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Abstract

Closed-loop supply chain network design: case of durable products

Mohammad Jeihoonian, Ph.D.

Concordia University, 2016

Closed loop supply chains comprise, in addition to the conventional forward flows

from suppliers to end-users, a reverse flow of products, components, and materials

from end-users to the manufacturers and secondary markets. Designing a closed-loop

supply chain is a strategic level planning which considerably impacts on tactical and

operational performance of the supply chain. It refers to the decisions taken on the

location of facilities involved in the supply chain network along with the management

of the physical flows associated with forward and product recovery channels. Our

problem of interest is mainly motivated by the case of durable products including

but not limited to large household appliances, computers, photocopying equipment,

and aircraft engines. Such category of products has a modular structure, composed

of independent components. As opposed to simple structured products, e.g., printer

cartridges, that can only be recycled, each of the components in the reverse bill

of materials of durable products can be recovered by a particular type of recovery

process. Besides, durable products share a long life cycle characteristic which indeed

makes designing their CLSC networks more complicated.

In this thesis, in keeping with the abovementioned motivation, we focus on de-

signing closed-loop and reverse supply chains in the context of durable products that

are of various quality conditions. The recovery decisions for product return include

remanufacturing, part harvesting, bulk recycling, material recycling, and landfill-

ing/incineration. Moreover, we take into account environmental concerns regarding
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the harmful impacts of used products in the closed-loop supply chain planning. As

the closed-loop supply chains typically encounter uncertainty in quality and quantity

of the profitable return stream, we further aim to consider the impact of uncertainty

in designing the recovery network. For such purposes, in the first phase, we address

a closed-loop supply chain planning problem in the context of durable products with

generic modular structures. The problem is formulated as a mixed-integer program-

ming model which is then solved by an accelerated Benders decomposition-based algo-

rithm. The performance of the proposed decomposition approach is enhanced through

incorporating algorithmic features including valid inequalities, non-dominated opti-

mality cuts, and local branching strategies.

Next, in the second phase, we propose a precise approach to model the uncertain

quality status of returns, in which the availability of each component in the reverse

bill of materials is modeled as discrete scenarios. We propose a two-stage stochastic

programming model to address this problem setting. Then, since the cardinality of

the scenario set grows exponentially with the number of involved components, we

detail on a scenario reduction scheme to alleviate the computational burden of the

proposed model. The stochastic problem is solved by a L-shaped algorithm enhanced

through valid inequalities and Pareto-optimal cuts.

Finally, we investigate designing a dynamic reverse supply chain where the quan-

tity of the return flows is uncertain. We introduce a multi-stage stochastic program-

ming model and develop a heuristic inspired by scenario clustering decomposition

scheme as the solution method. It revolves around decomposing the scenario tree

into smaller sub-trees which consequently yields a number of sub-models in accor-

dance with sub-trees. The resulting sub-models are then coordinated by Lagrangian

penalty terms. On account of the fact that each sub-model per se is a hard to solve

problem, a Benders decomposition-based algorithm is proposed to solve sub-models.
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gies (FRQNT) and the Natural Sciences and Engineering Research Council of Canada

(NSERC). All the articles presented in this thesis were co-authored and reviewed prior

to submission for publication by Dr. Masoumeh Kazemi Zanjani and Dr. Michel Gen-

dreau. The author of this thesis acted as the principal researcher and performed the

mathematical models development, programming of the solution algorithms, analysis

and validation of the results, along with writing the first drafts of the articles.

The first article entitled “Accelerating Benders decomposition for closed-loop sup-

ply chain network design: case of used durable products with different quality levels”,

co-authored by Dr. Masoumeh Kazemi Zanjani and Dr. Michel Gendreau was pub-

lished in European Journal of Operational Research in June 2016.

The second article entitled “Closed-loop supply chain network design under un-

certain quality status: case of durable products”, co-authored by Dr. Masoumeh

Kazemi Zanjani and Dr. Michel Gendreau was accepted for publication in Interna-

tional Journal of Production Economics in July 2016.

The third article entitled “A decomposition algorithm for dynamic reverse supply

v



chain network design under uncertainty”, co-authored by Dr. Masoumeh Kazemi Zan-

jani and Dr. Michel Gendreau was submitted to Computers & Operations Research

in August 2016.

vi



To my beloved parents and siblings
Alireza, Alieh, Mozhgan, Mehdi, and Pari



Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Dr. Masoumeh

Kazemi Zanjani who has continuously supported my PhD study with her immense

knowledge and invaluable advice. I shall remain indebted for her boundless enthusi-

asm, encouragement, and patience. Furthermore, I would like to thank my co-advisor

Prof. Michel Gendreau for his insightful guidance and incisive comments through-

out my thesis. It would not have been possible to complete my PhD without their

invaluable advice over the past four years.

In addition, I am grateful to Arlene Zimmerman, Leslie Hosein, Maureen Thuringer,

and Sophie Merineau, as the administrative staff of the department of Mechanical and

Industrial Engineering. I am also grateful to my fellow lab-mates and great friends at

Concordia University particularly, Omid Sanei, Mostafa Pazoki, Bahman Fathi, Mo-

hammad Tohidi, Armaghan Alibeyg, Dua Weraikat, Ehsan Rezabeigi, and Alireza

Zandi Karimi.

Last but not least, my special thanks go to my adored family for their understand-

ing, worthwhile support, and unconditional love during my studies.

viii



Contents

List of Figures xiii

List of Tables xiv

Abbreviations xvi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scope and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Accelerating Benders decomposition for closed-loop supply chain

network design: case of used durable products with different quality

levels 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 CLSC and RSC network design models . . . . . . . . . . . . . 14

2.2.2 Enhancing the performance of Benders decomposition . . . . . 17

2.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Durable product structure . . . . . . . . . . . . . . . . . . . . 18

ix



2.3.2 CLSC network configuration . . . . . . . . . . . . . . . . . . . 20

2.3.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Solution methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Benders reformulation . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Algorithmic enhancement . . . . . . . . . . . . . . . . . . . . 31

2.5 Case example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Computational results . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3 The impact of recovery target on the CLSC performance . . . 46

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Closed-loop supply chain network design under uncertain quality

status: case of durable products 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Problem description and formulation . . . . . . . . . . . . . . . . . . 64

3.3.1 CLSC network design for durable products . . . . . . . . . . . 64

3.3.2 Modeling random quality states of the return stream . . . . . 65

3.3.3 Two-stage stochastic programming formulation . . . . . . . . 69

3.4 Scenario reduction algorithm . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Solution methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 L-shaped reformulation . . . . . . . . . . . . . . . . . . . . . . 79

3.5.2 Algorithmic refinements . . . . . . . . . . . . . . . . . . . . . 82

3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6.1 Computational experiments . . . . . . . . . . . . . . . . . . . 87

3.6.2 Analysis of the enhanced L-shaped algorithm . . . . . . . . . 89

x



3.6.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.4 Analysis of fast forward selection algorithm . . . . . . . . . . 96

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.8 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.8.1 Problem notations . . . . . . . . . . . . . . . . . . . . . . . . 100

3.8.2 Magnanti and Wong problem . . . . . . . . . . . . . . . . . . 106

3.8.3 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . 108

4 A decomposition algorithm for dynamic reverse supply chain net-

work design under uncertainty 110

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.2 Modeling uncertain returns . . . . . . . . . . . . . . . . . . . 117

4.2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Solution methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.1 Step 1: SCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.2 Step 2: SCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . 134

4.4.2 Computational results . . . . . . . . . . . . . . . . . . . . . . 136

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6.1 Problem notations . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6.2 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Conclusion and Future Work 145

xi



5.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography 148

xii



List of Figures

1 The CLSC network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Disassembly tree of a generic durable product . . . . . . . . . . . . . 19

3 Conceptual framework for the CLSC network . . . . . . . . . . . . . 20

4 CPU time vs. Problem sets . . . . . . . . . . . . . . . . . . . . . . . 46

5 Iterations vs. Problem sets . . . . . . . . . . . . . . . . . . . . . . . . 46

6 The percentage of returns acquisition . . . . . . . . . . . . . . . . . . 47

7 Profit variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 General structure of the CLSC network . . . . . . . . . . . . . . . . . 66

9 Convergence of the gap for the 1st instance of C1 . . . . . . . . . . . 94

10 Impact of different return ratio levels on the CLSC configuration . . . 96

11 The RSC network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12 Scenario tree for the random quantity of returns . . . . . . . . . . . . 118

13 The scenario cluster sub-trees . . . . . . . . . . . . . . . . . . . . . . 123

xiii



List of Tables

1 The most pertinent CLSC/RSC network design models in the literature 16

2 Separable components of a used washing machine . . . . . . . . . . . 40

3 Quality level-dependent parameters . . . . . . . . . . . . . . . . . . . 41

4 Other case example parameters . . . . . . . . . . . . . . . . . . . . . 41

5 Test problem classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Size of test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 The value of parameters of local branching procedure . . . . . . . . . 43

8 Comparison of both algorithms and CPLEX . . . . . . . . . . . . . . 44

9 Example of quality state scenarios . . . . . . . . . . . . . . . . . . . . 68

10 Components and raw materials of the case example . . . . . . . . . . 89

11 Problem classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

12 Size of the deterministic equivalent problems . . . . . . . . . . . . . . 90

13 Computational results on problem classes for |S| = 500 . . . . . . . . 91

14 Computational results on problem classes for |S| = 1000 . . . . . . . 92

15 The average value of RD . . . . . . . . . . . . . . . . . . . . . . . . . 97

16 Parameter settings for modules . . . . . . . . . . . . . . . . . . . . . 108

17 Parameter settings for raw materials . . . . . . . . . . . . . . . . . . 108

18 Parameter settings for parts . . . . . . . . . . . . . . . . . . . . . . . 108

19 Values of other parameters . . . . . . . . . . . . . . . . . . . . . . . . 109

20 Components of the case example . . . . . . . . . . . . . . . . . . . . 135

xiv



21 Description of classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

22 Size of test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

23 Comparison of HSCD and BD algorithms . . . . . . . . . . . . . . . . 138

24 Settings for modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

25 Settings for raw materials . . . . . . . . . . . . . . . . . . . . . . . . 143

26 Settings for parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

27 Settings for quality level-dependent parameters . . . . . . . . . . . . 144

28 Other parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . 144

xv



Abbreviations

BOM Bill of materials

CLSC Closed-loop supply chain

DRSP Dual recourse subproblem

DSP Dual subproblem

EOL End-of-life

MIP Mixed-integer programming

MP Master problem

MS-MIP Multi-stage mixed-integer stochastic programming

OEM Original equipment manufacturer

PCB Printed Circuit Board

PSP Primal subproblem

RSC Reverse supply chain

RSP Recourse subproblem

3PL Third-party logistics

xvi



Chapter 1

Introduction

1.1 Overview

Sustainability of supply chains have gained a significant momentum during recent

decades. In many industries, conventionally, EOL products especially solid items have

been disposed of through burying under the ground as well as incineration, which are

not sustainable practices. For instance, it is estimated that incinerators emit 446 kg

of mercury annually in Canada [1]. In order to alleviate the environmental footprint

of products that reach the end of their life cycle, legislative efforts have been made

by many governments around the globe requiring OEMs to take the responsibility for

the whole life cycle of their products. For example, in electrical and electronic sector,

EU Directive (Directive 2003/108/EC) sets recycling targets ranging from 50% to

75% by weight. In addition to the environmental crisis, many firms have exploited

new business opportunities that correspond to the recovery of the economic value

residing in EOL products. As a well-known OEM that actively remanufactures its

used products, IBM saves up to 80% per part by dismantling returned equipment

compared to sourcing a new part from a supplier [2]. Needless to say, such business

advantages call for quantitative decision making tools that address the challenges of
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the underlying supply chain.

RSCs process products returns so as to recover value by re-processing them via a

broad set of activities, such as remanufacturing, part harvesting, material recycling,

etc. These practices are considered as key features of an economically and environ-

mentally sustainable supply chain. Indeed, OEMs that have been most successful

with their RSCs are those that closely coordinate it with the forward supply chain,

initiating the CLSC [3]. Unlike forward supply chains, in CLSCs, end-users are the

point of origin and hold final goods that generate value-added flows through various

recovery options. Designing CLSCs revolves around the decisions to be made on the

location of facilities in the forward and reverse chains along with the routing and the

coordination of forward and reverse physical flows. The former is associated with the

location and the capacity of collection, remanufacturing, recycling, and disposal fa-

cilities in the reverse channel to carry out recovery activities while the OEM operates

a well-established forward chain. The latter addresses allocating the physical flows

among the CLSC facilities. Addressing each of the above decisions locally might be

quite straightforward. However, it considerably increases unnecessary infrastructure

and processing costs, disregards the interdependence between forward and reverse

chains, and hence results in a sub-optimal supply chain planning.

Motivated by the case of durable products, e.g., large household appliances, that

are characterized by their modular structure and their long life cycle, the focus of this

thesis is on designing CLSC and RSC networks applicable in the context of durable

goods. Designing a recovery network for such category of products is a complex

problem particularly attributed to the various types of strategies that can be adopted

for the value recovery of several components in their reverse BOM. On the other hand,

CLSCs deal with high degree of variability and uncertainty in quality and quantity

of returns, which further complicate the planning of a recovery system for modular
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structured products. Such variations are most often the consequence of different usage

patterns and the enormous number of end-users dispersed over geographic regions.

Even though a rigorous stream of academic research has been dedicated to the study

of CLSC/RSC network design problems in both deterministic and non-deterministic

settings, to the best of our knowledge, the impact of heterogeneity and uncertainty

in quality and quantity of durable products have never been investigated. This is

the critical point which distinguishes the current thesis from previous studies. More

precisely, we contribute to the existing literature through addressing the problem of

designing a comprehensive recovery network for the case of durable products while

accounting the quality status of returns in a deterministic setting. We further focus

on cases in which the quality state of returns are unknown a priori yet historical data

on the condition of used items are available. Finally, we aim for investigating a RSC

planning problem under stochastic returns quantity evolving over a planning horizon.

In what follows, we proceed with delineating the problem studied. Then, the

research scope and objectives are presented. We present the outline of this thesis at

the end of this chapter.

1.2 Problem description

In the CLSC network design problem of interest, the OEM operates a well-established

forward supply chain that comprises module, part, and raw material suppliers, man-

ufacturers, distribution facilities, and end-users. Each module supplier provides a

particular type of new modules. Similarly, each type of new parts and raw materials

are provided by the corresponding supplier. New durable goods are shipped form

manufacturing facilities to end-users through distribution centers to meet their de-

mands. The OEM seeks to adopt some plausible recovery options associated with

the reverse BOM of returned products to abide by the legislative recovery target as
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well as to capture the economic values by processing the returns. Thus, the existing

forward network is extended to accommodate new facilities in the reverse network

and accordingly to coordinate the physical forward and reverse flows in the extended

supply chain network. The reverse channel composes collection, disassembly, reman-

ufacturing, bulk recycling, material recycling, and disposal centers, referred to as the

recovery facilities. The returns with heterogeneous quality status are acquired in dis-

assembly facilities after being expected and sorted in collection centers. Given the

reverse BOM, in disassembly centers, each returned item is disassembled into different

components, i.e., modules and parts, along with raw materials. The most suitable

recovery option for modules in a good condition is remanufacturing; the common

practice for parts is part-harvesting; and the attractive disposition decision for raw

materials is recycling. Depending on its quality state, each used product also contains

a considerable amount of raw materials combined with other residues, e.g., electronic

scrap. Such mix of residues cannot be easily processed through simple operations

carried out in raw material recycling facilities. Bulk recycling that includes some unit

operations, e.g., crushing and separation, is the viable recovery option for residues.

Bulk recycling step is then followed by raw material recycling to recycle unprocessed

raw materials. The recovered components and raw materials are then shipped to

manufacturing facilities and/or are sold in secondary markets. The conceptual struc-

ture of the CLSC under investigation is schematically illustrated in Figure 1. The

solid and dashed arcs indicate the forward and reverse flows, respectively.

In many cases, forecasting the quality status of the return stream is quite impos-

sible due to limited accuracy of grading and classification errors. In such cases, that

crude information of the quality status is available to the decision maker, considering

the impact of random quality state on the grading decision is essential in order to mit-

igate uncertainty. This can be done through modeling the random quality status of
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Figure 1: The CLSC network

used durable products by a probability distribution with finite support. In the supply

chain described above, once the grading process is executed in disassembly centers, a

complete information on the number of remanufacturable modules and reusable parts

in addition to the amount of residues is available to the decision maker. Therefore,

the CLSC network design problem can be seen as a two-stage decision making prob-

lem in which a set of decisions, e.g., the location of the recovery facilities, are taken

before the realization of the quality status and the remaining decisions, e.g., reverse

flows, are made after grading the return stream. The disassembled components, raw

materials, and residues are shipped to appropriate recovery facilities. Similar to the

first problem setting, the recovered components and raw materials are then shipped

to manufacturing centers and/or are sold in secondary markets.

Given the uncertainty in quantity of returns over a planning horizon, the static

setting described earlier, is extended into a multi-period setting where the stochastic

return flows are of non-homogeneous quality status. In the dynamic setting, in each
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period in the planning horizon, used products are acquired in disassembly centers such

that the disassembled modules, parts, and residues are further processed through

viable recovery practices. Moreover, studying this problem in a dynamic setting

provides the possibility of closing some of the existing facilities or opening new ones

over the planning horizon depending on the quantity of the return stream. This

problem setting is restricted to RSC activities that entail taking back and recovery

of used durable products. The processed items are sold in secondary markets.

1.3 Scope and objectives

To fill the void in the existing literature, the core objective of this study is to design

a comprehensive CLSC/RSC that will aid in developing of efficient used product

recovery systems in the context of durable products. Given the problem description,

the specific objectives of this thesis are summarized as follows.

1. To take into account the reverse BOM of durable products and most of plausible

recovery options that an OEM can adopt in practice,

2. To formulate the deterministic CLSC as a mathematical programming model

to determine the location of the recovery facilities and to coordinate forward

and reverse flows while accounting multiple quality levels and the legislative

recovery target,

3. To develop a competitive decomposition algorithm to solve the deterministic

mathematical model,

4. To explicitly incorporate the uncertain quality status of the return flows into the

proposed mathematical model by means of two-stage stochastic programming

approach,
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5. To develop an efficient algorithm as the solution method for the stochastic CLSC

planning problem,

6. To design a dynamic RSC network under uncertainty in quantity of returns

through proposing a multi-stage stochastic programming model,

7. To develop a scenario clustering decomposition scheme that obtains high quality

solutions for the resulting stochastic model in the previous objective,

8. To investigate the tractability of the proposed models and the performances of

the solution methods based on a real-life industrial case.

1.4 Organization of the thesis

This manuscript has five chapters organized in the following sequence. Chapter 2

addresses the fundamental problem of this study that is designing a CLSC network,

where the quality status of used products are categorized in multiple levels. The de-

cisions to be made are the location of the recovery facilities in the reverse chain and

the routing and the coordination of physical flows among the CLSC network entities.

To this end, the problem is formulated as a MIP model in which the objective is

to maximize the profit. In order to solve the proposed MIP model in a reasonable

amount of time, an accelerated Benders decomposition-based algorithm is developed.

Furthermore, we shed light on the impact of the legislative recovery target on the

performance of the CLSC. In Chapter 3, through modeling uncertainty in the qual-

ity status of used durable products as binary scenarios, the deterministic problem is

extended into a stochastic CLSC. This problem is reformulated as a two-stage mixed-

integer stochastic program to maximize the expected profit. Given the large number

of the quality state scenarios, a scenario reduction scheme adapted to the particular

structure of the uncertainty set is applied to eliminate the most doubtful to occur
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scenarios. The proposed model is then solved via an enhanced L-shaped decompo-

sition algorithm. Moreover, some insight on the analysis of the scenario reduction

scheme is provided. Chapter 4 presents a multi-stage mixed-integer stochastic pro-

gramming model to address a dynamic RSC network design problem. The objective is

to maximize the expected net profit over the entire planning horizon. The stochastic

factor, i.e, quantity of returns, is modeled as a scenario tree allowing the adjustment

of the decisions while more information on the uncertain parameter is available to the

decision maker. The large-scale optimization problem is then solved by a heuristic

scenario clustering decomposition approach. It employs a Benders decomposition-

based algorithm as a suitable solution approach for each scenario cluster sub-model.

Finally, Section 5 summarizes concluding remarks in addition to several avenues for

future work.
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Chapter 2

Accelerating Benders

decomposition for closed-loop

supply chain network design: case

of used durable products with

different quality levels

This was published as “Accelerating Benders decomposition for closed-loop supply

chain network design: case of used durable products with different quality levels”,

European Journal of Operational Research, 251(3), 830-845, 2016.
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Abstract

Durable products are characterized by their modular structured design as well as their

long life cycle. Each class of components involved in the multi-indenture structure of

such products requires a different recovery process. Moreover, due to their long life

cycle, the return flows are of various quality levels. In this article, we study a closed-

loop supply chain in the context of durable products with generic modular structures.

To this end, we propose a mixed-integer programming model based on a generic

disassembly tree where the number of each sub-assembly depends on the quality

status of the return stream. The model determines the location of various types of

facilities in the reverse network while coordinating forward and reverse flows. We also

consider the legislative target for the recovery of used products as a constraint in the

problem formulation. We present a Benders decomposition-based solution algorithm

together with several algorithmic enhancements for this problem. Computational

results illustrate the superior performance of the solution method.

2.1 Introduction

Landfilling of EOL durable products that contain large quantities of precious and

depletable raw materials is a major concern in terms of sustainability and environ-

mental footprints. In recent decades, OEMs in several countries, such as Germany

and Japan, have been facing with legislations on the take-back of their EOL products.

Meanwhile, they have started recognizing the product recovery as an opportunity for

saving production costs through reusing the recovered parts in their forward flow in

addition to having access to the secondary markets. Hence, the OEMs have been

forced to extend the scope of traditional logistics to incorporate the return flows from

customers to manufacturer. As pointed out by Guide and Van Wassenhove [3], OEMs
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that have been most successful with their reverse supply chains are those that closely

coordinate it with the forward supply chain, initiating the CLSC. In a CLSC, the

role of the RSC is to collect used products from end-users, inspect and sort them as

needed, ship them to various recovery facilities, and finally redistribute the recovered

items into the forward supply chain or to the secondary markets.

This study is motivated by the recovery of durable products, such as aircraft,

automobile, and large household appliances that are distinguished by their multi-

indenture structure as well as their long life cycle. Such products can be disassembled

into several components namely modules, parts, and precious raw materials. As

opposed to simple waste, e.g., paper, carpet, and sand, that can only be recycled, each

of the aforementioned components in the disassembly tree of durable products can be

recovered by a particular recovery process. In the context of durable products with

long life cycle, it can be expected that the majority of the return stream is composed

of poor quality returns with a small number of recoverable modules and parts [4]. In

other words, only a small portion of the return flows might belong to the warranty or

damaged items involving a large number of high quality modules and parts. Since the

remanufacturing cost increases as the quality of returns decrease, OEMs expect larger

revenue through the recovery of high quality returns and thus might be less motivated

for the acquisition and recovery of lower quality ones. However, the legislation, e.g.,

in Europe and Japan, sets targets for the recovery of used products. Failure to meet

this target would incur penalties to the OEM and it has a negative impact on the

image of the company from customers’ point of view.

The existing CLSC network design models in the literature cover only a few recov-

ery options, such as product remanufacturing and material recycling. In an attempt

to fill the gap in the current literature on the design of CLSC networks, this paper

proposes a MIP model which formulates CLSC network design for the case of used
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durable products based on a generic disassembly tree. In addition to the location

of collection, disassembly, and disposal facilities, the model will also decide on the

location of a variety of recovery facilities such as remanufacturing, bulk recycling, and

material recycling designated for each class of components of durable products.

Moreover, the variable quality status of the return stream has been incorporated

in the structure of the aforementioned disassembly tree. More specifically, we assume

that the return stream fits into various quality levels; warranty or damaged returns

are usually categorized as the high quality stream, while EOL items are assigned to

the poor quality stream. To the best of our knowledge, the issue of non-homogeneous

quality of the components in the disassembly tree of complex structured products

which affects the right choice of the recovery option has never been addressed in

the CLSC design literature. As another contribution, we have also considered the

legislative target imposed to OEMs for the recovery of returns in order to address

environmental concerns regarding the harmful effects of leaving used products in the

environment.

On account of the fact that the proposed MIP model is among the most large-scale

CLSC network design models particularly due to various types of recovery facilities in

the reverse network as well as the comprehensive generic disassembly tree, we have de-

veloped an efficient solution method based on Benders decomposition [5]. Regarding

that the previous studies in the context of CLSC and RSC design have addressed less

complicated networks, their Benders decomposition algorithmic schemes are limited

to the generation of multiple optimality cuts, cut strengthening, and introducing the

trust region restriction to the master problem [6, 7]. We, however, deploy a variety

of enhancements including: 1) Adding valid inequalities to the master problem to

reduce the number of feasibility cuts; 2) Generating enhanced Pareto-optimal cuts to

exclude a larger space of the master problem; and, 3) Specializing the local branching
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search to the proposed CLSC design model to concurrently improve both lower and

upper bounds during the execution of Benders decomposition. Local branching as a

neighborhood search algorithm offers a general search strategy that might be adapted

to the type of problem being solved. It should be emphasized that we have adapted

the local branching scheme described in the seminal work of Fischetti and Lodi [8] to

the type of our problem of interest in the case of Benders decomposition approach to

improve the convergence of the algorithm. To the best of our knowledge, this is the

first attempt to combine the enhanced Pareto-optimality cuts of Papadakos [9] with

the local branching within Benders decomposition algorithm.

In summary, the main contribution of our study is twofold. Firstly, we formulate

a CLSC network design problem based on a generic disassembly tree corresponding to

durable products with non-homogeneous quality status. To the best of our knowledge,

the proposed model is the most generic CLSC strategic planning model in the sense

that it involves all recovery options plausible in taking different sub-assemblies of a

product while also considering legislative recovery target as an environmental goal.

Secondly, we propose an exact solution algorithm based on Benders decomposition

in conjunction with several computational enhancements such as improved Pareto-

optimality cuts and local branching.

The remainder of this article is organized as follows. In the next section, we provide

the overview of the most relevant literature. In Section 2.3, we provide more details

on the problem investigated in this paper and then present its formulation. Section

2.4 describes the solution methodology. Computational experiments are presented in

Section 2.5. Conclusion and future areas of research are provided in Section 2.6.
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2.2 Literature review

In this section, we present a selective overview of the relevant literature on CLSC

and RSC network design. For a detailed review, the interested reader is referred to

[10–12]. We also provide a review of the relevant existing algorithmic refinements for

Benders decomposition method.

2.2.1 CLSC and RSC network design models

As an early study, Fleischmann et al. [13] proposed a MIP model for designing a

generic CLSC network including uncapacitated disassembly and remanufacturing fa-

cilities in the reverse channel. Krikke et al. [4] proposed a multi-objective CLSC

network design in which the objective is to minimize cost and environmental im-

pacts measured by energy and waste. Lu and Bostel [14] provided a MIP formulation

to address a CLSC where the customers are directly served from hybrid manufac-

turing/remanufacturing facilities. For solving the problem, the authors developed a

Lagrangian heuristic approach.

The multi-product CLSCs have been studied by [6, 15–18]. For instance, Min and

Ko [17] focused on the design of a CLSC network in which a 3PL provider runs the

reverse channel. The resulting model was solved by means of a genetic algorithm.

More recently, Alumur et al. [19] presented a multi-product formulation for RSC

network design while considering the reverse BOM. The proposed model was applied

for a case study of washing machines and tumble dryers in Germany.

Listeş [20] proposed a two-stage stochastic programming model for designing a

CLSC network under demand and return uncertainty. The proposed model was solved

by the integer L-shaped algorithm. Salema et al. [21] addressed the problem of

designing a CLSC network in which random demand and quantity of returns are
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modeled as discrete scenarios with known probability distribution. For more recent

papers on CLSC network design under uncertainty, the reader is referred to [22, 23].

Quality status of used products has been considered by Aras et al. [24]. The

authors addressed a RSC network design problem in which used products are charac-

terized with respect to different quality levels. A tabu search-simplex search method

was developed as the solution approach. Likewise, a quality-dependent incentive pol-

icy for the collection of used items was presented in Aras and Aksen [25].

The classification of the contributions mentioned above is provided in Table 1.

Columns 2 to 7 refer to location decisions in the CLSC and RSC network under

investigation. Columns 4 to 7, in particular, indicate the type(s) of recovery options

that have been considered in those articles. Column 8 verifies whether or not the

recovery network design model is formulated based on a disassembly tree (reverse

bill-of-material). Columns 9 and 10 indicate, respectively, if the variable quality

status of the return stream and the environmental concern have been taken into

consideration while designing the network. The last column represents the solution

approach adopted. The overview of the existing literature reveals the extent to which

the model we propose in this article goes beyond the literature. Only a few models

address the multi-indenture structure of durable products and hence formulate the

CLSC/RSC design problem based on a disassembly tree. Furthermore, none of those

articles considered all disposition processes plausible for various types of dismantled

components in such products as well as the recovery target as an environmental goal.

Likewise, variable quality of the return stream and consequently its impact on the

remanufacturing cost has been rarely investigated in the CLSC/RSC network design

problem. On the methodological side, compared to Benders decomposition-based

approaches applied in previous studies, the complex structure of the CLSC considered

in this article requires developing a more sophisticated method to solve the resulting
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Table 1: The most pertinent CLSC/RSC network design models in the literature

Article Location Decisions
Disassembly

tree
Quality
status

Environmental
criteria

Solution approach

Collection Disassembly Recovery options
Rem. BRec. Rec. Disp.

[4] 3 3 3 3 3 3 3 Commercial solver
[6] 3 3 EBD
[7] 3 3 EBD
[13] 3 3 Commercial Solver
[14] 3 3 Lagrangean heuristic
[15] 3 3 Commercial Solver
[16] 3 3 Commercial Solver
[17] 3 Genetic algorithm
[18] 3 3 3 Commercial Solver
[19] 3 3 3 3 Commercial solver
[20] 3 3 Integer L-shaped
[21] 3 3 Commercial solver
[22] 3 3 Commercial solver
[23] 3 3 3 3 3 Commercial solver
[24] 3 3 Tabu serach
[25] 3 3 Tabu search
Our model 3 3 3 3 3 3 3 3 3 BDLB

Rem.: Remanufacturing, BRec.: Bulk recycling, Rec.: Material recycling, Disp.: Disposal, EBD: Enhanced Benders decomposition, BDLB:
BD with local branching and Pareto-optimality cut
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MIP model.

2.2.2 Enhancing the performance of Benders decomposition

Benders decomposition is an exact solution method in which the variables of a MIP

model are partitioned into two subsets such that when the integer variables are as-

signed numerical values, the problem reduces to a linear program. This procedure

partitions the original mixed-integer programming model into a master problem and

a linear subproblem referred to as the slave problem. These subproblems are then

solved sequentially and iteratively until a termination criterion, such as a small gap,

is satisfied.

Benders decomposition-based approaches have been widely used in solving supply

chain network design problems: e.g., (i) Multi-commodity distribution system design

[26], (ii) Stochastic supply chain design [27, 28], and (iii) Closed-loop supply chains

[6, 7]. Over the years, since the pioneering paper of Geoffrion and Graves [26] in

which the authors demonstrated that the master problem does not need to be solved

to optimality, various techniques have been proposed to enhance the performance of

Benders decomposition. The focus of the research has been mainly on circumventing

the computational difficulty of the master problem, developing new cut selection

schemes, and incorporating additional algorithmic features into the classical Benders

algorithm.

McDaniel and Devine [29] suggested the relaxation of the integrality constraints in

the master problem to obtain a set of initial optimality cuts and later on reintroduce

them to the master problem and generate additional cuts until an optimal integer

solution is found. As for cut selection schemes, Magnanti and Wong [30] discussed how

to generate Pareto-optimal cuts considering the notion of core points when there are

multiple optimal solutions to the dual subproblem. Despite the fact that more than
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one dual subproblem is solved at each iteration, the proposed scheme proved to be

quite efficient for solving network design type problems. Nonetheless, this approach

suffers from two major drawbacks: 1) The normalization constraint added to the

auxiliary dual subproblem is numerically unstable [31]; and, 2) The dual subproblem

is required to be bounded. In other words, this approach cannot be employed to enrich

feasibility cuts. In order to resolve the first issue, Papadakos [9] demonstrated that,

through a different core point choice at each iteration, the normalization constraint

can be disregarded in the auxiliary dual subproblem. Moreover, the author showed

that the convex combination of the current master problem solution and the previous

core point suffices to obtain a new core point. Considering the fact that the dual

subproblem can be transformed into a pure feasibility problem, Fischetti et al. [32]

addressed both feasibility and optimality cuts in an unified framework. The aim is

to identify the “minimal source of infeasibility” and consequently to find the small

set of constraints that would be sufficient to exclude the master problem solution.

More recently, Sherali and Lunday [33] proposed the idea of generating maximal non-

dominated cuts to speed up the Benders algorithm. As an algorithmic add-on, Rei et

al. [34] recently proposed to apply local branching [8] throughout the solution process

to improve both lower and upper bounds simultaneously and accordingly accelerate

Benders decomposition algorithm.

2.3 Problem statement

2.3.1 Durable product structure

As pointed out in the preceding sections, durable products have a multi-indenture

structure. They consist of multiple and various types of components as shown in

the disassembly tree in Figure 11. Once the durable product is dismantled, it yields
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various modules, parts, residues, solid raw materials, in addition to non-recoverable

components. Modules, e.g., washing machine motor and clutch, are units of products

that undergo the remanufacturing processes. In this study we assume that modules

are brought up to the brand-new status through the remanufacturing processes. We

also assume that poor quality modules can be recovered through bulk recycling. Parts,

e.g., washing tube or PCB in a washing machine, are another category of components

in the disassembly process. It is also assumed that each product yields different

numbers of a specific part depending on its quality level. If parts are not qualified

for harvesting, they would undergo the bulk recycling processes. Solid raw materials

in the product, such as plastic, iron, and copper are separated after the product is

dismantled. Such materials can directly undergo the appropriate recycling processes.

Nevertheless, a big fraction of materials might be combined with other residues and

thus it is not easy to extract them through simple activities in material recycling units.

Bulk recycling is the appropriate recovery option for such residues. It encompasses

shredding and different separation methods that first transform the residues into flakes

and then separate different categories of materials based on their physical properties.

Components with no value are salvaged (e.g., landfilling and incineration).

Figure 2: Disassembly tree of a generic durable product
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2.3.2 CLSC network configuration

In the CLSC network under consideration, the OEM manages an established forward

supply chain including suppliers, manufacturing facilities, distribution centers, and

end-users. The brand-new durable products are shipped from manufacturing facilities

to end-users through distribution centers to meet the demand. In the reverse chain,

used products with different quality levels are acquired by collection centers. In dis-

assembly centers, used products are dismantled considering the disassembly tree and

consequently each component will be processed in the appropriate recovery facility.

The recovered components can then be: (i) delivered to manufacturing facilities to

deploy in manufacturing processes, and (ii) offered at secondary markets. Given the

above description, the conceptual structure of the CLSC is schematically illustrated

in Figure 12. The solid arcs indicate the forward flows while the dashed ones denote

the reverse flows in the CLSC under consideration.

Figure 3: Conceptual framework for the CLSC network
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2.3.3 Problem formulation

Given the network configuration provided in Section 3.2, the CLSC design model

is looking for (i) the location of collection, disassembly, remanufacturing, bulk re-

cycling, material recycling, and disposal facilities in the reverse network, and (ii)

routing/coordinating the forward and reverse flows. The objective function of the

proposed MIP model is to maximize the net profit which incorporates the revenue

from selling new products and recovered components in addition to the fixed open-

ing costs of facilities as well as processing procurement, and transportation costs in

the network. The proposed mathematical model is subjected to the following major

restrictions.

• Demand satisfaction constraints for brand-new products and recovered items,

• Flow balance constraints at different facilities,

• Capacity limitations of facilities,

• Non-negativity and binary restrictions on decision variables.

Furthermore, according to legislative regulations, the company is obliged to acquire a

substantial portion of the return stream for recovery purposes. This condition reflects

the environmental concerns regarding the harmful effects of leaving used durable

products in the environment. It should be noted manufacturers might not be willing

to invest on the recovery of low profitable poor quality returns due to their small

salvage value. However, through imposing this condition as a constraint to the CLSC

design model, we can ensure that poor quality returns are also treated in the reverse

network. This constraint has been called “the environmentally friendly constraint”

provided as constraint (13) in the following model.

The following assumptions support the MIP model provided in this section:

• The OEM operates a well-established forward network,
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• Demands at end-users and secondary markets are known and must be fully

fulfilled,

• The return fraction of each end-user zone is known,

• Returns are categorized with respect to various quality levels,

• The unit cost of collection, disassembly, and remanufacturing costs as well as

the unit acquisition price of the return stream are quality-dependent,

• The model is considered in a single-product and single-period setting.

The problem notations including sets, parameters, and decision variables are listed

in the Appendix.

Mathematical model

The objective function of the MIP model is to maximize the net profit defined as

the difference between the total income and the total cost.

Total revenue

∑

j∈J

∑

k∈K

PkkQKjk +
∑

m∈M

∑

w∈W

∑

l∈L

PwlQWmwl

+
∑

a∈A

∑

s∈S

∑

p∈P

PspQSasp +
∑

g∈G

∑

e∈E

∑

r∈R

PerQEger (1)

Total cost

Fixed cost

∑

c∈C

fccY Cc +
∑

a∈A

faaY Aa +
∑

m∈M

fmmYMm

+
∑

g∈G

fggY Gg +
∑

b∈B

fbbY Bb +
∑

d∈D

fddY Dd (2)
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Procurement cost

∑

z∈Z

∑

i∈I

∑

p∈P

czzpQIzip +
∑

u∈U

∑

i∈I

∑

r∈R

cuurNIuir

+
∑

x∈X

∑

i∈I

∑

l∈L

cxxlXIxil +
∑

c∈C

∑

a∈A

∑

q∈Q

PrqQAcaq (3)

Processing cost

∑

i∈I

∑

j∈J

ciiQJij +
∑

j∈J

∑

k∈K

cjjQKjk +
∑

k∈K

∑

c∈C

∑

q∈Q

cccqQCkcq

+
∑

c∈C

∑

a∈A

∑

q∈Q

caaqQAcaq +
∑

a∈A

∑

g∈G

∑

r∈R

cggrQGagr +
∑

b∈B

∑

g∈G

∑

r∈R

cggrNGbgr

+
∑

a∈A

∑

m∈M

∑

l∈L

∑

q∈Q

cmmlqQMamlq +
∑

a∈A

∑

b∈B

cbbQBab +
∑

a∈A

∑

d∈D

cddQDad

+
∑

b∈B

∑

d∈D

cddNDbd +
∑

g∈G

∑

d∈D

∑

r∈R

cddXDgdr (4)

Transportation cost

∑

z∈Z

∑

i∈I

∑

p∈P

tizipQIzip +
∑

u∈U

∑

i∈I

∑

r∈R

riuirNIuir +
∑

x∈X

∑

i∈I

∑

l∈L

sixilXIxil

+
∑

i∈I

∑

j∈J

tjijQJij +
∑

j∈J

∑

k∈K

tkjkQKjk +
∑

k∈K

∑

c∈C

∑

q∈Q

tckcqQCkcq

+
∑

c∈C

∑

a∈A

∑

q∈Q

tacaqQAcaq +
∑

a∈A

∑

m∈M

∑

l∈L

∑

q∈Q

tmamlQMamlq +
∑

a∈A

∑

b∈B

tbabQBab

+
∑

a∈A

∑

g∈G

∑

r∈R

tgagrQGagr +
∑

a∈A

∑

d∈D

tdadQDad +
∑

b∈B

∑

g∈G

∑

r∈R

rgbgrNGbgr

+
∑

g∈G

∑

d∈D

∑

r∈R

sdgdXDgdr +
∑

b∈B

∑

d∈D

rdbdNDbd +
∑

a∈A

∑

s∈S

∑

p∈P

tsaspQSasp

+
∑

m∈M

∑

w∈W

∑

l∈L

twmwlQWmwl +
∑

g∈G

∑

e∈E

∑

r∈R

tegerQEger
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+
∑

a∈A

∑

i∈I

∑

p∈P

tzaipQZaip +
∑

m∈M

∑

i∈I

∑

l∈L

txmilQXmil +
∑

g∈G

∑

i∈I

∑

r∈R

tugirQUgir (5)

Subject to:

Manufacturing centers

∑

z∈Z

QIzip +
∑

a∈A

QZaip = φp

∑

j∈J

QJij ∀ i ∈ I, ∀ p ∈ P (6)

∑

u∈U

NIuir +
∑

g∈G

QUgir = µr

∑

j∈J

QJij ∀ i ∈ I, ∀ r ∈ R (7)

∑

x∈X

XIxil +
∑

m∈M

QXmil = ωl

∑

j∈J

QJij ∀ i ∈ I, ∀ l ∈ L (8)

Distribution centers

∑

i∈I

QJij =
∑

k∈K

QKjk ∀ j ∈ J (9)

∑

j∈J

QKjk = dkk ∀ k ∈ K (10)

Collection centers

∑

c∈C

QCkcq = ψqdkk ∀ k ∈ K, ∀ q ∈ Q (11)

∑

k∈K

QCkcq ≥
∑

a∈A

QAcaq ∀ c ∈ C, ∀ q ∈ Q (12)

∑

c∈C

∑

a∈A

∑

q∈Q

QAcaq ≥ θ
∑

k∈K

∑

c∈C

∑

q∈Q

QCkcq (13)

Disassembly centers

∑

c∈C

∑

q∈Q

γpqQAcaq =
∑

i∈I

QZaip +
∑

s∈S

QSasp ∀ a ∈ A, ∀ p ∈ P (14)
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∑

a∈A

QSasp = dssp ∀ s ∈ S, ∀ p ∈ P (15)

∑

c∈C

∑

q∈Q

σqQAcaq =
∑

d∈D

QDad ∀ a ∈ A (16)

∑

c∈C

∑

q∈Q

βqQAcaq =
∑

b∈B

QBab ∀ a ∈ A (17)

∑

c∈C

∑

q∈Q

αrqQAcaq =
∑

g∈G

QGagr ∀ a ∈ A, ∀ r ∈ R (18)

∑

c∈C

δlqQAcaq =
∑

m∈M

QMamlq ∀ a ∈ A, ∀ l ∈ L, ∀ q ∈ Q (19)

Remanufacturing centers

∑

a∈A

∑

q∈Q

QMamlq =
∑

w∈W

QWmwl +
∑

i∈I

QXmil ∀ m ∈M, ∀ l ∈ L (20)

∑

m∈M

QWmwl = dwwl ∀ w ∈ W, ∀ l ∈ L (21)

Bulk recycling centers

∑

a∈A

ηrQBab =
∑

g∈G

NGbgr ∀ b ∈ B, ∀ r ∈ R (22)

∑

a∈A

QBab =
∑

g∈G

∑

r∈R

NGbgr +
∑

d∈D

NDbd ∀ b ∈ B (23)

Material recycling centers

∑

a∈A

τrQGagr +
∑

b∈B

τrNGbgr =
∑

d∈D

XDgdr ∀ g ∈ G, ∀ r ∈ R (24)

∑

g∈G

QEger = deer ∀ e ∈ E, ∀ r ∈ R (25)
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∑

a∈A

QGagr +
∑

b∈B

NGbgr =
∑

i∈I

QUgir +
∑

e∈E

QEger

+
∑

d∈D

XDgdr ∀ g ∈ G, ∀ r ∈ R (26)

Capacity constraints

∑

i∈I

QIzip ≤ cazzp ∀ z ∈ Z, ∀ p ∈ P (27)

∑

i∈I

NIuir ≤ cauur ∀ u ∈ U, ∀ r ∈ R (28)

∑

i∈I

XIxil ≤ caxxl ∀ x ∈ X, ∀ l ∈ L (29)

∑

j∈J

QJij ≤ caii ∀ i ∈ I (30)

∑

i∈I

QJij ≤ cajj ∀ j ∈ J (31)

∑

k∈K

∑

q∈Q

QCkcq ≤ caccY Cc ∀ c ∈ C (32)

∑

c∈C

∑

q∈Q

QAcaq ≤ caaaY Aa ∀ a ∈ A (33)

∑

a∈A

QDad +
∑

b∈B

NDbd +
∑

g∈G

∑

r∈R

XDgdr ≤ caddY Dd ∀ d ∈ D (34)

∑

a∈A

QBab ≤ cabbY Bb ∀ b ∈ B (35)

∑

a∈A

QGagr +
∑

b∈B

NGbgr ≤ caggrY Gg ∀ g ∈ G, ∀ r ∈ R (36)

∑

a∈A

∑

q∈Q

QMamlq ≤ cammlYMm ∀ m ∈M, ∀ l ∈ L (37)

Constraints (6)-(8) ensure that the total outgoing flow from each manufacturing

center is equal to the total incoming flow into this facility from suppliers and reverse

network. Constraint (9)-(10) ensure flow balance at each distribution center as well

as demand satisfaction at each end-user zone. Constraint (11) ensures that all the
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returned products are collected at the collection centers. Constraint (12) ensures that

the sum of the flow to the disassembly facilities, i.e., acquired returns, cannot exceed

the total amount of returned products available in collection centers. Constraint (13)

is the environmentally friendly restriction imposing that the total amount of acquired

returns must be at least equal to a certain percentage of the total amount of the

return stream in collection centers. Constraints (14)-(19) ensure flow conservation at

each disassembly center and demand satisfaction at spare parts markets. Constrain

(20) ensures that the total incoming flow to each remanufacturing center is equal to

the total outgoing flow to modules secondary markets and manufacturing facilities.

Constraint (21) ensures that the demands of all secondary markets for remanufac-

tured modules are satisfied. Constraints (22)-(23) ensure flow conservation at each

bulk recycling center. Constraints (24)-(26) are flow conservation restrictions at each

material recycling center. Constraints (27)-(31) impose capacity restrictions on for-

ward chain facilities. Constraints (32)-(37) ensure that the total incoming flow to an

open facility in the reverse network cannot exceed its capacity.

2.4 Solution methodology

The proposed model (1)-(37) has a conspicuous special property that facilitates the

application of Benders decomposition as the solution method [26]. For a given vec-

tor of locations of reverse chain facilities, the remaining problem is a network type

problem which can be solved much easier than the MIP model. In what follows, we

present the details of the Benders reformulation of the MIP model along with the

proposed algorithmic enhancements.
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2.4.1 Benders reformulation

For the sake of simplicity, let P be the vector of unit prices of selling brand-new

and recovered components at the marketplaces. Let F be the vector of fixed costs

of opening facilities in the reverse network. Furthermore, let C be the vector of

other types of costs and let QX be the set of forward and reverse flows variables.

Let Y be the set of binary decision variables representing, respectively, the locations

of collection, disassembly, remanufacturing, bulk recycling, material recycling, and

disposal centers. Furthermore, let Y denote the vector of fixed Y . The resulting

PSP that determines the routing of the forward and reverse flows can be stated as

follows.

Max (1), (3)− (5)

s.t. (6)− (31)

∑

k∈K

∑

q∈Q

QCkcq ≤ caccY Cc ∀ c ∈ C (38)

∑

c∈C

∑

q∈Q

QAcaq ≤ caaaY Aa ∀ a ∈ A (39)

∑

a∈A

QDad +
∑

b∈B

NDbd +
∑

g∈G

∑

r∈R

XDgdr ≤ caddY Dd ∀ d ∈ D (40)

∑

a∈A

QBab ≤ cabbY Bb ∀ b ∈ B (41)

∑

a∈A

QGagr +
∑

b∈B

NGbgr ≤ caggrY Gg ∀ g ∈ G, ∀ r ∈ R (42)

∑

a∈A

∑

q∈Q

QMamlq ≤ cammlYMm ∀ m ∈M, ∀ l ∈ L (43)

Let υ1,..., υ26 and υ27,..., υ32 be the set of dual decision variables associated with

constraint (6)-(31) and (38)-(43), respectively. The DSP can be formulated as follows.
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Min Zυ(Y ) =
∑

k∈K

dkkυ
5
k +

∑

k∈K

∑

q∈Q

ψqdkkυ
6
kq +

∑

s∈S

∑

p∈P

dsspυ
10
sp

+
∑

w∈W

∑

l∈L

dwwlυ
16
wl +

∑

e∈E

∑

r∈R

deerυ
20
er +

∑

z∈Z

∑

p∈P

cazzpυ
22
zp

+
∑

u∈U

∑

r∈R

cauurυ
23
ur +

∑

x∈X

∑

l∈L

caxxlυ
24
xl +

∑

i∈I

caiiυ
25
i +

∑

j∈J

cajjυ
26
j

+
∑

c∈C

caccY Ccυ
27
c +

∑

a∈A

caaaY Aaυ
28
a +

∑

d∈D

caddY Ddυ
29
d

+
∑

b∈B

cabbY Bbυ
30
b +

∑

g∈G

∑

r∈R

caggrY Ggυ
31
gr

+
∑

m∈M

∑

l∈L

cammlYMmυ
32
ml (44)

s.t. (υ1,υ2, ....,υ32) ∈ ∆ (45)

where the unrestricted dual variable vectors υ5, υ6, υ10, υ16, and υ20 are, respec-

tively, associated with constraints (10), (11), (15), (21), and (25). The non-negative

dual variable vectors υ22,..., υ26 and υ27,..., υ32 are, respectively, associated with

constraints (27)-(31) and (38)-(43). Besides, ∆ indicates the polyhedron defined by

the constraints of the DSP. If ∆ is empty, the DSP is infeasible and according to

duality theory in linear programming, the PSP is either infeasible or unbounded.

However, the proposed MIP model is not unbounded. Let π(.) represent the part

of the dual subproblem objective function (44) which is independent of the location

variables. Introducing an extra variable Γ, we can formulate the MP that determines

the CLSC network configuration as follows.

Max Γ−
∑

c∈C

fccY Cc −
∑

a∈A

faaY Aa −
∑

m∈M

fmmYMm
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−
∑

g∈G

fggY Gg −
∑

b∈B

fbbY Bb −
∑

d∈D

fddY Dd (46)

s.t. Γ ≤ π(υ̂nT

) +
∑

c∈C

caccY Ccυ̂
27
c +

∑

a∈A

caaaY Aaυ̂
28
a +

∑

d∈D

caddY Ddυ̂
29
d

+
∑

b∈B

cabbY Bbυ̂
30
b +

∑

g∈G

∑

r∈R

caggrY Ggυ̂
31
gr

+
∑

m∈M

∑

l∈L

cammlYMmυ̂
32
ml (47)

0 ≤ π(κ̂nT

) +
∑

c∈C

caccY Ccκ̂
27
c +

∑

a∈A

caaaY Aaκ̂
28
a +

∑

d∈D

caddY Ddκ̂
29
d

+
∑

b∈B

cabbY Bbκ̂
30
b +

∑

g∈G

∑

r∈R

caggrY Ggκ̂
31
gr

+
∑

m∈M

∑

l∈L

cammlYMmκ̂
32
ml (48)

Y ∈ {0, 1} (49)

where κ indicates extreme rays of ∆ when the DSP is unbounded. Now, let ∆p and

∆r represent the sets of extreme points and extreme rays of ∆, respectively. More-

over, let V denote the capacities of several types of facilities in constraints (32)-(37)

including collection, disassembly, remanufacturing, bulk recycling, material recycling,

and disposal centers. The compact representation of the MP can be stated as follows.

Max Γ− F TY (50)

s.t. Γ ≤ π(υ̂nT

) + υ̂mT

V Y (υn,υm|n 6= m) ∈ ∆p (51)

0 ≤ π(κ̂nT

) + κ̂mT

V Y (κn,κm|n 6= m) ∈ ∆r (52)

Y ∈ {0, 1} (53)

Observe that the polyhedron ∆ might have a vast number of extreme points and rays.

An efficient iterative algorithm is to dynamically generate only a subset of optimality

30



and feasibility cuts. This approach is very effective since only a subset of these cuts

will be active for the MP and most of them are redundant. Starting from empty

subsets of extreme points and rays, each iteration of the algorithm first solves the

MP. It provides an updated upper bound on the optimal solution of MIP. Then, the

DSP is solved using the solution of the MP. If it is bounded, an optimal solution

corresponds to an extreme point of ∆p is identified and the optimality cut (51) is

introduced to the MP. Otherwise, the feasibility cut (52) associated with an extreme

ray of ∆r is added to the MP.

2.4.2 Algorithmic enhancement

As Benders decomposition is known to be a method which converges quite slowly

[26], we provide various algorithmic enhancements in order to accelerate the solution

algorithm.

2.4.2.1 Valid inequalities

Considering the structure of the MIP model, we can introduce the following valid

inequalities to the MP to restrict its feasible region. These cuts give useful infor-

mation concerning the subproblem to MP and thus help it to find a better network

configuration particularly at early iterations of the Benders algorithm. Therefore, we

can expect that the presence of the valid inequalities reduces the number of feasibility

cuts (52) during the execution of the solution process.

∑

c∈C

caccY Cc ≥
∑

k∈K

∑

q∈Q

ψqdkk (54)

∑

a∈A

caaaY Aa ≥ θ
∑

k∈K

∑

q∈Q

ψqdkk (55)
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∑

m∈M

∑

l∈L

cammlYMm ≥
∑

w∈W

∑

l∈L

dwwl (56)

∑

g∈G

∑

r∈R

caggrY Gg ≥
∑

e∈E

∑

r∈R

deer (57)

∑

b∈B

Y Bb ≥ 1 (58)

∑

d∈D

Y Dd ≥ 1 (59)

Constraints (54) and (55) ensure that the selected collection and disassembly centers

provide enough capacity to acquire returns. Constraints (56) and (57) ensure enough

capacity for satisfying the demands of recovered components at their corresponding

secondary markets through opening adequate recovery facilities. According to con-

straints (58) and (59), at least one bulk recycling and one disposal center must be

opened in the CLSC network.

2.4.2.2 Pareto-optimal cuts

As the PSP is usually degenerate due to its typical network structure, the DSP might

have multiple optimal solutions [30]. Hence, several valid optimality cuts of different

strength associated to the set of alternative optimal solutions can be generated. Given

the dominating cut definition [30], the optimal cut corresponds to the dual solution

vectors (υ̂nT

1 , υ̂mT

1 ) dominates the cut generated from the dual solution (υ̂nT

2 , υ̂mT

2 )

if and only if

π(υ̂nT

1 ) + υ̂mT

1 V Y ≤ π(υ̂nT

2 ) + υ̂mT

2 V Y ; n 6= m

for all Y with strict inequality for at least one point . A Pareto-optimal cut is an

optimality cut which cannot be dominated by any other cut. It is usually expected
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that appending Pareto-optimal cuts expedite the convergence of the Benders algo-

rithm. Let YLP be the polyhedron defined by 0 ≤ Y Cc ≤ 1, ∀ c ∈ C; 0 ≤ Y Aa ≤

1, ∀ a ∈ A; 0 ≤ YMm ≤ 1, ∀m ∈ M ; 0 ≤ Y Bb ≤ 1, ∀ b ∈ B; 0 ≤ Y Gg ≤ 1, ∀ g ∈ G;,

and 0 ≤ Y Dd ≤ 1, ∀ d ∈ D as well as constraints (6)-(37). Let ri(YLP) indicate

the relative interior of YLP. A Pareto-optimal cut can be obtained by solving the

following auxiliary dual problem.

Min π(υnT

) + υmT

V Y 0 (60)

s.t. π(υnT

) + υmT

V Y = Zυ(Y ) (61)

(υ1,υ2, ....,υ32) ∈ ∆ (62)

where Y 0 ∈ ri(YLP), n 6= m, and ∆ indicates the polyhedron defined by the con-

straints of the DSP. As mentioned earlier, the normalization constraint (61) might be

quite dense and numerically unstable. Nonetheless, Papadakos [9] demonstrated that

this constraint can be omitted through choosing a different core point on the objec-

tive function (60) every time the Pareto-optimal cut generation step is executed. It

was also showed that any convex combination of the current master problem solution

and an initial core point suffices to obtain a valid core point ([9], Theorem 8). The

modified auxiliary dual subproblem can then be restated as follows.

Min π(υnT

) + υmT

V Y 0

s.t. (υ1,υ2, ....,υ32) ∈ ∆ (63)

where n 6= m and ∆ indicates the polyhedron defined by the constraints of the DSP.

The optimal solution to (63) is used to generate an optimality cut, which is a Pareto-

optimal one in the ri(YLP). It should be noted that since the description of the

convex hull of Y is not available a priori and also finding a core point in the convex
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hull is difficult, Pareto-optimal cuts would be generated using Y 0 ∈ ri(YLP). Such

optimality cuts are non-dominated ones in YLP. We refer to this accelerated Ben-

ders decomposition-based algorithm as “BD1” described in Algorithm 7. It should

be emphasized that λc denotes the non-negative parameter to be used in the convex

combination that updates the core point throughout the solution process for generat-

ing the Pareto-optimality cuts. It has been shown in the literature (see, e.g. [9, 35])

that 0.5 is a suitable choice for this parameter that gives the best results in most of

cases. Hence, we use the same value in our algorithms.

Algorithm 1 -BD1

UB←∞, LB← −∞, λc ← 0.5
Find an initial core point Y 0

Add valid inequalities (54)-(59) to the MP
while (UB − LB)/UB ≤ ε do
Solve the auxiliary DSP (63)
Add Pareto-optimal cut (51) to the MP
Solve the MP
UB← Γ− F TY

Solve the DSP
if the DSP is unbounded then

Add the feasibility cut (52) to the MP
Y 0 ← λcY 0 + ξ

else
Add the optimality cut (51) to the MP
LB← max (LB, Zυ(Y )− F TY )
Y 0 ← λcY 0 + (1− λc)Y

end if
end while
Solve the corresponding PSP

2.4.2.3 Local branching

Pilot computational tests have shown that although the Pareto-optimal cuts enhance

the performance of the classical Benders decomposition algorithm, the upper bound

still slowly decreases throughout the solution process. Therefore, we consider the
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incorporation of local branching cuts [8, 34] throughout “BD1”. Given a feasible

reference point of an integer programming model, the main idea of local branching is

to divide the feasible space of the problem into a series of smaller subproblems which

can be solved by any appropriate generic solver. Therefore, one might be able to

identify a better feasible solution in the neighborhood of the reference point within

an acceptable computational time. In the context of Benders decomposition, each

time the local branching search is executed, we may find better lower bounds as well

as multiple optimality cuts that naturally lead to improved lower and upper bounds.

We proceed with a detailed discussion of the local branching procedure.

The local branching is performed once the solution to the MP yields a feasible

PSP, i.e., the DSP is bounded and optimal. We use this feasible solution as a reference

point to create local branching subproblems. Let Y
1
be an optimal solution to the

MP. Introducing the following disjunction, we can divide the feasible region of the

MIP model (1)-(37) into two reduced subproblems.

∆(Y ,Y
1
) ≤ κv ∨∆(Y ,Y

1
) ≥ κv + 1

The reduced subproblem created after adding the left branching cut to the MIP,

namely the left branch subproblem, can be solved efficiently by CPLEX. The extended

representation of this compact cut is stated as follows.

∆(Y ,Y
1
) =

∑

c∈C\C

Y Cc +
∑

c∈C

(1− Y Cc) +
∑

a∈A\A

Y Aa +
∑

a∈A

(1− Y Aa)

+
∑

m∈M\M

YMm +
∑

m∈M

((1− YMm) +
∑

b∈B\B

Y Bb +
∑

b∈B

(1− Y Bb)

+
∑

g∈G\G

Y Gg +
∑

g∈G

(1− Y Gg) +
∑

d∈D\D

Y Dd +
∑

d∈D

(1− Y Dd) ≤ κv
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where C, A, M , B, G, and D represent the set of open facilities in the reverse chain

obtained after solving the current MP. Assigning a relatively low value to κv, imposing

a time limit on the left branch subproblem, and a small optimality gap εk, each time

a subproblem is solved, we ensure that the local branching procedure quickly explores

different parts of the feasible region of the MIP. Let Y
2
be the solution to the local

branching subproblem. After solving the local branching subproblem, one of the

following cases might arise.

Case 1: If the optimal solution of the current subproblem has been identified

within the time limit and the optimality gap, the left branching constraint will be

replaced by the right branching one, i.e., ∆(Y ,Y
1
) ≥ κv + 1. The solution Y

2
is

considered as the new reference point and the branching scheme will be applied to

this solution, i.e., ∆(Y ,Y
2
) ≤ κv. We proceed the local branching search through

solving the new local branching subproblem.

Case 2: If the current subproblem is proven infeasible, the left branching constraint

will be replaced by the right one, i.e., ∆(Y ,Y
1
) ≥ κv+1. Moreover, the diversification

procedure (div.) will be performed through increasing the size of the feasible region

of the current subproblem by dκv/2e. We proceed the local branching search through

solving the new local branching subproblem.

Case 3: If the time limit is reached and the feasible solution to the current sub-

problem has been improved although it is not an optimal one, the left branching

constraint will be eliminated without imposing the right branching one. Moreover,

the “tabu” cut ∆(Y ,Y
2
) ≥ 1 will be introduced into the current subproblem to

remove Y
2
. Then, the new subproblem will be created by defining a left branching

constraint associated with the new reference point, i.e., ∆(Y ,Y
2
) ≤ κv. We proceed

the local branching search through solving the new local branching subproblem.

Case 4: If the time limit exceeds without improvement in the value of the objective

36



function of the current local branching subproblem, the right-hand side of the left

branching constraint will be decreased by “1” and the tabu cut will also be added

to the current subproblem to eliminate Y
2
from further consideration. The current

subproblem will then be resolved in an attempt to find a better solution. In case no

improved solution is found even in this new reduced neighborhood, the diversification

procedure (div.) will be applied by enlarging the size of the feasible region by “1”.

In addition, the tabu constraint is imposed at the beginning of the execution of

the local branching procedure in order to exclude the solution to the current MP from

further exploration.

The branching scheme is repeated through iterations of “BD1” until a specified

number of local branching subproblems or diversifications will be satisfied. We remark

that since local branching subproblems created by adding neighborhood constraints

to MIP are quite hard to solve, the MIP model is only used in two iterations of the

Benders algorithm to define the local branching subproblems, namely “MIP phase”.

As for the rest of iterations of the Benders algorithm, local branching subproblems

are created by adding the neighborhood constraints to the MP, namely “MP phase”.

After each call to local branching procedure, several new feasible solutions, if any, are

identified. They can be used to create a pool of optimality cuts (51), which will then

be added to the MP to improve the quality of upper bound. This local branching-

based Benders decomposition algorithm as described in Algorithm 8 is referred to

as “BD2”. The local branching procedure is also outlined in Algorithm 3. In this

algorithm, the feasible solution to the local branching subproblems, when the first

and the third cases arise, would be stored in QXh and Y h indicating, respectively,

the CLSC network flows and locations. At the end of each local branching procedure,

we obtain a lower (upper) bound through evaluating the objective function of MIP

(MP) regarding these feasible solutions.

37



Algorithm 2 -BD2

UB←∞, LB← −∞, t← 1, MaxIter ← 2
Find an initial core point Y 0

Add valid inequalities (54)-(59) to the MP
while (UB − LB)/UB ≤ ε do
Solve the auxiliary DSP (63)
Add Pareto-optimal cut (51) to the MP
Solve the MP
UB← Γ− F TY

Solve the DSP
if the DSP is unbounded then

Add the feasibility cut (52) to the MP
Y 0 ← λcY 0 + ξ

else
Add the optimality cut (51) to the MP
LB← max (LB, Zυ(Y )− F TY )
Y 0 ← λcY 0 + (1− λc)Y

Y
1
← Y

if t ≤MaxIter then
t← t+ 1
MIP phase ← true
Perform the LocBran. procedure

else
MP phase ← true
Perform the LocBran. procedure

end if
Add the pool of optimality cuts (51) to the MP

end if
end while
Solve the corresponding PSP

2.5 Case example

We evaluate the tractability of the proposed model and the performance of the acceler-

ated Benders decomposition-based algorithm for a case of large household appliances,

i.e., used washing machines, inspired by [19] and [36]. The concerned washing ma-

chines consist of two modules, ten parts, and three types of solid materials. Table 2

presents the disassembly tree of a returned washing machine. The next section de-
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Algorithm 3 -LocBran.

rhs← κv, Itr ← 1, dv ← 1, div.← false, h← 1

Add ∆(Y ,Y
1
) ≥ 1

while (Itr ≤ Sub.) ∨ (dv ≤ Ndiv.) do

Add ∆(Y ,Y
1
) ≤ rhs

Solve the resulting subproblem under a time limit as well as εk and label its

solution Y
2
, if any

if Case 1 then
Reverse the last local branching constraint into ∆(Y ,Y

1
) ≥ κv + 1

Y
1
← Y

2
, div.← false, rhs← κv, Y h ← Y

2
, h← h+ 1, Itr ← Itr + 1

end if
if Case 2 then

Reverse the last local branching constraint into ∆(Y ,Y
1
) ≥ κv + 1

rhs← κv + dκv/2e, dv ← dv + 1

end if
if Case 3 then

Eliminate the last local branching constraint ∆(Y ,Y
1
) ≤ κv

Add ∆(Y ,Y
2
) ≥ 1 to the current subproblem

Y
1
← Y

2
, div.← false, rhs← κv, Y h ← Y

2
, h← h+ 1, Itr ← Itr + 1

end if
if Case 4 then

Eliminate the last local branching constraint ∆(Y ,Y
1
) ≤ κv

Add ∆(Y ,Y
2
) ≥ 1 to the current subproblem

if div. then
dv ← dv + 1, rhs← κv + 1

else
rhs← κv − 1

end if
div.← true

end if
end while
if MIP phase then

LB ← max
1≤h≤Itr

P TQXh − C
TQXh − F

TY h

else
UB ← min

1≤h≤Itr
Γh − F

TY h

end if
Generate pool of optimality cuts using Y h
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Table 2: Separable components of a used washing machine

Description Value

φp
washing tube:1, cover:1, balance:1, frame:1, hose:1, condenser:1,

small electric parts:1, electric wire:1, transformer:1, PCB:1
µr plastics:6 kg, steel:3 kg, copper:1 kg
ωl motor:1, clutch:1

scribes test instances settings and then it is followed by a summary of computational

results.

2.5.1 Experimental design

We assume three quality levels, namely, poor, medium, and high for the return stream.

Demands of the brand-new washing machines and remanufactured modules are se-

lected at random from {600, 601, 602, ..., 1000} and {50, 51, 52, ..., 150}, respectively.

Demands of spare parts and recycled raw materials are also randomly determined from

{30, 31, 32, ..., 100}. Capacities of facilities in the forward network are randomly

generated following a reasonable relationship with the disassembly tree and demands

of end-users. Capacities of reverse network facilitates are also randomly generated

considering end-users and secondary markets demands as well as return ratios and

recovery coefficients. Denote by “U ” the uniform distribution, shipping costs are

considered to be U (5, 10) for each washing machine and U (1, 4) for each unit of

components. Other parameters are generated as summarized in Tables 3 and 4. Note

that fixed costs of opening facilities in the reverse network are generated considering

the capacity of facilities. More specifically, the higher the capacity of a facility, the

larger infrastructural cost it will require. The legislative recovery target, i.e., θ, is

0.70.

We also consider seven major classes within each three different test instances as

shown in Table 5. These test instances vary according to the number of CLSC facilities
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Table 3: Quality level-dependent parameters

Description
Quality levels

High Medium Poor
ψq U (0.1, 0.2) U (0.2, 0.3) U (0.3, 0.4)
δlq 1, 1 1, 0 0, 0

γpq
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
1, 1, 1, 1, 1 1, 1, 0, 0, 1 0, 0, 0, 0, 1

αrq 5, 2, 1 4, 1, 1 3, 1, 0
βq 2 4 6
σq 0.1 0.2 0.4
cccq 1 1.5 2
caaq 1 1.5 2
cmmlq 3 4 5
Prq 175 125 75

Table 4: Other case example parameters

Description Value Description Value
fcc U (400000, 600000) faa U (400000, 600000)
fmm U (700000, 900000) fbb U (400000, 600000)
fgg U (400000, 600000) fdd U (200000, 400000)
Pkk U (600, 1300) Psp U (50, 70)
Pwl U (100, 120) Per U (20, 30)
cxxl U (70, 90) czzp U (30, 50)
cuur U (10, 20) cii U (6, 7)
cjj U (1, 2) cbb U (1.5, 2.5)
cggr U (1.5, 2.5) cdd U (1.5, 2.5)
ηr U (0.2, 0.3) τr U (0.05, 0.15)

as well as the number of the first and secondary markets. All twenty-one test instances

have been randomly generated from the uniformly distributed demand, return ratio,

and various parameters provided in Tables 3 and 4 through Monte Carlo sampling

method. It should also be emphasized that we have chosen the bounds of most of

the MIP model parameters based on the current literature of CLSC/RSC network

design ([6], [19], [20]) to ensure the stability of the generated test instances. Table 6

presents the number of constraints and variables, including binary and continuous

ones, in each problem set.
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Table 5: Test problem classes

Set Z U X I J K C A M B G D S W E

1 10 3 2 5 10 60 10 10 10 10 10 5 30 30 30
2 10 3 2 5 10 80 10 10 10 10 10 5 40 40 40
3 10 3 2 5 15 100 15 15 15 15 15 7 50 50 50
4 10 3 2 5 15 120 15 15 15 15 15 7 60 60 60
5 10 3 2 5 20 130 20 20 20 20 20 10 65 65 65
6 10 3 2 5 20 140 20 20 20 20 20 10 70 70 70
7 10 3 2 5 25 150 25 25 25 25 25 12 75 75 75

Table 6: Size of test problems

Set # of constraints # of continuous variables # of binary variables
1 1349 10010 55
2 1579 12310 55
3 2041 22960 82
4 2271 26410 82
5 2619 39210 110
6 2734 41510 110
7 3081 56860 137

2.5.2 Computational results

The proposed algorithmic scheme is implemented in C++ using Concert Technology

with IBM-ILOG CPLEX 12.51. All the experiments are conducted on an Intel Pen-

tium 1.90 GHz machine with 4 GB RAM. The relative optimality gap, i.e., ε = 1%,

as well as a maximum time of 3600 seconds were imposed as the stopping criteria for

both “BD1” and “BD2”. Furthermore, all 21 test instances were solved by CPLEX

12.51 in a maximum time limit of 7200 seconds and within the stopping gap toler-

ance of 1%. Table 7 includes the value of the local branching parameters, such as

the number of local branching subproblems (Sub.) to be solved at each iteration of

“BD2”, the maximum number of diversifications (Ndiv.), time limit for solving each

local branching subproblem (Time), the value of κv, and the optimality gap εκv
%

each time this procedure is called in both phases of “MIP” and “MP”.

Table 8 summarizes the computational statistics obtained after solving each test
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Table 7: The value of parameters of local branching procedure

Set MIP phase MP phase
Sub. Ndiv. Time (sec) κv εκv

Sub. Ndiv. Time (sec) κv εκv

1 3 3 20 3 1% 1 3 - 10 0%
2 3 3 20 3 1% 1 3 - 10 0%
3 3 3 60 5 1% 1 3 - 25 0%
4 4 3 60 5 1% 1 3 - 25 0%
5 4 3 60 7 1% 1 3 - 30 0%
6 5 3 80 7 1% 1 3 - 30 0%
7 5 3 100 8 1% 1 3 - 40 0%

instance with “BD1”, “BD2”, and CPLEX. In this table, the resolution time in

seconds (Time), the number of iterations (Iter.), and the value of the profit objective

function are reported for both algorithms. Column “GAP” under “BD1” represents

the relative difference between lower and upper bounds within the dedicated time

limit, i.e., one hour. We also present the CPU time in seconds in addition to the

profit reported by CPLEX after 7200 seconds. It should be stated that we have

also examined the performance of the classical Benders decomposition method as

well as the accelerated Benders algorithm described in Sherali and Lunday [33] on

our test problems. However, neither the computational statistics of the former nor

the latter have not been presented in Table 8 due to the poor performance of these

two algorithms. The most important findings concerning Table 8 are summarized as

follows.

- CPLEX is only able to find the optimal solution of the test instances of the

first and the second problem sets indicated by asterisk symbol in the last column.

However, it fails to solve the test instances of other sets to optimality within the

dedicated time limit and gap tolerance. The best value of the objective function,

i.e., profit, obtained by CPLEX after 2 hours when applied to solve other sets is also

reported in the last column.
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Table 8: Comparison of both algorithms and CPLEX

Set “BD1” “BD2” CPLEX
Time (sec) Iter. Profit GAP Time (sec) Iter. Profit Time (sec) Profit

1
28 40 11,282,100 ≤ 1% 101 16 11,282,100 621 11,282,100∗

30 54 11,600,600 ≤ 1% 140 19 11,600,600 485 11,600,600∗

22 35 12,524,000 ≤ 1% 98 15 12,524,000 583 12,524,000∗

2
289 128 17,071,000 ≤ 1% 231 35 17,071,000 605 17,071,000∗

1359 209 15,568,800 ≤ 1% 814 77 15,568,800 953 15,568,800∗

70 82 15,072,600 ≤ 1% 185 29 15,072,600 709 15,072,600∗

3
≥ 3600 90 22,416,000 1.61% 924 20 22,494,300 ≥ 7200 22,321,100
≥ 3600 77 22,258,400 2.65% 670 11 22,271,200 ≥ 7200 22,196,200
≥ 3600 75 22,868,800 3.15% 587 14 22,951,700 ≥ 7200 22,801,400

4
≥ 3600 110 28,496,100 2.32% 772 14 28,531,900 ≥ 7200 28,475,000
≥ 3600 91 20,482,300 2.42% 751 13 20,532,400 ≥ 7200 20,260,000
≥ 3600 139 22,473,400 2.34% 832 12 22,560,200 ≥ 7200 22,415,500

5
≥ 3600 65 22,697,800 3.58% 1087 16 22,862,600 ≥ 7200 22,601,400
≥ 3600 97 27,909,000 2.00% 967 17 27,909,900 ≥ 7200 27,702,800
≥ 3600 107 20,563,300 2.84% 1023 16 20,610,300 ≥ 7200 20,530,700

6
≥ 3600 74 31,624,100 1.62% 1835 19 31,682,100 ≥ 7200 31,476,600
≥ 3600 96 28,978,500 2.34% 1624 17 28,982,300 ≥ 7200 28,556,300
≥ 3600 59 31,723,300 2.69% 1498 15 31,829,700 ≥ 7200 31,711,900

7
≥ 3600 19 31,700,500 2.88% 2510 14 31,741,300 ≥ 7200 30,799,800
≥ 3600 16 30,323,400 4.10% 2938 15 30,799,100 ≥ 7200 29,708,100
≥ 3600 57 30,501,300 2.45% 1963 14 30,573,000 ≥ 7200 27,530,000

Average - 82 22,768,348 - 1026 20 22,831,005 - 22,485,995
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- “BD1” demonstrates better performance in terms of CPU time, i.e., on average,

four times faster than “BD2” only in solving the test instances of the first problem

set. However, “BD2” implementation reduces the number of iterations, on average,

2.5 times. We can also observe the rapid convergence of this algorithm when applied

to solve the test instances of the second set. In particular, “BD2” is on average 1.4

times faster than “BD1” in terms of running time. Moreover, the average number of

iterations during “BD2” execution is 3 times smaller than that of “BD1”.

- As for the other five sets, “BD1” is unable to solve the test instances to optimality

even in 1 hour. Columns GAP and profit indicate, respectively, the relative difference

between the lower and upper bounds and the the value of the objective function

obtained by “BD1” after one hour. However, “BD2” solves all test instances within

the alloted optimality gap of 1% in considerably smaller number of iterations. Note

that the average relative gap between profit values reported by “BD2” and CPLEX

for the test instances of the last five sets is 1.82%. It indicates the extent to which

the best feasible solution obtained by CPLEX within 2 hours is far from the optimal

solution identified by “BD2”. The average solution time of “BD2” is 18 minutes when

applied to solve the test instances of problem sets 3 to 6. In addition, the average

solution time of “BD2” is 42 minutes in solving the test instances of the last set, i.e.,

the largest set (see Figure 13).

The average number of iterations when solving each problem set with both decom-

position algorithms is illustrated in Figure 5. In summary, it can be observed that

local branching search considerably improves the performance of Benders decompo-

sition algorithm.
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Figure 5: Iterations vs. Problem sets

2.5.3 The impact of recovery target on the CLSC perfor-

mance

Recall that the costly regulatory restrictions are forcing OEMs on taking back of a

certain percentage of the return stream. It, therefore, imposes the environmentally

friendly constraint (13) in the CLSC network design model. We investigate the impact

of the recovery target θ on the amount of the acquisition in disassembly centers. To

this end, we use three values, 0.70 (the base case model), 0.77, and 0.80, as the

recovery target levels. We also consider problem sets 1, 4, and 7, respectively, as

small-, medium-, and large- sized networks and then choose one test instance from

each problem set. These test instances vary in the total amount of end-user demands

and the total quantity of returns in addition to the network size.

As expected, the OEM favors the recovery of high quality returns due to their
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profitability, i.e., the total amount of the high quality returns is acquired in disas-

sembly centers by the OEM in all three levels of the recovery target. Likewise, 100%

of medium quality return stream is treated in the reverse network. However, the

company is not willing to use all of potential recovery capacities to take back the

poor quality return flows due to their low profitability. As shown in Figure 6, in

the base case model, 41%, 44%, and 40% of poor quality returns are desirable for

recovery processes, respectively, for the small-, medium-, and large-sized network. As

the legislation requires more restrictive recovery targets, the OEM is forced to take a

larger amount of poor quality returns. We can see from Figure 6 that the acquisition

amount of poor quality returns significantly increases for each instance in accordance

with the change in the recovery target. For example, with a target level of 0.80, the

return acquisition reaches the value of 80% for the medium-sized network.
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Figure 6: The percentage of returns acquisition

We also analyze the sensitivity of the objective function CLSC profit to changes in

the recovery target through considering the same test instances. For this analysis, we
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compare the profit of the base case model (θ = 0.70) with those of 0.77 and 0.80 as the

recovery target. Figure 7 illustrates profit decrease for each test instance comparing

to the base case model. We observe that the profit of designing the network decreases

for all concerned network sizes. For instance, the profit of designing the large-sized

network decreases by 1.30% and 1.61%, respectively, in the target levels of 0.77 and

0.80. The implication is that increasing the recovery target requires installing more

facilities or high capacity ones in the reverse network to process a larger amount

of return flows, which incurs additional infrastructural costs. It also incurs extra

processing costs at various types of facilities in the reverse channel. Observe from

Figure 7 that the profit variation in the medium-sized network is considerably greater

than the other test instances. This can be explained by the fact that in the large-

sized network the revenue from the forward channel is remarkably higher than the

infrastructural cost in the reverse channel. Therefore, the profit slightly decreases

with higher levels of the recovery target. In a similar manner, since the total quantity

of returns in the small-sized network is quite low, the costs of installing new facilities

in the reverse channel has less impact on the profit compared to the medium-sized

network.

Another observation to be made concerns the impact of the recovery target on

the design of the CLSC. As shown above, with higher levels of the recovery target,

more poor quality flow is sent to disassembly centers, which affects the configuration

of the CLSC network and thus the total profit. Considering the disassembly tree, the

viable recovery process of the additional poor quality components is to install high

capacity and costly bulk recycling centers and consequently material recycling, and

disposal facilities in the reverse network. One practical alternative for the OEM is

outsourcing the bulk recycling processes to a third-party logistics provider. In this

way, the OEM also avoids installing extra material recycling and disposal centers for
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processing the additional amount of poor quality returns under new regulations.

2.6 Conclusion

In this article, we addressed a CLSC network design problem which is applicable

in the context of durable products. We considered several features of practical rel-

evance namely, a generic disassembly tree, all types of recovery processes plausible

for each product component, the legislative recovery target, in addition to the non-

homogeneity in the quality state of the return stream. Due to the generic features of

the disassembly tree under discussion, the proposed model is not limited to applica-

tions for specific industries. It can also give some insight to decision makers how to

design a CLSC with comprehensive recovery options.

In order to solve such a large-scale optimization problem, we developed two differ-

ent variants of Benders decomposition algorithm, namely “BD1”, and “BD2”. The
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former only takes advantage of generating Pareto-optimal cuts while the latter incor-

porates local branching search into the solution process. The performance of both

methods were compared with CPLEX on a set of twenty-one test instances. As

shown by the computational results, both solution algorithms outperformed CPLEX.

When a comparison was made between two variants, “BD1” could only solve six test

instances. However, “BD2” was able to solve all test instances to optimality in a

reasonable amount of time. Particularly, the average number of iterations during the

execution of “BD2” is 4 times smaller than that of “BD1”. The improved convergence

behavior of “BD2” is mainly due to efforts devoted to the local branching phases.

Many OEMs most often design and manufacture a family of products (e.g., LG

and Samsung). This common practice in industry leads to introduce a comprehensive

recovery system that can be readily generalizable to a family of products or equiva-

lently a CLSC in a multi-product setting. Moreover, the dynamic nature of the CLSC

network design problem which is mainly due to fluctuations/uncertainty in demand

and quantity of returns over a planning horizon might not be often neglected. In

this regard, multi-stage stochastic programming approach and modular capacity fa-

cilities could be the right approaches to be adopted. Hence, a natural extension of

the current study would be to extend the proposed model into a multi-period setting.

Furthermore, offering incentives to customers in order to encourage them to return

used durable products prior to reaching their end-of-life would be another interesting

area to investigate. Such incentives that can be offered in form of discounts on future

purchases to customers would increase the percentage of high quality level returns.

It should be mentioned that we are currently extending this work to incorporate the

random quality state of used durable products into the proposed model and to solve

the resulting large-scale stochastic problem through developing efficient algorithms.

Application of the proposed model and solution methodology to a real industrial case
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would also be an interesting extension of the current study.
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2.7 Appendix

Indices

Z: Set of part suppliers

U : Set of raw material suppliers

X: Set of module suppliers

I: Set of manufacturing centers

J : Set of distribution centers

K: Set of end-user zones

C: Set of collection centers

A: Set of disassembly centers

M : Set of remanufacturing centers

B: Set of bulk recycling centers

G: Set of material recycling centers

D: Set of disposal centers

W : Set of secondary markets for modules

S: Set of secondary markets for spare parts

E: Set of secondary markets for recycled materials

L: Set of modules

51



P : Set of parts

R: Set of raw materials

Q: Set of quality levels of returns

Parameters

φp: The number of part p in each unit of product

µr: The volume of material r in each unit of product

ωl: The number of module l in each unit of product

ψq: The rate of return of each quality level q

βq: The mass of residues in the returned product with quality level q shipped to bulk

recycling centers from disassembly centers

αrq: The mass of recyclable material r in the returned product with quality level q

shipped to material recycling centers from disassembly centers

σq: The ratio of non-recoverable returns with quality level q shipped to disposal cen-

ters from disassembly centers

γpq: The number of part p in the returned product with quality level q shipped to

secondary markets and manufacturing centers from disassembly centers

δlq: The number of remanufacturable module l in the returned product with quality

level q shipped to remanufacturing centers from disassembly centers

ηr: The ratio of recyclable material r shipped to material recycling centers from bulk

recycling centers

τr: The ratio of non-recyclable material r shipped to disposal centers from bulk and

material recycling centers

θ: The legislative target for recovery of the return stream

fcc: Fixed cost of opening collection center c

faa: Fixed cost of opening disassembly center a

fmm: Fixed cost of opening remanufacturing center m
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fgg: Fixed cost of opening material recycling center g

fbb: Fixed cost of opening bulk recycling center b

fdd: Fixed cost of opening disposal center d

tckc: Shipping cost per unit of the returned product from end-user k to collection

center c

taca: Shipping cost per unit of the returned product from collection center c to dis-

assembly center a

tsasp: Shipping cost per unit of part p from disassembly center a to spare market s

tzaip: Shipping cost per unit of part p from disassembly center a to manufacturing

center i

tdad: Shipping cost per kg of materials from disassembly center a to disposal center

d

tgagr: Shipping cost per kg of recyclable material r from disassembly center a to ma-

terial recycling center g

teger: Shipping cost per kg of recycled material r from recycling center g to recycled

material market e

tugir: Shipping cost per kg of recycled material r from material recycling center g to

manufacturing centers i

sdgd: Shipping cost per kg of waste from material recycling center g to disposal center

d

tbab: Shipping cost per kg of residues from disassembly center a to bulk recycling

center b

rgbgr: Shipping cost per kg of recyclable material r from bulk recycling center b to

material recycling center g

rdbd: Shipping cost per kg of waste from bulk recycling center b to disposal center d
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tmaml: Shipping cost per unit of module l from disassembly center a to remanufac-

turing center m

twmwl: Shipping cost per unit of module l from remanufacturing center m to sec-

ondary market w

txmil: Shipping cost per unit of module l from remanufacturing center m to manu-

facturing center i

tizip: Shipping cost per unit of part p from part supplier z to manufacturing center i

riuir: Shipping cost per kg of material r from material supplier u to manufacturing

center i

sixil: Shipping cost per unit of module l from module supplier x to manufacturing

center i

tjij: Shipping cost per unit of the new product from manufacturing center i to dis-

tribution center j

tkjk: Shipping cost per unit of the new product from distribution center j to end-user

k

cazzp: Capacity of part supplier z for part p

cauur: Capacity of raw material supplier u for raw material r

caxxl: Capacity of module supplier x for module l

caii: Capacity of manufacturing center i

cajj: Capacity of distribution center j

cacc: Capacity of collection center c

caaa: Capacity of disassembly center a

cadd: Capacity of disposal center d

cabb: Capacity of bulk recycling center b

caggr: Capacity of material recycling center g for raw material r

camml: Capacity of remanufacturing center m for module l
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dkk: Demand the new product at end-user zone k

dssp: Demand for part p at spare market s

deer: Demand for material r at recycled material market e

dwwl: Demand for module l at secondary market w

czzp: Procurement cost per unit of part p supplied by part supplier z

cuur: Procurement cost per kg of material r supplied by raw material supplier u

cxxl: Procurement cost per unit of module l supplied by module supplier x

cii: Production cost per unit of product at manufacturing center i

cjj: Distribution cost per unit of product at distribution center j

cccq: Processing cost per unit of the returned product with quality level q at collection

center c

caaq: Processing cost per unit of the returned product with quality level q at disas-

sembly center a

cdd: Disposal cost at disposal center d

cggr: Recycling cost per kg of material r at material recycling center g

cbb: Processing cost per kg of residues at recycling center b

cmmlq: Remanufacturing cost per unit of module l with quality level q at remanufac-

turing center m

Pkk: Unit price of the new product at end-user zone k

Psp: Unit price of part p at spare markets

Per: Unit price of material r at recycled material markets

Pwl: Unit price of module l at secondary markets

Prq: Unit acquisition price of the returned product with quality q

Decision variables

QIzip: The number of part p shipped from part supplier z to manufacturing center i
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NIuir: The quantity of raw material r shipped from raw material supplier u to man-

ufacturing center i

XIxil: he number of module l shipped from module supplier x to manufacturing cen-

ter i

QJij: The quantity of products shipped from manufacturing center i to distribution

center j

QKjk: The quantity of products shipped from distribution center j to end-user zone

k

QCkcq: The quantity of returns with quality level q shipped from end-user zone k to

collection center c

QAcaq: The quantity of returns with quality level q shipped from collection center c

to disassembly center a

QSasp: The number of part p shipped from disassembly center a to spare parts market

s

QZaip: The number of part p shipped from disassembly center a to manufacturing

center i

QMamlq: The number of module l with quality level q shipped from disassembly cen-

ter a to remanufacturing center m

QWmwl: The number of module l shipped from remanufacturing center m to sec-

ondary market w

QXmil: The number of module l shipped from remanufacturing center m to manu-

facturing center i

QBab: The quantity of residues shipped from disassembly center a to bulk recycling

center b

QGagr: The quantity of recyclable material r shipped from disassembly center a to

material recycling center g
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NGbgr: The quantity of recyclable material r shipped from bulk recycling center b to

material recycling center g

QEger: The quantity of recycled material r shipped from material recycling center g

to recycled material market e

QUgir: The quantity of recycled material r shipped from material recycling center g

to manufacturing center i

QDad: The quantity of non-recoverable components shipped from disassembly center

a to disposal center d

NDbd: The quantity of residues shipped from bulk recycling center b to disposal cen-

ter d

XDgdr: The quantity of raw material r shipped from material recycling center g to

disposal center d

Y Cc: A binary variable which is equal to one if collection center c is opened and zero

otherwise

Y Aa: A binary variable which is equal to one if disassembly center a is opened and

zero otherwise

YMm: A binary variable which is equal to one if remanufacturing center m is opened

and zero otherwise

Y Bb: A binary variable which is equal to one if bulk recycling center b is opened and

zero otherwise

Y Gg: A binary variable which is equal to one if material recycling center g is opened

and zero otherwise

Y Dd: A binary variable which is equal to one if disposal center d is opened and zero

otherwise
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Chapter 3

Closed-loop supply chain network

design under uncertain quality

status: case of durable products

This chapter is dedicated to the article entitled “Closed-loop supply chain network

design under uncertain quality status: case of durable products”. This article has

been accepted for publication in the International Journal of Production Economics.

The titles, figures, and mathematical formulations have been revised to keep the

coherence through the manuscript.
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Abstract

This paper proposes a two-stage stochastic mixed-integer programming model for a

closed-loop supply chain network design problem in the context of modular structured

products in which the reverse network entails several types of recovery options. It

accounts for uncertainty in the quality status of the return stream, modeled as binary

scenarios for each component in the reverse bill of material corresponding to such

products. To deal with the intractable number of scenarios in the proposed model, a

scenario reduction scheme is adapted to the problem of interest to preserve the most

pertinent scenarios based on a modified Euclidean distance measure. The reduced

stochastic large-scale optimization problem is then solved via a L-shaped algorithm

enhanced with surrogate constraints and Pareto-optimal cuts. Numerical results in-

dicate that the scenario reduction algorithm provides good quality solutions to the

stochastic problem in a reasonable amount of time through applying the enhanced

L-shaped method.

3.1 Introduction

In response to sustainability of supply chains, design and management of CLSC have

attracted a growing interest over the recent decade. It has been recognized that

CLSCs comprise forward channel along with the so-called “RSC”. The focus of the

RSC is on taking back of end-of-life and end-of-use products (cores) from consumers,

and recovering added value by reusing the entire product, and/or some of its compo-

nents, such as modules and parts [37]. The prime importance of CLSCs is attributed

to the environmental footprint of cores as well as the profitability of recovery practices.

Needless to say, the prosperity of such business practices requires placing appropriate
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reverse logistics infrastructures and managing arising return flows efficiently. There-

fore, the design of CLSCs is becoming increasingly important.

CLSC network design refers to decisions for locating various types of facilities in

both forward and reverse chains in addition to efficiently routing and coordinating

physical forward and reverse flows. Designing a CLSC network for durable products,

that are characterized by their modular structured design and their long life cycle (e.g.,

computers and large household appliances), is a complex problem. Such category of

products can be disassembled into several components (i.e., modules and parts) in

addition to raw materials concerning the reverse BOM. Consequently, the reverse

supply chain of such products includes various types of recovery facilities associated

with different components in the reverse BOM of durable products. We note that

in the context of CLSC/RSC network design, most studies are limited to involving

a few recovery activities, e.g., remanufacturing and material recycling, in designing

their networks. To fill the void in such a line of research, we, however, incorporate

various recovery options, which an OEM can adopt in tackling the return stream.

These recovery processes are plausible in taking different sub-assemblies of a typical

durable product.

Indeed, a high level of uncertainty is a characteristic for various product recovery

systems [38]. A clear distinction that is made between CLSCs and the traditional

forward supply chains lies in uncertain condition (quality) of cores. This issue also

adds to the complexity of the CLSC network design for case of used durable products.

In contrast, the existing stream of literature explicitly lacks accounting such unavoid-

able aspect in CLSC/RSC network design. That is, in the modeling framework,

some simplifying assumptions have been made with respect to the quality variation

of the return flows, thereby alleviating the complexity of the proposed model. More

precisely, the concerned literature has focused on classifying cores with respect to
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deterministic disjoint quality levels [24, 25, 39], which ignores the uncertainty. In a

similar fashion, the uncertain quality of returns has been addressed through a finite

number of grading process outcomes, each one occurs with a positive probability,

such that every grading outcome is a combination of disjoint quality levels in diverse

percentages [40]. Another attempt to model uncertain quality has been considering

the rate of recovery as a random variable [41]. Nonetheless, the above-mentioned

approaches are rough approximations of the uncertain quality status of cores.

Observing this major drawback, in this study, as our prime contribution, we pro-

pose a more precise approach to model the uncertain quality status, where the avail-

ability of each component in the reverse BOM is modeled as a discrete scenario follow-

ing a Bernoulli distribution. This novel approach leads to an explicit incorporation of

the uncertain quality status of returns. In this regard, we formulate this large-scale

optimization problem as a two-stage stochastic mixed-integer program with recourse

[42]. As far as the authors are aware, the design of a CLSC concerning the explicit

modeling of the uncertain quality of each component in the reverse BOM has never

been investigated in the context of durable products. Even though it is not the prime

concern of this paper, it should be stated that the uncertain demand of brand-new

products, quantity of returns, and economic parameters, e.g., unit prices can also be

taken into account as other sources of uncertainty in designing the CLSC network.

On account of the fact that proposing the aforementioned approach for modeling

the uncertain quality exponentially increases the number of scenarios, as the second

contribution, we implement fast forward selection algorithm [43, 44] adapted to our

problem setting as a scenario reduction scheme to preserve the most pertinent sce-

narios. Further, on the methodological side, our third contribution is to develop an

enhanced solution approach based on L-shaped method [45], which shows a consistent
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performance efficiency in our experimentations. The classical L-shaped algorithm re-

sults from applying Benders decomposition [5] to two-stage stochastic programming

models with continuous variables. This decomposition approach typically requires

algorithmic refinements to accelerate its convergence. We, therefore, provide en-

hancement strategies that include adding induced constraints to the master problem

to restrict its feasible region and also generating Pareto-optimal cuts to strengthen

the deepness of optimality cuts throughout the execution of the solution algorithm.

The remainder of this paper is organized as follows. In the next section, we provide

the review of the relevant literature. In Section 3.3, we introduce the problem setting

and its two-stage stochastic programming formulation. Section 3.4 elaborates on the

scenario reduction algorithm. In Section 3.5, a detailed description of the enhanced

L-shaped method is given. Section 3.6 presents computational experiments on the

performance of the proposed solution method for a large household appliance example.

In the last Section, we provide concluding remarks and future research directions.

3.2 Literature review

Many efforts have been made to model and optimize deterministic CLSC/ RSC net-

work design problems. The current literature in the context of product recovery offers

a variety of problems spanning from recycling of simple waste, such as carpet and sand

to different recovery options of more complex products [4, 6, 13, 15, 17, 24, 25, 39, 46].

For an extensive review of proposed models and cases, the reader is referred to [10, 11].

The overview of the existing literature implies that in most of prevailing studies

uncertainty consideration is limited to demand and quantity of returns. Observing

a few exceptions [40, 41], the impact of uncertainty in quality of returns on design-

ing CLSCs, regardless of its substantial impact, has received scant attention in the

literature.
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The most common approach that makes an explicit attempt to incorporate uncer-

tainty in design parameters is stochastic optimization approaches. Since the seminal

work of Salema et al. [21], in which the authors addressed a CLSC network de-

sign problem under uncertain demand and quantity of returns, some researchers have

developed two-stage stochastic programming formulations to model such stochastic

parameters. Details of these studies can be found in [20, 22, 23, 47, 48]. The analysis

of the current literature suggests the following observations: 1) most of them are case

oriented logistical networks; 2) the number of scenarios is quite small (e.g., twelve

scenarios in [20]); and, 3) concerning the size of test problems, the optimal solution

is found by virtue of commercial softwares. It should be stated that [20] is an ex-

ception to the last observation such that an integer L-shaped algorithm was devised

as the solution approach. Nonetheless, its algorithmic framework is only suited for

addressing situations with a very small number of scenarios.

As we noted earlier, only a few recent studies have captured uncertainty in the

quality status of returns. While accounting a multi-period setting, Zeballos et al.

[40] addressed a stochastic CLSC network design problem for which the solutions are

obtained relying on a commercial software. Chen et al. [41] considered the rate of

recovery as a measure to reflect the quality status of cores. Accordingly, the authors

modeled the random recovery rate as a set of scenarios for a CLSC network design,

including collection and remanufacturing facilities in the reverse channel. The result-

ing two-stage stochastic quadratic formulation was solved via the integer L-shaped

method integrated with the sample average approximation scheme. As highlighted in

the preceding section, we, however, capture the uncertain quality status of the return

stream in a more precise setting with regard to the reverse BOM in the context of

modular structured products. Our approach differs in the scope from [40] and [41] in

the sense that: 1) it discriminates the quality state of cores in terms of the availability
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of components in the reverse BOM of a durable product; 2) it involves various types

of recovery options plausible for the sub-assemblies of a durable product; 3) the choice

of the recovery process for each component depends on its quality status; and 4) the

enhanced L-shaped method together with the proposed scenario reduction strategy is

capable of serving as a viable tool for designing a realistic-scale CLSC network with

quite crude information of quality status.

3.3 Problem description and formulation

In what follows, first, the description of the CLSC network applicable for durable

products is presented. Then, we articulate how to model the random quality status

of cores. Finally, we formulate the CLSC network design problem as a two-stage

stochastic mixed-integer program with recourse.

3.3.1 CLSC network design for durable products

In the CLSC network design problem of interest, an organization operates a well-

established forward channel in which the forward network comprises components and

raw materials suppliers, manufacturing facilities, distribution centers, and end-user

locations. The organization tends to adopt some suitable recovery practices to satisfy

the directive recycling target stipulated by the legislator as well as to reclaim the

economic value from used components. Hence, the aim is to extend the existing for-

ward network to accommodate the recovery facilities and consequently to coordinate

the physical forward and reverse flows in the extended supply chain network. The

reverse network consists of collection, disassembly, remanufacturing, bulk recycling,

material recycling, and disposal centers, referred to as the recovery facilities. The re-

turned durable products received at end-user zones are shipped to disassembly centers
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through collection centers. In our problem setting, the quality status of a returned

durable product is defined as the availability of modules and parts for remanufactur-

ing and part harvesting/reusing practices along with the mass of residues for bulk

recycling processes. In disassembly centers, the inspected return stream is disassem-

bled into different components based on the reverse BOM. The recoverable modules

and recyclable materials are then sent to remanufacturing and recycling centers for

further processes. Besides, the bulk of mixed residues would typically be processed

in bulk recycling centers to separate the precious raw materials from mixed scrap,

e.g., electronic scrap. The bulk recycling step is followed by material recycling and

landfilling/incineration at disposal points. The material recycling step is designed

to recover the raw materials. The non-valuable remains, i.e., process waste, should

be safely disposed of at disposal centers. The ultimate purpose of remanufactur-

ing modules, part harvesting, and recycling raw materials is twofold: 1) shipping to

manufacturing facilities to deploy in manufacturing of brand-new products; and, 2)

selling on potential secondary markets. Given the above description, the conceptual

structure of the CLSC under consideration is schematically illustrated in Figure 8.

The solid arcs indicate the forward flows while the dashed ones denote the reverse

flows in the CLSC.

3.3.2 Modeling random quality states of the return stream

The quality status of returns is indeed affected by the changes having been made

during the lifetime of durable products. More specifically, in many cases, due to the

usage and the deterioration rates during the long life cycle of such products, it is

quite impossible to foresee the exact number of recoverable components in a returned

durable product. Moreover, the quality status can only be revealed after grading

the returned items in disassembly centers. In this study, the random quality state
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Figure 8: General structure of the CLSC network

is defined as the availability of each component in the reverse BOM and modeled

as discrete scenarios with Bernoulli probability distribution. Let P and L denote,

respectively, the set of parts and modules in the brand-new durable product. Further,

let γp, δl, and β denote, respectively, the number of reusable part p, the number of

remanufacturable module l, and the mass of residues in the returned durable product.

Now that we represent the random quality vector by ξ where ξ = {γp|∀ p ∈ P ; δl|∀ l ∈

L; β}. We also represent each particular realization (scenario) of the random quality

status by γp(ξs), δl(ξs), and β(ξs). Each particular scenario s is associated with

a non-negative probability πs such that
∑

s∈S πs = 1. Once the grading process is

executed in disassembly centers, it is realized whether or not a particular part/module

is suitable for the effective recovery process. For the sake of clarification, the following

assumptions are made.

• The grading process yields a good condition component with the probability of

functionality p̂ otherwise a poor state one with the failure probability q̂ = 1− p̂,
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• The probability of functionality of each component (module/part) is the same

in all returned items,

• The condition of different returned items are independent and identically dis-

tributed,

• Durable goods are homogeneous.

As an example, we point out to a used twin tub of a washing machine such that

each washing tube unit is 3.5 kg in weight. Every unit can independently be either

functional with probability p̂ or defective with probability q̂. Hence, the outcome of

the grading process for the washing tube follows a Bernoulli distribution. Likewise,

the quality status of other components in the reverse BOM is an independent random

variable following a Bernoulli distribution. For every realization of the random quality

vector, i.e., ξs, we define an indicator function for each unit j of part p and another

indicator function for each unit k of module l as follows.

I(pj) =











1 if unit j is in a functional state; j = 1, ..., np

0 otherwise

I(lk) =











1 if unit k is in a functional state; k = 1, ..., nl

0 otherwise

It allows to consider, respectively, the number of reusable part p as γps =
∑np

j=1 I(p
j)

and the number of remanufacturable module l as δls =
∑nl

k=1 I(l
k). For example, in

the aforementioned washing machine case, a possible outcome of the grading process

might be one fully functional and one defective washing tube. Thus, for this specific

part, γ is equal to 1. On the other hand, the indicator function of the defective unit

takes 0 with probability q̂. The defective unit will be considered as residues and the

viable recovery option for this unit will be bulk recycling process. In this regard,
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β will be increased with the corresponding weight of the unit, i.e., 3.5 kg and thus

β is equal to 3.5 kg. In other words, all defective units observed after the grading

operation are considered as residues and β is equal to the total summation of their

corresponding weights.

The scenario generation approach described above yields 2n scenarios for a typical

durable product that entails n different types of components. The probability of each

scenario can be calculated as follows.

πs = p̂γps+δls .q̂n
p+nl−γps−δls

For example, suppose another washing machine that comprises ten different types

of parts, namely P1, P2, ...., P10 and two different types of modules, namely L1 and

L2 such that it involves only one unit per each type of parts and modules. Further,

each component can be functional with probability 0.3, i.e., p̂ = 0.3. Consequently,

the grading process results in 212 scenarios. Table 9 presents five scenarios and their

corresponding probability of occurrence among all possible realization of quality state

scenarios for the grading process of this washing machine.

Table 9: Example of quality state scenarios

Scenario Component type Probability
L1 L2 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

1 1 0 1 0 0 1 1 1 0 1 0 1 0.000037
2 1 1 1 0 1 0 0 0 1 1 0 1 0.000037
3 0 1 1 1 1 1 1 0 1 1 0 0 0.000016
4 0 1 1 0 1 0 0 0 0 0 1 0 0.000467
5 1 1 1 0 1 1 1 0 1 1 1 1 0.000002

As shown in Table 9, in the first scenario (the first row of the table), there are six

parts in functional condition and the others are considered as residues and should be

treated in bulk recycling to recover their precious materials. Therefore, the value of

the parameter γ is equal to 6. Likewise, only one module, i.e., L1, is remanufacturable
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and thus δ is equal to 1. The parameter β is then equal to the total weights of the

components taking value of 0 in the first scenario, i.e., P2, P3, P7, P9, and L2. The

probability of the first scenario is calculated as 0.37 × 0.75 = 0.000037.

3.3.3 Two-stage stochastic programming formulation

Given the described scenario generation approach for random quality status, we can

formulate our problem setting as a two-stage stochastic program with recourse. In a

general two-stage stochastic programming model, the first stage decisions are taken

when the decision maker does not have enough information about the outcome of

uncertain parameters, while, the second stage decisions are implemented after the

uncertainty is realized. In other words, the “second stage” decision is made when the

complete information with respect to uncertain parameter(s) is available.

Referring to Figure 8, in our problem setting, in the first stage, the location

of collection, disassembly, remanufacturing, bulk recycling, material recycling, and

disposal facilities in the reverse network should be determined before the complete

information on the quality status of returns is available. Thus, the binary location

decisions are first stage decisions. Moreover, since the demand is deterministic, the

uncertainty in quality status of returns does not affect the decisions on the quantity

of brand-new durable products shipped from manufacturing facilities to end-users via

distribution centers. Therefore, such forward flow decisions are also among the first

stage decisions. Likewise, as the quantity of returns is deterministic, the reverse flow

from end-users to collection sites and the flow from collection centers to disassembly

facilities are also first stage decisions. Lastly, regardless of the quality state of returns,

they contain precious raw materials that can also be recycled in material recycling

centers. Accordingly, the flow of recyclable materials from disassembly centers to

material recycling sites is considered as a first stage decision variable. Once the
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returns are graded in disassembly centers, a complete information on the number of

recoverable modules and parts in addition to the mass of residues is available to the

decision maker. Consequently, the remaining flows in the reverse channel are referred

to as the second stage decisions (recourse actions). The physical flows from various

suppliers to manufacturing centers are also considered as second stage decisions due

to the impact of uncertain quality states on them. Further assumptions about our

problem of interest described earlier in this section are as follows.

• The planning horizon is considered as the life cycle of durable goods (e.g., 5

years for large household appliances),

• The demand is deterministic and must be fully satisfied at end-users zones while

the deterministic demands of used parts, remanufactured modules, and recycled

raw materials at secondary markets can be partially fulfilled,

• The rate of return is known a priori,

• The capacities of all facilities in the underlying CLSC are limited and fixed (i.e.,

there is no planned capacity expansion). Further, opening any type of facilities

in the reverse network incurs a fixed location cost,

• Mandated by the governmental restrictions, the OEM is obliged to acquire a

substantial portion of the return stream for recovery purposes,

• All prices, procurement, processing, and shipping costs are deterministic.

The notations used in the mathematical model is listed in the Appendices, in the

section entitled Problem notations. The two-stage stochastic mixed-integer program-

ming model with recourse can be stated as follows.
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Max
∑

j∈J

∑

k∈K

PkkXKjk −
∑

i∈I

∑

j∈J

(cii + tjij)XJij

−
∑

j∈J

∑

k∈K

(cjj + tkjk)XKjk −
∑

k∈K

∑

c∈C

(ccc + tckc)XCkc

−
∑

c∈C

∑

a∈A

(Pr + caa + taca)XAca −
∑

a∈A

∑

g∈G

∑

r∈R

(cggr + tgagr)XGagr

−
∑

c∈C

fccY Cc −
∑

a∈A

faaY Aa −
∑

m∈M

fmmYMm −
∑

b∈B

fbbY Bb

−
∑

g∈G

fggY Gg −
∑

d∈D

fddY Dd

+
∑

s∈S

πsQ(XJij, XKjk, XCkc, XAca, XGagr, Y Cc, Y Aa, Y Bb, Y Mm,

Y Gg, Y Dd, ξs) (64)

s.t.
∑

i∈I

XJij =
∑

k∈K

XKjk ∀ j ∈ J (65)

∑

j∈J

XKjk = dkk ∀ k ∈ K (66)

∑

c∈C

XCkc = ψdkk ∀ k ∈ K (67)

∑

k∈K

XCkc ≥
∑

a∈A

XAca ∀ c ∈ C (68)

∑

c∈C

∑

a∈A

XAca ≥ λ
∑

k∈K

∑

c∈C

XCkc (69)

∑

c∈C

αrXAca =
∑

g∈G

XGagr ∀ a ∈ A, ∀ r ∈ R (70)

∑

j∈J

XJij ≤ caii ∀ i ∈ I (71)

∑

i∈I

XJij ≤ cajj ∀ j ∈ J (72)

∑

k∈K

XCkc ≤ caccY Cc ∀ c ∈ C (73)

71



∑

c∈C

XAca ≤ caaaY Aa ∀ a ∈ A (74)

whereQ(XJij, XKjk, XCkc, XAca, XGagr, Y Cc, Y Aa, Y Mm, Y Bb, Y Gg, Y Dd, ξs) is the

optimal value of the following problem:

Max
∑

m∈M

∑

w∈W

∑

l∈L

PwlQWmwls +
∑

a∈A

∑

o∈O

∑

p∈P

PspQSaops

+
∑

g∈G

∑

e∈E

∑

r∈R

PerQEgers −
∑

z∈Z

∑

i∈I

∑

p∈P

(czzp + tizip)QIzips

−
∑

u∈U

∑

i∈I

∑

r∈R

(cuur + riuir)NIuirs −
∑

h∈H

∑

i∈I

∑

l∈L

(cxhl + sihil)HIhils

−
∑

a∈A

∑

m∈M

∑

l∈L

(cmml + tmaml)QMamls −
∑

a∈A

∑

b∈B

(cbb + tbab)QBabs

−
∑

b∈B

∑

g∈G

∑

r∈R

(cggr + rgbgr)NGbgrs −
∑

b∈B

∑

d∈D

(cdd + rdbd)NDbds

−
∑

g∈G

∑

d∈D

∑

r∈R

(cdd + sdgd)GDgdrs (75)

−
∑

a∈A

∑

o∈O

∑

p∈P

tsaopQSaops −
∑

m∈M

∑

w∈W

∑

l∈L

twmwlQWmwls

−
∑

g∈G

∑

e∈E

∑

r∈R

tegerQEgers −
∑

a∈A

∑

i∈I

∑

p∈P

tzaipQZaips

−
∑

m∈M

∑

i∈I

∑

l∈L

txmilQXmils −
∑

g∈G

∑

i∈I

∑

r∈R

tugirQUgirs (76)

s.t.
∑

z∈Z

QIzips +
∑

a∈A

QZaips = φp

∑

j∈J

XJij ∀ i ∈ I, ∀ p ∈ P, ∀ s ∈ S (77)

∑

u∈U

NIuirs +
∑

g∈G

QUgirs = µr

∑

j∈J

XJij ∀ i ∈ I, ∀ r ∈ R, ∀ s ∈ S (78)

∑

h∈H

HIhils +
∑

m∈M

QXmils = ωl

∑

j∈J

XJij ∀ i ∈ I, ∀ l ∈ L, ∀ s ∈ S (79)

∑

c∈C

γpsXAca =
∑

i∈I

QZaips +
∑

o∈O

QSaops ∀ a ∈ A, ∀ p ∈ P, ∀ s ∈ S

(80)
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∑

a∈A

QSaops ≤ dsop ∀ o ∈ O, ∀ p ∈ P, ∀ s ∈ S (81)

∑

c∈C

βsXAca =
∑

b∈B

QBabs ∀ a ∈ A, ∀ s ∈ S (82)

∑

c∈C

δlsXAca =
∑

m∈M

QMamls ∀ a ∈ A, ∀ l ∈ L, ∀ s ∈ S (83)

∑

a∈A

QMamls =
∑

w∈W

QWmwls +
∑

i∈I

QXmils ∀ m ∈M, ∀ l ∈ L, ∀ s ∈ S (84)

∑

m∈M

QWmwls ≤ dwwl ∀ w ∈ W, ∀ l ∈ L, ∀ s ∈ S (85)

∑

a∈A

ηrQBabs =
∑

g∈G

NGbgrs ∀ b ∈ B, ∀ r ∈ R, ∀ s ∈ S (86)

∑

a∈A

QBabs =
∑

g∈G

∑

r∈R

NGbgrs +
∑

d∈D

NDbds ∀ b ∈ B, ∀ s ∈ S (87)

∑

a∈A

τrXGagr +
∑

b∈B

τrNGbgrs =
∑

d∈D

GDgdrs ∀ g ∈ G, ∀ r ∈ R, ∀ s ∈ S (88)

∑

g∈G

QEgers ≤ deer ∀ e ∈ E, ∀ r ∈ R, ∀ s ∈ S (89)

∑

a∈A

XGagr +
∑

b∈B

NGbgrs =
∑

i∈I

QUgirs +
∑

e∈E

QEgers

+
∑

d∈D

GDgdrs ∀ g ∈ G, ∀ r ∈ R, ∀ s ∈ S (90)

∑

i∈I

QIzips ≤ cazzp ∀ z ∈ Z, ∀ p ∈ P, ∀ s ∈ S (91)

∑

i∈I

NIuirs ≤ cauur ∀ u ∈ U, ∀ r ∈ R, ∀ s ∈ S (92)

∑

i∈I

HIhils ≤ caxhl ∀ h ∈ H, ∀ l ∈ L, ∀ s ∈ S (93)

∑

a∈A

QMamls ≤ cammlYMm ∀ m ∈M, ∀ l ∈ L, ∀ s ∈ S (94)

∑

a∈A

QBabs ≤ cabbY Bb ∀ b ∈ B, ∀ s ∈ S (95)

∑

a∈A

XGagr +
∑

b∈B

NGbgrs ≤ caggrY Gg ∀ g ∈ G, ∀ r ∈ R, ∀ s ∈ S (96)
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∑

b∈B

NDbds +
∑

g∈G

∑

r∈R

GDgdrs ≤ caddY Dd ∀ d ∈ D, ∀ s ∈ S (97)

In the two-stage stochastic programming model (64)-(97), the objective function is

to maximize the expected profit for all realized quality state scenarios. The objective

function is composed of the revenue from selling brand-new products and recovered

components and recycled materials in addition to the fixed costs of opening facilities

as well as processing, procurement, and shipping costs. Constraint (65)-(66) ensure

flow balance at each distribution center and demand satisfaction at each end-user

zone. Constraint (67) ensures that all the returned products are collected at the

collection centers. Constraint (68) ensures that the total flow to the disassembly

facilities, i.e., acquired returns, cannot exceed the total amount of returned products

available in collection centers. Constraint (69) ensures that the OEM acquires a

substantial portion of the return stream for recovery purposes. This constraint reflects

the environmental concerns regarding the harmful effects of leaving used durable

products in the environment. Constraint (70) ensures that the total flow outgoing

from disassembly centers to all recycling centers is equal to the incoming flow to

each disassembly center from all collection centers, multiplied by recyclable mass

coefficient αr. Constraints (71)-(74) are capacity restrictions. Constraints (77)-(79)

ensure that the total outgoing flow from each manufacturing center is equal to the

total incoming flow into this facility from suppliers and reverse channel. Constraints

(80)-(83) ensure flow conservation at each disassembly center. Constraints (84)-(85)

ensure the flow conservation at each remanufacturing facility. Constraints (86)-(87)

ensure flow conservation at each bulk recycling center. Constraints (88)-(90) are

flow conservation restrictions at each material recycling center. Constraints (91)-(97)

impose capacity restrictions on supply chain facilities. Constraints (81), (85), and

(89) represent partial demand satisfaction of recovered components and recycled raw
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materials at secondary markets.

The two-stage stochastic mixed-integer programming model (64)-(97) involves

an extremely large number of recourse problems which yield a computationally in-

tractable model. Therefore, a scenario-based reduction scheme is required to reduce

the difficulty of solving the underlying model.

3.4 Scenario reduction algorithm

In this section, we provide a detailed exposition of a scenario reduction scheme based

on fast forward selection algorithm adapted to the particular structure of the uncer-

tainty set for quality status of returns. The main idea behind the scenario reduction

scheme is to preserve the most pertinent scenarios through eliminating the doubtful

scenarios to occur. Consequently, it determines the best approximation of the ini-

tial set of scenarios with respect to a probability distance measure, i.e., most often

Monge-Kantorovich distance.

We let Ω be the probability distribution carried by n-dimensional scenarios si =

(ξl1si , ξ
l2
si
, ..., ξlLsi , ξ

p1
si
, ξp2si , ..., ξ

pP
si
) in which l and p indicate, respectively, index of mod-

ules and parts. For instance, l1 denotes the first type of modules while p3 repre-

sents the third type of parts in the reverse BOM. Each scenario si is associated with

probability πi for i = {1, ..., |S|} such that
∑|S|

i=1 πi = 1. Further, we let Ω be the

set of reduced probability distribution, compared to Ω, carried by finitely scenarios

sj = (ξl1sj , ξ
l2
sj
, ..., ξlLsj , ξ

p1
sj
, ξp2sj , ..., ξ

pP
sj
) with probability πj for j ∈ {1, ..., |S|} \ J , where

J denotes the index set of eliminated scenarios. The minimal Monge-Kantorovich

distance between Ω and Ω is then attained as follows (Theorem 2.1. in [43]).

D(Ω,Ω) =
∑

i∈J

πi.min
j /∈J

c(si, sj) (98)
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and the probability of the preserved scenario sj of Ω, j /∈ J , is given by the so-called

redistribution rule:

πj = πj +
∑

i∈Jj

πi (99)

where c(si, sj) is a distance metric between si and sj and Jj = {i ∈ J : j = j(i)}

and j(i) ∈ argminj /∈J c(si, sj); ∀i ∈ J . The interpretation of the redistribution rule,

equation (99), is that the modified value of the probability of a preserved scenario

is equal to sum of its initial probability and all probabilities of eliminated scenarios

that are closest to it concerning the distance metric c.

The reduction problem (98) states that the initial scenario set involving 2n num-

ber of scenarios is covered by two sets J ⊂ {1, ..., |S|} and {1, ..., |S|}\J such that

the cover has the minimum value, i.e., D(Ω,Ω). This problem is therefore a set cov-

ering problem, which is NP-hard. In [43], an efficient heuristic algorithm based on

Monge-Kantorovich distance has been developed to determine the optimal scenario

set reduction. The concept of fast forward selection algorithm is the recursive selec-

tion of scenarios that will not be eliminated. The first scenario to be preserved is the

one that has the minimum sum of the distances to the unselected scenarios. In the

subsequent steps, the distance of the unselected scenarios is updated by comparing

these scenarios to the selected set. Thus, the sum of the distances of the unselected

scenarios is calculated and the next scenario to be preserved is selected akin to the

first scenario in the selected set. This algorithm terminates once a specified number

(e.g., m) of scenarios has been selected to be preserved. In the last step, the probabil-

ities of each non-selected scenario is added to its closest selected scenario concerning

the redistribution rule (99).

The first step of forward selection algorithm involves constructing the distance

matrix. Euclidean distance has been a common metric used in stochastic optimization
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literature. In this study, the distance norm is adapted to the particular structure of the

uncertainty set. More specifically, we differentiate between modules and parts in the

reverse BOM of a durable product. The rationale is the different characteristics and

economic values residing in these components. Hence, from the practical standpoint,

the modified distance matrix better reflects the heterogeneity residing in each quality

state scenario compared to a classical distance matrix. To this end, the following

modified Euclidean norm is considered as a distance measure between every pair of

scenarios si and sj.

c(si, sj) = ||ξ
l
si
− ξlsj ||2 + ||ξ

p
si
− ξpsj ||2

=

√

(ξl1si − ξ
l1
sj)2 + ...+ (ξlLsi − ξ

lL
sj )2 +

√

(ξp1si − ξ
p1
sj )2 + ...+ (ξpPsi − ξ

pP
sj )2

The fast forward selection algorithm is outlined in Algorithm 4. This algorithm

starts with an empty selected set of scenarios and iteratively updates it by adding the

scenario minimizing Monge-Kantorovich distance between original and selected sets.

In the first step, the distance matrix corresponding to the original set of scenarios is

constructed using the modified Euclidean distance metric described above. Then, the

minimum distance is computed (line 2 in the algorithm description) and immediately

the first scenario to be preserved is identified. Consequently, the set of selected

scenarios is updated. In the following steps, the distance matrix is updated (line 4)

and distances between scenarios in the original and selected sets are calculated (line

5). The scenario with the minimum distance value is selected as the next scenario

not to be eliminated and the selected set is updated. The probability of the scenarios

in the selected set is computed using the redistribution rule.
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Algorithm 4 - Fast forward selection

1: Step 1: c
[1]
ij := c(si, sj) ∀i, j ∈ {1, ..., |S|}; i 6= j

2: z
[1]
j :=

|S|
∑

i=1
i 6=j

πic
[1]
ij ∀j ∈ {1, ..., |S|}

3: j1 ∈ arg min
j∈{1,...,|S|}

z
[1]
j , J [1] := {1, ..., |S|}\{j1}

4: Step k: c
[k]
ij := min{c

[k−1]
ij , c

[k−1]
ijk−1
} ∀i, j ∈ J [k−1]; i 6= j

5: z
[k]
j :=

∑

i∈J [k−1]\{j}

πic
[k]
ij ∀j ∈ J [k−1]

6: jk ∈ arg min
j∈J [k−1]

z
[k]
j , J [k] := J [k−1]\{jk}

7: Step m + 1: Applying the redistribution rule (99)

3.5 Solution methodology

The mixed-integer programming model (64)-(97) is a large-scale optimization prob-

lem. It is particularly due to several binary decision variables corresponding to lo-

cation of facilities in the reverse network, the generic reverse BOM of the returned

durable product, and the large yet tractable number of reduced recourse problems.

This model can be tackled by an efficient solution approach which we devise based

on L-shaped algorithm. In classical L-shaped method, the deterministic equivalent

(original) problem is decomposed into a MP and a set of RSPs associated with each

random scenario defined in the original model. The MP comprises the first stage vari-

ables, an artificial variable, and a set of first stage constraints. This problem is the

reformulation of the original model which is solved by a cutting plane algorithm such

that, at each iteration, whenever a feasible solution to the original problem is found,

an optimality cut associated with the set of scenarios are added to the MP. Other-

wise, a number of feasibility cuts corresponding to infeasible scenarios are added. The

solution to the MP and the expected value of the solutions to the recourse problems

gives, respectively, upper and lower bounds to the original problem. The solution

process terminates once an optimal solution is found or a prescribed optimality gap
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is satisfied.

In what follows, we first provide the classical L-shaped reformulation, then we

present algorithmic enhancements in order to speed-up the classical L-shaped algo-

rithm.

3.5.1 L-shaped reformulation

In L-shaped scheme, all the second stage flow variables are projected out and the

master problem includes the first stage facility locations and flow variables along

with a surrogate variable. We let X and Y denote a tentative first stage solution.

The corresponding RSP for each scenario s can be stated as follows.

Max Q(X,Y , ξs) (100)

s.t. (81), (84)− (87), (89), (91)− (93)

∑

z∈Z

QIzips +
∑

a∈A

QZaips = φp

∑

j∈J

XJij ∀ i ∈ I, ∀ p ∈ P (101)

∑

u∈U

NIuirs +
∑

g∈G

QUgirs = µr

∑

j∈J

XJij ∀ i ∈ I, ∀ r ∈ R (102)

∑

h∈H

HIhils +
∑

m∈M

QXmils = ωl

∑

j∈J

XJij ∀ i ∈ I, ∀ l ∈ L (103)

∑

c∈C

γpsXAca =
∑

i∈I

QZaips +
∑

o∈O

QSaops ∀ a ∈ A, ∀ p ∈ P (104)

∑

c∈C

βsXAca =
∑

b∈B

QBabs ∀ a ∈ A (105)

∑

c∈C

δlsXAca =
∑

m∈M

QMamls ∀ a ∈ A, ∀ l ∈ L (106)

∑

b∈B

τrNGbgrs −
∑

d∈D

GDgdrs = −
∑

a∈A

τrXGagr ∀ g ∈ G, ∀ r ∈ R (107)
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∑

a∈A

XGagr =
∑

i∈I

QUgirs +
∑

e∈E

QEgers +
∑

d∈D

GDgdrs

−
∑

b∈B

NGbgrs ∀ g ∈ G, ∀ r ∈ R (108)

∑

a∈A

QMamls ≤ cammlYMm ∀ m ∈M, ∀ l ∈ L (109)

∑

a∈A

QBabs ≤ cabbY Bb ∀ b ∈ B (110)

∑

b∈B

NGbgrs ≤ caggrY Gg −
∑

a∈A

XGagr ∀ g ∈ G, ∀ r ∈ R (111)

∑

b∈B

NDbds +
∑

g∈G

∑

r∈R

GDgdrs ≤ caddY Dd ∀ d ∈ D (112)

To formulate the dual of the recourse subproblem, we define υ1,..., υ21, particularly in

which υ5ops, υ
9
wls, υ

13
ers, υ

15
zps, υ

16
urs, υ

17
hls, υ

18
mls, υ

19
bs , υ

20
grs, υ

21
ds ∈ R

+, as the set of dual variable

vectors corresponding to the constraints of RSP. The dual problem for each scenario

s, i.e., DRSP, can then be formulated as follows.

Min Zυ(X,Y , ξs) =
∑

i∈I

∑

j∈J

XJij

(

∑

p∈P

φpυ
1
ips +

∑

r∈R

µrυ
2
irs +

∑

l∈L

ωlυ
3
ils

)

+
∑

a∈A

∑

c∈C

XAca

(

∑

p∈P

γpsυ
4
aps + βsυ

6
as +

∑

l∈L

δlυ
7
als

)

+
∑

o∈O

∑

p∈P

dsopυ
5
ops

+
∑

w∈W

∑

l∈L

dwwlυ
9
wls +

∑

g∈G

∑

a∈A

XGagr

(

∑

r∈R

υ12grs +
∑

r∈R

υ14grs

)

+
∑

e∈E

∑

r∈R

deerυ
13
ers +

∑

z∈Z

∑

p∈P

cazzpυ
15
zps +

∑

u∈U

∑

r∈R

cauurυ
16
urs

+
∑

h∈H

∑

l∈L

caxhlυ
17
hls +

∑

m∈M

∑

l∈L

cammlYMmυ
18
mls +

∑

b∈B

cabbY Bbυ
19
bs

+
∑

g∈G

∑

r∈R

(

caggrY Gg −
∑

a∈A

XGagr

)

υ20grs +
∑

d∈D

caddY Ddυ
21
ds (113)

s.t. (υ1,υ2, ....,υ21) ∈ ∆s (114)
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where ∆s is the polyhedron defined by the constraints of the DRSP. We let ρs(.)

denote the first stage variables-free terms in the objective function of the DRSP and

we introduce a surrogate variable θ representing an upper bound on the expected

recourse function Eξ[Q(X,Y , ξ)]. Thus, we can reformulate the master problem of

the two-stage stochastic programming model (64)-(97) as follows.

Max θ +
∑

j∈J

∑

k∈K

PkkXKjk −
∑

i∈I

∑

j∈J

ciiXJij −
∑

i∈I

∑

j∈J

tjijXJij

−
∑

j∈J

∑

k∈K

cjjXKjk −
∑

j∈J

∑

k∈K

tkjkXKjk −
∑

k∈K

∑

c∈C

cccXCkc

−
∑

k∈K

∑

c∈C

tckcXCkc −
∑

c∈C

∑

a∈A

caaXAca −
∑

c∈C

∑

a∈A

tacaXAca

−
∑

c∈C

∑

a∈A

PrXAca −
∑

a∈A

∑

g∈G

∑

r∈R

cggrXGagr −
∑

a∈A

∑

g∈G

∑

r∈R

tgagrXGagr

−
∑

c∈C

fccY Cc −
∑

a∈A

faaY Aa −
∑

m∈M

fmmYMm −
∑

b∈B

fbbY Bb

−
∑

g∈G

fggY Gg −
∑

d∈D

fddY Dd (115)

s.t. (65)− (74)

θ ≤
∑

s∈S

πs

(

ρs(υ̂
nT

) +
∑

i∈I

∑

j∈J

XJij

(

∑

p∈P

φpυ̂
1
ips +

∑

r∈R

µrυ̂
2
irs +

∑

l∈L

ωlυ̂
3
ils

)

+
∑

a∈A

∑

c∈C

XAca

(

∑

p∈P

γpsυ̂
4
aps + βsυ̂

6
as +

∑

l∈L

δlυ̂
7
als

)

+
∑

g∈G

∑

a∈A

XGagr

(

∑

r∈R

υ̂12grs +
∑

r∈R

υ̂14grs

)

+
∑

m∈M

∑

l∈L

cammlYMmυ̂
18
mls

+
∑

b∈B

cabbY Bbυ̂
19
bs +

∑

g∈G

∑

r∈R

(

caggrY Gg −
∑

a∈A

XGagr

)

υ̂20grs +
∑

d∈D

caddY Ddυ̂
21
ds

)

(116)

0 ≤ ρs′(κ̂
nT

) +
∑

i∈I

∑

j∈J

XJij

(

∑

p∈P

φpκ̂
1
ips′ +

∑

r∈R

µrκ̂
2
irs′ +

∑

l∈L

ωlκ̂
3
ils′

)
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+
∑

a∈A

∑

c∈C

XAca

(

∑

p∈P

γpsκ̂
4
aps′ + βsκ̂

6
as′ +

∑

l∈L

δlκ̂
7
als′

)

+
∑

g∈G

∑

a∈A

XGagr

(

∑

r∈R

κ̂12grs′ +
∑

r∈R

κ̂14grs′

)

+
∑

m∈M

∑

l∈L

cammlYMmκ̂
18
mls′

+
∑

b∈B

cabbY Bbκ̂
19
bs′ +

∑

g∈G

∑

r∈R

(

caggrY Gg −
∑

a∈A

XGagr

)

κ̂20grs′

+
∑

d∈D

caddY Ddκ̂
21
ds′ ∀s

′ ∈ S (117)

X ∈ R
+,Y ∈ {0, 1} (118)

where κ indicates extreme rays of ∆ whenever the DRSP is unbounded for a given

first stage solution in scenario s′. As shown above, the set of optimality cuts for

each scenario s has been aggregated to produce the optimality cut (115), while (116)

represents the feasibility cut for each infeasible scenario s′.

We also let F and C be the cost vectors in the objective function of the first

stage problem. The classical L-shaped method is therefore outlined in Algorithm 5.

Pilot computational tests have shown a slow convergence of L-shaped method. To

circumvent this issue, we proceed with proposing two different enhancement strategies

in the next section.

3.5.2 Algorithmic refinements

3.5.2.1 Induced constraints

We note that various types of valid inequalities (induced constraints) can be added to

the MP. In the early iterations of L-shaped algorithm, because the iterative algorithm

is initialized from empty subsets of extreme rays and extreme points, the solution to

the MP might be infeasible for the original model, which leads to the generation of the

feasibility cuts. Induced constraints restrict the feasible region of the MP and transfer
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Algorithm 5 - Classical L-shaped algorithm

UB←∞, LB← −∞
while (UB − LB)/UB ≤ ε do
Solve the MP
UB← θ̄ − F TY + CTX

Solve the DRSP for each scenario s
if the DRSP is unbounded then

Add the corresponding feasibility cut (116) to the MP
else

Generate the corresponding optimality cut

end if
if The DRSP was optimal for all realiztion of scenarios then

Add the aggregated optimality cut (115) to the MP
LB← max (LB,

∑

s πsZυ(X,Y , ξs) + F TY + CTX)

end if
end while

more information on RSPs to the MP. Hence, they dramatically diminish the number

of feasibility cuts throughout the solution process and enhance the convergence of

L-shaped method by helping the MP to identify close to optimal solutions. Given the

model (64)-(97) described in the preceding section, the following constraints can be

added to the MP as induced constraints.

∑

c∈C

caccY Cc ≥
∑

k∈K

ψdkk (119)

∑

a∈A

caaaY Aa ≥ λψ
∑

k∈K

dkk (120)

∑

m∈M

cammlYMm ≥ δlsλψ
∑

k∈K

dkk ∀ l ∈ L, ∀ s ∈ S (121)

∑

b∈B

cabbY Bb ≥ βsλψ
∑

k∈K

dkk ∀ s ∈ S (122)

∑

g∈G

caggrY Gg ≥ αrλψ
∑

k∈K

dkk ∀ r ∈ R (123)

∑

d∈D

Y Dd ≥ 1 (124)
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The set of inequalities (119)-(123) ensure installing enough capacity in the reverse

channel. Constraint (124) ensures that at least one disposal center is installed in the

reverse network.

3.5.2.2 Pareto-optimal cuts

One of the well-known strategies to enhance the convergence of L-shaped algorithm

is to strengthen the deepness of the optimality cuts. In some applications, multiple

optimal solutions might exist to the DRSP, each providing a potentially different

cut. To choose the deepest cut among various optimality cuts corresponding to the

multiple optimal solutions, Magnanti and Wong [30] proposed a cut selection scheme,

which improves the convergence of the Benders decomposition algorithm. In the

context of our problem of interest, the definition of a stronger cut can be expressed

as follows.

Definition 3.1. Given that X and Y represent, respectively, the set of first

stage flows and locations variables in model (64)-(97), the optimality cut generated

from the dual solution vectors (υ1
1, ...,υ

7
1,υ

9
1,υ

12
1 , ...,υ21

1 ) ∈ ∆s dominates the cut

generated from (υ1
2, ...,υ

7
2,υ

9
2,υ

12
2 , ...,υ21

2 ) ∈ ∆s if and only if

∑

s∈S

πs

(

ρs(υ̂
nT

1 ) +
∑

i∈I

∑

j∈J

XJij

(

∑

p∈P

φpυ̂
1
1ips +

∑

r∈R

µrυ̂
2
1irs +

∑

l∈L

ωlυ̂
3
1ils

)

+
∑

a∈A

∑

c∈C

XAca

(

∑

p∈P

γpsυ̂
4
1aps + βsυ̂

6
1as +

∑

l∈L

δlυ̂
7
1als

)

+
∑

g∈G

∑

a∈A

XGagr

(

∑

r∈R

υ̂121grs +
∑

r∈R

υ̂141grs

)

+
∑

m∈M

∑

l∈L

cammlYMmυ̂
18
1mls

+
∑

b∈B

cabbY Bbυ̂
19
1bs +

∑

g∈G

∑

r∈R

(

caggrY Gg −
∑

a∈A

XGagr

)

υ̂201grs +
∑

d∈D

caddY Ddυ̂
21
1ds

)

≤
∑

s∈S

πs

(

ρs(υ̂
nT

2 ) +
∑

i∈I

∑

j∈J

XJij

(

∑

p∈P

φpυ̂
1
2ips +

∑

r∈R

µrυ̂
2
2irs +

∑

l∈L

ωlυ̂
3
2ils

)
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+
∑

a∈A

∑

c∈C

XAca

(

∑

p∈P

γpsυ̂
4
2aps + βsυ̂

6
2as +

∑

l∈L

δlυ̂
7
2als

)

+
∑

g∈G

∑

a∈A

XGagr

(

∑

r∈R

υ̂122grs +
∑

r∈R

υ̂142grs

)

+
∑

m∈M

∑

l∈L

cammlYMmυ̂
18
2mls

+
∑

b∈B

cabbY Bbυ̂
19
2bs +

∑

g∈G

∑

r∈R

(

caggrY Gg −
∑

a∈A

XGagr

)

υ̂202grs +
∑

d∈D

caddY Ddυ̂
21
2ds

)

for all X and Y with strict inequality for at least one extreme point. A Pareto-

optimal cut is not dominated by any other cut. Now, let Λ be a polyhedron stated

as Λ = {(X,Y ) : (65)− (74) are satisifed}.

Definition 3.2. Core point: any point (X0,Y 0) contained in the relative interior

of the convex hull of Λ is said to be a core point, i.e., (X0,Y 0) ∈ ri(Λc), in which

ri(.) and Λc, respectively, denote the relative interior and the convex hull of Λ.

Given the above definitions, the Pareto-cut selection scheme based on [30] for the

CLSC network design problem under investigation is presented in the Appendices, in

the section entitled Magnanti and Wong problem. In this study, we use the Pareto-

optimal cut generation approach presented in Papadakos [9]. In [9], it has been shown

that the normalization constraint (see constraint (127)) can be disregarded through

varying the value of the core point at each iteration of the solution process. In this

approach, once the solution to the MP yields feasible RSPs, the value of the core

point can be updated through the convex combination of the MP solution and the

previous value of the core point. In this regard the auxiliary dual recourse subproblem

(auxiliary-DRSP) can be stated as follows.

Min Zυ(X
0,Y 0, ξs) =

∑

i∈I

∑

j∈J

XJ0
ij

(

∑

p∈P

φpυ
1
ips +

∑

r∈R

µrυ
2
irs +

∑

l∈L

ωlυ
3
ils

)

+
∑

a∈A

∑

c∈C

XA0
ca

(

∑

p∈P

γpsυ
4
aps + βsυ

6
as +

∑

l∈L

δlυ
7
als

)

+
∑

o∈O

∑

p∈P

dsopυ
5
ops
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+
∑

w∈W

∑

l∈L

dwwlυ
9
wls +

∑

g∈G

∑

a∈A

XG0
agr

(

∑

r∈R

υ12grs +
∑

r∈R

υ14grs

)

+
∑

e∈E

∑

r∈R

deerυ
13
ers +

∑

z∈Z

∑

p∈P

cazzpυ
15
zps +

∑

u∈U

∑

r∈R

cauurυ
16
urs

+
∑

h∈H

∑

l∈L

caxhlυ
17
hls +

∑

m∈M

∑

l∈L

cammlYM
0
mυ

18
mls +

∑

b∈B

cabbY B
0
bυ

19
bs

+
∑

g∈G

∑

r∈R

(

caggrY G
0

g −
∑

a∈A

XG0
agr

)

υ20grs +
∑

d∈D

caddY D
0
dυ

21
ds

s.t. (υ1,υ2, ....,υ21) ∈ ∆s (125)

The optimal solution to auxiliary-DRSP (124) is used to generate the Pareto-optimal

cut. We let non-negative parameter λc indicate the weight of the core point (X0,

Y 0) in the convex combination that updates the value of the core point throughout

the solution process. Empirically, it has been shown that 0.5 most often yields the

best results ([9]). An outline of the proposed enhanced L-shaped method is presented

in Algorithm 6.

3.6 Numerical results

In this section, we illustrate some numerical experiments to provide an analysis of

the CLSC network design problem under investigation. To this end, first, we address

a typical large household appliance example, i.e., washing machine, as a suitable case

of durable products and provide a description of randomly generated data sets based

on the CLSC/RSC design literature ([19], [20]), which ensures varying values of input

parameters. Then, we proceed with a detailed representation of the performance of

the proposed solution algorithm on two reduced sets of scenarios with different sizes,

i.e., 500 and 1000, respectively. Finally, using the enhanced L-shaped algorithm for

each scenario set, we evaluate the performance of the scenario reduction scheme.
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Algorithm 6 - Enhanced L-shaped algorithm

UB←∞, LB← −∞, λc ← 0.5
Add induced constraints (118)-(123) to the MP
Start with an initial core point (X0,Y 0)
while (UB − LB)/UB ≤ ε do
Solve auxiliary-DRSP (124) for each scenario s
Add the aggregated Pareto-optimal cut (115) to the MP
Solve the MP
UB← θ̄ − F TY + CTX

Solve the DRSP for each scenario s
if the DRSP is unbounded then

Add the corresponding feasibility cut (116) to the MP
else

Generate the corresponding optimality cut

end if
if The DRSP was optimal for all realiztion of scenarios then

Add the aggregated optimality cut (115) to the MP
LB← max (LB,

∑

s πsZυ(X,Y , ξs) + F TY + CTX)
(X0,Y 0)← λc(X0, Y 0)+ (1− λc)(X,Y )

else
(X0,Y 0)← λc(X0, Y 0)+ ζ

end if
end while

The fast forward selection algorithm and the accelerated L-shaped method are

implemented in C++ programming language. More particularly, the proposed de-

composition algorithm is implemented in C++ using Concert Technology with IBM-

ILOG CPLEX 12.60. We also employ the default settings of CPLEX and conduct all

the experiments on an Intel Quad Core 3.40 GHz with 8 GB RAM.

3.6.1 Computational experiments

We consider the recovery network of a typical washing machine that has been adapted

from Park et al. [36]. This washing machine entails ten parts (e.g., washing tube) and

two modules (e.g., motor) as components and three types of raw materials (e.g., steel).

The number of each component in addition to the volume of each raw material are

87



shown in Table 10. For instance, this washing machine contains a single washing tube

which is 3.5 kg in weight. Recalling the scenario generation approach described in

Section 3.2 and the number of components of the washing machine in our experiments,

i.e., twelve components, the grading process leads to 212, equally 4096, quality state

scenarios which is relatively large. Moreover, the return ratio parameter, i.e., ψ, is

60%.

Moreover, the capacities of facilities in the forward network are randomly gen-

erated considering the first market demand and the value of parameters given in

Table 10. The same rule applies for the capacities of facilities in the reverse net-

work with a few exceptions such that their values are generated according to the

reverse BOM, demands, and the return ratio. For example, the capacity of col-

lection centers are chosen between Uniform(3 × MeanCac, 5 × MeanCac) where

MeanCac =
∑

k ψdkk/|C|. Demands of recycled raw materials at the corresponding

secondary marketplaces are also randomly generated considering the reverse BOM

and the rate of return. Finally, shipping costs are selected from Uniform(4, 7) for the

washing machine, Uniform(1, 4) for each type of components, and Uniform(0.1, 0.5)

for raw materials, bulk of residues, and waste.

In the Appendices, in the section entitled Parameter settings, the following param-

eters of the proposed mathematical formulation are presented in separated tables. The

revenues from selling the new washing machine, recovered components, and recycled

materials at the corresponding markets are carefully estimated vis-à-vis recent mar-

ket data. The unit procurement costs for each new component and raw material are

assumed to be halves of the unit prices. Further, using the values presented in [20]

and [19], the processing costs and other parameters, such as demands, the rate of

return, and fixed costs of opening facilities are also given in the Appendices. We note

that fixed costs are generated with regard to the capacity of facilities, i.e., opening a
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facility with high capacity level requires to invest a greater amount of infrastructural

costs.

Table 10: Components and raw materials of the case example

Description Value

φp

washing tube:1 (3.5 kg), cover:1 (2.5 kg), balance:1 (2.5 kg),
frame:1 (11.5 kg), condenser:1 (0.5 kg), hose:1 (1 kg),
small electric parts:1 (1 kg), electric wire:1 (1 kg),

transformer:1 (1 kg), PCB:1 (0.5 kg)
ωl motor:1 (5 kg), clutch:1 (4 kg)
µr plastic:3 kg, steel:2 kg, copper:1 kg

We also apply fast forward selection algorithm described in an earlier section where

two reduced scenario sets of sizes 500 and 1000 are selected out of the set of 4096

scenarios. Then, we consider five classes of problems, each with 5 randomly generated

test instances, for both sets of scenarios as shown in Table 11. We also show detailed

information on the size of classes in Table 12.

3.6.2 Analysis of the enhanced L-shaped algorithm

To assess the computational efficiency of the proposed enhanced L-shaped method,

we define an optimality gap ε% in addition to a time limit as the stopping criteria

Table 11: Problem classes

Class |Z| |U | |H| |I| |J | |K| |C| |A| |M | |B| |G| |D| |O| |W | |E| |S|
C1 10 3 2 5 10 60 10 10 10 10 10 5 30 30 30 500

1000
C2 10 3 2 5 10 80 10 10 10 10 10 5 40 40 40 500

1000
C3 10 3 2 5 15 100 15 15 15 15 15 7 50 50 50 500

1000
C4 10 3 2 5 15 120 15 15 15 15 15 7 60 60 60 500

1000
C5 10 3 2 5 20 140 20 20 20 20 20 10 70 70 70 500

1000
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Table 12: Size of the deterministic equivalent problems

Class |S| Constraints Continuous Vars. Binary Vars.
C1 500 476706 3261650 55

1000 953206 6521650 55
C2 500 551746 4012050 55

1000 1103246 8022050 55
C3 500 705326 7276475 82

1000 1410326 14548975 82
C4 500 780366 8402075 82

1000 1560366 16799575 82
C5 500 934446 13022300 110

1000 1868446 26037300 110

for this algorithm. More precisely, the solution process terminates once either the

optimality gap falls below 0.5% or the solution time exceeds 3600 seconds. As for the

core point (X0,Y 0), point Y 0 is fixed to 0.5 for all the first stage binary variables at

the beginning of the solution approach. Moreover, to pick a suitable value for point

X0, after fixing the value of Y 0 to 0.5, the resulting problem (64)-(74) (excluding

the recourse function) is solved imposing a small positive value as the lower bound

for X0 to ensure generating an interior point. We also solve all 50 test instances

with CPLEX in a maximum time limit of 18000 seconds and within the stopping

gap tolerance of 0.5% to avoid tail-off effect. Tables 13 and 14 present, respectively,

computational results for the reduced sets of 500 and 1000 scenarios. These tables

also show computational statistics of CPLEX including CPU time in seconds followed

by the value of the objective function reported by CPLEX within the dedicated time

limit. The last column entitled by “Gap” represents the relative difference between

the values of the objective function reported by the enhanced L-shaped algorithm

and CPLEX for each test instance within their dedicated time limits.

Gap = 100× |(V2SP − CPX2SP )|/V2SP
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Table 13: Computational results on problem classes for |S| = 500

Class Enhanced L-shaped CPLEX
Runtime (sec) Iterations Profit Runtime (sec) Profit Gap (%)

C1

320 22 23,583,400 ≥ 18000 23,524,200 0.25
170 12 26,655,700 ≥ 18000 26,460,800 0.73
280 19 25,156,500 ≥ 18000 24,860,600 1.18
269 19 24,681,000 ≥ 18000 24,634,700 0.19
244 17 26,100,800 ≥ 18000 26,097,100 0.01

C2

443 27 35,837,400 ≥ 18000 35,460,700 1.05
527 32 34,890,800 ≥ 18000 34,703,900 0.54
224 14 36,404,200 ≥ 18000 35,984,800 1.15
278 17 34,448,900 ≥ 18000 34,297,300 0.44
523 31 37,958,400 ≥ 18000 37,771,900 0.49

C3

969 32 44,375,400 ≥ 18000 4,181,020 90.58
521 17 40,886,900 ≥ 18000 1,050,180 97.43
1119 36 45,205,700 ≥ 18000 6,253,750 86.17
704 24 42,834,000 ≥ 18000 3,127,920 92.70
531 18 43,602,900 ≥ 18000 5,294,590 87.86

C4

1382 36 51,663,200 ≥ 18000 10,866,000 78.97
1154 31 56,215,500 ≥ 18000 15,416,000 72.58
763 21 58,737,500 ≥ 18000 19,074,500 67.52
764 21 54,991,600 ≥ 18000 17,596,300 68.00
823 23 55,213,400 ≥ 18000 17,773,400 67.81

C5

2835 38 65,911,400 ≥ 18000 12,020,400 81.76
2900 41 60,880,800 ≥ 18000 9,697,270 84.07
2348 31 63,561,500 ≥ 18000 12,181,600 80.83
2680 33 58,883,900 ≥ 18000 4,692,950 92.03
2530 36 62,967,200 ≥ 18000 11,292,800 82.06

where V2SP and CPX2SP indicate, respectively, the optimal solution of model (64)-

(97), which is obtained by applying the accelerated L-shaped method and CPLEX to

the reduced sets of scenarios.

As far as the results reported in Table 13 are concerned, the proposed L-shaped

method solves all 25 test instances of different sizes to optimality in a reasonable

amount of time while CPLEX is only able to find a feasible solution for them. In

particular, the feasible solution identified by CPLEX for test problems of C3 to C5
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Table 14: Computational results on problem classes for |S| = 1000

Class Enhanced L-shaped CPLEX
Runtime (sec) Iterations Profit Runtime (sec) Profit Gap (%)

C1

598 21 23,722,300 ≥ 18000 23,687,100 0.15
331 12 26,802,200 ≥ 18000 26,573,900 0.85
580 19 25,299,200 ≥ 18000 24,629,600 2.65
556 18 24,823,600 ≥ 18000 24,660,100 0.66
455 16 26,242,400 ≥ 18000 25,686,000 2.12

C2

857 26 36,006,600 ≥ 18000 35,746,500 0.72
900 27 35,106,500 ≥ 18000 34,721,000 1.10
460 14 36,585,700 ≥ 18000 36,173,300 1.13
580 17 34,634,300 ≥ 18000 34,266,800 1.06
1324 39 38,117,700 ≥ 18000 37,964,300 0.40

C3

1848 30 44,619,300 ≥ 18000 4,142,150 90.71
1154 19 41,121,600 ≥ 18000 No solution -
1720 28 45,440,300 ≥ 18000 No solution -
1438 24 43,077,100 ≥ 18000 3,070,370 92.87
970 16 43,835,900 ≥ 18000 5,170,890 88.20

C4

1944 26 51,663,200 ≥ 18000 15,081,600 70.81
2472 33 56,215,500 ≥ 18000 18,885,000 66.41
1663 22 58,737,500 ≥ 18000 21,676,300 63.10
1768 23 54,991,600 ≥ 18000 17,898,900 67.45
1588 22 55,213,400 ≥ 18000 17,942,400 67.50

C5

≥ 3600 26 66,258,600 ≥ 18000 M -
≥ 3600 27 65,256,200 ≥ 18000 M -
≥ 3600 25 63,761,100 ≥ 18000 M -
≥ 3600 25 59,212,300 ≥ 18000 M -
≥ 3600 27 63,307,000 ≥ 18000 M -

M: out-of-memory
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are considerably far from the optimal solution given by the L-shaped method ob-

serving the huge average gap between the values of the objective function reported

by two methods as indicated in the last column. This can be explained by the fact

that the deterministic equivalent problem which CPLEX attempts to solve involves

a large number of recourse problems associated with the representative quality state

scenarios. Hence, model (64)-(97), even with reduced number of scenarios, is itself a

very difficult to solve problem for the commercial software. This observation supports

the call for an efficient solution approach. As opposed to CPLEX that is unable to

find high quality solutions within 5h CPU time, the proposed enhanced L-shaped

algorithm can easily handle realistic size problems such that the average runtime in

classes C1 and C2 is less than 600 seconds, which verifies the advantage of the al-

gorithmic refinement strategies. Note that, in the case of the largest test problems

(class C5), we observe, on average, a 77.42% solution time increase compared to the

other four classes. Nonetheless, all test instances are solvable in the allotted time by

the proposed decomposition scheme.

Likewise, Table 14 reports the same statistics in the case of 1000 scenarios. Analy-

sis of this table leads to similar implications as in the case of 500 scenarios. However,

concerning the size of the set of scenarios, i.e., 1000, few exceptions arise that are

required to be clarified. Firstly, the runtime for the accelerated L-shaped method

increases 12.77% on average over all test instances excluding the fifth class. Secondly,

the test instances of the last class cannot be solved within one hour until the dedicated

optimality gap, i.e., ε = 0.5%, is reached by the solution algorithm. However, for this

class of problems, the relative difference between the lower and upper bounds of the

solution process after an hour is quite tight (0.54% on average over test instances of

C5), which is not far from the stopping optimality gap of 0.5%. Moreover, when the

computational results of CPLEX are considered, we observe an out-of-memory state
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in the last class. Note that, in two test instances of the third class, CPLEX can-

not generate any feasible solution within five hours, denoted by “No solution”. The

above discussion demonstrates the effectiveness of the proposed accelerated L-shaped

algorithm for solving our problem of interest.

Moreover, we note that due to the undesirable performance of the classical L-

shaped algorithm on pilot tests in terms of solution time, its numerical results have

been excluded from this section. For example, the CPU time of the classical L-

shaped method when it applies to solve the first test instance of C1 in Table 13 is

1950 seconds. This is further illustrated in Figure 9 through observing the plotted

convergence of the classical (C-Lshaped) and enhanced (E-Lshaped) algorithms on

solving this test instance. As shown in Figure 9, the number of iterations to achieve

optimality has been reduced by 77% in the enhanced L-shaped algorithm. In this

typical example, the enhanced variant converges to the optimal solution in 17% of

the total solution time required for the classical method.
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Figure 9: Convergence of the gap for the 1st instance of C1
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Finally, from the network configuration point of view, investigating the compu-

tational results in both reduced scenario sets indicates that the facilities installed

in the reverse channel can be classified in two categories in terms of the number of

active facilities. As the first group of facilities, collection, remanufacturing, and bulk

recycling centers account for, on average, 60% of the facilities installed in the CLSC.

While, as the second group, disassembly, material recycling, and disposal centers are,

on average, 40% of the active facilities in the reverse network of the CLSC. It should

be noted that, for each type of the recovery facilities, the number of facilities that are

opened in the reverse channel increases in accordance with the size of the test instance.

Furthermore, the total number of components, i.e., parts and modules, expected to

be processed in the reverse network increases averagely 54% and 56%, respectively, in

the set of 1000 scenarios compared to 500 ones for each class of problems. In contrary,

there exists a smooth decline, i.e., 5%, in the total volume of residues needed to be

treated in bulk recycling centers.

3.6.3 Sensitivity analysis

Observe that the quantity of returned products can be also subject to change. Hence,

we analyze the sensitivity of solutions to the variations in the value of the return

ratio, i.e., ψ, for the first test instance of C2 in Tables 13 and 14. To this end, we

assume that the rate of return is normally distributed with the mean value of 0.60

and the variance of 1% mean over all end-user zones. This normal distribution is

then approximated by a 3-point discrete distribution (high, average, and low ratio)

by using the Gaussian quadrature method [49]. The average point is the return ratio

of 0.60 which is considered as the base case. The lower and the upper cases are also

solved to optimality by means of the proposed solution algorithm.

As shown in Figure 10, when 500 scenarios are concerned, the higher level of the
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return ratio leads to an increase in the number of various types of facilities opened in

the reverse network, which in turn incurs additional set-up costs. It also increases the

total processing and shipping costs of the reverse chain. On the other hand, the lower

level of the return ratio has an opposite impact on the configuration the CLSC network

as it results in smaller number of active facilities in the reverse channel. Investigating

the results of 1000 scenarios instance indicates a similar observation. The implication

is that the level of the return stream plays a key role on the profitability of the

CLSC in terms of changing the value of the total cost of designing the network. More

precisely, the profit that the OEM gains in the lower return ratio case is of 6.75%

and 13.53% greater than the base and the upper cases when |S| = 500. We note that

in the case of |S| = 1000, the increase in the value of the profit function is slightly

greater than the smaller-sized scenario set.
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Figure 10: Impact of different return ratio levels on the CLSC configuration

3.6.4 Analysis of fast forward selection algorithm

Herein, we evaluate the performance of fast forward selection algorithm through com-

paring the numerical results of the reduced scenario sets presented in the previous
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section. To this end, we compare the values of the expected profit obtained by con-

sidering reduced sets of scenarios with the one that we estimate through considering

all possible scenarios for the random quality status of the return stream. Recall that

V2SP indicates the optimal solution of model (64)-(97), which is obtained by using

the enhanced L-shaped algorithm. Now, the first stage variables in (64)-(97) are sub-

stituted with the corresponding optimal values obtained by applying the proposed

L-shaped algorithm for the reduced two-stage stochastic program. Then, the result-

ing recourse subproblems are solved for all 4096 quality state scenarios. The expected

value of the profit function is therefore calculated over all scenarios and denoted by

EV2SP . The relative difference (RD) measure, representing the gap between EV2SP

and V2SP , can be stated as follows.

RD = 100× |(V2SP − EV2SP )|/V2SP

It should be noted that the RD measure indicates how good the reduced scenario

set, obtained by the proposed fast forward selection algorithm, represents the whole

set of scenarios. The steps described above are repeated for each test instance of our

experiments. Table 15 summarizes the average value of RD over all five test instances

for each class of problems, in cases of 500 and 1000 scenarios.

Table 15: The average value of RD

# Scenarios C1 C2 C3 C4 C5
500 1.25% 1.17% 1.21% 1.14% 1.19%
1000 0.69% 0.65% 0.67% 0.71% 0.70%

As can be seen Table 15, the RD values are quite insignificant, i.e., less than

2%. It means that both reduced sets of 500 and 1000 scenarios provide good quality

solutions to our stochastic problem. This observation verifies the capability of fast

forward selection algorithm in finding reduced sets of scenarios, that are reliable
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representations of 4096 quality state scenarios.

Moreover, analyzing these results, it can be inferred that the larger reduced sce-

nario set, i.e., 1000 scenarios, provides a better approximation to the true stochastic

CLSC network design problem involving a large number of scenarios. However, it

should be remembered that, in the case of 1000 scenarios, the average CPU time

increases by 12.77% over solvable test instances against that of 500 scenarios. As evi-

dent from the above discussion, if the decision maker prefers to obtain more accurate

solutions to model (64)-(97), he/she should pay the cost of computational time. The

proposed solution framework along with the scenario reduction method allows the

decision maker to have a perfect insight on possible trade-offs between computational

time and the accuracy of solutions, and therefore to select a solution that is consistent

with his/her willingness to invest computational efforts to design the CLSC network.

3.7 Conclusion

In this paper, we introduced a CLSC network design problem under uncertain quality

status of the return stream, which is applicable to the case of durable products. The

underlying uncertainty is considered as the availability of each component in the re-

verse BOM and modeled as discrete scenarios with Bernoulli probability distribution.

Accordingly, we proposed a two-stage mixed-integer stochastic program to explicitly

address uncertainty in this problem. In order to tackle the intractable number of sce-

narios resulting from several components that exist in the reverse BOM of a typical

durable product, we adapted fast forward selection algorithm to our problem of in-

terest to preserve the most pertinent binary scenarios in the deterministic equivalent

problem. Moreover, we developed a solution method based on L-shaped algorithm,

further enhanced with additional acceleration strategies, including valid inequalities

and non-dominated optimality cuts. Our computational experiments demonstrated
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an outstanding capability of the proposed algorithm for the CLSC network design

problem.

We believe that our numerical results are general in nature and remain valid

in the context of any durable product. The proposed solution framework together

with the employed scenario reduction technique can be used to solve realistic-sized

problems. More specifically, the computational experiments performed show that the

average solution time are 1012 and 1962 seconds, receptively, for cases of 500 and 1000

scenarios. Furthermore, our findings indicate that the adapted fast forward selection

algorithm is potent enough to construct a subset of the complete scenario set that

leads to good quality solutions.

This research can be extended in several directions. Given a planning horizon

discretized by a set of finite time periods, the proposed model can be extended to

a dynamic CLSC network design problem in which the uncertainty in quantity of

returns and demands can be addressed along with uncertain quality status of cores.

While accounting a multi-period setting to extend the current study into a dynamic

CLSC, longer time horizons, e.g., fifteen years, should be considered to enhance the

accuracy of the design decisions. As investments related with facilities have, usually,

higher time horizons than five years; thus, in such cases, annualized costs have to be

used. More precisely, it is of a great importance to consider the depreciation of the

capital invested while accounting a planning horizon [22]. Another avenue of research

is to deal with the uncertain quality state through the robust optimization approach.

This might alleviate the computational complexity of the stochastic programming

method.
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3.8 Appendices

3.8.1 Problem notations

Indices

Z: Set of part suppliers

U : Set of raw material suppliers

H: Set of module suppliers

I: Set of manufacturing centers

J : Set of distribution centers

K: Set of end-user zones

C: Set of collection centers

A: Set of disassembly centers

M : Set of remanufacturing centers

B: Set of bulk recycling centers

G: Set of material recycling centers

D: Set of disposal centers

W : Set of secondary markets for modules

O: Set of secondary markets for spare parts

E: Set of secondary markets for recycled materials

L: Set of modules
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P : Set of parts

R: Set of raw materials

S: Set of quality state scenarios

Parameters

φp: The number of part p in each unit of product

µr: The volume of material r in each unit of product

ωl: The number of module l in each unit of product

ψ: The rate of return

βs: The mass of residues in the returned product in scenario s shipped to bulk recy-

cling centers from disassembly centers

αr: The mass of recyclable material r in the returned product shipped to material

recycling centers from disassembly centers

γps: The number of reusable part p in the returned product in scenario s shipped to

secondary markets and manufacturing centers from disassembly centers

δls: The number of remanufacturable module l in the returned product in scenario s

shipped to remanufacturing centers from disassembly centers

ηr: The ratio of recyclable material r shipped to material recycling centers from bulk

recycling centers

τr: The ratio of non-recyclable material r shipped to disposal centers from bulk and

material recycling centers

λ: The legislative target for recovery of the return stream

fcc: Fixed cost of opening collection center c

faa: Fixed cost of opening disassembly center a

fmm: Fixed cost of opening remanufacturing center m

fgg: Fixed cost of opening material recycling center g

fbb: Fixed cost of opening bulk recycling center b
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fdd: Fixed cost of opening disposal center d

tckc: Shipping cost per unit of the returned product from end-user k to collection

center c

taca: Shipping cost per unit of the returned product from collection center c to dis-

assembly center a

tsaop: Shipping cost per unit of part p from disassembly center a to spare market o

tzaip: Shipping cost per unit of part p from disassembly center a to manufacturing

center i

tgagr: Shipping cost per kg of recyclable material r from disassembly center a to ma-

terial recycling center g

teger: Shipping cost per kg of recycled material r from recycling center g to recycled

material market e

tugir: Shipping cost per kg of recycled material r from material recycling center g to

manufacturing centers i

sdgd: Shipping cost per kg of wastes from material recycling center g to disposal

center d

tbab: Shipping cost per kg of residues from disassembly center a to bulk recycling

center b

rgbgr: Shipping cost per kg of recyclable material r from bulk recycling center b to

material recycling center g

rdbd: Shipping cost per kg of wastes from bulk recycling center b to disposal center d

tmaml: Shipping cost per unit of module l from disassembly center a to remanufac-

turing center m

twmwl: Shipping cost per unit of module l from remanufacturing center m to sec-

ondary market w
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txmil: Shipping cost per unit of module l from remanufacturing center m to manu-

facturing center i

tizip: Shipping cost per unit of part p from part supplier z to manufacturing center i

riuir: Shipping cost per kg of material r from material supplier u to manufacturing

center i

sihil: Shipping cost per unit of module l from module supplier h to manufacturing

center i

tjij: Shipping cost per unit of the new product from manufacturing center i to dis-

tribution center j

tkjk: Shipping cost per unit of the new product from distribution center j to end-user

k

cazzp: Capacity of part supplier z for part p

cauur: Capacity of raw material supplier u for raw material r

caxhl: Capacity of module supplier h for module l

caii: Capacity of manufacturing center i

cajj: Capacity of distribution center j

cacc: Capacity of collection center c

caaa: Capacity of disassembly center a

cadd: Capacity of disposal center d

cabb: Capacity of bulk recycling center b

caggr: Capacity of material recycling center g for raw material r

camml: Capacity of remanufacturing center m for module l

dkk: Demand for the new product at end-user zone k

dsop: Demand for part p at spare market o

deer: Demand for material r at recycled material market e

dwwl: Demand for module l at secondary market w
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czzp: Procurement cost per unit of part p supplied by part supplier z

cuur: Procurement cost per kg of material r supplied by raw material supplier u

cxhl: Procurement cost per unit of module l supplied by module supplier h

cii: Production cost per unit of product at manufacturing center i

cjj: Distribution cost per unit of product at distribution center j

ccc: Processing cost per unit of the returned product at collection center c

caa: Processing cost per unit of the returned product at disassembly center a

cdd: Disposal cost at disposal center d

cggr: Recycling cost per kg of material r at material recycling center g

cbb: Processing cost per kg of residues at recycling center b

cmml: Remanufacturing cost per unit of module l at remanufacturing center m

Pkk: Unit price of the new product at end-user zone k

Psp: Unit price of part p at spare parts markets

Per: Unit price of material r at recycled material markets

Pwl: Unit price of module l at secondary markets

Pr: Unit acquisition price of the returned product

The first stage decision variables

Y Cc: A binary variable which is equal to one if collection center c is opened and zero

otherwise

Y Aa: A binary variable which is equal to one if disassembly center a is opened and

zero otherwise

YMm: A binary variable which is equal to one if remanufacturing center m is opened

and zero otherwise

Y Bb: A binary variable which is equal to one if bulk recycling center b is opened and

zero otherwise

Y Gg: A binary variable which is equal to one if material recycling center g is opened
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and zero otherwise

Y Dd: A binary variable which is equal to one if disposal center d is opened and zero

otherwise

XJij: The quantity of products shipped from manufacturing center i to distribution

center j

XKjk: The quantity of products shipped from distribution center j to end-user zone

k

XCkc: The quantity of returns shipped from end-user zone k to collection center c

XAca: The quantity of returns shipped from collection center c to disassembly center

a

XGagr: The quantity of recyclable material r shipped from disassembly center a to

material recycling center g

The second stage decision variables

QIzips: The number of part p shipped from part supplier z to manufacturing center

i in scenario s

NIuirs: The quantity of raw material r shipped from raw material supplier u to man-

ufacturing center i in scenario s

HIhils: The number of module l shipped from module supplier h to manufacturing

center i in scenario s

QSaops: The number of part p shipped from disassembly center a to spare parts mar-

ket o in scenario s

QZaips: The number of part p shipped from disassembly center a to manufacturing

center i in scenario s

QMamls: The number of module l shipped from disassembly center a to remanufac-

turing center m in scenario s
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QWmwls: The number of module l shipped from remanufacturing center m to sec-

ondary market w in scenario s

QXmils: The number of module l shipped from remanufacturing center m to manu-

facturing center i in scenario s

QBabs: The quantity of residues shipped from disassembly center a to bulk recycling

center b in scenario s

NGbgrs: The quantity of recyclable material r shipped from bulk recycling center b

to material recycling center g in scenario s

QEgers: The quantity of recycled material r shipped from material recycling center g

to recycled material market e in scenario s

QUgirs: The quantity of recycled material r shipped from material recycling center g

to manufacturing center i in scenario s

NDbds: The quantity of residues shipped from bulk recycling center b to disposal

center d in scenario s

GDgdrs: The quantity of raw material r shipped from material recycling center g to

disposal center d in scenario s

3.8.2 Magnanti and Wong problem

Considering Magnanti and Wong’s approach, throughout the L-shaped algorithm,

when the solution to the MP yields feasible RSPs for all scenarios, the following

auxiliary dual subproblem has to be solved for each representative scenario.

Min Zυ(X
0,Y 0, ξs) =

∑

i∈I

∑

j∈J

XJ0
ij

(

∑

p∈P

φpυ
1
ips +

∑

r∈R

µrυ
2
irs +

∑

l∈L

ωlυ
3
ils

)
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+
∑

a∈A

∑

c∈C

XA0
ca

(

∑

p∈P

γpsυ
4
aps + βsυ

6
as +

∑

l∈L

δlυ
7
als

)

+
∑

o∈O

∑

p∈P

dsopυ
5
ops

+
∑

w∈W

∑

l∈L

dwwlυ
9
wls +

∑

g∈G

∑

a∈A

XG0
agr

(

∑

r∈R

υ12grs +
∑

r∈R

υ14grs

)

+
∑

e∈E

∑

r∈R

deerυ
13
ers +

∑

z∈Z

∑

p∈P

cazzpυ
15
zps +

∑

u∈U

∑

r∈R

cauurυ
16
urs

+
∑

h∈H

∑

l∈L

caxhlυ
17
hls +

∑

m∈M

∑

l∈L

cammlYM
0
mυ

18
mls +

∑

b∈B

cabbY B
0
bυ

19
bs

+
∑

g∈G

∑

r∈R

(

caggrY G
0

g −
∑

a∈A

XG0
agr

)

υ20grs +
∑

d∈D

caddY D
0
dυ

21
ds (126)

s.t.
∑

i∈I

∑

j∈J

XJij

(

∑

p∈P

φpυ
1
ips +

∑

r∈R

µrυ
2
irs +

∑

l∈L

ωlυ
3
ils

)

+
∑

a∈A

∑

c∈C

XAca

(

∑

p∈P

γpsυ
4
aps + βsυ

6
as +

∑

l∈L

δlυ
7
als

)

+
∑

o∈O

∑

p∈P

dsopυ
5
ops

+
∑

w∈W

∑

l∈L

dwwlυ
9
wls +

∑

g∈G

∑

a∈A

XGagr

(

∑

r∈R

υ12grs +
∑

r∈R

υ14grs

)

+
∑

e∈E

∑

r∈R

deerυ
13
ers +

∑

z∈Z

∑

p∈P

cazzpυ
15
zps +

∑

u∈U

∑

r∈R

cauurυ
16
urs

+
∑

h∈H

∑

l∈L

caxhlυ
17
hls +

∑

m∈M

∑

l∈L

cammlYMmυ
18
mls +

∑

b∈B

cabbY Bbυ19bs

+
∑

g∈G

∑

r∈R

(

caggrY Gg −
∑

a∈A

XGagr

)

υ20grs

+
∑

d∈D

caddY Ddυ
21
ds = Z∗

υ(X,Y , ξs) (127)

(υ1,υ2, ....,υ21) ∈ ∆s (128)

where Z∗
υ(X,Y , ξs) denotes the optimal value of the DRSP for the concerned sce-

nario. The normalization constraint (126) ensures that the optimal solution of (125)-

(127) is selected from the set of alternative optimal solutions to the DRSP. The ag-

gregated optimality cut (115) generated using the solution of (125)-(127) is a Pareto-

optimal cut.
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3.8.3 Parameter settings

Tables 16 to 19 summarize parameter settings of model (64)-(74).

Table 16: Parameter settings for modules

Description Value
Motor Clutch

cxhl 75 35
Pwl 150 75

Table 17: Parameter settings for raw materials

Description Value
Plastic Steel Copper

αr 1.5 kg 1 kg 0.5 kg
cuur 0.75 0.5 3
per 1.5 1 6

Table 18: Parameter settings for parts

Type of part Value
czzp Psp

Washing tube 20 40
Cover 5 10
Balance 25 50
Frame 5 10

Condenser 15 30
Transformer 15 30
Small electric 5 10

Hose 20 40
Electric wire 20 40
PCB board 35 70
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Table 19: Values of other parameters

Description Value Description Value
cii 4 cjj 1
ccc 1 caa 2
cmm 3 cbb 2
cggr 2 cdd 2
ηr 0.3 τr 0.2
Pr 200 λ 0.7
dkk {600, 601, ..., 1200} dsop {30, 31, ..., 100}
dwwl {30, 31, ..., 100} Pkk Uniform(700, 1300)
fcc Uniform(400000, 600000) faa Uniform(400000, 600000)
fmm Uniform(700000, 900000) fbb Uniform(400000, 600000)
fgg Uniform(400000, 600000) fdd Uniform(200000, 400000)
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Chapter 4

A decomposition algorithm for

dynamic reverse supply chain

network design under uncertainty

This chapter is dedicated to the article entitled “A decomposition algorithm for dy-

namic reverse supply chain network design under uncertainty”. This article was sub-

mitted to the Computers & Operations Research in July 2016. The titles, figures,

and mathematical formulations have been revised to keep the coherence through the

manuscript.
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Abstract

Motivated by the recovery practices of modular-structured products, this study ad-

dresses designing a reverse supply chain network while incorporating uncertainty in

quantity of the return stream over a planning horizon. The stochastic parameter

is modeled as a scenario tree in which each stage of decision making corresponds

to a unique time period. The concerned problem is formulated as a multi-stage

mixed-integer stochastic programming model. Considering a scenario clustering de-

composition scheme, the proposed model is decomposed into smaller scenario cluster

sub-models such that the sub-models are associated with a number of sub-trees that

share a certain number of predecessor nodes in the scenario tree. The sub-models are

coordinated into an implementable solution via a Lagrangean progressive hedging-

based method which employs a Benders decomposition-based algorithm as a viable

solution approach for each scenario cluster sub-model. Based on a realistic scale case,

computational results indicate a consistent performance efficiency of the proposed

scenario clustering decomposition approach.

4.1 Introduction

RSC network design refers to the decisions in terms of locations of facilities associated

with the collection and recovery of EOL products in addition to the allocation of

physical flows among these facilities and secondary markets. Designing RSC networks

for durable products (e.g., large household appliances) that are distinguished by their

modular structure and their long life cycle is a complex problem. It is explained by the

fact that such category of products can be dissembled into several components, namely

modules and parts along with a bulk of damaged yet recyclable components referred

to as residues. Depending on the category and quality status of each component
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in the reverse BOM, a particular recovery process would be desired to reclaim the

economic value residing in a specific component. For example, remanufacturing is a

typical option for a used module in a good condition. Nonetheless, a poor quality

(damaged) module is considered as residues that can be recycled to separate the

precious raw materials from mixed scrap. Observing the variation in market demands

of brand-new durable products, a similar tendency can be expected in generating end-

of-life durable goods. In this regard, a dynamic perspective should be considered to

accommodate such fluctuations in the RSC planning over a planning horizon. To

date, a few contributions have addressed this concern [17, 19, 50]. Considering an

application-oriented approach, Salema et al. [50] proposed a graph-based scheme to

design a dynamic recovery network to capture the fluctuations in the rate of returns

in a deterministic setting. In another attempt, Alumur et al. [19] developed a MIP

formulation to model a RSC network design in a multi-period setting while considering

the reverse BOM. The proposed model was also analyzed for a real-life industrial case.

An inherent characteristic of the recovery systems is the uncertainty in qual-

ity/quantity of returns. Needless to say, a successful designing of RSC networks

requires the inclusion of such critical factors into the decision making problem. Most

studies in the literature have utilized two-stage stochastic programming approaches

to explicitly deal with uncertainty in static (single-period) settings [20, 21, 41, 48, 51].

The overview of the current literature indicates that most of the previous research in

the context of designing RSCs under uncertainty is limited to single-period settings.

In such studies, the common sources of uncertainty entail quality/quantity of returns,

demands, and economical parameters such as shipping costs. For instance, Fonseca

et al. [48] provided a two-stage stochastic programming model for designing a RSC

network under uncertainty in transportation costs. The dynamic nature of the prod-

uct returns combined with the uncertainty in the quantity of returns lead to a natural
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extension of the static RSC network design into a dynamic setting under uncertainty

which consequently calls for multi-stage stochastic programming [42] as a suitable

approach to be adopted. In a multi-stage stochastic program, modeling the uncertain

parameter, e.g., quantity of returns, as a scenario tree allows the adjustment of the

decisions while more information on the uncertain parameter is available to the de-

cision maker. In this line of research, Cardoso et al. [22] proposed a MS-MIP model

to maximize the expected net present value of designing a close-loop supply chain

network over a planning horizon under uncertainty in demand. In a similar vein,

more recently, Zeballos et al. [23] used a scenario tree approach for discretization of

stochastic demand and quantity of returns over the planning horizon. The resulting

MS-MIP model was solved by a commercial software. As it can be observed, the

number of studies in the context of designing a dynamic recovery network while ac-

counting uncertainty is limited. To fill the existing void of research, on the modeling

side, the first contribution of this study is to address the problem of designing a RSC

in a multi-period setting considering the reverse BOM of durable products. In the un-

derlying problem of interest, the quantity of returns is stochastic and non-stationary

during the planning horizon. It is worth noting that a push market is assumed for

the recovered modules, parts, and materials, which is a realistic assumption in many

industries. Hence, the demand for the recovered items is considered as a deterministic

yet dynamic parameter. Through modeling the uncertain factor as a scenario tree,

the problem is modeled as a MS-MIP in which one seeks to maximize the expected

profit. The non-homogeneity characteristic of the components of a durable good is

also incorporated in the design decisions through defining a finite number of quality

levels. To the best of our knowledge, none of the aforementioned studies in dynamic

RSC planning have addressed the impact of the quality status of components on the

choice of the recovery option while accounting uncertainty in the quantity of returns.
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One complicating aspect of MS-MIP models is their computational intractability,

particularly due to the exponential growth in the number of decision variables over

the stages of the scenario tree of the stochastic parameter(s). Scenario clustering

decomposition schemes have been shown to successfully solve large-scale multi-stage

stochastic programming problems [52–55]. The prime idea of the scenario clustering

decomposition is to divide the scenario tree into a set of scenario clusters such that

they share some ancestor nodes. In most studies in the context of dynamic recovery

network design, the size of test instances is quite small allowing the plain use of

MIP solvers. Therefore, as the second contribution, on the methodological side, a

heuristic inspired by a scenario clustering decomposition scheme [54, 55] is provided

to solve the resulting large-scale MS-MIP problem. This algorithm revolves around

decomposing the scenario tree into smaller sub-trees. The MS-MIP model would

consequently be broken down into smaller sub-models corresponding to each sub-

tree. Afterwards, the scenario cluster sub-models are coordinated by Lagrangean

penalty terms in the objective function and a progressive hedging-based scheme [56]

is applied for updating Lagrangean multipliers [57]. It is noteworthy to state that

each scenario cluster sub-model per se is a hard to solve problem. Hence, as the third

contribution, a Benders decomposition-based (BD) solution algorithm [5] is developed

for tackling each scenario cluster sub-model which is enhanced with a Pareto-optimal

cuts selection strategy [9].

The remainder of this article is organized as follows. In the next section, the de-

scription of the problem investigated in this article is provided and its formulation is

introduced. Section 4.3 elaborates the details of the solution methodology including

the scenario clustering decomposition and Benders decomposition schemes. Compu-

tational experiments on a case of large household appliances, i.e., washing machines,

is presented in Section 4.4. Finally, Section 4.5 concludes this paper.

114



4.2 Problem statement

4.2.1 Problem description

Considering a dynamic RSC network design context, as shown in Figure 11, in each

period in the planning horizon, used products that are of non-homogeneous quality

status are acquired in collection zones and then shipped to disassembly centers. The

returns are then graded into multiple quality levels in disassembly centers. As noted in

the preceding section, depending on the quality level of the component in the reverse

BOM of a durable product, it can be sent to a particular facility for the recovery

process. Hence, high quality modules are sent to remanufacturing centers and high

quality parts are used for part harvesting to make them “like-new” components. These

components are then offered at a lower price compared to the brand-new components

at their corresponding marketplaces. For instance, in a washing machine, its motor

and washing tube are categorized, respectively, as modules and parts. The high

quality level motor is profitable for remanufacturing while a poor quality washing

tube is sent to the bulk recycling center. Damaged components are also shipped

to bulk recycling facilities to recycle precious raw materials. The unprocessed raw

materials are then purchased by a 3PL provider. More precisely, it is assumed that

there exists an infinite demand for recyclable raw materials in markets. It is also

assumed that the waste of residues is safely disposed of in bulk recycling facilities at

zero cost, as it is a sunk cost.

In a deterministic setting, the design decisions in each period revolve around the

location of each facility including disassembly, remanufacturing, and bulk recycling

centers to be installed in the RSC network. It should be noted that a dynamic RSC

design provides the flexibility to adjust the number and the location of facilities as the

quantity of returns evolves over time. More precisely, depending on the quantity of
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Figure 11: The RSC network

returns over the planning horizon, either some of the existing facilities are closed (in

case of a reduced return stream) or new facilities are opened (in case of an increasing

return stream). Furthermore, the planning decisions include the physical flows and

inventory levels at each facility. The objective function is to maximize the profit over

the planning horizon. The organization gains revenues from remanufacturing when

the remanufactured modules are sold in the secondary markets; from reusable parts

when they are sold to spare parts markets; from bulk recycling when the unprocessed

raw materials are purchased by the third-party logistics provider. The total cost

comprises the fixed costs of the installation of facilities along with inventory holding,

processing, and transportation costs in the RSC network. Furthermore, the following

assumptions are made regarding the problem setting.

• Demands of remanufactured modules and reusable parts are deterministic yet

dynamic over the planning horizon;

• The return stream is categorized with respect to a finite set of quality levels;

• The unit collection, disassembly, and remanufacturing costs are quality status-

dependent;

• Capacities of facilities are not subject to change within time periods.
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4.2.2 Modeling uncertain returns

In the problem of interest, it is assumed that the quantity of returns is uncertain

and dynamic; hence, it evolves as a discrete time stochastic process over the planning

horizon. As noted earlier, the dynamic and uncertain nature of returns quantities

require the adjustment of the design decisions during the planning horizon. To this

end, the planning horizon is discretized into a finite set of time periods such that

the decisions are implemented at the end of each time period. Considering the multi-

period setting together with uncertainty, the stochastic quantity of returns parameter

can be interpreted as a scenario tree in which each stage indicates the realization of

the uncertain parameter. It is assumed that each stage corresponds to a single time

period. In a given stage, each node represents a distinguishable state of random return

concerning the available information up to this stage. In the underlying problem, each

node is directly connected to two other nodes while moving away from the root node.

In other words, each node in the scenario tree has only one sibling except the root

node. Besides, a return quantity scenario is defined as the full path from the root

node, i.e., the current state of world, to a leaf node at the last stage of the scenario

tree. Figure 12 illustrates a scenario tree with four stages.

4.2.3 Problem formulation

Given the RSC network design problem described in Section 4.2.1 and the scenario

tree representing the uncertain quantity of returns, in this section, the latter problem

is formulated as a MS-MIP model. In this model, the location of facilities depends

on the quantity of returns, hence this decision is defined for each possible realization

of the stochastic parameter in each period, represented by a node in each stage of the

scenario tree. In a similar fashion, the quantity of acquisition, disassembly quantity,
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Figure 12: Scenario tree for the random quantity of returns

the flow between the disassembly and recovery facilities, shipped quantities of recov-

ered items, as well as the inventory levels of recovered items at different facilities also

depend on the return quantity, thus are defined for each node. Furthermore, in any

given period in the planning horizon (represented as a stage in the scenario tree),

the decision maker cannot foresee future outcomes of the return quantity; therefore,

location and flow decisions must satisfy the non-anticipativity condition (NAC). The

latter indicates that such decisions in a given period (stage) are identical for scenarios

with a common ancestor node in that period. For instance, in Figure 12, scenarios

1 and 2 share node 2 in stage 2; therefore, the location and flow decisions must be

identical for both scenarios at this stage and consequently are defined exclusively for

the ancestor node 2. On the other hand, since inventory decisions are state variables

that depend on the main design/flow decisions, the NAC would automatically apply.

The problem notation is provided in the Appendices, in the section entitled Problem
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notations. The compact formulation of the MS-MIP model corresponding to the dy-

namic RSC network design problem under investigation can be stated as follows. It

should be noted that the NAC is implicitly taken into consideration while using a

compact formulation of a multi-stage stochastic problem. On the contrary, the latter

condition must be explicitly stated in a split-variable or clustered formulation.

Total revenue

∑

n∈Tree

pr(n)

{

∑

t∈T

∑

a∈A

∑

o∈O

∑

p∈P

PspQSaopt(n) +
∑

t∈T

∑

d∈D

∑

w∈W

∑

l∈L

PwlQWdwlt(n)

+
∑

t∈T

∑

b∈B

∑

r∈R

PerBRbrt(n)

}

(129)

Total cost

Fixed cost

∑

n∈Tree

pr(n)

{

∑

t∈T

∑

a∈A

faaY Aat(n) +
∑

t∈T

∑

d∈D

fddY Ddt(n)

+
∑

t∈T

∑

b∈B

fbbY Bbt(n)

}

(130)

Processing cost

∑

n∈Tree

pr(n)

{

∑

t∈T

∑

c∈C

∑

a∈A

∑

q∈Q

caaqQAcaqt(n) +
∑

t∈T

∑

a∈A

∑

d∈D

∑

l∈L

cddlQDadlt(n)

∑

t∈T

∑

a∈A

∑

b∈B

cbbQBabt(n)

}

(131)
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Inventory holding cost

∑

n∈Tree

pr(n)

{

∑

t∈T

∑

a∈A

∑

p∈P

hppIPapt(n) +
∑

t∈T

∑

a∈A

∑

l∈L

hllILalt(n)

+
∑

t∈T

∑

a∈A

hbIBat(n) +
∑

t∈T

∑

d∈D

∑

l∈L

hllIDdlt(n)

}

(132)

Transportation cost

∑

n∈Tree

pr(n)

{

∑

t∈T

∑

c∈C

∑

a∈A

∑

q∈Q

tacaQAcaqt(n)
∑

t∈T

∑

a∈A

∑

o∈O

∑

p∈P

tsaopQSaopt(n)

+
∑

t∈T

∑

a∈A

∑

d∈D

∑

l∈L

tdadlQDadlt(n) +
∑

t∈T

∑

a∈A

∑

b∈B

tbQBabt(n)

+
∑

t∈T

∑

d∈D

∑

w∈W

∑

l∈L

twdwlQWdwlt(n)

}

(133)

Supply constraints

∑

a∈A

QAcaqt(n) = ψcqt(n) c ∈ C, q ∈ Q, t ∈ T, n ∈ Tree (134)

Flow balance constraints

IPapt(n) = IPap(t−1)(m) +
∑

c∈C

∑

q∈Q

γpqQAcaqt(n)−
∑

o∈O

QSaopt(n) a ∈ A,

p ∈ P, t ∈ T, n ∈ Tree,m = a(n) (135)

ILalt(n) = ILal(t−1)(m) +
∑

c∈C

∑

q∈Q

δlqQAcat(n)−
∑

d∈D

QDadlt(n) a ∈ A,

l ∈ L, t ∈ T, n ∈ Tree,m = a(n) (136)

IBat(n) = IBa(t−1)(m) +
∑

c∈C

∑

q∈Q

βqQAcaqt(n)−
∑

b∈B

QBabt(n) a ∈ A, t ∈ T,

n ∈ Tree,m = a(n) (137)
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IDdlt(n) = IDdl(t−1)(m) +
∑

a∈A

QDadlt(n)−
∑

w∈W

QWdwlt(n) d ∈ D,

l ∈ L, t ∈ T, n ∈ Tree,m = a(n) (138)

∑

a∈A

ηrQBabt(n) = BRbrt(n) b ∈ B, r ∈ R, t ∈ T, n ∈ Tree (139)

Demand constraints

∑

a∈A

QSaopt(n) = dsopt o ∈ O, p ∈ P, t ∈ T, n ∈ Tree (140)

∑

d∈D

QWdwlt(n) = dwwlt w ∈ W, l ∈ L, t ∈ T, n ∈ Tree (141)

Capacity constraints of facilities

∑

c∈C

∑

q∈Q

QAcaqt(n) ≤ caaaY Aat(n) a ∈ A, t ∈ T, n ∈ Tree (142)

∑

a∈A

QDazlt(n) ≤ caddlY Ddt(n) d ∈ D, l ∈ L, t ∈ T, n ∈ Tree (143)

∑

a∈A

QBabt(n) ≤ cabbY Bbt(n) b ∈ B, t ∈ T, n ∈ Tree (144)

In model (129)-(144), the objective function accounts for maximizing the expected

profit. Constraint (134) ensures the acquisition of the return stream for each node

and each time period. Constraints (135)-(138) are inventory balance restrictions,

respectively, for parts, modules, and residues at disassembly centers in addition to

remanufacturing facilities. Flow balance restriction in each bulk recycling center is

imposed by Constraints (139). Constraints (140)-(141) ensure the demand satis-

faction of parts and remanufactured modules at their corresponding marketplaces in

each time period. Constraints (142)-(144) impose capacity restriction on disassembly,

remanufacturing, and bulk recycling centers.
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4.3 Solution methodology

Solving the MS-MIP model (129)-(144) by a commercial solver for real-size instances

is a challenge. This is due to the existence of the three sets of binary variables that

increase exponentially in number as the number of stages in the planning horizon is

increased. As noted earlier, the computational complexity has motivated the authors

to propose a heuristic scenario clustering decomposition (HSCD) algorithm. This

algorithm comprises two major steps: (1) Scenario cluster decomposition (SCD) and

(2) Scenario cluster coordination (SCC). In the SCD step, first, the scenario tree

is partitioned into a set of scenario cluster sub-trees. Then, for each sub-tree, the

corresponding MS-MIP model is represented in a compact formulation. Furthermore,

the NACs corresponding to common nodes in the original scenario tree are introduced

in the objective function of each scenario cluster sub-model. Finally, in the SCC

step, the aforementioned sub-models are coordinated into an implementable solution

by means of a Lagrangian Progressive Hedging-based algorithm. The details of the

aforementioned steps are provided as follows.

4.3.1 Step 1: SCD

4.3.1.1 Decomposing the scenario tree

Definition 4.1. Given that nδ and S represent, respectively, the set of nodes that

belong to stage δ and the set of scenario clusters, according to [54, 55], a break stage

δ∗ is defined as a stage in the scenario tree such that the following equation holds:

|S| = |nδ∗+1|.

In Figure 13, if the second stage is chosen as the break stage, i.e., δ∗ = 2, four

scenario clusters (|S| = 4) are obtained such that each shares node 1. Furthermore,

the first and the second scenario cluster sub-trees share node 2 and the other two
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share node 3 in the original scenario tree (see Figure 13).

Let introduce N s as the set of nodes that belong to scenario cluster s, ∆ =

{1, 2, .., δ∗}, N1 as the set of nodes corresponding to the stages in ∆, N2 = N\N1,

N s
1 = N1 ∩ N

s, N s
2 = N2 ∩ N

s. Moreover, let ζω be the likelihood of scenario ω, Ωs

be the set of scenarios in scenario cluster sub-tree s, and ζs(n) =
∑

ω∈Ωs
ζω.

Figure 13: The scenario cluster sub-trees

4.3.1.2 Formulating the scenario cluster sub-model

Following the scenario tree decomposition, the MS-MIP model is formulated for each

sub-tree in a compact representation. The NACs for any node in N2 are implicitly

considered by formulating each scenario cluster sub-tree in a compact representation.

However, these constraints are required to explicitly be taken into account for ev-

ery node in N1. The purpose of introducing the NACs is to coordinate and link |S|

scenario cluster sub-models into an implementable solution. Let Xs
t (n) be the vec-

tor of flow and location variables in the MS-MIP (129)-(144). Let P be the vector

of unit prices of selling brand-new and recovered components at the marketplaces.

Let F and C be, respectively, the vector of fixed costs of opening facilities in the
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reverse network and the vector of procurement, processing, inventory carrying, and

transportation costs. Moreover, let ηn be scenario cluster sub-trees that share node

n, sηn = min{s|∀s ∈ ηn}, sηn = max{s|∀s ∈ ηn}. The NACs can therefore be stated

as follows.

Xs
t (n)−X

s+1
t (n) ≤ 0 ∀s = sηn , ..., (sηn)− 1, t ∈ ∆, n ∈ N1 (145)

X
sηn
t (n)−X

sηn
t (n) ≤ 0 t ∈ ∆, n ∈ N1 (146)

For instance, in the sub-trees shown in Figure 13, the NACs for the location of

disassembly centers, i.e., Y Aat(n), is expressed as follows.

Y A1
a2(2)− Y A

2
a2(2) ≤ 0 ∀a ∈ A

Y A2
a2(2)− Y A

1
a2(2) ≤ 0 ∀a ∈ A

Y A3
a2(3)− Y A

4
a2(3) ≤ 0 ∀a ∈ A

Y A4
a2(3)− Y A

3
a2(3) ≤ 0 ∀a ∈ A

By dualizing the NACs and using a Lagrangean multiplier vector, i.e., µs
t(n), the

MS-MIP model (129)-(144) can be reformulated as the following multi-stage scenario

cluster Lagrangean decomposition (MSCLD) problem. [54, 55].

ZMSCLD(µ, s) =Max

|S|
∑

s=1

∑

n∈Ns
1

∑

t∈∆

ζs(n){PXs
t (n)− FX

s
t (n)− CX

s
t (n)}

+

|S|
∑

s=1

∑

n∈Ns
2

∑

t/∈∆

pr(n){PXs
t (n)− FX

s
t (n)− CX

s
t (n)}

124



(s̄ηn )−1
∑

s=sηn

∑

n∈N1

∑

t∈∆

µs
t(n){X

s+1
t (n)−Xs

t (n)}

+
∑

n∈N1

∑

t∈∆

µ
s̄ηn
t (n){X

sηn
t (n)−X

s̄ηn
t (n)}

s.t. (134)− (144) ∀t ∈ ∆, n ∈ {N1, N2} (147)

As it can be seen, (147) is a relaxation of MS-MIP (129)-(144) for all µs
t(n) ≥

0; ∀s ∈ S, n ∈ N s
1 , and t ∈ ∆. Thus, the value of its objective function, ZMSCLD(µ, s),

is an upper bound on the optimal solution of the original MS-MIP model.

Definition 4.2. The dual problem (Lagrangean dual) of the original MS-MIP

model with respect to NACs (145)-(146), for a given break stage δ∗, can be represented

as

ZMSCLD =Minµ≥0ZMSCLD(µ, s) (148)

The Lagrangean dual problem (148) is solved by an iterative sub-gradient-based

scheme to identify an upper bound on the original MS-MIP model (129)-(144). It

should be stated that model (147) can further be decomposed into |S| subproblems

in accordance with each scenario cluster sub-tree. Its objective function can also be

attained through summing up each individual sub-model objective function as follows.

ZMSCLD(µ, s) =

|S|
∑

s=1

Zs
MSCLD(µ) (149)

125



4.3.2 Step 2: SCC

4.3.2.1 Lagrangean progressive hedging-based algorithm (LPHA)

In order to update Lagrangean multipliers, a Lagrangean progressive hedging-based

scheme is considered as presented in Escudero et al. [54, 57]. The progressive hedging

algorithm was firstly introduced in the seminal work of Rockafellar and Wets [56] for

solving multi-stage stochastic linear programming models.

Definition 4.3. The classical sub-gradient vector gt(n) in which n ∈ N s
1 , t ∈ ∆

can be defined as follows [54].

gt(n) =

































X
sηn
t (n)−X

s̄ηn
t (n)

X
(sηn )+1

t (n)−X
sηn
t (n)

.

.

.

X
s̄ηn
t (n)−X

((s̄ηn )−1)

t (n)

































In LPHA scheme, apart from the classical sub-gradient vector, a new modified

vector is defined.

Definition 4.4. Denoted by gt(n), a non-necessary feasible pseudo sub-gradient

vector can be represented as follows.

gt(n) =

































X t(n)−X
s̄ηn
t (n)

X t(n)−X
sηn
t (n)

.

.

.

X t(n)−X
((s̄ηn )−1)
t (n)

































where X t(n) =
∑

s∈ηn ζ
s(n)Xs(n) such that, n ∈ N s

1 and t ∈ ∆. In fact, X t(n)

indicates an approximate expected value over the set of scenario cluster sub-trees that
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share node n. Denoting by ZMSCLD a lower bound on (147), the details of LPHA

method are summarized in Algorithm 7.

Algorithm 7 - LPHA

Step 0 : Initialization µs
t(n) ← 0 ∀s ∈ S, n ∈ N s

1 , t ∈ ∆, ᾱ ← 1, Iteration
counter k ← 1
Solve |S| scenario cluster sub-models (147) independently
Compute the initial value of ZMSCLD(µ, s)
while termination conditions are not satisfied do
Step 1 : Calculate gkt (n) and ḡ

k
t (n) ∀n ∈ N

s
1 , t ∈ ∆

Step 2 : Update Lagrangean multipliers

µk+1
t (n)← max{0, µk

t (n) + ᾱ.
(ZMSCLD(µk,s)−ZMSCLD)

‖ḡkt (n)‖
2 .ḡkt(n)}

Step 3 : Solve |S| scenario cluster sub-models with µk+1 and update
ZMSCLD(µ

k+1, s)
Step 4 : k ← k + 1
end while

The termination conditions require that either the sub-gradient vector gkt (n) is

less than a threshold, i.e., 0.01, or the value of ZMSCLD is not improved in a sequence

of consecutive iterations, i.e., 5 iterations.

Each iteration of LPHA calls for the solutions of |S| independent sub-models.

In the context of the dynamic RSC network design investigated in this study, each

sub-model is itself a large-scale optimization problem which cannot be solved by the

plain use of MIP engines, e.g., CPLEX. Therefore, a Benders decomposition-based

algorithm tailored to the particular structure of each scenario cluster sub-model is

proposed in the next section. This algorithm is nested within the LPHA algorithm

to solve the |S| scenario cluster sub-models.

4.3.2.2 Benders decomposition-based algorithm

The hallmark of Benders decomposition is to exploit the decomposable structure

present in the formulation of the MIP model. In other words, in a MIP model, inte-

ger/binary variables are seen as complicating variables such that when fixing them,
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the MIP model reduces to smaller subproblems (PSP), which can be solved individ-

ually to generate cutting planes for the master problem (MP). The PSP and MP are

then solved sequentially and iteratively until a termination criterion is satisfied. As

the classical Benders decomposition turns out to converge slowly in the underlying

problem due to the degeneracy of PSP, a cut selection strategy based on the work of

Papadakos [9] is proposed to expedite the convergence of the solution process.

4.3.2.2.1 Benders reformulation

Given a particular scenario cluster sub-tree s = (sηn)+1, ..., sηn in (149) and a vector

of feasible location decisions, i.e., Y s = {Y As
at(n), Y D

s
dt(n), Y B

s
bt(n)}, the PSP can

be formulated as follows.

Zs
MSCLD(µ) =Max

∑

n∈Ns
1

∑

t∈∆

ζs(n)

{

∑

a∈A

∑

o∈O

∑

p∈P

PspQS
s
aopt(n)

+
∑

d∈D

∑

w∈W

∑

l∈L

PwlQW
s
dwlt(n) +

∑

b∈B

∑

r∈R

PerBR
s
brt(n)−

∑

c∈C

∑

a∈A

∑

q∈Q

caaqQA
s
caqt(n)

+
∑

a∈A

∑

d∈D

∑

l∈L

cddlQD
s
adlt(n)−

∑

a∈A

∑

b∈B

cbbQB
s
abt(n)−

∑

a∈A

∑

p∈P

hppIP
s
apt(n)

−
∑

a∈A

∑

l∈L

hllIL
s
alt(n)−

∑

a∈A

hbIBs
at(n)−

∑

d∈D

∑

l∈L

hllID
s
dlt(n)

−
∑

c∈C

∑

a∈A

∑

q∈Q

tacaQA
s
caqt(n)−

∑

a∈A

∑

o∈O

∑

p∈P

tsaopQS
s
aopt(n)

−
∑

a∈A

∑

d∈D

∑

l∈L

tdadlQD
s
adlt(n)−

∑

a∈A

∑

b∈B

tbQBs
abt(n)−

∑

d∈D

∑

w∈W

∑

l∈L

twdwlQW
s
dwlt(n)

+
∑

n∈Ns
2

∑

t/∈∆

pr(n)

{

∑

a∈A

∑

o∈O

∑

p∈P

PspQS
s
aopt(n)−

∑

d∈D

∑

w∈W

∑

l∈L

PwlQW
s
dwlt(n)

−
∑

b∈B

∑

r∈R

PerBR
s
brt(n)−

∑

c∈C

∑

a∈A

∑

q∈Q

caaqQA
s
caqt(n) +

∑

a∈A

∑

d∈D

∑

l∈L

cddlQD
s
adlt(n)
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−
∑

a∈A

∑

b∈B

cbbQB
s
abt(n)−

∑

a∈A

∑

p∈P

hppIP
s
apt(n)−

∑

a∈A

∑

l∈L

hllIL
s
alt(n)

−
∑

a∈A

hbIBs
at(n)−

∑

z∈Z

∑

l∈L

hllID
s
dlt(n)−

∑

c∈C

∑

a∈A

∑

q∈Q

tacaQA
s
caqt(n)

−
∑

a∈A

∑

o∈O

∑

p∈P

tsaopQS
s
aopt(n)−

∑

a∈A

∑

d∈D

∑

l∈L

tdadlQD
s
adlt(n)−

∑

a∈A

∑

b∈B

tbQBs
abt(n)

−
∑

d∈D

∑

w∈W

∑

l∈L

twdwlQW
s
dwlt(n)

}

+
∑

n∈N1

∑

t∈∆

{

∑

a∈A

∑

o∈O

∑

p∈P

(µ1,s−1
aopt (n)− µ1,s

aopt(n))QS
s
aopt(n)

+
∑

d∈D

∑

w∈W

∑

l∈L

(µ2,s−1
dwlt (n)− µ2,s

dwlt(n))QW
s
dwlt(n)

+
∑

b∈B

∑

r∈R

(µ3,s−1
brt (n)− µ3,s

brt(n))BR
s
brt(n)

+
∑

c∈C

∑

a∈A

∑

q∈Q

(µ4,s−1
caqt (n)− µ4,s

caqt(n))QA
s
caqt(n)

+
∑

a∈A

∑

d∈D

∑

l∈L

(µ5,s−1
adlt (n)− µ5,s

adlt(n))QD
s
adlt(n)

+
∑

a∈A

∑

b∈B

(µ6,s−1
abt (n)− µ6,s

abt(n))QB
s
abt(n)

}

(150)

s.t. (134)− (141) ∀t ∈ ∆\{1}, n ∈ N s

∑

c∈C

∑

q∈Q

QAs
caqt(n) ≤ caaaY A

s

at(n) a ∈ A, t ∈ ∆, n ∈ N s (151)

∑

a∈A

QDs
azlt(n) ≤ caddlY D

s

dt(n) d ∈ D, l ∈ L, t ∈ ∆, n ∈ N s (152)

∑

a∈A

QBs
abt(n) ≤ cabbY B

s

bt(n) b ∈ B, t ∈ ∆, n ∈ N s (153)

where µ1,s,..., µ6,s denote the set of Lagrangean multipliers for scenario clus-

ter sub-tree s. Note that for sub-tree s = sηn , the terms of the objective function

(150) that correspond to Lagrangean multipliers are written as the following compact

representation:
∑

n∈N1

∑

t∈∆{µ
sηn
t (n)− µ

sηn
t (n)}X

sηn
t (n).
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Let υ1,s,..., υ11,s be the set of dual variables corresponding to constraints (134)-

(141) and (151)-(153) in which υ9,s, υ10,s, and υ11,s are non-negative. The dual

subproblem (DSP) can be formulated as follows .

Zs
υ(Y

s) = Min
∑

c∈C

∑

q∈Q

∑

t∈∆

∑

n∈Ns

ψcqt(n)υ
1,s
cqt(n)

+
∑

o∈O

∑

p∈P

∑

t∈∆

∑

n∈Ns

dsoptυ
7,s
opt(n) +

∑

w∈W

∑

l∈L

∑

t∈∆

∑

n∈Ns

dwwltυ
8,s
wlt(n)

+
∑

a∈A

∑

t∈∆

∑

n∈Ns

caaaY A
s

at(n)υ
9,s
at (n) +

∑

d∈D

∑

l∈L

∑

t∈∆

∑

n∈Ns

caddlY D
s

dt(n)υ
10,s
dl (n)

+
∑

b∈B

∑

t∈∆

∑

n∈Ns

cabbY B
s

bt(n)υ
11,s
bt (n) (154)

s.t. (υ1,s,υ2,s, ....,υ11,s) ∈ Λs (155)

where Λs denotes the polyhedron defined by the constraints of the DSP for a particular

scenario cluster sub-tree s. Let θs be a surrogate variable that is an upper bound on

(150). Furthermore, let ρ(.) entails all terms in the objective function of DSP (154)

independent of the location variables. The master problem (MP) can be stated as

follows.

max θs −
∑

n∈Ns
1

∑

t∈∆

ζs(n)

{

∑

a∈A

faaY A
s
at(n) +

∑

d∈D

fddY D
s
dt(n) +

∑

b∈B

fbbY B
s
bt(n)

}

−
∑

n∈Ns
2

∑

t/∈∆

pr(n)

{

∑

a∈A

faaY A
s
at(n) +

∑

d∈D

fddY D
s
dt(n) +

∑

b∈B

fbbY B
s
bt(n)

}

+
∑

n∈N1

∑

t∈∆

{

∑

a∈A

(µ7,s−1
at (n)− µ7,s

at (n))Y A
s
at(n)

+
∑

d∈D

(µ8,s−1
dt (n)− µ8,s

dt (n))Y D
s
dt(n)

+
∑

b∈B

(µ9,s−1
bt (n)− µ9,s

bt (n))Y B
s
bt(n)

}

(156)
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s.t. θs ≤ ρ(υ̂sT ) +
∑

a∈A

∑

t∈∆

∑

n∈Ns

caaaY A
s
at(n)υ̂

9,s
at (n)

+
∑

d∈D

∑

l∈L

∑

t∈∆

∑

n∈Ns

caddlY D
s
dt(n)υ̂

10,s
dl (n)

+
∑

b∈B

∑

t∈∆

∑

n∈Ns

cabbY B
s
bt(n)υ̂

11,s
bt (n) (157)

0 ≤ ρ(κ̂sT ) +
∑

a∈A

∑

t∈∆

∑

n∈Ns

caaaY A
s
at(n)κ̂

9,s
at (n)

+
∑

d∈D

∑

l∈L

∑

t∈∆

∑

n∈Ns

caddlY D
s
dt(n)κ̂

10,s
dl (n)

+
∑

b∈B

∑

t∈∆

∑

n∈Ns

cabbY B
s
bt(n)κ̂

11,s
bt (n) (158)

Y ∈ {0, 1} (159)

where κs denotes extreme rays of Λs when the DSP is unbounded for a given location

solution and scenario cluster sub-tree s. As for sub-tree s = sηn , the terms of (156)

that entail Lagrangean multipliers are written as follows.

∑

n∈N1

∑

t∈∆

{

∑

a∈A

(µ
7,sηn
at (n)− µ

7,sηn
at (n))Y A

sηn
at (n) +

∑

d∈D

(µ
8,sηn

dt (n)− µ
8,sηn

dt (n))Y D
sηn

dt (n)

+
∑

b∈B

(µ
9,sηn

bt (n)− µ
9,sηn

bt (n))Y B
sηn

bt (n)

}

At each iteration of the Benders decomposition algorithm, if the DSP is bounded,

an optimality cut (157) is generated given a vector of optimal dual solutions. Oth-

erwise, a feasibility cut (158) is introduced to the MP to eliminate values of location

decisions for which the PSP is infeasible.
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4.3.2.2.2 Pareto-optimal cuts

The degeneracy of the PSP implies that there exist multiple optimal solutions for

the DSP such that each of these leads to a distinct optimality cut. An efficient

implementation of Benders decomposition algorithm requires a cut selection scheme

to choose the deepest cut among the various optimality cuts which can be generated

by arbitrarily taking optimal dual solutions. Papadakos [9] proposed a dual selection

strategy to expedite the Benders algorithm. In the context of the underlying problem,

let Γ indicates the polyhedron defined as Γ = {Y : (159) holds}.

Definition 4.5 A core point is defined as any point Y 0 in the relative interior of

the convex hull of Γ, i.e., Y 0 ∈ ri(Γc). Γc and ri(.) indicate the convex hull and the

relative interior of Γ, respectively.

Definition 4.6 An optimality cut (157) associated with (υ1,s
1 ,υ7,s

1 ,υ8,s
1 ,υ9,s

1 ,

υ
10,s
1 ,υ11,s

1 ) ∈ Λs dominates the one that corresponds to (υ1,s
2 ,υ7,s

2 ,υ8,s
2 ,υ9,s

2 ,υ10,s
2 ,

υ
11,s
2 ) ∈ Λs if and only if

ρ(υ̂
(m,s)T

1 ) +
∑

a∈A

∑

t∈∆

∑

n∈Ns

caaaY A
s
at(n)υ̂

9,s
1at(n)

+
∑

d∈D

∑

l∈L

∑

t∈∆

∑

n∈Ns

caddlY D
s
dt(n)υ̂

10,s
1dl (n) +

∑

b∈B

∑

t∈∆

∑

n∈Ns

cabbY B
s
bt(n)υ̂

11,s
1bt (n)

≤ ρ(υ̂
(m,s)T

2 ) +
∑

a∈A

∑

t∈∆

∑

n∈Ns

caaaY A
s
at(n)υ̂

9,s
2at(n)

+
∑

d∈D

∑

l∈L

∑

t∈∆

∑

n∈Ns

caddlY D
s
dt(n)υ̂

10,s
2dl (n) +

∑

b∈B

∑

t∈∆

∑

n∈Ns

cabbY B
s
bt(n)υ̂

11,s
2bt (n)

for all Y with a strict inequality for at least one extreme point. A Pareto-optimal

cut by definition is an optimality cut that is not dominated by any other cut. It can
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be obtained through using the optimal solution of the following auxiliary DSP.

Zs
υ(Y

0) = Min
∑

c∈C

∑

q∈Q

∑

t∈∆

∑

n∈Ns

ψcqt(n)υ
1,s
cqt(n)

+
∑

o∈O

∑

p∈P

∑

t∈∆

∑

n∈Ns

dsoptυ
7,s
opt(n) +

∑

w∈W

∑

l∈L

∑

t∈∆

∑

n∈Ns

dwwltυ
8,s
wlt(n)

+
∑

a∈A

∑

t∈∆

∑

n∈Ns

caatY A
0
at(n)υ

9,s
at (n) +

∑

d∈D

∑

l∈L

∑

t∈∆

∑

n∈Ns

caddlY D
0
dt(n)υ

10,s
dl (n)

+
∑

b∈B

∑

t∈∆

∑

n∈Ns

cabbY B
0
bt(n)υ

11,s
bt (n)

s.t. (υ1,s,υ2,s, ....,υ11,s) ∈ Λs (160)

In this modified Benders decomposition algorithm, one starts with an initial core

point, i.e., Y 0 = {0.5}, to build a Part-optimal cut to be added to the MP. In the

subsequent iterations, when the solution to the MP yields a feasible PSP, the auxiliary

DSP (160) is solved, using a new core point that is the convex combination of the

MP solution and the previous value of the core point, to generate a non-dominated

cut. To this end, a non-negative parameter, i.e., λ, is considered as the weight of

the core point Y 0 in the convex combination to update the value of the core point

throughout the solution process. The value of this parameter is assigned to be 0.5

[46, 51]. The description of the proposed Benders decomposition-based method is

outlined in Algorithm 8.

4.4 Numerical example

In this section, the performance of applying the solution scheme on the proposed

model is investigated with respect to a set of test problems. To this end, first, the

specific settings of the concerned case example is provided. The example is a typical

large household appliance, i.e., a washing machine, that follows the settings of a
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Algorithm 8 - Benders decomposition-based algorithm

UB←∞, LB← −∞, Y 0 = {0.5}, λ← 0.5
while (UB − LB)/UB ≤ ε do
Solve auxiliary-DRSP (160)
Add Pareto-optimal cut (157) to the MP
Solve the MP
Update UB
Solve the DSP
if the DSP is unbounded then

Add the feasibility cut (158) to the MP
Y 0 ← λY 0 + ξ

else
Add the optimality cut (157) to the MP
Update LB, if necessary
Y 0 ← λY 0 + (1− λ)Y

end if
end while
Solve the PSP

case study presented in [36]. It should be noted that the parameter settings of the

proposed MS-MIP model are carefully estimated vis-à-vis recent market data and

current CLSC/RSC network design literature ([19, 20]). Then, it is followed by the

computational results section. In this study, all algorithms are implemented in C++

programming language using Concert Technology with IBM-ILOG CPLEX 12.60 on

an Intel Quad Core 3.40 GHz with 8 GB RAM. Moreover, the default settings of

CPLEX are employed to solve the DSP and the MP in the Benders decomposition

algorithm.

4.4.1 Experimental design

The BOM of the washing machines is described in Table 20. More specifically, each

washing machine consists of ten parts (e.g., balance) and two modules (e.g., motor).

All used machines acquired in collection points are of two quality levels, i.e., high and

poor.
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Table 20: Components of the case example

Description Value

Parts

washing tube:1 (3.5 kg), cover:1 (2.5 kg), balance:1 (2.5 kg),
frame:1 (11.5 kg), condenser:1 (0.5 kg), hose:1 (1 kg),
small electric parts:1 (1 kg), electric wire:1 (1 kg),

transformer:1 (1 kg), PCB board:1 (0.5 kg)
Modules motor:1 (5 kg), clutch:1 (4 kg)

The uncertain parameter, i.e., the quantity of returns, is normally distributed

with a mean of 400 and a variance equal to 20% of the mean for high quality returns.

As for the poor quality ones, the mean is considered to be 600 while the variance

is equal to 20% of the mean. These normal distributions are then approximated

by a 2-point discrete distribution (high and low ratio) through using the Gaussian

quadrature method [49]. The time horizon is divided into three equal time periods

such that each of them spans five years. Consequently, the time horizon is clustered

into four stages (stage zero is the present time). Moreover, the scenario tree of the

stochastic quantity of returns entails fifteen nodes and eight scenarios.

In the Appendices, in the section entitled Parameter settings, as depicted in

Tables 24 - 28, a summary of other parameters used in the case example is pro-

vided. Besides, shipping costs are selected from Uniform(4, 7) for the used washing

machines, Uniform(1, 4) for each type of components, and Uniform(0.1, 0.5) for

bulk of residues. Capacities of facilities are randomly generated aligned with the

stochastic quantity of returns and the BOM. For example, the capacity of disas-

sembly centers are chosen between Uniform(2 × MeanCaa, 3 × MeanCaa) where

MeanCaa = |C| × (400 + 600)/|A|. Moreover, the fixed cost of installing a facility

is proportional to its capacity, so that a facility with high capacity level requires a

greater investment.

In order to carry out the experiments, four main classes within each five test

instances are considered as shown in Table 21. The detailed information on the size
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of the classes including the number of constraints, continuous variables, and binary

variables are shown in Table 22. It is worth noting that the largest class of test

instances (C4) reasonably reflects real-size RSCs in the context of durable products.

Table 21: Description of classes

Class C A D B O W

1 40 5 5 2 20 20
2 50 10 10 5 25 25
3 60 10 10 5 30 30
4 70 15 15 7 35 35

Table 22: Size of test instances

Class # Constraint # Continuous variable # Binary variable
1 5992 28014 168
2 8680 68390 350
3 9800 80290 350
4 12432 140434 518

4.4.2 Computational results

On each of the twenty test instances, the proposed decomposition scheme, i.e., HSCD,

is applied to find an upper bound within the stopping criteria, i.e., either the sub-

gradient vector is less than 1% or the current value of the upper bound is not improved

in 5 iterations. The second stage is chosen as the break stage leading to four sce-

nario cluster sub-models. As for the resolution of each scenario cluster sub-model,

the Benders decomposition-based algorithm described in the preceding section is em-

ployed with the stopping criteria of either 1% optimality gap or 3600 seconds time

limitation. Alternatively, for the sake of comparison, considering the first stage as the

break stage, each test instance is also solved using the Benders decomposition-based

algorithm where the termination condition is either a time limit of 24 hours or an

optimality gap of 1% for each of the resulting two scenario clusters. It should be
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noted that by decomposing the scenario tree in the first stage, two sub-models are

obtained such that each of them can be independently solved. The optimal solution

of each sub-model individually yields a sub-optimal solution to the optimal solution

of the MS-MIP model. Note that it is not required to impose any NAC in the first

stage of the tree as it corresponds to time period zero where the initial inventory

levels are zero.

Table 23 presents the results reported by HSCD and Benders decomposition al-

gorithm algorithms for all twenty test instances. For the former approach, columns

“Time” and “#Iteration” indicate the total CPU time in seconds and the number of

iterations, respectively. The fourth column shows the best upper bound on the MS-

MIP model identified through applying HSCD. As for the latter approach, column

“Time” indicates the amount of time required to solve the MS-MIP model (129)-(144)

within 1% of optimality gap while column “Profit” gives the value of the objective

function within the dedicated time limit and the optimality gap. Moreover, column

“gp(%)” denotes the relative difference between upper and lower bounds reported by

Benders decomposition algorithm within 24 hours running. It should be stated that

the runtime of BD approach is considered as the maximum of the solution times of

the two scenario cluster sub-models in each test instance. The last column, “Gap(%),

expresses the relative difference in percentage between the solutions obtained by the

two approaches.

The results show that the performance of the HSCD scheme is quite promising

in the sense that it provides an upper bound on the objective function of the MS-

MIP model in significantly less amount of time compared to the BD approach, i.e,

on average 2 hours over all test instances. Given the low gap values in the last

column (0.58% on average), even though the solutions are not necessarily feasible,

they are quite close to those provided by the BD approach. More precisely, the
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Table 23: Comparison of HSCD and BD algorithms

Class HSCD BD Gap(%)
Time (sec) # Iteration ZMSCLD(µ, s) Time (sec) gp(%) Profit

C1

132 10 7,662,040 110 ≤ 1 7,650,870 0.14
183 9 6,412,000 120 ≤ 1 6,351,610 0.94
319 10 7,600,490 1371 ≤ 1 7,596,140 0.06
160 8 7,564,320 182 ≤ 1 7,443,070 1.60
422 10 6,881,080 2019 ≤ 1 6,864,140 0.25

C2

5695 12 7,201,340 ≥ 24hr 1.15 7,106,850 1.31
2231 10 6,622,640 54701 ≤ 1 6,611,560 0.17
8391 15 6,568,970 ≥ 24hr 1.10 6,558,930 0.15
7729 13 6,296,800 ≥ 24hr 1.40 6,280,200 0.26
7100 15 7,095,570 ≥ 24hr 1.12 6,978,190 1.65

C3

4190 13 9,854,950 ≥ 24hr 1.50 9,684,640 1.73
9113 16 9,617,400 ≥ 24hr 1.14 9,562470 0.57
5445 13 9,577,230 ≥ 24hr 1.10 9,568740 0.09
7184 14 9,643,130 61971 ≤ 1 9,626,300 0.17
7081 14 9,481,810 ≥ 24hr 1.20 9,378,090 1.10

C4

13593 19 8,676,980 ≥ 24hr 1.98 8,631,030 0.53
16050 21 9,434,940 ≥ 24hr 1.63 9,431,570 0.04
17171 23 8,612,290 ≥ 24hr 1.20 8,611,640 0.01
19265 25 9,874,380 ≥ 24hr 1.53 9,839,310 0.35
14622 19 8,617,780 ≥ 24hr 1.11 8,578,770 0.46

Average 7304 15 - - - - 0.58

average solution time of HSCD in solving the test instances of C1, C2, and C3 is,

respectively, 4 minutes, 1.7 hours, and 1.9 hours. It increases to 4.5 hours for the last

class of test problems. Furthermore, the infeasibility rate of the dualized NACs in

the HSCD algorithm is on average 1% or less for each class of test problems.

On other hand, except the test instances of the first class, the second instance

of C2, and the fourth instance of C3, the BD algorithm is unable to obtain the

optimal solution of the concerned test instances within the dedicated time limit and

the optimality gap. Particularly, once the results of C1 for which the optimal solutions

are given by the decomposition method are concerned, HSCD provides the upper

bounds close to the optimal solution, i.e., 0.58% on average. As for other instances,

high quality feasible solutions are reported by BD after the 24 hours time limit. More
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specifically, the optimality gap of the algorithm reported is less on 1.8% on average

for such instances. In the targeted instances, HSCD also provides an upper bound

close to the feasible solution identified by Benders decomposition as shown in the last

column of Table 23.

4.5 Concluding remarks

In this study, a reverse supply chain network problem in a multi-period setting was

addressed for taking back and recovery of used products that are of heterogeneous

quality states. The concerned problem arises in the context of durable products

which typically are composed of many components. As the inherent uncertainty in

quantity of returns is assumed to evolve as a discrete time stochastic process during

the planning horizon, a scenario tree was generated to model the uncertain parameter.

The resulting multi-stage decision making problem was modeled as a MS-MIP model

to address the decisions on the location of facilities and the quantity of flows in the

reverse supply chain network.

In order to solve the proposed model for realistic sizes, a heuristic scenario clus-

tering decomposition was proposed which mainly decomposes the scenario tree into

a set of cluster of scenarios. The scenario clusters were independently solved by

the Benders decomposition-based algorithm and coordinated in an implementable

solution thorough a Lagrangean Progressive hedging-based scheme. The proposed

solution scheme provided good upper bounds on the objective function of the origi-

nal stochastic model in a reasonable amount of running time. It can be noticed not

only by the closeness of the upper bounds to the solutions reported by the Benders

decomposition-based algorithm, but also by the fact that the infeasibility rate of the

dualized NACs is small for each class of test problems.

Given the multi-period setting, the underlying problem can be extended through
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accounting uncertainty in quality status of the return stream and demands. Another

promising venue of research is to address the willingness of durable goods holders to

return their used units by means of financial incentives.
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4.6 Appendices

4.6.1 Problem notations

Indices

Tree: Scenario tree

C: Set of collection zones

A: Set of disassembly centers

D: Set of remanufacturing centers

B: Set of bulk recycling centers

W : Set of secondary markets for modules

O: Set of secondary markets for spare parts

L: Set of modules

P : Set of parts

R: Set of raw materials

n,m: Nodes of the scenario tree

a(n): Immediate predecessor of node n in the scenario tree
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T : Set of time periods

Parameters

ψcqt(n): Quantity of returns with quality level q in collection zone c in period t at

node n of the scenario tree

βq: The mass of residues in the returned product with quality level q shipped to bulk

recycling centers from disassembly centers

γpq: The number of reusable part p in the returned product with quality level q

shipped to secondary markets from disassembly centers

δlq: The number of remanufacturable module l in the returned product with quality

level q shipped to remanufacturing centers from disassembly centers

ηr: The ratio of recyclable material r

faa: Fixed cost of opening disassembly center a

fdd: Fixed cost of opening remanufacturing center d

fbb: Fixed cost of opening bulk recycling center b

taca: Shipping cost per unit of the returned product from collection zone c to disas-

sembly center a

tbab: Shipping cost per kg of residues from disassembly center a to bulk recycling

center b

tsaop: Shipping cost per unit of part p from disassembly center a to spare market o

tdadl: Shipping cost per unit of module l from disassembly center a to remanufactur-

ing center d

twdwl: Shipping cost per unit of module l from remanufacturing center d to secondary

market w

caaa: Capacity of disassembly center a

caddl: Capacity of remanufacturing center d for module l

dsopt: Demand for part p at spare market o in period t
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dwwlt: Demand for module l at secondary market w in period t

caaq: Processing cost per unit of the returned product with quality level q at disas-

sembly center a

cddl: Remanufacturing cost per unit of module l at remanufacturing center d

hpp: Unit holding cost of part p in disassembly centers

hll: Unit holding cost of module l in disassembly centers/remanufacturing centers

hb: Unit holding cost of residues in disassembly centers

Psp: Unit price of part p at spare parts markets

Pwl: Unit price of module l at module markets

Per: Unit price of selling recyclable raw materials to the third-party provider

pr(n): Probability of node n of the scenario tree

Decision variables

Y Aat(n): A binary variable which is equal to one if disassembly center a is opened in

period t at node n of the scenario tree and zero otherwise

Y Ddht(n): A binary variable which is equal to one if remanufacturing center z is

opened in period t at node n of the scenario tree and zero otherwise

Y Bbt(n): A binary variable which is equal to one if bulk recycling center b is opened

in period t at node n of the scenario tree and zero otherwise

QAcaqt(n): The quantity of returns with quality level q shipped from collection zone

c to disassembly center a in period t at node n of the scenario tree

QSaopt(n): The number of part p shipped from disassembly center a to spare parts

market o in period t at node n of the scenario tree

QDadlt(n): The number of module l shipped from disassembly center a to remanu-

facturing center d in period t at node n of the scenario tree

QBabt(n): The quantity of residues shipped from disassembly center a to bulk recy-

cling center b in period t at node n of the scenario tree
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BRbrt(n): The quantity of recyclable material r purchased by the third-party provider

from bulk recycling center b in period t at node n of the scenario tree

QWdwlt(n): The number of module l shipped from remanufacturing center d to sec-

ondary market w in period t at node n of the scenario tree

IPapt(n): Inventory level of part p in disassembly center a by the end of period t at

node n of the scenario tree

ILalt(n): Inventory level of module l in disassembly center a by the end of period t

at node n of the scenario tree

IBat(n): Inventory level of residues in disassembly center a by the end of period t at

node n of the scenario tree

IDdlt(n): Inventory level of module l in remanufacturing center d by the end of period

t at node n of the scenario tree

4.6.2 Parameter settings

Tables 24 to 28 present a summary of parameter settings of the proposed MS-MIP

model

Table 24: Settings for modules

Description Value
Motor Clutch

Pwl 150 75
hll 3 3

Table 25: Settings for raw materials

Description Value
Plastic Steel Copper

per 0.75 0.5 3
ηr 0.3 0.3 0.3
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Table 26: Settings for parts

Type of part Value
Psp hpp

Washing tube 40 1.5
Cover 10 1.5
Balance 50 1.5
Frame 10 1.5

Condenser 30 1.5
Transformer 30 1.5
Small electric 10 1.5

Hose 40 1.5
Electric wire 40 1.5
PCB board 70 1.5

Table 27: Settings for quality level-dependent parameters

Parameter
Quality levels

High Poor
δlq 1, 1 0, 1

γpq
1, 1, 1, 1, 1, 0, 0, 1, 0, 0,
1, 1, 1, 1, 1 0, 0, 0, 0, 1

βq 3 30
caaq 1 2

Table 28: Other parameter settings

Description Value Description Value
cbb 2 hb 1
dsopt {200, 201, ..., 400} dwwlt {200, 201, ..., 400}
faa Uniform(400000, 600000) fdd Uniform(700000, 900000)
fbb Uniform(200000, 400000) cddl 3

144



Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

This thesis addressed closed-loop and reverse supply chain planning problems appli-

cable in the context of durable products distinguished by their modular structure and

their long life cycle. It accounted for several recovery activities plausible in practice

associated with the generic reverse bill of materials of such category of products.

Inspired by a real-life case example, i.e., washing machines, we investigated the per-

formance of the solution approaches on instances with realistic sizes. It was shown

that the problem instances can be solved within reasonable amount of times utilizing

the proposed decomposition-based solution schemes.

In the second chapter, given a generic reverse bill of materials, we presented a

closed-loop supply chain network design problem in which the returns stream is of

non-homogeneous quality status. Then, on the methodological side, we developed a

variant of Benders decomposition algorithm, which was able to solve all test instances

to optimality less than an hour of running time. Our further analysis indicated that a

viable strategy to recycle the bulk of residues under strict regulations is to outsource

the administration of the recycling precess to a third-party provider.
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In the third chapter, focusing on a profit-oriented approach, we proposed a two-

stage mixed-integer stochastic programming model to explicitly incorporate random

quality status of returns into the closed-loop supply chain planning problem. More

precisely, the random quality state was modeled as a set of discrete scenarios with

Bernoulli probability distribution. Observing a large number of scenarios that can be

realized depending on the number of components in the reverse bill of material of a

typical durable product, we adapted fast forward selection algorithm to the problem

of interest to preserve the most pertinent scenarios. Then, as the stochastic model

with smaller number of recourse problems was not amenable to solve with commercial

optimization packages, we developed an enhanced decomposition solution approach

based on L-shaped algorithm. Computational results denoted the effectiveness of the

proposed solution algorithm. Moreover, the solution method along with the scenario

reduction scheme provided insight on possible trade-offs between computational time

and the accuracy of solutions.

Finally, in the fourth chapter, we considered a multi-period reverse supply chain

network design problem to determine the location of facilities and the quantity of

physical flows in the reverse channel in each period. The returned products were

characterized by high and poor quality levels. However, the quantity of returns

was unknown a priori and evolved over the planning horizon calling for adopting

a multi-stage stochastic programming approach. The resulting large-scale optimiza-

tion problem was solved via a heuristic scenario clustering decomposition approach

such that scenario cluster sub-models were coordinated by a Lagrangean Progressive

hedging-based method. Furthermore, each scenario cluster sub-model was solved by

a Benders decomposition-based algorithm. Results demonstrated that the solution

scheme provided a strong upper bound while the infeasibility rate of the dualized

non-anticipativity constraints was quite small for each test instance.
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5.2 Future research directions

Immediate extensions of this thesis can revolve around the following directions.

• Investigating financial incentive mechanisms that can be differentiated based

on the quality status of used products, e.g., subsidy per return, is an interest-

ing area for further research. Such incentives can be integrated with a hybrid

drop-off/pickup collection strategy, which would have significant cost and profit

implications,

• Considering the variants of the proposed models accounting for uncertainty in

demands at the secondary markets and economic parameters such as trans-

portation cost,

• Developing appropriate and quantifiable metrics to further assess the environ-

mental impact of the closed-loop/reverse supply chain networks, e.g., CO2 emis-

sion and obnoxious effects of the recovery facilities,

• Another interesting research direction is to focus on a multi-product setting

where the closed-loop/reverse supply chain networks are generalized to a family

of durable products,

• Developing efficient solution algorithms for the variants mentioned above would

be another promising area of research.
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[44] J. Dupačová, N. Gröwe-Kuska, W. Römisch, Scenario reduction in stochastic

programming, Mathematical programming 95 (3) (2003) 493–511.

[45] R. M. Van Slyke, R. Wets, L-shaped linear programs with applications to optimal

control and stochastic programming, SIAM Journal on Applied Mathematics

17 (4) (1969) 638–663.

[46] M. Jeihoonian, M. Kazemi Zanjani, M. Gendreau, Accelerating Benders Decom-

position for Closed-Loop Supply Chain Network Design: Case of Used Durable

Products with Different Quality Levels, European Journal of Operational Re-

search 251 (3) (2016) 830–845.

[47] M. S. Pishvaee, F. Jolai, J. Razmi, A stochastic optimization model for inte-

grated forward/reverse logistics network design, Journal of Manufacturing Sys-

tems 28 (4) (2009) 107–114.
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