CFD Based Analysis and Parametric Study of a Novel Wind
Turbine Design: the Dual Vertical Axis Wind Turbine

Gabriel Naccache

A Thesis
In the Department
of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of
Master of Applied Science (Mechanical Engineering) at
Concordia University

Montreal, Quebec, Canada

August 2016

© Gabriel Naccache, 2016



CONCORDIA UNIVERSITY
School of Graduate Studies
This is to certify that the thesis prepared
By: Gabriel Naccache

Entitled: CFD Based Analysis and Parametric Study of a Novel Wind Turbine Design: the
Dual Vertical Axis Wind Turbine

and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science (Mechanical Engineering)

complies with the regulation of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final Examining Committee:

Chair
Onur Kuzgunkaya

Examiner
Liangzhu Wang

Examiner
Wahid Ghaly

Supervisor

Marius Paraschivoiu

Approved by:

MASc Program Director

Department of Mechanical and Industrial Engineering

/ /2016

Dean of Faculty



ABSTRACT

CFD Based Analysis and Parametric Study of a Novel Wind Turbine Design:
the Dual Vertical Axis Wind Turbine

Gabriel Naccache

Small Vertical Axis Wind Turbines (VAWTs) are good candidates to extract energy from wind in
urban areas because they are easy to install, service and do not generate much noise; however, the
aerodynamic efficiency of small turbines is low. Here-in a new turbine, with high aerodynamic
efficiency, is proposed. The novel design is based on the classical H-Darrieus VAWT. VAWTs
produce the highest power when the blade chord is perpendicular to the incoming wind direction.
The basic idea behind the proposed turbine is to extend that said region of maximum power by
having the blades continue straight instead of following a circular path. This motion can be
performed if the blades turn along two axes; hence it was named Dual Vertical Axis Wind Turbine
(D-VAWT). The analysis of this new turbine is done through the use of Computational Fluid
Dynamics (CFD) with 2D and 3D simulations. While 2D is used to validate the methodology, 3D
is used to get an accurate estimate of the turbine performance. The analysis of a single blade is
performed and the turbine shows that a power coefficient of 0.4 can be achieved. So far, reaching
performance levels high enough to compete with the most efficient VAWTs. The D-VAWT is still
far from full optimization, but the analysis presented here shows the hidden potential and serves
as proof of concept. The study of the D-VAWT is concluded with a preliminary parametric study
of the turbine sensitivity to different incoming wind angles, turbine axes spacing, number of

blades, airfoil profile and blade mounting point.

Keywords: Wind Turbine, VAWT, Dual Axis, Innovative, Power Coefficient, CFD, Parametric
Study.
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NOMENCLATURE

1 Tip Speed Ratio (TSR)
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0 Azimuthal Angle [deg]
L Distance Between Axes of Rotation [m]
C Chord [m]
D Turbine Diameter [m]
h Blade Height [m]
AR Blade Aspect Ratio [m]
1) Incoming Incident Wind Direction Angle [deg]

T Sum of the Torque Produced When the Blade is Rotating for a Single
Rotating  Cycle [N.m]
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FTranslating
Vblade
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CP, Force
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Blade Velocity [m/s]
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Kinematic Viscosity [m?/s]

Angle of Attack [deg]

X1V



CHAPTER 1: INTRODUCTION

1.1 Energy Production

Global energy consumption has been exponentially increasing over the last few decades, largely
due to the increase in energy demand from developing and developed countries related to the
growth in global population and the increase in personal demand. A country’s economic, social
and technological growth are closely tied to the availability of energy. This is especially true for
developing countries. Energy has undoubtedly become a basic human need in this modern day era
and will continue to be for the distant future. The main consumers of energy are the residential,

commercial/institutional, industrial, and transportation sectors.

Figure 1.1 shows the growth of energy supply from 1971 to 2013 as well as the breakdown of
energy production by source type as reported by the International Energy Agency (IEA) [1]. From
the same figure, one can see that from 1971 until 2013, the bigger portion of the world’s energy is
still produced from fossils fuels such as coal, petroleum/oil and natural gas. Though energy sources
such as nuclear, hydro and renewables have been growing, they still represent a fraction of the
total supply. Figure 1.2 shows the breakdown of energy in Canada, published by the Natural
Resources Canada (NRCan) [2]. Similarly to before, nearly 90% of the total energy produced is
from fossil fuels. As one might know, these sources of energy are finite and more importantly,
they produce large amounts of greenhouse gases (GHGs), which in turn damage our environment

and increase the effects of climate change.

The need for a sustainable and efficient source of renewable energy is highly in demand and
satisfying this need has been an objective for decades. There are a number of available renewable
energy sources to tap into, such as solar, wind, geothermal, hydro, biomass and tidal. There has
been increased interest in these cleaner and renewable sources of energy as they reduce the reliance
on those other finite sources of energy as well greatly reduce the effects of GHGs to help fight

climate change.
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Figure 1.1: World Total Primary Energy Supply from 1971 to 2013 by fuel (Mtoe). *Peat and Oil Shale
are Aggregated with Coal. *Includes Geothermal, Solar, Wind, Heat, etc. [1]
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Figure 1.2: Canada’s Primary Energy Production by Source in 2013. “Other Renewables” Includes
Wind, Solar, Wood/Wood Waste, Biofuels and Municipal Waste [2]

1.2  Wind Energy

Wind energy has shown great potential as a sustainable solution and its production has grown
tremendously in recent years. Figure 1.3 shows the growth of wind energy capacity on a global

scale as published by the Global Wind Energy Council (GWEC) [3], while Figure 1.4 shows the
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wind energy capacity in Canada. Wind energy has been used as both a complementary source of
energy as well as a substitute for other sources of energy. The numerous types of wind turbines in
sizes and applications make it a very flexible source of energy. The most common way of
extracting energy from the wind is through wind turbines. The only stage in which wind turbines
pollute the environment is before the installation stage. Once the turbines are installed, they
produce negligible amounts of GHGs for the rest of their life cycles. Since their first use, wind
turbines have gone through incredible technological advancements and even until now, there is
still plenty of room for improvements and development. Wind turbines have gotten more efficient
and much bigger since they were first invented thanks to advancements in aerodynamic, structural

and material design.
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Figure 1.3: Global Cumulative Installed Wind Capacity 2000-2015 [3]
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Figure 1.4: Cumulative and Annual Installed Capacity in Canada [2]
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Wind turbines of large scale are used for onshore and offshore farms while the small scale turbines
are used for urban applications. Large scale turbines are the ones that can typically produce 100kW
and above, shown in Figure 1.5, while small scale turbines, shown in Figure 1.6 produce below
that threshold. It should be noted that whether a turbine is considered large or small for
accreditation purposes, the turbine swept area is used instead as criterion. So far, the large wind
turbines have been favored as they were typically more efficient and produced significantly higher
amounts of power. However, recent advancements in small scale wind turbines have made them
more attractive, especially since distributed energy production is quite an attractive concept, as it
is a much cheaper solution because power can be produced locally or near where it would be
consumed. Therefore, typical problems faced with large scale turbines such as transportation,
transmission cables, and maintenance costs can be avoided. The growth of small wind turbines in
terms capacity and number of units can be seen in Figure 1.7, as published by the World Wind

Energy Association (WWEA) [4].

(a) (b)

Figure 1.5: Example of Large Scale Wind Turbines (a) Siemens G2 2.3MW [5], (b) Eole Rotor Darrieus
4.3MW [6]
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Figure 1.6: Examples of Small Scale Wind Turbines (a) Helix Wind 5kW Savonius (7], (b) Quiet
Revolution 7.5kW [8], (c) WHI 70kW [9]
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Figure 1.7: Global Installed Energy Capacity and Units [4]

1.3 Wind Turbines

Wind energy can be harnessed by a variety of turbines, which are classified in terms of their axis
of rotation. The main types are shown in Figure 1.8. This includes the Horizontal Axis Wind
Turbines (HAWT), which have their axes of rotation parallel to the incoming wing, and Vertical
Axis Wind Turbines (VAWT), which have their axes of rotation perpendicular to the incoming
wind. Typically, HAWTs are used more for large scale energy production, while VAWTs are used
for small and large scale applications. The two most common types of VAWTs are the Savonius
turbine, which is a drag based turbines, and the Darrieus wind turbine, which is a lift based
turbines. There are also a number of different types of Darrieus VAWTs, the most common being

the rotor Darrieus, H-rotor Darrieus (H-Darrieus), and helical Darrieus, shown in Figure 1.9. All
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the Darrieus type turbines have an airfoil profile for their blade cross-section, but differ in their
blade shape. An example of a HAWT, rotor Darrieus VAWT, Savonius VAWT, Helicoidale
VAWT and H-rotor VAWT can be seen in Figure 1.5 (a) and (b) and Figure 1.6 (a), (b) and (c),

respectively.

HAWT Savonius Darrieus
VAWT VAWT

Figure 1.8: Main Types of Wind Turbines [10, 11]
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Figure 1.9: Different Darrieus Wind Turbines [12]

The following two dimensionless parameters are commonly used to describe the performance and
operating condition of a VAWT. The first is the Tip Speed Ratio (TSR), which is the ratio of the
blade speed at the tip to the incoming wind speed.



wR
A =TSR =4~ (1.1)

Where w is the angular velocity of the turbine, R is the radius of the turbine, and U,, is the free
stream velocity. The second is the Coefficient of Power (Cp) which is the ratio of extracted power
to the available power (available kinetic energy per unit time) in the incoming wind. The power
coefficient is a measure of the aerodynamic efficiency of turbines.

P
Cp = Power Coefficient = T
3
7ono A

(1.2)
Where P is the extracted power from the turbine, p is the fluid density, and A is the turbine swept
area.

Each of the HAWTs and VAWTs have a number of advantages and disadvantages. Figure 1.10
shows the typical power curves for the most common types of turbines, where it can be seen that
HAWTs are typically more aerodynamically efficient and operate at much higher TSR values than
VAWTs. A comparison between HAWTs and VAWTs has been investigated by Eriksson et al.
[11]. A summary of his study between the H-Rotor Darrieus, Rotor Darrieus and HAWTs can be

seen in Table 1.1.
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Figure 1.10: Power Coefficients for Different Rotor Designs [13, 14]



Table 1.1: Summary of the Most Important Differences between the H-Rotor Darrieus, Rotor Darrieus

and HAWT [11]

H-rotor Darrieus HAWT
Blade profile Simple Complicated Complicated
Yaw mechanism needed No No Yes
Pitch mechanism possible Yes No Yes
Tower Yes No Yes
Guy wires Optional Yes No
Noise Low Moderate High
Blade area Moderate Large Small
Generator position On ground On ground On top of tower
Blade load Moderate Low High
Self starting No No Yes
Tower interference Small Small Large
Foundation Moderate Simple Extensive
Overall structure Simple Simple Complicated

HAWTSs are among the most efficient turbines and can be more easily scaled up in size for higher
amounts of energy production; however, they are highly dependent on the wind direction, needing
to face the wind for optimal performance. An added yawing and pitching mechanism can be added
to increase their flexibility at the cost of higher complexity and financial cost. The manufacturing
of their blades is more expensive than VAWTSs’ since the blade cross sectional profile varies along
the span, while a number of VAWTs have the same blade profile along the span. Because HAWTs’
gearboxes, generators and other mechanical components are at the top of the tower, their
maintenance is more difficult, expensive and dangerous. They are also known to be quite noisy
since they operate at high tip speed ratios and since the blades are placed at a large height, the
sound produced can propagate more easily. Also, another disadvantage from the enormous height
of the tower is the flicker of the blades’ shadow, which have been known to cause problems for
people staying in affected areas. Thus, theses turbines have to be placed in remote areas, where

additional costs are incurred related to transportation and road building costs.

VAWTs address a number of these disadvantages. They produce much less noise since their
operating speeds are lower than HAWTs. Their maintenance is simpler since all components (the
gearbox, generator, etc.) are placed on the ground. They typically do not require a yaw control
mechanism as their performance is independent of the incoming wind direction. Also, because
they have smaller wakes than HAWTs, they can be packed quite closely together, resulting in

higher turbine density per unit area. However, VAWTs are generally less aerodynamically



efficient than HAWTs. They are structurally more challenging to design since the loads on the
blade continuously change throughout the turbine rotation. The constant change in the blade
incident angle puts them more at risk of failure due of fatigue loads. Also, most VAWTs lack self-
starting capabilities, except for the Savonius turbine, but it has lower aerodynamic efficiency than

other VAWTs.

1.4 Motivation

Small VAWTs are good candidates for urban areas because they are easy to install, service and do
not generate much noise. Nevertheless, the wind speed in urban areas is low, leading to low power
generation for a given area. To address this weakness a new type of wind turbine is investigated
in an attempt to improve the aerodynamic efficiency of small wind turbines. VAWTs produce the
highest power when the blade is near perpendicular to the incoming wind direction. This result is
confirmed by Paraschivoiu [15]. Figure 1.11 shows the top view of an H-Darrieus turbine as well
as the convention for the azimuthal angle, 6, which defines the position of the blade. The maximum
power is produced when the blade is at 8 ~ 90°, which is confirmed by looking at Figure 1.12,
which is the torque graph vs azimuthal angle for an H-Darrieus turbine obtained from
Computational Fluid Dynamics (CFD) simulations performed by Zadeh et al. [ 16]. At this position,
the blade sees an effective flow angle and flow velocity that is optimal. Note that the flow reaching
the blade is the vector sum of the incoming wind and blade velocities. An example of the velocity
vectors seen by the blade is shown Figure 1.11 for a Darrieus turbine with multiple blades at three

positions.



Figure 1.11: Top view of a typical H-Darrieus VAWT with Velocity Vectors and Forces, Where 0 is the
Azimuthal Angle, Us, is the Free Stream Velocity, Ve is The Blade Velocity, U, eiive is The Relative
Velocity Seen by the Blade, a. is the Effective Angle of Attack, D is the Drag Force, And L is the Lift Force
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Figure 1.12: Torque Variation Versus Azimuthal angle for 2D Simulation H-Darrieus Turbine (a) TSR =
2 and (b) TSR =3 [16]
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The new turbine concept, with a similar blade shape as the H-Darrieus, would utilize the location
of maximum power and have it extended by letting the blades continue straight in an attempt to
increase the overall aerodynamic efficiency of the turbine. This motion can be achieved if the
blades turn around two axes, hence it was named Dual Vertical Axis Wind Turbine (D-VAWT).
Figure 1.13 shows a top view of the turbine and a 3D CAD model to give a better idea of the
geometry and mechanism of the D-VAWT. It should be noted that the mechanism will not be

present in any simulations. It is shown here for illustration purposes only.

—_— S—

—

l

Lift

(@) ()
Figure 1.13: Example of D-VAWT (a) Top View (b) 3D CAD Model
1.5 Objectives

e Investigate the feasibility of the D-VAWT design for a single blade analysis using ANSYS
Fluent 14.5 [17].

¢ Develop methodology to specify the motion of a D-VAWT blade as conventional methods
for VAWT analysis would not directly apply for the current analysis.

e Perform a domain size, mesh convergence, turbulence model and y* study in 2D to

determine the most appropriate setup for this analysis as well as find the cheapest mesh

possible to be used for the 3D analysis.
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e Based on the 2D methodology investigation, 3D simulations are to be performed to get a
more accurate prediction of the turbine performance as 2D analysis has a tendency to
overestimate power coefficient values as 3D losses are not accounted for.

e Perform a preliminary parametric study of the D-VAWT in 2D as it is possible to use the
predicted behavior and trends for future designs of the D-VAWT. Investigation of the TSR
behavior of the original turbine as well as the turbine sensitivity to different incoming wind
angles, turbine axes spacing, number of blades, airfoil profile and blade mounting point are

to be performed.

1.6  Literature Review
In this section, the possible methods of analyzing a VAWT will be outlined followed by a detailed
review of current research with a focus on CFD modeling as it will be the tool of analysis in this

thesis.

1.6.1 Methods of VAWT Analysis
There are various methods to study the performance of a VAWT. The main two categories are to
use either experimental or numerical methods. The methods are summarized in Figure 1.14.
Experimental analysis is done in wind tunnels, while numerical analysis is done through modeling
of fluid phenomenon. Numerical models can be broken down to Computational Aerodynamics and
Computational Fluid Dynamics (CFD). Aerodynamic models are significantly faster than CFD
ones, but lack accuracy in predicting VAWT performance, especially when the turbine operates at
low TSRs. Aerodynamic models were previously the most common modelling method as the
resources needed to perform CFD simulation were too expensive; however with current
advancements in computational power, CFD simulations have become much more attractive. For
CFD simulations, the Navier-Stokes equations are discretized and solved, providing much more
accurate results, but the drawback is higher computation cost and time. Even in CFD, there are
various methods of modeling the flow; the most common for engineering applications is the
Reynolds Averaged Navier-Stokes (RANS) models with turbulence modeling as it is able to
predict VAWTSs’ performance with satisfactory accuracy. This will be the analysis method of
choice for this thesis as it provides enough accuracy with reasonable computational costs. The
other more accurate CFD models are the Eddy Simulations, where turbulence is now resolved and

only eddies below the grid size are modeled. Though Eddy Simulations are more accurate than
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RANS models, they require significantly higher computational cost. The Detached Eddy
Simulation (DES) is a hybrid model of the Large Eddy Simulation (LES) and the RANS models.
Finally, the most accurate and computationally expensive is the Direct Numerical Simulation
(DNS), where the Navier-Stokes equations are completely resolved without any modeling which
is the reason it requires tremendous computational cost as the mesh and time step needed are
extremely fine. Xin et al. [18] provide more details on most of the methods presented here with
relevant research done on Darrieus VAWTs. It should be noted that not all RANS models that exist

have been presented here, but only the commonly used ones for VAWT analysis.

Experimental flindiunzel
P Experiments
Single Streamtube Model
Particle Image Blade Element
Velocimetry Momentum (BEM) — | Multiple Streamtube Model
Models
Methods of Computational Double-Mutiple
VAWT Aerodynamics Vortex Model Streamtube Model
Analysis One-Equation
Cascade Model Spalart-Allmaras
Two-Equation
k-Epsilon
Reynolds-Averaged-
Numerical Navier-Stokes (RANS) Two-Equation
with Turbulence k-Omega
Modeling _
Two-Equation
SST k-Omega
Computational Four-Equation
Fluid Dynamics Transition SST
(CFD) - :
Large Eddy Simulation
Eddy Simulation (LES)
Models Detached Eddy Simulation
(DES)
Direct Numerical
Simulation (DNS)

Figure 1.14: Summary of Methods for VAWT Analysis

1.6.2 Current Research
This section focuses on presenting recent research mainly done on VAWTs using CFD, which will
constitute the basis of the methodology used during this thesis project. Though more focus will be

on the H-Rotor Darrieus (H-Darrieus), as the turbine studied in this thesis resembles it the most
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from a geometrical point of view. Interesting and relevant work on new innovative concept

turbines will also be presented.

1.6.2.1 New Turbine Concepts

Using a similar idea of extending the maximum power region of a VAWT, Ponta el al. [19, 20]
analyzed a Variable Geometry Oval-Trajectory (VGOT) Darrieus wind turbine using the double-
multiple streamtube model, where they showed a very small improvement in aerodynamic
efficiency over a classical H-Darrieus VAWT. They also showed that the turbine performance was

independent of the number of blades, but highly sensitive to the incoming wind direction.

A new concept turbine was investigated by Kinsey et al. [21-23], where it consists of a pair of
oscillating hydrofoils moving in a sinusoidal path. Kinsey et al. presented a computational
methodology in [21] that agreed very well with their experimental data shown in [23]. They used
ANSYS Fluent [17] to solve both 2D and 3D simulations of the unsteady Reynolds-Averaged-
Navier-Stokes (URANS) equations. After studying different turbulence models to compute the
turbine performance, they showed that the one-equation Spalart-Allmaras (SA) model performed
very similarly to the two-equation Shear-Stress Transport (SST) k-o model. To simulate the
oscillating motion, non-conformal sliding meshes were used inside of a dynamically moving mesh.
Sliding meshes are used for the simulation of the pitching motion, while the dynamic mesh is used
for the heaving motion. In [22], they showed it is possible to limit losses appearing in 3D
simulations, such as tip vortices, from their 2D prediction to about 10% with the use of endplates
and a blade aspect ratio larger than 10. Gauthier et al. [24] investigated the blockage effect on the
same oscillating-foils hydrokinetic turbine (OFHT) using the finite volume code CD-Adapco
STAR CCM + with the overset mesh technique. They showed that the increase in blockage effect
and extracted power are linearly related for up to 40% blockage as well as providing a correlation

factor to account for that said blockage effect.

1.6.2.2  CFD vs. Aerodynamic Models

Delafin et al. in [25] compared the performance of a rotor Darrieus turbine using 3D CFD
simulations of the SST k- model with other aerodynamic models, such as the double-multiple
streamtube and vortex models. They showed that the 3D simulations accurately predicted the

turbine behavior, while the aerodynamic models over predicted the power for all TSR values.
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1.6.2.3  Performance Improvement

Mohamed et al. [26] investigated 25 different airfoil profiles, using the SST k-® model in 2D, for
an H-Darrieus Configuration. The best airfoil boosted the turbine performance by 10% when
compared to the NACA 0018, which is a commonly used airfoil profile and is often used as a
baseline for comparison. Yamazaki et al. [27] showed a performance improvement in VAWTs
through the shape optimization of airfoil profiles by maximizing certain characteristics of the
airfoil. The shape optimization was performed using a Kriging response surface approach, then 2D
simulations were performed on the optimized shapes to quantify the improvement from the profile
optimization. Xiao et al. [28], using the realizable k-¢ model in 2D, studied the impact of fixed and

oscillating flaps and showed a performance improvement of 28%.

Lim et al. [29] and Chong et al. [30] performed experimental tests and 2D simulations, using the
SST k- model, to optimize an H-Darrieus VAWT using an omni-direction-guide-vane (ODGV).
They showed it improved the self-starting capability of the turbine by 182% and its performance

by 58% from the original configuration.

1.6.2.4  Study of H-Darrieus VAWTs

Gosselin et al. [31] studied the effects of various parameters for a 3 bladed H-Darrieus turbine.
They showed that for a turbine operating at high TSR values, the choice of turbulence model had
little effect on the turbine behavior predictions, while for low TSR values, significant differences
in behavior were found for different turbulence models. The result for the Cp can be seen in Figure
1.15 for a single blade analysis. They also showed that that the SA Strain/Vorticity based model
produced 10 times less turbulent viscosity than the SST k- and Transition SST models. Using the
SST k- with y*~ 1, they compared the turbine performance in 2D and 3D with blade aspect ratios
of 7 and 15. The power obtained in 3D for an aspect ratio of 7 and 15 are 41.8% and 69% of the
2D power, respectively. This shows how much 2D simulations overestimate the turbine
performance and that increasing the aspect ratio increases the turbine performance as the

aerodynamic losses such as tip vortices affect a smaller portion of the blade.
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Figure 1.15: Turbulence Modeling Behavior at High TSR (A=4.25) (Left) and Low TSR (1=2.55) (Right)
[31]

Balduzzi et al. [32] compiled a list of commonly used methodologies, including the selection of

the turbulence model, domain size, and cycle to cycle convergence criterion to simulate Darrieus

VAWTs in 2D. The summary of their findings is shown in Table 1.2. After performing their own

investigation, they recommend the SST k- model, y*~ 1, and most importantly to have a

convergence criterion for the torque variation from to cycle to cycle of less than 0.1%, instead of

the commonly used value of 1%. They found that a variation of 1% can continue for up to 10

cycles, leading to a large over estimation from the actual toque value.

Table 1.2: Comparative Analysis of the Literature Settings for 2D Unsteady Simulations of Darrieus Type
VAWTs [32]

Simulation settings

Turbulence Model Algorithm Azimuthal increment per Revolutions to convergence
timestep
Spalart-Allmaras [33] SIMPLE [38, 40, 42, 43] A9 < 05° [37, 45) rev <5 [38]
k-¢ Standard [34]
Realizable [35-38] 05° < A% < 1° [35, 36, 42] 5 <rev <10 [35, 36]
RNG [39, 40] Discretization scheme
k-t Standard [41] 1st order [40] 1° < A9 <2 [43] 10 <rev <15 [33,39,42,43]
SST [42,43]
SST-SAS [44] 2nd order  [34,37, 39,42, 43] Ag =2 [25,29] 15 <rev -
DES & LES [45]
Domain dimensions
Inlet Outlet 38,40, 44 Width Rotating region
Ly < 5D [38, 40, 44] L < 10D (38,40, 44] W < 5D [36,42, 43, 45) Deg < 1.2D [34]
5D <L, < 10D [36, 43, 45] 10D < L, < 20D [36, 45] 5D < W < 10D [38, 40, 41, 44] 1.2D < Dgg <1.5D [40, 44]
10D < Ly [35,37] 20D < L [35,37] 10D < W [35,37] 1.5D < Dre [35-37]
Mesh
i Number of nodes on airfoil Mesh size Mesh type
-1 [34,41, 42, 45] Ny < 200 [40] Ng <25 % 10° [34, 38, 40-43] Structured [42,45]
1<y+ <10 [36,39,44] 200< Ny < 2000 [44] 25 % 10° < Ng < 1.0 = 10°  [35,44] Unstructured [35-38, 40]
30 < y+ [38] 2000 < Ny [35,45] 1.0 = 10° < Ng [36,45] Unstructured with prismatic BL [33,43,44]

McNaughton et al. [46] compared the standard form of the SST k- with the SST k- with a

correction for low-Reynolds number effects. They tested the models, in 2D with a y* < 1, for a
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turbine operating at Reynolds number of 150,000. They showed an improvement in performance
prediction with the low Reynolds correction model. Lanzafame et al. [47] compared, in 2D with a
y* <1, the two-equation SST k- with the four-equation Transition SST model. The Transition
SST showed much better agreement with experimental results than the SST k-w; however, the
Transition SST model is more computationally expensive and required a series of tests to calibrate

the local correlation parameters with the experimental values in order to get accurate results.

Though 3D simulations are well known to provide more realistic performance as it is possible to
capture secondary flows, wing tip vortices and aerodynamic losses from structural components
such as the supporting arms and central shaft, the computational power and time needed are
significantly higher than that of 2D’s. For that reason, few simulations in literature are done in 3D.
Siddiqui et al. [48] compared a 2D Darrieus turbine performance’s predictions, using the realizable
k-¢ model, with 3D by simulating the support arm and central shaft. They found that 2D can
overestimate the actual turbine performance by up to 32%. Castelli et al. [35, 49] first performed
full 3D flow simulations, using the Realizable k-& model, to find the loads on the blades, followed
by a structural analysis using a Finite Element Method (FEM) code to find the stresses and
deformation on the blades. Howell et al. [39] performed 2D and 3D simulations at low Reynolds
number and found that 2D largely overestimated the extracted power, while 3D showed reasonable
agreement with their experimental results. Rossetti and Pavesi [44] investigated the self-starting
capabilities of H-Darrieus VAWTs using BEM, 2D and 3D methods at TSR = 1. They found that
effects only captured in the 3D simulations, such as secondary flow and tip vortices, had a positive

effect on start-up.

Ferreira et al. [45] compared the simulation results in 2D, for turbine cases where dynamic stall
occurred, with experimental results from Particle Image Velocimetry (PIV). They found the model
that agreed the most with their experimental results was the DES model, followed by the LES
model, and finally the two URANS models, the SA and the k-¢ model. These results were expected
as the Eddy models are known to be more accurate but their drawbacks are the higher

computational costs needed.

1.6.2.5  Miscellaneous Studies

Salim et al. [50] investigated the y* strategy for turbulent flow for a few simple cases. They

suggested that resolving the log-law layer was sufficiently accurate (30 < y* < 60) without the
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need to fully resolve the viscous sublayer (y* < 5) and to avoid resolving the buffer region (5 <

y* <30) as neither wall functions nor near-wall modelling accounted for it accurately.

Almohammadi et al. [51] investigated three mesh independency techniques: the General
Richardson Extrapolation (GRE), Grid Convergence Index (GCI) and the fitting method. The
study was performed in 2D for an H-Darrieus VAWT using the Re-Normalization Group (RNG)

k-¢ and Transition SST models.

Lee et al. [52] performed experiments on airfoils undergoing pure heaving, pitching, and combined
motions at Reynolds number of 36,000 to better understand the behavior of unsteady boundary
layers on airfoils. With accurate surface pressure measurements, Smoke-wire flow visualization
and typical data of lift, drag and moment, CFD validation can be performed with a high level of
accuracy because of the broad spectrum of data available for comparison. The airfoil performance
was captured during stall and hysteresis as well, providing a complete range for comparison

purposes.

1.7 Thesis Outline

This section presents the thesis structure and a brief description of the key points of each chapter.

Chapter 2: The equations for the Navier-Stokes and turbulence models used are presented. The D-
VAWT geometrical characteristics and some newly defined parameters are introduced, which are
needed for the current analysis. The chapter concludes with a brief theoretical analysis which helps

to highlight the potential of the D-VAWT.

Chapter 3: The development and validation of the methodology used for the D-VAWT analysis is
presented. The domain size, blade motion prescription, mesh convergence, and turbulence model
study with different y* strategies are investigated. The chapter concludes with a case study, using

the developed methodology, of a static airfoil in 2D and compared with experimental results

Chapter 4: 3D simulations based on the methodology developed in 2D for a single blade with
aspect ratios of 5 and 15 are presented. Using two turbulence models with different y* strategies,
the acquisition of an upper and lower bound value for the Cp estimation for a single blade is

presented. Lastly, a brief discussion on the results and performance of the D-VAWT.
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Chapter 5: A parametric study in 2D is performed to better understand the behavior of the D-
VAWT. The simulations of different TSRs for the original single blade turbine will be first
presented. The turbine sensitivity to the incoming wind direction is studied by investigating a range
of incoming inlet angles. Next is the investigation of different ratio values of the distance between
the two axes to the radius of the turbine, followed by simulating a turbine with two blades, a turbine

with a cambered airfoil and finally simulating a different blade mounting point.
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CHAPTER 2: METHODOLOGY CONSIDERATIONS

In this chapter, the equations for the Navier-Stokes are presented, followed by the equations
for the three turbulence models used in this thesis which are: the one-equation Spalart-Allmaras,
the two-equation SST k-® and the four-equation Transition SST models. Next will be the wall
treatment method used with all three turbulence models. The D-VAWT geometry and parameters
will be presented followed by the theoretical analysis for the estimation of the D-VAWT’s

performance.

2.1 Governing Equations

CFD simulations are performed by solving the discretized Navier-Stokes equations. However, this
can be extremely expensive if one wishes to solve the complete Navier-Stokes through DNS
simulations. Instead, the time averaged equations, named Reynolds Averaged Navier-Stokes

(RANS), are solved, which offers enough accuracy for most engineering applications.

Typically for VAWT analysis, the flow is assumed to be incompressible as it simplifies the
equations without loss of accuracy. The strong formulation of the incompressible and unsteady
Navier-Stokes equations for Newtonian fluids are:

Vi=0 (2.1)

—_

Ju IR -
P53 +p(U.V)u=-Vp+uViu+ f (2.2)
where u is the velocity vector, u is dynamic viscosity and f is body forces.

The instantaneous flow fields such as velocity and pressure are decomposed into mean and

fluctuating components such as

u =u + Y (2.3)
p=p+trp (2.4)
where u; and p are the instantaneous velocity and pressure components, u; and p are the mean
velocity and pressure components, and u; and p' are the fluctuating velocity and pressure
components. The fluctuating and mean velocity and pressure components vary both in time and

space. The subscript i = 1, 2 and 3 refers to the each of the components in the x, y, and z direction,
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respectively. Using the above mentioned decomposition and some mathematical manipulation, the

RANS equation in conservative form are given by the following:

A (2.5)
axi '
aU; 0 — )
Pt pa—xj(UjUi +uu,’) = T + a—xj(zusij) (2.6)

where —uwju; is the average of the product of the velocity fluctuations in the i and j
directions, —u;u; = 7}, called the specific Reynolds Stress tensor, U; is the mean velocity in the

{ direction, and §;; is the strain rate tensor

U_Z 6x] 6xi ()

Based on the Boussinesq approximation, the specific Reynolds Stress tensor can be express as a

product of eddy viscosity,v;, and local mean flow strain rate.

—— ou av
—pYyuU, = pvt(@ + a) (2.8)

After simplifying the Navier-Stokes equation in conservation form, we obtain the more common
expression for the RANS equation.
aU; aU; P 0 N

porte T —a—xi"‘a—Xj(ZMSij—Pu]’u{) (2.9)
In the above form, there are more unknown variables than equations to solve, meaning the system
is not yet closed. The task of turbulence modelling is to find enough equations to solve all the
unknowns and solve for the eddy viscosity variable, which relates the RANS equation with the
turbulence model equations through the Boussinesq approximation. In the next sub-sections, the

equations for each of the turbulence models used in this thesis are presented.

2.2 Turbulence Modelling

2.2.1 Spalart-Allmaras
The first model is the one-equation Spalart-Allmaras (SA) model [53, 54] with Strain/Vorticity-
Based Production. It should be noted that the Spalart-Allmaras Strain/Vorticity-Based Production

is referred to as SA Strain in all graphs and tables in this thesis and in the text it is referred to as
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SA Strain/Vorticity. This model was intended for aerospace application, which makes it a good
candidate for a Darrieus type VAWT simulations, since the blades have an airfoil shape for their

profile.

The governing equation for the SA model is represented by [55]:

9 9 1[0 v 97 \?2
G e 2 hon) = il 5Y i I . 2.10
g PP + 5y (P7w) = Gy + laxi {(” +p7) axi} * Coap (ax-) l h+s o @10

l
Where G, is the production term, Y,, is the dissipation term, v is viscosity, g5 and C,,, are constants,
and Sy is a source term. The transport variable, V, is equivalent to the turbulent kinematic viscosity,

specifically for the near-wall region. The turbulent eddy viscosity is computed by the following:

He = PVfi (2.11)

where the three closure functions are given by:

3

X
for=———"7 (2.12)
vl Xg + CEl
X
=1--—"=
fro=1-fn (2.13)
6
1+cgs
fo=g <—> (2.14)
v g°+cos
The production term is given by the following equation:
Gy = Cp1pSV (2.15)
where
~ v
S=S+va2 (216)

The deformation tensor, S, incorporates both, the strain and vorticity tensors which is represented

by:

S = Q| + Cproa - min(0,[Si;| — |Q4;]) (2.17)

where

Cproa = 2.0 (2.18), |94]= /zaijﬂij (2.19), S| = /zsijsi,- (2.20)

with the mean strain rate, S;; is defined as:
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5 = 224 4 221
U_Z axi ax] ( )

The two-equation Shear-Stress Transport (SST) k-® [56, 57] model has a similar form to the

2.2.2 Shear-Stress Transport k-®

standard k- model. It combines the benefits of the k-¢ model in free flow with the advantages of

the standard k-o for near wall flows. The governing equations are given by the following [55]:

d(pk) d(pky;) @ ok\
=—|(Ty=— - 2.22
P 0%, ox, T 7% + G + —Y + Sk (2.22)
and
d(pw) a(pwuj) 0 dw
= — _— — 2.23
FTE 5%, 5%, Ty 2%, + G, — Yy + Dy + S, (2.23)

where Gy, is the generation of turbulence kinetic energy due to the mean velocity gradients, G,, is
the generation of w, Y, and Y,, are the dissipation of k and w due to turbulence, D, is the cross
diffusion term, and S, and S, are the defined source terms given by the user. [}, and I, are the

effective diffusivities of k and w, and are calculating using the following equations:

U

I =p+— (2.24)
Ok
u

T, =u+— (2.25)
O-W

where o, and g,, are the turbulent Prandle numbers for k and w, respectively. u; is the turbulent
viscosity called by the following:

pk 1

He = Zm [ 1 SF, (2.26)
ax a*’ aw

where S is the Strain rate magnitude. The rest of the equations and closure variable are available

in ANSYS Fluent’s Theory guide [55].

2.2.3 Transition Shear-Stress Transport
The last turbulence model is the four-equation Transition SST model [58, 59], which is based on

coupling the SST k-o equation with another two transport equations. One transport equation for
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the intermittency, y, and the other for the transition onset criteria, which is represented in terms of

momentum-thickness Reynolds number, Réy.

The transport equation for intermittency is given by [55]:

a(py)  9(pUyy) 0 ue) 9y
o _ 9 He) 9 227
at + 0x; v1 =Byt P =Bt 0x; ut o, ) 0x; (2.27)

where the transition sources are defined as:

Pyl = CalFlengthpS[yFonset]Cy3 (2.28)
Ey1 = CerPpry (2.29)

where S is the strain rate magnitude, Fyopq:p, is an empirical correlation that controls the length of
the transition region, and C,; and C,; are equal to 2 and 1, respectively. The

destruction/relaminarization sources are defined as follows:

Pyy = Ca2pQyFrurp (2.30)
Ey1 = CeoPyay (2.31)

where () is the vorticity magnitude.

The transport equation for the transition momentum-thickness Reynolds number, Réy is

d(pRég,) 0(pU;Réq,) a ORéy,
=P — 2.32
where the source term is defined as:
p ~
Poe = coc +7 (Reg; — Rég,) (1.0 — Fy,) (2.33)
The transition model interacts with SST k- turbulence model by modification of the k-equation
as follows:
d(pk)  O0(pku) 0 dk P s
+ =——(Te=—) + G =Y +5 2.34
ot dx;  0x; \ “ox; A (234)
where

Gk = VersGur (2.35)
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Y, = min(max(yeff, 0.1),1.0) Y, (2.36)

where G, and Y, are the original production and destruction terms from the SST k-m model.

The details of the equations can be found in Fluent’s theory guide [55]. The advantage of this
model is that it is capable of accurately predicting where and when the flow will change from
laminar to transitional and turbulent flow and calculating the flow accordingly. This can be
especially important for turbine simulations since depending on the blade position, the flow does
indeed change from laminar to turbulent. This happens mainly in the lower section during the
turbine rotation, where the blade sees a reduction in the flow speed. This is why this model is
expected to provide the most accurate results. This model requires y* < 5 to capture the transition

onset correctly; however, ideally, the y* should be less than 1.

2.3 Wall Treatment

Figure 2.1 shows the law of the wall, which is the velocity profile in the near-wall region based on
a semi-empirical formula. One can see that profile is composed of three regions in the inner layer,
which are dictated by the dimensionless distance, y*. The three regions are the viscous sublayer,
buffer region and log law region. The y™ is defined as
+ _ PUy
U

where u; is the friction velocity and y is the normal distance from the wall.

(2.37)

I
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I In
y"=5 y*=60 v

Figure 2.1: Law of the Wall [55]
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There are two common approaches of simulating the flow near walls. Wall functions are semi-
empirical formulas that bridge the flow between the highly viscous flow in the boundary layer and
the free stream flow. The typical range for the smallest element is at y* > 30, where the flow and
its properties below that said y* are calculated with the wall functions. If a mesh with elements
smaller that y* of 15 is used, the flow deteriorates and results in unbound errors [55]. The second
approach resolves the flow all the way to the wall, including the viscous sublayer. This obviously
requires a much finer mesh to capture the flow details, but typically has higher accuracy in its flow

prediction.

For all simulations performed in this thesis, the Enhanced Wall Treatment (EWT) is used, which
is the default wall treatment, in Fluent, for the three previously presented turbulence models. The
Enhanced Wall function is versatile in its use since it combines the behavior of the two previously
mentioned approaches. It allows the use of coarse meshes, where the flow will be resolved to the
smallest element, and below that said smallest element, the wall function will take over and
approximate the effects. Having said that, if the mesh is fine enough (below y* < 1), then the flow
will be completely resolved without the wall function being activated. EWT performances are thus

considered to be independent of the y+ .

2.4 Original Turbine Geometry

As mentioned before, the idea of the D-VAWT lies in extending the regions where the most power
is extracted from a conventional H-Darrieus type VAWT. The D-VAWT’s blade path and region
nomenclature are shown in Figure 2.2, where the axes spacing, L, is the distance between the two
axes of rotation and R is the radius of rotation. The D-VAWT’s path is composed of four regions:
Rotational Region 1, Upstream Translational Region, Rotation Region 2, and Downstream
Translational Region. From the same figure, one can also see the blade starting point. The original

dimensions of the investigated turbine are presented in Table 2.1.

For the initial analysis, a ratio of L/R is set as 4. Further investigation will be needed to find the
optimal ratio of L/R. Also, it should be noted that a D-VAWT with only a single blade is initially
investigated as the mesh and motion methodology needed for more than one blade is more complex
and will greatly increase the simulation time, while the initial purpose is to first investigate the

methodology and feasibility of this new design. The selected airfoil profile is a NACA 0018 for
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its high lift characteristics. The mounting point of the blade is at 1/3 C away from the leading edge;

however this will also need investigation to find whether it is the optimal mounting point.
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Figure 2.2: Top View of a D-VAWT Path
Table 2.1: D-VAWT Geometrical Characteristics
D-VAWT Characteristics
Axes Spacing, L 32m
Chord, C 0.4m
Airfoil Profile NACA 0018
Radius, R 0.8m
L/R Ratio 4
Blade Aspect Ratio, AR=h/C Sand 15
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2.5 Parameters for the D-VAWT

Based on their original definitions, some of the previously mentioned parameters are modified to
be used appropriately for a D-VAWT and others are newly defined. Since the equation for the TSR
is the same for VAWTs and D-VAWTs, it will not be presented again here.

2.5.1 Swept Area
The swept area is defined as the projected area that is normal to the incoming wind. For the D-

VAWT case, the swept area becomes a function of the incoming wind direction.

A= (Lcos(p)+2R)h (2.38)
Where h is the height of the turbine, which is equal to unity for a 2-D analysis, and ¢ is the
incoming incident wind angle, where ¢ = 0° is for the case shown in Figure 2.2 with the flow

normal to the longitudinal side of the turbine or the line connecting the two axes (L).

2.5.2 Coefficient of Power
The coefficient of power is defined as the ratio of extracted power to the available power in the
incoming wind. The typical method to calculate the Cp for a VAWT is based on the torque
produced by the blade. However, since the D-VAWT blade follows a non-circular path, it is not

appropriate to use torque in regions where the blade is not rotating.

Two methods are described here to calculate the coefficient of power with their procedures
summarized in Figure 2.3. The Cp, rorce (force based method) is obtained by using the forces on the
blade in the x and y direction calculated from Fluent, and then finding the power producing force
which will be the tangential force on the blade. As for the Cp, Torque (torque based method), it is
obtained from the torque on the blade at the appropriate moment center since the center of the
blade moment center changes throughout the cycle. To find the moment center, a scheme variable
is defined in Fluent that is updated at each time step using a User Defined Function (UDF). The

moment center is updated to follow the motion of the blade between the two axes.

Neither methods alone correctly represents the actual Cp performance of a D-VAWT, however,
the combination of both is necessary to do so. Similar to regular VAWTs, in the regions where the
blade is rotating, the Cp, Torque 1S used since it is the torque that produces power in those regions. In
the regions where the blade moves in a straight path, the Cp, rorce is used as the torque would not

be appropriate to use in those sections since part of the torque would be seen as stresses on the
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mechanism and would not help produce power. The reason the Cp, Force is not used for the rotating
regions is because the location where the forces apply on the blade (center of pressure) is needed
to calculate the turbine torque (power) correctly, which is difficult to obtain during the simulation

for all blade positions.

. Using azimuthal Calculate Power P
Find (flgr(;ﬁﬁ? ;) lade ——| angle, find tangential |—— Cp, Force = T 5.
X ¥ force, Ft P = Ft X Vblade ijOO A
(a)
Find torque Calculate Power P
Update moment C -
. — roduced by the — P, Torque
center using UDF p blade, 1}: P=TXw %onc;”A
(b)

Figure 2.3: Steps for Coefficient of Power Calculation (a) Force Based, (b) Torque Based

The resultant Cp curve obtained from the combination of the two methods can be seen in Figure

2.4 and the equation to calculate the coefficient of power for a D-VAWT during one cycle becomes

P TRotating w + FTranslating Vblade _
CP = 1 3 = 1 3 - CP, Torque + CP, Force (239)

where TRotating 1S the sum of the torque produced when the blade is rotating, Frranslating 1S the sum of
the tangential force produced when the blade is translating for a single cycle, Cp, Torque is the
coefficient of power for the rotational regions, and Cp, rorce 1S the coefficient of power for the

translational regions.
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Normalized Time (t/T)

Figure 2.4: Instantaneous Coefficient of Power Curve Based on the Combination of both the Force and
Torque Based Methods

2.53 Solidity

The solidity is a relation between the total blade areas to the projected turbine area.

N, C

o =

2.40
R+l 240)

Where Nb is the number of blades.
2.5.4 Axis Eccentricity Factor

The newly defined parameter for D-VAWTs is the Axis Eccentricity Factor (AEF), which dictates

the distance between the two axes. It is defined as the ratio of the axes spacing to the radius.

e = AEF = — (2.41)

This parameter will greatly influence the behavior and performance of the turbine and will need
further investigation. A value of zero would mean that the two axes overlap and the resultant is a

circular shape, which is that of a conventional VAWT.
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2.6 Theoretical Power Coefficient in Upstream Translational Region
Before performing any flow simulations, an approximate calculation is done to have a baseline of
comparison with the flow simulations in 2D. This estimation is done only for the upstream

translational region since it is the part of most interest for this turbine.

The equations used to calculate the theoretical Cp are presented in sequence below, while the
results are summarized in Table 2.2. The first step in deciding the operating conditions of the D-
VAWT is to choose an angle of attack, where the NACA 0018 would produce a high lift to drag
ratio. The values of lift and drag for the NACA 0018 are taken from [60]. Based on eq. (2.42), the
angle of attack also dictates the TSR of the turbine. For the selected angle of attack at Reynolds
number of 500,000, the blade would have a TSR of 4.5. The calculations are performed for an
incoming wind speed of 4 m/s, which is a typical value for urban applications.

« = tan~! G) (2.42)

Where «a is the angle of attack of the blade and A is the tip speed ratio. This equation relates the

angle of attack and the TSR and it only applies when the blade is normal to the wind direction.

V, R
blade = w_ g Vblade = AUOO (243)

1=
Uy Uy

Where V},,4. 1s the airfoil velocity, also equal to wR, and Uy, is the free stream velocity.

V= ,/Vbladez + Uy’ (2.44)

Where V is the velocity seen by the blade.

1 1
F; = Lsin(a) — D cos(a) = ECLpVZAAF sin(a) — ECDpVZAAF cos(a) (2.45)

Where F; is the tangential force, along the chord of the blade, that will be producing power, L and
D are the lift and drag forces, C; and Cj, are the coefficients of lift and drag for the respective angle

of attack, and A4y = C h, is the airfoil planform area.

P = Fi Vpiage (2.46)
Where P is the power produced. To calculate the Cp, Eq. (1.2) is used, where the density of air is
1.225 Kg/m®.
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Table 2.2: Summary of Theoretical Results

Theoretical Results

Angle of attack in Translational Region, « [deg] 12.53
Tip Speed Ratio, 4 4.5
Chosen Incoming Wind Speed, U, [m/s] 4
Blade Velocity, Vplage [m/s] 18
Velocity seen by blade, V [m/s] 18.44
Coefficient of Lift, C; at a [60] 0.961
Coefficient of Drag, Cp at a [60] 0.0323
Tangential Force, F; [N] 14.74
Power Produced, P [W] 265.3
Coefficient of Power, Cp, Force 1.41

As seen from Table 2.2, the expected Cp to be produced in the upstream translational region is
1.41, which is very high for a wind turbine considering that the highest average Cp per cycle that
conventional VAWTs can draw is between 0.2 and 0.4. For this reason, extending the translational
region should help increase the overall aerodynamic efficiency of Darrieus type VAWTs. It should
be noted that the predicted value should only be compared with that of the 2D simulations, since

the values for the coefficient of lift and drag are that of an “infinitely” long airfoil.

2.7  Analysis Milestones

Figure 2.5 summarizes the approach taken in this thesis to validate the methodology and analyze

the D-VAWT.
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Figure 2.5: Milestones for the CFD Analysis of the D-VAWT
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CHAPTER 3: METHODOLOGY VALIDATION IN 2D

Our first simulations performed on the D-VAWT [61] served as the initial proof of concept.
Those said results will not be presented here as they were obtained with an initial methodology,
which was not yet validated at the time. However, it served as the initial proof of concept of the

D-VAWT design.

Because of the large number of existing methodologies used for VAWT analysis, the lack
of consistency, and the fact that the D-VAWT is a new turbine that has not never been analyzed
with CFD, the methodologies found in the literature review are used only as an initial guideline.
This chapter focuses on the validation of the chosen methodology through CFD validation
techniques (domain size, different motion prescription techniques, mesh and time convergence,

turbulence model study) as well as validation through replication of an experimental case study.

3.1 Numerical Setup
The analysis of the D-VAWT is performed through CFD means using the finite-volume
commercial code ANSYS Fluent 14.5 [17] to solve the URANS equations. Pressure based transient

simulation is used to solve the flow. The turbulence model constants are left as default for all

turbulence models used. The value for the density of air, p, is set to 1.225 % and the dynamic

viscosity, 4, is 1.7894 x 1075 =<,

The SIMPLE (Semi-Implicit Method for the Pressure Linked Equations) algorithm is employed
for the pressure-velocity coupling. The SIMPLE algorithm uses a relationship between velocity
and pressure corrections to enforce mass conservation and to obtain the pressure field. The
SIMPLE algorithm is much more commonly used for VAWT analysis as seen in the literature
review when compared to the Pressure Implicit with Splitting of Operators (PISO) algorithm. The
PISO algorithm is typically used for transient simulations or for meshes with higher than average

element skewness; however, the SIMPLE algorithm is more robust in nature.

For the spatial discretization, the pressure is calculated using a second order scheme, while the
momentum and all turbulent properties formulations are calculated using second order upwind

schemes. Gradients of solution variables are required in order to evaluate diffusive fluxes, velocity
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derivatives, and for higher-order discretization schemes. The gradients of solution variables at cell
centers are determined using the Least-Squares Cell-Based method. The gradients of solution
variables at faces are computed using multi-dimensional Taylor series expansion. As for the
transient formulation, a first order implicit scheme is required due to the limitations imposed by
Fluent while the dynamic mesh capabilities are active. The dynamic mesh is needed to simulate
the unconventional blade path of the D-VAWT. Fluent’s default values for the under-relaxation

factors are used.

All simulations are performed with an absolute convergence criterion of 107 for the continuity,
velocity components and all turbulent properties. Though a convergence criterion of 10 was
tested, the results were near identical with the advantage of having lower computational time. The
size of the time step is At = 0.5585ms or about one thousandth of a period (T/1136), where T is

the period. The steps taken to select the time step are outlined next.

First, it was decided to have 500 time steps if the blade was to do one full rotation in a circular
path, or equivalently, the blade moves about 360°/(500 time steps) = 0.72° per time step. Based on
the angular velocity of 22.5 rad/s (obtained from TSR = 4.5 and Ux= 4 m/s), the time step is At =

21
22.5%X500

= 0.5585ms. With this value, the number of time steps it takes to complete one side of the

translational region equals to = 318 time steps and the total number of time steps to

Vblade % At

complete a full cycle of a D-VAWT is 500 + 318 x 2 = 1136.

For the boundary conditions, shown in Figure 3.1, uniform and constant velocity inlets are defined
for the left, top and bottom boundaries with incoming wind speeds of 4m/s, which is a typical wind
speed value for urban applications. The right boundary is defined with a pressure outlet condition.
The incoming turbulent boundary conditions parameters are defined with a turbulent intensity of

5% and a turbulent viscosity ratio% =5, where the kinematic viscosity, v, of air is 1.4607 X

1075 mTZ As for the blade boundary condition, a no-slip condition is applied. All cases use the

standard initialization method based on the inlet condition values.
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Figure 3.1: Initial Domain with Boundary Conditions

3.2 Initial Domain

The domain, based on the initial simulation of the D-VAWT in [61], is shown in Figure 3.1 with
a closer view of the rotating domain and refinement region around the blade shown in Figure 3.2.
The rotating domain diameter is twice the diameter of the D-VAWT and the outer domain is a

square with sides equal to 100 times the blade chord.

Figure 3.2: View of the Rotating Domain and Blade Refinement Region
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3.3 Investigation of Domain size

The domain size and motion prescription study were performed using the one-equation SA
Strain/Vorticity turbulence model with a y* ~ 30 as it was seen from literature that for high TSR
values, the choice of model should have little effect on the results. The purpose of this test was to
determine the smallest possible domain size that would not affect the results. The mesh used in
this study was finer than needed, which was only realized after the mesh convergence study. The
domain contained 135,000 elements, mainly focused around the airfoil. The summary of the results
and domain sizes tested are shown in Table 3.1, where it can be seen that changing the domain
from 150C to 250C resulted in a change of less than 2%. Figure 3.3 shows the Cp in the last cycle
for all three cases, where the difference in Cp can be mainly seen the translational part of the blade
path. It was then decided to use a domain of 150C for the rest of the simulations as it provided
enough accuracy for the current objectives. For all 2D simulations presented in this thesis, all

elements across any interface are matched in size to reduce interpolation errors.

Table 3.1: Results Summary for Domain Size Study

C (1)
Static Deforming Translating  Average Cp in ) » %
P . s Difference to
Domain Size Domain Size last 3 cycles )
Previous Case
100 C 75 C 0.523 -
150 C 75 C 0.504 3.77
250 C 100 C 0.494 2
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Figure 3.3: Instantaneous Cp vs. Normalized Time of the 10th Cycle for Different Domain Sizes

3.4 Different Motion Methodology

In this section, three possible methods to specify the motion of the blades are presented. The
following section presents the description of each of those methods with the comparison of the
results presented at the end. For all motion types of the D-VAWT blade, the motion is prescribed
in Fluent through the use of UDFs. A domain size of 150 C is used for all three cases based on the

domain size investigation.

3.4.1 Motion Type 1
For this motion type, the domain is composed of three sub-domains: a rotating domain, a
translating domain, and a static deforming domain. In Figure 3.4, the three domains, their
interfaces, and the motion of each are presented. A sliding mesh approach is employed for the
motion of the rotational domain to allow the blade to rotate at both ends of the path. The translating
domain is needed to simulate the translational motion by moving up and down perpendicularly to
the flow. The outer static deforming domain acts as a buffer region where the elements would
deform during the time where the translating domain is moving. The mesh used for this simulation
can be seen in Figure 3.5 and Figure 3.6, where higher refinement is seen around and behind the

tail of the blade. It is the same mesh used for the domain size study.
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Figure 3.4: Type 1 Motion lllustration
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Figure 3.5: Mesh Used for Type 1 and 2 Motions
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Figure 3.6: Rotating Domain Mesh for Type 1 and 2 Motions
3.4.2 Motion Type 2

The second type of motion is very similar to type 1, except the previously named static deforming
domain moves along with the translating domain as one domain with no relative motion in between
them. In this type of motion, there is no element deformation. The representation of the motion is
shown in Figure 3.7. The same domain and mesh as for type 1 motion are used as to only have the
type of motion different between the two cases and directly compare them. Special care is required
when applying the boundary condition for the inlets and outlet, where they had to be specified to

be independent of the mesh motion.

3.4.1 Motion Type 3
The last type of motion is presented here, and is significantly different from the previous two. The
domain is composed of three sub-domains: a dynamic domain, a deforming domain, and a static
domain. The representation of the domain motion is shown in Figure 3.8. In this case, the dynamic
domain is the smallest of the domains and contains inside it the blade that moves in the D-VAWT
trajectory, both rotating and translating accordingly. As the dynamic mesh moves, the deforming
domain will have its elements both deformed and re-meshed during the motion of the blade. The
static domain remains unchanged during the simulation in this case. The starting mesh used for

this simulation can be seen in Figure 3.9, Figure 3.10, and Figure 3.11.
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Figure 3.7: Type 2 Motion Illustration

Deforming Domain

Static Domain

Figure 3.8: Type 3 Motion lllustration
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Figure 3.9: Overview of Mesh Used for Type 3 Motion

Figure 3.10: Deforming Domain Mesh View for Type 3 Motion
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Figure 3.11: Dynamic Domain Mesh View for Type 3 Motion

3.4.2 Results and Discussion
The results for the average Cp are shown in Table 3.2 and the instantaneous Cp over the last cycle
is shown in Figure 3.12. Type 3 predicts a slightly lower value in the translational and a slight
deviation is noticed at the normalized time of 0.07. These differences could be due to the fact that
the starting mesh was not identical to the type 1 and 2 meshes. Another reason for the possible
difference is that during the simulation, there is constant re-meshing occurring, so the final mesh

would be different that the one shown at the beginning of the simulation.

Table 3.2: Comparison of Results for Different Motion Types

Average Cpin  Cp % Difference to

Motion Type Last 3 Cycles Type 1 Application
1 0.504 - Single Blade in 2D
2 0.506 0.4 Single Blade in 3D
3 0.499 1 Multi-Blade in 2D & 3D
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Figure 3.12: Instantaneous Cp versus Normalized Time of the 10th Cycle for Motion Types

Based on the Cp, the results for the three motion types still came to be very close to each other.
The advantage of type 1 and 2 motions are shorter simulation time when compared to type 3 since
no re-meshing occurs during the simulation; however, both type 1 and type 2 are limited to only
having a single blade in the simulation. With type 3 motion, it is possible to have as many blades
as needed in the simulation. However, the simulation time is longer and due to the fact that the
mesh deforms and re-meshes throughout the simulation, additional interpolation errors are
introduced. For the remainder of the 2D investigation, type 1 is used, where possible, for a single
blade analysis as it is among the simplest and avoids any potential problems or errors from having
the domain boundaries move. Type 2 will be used for 3D simulations to maintain the speed of the
calculation but more importantly is to avoid certain complication with Fluent in 3D when using

Type 1 motion. Type 3 will only be used for the parametric study of a multi-blade turbine.

3.5 Mesh Convergence Study using SST k-® Model with y*~1

Previously, a mesh of 135,000 elements was used for the initial testing of the turbine concept. This
mesh was based on the finest mesh of other’s simulations with the same Reynolds number of
500,000 [21]. However, at this point, it was necessary to perform a grid convergence study to
determine the necessity of using either a coarser more efficient mesh or perhaps a more refined
mesh to more accurately estimate the D-VAWT performance. In this section, a mesh independency

study is performed to determine the most efficient mesh. Since it is necessary to perform 3D
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simulations, having the coarsest mesh possible in 2D will significantly reduce the element count
in 3D and improve computational time. For this study, the SST k-o turbulence model with low
Reynolds number correction is used with a y* ~ 1 as it known to have higher accuracy, especially
since the entire boundary layer is resolved instead of being approximated with a wall function. In
section 3.6, a turbulence model comparison is done with the selected mesh from this study to

determine the effect of turbulence model choice on the results.

3.5.1 Meshes
Based on the previous investigation, type 1 motion is used with the domain sizes of 150C, 75C
and 2D for the static, translating and rotating domains, respectively. Three meshes are employed
for this study. An initial mesh of 45,000 elements, named Mesh 1, is used for the coarsest case.
Instead of doing two levels of mesh refinement with a factor of 1.35, as recommend by Roache
[62] based on the Grid Convergence Index (GCI) method developed from the theory of the
generalized Richardson Extrapolation, the intermediate mesh was skipped. The finest mesh is
refined with a factor of 2 or ~1.42. However, two meshes are tested (Mesh 2 and 3) at this
refinement factor of 2 relative to the starting mesh (Mesh 1), with the difference being Mesh 2
excludes the refinement of the boundary layer elements. This approach makes it possible to
determine the refinement effect from the mesh outside the boundary layer and then the effect of
the boundary layer refinement separately. The mesh details are summarized in Table 3.3 and the
meshes used can be seen in Figure 3.13 to Figure 3.18. The elements inside the rotating domain
are now quadrilateral elements instead of triangular for two reasons. The first and most important
reason is that in case the boundary layer flow does go beyond the boundary layer elements, quad
elements are much better at capturing it. Also, for the same sized elements, quad elements fill the
mesh with a smaller number of total elements when compared to triangular ones. One interesting
technique used for the generation of the inflation layer can be seen in the trailing edge view of
Figure 3.15, where one can see that the trailing edge is rounded and not included in the inflation
layer. Typically, the inflation layer encapsulates the entire airfoil profile, however, this technique
allows for much higher overall element quality for the boundary layer elements as it avoids

stretching the boundary layer elements to have them meet at the tailing edge.
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Table 3.3: Details of Each Mesh Used for Mesh Study

Mesh 1 Mesh 2 Mesh 3
Element Size in Rotating Domain 0.02C 0.01C 0.01C
Element Size in Refinement Region 0.2C 0.1C 0.1C
Number of Nodes on Airfoil 500 500 1000
y* ~1 ~1 ~1

First Layer Height in Boundary Layer 7.5%10” C 7.5%10” C 7.5x10° C

Number of Boundary Layer Elements 50 50 85
Boundary Layer Growth Rate 1.1 1.1 1.05
Total Number of Elements 45K 72K 133K

Figure 3.13: Rotating Domain Mesh View for Mesh 1
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Figure 3.14: Refinement Region Mesh Around Blade for Mesh 1

Figure 3.15: Boundary Layer Views for Mesh I at Leading Edge (Top), Mid-Chord (Middle), and
Trailing Edge (Bottom)
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Figure 3.16: Rotating Domain Mesh View for Mesh 2

Figure 3.17: Refinement Region Mesh Around Blade for Mesh 2

Figure 3.18: Boundary Layer View for Mesh 3
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3.5.2 Results and Discussion
All simulations performed in 2D are now run for 15 cycles. Even though at the 10" cycle the cycle
to cycle convergence was only less than 1%, the Cp was still dropping. However, after the 15%
cycle, the Cp only changed by about 0.01%, thus reaching satisfactory convergence. The
convergence of the average Cp per cycle for Mesh 1 can be seen in Figure 3.19. The same trend is
noticed for all the other cases. Therefore for 2D simulations, 15 cycles is sufficient and the last

three cycles are averaged to be used as point of comparison.

1.00
0.90

0.80

o 0.70
|®)]

0.60

—o— oo

0639
0.621
0611 0.600 0595 0.590 0.584 0.583 0.579 0.577 0.577

0.50
0.40

0.30
0 2 4 6 8 10 12 14 16
Cycle

Figure 3.19: Average Cycle Cp Convergence Plot for Mesh 1

Table 3.4 shows the results from the mesh convergence study, where the percent difference from
the original mesh (Mesh 1) is presented. Even comparing the coarsest mesh (Mesh 1) with the
finest (Mesh 3) with the finer time step, the difference between them is less than 1%. In Figure
3.20, it can be seen that the only small differences that do appear are all near peak power positions,
but the same exact behavior is noticed for all of them. Based on this result, the coarsest mesh and
time step size are determined to be adequate for further investigation in 2D as well as 3D since the

cheapest mesh possible is needed for 3D purposes to reduce its high computational cost.

Table 3.4: Mesh and Time Convergence Study Results

Time step per Cr % Difference

Mesh Average Cp

period to Mesh 1
1 1136 0.577 -
2 1136 0.580 0.50
3 1136 0.581 0.69
3 2274 0.582 0.86
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Figure 3.20: Instantaneous Cp versus Normalized Time at 15th Cycle for Mesh and Time Convergence
Study Cases

3.6 Turbulence Model Study

In this section, the D-VAWT is simulated using different turbulence models to investigate the
accuracy of the results and justify the selection of the turbulence model. Three turbulence models
are considered in four cases: the one-equation SA Strain/Vorticity model with y* ~ 1 and ~ 30,
the two-equation SST k-® model with y*~ 1, and the four-equation transition SST model with
y*t~ 1. The fastest would be the SA Strain/Vorticity model y*~ 30 because it is a lower equation
model and the mesh needed for y*~ 30 is cheaper. The most expensive would be the transition
SST model since it is the highest equation model with a more refined mesh to achieve a y*~ 1.

The domain and mesh used in this study is the coarsest mesh (Mesh 1) with At=T/1136.

The results for the average Cp for the different cases are shown in Table 3.5 and Figure 3.21. The
Transition SST model predicts the highest Cp value, while the SA Strain/Vorticity for y*~ 30
predicts the lowest. The biggest difference is noticed between the cases using the mesh of y*~ 1
and y*~ 30. Though the trends shown in Figure 3.21 for all cases are similar, the SA
Strain/Vorticity with y*~ 30 under predicts the upstream translational region and the following

rotating region or at the normalized times between 0.22 and 0.72. It can be seen that the SA
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Strain/Vorticity model at y*~ 30 consistently under predicts the Cp value in that region, while for
the other models at y*~ 1 show better consistency in value throughout the cycle. The results
obtained here are also supported by [31], in which they showed at high TSR, the choice of

turbulence model with the same y* has little effect on the results.

Table 3.5: Results for the Turbulence Model Study Using Mesh I at TSR =4.5

o/ T
Turbulence Model yt Average Cp Cr % Difference

to Case 1

SST k-0 1 0.577 -

Transition SST 1 0.580 0.45
SA Strain 1 0.553 4.32
SA Strain 30 0.491 17.50

e SST kw (y+1) e Transition SST (y+1) = SA Strain (y+1) SA Strain (y+ 30)
2
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N

Normalized Time (t/T)

Figure 3.21: Instantaneous Cp Plots of the 15" cycle for the Turbulence Model Study Using Mesh 1 at
TSR=4.5
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3.7 Airfoil Validation with Experimental Results

Using the presented methodology, an experimental case is simulated and the results are compared
with their respective experimental values. The case is that of a 2D simulation of a static airfoil.
This case was specifically chosen as it closely matched the flow regime of the D-VAWT while no

data was available for a Darrieus type turbine that even remotely resembled the D-VAWT’s flow

conditions and blade profile (NACA 0018).

Using the same methodology to generate the mesh, a NACA 0018 airfoil is simulated with an
identical numerical setup as the D-VAWT. The only difference from the D-VAWT case is the inlet
boundary condition values for the turbulent intensity, which were matched with the experimental
setup to ensure a proper comparison. The Reynolds number is 500,000, which is in the same range
as what the D-VAWT's blade experiences in the upstream translational region. The results are

validated with the experimental case performed by Timmer [63].

The purpose of these simulations is to validate the choice of turbulence model and accuracy of the
CFD setup with existing experimental results. The same four cases from the turbulence model
study are repeated here, which are the SA Strain/Vorticity model using y*~ 30 and y*~ 1, the SST

k-o and transition SST models with y*~ 1.

3.7.1 Domain and Mesh
Figure 3.22 shows the overview of the domain and mesh used to replicate the experimental case.
The domain is a C-mesh type, which is commonly used for the simulation of static airfoils. Figure
3.23 shows a close view of the mesh near the blade for the cases of y*~ 30 and y*~ 1. The meshes

were generated with the same element sizes as for the case of the D-VAWT.
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(@ (®)
Figure 3.22: Overview of (a) Domain (b) Mesh, for the Experimental Case Simulation

(a) (b)
Figure 3.23: Mesh Near Blade for (a) y*~ 30 (b) y*~ 1

3.7.2 Results and Discussion

Figure 3.24 to Figure 3.27 show the results for the Coefficient of Lift (CL) and Coefficient of Drag
(Cp) for all simulations cases as well as the experimental values. Figure 3.24 shows that the
transition SST model predicts the most accurate results as it captures the experimental curve the
closest. The SST k- model is the second most accurate model tested, with the advantage of being
computational cheaper than the Transition SST. The SA Strain/Vorticity model with y* ~ 1 over
predicts drag, as seen in Figure 3.25, while the SA Strain/Vorticity model with y* ~ 30 greatly
over predicts drag and shows premature stall behavior that is not seen with any of the other models
at y* ~ 1. This further explains the under prediction of the SA Strain/Vorticity model with y* ~
30 in the results of Figure 3.21, where the blade experienced higher drag and lower lift than it
should have. This finding further supports the results of the turbulence model study.
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Figure 3.24: Coefficient of Lift vs Angle of Attack
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Figure 3.25: Coefficient of Drag vs Angle of Attack
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Figure 3.27: Coefficient of Lift vs Coefficient of Drag
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Table 3.6 shows the percent error for all data points simulated for all turbulence models with the
values obtained from the experimental data. The interesting part to note is the average error for the
ratio of Cr to Cp for the range of angle of attacks that the D-VAWT experiences (from 0° to 12.5°)
at TSR = 4.5 for the cases of SA Strain/Vorticity model using a y*~ 30 and y*~ 1, the SST k-
and transition SST models with a y*~ 1 are 44.9%, 18.6%, 2% and 0.6%, respectively. These
values confirm that the transition SST model provides the most accurate solution, closely followed
by the SST k- model, while the SA Strain/Vorticity model provides the least accurate results for
both y* cases. The ratio of CL to Cp is directly related to the predicted output power of the turbine.
Seeing that the SA Strain/Vorticity with y*~ 30 consistently under predicts that said ratio, this
explains the under prediction in power for the case of the D-VAWT.

Table 3.6: Percent Error for Airfoil Case Study (Positive is Over Prediction and Negative is Under

Prediction)
% Error with Experimental Results
SST kw (y*~1) Tra'(‘;‘f‘f'l‘)SST SA Strain (y*~ 1) SA Strain (y*~ 30)
Angleof | ' © ¢ cycp| @ oL Cueh| b L CUGr| G G CUCy
Attack
3 768 385 355 | 3.96 -189 -155 | 4991 344 -31.00 | 75.78 -2.83 -44.72
6 6.12 293 301 | 7.84 358 395 | 4221 234 2804 | 7424 355 -44.65
9 606 -593 0.3 [-090 611 7.07 | 21.84 -692 2361|6098 -13.51 -46.27
10 249 028 284 | 311 827 501 | 2235 -024 -1846 | 6742 822  -45.18
11 115 430 551 | 408 641 224 | 1884 465 -11.94 | 69.80 -528  -44.22
125 | 282 750 1062 | 498 634 129 | 815 986 157 | 7029 492 -44.17
13 305 842 1183 | 724 608 -1.08 | 467 11.67 669 |73.08 -578 -4557
14 863 949 1982 | 424 574 144 | -831 1521 2566 | 75.09 -10.75 -49.03
15 120 807 2283 | 193 357 161 | 2017 17.80 4757 | 8841 2233 -58.78
Avg. | 249 432 745 | 317 3.02 021 | 1550 642 -351 | 7279 -857  -46.95
ﬁ)vf'z(;‘)’ 021 215 209 | 253 197 -0.65 | 2722 219 -1858 | 69.75 -6.38 -44.87

3.8 Summary and Conclusions

The validation for the D-VAWT included the investigation of the domain size, motion prescription
methods, mesh and time convergence, and turbulence model study. The setup was also validated
with an airfoil case study with experimental data. The validation allowed us to find the smallest
domain, mesh and time step needed to make this setup the most conservative and cheapest while
still retaining satisfactory accuracy. Having the cheapest possible setup will greatly help in

reducing the cost of 3D simulations as they tend to be quite expensive.
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The theoretical calculation of the Cp, shown in section 2.6, for the upstream translational region
predicted a value of 1.41. This calculation was done for an airfoil with an angle of attack of 12.5°
and a blade Reynolds number of 500,000, which are the conditions the D-VAWT blade during the
translational section. The average value of Cp in the upstream translational region using the SST
k- model is 1.38. Comparing the theoretical and predicted CFD values, there is only a difference

of about 2%, which further supports the analysis and the selected methodology.

Based on the turbulence model study and the validation with experimental results, the SST k-o
model at y*~ 1 and the SA Strain/Vorticity model at y*~ 30 provide an upper and lower bound
estimate for the Cp, where the lower bound will represent a more conservative estimate for the D-
VAWT’s performance. The upper and lower bounds can be clearly seen in Figure 3.26. The reason
the SST k- model was chosen over the other two models at y*~ 1 is that it is faster than the
Transition SST model and it is more accurate at resolving the boundary layer flow in the near-wall
region than the SA Strain/Vorticity model. The value predicted from the SST k-w model is
expected to represent actuality more closely than from the lower bound estimate because it is a
higher equation model capable of accurately resolving the flow in the near-wall region. For airfoil
and turbine simulations where there is no shedding of vortices, accurately capturing the boundary
layer flow is of the utmost importance, which is exactly what the SST k-o model is good at

resolving.
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CHAPTER 4: 3D INVESTIGATION

In this chapter, 3D simulation of the D-VAWT at TSR = 4.5 with the same geometrical
parameters as presented earlier will be performed based on the methodology developed in the
previous chapter. The Aspect Ratio (AR) of 5 and 15 will be investigated using the SA Strain (y T~
30) and SST k-o (y*~ 1) turbulence models to provide us with an upper and lower bound estimate

of the Cp.

4.1 Domain

The domain used for the simulation with AR =5 is shown in Figure 4.1. Further details are included
in Table 4.1 for both domains of AR =5 and 15. It should be noted that only half of the blade is
simulated by making use of a symmetry plane boundary condition. This essentially allows the

domain to be cut by half, which significantly reduces the computational cost.

Type 2 motion is used for all 3D simulations since Fluent encountered many problems with the
deforming mesh of type 1 motion. Based on the comparison of motion types, the results should be
identical for both motions. The coordinate system is shown in Figure 4.1, where the incoming wind

is coming in the positive X-direction.

0.000 15.000 30.000 {m)

T.500 22,500

Figure 4.1: 3D Domain for D-VAWT with AR=5
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Table 4.1: 3D Domain Characteristics

3D Domain Characteristics

Aspect Ratio =5 Aspect Ratio =15
Outer Domain Size 150C x 150C x 30C 150C x 150C x 45C
Simulated Blade Height, h/2 2.5C 7.5C
Rotating Domain Diameter 2D 2D
Rotating Domain Depth 3.25C 8.25C

4.2 Mesh

Two turbulence models are tested, the SA Strain/Vorticity and SST k-, with different y*
strategies for each. There are a total of four cases performed, comprising of two aspect ratios with
two turbulence models. The details of the mesh used are shown Table 4.2, which are based on the
2D mesh study. The mesh for the AR =5 with the SA Strain/Vorticity model is shown in Figure
4.2 to Figure 4.5, while the one used for AR =5 with the SST k- model is shown in Figure 4.6
to Figure 4.8. The meshes used for each turbulence model are nearly identical; the only difference
is the number of elements in the span wise direction for the different aspect ratios used. Elements
across the rotating interface are matched in size to reduce interpolation errors across the interface.
The elements in the refinement region around the blade are hexahedron elements formed from
quadrilateral elements that have been swept in the span-wise direction. It should be noted that the
elements swept have a bias towards the blade tip, meaning the elements near the blade tip are
smaller than the ones near the blade center (at the symmetry plane). The purpose of the bias is to
better capture the flow and pressure drop near the blade end from the tip vortex. All the elements

outside of the refinement regions are tetrahedrons.
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Table 4.2: 3D Meshes Details

Aspect Ratio =5

Aspect Ratio =15

Case
SA Strain SST k-® SA Strain SST k-®
Element size in rotating domain 0.2C 0.2C 0.2C 0.2C
Element size in refinement region 0.02C 0.02C 0.02C 0.02C
Number of nodes on airfoil 250 500 250 500
Number of span wise elements 80 80 200 200
y* ~30 ~1 ~30 ~1
First layer height in boundary layer 2.5x10°C  7.5x10°C 2.5%10°C  7.5%x10°C
Number of boundary layer elements 15 50 15 50
Boundary layer growth rate 1.1 1.1 1.1 1.1
Total number of elements 2.9 Million 4 Million 7.5 Million 10 Million

Figure 4.2: Rotating Domain Mesh at Symmetry Plane for AR=5 and y*~ 30
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Figure 4.3: Refinement Region Mesh at Symmetry Plane for AR=5 and y*~ 30

Figure 4.4: Boundary Layer Mesh View at Symmetry Plane for AR=5 and y*~ 30

Figure 4.5: Cross Section of Mesh Around the Blade AR=5 and y*~ 30
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Figure 4.6: Refinement Region Mesh at Symmetry Plane for AR=5 and y*~ 1

Figure 4.7: Boundary Layer Mesh View at Symmetry Plane for AR=5 and y*~ 1

Figure 4.8: Cross Section of Mesh Around the Blade for AR=5 and y*~ I
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4.3 Numerical Setup

The SIMPLE algorithm is selected for the pressure-velocity coupling. For the spatial
discretization, second order schemes are used for the pressure, momentum and turbulent viscosity
calculation. First order implicit is still used for the transient formulation due to the use of the
dynamic mesh capabilities. All simulations are performed with an absolute convergence criterion
of 107 for the continuity, velocity components and all turbulent properties. The time step size is
At = 0.5585ms or about one thousandth of a period (T/1136). The SA Strain/Vorticity based
production model and the SST k-o model with low Reynolds number correction are used for

turbulence modelling.

The boundary conditions are shown in Figure 4.9, where constant and uniform velocity inlets are
defined everywhere, except for the bottom plane which has a symmetry condition and the right
most boundary is defined as a pressure outlet. The velocity of incoming wind is 4 m/s with a

turbulent intensity of 1% and a turbulent viscosity ratio of % = 5. The turbulent intensity is

reduced from 5% to 1% from the 2D to 3D simulations to speed up the convergence of the
simulation. This change would have marginal effect on the results as both turbulence intensities
were tested and compared in 2D. As for the blade boundary condition, a no-slip condition is

applied.

Constant & Uniform Velocity Inlet

~

1PN 2MSSAIJ

£

|
Symmetry Condition

0.000 10.000 20,000 (m)
| I ]

Constant & Uniform
Velocity Inlet

5.000 15.000

Figure 4.9: Boundary Conditions for 3D Domains

4.4 Results and Discussion

All 3D simulations of the D-VAWT at TSR = 4.5 were run for 10 and 12 cycles for the aspect ratio
of 5 and for 15, respectively. The Cp cycle convergence can be seen in Figure 4.10, where it can

be noticed that the simulations with AR =5 converge faster than the ones with AR = 15. The cycle
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to cycle convergence criterion used for all 3D simulations is 0.2%, since matching that of 2D’s of
0.01% was difficult to reach in 3D. Table 4.3 presents the summary of the averaged Cp in the last
3 cycles and the ratio of 3D to 2D Cp values for each case respectively. It can be seen that for the
AR of 5, only about 40-44% of the power in 2D is captured, while for an AR of 15, this increases
to about 70%. The 3D to 2D ratio value for the AR =15 case is also supported by [31], where a
ratio of 69% is obtained for the same AR. It is well known that as the AR of airfoil blades is
increased, the 3D performance approaches that of 2D. For a short AR, the 3D losses, especially
because of the formation of a wing tip vortex, dominate and a larger portion of the blade sees a
large decrease in performance. The formation of the wing tip vortex leads to a decrease in
performance as a result of the pressure drop on the blade surface when approaching the blade tip.
The wing tip vortex allows the flow to “leak’ over the blade tip and reduces the built up pressure

from the airfoil profile, which in turn reduces the lift of the blade portion affected by it.
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Figure 4.10: Average Cp per Cycle Convergence for 3D Simulations

Table 4.3: Cp Results Summary for 3D Simulations

Aspect Ratio  Turbulence Model = Average Cp 3D/2D % Ratio

SA Strain (y*~ 30) 0.198 40.37
? SST k-0 (y*~ 1) 0.253 43.73
SA Strain (y*~ 30) 0.338 68.86
1 SST k-0 (y*~ 1) 0.404 70.03
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The instantaneous Cp curves are shown in Figure 4.11 for all 3D cases. For the same AR, there is
a gap in performance between the SA Strain/Vorticity model and SST k- model, where the SA
Strain/Vorticity model with y*~ 30 still under predicts the Cp values, most noticeably in the
upstream translational region and the following rotational region. The Cp trend between the blade
of AR of 5 and 15 are similar throughout most of the cycle, except for the fact that the blade of
AR of 15 produces more power as expected. An interesting behavior between the two is noticed
in the downstream portion of the blade path, especially in the translational region. For the AR of
15, Cp behavior is very similar to that of the 2D one, but for the AR of 5, looking at the normalized
time from 0.72, the Cp is initially slightly higher than for the AR of 15, but after t/T=0.88, a dip in

power occurs that is not seen in either the 2D or 3D with AR=15 cases.
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3D SST kw (y+1), AR=5

3D SST kw (y+1), AR = 15
1.5

1.25

0.75
0.5

0.25

-0.25

-0.5

-0.75
Normalized Time (t/T)

Figure 4.11: Instantaneous Cp Plots of the Last Cycle for 3D Simulations

_U) is shown at a cross sectional plane that is

)

In Figure 4.12, the normalized velocity deficit (UI";
half a chord away from the symmetry plane as it is preferable not to visualize the flow on the
symmetry plane. The normalized velocity deficit shows how much velocity is either reduced from
losses or extracted by the turbine. Figure 4.12 (a) and (b) are for the SA Strain/Vorticity model of
AR =5 and 15, respectively. It should be noted that the blade tip effect is stronger for the case of
AR =5 at this plane because this plane is only two chords away from the tip while for the AR =

15, it is 7 chords away. A plane that is two chords away from the blade tip was visualized for the
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case of AR = 15, it was then noticed that the behavior of the flow highly resembled that of the AR
= 5 shown here. This means that at a distance of two chords from the blade tip for either AR =5
or 15 cases, the performance of the blade is highly affected and reduced by the presence of the
wing tip vortex, while at 7 chords away for AR = 15, this effect dissipates and the performance
approaches that of 2D. To better grasp the effect of AR on the blade performance, Figure 4.13
shows the static pressure contour on the blade surface during the upstream translational region for
the SST k- model for both AR 5 and 15. One can see the pressure drop starting from around one
chord’s length from the blade tip and because about the same length of the blade is affected for
both ARs, it means that the blade with AR =5 has a larger portion affected.

As shown in Figure 4.12, after the upstream pass of the blade, about 35-40% of the free stream
velocity is extracted or lost, while after the downstream pass, the free stream velocity drops to 75-
80% of its initial value. This means that with a single turbine, it is possible to extract about 75%
of the incoming wind’s energy from the two passes of the blade in the translational region. This
can also be supported from the Cp values seen in those regions. However, with such a strong
velocity deficit, the wake of this turbine will be very strong and will take some time to recover and
return to its original free stream velocity. This means that if another turbine were to be placed

downstream of it, it would have to be significantly far away from the first.

Another detail to note from Figure 4.12 is that for the same AR in Figure 4.12 (a) and (c), the flow
for the SA Strain/Vorticity and the SST k- models have similar wake structure, but for the SST
k- model, the velocity deficit in the wake is higher, which can be explained by the higher power
extraction seen in the Cp Curve. This can also be seen again in Figure 4.12 (b) and (d). The

difference between the models can be seen in the size of the boundary layer in Figure 4.14, where

the turbulent viscosity ratio (%) is shown at the same cross sectional plane as before, but at the

normalized time t/T = 0.33, which is approximately midway in the translational region. In Figure
4.14, the AR does not seem to affect the size of the boundary layer, but the choice of y* between
the two models does indeed affect it, resulting in a boundary layer for the y*~ 30 to be almost
twice as thick as the one for y*~ 1. The recirculation zone on the suction side to the airfoil (right
side of blades in Figure 4.14) is also much larger for the cases with y*~ 30, leading to lower lift
and higher drag as seen before in the results of the experimental validation case of a static airfoil,

which explains the lower extracted power in this region.
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Figure 4.12: Normalized Velocity Deficit (- U;_U) Plots on a Plane of Half a Chord Away in the Span-
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Wise Direction from the Symmetry Plane at t/T=0.68 for Cases (a) SA Strain/Vorticity (y*~ 30) with AR
=5, (b) SA Strain/Vorticity (y*~ 30) with AR =15, (c) SST k- (y*~ 1) with AR =5, and (d) SST k-
(yt~1) with AR =15
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Figure 4.13: Static Pressure Contour on Half of the Blade Surface for SST k- (y*~ 1) Model at
t/T=0.33 for (a) AR =15 (b)) AR =5
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Figure 4.14: Turbulent Viscosity Ratio (%) Plots on a Plane of Half a Chord Away in the Span-Wise

Direction from the Symmetry Plane at t/T=0.33 for Cases (a) SA Strain/Vorticity (y*~ 30) with AR =5,
(b) SA Strain/Vorticity (y*~ 30) with AR =15 and (c) SST k- (y*~ 1) with AR =5, and (d) SST k- (y*~
1) with AR =15
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4.5 Comparison of 2D and 3D Results

Figure 4.15 compares the 2D and 3D results for all cases simulated with the SST k- models. It
can be seen that as the AR increases, the power curve approaches the 2D results in value and
behavior, which is the expected behavior since 2D is considered to be a blade that is infinitely

long. This further supports the analysis and the methodology transition from 2D to 3D.
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Figure 4.15: Comparing Instantaneous Cp for 2D and 3D with AR =5 and 15 Using the SST k- Model
y*~1)

The following work will continue the investigation of the D-VAWT to further understand the flow
and turbine behavior for different geometrical parameters and operating conditions. The next
simulations of the D-VAWT will be performed in 2D only as the trends and behaviors predicted
will still be valid for future designs, while the results can be obtained in a matter of days instead
of months. To put in perspective, the longest 3D simulation was performed on a cluster of 24 cores
with 2.67 GHz processing frequency, which took over eight weeks to complete, while 2D

simulations were performed on 12 cores and finished in a matter of hours instead.
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4.6 Discussion of D-VAWT Performance

Considering the D-VAWT performance for an AR of 15, the lower and upper bound of the Cp are
0.34 and 0.404, respectively. The actual value would be closer to the upper bound as the
simulations with y*~ 30 (the lower bound) do not capture the boundary layer flow as accurately
as the ones with y*~ 1. This finding is supported from the results of the turbulence model and the
experimental airfoil case study. Although 3D simulations are much more accurate than 2D
simulations, they will still have some level of over prediction of the turbine performance. One
should remember that this study is based on a numerical approach, which represents an idealized
system where a number of losses are not taken into account. The unconsidered losses include the
generator and mechanical losses as well as aerodynamic losses from the lack of simulating the
structural components of the turbine. Nonetheless, the predicted Cp values for a straight blade
Darrieus type turbine is high, considering this range of Cp is usually seen for the more
aerodynamically efficient rotor Darrieus turbines and HAWTs. However, the D-VAWT is still far
from being fully optimized. A simple improvement would be to use endplates for the blade, which
would reduce the 3D aerodynamic losses and the Cp would further approach the 2D approximation.
Based on the results of this study, the D-VAWT concept of extending the region of maximum
power production did improve the overall turbine performance. Most performance improvement
studies on VAWTS are conducted on optimizing blade profile or other geometric parameters,
while the D-VAWT concept is among the few studies that investigated a new and unconventional
blade path for a turbine. The following chapter continues with the parametric study to further

understand and optimize the D-VAWT.

As mentioned earlier, the Cp for the D-VAWT is high; one should note that it is even more
impressive that it is this high for small scale applications. Typically, this range of Cp is difficult to
achieve on small scale, even for the HAWTs as they too lose a large portion of their efficiency for
small scale application. However, this high performance turbine does come with some drawbacks.
The D-VAWT requires the wind to be normal to its longitudinal side for optimal performance,
meaning if the wind changes direction, the performance of the turbine will deteriorate depending
on how deviated the incoming flow angle is. This is a new weakness that typical other VAWTs do
not suffer from. It should be noted that there are solutions to account for different incoming wind
directions. The simplest would be to design a shroud to align the flow and provide the D-VAWT

with a wider range of operating of incident wind angles. The more complex solution would be a
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mechanical one, where one of the two axes’ will be allowed pivot in order to always have the
turbine longitudinal side to be normal to the incoming wind. The other drawback for the D-VAWT
is the higher mechanism complexity compared to the typical VAWT, which are generally quite

simple from a mechanical point of view.
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CHAPTER 5: 2D PARAMETRIC STUDY

Having completed the validation in 2D and obtained a more realistic performance from the
3D simulations, this chapter presents 2D simulations to further understand and optimize the D-
VAWT’s performance. Though the results in 2D will over predict the Cp values, the trends
obtained in 2D will still be valid and can be incorporated into future 3D designs. The parametric
study will include the investigation of the sensitivity to change in wind direction, two bladed
turbine, AEF study, high lift airfoil, and blade mounting location. The goal of this chapter is not
to perform a detailed parametric study, but it is to serve as the first steps in understanding the D-

VAWT’s behavior to help guide future studies.

5.1 Introduction to Parametric Study

In this chapter, all simulations are performed using the SST k- (y*~ 1) setup since it is capable
of capturing the boundary layer more accurately than the SA Strain/Vorticity model setup. For
each parameter investigated, a range of TSRs is performed to find the point of peak performance.
The goal is not to capture the entire Cp curve (Cp vs. TSR), but to find the effect on the location
and value of the peak Cp. One should note that the Cp curve should follow a quadratic curve. For
each range of TSRs performed, a quadratic curve will also be fitted from the data for comparison

and support of the analysis.

Eq. (5.1) provides the instantaneous angle of attack for different azimuthal angle and TSR values.
Figure 5.1 plots the change of angle of attack during the blade rotation of a VAWT for different
TSR values. One can see the drop of the maximum angle of attack as the TSR is increased. Below
a certain TSR, typically lower than TSR = 3, the blade could start to go through dynamic stall and
shedding of vortices will occur from flow separation. Since the D-VAWT operates at high TSRs,

there are almost no cases where the blade dynamically stalls.

sin ) (5.1)

a = tan~! (—
cosO + A
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Figure 5.1: Instantaneous Blade Angle of Attack for Darrieus Type VAWT vs Azimuthal Angle for
Different TSRs

5.2 TSR Study of Original Turbine

The first step of the parametric study is to find the Cp curve for the original turbine to have a base
for comparison when changing the turbine parameters as well as find out at which TSR the turbine

has maximum performance. This turbine is still simulated with a single blade at AEF = 4.

The results of the simulation are shown in Figure 5.2, Figure 5.3, and Figure 5.4. It should be noted
that the case for the TSR = 4.5 is repeated again here and one can see the Cp value changed from
0.577 to 0.587. The marginal difference is due to some corrections made in the UDF code, which
controls the motion switching criterion between translating to rotating motions. The UDF was only
modified now as to have consistent methodology between chapter 3 and 4 and allow for direct

comparison between them.

Figure 5.2 shows the cycle to cycle convergence of Cp, where it can be seen that the higher the
TSR, the more cycles are required to reach the same convergence as the lower TSR cases. This
trend is noticed for all cases simulated in this chapter, where the high TSR cases required a higher
number of cycles for convergence. From TSR 3.5 to 5, there is less than 6% drop in performance
from the peak point, which makes this curve quite “flat” (insensitive to change in TSR) compared

to other wind turbines as seen in the Cp curve shown in Figure 5.3. In other words, the insensitivity
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to the TSR can also mean that the performance is insensitive to the change in incoming wind
speeds if the turbine rotational speed was kept constant. Also from Figure 5.3, the graph confirms
that the peak Cp is at TSR = 4.5, thus supporting the choice of TSR for the 3D analysis. One can
also see the points closely follow the quadratic curve fitted over the points, which also support the

methodology and analysis of this turbine.
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Figure 5.2: Average Power Coefficient Convergence per Cycle for Different TSR values for AEF=4
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Figure 5.3: Average Cp per Cycle vs TSR for AEF= 4 with Quadratic Curve Fitting
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To further understand the behavior of the turbine at each TSR, Figure 5.4 shows the plots for the
instantaneous Cp for all TSR cases. It can be seen that a higher TSR results in larger positive and
negative peaks throughout, except for the downstream translational region, where all TSR cases
converge to the same Cp. One can also understand why most H-Darrieus turbines do not operate
at such high TSRs is because of the large negative Cp peaks experienced in both rotating regions,

which is the entire H-Darrieus’ cycle of rotation.

One trend that can be extrapolated from the instantaneous Cp curve is that by increasing the AEF
values, the higher TSRs will become more efficient as more time is spent where the highest
positive peaks are seen. This means the higher the AEF, the more the peak Cp should move to

higher TSR values.
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Figure 5.4: Instantaneous Cp for Different TSR Values at AEF =4
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5.3 Incident Wind Angle

Since the D-VAWT is not circular in shape, its performance will change if the incoming wind is
not normal to its longitudinal side. This section attempts to determine the turbine sensitivity to the
incoming wind by simulating six cases and comparing their performances with the zero incident
angle presented in the previous section. The six incident wind angles are ¢ = + 20°, + 40°, + 60°.
The convention for the incident wing angle is shown in Figure 5.5. One should remember that the

turbine swept area is reduced with increasing incident wind angle based on Eq. 2.38.

Y

¢- (’ .
Usatp=0 & X

(p+

Figure 5.5: Incident Wind Angle Convention

The summary of the Cp curves for all six cases and the original zero incident angle are shown in
Figure 5.6. As expected, the best performance is obtained with zero incident angle. All positive
incident angles perform better than their equivalent negative ones due to the negative angles
increasing the effective angle of attack on the blade in the upstream translational region, leading
to a reduced overall performance. At ¢ = + 20°, the Cp curve highly resembles that of the zero
incident angle from a performance and trend point of view as well as even slightly surpassing its
performance at TSR = 5.5. This is an unexpected behavior and its explanation will be presented at
the end of this section. From the same figure, one can see that as the incident angle is increased,
both negative and positive angles, the performance worsens and the Cp curve shifts to lower TSR
for its peak performance. Though a bit difficult to notice, the higher the incident angle, the more
sensitive the performance becomes to the change in TSR, which can be seen as the curve becoming
steeper compared to the flatter curve of zero incident angle. One can also see that all curves nicely

follow the quadratic curve fitting.
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Figure 5.6: Average Cp for Different TSRs with Different Incoming Incident Wind Angles with Quadratic
Curve Fitting

Figure 5.7 and Table 5.1 summarize the peak Cp performance of each case. From the graph, one
can notice the sharper and more linear drop in power from the negative incident angles. In Table
5.1, the peak Cp for all cases are shown and compared as a percentage to the peak Cp at zero
incident angle. At positive and negative incident angle of 20°, the turbine performs at 98.5% and
89.9% of the peak Cp, respectively. This means for an AEF = 4, the turbine loses a maximum of
~10% power for a 40” incident angle range. This result is quite satisfactory as it means that the D-
VAWT still performs efficiently for a wide range of incident angles without critically losing its

original high efficiency.

Figure 5.8 to Figure 5.13 show the instantaneous Cp curves for all performed TSRs for the incident
angles of - 20°, - 40°, - 60°, + 20°, + 40° and + 60°, respectively. From the figures, one can see as
the incident angle increase, the performance of both upstream and downstream translating regions
further deteriorates. For the cases of + 60, little to negative power is observed in the translating
regions. One can also notice that the rotating regions are also affected by the change in incident

angle, which was not expected as it was believed the performance in those sections should have
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been independent of the incident angle. This effect is due to the wake originating from the
translating region traveling towards the rotating regions. For the negative incident angles, the wake
travels towards rotating region 2, while for the positive angles, the wake travels towards rotating
region 1, which are exactly the two regions that were affected respectively. While one of the
rotating region’s performance drops in power, the other region increases in peak Cp. Recalling Eq.
(2.39) for the Cp calculation, one can see that the increase in the Cp peaks of the rotating regions
is a result of the reduction of swept area while the torque remains almost constant in those sections.
One can also see that the peak point of the rotating regions moves with changing incident angle,
since the change in incident angles results in a direct addition or subtraction of the blade’s effective

angle of attack.
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Figure 5.7: Peak Cp for Each Incident Wind Angle

Table 5.1: Summary of Peak Cp for the Incident Wind Angle Study

Inc;d:glte ’V:’pind Peak Cp Corrce;ls)l(;nding % C(; l:z(l)tio to

- 60° 0.350 3.5 59.6
- 40° 0.445 3.5 75.8
-20° 0.528 4 89.9

0° 0.587 4.5 100.0
+20° 0.579 4.5 98.5
+40° 0.498 4.5 84.9
+ 60° 0.364 3.5 62.0
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Figure 5.10: Instantaneous Cp for Different TSR Values for ¢ = -60°
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Figure 5.13: Instantaneous Cp for Different TSR Values for ¢ = +60°
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In order to explain the unexpected behavior at TSR = 5.5 where the performance of the +20°
incident wind angle surpassed that of the zero incident angle, one should look at the individual
average Cp for each region, which have been summarized in Table 5.2. Rotating region 1 is the
region adversely affected by the wake crossing it for the cases of positive incident angles, which
explains the loss of power in this section. For the upstream translating region, though the blade
experiences a smaller tangential force for the positive incident angle, due to the reduced swept area
from the incident angle which increases in the Cp, the overall loss in this region is small. The
significant difference in Cp can be seen in the rotating region 2, where there is over a 1000%
increase in performance for the positive incident angle which is due for two reasons. This region
sees cleaner free stream flow for the positive incident angle, increasing its performance, while
having its swept area reduced from the incident angle. These two positive effects help create this
large difference in performance for the positive incident angle. The downstream translating region
behaves similarly to the upstream translating region, resulting in a small loss in performance.
Combining all the mentioned behaviors, the resulting total cycle average is slightly higher for the
positive incident angle in this case. It should be noted that calculating the cycle average is not the
direct average of the four sections, since the weight of the translating regions is larger as more
time is spent translating. To summarize, though the +20° incident angle performs worse in three
out of the four sections, its performance is so much higher in the rotating region 2, that it

compensates and surpasses the zero incident angle’s performance.

Table 5.2: Summary of Average Cp per Section at TSR = 5.5 for ¢ =0" and +20°

Incident Wind Angle, ¢
Region 0° +20° % Difference
Average Cp
Rotating Region 1 -0.291 -0.440 -50.9
Upstream Translating Region 1.558 1.385 -11.1
Rotating Region 2 0.036 0.460 + 11814
Downstream Translating Region 0.449 0.424 -5.7
Total Cycle Average 0.507 0.512 +1.0
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5.4 Axis Eccentricity Factor (AEF)
The AEF is the newly introduced parameter for D-VAWTs which dictates the spacing of the two

axes if the radius is already chosen. Previously, an AEF of 4 was used for all analyses performed.
In this section, D-VAWTS with an AEF of 8 and 12 are simulated and compared to the original
AEF. It is of interest to first know the percentage of time spent translating versus rotating for
different AEF Values. Eq. 5.2 presents the equation for the ratio of time spent translating to the
cycle period, while Figure 5.14 shows the change of that said percentage of the ratio with AEF.
One can see the initial rapid growth of translating time for small AEFs and that above an AEF of
3.1, the blade spends more than 50% of the time translating. For the tested AEFs of 4, 8 and 12,
the percent time translating are 56%, 71.8% and 79.3%, respectively. It can be seen for large AEF

values, increasing it from 8 to 12, resulted only in an additional 7.5% increase in translating time.

L
2t ; Yl 1
Translating Time Ratio = AC TmnSlTotnal ) =7 (‘)Rzn = T (5.2)
Translational Rotational m + ? 1+ A_EF

Where trransiationar a4 trotationar are the times spent by the blade in each translating and rotating

regions, respectively.
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Figure 5.14: Percent Time Translating vs AEF

The Cp curve for all AEFs are shown in Figure 5.15, while Table 5.3 compares the peak Cp and

power values. From Figure 5.15, one can see that increasing the AEF lowered the peak Cpand, as
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expected, shifted the peak to higher TSRs. Table 5.3 shows that increasing the AEF from 4 to 12
resulted in a ~10% loss in peak Cp value; however, due to the larger turbine area from increasing
the AEF, the power produced from the turbine of AEF 12 is over double that of the original
turbine’s. It should be noted that the power values presented in Table 5.3 are for a 2D area, thus

they are powers per unit depth.
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Figure 5.15: Average CP per Cycle vs TSR for AEF Study with Quadratic Curve Fitting

Table 5.3: Summary of AEF Study for Peak Performance

. o ) . -
AEF Peak Cp Corresponding % Cp Ratio 2D Power % Power Ratio

TSR to AEF =4 (W) to AEF =4
4 0.587 45 100.0 110.42 100.0
8 0.564 5.5 96.1 176.99 160.3
12 0.525 6.5 89.5 230.68 208.9

An interesting behavior is noticed where increasing the AEF, resulted in a flatter curve or in other
words, a turbine less sensitive to TSR. This can be confirmed by looking at Table 5.4 which
presents data obtained using MATLAB’s curve fitting function of 2™ order polynomials from the
Cr curve data. One can see that the range of TSR values operating at an aerodynamic efficiency

higher than 90% of the peak Cp increases with increasing AEFs. Increasing the AEF from 4 to 12
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increased that said TSR range by 62.4%. Meaning that although the turbine with AEF of 12 has a
lower peak Cp, the turbine has a more efficient operating range as well as higher overall power

produced due to the larger turbine area.

Table 5.4: Summary of AEF Study for Peak and 90% of Peak Performances Using Curve Fitted Data

Curve Correspondin TSRs Total TSR Range % Ratio of

AEF Fitted TIS)R g Operating at > Operating at > TSR Range

Peak Cp 90% Peak Cp 90% Peak Cp to AEF =4
4 0.5872 4.28 3.24t05.32 2.08 100.0
8 0.5659 5.56 4.06 to 7.06 3.00 144.3
12 0.5285 6.43 4.74 t0 8.11 3.38 162.4

Figure 5.16 and Figure 5.17 show the instantaneous Cp for AEFs of 8 and 12, respectively. If one
were to look at the same TSR for different AEF values, one can see that the average Cp in the
translating regions is lower due to the fact that the blade produces the same amount of tangential
force while the swept area is larger, thus resulting in a lower Cp value. It should be mentioned that
although the average Cp in the translating regions is significantly lower for increasing AEFs, a
bigger portion of time is spent translating, allowing it to maintain an overall high cycle Cp. Two
interesting behaviors are noticed from the instantaneous Cp figures. First, one can clearly see that
in the upstream translating regions, there is an initial jump in power, a fast drop and then a slow
increase again in Cp towards the end of that said region. Second, since the translating regions are
now much bigger, one can see that the downstream translating regions are now almost reaching
the same Cp as the upstream region. This is due to most of the upstream wake crossing by before
the blade returns in the downstream portion, where it sees a more free stream like flow with higher

wind velocity than for the lower AEF cases.
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Figure 5.16: Instantaneous CP for Different TSRs with AEF = 8
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Figure 5.17: Instantaneous CP for Different TSRs with AEF = 12
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5.5 Multi-Blade Turbine Analysis

In this section, a turbine with two blades is simulated using type 3 motion, which as mentioned, is
the only motion technique that allows the simulation of a turbine with more than a single blade.
The blade chord is maintained, meaning the solidity has now doubled in value, changing from
0.167 to 0.333. Typically, wind turbines with low solidity have their peak Cp at high TSR, while
for high solidity turbines it is at low TSR. Since the solidity of this D-VAWT is increased, one
would expected the peak Cp to shift to a lower TSR.

Figure 5.18 shows the mesh at the starting point of the simulation and at the time where the blades
reach mid-way of the translating region. Figure 5.19 shows a closer view of the mesh when the
blades are again mid-way in the translating regions. At this location, the blades are closest to each
other. One should notice that all elements in the deforming domain are specified to be the same
size as to allow better control over the mesh deformation and re-meshing as well as retain higher
overall element quality.
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Figure 5.18: View of Deforming Domain at (a) /T = 0 and (b) t/T = 0.36
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Figure 5.19: Close View of Mesh Around Blades at t/T = 0.36

Figure 5.20 shows the cycle Cp convergence where similar to before, higher TSRs required more
cycles to reach convergence. However, for a two bladed turbine simulation, more cycles were
required for the TSRs of 3.5 to 4.5 to reach convergence. Figure 5.21 compares the Cp curve for
the single and two bladed turbine. As expected, the peak Cp is now at TSR 3 instead of 4.5. The
peak Cp increases from 0.587 to 0.604 for a single to a two blade turbine. Another thing to notice
in the Cp curve is that increasing the solidity also increased the turbine sensitivity to TSR as seen

by the curve becoming less flat.

1.80
1.60
1.40
Lo —%—TSR=2.5
——TSR=3
1.00
—e—TSR=35
$0.80
© TSR = 4
0.60 —A—TSR=4.5
0.40 TSR=5
0.20 ——TSR=55
0.00
0 5 10 15 20 25
-0.20

Cycle

Figure 5.20: Average Power Coefficient Convergence per Cycle for Different TSR values for Two Bladed
Turbine
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Figure 5.21: Average Cp per Cycle vs TSR for a Single and Two Bladed Turbine

Figure 5.22 and Figure 5.23 show the instantaneous Cp for Blade 1 and the total Cp of the turbine
(Blade 1 + Blade 2). As expected for increasing the turbine solidity, each individual blade performs
worse than for the single bladed turbine as each of the two bladed turbine sees lower velocity from
free stream since the turbine blockage increased. This can be confirmed by looking at Figure 5.24,
which compares the Cp for the best performing TSR for the single blade turbine, Blade 1 of the
two blade turbine and the total of the two blade turbine. Comparing the performance of the single
blade turbine with Blade 1, it is clear how little power Blade 1 produces by itself. Also, one can
see the symmetry of the Cp for the total of the two blade turbine between the first and second half
of the cycle due to the presence of the second blade and that very small portions of the rotation
have negative Cp compared to the single blade turbine, allowing it to slightly surpass the single

blade turbine performance.

From Figure 5.22, one can see in the upstream translational region that increasing the TSR
increases the Cp, however, a large loss is suffered in the downstream translating region. This results
in all TSRs having near the same power drawn in the translating region when looking at the total
power produced from the two blades in Figure 5.23. Also, the higher the TSR value, the worse is
the performance in the rotating regions, leading to the lower TSRs to perform much better overall

in this case.
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Figure 5.22: Instantaneous CP of Blade 1 of the Two Bladed Turbine
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Figure 5.23: Total Instantaneous CP for Two Bladed Turbine
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Figure 5.24: Comparison of Instantaneous Cp at Best TSR for the Single and Two Blade Turbines

5.6 High Lift-to-Drag Airfoil

This analysis was inspired by Selig and Guglielmo [64], where they analyzed the S1223 airfoil.
The S1223 is a cambered high lift to drag type airfoil. The S1223 and NACA 0018 airfoil profiles
are shown in Figure 5.25. The problem with using cambered airfoils for VAWT applications is
that the camber will only benefit the turbine during only one half of the rotation, which can either
be the upstream or downstream half of the rotation depending on whether the camber is towards
or away from the turbine center. For one half of the rotation, the camber will have a positive effect
on the performance, while the other half will result in a negative effect as the blade angle of attack

is now negative on the camber, most likely resulting in dynamic stall.

The blade camber was placed away from the turbine center for the upstream translating region as
to have the positive effect during that said region. The Cp curve of the S1223 is shown in Figure
5.26 and compared to the original airfoil, the NACA 0018. Changing to the S1223 airfoil resulted
in a 32% loss of the peak Cp value. This result was expected and Figure 5.27 confirms the reason
mention earlier in that only half of the rotation will result in a gain while the other half will be at

a disadvantage. The average Cp of the upstream translational region for S1223 at TSR =4 (highest
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Crcycle) is 2.112 while the NACA 0018 at TSR = 4.5 (highest Cp cycle) produces an average of
1.38. Although this is a 53% increase in performance in the upstream translational region, the rest
of the cycle is worse and even the downstream translational region draws power as seen from the
negative Cp. The oscillations seen in the instantaneous Cp graph in the downstream translation
region are a result of vortices shedding due to flow separation because of the large negative angle

of attack experienced by the blade facing the wrong side of the camber.
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Figure 5.25: S§1223 and NACA 0018 Airfoil Profile
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Figure 5.26: Average CP per Cycle vs TSR for Different Blade Airfoil Profiles
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Figure 5.27: Instantaneous CP for Different TSRs for the S1223 Airfoil

5.7 Blade Mounting Point

The blade mounting point is where the blade is attached to by the support arm. In this section, the
mounting point is investigated as a study performed by Fiedler and Tullis [65] showed a significant
improvement in the peak Cp curve form changing the mounting from C/3 to C/2. The C/3 mounting
location refers to one third of the blade chord from the leading edge. However, their result is
unexpected since a change in the blade mounting point should only result in a change of the blade’s
effective angle of attack, meaning the Cp curve should shift to a higher or lower TSR depending
on where the mounting point is changed to. It should be noted that in [65], they did not complete
the TSR curve for the C/3 mounting point case as to find the actual peak Cp, meaning they could

have missed the actual peak value of the curve.

The original mounting point was at C/3 while the investigated mounting point is at C/2. The results
for the average Cp for each TSR is shown in Figure 5.28. As expected, the Cp curve shifts to a

higher TSR while still maintaining the same peak Cp value.
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Figure 5.28: Average Cp per Cycle vs TSR for Different Blade Mounting Points (MP)

The instantaneous Cp can be seen in Figure 5.29, where similar trends are observed to the original
mounting point. The only difference is noticed in the upstream translational region, where the peak

is noticed to occur towards the end of the region instead of happening at start as previously seen.
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Figure 5.29: Instantaneous Cp for Different TSRs for the Blade Mounting Point at Half Chord
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5.8 Summary and Discussion of Parametric Study

In this chapter, the TSR behavior of the original turbine was investigated as well as five other
parameters, including the incident wind angle, AEF, number of blades, airfoil profile and blade
mounting point. It was noticed that in general, the Cp curve of the D-VAWT is not highly sensitive
to the change of TSR compared to most other wind turbines, which is another benefit of the D-
VAWT design. Through the incident wind angle study, it was confirmed that though the turbine
does indeed lose performance with incident wind angles other than zero, for a 40° range (4 20°) of
incident angles, the turbine loses only a maximum of 10% of its aerodynamic efficiency. From the
AEF study, it was found that increasing the AEF lead to a reduction of the peak Cp, an increase in
the actual power output, and the Cp curve becoming less sensitive to the change in TSR. By
studying a two bladed turbine with double solidity, it was found that the peak Cp slightly increased
and the Cp curve shifted to a lower TSR while also becoming more sensitive to the change of TSR.
From the study of a high lift cambered airfoil, it was confirmed that for D-VAWT application, the
camber will sacrifice the power on half of the cycle, leading to a significant loss in overall
aerodynamic efficiency. Finally, the mounting point study showed that it is possible to shift the Cp
curve to a higher or lower TSR by modifying the blade mounting point, while still retaining the

original performance of the D-VAWT.

Since the analyses performed in this chapter constitute the preliminary analysis of the parametric
study, each parameter was investigated separately to help isolate each of their effects on the
performance. However, it is not possible to design a turbine based on a single parametric study,
but a multi-objective study is needed. For example, the wind sensitivity study showed that 10%
loss is sustained in aerodynamic efficiency for a 40° range, but this was done on an AEF of 4. The
losses could be greater or lower if one were to change the AEF value or perhaps add another blade.
Thus performing such parameter combinations is necessary as it is possible that the trends from
parameter combinations to behave differently from the ones predicted in the current analysis.
Performing such analyses can be extremely time consuming as there is a very large number of
possible cases that could be generated. This is why performing the current preliminary analysis
should help guide future designs of the D-VAWT and reduce the number of cases to a manageable

amount.
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CHAPTER 6: CONCLUSION

6.1 Summary

Using CFD as the design tool, 2D simulations were used for the methodology validation
of the D-VAWT, while 3D simulations were used to obtain a more realistic performance
prediction. The validation of the methodology was performed for a single blade in 2D, where the
mesh convergence, domain size, turbulence model, y* strategy, and blade motion prescription
were investigated. The methodology was also validated with experimental results of a static airfoil
in 2D. The SA Strain/Vorticity turbulence model was shown to be a lower bound estimate of the
coefficient of power while the SST k-o turbulence model gave a more accurate prediction of the

performance.

The novelty of the D-VAWT design is that it is among the few studies that modified a
turbine’s blade path in an attempt to improve the aerodynamic efficiency. In this thesis, it was
shown that the D-VAWT design did indeed succeed at improving the aecrodynamic efficiency of
small scale turbines which has been a challenge to overcome for many decades. The performed
tests have shown the great potential of the D-VAWT by reporting a high Cp performance of 0.4
for AR = 15 based on the 3D simulation. For a common straight blade Darrieus type turbine,
a Cp 0of 0.4 is very high and difficult to achieve. However, the proposed D-VAWT is still far from
being fully optimized. It is also important to note that because the D-VAWT requires the wind to
be perpendicular to its longitudinal side to have optimal performance, this turbine now becomes

dependent on wind direction, which is a drawback not encountered in traditional VAWTs.

A preliminary parametric study was performed, where it was found that the D-VAWT has
a low sensitivity to the change of TSR compared to most other wind turbines. The incident wind
angle study showed that a maximum of 10% aerodynamic efficiency is lost for a & 20" range of
incident angles while a maximum of 40% aerodynamic efficiency is lost for a + 60 range of
incident angles. The AEF study showed that increasing the AEF will lower the peak Cp, increase
power output, and reduce the TSR sensitivity. By studying a two bladed turbine, it was shown that
the D-VAWT maintained its high performance while reducing its TSR value at peak performance

and increasing its sensitivity to TSR change. Cambered airfoils were shown to reduce the overall
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performance of D-VAWTs. Finally, the blade mounting point study showed no improvement in

performance but a shift in TSR at peak performance is possible.

6.2 Contributions

The following is the list of contributions of this thesis:

e Proving the D-VAWT concept and performing a preliminary parametric study of design
variables;
e Developing three moving mesh techniques to model the motion of a D-VAWT;

e Comparison of different turbulence models for D-VAWT applications.

6.3 Future Work

Future studies will continue the investigation of the D-VAWT to further understand the
flow and turbine behavior for different geometrical parameters and operating conditions. Future
studies can still be performed in 2D as the trends and behaviors predicted will still be valid for
future designs, while the results can be obtained in a matter of days instead of months. A more in-
depth parametric analysis is required to optimize the D-VAWT. This will also require a multi-
objective study where more than one parameter is modified at once since the behavior from the
parameter combinations could result in new trends. For example, one should combine the AEF
with the incident wind angles study or the AEF study with multiple blades. More analyses are
required for more multi-blade type D-VAWTs as a turbine with a single and two blades were
simulated. However, the additional blades will create more interaction between all the blades and

the flow, which require further simulations to comprehend that said interaction.

The dimensions of the turbine should be also investigated as only a single turbine size was
investigated in this study. This should be done in conjunction with a structural analysis to obtain
a viable design. The mechanism of the D-VAWT will also need to be designed and included in the

structural analysis.

One interesting concept will be to simulate a turbine with variable TSR in a cycle. Since
the D-VAWT’s translating regions operated more efficiently at high TSR, while the rotating
regions operated more efficiently at low TSR, combining a high and low TSR value in one cycle
could result in much more aerodynamically efficient turbine. The difficulty will be designing a

mechanism to account for a variable TSR during the blade rotation.
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Once a complete design is obtained from future 2D investigations, a full scale 3D
simulation, without the symmetry condition, should be performed with an atmospheric velocity
inlet boundary condition to obtain an even more realistic estimate of its performance. Also, to
obtain even more realistic results, one should simulate the D-VAWT mechanism as it will add
additional drag and fluid-structure interactions (FSI) with the blades as well as using a 6 degree of
freedom (DOF) type simulation in Fluent to consider the inertia of the components. The D-VAWT
is not limited to urban applications. It can be used on a much larger scale in the field outside cities,
however, the large scale version of the D-VAWT will also require investigation to ensure its

optimal performance.

Since the D-VAWT requires the wind to be normal to its longitudinal side for optimal
performance, combining the D-VAWT with a shroud could help align the flow in the desired
direction. The shroud should provide the D-VAWT with a larger operating range of incident wind
angles. The other solution to help with the wind dependency problem is a mechanical solution,
where one of the two axes is allowed to pivot so that the flow is always normal to the longitudinal

side of the turbine. Both solutions are viable and require further investigation.

With the D-VAWT concept proven, it is also possible to investigate a turbine with different
blade paths such as one with a triangular shape with three axes to make the turbine performance
even less sensitive to wind direction. Finally, a study where one combines the D-VAWT with the
morphing blade technology to maximize the airfoil’s lift potential throughout the entire blade path

could be interesting to investigate.

6.3.1 Future Work Summary

e Perform a multi-objective parametric study and optimization.

e Investigate the D-VAWT for different sizes and develop its mechanism.

e Study a case with variable TSR in a cycle (i.e. High TSR in translational region and low
TSR in rotating regions).

e Perform full 3D simulations with atmospheric inlet velocity, multiple blades, and
mechanical components.

e Combine the D-VAWT with a shroud or axis pivotal system.

e Investigate new blade paths such as a triangular shaped path.

e Investigate morphing blade technology with the D-VAWT.
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