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Abstract

Machine Learning Techniques for Detecting Hierarchical

Interactions in Insurance Claims Models

by Sandra Maria Nawar

This thesis presents an intuitive way to do predictive modeling in actuarial science. Gen-

eralized Linear Models (GLMs) are the standard tool for predictive modeling in the actuarial

literature and in actuarial practice, yet GLMs can be quite restrictive. The aim of this work is

to model claims and to propose solutions to current actuarial problems such as high variabil-

ity in large data-sets, variable selection, overfitting, dealing with highly correlated variables

and detecting non-linear effects such as interactions.

Regularization techniques are crucial for modeling big data, which means dealing with

high-dimensionality, sometimes noisy data that often contains many irrelevant predictors.

Penalized regression is a set of regression techniques that impose a constraint/penalty on the

regression coefficients and can be used as a powerful variable selection tool as well. They

are a generalization of GLMs and include techniques such as Ridge regression, lasso, group-

lasso and Elastic Net. The proposed approach is a hierarchical group-lasso-type model that

can efficiently handle variable selection and interaction detection between variables while

enforcing strong hierarchy. This is achieved by imposing a penalty on the coefficients at the

individual and group level. By optimizing the penalized objective function the model performs

variable selection and estimation. Additionally, the model automatically detects interactions

which is another important factor to achieve a high predictive power. For those purposes

the group-lasso method is investigated for the Poisson and gamma distributions to perform

frequency-severity modeling.
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Introduction

The Property and Casualty insurance industry has widely embraced predictive modeling

as a tool for competitiveness in the market. These models are being deployed for pricing,

risk segmentation as well as reserving work. With increasing availability of data, building

interpretable predictive models with high prediction accuracy remains a challenge. Predictive

models help actuaries and insurance underwriters better select, price risks and generate more

accurate premium predictions, thus helping solve the adverse selection issue.

Generalized linear models (GLMs) have been the standard tool for predictive model-

ing in the industry. GLMs have a major limitation in terms of finding non-linear model

structures. Here we combine machine learning tools and regularization to generalized lin-

ear models, which are commonly accepted building blocks of insurance pricing and scoring

models. Regularization plays an important role in modeling data with a large number of

covariates where automatic variable selection is required. Advances in technology have made

it possible to capture and store large amounts of data and while the number of observations

has increased the number of variables is increasing as well. Sometimes, it actually exceeds

it, which is known as the “p > n” problem. A popular approaches in machine learning is to

use regularization, such as adding ℓ2 penalty of the form ∥β∥22 or a ℓ1 penalty of the form

∥β∥1 to the model coefficients.

In particular, we focus on the class of group-lasso hierarchical interaction models for

insurance data. To fit frequency-severity models in this framework a regularized Poisson

and gamma model is proposed. The purpose is to find the most predictive subset of factors

and the corresponding hierarchical interactions. We use the lasso technique which imposes
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the ℓ1 penalty for model selection and reduce the variability in estimated parameters. The

estimation is carried out with gradient descent methods. A recurring concept that is relevant

in actuarial and statistical modeling is parsimony. Models that over-fit training data are a

concern and the basic underlying belief is that parsimonious models with fewer terms pro-

vide better predictions. For big data, feature selections can only be achieved automatically

through regularized models, such as least adaptive shrinkage and selection operator (lasso)

and ridge regression (Bishop, 2007). It turns out, that regularization methods form a fruitful

area of research in statistical learning. The idea is simply to add a “penalty” term to the

model to achieve a desirable behavior. The main result that we demonstrate in detail is

the reduction in the variability of estimated model parameters and improved the predictive

ability.

Property and Casualty insurance is a complex and dynamic business due to the short

duration of the insurance coverage. The real price of the product is usually unknown at the

time of sale. It is therefore practically impossible for actuarial models to be “comprehensive”,

in the sense that it should include all relevant variables that affect the number and size of

claims. A solution to that is to use statistical shrinkage methods for feature selection in

order to identify those with the most predictive power. The need for predictive models

emerges from the fact that the expected loss is highly dependent on the characteristics of an

individual policy, such as age and motor vehicle record points of the policyholder, population

density in the policyholder’s residential area, age and vehicle type of the driver.

In this thesis, a new model is proposed that combines the simplicity and interpretability

of generalized linear models with the predictive power of machine learning algorithms. This

would aid in ratemaking purposes for data sets with large number of covariates in a Property

and Casualty insurance portfolio. Predictive modeling - and in particular claim predictions

are essential for ratemaking and reserving purposes. For classification ratemaking and pre-

dictive modeling applications, actuaries add hierarchal structures to their generalized linear

models in order to accommodate variations in model variables.

Linear models remain popular due to their simplicity and interpretability however they
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suffer severe limitations. Significance and statistical estimation is easily trackable through

the well-developed theories of Analysis of Variance (ANOVA), P-tests and goodness of fit

metrics. However, limitations of linear models include generating extreme values for the

predicted value of the response Y . It goes back to the fact that the assumption of linear

relationship between the response and covariates does not hold always in reality. In addition,

linear models include only main effects so interactions have to be added manually, which is

not usually an efficient way. Without model selection, linear models are subject to overfitting

when a large number of covariates are present. And they are not appropriate for case-finding

and classification that requires partitioning and addressing subgroups.

Another important issue in predictive models is the the trade-off between prediction accu-

racy and model interpretability. For most models, predictive accuracy comes at the expense

of interpretability. For example, boosting methods which are fully non-linear can lead to

complicated estimates that make it difficult to understand how any individual predictor is

associated with the response. However, predictive accuracy is mostly high.

The lasso technique relies on linear models but uses an alternative fitting procedure for

estimating coefficients. This model is more restrictive in estimating the coefficients and it

sets a number of them to exactly zero. Consequently, the lasso is a less flexible approach than

linear regression, however more interpretable than it, because in the final model the response

variable only depends on a smaller subset of predictors, those with nonzero coefficients.

Depending on whether interpretability is a priority, there are advantages to using simple

and relatively inflexible statistical learning methods. However, when prediction is a priority

and the interpretability of the predictive model is simply not of interest it is suggested to

use highly flexible models.

The goals of this thesis are twofold: the first is to review the concept of regularization and

its applicability in actuarial modeling. The second goal, is to illustrate how to automatically

select features that “learn” hierarchical interactions in the group-lasso framework for claims

modeling. Chapters 1 and 2 review the background material for generalized linear models

and regularization methods, explaining the main concepts of these subjects as they are build-
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ing blocks for the model derivation. Chapter 3 explains the use of hierarchical modeling and

more specifically hierarchical interactions while deriving all the necessary models. Chapter

4 contains the main idea presented in this thesis; it gives the derivation of the regularized

models for frequency and severity modeling. The thesis concludes with the results obtained

from the proposed model, comparing it to results obtained from a generalized linear model

and gradient boosting model. In my future actuarial research and predictive modeling en-

deavor, I wish to explore other predictive models in the linear and non-linear frameworks

and compare them to traditional methods in actuarial science to improve the status quo.

This will be the subject of future work.

“In God we trust, all else bring data”

by Edward Deeming
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Chapter 1

Generalized Linear Models

1.1 Introduction

Predictive modeling involves the use of historical data to forecast future events by capturing

relationships between explanatory variables and response variables. The standard predictive

modeling technique in Property and Casualty insurance is generalized linear models (GLMs).

The family of GLMs is an extension of the linear regression model (McCullagh and Nelder,

1989) that transforms the mean response by a chosen link function. The response variable Y

can then be linked to a linear function of predictor variables with a non-linear link function.

The log-link is the most popular for insurance data, where the linear predictor gets expo-

nentiated to ensure that premiums are positive. It also preserves the multiplicative structure

of the variable relativities. The relationship between the response and the covariates is no

longer directly linear. Simply using a non-linear link function allows the linearity of the

exponentiated term to be preserved.

The reason why linearity is so desirable lies in its simplicity to model and to interpret.

On the other hand, by transforming the mean response the model can no longer be fitted

using ordinary least square (OLS). Other methods such as maximum likelihood estimation

(MLE) and gradient descent are used. Important examples include the logistic regression for

binary responses, the Poisson regression for count, log-linear models for contingency tables
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and the gamma regression for continuous skewed data. Another difference between GLMs

and linear models is that the variance of the response variable is not required to be constant

across observations but can be made a function of the Y ’s expected value. Conversely, the

main drawback of GLMs is the assumption that covariate effects are linearly associated with

the predictor, which in reality is quite a restrictive assumption in predictive modeling. This

chapter provides a summary of GLMs, discusses model assumptions, parameter estimation

and model validation. All this provides a foundation of the advanced statistical and machine-

learning techniques developed on later chapters.

1.2 Distributional Assumptions

Consider a model with a multivariate response vector Y = (y1, . . . , yn) and p-dimensional

covariates arranged in a n × p matrix (design matrix) X = (x1, . . . , xp). Responses y1, . . . , yn

are assumed to be independent and linearly related to the predictor variables through a non-

linear link function as follows:

g(E[Yi|Xi = xi]) =

p−1∑
j=0

βjxij, (1.1)

where β is the vector of coefficients to be estimated and g(.) is a known non-linear link

function and the covariates x are either fixed or random. The link function g(.) is restricted

to be differentiable and strictly monotonic. For the linear predictor we use the notation,

ηi =

p−1∑
j=0

βjxij. (1.2)

The implicit assumption for the generalized linear model family (Frees et al, 2014) is that

the mean of Yi depends on the Xi only through the link function g(.). The GLM framework

also assumes that the response Y comes from the exponential dispersion distribution family

specified through certain characteristics discussed in detail in the next subsection. A linear

model is a special case of a generalized linear model with the identity link function g(µ) = µ.

The true mean can always be retrieved by taking the inverse transformation as follows:

µi = g−1(ηi). (1.3)
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The other important GLM assumption is that random variables Yi are members of the

exponential dispersion family of distributions. A distribution from this family is chosen ap-

propriately to fit a model on the given response. Consequently, the relationship between

variance V(Yi) and expected value E(Yi) will depend on the chosen distribution. The ad-

vantage of choosing a particular distribution for the model is that maximum likelihood

estimation can be used to obtain the coefficients, and there are algorithms for computing the

coefficients that work for all distributions in the exponential family and their corresponding

canonical link functions (Frees et al., 2014).

1.3 Exponential Dispersion Family

Consider (Xi, Yi), where Xi ∈ Rp is a vector of p predictors and a response Yi ∈ R, for

observation i = 1, . . . , n to follow any distribution in the exponential dispersion family

(EDF) with mean µi = E(Yi) and variance vi = V(Yi). The domain of Yi varies for each

distribution and could be a subset of R. For Generalized Linear Models (GLMs) the mean

µi is equated to the linear predictor ηi through the link function g(.) such as,

ηi = g(µi) = XT
i β. (1.4)

Also, the density function of Yi at a given value yi in the linear exponential family is expressed

as follows,

f(yi; θi;ϕ) = exp

[
yiθ − b(θi)

a(ϕ)
+ c(yi, ϕ)

]
(1.5)

and the likelihood function becomes,

L(yi; θi;ϕ) =
n∏

i=1

exp

[
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

]
(1.6)

where y = (y1 . . . , yn) are the observations and a(.), b(.), and c(.) are functions that vary

according to the particular distributions that are member of the exponential dispersion

family. Note that θi are functions of the parameter βj, but ϕ does not depend on the βj. The

mean and variance of the distribution are simply E(Yi) = b′(θi) and V(Yi) = a(ϕ)b′′(θi), where
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b′(θi) is the first derivative with respect to θi and b′′(θi) is the second derivative. Assume

that the dispersion parameter ϕ is known and we are interested in finding the maximum

likelihood solution for the natural parameter θ(β), which is a function of the coefficients β.

The log-likelihood function becomes,

l(θ;ϕ, y) =
n∑

i=1

[
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

]
(1.7)

where l denotes the log-likelihood function. The GLM coefficients are then estimated by

minimizing the negative log-likelihood function (Frees, 2009) which will be explained in the

next section.

For GLMs there exists two types of link functions; the canonical link and other link

functions. Following the definition of the exponential dispersion, for a given distribution and

thus given functions a(.), b(.) and c(.) a given link function g is said to be canonical if it

satisfies g−1(η) = b′(θ) = µ. Thus a canonical link function allows expressing θ as a function

of the mean: θ = g(µ). Thus the canonical parameter θ in the probability density function

is related to the mean E(Y ) = µ by the equality µ = b′(θ). Then by inverting the function

it gives the canonical parameter θ as a function of µ : θ = b′−1(µ). If the link function g(.)

is chosen such that θ = g(µ) then

θ = Xβ. (1.8)

Thus the canonical parameter θ is equal to a linear function of the predictors. The chosen link

function g(.) is called a canonical link function. Canonical links generate linear equations for

the unknown parameters θ. A canonical link may be a good choice for modeling a particular

problem, but is not necessary. Canonical links lead to desirable statistical properties of

the GLM and hence tend to be used by default. The overall fit of the model and other

considerations such as intuitive appeal may be more important and thus motivate to use a

non-canonical link. Table 1.1 gives a summary of commonly used distributions and their

canonical link function.

For example, the Poisson distribution to model the number of claims. The Poisson
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Distribution Canonical Parameter Canonical Link η = g(µ) Link Function

Normal θ = µ η = µ identity

Binomial θ = ln( µ
1−µ

) η = ln( µ
1−µ

) logit

Poisson θ = ln(µ) η = ln(µ) log

Gamma θ = −1
µ

η = −1
µ

reciprocal

Table 1.1: Common Canonical Link Functions for EDF Models

distribution is a member for exponential dispersion family with a probability mass function.

f(yi;µi) =
µyi
i e

−µi

yi!

= exp

[
log
(µyi

i e
−µi

yi!

)]

= exp

[
yi log µi − µi

1
− log yi!

]
.

(1.9)

Substituting lnµ = θ to match the exponential family parameterization. This produces,

f(yi; θi) = exp

[
yiθi − eθi

1
− ln yi!

]
, (1.10)

where b(θ) = eθ and c(y, ϕ) = − ln y!. For the Poisson distribution a(ϕ) = ϕ = 1, the mean

and variance are equal and can be derived as follows,

E(Y ) = b′(θ) = eθ = µ

V(Y ) = a(θ)b′′(θ) = eθ = µ.
(1.11)

The reason for using a Poisson GLM is to produce a multiplicative model to estimate the

expected annual claims frequency. A multiplicative model is desirable so that the individual

pure premium can be calculated as a product of the variables’ relativities. This is basically

the exponential of the GLM coefficient of a variable multiplied by the level of the variable.

The log-link takes a range of linear predictor values ηi from (−∞,∞) and maps it onto a

range of (0,∞) for the claim frequency. The log-link for the Poisson distribution generates
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a multiplicative model as follows,

log(µi) = XT
i β,

µi = e(X
T
i β).

µi =
(
eβ1
)Xi0

(
eβ2
)Xi1 . . .

(
eβp
)Xi,p−1 .

(1.12)

where µi is the expected annual claims frequency for the ith policy. The multiplying factor

for each predictor is given by eβj for the p predictors.

When trying to estimate annual claims frequency, an offset term is put into the model to

account for the varying number of policy years also known as exposure years. Let Yi be the

be a random variable representing the total number of claims and an exposure variable ti

in insurance application it would be the number of policy years. Then we get µi = E[Yi/ti].

Substituting this in Equation (1.12),

log(E[Yi/ti]) = XT
i β, (1.13)

we can separate the terms as follows,

log(E[Yi]) = Xβ + ln(ti). (1.14)

The offset term is a known effect and is one of the model inputs. It is given as a vector

of length n and must be included in the model estimation because the number of claims

depends on the number of years of observations.

1.4 Maximum Likelihood Estimation

To estimate the GLM regression parameters βj, the log-likelihood function is derived and

differentiated with respect to the parameter of interest. The negative log-likelihood equals

l(y1 . . . , yn; θ, ϕ) = −
n∑

i=1

log f(yi, θi) (1.15)
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where f(yi; θi) of the selected distribution is given for Yi = yi and θ = (θ1, . . . , θn) is a

function of the βj’s. By choosing a distribution to model random variables Yi it allows one

to apply Maximum Likelihood Estimation (MLE). The log-likelihood (1.7) can be maximized

by calculating partial derivatives with respect to the βj and setting them equal to zero. The

system of partial derivatives, also known as gradients of the log-likelihood, is called score

functions and is defined as:

s(y; θ, ϕ) =
∂

∂β
l(θ;ϕ, y) (1.16)

The maximum likelihood estimate β̂ is then found as the solution to the system of equations

s(y; θ) = 0. The partial derivative with respect to βj is

∂l(y; β, ϕ)

∂βj

=
n∑

i=1

∂

∂βj

[
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

]
(1.17)

=
n∑

i=1

1

a(ϕ)

[
yi
∂θi
∂βj

− ∂b(θi)

∂βj

]
. (1.18)

From the chain rule of differentiation,

∂

∂βj

=
∂

∂θi

∂θi
∂µi

∂µi

∂ηi

∂ηi
∂βj

, (1.19)

the result is

∂l(y; β, ϕ)

∂βj

=
n∑

i=1

(yi − µi)xij

a(ϕ)b′′(θi)g′(µi)
. (1.20)

Given the definition of the exponential dispersion family, the variance of Yi, V(Yi) = a(ϕ)b′′(θi).

This can be rewritten using the variance function and by adding weights for V(Yi) =

(ϕ/wi)V (µi), with ai(ϕ) = ϕ/wi. Therefore, the solution becomes,

∂l(y; β;ϕ)

∂βj

=
n∑

i=1

wi(yi − µi)xij

ϕV (µi)g′(µi)
= 0. (1.21)

Closed form solution for GLMs can not always be derived. Therefore, it is expected that

computer software can be used to compute MLEs numerically, using efficient methods. Sta-

tistical packages have numerical methods to maximize the log-likelihood function given in

Equation (1.20). Common techniques include iteratively reweighted least squares (IRLS),

Fisher Scoring Algorithm, Newton Raphson and gradient descent methods. For example, the
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R software can also be used to find the MLE with numerical iterative methods such as gra-

dient descent or grid search MLE. In the lasso problem, that will be further discussed in the

next chapter, a ℓ1 penalty is added to the log-likelihood function. The problem can no longer

be solved in closed form even in cases where the unpenalized likelihood can be maximized

analytically. Therefore, we revert to gradient descent methods to solve the problem.

1.5 Goodness of Fit and Deviance Residuals

A statistical measure to check model performance called deviance residual is commonly used

to evaluate and compare GLMs. Deviance residuals are based on the log-likelihoods of the

distribution. Recall the log-likelihood function of exponential family distributions derived in

Equation (1.7) is:

l(y; θ, ϕ) =
n∑

i=1

[
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

]
. (1.22)

Generally, a GLM is constructed in a way to maximize the coefficients of the log-likelihood

function. This is achieved as explained in the previous section when we maximize the

likelihood by taking partial derivatives with respect to θi. Consider the saturated model

with µ̂S
i = yi, where the model replicates the observed values and the corresponding value of

the log-likelihood given as l(y; θS, ϕ). Then consider, any other model, with a log-likelihood

l(y; θM , ϕ), calculated from the maximized model. Taking the difference between the log-

likelihoods of the saturated model S and model M we get,

l(y; θS, ϕ)− l(y; θM , ϕ) =
n∑

i=1

[yi(θ̂Si − ˆθMi )− (b(θ̂Si ))− (b( ˆθMi ))

a(ϕ)

]
. (1.23)

This quantity is positive since l(y; θS, ϕ) ≥ l(y; θM , ϕ). For ai(ϕ) = ϕ/ωi, the deviance for

model M becomes,

D∗(y; θ̂M , ϕ) = 2
[
l(y; θS, ϕ)− l(y; θM , ϕ)

]
=

1

ϕ

n∑
i=1

2ωi

[
yi(θ̂Si − ˆθMi )− (b(θ̂Si ))− (b( ˆθMi ))

]
.

(1.24)

Note that the deviance residual for the saturated model will be D∗(y; θ̂S, ϕ) = 0. Another

example, is the deviance for the Gaussian distribution. With a Gaussian distribution the

12



identity link is the canonical link and the deviance for the M model becomes,

D∗(y; θ̂M , ϕ) =
n∑

i=1

2
[
yi(yi − µ̂M

i )− (y2i /2− (µ̂M
i )2/2)

]
=

n∑
i=1

(yi − µ̂M
i )2.

(1.25)

The deviance of the Gaussian distribution becomes the residual sum of squares, which is a

common goodness of fit measure used in linear regression. For the Poisson distribution, the

response variable is derived in Equation (1.10) with θi = lnµi and distribution means µi.

Recall that in the saturated model µ̂S
i = yi and so θ̂Si = ln yi. The fitted parameters of

the Poisson are θ̂Pi = lnµP
i and thus the deviance becomes,

D∗(y; θ̂P , ϕ) =
n∑

i=1

2
[
yi(ln yi − ln θ̂Pi )− (yi − θ̂Pi )

]
. (1.26)

It is to be noted that the deviance will be approaching zero as fitted means θ̂Pi approach the

observed valued yi. The residual deviance is usually used to compare the performance of two

nested models. Consider a model P with p variables and another model Q with q variables

where q > p. To compare, the difference in the residual deviances of the models is taken.

This is equivalent to a likelihood-ratio statistic:

D∗(y; θ̂P )−D∗(y; θ̂Q) = 2
[
l(y; θQ)− l(y; θP )

]
= 2 ln

L(y; θ̂Q)

L(y; θ̂P )
(1.27)

This statistic has an asymptotic Chi-Square distribution with q − p degrees of freedom.

However, increasing the number of variables does not necessarily mean an improved fit and

that is where a regularized model might be of advantage.

Another goodness of fit measure is the null deviance which is the residual deviance for

a GLM with only a constant term, the intercept. The null deviance provides information

about how much better a model M performs when adding variables to the intercept. It is

used as an upper bound on residual deviance while the deviance of the saturated model, is

the lower bound since its value is zero: 0 ≤ D∗(θ̂M ; y) ≤ D∗(θ̂Null; y).
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1.6 Generalized Linear Models and Non-Life Insurance

Insurance companies accept premiums to indemnify a policyholder for the occurrence of an

uncertain event. Accurate pricing of insurance premiums is an important goal for insurance

providers. GLMs are the standard predictive modeling framework that non-life insurers

use for portfolio segmentation and estimation of the pure premium for homogeneous classes

of policyholders. They are also accepted in North America by regulatory entities as the

standard tool for ratemaking. GLMs are used to predict and explain the heterogeneity among

policyholders. This leads to successful adverse risk selection. Historical claim frequency and

severity is the response variable of the model. It is therefore used to fit a model that can

then make predictions for the pure premium. It is important not just to look at the expected

future outcome of the model but to look at the variability of the predictions as well. The

variability of the ultimate model outcome is critical to understanding the extent of the risks

faced by the risk-bearing entity that either has adopted or is contemplating the adoption of

a certain risk. One of the methods to control variability is the shrinkage method which will

be discussed in further detail in Chapter 2.

The frequency and severity of claims are usually modeled independently. Consequently

the pure premium is then the product of the two means, estimated from separate GLMs,

whether fitted at the individual or class level. Aggregate losses can also be modeled directly

as a GLM using a Tweedie distribution which is also a member of the exponential dispersion

family. The Tweedie distribution then models aggregate claims as a compound Poisson-

gamma sum.

Assume that aggregate losses Yi, for a given class of policyholders, are represented by the

sum of individual claim amounts,

Yi =

Ni∑
k=1

Yik (1.28)

with Yi = 0 if Ni = 0 and where Ni is the number of claims incurred and Yik is the severity

random variable for i k = 1, . . . , N . Here, Ni and Yi1, . . . , YiN are assumed to be independent

and are modeled separately using a different GLM distribution and link function. For severity
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the gamma distribution is widely accepted for insurance claims and used only for policies

that did claim, that is Ni > 0. Likewise, for frequency modeling the Poisson is used for all

claim counts. Assuming independence between frequency and severity we have,

E(Yi) = E(Ni)E(Yik), V(Yi) = E(Yik)
2V(Ni) + V(Yik)E(Ni) (1.29)

For these, a vector xi = (xi0, . . . , xi,p−1) of p covariates is used to fit separate GLMs for Ni

and Yik. These covariates incorporate information about the individual policyholders that

help make predictions about their claim behavior in terms of frequency and severity.

The loss cost also known as the pure premium is the total claim size divided by the

exposure, i.e. the average amount paid per unit time. The pure premium is calculated

assuming independence as the product of the frequency and severity. The same paradigm

can be used for the loss ratio, which is calculated as losses
premium

. And the loss cost is split as

follows,

pure premium = frequency × severity =
(number of losses

exposure

)
×
(amount of losses

number of losses

)
(1.30)

The frequency and severity are calculated separately and then multiplied together to get

the pure premium. Losses can also be modeled directly with a Tweedie GLM. However,

frequency and severity may be affected by different predictors and thus models may be

different. Modeling them separately may provide more insight into the loss process than

modeling the losses directly.
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Chapter 2

Regularization

2.1 Introduction

Regularization is a machine learning technique that refers to subset selection methods. It

is mainly a technique to improve the generalization of a learned model and thus prevent

overfitting. These methods can use different convergence criteria to fit a model with the

selected predictors since no closed form solution is achievable. The model fits p predictors

using a technique that regularizes the coefficient estimates, or shrinks the coefficients to zero

depending on their predictive ability (Hastie et al., 2008). The imposed penalty term in

the model forces many coefficients to be zero and removes them from the fitted model. The

penalty term λ controls which variables are included in the model based on their correlation

with the response Y . Intuitively, λ = 0 reduces the problem to an unregularized model and

on the other hand, when λ = ∞ the coefficients are forced to zero. Along the grid of λ

values, variables are added to the model based on their significance. The resulting order is

a natural proxy for variable importance and a mechanism for model selection by mapping

the size of the fitted model. This is called, the active set with a specific number of variables

given the corresponding value of λ.

This is useful specially when dealing with large data sets with hundreds or thousands of

predictors. In general shrinkage methods will help build parsimonious models that are easier
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to interpret without loosing significant predictive ability. It is not intuitive to understand

that shrinkage methods improve model fit, but with parameter tuning this can be achieved.

It is shown that shrinking the coefficient estimates can reduce their variance significantly

(James et al., 2014). The two most popular regularization methods are ridge regression and

lasso (Tibshirani, 1996), which are discussed in further detail in the following sections. For

additional details see Tibshirani (1996).

2.2 Lasso Regularization

The least absolute shrinkage and selection operator (lasso) is a regularization technique that

performs feature selection and coefficient estimation to solve the high dimensionality problem

in model construction (James et al., 2014). For example, in linear models the lasso minimizes

the residual sum of squares subject to the sum of the absolute value of the coefficients being

less than a constant s.

This technique is aimed to be an efficient model selection method in high dimensionality

contexts. The lasso includes an ℓ1-penalty term that constraints the minimum size of the

estimated model coefficients, forcing the model to have fewer parameters. This dimension-

ality reduction technique creates a subset by generating zero valued coefficients. Because

of the nature of the constraint it tends to produce some coefficients that are exactly zero.

This is in contrast to ridge regression which will shrink all of the coefficients towards zero,

but will not set any of them exactly to zero, unless λ = ∞, where λ is the coefficient of the

ℓ2-penalty for the ridge. The lasso technique is general and can also be extended to GLM

and tree-based models. The lasso coefficient estimates solve the following problem;

minimize
β

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2, subject to

p∑
j=1

| βj |≤ s, (2.1)

where s has to be greater than zero. The lasso estimate is a non-linear and non-differentiable

function of the response values even for fixed values of s. Thus it is difficult to obtain an

accurate estimate of the standard error. Bootstrap methods can be used to estimate the

standard error either for a fixed s or an optimized s.
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2.2.1 Lasso Regularization for Linear Models

For linear regression the lasso penalty is added to the ordinary least squares. We penalize

the squared error loss in linear regression by adding the ℓ1-penalty and then solving the

objective function. Using a Lagrange multiplier λ, we see that the lasso coefficients, β̂L
λ ,

minimize the following equivalent optimization problem to equation 2.1 in Lagrange form as

follows:
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

| βj | . (2.2)

The ℓ1-norm of the coefficient vector β = (β0, . . . , βp) is given by ∥β∥1 =
∑
| βj |. The tuning

parameter λ determines how many coefficients are set to zero. This is usually determined by

cross-validation or a grid search. A parameter β has to be sufficiently large to be included in

the model, however too large values of λ will force all coefficients to be zero anyhow. Hence,

lasso performs variable selection making models easier to interpret like subset selection.

These are called sparse models, i.e. models that only include a subset of variables with most

predictive power.

2.2.2 Lasso Regularization for Generalized Linear Models

For GLMs, penalizing the negative log-likelihood with the ℓ1 - penalty is called the lasso

Regularization. In many examples this is conceptually similar to the case with squared error

loss in linear regression, due to the convexity of the negative log-likelihood. To apply the

lasso regularization method to GLMs we have to solve the following optimization problem:

β̂ = argmin
β

l(Y,X; β) + λ ∥β∥1, (2.3)

by minimizing the constrained likelihood function, i.e. the negative log-likelihood function

given by l(Y,X; β) plus a constraint on the size of the parameters. It is not necessary to

use the log-likelihood function and we can use any convex loss function denoted as L. For

example, given the response is binary, the logistic loss is given as,

L(Y,X; β) = −
[
Y T (Xβ)− 1T log(1 + exp(Xβ))

]
. (2.4)
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Note, that the ℓ1-penalization is a special case of the group ℓ1-penalty that is further ex-

plained in the next subsection of this chapter. The convexity of the log-likelihood (Buhlmann

and Van de Geer, 2011) implies statistical properties that are attractive as well as a compu-

tational simplicity of algorithms.

Assumption 1. Assume that the given loss function L(X, Y ; β) ≥ C > −∞ for all β,Xi, Yi

given (i = 1, . . . , n), is continuously differentiable with respect to β, and that the empirical

risk L(β) is convex.

For any convex loss function, other than the squared error loss, numerical optimization

methods are needed for parameter updates. The algorithm takes a step in the direction of

steepest decrease of the loss function. These small steps are taken in the opposite direction of

the gradient of the negative log-likelihood function in Equation (1.15) to ensure convergence.

An approximate minimization and a convergence to a local minimum will be sufficient for

computational purposes.

The parameter estimates β̂(λ) are calculated for a grid of λ values. For example, the

algorithm could start by λmax where all parameters in all the groups will be equal to zero.

Then moving from this starting point and proceeding iteratively to include more variables

in the model, as the value of λ decreases, until λ is close or equal to zero. Cross-validation

is then used to choose the optimal parameter λ̂ among the candidate values from the grid.

Figure 2.1 shows how coefficients change as s changes for a lasso GLM. Labeled on the

bottom are the value of s. Each curve represents a coefficient as a function of the scaled

lasso parameter s. Note that the absolute value of the coefficients tends to zero as the value

of s goes to zero. In the upper scale the number of variables captured is denoted out of 27.

The optimal value of s and λ accordingly is chosen by cross validation.

2.3 Group Lasso

The Group-lasso (Simon et al., 2013) is an extension of the lasso that does variable selection

on non-overlapping groups of variables and sets groups of coefficients to zero. This means
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Figure 2.1: Shrinkage Coefficients for lasso GLM
Bottom: The value of constraint s. Top: Number of variables captured out of 27.

Each curve represents a coefficient as a function of the scaled lasso parameter s.

groups of variables are given, potentially with no overlaps between the groups. For high

dimensional parameter vectors a group structure can be found where the parameter space is

partitioned into disjoint pieces. Sometimes, we are interested in finding important explana-

tory factors to predict the response variable, where each explanatory factor is represented

by a group of input features. The group structure is the simplest for high-dimensional data.

The goal is to model high-dimensional data in a linear or a generalized linear model and to

have sparsity with respect to whole groups. The group-lasso (Yuan and Lin, 2006) achieves

such group sparsity. The non-overlapping structure is not easily applicable in practice there-

fore the overlapping structure is considered. This simply means that variables are given with

potential overlaps between the groups. As a consequence the resulting optimization is much

more challenging to solve due to the group overlaps.
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We will consider the group-lasso penalty for linear models with squared error loss and

a non-squared error loss for generalized linear models. First when we estimate parameters

with a group structure we encourage sparsity at the group level, i.e. either all group entries

are zero or non-zero. This can be achieved using the group-lasso penalty for K groups of

variables,

λ

K∑
k=1

γk ∥βk∥2 , (2.5)

where ∥βj∥2 denotes the standard Euclidean norm and λ is the tuning parameter. Here,

the γi serves as a balancing weight where groups are of different sizes. This is an extension

of lasso for selecting groups of variables instead of individual variables. The group-lasso

estimator can be defined by solving the following objective function for linear models and

for generalized linear models,

β̂(λ) = argmin
β
L(Y,X; β) + λ

K∑
k=1

γk ∥βk∥2 , (2.6)

where L(Y,X; β) is the loss function for linear and generalized linear models. It represents

the squared error or the negative log-likelihood function, respectively. For squared error loss,

L(Y,X; β) =

Y −
K∑
k=1

Xβk


2

2

, X ∈ Rn×p, Y ∈ R. (2.7)

For generalized linear models, the loss function L(Y,X; β) which is the negative log-likelihood,

varies by distribution and chosen link function. As an example, the logit link is given as

log pi
1−pi

= fβ(X) for the logistic function and then the loss function becomes,

L(Y,X; β) = −Y fβ(X) + log
(
1 + exp

(
fβ(X)

))
, X ∈ Rn×p, Y ∈ 0, 1, (2.8)

for,

fβ(Xi) = ηi = XT
i β, (2.9)

which describes the linear predictor. The estimator β̂(λ) is solved my minimizing the convex

objective function in β.

Another penalty blends the lasso ℓ1-norm with the group-lasso (“two-norm”). The advan-

tage of this penalty is the fact that it yields solutions that are sparse at both the group and
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individual feature levels. Suppose that the p predictors are divided into K groups, with pk

the number in group k. We denote the matrix Xk to represent the predictors corresponding

to the k-th group, with coefficient vector βk. Yuan and Lin (2006) proposed the group-lasso

which solves the convex optimization problem

min
β∈Rp
L(Y,X; β) + λ

K∑
k=1

√
pk ∥βk∥2 (2.10)

where the
√
pk term accounts for the varying group sizes and || · ||2 is the Euclidean norm.

This penalty acts like the lasso but at a group level and depending on λ an entire group of

predictors can drop out of the model. If all the group sizes are one, it reduces to lasso. The

group-lasso does not, however, yield sparsity within a group. This means that if a subset

of parameters are non-zero within a group, the remaining parameters will all be non-zero.

A general penalty that yields sparsity at both the group and individual feature levels is

achieved by adding a γ penalty term, in order to select groups and predictors within a group

(Friedman et al., 2010).

In the multi-variate case, the sparse group-lasso criterion solves the following optimization

problem:

β̂ = argmin
β
L(Y,X; β) + λ1

K∑
k=1

∥βk∥2 + λ2 ∥β∥1 , (2.11)

where L(Y,X; β) is the negative log-likelihood function, that can be derived for different

distributions. This can be generalized for any loss function as long as it is a convex function.

The γi in Equation (2.6) control how some groups are penalized more or less than others.

This procedure acts like lasso at the group level and depending on the value of the parameter

λ1 it could lead to an entire group of predictors dropping out of the model. The value of λ

controls how much the coefficients are penalized. This is usually optimally chosen by cross

validation or grid search over a specified range of possible λ values. The γi is chosen so that

if the signal were pure noise, then all groups would equally likely be nonzero. When λ2 = 0,

criterion (2.11) reduces to the lasso in (2.6).

An active set strategy is used for sparse problems with a large number of groups K but

with only few of them being active. This is used to speed up the algorithm considerably. An
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active set is here defined as the set of groups whose coefficient vector is non-zero. If we go

through the groups we then restrict ourselves to the current active set and visit only “rarely”

the remaining groups. So this means the active set is only updated after a certain number of

iterations that can be specified. Thus, the number of iterations in the algorithm is reduced.

An accelerated gradient descent type of algorithm is used for the optimization by solving

the smooth and convex dual problem (Yuan et al., 2013). This method is efficient and can

allow convergence at a fast rate even for non-smooth convex problems. Other methods to

solve the group-lasso optimization are the block coordinate descent (Buhlmann and Van de

Geer, 2011). Other commonly used methods of fit are some form of gradient descent, and

convergence can be confirmed by checking that the solutions satisfy the Karush-Kuhn-Tucker

(KKT) conditions. These optimality conditions for the group-lasso are essentially equivalent

to compute, XT
i (Y − Ŷ )


2
< γiλ, β̂i = 0,XT

i (Y − Ŷ )

2
< γiλ, β̂i ̸= 0,

(2.12)

where the fitted values of the group-lasso are Ŷ =
∑K

k=1Xkβ̂. In the R package “glin-

ternet2”,the group-lasso Interaction Network, which is an extension of the “glinternet”

that includes Poisson and gamma families, an adaptive version of Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) and cyclic group-wise coordinate descent is used. This

package has been extended to be able to model claim frequency and severity.

2.4 Ridge Regression

The other shrinkage method that is similar to lasso is the ridge regression which imposes

an ℓ2 penalty instead. Ridge regression is very similar to least squares, except that the

coefficients are estimated by minimizing a slightly different objective function. Compared to

lasso, the objective function in ridge regression is differentiable and a closed form solution
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can be found. The ridge coefficient estimates solve the following problem:

argmin
β

n∑
i=1

(yi −
p−1∑
j=0

βjxij)
2 subject to

p−1∑
j=0

β2
j ≤ s. (2.13)

The objective function to be minimized is,

argmin
β

n∑
i=1

(yi −
p−1∑
j=0

βjxij)
2 + λ

p−1∑
j=0

β2
j . (2.14)

Same as least squares, ridge regression searches for coefficient estimates that fit the data

well, by making the root of the sum of least squares small. The second term, λ
p−1∑
j=0

β2
j , the

shrinkage penalty, is small when the coefficients are close to zero, and so it has the effect

of shrinking the coefficient estimates towards zero. The tuning parameter λ controls the

relative impact of these two terms on the regression coefficient estimates. Intuitively, when

λ = 0, the penalty term has no effect, and ridge regression reduces to least squares regression.

Adding a ridge penalty to the group-lasso results in the class of the elastic-net. The

objective function for linear model case would be as follows,

argmin
β

1

2

Y −
K∑
k=1

Xkβk


2

2

+ λ
K∑
k=1

γk ∥βk∥2 + α ∥β∥22 . (2.15)

2.5 Comparing Lasso and Ridge Regression

lasso has a major advantage over ridge regression which is the sparse solution obtained when

the problem is solved. Ridge regression, on the other hand, reduces the values of variable

coefficients but does not necessarily forces them to zero. This means, that variable selection

is not achieved through the ridge regression. Figure 2.2 shows a comparison of contours of

the errors and constraint functions between the ℓ1 and ℓ2 penalty. The red ellipses in the two

figures represent regions with given mean square error and the corresponding optimal value

of β̂, while the green circle and green square represent the space of solutions for ridge and

lasso regression, respectively. The end results are represented by the intersection of the green

space with the red circles. It can be seen that the lasso solution obviously forces one of the

parameters, here β1 to be zero while ridge regression only reduces its value. Geometrically,
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Figure 2.2: Comparison of Contours Between lasso and Ridge Regression

this can be explained by the analogy that the expense of traveling a straight line is less than

that of a circle. The lasso is therefore more effective in terms of forcing parameters to be

equal to zero. Overall, it can be shown how solutions change from the least squares estimate

compared to lasso and ridge regression.

An obvious advantage of ridge regression over least squares is in terms of the bias-variance

trade-off. As λ increases, the flexibility of the ridge regression fit decreases, leading to

decreased variance but increased bias. For the least squares coefficient estimates, which

corresponds to ridge regression with λ = 0, the variance is high but there is no bias. Regu-

larization methods do control variability in the parameter estimate and thus as λ increases,

the shrinkage of the ridge coefficient estimates leads to a substantial reduction in the vari-

ance of the predictions. However, at the expense of a slight increase in bias. This works

particularly well when the least squares estimates have high variance.
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2.6 Subset Selection

The problem of selecting the best model from among the 2p possible models is not easy. The

aim is to select the best subset through an exhaustive search method. This can be done as

shown in Table 2.1, step by step. This subsection is aimed to show what used to be done to

select a subset before regularization methods gained popularity.

Best Subset Selection

1. Starting with M0, the null model, which contains no predictors.

This model gives the sample mean of each prediction.

2. Then fit a ordinary least square on all
(
p
k

)
for k = 1, . . . , p models that

contain exactly k predictors. Among these k models pick the best, and call it Mk.

Here best is defined as having the smallest root for the sum of least squares,

or equivalently largest R2.

3. Among M0, ...,Mp select a single best model using cross-validated

prediction error, AIC, BIC, or adjusted R2.

Table 2.1: Steps to Select Best Subset

Following these steps to find the best subset, the problem is reduced from having 2p

possibilities to p + 1. To select a single best model, we must simply choose among these

p + 1 options. This task must be performed with care, because the sum of least squares

of these p + 1 models decreases monotonically, and the R2 increases monotonically, as the

number of features included in the model increases. Therefore, if we solely rely on these

statistics to select the best model, then we will always end up with a model involving all of

the variables. The problem is that a low sum of least squares or a high R2 indicates a model

with a low training error. However the model of interest to us and to perform predictive

modeling is the one that has a low test error. This also applies to other types of models,

such as logistic regression and other GLMs. Although this method is simple, it suffers from

computational limitations. As the number of p predictors increases the number of models
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to be considered rapidly increases and the method of best subset selection becomes quickly

infeasible. Therefore, we tend to use a different regularization method to conduct best subset

selection. For cross validation, the data set is divided into k subsets, and the holdout method

Figure 2.3: Ten Fold Cross Validation Error

is repeated k times. Each time, one of the k subsets is used as the test set and the other

k − 1 subsets are wrapped up together to form a training set. This is a way for testing how

well the model performs on a subset of the data that was not used to fit the model. Here, for

the Group-lasso Interaction Network “glinternet” procedure, we cross validate on different λ

values. In Figure 2.3 the λ index keeps decreasing and thus the errors increase for low values

of λ. This indicates, that a stronger penalty improves model fit and leads to a better model

generalization on new data.

27



Chapter 3

Hierarchical Models

3.1 Introduction

Hierarchical modeling is an extension of GLMs that gives specific model parameters their

own sub-model. This allows the building of models that can be grouped along a dimen-

sion containing multiple levels. Similar to linear and logistic regression, generalized linear

models can be fit to multilevel and hierarchical structures by including coefficients for group

indicators and then adding group-level models. These models are particularly used for lon-

gitudinal and repeated measures datasets that contain multiple levels for each of several

subjects. Generally, hierarchical models are used only when data is hierarchically structured

data and can be grouped, outperforming classical regression in predictive accuracy. Actuar-

ies can consider hierarchical generalized linear models (HGLMs) as an alternative to “fixed

effects” GLMs.

3.2 Theory and Assumptions

Multilevel models are extensions of regression where data is structured in groups and where

coefficients can vary by group instead of only by variable. The advantage of using a hierarchi-

cal modeling framework is that it works well even if the data set contains a large number of
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levels. It is used to model variations in the individual level regression coefficients. The mul-

tilevel model has the appeal of fitting two levels or more together. Classically, this is done by

using indicator variables which can be cumbersome for large number of variables. Hierarchi-

cal modeling captures the variation of these coefficients across groups, make predictions for

new groups, or account for group-level variation in the uncertainty for individual-level coeffi-

cients (Guszcza, 2008). If instead non-hierarchical models are deployed it would potentially

require hundreds of indicator variables, specially for categorical variables. The hierarchical

modeling framework provides an automatic mechanism to handle large categorical variables

with a larger number of variables. Using hierarchical modeling can be useful to estimate

model coefficients for particular groups since it incorporates group-level variations (Gelman

and Hill, 2007).

3.3 Tree-Based Models

AdaBoost and gradient boosting are effective non-parametric techniques in machine learn-

ing to build ensembles of weak learners. Ensemble methods use multiple weak learning

algorithms to obtain a better combined predictive performance. Tree-based models use deci-

sion trees as a predictive model that can be used for regression and classification. The tree is

used as a set of splitting rules to segment the predictor space. For regression trees, a regres-

sion model is fitted at each node of the tree. The idea is to build a highly accurate predictive

model by combining many relatively weak learners. This is achieved through boosting, which

is a method of iteratively adding basis functions in a greedy way so that each additional basis

function further reduces the selected loss function. It can be used in conjunction with many

other types of learning algorithms to improve the performance (Freund and Schapire, 1999).

At each iteration, a weak learner is built to fit a subset of the data and then the output of

the weak learners is combined into a weighted sum that represents the final output of the

boosted classifier. This leads to improving the learning process significantly. First, we train

a weak model using samples of the training data according to the specified weight distribu-
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tion then for the second iteration more weight is given to the misclassified sample, ones not

correctly classified by the first weak learner, and less weight is given to the samples that

are classified correctly. Then a model is trained using the samples specified by the updated

weight distribution.

The AdaBoost algorithm is adaptive, due to the fact that subsequent weak learners are

updated, to adjust those instances misclassified by previous classifiers. However, in some

problems, this can make the algorithm sensitive to noisy data and outliers. Otherwise, it

can be less susceptible to the overfitting problem than other learning algorithms. Even if

the individual learners are weak, as long as the performance of each one is slightly better

than random guessing, they can be combined and the final model will converge to a strong

learner (Freund and Schapire, 1995).

We use screening with boosted trees to solve our problem by building an ensemble of

weak learners, such as decision trees. Trees are used because of their ability to model

nonlinear effects and high-order interactions. A boosted model is used as a screening device

for interaction candidates by taking a set of all unique interactions from the collection of

trees. Lowering the shrinkage parameter and increasing the number of trees improves the

false discovery rate, but at a significant cost to speed.

Tree-based modeling algorithms are an active area of research in nonparametric statistics

and machine learning. These include, random forests, boosted trees (GBM), decison trees,

Bayesian trees and treed Gaussian processes.

3.3.1 Generalized Boosting Models

Boosting is a modeling technique that has been widely used in machine learning, data mining

and statistical computations. Generalized boosted models (GBM) is an ensemble method

that aggregates simple tree-based models into a final model. Boosting methods generalize

the model by allowing the optimization of an arbitrary differentiable loss function L.This is

achieved through a sequential procedure and can be described as a method for iteratively

building an additive model. FT (x) is the end learner we are trying to achieve through a pool
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of weak learners as follows,

FT (x) =
T∑
t=1

αthjt(x). (3.1)

The weight αt is given at each iteration t to each basis function and hjt is a large pool of “weak

learner” j as called in machine learning. These create a large pool of candidate predictors.

Consider, hjt to be the basis function selected as the “best candidate” to be modified at

iteration t. Boosting has the ability to improve the accuracy of any given algorithm in its

design, to adaptively select the next increment at each step, and to improve the fit of the

model using the misclassified predictions. The sequential procedure iteratively adds trees to

the ensemble to increase emphasis on poorly predicted cases. This is done by sequentially

fitting the deviance residuals from the previous model. At each iteration, it searches for the

basis function which goes in the direction of the gradients and thus gives the best decrease

in the loss, and changing its coefficient accordingly. It searched at each iteration for the

basis function which gives the steepest descent in the loss function, and change its coefficient

accordingly. The final model is a linear combination of basis functions to optimize a given

loss function or the intermediate trees. This is an attempt to find a linear combination of the

members of some basis of functions to optimize a given loss function over any given sample,

resulting in a better final model. The original boosting algorithm (Freund and Schapire,

1999) has been widely used. As opposed to other machine learning methods, boosting does

not overfit.

Algorithm 1. Gradient Boosting Algorithm

1. Begin with a random initial vector regression coefficients β0 = 0

2. For iteration t = 0, 1, . . . ,T :

(a) Let the initial prediction be Fi = β(t−1)⊤hjt(xi) for i = 1, . . . , n in the initial model.

(b) Set ωi =
∂L(yi,Fi)

∂Fi
for i = 1, . . . , n be the weight distribution chosen to minimize the

loss function.

(c) Identify the gradient as jt = argmaxj |
∑

i ωihjt(xi) | .

(d) Set β
(t)
j = β

(t−1)
j − st and β

(t)
k = β

(t−1)
k , k ̸= jt.

(e) Update the model Fi = Fi−1 −
∑

i ωihj(xi)
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Note that the gradient is given by
∑

i ωihj(xi) =
∂L(yi,Fi)

∂βjt
where L(y, F ) is an arbitrary

differentiable loss function specified and the model gets updated according to this metric.

β(t) is the current coefficient vector at iteration t and st is the step size of each interaction.

This represents a general coordinate descent algorithm for a gradient boosting model which

falls in the “weak learner” space. The algorithm attempts to find the optimal value of jt and

the direction of | st |. The sign of st will always be - sign(
∑

i ωihjt(xi)), since the target is to

reduce the loss. The idea is to apply a steepest descent step to this maximization problem.

For example, the original AdaBoost algorithm uses the exponential loss L(y, F ) = exp(-yF ),

and an implicit line search to find the step size st once a “direction” j is chosen (Friedman,

2002).

Another issue to point out concerning the gradient boosting method is regularization,

by shrinkage, which consists of modifying the updating rule Fi = Fi−1 − st · ωihjt(xi), for st

between 0 and 1.

On the downside, interpreting an ensemble model such as GBM is extremely difficult.

The output of the boosting models has no direct interpretation and can be interpreted only

through implicit methods such as variable importance. Focusing on the predictability, GBM

originates from paradigm of machine learning, by avoiding typical statistical parameter esti-

mation in favor of algorithmically learning the relationship between covariates and response.

As a result, it returns highly accurate results due to the high flexibility of the model.

3.4 Modeling Interactions

A statistical interaction occurs when the effect of one independent variable on the response

variable changes depending on the level of another independent variable. It simply means

that the relationship between levels of one variable is not constant for all levels of another

variable. An example, in auto insurance, the age curve for driving experience, does not have

the same shape for males and females. Here we discuss learning linear pairwise interactions

and building a model that includes them. This is discussed in Chapter 4 for applications of
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the group-lasso (”two-norm”) via hierarchical group-lasso regularization in modeling claims

frequency and severity.

Learning interactions is a challenging problem due to the number of variables involved.

This could vary from thousands to millions, with a candidate interaction search space of

about a billion or trillion terms. To define interactions, assume a response and explanatory

variables, for which we expect interactions to be present if the response cannot be explained

by additive functions of the given variables (Hastie and Lim, 2015). So an interaction exists

in f , between x and y, when f(x, y) cannot be expressed as g(x)+h(y) only, for any functions

g and h.

Actuaries care about including interactions in their models to increase their predictive

power. Since interactions are considered a non-linear effect, adding them to a linear model

has to be specified manually. Examining interactions manually can be a tedious and some-

times impossible task in models with a large number of candidate interactions. Therefore,

we explore other more efficient methods to solve this problem. This is solved by introducing

the overlapped group-lasso.

3.4.1 Strong and Weak Hierarchy

The goal here is to fit the first order interaction model in a way that obeys a strong hierarchy.

A mode is described as to obey strong hierarchy when an interaction model includes those

variables, that have both of its main effects present. A weak hierarchy means that it is

sufficient for either of the main effects to be present. Since main effects can be viewed as

deviations from the global mean, and interactions are deviations from the main effects, it

usually does not make sense to have interactions without main effects. If a variable has

significant interactions then it makes sense that the main effect is a significant variable as

well. Including both in a model should yield better results. Therefore, it is preferable to use

interaction models that are hierarchical and satisfy strong hierarchy for predictive modeling.

Let E(Y | X1 = i,X2 = j) = µij, the conditional mean of Y given that X1 takes level i

and X2 takes level j. This holds for categorical variables at any arbitrary number of levels.
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Note that for categorical variables each level is treated as a variable on its own. But it also

holds for continuous variables, so let E(Y | Z1 = i, Z2 = j) = µij where Z1 and Z2 are

two continuous variables that are jointly distributed to predict the mean Y . In our model,

we define interactions between two distinct continuous variables or interactions between any

two levels of a categorical variable.

Proposition 1. Definition of Interaction

There are 4 possible cases that satisfy a strong hierarchy assumption:

1. µij = µ (no main effects, no interactions),

2. µij = µ+ θi1 (one main effect Z1 or X1),

3. µij = µ+ θi1 + θj2 (two main effects),

4. µij = µ+ θi1 + θj2 + θij1:2 (main effects and interaction).

This defines θi, for i = 1, . . . , p, that represents the main effect coefficients for any of the

p predictors, and θi:j denotes the interaction coefficients as defined in the four cases above.

These satisfy a strong hierarchy since interactions are only present when both main effects

are present as well. In what follows, the terms “main effect coefficients” and “main effects”

will be used interchangeably, and likewise for interactions.

3.4.2 First Order Interaction Model

Given a response Y ,

Yi =

p−1∑
j=0

Xijθj +
∑
j<l

Xi,j:lθj:l + ξi, (3.2)
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where ξi ∼ N(0, σ2) are the model errors, Xi,j:l is the variables interaction and θj:l the

corresponding interaction coefficient between j and l. For example the logistic model for

binary responses 0, 1,

logit(P (Yi = 1|X)) =

p−1∑
j=0

Xijθij +
∑
j<l

Xi,j:lθj:l. (3.3)

The models are fit by minimizing an appropriate choice of loss function L. These equations

represent models that are unpenalized, yet they could be overparametrized and in fact they

usually are, leading to overfitting. Thus we impose the relevant constraints for the coefficients

θ. Particularity we will be imposing an ℓ1 penalty. This function can be transformed into

an optimization problem with constraints as follows:

argmin
µ,θ
L(Yi, Xi,j:j≤p−1, Xi,j:l; θ), (3.4)

subject to the relevant constraints. L can be any loss function depending on the response

model. For a quantitative response model typically the squared error loss is used,

L(Yi, Xi,j:j≤p−1, Xi,j:l; θ) =
1

2

Yi −
p−1∑
j=0

Xijθj +
∑
j<l

Xi,j:lθj:l


2

2

, (3.5)

and for the binomial response model a logistic loss is used and extensions include any convex

loss function.

L(Yi, Xi,j:j≤p−1, Xi,j:l; θ) = −[Y T
i (

p−1∑
j=0

Xijθj +
∑
j<l

Xi,j:lθj:l)

−1T log(1 + exp(

p−1∑
j=0

Xijθj +
∑
j<l

Xi,j:lθj:l))].

(3.6)

Extensions include exponential family members, where the appropriate loss function can be

derived. The negative log-likelihood is used as the loss function for count response models

and for skewed continuous responses, i.e. Poisson and gamma models, respectively. Here,

the Poisson model is derived as

L(Yi, Xi,j:j≤p−1, Xi,j:l; θ) = [exp(

p−1∑
i=0

Xijθj +
∑
j<l

Xi,j:lθi,j:l)

−Y T
i (

p−1∑
i=0

Xijθj +
∑
j<l

Xi,j:lθj:l) + log(Yi!)].

(3.7)
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This can also be derived for other exponential family members with the appropriate loss and

link functions. Since here the coefficients are unpenalized they satisfy the strong hierarchy

condition. If a penalty is added, results will deviate from a strong hierarchy. The problem is

how to fit interaction models whose solutions are sparse (variable selection effect) and also

satisfy a strong hierarchy. A lasso penalty will achieve sparsity, but there is no guarantee

that the solutions will have any form of hierarchy as well. This is the goal of this work, to find

a solution, that specifically solves both problems simultaneously. For actuarial applications

this solution will be also derived for Poisson and gamma models.

3.4.3 Strong Hierarchy Through Overlapped Group-Lasso

Strong hierarchy in interaction models can be achieved by adding an overlapped group-lasso

penalty to the objective function in Problem (3.4) of Section 3.4.2. The results that follow

hold for both squared error and logistic loss (Hastie and Lim, 2015) and can be extended to

other loss functions. Consider the case with two categorical variables with levels L1 and L2

levels and indicator matrices are given as X1 and X2. The problem to solve becomes,

arg min
µ,α,α̃

1

2

Y − µ1−X1α1 −X2α2 − [X1X2X1:2]

⎡⎢⎢⎢⎣
α̃1

α̃2

α1:2

⎤⎥⎥⎥⎦


2

2

+λ(∥α1∥2 + ∥α2∥2 +
√

L2 ∥α̃1∥22 + L1 ∥α̃2∥22 + ∥α1:2∥22)

(3.8)

subject to
L1∑
i=1

αi
1 = 0,

L2∑
j=1

αj
2 = 0,

L1∑
i=1

α̃i
1 = 0,

L2∑
j=1

α̃j
2 = 0 (3.9)

and
L1∑
i=1

αij
1:2 = 0 for fixed j,

L2∑
j=1

αij
1:2 = 0 for fixed i, (3.10)

for the interaction effect. Here, X1 and X2 each have two different coefficient vectors αi and

α̃i. This will result in the desired penalty, the overlapped penalty. The actual main effects
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θ1 and θ2 are given by

θ1 = α1 + α̃1,

θ2 = α2 + α̃2,

θ1:2 = α1:2.

(3.11)

To satisfy the strong hierarchy property and to obtain estimates that satisfy this, the term√
L2 ∥α̃1∥22 + L1 ∥α̃2∥22 + ∥α1:2∥22 is responsible for imposing the required feature, since either

α̃1 = α̃2 = ˜α1:2 = 0 or all are nonzero, i.e. interactions are always present with both main

effects. αi represents the parameter space α̃i and αi for the main effects, while α1:2 is for

interaction effects. Hence α̃ represents the penalized coefficients obeying strong hierarchy.

These are always present when an interaction effect is present. Since the group-lasso has the

property of “all zero” or “all nonzero” estimates, we also have that,

θ1:2 ̸= 0 =⇒ θ1 ̸= 0 =⇒ θ2 ̸= 0 (3.12)

satisfying a strong hierarchy.

The parameterization of the constraints is a tricky problem, specially because the coef-

ficients get penalized. Any representation of the problem that does not preserve symmetry

will result in unequal penalization schemes for the coefficients. The symmetry of parameters

is so important because it avoids overparameterization and this is avoided by the sum to

zero constraint of the variable levels. Intuitively, the problem becomes more complicated as

the number of variables and levels increases. This problem can be solved by an equivalent

unconstrained group-lasso problem. This is advantageous since the problem can be now be

represented in a symmetric way, thus avoiding the need for careful choices of parametriza-

tion. In addition, we only have to fit a group-lasso without constraints on the coefficients,

which is a already well studied problem in the literature.

This is presented through two Lemmas. The first one states that because an intercept is

fitted, the coefficient estimates β̂ of categorical variables will have mean zero.

Lemma 1. X is given to be an indicator matrix. The solution,

argmin
µ,β

1

2
∥Y − µ1−Xβ∥22 + λ ∥β∥2 (3.13)
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satisfies
L∑
l=1

β̂l = 0 (3.14)

and the same holds for other loss functions.

It follows that if µ̂ and β̂ are solutions to the equation, then so are µ̂+c1 and β̂−c1. This

holds for X being an indicator matrix and from this it follows that X · c1 = c1. However

the norm, || β − c1 ||2 is minimized for c = β̂. In the following lemma it is evident that if

two intercepts are included in the model, one penalized and the other unpenalized, then the

penalized intercept will be estimated to be zero. Thus the same fit can be achieved with a

lower penalty by taking µ← µ+ µ̃.

Lemma 2. The optimization problem

argmin
µ,β

1

2
∥Y − µ1− µ̃1− ...∥22 + λ

√
∥µ̃∥22 + ∥β∥

2
2 (3.15)

has solution ˆ̃µ = 0 for all λ > 0. The same result holds for other loss functions.

This states that if two intercepts are included in the model, the penalized one will always

be estimated to be zero. This is because the same fit can be achieved by taking only one of

the intercepts µ.

It can be shown that,

∥β1:2∥2 =
√

L2 ∥α̃1∥22 + L1 ∥α̃2∥22 + ∥α1:2∥22 (3.16)

where α̃1,α̃2 and α1:2 satisfy constraints in Equations (3.9) and (3.10). For fixed levels i and

j, the interaction term can be decomposed into

βij
1:2 = α̃i

1 + α̃i
2 + αij

1:2. (3.17)

The (L1L2)-vector β1:2 can be written as

β1:2 = I1α̃1 + I2α̃2 + α1:2, (3.18)
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where I1 is a L1L2 × L1 indicator matrix and I2 is a L1L2 × L2 indicator matrix. And thus

it can be shown from Equation 3.18 that the additive components are mutually orthogonal

as follows,

∥β1:2∥22 = ∥I1α̃1∥22 + ∥I2α̃2∥22 + ∥α1:2∥22

= L2 ∥α̃1∥22 + L1 ∥α̃2∥22 + ∥α1:2∥22
(3.19)

So the penalty in the group-lasso is equivalent to the penalty in the constrained overlapped

group-lasso. And it remains to show that X1:2I1 = X1 and X1:2I2 = X2 it follows,

X1:2β1:2 = X1:2

(
I1α̃1 + I2α̃2 + α1:2

)
= X1α̃1 +X2α̃2 +X1:2α1:2 (3.20)

Eventually the following theorem shows that the overlapped group-lasso reduces to a group-

lasso and we can still obtain estimates that satisfy

Theorem 1. Solving the constrained optimization problem (3.8) and (3.10) is equivalent to

solving the unconstrained problem.

argmin
µ,β

1

2
∥Y − µ1−X1β1 −X2β2 −X1:2β1:2)∥22

+λ
(
∥β1∥2 + ∥β2∥2 + ∥β1:2∥2

)
.

(3.21)

Theorem 1 shows that we can use the group-lasso to obtain estimates that satisfy a strong

hierarchy, without solving the overlapped group-lasso with constraints. And it is shown that

the main effects and interactions can be extracted as,

θ̂1 = β̂1 + ˆ̃α1,

θ̂2 = β̂2 + ˆ̃α2,

θ̂1:2 = β̂1:2.

(3.22)

As a proof, it is shown how the group-lasso objective function can be transformed to an

overlapped group-lasso with the appropriate constraints on the parameters. First, we begin
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by rewriting the equation (3.8):

arg min
µ,µ̃,α,α̃

1

2


Y − µ1−X1α1 −X2α2 −

[
1X1X2X1:2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ̃

α̃1

α̃2

α1:2

⎤⎥⎥⎥⎥⎥⎥⎥⎦



2

2

+λ

(
∥α1∥2 + ∥α2∥2 +

√
L1L2µ̃2 + L2 ∥α̃1∥22 + L1 ∥α̃2∥22 + ∥α1:2∥22

)
.

(3.23)

ˆ̃µ will be estimated to be equal to zero, from Lemma 2. Thus the solution did not change.

The first two constraints in (3.9) are shown in Lemma 1 to be satisfied by the estimated

main effects β̂1 and β̂2. And we have shown that,

∥β1:2∥22 = L2 ∥α̃1∥22 + L1 ∥α̃2∥22 + ∥α1:2∥22 , (3.24)

where α̃1, α̃2 and α1:2 satisfy the constraints (3.9) and (3.10) of the initial objective function.

Thus the penalty in the group-lasso problem is equivalent to the penalty in the constrained

overlapped group-lasso. And it follows that the loss functions in both problems are also the

same.

3.4.4 Interaction Between Two Continuous Variables

Interactions terms can be appropriately represented as

• X1 * X2 = X1:2 for categorical variables,

• X * [1 Z] = [X (X * Z)] for one categorical variable and one continuous variable.

For continuous variables we define Z1 and Z2 to be two continuous variables. The appro-

priate form of the interaction term is given by

Z1:2 = [1 Z1] ∗ [1 Z2]

= [1 Z1 Z2 (Z1 ∗ Z2)].
(3.25)

40



Then it follows, that the linear interaction for Z1 and Z2 is given by

E[Y |Z1 = z1, Z2 = z2] = θ1z1 + θ2z2 + θ1:2z1z2. (3.26)

Consequently, the overlapped group-lasso would be,

arg min
µ,α̃,α,α̃

1

2


Y − µ · 1− Z1α1 − Z2α2 −

[
Z1 Z2 (Z1 ∗ Z2)

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ̃

α̃1

α̃2

˜α1:2

⎤⎥⎥⎥⎥⎥⎥⎥⎦



2

2

+λ

(
∥α1∥2 + ∥α2∥2 +

√
∥α̃1∥22 + ∥α̃2∥22 + ∥α1:2∥22

)
,

(3.27)

which is equivalent to,

argmin
µ,β

1

2
∥Y − µ · 1− Z1β1 − Z2β2 − ([1 Z1][1 Z2])β1:2∥22

+λ(∥β1∥2 + ∥β2∥2 + ∥β1:2∥2),
(3.28)

replacing α’s by β’s.

3.4.5 Interaction Between Two Categorical Variables

To complete the derivation of interaction we will also present the case of an interaction

between two categorical variables. Note, that for categorical data, interactions are taken at

each level of the variable. For example, if we have an interaction between two categorical

variables with levels n and m, respectively, we will have a matrix of interaction coefficients

of dimensions (n ×m). For simplicity, we denote the two categorical variables X1 and X2.

The appropriate form of the interaction term is given by the product representation,

X1:2 = [1 X1] ∗ [1 X2]

= [1 X1 X2 (X1 ∗X2)],
(3.29)

assuming that each categorical variable has two levels. Then it follows, that the linear

interaction for X1 and X2 is given by

E[Y |X1 = x1, X2 = x2] = θ11x11 + θ12x12 + θ21x21 + θ22x22

+ θ11:21x11x21 + θ11:22x11x22 + θ12:21x12x21 + θ12:22x12x22.
(3.30)
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This makes it evident how fast the number of interaction possibilities can increase. Conse-

quently, the overlapped group-lasso would be, again assuming one level for simplicity,

arg min
µ,α̃,α,α̃

1

2


Y − µ · 1−X1α1 −X2α2 −

[
X1 X2 (X1 ∗X2)

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ̃

α̃1

α̃2

˜α1:2

⎤⎥⎥⎥⎥⎥⎥⎥⎦



2

2

+λ

(
∥α1∥2 + ∥α2∥2 +

√
∥α̃1∥22 + ∥α̃2∥22 + ∥α1:2∥22

)
,

(3.31)

which is equivalent to,

argmin
µ,β

1

2
∥Y − µ · −1X1β1 −X2β2 − ([1 X1][1 X2])β1:2∥22

+λ(∥β1∥2 + ∥β2∥2 + ∥β1:2∥2),
(3.32)

again replacing α’s by β’s.

3.4.6 Interaction Between a Categorical Variable and a Continu-

ous Variable

We consider having a categorical variable X with L levels and a continuous variable Z. Let

the mean µi = E[Y |X = i, Z = z]. Modeling results can fall into one of the following 4 cases:

• µij = µ (no main effects, no interactions),

• µij = µ+ θi1 (one main effect X1 or Z1),

• µij = µ+ θi1 + θ2z (two main effects),

• µ = µ+ θi1 + θ2z + θi1:2z (main effects and interaction).

An overlapped group-lasso objective function with X being the indicator matrix repre-
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sentation for categorical variables and Z for continuous variables is given by,

arg min
µ,α,α̃

1

2

Y − µ · 1−Xα1 − Zα2 − [X Z (X ∗ Z)]

⎡⎢⎢⎢⎣
α̃1

α̃2

˜α1:2

⎤⎥⎥⎥⎦


2

2

+λ(|| α1 ||2 + || α2 ||2 +
√
|| α̃1 ||22 +L || α̃2 ||22 + || α1:2 ||22),

(3.33)

subject to
L∑
i=1

αi
1 = 0,

L∑
i=1

α̃i
1 = 0,

L∑
i=1

αi
1:2 = 0, (3.34)

and the constraints
∑L

i=1 θ
i
1 = 0 and

∑L
i=1 θ

i
1:2 = 0. By solving this objective function

under the constraints, the estimated interactions obtained satisfy a strong hierarchy. This

is obtained through the nature of the square root term in the penalty. The main effects and

interactions are given by

θ̂1 = α̂1 + ˆ̃α1,

θ̂2 = α̂2 + ˆ̃α2,

θ̂1:2 = α̂1:2.

(3.35)

Theorem 2. Solving the parameter in (3.34) under the constraints in (3.35) is equivalent

to solving the following problem,

argmin
µ,β

1

2
∥Y − µ · 1−Xβ1 − Zβ2 − (X ∗ [1 Z])β1:2∥22

+λ(|| β1 ||2 + || β2 ||2 + || β1:2 ||2).
(3.36)

Additional parameters µ̃ are introduced to the objective function of the overlapped group-

lasso.

arg min
µ, ˜µ,α,α̃

1

2


Y − µ · 1−Xα1 − Zα2 − [1X Z (X ∗ Z)]

⎡⎢⎢⎢⎢⎢⎢⎢⎣
µ̃

α̃1

α̃2

˜α1:2

⎤⎥⎥⎥⎥⎥⎥⎥⎦



2

2

+λ

(
∥α1∥2 + ∥α2∥2 +

√
∥α̃1∥22 + L ∥α̃2∥22 + ∥α1:2∥22

)
.

(3.37)
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Adding the parameter ˆ̃µ does not change the solution since it will be equal to zero as we

have showed in Lemma 2. The interaction parameter ∥β1:2∥22 can be decomposed as follows:

∥β1:2∥22 = L ∥µ̃∥22 + ∥α̃1∥22 + L ∥α̃2∥22 + ∥α1:2∥22 . (3.38)

This shows how the penalties in both problems are equivalent. Note that ∥α̃1∥ is an (L × 1)-

vector and thus
∑L

i=1 α̃
i
2 = 0 and similarly for α1:2. It follows that we can write the interaction

parameter as,

β1:2 =

⎡⎣ µ̃ · 1L×1

α̃2 · 1L×1

⎤⎦+

⎡⎣ α̃1

α1:2

⎤⎦ . (3.39)

It can also be shown by direct computation that the loss functions are equivalent,(
X ∗ [1 Z]

)
β1:2 =

[
X (X ∗ Z)

]
β1:2

=
[
X (X ∗ Z)

](⎡⎣ µ̃ · 1L×1

α̃2 · 1L×1

⎤⎦+

⎡⎣ α̃1

α1:2

⎤⎦)

= µ̃ · 1 +Xα̃1 + Zα̃2 + (X ∗ Z)α1:2.

(3.40)

Thus parameterizing the interaction as X ∗
[
1 Z
]
allows us to accommodate interactions

between continuous and categorical variables.

3.5 Modeling Hierarchical Interactions With Boosted

Trees and Adaptive Screening

As explained in the previous sections we conclude that gradient boosting are effective ap-

proaches to building ensembles of weak learners such as decision trees. Boosted trees are

able to model nonlinear effects and high-order interactions that linear models are not able

to capture automatically. A simple example, is a depth 2 tree, which represents an inter-

action between the variables involved in the two splits. This suggests that boosting with

depth-2 trees is a way of building a first-order interaction model. Note that the interactions

are hierarchical, because in finding the optimal first split, the boosting algorithm is looking
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{1}

{1,2} {3}
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F11
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{2}

{3} {1,2}

{1,3}

Figure 3.1: Screening with Boosted Trees

for the best main effect. The second split is then made, conditional on the first split. If

we boost with T trees, then we end up with a model that has at most T interaction pairs.

Given p variables the possible pairwise interaction space is
(
p
2

)
. However, if factors have

multiple levels, the model takes interactions at each level of the factor and thus the possible

interaction space would be the sum of all levels choose 2 instead. The following diagram

gives an illustration of the boosting iterations with categorical variables.

In the first tree in Figure 3.1 , levels 2 and 3 of F1 are not involved in the interaction with

F2. In this example the interaction is taken with respect to level 1. Therefore, for categorical

variables, each tree in the boosted model does not represent an interaction among all the

levels of the two variables, but only among a subset of the levels. To obtain the full interaction

structure, a fully split tree could be used, but this approach is not developed for two reasons.

First, boosting is an iterative procedure and is quite slow even for moderately sized problems

and using a fully split tree will slower runtime. Second, for categorical variables with many

levels, it is expected that the interactions only occur among a few of the levels. As a

consequence, if this is true, then a complete interaction that is weak for every combination

of levels might be selected over a strong partial interaction. But it is the strong partial

interaction that we are interested in, since the overall objective is to find solutions that are

sparse.

Boosting is feasible because it is a greedy algorithm which means that it attempts to

make the locally optimal solution at each stage with the hope of finding a global optimum.

For example, if we have p variables, an exhaustive search of all variable combinations involves

O(p2) variables, whereas boosting operates with O(p). A boosted model is used as a screening
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device for interaction candidates. To do that, the set of all unique interactions is taken from

the collection of trees. For example, as illustrated above, we would add F1:2 and F11:23 to

our candidate set of interactions.

Boosting as a screening procedure is quite cumbersome because it involves selecting

tuning parameters, the amount of shrinkage and the proper number of trees. Good results

are obtained when lowering the penalty value and increasing the number of trees. However,

this is at the expense of computational speed. The efficient method used for the screening

approach is based on the idea of computing inner products that can be integrated strong rules

for discarding predictors in lasso-type problems. This is a method, that basically discards

large number of inactive variables that are most likely redundant and should not be added

to the active set of variables.

The advantage of strong rules is the speed of convergence of the algorithm since a smaller

set “the strong set” of variables that are more likely to be nonzero is used instead of using

all candidates. Karush Kuhn Tucker (KKT) conditions are checked after the algorithm has

converged to ensure that all discarded variables are actually equal to zero and we picked

the right ones, since the strong rules can mistakenly discard active predictors. Otherwise,

those variables that do not satisfy the KKT conditions then have to be added to the current

set of nonzero variables, and we fit on the combined expanded set. However, from multiple

experiments, this does not happen often. The strong rules calculation for group-lasso has to

be conducted by computing si =|| XT
i (Y − Ŷ ) ||2 for every group of variables Xi. Then the

strong rules filter is applied, where a group i is discarded if the test si < 2λcurrent−λprevious is

satisfied (Tibshirani et al., 2012). The filter is applied through the difference in the sequence

of the λ penalty values. If it is feasible for all p+
(
p
2

)
groups, no screening needs to be done

and the group-lasso is fitted on the groups that passed the strong rules filter. However, if

it is not feasible we approximate by screening only the groups that correspond to the main

effects. Then, all pairwise interactions are taken for the variables that passed the screen.
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The KKT conditions for group i would be,

si < λ for β̂ = 0,

si = λ for β̂ ̸= 0,
(3.41)

where si is computed for the strong rules from checking the KKT conditions for the solutions

at the previous λ, thus, integrating screening with the strong rules. A candidate set for the

group-lasso is composed of a specific number of variables with the highest score and pairwise

interactions of all the variables. The number of variables is chosen in a way as to make the

computation feasible for the group-lasso.

To compute the fit of λk+1 from λk we need to obtain the residuals. First we assume

that we have fitted λ. Let rλk
= Y − Ŷλk

denote the residuals of the current fit. When the

KKT conditions are checked for the λk fit, the variable score si =|| XT
i rλk

||2 is computed.

Then the group-lasso is fitted on the candidate set and the procedure is repeated with the

new residual rλk+1
. This screen can be easily computed since it is based on inner products

between each predictor and the outcome, that guarantee a coefficient will be zero in the

solution vector (Tibshirani et al., 2012). The screen can integrate well with the strong rules

by reusing inner products computed from the fit for a previous λ. Thus a reduction in the

number of variables that need to be entered into the optimization.

3.6 Modeling Interactions in Property and Casualty

Insurance Data

The common method for detecting interactions used by actuaries is to plot the data in three

dimensions to visualize the relations in multiple regression and the existence of interactions.

The existence of variable interactions becomes evident when we can see a varying interaction

surface with respect to the response variable Y . This indicates that the effect of one inde-

pendent variable X1 on the response changes depending on the level of another variable X2,

for example in Figure 3.2. However, figures cannot tell you whether a pattern is significant
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Figure 3.2: Interaction Regression Surface

or not and when results of a statistical test are needed.

Traditionally, another frequent practice is the analysis of main effects of one factor at

the expected values of the other factors. However, this leads to mixing both main and

interaction effects. Another common method is backward elimination and factorial analysis.

This is called post hoc analysis of interaction in factorial experiments and it depends mainly

on ANOVA results and significance of covariates after a model is fit. For example in the

Emblem software this is done by checking the significance of each possible combination of

factors. The first problem is that this can be time consuming and second is that it could be

inaccurate for large numbers of variables. These shortcomings go back to the limitations of

linear models and their inability to capture interactions.
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Chapter 4

Actuarial Applications

4.1 Introduction

The high dimensionality of data poses significant challenges in building interpretable mod-

els. Therefore, regularization has been commonly employed to obtain more stable and in-

terpretable models. The model introduced learns pairwise interactions in Poisson regression

and gamma regression models, also satisfying the strong hierarchy property; for a nonzero

estimated interaction both its associated main effects are included in the model.

The model accommodates continuous and categorical variables with an arbitrary number

of levels. The lasso framework allows for constraints on the main effects and their corre-

sponding parameters. The resulting fit is parsimonious and interpretable while having the

ability to handle large numbers of variables and selecting from them. This is fitted using the

glinternet2 package in R, which stands for “group-lasso interaction network”. We extend

the glinternet package to include Poisson and gamma families to model the frequency and

severity of insurance claims, respectively. Including interactions remains a challenge for ac-

tuaries since most of the models used are in the linear framework. For any response variable

and given explanatory variables we expect to find interactions, specially if the model can

not be explained by additive functions of the variables (Hastie and Lim, 2015).

The model introduced is solved by dividing the solution path into two phases, first the
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screening phase, when a candidate set of main effects and interactions is found. The second

phase follows with variable selection and model fitting on the candidate set using group-lasso

for a grid of values for the λ regularization parameter. The model starts by fitting λ = λmax,

for which no variables are included, and then decreases the value of λ to allow variables

to enter the model. For the screening procedure, two methods are used. First one is the

boosting with depth-2 trees which enforces hierarchy when an interaction is selected. Here,

an interaction cannot be chosen until a split has been made on one of its two associated main

effects. The second method is an adaptive screening procedure that is based on strong rules

for discarding predictors in lasso-type problems. It has been also showed that group-lasso

enforces a strong hierarchy in the solution. For claims data specifically, we expect a number

of interactions since variables represent individual’s characteristics. The model proposed

introduces a family of methods that incorporate interactions automatically.

4.2 Regularized Claim Model

The purpose of using a regularized model for claim predictions is to perform variable selection

and interaction detection. Modern data is usually high-dimensional so conducting variable

selection on data sets with large number of covariates is too cumbersome and inconclusive.

The group-lasso proposes a solution to this problem. To model insurance data and fit

frequency-severity models the lasso is derived for Poisson and gamma families.

4.2.1 Regularized Poisson Model

For a response variable Y taking integer values, i.e. count data (claim frequency), we consider

a Poisson regression, where the conditional probability distribution Yi, given Xi = x ∼

Poisson(µ(x)). Poisson regression is used for count data under the assumption of Poisson

errors. The log link function, which turns out to be the canonical link, is used to model its
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positive mean in a log scale as follows,

log(µ(x)) =

p−1∑
j=0

βjxj = η. (4.1)

The negative log-likelihood and loss function for observations Xi and response Yi equals

−
n∑

i=1

L(Yi, Xi; β) =
n∑

i=1

−Yi(X
⊤
i β) + exp(X⊤

i β). (4.2)

The first term is linear and hence convex in β = (β0, . . . , βp−1). The second term is a

composition of a convex and a linear function and hence convex in β, and since the sum of

convex functions is convex, the loss function is convex in β. The lasso ℓ1 regularization for

Poisson GLM is given in equation (2.3) to optimize the penalized log-likelihood,

β̂ = argmin
β
L(Y,X, β) + λ ∥β∥1 (4.3)

where L(Y,X; β) is the negative log-likelihood. In general, when dealing with data in Poisson

models, the use of an offset is recommended. This is because, counts are often based on

different exposure times, such as the time an insurance policy is in effect. Even though

insurance companies usually sell policies with a term of one year, the actual in force time of

the policy can be less for various reasons. Therefore, the Poisson rate is relative to a unit

exposure time, so if an observation is exposed to a specific number or fraction of units of

time called “exposure” and given as ti for each observation, then the expected count would

be µ
t
, and the log mean would be explained by the GLM as:

log
(µ(x)

t

)
=

n∑
i=1

X⊤
i β. (4.4)

The offset is a vector of length equal to the number of observations n included in the linear

predictor:

log(µ(x))− log(t) =
n∑

i=1

X⊤
i β

log(µ(x)) = log(t) +
n∑

i=1

X⊤
i β.

(4.5)

The claim frequency is defined as the number of claims divided by the policy exposure time,

i.e. the average number of claims per unit time. In R, the code to adjust for offset in GLM

is given below.
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Listing 4.1: R code for Poisson GLM

glm(y ˜ o f f s e t ( l og ( exposure ) ) + x , fami ly=po i s son ( l i n k=log ) )

The same paradigm is used in the glinternet2 model to offset count data and account for

policy exposure time.

4.2.2 Regularized Gamma Model

For a response variable Y taking continuous values (claim severity), we consider a gamma

GLM. The claim severity is the total claim size divided by the number of claims to give

the average size per claim. To model the severity the gamma model is assumed where

the conditional probability distribution of Yi given Xi = x ∼ Gamma (α, ν). The log link

function is used even though it is not the canonical log link defined by the exponential

dispersion family. The reason for that is that we want to build a multiplicative model so a

log-link function is appropriate as follows,

log(µ(x)) =
n∑

i=1

X⊤
i β = η. (4.6)

For the gamma GLM the inverse link is the canonical link here but in the actuarial context

the log link is the most common choice. The probability density function of the gamma

distribution is given by,

f(y, x, α, ν) =
n∑

i=1

1

Γ(α)
x
(α−1)
i ναexi/ν , (4.7)

and the corresponding negative log-likelihood equals,

−
n∑

i=1

L(Yi, Xi; β) = −(α− 1)
n∑

i=1

logXi +
Xi

ν
+ α log ν + log Γ(α). (4.8)

The lasso ℓ1 regularization for a gamma GLM is given by,

β̂ = argmin
β
L(Y,X; β) + λ ∥β∥1. (4.9)

The parameters α and ν of the gamma can be determined by matching moments from the

data as α = mean(Y )2

var(Y )
and ν = var(Y )

mean(Y )
. The gamma model is then used to fit claim severities.
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4.2.3 Algorithm and Optimization

The algorithm used in glinternet2 to solve the group-lasso optimization problem is general,

not specifically written for learning interactions. However, we re-use it here due to the speed

of convergence. Let Y denote the vector of n of observed responses and X = [x1, x2, . . . , xp]

denote the generic feature matrix with p columns. The fast iterative soft thresholding

(FISTA) method (Beck and Teboulle, 2009) is an approach to solve the lasso estimation

problem. Since the group-lasso is a general version of the lasso, the FISTA can be adapted

for group-lasso with some small changes. The FISTA is basically a generalized gradient

method with a first order method of Nesterov style acceleration. The algorithm does not

change when going from squared loss to logistic loss and further it can be used for other

losses. The only condition is that the objective function is convex and differentiable. The

gradient computation and parameter updates can be parallelized and can take advantage

of adaptive momentum restarts which is often observed with accelerated gradient methods.

These demonstrate that adaptively restarting the momentum factor, based on gradient con-

dition, can speed up the convergence rate of FISTA. The logic behind is, that the momentum

should be reset to zero whenever the gradient at the current step and the momentum point

are in different directions.

The FISTA algorithm is presented, where at each iteration we take a step of size s in the

direction of the gradient to solve the majorization minimization scheme given as:

M(β) = L(Y,X; β0) + (β − β0)
⊤g(β0) +

1

2s
|| β − β0 ||22 λ

p−1∑
j=1

∥βi∥2 . (4.10)

Here, the g(β0) is the gradient (derivative) of the negative log-likelihood L(Y,X; β) evaluated

at β0. Optimally, the step size s is chosen to be large for the start and then backtracked

until the condition is satisfied. The step size should be carefully chosen since there is always

the transition between convergence and divergence. Too large a step size can cause the

algorithm to keep iterating infinitely i.e diverge, while reducing it too much can cause the

algorithm to take so much time or to never reach an optimal value. The common solution

to this problem is backtracking, which was introduced by (Becker and Grant, 2011) and is
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used in our application to adaptively initialize the step size as follows:

s =

β(k) − β(k−1)

2

∥gk − gk−1∥2
. (4.11)

This defines how the step size changes at each iteration from the initialized value of s

using backtracking. The Table 4.1 gives the algorithm for the optimization problem. The

Algorithm 1: FISTA with adaptive restart

input: Initial Parameter β(0), matrix of features X, responses Y , regularization parameter λ,

and step size s

output: β̂

Initialize x(0) = β(0) and ρ = 1.

for k = 0, 1, ..., do

g(k) = −XT (Y −Xβ(k));

x(k+1) = (1− sλ
||β(k)−sg(k)||2

)(β(k) − sg(k));

if (β(k) − x(k+1))T (x(k+1) − x(k)) > 0 then ρk = 1

ρk+1 = (1 +
√

1 + 4ρ2k)/2;

βk+1 = xk+1 + ρk−1
ρk+1

(x(k+1)−x(k)
);

end

Table 4.1: Algorithm Steps to Solve the Model Parameter Estimation Problem

solution is achieved by using the normal generalized gradient known as FISTA where the

soft-thresholding operator is given as:

[Sλ(X)]i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xi − λ if Xi > λ

0 if −λ ≥ Xi ≤ λ

Xi + λ if Xi < −λ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.12)

And the the model conducts K-fold cross validation by partitioning the training set into K

subsamples, where one subsample is used as a validation set for testing the model fitted by

the remaining K-1 subsamples. This process is repeated K times and each subsample is
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used only once for validation. The K results are averaged to produce the estimate of the

model parameters.

4.3 Simulation Study with Group-lasso Interaction Net-

work

A simulated study was conducted to test how well glinternet retrieves interactions. A data

set was simulated with 10 variables which consist of 7 continuous and 3 categorical variables

with different levels. The response was simulated with the 10 variables, 10 interactions and

some random noise. Then the model was fitted and using 10-fold cross validation the best

model was chosen to minimize the cross validation error. Here, is a subset of the model fit

giving the grid of 50 λ values and the corresponding number of variables and interactions

captured:

Fit Lambda ObjValue Categorical Continuous CatCat ContCont CatCont

1 3.07e-03 4.310 0 0 0 0 0

2 2.80e-03 4.300 0 3 0 0 0

3 2.54e-03 4.270 0 4 0 0 0

. .. .. .. .. ... .. ...

6 1.92e-03 4.080 0 5 0 1 0

. .. .. .. .. ... .. ...

48 3.71e-05 0.660 1 3 1 4 5

49 3.37e-05 0.646 1 3 1 4 5

50 3.07e-05 0.633 1 3 1 4 5

Table 4.2: Example of the Glinternet Output

Table shows the number and type of coefficient captured at each λ value

Running a 10-fold cross validation with errors, shown in Figure 4.1, reveals that the
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model with the lowest λ value with all 10 variables and 10 interactions is the optimal one.

This trend is only desirable here since the purpose of the simulation study is to check how

the model retrieves main effects and interactions. However, for real data a saturated model

with all the variables will be over-fitting. Specially, if the data set include large number of

covariates. Therefore, an opposite error trend will be observed for real data. Examples on

real data sets will be shown in the next sections.

Figure 4.1: Cross validation Error for Simulation Study

After checking the false discovery rate, it turned out that the model retrieved the same

interaction with which the response has been simulated and the false discovery rate is there-

fore 0. The model also gives the order at which each variable has been captured since it

starts with a penalty high enough to force all coefficients to zero. Looking more closely at

the coefficients, it is evident that each level of the categorical variables has a coefficient value

and each corresponding interaction effect has a coefficient. Here is a subset showing the

output of the model coefficients:

In Table 4.2, the output of the model is illustrated. The number of the categorical and

continuous variables included in each fit is given respectively in order of addition to the
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model as the value of the penalty decreases. Besides the main effects, the output shows the

number and type of interaction included at each penalty value. In Tables 4.8 and 4.9, in the

Appendix, the coefficients of the main effects and interaction effects are illustrated for the

fit with the lowest penalty.

The same study was repeated for the glinternet2 for a gamma distribution. The algo-

Figure 4.2: Discovery Rate in Glinternet2

rithm also retrieved the 10 main effects and the 10 interactions that were injected to simulate

the response. Figure 4.2 shows how many interactions are found and how many of these were

the ones that the model was simulated with. Notice, the dots indicate how many additional

interactions were found.

4.4 Example 1: Singapore Automobile Insurance

In this example the Singapore Automobile Insurance data set is examined using different

techniques to compare results. The data is obtained from General Insurance Association

of Singapore and is available through the University of Wisconsin. It can be found at the

following website (http://instruction.bus.wisc.edu/jfrees/

jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html). The goal, is to under-

stand how driver characteristics affect the Singapore accident experience with an emphasis on

variables’ interactions. It is important for pricing actuaries to understand these relationships
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so that they can charge the right price for the risk they cover.

4.4.1 Data Description

The Singapore Automobile Insurance data set consists of 5 main features. In addition to

these, other variables are created as combination of these main variables to get more signal

from selected groups. The first variable is the “Vehicle Type” which indicates whether the

vehicle insured is either automobile (A) or other (O). The second variable “Vehicle Age” is

an integer and gives the age of the vehicle in years. The third variable is binary indicating

the “Gender” of the insured driver, 1 for female and 0 for male. Forth, is the variable “Age”

which gives the age of the principle driver of the vehicle in years. Finally, the variable,

“NCD” stands for the no claim discount. This variable is treated as a categorical variable

and it is based on the previous accident records of the policyholder. A higher discount

indicates that the prior accident record was good, given in 6 levels at intervals of 10, from

0, . . . , 50.

The data contains other variables so that in total it consists of 14 variables. They were not

Observation SexInsured VehicleType ClmCount ExpWeights NCD DrivAge VehAge

1 0 O 0 0.6680356 30 18 0

2 0 O 0 0.5667351 30 18 0

3 0 O 0 0.5037645 30 18 0

4 0 O 0 0.9144422 20 18 0

Table 4.3: Example of the first four observations of Singapore the data set:

shown since they are created to indicate specific groups of policy holders.

4.4.2 Modeling Data

The model is fitted using the glinternet2 function in R, which is an extension of the

glinternet function that includes Poisson and gamma families to model claim frequency
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and severity. We added these in order to be able to apply the model to insurance claims.

The features of the glinternet are desirable because of its ability to do variable selection and

automatic detection of interactions and then fit a generalized linear model.

To perform a statistical analysis and model evaluation, the data is split into training and

testing set. The training set is used to fit the model and then the test set is used for model

validation. Since the Singapore Automobile Insurance data set only includes claim counts, a

frequency model but no severity, will be fitted using a Poisson distribution. The same data

set will be also fitted on a Poisson GLM and GBM with Poisson losses for comparison.

4.4.3 Fitted Models and Empirical Results

The model is chosen optimally based on minimum cross validation error. A 10-fold cross

validation is run on 20 different λ values. The glinternet2 model performs cross validation

internally to carry out model selection based on the best number of main effects and in-

teractions that decrease cross validation error. A gradient boosted model using the GBM

package in R was used to fit a frequency model with a Poisson loss function in addition to

a standard and a lasso GLM.

Results of the Singapore Automobile Insurance data set using a Poisson GLM are given in

Table 4.4 illustrating all the coefficient values. Then a lasso GLM was used for the frequency

model with a penalty grid of λ = 0.00005, 0.0001, 0.001, 0.005, 0.01, to find the optimal value

and corresponding subset we run a cross validation to select the best variable subset. The

model has optimally chosen the 5 main variables to be the best model subset out of 14

variables. Figure 4.3 gives a plot of the cross validation error grid, showing how the Poisson

deviance changes with the number of variables included. It is evident that errors increase

substantially when the number of variables decreases, but they remain constant for 5 to 13

variables. This basically means, that adding only 5 variables in the model gives the same

signal as 13. There is sometimes a trade-off between adding variables and minimizing error.

Ideally, we want to minimize the out-of-sample error and decrease the number of covariates

in the model without loss of predictability. The two gains curves in Figures 4.4 and 4.5 show
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Variable Name Estimate Std. Error z-Value P-Value

(Intercept) -1.598e+00 6.224e-01 -2.567 0.0103 *

VehAge 1.555e-02 4.250e-02 0.366 0.7145

DriAge 4.588e-04 1.796e-02 0.026 0.9796

SexM 6.018e-02 1.630e-01 0.369 0.7121

SexU 1.145e+01 4.756e+02 0.024 0.9808

VehG -1.189e+01 4.756e+02 -0.025 0.9801

VehM -1.335e+01 4.756e+02 -0.028 0.9776

VehP -1.103e+01 4.756e+02 -0.023 0.9815

VehQ -1.137e+01 4.756e+02 -0.024 0.9809

VehS -1.166e+01 4.756e+02 -0.025 0.9804

VehT -2.344e+01 6.103e+02 -0.038 0.9694

VehW -1.198e+01 4.756e+02 -0.025 0.9799

VehZ -1.157e+01 4.756e+02 -0.024 0.9806

NCD -1.674e-02 2.943e-03 -5.688 1.29e-08 ***

Table 4.4: Coefficients of the Poisson GLM Fit for 5 Variables

that both models are equally predictable. Clearly, the model selected the right variables to

capture the same signal with less variables.

Fitting the frequency with a group-lasso interaction network reveals that adding inter-

actions can improve model predictability, keeping a low number of variables in the model.

The model is fitted with a grid of 20 λ values. As the value of λ decreases more variables are

captured and consequently more interactions. A sample of the model output given in Table

4.5 shows the number and type of interactions captured at each λ value. In Tables 4.10 and

4.11, the main effect and interaction coefficients for the fit are shown. By looking closer into

the coefficients, it is clear that the model satisfies strong hierarchy and if an interaction is

present in the model, both of the main effects are present as well. The algorithm has retrieved

a maximum of 9 interactions with the order of inclusion given in Table 4.6. As the penalty
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Figure 4.3: Cross Validation Error Plot for lasso Penalty Grid

Bottom: Penalty value; Top: Number of variables included; Left: Poisson Deviance

decreases, more interactions are included in the model. The most common interaction to

test in auto insurance modeling is Gender × Driver Age and therefore it makes sense that

it was the second one to be captured by the algorithm. The variable “No Claim Discount”

indirectly indicates whether there has been a claim in the past or not. It is expected in a

frequency model that the first interaction captured to be NCD × Driver Age. Table 4.10 in

the Appendix gives the coefficients of the set with the lowest λ value and largest interaction

set.

Using the Glinternet2 fit with 5 main effects and 9 interactions to predict out-of-sample

predictions, it shows clearly in Figure 4.6 that predictions have improved compared to the

previous models, the GLMs with 5 rather than 14 variables and the gradient boosting model.

The improvement in predictability is due to the addition of interactions and the selection of

the most significant main effects.

Running a gradient boosting model with 3000 tree splits and interactions depth 3 shows
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Figure 4.4: Gains of a lasso GLM with 5 Variables

Figure 4.5: Gains of a GLM with 14 Variables
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Fit lambda ObjValue Categorical Continous CatCat ContCont CatCont

1 4.68e-04 -Inf 0 0 0 0 0

2 4.15e-04 3.84e+13 0 1 0 0 0

3 3.68e-04 3.84e+13 0 1 0 0 0

4 3.26e-04 3.84e+13 0 1 0 0 1

5 2.89e-04 3.84e+13 0 1 0 0 2

6 2.56e-04 3.84e+13 0 1 0 1 2

7 2.26e-04 3.84e+13 0 1 0 1 3

.. ..... ...... ...... ...... ..... ..... ....

14 9.69e-05 3.84e+13 0 1 1 1 3

15 8.59e-05 3.84e+13 1 1 2 1 3

16 7.61e-05 3.84e+13 1 1 2 1 3

17 6.74e-05 3.84e+13 1 1 2 1 4

18 5.97e-05 3.84e+13 2 1 3 1 4

19 5.29e-05 3.84e+13 2 1 3 1 4

20 4.68e-05 3.84e+13 2 1 3 1 5

Table 4.5: Glinternet2 Poisson Fit for 5 Variables and Selected Interaction

that the most significant variable is Vehicle Type with relative influence of 24.83%, followed

by the 4 other main variables. The 14 variables have a non-zero influence. Looking at the

gains curve Figure 4.7 for GBM, it is evident that only 4 prediction groups are recognizable.

This means, that the model only predicts observations to fall in 4 distinct groups and can-

not differentiate further between observations. The model fails to segment further between

observations. Generally, tree based model can fail to capture linear relationships. These

limitations are compensated for by training a tree based model with tuned parameters such

as more tree splits and more interaction depths. For this example, this is not applicable since

the data contains only a few thousand observations. It is more appropriate for bigger data

sets, where the algorithm can learn by training over millions of observations. Eventually,
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Glinternet2: Interactions Detected

1. No Claim Discount × Driver Age

2. Gender × Driver Age

3. Driver Age × Vehicle Age

4. Vehicle Type × Driver Age

5. Gender × Vehicle Type

6. Vehicle Type × No Claim Discount

7. Vehicle Type × Vehicle Age

8. Gender × No Claim Discount

9. Gender × Vehicle Age

Table 4.6: Order of Interactions Included in the Model

the same signal can possibly be captured but at a higher computational cost. Therefore, the

linearity characteristic is not always undesirable when trying to capture linear signals.

4.4.4 Model Comparison

To compare the fitted models, a summary is presented in Table 4.7 with all the models fitted,

the R packages used and the parameters estimated for each model.

Results of the fitted models for out-of-sample predictions reveal that the model with fewer

variables (lasso vs. GLM) can capture the same signal and generalizes better. Lasso reg-

ularized GLMs are capable of performing variable selection to capture the same signal and

reduce the number of variables included in the model. This is useful because it chooses

the variables that can predict the data well without overfitting. However, these results also

show that global models do not capture nonlinearities and interactions among variables. This

indicates that results obtained from the group-lasso interaction network model are more con-

clusive given their ability to capture linear and non-linear effects while performing variable

selection.
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Figure 4.6: Gains for Group-Lasso Interaction Network

Comparing models with the Mean Square Error (MSE) is not the optimal, but it is hard

to find a common metric for model comparison. An example is given in Figure 4.8 with the

MSE for train and test errors, showing a lasso GLM with different λ values for the fitted

models. Clearly, a higher penalty value, which would lead to lower number of covariates in

the model, returns lower error rates. This shows again that variable selection is essential

for building models that can generalize well on out-of-sample predictions. It is to be noted,

that the train error decreases as the penalty increase which is mainly because the objective

function to be minimized on likelihood and not least square errors. Generally, low training

error could indicate that the model overfits and would then poorly generalizes out of sample

results.
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Figure 4.7: Gains for Gradient Boosting Model

4.5 Example 2: Ontario Collision Data

The model was applied to a subset of the Ontario collision coverage data from a large

Canadian insurer. The fitted subset is composed of ten categorical and continuous variables

combined. Glinternet2 returns results for a grid of 50 λ values and the corresponding error.

Cross Validation error results from the frequency model, accounting for policy exposure,

are shown in Figure 4.9. It is evident, that the cross validation error increases as the λ

value decreases and more variables are captured by the model. Recall that a λ equal to zero

returns an unpenalized model. We conclude that the cross validation error rate is lower when

imposing a penalty, which goes back to the fact that a regularized model with fewer variables

does not over-fit and thus predicts better than a model fitted with all available variables.

The vertical dotted line shows optimal the λ value that minimizes the cross validation error.

We proceed by presenting the Lift chart for model assessment in Figure 4.10 which shows
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Models Fitted and Comparison

Method R Package Parameters

Generalized Linear Model glm Regression coefficients

lasso glmnet Regression coefficients, selection of optimal λ

via CV

Group-Lasso glinternet2 Regression coefficients, selection of optimal λ

via CV for main and interaction effects

GBM gbm Number of trees, interaction depth set to 2

or 3 , learning rate lr = 0.01

Table 4.7: Summary of the Models

the trend of the predictions vs the trend of the actual data. The predictions are ordered in

descending order and the trend is shown by grouping the data into ten buckets of equal size

and comparing the predicted means of each group vs the observed mean. This helps identify

groups that are over- or under-estimated by looking at the vertical distance between the

predicted mean and the observed mean. Figure 4.10 shows the predictions obtained from

the model with the optimal λ value. The trend observed is that model predictions over-

estimate a specific risk segment, it matches the mean response values for another segment

and under-estimates for other risk segments. Could that be an indication that we should

increase premiums for “bad risks” and decrease premium for “good risks”?

The same model is fitted again on a different dataset. Both datasets are for the same

coverage however for different geographical regions in Canada. From Figure 4.11, it is evident

that the predictions give the same trend as the mean response values. However, the predicted

values are slightly inflated over the real mean response values. The model does overestimate.

Nevertheless, the observed means curve is decreasing and the predicted means curve is not

far from it.

Glinternet2 was also used here to predict claim severities. In general, to build a severity

model it was first fitted only on observations that had recorded at least one claim in the past.
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Figure 4.8: MSE For Test Train lasso with Different Penalty Values

This model is then used predict claim severities of all observations. In practice, this model

is then used in combination with the frequency model to get the aggregate loss cost or also

called pure premium. Similar to the Poisson model, the gamma model has an increasing cross

validation error trend, except for the first few penalty values shown in Figure 4.12. Cross

validation error sharply decreases, but then it increases again as the penalty decreases, at

a flatter rate compared to the frequency model. For this example, it is not as clear that a

penalty improves the model accuracy. However, a difference in error rates is still recognizable

through the λ grid, showing that as the penalty decreases, the cross validation error increases.

This indicates that a model with a higher penalty does not over-fit and can generalize better

for out-of-sample predictions.

For severity predictions, the Lift chart in Figure 4.13 shows the same decreasing trend as

that of the severity mean response. However, the mean predicted responses show an over-

estimation of the mean response at all levels of risk. It is noticeable that the model does not

differentiate much between predictions in different risk classes, which can be due to: (1) the

model was fitted to a much smaller dataset (only policies that did file a claim) and (2) due
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Figure 4.9: Cross validation Error for Frequency Model Fit

to limitations of the algorithm in terms of memory. The overall trend is the same as that of

the observed data.

It is sometimes tricky to find a common metric to compare models. Therefore, we used

few different metrics to validate our results and conclusions. Comparisons between a GLM,

GLMNET and Glinernet2 for a claim frequency model are conducted, since the package

“glmnet” does not include a gamma distribution. And adding that family to “glmnet” was

not the focus of the work. All results are presented for the train and test sets to validate

the model out of sample performance. We use the mean square error (MSE) as a common

metric, shown in Figure 4.14 for all models. We can conclude that glinternet2 improves both
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Figure 4.10: Lift Chart for Glinternet2 Frequency Predictions 1

the train and test sets errors. A lasso GLM with the GLMNET package was fitted to the

same data set with a penalty of 0.001. Results in Figure 4.15 show that the observed mean

and predicted mean are almost superimposed. However, these are in-sample predictions.
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Figure 4.11: Lift Chart for Glinternet2 Frequency Predictions 2
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Figure 4.12: Cross Validation Error for the Severity Model Fit
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Figure 4.13: Lift Chart for Glinternet2 Severity Predictions

Figure 4.14: Mean Square Error for GLM, GLMNET, Glinternet
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Figure 4.15: Lift Chart for GLMNET with Penalty 0.0001 for Frequency Predictions
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Conclusions

Dealing with high dimensional data is a challenge in terms of computational power and

fitting methods. Using regularization methods for high-dimensional data analysis is necessary

to avoid overfitting and helps in variable selection without losing in model predictability.

Nonetheless, linear models are not always sufficiently discerning. So adding interaction

effects in the model is important to improve model predictability.

Detecting interactions is a tricky problem when the number of variables is large and it is

important to have an automatic way to carry this out. The group-lasso interaction network

supposes a framework that combines the detection of non-linear effects and the advantages

of linear models. The code developed is still slow and runs out of memory quickly, due to

the high number of iterations that the model conducts to find the candidate set and fit the

model. Improving the code for fitting this model is a suggestion for further work.

Methods based on a machine learning techniques can add value to the limitations of lin-

ear models. Results obtained from models that combine linear and non-linear models effects

return better predictions for insurance data, compared to standard linear approaches. Comb-

ing linear and non-linear modeling techniques composes a good representation of frequency-

severity claims data. Generally, multivariate analytical techniques focus on individual level

data, so that estimates of risks are more granular. The greater discrimination (larger num-

ber of risk groups) between individual risks the more accurate the pricing. This incremental

level of accuracy in predicting losses enables insurers to price policies more accurately than

competitors, hence improving portfolio profitability and providing a substantial long term

competitive advantage.
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In my future actuarial work and research endeavor I want to continue improving existing

models through analytical and machine learning techniques. These show promising results to

solve current issues in actuarial modeling such as finding interactions, modeling dependencies,

variability, over-fitting and predictive power.
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Appendix

Model Output from Chapter 4

Variable Level Coefficient

mainEffectsCoefcat[[1]] 1 -0.1968526

mainEffectsCoefcat[[1]] 2 0.1968526

mainEffectsCoefcat[[2]] 1 -0.978796651

mainEffectsCoefcat[[2]] 2 0.006785007

mainEffectsCoefcat[[2]] 3 0.971441586

mainEffectsCoefcat[[3]] 1 -0.151647083

mainEffectsCoefcat[[3]] 2 -0.001517815

mainEffectsCoefcat[[3]] 3 0.159276457

mainEffectsCoefcont[[1]] .. 0.9448233

mainEffectsCoefcont[[2]] .. 0.8008501

mainEffectsCoefcont[[3]] .. 0.9566645

mainEffectsCoefcont[[4]] .. 0.9457888

mainEffectsCoefcont[[5]] .. 0.762109

mainEffectsCoefcont[[6]] .. 0.2521866

mainEffectsCoefcont[[7]] .. 0.4854388

Table 4.8: Glinternet 10 Main Effect Coefficients of Simulation Study

79



Variable Level Coefficient

interactionsCoefcatcat[[1]] cat2-0-cat3-0 0.058579801

interactionsCoefcatcat[[1]] cat2-1-cat3-0 -0.001547802

interactionsCoefcatcat[[1]] cat2-2-cat3-0 -0.057031999

interactionsCoefcatcat[[1]] cat2-0-cat3-1 -0.058579801

interactionsCoefcatcat[[1]] cat2-1-cat3-1 0.001547802

interactionsCoefcatcat[[1]] cat2-2-cat3-1 0.057031999

interactionsCoefcontcont[[1]] .. 0.5216175

interactionsCoefcontcont[[2]] .. 0.6071549

interactionsCoefcontcont[[3]] .. 0.6140319

interactionsCoefcontcont[[4]] .. 0.1526564

interactionsCoefcatcont[[1]] 1 -0.0722799571

interactionsCoefcatcont[[1]] 2 0.0003683313

interactionsCoefcatcont[[1]] 3 0.0719116257

interactionsCoefcatcont[[2]] 1 -0.732349782

interactionsCoefcatcont[[2]] 2 0.001258306

interactionsCoefcatcont[[2]] 3 0.731091476

interactionsCoefcatcont[[3]] 1 -8.522093e-01

interactionsCoefcatcont[[3]] 2 -1.873492e-05

interactionsCoefcatcont[[3]] 3 8.522280e-01

interactionsCoefcatcont[[4]] 1 -0.691077684

interactionsCoefcatcont[[4]] 2 -0.001458876

interactionsCoefcatcont[[4]] 3 0.692536560

interactionsCoefcatcont[[5]] 1 -0.49415496

interactionsCoefcatcont[[5]] 2 -0.00626617

interactionsCoefcatcont[[5]] 3 0.50042113

Table 4.9: Glinternet 10 Interaction Coefficients of Simulation Study
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Variable Level Coefficient

mainEffectsCoefcat[[1]] 1 -1.222511e-04

mainEffectsCoefcat[[1]] 2 -2.069183e-05

mainEffectsCoefcat[[2]] 1 -5.633661e-05

mainEffectsCoefcat[[2]] 2 -6.238605e-05

mainEffectsCoefcat[[3]] 1 -0.000148417

mainEffectsCoefcat[[3]] 2 0.000000000

mainEffectsCoefcont[[1]] .. 1.880254e-05

mainEffectsCoefcont[[2]] .. -1.872523e-06

Table 4.10: Glinternet2 5 Main Effect Coefficients for Singapore Insurance Data
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Variable Level Coefficient

interactionsCoefcatcat[[1]] cat1-0-cat2-0 2.060756e-05

interactionsCoefcatcat[[1]] cat1-1-cat2-0 -2.060756e-05

interactionsCoefcatcat[[1]] cat1-0-cat2-1 -2.060756e-05

interactionsCoefcatcat[[1]] cat1-1-cat2-1 2.060756e-05

interactionsCoefcatcat[[2]] cat1-0-cat3-0 3.325506e-07

interactionsCoefcatcat[[2]] cat1-1-cat3-0 -3.325506e-07

interactionsCoefcatcat[[2]] cat1-0-cat3-1 -3.325506e-07

interactionsCoefcatcat[[2]] cat1-1-cat3-1 3.325506e-07

interactionsCoefcatcat[[3]] cat2-0-cat3-0 1.503586e-06

interactionsCoefcatcat[[3]] cat2-1-cat3-0 -1.503586e-06

interactionsCoefcatcat[[3]] cat2-0-cat3-1 -1.503586e-06

interactionsCoefcatcat[[3]] cat2-1-cat3-1 1.503586e-06

interactionsCoefcontcont[[1]] .. 8.038371e-08

interactionsCoefcatcont[[1]] 1 1.813307e-06

interactionsCoefcatcont[[1]] 2 -1.813307e-06

interactionsCoefcatcont[[2]] 1 4.816211e-07

interactionsCoefcatcont[[2]] 2 -4.816211e-07

interactionsCoefcatcont[[3]] 1 2.141412e-06

interactionsCoefcatcont[[3]] 2 -2.141412e-06

interactionsCoefcatcont[[4]] 1 -3.948223e-11

interactionsCoefcatcont[[4]] 2 3.948223e-11

interactionsCoefcatcont[[5]] 1 -1.34592e-07

interactionsCoefcatcont[[5]] 2 1.34592e-07

Table 4.11: Glinternet2 9 Interaction Coefficients for Singapore Insurance Data
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