝑖+1)(𝑗+1)

𝐿2 ∫ 𝑃(𝑥)(
𝑥

𝐿
)𝑖+𝑗𝑑𝑥

𝐿

0
  (C.2) 

𝑀𝑖𝑗 = ∫ 𝜌𝐿𝑏(𝑥)(
𝑥

𝐿
)𝑖+1(

𝑥

𝐿
)𝑗+1𝑑𝑥

𝐿

0
= ∫ 𝜌𝐿𝑏(𝑥)(

𝑥

𝐿
)𝑖+𝑗+2𝑑𝑥

𝐿

0
     (C.3) 

For 𝑚 = 2 in Rayleigh-Ritz approximate series, 𝑈,𝑊 and 𝑇 (given in chapter-2) becomes: 

𝑈 =
1

2
(𝑞𝑖=1𝐾11𝑞𝑗=1 + 𝑞𝑖=1𝐾12𝑞𝑗=2 + 𝑞𝑖=2𝐾21𝑞𝑗=1 + 𝑞𝑖=2𝐾22𝑞𝑗=2)  (C.4) 

𝑊 =
1

2
(𝑞𝑖=1𝐾

𝐶
11𝑞𝑗=1 + 𝑞𝑖=1𝐾

𝐶
12𝑞𝑗=2 + 𝑞𝑖=2𝐾

𝐶
21𝑞𝑗=1 + 𝑞𝑖=2𝐾

𝐶
22𝑞𝑗=2) (C.5) 

𝑇 =
1

2
(𝑞𝑖=1𝑀11𝑞𝑗=1 + 𝑞𝑖=1𝑀12𝑞𝑗=2 + 𝑞𝑖=2𝑀21𝑞𝑗=1 + 𝑞𝑖=2𝑀22𝑞𝑗=2)  (C.6) 

Now using Lagrange’s equation for 𝑚 = 2, one can get: 

{

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑖=1
) −

𝜕 𝑇

𝜕𝑞𝑖=1
+

𝜕 (𝑈+𝑊)

𝜕𝑞𝑖=1

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑖=2
) −

𝜕 𝑇

𝜕𝑞𝑖=2
+

𝜕 (𝑈+𝑊)

𝜕𝑞𝑖=2

} = {
0
0
}    (C.7) 

[
𝑀11 𝑀12

𝑀21 𝑀22
] [

�̈�1

�̈�2
] + [

𝐾11 𝐾12

𝐾21 𝐾22
] [

𝑞1

𝑞2
] + [

𝐾𝐶
11 𝐾𝐶

12

𝐾𝐶
21 𝐾𝐶

22

] [
𝑞1

𝑞2
] = [

0
0
]  (C.8) 

Shortly written as:        

[𝑀]{�̈�} + ([𝐾] + [𝐾𝐶]){𝑞} = {0}      (C.9) 
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Using equation C.1 to C.3, for 𝑁 layers in composite laminate one can write: 

[𝑀] = ∫𝜌𝐿𝑏(𝑥)

𝐿

0
[
 
 
 
𝑥4

𝐿4

𝑥5

𝐿5

𝑥5

𝐿5

𝑥6

𝐿6]
 
 
 

 𝑑𝑥 

[𝐾] = ∫𝑏(𝑥)𝐷11(𝑥)

𝐿

0

[

4

𝐿4

12𝑥

𝐿5

12𝑥

𝐿5

36𝑥2

𝐿6

]  𝑑𝑥 

[𝐾𝐶] = ∫𝑃(𝑥)

𝐿

0 [
 
 
 
4𝑥2

𝐿4

6𝑥3

𝐿5

6𝑥3

𝐿5

9𝑥4

𝐿6 ]
 
 
 

 𝑑𝑥 
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APPENDIX-D 

Centrifugal force calculation 

Centrifugal force calculation for composite ply and resin pocket (resin plies) in a doubly-tapered 

laminate are described below: 

For composite ply: 

From chapter-2 centrifugal force is 

     𝑃(𝑥) = ∫ 𝑏(𝛿)
𝐿−𝑥

0
𝜌𝐿(𝛿)Ω2(𝑅 + 𝑥 + 𝛿)𝑑𝛿               D.1 

𝜌𝐿(𝛿) = ∑ 𝜌𝑘(ℎ𝑘(𝛿) − ℎ𝑘−1(𝛿))𝑁
𝑘=1 , where (ℎ𝑘(𝛿) − ℎ𝑘−1(𝛿)) is variable distance between top 

and bottom faces of a ply within 𝑥 and 𝐿. For composite plies difference between top and bottom 

face does not vary along the length, which implies 

ℎ𝑘(𝛿) − ℎ𝑘−1(𝛿) = ℎ𝑘 − ℎ𝑘−1 

Here, ℎ𝑘  and ℎ𝑘−1 for composite plies given at Appendix A. Substituting 𝑏(𝛿) (given in chapter-

2) and (ℎ𝑘(𝛿) − ℎ𝑘−1(𝛿)) in equation D.1, finally one can get: 

𝑃(𝑥) =
1

12
𝜌𝑓Ω

2(𝐿𝑏𝐿𝑥 + 3𝑅𝑏𝐿𝑥 + 2𝑏𝐿𝑥
2 + 4𝐿𝑏𝐿 − 𝐿𝑏0𝑥 + 6𝑅𝑏𝐿 − 3𝑅𝑏0𝑥 + 2𝑏𝐿𝑥 − 2𝑏0𝑥

2 +

2𝐿𝑏0 + 6𝑅𝑏0 + 4𝑏0𝑥)ℎ𝑝𝑙𝑦(𝐿 − 𝑥)              D.2 

Centrifugal force at any point x for a composite ply in taper laminate can be calculated using 

equation D.2. For example, if composite ply has following property: 

Table D.1: Property of composite ply 

Length of ply, 𝑳 0.25 m 

Individual ply thickness, 𝒉𝒑𝒍𝒚 0.000125 m 

Width of ply, 𝒃𝟎 0.02 m 

Width ratio, 𝒓𝒃 =
𝒃𝑳

𝒃𝟎
 0.1 to 1 

Rotational Velocity, Ω 200 rad/s 

Hub radius, 𝑹 0.025 m 

Density (𝝆𝒇) 1480 kg/m3 
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Then centrifugal force (𝑃) can be plotted in 3D plane with respect to any point 𝑥 and width-ratio 

in the ply: 

 

Figure D.1: Centrifugal force at any point x in the composite ply 

Maximum centrifugal force 𝑃(𝑥 = 0) for a uniform width (𝑟𝑏 = 1) ply also can be calculated 

using exact formula of centrifugal force. 

Exact formula of centrifugal force is 

          𝑃 = 𝑚Ω2𝑟 = 𝜌 ∗ 𝑏0 ∗ ℎ𝑝𝑙𝑦 ∗ 𝐿 ∗ Ω2 ∗ (𝑅 +
𝐿

2
)         D.3 

Here, 

 𝑚(= 𝜌 ∗ 𝑏0 ∗ ℎ𝑝𝑙𝑦 ∗ 𝐿) is mass of the beam. 

𝑟 = (𝑅 +
𝐿

2
) is distance from center of rotation to center of mass. 

Using the ply property given in table D.1 one can get, 𝑃 = 5.55 𝑁. Which comply with figure D.1. 
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For resin ply (Configuration-A): 

In resin ply difference between top and bottom faces vary along the length (See Appendix A). 

Therefore 

ℎ𝑘(𝛿) = −𝛿 tan(𝐴) + ℎ𝑘    (D.4) 

and      ℎ𝑘−1(𝛿) = −𝛿 tan(𝐵) + ℎ𝑘−1      (D.5) 

Here, 𝐴 =
∅

𝑆/2
∗ (

𝑁

2
− 𝑘) and 𝐵 =

∅

𝑆/2
∗ (

𝑁

2
+ 1 − 𝑘)  

Finally  

ℎ𝑘(𝛿) − ℎ𝑘−1(𝛿) = −(𝑥 + 𝛿) tan(𝐴) − (𝑥 + 𝛿) tan(𝐵) + ℎ𝑝𝑙𝑦   (D.6) 

Substituting ℎ𝑘(𝛿) − ℎ𝑘−1(𝛿) in equation D.1 one can get: 

𝑃(𝑥) =  

               (D.7) 

Centrifugal force at any point x for a resin ply in tapered laminate can be calculated using equation 

D.7. 
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APPENDIX-E 

Validation of Rayleigh-Ritz solution for isotropic material 

To validate the results for isotropic material, following exact solution can be used for non-rotating 

clamped-free uniform beam [10]: 

                                                                  𝜔𝑖 =
𝜇𝑖

2𝜋
√

𝐸𝐼

𝜌𝐴𝐿4                    (E.1) 

where, 𝜇𝑖=1,2,3 = 3. 516, 22.034, 61.701 for first three natural frequencies, 𝐿 is the length of the 

beam, 𝐴(= 𝑏0ℎ0) is the cross sectional area of the beam, 𝜌 is the mass density of the isotropic 

material, 𝐼(=
𝑏0ℎ0

3

12
) is the moment of inertia of the beam cross section and 𝐸 is the young modulus 

of isotropic material. 

Table E.1 Mechanical properties of Steel and Aluminum [29] 

 Material Steel (AISI 1059)  Aluminum 

Elastic modulus (𝐸) 200 GPa 68 GPa 

Density (𝜌) 7870 kg/m3 2698 kg/m3 

Poisson’s ratio (𝜐) 0.29 0.36 

 

The Rayleigh-Ritz energy formulation for composite material that described in section 2.3 can be 

used for isotropic material by considering same mechanical properties in all three directions 

(𝑒. 𝑔.  𝐸1 = 𝐸2 = 𝐸3 = 𝐸 and 𝜐12 = 𝜐21 = 𝜐). In Table E.2, first three out-of-plane bending 

natural frequencies determined for non-rotating clamped-free uniform isotropic beam using 

Rayleigh-Ritz (R-R) method, are compared with the exact solution and ANSYS results. The beam 

is 25 cm long and width is 2 cm. The thickness of the beam is 4.5 mm.  
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Table E.2 Natural frequencies (Hz) of non-rotating clamped-free uniform isotropic beam 

Material Mode 

R-R 

solution 

(8 terms) 

Exact 

solution 

 

ANSYS 

 

Steel 

1st 61.265 58.632 59.105 

2nd 383.94 367.44 369.91 

3rd 1075.4 1028.9 1034.0 

Aluminum 

1st 62.587 58.391 59.179 

2nd 398.23 365.92 370.40 

3rd 1098.6 1024.7 1035.5 

As expected, results obtained from R-R method for non-rotating uniform isotropic beam is 

showing very good agreement with the results obtained from ANSYS and exact solution.  

In Table E.3, first three out-of-plane bending natural frequencies determined for rotating clamped-

free uniform isotropic beam using Rayleigh-Ritz (R-R) method, are compared with ANSYS 

results. The hub radius is taken as 2.5 cm. 

Table E.3 Natural frequencies (Hz) of rotating clamed-free uniform isotropic beam 

 

 

 

 

 

In Table E.4, first three out-of-plane bending natural frequencies determined for four different 

types of rotating clamped-free isotropic beams using Rayleigh-Ritz (R-R) method, are compared 

with ANSYS results. In this case, the width of the beam at fixed side is (𝑏0 =) 2 cm and the 

thickness at fixed side is (ℎ0=) 4.5 mm.  

 

 

Material Mode 
R-R ANSYS R-R ANSYS R-R ANSYS 

Ω=0 rad/s Ω=100 rad/s Ω=200 rad/s 

 

Steel 

1st 61.265 59.105 63.99 61.941 71.535 69.735 

2nd 383.94 369.91 386.4 372.42 393.51 379.86 

3rd 1075.4 1034.0 1077.8 1036.5 1084.9 1043.9 

 

Aluminum 

1st 62.587 59.179 65.260 62.021 72.671 69.830 

2nd 392.23 370.40 394.59 372.91 401.60 380.36 

3rd 1098.6 1035.5 1100.9 1038.0 1107.9 1045.4 
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Table E.4 Natural frequencies (Hz) of rotating clamped-free uniform isotropic beam 

Type of beam Material Mode 
R-R ANSYS R-R ANSYS 

Ω=0 rad/s Ω=200 rad/s 

 

Uniform Thickness 

- Uniform width 

(ℎ𝐿 = ℎ0, 𝑏𝐿 = 𝑏0) 

Steel 

1st 61.265 59.105 71.535 69.735 

2nd 383.94 369.91 393.51 379.86 

3rd 1075.4 1034.0 1084.9 1043.9 

Aluminum 

1st 62.587 59.179 72.671 69.830 

2nd 392.23 370.40 401.60 380.36 

3rd 1098.6 1035.5 1107.9 1045.4 

 

Uniform Thickness 

- Tapered Width 

(ℎ𝐿 = ℎ0 , 𝑏𝐿 =
𝑏0

2
) 

Steel 

1st 75.190 72.474 83.946 81.557 

2nd 409.82 394.60 417.72 402.83 

3rd 1101.5 1058.3 1109.3 1066.4 

Aluminum 

1st 76.813 72.531 85.403 81.637 

2nd 418.66 395.02 426.40 403.26 

3rd 1125.3 1059.6 1132.9 1067.7 

 

Tapered Thickness - 

Uniform Width 

(ℎ𝐿 =
ℎ0

2
 , 𝑏𝐿 = 𝑏0) 

Steel 

1st 66.626 64.140 76.761 74.653 

2nd 319.16 307.30 329.36 317.91 

3rd 823.55 792.61 833.58 803.04 

Aluminum 

1st 68.064 64.126 78.014 74.673 

2nd 326.05 307.41 336.04 318.05 

3rd 841.32 793.23 851.14 803.69 

Doubly-Tapered 

(ℎ𝐿 =
ℎ0

2
 , 𝑏𝐿 =

𝑏0

10
) 

Steel 

1st 111.45 107.15 118.16 114.14 

2nd 396.89 381.56 403.28 388.23 

3rd 917.02 880.82 923.19 887.26 

Aluminum 

1st 113.85 107.07 120.43 114.09 

2nd 405.45 381.45 411.71 388.14 

3rd 936.81 880.77 942.85 887.22 

 

In Figures E.1 to E.3, first three natural frequencies of out-of-plane bending vibration are plotted 

for five different types of beams with respect to rotational velocity to compare the natural 

frequencies of the composite beam and isotropic beam. From Figures E.1 to E.3, it can be stated 

that, fiber orientation in the plies and double-tapering in the composite beam provide better design 

options compared to the beam made with isotropic material. Also, from Figures E.1 to E.2, one 

can see that natural frequencies of isotropic and composite beams increase with rotational velocity, 

which implies that rotational velocity (centrifugal force) increases the total stiffness of the 

composite and isotropic beams in case of out-of-plane bending vibration. 
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Figure E.1 Variation of first natural frequency of out-of-plane bending vibration for different 

types of rotating beams

n 

Figure E.2 Variation of second natural frequency of out-of-plane bending vibration for different 

types of rotating beams 
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Figure E.3 Variation of third natural frequency of out-of-plane bending vibration for different 

types of rotating beams 

In Figures E.4 to E.6, first three instability regions of out-of-plane bending vibration due to 

periodic rotational velocity, are plotted for three different types of doubly-tapered beams to 

compare the widths of instability regions for composite beam and isotropic beam. The mean value 

of rotational velocity is taken as 50 rad/s. From Figures E.4 to E.6, it can be stated that, doubly-

tapered composite beam has less width of instability region compared to the doubly-tapered 

isotropic beam. 
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Figure E.4 First instability regions of out-of-plane bending vibration for different types of 

doubly-tapered beams 

 

Figure E.5 Second instability regions of out-of-plane bending vibration for different types of 

doubly-tapered beams 

 

 



 

   159 

 

Figure E.6 Third instability regions of out-of-plane bending vibration for different types of 

doubly-tapered beams 

 

 

 

 


