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ABSTRACT 

Fast Simulation of Programmable Network Forwarding Plane Devices  

Shafigh Parsazad 

 

With the evolution of the Internet, the processing of packets at the routers while providing 

flexibility in deploying new protocols and services at the same time has become a major concern. 

Programmable forwarding elements with high processing capability have emerged as a solution. 

But the main challenge is to find the optimal hardware architecture while taking into account 

constraints such as different packet processing functions, task scheduling options, electrical 

power consumption and providing quality-of-service (QoS) guarantees. Therefore, it is essential 

to investigate methods that help in identifying limitations and bottlenecks before physical 

fabrication. Having an appropriate model provides designers a progressive path to narrow the 

design space and establish credible and feasible alternatives before deciding on an 

implementation. 

In this thesis, we propose a flexible and fast instruction accurate host-compiled simulator to 

make it possible to explore wide ranges of architectures and application scenarios to find the 

optimal configuration that meets given performance, throughput and latency for programmable 

forwarding elements.  Application developers can use the simulator as a virtual prototype to 

simulate and debug their applications before hardware availability. Moreover, forwarding device 

architects can use simulator to evaluate the trade-offs between different hardware/software 

design decisions.   
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 Chapter 1: Introduction 

1.1. Motivation 

 In today’s network, data rates are increasing, protocols are becoming more dynamic and 

sophisticated and traffic for video and data applications is expected to grow exponentially. This 

is mainly driven by the popularity of video sharing and streaming applications (e.g. Netflix and 

YouTube) and smart mobile devices, tablets will certainly make this a reality. The switches, 

routers, and other devices within these networks have become exceedingly complex because they 

implement an ever-increasing number of standardized distributed protocols and proprietary 

interfaces. These challenges cannot be properly addressed with the rigid solutions provided by 

today's networking equipment. Networks need the ability to respond to changes, faults and scale 

performance to handle large volumes of client requests without creating unwanted delay. 

 To capitalize on this condition, telecom operators need to have more flexible, scalable 

and energy efficient processors, specifically designed for packet processing. One of the primary 
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challenges in the design of network components, such as network processing units is to 

determine the best hardware architecture to support diverse applications. We need to quickly 

adapt to new conditions and prevent network from becoming congested. Designing such 

architectures is partly complicated by the fact that they involve complex trade-offs between 

flexibility and efficiency for today’s evolving network elements, flexibility to adapt to new 

functional requirements and ability to provide scalable performance in response to increasing 

line rates[1].  

 The idea of programmable networks has recently re-gained considerable movement due 

to the emergence of the Software-Defined Networking (SDN) paradigm. SDN, Through 

promoting (logical) centralization of network control and network programmability, promises to 

dramatically simplify network management and enable innovation[2]. But, there are many 

questions to be answered. What are the various cases that need to be supported? What type of 

programmatic interfaces should be presented? In order to answer these questions, new services, 

applications and protocols should first be developed and tested on an emulation of the anticipated 

deployment environment before moving to the actual hardware. To evaluate design options and 

guarantee correct early design decisions, modelling techniques require the capability to evaluate 

different architectures effectively and still accurate enough in early design phases. 

 The design space for forwarding elements (e.g., number of processors, interconnections, 

scheduling options, etc.) can be very large due to the diverse workload, application requirements, 

and system characteristics. Therefore, it is essential to investigate methods that help in 

identifying limitations and bottlenecks in network processor implementation before physical 

fabrication. Having an appropriate model provides designers a progressive path to narrow the 
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design space and establish credible and feasible alternatives before deciding on an 

implementation. 

 In this thesis, we propose a flexible accurate host-compiled simulator (the term host is 

used for system that runs the simulator and the term target for the system being simulated) to 

make it possible to explore wide ranges of architectures and application scenarios to find the 

optimal configuration that meets given performance, throughput and latency for programmable 

forwarding elements.  It relies on the back-annotating the host compile simulator from timing 

characteristics obtained an instruction set simulators (ISSs), Open Virtual Platform. 

 The aim of this work is to provide designers with the possibility of faster and efficient 

architecture exploration at a higher level of abstractions, starting from an algorithmic description 

to implementation details. 

1.2. Related Work 

Simulators have been used by many computer architect researches to validate new proposals, as 

designing new hardware requires significant investments in both time and money. Many 

simulators have been developed to solve different research challenges and they vary in the details 

they model. In this section, we introduce different kinds of architectural simulators for different 

types of evaluation. 

1.2.1. Cycle Accurate Simulation 

Models of different level of details for various purposes are proposed to construct a proper 

system platform for accuracy and performance trade-off. To eliminate pins and wire details, and 

to improve simulation speed while not losing cycle timing accuracy, cycle-accurate (CA) models 

are proposed. Cycle accurate models are used for synthesis and are fairly close in structure to 
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RTL level models[3] . Due to the excessive level of details and enormous number of simulated 

states that is captured at this modeling abstraction, the simulation speed is quite slow, but still 

anywhere between 10 and 100 times faster than RLT simulation, depending on the complexity of 

the design[4]. Besides, enormous time that it takes to create these models, which is also 

comparable to the time takes for writing details RTL code, makes using these models quite 

problematic, both in their modeling time and slow simulation speed to be useful for high level 

architectural exploration of SoC design today. Regardless of these drawbacks there have been a 

few approaches that have used cycle accurate models for network processors. 

 For the x86 platform, numerous functional simulators have been developed. Bochs[5] is a 

well-known open source x86 simulator, with support for nearly all x86 features. However, Bochs 

is very slow and is not useful for implementing cycle accurate models of modern out of order 

x86 processors (i.e. it does not model caches, branch prediction, etc.). PTLSim[6] is a cycle 

accurate full system x86 athlon microarchitectural simulator. PTLsim models a modern 

superscalar out of order x86-64 processor core and unlike Boche models execution at a level 

below the granularity of x86 instructions. 

 Intel’s performance model framework: Asim[7] and AMD’s simulator[8] are fastest true 

cycle-accurate x86 simulators, which run at 1KHz to 10KHz, requires up to ten years to simulate 

a 3GHz target for 2 minutes[9]. At such speeds, it is still impractical to use real program runs to 

explore, evaluate and refine microarchitectures, considering simulators are getting slower as the 

number of target cores and their complexity increase. MCSimA+[10], introduced a simulator of 

complex x86 cores, which takes advantage of full-system simulators such as gem5 [11] (full-

system mode), Simflex[12] and application-level simulators: SimpleScalar[13] and Graphite[14].  
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 While these simulators are useful to model general purpose processors simulators at cycle 

level, but they are not capable of reflecting the detailed architecture of packet forwarding 

elements such as network processor units or programmable pipelines.  

 NePSim[15] is a cycle-accurate simulator of the Intel IXP1200 network processor. The 

simulator is for performance and power consumption evaluation of network processors. 

Although NePSim achieves satisfactory accuracy but it is not configurable and only matches a 

specific Intel network processor: IXP1200, which makes it unsuitable to adapt to new 

specification changes. 

1.2.2. Functional Simulation 

When looking at more realistic SoC implementations of today, the architectural assumptions of 

the early works have changed. First, a system may contain not only one, but several CPUs of 

different types such as reduced instruction set computer (RISC) cores, digital signal processors 

(DSPs), application specific instruction set processors (ASIPs), or very long instruction word 

(VLIW) processors. As architectures and systems become more complex, conducting a single, 

cycle-accurate simulation experiment can take from days to weeks[16].  

 In general, cycle accurate simulators are several orders of magnitude slower that the 

systems they simulate[17]. on a 2.4GHz Xeon workstation SimpleScalar out-of-order timing 

simulator can simulate a set of SPEC CPU2000 benchmarks [18] at a speed of about 300K 

instructions per second. This speed difference leads to two problems: First, slow simulation rate 

forces simulators to be usually limited to the first few billion instructions, which reflects only 

less than 10% the execution time of many standard benchmarks. Since such simulation studies 

only cover a small part of the applications, they face the risk of reporting unrepresentative 
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behavior. Second, excessive level of details in cycle accurate simulators prevents them to be 

suitable for hardware/software co-design studies where rapid turn-around is necessary. 

Hardware/software codesign, sometimes also named software/hardware codesign or just 

codesign equivalently, started to be considered as “the process of concurrent and coordinated 

design of an electronic system comprising hardware as well as software components based on a 

system description that is implementation independent by the aid of design automation”[19]. 

 To reduce the time per experiment, as stated earlier, architects may choose to reduce 

workloads[20], or to run detailed simulation only on pieces of an application. Performing 

detailed, cycle-accurate simulation on only selected parts of the system dramatically reduces the 

time to conduct a simulation experiment. Unfortunately, functionally simulating program 

behavior up to the portion(s) of interest which to begin cycle-accurate modeling can still take a 

considerable amount of time. In fact, according to [21], execution times of such hybrid 

simulations are in many cases still dominated by the functional simulation time , which can be 

significant for SPEC 2000 codes.  

 To cope with today’s increasing complexity of SoC systems and support design space 

exploration, it is natural to expect that simulation techniques should evolve to operate at higher 

levels of abstraction, where they could exploit inherent advantages such as an increase in 

simulation efficiency. However at higher levels of abstraction, it is possible to lose details. 

 One problem network researchers often face is how to test new network topologies and 

protocols in a quick, inexpensive, and realistic manner. As many researchers can attest, building 

test beds costs valuable time and money, with the added issue that test beds are limited in size 

and thereby do not represent realistic networks[22]. Mininet[23] was developed to solve these 

issues. Mininet is a network emulator which leverages Linux features such as virtual Ethernet 
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pairs and separate network namespaces to emulate many-host networks. Mininet is a network 

emulator that allows the user to easily create, customize, share and test SDN networks, yet it 

does not scale to large networks[24]. Fs-SDN is another tool for prototyping and evaluating new 

SDN-based applications. Although both Mininet and Fs-SDN aim to scale to network topologies 

comparable to the size of a modern data center, but they do not model the forwarding plane 

architecture and are therefore unsuitable for making architectural design decisions. 

1.3. Methodology 

A forwarding element processor is a highly integrated complex system which can have more 

than 100 cores, and if we instantiate detailed model for each core, we'll have huge slowdown in 

our simulation. The goal of our work is to figure out how to model these cores as accurately as 

possible and how to make sure we do not sacrifice simulation speed. While simulators at high-

level of abstraction may not be appropriate for conducting micro architectural research on 

forwarding element processors, low-level detailed system simulators usually are relatively slow. 

In general, the more detailed architecture the simulator can handle, the slower the simulator 

simulation speed. A model is then defined by the amount of implementation detail, i.e. by the 

amount of target-specific computation and communication layers explicitly included. Any 

implementation layers below a certain interface are abstracted away and replaced by an abstract 

model of the underlying target functionality and timing.  

 Our Transaction Level Modeling (TLM) approach[25] is different from the above 

mention methods in that, it takes advantage of a high level abstraction simulator where details of 

communication among modules are disengaged from the details of the implementation of the 

functional units. In other words, by focusing more on the functionality of the data transfers and 
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less on their actual implementation, system-level designers can effectively evaluate different 

architecture alternatives. 

 By using the transaction-level modeling abstraction in SystemC, a system can be 

specified at various levels of abstraction. Whenever increased level of abstraction is beneficial, 

such as high speed co-simulation of hardware and embedded software, models of different parts 

of the system can co-exist during system simulation at different levels of abstraction. Through 

the suppression of “uninteresting” details, TLM enables higher simulation speed than cycle-

accurate modeling. The software part of a system can be naturally described in C or C++. 

Interfaces between software and hardware and between hardware blocks can be easily described 

either at the transaction-accurate level or at the cycle accurate level. Typically transaction-level 

models are used for functional modeling (both timed and untimed), platform modeling and for 

constructing testbenches[26]. 

1.4. Main Challenges and Contributions 

The main contributions of this thesis are presented as follows: 

1.4.1. SystemC Model Semantics 

In the past, the hardware design world standardized on two languages: VHDL and Verilog, but 

as SoCs have grown more complex, with multi-million gate designs, and the increasing pressure 

to get designs out faster with first-time design success, rising productivity is vital to design 

modern electronic systems. Without productivity advances, many new system concepts will be 

impractical. To help manage this, engineering teams are experiencing great efficiency by starting 

their tasks with a high-level C++ model to verify functionality[27]. SystemC is a C++ class 

library which provides an event-driven simulation kernel in C++, mimicking hardware 
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description languages VHDL and Verilog.  While such languages are often used for Register 

Transfer Level descriptions, SystemC is generally applied to system-level modelling, application 

development and evaluating architectural tradeoffs, while the system is still in its design phase.  

 In this thesis we take the best of both high-level and cycle-accurate simulation and 

propose a new approach based on Transaction Level Modeling with SystemC. The goal is to 

provide the speed and ease of development of a high-level simulator, while being able to reflect 

the forwarding plane architecture by using different levels of abstraction for the accuracy. By 

leveraging C++, SystemC efficiently supports object-oriented capabilities, such as templates, 

classes, polymorphism, and operator overloading, can be used to manage design complexity in 

hardware in the same way as in software. For example, when reading a memory at high level of 

abstraction, source code can be as simple as follows: 

   1: int address; 

   2: int value; 

   3: int memory[1024]; 

   4: … 

   5: value = memory[address]; 

Listing 1. High level of abstraction in SystemC 

 By abstracting the hardware access to a memory, using an array access notation as shown 

above, or hardware services, SystemC offers engineers to concentrate on the actual functionality 

of the system more than on its implementation details. The details are abstracted, making the 

code compact and readable. Those details are instead implemented in a C++ class that uses 

SystemC to set the chip enable and read/write signals and to drive the address signals, etc. 

A. Functional Validation 

Simulators are primarily used as a vehicle for demonstrating or comparing the utility of new 

architectural features, compilation techniques, design space exploration and early-stage 
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feasibility, rather than performance validation of an actual chip design. As a result, rather than 

implementation details, or comparing with actual chip absolute metrics like timing, it is more 

important to validate functionality of the system under design that is indifferent to vendor-

specific physical devices and be able to compare different designs metrics with each other to find 

the optimal and feasible ones. 

 In order to investigate functional validation of the simulator, different types of 

applications will be executed on different architectures of forwarding elements. To test the 

functional correctness of forwarding elements implementation themselves, application output 

(including numerical results) was compared with the output from soft-switches. The soft-switch 

was modeled as host-compiled C code inside a SystemC wrapper, so that it can be simulated 

with our traffic pattern. The soft-switch does not have any timing and no underlying platform 

model. As such, it is useful for functional validation of the application.  Under this technique, 

programs are viewed as formal objects developed from a set of precise specifications. Once 

developed, they are guaranteed to produce the output given in the specifications. Developing a 

program requires several separate activities: (1) designing a specification that expresses the task 

to be performed, (2) refining that specification into a formal explicit statement that captures the 

specification’s intended functionality, and (3) developing a program that correctly implements 

that functionality. 

B. Speed 

As discussed already, design teams need simulators throughout all phases of the design cycle. It 

might also be noted that simulation is not cheap. For full system designs, runs of 20 days (24 

hours a day) on a single user multi-million instruction per second machine have been 

reported[28], and as systems become more complex, it is expected that time to complete the 
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simulation get worse rather than better. This emphasis the need for considering the speed of any 

proposed simulator. One of the advantages of using SystemC is its high execution speed, due not 

only to its simulation engine itself, but by the high abstraction level generally used for SystemC 

based system description.  One of the interesting research areas would be to see the trade-off in 

simulation speed between a model that captures architectural details of a forwarding element 

compared to a pure software switch. 

C. Observers and Design Space Exploration 

The inability to change the hardware, once built, and time to market constraint, increases the cost 

of any fault in the final chip design. The relative cost of finding faults at different stage of the 

production, namely: design time, chip-test time, board construction time or finished silicon board 

is estimated to be 1:10:100:1000[28]. However, any software running on a computer is relatively 

easily modified. Domain-specific measurements can be used when simulating particular 

architectures in terms interesting to the user, to analyze and characterize various factors that 

contribute to the design performance and examining the effect they have. For example network 

application users might be interested in metrics like throughput, average packet latency, packet 

loss or power estimation. Such measurements require some custom tool that is able to observe 

the simulation output and interpret it in domain specific terms. They allow the comparison of 

various architectures and find the optimal ones regardless of any particular slowdown of the 

simulation. Observers can also be used to hook-up between the SystemC simulation and 

visualization of results in MATLAB. 
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1.4.2. Timing Estimation with Dynamic Instruction Count 

Estimation of timing plays an important role in making architectural design decisions. For 

instance, end-to-end delay is considered as an important parameter to analyze the performance of 

the network. The end-to-end packet delay is the time it takes to deliver a packet from ingress to 

egress. Without timing estimation, no end-to-end delay comparison between different 

architectures can be done. Of course, since SystemC is a simulation language, the simulated time 

is different from the wall-clock time. The intrinsic behavior of the SystemC discrete-event 

simulation engine is such that the simulation produces a sequence of simulation instants. 

Computations occur only at these simulation instants: the simulation intervals only correspond to 

the increment of simulated time in the scheduler[29]. Timing estimation simulates execution of 

the application on target platform. In the first approach we used DICP for timing estimation, 

which is our custom built tool which is used to analyze application byte-code at Basic Block 

(BB) level. The following challenges should be addressed for timing estimation. 

A. Processing Elements  

Timing annotation can be defined by user for fixed function processing elements like parser or 

scheduler. This timing can be annotated at source level in threads inside each one of these 

processing elements for function calls, statements, etc. Modeling an action that takes time (say, 

𝑙𝑜𝑎𝑑_𝑖𝑚𝑔(), taking 3ms) is not directly possible in SystemC, which can express only 

instantaneous computations. The duration can be modeled with a 𝑤𝑎𝑖𝑡(𝑡𝑖𝑚𝑒) statement. A 

common practice is to run the functional behavior first, followed by the wait statement 

(e.g. 𝑙𝑜𝑎𝑑_𝑖𝑚𝑔(); 𝑤𝑎𝑖𝑡(3, 𝑆𝐶_𝑀𝑆);). Duration of the action being performed can also be 

computed inside the function 𝑙𝑜𝑎𝑑_𝑖𝑚𝑔 as t during execution of the task, then the following wait 
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can be performed as 𝑤𝑎𝑖𝑡(𝑡) to simulate execution of the function on the target. These timing 

values can also be derived from measurement or low-level simulations.  

B.  Application Timing 

The C/C++ code targeted for the NPU cores is either provided by the user or generated from P41. 

The code is wrapped inside a SystemC thread (SC_THREAD), and instantiated inside the 

SC_MODULE corresponding to the core. Timing annotation in the application and hardware 

model simulates the execution on target platform. The timing model for this code may also be 

provided by the user by adding SystemC wait statements at the source level, although this is both 

cumbersome and impractical. 

 If the application code is targeted for the NPU cores, we provide a timing annotation 

utility that automatically inserts basic-block level timing in the application source. The timed 

application is compiled along with the SystemC model of the NPU and the module logic to 

generate the final simulation binary. 

1.4.3. Timing Estimation with Instruction Set Simulator 

In general, host-compiled simulators can provide significant speedups (reaching simulation 

speeds of several hundred MIPS), but often focus on functionality and speed at the expense of 

limited or no timing accuracy.  

In order to offer a better trade-off between accuracy and speed of performance estimations, 

the framework supports back annotating host compiled simulation from an integrated OVP 

framework inside SystemC. Instruction Set Simulators (ISS) functionally behave as model CPU, 

but they do not map any internal architecture and thus – they simulate four to five rows faster, 

                                                 
1 P4 is a high-level declarative language for programming protocol-independent packet processors..  
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compared to the RTL. Since ISS is intended to control rest of the SoC, it must be equipped with 

appropriate interfaces to communicate other components. As the solution, TLM standard was 

chosen to be implemented alongside with ISS modules. Transaction-Level Modeling (TLM) has 

become tremendously popular and almost universally accepted as a vehicle for acceleration of 

platform model integration by having different level of abstractions inside the model. The 

resulting approach offers faster and easier software development while enabling accurate 

analysis thanks to the integrated instruction-accurate simulator. 
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 Chapter 2: Programmable Forwarding 

Platform 

2.1. Programmable Forwarding Elements 

The aim of this section is to give an overview on what happens to a packet inside a switch or 

router, regardless of the architecture by presenting a typical router design, but the same principle 

can be applied to forwarding elements. Then, different technologies to build a switch/router 

namely Application-Specific Integrated Circuits (ASICs), Network Processing Units (NPUs), 

Software switches and Reconfigurable Match-Actions switches (RMT) will be covered.  

 The Fundamental task of any router as illustrated in Figure 1 is to switch a packet from 

an input link to the appropriate output link based on the destination address in the packet.  
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Figure 1. Forwarding Element Architecture 

 Any routing system has to have four essential components to implement the routing and 

packet-forwarding process: routing procedure, packet forwarding processing, a switch fabric and 

line cards. Routing procedure performs the routing function and is responsible to run the routing 

protocols, creating forwarding tables which is accessed by the packet processing part of the 

system. 

 When a packet first enters the router, it is received by input port (ingress). Then 

regardless of a router’s architecture, each packet entering the system requires certain amount of 

work such as IP header validation, checksum recalculation and most importantly route lookup, 

which is searching the forwarding table for determining the output port for the packet. When the 

forwarding decision for the packet is made, it can be moved to the switch fabric. The switch 

fabric does the actual transfer of the packet from an input to an output port. It can be designed 
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using a few different methods depending on the performance requirements. Finally after having 

passed the switch fabric the packet arrives at the output port (egress). 

 Technically speaking routers and switches work in a similar fashion. The difference lies 

in the information that is used to do the forwarding decision. Routers use Internet Protocol (IP) 

addresses, and thus operate on layer 3, for the forwarding decisions while switches use Media 

Access Control (MAC) addresses, and thus operate on layer 2 only. This difference leads to 

routers needing to run different routing protocols to gather information about the network and to 

construct routing and forwarding tables[30]. Typically switches are used in smaller networks 

where less control over the data flows is needed, whereas routers are used in big installation 

where control is important.  

2.1.1. ASIC 

Perhaps the common approach when designing high-performance routers to do a predefined set 

of tasks is using application-specific integrated circuits (ASICs) coupled with specialized, high 

speed memory (e.g. , TCAM) to store forwarding tables. The common requirement for the 

typical ASIC task is that it needs to be done at line rate for the incoming packets. Typically 

ASICs are used when such performance is needed that it cannot be achieved with regular Central 

Processing Units (CPUs) nor NPUs (Network Processor Units). Arriving packets are processed 

by a fast sequence of pipeline stages, each dedicated to a fixed function. These devices can be 

very efficient for the set of functions, but there are some drawbacks to using ASICs though. 

While these chips have adjustable parameters, they fundamentally cannot be reprogrammed, 

which makes adding new features like recognizing or modifying new header fields a very 

demanding task. In the worst case scenario a customer that wants to utilize this upgrade needs to 

buy a whole new piece of equipment instead of just upgrading software like one would do with 
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the alternatives that offer some sort of programmability[30]. In other words, inability to modify 

the hardware forwarding algorithm without respinning the chip, forces packet forwarding to 

evolve on hardware design timescale which are extremely slower compared to the rate at which 

network requirements are changing. Each time a new feature needs to be added, the production 

of the old ASIC needs to be stopped and add an extension to the original chip or, a totally new 

chip, designed, which can take up to 2-3 years to support new features. Moreover, because 

ASICs are not programmable we might waste valuable resources of the switch if it is not used in 

the network. 

2.1.2. CPU (Soft Switches) 

Typically, software switches run a software on a CPU (general purposed processors, commodity 

hardware) like x86. Software-based switches on commodity hardware can affordably store large 

tables in SRAM (CPU cache) or DRAM. The typical software router has a motherboard that is 

used to connect the CPU/CPUs, NICs (Network Interface Cards) and other components together.  

 Software routers and switches have the potential to become a solution that is used when a 

cost effective method for packet forwarding is needed. What they do not offer is the huge 

performance that is required in backbone networks. On the other hand, because everything that 

the software router does is done in software, new protocols and other required changes can be 

easily made by altering the source code. Most software routers run on some form of Linux 

operating system, which further increases the ease of making changes as anyone can access the 

code freely. 

 The journey of a packet through a Linux software router starts at one of the RSS receive 

queues from where it is transported, via software interrupt and NAPI up the network stack and 
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into the switching function that decides which port the packet should be output to. From here on 

the packet then goes to an output queue from where it is transported by software interrupt to the 

NIC and onto the wire. 

 Another example of a software switch is cuckooswitch[31]. Conventional hash-table 

based lookups are typically memory-inefficient, which becomes important when attempting to 

achieve large scale or fit lookup tables into fast, expensive SRAM. CUCKOOSWITCH 

combines a new hash table design together with Intel’s packet processing architecture (the Intel 

Data Plane Development Kit[32], or DPDK for short) to create a software switch. 

2.1.3. Many Cores Network Processors 

Network processors or NPUs form a family of highly specialized programmable processors. 

They are mainly used to optimize packet processing functions in routers, switches and other 

networking equipment. When designing network equipment, choosing flexibility or performance 

leads to the choice of using a general purpose CPU, an NPU or a fixed function ASIC. ISPs 

require solutions that scale in terms of both routing richness and packet-forwarding performance. 

Network processing units offer a solution that lies somewhere between the programmability of a 

CPU and the performance of an ASIC. Like a CPU, NPUs are programmable. But NPU’s 

architecture is optimized to handle data networking and support software based implementations 

of the critical paths while processing packets at high speeds. Network processors can be 

categorized in many ways[30]. One way of categorizing NPUs is by their throughput 

performance to entry-level (1-2 Gbps), mid-level (2-5 Gbps) as metro NPUs and high-end (10-

100 Gbps) NPUs as Core NPUs[33]. Core NPUs run faster to handle applications such as high-

end routers used by carriers that serve large numbers of customers. Metro NPUs are for lower-

speed applications, such as office switches. 
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 Generally, NPUs consist of the following basic components: several network interfaces to 

the attached networks, processing module(s), buffering module(s), and an internal 

interconnection unit (or switch fabric). Typically, packets are received by an inbound network 

interface, processed by the processing module and, possibly, stored in the buffering module. 

Then, they are forwarded through the internal interconnection unit to the outbound interface that 

transmits them on the next hop on the journey to their final destination. 

 

Figure 2. Typical network processor architecture 

 Figure 2 illustrates the high-level architecture of a simplified NPU, inspired by the SNP 

4000 architecture[34]. The NPU consists of configurable hardware units for parsing, scheduling, 

reordering, traffic management and deparsing of packets. It consists of multiple identical 

processing clusters, each consisting of a set of RISC cores, memories and hardware accelerators. 

The control plane populates the match table entries in the NPU’s memory via an agent. Packets 

arriving at the ingress are sent to the parser for classification and generation of a packet 
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descriptor. The scheduler then assigns the packet to one of the processing clusters. The packet 

processing application runs as concurrent identical threads on the CPU cores in the clusters, in a 

run-to-complete fashion. The application thread transforms the packet header, inspects the 

associated payload if needed, and then waits for the scheduler to send the next packet. Since any 

two packets may be processed on different cores, they may encounter different delays and may 

leave the processing clusters in a different order than the one they arrived. Therefore, a reorder 

module is used to restore the ordering of packets. The packet then goes to a traffic manager that 

sends the packets out according to their priority. The deparser generates the deparsed header, and 

recombines the header with its payload before sending the packet out on egress. 

 The on-chip communication architecture of an NPU may vary from design to design. 

However, the large number of processing cores and the requirement to access the same set of 

modules from several cores, naturally lends itself to a network-on-chip architecture.  

 The bulk of the packet processing on an NPU takes place in the processing cluster, and 

the majority of the packet latency results from the search-and-lookup operations in memory. 

Therefore, NPU designers can benefit from executable models that enable them to evaluate the 

trade-off between the number of cores and the budgeting of on-chip memory in their design. 

Such an executable model can also help with fast and early functional validation of the NPU 

architecture before hardware availability. 

 The programmability of the NPUs enables new features to be added to the equipment 

after it has been deployed. Although, one of the challenges is the differences in programming the 

NPUs. One model hides programming details, which simplifies the process but gives 

programmers less control. The other gives programmers access to many details, such as those 

needed to optimize code to process data streams across numerous processors. These architectural 
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choices lead to difficulties in estimating the software development costs and to longer than 

expected software development projects. 

2.1.4. Programmable Pipeline 

The functionality of the Reconfigurable Match Table (RMT) switches are based on the approach 

known as “Match-Action”. A small number of fixed fields in the packet for classification is 

matched against a table, while every match is paired with a corresponding action(s) that are 

applied to the packet. One can imagine implementing Match-Action in software on a general 

purpose CPU. But for the speeds that is required to keep up with today’s networks—about 1 

Tb/s—the parallelism of dedicated hardware is a must. Switching chips have remained two 

orders of magnitude faster at switching than CPUs for a decade, and an order of magnitude faster 

than network processors, and the trend is unlikely to change[35]. RMT switches are 

implementing Match-Action in hardware to exploit pipelining and parallelism, while having 

enough reconfiguration, so that new types of packet processing could be supported at run-time. 

 In general, RMT switches consist of a parser to enable matching on fields, followed by a 

set of pipeline stages, each with a match table of arbitrary depth and width that matches on 

fields. A packet header vector, which is a set of header fields, can be created through parser. 

Parser should allow any modification for the packet header, such as defining new fields or 

adding fields, implying a reconfigurable parser. The vector flows through a sequence of logical 

match stages each of which abstracts a logical unit of packet processing. Each logical match 

stage allows size the match table to be configured. An input selector picks the fields to be 

matched upon. The result of this match is an action. More precisely, there is an action unit for 

each field F in the header vector, which can take up to three input arguments, including fields in 

the header vector and the action data results of the match. Instructions may only modify fields in 
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the packet header vector, update counters in stateful tables, or direct packets to ports/queues. 

Control flow is defined by next-table-address, which is the index of the next table to execute and 

it is also provided as an output by each table match. This can be used to drop a packet, 

implement multicast, or apply specified QoS. For example, a match on a specific field in Stage 1 

could direct later processing stages to do longest prefix matching on IP (routing), while a 

different field could specify exact matching on Ethernet DAs (bridging). A recombination 

module at the end of the pipeline pushes header vector modifications back into the packet. 

Finally, a configurable queuing discipline can be applied to place the packet in the specified 

queue at the specified output port. 

2.2. Quality Metrics 

The objective of the simulator is to analyze and characterize various factors that contribute to 

network performance and examining the effect they have. The network performance can be 

expressed by several metrics such as delay, throughput and packet loss. 

2.2.1. End-to-end Packet Delay  

End-to-end delay is considered as an important parameter to analyze the performance of the 

network. The end-to-end packet delay is the time it takes to deliver a packet to receiving 

endpoint after being transmitted from the sending endpoint. The average time varies according to 

the amount of traffic being transmitted, scheduling policy, number of cores available at that 

given moment, which reflects how well does whole system scale as load increases.  If traffic is 

greater than bandwidth available, packet delivery will be delayed. 
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2.2.2. Throughput 

The throughput metric represent the overall work accomplished by the network. Throughput is 

defined as the ratio of the data packets received by the endpoint to the packets sent by the 

sending point. The network capacity is defined to be stable when the average number of packets 

inserted into the network is the same as the average number of packets reaching their 

destination[36]. Network throughput is important for both round-trip time and handling a large 

number of simultaneous transactions. 

2.2.3. Packet Loss 

Packet loss occurs when one or more packets of data travelling across a network fail to reach 

their destination. Packet loss is reflected in the throughput and delay characteristics. When a 

packet is dropped before it reaches its destination, all of the resources that it has consumed in 

transit have been wasted. A 10% packet loss, for example, reduces throughput by a barely 

noticeable 10% if the retransmission algorithm is implemented efficiently, but could well make 

an audio or video connection unusable. The first step to understanding (and fixing) packet loss is 

to accurately measure its existence. Loss rates are especially high during times of heavy 

congestion, when a large number of packets are compete for scarce sources like processing 

elements. 
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 Chapter 3: NPU SystemC Model Semantics 

3.1. Overview 

SystemC is a widely used language for System-on-Chip design and validation. It is essentially a 

discrete event simulation library in C++ that provides modeling abstractions for system-level 

design. The transaction-level modeling (TLM) abstraction in SystemC enables creation of 

abstract hardware models, particularly of memories, for high speed co-simulation of hardware 

and embedded software. TLMs abstract away cycle-accuracy and bit-level accuracy using 

abstract function calls to access memories or hardware services.  

 NPUs are widely used in edge routers for performing high-touch functions like 

encryption and compression. They are also good for CRC and checksum calculation, metering, 

accounting and keeping statistics: operations that are best done in software. Therefore, NPU 

architects use a large number of multi-threaded RISC cores to exploit data parallelism, while 

providing the flexibility of software programming. Figure 2 illustrates the high-level architecture 

of a simplified NPU, inspired by the SNP 4000 architecture [34].   
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3.1. Basic Workflow 

The NPU consists of configurable hardware units for parsing, scheduling, reordering, traffic 

management and deparsing of packets. It consists of multiple identical processing clusters, each 

consisting of a set of RISC cores, memories and hardware accelerators. 

The control plane populates the match table entries in the NPU’s memory via an agent. 

Packets arriving at the ingress are sent to the parser for classification and generation of a packet 

descriptor. Parser also ensures that sufficient resources are available to continue with packet 

processing. If resources are not available, parser drops the packet, otherwise, the packet 

descriptor is forwarded to scheduler for further processing. 

The scheduler then assigns the packet to the processing clusters with the highest available 

processing credit; that is, the processing cluster currently doing the least amount of work.  In the 

event that more that several processing clusters modules have equivalent credit, the first found 

receives the assignment.  If no processing cluster modules are available, the scheduler will buffer 

incoming packets until a module becomes available.  Another option includes using a push-back 

method to prevent incoming packets from being accepted until the high-traffic situation has been 

resolved. The packet processing application runs as concurrent identical threads on the CPU 

cores in the clusters, in a run-to-complete fashion. The application thread transforms the packet 

header, inspects the associated payload if needed, and then waits for the scheduler to send the 

next packet. Since any two packets may be processed on different cores, they may encounter 

different delays and may leave the processing clusters in a different order than the one they 

arrived. Therefore, a reorder module is used to restore the ordering of packets. The packet then 

goes to a traffic manager that sends the packets out according to their priority. The deparser 
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generates the deparsed header, and recombines the header with its payload before sending the 

packet out on egress. 

3.2. NPU Modules 

We chose SystemC as the modeling language since it provides the necessary constructs, namely 

concurrency, event-based synchronization, timing and object-orientation, needed to create an 

executable system level model. For example, a SystemC module (SC_MOUDULE) can model a 

hardware component, which can have its internal logic and external ports to connect to other 

modules. A SC_MODULE can also create the representation of threads (SC_THREAD). The 

C/C++ code targeted for the NPU cores is wrapped inside a SystemC thread (SC_THREAD), 

and instantiated inside the SC_MODULE corresponding to the core.  

 All modules that are part of the NPU hardware are inherit from a base class.  This base 

class provides common functionality including: 

 The ability to notify attached observers of events 

 The ability to add, increment, decrement, and remove hardware counters 

 The ability to read and write packet descriptors, packet data, and other types of data 

 The ability for modules to be addressed by name 

 All modules are contained within the top-level NPU module - this module represents the 

NPU hardware and also provides an interface to which an external observer can connect. NPU 

memories are represented as passive transaction-level SC_MODULE and provide read and write 

service through implemented interface. Modules act primarily on two data types: packets and 

packet descriptors.  Packets contain an ID and data and represent the data passed into and out of 

the NPU hardware.  Packet descriptors are internally used and generated; the descriptors contain 



28 

 

an ID corresponding to the described packet along with a several other pieces of information 

such as context and class of service. Additional fields can be added to the descriptor by modules 

within the NPU. 

3.3. On-Chip Network 

Network processors provide flexible support for communications workloads at high performance 

levels. Designing a network processor can involve the design and optimization of many 

component devices and subsystems, including: (multi)processors, memory systems, hardware 

assists, interconnects and I/O systems. Often, there are too many options to consider via detailed 

system simulation or prototyping alone.  

All existing NPs are multiprocessors in one way or another, having multiple PEs on a single 

chip. All these PEs have to operate on data that is delivered through the input data stream, and 

since they have to operate in parallel, they must avoid blocking each other when accessing e.g. 

memory buffers. Therefore, the issue of how to arrange for on-chip communication is important. 

Communication architectures are characterized by their performance as well as their 

scalability. A crossbar provides direct access between any two nodes, but scales by the square of 

the number of nodes; it also occupies plenty of space, expensive silicon real estate. 

Traditional interconnect architectures such as shared bus and crossbars will have difficulties 

scaling to today data rates while maintaining reasonable costs. Dally and Towles proposed 

replacing dedicated, design specific wires with general purpose, (packet-switched) network [37], 

hence marking the beginning of network-on-chip (NoC) era.  

Interconnects are one of the key architecture in any network processor unit. The network-on-

chip will provide a basic mechanism for network agents to send messages to other network 
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agents. For the NoC architecture, the chip is divided into a set of interconnected blocks (or 

nodes). A router is embedded within each node with the objective of connecting it to its 

neighboring nodes. The router has as many as ports needed to connect with other routers and a 

local port to connect with its local.  

3.3.1. Routing Algorithms 

Router basically consist of routing algorithm and switching techniques, which can be used in 

order to avoid faulty or congesting ports [38]. In our implementation, OCN is modeled as a static 

XY routing protocol. The detailed routing algorithm is summarized in Listing 2. 

   1: Read (destination) 

 2: If(destination == local_core 

 3: send the packet to the local core; 

    4: else 

 5:  send the packet to the neighboring router on the y-axis (or x- 

  axis) towards the destination 

Listing 2. XY routing protocol 

3.3.2. Router Modeling 

In our SystemC implementation of On-chip network routers are modeled as SC_MODULE, 

provide transaction service between any two module instances (including memories) and routing 

logic is implemented as SC_THRAD. Each node has vector of interfaces, which there is an 

input/output port per interface. Each interface is connected to a module or another router by a 

pair of queues (𝑠𝑐_𝑓𝑖𝑓𝑜 channels) representing the links between routers. Routing table is the 

input to constructor of router SC_MODULE. The basic mechanism inside each node is 

illustrated in Figure 3. Predefined timing for each read, lookup and write can be specified to add 

timing to the OCN. 
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Figure 3. Router modeling in SystemC 

3.4. Observers 

One way to get notified of the events happening inside the model is to have the receiver part 

repeatedly check the sender for updates but this approach has two main problems. First, it takes 

up a lot of CPU time to check the new status and second, depending on the interval we are 

checking for change we might not get the updates "immediately". 

 Observers are used to solve this problem. Users may use any number of observers to 

examine the internal behavior of the model during the simulation. Observers must inherit from 

the observer interface and must implement all interface methods; however, an empty 
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implementation is considered valid in order to permit the user to develop small, focused 

observers for specific purposes. 

 

Figure 4. Example observers developed 

 Three observers in Figure 4 are included with the source code to serve as examples. Of 

these, the TimingObserver is the simplest and most illustrative of overall NPU behavior; this 

observer simply echoes all notifications to the standard output in a readable format. The 

LogObserver saves several different types of information to a file for post-processing. The 

ThreadObserver examines the behavior of threads within an execution unit. Users are 

encouraged to examine the source code for these simple observers prior to building their own.   

 The NPU class In addition to simulating the hardware, provides access to Observers that 

can connect to the NPU in order to receive data about Packet operations and thread activities. An 

arbitrary number of Observers can be connected to the NPU. In order to develop a new Observer, 

it is necessary to inherit from the IObserver interface. All functions in this interface are pure 

virtual – therefore, it is necessary that every Observer implement all functions. However, 

functions that are not required by a particular Observer can be implemented as empty functions. 

Sample codes for IObserver and ThreadObserver have been included in Appendix 1. 



32 

 

 Given the number of concurrent threads and active processing elements in the model, the 

observer system was modified to be thread safe by introducing an event queue as illustrated in 

Figure 5.  Observers are no longer directly notified when an observable event occurs. Instead, the 

event data is bound to the event function to create an event holding all the event data. This event 

is then pushed to the event queue. A dedicated thread in the top-level module continuously 

monitors the event queue; if there is at least one event in the queue, the event monitoring thread 

will pop the event and notify all the observers. Meanwhile, the simulation can add events to the 

queue without limit and without fear of invalidity or corruption. 

 The queue itself is a custom data structure that we previously designed for use in 

SystemC modeling of NPU. It is a thread-safe multi-producer/multi-consumer queue, so multiple 

simulation modules may add events to the queue while the monitoring thread removes events. 

 

Figure 5. Thread safe observers 

 Observers are attached to the model at instantiation and receive notifications from the 

top-level module as well as all submodules. Notifications occur when data (packets or packet 

descriptors) are read, written, or dropped; when counters are added, removed, or change value; 
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when processing threads are started, paused, or completed; or when processing cores become 

busy or idle as can be seen in Figure 6. 

 

Figure 6. Observers 

3.5. Functional Validation 

The most obvious purpose of simulation is to check that the system performs the logical function 

for which it is intended. We build upon the publicly available P4 compiler to target P4 

application to our forwarding device models. The original P4 compiler is targeted for a soft-

switch and written entirely in Python. The compiler front end is a Python module which is 

included by the back end. The high-level intermediate representation is a collection of data 

structures in memory. The back end code generation is done using a templating library. Finally, 

we do not explicitly model the memory management of the target platform or the I/O needed for 

debugging. These services are used from the run-time system available on the host. 

 The C code generated by the P4 soft-switch compiler is further compiled into a set of 

static libraries and headers that are imported into the SystemC model of the forwarding device. 

Additional templates have been added to the P4 compiler back end to expose an API suitable for 

use in the SystemC model. These APIs, specifically, implement initialization, parsing, table 
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application and deparsing. The API methods are called directly from the user logic defined in the 

respective SC_THREADs in the SystemC model.  

 We evaluated the proposed method using a sample P4 application and a sample test 

traffic as shown in Figure 7. We created a P4 soft switch inside Mininet and used Harpoon traffic 

generator[39] to create test traffic. Harpoon is an application-independent tool for generating 

representative packet traffic at the IP flow level. As Harpoon is not topology-aware, we captured 

each interface’s ingress and egress separately and merged ingress and egress streams 

chronologically to reflect the traffic over the time. Then, used ingress stream as input to NPU 

model and egress stream to validate NPU model output. 

 We created host-compiled models for various NPU architectures based on Figure 2, 

where we varied the number of clusters. We also developed a soft-switch implementation in 

SystemC, based on the generated code from the P4 compiler.  

 

Figure 7. Model Validation 
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 The sample P4 program is based off of the “simple_router” application provided with the 

P4 soft-switch compiler[40]. The program has five match-action tables and three header types 

(Ethernet, IPv4, and TCP). The program first performs a longest-prefix match on the destination 

IPv4 addresses and uses this to set egress port and next-hop address metadata fields, additionally 

decrementing the Ipv4 TTL field. Next an exact match is performed on the next-hop address, and 

the result is used to rewrite the Ethernet destination address. An exact match is next performed 

on the TCP source port and the result is used to rewrite the TCP source port. If the TCP source 

port is not matched, then an exact match is performed on the TCP destination port and the result 

is used to rewrite the TCP destination port. Finally an exact match is performed on the egress 

port metadata, and the result is used to rewrite the Ethernet source address. Additionally, the IP 

and TCP checksums are validated during parsing and updated during deparsing. The table size 

for the match tables were set to 2048. 

3.6. Limitations 

One limitation of this framework is that we validated our simulation functionality against 

reference emulation: Mininet. Emulators, like most tools, do have their drawbacks. Many of 

these problems can be attributed to the level of details and states that is captured during 

emulation which results in the computationally intensive processing required by emulators. As a 

consequence, the Mininet virtual network is limited by the underlying system capabilities. A 

higher packet forwarding capacity with support for handling higher aggregate bandwidth 

translates into an ability to emulate more links and routers, which will result in an unpredictable 

and unrepeatable behavior of the modeled system.  
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 For example, as we increase the load of the system, the instantiated soft switch inside 

Mininet starts to drop packets not because of the application running on soft switch but due to 

host limitations like OS tasks running on the host system and user processes. The major 

drawback of this behavior is that performance and scalability of our reference model under heavy 

loads very much depends on the underlying system, which results in uncertain behaviors. Of 

course, powerful hardware and high capacity memories are a quick solution, but they are 

normally too expensive. As a designer we need simulators to be reliable enough to be trusted so 

architectural decisions can be made based on their output. Thus, it is important to study different 

emulation environments in order to find suitable evaluation frameworks to be used as the 

reference for functional validation of our model.  
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 Chapter 4: Timing Estimation with Dynamic 

Instruction Count  

The modeling framework must be equipped with techniques for ranking of different user 

simulation methods based on metrics such as: end-to-end delay, core idle, busy time. Without 

timing estimation, no end-to-end delay comparison between different architectures can be done. 

 Figure 8 shows that when metrics are available for comparing one design to another, 

Design Space Exploration (DSE) techniques can be used to perform optimization, eliminating 

inferior designs and collecting a set of final candidates that are further studied. 

 

Figure 8. Design evaluation based on timing information 
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4.1. Host Compiled Simulation  

The complexities of the multi-processor/multi-core systems-on-chip design space have made 

traditional cycle-accurate simulators inefficient. Cycle-based simulators are highly accurate but 

very slow, especially in a multicore or multiprocessor context, while at the other end of the 

spectrum, host compiled simulations provides fast evaluation.  

 SystemC supports incorporating delays into the model by using wait statements. At high 

level of abstraction (loosely timed), a relatively large piece of code can be executed 

instantaneously (e.g. processing an image or a macro-block). To model time that should have 

elapsed during this action, one usually use a single 𝑤𝑎𝑖𝑡(∆𝑡) statement following it, where ∆𝑡 is 

the time it would take to perform this behavior on the real circuit. By pushing computation 

modeling to higher abstractions, simulators can provide significant speedups, but often at the 

expense of limited or no timing accuracy.  

4.2. Dynamic Instruction Count Pass 

In order to consider the timing properties of software execution in the system-level model, the 

modified front-end of the LLVM compiler is used to statically determine execution time of the 

applications at the level of basic blocks.  

 A basic-block is, by definition, a sequence of instructions such that if the first instruction 

is executed, it is never interrupted with external instructions and all the instructions in the basic 

block are executed. The basic-blocks are not visible at the source level of the applications and 

can only be observed at the assembly level. The delay of a basic-block for a given execution is 

equal to the sum of the delays of all of its instructions for that execution. Resulting annotated 
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code is compiled and executed on the host computer to estimate performance of the complete 

system. 

 Applications are written in C or C++ and passed to the model via a callable object, such 

as a function pointer, containing the entry point of the application. The model runs applications 

to completion using a single call to the entry point.  An instance of the application is executed in 

a single thread on a processing element; given the number of concurrent threads and active 

processing elements in the model, the several instances of the application may run concurrently, 

each operating on a different Packet. 

 In order to add application timing information to the model, it is assumed that the number 

of assembly-level instructions executed during a run of the application – that is, only the 

instructions that are actually called during a particular path through the application – is 

representative of the time required to execute the application.  By adding a wait equal to the 

number of instructions executed during a particular run, the model is able to include valid 

application timing information.  

 The procedure as illustrated in Figure 9 is fairly simple and depends on a custom tool, 

called the Dynamic Instruction Count Pass (DICP), implemented as a LLVM Function Pass [41] 

which operates on a counter attached to each processing element:   

1. The DICP finds the end of each BasicBlock, in each potential branch, of the application 

2. The DICP adds an LLVM instruction to increment the counter by the number of 

instructions in the BasicBlock.  

3. The transformed bytecode for the application is linked with the rest of the model 

4. At runtime, the counter keeps the accumulated delay for each process at any given time 

during the TLM simulation. Each instance of the application is followed by a wait with 
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time units equal to the value of the accumulated delays. We do not apply sc_wait after 

each basic block execution because it is an expensive function that forces the SystemC 

simulation kernel to reschedule simulation events. 

 

Figure 9. Dynamic Instruction Count Pass 

Figure 10 shows an example of the application intermediate code before and after the 

procedure, which adds instruction to increment the attached counter by the executed instructions 

count (IC) in each basic block.  

 

Figure 10. Application intermediate code before and after applying DICP 
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Using LLVM intermediate representation to calculate number of instructions rather than 

machine code makes this approach easy to use and fast. But on the other hand, when using 

LLVM IR as a compiler target, certain decisions are left to be made later by the LLVM to 

machine code compiler. In particular, we don't have to do exact instruction selection, instruction 

scheduling, register allocation (LLVM IR has infinite "registers") and memory allocation when 

compiling, which leads to inaccuracy. 

4.3. Simulation Results 

In this section, we present the simulation results of the proposed model. The objective of this 

section is to analyze and characterize various factors that contribute to network performance and 

examining the effect they have. We targeted 3 different benchmarks: end-to-end packet delay, 

packet loss and power consumption to measure the impact of having different architectures for 

network processors. For each benchmark we explore the impact of having different number of 

processing element versus different input rates. Therefore, NPU designers can benefit from 

executable models that enable them to evaluate the trade-off between the number of cores and 

the power consumption in their design. Such an executable model can also help with fast and 

early functional validation of the NPU architecture before hardware availability. 

4.3.1. Average end-to-end Packet Delay 

Figure 11 shows how well does whole system scale as load increases. Increasing input rate 

means more packets passed to ingress that network processor needs to schedule, process and 

move them to output. Because of limited cores that we have, at some point we have to buffer 

incoming packets as we cannot assign any more packets to cores. In this situation end-to-end 

delay for incoming packets increases.  
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By having more cores available inside every processing cluster, scheduler can assign packets 

to cores faster and prevents packets from getting aggregated, which will reduce average end-to-

end delay. 

 

 

Figure 11. Average end-end delay 

4.3.2. Traffic Management Policies 

Packet scheduling can be used to provide (to a flow of packets) so-called quality of service 

(QoS) guarantees on measures such as delay and bandwidth [42]. Because of the bursty nature of 

voice/video/data traffic, sometimes the amount of traffic exceeds the speed of a link. At this 

point, what will the router do? Will it buffer traffic in a single queue and let the first packet in be 

the first packet out? Or, will it put packets into different queues and service certain queues more 

often? Or we do not buffer packets and we start dropping packets, but which packets? Suppose 

that we have a premium service, Isn’t it better if we are forced to drop packets, we drop the 
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packets from less important flows? Congestion-management tools address these questions by 

enforcing compliance of traffic to a given traffic profile.  

Traffic manager can, among other things, decide in which order packets are sent (e.g. to give 

priority to certain flows), decide if packets are queued or if they are dropped (e.g. if the queue 

has reached some length limit, or if the traffic exceeds some rate limit), it can it can delay the 

sending of packets (e.g. to limit the rate of outbound traffic), etc.  

In this section we evaluated effects of 3 well-known policies: FIFO, Fixed Priority and 

Weighted Round Robin. 

1. FIFO: In its simplest form, FIFO queuing involves storing packets when the network is 

congested and forwarding them in order of arrival when the network is no longer 

congested. FIFO is the default queuing algorithm in some instances, thus requiring no 

configuration, but it has several shortcomings. Most importantly, FIFO queuing makes no 

decision about packet priority; the order of arrival determines bandwidth, promptness, 

and buffer allocation. FIFO queuing was a necessary first step in controlling network 

traffic, but today's intelligent networks need more sophisticated algorithms. 

2. Fixed Priority: As the simplest example of a multiple queue-scheduling discipline, 

consider fixed priority. For example, imagine two outbound queues, one for premium 

service and one for other packets. Imagine that packets are demultiplexed to these two 

queues based on a bit in the IP Type Of Service (TOS) field. In fixed priority, we will 

always service a queue with higher priority before one with lower priority as long as 

there is a packet in the higher-priority queue. This may be an appropriate way to 

implement the premium services. It was designed to give strict priority to important 

traffic. 
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3. Weighted Round Robin (WRR): During each round from each flow that has data to send, 

send a number of packets equal to the flow’s weight. WRR ensures that queues do not 

starve for bandwidth and that traffic gets predictable service. 

To observe the effect of having different policies, we created a random input log of 100 

packets, and used this log for three scheduling policies. We assumed having 8 different 

priorities in our model, with 0 as the highest priority. Each blue dot in Figure 12 represents 

when a packet is received at ingress (nanosecond).  

 

Figure 12. Scheduling policies 
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When we choose FIFO the packets reach to egress in the same order they are received by 

traffic manager, since there is no traffic prioritizing. But, fixed priority policy, ensures that 

important traffic gets the fastest handling at each point where it is used. So, traffic manager 

keeps delaying packets with lower priorities as long as there are packets in queues with higher 

priority. Weighted round robin on the other hand is more fair and in each round tries to have a 

diversity of all queues based on their weights. 

4.3.3. Packet Loss 

Packet loss occurs when one or more packets of data travelling across a network fail to reach 

their destination. Packet loss is reflected in the throughput and delay characteristics. When a 

packet is dropped before it reaches its destination, all of the resources that it has consumed in 

transit have been wasted. A 10% packet loss, for example, reduces throughput by a barely 

noticeable 10% if the retransmission algorithm is implemented efficiently, but could well make 

an audio or video connection unusable. 

In Figure 13, we show the relationship between the number of processing elements and 

drops for different input rates. Loss rates are especially high during times of heavy congestion, 

when a large number of packets are compete for scarce sources like processing elements. As 

described in model architecture, drop decision is made on the input congestion from the parser. 

When the resource usage exceeds the parser usage threshold configuration, the packet will be 

dropped. Parser would make accept/drop decision per each class of service based on resource 

usage of each packet. We have a defined resource available inside every isolation groups for 

every class of service. As number of processing elements increased packets, more packets get 

processed and the credits for each isolation group and class of services return faster, this way the 

number of drops is reduced.  
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Figure 13. Number of drops versus Input rate 

4.3.4. Power Consumption 

Power consumption is a key issue in the design of network processor units. We observed 

that under low incoming traffic rates, processing elements in network processor are idle for most 

of the time but still consume dynamic power. If some of the processing elements are idle, it 

means that there is more processing power than required by the incoming packets. We designed 

techniques for detecting idleness of threads to reduce power consumption. We observed the idle 

time of a processing element during which the processing element does no useful work and waits 

for incoming packets.  

To investigate the effectiveness of the number of processing elements on power 

consumption, we measured the total idle time of the cores per design for different input rates 

according to equation 1, and the results were plotted in Figure 14. As we expected, this plot 

shows that designs with more cores have more idle time.  
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𝑁 𝑐𝑜𝑟𝑒𝑠𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒
=  𝑐𝑜𝑟𝑒1𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒

+  𝑐𝑜𝑟𝑒2𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒
+ ⋯ +  𝑐𝑜𝑟𝑒𝑁𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒

  (1) 

For example the idle time for the design with 4 cores is computed by the equation 2: 

4 𝑐𝑜𝑟𝑒𝑠𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒
=  𝑐𝑜𝑟𝑒1𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒

+  𝑐𝑜𝑟𝑒2𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒
+ 𝑐𝑜𝑟𝑒3𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒

+  𝑐𝑜𝑟𝑒4𝑖𝑑𝑙𝑒𝑡𝑖𝑚𝑒
 (2) 

We can conclude from this plot that when input rate is low, it is not necessary to keep all the 

cores fully powered all the time. Software configuration can be added to put out some cores into 

a low-power “sleep” mode whenever possible while maintaining low packet end-to-end delay. 

 

Figure 14. Average idle time versus Input rate 

 

4.3.5. Simulation Speed 

One of the major concerns when using simulators is simulation time. Simulation time is the time 

it takes to run a full simulation cycle, including buffering, scheduling the packet and processing. 

RTL models, which contain micro-architectural details are cycle-accurate but they are too slow 

for large scale systems and too low-level (i.e. they require a detailed implementation) for 

effective design space exploration. Furthermore, constructing such optimized simulators is a 
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significant task because the particularities of the hardware must be accounted for [7]. For this 

reason, it requires too much effort to build them, and these simulators are inflexible. To 

overcome these shortcomings, the use of higher level models for design space exploration and 

early software development is critical. A better solution for this problem is to use instruction-set 

simulator (ISS) as explained in more details in section 5.1. 

An “Instruction Accurate” (IA) model eliminates much of the data processing and abstracts 

the timing to instruction execution ordering. We compared the simulation speed of our proposed 

method with that of an instruction set simulator: OpenRISC[43]. 

OpenRISC is a project to develop a series of open source instruction set architectures based 

on established reduced instruction set computing (RISC) principles. It is the original flagship 

project of the OpenCores[44] community. The first (and currently only) architectural description 

is for the OpenRISC 1000, describing a family of 32 and 64-bit processors with optional floating 

point and vector processing support. 

In order to evaluate the speed of the proposed method, different applications with different 

number of basic blocks are used. Then, execution speed of application in our annotated approach 

is compared to that of the instruction set simulator and speedup is calculated. Experimental 

results in Table 1 shows an average of 40X speedup compared to OpenRISC. 

Table 1. LLVM back-annotation tool speedup 

 

Number of BasicBlocks OpenRISC DICP Speedup 

App1 1 1806176 39548 44.6704764 

App2 5 566074 17023 32.2534806 

App3 10 829842 25668 31.329827 

App4 20 1133234 31231 35.2855496 

App4 50 2134221 45645 45.7569504 

App5 100 6453495 128342 49.2835783 
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 Chapter 5: Timing Estimation with 

Instruction Set Simulator 

5.1. Overview 

Technological progress causes complexity of systems-on-a-chip (SoCs) to grow rapidly in 

last few years. Millions of logic gates and sophisticated analog circuits, very often hundreds of 

thousands lines of source code, that is intended to work under control of operating system [45]. 

The challenge of designing and testing software earlier in the design process is becoming an 

increasingly significant factor, especially in cases where the hardware environment may be 

extremely complex or not yet available. Approaches can generally be classified according to the 

level of granularity at which target functionality and timing is modeled. There are two standard 

ways: 
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 Using host compilation 

 Using RTL models 

These methods have drawbacks – in host compilation as demonstrated in last chapter since 

estimation is performed before runtime, simulation speed does not suffer but it does not give any 

architecture-dependent details, while RTL models are slow, often multiple orders of magnitude 

slower than native execution. Consequently, for fast system-level performance analysis, the 

abstraction level of processor models must be raised. The better solution for these problems is to 

use instruction-set simulator (ISS). The proposed method relies on the integration between an 

instruction set simulators (ISSs), Open Virtual Platform and the SystemC simulation 

environment which contains other components (Ingress, Parser, etc.). The aim of this work is to 

provide designers with the possibility of faster and efficient architecture exploration at a higher 

level of abstractions, starting from an algorithmic description to implementation details. 

5.2. Instruction Set Simulator 

Instruction set simulation is a software technique that mimics the behavior of executing binary 

instructions on the target processor. The processor on which the binary instructions should run is 

called the target processor, while the processor on which the ISS runs is called the host 

processor.  

An instruction-set simulator is a tool that runs on a host machine by simulating the effects of 

each instruction on a target machine, one instruction at a time. Instruction-set simulators are 

indispensable tools in the development of new programmable architectures. They are used to 

validate an architecture design, a compiler design, as well as to evaluate architectural design 

decisions during design space exploration. Instruction set simulators are attractive for their 
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flexibility: they can in principle, model any computer, gather any statistics, and run any program 

that the target architecture would run. 

5.3. SystemC/OVP Simulation 

ISS functionally behaves as model CPU, but it does not map any internal architecture and 

thus – it simulates four to five rows faster, compared to the RTL. Each ISS contains cache 

memory, private local memory, and the minimum set of units required to perform basic 

functionality. They can provide detailed functional information, such as register values, the 

program execution time. 

Since ISS is intended to control rest of the SoC, it must be equipped with appropriate 

interfaces to communicate other components. As the solution, TLM 2 standard was chosen to be 

implemented alongside with ISS modules. Transaction-Level Modeling (TLM) has become 

tremendously popular and almost universally accepted as a vehicle for acceleration of platform 

model integration by having different level of abstractions inside the model. 

5.3.1. OpenRISC 

There are some limitations that make the use of OpenRISC impractical as an instruction set 

simulator: 

 The lack of support for C++ and multicore processors 

 OpenRISC 1000 is the only architectural description available and no support for other 

processor architectures like: ARM, PowerPC, etc. 

 The fact that OpenRISC OR1k is no longer maintained. 
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5.3.2. Open Virtual Platform (OVP) 

Open Virtual platforms is a simulation framework marketed by Imperas [46]. The simulator 

provides APIs for the modeling of processors, memory, sub-system models and platform 

functions, without concern for detailed simulation operation. OVP includes the Instruction Set 

Simulator (ISS). ISS allows to run compiled binary embedded software elf files on specific 

embedded processor variants at hundreds of MIPS without the need to develop a virtual 

platform. 

 OVP models are used by platforms as shared objects dynamically loaded at simulation 

time by the OVPsim runtime. To integrate OVP with SystemC, native interfaces (wrappers) of 

CPU and all OVP peripherals are provided.  

A. Platform construction 

To use OVP models, SystemC must instantiate one “tlmPlatform” object. This object keeps the 

quantum period which sets how long each processor model instance waits before running again. 

Each processor model instance keeps a figure which controls the effective number of instructions 

per second (IPS) executed by the model. It uses this and the quantum period to decide how many 

instructions to run in each quantum. The default quantum period is 1mS. The default IPS is 

100,000,000. Thus, by default, a processor runs 100,000 instructions per quantum (this matches 

OVPsim’s internal scheduler used in a non-SystemC environment) [46]. 

B. Processor and Peripheral Models 

Each processor model is run from a SystemC thread. The thread executes IPQ instructions on the 

processor without advancing SystemC time. Each instruction may or may not cause TLM2.0 

transactions to be propagated to other components in the platform. When the allotted instructions 
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have completed, the thread calls SystemC 𝑤𝑎𝑖𝑡() to advance time. Thus each processor executes 

a number of instructions at a time in a round-robin schedule. OVP peripherals can also have a 

wrapper layer to enable their use in SystemC TLM2 platforms.  

C. Integration Implementation Details 

The main drawback of SystemC/OVP model is the fact that OVP is designed to execute the 

application once and exit, thus to integrate it inside our packet flow, which for every incoming 

packet, application needs to be executed, we have to use call back functions. 

 Figure 15 details the architecture of the OVP/SystemC Processing Element (PE). The 

numbers in the Figure correspond to a packet reception, and its processing by the OVP CPU 

model. In the first step, the PE receives a packet from its Network Interfaces (NI). By writing the 

packet, an event is triggered notifying the receiver module (block inside of the SystemC-OVP 

interface) about the incoming packet. The receiver module then reads the incoming packet, stores 

it into a buffer used to synchronize the communication between the untimed CPU and the ISS 

(step 2). The module informs the CPU that there is data stored in the buffer. A memory mapped 

register is used to alert about the stored data. OVP CPU polls this register periodically. Once the 

CPU is ready, the data is read.  

 The data embedded in the packet, is read through a DMA module using memory mapped 

registers (register bank in step 4). The register bank is implemented using an external memory, 

mapped in the processor address space, where each register has a pre-defined address. The CPU 

is connected to a bus to which all address-mapped components are connected. This bus connects 

the local memory and the register bank. 
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 Callback functions are executed on every read (regbankRead) or write (regbankWrite) 

access to the defined address area. Listing 3 shows an example of a callback function related to a 

read memory access. The callback function name (regbankRead) is defined as a parameter of the 

ICM_MEM_READ_FN macro. 

ICM_MEM_READ_FN (regbankRead) 

{ 

 … 

 buffer = NI->read(); 

 icmWriteProcessorMemory (address, buffer, bytes);  

 … 

} 

Listing 3. Read callback function 

Once a read memory access is triggered, the value is read by sending, for example, a read data 

request to the processor module NI, and writes it into CPU memory. Using the memory mapped 

registers as interface, the CPU receives and processes data. Function parameter provides the 

memory address (address) accessed by the CPU, as well as the value (buffer) to be read from this 

address and number of bytes to transfer. 

 Listing 4 gives an example of a write callback function. This function is specified using 

the ICM_MEM_WRITE_FN macro, and the callback function regbankWrite as a parameter. 

This parameter provides the memory address (address) accessed by a CPU, as well as the value 

(value) to be written in this address.  

ICM_MEM_WRITE_FN (regbankWrite) 

{ 

 … 

 icmReadProcessorMemory (address, buffer, bytes);  

 buffer = NI->read(buffer);  

 … 

} 

Listing 4. Write callback function 
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When the OVP CPU needs to send data through the processor module NI these steps are taken. 

First, the CPU uses the memory-mapped registers as an interface to the communication protocol 

with the processing element NI. For each register access, a memory callback is triggered, 

generating a SystemC event. Then, the send module receives the packet and stores it in the 

buffer. When the packet is completely stored, it is sent through the NI.  

 

Figure 15. Integration of SystemC model with OVP CPU model 

This approach makes it possible to use this model as the reference for both functional validation 

and adding instruction-accurate timing to our host compiled model. For more details refer to 

Appendix 2. 
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5.3.3. Simulation Results 

Due to the technology advancement and our daily life being highly dependent on the Internet, 

The fundamental functionality to support high speed communications on the Internet are 

increasing in importance with the ever-growing traffic size. With increasing number of hosts and 

sessions in the Internet, the processing of packets at the routers has become a major concern. One 

of the key technologies is IP routing table lookup, which needs to be extremely fast [9].  

A. IP Lookup  

A fully associative memory, or content-addressable memory (CAM) [47], can be used to perform 

an exact match search operation in hardware in a single clock cycle. However, departure from a 

TCAM is an approach worth considering for the two reasons: First, TCAM has issues in power 

consumption and heat. Second, the advent of Network Functions Virtualization (NFV)[48] may 

make the use of TCAM impossible, since the virtualized network functions are currently 

implemented in software without TCAMs. Therefore, it is desired to implement a software high-

speed IP router only with general purpose computers; i.e., personal computers (PCs), or 

commercial off-the-shelf (COTS) devices. 

 A trie structure is a general-purpose data structure for storing strings and convenient way 

to represent the prefixes in the forwarding table. Each string (prefix) in the routing table is 

represented by a leaf node in the trie. The introduction of Classless Inter Domain Routing 

(CIDR) has reduced the size of forwarding tables, but the lookup procedure is more complex 

because exact matching is replaced by longest prefix matching. The longest prefix search 

operation on a given destination address starts from the root node of the trie. The branching 

decisions are made based on the consecutive bits in the prefix. A trie is called a uni-bit trie if 
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only one bit is used for making branching decision at a time. The prefix set in Figure 16(a) 

corresponds to the uni-bit trie in Figure 16(b). 

 

Figure 16. Longest Prefix Match 

B. Testbed  

We used a testbed to create rigorous, replicable testing scenarios. Client and server instances 

are synchronized under six stages. At every connection stage, the node defines the 

transaction protocol. An abstract modeling of the TCP protocol is implemented, which 

clients-server connection is established using three-way handshake. Client sends file request 

and receives the file response, which can be a file ID, a unique code or the ACK for the last 

transaction. Response can be the expected file size, bandwidth, etc. 
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Figure 17. Connection modeling between clients and servers 

Based on the architecture shown in Figure 2, the control-plane is responsible for building the 

IP routing table inside memory. Once configured, the control plane can start populating each 

table, for example by adding IPv4 forwarding entries.  

Routers do two things: participate in routing protocols with their neighbors, and forward 

packets. We are concerned primarily with the latter. At first sight, forwarding is 

straightforward:  

1. Router gets packet.  

2. Looks at packet header for destination. 

3. Looks up routing table for output interface (if an appropriate entry is not populated in 

the forwarding table, then it is forwarded to default node). 

4. Modifies header (TTL, IP header checksum). 

5. Passes packet to output interface. 



59 

 

C. Simulation Results 

The bulk of the packet processing on an NPU takes place in the processing cluster, and the 

majority of the packet latency results from the search-and-lookup operations in memory. We 

present preliminary experimental results in this section. This experimental setup uses different 

data sets created by our testbed, which is described in previous section and single processor as 

our CPU model. We divided the evaluation in two parts. The first part consists in inducing the 

results from integrating our framework with OVP as instruction set simulator. We found out that 

although this approach achieves very good speed ratio compared to running the application code 

on the target machine, still not suitable to use with high intense data rates. The second part 

consists of applying an automatic back-annotation method, which also verifies functional 

validation of the annotated model. This time we measured the percentage of the speedup gained 

versus accuracy error. We used a 2.7 GHz Intel dual-core with 8GB RAM as our simulation host. 

The procedure to integrate OVP in our framework techniques is described in section 5.3.2.  

The ‘Simulated instructions’ will vary depending upon the application being executed, this 

count indicates the number of simulated processor instructions for the processors in the platform. 

Figure 18 shows the relation between number of entries in forwarding tables and simulated 

instructions. The more entries in the table increase the possibility of matching more entries, 

which results in deeper traverse of the created search tree in the memory and more instructions to 

be executed.  
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Figure 18. Simulated instruction/ forwarding table entries 

As it can be seen in Table 2, each data set consists of various number of packets and 

'Simulated instructions'. The real time ratio indicates how much faster this method is able to 

execute application on the native host machine compared to running on the real silicon based. 

Table 2. SystemC/OVP Simulation evaluation 

Number of Packets Number of Simulated Instructions Real Time Ratio  

650 43766667 47.15X 

1000 67247053 48.83X 

8000 573851039 54.23X 

26000 1878581489 54.46X 

50000 3838669233 57.41X 

104000 7492226409 46.53X 

208000 14982744337 41.79X 

 

By integrating this instruction set simulator, we achieved a very considerable average of 

50X speedup, which will result in a very faster simulation. To illustrate this speedup further, we 

can consider the case of 50000 packets, which takes up to 42 minutes on target chip, compared to 
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under 2 minutes simulation time on the host machine. However, the time needed for trie-based 

lookup mechanisms grows very fast as the input load increases as shown in Figure 19, making 

simulation speed a premium metric when evaluating different methods.  

 

Figure 19. OVP increasing simulation time as input load increases 

 To understand the problem of high-speed lookups, let’s study what an example internet core 

router has to do today. It needs to handle minimum-sized packets (e.g., 40 or 64 bytes depending 

on the type of link) at link speeds of 40 Gbits/s, which gives the router a window of 8 ns (for 40-

byte packets) or 14 ns (or 64-byte packets) to make a decision on what to do with the packet. 

 In general, ISS simulators are written to test concepts and processor design tradeoffs, 

where flexibility is important and speed is not of primary importance. Another disadvantage of 

using OVP simulation is the limited available memory that can be used as CPU local memory 
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that makes it impossible to simulate scenarios which require large amount of memory (e.g. 

storing the whole forwarding table in the memory). 

5.4. Back-annotation using ISS 

Back annotation is used to refine timing model in a model. Back annotation is the process of 

including externally derived data into a design or model. This timing data is derived from several 

sources such as timing analyzers, delay calculators, and library specific data tables. The 

advantage of using back annotation over directly computing delay information in the simulation 

model is that the process can be decoupled from the functional design, and tools which are 

specifically engineered for timing analysis can be used, specifically for the fixed function 

elements. Although, that might be impractical to expect the software developer to provide timing 

data for the code that is expected to run in the processing threads. We provide a timing 

annotation utility that automatically inserts timing in the application source. 

Host-compiled techniques, which have been introduced recently, are based on a native 

execution of the target code and employ pre-estimated timing annotations instead of detailed 

modeling of the microarchitecture. Consequently, these methods achieve higher simulation speed 

than ISS and hence they are very attractive for system-level simulation of multiprocessor 

architectures. 

5.4.1. Direct Annotating 

As the workflow of back-annotation is illustrated in Figure 20, one of the central idea of host-

compiled simulation is to move the estimation of instruction timing from simulation time to 

compile time and, thus, to improve simulation efficiency.  
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Figure 20. Workflow of experiments 

The contribution of the proposed method is to provide a very fast host-compiled equivalent 

of the described SystemC/OVP instruction set simulator, without sacrificing the accuracy of the 

model.  

5.4.2. Corrective Feedback Annotation  

Simulating the expected line speed of the Internet core routers of 100 Gbps or even terabits per 

second in the near future with hundreds of thousands of entries in forwarding tables is not 

possible. A practical solution as can be seen in Figure 21 would be to use a subset of input to 

tune the parameters that most contribute to the simulation timing like number of entries in the 
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forwarding tables, number of input packets, length of the prefixes to match, etc. By doing so, a 

learning system can be trained, which can be used to back-annotate the host compiled model 

without the need to run the time consuming instruction set simulator. Nevertheless, such models 

can provide very rapid feedback to drive initial pruning of the design space of clearly infeasible 

solutions. 

 

Figure 21. Corrective feedback annotation to tune parameters 

5.4.3. Simulation Results 

The fastest instruction-set emulators dynamically translate instructions in the target ISA to 

instructions in the host ISA, and optionally annotate the host code to produce address traces. 
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Because these emulators perform translation at run-time they gain some additional functionality, 

such as the ability to trace dynamically linked or dynamically compiled code. This additional 

flexibility comes at some cost, both in overall execution slowdown and in memory usage as can 

be seen in Figure 22 and Figure 23.  

 

Figure 22. Proposed back-annotation method evaluation 
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Figure 23. Proposed back-annotation method memory usage 

As one could expect by increasing the number of packets, more instructions need to be executed 

which translates to more memory usage. Since the routing entries today are increasing super-

linearly (in 2008, 256000 entries and now it has passed 512000 routes [49]), the need for a 

platform that uses memory optimally is an important concern. 

 As discussed in section 5.3.3, we used back-annotation to increase the simulation speed, 

while keeping the accuracy acceptable enough to make architectural decisions. The proposed 

method achieved an average of 77% speed up with only 0.6% error and also 69% reduction in 

memory usage. 

 This method provides assistance in identifying problems early in design process. It is 

accurate and fast to evaluate different design options. A design option is an element in 

architectural model, which could be changed to improve performance properties. In the next 

section we evaluate different number of cores along with different memory sizes as various 

design options for a network processor unit. 
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5.5. Timing Estimation Summary 

In this section we started by host compiled simulation, which has no notation of timing, then 

we used a custom toolset which adds timing based on the number of instruction in intermediate 

representation of the source file at basic block level. Then we moved to a more accurate but slow 

approach by using instruction set simulators which relies on the integration between an 

instruction set simulators (ISSs), Open Virtual Platform (OVP), and the SystemC simulation 

environment. Finally we introduced our proposed method which has accuracy of an instruction 

set simulator without sacrificing speed. 
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 Chapter 6: Conclusion and Future Work 

6.1. Conclusion 

In today’s network, data rates are increasing, protocols are becoming more dynamic and 

sophisticated and traffic for video and data applications is expected to grow exponentially. These 

challenges cannot be properly addressed with the rigid solutions provided by today's networking 

equipment. Networks need the ability to respond to changes, faults and scale performance to 

handle large volumes of client requests without creating unwanted delay. 

 To capitalize on this condition, telecom operators need to have more flexible, scalable 

and energy efficient processors, specifically designed for packet processing. One of the primary 

challenges in the design of network components, such as network processing units is to 

determine the best hardware architecture to support diverse applications.  

 We presented a flexible accurate host-compiled simulator to make it possible to explore 

wide ranges of architectures and application scenarios to find the optimal configuration that 

meets given performance, throughput and latency for programmable forwarding elements. In 

order to provide accurate system performance measurements, e.g. power consumption, 
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throughput rates, packet loss, latency statistics, or QoS requirements the framework supports 

back annotating host compiled simulation from an integrated OVP framework inside SystemC. 

The resulting approach offers faster and easier software development while enabling accurate 

analysis thanks to the integrated instruction-accurate simulator. This thesis advocates that 

application developers can use the simulator as a virtual prototype to simulate and debug their 

applications, executing it onto a given CPU architecture, using the integrated SystemC/OVP 

simulation. Then, forwarding device architects can use simulator to evaluate the trade-offs 

between different hardware/software design decisions in a reasonable simulation speed by using 

the proposed back-annotation method.  

6.2. Future Work  

 Based on the work that has been done in this thesis and the obtained results, in the 

following some of the potential areas of study and suggestions for future work and research 

directions are presented:  

6.2.1. Accurate Power Consumption Estimation 

Increasing demand for more powerful embedded systems requiring smaller products with greater 

functionality and performance. Traditionally the main concern of a designer was performance 

and silicon area of the final product. Recently, power consumption has become a critical factor in 

embedded system design.  

 However, creating faster, smaller and low power products have conflicting requirements. 

On one hand, these devices require very low-power consumption, and on the other hand they 

require high performance for computational tasks, which leads to higher power consumption. For 

this reason, exploration of the large design spaces which depends upon the ability to assess each 
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design quickly, facilitates the efficient iteration over numerous candidate designs, shortens the 

time-to-market and therefore increases profits. 

 The simulation has been provided with useful tools (observers) to give the user a better 

sense of the risks of high power consuming designs. Observers can capture states of the 

processing elements, with their corresponding power consumption values, and all possible 

transitions, which will be later used to calculate power consumption. Observers are automatically 

registered in the system, so that any transition is automatically reported to the power logger. This 

relieves the responsibility of reporting changes in power consumption from the programmer, 

which must only define the state machine and trigger the transitions. Activities are completely 

user-defined. The simulator just registers them so that the information about current activities are 

attached to every power report. 

 Our approach is motivated by the observation in section 4.3.4 that under low incoming 

traffic rates, processing elements (threads inside cores) in network processor are idle for most of 

the time, leading to underutilization of available network resources on many workloads. If some 

of the processing elements are idle, it means that there is more processing power than required 

by the incoming packets. Different techniques, more detailed CPU models can be used for 

detecting idleness of threads to reduce power consumption. This presents an opportunity to turn 

off cores with little or no impact on the latency in the rest of the network.  

 Power consumption of an embedded application is a complex function of several 

components such as processing elements, memories, etc. Memory subsystem is a major energy 

consumer in several environments (e.g. server systems), hence, considering memory access 

power cost and providing methods to reduce the power consumption of the data memory can be 

very beneficial. 
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6.2.2. Back-annotation Using Prediction 

No matter how efficient a simulator can be, the ever growing input rate and increasing sizes of 

routing tables make sure that we cannot simulate the network elements with real-world inputs 

and environment variables, and at some point we have to predict the parameters based on the 

datasets that we can actually simulate. 

 Efforts towards building accurate prediction models fall into two main directions: one is 

manually designing new features or new combinations of features to represent parameters that 

contribute the most to simulation timing; the other is using machine learning algorithms such as 

Support Vector Machine (SVM), Naive Bayes (NB). By doing so, a learning system can be 

trained, which can be used to back-annotate the host compiled model without the need to run the 

time consuming instruction set simulator. 

 Artificial neural networks (ANNs) are machine learning models that automatically learn 

to predict targets from a set of inputs. They have been used in research and commercially to 

guide autonomous vehicles [30], to play backgammon [36] and to predict weather [23], stock 

prices, and medical outcomes.  

6.2.3. Automated Design Space Exploration Framework 

As have shown earlier, one of the proposed simulator strength is enabling the investigation of 

architectural elements trade-offs. By designing an Automated Design Space Exploration 

framework, simulator is able to generate all possible designs and helps designer to choose the 

best design prior implementation based on different measures (speed, packet loss, throughput 

power consumption, etc.).  
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Appendix 

1. Observers 

IObserver.h 
 

#ifndef IOBSERVER_H_ 

#define IOBSERVER_H_ 

 

class IObserver 

{ 

public: 

 /** 

  * Function called by the NPU when a counter is added to a module 

  * @param module_name  Module name to which counter was added 

  * @param counter_name  Name of the counter 

  * @param simulation_time Simulation time at which counter was added  

  (defaults to 0 since counters are typically added before simulation begins) 

  */ 

 virtual void counter_added(const std::string& module_name,        

        const std::string& counter_name, double simulation_time = 0) = 0; 

 

 /** 

  * Function called by the NPU when a counter is removed from a module 

  * @param module_name  Module name from which counter was removed 

  * @param counter_name  Name of the counter 

  * @param simulation_time Simulation time at which counter was removed  

  (defaults to 0 since counters are typically removed before simulation begins) 

  */ 

 virtual void counter_removed(const std::string& module_name,    

       const std::string& counter_name, double simulation_time = 0) = 0; 

 

 /** 

  * Function called by the NPU when a counter is updated 

  * @param module_name  Module containing updated counter 

  * @param counter_name  Name of the counter 

  * @param new_value  Current value of the counter 

  * @param simulation_time Simulation time at which counter value was updated 

  */ 

 virtual void counter_updated(const std::string& module_name,  

const std::string& counter_name, std::size_t new_value, double 

 simulation_time) = 0; 

 

 

 /** 
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  * Function called by the NPU when data is written by a module 

  * @param from_module  Module name of the transmitting module 

  * @param data   JSON representation of data 

  * @param simulation_time Simulation time at which event occurred 

  */ 

 virtual void data_written(const std::string& from_module,     

    const std::string& data, double simulation_time) = 0; 

 

 /** 

  * Function called by the NPU when data is read by a module 

  * @param to_module  Module name of the receiving module 

  * @param data   JSON representation of data 

  * @param simulation_time Simulation time at which event occurred 

  */ 

 virtual void data_read(const std::string& to_module,  

const std::string& data, double simulation_time) = 0; 

 

 /** 

  * Function called by the NPU when data is dropped in a module 

  * @param in_module  Module name in which data was dropped 

  * @param data   JSON representation of data 

  * @param simulation_time Simulation time at which event occurred 

  */ 

 virtual void data_dropped(const std::string& in_module, 

const std::string& data, const std::string& drop_reason, double simulation_time)= 

0; 

 

 /** 

  * Function called by the NPU when a processing element (pe) thread begins 

  * @param pe_mod  PE in which thread was started 

  * @param cluster_mod  Cluster containing the PE in which the thread was  started 

  * @param thread_id  ID number of the thread 

  * @param simulation_time Simulation time at which event occurred 

  */ 

 virtual void thread_begin(const std::string& pe_mod,  

const std::string& cluster_mod, std::size_t thread_id, std::size_t packet_id, 

double simulation_time) = 0; 

 

 /** 

  * Function called by the NPU when a processing element (pe) thread ends 

  * @param pe_mod  PE in which thread was ended 

  * @param clsuter_mod  Cluster containing the PE in which the thread was ended 

  * @param thread_id  ID number of the thread 

  * @param simulation_time Simulation time at which event occurred 

  */ 

 virtual void thread_end(const std::string& pe_mod,  

const std::string& cluster_mod, std::size_t thread_id, std::size_t packet_id, 

double simulation_time) = 0; 

 

 /** 

  * Function called by the NPU when a processing element (pe) thread starts idling 

  * @param pe_mod  PE in which thread is idling 

  * @param clsuter_mod  Cluster containing the PE in which the thread is idling 

  * @param thread_id  ID number of the thread 

  * @param simulation_time Simulation time at which event occurred 

  */ 

 virtual void thread_idle(const std::string& pe_mod,  

const std::string& cluster_mod, std::size_t thread_id, std::size_t packet_id, 

double simulation_time) = 0; 

 

 protected: 

 /** 

  * Default destructor 

  */ 

 virtual ~IObserver() = default; 

}; 

 

#endif /* IOBSERVER_H_ */ 
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ThreadObserver.cpp 

 

 

#include "ThreadObserver.h" 

#include <iostream> 

 

ThreadObserver::ThreadObserver(NPU &npu) 

{ 

 npu.attach_observer(this); 

 output_busy_ = new std::ofstream("busy_time.csv", std::ios::out); 

 output_idle_ = new std::ofstream("idle_time.csv", std::ios::out); 

} 

 

ThreadObserver::~ThreadObserver() 

{ 

 output_busy_->close(); 

 delete output_busy_; 

 

 output_idle_->close(); 

 delete output_idle_; 

} 

 

void ThreadObserver::thread_begin(const std::string& pe_mod,  

const std::string& cluster_mod, std::size_t thread_id,  

std::size_t packet_id, double simulation_time) 

{ 

std::string thread_identifier = cluster_mod + " " + pe_mod + " " + 

std::to_string(thread_id); 

 

 if(idle_.find(thread_identifier) != idle_.end()) 

 { 

  double thread_idle_time = simulation_time - idle_[thread_identifier].second; 

*output_idle_ << cluster_mod << "," << pe_mod << "," << thread_id << "," << 

thread_idle_time << std::endl; 

 

  std::lock_guard<std::mutex> lock(idle_mtx_); 

  idle_.erase(thread_identifier); 

 } 

 

 std::lock_guard<std::mutex> lock(begin_mtx_); 

 begin_[thread_identifier] = std::make_pair(packet_id, simulation_time); 

} 

 

void ThreadObserver::thread_end(const std::string& pe_mod,  

const std::string& cluster_mod, std::size_t thread_id, 

std::size_t packet_id, double simulation_time) 

{ 

std::string thread_identifier = cluster_mod + " " + pe_mod + " " + 

std::to_string(thread_id); 

 

 if(begin_.find(thread_identifier) != begin_.end()) 

 { 

  double thread_busy_time = simulation_time - begin_[thread_identifier].second; 

*output_busy_ << cluster_mod << "," << pe_mod << "," << thread_id << "," << 

thread_busy_time << std::endl; 

 

  std::lock_guard<std::mutex> lock(begin_mtx_); 

  begin_.erase(thread_identifier); 

 } 

} 

 

void ThreadObserver::thread_idle(const std::string& pe_mod,  

const std::string& cluster_mod, std::size_t thread_id,  

std::size_t packet_id, double simulation_time) 

{ 

std::string thread_identifier = cluster_mod + " " + pe_mod + " " + 

std::to_string(thread_id); 

 

 std::lock_guard<std::mutex> lock(idle_mtx_); 

 idle_[thread_identifier] = std::make_pair(packet_id, simulation_time); 

} 
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std::string ThreadObserver::make_result(const std::string& cluster_mod,  

const std::string& pe_mod, std::size_t thread_id) const 

{ 

 return std::move(cluster_mod + "___" + pe_mod + "___" + std::to_string(thread_id)); 

} 

 

std::string ThreadObserver::make_cresult(const std::string& cluster_mod,  

const std::string& pe_mod) const 

{ 

 return std::move(cluster_mod + "___" + pe_mod); 

} 

 

NPU.CPP 

 

#include "NPU.h" 

 

SC_HAS_PROCESS(NPU); 

 

NPU::NPU(sc_module_name nm) 

: sc_module(nm), NPUModule(convert_to_string(nm)) 

{ 

 //... 

  

 // Attach submodule interfaces 

 // for the observers 

 attach_interface(Parser->module_name(), Parser.get()); 

 attach_interface(Scheduler->module_name(), Scheduler.get()); 

 //... 

   

 SC_THREAD(notify_observers); 

} 

 

 

void NPU::notify_observers() 

{ 

 while(1) 

 { 

  auto func = events_.pop(); 

  func(); 

 } 

} 

 

void NPU::attach_observer(IObserver* observer) 

{ 

 for(auto& each_module : common_interface_) 

 { 

  each_module.second->attach_observer(observer); 

 } 

 observers_.push_back(observer); 

} 

  

void NPU::attach_interface(const std::string& module_name, NPUModule* npu_module) 

{ 

 common_interface_[module_name] = npu_module; 

} 
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2. Timing Estimation with ISS integration 

Baremetal.h 

 

#ifndef BareMetalArmCortexASingle_TLM2_0_H_

#define BareMetalArmCortexASingle_TLM2_0_H_

#include "tlm.h"

#include "ovpworld.org/modelSupport/tlmPlatform/1.0/tlm2.0/tlmPlatform.hpp"

#include "ovpworld.org/modelSupport/tlmDecoder/1.0/tlm2.0/tlmDecoder.hpp"

#include "ovpworld.org/memory/ram/1.0/tlm2.0/tlmMemory.hpp"

#include "arm.ovpworld.org/processor/arm/1.0/tlm2.0/processor.igen.hpp"

////////////////////////////////////////////////////////////////////////////////

//                      BareMetalArmCortexASingle_TLM2_0 Class                //

////////////////////////////////////////////////////////////////////////////////

class BareMetalArmCortexASingle_TLM2_0 : public sc_core::sc_module {

public:

  BareMetalArmCortexASingle_TLM2_0 (sc_core::sc_module_name name, const char *variant);

  icmTLMPlatform      Platform;

  decoder             <2,2> bus1;

  ram                 program;

  ram                 stack;

  arm                 cpu1;

  icmAttrListObject *attrsForcpu(const char *variant) {

    icmAttrListObject *userAttrs = new icmAttrListObject;

    userAttrs->addAttr("endian",        "little");

    userAttrs->addAttr("compatibility", "nopSVC");

    userAttrs->addAttr("variant",       variant);

    userAttrs->addAttr("UAL",           "1");

    return userAttrs;

  }

}; /* BareMetalArmCortexASingle_TLM2_0 */

#endif /*BareMetalArmCortexASingle_TLM2_0_*/

 
BareMetal.cpp 

#include "BareMetalArmCortexASingle_TLM2_0.h"

BareMetalArmCortexASingle_TLM2_0::BareMetalArmCortexASingle_TLM2_0 (

sc_core::sc_module_name name, const char *variant)

: sc_core::sc_module (name)

, Platform ("icm", ICM_VERBOSE | ICM_STOP_ON_CTRLC| ICM_ENABLE_IMPERAS_INTERCEPTS )

, bus1("bus1")

, program ("program", "sp1", 0x100000)

, stack    ("stack",   "sp1", 0x100000)

, cpu1 ( "cpu1", 0, ICM_ATTR_DEFAULT, attrsForcpu(variant))

{

  // // bus1 masters

  cpu1.INSTRUCTION.socket(bus1.target_socket[0]);

  cpu1.DATA.socket(bus1.target_socket[1]);

  // bus1 slaves

  bus1.initiator_socket[0](program.sp1);     // Program Memory

  bus1.setDecode(0, 0x00000000, 0x000fffff);

  bus1.initiator_socket[1](stack.sp1);       // Stack Memory

  bus1.setDecode(1, 0x00100000, 0x001fffff);

}
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Processor.h 

 

#ifndef PROCESSOR_H_

#define PROCESSOR_H_

#include <utility>

#include "../BareMetalArmCortexASingle_TLM2_0.h"

class BareMetalArmCortexASingle_TLM2_0;

class Processor: public ProcessorSIM {  

public:

  SC_HAS_PROCESS(Processor);

  /*Constructor*/

  explicit Processor(sc_module_name nm, std::string configfile = "");  

  /*Destructor*/

  virtual ~Processor() = default;

public:

  void init();

  void process();

  BareMetalArmCortexASingle_TLM2_0 top;

public:

  void Processor_PortServiceThread();

  void ProcessorThread(std::size_t thread_id);

  std::vector<sc_process_handle> ThreadHandles;

  std::queue<std::shared_ptr<PHV>> jobs;

  std::queue<std::shared_ptr<CPAMessages>> tableupdates;

  sc_event GotaJob, GotATableUpdate;

};

#endif  // PROCESSOR_H_

 
Processor.cpp 

 

#include "Processor.h" 

#include <string> 

#include "InternalObject.h" 

 

Processor::Processor(sc_module_name nm, std::string configfile ): top("top", "Cortex-A9UP") 

{   

    if( access( constants::TIMING_FILE, F_OK ) != -1 )  

    { 

        remove(constants::TIMING_FILE); 

    } 

     

    ThreadHandles.push_back( sc_spawn( 

        sc_bind(&Processor::Processor_PortServiceThread, this))); 

} 

     

static ICM_MEM_WATCH_FN(start_flag_readCallBack) 

{      

     

    //write pkt to OVP CPU memory 

    sc_process_handle this_process = sc_get_current_process_handle(); 

    sc_object* current_scmodule = this_process.get_parent_object(); 

    sc_object* proc = current_scmodule->get_parent_object()->get_parent_object(); 

    string module_name_ = "Processor Read Callback"; 

     

    if(Processor* p = dynamic_cast<Processor*>(proc)) 

    {         

 if (p->jobs.size() != 0)  

 { 

  auto job = p->jobs.front(); 

  p->jobs.pop(); 

  int rec = 0; 

  uint32_t srcip = 0; 

  uint32_t dstip = 0; 
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  cout<<"@"<<sc_time_stamp() 

  <<" Read Call Back: from input port read: " 

  << job->id() << std::endl; 

    

  p->buffer.push(job); 

  rec = job->id(); 

  srcip = ntohl(job->parsed_hdr->getIPSrc().s_addr); 

  dstip = job->parsed_hdr->getIPDst().s_addr; 

    

  // create an internal object to pass to OVP CPU 

  InternalObject intObj(CommandType::process, srcip, 0, dstip, job->id()); 

    

  icmWriteProcessorMemory(processor,address,&intObj,sizeof(intObj)); 

  return; 

    

  }  

  else if (p->tableupdates.size() != 0)  

  {    

   auto request = p->tableupdates.front(); //CPAMessages 

   p->tableupdates.pop(); 

   npulog(normal, std::cout << "Update OCCURED" << std::endl;) 

    

   if (request->match_key.type == MatchKeyParam::Type::LPM)  

   { 

npulog(normal,std::cout << "Prefix to update is --LPM " << 

std::endl;) 

     

    InternalObject intObj(CommandType::update, 

     ntohl(to_int(request->match_key.key)), 

     request->match_key.prefix_length, 

     to_int(request->action_data), 

     p->lpm_update_counter++, 

     request->match_key.type); 

    icmWriteProcessorMemory(processor,address,&intObj, 

sizeof(intObj)); 

    return;      

      

   }  

   else if(request->match_key.type == MatchKeyParam::Type::EXACT)  

   { 

    npulog(normal,std::cout <<  

"Prefix to update is --EXACT" << std::endl;) 

    struct in_addr in; 

    in.s_addr = to_int(request->match_key.key); 

     

     

    InternalObject intObj(CommandType::update, 

     ntohl(to_int(request->match_key.key)), 

     0, 

     0, 

     p->exact_update_counter++, 

     request->match_key.type); 

 

     std::copy(request->action_data.begin() 

,request->action_data.end(), 

intObj.ExactActionValue); 

 

     icmWriteProcessorMemory(processor,address,&intObj 

,sizeof(intObj)); 

     return; 

   }       

  }  

  else  

  { 

   // No Jobs request a job from the schedular 

   auto JobRequest = std::make_shared<SchedularMessages> 

   (0, CommandType::JobRequest); 

   p->out[1]->put(JobRequest); 

   npulog(normal, std::cout <<  

"Requesting a Job right now" << std::endl;) 

   wait(p->GotaJob | p->GotATableUpdate); 
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  } 

    }  

    else  

    { 

             npu_error("Processor Handle- Cast failed"); 

    } 

} 

         

static ICM_MEM_WATCH_FN(stop_flag_writeCallBack) 

{ 

    string module_name_ = "Processor Write Callback"; 

     

    InternalObject res; 

    icmReadProcessorMemory(processor,thing, &res, sizeof(res)); 

     

    ofstream timing(constants::TIMING_FILE, ios::app); 

    if(!timing.is_open()) 

    { 

        std::cout << "the file could not opened" << std::endl; 

        return; 

    } 

     

    unsigned instCount =0; 

    icmReadProcessorMemory(processor,constants::FIRST, &instCount, sizeof(instCount)); 

    unsigned instCount2 =0; 

    icmReadProcessorMemory(processor,constants::SECOND, &instCount2, 

sizeof(instCount2)); 

     

    //write to file 

    timing <<res._cmd<<", address: "<< constants::FIRST<<", " 

<< MatchKeyParam::type_to_string(res.type)<<", "<<instCount<<",” <<instCount2<<endl; 

     

    timing.close(); 

    //write to file end 

     

    sc_process_handle this_process = sc_get_current_process_handle(); 

    sc_object* current_scmodule = this_process.get_parent_object(); 

    sc_object* proc = current_scmodule->get_parent_object()->get_parent_object(); 

    if(Processor* p = dynamic_cast<Processor*>(proc)) 

    { 

        if (p->buffer.size() != 0)  

        { 

            auto sendpkt = p->buffer.front(); 

            p->buffer.pop(); 

             

            sendpkt->parsed_hdr->ip->ip_dst.s_addr = res.LPMActionValue; 

             

            std::copy(res.ExactActionValue, 

                res.ExactActionValue+ETHER_ADDR_LEN, 

                sendpkt->parsed_hdr->ethernet->ether_dhost); 

                 

                wait((instCount+instCount2)/1000,SC_MS);   //1 MIPS 

                 

                p->out[0]->put(sendpkt); 

                cout<<"@"<<sc_time_stamp()<<" Write Call Back: sent:  "; 

                sendpkt->parsed_hdr->dumpipdst(); 

        } 

             

    }  

    else   

    { 

            cout<<"@"<<sc_time_stamp()<<" Write Call Back: Casting Failed!!!"  

<< std::endl; 

            assert(false); 

    } 

         

} 

     

     

void Processor::Processor_PortServiceThread()  

{ 
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    // Thread function to service input ports. 

//running flag 

    top.cpu1.addReadCallback(running_flag, running_flag, &start_flag_readCallBack);  

    //application_done_processing_flag   

    top.cpu1.addWriteCallback(stop_flag, stop_flag,  &stop_flag_writeCallBack);  

    

    top.cpu1.loadLocalMemory("myapp.ARM_CORTEX_A9.elf", 

 (icmLoaderAttrs)(ICM_LOAD_VERBOSE | ICM_SET_START)); 

     

    while (1)  

    { 

        auto recevied_tr = in->get(); 

        if (auto header = std::dynamic_pointer_cast<PHV>(recevied_tr)) { 

            jobs.push(header); 

            GotaJob.notify(); 

        } else if (auto cpreqs = std::dynamic_pointer_cast<CPAMessages>(recevied_tr)) { 

            tableupdates.push(cpreqs); 

            GotATableUpdate.notify(); 

        } else { 

            npu_error("Processor - All casts failed"); 

        } 

    } 

} 

 

Application.cpp 

 

#include <stdio.h> 

#include <iostream> 

#include "InternalObject.h" 

 

 

class TrieManager { 

public: 

  TrieManager():trie(2,sizeof(0)){} 

  ~TrieManager()=default; 

  PrefixTree<uint32_t> trie ; 

}; 

 

class ExactTrieManager { 

public: 

  typedef std::vector<u_char> actiontype; 

  ExactTrieManager():trie({0,0,0,0,0,0}, sizeof(defaultaction)){} 

  ~ExactTrieManager()=default; 

  HashTrie<actiontype> trie; 

  actiontype defaultaction; 

}; 

 

int main() 

{ 

  run = true; 

 

  printf("Application starting...\n"); 

  TrieManager matchactiontables; 

  ExactTrieManager exactmatchtables; 

 

 

  while(run) 

  { 

    unsigned int octet[4]  = {0,0,0,0}; 

    if(pkt._cmd == CommandType::update) 

    { 

       

 

      if(pkt.type == MatchKeyParam::Type::LPM) { 

        std::cout << "Application Update LPM: "<<pkt.id << std::endl; 

        convertToIp(octet, pkt.LPMActionValue); 

 

        int temp = impProcessorInstructionCount(); 

        BitString updateentry(pkt.MatchValue,pkt.prefixlength); 

        RoutingTableEntry<uint32_t> lpmupdate  

  (updateentry,sizeof(updateentry),pkt.LPMActionValue,sizeof(pkt.LPMActionValue)); 
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        RoutingTableEntry<uint32_t>* Entry = &lpmupdate; 

        matchactiontables.trie.update(Entry,1,Trie<uint32_t>::Action::Add); 

        t_adr = impProcessorInstructionCount() - temp; 

        t_adr2 = 0; 

 

      } else if (pkt.type == MatchKeyParam::Type::EXACT) { 

 

        std::cout << "Application Update EXACT: "<<pkt.id << std::endl; 

 

        int temp = impProcessorInstructionCount(); 

        BitString updateentry(pkt.MatchValue); 

        ExactTrieManager::actiontype action(pkt.ExactActionValue,pkt.ExactActionValue+6); 

 

        RoutingTableEntry<ExactTrieManager::actiontype> epmupdate 

        (updateentry,sizeof(updateentry),action,sizeof(action)); 

        RoutingTableEntry<ExactTrieManager::actiontype>* Entry = &epmupdate; 

 

        exactmatchtables.trie.update(Entry, 1, Trie<ExactTrieManager::actiontype>::Action::Add); 

        t_adr2 = impProcessorInstructionCount() - temp; 

        t_adr = 0; 

 

      } else { 

        std::cout << "Invalid Match Key Type" << std::endl; 

      } 

 

    } 

    else if (pkt._cmd  == CommandType::process) 

    { 

      BitString ip(pkt.MatchValue); 

      int temp = impProcessorInstructionCount(); 

      auto result = matchactiontables.trie.longestPrefixMatch(ip); 

      t_adr = impProcessorInstructionCount() - temp; 

      pkt.LPMActionValue = result; 

 

      temp = impProcessorInstructionCount(); 

      auto resultemp = exactmatchtables.trie.exactPrefixMatch(ip); 

      t_adr2 = impProcessorInstructionCount() - temp; 

      std::copy(resultemp.begin(),resultemp.end(),pkt.ExactActionValue); 

    } else { 

      std::cerr << "Unknown CommandType" << std::endl; 

      impFinish(); 

    } 

    stop = true; 

 

  } 

 

  printf("finishing...\n"); 

 

  impFinish(); 

 

} 
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