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ABSTRACT

Geometric Fault Detection and Isolation of Infinite Dimensional Systems

Amir Baniamerian, Ph.D.

Concordia Unviersity, 2016

A broad class of dynamical systems from chemical processes to flexible mechan-

ical structures, heat transfer and compression processes in gas turbine engines are

represented by a set of partial differential equations (PDE). These systems are known

as infinite dimensional (Inf-D) systems. Most of Inf-D systems, including PDEs and

time-delayed systems can be represented by a differential equation in an appropriate

Hilbert space. These Hilbert spaces are essentially Inf-D vector spaces, and there-

fore, they are utilized to represent Inf-D dynamical systems. Inf-D systems have

been investigated by invoking two schemes, namely approximate and exact meth-

ods. Both approaches extend the control theory of ordinary differential equation

(ODE) systems to Inf-D systems, however by utilizing two different methodologies.

In the former approach, one needs to first approximate the original Inf-D system by

an ODE system (e.g. by using finite element or finite difference methods) and then

apply the established control theory of ODEs to the approximated model. On the

other hand, in the exact approach, one investigates the Inf-D system without using

any approximation. In other words, one first represents the system as an Inf-D sys-

tem and then investigates it in the corresponding Inf-D Hilbert space by extending

and generalizing the available results of finite-dimensional (Fin-D) control theory.

It is well-known that one of the challenging issues in control theory is devel-

opment of algorithms such that the controlled system can maintain the required

performance even in presence of faults. In the literature, this property is known as

fault tolerant control. The fault detection and isolation (FDI) analysis is the first
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step in order to achieve this goal. For Inf-D systems, the currently available results

on the FDI problem are quite limited and restricted. This thesis is mainly concerned

with the FDI problem of the linear Inf-D systems by using both approximate and

exact approaches based on the geometric control theory of Fin-D and Inf-D sys-

tems. This thesis addresses this problem by developing a geometric FDI framework

for Inf-D systems. Moreover, we implement and demonstrate a methodology for ap-

plying our results to mathematical models of a heat transfer and a two-component

reaction-diffusion processes.

In this thesis, we first investigate the development of an FDI scheme for

discrete-time multi-dimensional (nD) systems that represent approximate models

for Inf-D systems. The basic invariant subspaces including unobservable and un-

observability subspaces of one-dimensional (1D) systems are extended to nD mod-

els. Sufficient conditions for solvability of the FDI problem are provided, where an

LMI-based approach is also derived for the observer design. The capability of our

proposed FDI methodology is demonstrated through numerical simulation results

to an approximation of a hyperbolic partial differential equation system of a heat

exchanger that is represented as a two-dimensional (2D) system.

In the second part, an FDI methodology for the Riesz spectral (RS) system is

investigated. RS systems represent a large class of parabolic and hyperbolic PDE

in Inf-D systems framework. This part is mainly concerned with the equivalence

of different types of invariant subspaces as defined for RS systems. Necessary and

sufficient conditions for solvability of the FDI problem are developed. Moreover, for

a subclass of RS systems, we first provide algorithms (for computing the invariant

subspaces) that converge in a finite and known number of steps and then derive the

necessary and sufficient conditions for solvability of the FDI problem.

Finally, by generalizing the results that are developed for RS systems necessary
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and sufficient conditions for solvability of the FDI problem in a general Inf-D sys-

tem are derived. Particularly, we first address invariant subspaces of Fin-D systems

from a new point of view by invoking resolvent operators. This approach enables

one to extend the previous Fin-D results to Inf-D systems. Particularly, necessary

and sufficient conditions for equivalence of various types of conditioned and con-

trolled invariant subspaces of Inf-D systems are obtained. Duality properties of

Inf-D systems are then investigated. By introducing unobservability subspaces for

Inf-D systems the FDI problem is formally formulated, and necessary and sufficient

conditions for solvability of the FDI problem are provided.
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Chapter 1

Introduction

The fault detection and isolation (FDI) problem has attracted a considerable re-

search interest during the past few decades [1–5]. Advancements in the control

theory have resulted in development of various robust control algorithms for sys-

tems that are subject to disturbances and modeling uncertainties. Consequently,

as a result of the introduced robustness of these controllers the task of early fault

detection has now become even more challenging, and more advanced FDI methods

should be developed and considered. During the past three decades, significant ef-

forts have been made to address control of infinite dimensional (Inf-D) systems [6–9].

However, due to the complexity of Inf-D systems, research on FDI problem of these

systems is quite limited and developing an FDI methodology for Inf-D systems is

still a very active area of research.

1.1 Fault Detection and Isolation Problem

Nowadays, control algorithms need to be as reliable as possible. For example, con-

sider a gas turbine power plant where one needs a highly accurate and reliable

control algorithm to ensure that the generated power has an exact frequency (i.e.,

60 Hz). Since shutting down a generator can be costly due to its effect on all power
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networks [1], another important issue is that one needs to minimize the maintenance

time. One of the main measures that defines reliability is performance of control

algorithms in presence of faults. In other words, the system can still be operational

for a certain set of faults and the maintenance action is not urgent. In other words,

one of the challenging issues in control theory is the development of algorithms such

that the controlled system can maintain the required performance even in presence

of faults. In the literature, this property is known as fault tolerant control (FTC)

(refer to [1, 10] and references therein).

FTC algorithms are categorized into passive and active schemes. In the former

approach, the corresponding controller is designed such that it is robust to certain

set of faults. Whereas, in the active FTC, the controller is reconfigured such that

the effects of faults can be rectified as much as possible [1, 10, 11]. For handling

faulty scenarios, a passive FTC scheme yields a conservative result due to nature of

the design framework. To overcome this drawback, active FTC methods have been

proposed in the literature [1, 11].

Specifically, an active FTC approach is the methodology that is mainly con-

cerned with reconfiguring the controllers based on the available fault information

[10]. A generic FTC is depicted in Figure 1.1, where u(t) and y(t) denote input

and output signals of the plant, respectively. As can be observed, the FDI unit

plays a crucial role in an active FTC module and is a cornerstone for active FTC

system. Indeed, The FDI analysis is the first step in order to achieve the FTC

goal. Moreover, the FDI unit can provide required information for condition-based

maintenance that results in a significant maintenance cost reduction [1, 10].

The main goal of an FDI unit is to generate a set of signals, so-called residual

signals, such that these signals provide as much information as possible regarding

the fault signals [10, 12]. More precisely, by using a residual signal the decision

making unit should be able to:

2



Plant

R
esidual generatot

Decision Making

Controller

Reconfiguration 
rules

Fault 
accommodation 

unit

FDI unit

Fault-tolerant 
control

Failures

u(t)

y(t)

Figure 1.1: General fault-tolerant control methodology.

1. Detect the occurrence of a fault.

2. Determine the location (i.e. which actuator or sensor) the fault has occurred

in, which known as the fault isolation.

Therefore, the main part of the FDI problem can be summarized as that of residual

generation that is subsequently addressed.

1.1.1 Residual Generation

A residual is a signal that is sensitive to certain set of faults and decoupled from the

other inputs of the plant and faults [5, 10] . In this thesis, we derive residuals that

are decoupled from all but one fault, and consequently the decision making unit

(refer to Figure 1.1) is restricted to a threshold comparison. Figure 1.2 depicts the

schematic of the residual generators where the following logic is used in the decision

making unit,

if ri > thi ⇒ fi has occured. (1.1)

with thi is the threshold corresponding to ri. Thresholds can be determined by uti-

lizing Monte Carlo simulations [13], and this issue is formally addressed in Chapters

3



3 - 5.

Decision Making

Residual generator 1

Residual generator 2

Residual generator p

r1(t)

Residual generation

FDI 
Flags

u(t)

y(t)
r2(t)

rp(t)

Figure 1.2: General residual generation part, where u(t) and y(t) denote input and
output signals of the plant, respectively.

It should be pointed out that one of most prominent issues related to the resid-

ual signals is the residual generator realization. For example, a residual generator

can be an observer or a parameter estimator. The type of realization identifies the

FDI approach (refer to Figure 1.3). However, before reviewing the approaches for

FDI, we provide the motivation of the research pursued in this thesis.

1.2 Motivation

There are certain classes of engineering process that cannot be modeled as finite

dimensional (Fin-D) systems. For example, heat distribution of a heat exchanger

and voltage substations in a distributed transmission system are generally modeled

by a set of partial differential equations (PDEs) and time-delay systems, respec-

tively. Indeed, a large class of dynamical systems from the compression process in

gas turbine engines to reaction processes in solid-fuel rockets are mathematically
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represented as Inf-D dynamical systems. A given Inf-D dynamical system is usually

modeled by a differential equation in an appropriate Hilbert space [14, Chapter 1],

which is an Inf-D vector space.

Although, certain set of Inf-D systems can be approximated by Fin-D systems,

the approximation error may result in a significant performance degradation. For

example, consider a neutral time-delay system that models a traffic network, where

the delay is not negligible and cannot be assumed to be zero. This system cannot be

represented by a Fin-D dynamical system that is governed by an ordinary differential

equation (ODE) with no delays. Therefore, development of control theory for Inf-D

systems is an emerging field of interest and research.

The mathematical control theory of Inf-D systems has seen a considerable

progress during the past four decades [6–9]. Particularly, PDE systems have been

investigated by using two schemes that are called approximate and exact methods.

Both approaches extend the control theory of ODE systems to Inf-D systems, how-

ever by invoking two different methodologies. By using the approximation approach,

by using finite element or finite difference methods one needs first to approximate

the original PDE by an ODE system and then apply the established control the-

ory of ODE systems to the approximated model [15–17]. On the other hand, the

exact approach investigates the PDE system without any approximation [14, 18].

In other words, one first represents the PDE system as an Inf-D system and then

investigates this system in the corresponding Inf-D Hilbert space by extending the

available results of Fin-D control theory. This approach is also applicable to other

distributed parameter systems such as time-delayed system (for more detail, refer

to [14, chapters 1 and 2]).

In contrast to Fin-D systems, research on the FDI problem for Inf-D systems

is quite limited due to the complicated structure of these systems. Recently, some

efforts have been made to address the FDI problem for PDEs [19–21]. In this thesis,
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we address the FDI problem of Inf-D systems, as follows

• How and under what conditions can one detect a fault in the system? In other

words, by referring to Figure 1.2 under what conditions one can generate the

residual signal ri such that it is sensitive to fi?

• Under what conditions can one isolate the detected fault? More precisely,

under what conditions one can generate the residual signal ri that is decoupled

from all the faults but fi (refer to the condition (1.1)).

In order to answer these questions, one needs to derive the necessary and sufficient

conditions for the solvability of the FDI problem for Inf-D systems. For Fin-D

systems, the geometric FDI approach is one of the main approaches that addresses

the solvability of the FDI problem by using observers. The main motivation for this

thesis can therefore be summarized in the following question:

• How and under what conditions can one extend the existing geometric theories

on the FDI of Fin-D systems to Inf-D ones?

As reviewed subsequently, the FDI problem of Fin-D systems has extensively

been addressed in the literature. Therefore, one approach to tackle the FDI

problem of Inf-D systems is to generalize the existence theory to Inf-D sys-

tems. This thesis tries to investigate the FDI problem of Inf-D systems by

using the available geometric theories on the Fin-D ones as a guide. More

precisely, we generalize the results by using two main methodologies; namely

the approximate and the exact methods. As stated earlier, in the former one

we first approximate the Inf-D system and then apply the FDI theory of Fin-D

system to the approximated model with certain modifications (refer to Chap-

ter 3 for more details), whereas in the exact approach we first formulate the

Inf-D system as a differential equation in an appropriate Inf-D vector space

and then the FDI problem is addressed (refer to Chapters 4 and 5 for more
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details).

1.3 Literature Review

In this section, we first review the literature on FDI approaches for Fin-D systems

followed by a description of the FDI problem of Inf-D systems.

1.3.1 FDI Methods for Fin-D Systems

In the literature, there are various methods that have been developed to tackle the

FDI problem of Fin-D systems. These approaches can be categorized into two main

schemes known as data driven and model-based methodologies [11, 22, 23]. Figure

1.3 depicts these two schemes.

Data Driven-based Approaches

In the case that the mathematical model of the system is not available or it is very

complicated, data driven-based approaches provide the sufficient infrastructure to

address the FDI problem [24,25]. Patton et al. proposed a neural network multiple

model approach in [26]. The FDI problem was addressed by using feed-forward

neural networks in [27]. A dynamic neural network is successfully applied to the gas

turbines for performing fault diagnosis in [28,29]. In [30], a Bayesian neural network

was used to optimize the wavelet transform of input-output signals, and then this

transformation is used for FDI.

A pattern recognition approach that is based on the fuzzy logic was also applied

to the FDI problem in [31]. In [32] a framework for the fault diagnosis problem

by using an expert system was developed. Fault diagnosis methods based on the

qualitative trend analysis were reviewed in [23]. Moreover, in the literature, the

statistical analysis-based methods are also utilized for the FDI purpose. A nonlinear
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Figure 1.3: The currently available FDI approaches in the literature for Fin-D sys-
tems.
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principle component analysis (PCA) and a recursive PCA were used in [33] and [34],

respectively. Also, independent component analysis was applied to the FDI problem

in [35, 36]. In [37, 38], support vector machines (SVM) were utilized for performing

health monitoring purposes.

It should be pointed out that since data-driven approaches are model indepen-

dent, they can be applied to Fin-D and with certain modification to Inf-D systems.

For example refer to [39] where a singular value decomposition was utilized for

identification purpose that represents the approximated model of an Inf-D system.

Model-based FDI Approaches

In the literature, model-based FDI includes variety of techniques such as particle

filters [40], observer-based [41], and parity equations [42]. The parity equation

approaches use a set of functions that are so-called parity functions to extract the

fault information from the measured input-output data [2, 42, 43]. However, these

approaches are sensitive to measurement noise [44]. Observer-based methods that

are established tools for model-based fault diagnosis include various approaches such

as multiple model [45–47], high-gain observer [48], sliding mode observer [49], and

geometric methods [3, 41,50].

Due to uncertainties in modeling complex systems, a perfect mathematical

model is generally not feasible. Neglected dynamics, noise, and disturbances are

examples of model uncertainty [51,52]. Since in model-based approaches the model

is utilized for designing detection filters, to minimize the effect of the uncertainties

that is decreasing the accuracy of the FDI algorithm and increasing the false alarms,

one needs to apply robust FDI algorithms. The FDI of linear systems using robust

filters in presence of disturbances were considered in [53–55]. Also, a robust FDI

approach for a Lipschitz nonlinear system was provided in [56]. Other important

FDI approaches include parameter estimation techniques [2], particle filtering [40,57]
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and maximum likelihood estimation techniques [58,59].

Hybrid FDI Approaches

The drawbacks of model-based and data-driven based methods can be addressed

by applying a hybrid method of fault diagnosis by integrating the model-based and

data-driven based approaches [12]. The hybrid method enables one to detect and iso-

late faults in presence of different uncertainties due to the modeling errors, parameter

variations, unknown external disturbances and measurement noise. In [60], a parity

based approach is integrated with a neural network to increase the efficiency of the

fault detection. For a nonlinear system, an observer-based approach is modified by

using the SVM for the fault isolation purposes. In [61], a hybrid FDI approach was

developed, where a data-driven approach is combined with wavelet transformation

analysis. Morevoer, various types of hybrid approaches were reviewed in [62].

Geometric FDI Methods

Since this thesis is specifically concerned with geometric approaches for the FDI

problem, in this subsection we review the geometric FDI approach. The geometric

FDI approach [3] is a model-based method, where necessary and sufficient condi-

tions for solvability of the FDI problem are obtained based on geometric concepts

such as invariant subspaces. For the FDI problem of Fin-D systems, the geometric

approach developed by Massoumnia [3] has provided a valuable tool for studying the

FDI problem not only for basic linear dynamical systems but also for more general

cases such as Markovian jump systems [63, 64], time-delay systems [65, 66], linear

parameter varying (LPV) systems [67, 68], linear periodic systems [69] and linear

impulsive systems [70]. Moreover, the geometric approach has been also extended

to affine nonlinear systems in [4,71]. Furthermore, hybrid geometric FDI approaches

for linear and nonlinear systems have been provided in [72] and [73], where a set of
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residual generators are equipped with a discrete-event based system fault diagnoser

to solve the FDI problem.

The geometric approach is based on invariant subspaces, such as unobservable

and conditioned invariant subspaces that are formally defined in the next Chap-

ters. These subspaces can fully characterize the behavior of the investigated linear

system [74]. The geometric approach also has its application in the control of distur-

bance decoupling problem [74]. Therefore, development of this framework for Inf-D

systems allows us to have not only a novel tool for the FDI purpose of Inf-D systems

but also a better understanding of the nature and behavior of these systems.

1.3.2 The FDI Approach for Inf-D Systems

As stated earlier, from the system theory point of view, there are two main ap-

proaches to investigate Inf-D systems, namely approximate and exact methods. In

approximate approaches, that are applicable to PDE systems, the original PDE is

approximated by using a finite element [15,20,21] or a finite difference method [75]

and then this approximated model is used for designing a controller or FDI unit.

However, in exact approaches the system is reformulated as a linear system in an

appropriate Inf-D Hilbert space and a controller or FDI unit is designed for this

abstract differential equation [14, 76]. In this thesis, we cover both approaches by

providing necessary and sufficient conditions for solvability of the FDI problem, in

each case.

The FDI Approach Based on the Approximated Model

Two approaches to approximate a PDE system are the finite element (particularly

Galerkin) [77] approach and the finite difference method [78]. Finite element-based

approaches are applicable to dissipative parabolic PDE systems, for which the eigen-

spectrum of the spatial differential operators can be partitioned into a finite subset
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containing all unstable eigenvalues (and a finite subset of stable eigenvalues) and an

infinite subset of stable eigenvalues such that the gap between these two sets is suffi-

ciently large. If such a partition exists, a Fin-D ODE could approximate the original

PDE [77] which can be employed for designing the FDI filters [15, Assumption 1].

This assumption enables one to apply the singular perturbation theory to approx-

imate the model and derive sufficient condition for solvability of the FDI problem.

In [20, 21], it was assumed that the number of actuators (l) is equal to the number

of Fin-D states (n). For the situation (l < n), the approach that is presented in [20]

(Remark 6) is not applicable since the introduced transformation is not invertible.

To solve this problem, in [15] we utilized a nonlinear geometric FDI approach as

described in [4]. It was shown that the FDI system that is designed based on the

approximated Fin-D system can detect almost all the faults injected in the original

system. However, since this thesis is mainly concerned with linear Inf-D system, the

results of [15] are not presented here.

In this thesis, a finite difference approach is used to approximate the original

PDE system. The main reason lies on the following observations and facts:

1. It is well-known that parabolic PDE systems can be approximated by ODE

representations. These systems can be approximated through application of

the finite element methods where sufficient conditions for solvability of the FDI

problem can then be derived by using the singular perturbation theory [15,20,

79]. Unlike parabolic PDE systems, one cannot apply model decomposition,

order reduction and singular perturbation theory to hyperbolic PDE systems

[80]. Moreover, the order of the resulting approximate Fin-D system can be

high. Therefore, the Galerkin method is not applicable to hyperbolic PDE

systems for solving the FDI problem.

2. As shown in [75], a single hyperbolic PDE system can be approximated by

using a two-dimensional (2-D) system that is formally addressed in Section 2.5
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and Chapter 3. As we shall see subsequently in Section 2.5 this approximation

is also applicable to a system of hyperbolic PDEs. Moreover, as shown in

[81], parabolic PDE systems can be approximated by three-dimensional (3-D)

Fornasini and Marchesini model II (FMII) representation [82–85]. Therefore,

multidimensional (n-D) (the generalization of 2-D systems for n ≥ 2) system

approximation can be applied to both hyperbolic and parabolic systems.

Moreover, it should be noted that the n-D system framework has other applications

in the control field. For example, a class of discrete-time linear repetitive processes

can be modeled by n-D systems. These processes play important roles in tracking

control and robotics, where the controlled system is required to perform a periodic

task with high precision (refer to [86] for more details on repetitive systems). One

of the main approaches to control linear repetitive processes is the iterative learning

control (ILC) [86]. Since the ILC problem can be formulated as a control problem

using n-D system theory [87, 88], n-D systems have been increasingly applied to

spatio-temporal and repetitive process control problems in the literature.

There are quite a few results on FDI of 2-D systems in the literature, such as

dead-beat based filters [89] and parity equations [90, 91] that utilize the algebraic

approaches. As shown in [92] these approaches that are based on polynomial ma-

trices face new challenges for n ≥ 3. More precisely, due to the complexity of the

primeness properties (refer to [92, page 389] for more detail) generalizing the results

in [89,91] from 2-D case to n-D systems is not straightforward. In this thesis, we are

interested in developing an FDI methodology that is applicable to all n-D systems,

n ≥ 2. Motivated by the above discussion, in this thesis we investigate the FDI

problem of n-D systems as the FDI approximate method of Inf-D systems.

2-D systems have been extensively investigated from a system theory point of

view [82–85]. Particularly, system theory concepts such as stability [84,93], control-

lability [94], observability [95], and state reconstruction [96] have been investigated in
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the literature. However, due to complexity of 2-D systems, unlike one-dimensional

(1D) systems, there are various definitions that are introduced for controllability

and observability properties. Not surprisingly, the duality between observability

and controllability does not hold in 2-D systems.

Recently, the geometric theory of 2-D and 3-D systems has attracted much

interest, where basic concepts such as conditioned invariant and controllable sub-

spaces are studied in detail for the FMI model [97,98]. The hybrid 2-D systems have

also been investigated from the geometric point of view in [95].

Finally, it must be noted that recently related work has appeared in [99]

and [100]. These two papers investigated the FDI problem of 3-D FMII models.

Although a geometric FDI methodology is also developed in [99], this thesis is dis-

tinct and unique from [99] in three main and fundamental perspectives:

1. The approach proposed in [99] is based on the results of [50], whereas our

approach is based on the generalization of the results of [50] as reported in [41]

(the results in [41] are more general than [50]) for 2-D models.

2. In [99], necessary and sufficient conditions for solvability of the FDI prob-

lem were derived for a subclass of detection filters where it was assumed that

the output map of the detection filters and that of the system are identical.

However, in this thesis we consider a general class of detection filters for the

residual generation and relax this condition.

3. As shown in Section 3.3.2, the observability property of the 3-D model is a

fundamental requirement and assumption in [99] (although it is stated in [99]

that this assumption was made for simplicity of their presentation). However,

our proposed solution does not require this condition and assumption, and

consequently our approach leads to a less restrictive solution.
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FDI Approaches Based on the Exact Model

As we shall see in the next chapter, the systems governed by PDE can be refor-

mulated as an abstract differential equation in an appropriate Hilbert space which

is an Inf-D function space. The system theory of Inf-D systems has attracted an

increasing attention during the past few decades [7,8,14,101,102]. Not surprisingly,

the control problems of Inf-D systems are more complicated as compared to those

of Fin-D systems.

In [7, 8], the optimal control problem of systems governed by PDE (hyper-

bolic and parabolic) was addressed. The observability and controllability concepts

were investigated in [14, 102]. The geometric approaches for Inf-D systems have

been addressed for the first time in [18, 101]. Like the Fin-D systems, the geo-

metric approaches in [18, 101, 103] are based on certain invariant subspaces. One

of main differences between Fin-D and Inf-D spaces which cause many difficulties

is summarized in the following fact [14, 101, 102] that a Fin-D subspace is always

closed, whereas an Inf-D subspace can be closed or only dense in a closed subspace.

This fact results in a set of open problems in the system theory of linear Inf-D sys-

tems [101]. Therefore, geometric approaches on the Inf-D subspaces (such as those

used in [101]) need to be investigated with more sophisticated mathematical tools

such as topological vector spaces that address the above difficulties. In other words,

in a general topological vector space the completeness of a subspace is not a trivial

property and there exit subspaces that are not closed [104].

The disturbance decoupling problem has attracted attention in Inf-D systems

[103, 105] and has partially been solved. Very recently, the disturbance decoupling

of Inf-D systems has been addressed in [106]. However, compared with the Fin-D

systems, the currently available results in the literature for the FDI problem of Inf-

D systems is very limited [19, 76, 107]. In [19], The FDI problem of positive Inf-D

systems was investigated by using the parameter estimation technique.
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A cornerstone of the geometric control theory is the invariance properties such

as A-invariance, conditioned and controlled invariance. There are various defini-

tions of invariance properties that are equivalent in Fin-D systems, whereas they

are not in Inf-D systems. Specifically, due to the complexity of working with un-

bounded operators, the invariant subspace investigation of Inf-D systems is quite

limited and equivalence of different definitions has been shown only for single-input,

single-output systems [103, 108]. Also, in [103] a sufficient condition for equiva-

lence of various definitions are provided. Moreover, in [14, 101] by applying the

resolvent operators necessary and sufficient conditions for equivalence of various

A-invariant definitions, that are addressed subsequently in Chapters 4 and 5, are

presented. However, deriving necessary and sufficient conditions for equivalence of

various definitions of conditioned and controlled invariant subspaces has been open

since middle 1980’s [101,109]. In this thesis, we derive necessary and sufficient con-

ditions for equivalence of various definitions of the above invariant subspaces for a

class of multi-input multi-output Inf-D systems.

1.4 General Problem Statement

As stated earlier, one of the fundamental problems that is related to dynamical

systems is the FDI problem. The available geometric FDI methods for Fin-D pro-

vide useful tools for addressing the FDI problem by taking advantages of invariant

subspaces.

The FDI problem of Inf-D systems can be handled by invoking approximate

or exact methods. Each method has its own advantages and limitations. On one

hand, in the approximate methods the extension of the currently available results

for Fin-D system is more straightforward than the exact approach. On the other

hand, development of geometric FDI approaches by invoking exact schemes provides
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a more fundamental and better understanding of the Inf-D systems. For example, as

shown in Chapters 4 and 5, we investigate duality of Inf-D systems that enables one

to address and investigate the disturbance decoupling problem by using the results

of this thesis.

The main objective of this thesis is to investigate the FDI problem of Inf-

D systems by using both approximate and exact approaches and to develop new

geometric frameworks for Inf-D systems that not only are applicable to the FDI

problem, but also can be extended to other fundamental problems, such as the

disturbance decoupling problem.

1.4.1 Thesis Objectives

As mentioned earlier, the FDI problem of Inf-D systems can be addressed by using

approximate and exact methods. This thesis first provides and develops a geometric

framework for the FDI problem of Inf-D systems based on the approximate method

(Chapter 3). We then address the FDI problem of Inf-D system by using an exact

approach that investigates the FDI problem of Inf-D systems without any approxi-

mation (Chapters 4 and 5).

As shown subsequently in Section 2.5, one can approximate a hyperbolic PDE

system that is defined on a single spatial coordinate through the finite difference

method that results in a 2-D model. By following along the same steps one can show

that a hyperbolic PDE defined on an m spatial coordinates can be approximated by

a (m + 1)-D system. Therefore, one can address the FDI problem of a hyperbolic

PDE system by using the results of the n-D systems. However, for n-D models [82],

the FDI problem is still a challenging task. The geometric analysis of n-D systems

are relatively new and for the first time in the literature we address the geometric

FDI problem of n-D systems such that it is applicable to any dimension (i.e. n ≥ 2),

as the first objective of this thesis. In other words, the proposed approach can be
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applied to a large class of PDE systems such as m-D PDE systems (where m ≥ 1 is

the dimension of the spatial coordinates).

We also address the FDI problem of Inf-D systems by using geometric exact

methods. This scheme is more general than the n-D methodology and can be applied

to a larger class of Inf-D systems. As stated earlier, although there are some results in

the literature on the geometric disturbance decoupling problem of Inf-D systems, the

geometric FDI problem of these systems has not yet been addressed. In this thesis,

we formally formulate the FDI problem of Inf-D systems, and by providing necessary

and sufficient conditions for equivalence of various types of invariant subspaces, we

investigate the solvability of the FDI problem.

To analyze invariant subspaces of Inf-D systems, we develop and provide two

main methodologies that are based on (generalized) eigenvectors and resolvent op-

erators. The former is applicable to Riesz spectral (RS) systems, whereas the latter

approach can be applied to a more general class of Inf-D system. Note that a large

class of hyperbolic and parabolic PDE systems can be represented and formulated

as RS systems in an Inf-D Hilbert space [110].

To summarize, this thesis focuses on development of a geometric FDI frame-

work for Inf-D systems. The main objectives of this thesis are as follows.

1. Develop FDI units that are based on approximated models that are obtained

by using the finite difference methods.

2. Geometric analysis of RS systems that are a subclass Inf-D systems and its

application to the FDI problem of RS systems

3. Address the FDI problem of a general Inf-D system by developing and utilizing

a new geometric framework for Inf-D systems.
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1.4.2 Thesis Contributions

The main contributions of this thesis are summarized as follows:

• Geometric FDI of n-D systems

1. By reformulating n-D models as Inf-D systems, the invariance property

of an unobservable subspace is investigated as provided in Section 3.2,

where an Inf-D unobservable subspace is also introduced. Unlike the work

in [99, 100], this result enables one to formally address the solvability of

the FDI problem without a restriction on the initial conditions.

2. Two important Inf-D invariant subspaces, namely, the conditioned in-

variant and the unobservability, are introduced for the FMII-based n-D

models. Although, these subspaces are Inf-D, we provide explicit algo-

rithms that can be invoked to compute these subspaces in a finite and

known number of steps.

3. A novel procedure is developed for designing a detection filter by utilizing

the linear matrix inequalities (LMI) technique.

4. The FDI problem of n-D systems is formulated in terms of the intro-

duced invariant subspaces, and necessary and sufficient conditions for

its solvability are derived and formally analyzed by using our proposed

LMI-based detection filter.

• Invariant subspaces of RS systems with their applications to the FDI

problem.

1. Necessary and sufficient conditions for equivalence of various conditioned-

invariant subspaces for RS systems are obtained and analyzed.

2. By using duality properties, necessary and sufficient conditions for equiv-

alence of various controlled invariant subspaces are provided.
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3. An unobservability subspace for RS systems is introduced, and algorithms

that converge in a finite number of steps are proposed.

4. By taking advantage of the introduced subspaces, the FDI problem of RS

systems is formulated and necessary and sufficient conditions for solvabil-

ity of the FDI problem are developed and provided.

• Semigroup invariant concepts and the FDI problem of Inf-D systems

1. Necessary and sufficient conditions are obtained for equivalence of condi-

tioned invariant subspaces of Inf-D systems.

2. Necessary and sufficient conditions are obtained for equivalence of con-

trolled invariant subspaces of Inf-D systems.

3. The unobservability subspaces of Inf-D systems is addressed.

4. The FDI problem of Inf-D systems based on the introduced invariant

subspaces is formulated and necessary and sufficient conditions for the

FDI problem solvability are derived.

1.5 Thesis Organization

In Chapter 2, we briefly review the geometric FDI approach and invariant subspaces

of Fin-D systems. Moreover, in this chapter we address Inf-D vector spaces and the

system theory of Inf-D systems that is available in [14,101,104].

In Chapter 3, we formulate the FDI problem of n-D systems. More precisely,

the preliminary results including the Inf-D representation, the FDI problem formu-

lation and the n-D Luenberger observers (detection filters) are presented in Section

3.1. The unobservable subspaces of the FMII-based n-D model are introduced in

Section 3.2. The geometric property of these subspaces and the invariant concept

of n-D models are presented in Section 3.3. In Section 3.4, necessary and sufficient

20



conditions for solvability of the FDI problem are derived and developed. Analytical

comparisons between our proposed approach and the available geometric methods in

the literature, namely [99] and [100] are also provided in this section. Furthermore,

numerical comparisons with both geometric and algebraic methods in [89,91,99,100]

are presented in this section. Simulation results for the FDI problem of a heat

transfer process in a thermal-fluid system that is expressed as a PDE system are

conducted in Section 3.5. Finally, Section 3.6 concludes the chapter.

Chapter 4 focuses on RS systems. In Section 4.1, RS systems are reviewed.

The invariant subspaces are developed and analyzed in Section 4.2. In Section 4.3,

the FDI problem is first formulated and then its solvability is addressed. A numerical

example is provided in Section 4.4 to demonstrate the capability of our proposed

strategy. Finally, Section 4.5 provides the conclusions.

Chapter 5 is devoted to the geometric analysis of a general Inf-D system. It is

worth nothing that as compared to Chapter 4, in this chapter we consider a more

general Inf-D system and provide the results by using the resolvent operators. In

Section 5.1, we first review Inf-D systems and our assumption on these systems in

this chapter. Then, certain simple but crucial results on geometric theory of Fin-

D system that are not available in the literature are presented. These results are

based on resolvent operators. The invariant subspaces are investigated in Section

5.2, where we first derive necessary and sufficient conditions for both conditioned

and controlled invariant subspaces. The unobservability subspace is also addressed

in this section. Section 5.3 is dedicated to the FDI problem of Inf-D systems, where

first the FDI problem is precisely formulated and then we derive necessary and

sufficient conditions for the FDI problem solvability. Finally, Section 5.4 provides

the conclusions.

Chapter 6 concludes the thesis and provides suggestion for future work.
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1.6 Notation

The subspaces (Fin-D and Inf-D) are denoted by A , B, · · · . The notations V and

V ⊥ denote the closure and orthogonal complement of the subspace V , respectively.

For a given operator L, the subspace of image of L is denoted by L . The maps

between two finite dimensional vector spaces are designated by A, B, · · · . The

inverse image of the subspace V with respect to the operator A is denoted by A−1V .

The block diagonal matrix

A 0

0 B

 is denoted by diag(A,B). The real, complex,

integer and positive integer numbers are denoted by R, C, Z and N, respectively.

The notation N denotes the set N∪{0}. Let m < n and V ⊆ Rm. The corresponding

embedded subspace of V in Rn is denoted by Ṽ ⊆ Rn. In other words, Ṽ = QV ,

where Q is the embedding operator from Rm into Rn. In Chapter 3, we deal with

special Inf-D subspaces that are defined as follows. The Inf-D subspace · · · � V �

V � · · · (which represents the direct sum of an infinite number of V ) is denoted by

�(V ) ⊆ R∞, where V ⊆ Rm. Let x = (xj)j∈Z = (· · · , xT
−1, x

T
0 , x

T
1 , · · · )T ⊆ �(V )

and |x|∞ = sup
i∈Z
|xi|, where xi ∈ V . The vector space V∞ =

⊕
(V ) is defined by

{x|x ∈ �(V ) and |x|∞ < ∞}. It can be shown that V∞ is a Banach (but not

necessarily Hilbert) space. Let i, j ∈ Z ∪ {−∞,∞} and j ≥ i. The Inf-D vector

xji ∈
⊕

(V ) is expressed as xji = [· · · , 0, 0, xT
i , · · · , xT

j , 0, 0, · · · ]T, where x` ∈ V for

all i ≤ ` ≤ j, and associated with x∞−∞ we simply use x. Consider the real subspace

V = span{xi} i∈I (I ⊆ N). The corresponding complex subspace VC is defined as

all vectors z that can be expressed as z =
∑

i∈I ζixi, where ζi ∈ C. The notations

A, B, · · · denote the maps between two vector spaces such that at least one of them

is Inf-D. Particularly, the notions I and I denote the identity operators on Fin-D

and Inf-D subspaces, respectively. The set of all bounded operators defined on X

are designated by L(X ). The domain of an unbounded operator A is denoted by

D(A). The resolvent set of A is the set of all λ such that (λI − A) is invertible
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and (λI − A)−1 is bounded. This set is denoted by ρ(A). Also, the operator

R(λ,A) = (λI − A)−1 (R(λ,A) = (λI − A)−1) denotes the resolvent operator of

A (A). ρ∞(A) denotes the largest interval [r,∞) such that for all λ ∈ [r,∞), we

have λ ∈ ρ(A) (we have the same notations for operator A). VR and VR denote

arbitrary R(λ,A)-invariant subspaces containing and contained in a given subspace

V , respectively. The operator of strongly continuous semigroup that is generated

by A is denoted by TA. The largest invariant subspace with respect to TA that is

contained in the subspace V is designated by < V |TA >. The other notations are

defined within the text of the thesis.
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Chapter 2

Background Information

In this chapter, we first review invariant subspaces and the FDI problem of Fin-D

systems. The Inf-D vector spaces and Inf-D system theory are then briefly addressed.

2.1 Geometric Analysis of Linear Systems on a

Fin-D Hilbert Space

Consider a linear time-invariant state space equation defined on an n-dimensional

real Hilbert space. Based on the fact that every n-dimensional real Hilbert space is

isometrically isomorphic to Rn [104], we can represent any linear operator between

two Fin-D Hilbert spaces by a matrix. Therefore, without loss of any generality a

linear Fin-D dynamical system can be represented as follows

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),

(2.1)

where x(t) ∈ Rn. The above equation has a regular (sufficiently smooth and unique)

solution for x is given by

x(t) = Φ(t)x0 +

∫ t

0

Φ(t− s)Bu(s)ds (2.2)
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where Φ(·) is the fundamental matrix which can be computed as

Φ(t) = eAt =
∞∑
k=0

Aktk

k!
. (2.3)

Jordan Decomposition

In Chapter 4, we define the class of Inf-D RS systems and develop a number of

results which lead to necessary and sufficient conditions for FDI. This work requires

a generalization of the Jordan canonical form of Fin-D operators. In this subsection,

we briefly review the Jordan-form operator and its invariant subspaces.

Definition 2.1. (General Jourdan Decomposition) [74] For every operator A :

Rn → Rn, there exists a isomorphism T : Cn → Cn such that J = T−1AT =

diag(J1, · · · , J`1), where Ji : Cni → Cni,
∑`1

i=1 ni = n and

Ji =



λi 1 0 0 · · ·

0 λi 1 0 · · ·
...

...
. . . . . . · · ·

0 0 · · · λi 1

0 0 · · · 0 λi


, (2.4)

where λi ∈ C is an eigenvalue of A.

Since in the FDI problem we are interested in real systems and real subspaces,

the following definition is more suitable for our purpose.

Definition 2.2. (Real Jordan Decomposition) [74] For every operator A : Rn → Rn,

there exists an isomorphism T : Rn → Rn such that J = T−1AT = diag(J1, · · · , J`)

such that Ji : Rni → Rni,
∑`

i=1 ni = n. The Jordan block Ji corresponding to a real
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eigenvalue is defined as per equation (2.4), otherwise

Ji =



Λi I 0 0 · · ·

0 Λi I 0 · · ·
...

...
. . . . . . · · ·

... 0 · · · Λi I

... 0 · · · 0 Λi


, (2.5)

where Λi =

 µi,1 µi,2

−µi,2 µi,1

, such that µi,1 ± jµi,2 are two complex eigenvalues of A.

Also, I is an identity operator defined on R2.

Invariant subspaces play a central role in the geometric FDI approach. To de-

fine invariant subspaces, we need the following notation. Consider a linear operator

A : Rn → Rn and a subspace V ⊆ Rn. Then, we have

AV = {y ∈ Rn| y = Ax, x ∈ V } (2.6)

Definition 2.3. A subspace V ⊆ Rn is called A-invariant if AV ⊆ V .

By considering the Jordan blocks Ji defined by (2.4) and (2.5), it follows

that one can decompose Rn into Rn = Ṽ1 ⊕ · · · ⊕ Ṽ`, where J |Vi = Ji, and Ṽ

is the embedded subspace of V into Rn. In other words, Ṽ = QV , where Q is

the embedding operator from Rm into Rn, where m = dim(V ). The following

lemma shows a relationship between the Jordan decomposition and the J-invariant

subspaces.

Lemma 2.4. [74, Proposition 0.4] The subspace V ⊆ Rn is J-invariant that is

JV ⊆ V if V = Ṽ 1
1 ⊕ · · · ⊕ Ṽ 1

` , such that Ṽ 1
i ⊆ Ṽi and V 1

i is Ji-invariant for

i = 1, . . . , `.

It is worth noting that reverse of the above lemma only holds for the operators

26



with distinct eigenvalues. For example, consider J =



1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 2


that is already

in the Jordan canonical form and the subspace V = span{[1, 1, 0, 0]T} . It follows

that V cannot be decomposed into V = Ṽ 1
1 ⊕ · · · ⊕ Ṽ 1

` , however it is J-invariant.

This problem has its roots in the fact that Lemma 2.4 considers different Jordan

blocks without any special concern about the eigenvalues as to whether they are

distinct or multiple. In other words, Lemma 2.4 is not a coordinate-free result and

the structure of J and the decomposition of V are based on the coordinates that

are defined by the (generalized) eigenvectors. To tackle this problem, one needs to

merge all the Jordan blocks corresponding to a given eigenvalue as shown in the

next lemma.

Lemma 2.5. [101] The subspace V ⊆ Rn is J-invariant (that is, JV ⊆ V ) if

and only if V = Ṽ 1
λ1
⊕ · · · ⊕ Ṽ 1

λm
, where Ṽλi is the corresponding eigenspace to λi

Ṽ 1
λi
⊆ Ṽλi and V 1

λi
is Jλi-invariant i = 1, · · · ,m, Jλi = diag(Ji,1, · · · , Ji,ni), ni is the

algebraic multiplicity of λi and Ji,k is the Jordan block corresponding to λi.

Fin-D Spectral Projection

According to the above discussion, the subspaces Ṽλi , i = 1, . . . ,m in Lemma 2.5 are

of importance, and consequently it is necessary to formally characterize these sub-

spaces for Inf-D systems. In Fin-D systems, it is obvious that Ṽλi = span{φλi,k}
ni
k=1,

where φλi,k are the (generalized) eigenvectors corresponding to λi and ni is the al-

gebraic multiplicity of λi. However, to generalize the above results we need to

investigate the subspaces Ṽλi from a more abstract point of view. To generalize

Jordan form to Inf-D systems we need the following projection operator

Pλi : Cn → Cn, Pλiz =
1

2jπ

∫
Γi

(λI − A)−1zdλ, (2.7)
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where Γi is a simple curve in C surrounding only λi. Indeed, it can be shown that

Pλiz =

 z z ∈ Ṽλi

0 Otherwise
(2.8)

This is concluded from the Cauchy’s integral formula for holomorphic functions

( [14, Appendix A]).

By following Definition 2.2, one can construct real subspaces corresponding to

a complex eigenvalue λ and its complex conjugate λ. Therefore, we have
∑

i Pλi = I

and PλiRn = Ṽλi . In Chapter 4 by generalizing the above operator for Inf-D systems,

we formally define the RS operators.

2.2 Geometric FDI Approach for Finite Dimen-

sional (Fin-D) Systems

In this section, we briefly review the geometric FDI approach for the Fin-D sys-

tems that has been developed in [3, 41, 50]. This approach is a cornerstone for this

dissertation.

Consider the following linear Fin-D system

ẋ(t) = Ax(t) +Bu(t) +

p∑
i=1

Lifi(t),

y(t) = Cx(t),

(2.9)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq denote state, input and output vectors,

respectively. Moreover, Li and fi denote fault signatures and fault signals, respec-

tively. For example, by setting p = m, fi(t) ∈ R and L = [L1 · · · Lp] = B, one can

model the actuator faults in the system (2.9). In other words, Lkfk(t) represents

the faulty behavior of the kth actuator. For example, by setting fk(t) = −0.2uk(t)

for all t ≥ tf , one can model the permanent fault of 20% loss of effectiveness in the
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kth actuator that occurs at t = tf . Also, be setting

fk(t) =

 −0.1uk(t) tf1 ≤ t ≤ tf2

0 Otherwise
(2.10)

we model the intermittent fault of 10% loss of effectiveness in the kth actuator that

occurs at the interval [tf1 , tf2 ].

As stated in the previous chapter, the FDI problem solvability is accomplished

by generating a set of residual ri, i = 1, . . . , p such that each residual is decoupled

from all inputs and faults but one fault. In other words, each ri has the following

properties,

• In absence of the fault fi the residual ri decays to a neighborhood of zero.

• When the fault fi occurs, the residual ri exceeds a predefined threshold.

It should be pointed out that based on the above definition we have one residual

for each fault signal. However, one can use a coding approach to use a smaller set

of residuals to detect and to isolate the faults (refer to [3, 5] for more details). The

detection filters are the realization that is utilized in this thesis for the residual

generators. In other words, we use a set of filters such that output of each filter is

a residual signal corresponding to one and only one fault.

In the geometric FDI approach for Fin-D systems, the necessary and sufficient

conditions for solvability of the FDI problem (generating the residual) have been

developed based on invariant subspaces [3]. In particular, the A-invariant (Definition

2.3), conditioned invariant ((C,A)-invariant) and unobservability subspaces play a

crucial role in this area. By considering the dynamical system (2.9), these subspaces

are defined as follows.

Definition 2.6. A subspace W is called conditioned invariant if there exists an

output injection map D : Rq → Rn such that (A+DC)W ⊆ W .
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It can be shown that the subspace W is conditioned invariant if and only if

A(W ∩ kerC) ⊆ W [3]. The set of all conditioned invariant subspaces containing a

given subspace L is closed respect to intersection, and consequently this set always

holds a minimal subspace in the inclusion sense. The minimal conditioned invariant

subspace containing the subspace L (that is denoted by W ∗(L )) is the limiting

subspace of the following algorithm,

W0 = L ,

Wk = L + A(Wk−1 ∩ kerC), k ∈ N,
(2.11)

where W ∗(L ) = Wn. Another cornerstone of geometric FDI is the unobservability

subspace that is defined as follows.

Definition 2.7. A subspace S is called unobservability subspace if there exist two

maps D : Rq → Rn and H : Rq → Rq0 such that q0 ≤ q and S =< kerHC|A+DC >

(that is largest A+DC-invariant contained in kerHC).

The notation S(L ) denotes the family of all unobservability subspaces S con-

taining the subspace L . As above, it can be shown that the set S(L ) always holds

a minimal (that is denoted by S∗(L )) [3, Chapter 2, Theorem 18]. The subspace

S∗(L ) is given by the following algorithm,

S0 = Rn,

Sk = W ∗(L ) + A−1(Sk−1 ∩ kerC), k ∈ N,
(2.12)

where W ∗(L ) is the limiting subspace of the algorithm (2.11) and S∗(L ) = Sn.

The main result on the geometric FDI approach of Fin-D systems has been

provided in [3] as follows.

Theorem 2.8. [3, Chapter 4, Theorem 2] The FDI problem defined above is solvable

if and only if there exist the unobservability subspaces

S∗i ∩Li = 0, i = 1, . . . , p, (2.13)
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where Li = span{Li} and S∗i is the smallest unobservability subspace containing

L =
∑p

j=1,j 6=i Lj by using algorithm (2.12).

The prominent feature of the above theorem is that the sufficient part has

been shown by a constructive method. Specifically, to show the sufficient part a

systematic method to design the filters and residual generators has been provided.

The geometric FDI approach for Fin-D systems includes three major steps, namely

a signature mapping, factoring out and filter design.

1. Signature mapping : In this step, one obtains the maps D and H such that the

signatures of all faults but fi ( i.e., Lj, j 6= i) are contained in the unobserv-

ability subspace defined by D and H (that is S∗(L ) =< kerHC|A + DC >,

L =
∑p

j=1,j 6=i Lj).

2. Factoring out : If condition (2.13) is satisfied, the unobservability subspace

(that is computed in the previous step) is factored out from the linear system

(HC,A+DC), where the resulting quotient subsystem is an observable system

which is decoupled from all faults but fi.

3. Filter Design: In the filter design step, one designs an observer to decouple

the residual (that is output of the observer) from input signal(s) and initial

state error. Below, we formulate these steps.

As mentioned above, one needs to factor out unobservability subspaces. Below,

we shows the steps. Let S∗i be the unobservability subspace containing all fault

signatures Lj, j 6= i such that S∗i ∩Li = 0. Also, there exist the maps Di and Hi are

such that S∗i =< kerHiC|A + DiC >. By definition, S∗i is an (A + DiC)-invariant

subspace.

Now, consider the the canonical projection map Pi : Rn → Rn/S∗i and the
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following detection filter,

ω̇i(t) = Fiωi(t) +Giu(t)− Eiy(t),

ri(t) = Hiy(t)−Miωi(t),

(2.14)

where ω(t) ∈ Ro, Df = D+P−ri DoHi, Do is the observer gain, Ei = PiDf , Gi = PiB,

Ap is an operator such that ApPi = Pi(A + DiC) and Fi = Ap + DoMi. Also, Mi

is the unique solution of MiPi = HiC. Note that Pi is a monic operator and hence,

the Mi exists and is unique, and dim(Ro) = n− dim(S∗i ) that is factoring out of S∗i

- Step 2.

Define e(t) = Pix(t)− ωi(t). It follows that

ė(t) =PiAx(t) +Giu(t) + PiLifi(t)− (Fiωi(t) +Giu(t)− PiDiCx(t)−DoHiCx(t))

=Pi(A+DiC)x(t)− Fiωi(t) +DoHiCx(t) + PiLifi(t)

=ApPix(t) +DoMiPix(t)− Fiωi(t) + PiLifi(t) = Fie(t) + PiLifi(t)

(2.15)

Moreover, since ri(t) = Hiy(t) − Miωi(t) and MiPi = HiC, one obtains ri(t) =

MiPix(t)−Miω(t) = Mie(t).

Note that based on the fact that S∗i is the unobservable subspace, by factoring

out this subspace the subsystem (Mi,Ap). The gain Do is an observer gain for the

system (Mi,Ap) that is designed to eliminate the effects of input and initial state

error. This is Step 3.

Now, if fi(t) ≡ 0 the residual vanishes to a small neighborhood of origin.

However, if fi(t) 6= 0, r(t) exceeds a threshold (that are defined by using Monte

Carlo simulation - refer to Chapter 3 for more details). Therefore, the filter (2.14)

can detect and isolate the fault fi.

As can be observed from the above procedure, the unobservability subspace

is a central concept in the geometric FDI approach. Therefore, to generalize this

approach to a more general class of dynamical systems, defining this subspace is
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inevitable. For instance, this concept is generalized to Markovian-Jump and Time-

Delay systems in [64–66,111].

2.3 Inf-D Vector Spaces

In this section, we review certain basic mathematical tools that are essential for

studying Inf-D systems. These tools can be categorized into two main groups,

namely topological (more particularly Hilbert) spaces and theory of semigroups of

operators. In the geometric theory of Fin-D systems developed in [74,112], one does

not need to deal with a linear space equipped with a norm function, and a basis that

fully characterizes the corresponding space. The main reason lies on the fact that

every Fin-D subspaces V is isomorphic to Rnv (i.e. there exists an invertible linear

operator T : V → Rnv), where nv = dim(V ). Therefore, every Fin-D subspace is

closed. However, Inf-D vector subspaces are not necessarily closed and one usually

deals with limits. To define a limit in a vector space one needs to define a norm, or

in more general sense, a topology on the corresponding vector spaces [104].

This section focuses only on the special class of topological spaces that are

induced by an inner product defined on the corresponding spaces. More precisely,

we only review the Hilbert spaces in an arbitrary dimension.

However, before going into more detail, we first provide an example which

clearly shows that dealing with Inf-D subspaces are more complicated than Fin-D

subspaces. Consequently, it leads us to more sophisticated mathematical tools that

are provided in this section. Indeed, this example emphasizes the fact that trivial

results in Fin-D spaces are not easy to show for Inf-D subspaces and even certain

set of them does not hold true.

Example 2.9. Basis of Inf-D vector spaces:

Consider an n-dimensional vector space X . It is well-known that every set of n
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linearly independent vectors is a basis for X . Now, assume that X is an Inf-D space

and consider B1 = {φ1, φ2, · · · } as a set of infinite number of linear independent

vectors of X . Although cardinality of B1 is infinite, B1 is not necessarily a basis

for the space X . To see this, let us define a set of linearly independent vectors as

B2 = {φ2, φ4, · · · , φ2k, · · · } which is a subset of B1. It follows that the number of

vectors in B2 is also infinite, however, it cannot span the space that is constructed by

B1. This lack of completeness causes a set of challenging concepts such as non-closed

subspaces, non-complete subspaces, etc.

As emphasized in the above examples, for investigating the Inf-D spaces we

need more sophisticated tools and even by using these tools certain results in Fin-D

spaces do not hold for Inf-D vector spaces. This section attempts to review certain

concepts of linear vector spaces from an abstract point of view that allows one to

address both Fin-D and Inf-D dynamical systems by using a unique methodology.

This section is organized as follows. In the next subsection, we investigate

the inner product vector spaces from the topological point of view. Hilbert vector

spaces are reviewed in Subsection 2.3.2. Basis, dimension, dual spaces and quotient

subspaces are briefly addressed in Subsections 2.3.3-2.3.6.

2.3.1 Topological Spaces

In this subsection, we review topological subspaces and focus on the topologies

induced by norm. Consider the set X and a collocation of subsets of X , denoted by

T such that the elements of T (that are subsets of X ) satisfy

1. X ,∅ ∈ T.

2. Vα ∈ T ⇒
⋃
α∈I Vα ∈ T for arbitrary index set I (finite, infinite or even

uncountable).

3. V1, V2 ∈ T⇒ V1 ∩ V2 ∈ T.
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Vα and T are called open sets and topology, respectively. We denote this topological

set as (X ,T) or simply X when the topology is known from the context.

Generally, topology is a tool which enables one to define continuity for a map

between sets. Consider two topological sets (X ,Tx) and (Y ,Ty) and the map F :

X → Y . Then, we say F is continuous at x0 if and only if for all open sets containing

F (x0), say Vy, F
−1(Vy) is an open set of X . This definition is more general than the

ε, δ definition that is used usually in the ordinary calculus [113].

As stated earlier, in this section we are only interested in the topology that is

defined on a vector space and not on a set. In certain literature [104], the set X with

the topology T is called as the topological vector space. However, here we reserve

this name for the case when the set X is a linear vector space that is equipped by

a topology. We have:

Definition 2.10. The vector space X with the topology T is called the topological

vector space if the vector addition and scalar product operations defined on X are

continuous with respect to the topology of X × X and F × X , respectively, where F

is the scalar field on which the space X is defined.

In this thesis, we are mainly concerned with Hilbert spaces defined on R, so

we focus on the topologies that are induced by using norm. Note that every inner

product space is a normed space with the norm induced from the inner product.

Consider the normed vector space X and the corresponding norm function || · ||.

One can define a topology for this vector space by using the norm as follows. We

call a set V as an open set (to define topology) if for every x0 ∈ V , one can find

r0 ∈ R such that B(x0, r0) = {x ∈ X | ||x− x0|| < r0} ⊆ V .

Based on the norm (or generally, open sets and topological structure), one

can define the limit as follows. We write x1 → x2 when ||x1 − x2|| → 0 which is

well-defined because ||x|| ∈ R and the limit is well-defined on R. Also, one can

define the Cauchy and convergent sequence as usual. Recall that the sequence {xi}
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is called a Cauchy sequence if for any given ε > 0 one can find a number Nε ∈ N

such that

∀n,m > Nε ⇒ ||xn − xm|| < ε (2.16)

Now, we have following definitions.

Definition 2.11. Open Covers: The collection of open sets {Uα} (finite, countable

or uncountable) is an open cover of subspace V if V ⊆
⋃
α Uα.

Definition 2.12. Completeness: The topological vector space X is said to be

complete if every Cauchy sequence is convergent.

Remark 2.13. As we shall see in the next subsection, in Inf-D subspaces we usually

work with the limits of sequences, and the completeness property is crucial to show

the existence of limits in the corresponding subspaces.

2.3.2 Hilbert Spaces

As mentioned earlier, in this dissertation we focus on Hilbert spaces. In this part, we

first define Hilbert spaces and then important concepts that relate to our research

are provided. In this section, X denote a Fin-D or Inf-D systems. In other words,

all the results are applicable to both Fin-D and Inf-D vector spaces.

Definition 2.14. Consider the vector space X , the inner product < ·, · > and the

induced norm that is defined as || · || : X → R, ||x|| =
√
< x, x >. We call X a

Hilbert space if X is complete.

Therefore, the Hilbert space X is naturally equipped with a topological struc-

ture that is induced by a norm.

Example 2.15. Hilbert vector space:

Consider the space L2([0, 1],R) that is the space of all square integrable functions
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defined on [0, 1], and the inner product < f, g >=
∫ 1

0
f(x)g(x)dx. The induced norm

is defined by ||f || =
√∫ 1

0
f(x)2dx, and it can be shown that this normed space is

complete [104].

2.3.3 Basis

One of the important concepts in vector spaces is the basis. Although, to define a

basis the corresponding vector space does not need to be even a normed space, in

this section we focus on the Hilbert spaces.

There are various definitions of basis. However, here we review two of these

definitions.

Definition 2.16. Consider the vector space X and the set of independent vectors

H = {φi}i∈I, where I is an index set (not necessarily countable) and φi ∈ X . The

set H is a Hamel basis of X if every x ∈ X can be expressed as a linear combination

of a finite number of φi.

In the literature, the Hamel basis is also called an algebraic basis [104]. For

the Fin-D vector spaces (dimension is formally defined in the next subsection), every

basis is a Hamel basis, and every Hamel basis is a countable basis. However, for

Inf-D Banach space (that is a complete vector space equipped with a norm), every

Hamel basis is essentially uncountable that makes analysis of Inf-D system by using

Hamel spaces much more difficult. In other words,

Lemma 2.17. ( [104, Problem i.11.2]) Le X be an Inf-D vector space. Then, every

Hamel basis for X is uncountable.

Since in Inf-D systems we deal with Hilbert spaces with a countable dimension

(that is more structured) one can utilize the following countable basis (that is called

as Riesz basis) which has certain nice properties. The following definition formally

introduces the Riesz basis.
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Definition 2.18. [14] The set of vectors {φi}i∈I, I ⊆ N is called the Riesz basis for

the Hilbert space X if span{φi} i∈I = X .

It can be shown that if {φi}i∈I is a Riesz basis for X , then there exists a set

of vectors {ψi}i∈I such that ψi ∈ X and < ψi, φk >= δik (δik denotes the Dirac

delta function), for all i, k ∈ I [14, Section 2.3]. In other words, ψi’s and φk are

biorthonormal vectors [14].

Example 2.19. Riesz basis:

Consider the space L2([0, 1],R). It can be shown that {sin(2nπx), cos(2nπx)}n∈N is

Riesz spectral basis for L2([0, 1],R) (that is a countable basis).

Definition 2.20. [104] A Hilbert space that admits a countable orthonormal basis

is called a separable Hilbert space.

Since the Riesz bases are equivalent to a countable orthonormal basis, every

Hilbert space that has a Riesz basis is separable [104]. The Inf-D systems that are

addressed in this thesis are defined on separable Hilbert spaces.

Another difference between Definitions 2.16 and 2.18 does show up in Inf-D

vector spaces. By using a Hamel basis, each vector is presented by a finite number

of basis vectors. In other word, x =
∑

j∈J ζjφj, where J ⊆ I is a finite subset.

Since J is finite, the equality x =
∑

j∈J ζjφj is well-defined. However, for the Riesz

basis (Definition 2.18) in fact we have x = limn→∞
∑n

k=1 ζkφk, where the limit is

well-defined by using the norm defined on the Hilbert space X and the fact that X

is complete.1

2.3.4 Dimension

Generally, the dimension of a vector space is defined based on the basis (as stated

above subsequently we deal with Definition 2.18). Based on the basis, we have three

1As can be observed, to define a countable basis we need only norm functions (and no inner
product). However, for the consistency we provided the Definition 2.18 for Hilbert spaces.
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types of Hilbert spaces as follows:

• Fin-D Hilbert spaces - the corresponding basis is a finite set. It includes all

the Fin-D spaces.

• Inf-D separable Hilbert spaces - the corresponding basis is an infinite, count-

able set. For instance L2([0, 1],R).

• Inf-D and uncountable vector spaces - the corresponding basis is an infinite,

uncountable set. For example, consider the vector space `∞ that is the space

of all sequences (ζ1, ζ2, · · · ) such that ζk ∈ R, k ∈ N and supk(|ζk|) <∞ (refer

to [104, page 57]).

Since the state space of PDE and time-delay systems can be formulated in an ap-

propriate Hilbert space with a countable basis, in this thesis, we are interested on

the first two types of Hilbert spaces.

Remark 2.21. The dimension of a vector space is directly related to its field. For

example, consider the plane E2 (which is all the points in a plane- but it is not still

a vector space). Let R2 and C1 be the corresponding vector spaces of E2 defined on

R and C, respectively. It follows that a basis for R2 is {φ1, φ2}, where φ1 = [1, 0]T

and φ2 = [0, 1]T, and every x ∈ E2 can be expressed as x = ζ1φ1 + ζ2φ2 (ζi ∈ R for

i = 1, 2). Hence, dim(R2) = 2. Now, consider C1 (that is, E2 on C). We claim that

the dimension of C1 is one. Towards this end, consider an arbitrary point x ∈ E2,

where x = (γ1, γ2). It is clear, one can represent x as x = (γ1 + jγ2). Let φ1 = 1

and γ = γ1 + jγ2 ∈ C. Therefore, {φ1} is a basis for C1, and dim(C1) = 1.

Now, we are in a position to show the main feature of the Riesz basis.

Consider a Hilbert space with two bases B1 = {φ1,i}i∈I and B2 = {φ2,i}i∈I,

I ⊆ N. We say the bases B1 and B2 are equivalent if there exists a topological

isomorphism T : X → X (that is, T is a linear continuous map with continuous
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inverse) such that φ2,i = T φ1,i. The main features that we are interested in are as

follows [104]:

• Every separable Hilbert space has a countable orthogonal basis.

• Every countable basis of a Hilbert space is equivalent to all orthogonal bases.

• A basis of the Hilbert space X is countable if and only if it is equivalent to a

Riesz basis of X .

Therefore, a Riesz basis is an extension of common definition of basis in Fin-D spaces

to countable Hilbert spaces. Also, we have the following important theorem.

Theorem 2.22. [114, Theorem 9] Consider the Hilbert space X and the set E =

{φi}i∈I such that span{E} = X . Then, E is a Riesz basis if and only if there

exist two positive numbers M1 and M2 (independent of n) such that for any n ∈ N,

we have M1

∑n
k=1 |αk|2 ≤ ||

∑n
k=1 αkφk||2 ≤ M2

∑n
k=1 |αk|2, where || · || denotes the

norm induced from < ·, · > and αk ∈ R and limn→∞
∑n

k=1 |αk|2 ≤ ∞.

In the literature, a Riesz basis is defined by using the above theorem (refer

to [14, Definition 2.3.1]).

2.3.5 Orthogonal Space

Dual spaces are of special importance in the system theory of Inf-D dynamical

systems. For instance, they are essential to address the duality of observability and

controllability. Let us first define an orthogonal subspace.

Definition 2.23. Consider the inner-product vector space X (not necessarily Fin-

D) and the subspace V (not necessarily closed). Then the orthogonal subspace to V

that is denoted by V ⊥ is defined as

V ⊥ = {x ∈ X | < x, y >= 0, ∀y ∈ V } (2.17)
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This definition is valid for all inner product spaces. However, if X is a Hilbert

space V ⊥ is a closed subspace (even if V is not). One of most important results on

Hilbert spaces is the Riesz Projection Theorem that is given below.

Theorem 2.24. [14, Theorem A.3.52] Consider the Hilbert space X and the closed

subspace V ⊆ X . Then each x ∈ X can be represented uniquely by x = v + w, such

that v ∈ V and w ∈ V ⊥.

In the above theorem v is called as the projection of x on V . Also, this theorem

is of special interest to us because it shows that we can define quotient subsystems

(by factoring out an unobservability subspace).

Remark 2.25. The “closed” condition in the above theorem is crucial. Indeed,

this condition is necessary even for Fin-D subspaces. However, since every Fin-D

subspace is closed, the above theorem is valid for all Fin-D subspaces.

2.3.6 Quotient Subspaces

For Inf-D Hilbert spaces, quotient subspaces are defined as in Fin-D spaces. Quotient

subspaces play a key role in the FDI problem. More precisely, by using the quotient

subspace we derive a subsystem that is decoupled from all faults but one.

Consider the Hilbert vector space X and the subspace M ⊆ X . Then for

every x ∈ X , the element [x] of the quotient subspace X/M is defined by the set

{u|(x− u) ∈M }. Now, we have the following result for the Banach spaces.

Theorem 2.26. [104] Consider the Hilbert space X and the closed subspace M .

Then the subspace X/M is a complete (Banach) space with respect to the following

norm

||[x]||X/M = inf
u∈[x]
|u| = inf

m∈M
|x−m| (2.18)

where | · | is the norm defined on X .
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Again, note that one needs the closeness in the above theorem.

Example 2.27. Quotient Subspace:

Consider the vector space L2([0, 1],R) and the closed subspace M = span{sin(2nπx)k∈N} .

It follows that L2([0, 1],R)/M is also closed and isomorphic to span{cos(2nπx)} k∈N.

2.4 Linear Operators

Given that this thesis is concerned with linear Inf-D systems, in this section we

review the linear operators that are defined on Fin-D and Inf-D Hilbert spaces.

Generally, one can define two different types of operators on Hilbert spaces as follows:

1. Bounded Operator: An operator D : X → Y is a bounded operator, if

there exists a positive number M0 > 0 such that ||D|| < M , where || · || is the

operator norm. The bounded operators have the following properties,

• D(D) = X , where D(D) denotes the domain of D.

• A operator D is bounded if and only if it is continuous (on every point

in X ).

2. Unbounded Operator: An operator that is not bounded, is unbounded.

It should be pointed out that an unbounded operator can only be defined on Inf-D

vector space (refer to the following subsection).

Moreover, finite-rank operators are of a special interest that are defined as

follows.

Definition 2.28. The operator D : X → Y is finite-rank if D(D) and/or ImD is

Fin-D.

Without loss of any generality we can assume D is onto Y and D(D) = X .

Therefore, D is finite-rank if at least one of the vector spaces X and Y is Fin-D.
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2.4.1 Unbounded Operators

Since in the Inf-D system theory unbounded operators have a special interest, we re-

view these operators here in more details. As stated earlier, an unbounded operator

can only be defined on Inf-D spaces. In other words, we have:

Lemma 2.29. [104] Consider the operator D : X → Y. Then, D is unbounded

only if dim(X ) =∞.

A very important corollary from the above fact can be stated as follows:

Corollary 2.30. Consider the operator D : X → Y such that dim(X ) <∞. Then,

D is bounded.

Remark 2.31. Note that D can still be unbounded even if Y is Fin-D. More pre-

cisely, finite-rankness is not a sufficient condition for boundedness.

A-Bounded Operators

A special unbounded operator that is related to another unbounded operator (that

is denoted as A) is the A-bounded operator.

Definition 2.32. [101, Definition II.4] Consider an unbounded operator A : X →

X . The operator F : X → Y is A-bounded if D(A) ⊆ D(F) and F(λI − A)−1 is

bounded.

Note that every bounded operator F is A-bounded. Moreover, A-boundedness

is only defined for the operators that are defined on the same vector space (that is

X ) as A.

2.4.2 Adjoint Operators

To apply and utilize the duality concept in linear systems, one needs to deal with

adjoint operators. In this subsection, we review adjoint operators in more detail.
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Definition 2.33. [14, Definition A.3.57] Consider a bounded operator T : X → Y.

There exists the unique operator T ∗ : Y → X such that for all x ∈ X and y ∈ Y

< T x, y >=< x, T ∗y > . (2.19)

It is worth noting that the left dot product is defined on Y , whereas the right

dot product is defined on X . However, since it is clear from the context, we do not

use subscript for the dot products. The adjoint operator of an unbounded operator

is defined as follows.

Definition 2.34. [104] Consider an unbounded operator T : X → Y such that

D(T ) = X . Then, let D(T ∗) ⊆ Y be all y ∈ Y such that there exists x∗ ∈ X such

that < T x, y >=< x, x∗ > for all x ∈ D(A). We define T ∗ : D(T ∗) → X and

T ∗y = x∗.

The following facts are useful once we deal with adjoint operators.

1. If T is bounded, then (A+ T )∗ = A∗ + T ∗.

2. Adjoint operator of a finite-rank operator is finite-rank.

3. In general, (F∗)∗ 6= F . For example, consider F : X → Y , where dim(Y) <∞.

By Definition 2.34, we have F∗ : Y → X and since Y is Fin-D, by Corollary

2.30 F∗ is bounded. Moreover, given that F∗ is bounded, (F∗)∗ is bounded.

Therefore, (F∗)∗ 6= F . However, if F is bounded, we obtain (F∗)∗ = F .

2.5 Two-Dimensional (2-D) Systems

In this section, we briefly review 2-D systems. The results that are provided in

Chapter 3 are applicable to n-D systems, for n ≥ 2.

There are various models that are adopted in the literature for 2-D systems

including the Rosser model [115], the Fornasini-Marichesini model I (FMI) and
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model II (FMII) [82, 85]. The FMI can be formulated as a Roesser model and the

Roesser model is a special case of the FMII model [82]. In this section, we consider

and concentrate on the FMII model, and consequently our results are also derived

for this general class of 2-D systems.

Consider the following FMII model [85],

x(i+ 1, j + 1) = A1x(i, j + 1) + A2x(i+ 1, j) +B1u(i, j + 1) +B2u(i+ 1, j)

+

p∑
k=1

L1
kfk(i, j + 1) +

p∑
k=1

L2
kfk(i+ 1, j),

y(i, j) = Cx(i, j), i, j ∈ Z, (2.20)

where x ∈ Rm, u ∈ R`, and y ∈ Rq denote the state, input and output vectors,

respectively. The fault signals and the corresponding fault signatures are designated

byfk, L
1
k and L2

k, respectively. Since in this thesis all the introduced invariant

subspaces are based on the operators A1, A2 and C, we designate the system (2.20)

by the triple (C,A1,A2).

Remark 2.35. Note that the system (2.20) represents and captures the presence of

both actuator and component faults. To represent sensor faults, one can augment

the sensor dynamics and model the sensor faults as actuator faults in the augmented

system (for a complete discussion on this issue refer to [3] - Chapters 3 and 4).

Also, it should be pointed out that the fault signal fk affects the system through two

different fault signatures L1
k and L2

k. An alternative fault model could have been

expressed according to the following representation,

x(i+ 1, j + 1) =A1x(i, j + 1) + A2x(i+ 1, j) +B1u(i, j + 1) +B2u(i+ 1, j)

+

p∑
k=1

Lkgk(i, j),

y(i, j) =Cx(i, j). (2.21)

Model (2.20) is more general than the one given by equation (2.21). This is due to
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the fact that by denoting fk(i+ 1, j) = gk(i, j) for all k = 1, . . . , p, one can represent

the model (2.21) as the model (2.20).

Let us now consider the Roesser model [115] which is expressed asr(i+ 1, j)

s(i, j + 1)

 =

A11 A12

A21 A22

r(i, j)
s(i, j)

+

B11

B21

u(i, j) +

p∑
k=1

Lkfk(i, j),

y(i, j) =C

r(i, j)
s(i, j)

 ,
(2.22)

and where
[
rT sT

]T

∈ Rm represents the state, and the variables u, y, fk and Lk

are defined as in equation (2.20). By defining

x =

r
s

 , A1 =

A11 A12

0 0

 , A2 =

 0 0

A21 A22

 ,
B1 =

B11

0

 , B2 =

 0

B21

 ,
(2.23)

one can formulate the Roesser model (2.22) as in equation (2.20).

2.5.1 The Approximation of Hyperbolic PDE Systems by

2-D Models

Let us first illustrate and demonstrate how one can approximate a general hyperbolic

PDE system by using the 2-D models and representation. Consider the following

hyperbolic PDE system

∂x̃

∂t
= Ã1

∂x̃

∂z
+ Ã2x̃+ B̃u+

p∑
k=1

L̃kf̃k, (2.24)

where z denotes the spatial coordinate, x̃(z, t) ∈ Rn, u(z, t) ∈ Rq and f̃k(z, t) ∈ R

denote the state, input and fault signals, respectively. Also, the operators Ã1, Ã2, B̃

and L̃k are real matrices with appropriate dimensions. Note that every hyperbolic
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PDE system with constant coefficient can be represented in the form (2.24) with a

diagonalizable Ã1 [116] (Chapter 1, Detention 1.1.1).

By applying the finite difference method to the system (2.24), one obtains

x̃(i∆z, (j + 1)∆t)− x̃(i∆z, j∆t)

∆t
=Ã1

x̃(i∆z, j∆t)− x̃((i− 1)∆z, j∆t)

∆z
+ Ã2x̃(i∆z, j∆t)

+ B̃ũ(i∆z, j∆t) +

p∑
k=1

L̃kf̃k(i∆z, j∆t).

(2.25)

By setting x(i, j) =

x̃((i− 1)∆z, j∆t)

x̃(i∆z, j∆t)

, we can now write

x(i+ 1,j + 1) = A1x(i, j + 1) + A2x(i+ 1, j) +B1u(i+ 1, j) +

p∑
k=1

Lkfk(i+ 1, j),

(2.26)

where u(i+ 1, j) = ũ(i, j) for all i and j, A1 =

0 I

0 0

 and

A2 =

 0 0

−∆t
∆z
Ã1 (I + ∆t

∆z
Ã1 + ∆tÃ2)

 , B1 =

 0

B̃

 , Lk =

 0

L̃k

 , f(i, j) = f̃(i+ 1, j).

Therefore, the PDE system (2.24) can be approximated by the FMII 2-D model

(2.26).

2.6 Semigroups of Operator and Dynamical Sys-

tems

In this section, we review some basic concepts of Inf-D dynamical systems.
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2.6.1 Linear Systems on an Inf-D Hilbert space

As stated earlier, we mainly focus on systems that are defined on real separable

Hilbert vector spaces. Consider the following system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t)

(2.27)

where x(t) ∈ X and X is a real separable Hilbert space. Also, u(t) ∈ Rm and

y(t) ∈ Rq are the input and output signals. The above equation has a regular

(sufficiently smooth and unique) solution for if u(·) ∈ L2((0,∞),Rm) [14] and the

operator A is an infinitesimal generator of a strongly continuous (C0) semigroup

TA(t). Let L(X ) denotes the set of all bounded operators defined on X . A C0

semigroup T : R+ → L(X ) is the operator where the following conditions hold [14,

Definition 2.1.2]:

• T(t+ s) = T(t)T(s) for all t, s ≥ 0.

• T(0) = I.

• If t→ 0+, then ||T(t)x− x|| → 0 for all x ∈ X .

The TA is the semigroup that is generated by A and is related to A as

Az = lim
t→0+

(TA(t)− I)z, z ∈ X (2.28)

D(A) is all the z ∈ X such that the above limit exists.

The solution x to (2.27) is given by

x(t) = TA(t)x0 +

∫ t

0

TA(t− s)Bu(s)ds (2.29)

It is worth noting that

• By comparing the solutions (2.2) and (2.29), it follows that TA(t) plays the

same role as eAt in Fin-D systems.
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• Due to complexity of Inf-D systems (i.e. unboundedness of A), unlike eAt

(equation (2.3)), TA cannot be computed by using A.

• D(A) = X .

• The solution (2.29) involves integral of functions that are Hilbert space valued

(note x ∈ X ). This type of integral is known as the Bochner integral that is a

generalized version of the Lebesgue integral.

Example 2.36. Representation of a PDE system as an Inf-D System.

Consider the following dynamical system that is governed by a parabolic PDE

[15]

∂x̃

∂t
= A1

∂2x̃

∂z2
+ A2

∂x̃

∂z
+ A3x̃+B(z)u (2.30)

where z ∈ [0, 1]. Note that in general z ∈ [z1, z2]. However it can be easily trans-

formed to z ∈ [0, 1] as in [7], t ∈ [0,∞). The input operator B(z) is also defined

as

B(z) = 1zα,ε (2.31)

in which 1zα,ε =
{

1 ;z∈[zα,zα+ε]
0 ;Otherwise . The measurements are collected at certain locations

as

yi =

∫ zi+ε

zi

x̃dz , i = 1, · · · , q, zi ∈ [0, 1] (2.32)

Note that the boundary control (that is B(z) = { 1 x=0
0 Otherwise ) and the boundary

measurement (that is y0 = x̃(0, t)) can be approximated by equation (2.31) and

(2.32), respectively, where ε is sufficiently small.

Moreover, the operators that are defined by (2.31) and (2.32) are finite-rank

[14]. The Boundary condition of the system (2.30) is governed by

C1x̃(t, 0) +D1
∂x̃

∂z
(t, 0) = R1,

C2x̃(t, 1) +D2
∂x̃

∂z
(t, 1) = R2,

(2.33)
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where Ci, Di and Ri are real matrices. Also, the initial condition is given by x̃(0, z) =

x̃0.

Now consider X = L2([0, 1],R) and

Ah = A1
d2h

dt2
+ A2

dh

dt
+ A3h (2.34)

D(A) = {h ∈X |h, dh
dx

are absolutely continuous, h satisfies the initial condition},

Consequently, the input and output operators can be defined according to

B : Rp →X , Bu = B(z)u

C : X → Rq , Cx =< 1zi,ε, x >

(2.35)

where < ·, · > denotes the inner product defined on X . Therefore, the system (2.30)

can be represented as in (2.27).

Compared to the PDE system, expressing a time-delay system as an Inf-D

system is more challenging. First, we need the following lemma.

Lemma 2.37. [14, Lemma 2.1.11] Consider C0 semigroup TA and its corresponding

infinitesimal generator A. Then

R(λ,A)x =

∫ ∞
0

e−λtTAxdt, (2.36)

where R(λ,A) = (λI − A)−1 is the resolvent operator of A.

Example 2.38. Representation of a time-delay system as an Inf-D system.

Consider the following time-delay system

ẋ(t) = A0x(t) + A1x(t− h),

y(t) = Cx(t), x(0) = x0, x(γ) = g0(γ), −h ≤ γ < 0,

(2.37)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq denote state, input and output, respec-

tively. Also, h is a positive real constant.
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For every x0 ∈ Rn and g(·) ∈ L2([−h, 0],R), the unique solution to the above

system is given by [14, Theorem 2.4.1]

x(t) = eA0tx0 +

∫ t

0

eA0(t−s)A1x(s− h)ds. (2.38)

Therefor, by defining X = Rn ⊕ L2([−h, 0],R), the corresponding semigroup is

expressed as [2, 2.4.4]

T(t)

 x0

g(·)

 =

 x(t)

x(t+ ·)

 , (2.39)

where x(·) is the solution (2.38). Now, by using Lemma 2.37, one can write [14,

Lemma 2.4.5]

R(λ,A)

 x0

g0(·)

 =

g1(0)

g1(·)

 ,
g1(γ) = eλγg1(0)−

∫ γ

0

eλ(γ−s)g0(s)ds,

g1(0) = [∆(λ)]−1
(
x0 +

∫ 0

h

e−λ(s+h)A1g0(s)ds
)
,

(2.40)

where ∆(λ) = (λI−A0−A1e
−h). Finally, by using the fact that (λI − A)R(λ,A) =

I, it can be shown that

A

 x

g(·)

 =

A0x+ A1g(−h)

dg
dγ

(·)

 ,
D(A) = {

 x

g(·)

 |g is absolutely continuous,
dg

dγ
∈ L2([−h, 0],R), g(0) = x}.

(2.41)

Therefor, the time-delay system (2.37) can be represented as an Inf-D system (2.27).

2.7 Summary

In this chapter, we have reviewed linear Fin-D systems and the FDI problem of Fin-

D systems. Moreover, Inf-D vector spaces and Inf-D systems have been addressed.
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In the following chapters, we use this background information to provide necessary

and sufficient conditions for the FDI problem solvability of Inf-D systems.
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Chapter 3

Fault Detection and Isolation of

Multidimensional Systems

In this chapter, we develop a novel FDI scheme for discrete-time multidimensional

(n-D) systems for the first time in the literature. These systems represent as general-

ization of the Fornasini-Marchesini model II (FMII) two- and three-dimensional (2-D

and 3-D) systems. This is accomplished by extending the geometric FDI approach

of one-dimensional (1-D) systems to n-D systems. The basic invariant subspaces

including unobservable, conditioned invariant and unobservability subspaces of 1-D

systems are generalized to n-D models. These extensions have been achieved and

facilitated by representing a n-D model as an Inf-D system, and by particularly

constructing algorithms that compute these subspaces in a finite and known num-

ber of steps. By utilizing the introduced subspaces the FDI problem is formulated

and necessary and sufficient conditions for its solvability are provided. Sufficient

conditions for solvability of the FDI problem for n-D systems using LMI filters are

also developed. Moreover, the capabilities and advantages of our proposed approach

are demonstrated by performing an analytical comparison with the currently avail-

able methods in the literature. Finally, numerical simulations corresponding to an
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approximation of a hyperbolic PDE system of a heat transfer process, that is math-

ematically represented as a 2-D model, have also been provided.

3.1 Preliminary Results

In this section, we first review n-D systems and their various representational models.

Subsequently, an n-D system is expressed as an Inf-D system that allows one to

geometrically analyze the unobservable subspaces (this is to be defined and specified

in the next section). The FDI problem of n-D systems is also formulated in this

section. Finally, an LMI-based approach is introduced to design an n-D Luenberger

observer (also known as a detection filter) for n-D systems.

3.1.1 Discrete-Time n-D Systems

As stated in the previous chapter , the n-D models can be used to represent a

large class of problems, such as approximating hyperbolic PDE systems [16, 75],

image processing and digital filtering [115] (as 2-D systems) and approximate 2-D

parabolic PDE system (as 3-D systems). System theory concepts such as observ-

ability, controllability and feedback stabilization have also been investigated in the

literature for 2-D systems [16,82,85,95,98]. However, as emphasized in [92, Section

2] extending the available algebraic methods for n ≥ 3 deals with certain difficulties.

As we shall see, unlike algebraic approaches one can extend the available geometric

results of 2-D systems to n-D system.

As stated earlier in Chapter 2, there are various models that are adopted in

the literature for 2-D systems including the Roesser model [115], the Fornasini-

Marichesini model I (FMI) and FMII [82, 85]. The FMI can be formulated as a

Roesser model and the Roesser model is a special case of the FMII model [82].

In this chapter, we consider and concentrate on the FMII model to formulate n-D
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systems, and consequently our results are also derived for this general class of n-D

systems.

To formulate an n-D system we use the following notations. Consider the

coordinates (i1, . . . , in), where ik ∈ Z and the vector x(i1, . . . , in) ∈ Rm. We denote

σk to be a shift operator on the kth coordinate (i.e. σkx(i1, · · · , in) = x(i1, · · · , ik +

1, ik+1, · · · , in)). Also, let us set δ = Πn
k=1σk (i.e., δx(i1, . . . , in) = x(i1 + 1, · · · , in +

1)) and δk = Πn
i=1,i6=kσk, that is δkx(i1, · · · , in) = x(i1 + 1, · · · , ik−1 + 1, ik, ik+1 + 1,

· · · , in + 1).

Consider the following FMII-based n-D model (that is a generalized version of

2-D systems in [85]),

δx(i1, . . . , in) =
n∑
k=1

Akδkx(i1, . . . , in) +
n∑
k=1

Bkδku(i1, . . . , in)

+

p∑
j=1

n∑
k=1

Lkj δkfj(i1, . . . , in),

y(i1, . . . , in) =Cx(i1, . . . , in), ik ∈ Z,

(3.1)

where x ∈ Rm, u ∈ R`, and y ∈ Rq denote the state, input and output vectors,

respectively. The fault signals and the corresponding fault signatures are designated

byfk and Lki : R → Rm, respectively. Since in this chapter all the introduced

invariant subspaces are based on the operators Ak and C, we designate the system

(3.1) by the pair (C,A), where A =
[
A1 · · · An

]
.

Remark 3.1. Note that system (3.1) represents and captures the presence of both

actuator and component faults. To represent sensor faults, one can augment the

sensor dynamics and model the sensor faults as actuator faults in the augmented

system (for a complete discussion on these issues refer to [3, Chapters 3 and 4]).

Moreover, the fault signal fj affects the system through n different fault signatures

Lkj and k = 1, · · · , n. However, in [99] an alternative fault model is utilized. The
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n-D extension of the fault model in [99] is expressed according to the following rep-

resentation

δx(i1, . . . , in) =
n∑
k=1

Akδkx(i1, . . . , in) +
n∑
k=1

Bkδku(i1, . . . , in)

+

p∑
j=1

Ljgj(i1, . . . , in),

y(i1, . . . , in) =Cx(i1, . . . , in), ik ∈ Z, (3.2)

Model (3.1) is more general than the one given by equation (3.2). This is due to the

fact that by denoting fj(i1 + 1, i2, . . . , in) = gj(i1, i2, . . . , in) for all j = 1, . . . , p, one

can represent the model (3.2) as in the model (3.1).

In this work, we will investigate and develop FDI strategies for the model (3.1)

such that they are applicable to any n ≥ 2. It is assumed that Ak in model (3.1)

are not necessarily commutative. It should be emphasized that the commutativity

of Ak is a strong condition that renders the results in [95] (where for n = 2 A1 and

A2 are assumed to commutate) not applicable to Roesser systems.

3.1.2 Inf-D Representation

In this subsection, we reformulate the n-D model (3.1) as an Inf-D system that will

be used to derive the invariance property of unobservable subspaces (for details refer

to Subsection 3.2.1).

Consider the fault free system (3.1), that is with fj(i1, . . . , in) ≡ 0, j =

1, . . . , p, ik ∈ Z, and with zero input (we are mainly interested in the unobserv-

able subspaces and do not need to be concerned with the control inputs in the FDI

problem). Let x(i) ∈
⊕

(Rm) (i ∈ N) denote an Inf-D vector that is constructed

by using all x(j1, . . . , jn), where jk ∈ Z,
∑n

k=1 jk = i and the position of each

x(j1, . . . , jn) in x(i) is determined by a selected ordering index (refer to the Exam-

ple 3.1 to observe how one can define an ordering index). Under the above condition
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and for a given ordering index, the system (3.1) can be represented as,

x(i+ 1) = Ax(i), i ∈ N

y(i) = Cx(i),

(3.3)

where x(i) ∈ X =
⊕

(Rm), y(i) ∈
⊕

(Rq) (with the same ordering index that is used

to construct x(i)), and A is an Inf-D block matrix such that each Ak (k = 1, · · · , n)

does appear at every row-block ofA once and only once, with the remaining elements

set to zero. Also, we have C = diag(. . . , C, C, . . .). For example,

A =



. . . . . . . . . . . . · · ·

· · · 0 A1 0 A2 · · · An · · ·

· · · A1 0 0 A2 · · · An · · ·

· · · · · · . . . . . . . . . · · ·


, C =



. . . · · · · · ·

· · · 0 C 0 · · ·

· · · 0 0 C · · ·

· · · · · · . . .


(3.4)

where the position of Ak at each row is determined such that the order that is

obtained for x(i+ 1) is the same as that of x(i). For more clarification, consider the

following example for n = 3.

Example 3.2. Let n = 3 and k ∈ Z. Set

Ik(i) =((k + i,−k, 0), (k + i,−k + 1,−1), (k + i,−k − 1, 1),

(k + i,−k + 2,−2), (k + i,−k − 2, 2), . . .)

I(i) =(. . . , I−1(i), I0(i), I1(i), . . .) (3.5)

and let Ijk(i) denote the jth index in Ik(i). For example, I3
k(0) = (k,−k − 1, 1) (the

third element in Ik(0)). It follows that for each Ijk(i) in Ik(i), the summation of its

element is equal to i (for example for I3
k(i) we have (k+i)+(−k−1)+1 = i). Also, the

ordering index for all x(i) are identical. In other words, the position of (k+ i,−k, 0)

is the first element of Ik(i) for all i ∈ N. Therefore, without loss of any generality,

we show the position of elements by Ijk = Ikj (0). By using the above ordering index

(that is, I = I(0)), we have x(0) = (. . . , x(−1, 1, 0), x(−1, 2, ,−1), x(−1, 0, 1), . . .).
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Also, A is constructed such that the order index of x(1) is the same as that of x(0).

Towards this end, first set x(1) = (. . . , x(1,−1, 1), x(1, 0, 0), x(1, 1, ,−1), x(1, 2,−2),

. . .) (the same order as x(0)). Each row-block of A is individually constructed.

For example, the row corresponding to x(1, 0, 0) (that is the row, aT of A such

that x(1, 0, 0) = aTx(0)) has A1, A2 and A3 in the I1
0 , I1

1 and I2
1 (by applying the

same ordering index that is used in x(0) for a), respectively (note that x(1, 0, 0) =

A1x(0, 0, 0) + A2x(1,−1, 0) + A3x(1, 0,−1)). In other words, we have,

aT =

[
· · · 0 A1︸︷︷︸

position I10

0 · · · 0 A2︸︷︷︸
position I10

A3︸︷︷︸
position I21

0 · · ·
]

(3.6)

Therefore, the system (3.1) (for n = 3, fault free and zero input) can be represented

as in equation (3.3).

Various formulations for the initial conditions of the FMII model (3.1) are

possible that are based on the separation set introduced in [117]. There are two

separation sets that are commonly used in the literature for 2-D systems (refer

to [85] and [82]). The generalization of these two formulations to n-D systems are

as follows. In the first formulation, the initial conditions are denoted by x(0) =

(. . . , x(i1, i2, . . . , in)T, . . .)T ∈
⊕

(Rm) (this is compatible with the model (3.3)),

where ik ∈ Z and
∑n

k=1 ik = 0. The second formulation is expressed as x(0, · · · , 0, ik, 0,

· · · , 0) = hk(ik) for all k = 1, . . . , n, where hk(ik) ∈ Rm and ik ∈ N. This formu-

lation is more compatible with different applications (particularly, in case that the

system (3.1) is an approximate model of a PDE system - (refer to [16])). It will

be shown subsequently that since we derive our conditions based on an invariant

unobservable subspace (this is formally defined in the next section), our proposed

methodology is applicable to both initial condition formulations.

As stated in the Notation Section 1.6, it can be shown that X =
⊕

(Rm)

(which the vector space for equation (3.3)) is an Inf-D Banach space. The system

theory corresponding to Inf-D systems poses a more significantly challenging task
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than that of the Fin-D system theory (1-D systems) (refer to [101, Chapters I and

II]). However, as shown subsequently, for any ordering index the operator A is

bounded (refer to Subsection 2.4 for definition of bounded operators), and conse-

quently, one can readily extend the results of 1-D systems to the system (3.3) [14,101]

(for example, refer to [101, Lemma I.3]).

Lemma 3.3. The operator A, as defined in the Inf-D system (3.3), is bounded.

Proof. Let G = nmaxnk=1(|Ak|), where |Ak| denotes the norm of Ak and x =

(xj)j∈Z ∈ X . For each row-block of A, set the map mk
I : {1, · · · , n} → Z such

that mk
I (j) determines the position of Aj in the kth row-block of A. It follows

readily that |Ax|∞ = sup
k∈Z
|
∑n

j=1 AjxmkI (j)| ≤ sup
k∈Z

Gmaxnj=1(|xmkI (j)||) = Gsup
k∈Z
|xk|.

Therefore, |Ax|∞ ≤ G|x|∞. This completes the proof of the lemma.

Note that the above lemma is independent from the chosen ordering index.

The map mk
I in the above proof is indeed a combination of two maps; first map

is from {1, · · · , n} to I (i.e., any ordering index), and second, a map from I to Z.

Moreover, The above lemma enables one to formulate the unobservable subspace

of the n-D system (3.1) in a geometric framework (for details refer to Section 3.2)

based on the operator A (and consequently, in terms of Ak, where k = 1, · · · , n).

3.1.3 The FDI Problem of n-D FMII Model

In this subsection, we formulate the FDI problem for the n-D system (3.1). Without

loss of any generality, it is assumed that the system (3.1) is subject to two faults,

and therefore we construct two residuals such that each one is sensitive to only one

fault and is decoupled from the other. Our approach can be extended trivially to

more than two faults.

More precisely, consider the faulty n-D model (3.1). The solution to the FDI

problem of the n-D FMII system can be stated as that of generating two residuals
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rj(i1, . . . , in), j ∈ {1, 2} such that,

∀u, f2 and f1 = 0 then lim∑n
k=1 ik→∞

r1(i1, . . . , in)→ 0, (3.7a)

and if f1 6= 0 then ∃N0 ∈ N such that r1(i1, . . . , in) > ε1; for
n∑
k=1

ik > N0

∀u, f1 and f2 = 0 then lim∑n
k=1 ik→∞

r2(i1, . . . , in)→ 0, (3.7b)

and if f2 6= 0 then ∃N0 ∈ N such that r2(i1, . . . , in) > ε2; for
n∑
k=1

ik > N0,

where ε1 > 0 and ε2 > 0 and N0 ∈ N is a sufficiently large integer (refer to Remark

3.23).

The above residuals are to be constructed by employing the fault detection fil-

ters. For the n-D system (3.1), we consider the following FMII-based fault detection

filter,

δωj(i1, . . . , in) =
n∑
k=1

Fkδkωj(i1, . . . , in) +
n∑
k=1

Kkδku(i1, . . . , in)

+
n∑
k=1

Ekδky(i1, . . . , in), (3.8)

rj(i1, . . . , in) =Hjy(i1, . . . , in)−Mjωj(i1, . . . , in),

where ω(i1, . . . , in) ∈ Ro denotes the state of the filter and is used to define the

residual signal rj(i1, . . . , in). The solution to the FDI problem is now reduced to

that of selecting the filter gains Fk, Kk, Ek, Mj and Hj corresponding to the filter

structure given by (3.8).

Remark 3.4. The detection filter (3.8) can be selected as a full-order (Hj = I) or

as a partial-order (kerHj 6= 0) n-D Luenberger observer. As shown subsequently in

Section 3.3, this level of generality allows one to analytically compare our proposed

methods with the results reported in [99].

Remark 3.5. In this chapter, we investigate the FDI problem by employing two

main steps, namely (i) decoupling the faults, and (ii) designing a filter for each fault.

60



The first step addresses the existence of a subsystem of (3.1) such that it is decoupled

from f2 and sensitive to f1. By the existence of a subsystem, we imply the existence

of n + 1 maps Dk, and H, such that all fault signatures of f2 (namely Lk2 for all

k = 1, · · · , n) are members of the unobservable subspace (defined in the next section)

of the system (H1C, A + D1C) (where A + DC =
[
A1 +D1

1C · · · An +D1
nC

]
).

Moreover, the second step is mainly concerned with the existence of the filter (3.8)

(i.e., the residual generation) such that the stability of the error dynamics is guaran-

teed. Indeed, the second step is mainly concerned with a realization of the detection

filter (as shown subsequently this could be a Luenberger-based filter). In this chapter,

if the first step is solvable for the fault f1 we say that f1 is detectable and isolable.

We use the same procedure for the fault f2 (i.e., if there exists a subsystem of (3.1)

such that it is decoupled from f1 and sensitive to f2, we say that f2 is detectable and

isolable). Finally, we will state that there is a solution to the FDI problem if for

both fault signals f1 and f2 both steps above are solvable.

3.1.4 LMI-based Observer (Detection Filter) Design

As shown in [118], design of a deadbeat observer requires that one works with polyno-

mial matrices (this is not always a straightforward process). Moreover, polynomiyal

matrices face certain difficulties for n ≥ 3 (refer to [92, Section 2]). In this sub-

section, we address the design process for the n-D system observer, or the detection

filter gains, by using the linear matrix inequalities (LMI) properties. These results

will be used subsequently in Section 3.3 to explicitly design an n-D Luenberger de-

tection filter (that can also be formulated as in equation (3.8)) for the purpose of

accomplishing the solution to the FDI problem.

In order to show the asymptotic stability of the state estimation error dynam-

ics, one needs to invoke the following stability lemmas. Lemma 3.6 is the generaliza-

tion of the Proposition 2.1 (and equation (2.7)) in [93], where sufficient conditions
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for the stability of 2-D systems are provided.

Lemma 3.6. (Generalization of [93, equation (2.7)]) Let A =
[
A1 · · · An

]
, Ak ∈

Rm×m (refer to the system (3.1)). The n-D FMII system (3.1) (under the fault free

situation) is asymptotically stable if there exist n symmetric positive definite matrices

Rk ∈ Rm×m, k = 1, · · · , n such that

Ac , AT(
n∑
k=1

Rk)A−R < 0, (3.9)

where R = diag(R1, · · · , Rn).

Proof. Consider the characteristic polynomial matrix p(z) = (I −
∑n

k=1Akzk), z ∈

Cn. By using the Theorem 41 in [119], the system (3.1) is shown to be sta-

ble if and only if the equation det(p(z)) = 0 has no zero in the region U
n

=

{(z1, · · · , zn)| |zk| ≤ 1, k = 1, · · · , n}. We show the results by invoking contra-

diction. Let Ac < 0 and there exists z0 = (z0
1 , · · · , z0

n) ∈ Un
and a non-zero x ∈ Cm

such that p(z0)x = 0. Hence, one can write x = (
∑n

k=1Akz
0
k)x (i.e., x = Axz, where

xz =
[
z0

1I, · · · , z0
nI

]T

x), and

x∗(
n∑
k=1

Rk)x = x∗zA
T(

n∑
k=1

Rk)Axz = x∗z(Ac +R)xz

x∗zRxz = x∗(
n∑
k=1

Rk|z0
k|2)x,

(3.10)

where superscript ∗ is used as the complex conjugate transpose. Therefore, we obtain

x∗(
∑n

k=1Rk)x − x∗(
∑n

k=1Rk|z0
k|2)x = x∗zAcxz, i.e., 0 < x∗(

∑n
k=1Rk(1 − |z0

k|2))x =

x∗zAcxz (since |z0
k| ≤ 1). Consequently, given that Ac is a real matrix there exists

xT
r Acxr > 0, where xr is the real part of xz. This is in contradiction with the

assumption Ac < 0. This now completes the proof of the lemma.

Lemma 3.7. [120, Lemma 3.1] Consider the matrices Φ ∈ Rm×m, P ∈ Rp×m,

Q ∈ Rq×m and the LMI condition Φ + PTΛTQ + QTΛP < 0. Also, define the

matrices Wp and Wq such that the columns of Wp and Wq are bases of kerP and
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kerQ, respectively. There exists a matrix Λ ∈ Rq×p satisfying the previous LMI

condition if and only if WT
p ΦWp < 0 and WT

q ΦWq < 0,

Now consider the n-D system (3.1) under the fault free situation and the

corresponding state estimation observer that is given by,

δx̂(i1, . . . , in) =
n∑
k=1

(Ak +DokC)δkx̂(i1, . . . , in) +
n∑
k=1

Bkδku(i1, . . . , in)

−
n∑
k=1

Dokδky(i1, . . . , in), (3.11)

ŷ(i1, . . . , in) =Cx̂(i1, . . . , in).

It follows readily that the state estimation error dynamics, as defined by e(i, j) =

x(i1, . . . , in)− x̂(i1, . . . , in), is governed by,

δe(i1, . . . , in) =
n∑
k=1

(Ak +DokC)δke(i1, . . . , in). (3.12)

The following theorem and corollary provide an LMI-based condition for existence

of the state estimation observer gains Dok such that the error dynamics (3.12) is

asymptotically stable.

Theorem 3.8. Consider the n-D system (3.1) under the fault free situation. Also,

let Wcn = diag(Wc, · · · ,Wc︸ ︷︷ ︸
n times

) where the columns of Wc ∈ Rm×(m−q) are the basis of

kerC. There exist n maps Dok : Rq → Rn and n symmetric positive definite matrices

Rk (with G =
[
A1 +Do1C · · · An +DonC

]
and R defined in Lemma 3.6) such

that, the LMI GT(
∑n

k=1 Rk)G − R < 0 is satisfied if and only if all Rk satisfy the

LMI condition WT
cnAcWcn < 0, where Ac is defined in (3.9).

Proof. Note that without loss of any generality, it is assumed that C is full row rank,

and m > q that is equivalent to partial state measurement. Let A =
[
A1 · · · An

]
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and Φ =

−(
∑n

k=1Rk)
−1 A

AT −R

. By using the Schur complement lemma, we have

WT
cnAcWcn < 0 if and only if,−(

∑n
k=1Rk)

−1 AWcn

WT
cnA

T −WT
cnRWcn

 =

I 0

0 WT
cn

Φ

I 0

0 Wcn

 < 0. (3.13)

Therefore,
[
0nm×m Inm×nm

]
Φ

 0m×nm

Inm×nm

 = −R < 0, if and only if R > 0 (or Rk >

0 for all k = 1, · · · , n). By defining P =
[
0nq×m Cn

]
and Q =

[
Im×m 0m×nm

]
,

where Cn = diag(C, · · · , C︸ ︷︷ ︸
n times

), and using Lemma 3.7, the LMI condition (3.13) is

satisfied if and only if there exits a matrix Λ =
[
Do1 · · · Don

]
∈ Rm×nq such that,

Φ +

0m×nq

CT
n

ΛT
[
Im×m 0m×nm

]

+

 Im×m
0nm×m

Λ
[
0nq×m Cn

]
=

(−
∑n

k=1Rk)
−1 G

GT R

 < 0.

(3.14)

Again, by using the Schur complement lemma, we have GT(
∑n

k=1Rk)G − R < 0.

This completes the proof of the theorem.

An important corollary to the above theorem and Lemma 3.6 can be stated

as follows.

Corollary 3.9. Consider the n-D system (3.1) under the fault free situation and the

state estimation observer (3.11). If there are n symmetric positive definite matrices

Rk satisfying the LMI condition WT
cnAcWcn < 0, then there exists n maps Dok such

that the error dynamics (3.12) is asymptotically stable.

Proof. Follow directly from the proofs of Theorem 3.8 and Lemma 3.6, and therefore

the details are omitted for sake of brevity.

64



Remark 3.10. Note that by solving the LMI condition WT
cnAcWcn < 0, one can ob-

tain symmetric positive definite matrices Rk. Hence, the state estimation observer

gains Dok are computed by solving the LMI (3.14) (which is an LMI condition in

terms of the gains Dok). Therefore, Corollary 3.9 not only provides sufficient condi-

tions for existence of a state estimation observer, but also provides an approach for

computing the observer gains Dok.

The results of this section will now be used subsequently in Section 3.2 to

address the unobservable subspace of the system (3.1) as well as to provide sufficient

conditions for solvability of the FDI problem, respectively.

3.2 Invariant Subspaces for n-D FMII Models

As described earlier, n-D systems can be represented by Inf-D systems (i.e., the

initial condition is a vector of an Inf-D subspace). In this section, we first use

the Inf-D representation (3.3) to formally define and construct an unobservable

subspace. Next, we define a subspace of the unobservable subspace (this we call as

an invariant unobservable subspace) of the n-D system (3.1) that can be represented

as an infinite sum of the same Fin-D subspaces. Therefore, one can compute the

invariant unobservable subspace (that is, the Inf-D subspace) in a finite number of

steps (that is at most equal to m). Also, it is shown that the invariant unobservable

subspace enjoys an important geometric property that is crucial for solving the FDI

problem.

3.2.1 Unobservable Subspace

The unobservable subspace of the system (3.3) (and consequently of the system

(3.1)) is defined as,

Ng ,
∞⋂
i=0

ker CAi, (3.15)
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where A and C are defined as in (3.3). Note that we define the above unobservable

subspace by following along the steps in [103, page 1013], the results in [101, Chapter

I], and the fact that the operator A in (3.3) is bounded (refer to Lemma 3.3).

One of the main difficulties in geometric analysis of Inf-D systems is the con-

vergence of any developed algorithm that involves computation of certain set of sub-

spaces in a finite number of steps. For example, consider the unobservable subspace

(3.15). In Fin-D systems, the algorithm for computing the unobservable subspace

converges in a finite number of steps [74] (for example, Lemma 5.1). Moreover,

one is generally interested in investigating the FMII models in a Fin-D represen-

tation (3.1). Motivated by the above, below two important subspaces denoted by

N∞ ⊆ Ng and Ns,∞ ⊆ Ng are introduced. The subspaces N∞ and Ns,∞ can be

computed in a finite number of steps. This also allows one to derive necessary and

sufficient conditions for solvability of the FDI problem.

Consider the initial condition x(0) = (. . . , 0, x0, 0, . . .) and

u(i1, . . . , in) =

 u0 ik = 0

0 Otherwise
, (3.16)

where u0 ∈ R` and k = 1, · · · , n. One can show that the state solution of the model

(3.1) under the fault free situation is given by (through generalizing the results

of [85] for n-D systems),

x(i1, . . . , in) = A(i1,...,in)x0 + A
(i1,...,in)
B u0, (3.17)

where the matrices A(i1,...,in) and A
(i1,...,in)
B are defined by the following recursive

expressions,

∆A(i1,...,in) =
n∑
k=1

Ak∆kA
(i1,...,in), A(i1,...,in) = 0 if any ik < 0,

∆A
(i1,...,in)
B =

n∑
k=1

∆kA
(i1,...,in)Bk, A

(0,...,0) = I,

(3.18)
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where by following the notation that is used in equation (3.1) we apply the shift

operators to A(i1,...,in) as

∆A(i1,...,in) = A(i1+1,...,in+1), ∆kA
(i1,...,in) = A(i1+1,...,ik−1+1,ik,ik+1+1,...,in+1) (3.19)

For example, in the case n = 3, we have ∆A(i1,i2,i3) = A(i1+1,i2+1,i3+1) and ∆2A
(i1,i2,i3) =

A(i1+1,i2,i3+1). Based on the solution that is given by (3.17), and considering that

u0 = 0, a finite observability matrix (given that its null space is a finite dimensional

subspace) can be defined as follows,

O ,
[
CT, (CA1)T, (CA2)T, · · · , (CA(i1,...,in))T, · · ·

]T

. (3.20)

Let N , ker O =
⋂
ik≥0

(
kerCA(i1,...,in)

)
. Since dim(N ) ≤ m < ∞, we designate

N as the finite unobservable subspace of the system (3.1). Also, recall from the

generalized n-D Cayley-Hamilton theorem [121] that for all
∑n

k=1 ik ≥ m, one sets

A(j1,··· ,jn) =
∑∑

ik<m
ζi1,...,inA

(i1,...,in), where ζi1,...,in are real numbers. Therefore, for

all
∑n

k=1 jk ≥ m, we have

⋂
∑n
k=1 ik<m

kerCA(i1,...,in) ⊆ kerCA(j1,...,jn). (3.21)

Consequently, N can be computed in a finite number of steps as,

N , ker O =
⋂

ik≥0,
∑n
k=1 ik<m

(
kerCA(i1,...,in)

)
. (3.22)

Now, we consider the following subspace,

N∞ ,
⊕

(N ). (3.23)

It follows that if x0 = (. . . , x−1, x0, x1, . . .) ∈ N∞, then xj ∈ N for all j ∈ Z, and

given the zero input assumption one gets y(i) = 0 for all i ∈ N (in (3.3)). By

considering Ai, where A is defined as in (3.3) and i ∈ N, it can be shown that

N∞ ⊆ Ng. Also, note that although N∞ is an Inf-D subspace, it can be computed
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in a finite number of steps (one only needs to compute N ). However, as explained

in [16, 122] the invariance property (this is addressed in the next subsection) of N

is not lucid (even for the case n = 2). Therefore, in the following a subspace of N

(that is denoted by Ns) is introduced such that it enjoys this geometric property.

To define the subspace Ns one needs the following notation.

Let us express Aα to denote the sequence of multiplications of Ak, where α

is a multi-index parameter that specifies the sequence of the multiplications. For

example, for α = (2, 1, 1, 3, 6), we obtain Aα = A2A1A1A3A6. The notation ||α||

denotes the number of all Ak that are involved in the corresponding multiplications

(for the above example, we have ||α|| = 5). Now, consider the following subspace,

Ns ,
⋂
||α||<m

kerCAα. (3.24)

Similar to the above, let us define Ns,∞ ,
⊕

(Ns). The following lemma shows

that the subspace that is employed in [98–100] as the unobservable (non-observable)

subspace is indeed Ns for the special cases n = 2, 3.

Lemma 3.11. The subspace Ns (as defined in (3.24)) can be computed in a finite

number of steps according to the following algorithm,

V0 = kerC and Vk = (
n⋂
j=1

A−1
j Vk−1) ∩ kerC,

Vm= Ns.

(3.25)

Proof. First, note that V1 = (
⋂n
j=1 A

−1
j kerC) ∩ kerC. In other words, V1 =

(
⋂
||α||=1(Aα)−1 kerC) ∩ kerC, and V2 = V1 ∩ (

⋂
||α||=2(Aα)−1 kerC). Hence, we ob-

tain Vk =
⋂
||α||≤k(A

α)−1 kerC. Note that for every pair of operators C : Rm → Rq

and F : Rm → Rm, one can show that kerCF = F−1 kerC, where F−1 kerC denotes

the inverse image of kerC with respect to F (even if F is non-invertible F−1 kerC

is well-defined). Therefore, by setting F = Aα in the above equations it follows that

Vm = Ns. This completes the proof of the lemma.
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3.2.2 Ak-Invariant Subspaces

As stated in Subsection 3.1.2, the n-D system (3.1) can be represented as an Inf-D

system (3.3) (with u ≡ 0 and f ≡ 0). In order to formulate the corresponding Inf-D

invariant subspaces one needs the next two definitions.

Definition 3.12. [101, Definition I.2 for bounded operators] Consider the Inf-D

system (3.3), where the operator A is bounded (according to Lemma 3.3). The closed

subspace V∞ ⊆ X =
⊕

(Rm) is called A-invariant if AV∞ ⊆ V∞.

Definition 3.13. A subspace V ⊂ Rm is said to be an Ak-invariant subspace for

the n-D system (3.1) if
∑n

k=1(AkV ) ⊆ V , where Ak, k = 1, . . . , n are the state

operators in (3.1).

Note that V is Ak-invariant if and only if it is invariant with respect to all Ak

(i.e., AkV ⊆ V for all k = 1, . . . , n). The following theorem provides the connection

between the Definitions 3.12 and 3.13.

Theorem 3.14. Consider the n-D system (3.1) and the Inf-D system (3.3). Let

V∞ =
⊕

(V ), where V ⊆ Rm. The subspace V∞ is A-invariant if and only if V is

Ak-invariant.

Proof. First, note that every x ∈ V∞ can be expressed as x =
∑∞

j=−∞ xjj, where

xjj = (. . . , 0, 0, xT
j , 0, 0 . . .)

T ∈ V∞ and xj ∈ V . Therefore, one only needs to show

the result for xjj.

(If part): Assume V is Ak-invariant. Consider the Inf-D vector xjj. It follows that

Axjj = (. . . , 0, (Anxj)
T , 0, . . . , (A1xj)

T, 0, 0 . . .)T (where the position of Akxj are

determined from the position of Ak in A. For example, if A1 is at kth row and

jth column, we have A1xj at kth position in the above Inf-D vector). Since V is

Ak-invariant, it follows that Axjj ∈ V∞.

(Only if part): Let AV∞ ⊆ V∞ and x0
0 ∈ V∞. Consequently, x0 ∈ V . Since
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Ax0
0 = (. . . , 0, (Anx0))T, 0, . . . , (A1x0)T, 0, 0, . . .)T ∈ V∞ (where the position of Akxj

are determined from the position of Ak in A. For example, if A1 is at kth row and

jth column, we have A1xj at kth position in the above Inf-D vector), it follows that

Akx0 ∈ V for all k = 1, . . . , n, and consequently V is Ak-invariant. This completes

the proof of the theorem.

Consider subspaces V ⊆ Rm and C ⊆ Rm. If V is the largest Ak-invariant

subspace that is contained in C , we denote V =< C |Ak >. By generalizing the

results in [16] (from 2-D to n-D), it follows that Ns ⊆ N , and Ns is the largest Ak-

invariant subspace contained in kerC. Therefore, one can write Ns =< kerC|Ak >.

Since Ns is Ak-invariant, by invoking Theorem 3.14, Ns,∞ is A-invariant. Therefore,

if x(0) = (· · · , x−1, x0, x1, · · · ) ∈ Ns,∞ (that is, xj ∈ Ns for all j ∈ Z) and zero input,

x(i) ∈ Ns,∞ and y(i) = 0 for all i ∈ N (in equation (3.3)). We designate Ns,∞ as

the invariant unobservable subspace.

Remark 3.15. As stated in Subsection 3.1.1, there are two different types of ini-

tial condition formulations. In this chapter, we use the first formulation that is

compatible with the Inf-D system (3.3). Recall that the second formulation is ex-

pressed as x(· · · , 0, ik, 0, · · · ) = hk(ik) for all k = 1, · · · , n, where ik ∈ N. Now,

let x(· · · , 0, ik, 0, · · · ) ∈ Ns. In this case, the Ak-invariance property of Ns also

ensures that y(i1, . . . , in) = 0. In other words, Ns,∞ is also the invariant unobserv-

able subspace of system (3.1) with the second formulation of the initial conditions.

Therefore, without loss of any generality, one can apply our proposed approach to

both initial condition formulations as provided in Subsection 3.1.1.

3.2.3 Conditioned Invariant Subspaces of n-D Systems

Another important subspace in the geometric FDI toolbox is the conditioned invari-

ant (i.e., the (C,A)-invariant) subspace that is defined next. This definition is an

extension of the one that has appeared and presented in [123, Definition 3.2].
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Definition 3.16. A subspace W∞ =
⊕

(W ) (where W ⊆ Rm) is said to be the con-

ditioned invariant subspace for the n-D system (3.1) if there exist n output injection

maps Dk : Rq → Rm such that (Ak +DkC)W ⊆ W for all k = 1, · · · , n.

In other words, W is [A+DC]k-invariant (i.e., invariant with respect to Ak +

DkC). We designate W as the finite conditioned invariant subspace (since dim(W ) <

∞) of the n-D system (3.1).

Similar to 1-D systems, one can now state the following result.

Lemma 3.17. The following statements are equivalents.

(i) The subspace W∞ is conditioned invariant.

(ii)
∑n

k=1(Ak(W ∩ kerC)) ⊆ W .

(iii) A(W∞ ∩ ker C) ⊆ W∞.

where W∞ =
⊕

(W ).

Proof. (i)⇔ (ii) and (i)⇔ (iii): By definition, there exist n maps Dk such that W

is [A + DC]k-invariant. By utilizing Theorem 3.14, W∞ is Ad-invariant, where for

example

Ad =



. . . . . . . . . · · · · · · · · ·

· · · 0 A1 +D1C 0 · · · An +DnC · · ·

· · · A1 +D1C 0 A2 +D2C · · · An +DnC · · ·

· · · · · · · · · · · · . . . . . .


(3.26)

in which the position Ak+DkC is defined by the position of Ak in A (i.e., the chosen

ordering index). By following along the same lines as in Lemma 3.3, one can show

that Ad is bounded. Consequently, the result of 1-D system is also valid for the Inf-D

system (3.3). Hence, we have A(W∞ ∩ ker C) ⊆ W∞ (which shows that (i)⇔ (iii)).

By considering the structure of A and C it follows that
∑n

k=1(Ak(W ∩kerC)) ⊆ W .
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(iii) ⇔ (i): Since A is bounded, the domain of A is equal to X =
⊕

(Rm), and

therefore, the results of 1-D system are also valid for the Inf-D system (3.3). There-

fore, there exists a bounded operator D such that W∞ is A+DC-invariant. By

considering the structure of W∞ and ker C, it is easy to show that one solution for

D is given by (the position of Dk are determined by the positions of Ak in A)

D =



. . . . . . . . . · · · · · ·

· · · 0 D1 0 · · · Dn 0 · · ·

· · · D1 0 0 · · · Dn · · ·

· · · · · · · · · . . . . . . . . .


(3.27)

Hence, by using Theorem 3.14, the subspace W is [A + DC]k-invariant, and con-

sequently W∞ is a conditioned invariant subspace. This completes the proof of the

lemma.

In the geometric FDI approach, one is interested in conditioned invariant sub-

spaces that are containing a given subspace [41]. By following along the same

lines as in 1-D systems (refer to [112, Section 4.1.1]), let us define all the condi-

tioned invariant subspaces containing a subspace L∞ =
⊕

(L ) (L ⊆ Rm) as

Q(L ) = {W∞| ∃ Dk (Ak + DkC)W ⊆ W and W ⊇ L , k = 1, · · · , n}. It can be

shown that for a given subspace L∞ (or L ), the set Q(L ) is closed under inter-

section, and hence the set Q(L ) has a minimal member as W ∗
∞(L ). The minimal

conditioned invariant subspace containing a given subspace L∞ =
⊕

(L ) (that

is, W ∗
∞(L )) is obtained by invoking the following non-decreasing algorithm that is

provided below,

W 0 = L ,

W i = L +
n∑
k=1

(Ak(W
i−1 ∩ kerC)),

(3.28)

W ∗(L ) = W i0 , i0 ≤ m and W ∗
∞(L ) =

⊕
(W ∗(L )).
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Note that the above algorithm converges in a finite number of steps (since

W i ⊆ Rm, the above algorithm converges in maximum m number of steps). Also, let

W be a finite conditioned invariant subspace. The set of all mapsD =
[
D1 · · · Dn

]
such that W is [A+DC]k-invariant is designated by D(W ).

3.2.4 Unobservability Subspace of n-D Systems

The unobservability subspace [3, Chapter 4 - Theorem 2] is the cornerstone of ge-

ometric FDI approach in 1-D systems. The following definition generalizes and

extends this concept to the FMII n-D models.

Definition 3.18. A subspace S∞ is said to be an unobservability subspace for the n-

D system (3.1) if there are n+1 maps Dk and H such that S =< kerHC|[A+DC]k >

and S∞ =
⊕

(S). We designate S as the finite unobservability subspace of the n-D

system (3.1).

Note that S∞ is also conditioned invariant subspace and an invariant unob-

servable subspace of the systems (C,A) and (HC, A+DC), respectively. For accom-

plishing the goal of the FDI task, one first computes an unobservability subspace

and then obtains the map H [3, Chapter 2 - Theorem 18]. Therefore, it is neces-

sary to compute the unobservability subspace without having any knowledge of H.

Let W ∗ be the minimal finite conditioned invariant subspace containing L . One

can show that the limit of the following algorithm is the smallest unobservability

subspace S∗(L ) (and consequently S∗∞(L )) that contains a given subspace L .

Z 0 = Rm and Z i = W ∗(L ) +
( n⋂
k=1

A−1
k Z i−1 ∩ kerC

)
,

S∗ = Z m,

(3.29)

and S∗∞(L ) =
⊕

(S∗(L )) . Finally, it is worth noting thatD(W ∗(L )) ⊆ D(S∗(L ))

(since S∗(L ) =< kerC + W ∗|[A+DC]k >, and consequently S∗(L ) is [A+DC]k-

invariant).
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To summarize, in this section, we first defined the invariance property of the

n-D system (3.1) that are Inf-D subspaces of the Inf-D system (3.3). Next, an in-

variance unobservable subspace (that is generically equivalent to an unobservable

subspace) Ns,∞ =
⊕

(Ns) was introduced. Moreover, the conditioned and unob-

servability subspaces that are crucial in determining the solution to the FDI problem

have been introduced. By utilizing the above results necessary and sufficient condi-

tions for solvability of the FDI problem are subsequently derived and provided.

3.3 Necessary and Sufficient Conditions for Solv-

ability of the FDI problem

In this section, we first present necessary and sufficient conditions for detectability

and isolability of faults. Next, by employing an LMI-based filter sufficient conditions

for solvability of the FDI problem are presented.

Consider the faulty FMII model (3.1) (i.e., the system is subjected to two

faults f1 and f2) and the detection filter (3.8) designed to detect and isolate the

fault f1. By augmenting the detection filter dynamics (3.8) with the faulty n-D

model (3.1), one obtains,

δxe(i1, . . . , in) =
n∑
k=1

Aekδkxe(i1, . . . , in) +
n∑
k=1

Be
kδku(i1, . . . , in)

+
n∑
k=1

Lk1,eδkf1(i1, . . . , in) +
n∑
k=1

Lk2,eδkf2(i1, . . . , in),

r1(i1, . . . , in) =Cexe(i1, . . . , in),

(3.30)

where xe =
[
xT ωT

1

]T

∈ X e = Rn ⊕ Ro (o refers to the dimension of ω1), Ce =[
HC M

]
and,
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Aek =

 Ak 0

EkC Fk

 , Be
k =

Bk

Kk

 ,
Lki,e =

[
(Lki )

T 0

]T

, i = 1, 2, k = 1, · · · , n.

(3.31)

In this section, by considering the invariance unobservable subspace of the

above augmented an analytical comparison between our proposed approach and the

method developed in [99] is also provided to highlight the strength and capabilities

of our proposed methodology when compared to the currently available results in

the literature.

3.3.1 Main Results

The following lemma provides an important property for the invariant unobservable

subspace N e
s,∞ (and N e

s ) that is associated with the system (3.30).

Lemma 3.19. Consider the n-D system (3.30) and its invariant unobservable sub-

space N e
s,∞. Let Q represent the embedding operator into X e (i.e., Q : Rm → X e

and Qx =
[
xT 0

]T

), and Q = diag(· · · , Q,Q, · · · ). Then Q−1N e
s,∞ is an unob-

servability subspace of the n-D system (3.1).

Proof. First, recall that N e
s,∞ =

⊕
(N e

s ). Note that, Q−1N e
s = S = {x| [ x0 ] ∈

N e
s }, and assume that [ x0 ] ∈ N e

s . According to the fact that N e
s is Aek-invariant,

we have Aek [ x0 ] ∈ N e
s , and if x ∈ kerC then Akx ∈ S and it follows that

Ak(S ∩ kerC) ⊆ S for all k = 1, · · · , n. Therefore, by using Lemma 3.17,

S∞ = Q−1N e
s,∞ =

⊕
(S ) is a conditioned invariant subspace. Moreover, given

that N e
s is contained in kerCe, we have S ⊆ kerHC. Therefore, the subspace

S is a finite conditioned invariant subspace contained in kerHC. Since N e
s is the

largest Aek-invariant subspace in kerCe, it follows that S is the largest [A + DC]k

invariant subspace in kerHC (i.e., S is a finite unobservability subspace of the n-D
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system (3.1)). In other words, S is a finite unobservability subspace of the system

(3.1). This completes the proof of the lemma.

The following theorem provides a single necessary and sufficient condition for

detectability and isolability of faults (i.e., the existence of a subsystem such that it

is decoupled from all faults but one - refer to Subsection 3.1.3 for more details).

Theorem 3.20. Consider the n-D system (3.1) that is subject to two faults f1 and

f2. Also, let L k
1 = span{Lk1} and S∗1 denote the smallest finite unobservability

subspace of the n-D system (3.1) containing
∑n

k=1 L k
2 (this represents the limit of

the algorithm (3.29), where one sets L =
∑n

k=1 L k
2 in the algorithm (3.28)).The

fault f1 is detectable and isolable if and only if the following condition is satisfied,

(
n∑
k=1

L k
1 ) 6⊆ S∗1 (3.32)

Proof. (If part): By the definition of S∗1 , there exist n+1 maps Dk and H such that

S∗1 =< kerH1C|[A + D1C]k >. Since
∑n

k=1 L k
2 ⊆ S∗, it follows that the output of

the system (H1C, A + D1C) is decoupled from f2. In other words, f2 has no effect

on the output of the system as defined above. Now consider the following detection

filter

δω1(i1, . . . , in) =
n∑
k=1

Fkδkω1(i1, . . . , in) +
n∑
k=1

P1Bkδku(i1, . . . , in)

+
n∑
k=1

P1L
k
1δkf1(i1, . . . , in), (3.33)

r1(i1, . . . , in) =M1ω1(i1, . . . , in),

where P1 : Rm → Rm/ S∗1 is the canonical projection of Rm on Rm/S∗1 (for simplicity,

this map is denoted as the canonical projection of S∗1 ). Since S∗1 is [A + D1C]k-

invariant, there exist n maps Apk such that ApkP1 = P1(Ak+D1
kC) for all k = 1, · · · , n.

Also, Fk = Apk +DokM1, where H1 can be obtained from kerH1C = S∗1 + kerC, and
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M1 is the unique solution to M1P1 = H1C. Moreover, Dok denote the filter gains.

Note that P1L
k
2 = 0 (since

∑n
k=1 L k

2 ⊆ S∗1 ).

Now, by defining e1(i1, . . . , in) = P1x(i1, . . . , in)− ω1(i1, . . . , in), one obtains

δe1(i1, . . . , in) =
n∑
k=1

Fkδke1(i1, . . . , in) +
n∑
k=1

P1L
k
1δkf1(i1, . . . , in), (3.34)

r1(i1, . . . , in) =M1e1(i1, . . . , in),

According to the condition in equation (3.32), one has PLk1 6= 0 for at least one

k ∈ {1, · · · , n}. Hence, the residual signal (3.34) is decoupled from the fault f2, and

it follows that the fault f1 is detectable from the output of the residual signal (3.34).

Therefore, the fault f1 is detectable and isolable in the sense of Remark 3.5.

(Only if part): We show the result by contradiction. Assume
∑n

k=1 L k
1 ⊆ S∗1 . By

using Lemma 3.19, it follows that
∑n

k=1 L k
1,e ⊆ N e

s . As discussed in Subsection

3.2.1, N e
s ⊆ N e, and consequently

∑n
k=1 L k

1,e ⊆ N e. In other words, the fault f1

is not detectable. This is in contradiction with the assumption. This completes the

proof of the theorem.

Remark 3.21. It should pointed out that since Lk1, k = 1, . . . , n are defined on R

(refer to the system (3.1)), one obtains dim(L k
1 ) = 1. This shows that the condition

(3.32) is consistent with the condition (2.13) for the case n = 1 that is the 1-D

system.

As stated in Remark 3.5, the FDI problem has two main steps. Theorem 3.20

provides a necessary and sufficient condition for the first step (that is, detectability

and isolability of fault f1). Therefore, condition (3.32) is also necessary for solvability

of the FDI problem. For the second step (that is, designing a filter that can detect f1

and the corresponding error dynamics is asymptotically stable), one needs to design

a detection filter. Design of a residual generator to detect and isolate the fault f1 in

the n-D system (3.1) is reduced to that of detecting this fault in the system (3.33)
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by using an observer. In other words, one needs to determine Dok and consequently

Fk in (3.33), such that the error dynamics (3.34) is asymptotically stable. For the

special case n = 2 one can use deadbeat observers [89, 118]. However, as stated

earlier and emphasized in [92], the algebraic approach (that is based on polynomial

matrices) faces certain difficulties (for n ≥ 3). Moreover, as pointed out in [118],

design of a deadbeat observer for FMII models is based on polynomial matrices.

This method is unfortunately not always numerically or analytically straightforward

(even in the case n = 2) to develop and therefore, in this work we develop a set of

sufficient conditions for solvability of the FDI problem by using an n-D Luenberger

observer.

Towards the above end, let k = 1, · · · , n, P1 is the canonical projection of

S∗1 , and Apk are defined from (3.33). Also, H1 and D1
k denote the operators that

are defined by the smallest unobservability subspace that contains
∑n

k=1 L k
2 . The

operator P−r1 is the right-inverse of P1 and Dok are the state estimation observer

gains as given by the Corollary 3.9. The residual generator n-D detection filter that

is governed by (3.8) is utilized where the filter gains are selected according to,

Fk = Apk +DokM1, Kk = P1Bk, D
e
k = D1

k + P−r1 DokH1, Ek = P1D
e
k, (3.35)

The next corollary provides sufficient conditions for solvability of the FDI problem

by using an n-D Luenberger observer.

Corollary 3.22. Consider the n-D model (3.1), where the condition (3.32) is satis-

fied. Let Ap =
[
Ap1 · · · Apn

]
(Apk are defined in (3.33)), and define Wm such that

the columns of Wm are the basis of kerM1. The FDI problem is solvable if there

exist n symmetric positive definite matrices Rk such that,

WT
m(diag(R1, . . . , Rn)− AT

p (
n∑
k=1

Rk)Ap)Wm < 0. (3.36)

Proof. By invoking Theorem 3.20, the fault f1 is detectable and isolable, and con-

sequently the subsystem (3.33) exists (and is decoupled from all faults but f1).
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Moreover, Corollary 3.9 guarantees the existence of n observer gains Dok that one

can construct for the detection filter (3.8), where the operators are defined as in

(3.33). Therefore, the state estimation error dynamics can be expressed according

to,

δe(i1, . . . , in) =
n∑
k=1

Fkδke(i1, . . . , in) +
n∑
k=1

P1L
k
1δkf1(i1, . . . , in),

r1(i1, . . . , in) = M1e(i1, . . . , in),

(3.37)

where e(i1, . . . , in) = P1x(i1, . . . , in) − ω1(i1, . . . , in). By considering the LMI con-

dition (3.36) and invoking results from Corollary 3.9, the error dynamics (3.37)

is asymptotically stable. If f1 ≡ 0, the residual signal r1 converges to zero as∑n
k=1 ik → ∞. Otherwise, the residual has a value that is different from zero.

Therefore, the condition (3.7a) is satisfied and the FDI problem is solvable. By

following along the same lines as those above one can also design another state es-

timation observer to detect and isolate the fault f2. Therefore, this completes the

proof of the corollary.

Remark 3.23. The parameters εi (refer to equation (3.7)) are determined by using

Monte Carlo simulations as follows. When the detection filter gains are obtained,

one performs Monte Carlo simulations for the healthy system. Subsequently, one

sets εi = Thi, where Thi is the upper bound of ri in all the simulations. Also, N0

is dependent to application and selected such that the effects of the initial condition

errors are eliminated from ri.

Remark 3.24. It is worth noting that one can directly work with Ng (as defined in

(3.15)) and derive necessary and sufficient conditions by following along the same

steps as those that have been proposed in [124]. However, there are two main draw-

backs associated with this approach that are as follows:

1. The invariant subspaces are not necessarily computed in a finite number of

steps.
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2. By factoring out Ng, the resulting subsystem does not necessarily have a Fin-

D representation. For more clarification on n-D realization, refer to the work

in [125].

To summarize, Theorem 3.20 provides a single necessary and sufficient condi-

tion for detectability and isolability of the faults (refer to Remark 3.5) that is also

necessary for solvability of the FDI problem. Then, a set of sufficient conditions for

solvability of the FDI problem by utilizing an n-D Luenberger observer are derived

in Corollary 3.22. Note that the provided results are applicable to any n-D system,

whereas the algebraic approaches need more investigation for the cases n ≥ 3.

Table 3.1 summarizes the main results that are developed and presented in

this subsection.

Table 3.1: Pseudo-algorithm to detect and isolate the fault fi in the n-D system
(3.1).

1. Compute the minimal conditioned invariant subspace W ∗
i

containing all
∑n

k=1 L k
j subspaces such that j 6= i (by invoking

the algorithm (3.28), where L =
∑

j 6=i
∑n

k=1 L k
j ).

2. Compute the unobservability subspace S∗i containing L (by

using the algorithm (3.29)).

3. Compute the operators Di
k such that W ∗

i is the minimal

conditioned invariant subspace of the n-D system (3.1).

4. Find the operator Hi such that kerHiC = S∗i + kerC.

5. If
∑n

k=1 L k
i 6⊆ S∗i , then the fault fi is detectable and isolable

(refer to Remark 3.5 and Theorem 3.20), and

6. If the conditions of Corollary 3.22 are satisfied, there

exists an LMI-based observer for detection and isolation of

the fault fi. The operator of the detection filter is defined

in (3.35).

The output norm of the above detection filter is the residual

that satisfies the condition (3.7).

80



3.3.2 Comparisons with Other Available Approaches in the

Literature

In this subsection, our proposed approach is compared and evaluated with existing

geometric methods in the literature [99,100]. We first show that if the FDI problem

is solvable by using the approach in the above literature, our approach can also

detect and isolate the faults. Furthermore, we provide a numerical example where

it is shown that our approach is capable of detecting and isolating a fault, however,

the necessary conditions provided in [99] are not satisfied.

The equivalent n-D version of the necessary condition (as derived in [99], The-

orems 2 and 3) to detect and isolate two faults can be summarized as follows: The

faults f1 and f2 in the n-D system (3.1) are detectable and isolable according to [99]

if CW ∗
1 ∩ CW ∗

2 = 0, where W ∗
1 and W ∗

2 denote the minimal finite conditioned in-

variant subspaces that contain
∑n

k=1 L k
1 and

∑n
k=1 L k

2 , respectively. It should be

pointed out that the observability assumption of (C, A) is a fundamental require-

ment and condition in [99] (although it was stated in [99] that this assumption was

made for simplicity of the presentation). The main reason for the above limitation

lies on and is due to the fact that the approach in [99] is based on results of [50].

However, as stated in [50] the observability assumption is quite a crucial and critical

condition (refer to Section III, Lemma 5, Proposition 6 and Theorem 7 in [50]).

For further illustration and clarification of the above serious concern consider

the following 3-D system,

81



x(i+ 1, j + 1, k + 1) =

0 1

0 0

x(i, j + 1, k + 1) +

0 0

0 1

x(i+ 1, j, k + 1)

+

0 0

0 1

x(i+ 1, j + 1, k) +

1

0

 f1 +

0

1

 f2, (3.38)

y(i, j, k) =
[
0 1

]
x(i, j, k).

We have W ∗
1 = L1 = kerC, W ∗ = L2, and consequently CW ∗

1 ∩ CW ∗
2 = 0.

Therefore, the sufficient condition for solvability of the FDI problem under the zero

initial condition in [99] (Theorem 2) is satisfied. However, it is easy to verify that

L1 ⊆ N , and consequently f1 is not even detectable (in other words, f1 has no effect

on the output signal). It should be pointed out that our proposed methodology does

not suffer from the above limitation and restriction.

We are now in a position to state the following theorem.

Theorem 3.25. Consider the n-D system (3.1) and assume that the FDI problem is

solvable by using the approach that is proposed in [99]. Then the approach proposed

in this work can also detect and isolate the faults in the system (3.1).

Proof. According to Theorem 3 in [99], CW ∗
1 ∩ CW ∗

2 = 0, and W ∗
1 and W ∗

2 are

internally/externally stabilizable. Therefore, there exist n maps Dk such that W ∗
1

and W ∗
2 are both [A + DC]k-invariant, and the system (A1 + D1C, · · · , An + DnC)

is stable (that is, the corresponding n-D system is asymptotically stable). Since

CW ∗
1 ∩ CW ∗

2 = 0, there exists a map H such that HCW ∗
1 = CW ∗

1 and HCW ∗
2 = 0

(i.e., kerH = CW ∗
2 and H|CW ∗1

= I). Let N h
s denote the invariant unobservable

subspace of (HC, A + DC). It follows that N h
s ∩ W ∗

1 = 0. Note that N h
s is an

unobservability subspace of (C, A) containing
∑n

k=1 L k
2 , and since S∗1 is the smallest

unobservability subspace containing
∑n

k=1 L k
2 , it follows that

∑n
k=1 L k

1 6⊆ S∗1 . Also,

since (A1 +D1C, · · · , An +DnC) is stable, it can be shown that (Ap1, · · · , Apn) is also
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stable, where P [Ak+DkC] = ApkP and P is the canonical projection of S∗1 . Therefore,

one can also construct an observer for the quotient system (3.33) to detect and

isolate the fault f1 (by choosing Dok = 0 for all k = 1, · · · , n). By following along

the same lines, one can detect and isolate the fault f2. This completes the proof of

the theorem.

Remark 3.26. Theorem 3.25 shows that our proposed approach can detect and iso-

late faults that are detectable and isolable by using the geometric method in [99].

However, below an example is provided where this approach fails whereas our pro-

posed approach can still detect and isolate the faults.

Illustrative Example (Limitations of the Method in [99])

Consider the 3-D system (3.1) that is subjected to two faults f1 and f2 where,

A1 =

 0 0
0 0.5 0.5I2×2

02×2 02×2

, A2 = 0.5

02×2 02×2

I2×2 I2×2

, A3 = 0.5I4×4, Li1 = Li2 = 0, i = 2, 3,

B1 = B2 = B3 = 0, L1
1 = [0, 0, 0, 1]T, L1

2 = [0, 0,−1, 1]T, C =

1 0 0 0

0 0 0 1

.

The necessary condition to detect and isolate the fault f1 by using the approach

in [99] is CW ∗
1 ∩CW ∗

2 = 0. Since L 1
1 ,L

1
2 6∈ kerC, by invoking the algorithm (3.28),

one obtains W ∗
1 = L1 and W ∗

2 = L2. It follows that, CW ∗
1 ∩CW ∗

2 = span{[0, 1]T} .

Therefore, the necessary condition in [99, Theorems 2 and 3] is not satisfied. In

other words, the fault f1 cannot be detected and isolated by using the detection

filter (3.8), if one restricts the filter to the case with M = C (or H = I), according

to the required results in [99].

Finally, it is now shown and demonstrated that one can detect and isolate both

faults f1 and f2 by using our proposed methodology. Towards this end, by invoking

the algorithm (3.29), one can write S∗1 = L 1
2 (that is, the finite unobservability

subspace containing L 1
2 ) that satisfies the condition (3.32). By considering D1 =
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 0 0 0 0

0.5 −0.5 0 0

T

, D2 =

0 0 0 0

0 0 0.5 −0.5

 and D3 = 0, W ∗
2 is [A + DC]k-

invariant. Also, since kerC + S∗1 = kerH1C and M1P1 = H1C, one gets H1 = [1, 0]

and M1 = [1, 0, 0]. Hence, the quotient subsystem (3.33) that is only affected by the

fault f1 is given by

Ap1 =


0 0

√
2

2

0 0.5 0

0 0 0

 , Ap2 =


0 0 0

0 0 0
√

2
4

√
2

4
0.5

 , Ap3 = 0.5I, B1 = B2 = B3 = 0. (3.39)

Since the triple (Ap1, Ap2, Ap3) is stable (since det(I − z1A1 − z2A2z3A3) 6= 0 for

all |zj| ≤ 1, j = 1, 2, 3 - [119, Theorem 41]), by considering Do1 = Do2 = 0, the

detection filter for the fault f1 (as given by equation (3.8)) is obtained according to,

ω1(i1 + 1, i2 + 1, i3 + 1) =Ap1ω1(i1, i2 + 1, i3 + 1) + Ap2ω1(i1 + 1, i2, i3 + 1)

+ Ap3ω1(i1 + 1, i2 + 1, i3),

r1(i, j) =M1ω1(i, j)−H1y(i, j).

(3.40)

By following along the same procedure, one can also design a detection filter to

detect and isolate the fault f2. Therefore, our proposed approach can accomplish

the FDI objectives while the approach that is proposed in [99] cannot achieve this

goal.

Remark 3.27. All the conditions for solvability of the FDI problem in the literature

(for both 1-D, 2-D and 3-D systems) and also our proposed conditions (for n-D

systems) are generic, although this fact is not explicitly mentioned. In other words,

for every system that satisfies the proposed conditions in the literature (i.e. [89, 91,

99]) or our proposed conditions, the developed methods can detect and isolate almost

all the fault signals. For clarification, consider the faulty model (3.1), where x ∈ R2,

A1 = A2 = 0.4 ∗ I, B1
1 = L1

1 = [1, 1]T, B2
2 = L2

2 = [0, 1] and C = [1,−1]T. Let the

initial condition x(0) = 0 and f1(i, j) = 1 for all i+j ≥ 0. It follows that y ≡ 0, and
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consequently f1 is not detectable. However, below we show that sufficient conditions

in the literature [89, 91, 99] as well as our proposed conditions are still all satisfied.

1. (Conditions in [89] and [91]). It follows that N(z1, z2)PHB(z1, z2) = 0,

where N(z1, z2) =

−1 0 0.4(z1 + z2)− 1

0 1 0.4(z1 + z2)− 1

, and consequently the condition

of Theorem 1 in [91] is also satisfied.

2. (Conditions in [99]). By following the algorithm (3.28) we obtain W ∗
1 = L1

and W ∗
2 = L2. It follows that CW ∗

1 ∩CW ∗
2 = 0, and consequently the condition

in [99] is also satisfied.

3. (Our proposed Conditions) By following the algorithm (3.29) we obtain S∗1 =

L1 and S∗2 = L2. It follows that S∗1 ∩L2 = 0, and consequently the condition

(3.32) is also satisfied.

To summarize, in this section we have developed and presented a solution

to the FDI problem of n-D systems by invoking an Inf-D framework for the first

time in the literature and by utilizing invariant subspaces and derived necessary

and sufficient conditions for solvability of the problem. It was shown that if the

sufficient conditions for solvability of the FDI problem that are provided in [99,100]

are satisfied, then our proposed approach can also detect and isolate the faults.

However, as shown above there are certain systems that the method in [99] are not

applicable to and capable of detecting and isolating faults, whereas our proposed

approach can solve this problem successfully.

3.4 Simulation Results

In this section, we apply our proposed FDI methodology to a heat transfer process

[75,126]. Figure 3.1 shows a two-line parallel heat transfer system. This process can
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Figure 3.1: The two-line parallel heat transfer process that is considered in this
section.

be considered as a model for the heat transfer in a thermal-hydraulic system and

heat exchangers.

In this section, we verify the necessary and sufficient conditions that are derived

in the previous section, and also design a set of filters to detect and isolate faults

under both full and partial state measurement scenarios (this is to be realized by

an appropriate selection of the output matrix C).

The heat transfer system is usually subject to two different types of faults,

namely the fouling and the leakage [126]. The mathematical model of a typical heat

transfer system is governed by the following hyperbolic PDEs,

∂Tf
∂t

= −αf
∂Tf
∂z
− β(Tf − Tg)− f2(z, t),

∂Tg
∂t

= −αg
∂Tg
∂z
− β(Tg − Tf ) + f1(z, t) + f2(z, t),

(3.41)

where z ∈ [0, 1], and Tf and Tg denote the temperature of the cold (fuel) and the hot

(exhaust gas) sections, respectively. The coefficients αf and αg are proportional on

the speed of the fluid and the gas, respectively, and the coefficient β is related to the

heat transfer coefficient of the wall [126]. Moreover, f1 and f2 denote the leakage and

the fouling effects, respectively. Finally, it is assumed that the boundary conditions

(the inlet temperature) Tf (t, 0) and Tg(t, 0) are given and only the outer section (i.e.

Tg) is subject to the leakage.
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For the purpose of conducting simulations, the parameters in equation (3.41)

are taken as αf = αg = β = 1. Also, by considering ∆z = ∆t = 0.1, and following

along the same lines as in subsection 2.5.1, one can discretize the system (3.41) as,

x(i + 1, j + 1) =

02×2 I2×2

02×2 02×2

x(i, j + 1) +

02×2 02×2

I2×2
−0.1 0.1
0.1 −0.1

x(i + 1, j) + L1
1f1(i + 1, j)

+ B1
2u(i + 1, j) + L1

2f2(i + 1, j),

y(i, j) =Cx(i, j), (3.42)

where L1
1 = [0, 0, 0, 1]T, L1

2 = [0, 0,−1, 1]T and x(i, j) = [Tg((i− 1)∆z, j∆t), Tf ((i−

1)∆z, j∆t), Tg(i∆z, j∆t), Tf (i∆z, j∆t)]
T. Finally, one obtains B2 =

 02×2

1.1 −0.1
−0.1 1.1

,

u(0, j) = [Tf (0,∆t), Tg(0,∆t)]
T and u(i, j) = u(0, j) for all i.

We first assume that both temperatures Tf and Tg are available for mea-

surement along the spatial coordinates at discrete points (i.e., Tf (i∆z, j∆t) and

Tg(i∆z, j∆t) are available from sensors). Next, we consider the case where only the

outer temperature (that is, Tg) is available for measurement. As we shall show sub-

sequently, in the latter case by using the 1-D approximate ODE model (for example,

as in [127]), the faults f1 and f2 are not isolable, whereas by using our proposed

n-D FDI methodology one can detect and isolate both faults.

3.4.1 FDI of a Heat Transfer System by Using Full State

Measurements

Let us assume that both temperatures (namely, Tf and Tg ) are available for mea-

surement. Therefore, one can select the output matrix as C =

1 0 0 0

0 0 0 1

.
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Detectability and Isolability Conditions

By applying the algorithm (3.28), the minimal finite conditioned invariant subspace

containing L = span{L1
2} is obtained as W ∗

2 = L 1
2 , and by applying the algorithm

(3.29), one obtains S∗1 = W ∗
2 = L 1

2 . It follows that L 1
1 ∩ S∗1 = 0. Therefore, the

sufficient condition of Theorem 3.20 is satisfied. By following along the same lines

the necessary and sufficient condition for detectability and isolability of the fault f2

can also be shown to be satisfied.

FDI 2-D Luenberger Filter Design

As stated earlier, we are interested in designing 2-D Luenberger detection filters by

using the LMI condition that is proposed in the Subsection 3.1.4. In this part of

the chapter, we design a filter for detecting and isolating the fault f1 (without loss

of any generality, by following along the same lines as conducted below one can also

design a filter to detect and isolate the fault f2). The 2-D detection filter must be

decoupled from the fault f2 (refer to the conditions in equation (3.7)). As stated

above, the finite unobservability subspaces containing the subspace L 1
2 is obtained

by using the algorithm (3.29) and is given by S∗1 = W ∗
2 = L 1

2 .

The output injection matrices D1
1 and D1

2 for W ∗
2 are to be derived such that

W ∗
2 is [A + D1C]1,2-invariant. Therefore, one can write (A1 + D1

1C)W c
2 = 0 and

(A2+D1
2C)W c

2 = 0, where the columns of W c
2 are the basis of W ∗

2 ∩(W ∗
2 ∩kerC)⊥. In

other words, for the above example, we have W c
2 = L1

2. One solution to D1 and D1
2 is

D1
1 =

0 0 0 0

1 −1 0 0

T

and D1
2 =

0 0 0 0

0 0 −0.2 0.2

T

. Also, let P1 =


1 0 0 0

0 1 0 0

0 0 1 1


(which is the canonical projector of the subspace S∗1 ), where P1 is used in equation

(3.33). By using kerH1C = S∗1 + kerC and M1P1 = H1C, we have H1 = [1, 0, 0]
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and the output matrix M1 becomes M1 = [1, 0, 0]. Hence, the factored out 2-D

system is now expressed as,

ω(i + 1, j + 1) =


0 0 −1.42

0 0 0

0 0 0

ω(i, j + 1) +


0 0 0

0 0 0

−0.7 −0.7 0

ω(i + 1, j)

+


0 0

0 0

0.7 0.7

u(i + 1, j) +


0

1

0

 f1(i + 1, j),

yp(i, j) = [1, 0, 0]ω(i, j), (3.43)

where ω(i, j) = P1x(i, j). It is straightforward to show that the positive defi-

nite matrices R1 = diag(0.4, 1, 2.133) and R2 = diag(0.4, 2.15, 0.86) satisfy the

inequality WT
cd
ACWcd < 0. By using Remark 3.10, one can obtain Do1 = 0 and

Do2 =
[
0 0 −0.7

]T

. Therefore, the filter to detect and isolate the fault f1 is given

by,

ω1(i+ 1, j + 1) =


0 0 −1.42

0 0 0

0 0 0

ω1(i, j + 1) +


0 0 0

0 0 0

−0.7 −0.7 0

ω1(i+ 1, j)

+


0 0

0 0

0.7 0.7

u(i+ 1, j) +Do2P1y(i, j + 1),

r1(i, j) = M1ω1(i, j)−H1y(i, j).

Designing a filter to detect and isolate the fault f2 follows along the same lines as

those given above for the fault f1. These details are not included for brevity.
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Threshold Computation

Due to presence of input and output noise, disturbances, and uncertainties in the

model, the value of the residual rk(i, j) is not exactly equal to zero under the fault

free situation. Therefore, to reduce the number of false alarm flags one needs to

apply threshold bands to the residual signals. In this subsection, we present an

approach for determining the thresholds that are needed for achieving the FDI task.

For 1D systems, there are a number of approaches for computing a threshold, e.g.

based on the maximum or the root mean square (RMS) of the residual signal [128].

In this chapter, we use the maximum residual norm. However, one can also apply

the RMS approach to 2-D systems.

Consider the FMII 2-D model (3.1) subject to the fault free situation. The

threshold thk is then determined from,

thk = Max
`<N0

|r`k(i, j)| , for i, j ≤ N1 (3.44)

where | · | denotes a norm function (in this chapter we use the norm-2), N0 is the

number of the Monte Carlo simulations (refer to [13]) that are used to determine

the threshold, r`k(·, ·) denotes the signal of kth residual in the `th length and N1 is a

sufficiently large number.

By utilizing predefined thresholds that are denoted by thk, k = 1, 2, the FDI

logic can be summarized as follows,

if r1 > th1 ⇒ the fault f1 has occurred.

if r2 > th2 ⇒ the fault f2 has occurred.

(3.45)

Let us now consider two scenarios. In the first scenario, a single fault f1 with

the severity of 1 occurs at (i = 5 and j ≥ 60). In the second scenario, multiple

faults f1 and f2 with the severity of 1 occur at (i = 5 and j ≥ 50) and (i = 5

and j ≥ 70), respectively. The residual r1 for the first scenario is shown in Figure
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Figure 3.2: The residual signal r1 for detecting and isolating the fault f1.

3.2. For the second scenario, the results are shown in Figure 3.3. The thresholds are

determined by conducting Monte Carlo simulations [13] corresponding to the healthy

2-D system. As shown in Figures 3.2 and 3.3, our proposed methodology can detect

and isolate the faults in both single- and multiple-fault scenarios (according to the

FDI logic that is given by equation (3.45)).

3.4.2 FDI of a Heat Transfer System Using Partial State

Measurements

In this section, we assume that only the outer temperature (Tg) is available for

measurement. This corresponds to a more practical and physically feasible scenario

in various applications (sensing the inner temperature requires a more sophisticated

hardware). In this case, we set C =

0 1 0 0

0 0 0 1

 (in other words, we measure Tg(i−

1, j) and Tg(i, j)). In this subsection, we demonstrate and illustrate the capabilities
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Figure 3.3: The residual signal r2 for detecting and isolating the fault f2.

of our proposed FDI approach based on the 2-D system modeling, whereas it is shown

that by using a 1D approximation of the PDE system (3.41) the FDI problem cannot

be solved.

1-D Approximation of the Heat Transfer System

The hyperbolic PDE system (3.41) can be approximated by applying discretization

through the z coordinates as follows. Let ` denote the length of the heat transfer

system that is discretized into N equal intervals (i.e., ∆z = `
N

). By using the

approximation ∂Tg(k∆z,t)

∂z
= Tg(k∆z,t)−Tg((k−1)∆z,t)

∆z
, one can represent the PDE system

(3.41) by the following 1D approximate model,

ẋ(t) = Ax(t) +Bu(t) +
N∑
k=1

(Lk1f
k
1 (t) + Lk2f

k
2 (t)),

y(t) = Cx(t),

(3.46)
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where x(t) =
[
Tg(∆z, t), Tf (∆z, t), · · · , Tg(N∆z, t), Tf (N∆z, t)

]T

∈ R2N , fki (t) =

f1(k∆z, t) (i = 1, 2) andB =

1, 0, 0, 0, · · · , 0

0, 1, 0, 0, · · · , 0

T

. Also, Lk1 = [0, · · · , 0︸ ︷︷ ︸
(k−1)

,−1, 1, 0, · · · ]T,

and the fault signatures Lk2 are 2N -dimensional vectors such that only the kth ele-

ment is 1 and the rest are zeros. Moreover,

A =



A1 0 0 · · ·

A2 A1 0 · · ·

0 A2 A1 · · ·

0 0
. . .

. . .
. . .


, C =


1 0 0 0 · · ·

0 0 1 0 · · ·

0 0 0 0
. . .

 (3.47)

in which A1 =

−1+∆z
∆z 1

1 −1+∆z
∆z

 and A2 =

− 1
∆z 0

0 − 1
∆z

. Now, consider the faults

fk1 and fk2 . It can be shown that W ∗
2 = span{Lk1, Lk2} , where W ∗

2 is the minimal

conditioned invariant subspace containing L k
2 (from the 1-D system perspective).

Consequently, S∗1D ∩L k
1 6= 0 (S∗1D denotes the unobservability subspace containing

L k
2 in the 1D system sense). Consequently, the faults fk1 and fk2 are not isolable.

However, we show below that the faults can be detected and isolated if one approx-

imates the system (3.41) by using the 2-D model representation.

2-D Representation of the Heat Transfer System

Let us set x1(i, j) = Tg(i, j) + ∆t
∆z
f1(i, j) and x2(i, j) = Tf (i, j), so that the system

(3.41) is approximated by the system (3.42) where all the operators are defined

as before except for L1
1 =

[
0 1 0 0

]
and C =

0 1 0 0

0 0 0 1

. Note that since

only the state Tg is assumed to be available for measurement, we sense Tg(i− 1, j)

and Tg(i, j). By applying the algorithm (3.29), where L = L 1
2 , one gets S∗1 =

span{L1
2,
[
1 0 0 0

]T

,
[
0 0 1 1

]T

} . Since, L 1
1 ∩ S∗1 = 0, the fault f1 is both

detectable and isolable (according to Theorem 3.20). It should be noted that by
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Figure 3.4: The residual signal r1 for detecting and isolating the fault f1.

applying the approaches in [89, 91, 99], one can also detect and isolate the fault f1.

By following along the same lines as the ones given earlier one can show that the fault

f2 is also detectable and isolable, where one can design the required detection filters.

Figures 3.4 and 3.5 depict the simulation results for the scenarios that presented

above. As can be observed from Figures 3.3 and 3.5, it follows that fewer available

information (recall that both Tf and Tg are measurable in Figure 3.3, whereas in

Figure 3.5, only Tg is measurable) results in a situation where the spatial coordinate

of a fault cannot be estimated accurately.

3.5 Summary

The FDI problem for n-D systems represented by the Fornasini-Marchesini model

II was investigated In this chapter. In order to derive the necessary and sufficient

conditions for solvability of the FDI problem, the notion of the conditioned invari-

ant and unobservability subspace of 1-D systems was generalized to n-D systems by
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Figure 3.5: The residual signal r2 for detecting and isolating the fault f2.

using an Inf-D framework and representation. Moreover, algorithms for computing

and constructing these subspaces are introduced and provided that converge in a

finite and known number of steps. By applying the LMI approach, sufficient condi-

tions for existence of an asymptotically convergent n-D state estimation observer is

derived. Necessary and sufficient conditions for solvability of the FDI problem are

also provided. It was shown that although the sufficient conditions for applicability

of the currently available geometric results in the literature are also sufficient for

our proposed approach to accomplish the FDI goal, however, there are n-D systems

where the geometric approaches in the literature are not applicable to detect and

isolate the faults, whereas our approach can still achieve the FDI objective and

goal. Finally, simulation results are provided for the application of our proposed

FDI methodology to a heat transfer process to demonstrate and illustrate the capa-

bilities and advantages of our proposed solution as compared to the alternative 1-D

representation and 1-D FDI approaches.
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Chapter 4

Invariant Subspaces of Riesz

Spectral (RS) Systems with

Application to Fault Detection

and Isolation

A large class of parabolic PDE systems, such as reaction-diffusion processes can be

represented as a RS system in the Inf-D framework. Compared to Fin-D systems, the

geometric theory of Inf-D systems to address certain fundamental control problems,

such as disturbance decoupling and FDI, is quite limited due to existence of vari-

ous types of invariant notions and complexity of working with them. Interestingly

enough, these invariant concepts are equivalent in Fin-D systems, although they are

different in Inf-D representation. In this chapter, first the equivalence of various

types of invariant subspaces that are defined for RS systems is investigated. This

enables one to define and specify the unobservability subspace for the RS system.

Specifically, necessary and sufficient conditions are derived for equivalence of various

types of conditioned invariant subspaces. Moreover, by using duality properties the
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controlled invariant subspaces are investigated and necessary and sufficient condi-

tions of equivalence of various types of controlled invariant subspaces are addressed.

It is shown that finite-rank output operator enables one to derive algorithms for

computing the invariant subspaces that under certain conditions, and unlike meth-

ods in the literature, converge in a finite number of steps. An FDI methodology for

RS systems is then developed by using a geometric approach where the FDI problem

is formally investigated by invoking the introduced invariant subspaces. Finally, the

necessary and sufficient conditions for solvability of the FDI problem are provided.

4.1 RS Systems

In this section, we review some of the basic concepts that are associated with a class

of RS systems that will be considered in this chapter. This class of RS is mainly

categorized by the state operator A and the output operator C as follows.

Consider the following Inf-D system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t),

(4.1)

where x(t) ∈ X , u(t) ∈ Rm and y(t) ∈ Rq denote the state, input and output

vectors, respectively, and X is a real Inf-D separable Hilbert space equipped with

the dot-product < ·, · >. Moreover, we consider the following finite rank output

operator

C =
[
< c1, · >,< c2, · >, · · · , < cq, · >

]T

, (4.2)

where ci ∈ X .

In this chapter, we assume that the model (4.1) represents a well-posed system

that is suitable from practical point of view. This implies that the solution of system

(4.1) is continuous with respect to the initial conditions for all u(t) ∈ Rm [14]. This
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assumption is equivalent to stating that A is a closed infinitesimal generator of a

strongly continuous (C0) semigroup TA(t).

The solution of system (4.1) is given by x(t) = TA(t)x0 +
∫ t

0
TA(t− s)Bu(s)ds

[14], where x0 ∈ X denotes the initial condition. The following lemma provides an

important feature and property of the Riesz basis (refer to Definition 2.18).

Lemma 4.1. [14, Lemma 2.3.2-b] Consider the Riesz basis {φi}i∈I of the Hilbert

space X (I ⊆ N). Then every z ∈ X can be uniquely represented as z =
∑

i∈I <

z, ψi > φi, where ψi is biorthonormal vector to φi for all i ∈ I.

By following the same steps as in Subsection 2.1, one can define the following

projection operator for each eigenvalue λi of A [129], namely

Pi : X → X , Pi =
1

2πj

∫
Γi

(λI − A)−1dλ, (4.3)

where i ∈ Iλ (Iλ is an index set for σ(A)), Γi is a simple closed curve surrounding

only the eigenvalue λi. This represents the projection on the subspace of general-

ized eigenvectors of A corresponding to λi, that is, the subspace spanned by all φi

satisfying (λiI − A)nφi = 0, for some positive integer n.

Definition 4.2. [129] The operator A is called a regular RS operator, if

1. All but finitely many of the eigenvalues (with finite multiplicity) are simple.

2. The (generalized) eigenvectors of the operator A, {φi}i∈I, form a Riesz basis

for X (but defined on the field C), and consequently,
∑

i∈Iλ Pi = I (that is an

identity operator on X ).

Remark 4.3. As we shall see subsequently, to derive a necessary condition for solv-

ability of the FDI problem, it is necessary that a bounded perturbation of A (that is,

A+D where D is a bounded operator) is also a regular RS operator. This property

holds if
∑

i
1
d2i
<∞, where di = infλ∈σ(A)−{λi} |λ− λi| [129, Theorem 1]. Therefore,

98



in this chapter it is assumed that the operator A satisfies the above condition. It

should be pointed out that a large class of RS systems, including the discrete RS

systems satisfy this condition [109].

Example 4.4. Regular RS operator:

Consider the operatorsA1 : X1 → X1,A2 : X2 → X2,A1 = diag(−1,−4,−9, · · · ,−k2, · · · )

and A2 = diag(−4,−16,−36, · · · ,−(2k)2, · · · ), where X1 = {e1
i }i∈N and X2 =

{e2
2i}i∈N (for k = 1, 2, eki is an Inf-D vector where all elements are zero except

ith element that is one). It follows that σ(A1) = {−1,−4,−9, · · · }, and σ(A2) =

{−4,−16,−36, · · · }. Moreover, {e1
i }i∈N and {e2

i }i∈N are the eigenvectors of A1 and

A2, respectively. It follows that all the eigenvalues are simple and eigenvectors of A1

and A2 span X1 and X2, respectively. Also, it follows that the condition in Remark

4.3 is satisfied (since di ≥ i for all i and
∑

i∈N
1
i2
<∞). Therefore, the operators A1

and A2 are regular RS operators.

If the operator A in system (4.1) is a regular RS operator and the operator B

is bounded and finite rank we designate the system (4.1) as a regular RS system.

Moreover, the system (4.1) is well-posed if and only if sup
λ∈σ(A)

λ <∞ that is a feasible

assumption from the applications point of view [2]. Also, according to Definitions

2.18 and 4.2, one can show that [109]

A =
∑
i∈Iλ

λi

ni∑
k=1

< ·, ψi,k > φi,k, (4.4)

where ni denotes the number of (generalized) eigenvectors corresponding to the

eigenvalues λi (if λi is a distinct eigenvalue then ni = 1, and if λi is repeated we have

ni > 1). Also, φi,k and ψi,k are the (generalized) eigenvectors and the corresponding

biorthonormal vectors of λi, respectively.

Given that we are interested in RS systems that are defined on the field R, we

need to work with eigenspaces instead of eigenvectors (eigenvalues and eigenvectors

in (4.4) can be complex). If an eigenvalue is real, the corresponding eigenspace is
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equal to PiX , where Pi is the corresponding projection that is defined in (4.3). Let

λ = a + jb and λ = a − jb be a pair of complex eigenvalues of A. Since A is a

real operator, it is easy to show that if φ = v1 + jv2 is a (generalized) eigenvector

corresponding to λ, then φ = v1−jv2 is a (generalized) eigenvector corresponding to

λ (the conjugate of λ). The corresponding real eigenspace to λ and λ is constructed

by span{vi1, vi2} n
i=1, where vi1 ± jvi2 correspond to the (generalized) eigenvectors of

A, and n denotes the algebraic multiplicity of λ. We denote the real eigenspace

of A corresponding to λi by Pi. It should be pointed out that dim(Pi) = ni

and dim(Pi) = 2ni for real and complex eigenvalue λi, respectively (where ni is

the algebraic multiplicity of λi). Note that Condition 3 in Definition 4.2 implies

that
∑

i∈Iλ Pi = X (defined on R). Also, we have Pi ⊆ D(A) and APi ⊆ Pi.

Moreover, we designate the subspace Ei ⊆Pi as a sub-eigenspace if AEi ⊆ Ei.

Remark 4.5. It is worth noting that the only proper sub-eigenspace of an eigensapce

corresponding to a simple eigenvalue is 0. In other words, let P be an eigenspace

corresponding to a simple eigenvalue λ. If E ⊆ P and E 6= P, then AE ⊆ E

implies E = 0.

4.2 Invariant Subspaces

Invariant subspaces play a prominent role in the geometric control theory of dy-

namical systems [41,74,101,130]. As stated earlier, for the FDI problem one works

with three invariant subspaces, namely A-invariant, conditioned invariant, and un-

observability subspaces. Also, to investigate the disturbance decoupling problem

(refer to [74] for more detail), one deals with controlled invariant and controllabil-

ity subspaces that are dual to conditioned invariant and unobservability subspaces,

respectively [3]. In the literature, A-invariant, conditioned and controlled invari-

ant subspaces have been introduced for Inf-D systems [103, 105, 110, 130]. Due to
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the complexity of Inf-D systems, various kinds of invariant subspaces are available

(although these are all equivalent in Fin-D systems). The necessary and sufficient

conditions for equivalence of A-invariant subspaces have been obtained in the liter-

ature [14]. However, for equivalence of conditioned invariant subspaces, the results

that are available are only limited to sufficient conditions.

In the following subsections, we first review invariant subspaces and provide

necessary and sufficient conditions for equivalence of conditioned invariant subspaces

for regular RS systems. Then, by using duality properties, the necessary and suffi-

cient conditions for equivalence of controlled invariant subspace are formally shown.

Moreover, an unobservability subspace for RS systems is also introduced.

Generally, for Inf-D systems the algorithms that are developed to compute

invariant subspaces require an infinite number of steps to converge. In this section, it

is shown that the finite-rankness of the output operator enables us, for the first time

in the literature, to develop an algorithm for computing the conditioned invariant

subspace that converges in a finite number of steps.

4.2.1 A-Invariant Subspace

There are two different definitions that are related to the A-invariance property.

Unlike Fin-D systems, these definitions are not equivalent for Inf-D systems. In this

subsection, we review these definitions and investigate various types of unobservable

subspaces for the RS system (4.1).

Definition 4.6. [130]

1. The closed subspace V ⊆ X is called A-invariant if A(V ∩D(A)) ⊆ V .

2. The closed subspace V ⊆ X is TA-invariant if TA(t)V ⊆ V for all t ∈ [0,∞),

where TA denotes the C0 semigroup generated by A.
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In Fin-D systems, items 1) and 2) in the above definition are equivalent, how-

ever for Inf-D systems, item 2) is stronger than item 1). In other words, every TA-

invariant subspace is A-invariant, however the reverse is not valid in general [130].

In the geometric control theory of dynamical systems, one needs subspaces that are

TA-invariant. Since dealing with TA-invariant subspaces is more challenging than A-

invariant subspaces, we are interested in cases where they are equivalent. For a gen-

eral Inf-D system, a sufficient condition to have this equivalence is V ⊆ D(A) [130],

which is quite a restricted and limited condition. However, the following lemma

provides necessary and sufficient conditions for TA-invariance property.

Lemma 4.7. [14, Lemma 2.5.6] Consider an infinitesimal generator A (more gen-

eral than RS operators), and its corresponding TA operator and a closed subspace V .

Then V is TA-invariant if and only if V is (λI−A)−1-invariant, where λ ∈ ρ∞(A).

Another important result on TA-invariant subspaces for a regular RS system

that is provided in [101, Theorem IV.6] is given next.

Lemma 4.8. [101] Consider the Inf-D system (4.1), where A is a regular spectral

operator and the A-invariant subspace is denoted by V . Then V is TA-invariant if

and only if V = span{Di} i∈Iλ, where Iλ ⊆ N and Di ⊆ PiX , is A-invariant.

Note that the above lemma is a generalization of Lemma 2.5 to Inf-D systems.

As stated in the preceding section, the eigenvalues (and the corresponding eigen-

vectors) of A may be complex, and Lemmas 4.7 and 4.8 are provided for complex

subspaces. However, for the geometric control approach one needs to work with real

subspaces. The following corollary provides the necessary and sufficient conditions

for equivalence of Definition 4.6, items 1) and 2) for the regular RS system and real

subspaces.

Corollary 4.9. Consider the regular RS system (4.1) and the A-invariant subspace

V . The real subspace V is TA-invariant if and only if V = span{Ei} i∈I for a given
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index set I ⊆ N, where Ei denote the sub-eigenspaces of A.

Proof. Let φk = vk1 + jvk2 , k = 1, · · · , ni denote the corresponding (generalized)

eigenvectors for the eigenvalue λi = γ1 + jγ2 of A, where ni denotes the algebraic

multiplicity of λi, and γ` and vk` (for ` = 1, 2) are real numbers and vectors, respec-

tively. Since A is a regular RS operator, it follows that the eigenspace corresponding

to λi (and its conjugate) is equal to span{vk1 , vk2}
ni
k=1.

(If part): Let V = span{Ei} i∈I. The corresponding complex subspace of V VC is

defined as all vectors z that can be expressed as z =
∑

i∈I ζixi for ζi ∈ C and xi ∈ V .

Consequently, one obtains VC = span{Di} i∈I, where Di (and its conjugate) is the

corresponding complex subspace to Ei. Consequently, VC is A-invariant. By Lemma

4.8, VC is TA-invariant. Hence, TA(t)(v1 +jv2) ∈ VC, for all v1 +jv2 ∈ VC and t ≥ 0.

Since A and TA are real, by referring to the definition of VC we have v1, v2 ∈ V

and TA(t)v1,TA(t)v2 ∈ V for all t ≥ 0. Therefore, TA(t)Ei ⊆ Ei implying that V is

TA-invariant.

(Only if part): Let V be TA-invariant. The corresponding complex subspace VC

is also TA-invariant. Again, by using Lemma 4.8, VC = span{φi} i∈I. Therefore,

V = span{Ei} i∈I. This completes the proof of the corollary.

As stated earlier, we are mainly concerned with two important invariant sub-

spaces of Inf-D systems as discussed below. We denote the largest A- and TA-

invariant subspaces that are contained in C by < C |A > and < C |TA >, re-

spectively. The A-unobservable subspace of system (4.1) is defined by NA =<

ker C|A >=
⋂
n∈N ker CAn. Also, the unobservable subspace of system (4.1) is de-

fined by N =< ker C|TA >=
⋂
t≥0 ker CTA(t) [103]. Note that NA ⊆ D(An) for all

n ∈ N and is not necessarily TA-invariant. However, as shown subsequently, using

this subspace one can develop an algorithm to compute the conditioned invariant

subspaces in a finite number of steps. These subspaces will be used in Section

4.2.3 to introduce the unobservability subspace of RS systems, where the following
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corollary plays a crucial role.

Corollary 4.10. Consider the RS system (4.1), where A is a regular RS operator

with a bounded output operator C. The unobservable subspace N is the largest

subspace contained in ker C that can be expressed as span{Ei} i∈I, where Ei are sub-

eigenspaces of A and I ⊆ N.

Proof. As stated above, N is TA-invariant, and consequently by using Corollary

4.9, N = span{Ei} i∈I. Moreover, since N is the largest TA-invariant that is

contained in ker C [103], the result now follows.

4.2.2 Conditioned Invariant Subspaces

In this subsection, the conditioned invariant subspaces of system (4.1) are defined

and characterized. Not surprisingly, various definitions that are all equivalent in Fin-

D systems are available for conditioned invariant subspaces of Inf-D systems that

are not equivalent [103]. This subsection mainly concentrates on deriving necessary

and sufficient conditions where these definitions are shown to be equivalent. Let us

first define the notion of conditioned invariant subspace.

Definition 4.11. [103]

1. The closed subspace W ⊆ X is designated as (C,A)-invariant if A(W ∩D(A)∩

ker C) ⊆ W .

2. The closed subspace W ⊆ X is feedback (C,A)-invariant if there exists a

bounded operator D : Rq → X such that W is invariant with respect to

(A+DC), as per Definition 4.6, item 1).

3. The closed subspace W ⊆ X is T-conditioned invariant if there exists a bounded

operator D : Rq → X such that (i) the operator (A+DC) is the infinitesimal
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generator of a C0-semigroup TA+DC; and (ii) W is invariant with respect to

TA+DC, as per Definition 4.6, item 2).

It should be pointed out that in the literature T-conditioned invariant is also

called T(C,A)-invariant [103]. It can be shown that Definition 4.11, item 3)⇒ item

2) ⇒ item 1) [103]. A sufficient condition for equivalence of the above definitions is

developed in [103].

Lemma 4.12. [103] A given (C,A)-invariant subspace W is T-conditioned invari-

ant, if CW is closed and W ⊆ D(A).

In this subsection, we show that Definition 4.11, item 1) and item 2) are

equivalent for the system (4.1), when the finite rank output operator is represented

by (4.2) (even if W 6⊂ D(A)). Moreover, we derive the necessary and sufficient

conditions for T-conditioned invariance. These results enable us to subsequently

derive the necessary and sufficient conditions for solvability of the FDI problem.

Towards this end, we first need the following lemma.

Lemma 4.13. Consider the closed subspace V = span{xi} i∈I, where xi ∈ X (and

not necessarily orthogonal) and I ⊆ N. Then

V = Vinf + Vf = Vinf + Vf , (4.5)

where Vf = span{xi} i∈J, Vinf = span{xi} i∈I−J and J is a finite subset of I.

Proof. It follows readily that span{xi} i∈I−J+Vf is dense in V . Hence, the subspace

Vinf + Vf is also dense in V . Furthermore, since Vf is a Fin-D subspace, it is a closed

subspace. Therefore, by using the Proposition 1.7.17 in [131] (which states that

the sum of two closed subspaces is also closed if at least one of them is Fin-D), it

follows that Vinf + Vf is closed. Since, Vinf + Vf is closed and dense in V , we have

Vinf + Vf = V . This completes the proof of the lemma.
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The following lemma shows the equivalence of (C,A)- and feedback (C,A)-

invariance properties for a general Inf-D system provided that the output operator

is a finite rank operator (as considered to be satisfied by (4.2) in this chapter).

Lemma 4.14. Consider the Inf-D system (4.1), where A is the infinitesimal gen-

erator of a C0 semigroup (more general than the regular RS systems) and the finite

rank output operator is given by (4.2). Let W ⊆ X be a closed subspace such that

D(A) ∩W = W . The subspace W is (C,A)-invariant if and only if it is feedback

(C,A)-invariant.

Proof. As pointed out earlier, every feedback (C,A)-invariant subspace is (C,A)-

invariant. Therefore, we only show the converse. By definition, we have A(W ∩

ker C ∩ D(A)) ⊆ W . Since W ∩D(A) = W , and W is separable (W is a closed

subspace of the separable Hilbert space X ), there exists a basis {wi}i∈I for W such

that wi ∈ D(A). Let us rearrange the basis {wi}i∈I such that the first nf vectors

construct the Fin-D subspace Wf = span{wi} nf
i=1 ⊂ D(A), where Wf ∩ ker C = 0

and nf = dim(W ∩ (W ∩ ker C)⊥). From (4.2) (i.e., the finite rankness of C) and

the fact that Wf ∩ ker C = 0, it follows that dim(Wf) = nf ≤ q < ∞. Note that if

nf = 0 it implies that W ⊆ ker C and therefore W is A-invariant and by setting

D = 0 it is also feedback (C,A)-invariant. Now, without loss of any generality we

assume that wi ∈ ker C for all i > nf (if wi /∈ ker C, one can remove the projection of

wi on Wf and calls it as wni ∈ ker C. Since Wf ⊂ D(A), it follows that wni ∈ D(A)).

Also, given that dim(Wf) <∞, and by using Lemma 4.13, we obtain W = Winf +Wf,

where Winf = W ∩ ker C = span{wi} i>nf
.

Now, we show how one can construct a bounded operatorD such that (A+DC)

(W ∩D(A)) ⊂ W . Let Awi = xi ∈ X , i = 1, · · · , nf . Below, we construct D such

that DC[w1, · · · , wnf
] = −[x1, · · · , xnf

]. Given that Wf ∩ ker C = 0, dim(Wf) < ∞,

and C is a bounded operator, it follows that C is an invertible operator from Wf onto
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Y = CWf ⊆ Rq. In other words, Cw = C|Wf
: Wf → Y is a bijective map. There-

fore, Cw = C[w1, · · · , wnf
] is a monic matrix (i.e., kerCw = 0), and consequently

always there is a solution for Dw : Y → Xf , such that DwCw = −[x1, · · · , xnf
],

where Xf = span{xi} nf
i=1. A solution to D : Rq → X is an extension of Dw as

Dy = QDwy1, where y ∈ Rq, y = y1 + y2, y1 ∈ Y , y2 ∈ Y ⊥ and Q is the em-

bedding operator from Xf to X . Since Y is Fin-D, it follows that D is bounded.

Now, set x ∈ (W ∩ D(A)). Since Wf ⊂ D(A), one can write x = xinf + xf , where

xinf ∈ (Winf ∩D(A)) and xf ∈ Wf . Given that W is (C,A)-invariant, it follows that

(A+DC)xinf = Axinf ∈ W , and by definition D, we obtain (A+DC)xf = 0. There-

fore, (A+DC)x ∈ W , and consequently W is a feedback (C,A)-invariant subspace.

This completes the proof of the lemma.

As shown in [101] the T-conditioned invariance and (C,A)-invariance are not

generally equivalent. Moreover, if C is not a finite rank the feedback (C,A)-invariance

and (C,A)-invariance are not equivalent [101,103]. However, Lemma 4.14 shows the

equivalence between feedback (C,A)-invariant and (C,A)-invariant in the sense of

Definition 2, if the output operator C is finite rank.

The following lemma shows that the T-conditioned invariance is an indepen-

dent property from the bounded operator D. This result allows us to derive the

necessary and sufficient conditions for the T-conditioned invariance.

Lemma 4.15. Consider a T-conditioned invariant subspace W such that TA+D1CW ⊆

W , and consider a bounded operator D2 such that (A+D2C)(W ∩ D(A)) ⊆ W .

Then TA+D2CW ⊆ W .

Proof. By invoking Lemma 4.7, we have (λI − (A+D1C))−1W ⊆ W , for all λ ∈

ρ∞(A+D1C). Let us set λ ∈ ρ∞(A+D1C) ∩ ρ∞(A+D2C) (by using the Hille-

Yosida theorem ( [14, Theorem 2.1.12], where it is shown that for every infinitesimal

generator A there exists a real number r ∈ R such that [r, ∞) ⊂ ρ∞(A) we have
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the set ρ∞(A+D1C) ∩ ρ∞(A+D2C) non-empty). Based on Lemma 4.7, we need

to show that (λI − (A+D2C))−1W ⊆ W . First, let Wc = {y|y ∈ W ; (λI −

(A+D1C))−1y ∈ Wf}, where Wf ⊂ D(A) is defined as in the proof of Lemma 4.14

and W∞ = {y|y ∈ W ; (λI−(A+D1C))−1y ∈ W ∩ker C}. Since W = Wf+W ∩ker C,

W is (λI−(A+D1C))−1-invariant and (λI−(A+D1C))−1 is bounded and bijective,

it follows that W = Wc + W∞. Let y ∈ W∞ and x = (λI − (A+D1C))−1y. Given

that x ∈ ker C, it follows

y = (λI − (A+D1C))x = (λI − (A+D2C))x = (λI − A)x. (4.6)

Since W is (λI − (A+D1C))−1-invariant, one obtains x ∈ W , and consequently we

have (λI − (A+D2C))−1y = x ∈ W .

Next, by following the steps, below, we show that if y ∈ Wc then (λI −

(A+D2C))−1y ∈ W .

1. Let {wi}nf
i=1 be a basis of Wf and set zi = (λI − (A+D2C))wi ∈ W for

i = 1, · · · , nf (as (A+D2C)(W ∩D(A)) ⊆ W ). Since W = Wc + W∞ one can

write zi = zic + zi∞, where zic ∈ Wc and zi∞ ∈ W∞.

2. We show that zic are linearly independent. Towards this end, assume zic are

linearly dependent and therefore we obtain
∑nf

i=1 ζiz
i
c = 0, where ζi ∈ R for

i = 1, · · · , nf . Hence, one can write (λI − (A+D2C))w = z∞, where w =∑nf

i=1 ζiwi 6= 0 (since wi are basis), and z∞ =
∑nf

i=1 ζiz
i
∞ ∈ W∞. Consequently,

since w = (λI − (A+D2C))−1z∞, and since z∞ ∈ W∞, we obtain (λI −

(A+D1C))−1z∞ ∈ ker C, and consequently w = (λI − (A+D1C))−1 = (λI −

(A+D2C))−1z∞ ∈ ker C. Hence, we have w ∈ ker C that is in contradiction

with the fact w ∈ Wf (recall Wf ∩ ker C = 0). Therefore, zic are linearly

independent. Since the resolvent operators are bijective and Wc is Fin-D, we

obtain dim(Wc) = dim(Wf) = nf , and consequently {zic}
nf
i=1 is a basis of Wc.
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3. We show that (λI − (A+D2C))−1zic ∈ W . Set wi∞ = (λI − (A+D2C))−1zi∞,

zi∞ are defined as above. As shown above in (4.6), we have wi∞ ∈ W . Since

wi ∈ Wf ⊆ W it follows that (λI − (A+D2C))−1zic = wi − wi∞ ∈ W . Given

that span{zic}
nf
i=1 is a basis of Wc, we obtain (λI − (A+D2C))−1Wc ⊆ W .

Finally, for every y ∈ W one can write y = yc + y∞, where yc ∈ Wc and

y∞ ∈ W∞. As we have shown above (λI − (A+D2C))−1W∞ ⊆ W and (λI −

(A+D2C))−1Wc ⊆ W . Therefore, (λI − (A+D2C))−1y ∈ W , and consequently

(λI − (A+D2C))−1W ⊆ W . This completes the proof of the lemma.

A bounded operator D is called a friend of the T-conditioned subspace W if

TA+DCW ⊆ W . The set of all friend operators of W is denoted by D(W ). Let

D ∈ D(W ) and consider a bounded operator D0. As in Fin-D systems [3, page 31],

it follows (by using the above lemma) that a sufficient condition for D0 to be a friend

of W is (D −D0)CW ⊆ W .

Remark 4.16. It worth noting that in the proofs of Lemmas 4.14 and 4.15, it is

not necessary A to be regular RS operator. Indeed, we showed the results for every

infinitesimal generator operator. Therefore, we also use these lemmas in the next

chapter.

Below, we provide the main results of this subsection leading to the necessary

and sufficient conditions for the T-conditioned invariance of regular RS systems.

Theorem 4.17. Consider the regular RS system (4.1) such that the operator C is

defined according to (4.2). The (C,A)-invariant subspace W is an T-conditioned

invariant subspace if

W = Wφ + Wf , (4.7)

and D(A) ∩W = W , where dim(Wf) <∞ and Wφ is the largest subspace contained

in W that can be expressed as

Wφ = span{Ei} i∈I , (4.8)
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in which Ei is the sub-eigenspace of A and I ⊆ N. Moreover, if W ∩ (W ∩ ker C)⊥

is a sum of sub-eigenspaces of A+DC, then the condition (4.7) is also necessary.

Proof. (If part): Let W = Wφ+Wf . We show that W can be spanned by eigenspaces

of A+DC, for a bounded D (and therefore by Corollary 4.9, W is TA+DC-invariant).

By using Lemma 4.15 we need to show the result for only one D ∈ D(W ). Without

loss of any generality, we assume Wφ ∩ Wf = 0 (if W1 = Wφ ∩ Wf 6= 0, redefine

Wf = Wf/W1).

First, we show that one can assume Wf ⊂ D(A) without loss of any gener-

ality. Since Wφ is TA-invariant, it follows that Wφ ∩D(A) = Wφ [101]. Also, as

an assumption we have W ∩D(A) = W . If Wφ is Fin-D, W is Fin-D and hence

Wf ⊆ W ⊂ D(A). Let, Wφ be Inf-D. By following along the same steps in the

proof of Lemma 4.14, we define the basis {wi}∞i=1 of W such that wi ∈ D(A) for all

i ∈ N and {wi}∞i=nf+1 is a basis for Wφ, where nf = dim(Wf) (since Wφ ∩D(A) = Wφ

the existence of the basis {wi}∞i=nf+1 with w ∈ D(A) is guaranteed). Set Wff =

span{wi} nf
i=1 ⊂ D(A), and it follows that W = Wφ + Wff . Therefore, without loss of

any generality, we assume Wf = Wff ⊂ D(A).

Next, to show the result we construct the bounded operator D such that (i)

(A+DC)(W ∩D(A)) ⊆ W , and (ii) DCWφ = 0. Define Wfpc = Wf ∩ (Wf ∩ ker C)⊥

and Wfc = {w|w ∈ Wfpc , Cw 6= Cwφ,∀wφ ∈ Wφ}. In other words, Wfc is the largest

subspace in Wfpc such that Wfc ∩ ker C = 0 and CWfc ∩ CWφ = 0. Moreover, by

definition of Wfpc, we obtain ker C + Wf/Wfc = ker C + Wfpc/Wfc. Since Wf ⊂ D(A),

we have Wfc ⊂ D(A). Now, consider the operator Hf such that kerHfC = ker C +

Wφ + Wf/Wfc = ker C + Wφ + Wfpc/Wfc and define C1 = HfC (since ker C ⊆ ker C1,

there always exists a solution for Hf). First, we show that W is also (C1,A)-invariant

subspace in two steps as follows.

1. Let w ∈ Wfpc/Wfc. We prove that Aw ∈ W (if Wfpc = Wfc, we have w = 0

and we skip this step). Since Wfpc ⊂ Wf , Wfc ⊂ Wf and Wf ⊂ D(A), it
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follows that w ∈ D(A). By definition of Wfc, there exists a wφ ∈ Wφ such

that Cw = Cwφ 6= 0. Next, we show that wφ ∈ D(A). Let W p
φ ⊂ Wφ be the

subspace such that CW p
φ = C(Wfpc/Wfc) and dim(W p

φ ) = dim(Wfpc/Wfc). Also,

let {wiφ}∞i=1 be a basis of Wφ such that wiφ ∈ D(A) (since Wφ ∩D(A) = Wφ,

this basis exists). By following along the same steps in Lemma 4.14, we can

assume wiφ be such that wiφ ∈ W p
φ for all i ≤ nφ and wiφ ∈ Wφ/W

p
φ for i > nφ.

Therefore, since C on Wfpc/Wfc is bijective, one can find wφ ∈ span{wiφ}
nφ
i=1

such that Cw = Cwφ and since wiφ ∈ D(A), it follows that wφ ∈ D(A). Now,

set wc = (w − wφ) ∈ W ∩ ker C ∩ D(A). Since Awφ ∈ W (recall Wφ is

A-invariant), and A(W ∩ ker C ∩D(A)) ⊆ W , it follows that Aw ∈ W .

2. By considering the subspace W p
φ , we decompose Wφ as Wφ = W p

φ + W c
φ +

Wφ ∩ ker C, where W c
φ ∩ W p

φ = 0 and W c
φ ∩ ker C = 0. As above, we can

assume W c
φ ⊂ D(A) (i.e. there exists a subspace W c

φ ⊂ D(A) that satisfies

the above conditions). By definition of Hf , it follows that kerHfC = ker C +

(Wfpc/Wfc) + W p
φ + W c

φ . Let w ∈ (W ∩ ker C1 ∩ D(A)). It follows that w =

wp + wφ + w∞, where wp ∈ Wfpc/Wfc ⊂ D(A), wφ ∈ (W p
φ + W c

φ ) ⊂ D(A)

and w∞ ∈ W ∩ ker C. Since w,wp, wφ ∈ D(A), it follows that w∞ ∈ D(A).

As shown above, Awp ∈ W , Awφ ∈ Wφ ⊆ W (since Wφ is A-invariant) and

also Aw∞ ∈ W (recall that W is (C,A)-invariant). Therefore, Aw ∈ W and

consequently A(W ∩ ker C1 ∩D(A)) ⊆ W .

Second, by following along the same steps in Lemma 4.14, we construct Df such that

(A+DfC1)(W ∩D(A)) ⊆ W . By setting D = DfHf , one can write (A+DC)(W ∩

D(A)) ⊆ W .

It should be pointed out that since Wφ ⊆ kerHfC (refer to definition of Hf), we

obtain Wφ ⊆ ker C1, and therefore, we have DCWφ = DfC1Wφ = 0 . Consequently,

it follows that every sub-eigenspace Ei ⊂ Wφ is also the sub-eigenspaces of the

operator A+DC. Therefore, (λI − (A+DC))−1Wφ ⊆ Wφ. Moreover, recall that
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Wf ⊂ D(A) and also the operator Df is defined such that (A+DfC1)Wf ⊆ Wf

(refer to the proof of Lemma 4.14). Therefore, by using Lemmas 4.7 and 4.12, we

obtain (λI − (A+DfC1))−1Wf ⊆ Wf , and consequently (λI − (A+DC))−1Wf ⊆ Wf .

Finally, by using Lemma 4.7 and Corollary 4.9, it follows that Wf is also a summation

of sub-eigenspaces of (A+DC). Therefore, W is spanned by the sub-eigenspaces

of (A+DC), and again by using Corollary 4.9, W is TA+DC-invariant, that is T-

conditioned invariant.

(Only if part): Consider W is T-conditioned invariant. By Definition 4.11, item

3), there exists a bounded operator D such that W is TA+DC-invariant (and also

(A+DC)-invariant) and W = span{E D
i } i∈ID , where E D

i are sub-eigenspaces of

(A+DC). As in the first part of the proof, first we construct a bounded operator

D such that (i) (A+DC)(W ∩ D(A)) ⊆ W , and (ii) DCWφ = 0, where Wφ is the

largest TA-invariant contained in W . Consequently, we have W = Wφ + Wf , and we

then show that Wf is Fin-D.

Let D be a bounded operator such that D = DfHf , where Wφ is the largest TA-

invariant contained in W (that is expressed as (4.8)) and kerHfC = Wφ. Moreover,

Df is defined by following along the same lines as in the proof of Lemma 4.14. By

using the fact that DCWφ = 0, it follows that Wφ = span{Ej} j∈I, where I is an

index set such that for each j ∈ I there exists an i ∈ ID (recall W = span{E D
i } i∈ID

) such that Ej = E D
i ⊆ (W ∩ kerHfC).

Now, set W = Wφ + Wf , where Wf ∩ Wφ = 0. We show that dim(Wf) <

∞ by contradiction. Since W and Wφ are the summations of sub-eigenspace of

(A+DC), it follows that Wf does so. Assume dim(Wf) = ∞ and consider the

subspace Wfc ⊂ (Wf ∩ (Wf ∩ kerHfC)⊥). By the assumption stated in the theorem

Wfc ⊂ D(A). Also, Wf = Wfc + Wf ∩ kerHfC (as above since HfC is finite rank,

by following along the same lines in the proof of Lemma 4.14, existence of this

subspace is guaranteed). Again, by the above assumption, Wfc is a sub-eigenspaces
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of (A+DC). Since Wf is a summation of sub-eigenspaces of A+DC, we obtain

Wf ∩ kerHfC = span{E D
i } i∈If + Wff , where If ⊆ ID, and Wff + Wfc is also a sub-

eigenspace of (A+DC) (note that it is possible to have Wff = 0). Since A+DC is

a regular RS operator (refer to Remarks 4.3 and 4.5), it is necessary dim(Wff) <∞.

Hence, since Wf is Inf-D, we obtain If 6= ∅. However, this is in contradiction with the

definition of Wφ (that is the largest subspace in the form (4.8)), and consequently

Wf is a Fin-D subspace, and W = Wφ + Wf (refer to Lemma 4.13). This completes

the proof of the theorem.

Remark 4.18. Theorem 4.17 shows that every T-conditioned invariant subspace is

constructed by sum of the subspace Wφ, that is TA-invariant (and possibly Inf-D),

and the Fin-D subspace Wf such that Wf ⊆ D(A) and Wf ∩ Wφ = 0. Given that

W is (C,A)-invariant and Wφ is A invariant, it follows that Wf is (C,A)-invariant.

Hence, by using Lemma 4.12, Wf is T-conditioned invariant.

For design of our subsequent FDI scheme, we need to obtain the smallest T-

condition invariant subspace (in the inclusion sense) containing a given subspace.

The following lemma allows us to show that this smallest subspace always exists.

Lemma 4.19. The set of T-conditioned invariant subspaces containing a given Fin-

D subspace L and satisfying the conditions of Theorem 4.17 is closed with respect

to the intersection.

Proof. Consider the T-conditioned invariant subspaces W1 and W2 containing L .

Hence, A(W1∩ker C∩D(A)) ⊆ W1 and A(W2∩ker C∩D(A)) ⊆ W2, and consequently

A(W1 ∩ W2 ∩ ker C ∩ D(A)) ⊆ W1 ∩ W2. Also, given that W1 and W2 are closed,

so does the subspace W1 ∩ W2. Therefore, W1 ∩ W2 is (C,A)-invariant. Moreover

W1 ∩ W2 ∩ D(A) is dense in W1 ∩ W2. Consequently, W1 ∩ W2 is feedback (C,A)-

invariant (refer to Lemma 4.14).

By invoking Theorem 4.17, let W1 = Wφ1 + Wf1 , W2 = Wφ2 + Wf2 with Wφk =

span{Ei} i∈Ik , k = 1, 2, where we have Wk = span{Ei} i∈Ik+Wfk , for k = 1, 2 (Wfk ⊂
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D(A) denote two Fin-D subspaces-refer to Remark 4.18). Now, we show that W1∩W2

can be represented by span{Ei} i∈I3 + Wf3 . Let x ∈ span{Ei} i∈I1 ∩ span{Ei} i∈I2 .

Therefore, x can be expressed as

x =
∑
i

ζ1
i φ

1
i =

∑
i

ζ2
i φ

2
i , (4.9)

where φ1
i and φ2

i are the generalized eigenvectors that span the subspaces span{Ei} i∈I1

and span{Ei} i∈I2 , respectively. Since A is a regular RS operator (i.e. only finitely

many eigenvalues are multiple), therefore all but finitely many of eigenspaces and

corresponding sub-eigenspace are equivalent. In other words, there are finitely many

(generalized) eigenvector corresponding to the same eigenvalue, and there are infinite

eigenvectors for distinct eigenvalues (Also, refer to Remark 4.5). By using Lemma

4.1 (i.e., a unique representation of x), the fact that the (generalized) eigenvectors are

independent, it follows that span{Ei} i∈I1 ∩ span{Ei} i∈I2 = span{Ei} i∈I3 + Wf3 ,

where Wf3 ⊂ D(A) (since Ei ⊂ D(A)) is a Fin-D subspace. Finally, given that

Wf1 ⊂ D(A) and Wf2 ⊂ D(A) are Fin-D subspaces, by contradiction we show that

W1 ∩ W2 = span{Ei} i∈I3 + Wf4 , where Wf4 ⊂ D(A) is a Fin-D subspace. Let

W1 ∩ W2 = V + Vf , where Vf is Inf-D and V ∩ Vf = 0. Also, consider {vi}∞i=1 be a

basis for Vf . It follows, we can express every vi as vi = viφ1 + vif1 = viφ2 + vif2, where

viφk ∈ span{Ei} i∈Ik and vifk ∈ Wfk for k = 1, 2 and i ∈ N. Since Wf1 and Wf2 are

Fin-D it follows that we can assume the basis {vi}∞i=1 be such that for a sufficiently

large number n0 ≥ dim(Wf1) + dim(Wf2) we have vifk = 0 for k = 1, 2 and i > n0

(consider the fact that only for finite number n0 of vectors we have vifk are linearly

independent, therefore we can remove the projection of vi (i > n0) from Wf1 + Wf2

to make sure that vifk = 0 for both k = 1, 2). It follows that viφk ∈ V for i > n0

that is in contradiction with the fact that V ∩ Vf = 0 (since in this case we have

viφ1 = viφ2 = vi ∈ V ). Therefore, Vf is Fin-D, and by setting Wf4 = Wf3 + Vf we have

W1 ∩W2 = span{Ei} i∈I3 + Wf4 .

Hence, by invoking Theorem 4.17, it follows that W1 ∩W2 is a T-conditioned
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invariant subspace. This completes the proof of the lemma.

Remark 4.20. Set I1
3 be all indices i such that i ∈ I1∩ I2 and Ei be one-dimensional

(1-D) (or two-dimensional (2-D) in the complex case) eigenspace corresponding a

simple eigenvalue. Consider two eigenspaces Ei ⊂ W1 and Ej ⊂ W2 corresponding

to simple eigenvalues. Since they are corresponding to simple eigenvalues, we have

only two possibilities that are Ei ∩ Ej = 0 and Ei = Ej (also, refer to Remark 2).

Therefore, I1
3 is related to common eigenspaces (for simple eigenvalues) contained in

both W1 and W2.

However, this does not hold when we deal with multiple eigenvalues (even in

Fin-D systems). To see this, refer to the following example.

Example 4.21. Set A = I2×2, E1 = e1, E2 = [1, 1]T, E3 = e1, e2. It follows that

E1 ∩ E2 = 0 and E2 ∩ E3 = E2 and E2 6= E3. However, all these subspaces are A-

invariant.

Now, let Ei ⊂ W1 and Ej ∈ W2 be two sub-eigenspaces corresponding to the

same multiple eigenvalue λ. Set Ei ∩ Ej = Ek + V , where Ek is a sub-eigenspace

corresponding to λ and V is not a sub-eigenspace. In general, we have following

possibilities (refer to the example below)

1. Ek = 0.

2. Ek 6= 0. Therefore, we need to add Ek to span{Ei} i∈I13 and then construct I3.

Therefore, generally I3 cannot be specified only based on I1
3. Also, we do not use any

specific characteristic of I3 to show Lemma 8. The key point is that Wf3 is Fin-D.

As shown in [103], the smallest T-conditioned invariant subspace containing

L may not exists for a general Inf-D operator A. However, the fact all but only

finitely many eigenvalues of A are simple play a crucial role in the above proof to

assure that Wf3 ⊂ D(A).
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We are now in a position to introduce an algorithm for computing the smallest

T-conditioned invariant subspace containing a given subspace. The algorithm for

computing the smallest (C,A)-invariant subspace containing a given subspace L is

given by [103], namely

W 0 = L , W k = L +A(W k−1 ∩ ker C ∩D(A)). (4.10)

As pointed out in [103], the limit of the above algorithm may be a non-closed

subspace, and consequently, it is not conditioned invariant in the sense of Definition

4.11. Below, we now provide an algorithm that computes the minimal T-conditioned

invariant subspace in a finite number of steps provided that the subspace NA =⋂
n∈N ker CAn, which denotes the A-unobservable subspace of the system (4.1), is

known.

Theorem 4.22. Consider the RS system (4.1) and a given Fin-D subspace L ⊂

D(A) and L ∩ ker C ⊂ D(A∞), where D(A∞) =
⋂∞
k=1 D(Ak) that is decomposed to

disjoint subspaces L = LN ⊥+LN , such that LN ⊥ ∩NA = 0 and LN = L ∩NA.

The smallest T-conditioned invariant subspace that satisfies the condition (4.11) and

containing L (denoted by W ∗) is given by W ∗(L ) = W` + Z ∗, where Z ∗ is the

limiting subspace of the following algorithm

Z0 = LN ⊥ , Zk = LN ⊥ +A(Zk−1 ∩ ker C ∩D(A)), (4.11)

and W` = span{Ei} i∈J denotes the smallest subspace in the form of (4.8) (sum

of the sub-eigenspaces of A) such that LN ⊆ W`. Moreover, the above algorithm

converges in a finite number of steps.

Proof. First, we show that this algorithm converges in a finite number of steps by

contradiction. Assume that there exists at least a vector x ∈ LN ⊥ ∩D(A∞) such

that Anx ⊆ ker C and Anx are independent vectors of all n. Otherwise, there is a

n0 such that An0x /∈ ker C for all x ∈ LN ⊥ . Therefore, (Zn0+1 ∩ ker C ∩ D(A)) =
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(Zn0∩ker C∩D(A)), and consequently we obtain Zn0+2 = Zn0+1. In other words, the

above algorithm converges in a finite number of steps. Since ker C is a closed subspace

Anx ∈ ker C for all n ∈ N, and consequently x ∈ NA, which is in contradiction with

the fact that LN ⊥ ∩NA = 0. Therefore, there exists a k ∈ N such that Z ∗ = Zk.

Moreover, since L ∩ ker C ⊂ D(A∞), it follows that Z ∗ ⊂ D(A).

Second, since L is Fin-D it follows that dim(Z ∗) < ∞. By considering the

definition of W`, we obtain W ∗ ∩D(A) = W ∗, and by using Theorem 4.17, it follows

that W ∗(L ) is a T-conditioned invariant subspace.

Finally, we show that W ∗(L ) is the smallest T-conditioned invariant subspace.

Consider a T-conditioned invariant subspace W such that L ⊆ W . Given that

W is T-conditioned invariant and A+DC is a regular RS operator (Remark 4.3),

W = span{E D
i } i∈I, where I ⊆ N and E D

i is a sub-eigenspace of A+DC. Next, we

show that (W` + L ) ⊆ W . Towards this end, let D be the injection operator that is

defined in the proof of Theorem 4.17, where W = Wφ + Wf and DCWφ = 0. Also, as

above we can assume that there is no sub-eigenspace E of A such that E ⊂ Wf (i.e.

Wφ is the largest subspace in the form (4.8) contained in W ). Since LN ⊂ D(A∞)

and LN ⊆ NA it follows that (λI − A)kLN = (λI − (A+DC))kLN ⊂ ker C

for all k ∈ N. Therefore, LN ⊆ Wφ. Otherwise, if LN ∩ Wf 6= 0, there exists

x ∈ LN ∩Wf such that (λI − A)kx ∈ ker C ∩Wf for all k ∈ N (recall Wf is (C,A)-

invariant). Since, Wf is Fin-D, it follows that there exists a sub-eigenspace contained

in Wf that is in contradiction with definition of Wf . Since W` is the smallest subspace

in the form of (4.8) such that LN ⊆ W`, it follows that W` ⊂ Wφ. Furthermore, as

we assume L ∈ W , we obtain (W`+L ) ⊆ W . Now, since the algorithm is increasing

and starts from LN ⊥ ⊆ L ⊆ W , we obtain Zk ⊆ W and consequently W ∗ ⊆ W .

It follows that W ∗ is the smallest T-conditioned invariant subspace containing L .

This completes the proof of the lemma.

It should be pointed out that one can compute W` as follows.
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1. Let Xinf = span{φi} i∈Js and Xf = span{φj} i∈Jm , where Js and Jm are the in-

dex sets for simple and multiple eigenvalues, respectively. Also, φi correspond

to the simple eigenvalues of A and φj are the (generalized) eigenvectors that

correspond to the multiple eigenvalues (note that dim(Xf) <∞).

2. Compute, W m
` , the smallest sub-eigenspace in Xf containing PfLN , where Pf

is the projection from X on Xf. It follows that W m
` = span{φk} k∈Im , where

Im ⊆ Jm, and therefore dim(W m
` ) <∞.

3. Let W s
` = span{φk} k∈Is , where Is ⊆ Js and φk does appear in the represen-

tation of at least one member of LN (refer to Lemma 4.1).

4. Set W` = W s
` + W m

` .

Example 4.23. Computing W`:

Consider the following regular RS system

ẋ(t) = Ax(t) + Lf(t),

y(t) = Cx(t),

(4.12)

where,

A =



J1 0 0 0 0 0 0 · · ·

0 J2 0 0 0 0 0 · · ·

0 0 −3 0 0 0 0 · · ·

0 0 0 −4 0 0 0 · · ·
. . . . . . . . .


, J1 =

−1 1

0 −1

 , J2 =

−2 1

0 −2



(4.13)

Also, A : X → X , L =
∑∞

k=0 e
−(2k+1)2φ2k+1. where φk are generalized eigenvetors

of A. Moreover, C =< ci, · > where ci =
∑∞

k=1
1

4k2
φ2k. Also, X = `2 is the

Hilbert space that induced from R∞ (that is all x = [x0, x1, · · · ]T ∈ R∞ such that∑∞
k=1 |xk|2 <∞). Note that for computing φk we do not need to run an algorithm
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infinite number of times and we have them as φk = [0, 0, · · · , 1, 0, 0, · · · ]T, where

1 is in the kth position.

It is follows that L = span{L} ⊂ NA and L ∈ D(A∞) (since
∑∞

k=1((2k +

1)ne−(2k+1)2) < ∞ for any n and hence AnL ∈ X for any n). W` is constructed as

follows.

By using the above discussion, we have φ1, φ3 ∈ W` (since span{φ1} and

span{φ3} are J−1-and J−2-invariant, respectively). Also, since other eigenvalues

are simple we have W` = span{φ2k−1} k∈N. Note that in this case since L ⊆ NA,

it follows that in the algorithm (4.11) one obtains LN ⊥ = 0, and consequently

Z ∗ = 0. therefore, we have W ∗(L ) = W`.

Remark 4.24. We compute W` in two steps. As stated above, we assume that

we have complete knowledge of the eigenvalues and eigenvectors of A and we can

construct the given subspace (i.e. V`) in the terms of these eigenvectors. Hence, it

is not necessary to examine one by one the eigenvetrors to construct W`.

4.2.3 Unobservability Subspace

In the geometric FDI approach, one needs to work with another invariant subspace

known as the unobservability subspace. In this subsection, we first provide two

definitions for this subspace, and then develop an algorithm to construct it compu-

tationally.

Definition 4.25.

1. The subspace S is called an A-unobservability subspace for the RS system

(4.1), if there exist two bounded operators D : Rq → X and H : Rq → Rqh,

where qh ≤ q, such that S is the largest A+DC-invariant subspace contained

in kerHC (i.e., S =< kerHC|A+DC >).
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2. The subspace S is called a unobservability subspace for the RS system (4.1),

if there exist two bounded operators D : Rq → X and H : Rq → Rqh, where

qh ≤ q, such that S is the largest TA+DC-invariant subspace contained in kerHC

(i.e., S =< kerHC|TA+DC >).

Remark 4.26. It follows that the A- and unobservability subspaces are the A- and

unobservable subspaces of the pair (HC,A+DC), respectively. Also, by definition A-

and unobservability subspaces are also feedback (C,A)- and T-conditioned invariant,

respectively.

Computing the Unobservability Subspace: As stated earlier, for the FDI prob-

lem one is interested in computing the smallest unobservability subspace containing

a given subspace. By following along the same lines as in Lemma 4.19, and the fact

that A+DC is a regular operator, and finally by invoking Remark 4.26, one can

show that the set of all unobservablity subspaces containing a given subspace always

admits a minimal in the inclusion sense. In the Fin-D case, the unobservability sub-

space computing algorithm involves the inverse of the state dynamic operator (i.e.,

the operator A) [3, equation 2.61]. However, for Inf-D systems, the inverse image

of A is not convenient to deal with (if 0 6∈ ρ(A)). To overcome this difficulty, one

can compute the unobservability subspace by using its dual subspace which is the

controllability subspace. Therefore, one needs to compute the adjoint operators of

A and C as was pointed out in [124].

The above method in [124] uses a non-decreasing algorithm that converges

in a countable number of steps. However, since the algorithm is non-decreasing,

the limiting subspace is not necessarily closed. The following theorem provides an

approach to compute the smallest unobservability subspace containing a given Fin-D

subspace L ⊆ D(A).

Theorem 4.27. Consider model (4.1) which is assumed to be a regular RS system

and a given Fin-D subspace L ⊂ D(A). Let W ∗ denotes the smallest T-conditioned
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invariant subspace containing L , where W ∗ = W ∗
φ + W ∗

f (by Theorem 4.17), W ∗
φ is

the largest subspace contained in W ∗ in the form (4.8) and W ∗
f ⊂ D(A) is a Fin-D

subspace. The smallest unobservability subspace containing L (denoted by S∗) is

given by

S∗ = W ∗
φ + N + W ∗

φ,f , (4.14)

in which N is the unobservable subspace of (C,A), W ∗
φ,f is the largest subspace in the

form of span{E D
i } i∈ID such that W ∗

φ,f contains W ∗
f and is contained in W ∗ + ker C.

Also, E D
i are sub-eigenspaces of (A+DC).

Proof. Let us first show that S∗ is T-conditioned invariant subspace. Since N is

TA-invariant, we obtain N = span{Ei} i∈I, where Ei are sub-eigenspaces of A (by

using Corollary 4.9). Let D ∈ D(W ∗) that is constructed in Theorem 4.17 (i.e.,

DCWφ = 0 and (λI − (A+DC))−1W ∗ ⊆ W ∗). Since N ⊆ ker C, as shown above

(in the proof of Theorem 4.17) Ei are also sub-eigenspace of (A+DC). Also, by

definition, W ∗
φ,f is a summation of sub-eigenspaces of (A+DC). Therefore, S∗ is a

summation of sub-eigenspaces of (A+DC) and by Corollary 4.9, it follows that S∗

is TA+DC-invariant (i.e. T-conditioned invariant).

Second, letH be a map such that kerHC = W ∗ + ker C (one choice isH : Rq →

Rqh , where kerH = W ∗ ∩ (W ∗ ∩ ker C)⊥). Since W ∗
φ,f ⊆ W ∗ + ker C, and W ∗

f ⊆ W ∗
φ,f ,

it follows that W ∗
φ + ker C + W ∗

φ,f = W ∗ + ker C. Also, given that N ⊆ ker C, we

obtain W ∗ + ker C = S∗ + ker C, and consequently, we have S∗ ⊆ kerHC.

Third, we show S∗ is an unobservable subspace of the system (HC, A+DC).

As shown above S∗ = span{E D
i } i∈I, where E D

i is a sub-eigenspace of A+DC.

Next, it is shown that S∗ contains all sub-eigenspaces of (A+DC) that are contained

in kerHC. Let E D
0 be a given sub-eigenspace of A+DC, such that E D

0 ⊆ kerHC.

If E D
0 6⊆ ker C, since W ∗

φ + W ∗
φ,f contains all sub-eigenspaces that may not contained

in ker C (recall the definition of H and W ∗
φ,f) but in kerHC, we obtain E D

0 ⊆ (W ∗
φ +
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W ∗
φ,f) ⊆ S∗. Now, assume E D

0 ⊆ ker C. It follows that (λI − (A+DC))−1E D
0 =

(λI − A)−1E D
0 ⊆ ker C, and consequently, E D

0 ⊆ N ⊆ S∗. Hence, S∗ is the largest

subspace contained in kerHC that is spanned by the sub-eigenspace of A+DC (i.e.

every sub-eigenspace in kerHC is contained in S∗). Therefore, S∗ is the unobservable

subspace of the pair (HC,A+DC).

Finally, we show S∗ is the smallest unobservability subspace containing L .

Let, S be another unobservability subspace containing L . Since S is T-conditioned

invariant containing L , it follows that W ∗ ⊆ S (W ∗ is the smallest T-conditioned

invariant containing L ). Now, let H1 such that kerH1C = S + ker C. Since S∗ ⊆

W ∗ + ker C, it follows S∗ ⊆ kerH1C. Also, given that S is the largest T-conditioned

invariant in kerH1C, by using Theorem 4.17 S is the largest subspace in form (4.7)

that is contained in kerH1C. Since S∗ is also expressed in the form (4.7) (as S∗ is

also T-conditioned invariant) it follows that S∗ ⊆ S. This completes the proof of

the theorem.

It should be pointed out that since W ∗
f is Fin-D and the operator A+DC

is regular RS, we obtain W ∗
φ,f is Fin-D. Therefore, one can compute W ∗

φ,f based on

sub-eigenspaces of A+DC (i.e., for every the sub-eigenspace E D
0 of A+DC that

(i) E D
0 is contained in W ∗ + ker C, (ii) E D

0 6⊆ W ∗
φ + N , and (iii) E D

0 6⊥ W ∗
f , we have

E D
0 ⊆ W ∗

φ,f).

As an example, refer to Subsection 4.4, where we provide a numerical example.

4.2.4 Controlled Invariant Subspaces and the Duality Prop-

erty

As stated above, for addressing the FDI problem one needs to construct the con-

ditioned invariant subspace. However, for the disturbance decoupling problem the

controlled invariant subspaces (that are dual to the conditioned invariant subspaces)
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are needed. For sake of completeness of the chapter, in this subsection we review

controlled invariant subspaces of the RS system (4.1), where necessary and suffi-

cient conditions for controlled invariance are provided. We address the controlled

invariant subspaces by using the duality property. Similar to conditioned invari-

ant subspaces, there are three types of controlled invariant subspaces. These are

discussed further below.

Definition 4.28. [103] Consider the closed subspace V ⊆ X and B = ImB, where

B is defined by the system (4.1). Then,

1. V is called (A,B)-invariant if A(V ∩ D(A)) ⊆ V + B = V + B (since

dim(B) <∞).

2. V is called feedback (A,B)-invariant if there exists a bounded operator F :

X → Rm such that (A+ BF)(V ∩D(A)) ⊆ V .

3. V is called T-controlled invariant if there exists a bounded operator F : X →

Rm such that (i) the operator A+ BF is the infinitesimal generator of a C0-

semigroup TA+BF ; and (ii) V is invariant with respect to TA+BF as per Def-

inition 4.6, item 2). In the literature, it is also called closed feedback invari-

ant [101] and T(A,B)-invariant [103].

From the above, it follows that Definition 4.28, item 3) ⇒ item 2) ⇒ item

1) [103]. In this subsection, we are interested in developing and addressing the

necessary and sufficient conditions for equivalence of the above definitions. In [103],

the duality between the Definitions 4.11 and 4.28 was shown by using the following

lemmas (the superscript ∗ is used for adjoint operators).

Lemma 4.29. [103, Lemma 5.2] Consider the system (4.1), where A is an in-

finitesimal generator of the C0 semigroup TA (more general than the regular RS

operator) and the operator C is bounded (but not necessarily finite rank), and two

subspaces S1 and S2. We have
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1. (S1 + S2)⊥ = S ⊥
1 + S ⊥

2 .

2. (ker C)⊥ = Im C∗.

3. If TAS1 ⊆ S2, then TA∗S ⊥
2 ⊆ S ⊥

1 .

4. If A(S1 ∩D(A)) ⊆ S2, then A∗(S ⊥
2 ∩D(A∗)) ⊆ (S1 ∩D(A))⊥.

By using Lemma 4.29, item 3) the following result can be obtained.

Lemma 4.30. [103] Consider the Inf-D system (4.1). The subspace V is T-

controlled invariant if and only if V ⊥ is T-conditioned invariant with respect to

(B∗,A∗).

However, as can be observed from Lemma 4.29 (item 4), the dual equivalence

of Lemma 4.14 will not be straightforward to show by using the duality property.

The following lemma now directly provides our proposed result.

Lemma 4.31. Consider the regular RS system (4.1) and the closed subspace V such

that V ∩D(A) = V . The feedback (A,B)-invariance property is equivalent to the

(A,B)-invariance property.

Proof. It is sufficient to show that (A,B)-invariance ⇒ feedback (A,B)-invariance.

Let V be (A,B)-invariant. Since D(A) is dense in V , one can construct the basis

{vi}i∈I (where I ∈ N) such that vi ∈ D(A). Since B is finite rank, we have V =

Vinf+Vf, such thatA(Vinf∩D(A)) ⊆ V , Vf ⊂ D(A) andAvi’ are linearly independent

for all i = 1, · · · , nf , where without loss of any generality we assume that Vf =

span{vi} nf
i=1 and AVf ⊆ B (by following along the same steps in Lemma 4.14).

Therefore, there exist ui such that Avi = −Bui for all i = 1, · · · , nf. Let us now

define F such that F [v1, · · · , vnf
] = [u1, · · · , unf

] (note since ker[v1, · · · , vnf
] = 0,

F always exists), and let F be the extension of F to X . In other words, for all x ∈ X ,

we have Fx = Fxv, where x = xv⊥ + xv, xv ∈ Vf and xv⊥ ⊥ Vf. It follows that
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||F|| = ||F || < ∞ (i.e., F is bounded) and (A+ BF)(V ∩D(A)) ⊆ V . Therefore,

V is feedback (A,B)-invariant. This completes the proof of the lemma.

Remark 4.32. In [101] feedback (A,B)-invariant is defined as follows. The subspace

V is feedback (A,B)-invariant if there exists an A-bounded (refer to Section 2.4)

state feedback (instead of bounded state feedback as in Definition 4.6) F , such that

(A+ BF)(V ∩D(A)) ⊆ V . By this definition, in [101, Theorem II.26], it is shown

that (A,B)-invariant and feedback (A,B)-invariant are equivalent. However, Lemma

4.31 shows the result (by also using an extra condition that is V ∩D(A) = V ) when

we restrict the feedback to the bounded operators (i.e. as per Definition 4.6). Note

that this result cannot be concluded from Lemma II.25 and Theorem II.26 in [101].

However, we are interested in deriving a direct necessary and sufficient con-

dition for the T-controlled invariance property. By taking advantage of the duality

property, the following theorem now provides the necessary and sufficient conditions

for the T-controlled invariance property.

Theorem 4.33. Consider the regular RS system (4.1) and the closed subspace V

such that V ∩D(A) = V and A(V ∩D(A)) ⊆ V + ImB. Then, V is T-controlled

invariant if V can be represented as V = Vφ ∩ V ⊥f , where Vf ⊂ D(A∗) (A∗ denotes

adjoint operator A) is a Fin-D subspace and Vφ is the smallest subspace containing

V that can be expressed as

Vφ = span{Ei} i∈I, (4.15)

in which Ei are the sub-eigenspaces of A and I ⊆ N. Moreover, if V + (V + ImB)⊥

is a sum of sub-eigenspaces of A+DC, then the condition (4.15) is also necessary.

Proof. (If part): Let V = Vφ ∩ V ⊥f . It follows that Wψ = V ⊥φ can be expressed as

Wψ = span{E ∗i } i∈I, where E ∗i are sub-eigenspaces of A∗ (since Wψ is TA∗). Given

that Vf ⊆ D(A∗), dim(Vf) < ∞ and Wψ ∩D(A∗) = Wψ (since it is TA∗-invariant),

it follows that V ⊥ ∩D(A∗) = V ⊥. Also, By invoking Lemma 4.29 (item 4)) and
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the fact that V ∩D(A) = V , we have (note that dim(ImB) <∞ and consequently

ImB = ImB)

A∗(V ⊥ ∩ (ImB)⊥ ∩D(A∗)) ⊆ V ⊥. (4.16)

Hence, V ⊥ is a (B∗,A∗)-invariant subspace. By using Theorem 4.17, it follows that

V ⊥ is T-conditioned invariant with respect to (B∗,A∗), and consequently, by using

Lemma 4.30 it follows that V is T-controlled invariant.

(Only if part): Let V be T-controlled invariant. By invoking Lemma 4.30, it

follows that V ⊥ is T-conditioned invariant. Therefore, from Theorem 4.17 it follows

that V ⊥ = Wψ + Wf, with Wψ defined as above and dim(Wf) < ∞. Also, since

D(A∗) is densely defined on V ⊥ (by Lemma 4.30, we obtain V ⊥ is TA∗-invariant,

and consequently V ⊥ ∩D(A∗) = V ⊥) and Wψ (since it is TA∗-invariant), it follows

Wf ⊂ D(A∗). Hence, V = Vφ ∩ (Wf)
⊥, where Vφ = W ⊥

ψ = span{Ei} i∈I and

Wf ⊂ D(A∗). This completes the proof of the theorem.

Remark 4.34. Below, we emphasize that Theorem 4.33 is compatible with the cur-

rently available results in the literature. In the literature, there are following main

results corresponding to T-controlled invariant subspaces.

1. As shown in [105, Theorem 3.1] and [132, Theorem 2.2] the necessary condi-

tion for T-controlled invariant is V ⊥ ∩D(A∗) = V ⊥. Since in Vf ⊂ D(A∗),

this result is compatible with Theorem 4.33 (only if part).

2. In [133] its is shown that for single-input single-output (SISO) systems if

c ∈ D(A∗) and < c, b >6= 0, then the subspace ker C is T-controlled invari-

ant, where C =< c, · >, and the corresponding bounded feedback gain is given

by F = −<A∗c,·>
<c,b>

. Now, we show that this result and Theorem 4.33 coincide.

Since X = ker C + ImB, V = ker C is (A,B)-invariant and consequently feed-

back (A,B)-invariant (by using Lemma 4.31). Moreover, V = X ∩ (Im C∗)⊥
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(note that Im C∗ = span{c}) and hence by Theorem 4.33 (as X is summa-

tion of all sub-eigenspaces of A and c ∈ D(A∗), one can set Vφ = X and

Vf = span{c}), V is T-controlled invariant. In other words, sufficient condi-

tions of Theorem 4.33 are also compatible with the result in [133] (for SISO

systems).

Moreover, note that Vf ⊂ D(A∗) is a crucial condition. As above, consider a SISO

system and the subspace V = X ∩ (Im C∗)⊥, and assume that c /∈ D(A∗), and

consequently the feedback introduced in [133] (i.e. F = −<A∗c,·>
<c,b>

) is not bounded. In

fact V is not T-invariant (since it does not satisfies the necessary condition in [105,

Theorem 3.1]). It should be pointed out that although one can still construct another

the bounded feedback F that is derived in the proof of Lemma 4.31 and consequently

V is feedback (A,B)-invariant, however, even with this bounded feedback, V is not

T-controlled invariant (since V does not satisfies the necessary conditions).

4.3 Fault Detection and Isolation (FDI) Problem

In this section, we first formulate the FDI problem for the RS system (4.1) and then

the methodology that was developed in the previous section is utilized to derive

and provide necessary and sufficient conditions for solvability (formally defined in

Remark 4.35) of the FDI problem.

4.3.1 The FDI Problem Statement

Consider the following regular RS system

ẋ(t) = Ax(t) + Bu(t) +

p∑
i=1

Lifi(t),

y(t) = Cx(t),

(4.17)
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where Li and fi denote the fault signatures and signals, respectively. The other

variables and operators are defined as in the model (4.1). The FDI problem is

specified in terms of generating a set of residual signals, denoted by ri(t) , i =

1, · · · , p such that each residual signal ri(t) is decoupled from the external input

and all the faults, except one fault fi(t). In other words, the residual signal ri(t)

satisfies the following conditions for all u(t) and fj (j 6= i)

if fi = 0 ⇒ ri → 0 (stability and decoupling condition), (4.18a)

if fi 6= 0 ⇒ ri 6= 0. (4.18b)

The residual signal ri(t) is to be generated from the following detection filter

ω̇i(t) = Aoωi(t) + Bou(t) + Eiy(t),

ri(t) = Hiy(t)−Miωi(t),

(4.19)

where ωi ∈ X i
o , X i

o is a separable Hilbert space (Fin-D or Inf-D), and Ao is a regular

RS operator. The operators Bo, Ei,Mi and Hi are closed operators with appropriate

domains and codomains (for example, Ao : X i
o → X i

o and E : Rq → X i
o). In this work

we investigate, develop, and derive conditions for constructing the detection filter

(4.19) by utilizing invariant subspaces such that the condition (4.18) is satisfied.

Remark 4.35. Design of the detection filter (4.19) involves satisfying two main

requirements:

1. The residual signal ri(t) should be decoupled from all faults except fi(t).

2. The corresponding filter error dynamics should be stable.

If the first requirement is satisfied, we say that the fault fi is detectable and isolable.

However, the FDI problem is said to be solvable if both requirements are simulta-

neously satisfied.

In the next subsection, we derive necessary and sufficient conditions for solv-

ability of the FDI problem for the RS system (4.17).
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4.3.2 Necessary and Sufficient Conditions

As stated above, the FDI problem can be cast as that of designing detection filters

having the structure (4.19) such that each detection filter output is decoupled from

all faults but one.

By augmenting the RS system (4.17) and the detection filter (4.19), one can

write

ẋe(t) = Aexe(t) + Beu(t) +

p∑
i=1

Leifi(t),

ri(t) = Cexe(t),

(4.20)

where xe(t) =

 x(t)

ωi(t)

 ∈ X e = X ⊕ X i
o , Ce =

[
HiC −Mi

]
and

Ae =

 A 0

EiC Ao

 , Be =

B
Bo

 , Lei =

Li
0

 . (4.21)

First, let us present the following important lemma.

Lemma 4.36. Assume that the operators A11 : X1 → X1 and A22 : X2 → X2 are

infinitesimal generators of two C0 semigroups TA11 and TA22, respectively. Let the

operator A21 : X1 → X2 be bounded. Then

(a) Ae =

A11 0

A21 A22

 is infinitesimal generator of the following C0 semigroup in

Xe = X1 ⊕X2

TA =

TA11 0

TA21 TA22

 , TA21(t)x =

∫ t

0

TA22(t− s)A21TA11xds.

(b) Moreover, if A11 and A22 are regular RS operators with finitely many multiple

eigenvalues and only finitely many common eigenvalues, then Ae is also a

regular RS operator.
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Proof. (a) This follows from the Proposition 4.7 in [130].

(b) We first show that the operator Ad =

A11 0

0 A22

 is a regular RS with a finitely

many multiple eigenvalues. It can be shown that λ is an eigenvalue of Ad if and

only if λ is an eigenvalue of A11 or A22. Hence, Ad is an operator with finitely many

multiple eigenvalues. Moreover, each generalized eigenvector of Ad can be expressed

as

φ1

0

 or

 0

φ2

, where φ1 and φ2 are the generalized eigenvectors of A11 and A22,

respectively. It follows that Pd
i = QPi (where Pi is the eigenspace of the operator

A11 and Q is an embedding operator such that Q : X1 → Xe and Qx =

x
0

) is

an eigenspace of Ae. Furthermore, the same result holds for the eigenspaces of A22.

Hence, it can be shown that the condition (3) in Definition 4.2 is satisfied. Finally,

we show the inequality that is defined in Remark 4.3 holds. If λi ∈ σ(A11)∩σ(A22),

we select di = min(infλ∈σ(A11)−λi |λ − λi|, infλ∈σ(A22) |λ − λi|). Since the number of

common eigenvalues of A11 and A22 is finite, it follows that the inequality in Remark

4.3 is satisfied, and consequently Ad is a regular RS with a finitely many multiple

eigenvalues. Given that the operator

 0 0

A21 0

 is bounded (with a bound equal to

the bound of A21) and by invoking Remark 4.3, it follows that the operator Ae is a

regular RS operator. This completes the proof of the lemma.

Note that Ao in (4.19) is assumed to be a regular RS operator and the operator

E (and consequently EC) is a bounded operator if Ao and A have only finitely

many common eigenvalues. Hence, by using Lemma 4.36, it follows that Ae, as per

equation (4.21), is an infinitesimal generator of a C0 semigroup, and also a regular

RS operator. Next, we need to establish an important relationship between the

unobservable subspace of the system (4.20) and the unobservability subspace of the

system (4.17) as shown in the following lemma.
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Lemma 4.37. Consider the augmented system (4.20) and let N e =< ker Ce|TAe >.

Then, Q−1N e is an unobservability subspace of system (4.17), where Q is the em-

bedding operator.

Proof. Let S = Q−1N e, where Q is the embedding operator as defined above.

We first show that S is a (C,A)-invariant subspace of the system (4.17) (that is,

A(S ∩ ker C ∩ D(A)) ⊆ S). Let us show that S ∩D(A) = S. Since N e is TAe-

invariant, we have N e ∩D(Ae) = N e. Assume S ∩D(A) 6= S, and consequently

there exits x ∈ S and a neighborhood B 3 x such that B∩D(A) = 0. It follows that

QB ∩D(Ae) = 0 (note that Qx =

x
0

) that is in the contradiction with the fact

that N e ∩D(Ae) = N e. Let x ∈ (S∩ker C∩D(A)). Now, since N is Ae-invariant,

one can write Ae
x

0

 =

Ax
0

 ∈ N e. Hence, Ax ∈ S, and S is (C,A)-invariant,

and consequently feedback (C,A)-invariant subspace (according to Lemma 4.14).

Now, we show that S satisfies the conditions in Theorem 4.17. Since N e

is TAe-invariant and Ae is a regular RS operator, from Corollary 4.10 we have

N e = span{E e
i } i∈I, where E e

i are the sub-eigenspaces of Ae. There are three

possibilities for a sub-eigenspace of Ae as follows

1. E e
i =

Ei

0

, where Ei is a sub-eigenspace of A.

2. E e
i =

 0

E o
i

, where E o
i is sub-eigenspace of Ao.

3. E e
i =

Ei

Eo

, such that Ei and Eo are not sub-eigenspaces of A and Ao (this

sub-eigenspace is corresponded to common eigenvalues of A and Ao).

Let Sφ denotes the largest subspace in the form Sφ = span{Ei} i∈I such that Ei

is a sub-eigenspace of A that is contained in kerHC. It follows that Sφ ⊆ S and

131



S = Sφ + Sf , where Sf is a summation of sub-eigenspaces in the form item 3). Since

there are only finitely many common eigenvalues of A and Ao, it follows that Sf is

Fin-D. Therefore, S satisfies the condition of Theorem 4.17, and consequently S is

T-conditioned invariant.

Finally, given that S ⊆ kerHiC and N e is the largest TAe-invariant subspace

in ker C, it follows that S is the largest T-conditioned invariant subspace contained

in kerHiC (i.e., S is an unobservability subspace of the RS system (4.17)). This

completes the proof of the lemma.

To clarify of existence the subspace Sf in the above proof, consider the following

Fin-D example.

Example 4.38.

Assume

Ae =



1 1 0 0

0 1 0 0

0 1 1 0

0 0 0 3


(4.22)

Also, let L1 = [0, 1, 0, 0]T and L2 == [1, 1, 1, 0]T. It follows that L2 = AeL1 and

AeL2 = 2L2 − L1. Therefore, E = span{L1, L2} is sub-eigenspace of Ae (corre-

sponding to λ = 1). However, Q−1E = L1 is not a sub-eigenspace of A =

1 1

0 1

.

This is the reason with consider Sf in the proof of the above Lemma.

In order to provide sufficient conditions for solvability of the FDI problem,

one also needs to show that the error dynamics corresponding to the designed fault

detection observer is stable. The following theorem provides necessary and sufficient

conditions for stability of a general Inf-D system.

Lemma 4.39. [14] Consider the Inf-D system ė(t) = A′ee(t), such that A′e is an

infinitesimal generator of a C0 semigroup. This system is exponentially stable if and
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only if there exists a positive definite and bounded operator Pe : X → X such that

< A′ez,Pez > + < Pez,A′ez >= − < z, z > . (4.23)

We are now in the position to derive the solvability necessary and sufficient

conditions for the FDI problem corresponding to the RS system (4.17).

Theorem 4.40. Consider the regular RS system (4.17). The FDI problem has a

solution only if

S∗i ∩Li = 0, (4.24)

where S∗i =< kerHiC|A+DiC > is the smallest unobservability subspace containing

Lj, where j = 1, · · · , p and j 6= i, and Li = span{Li} . On the other hand, if

the above condition is satisfied and there exist two maps Do and Pe such that (Ap +

DoMi) and Pe satisfy the condition (4.23), then the FDI problem is solvable where

Ap = (A+DiC)|X/S∗i (i.e., Ap is the operator induced by A+DiC on the factor

space X/S∗i ), and Mi is the solution to MiPi = HiC, where Pi is the canonical

projection from X on X/S∗i .

Proof. (Only if part): We consider the system (4.17) that is subject to two faults

f1 and f2. Assume that the detection filter (4.19) is designed such that the residual

(that is, the output of the filter) is decoupled from the fault f2 but requires to be

sensitive to the fault f1. By considering the augmented system (4.20), it is necessary

that L e
2 = span{Le2} ⊆ N e, (Le2 is defined in (4.21)) where N e is the unobservable

subspace of (4.20), and by using Lemma 4.37, the subspace S = Q−1N e is an

unobservability subspace of the pair (C,A) containing Q−1L e
2 = L2. Moreover,

in order to detect the fault f1 (which can be an arbitrary function of time), it is

necessary that N e ∩ L e
1 = 0 . Hence, S ∩ L1 = 0. Since S∗1 is the minimal

unobservability subspace containing L2 (i.e., S∗1 ⊆ S), the necessary condition for

satisfying the above condition is S∗1 ∩L1 = 0.

(If part): Assume that S∗1 ∩L1 = 0, and let D1 and H1 be defined according to S∗1
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(refer to the Definition 4.25). By definition, L2 ⊆ S∗1 where S∗1 is the unobservable

subspace of the system (H1C,A+D1C). In other words, S∗1 =< kerH1C|A+D1C >.

Now consider the canonical projection P1 : X → X/S∗1 and the following

detection filter

ω̇1(t) =F1ω1(t) + G1u(t)− E1y(t)

r1(t) =M1ω1(t)−H1y(t)

(4.25)

where F1 = Ap +DoM1, G = P1B and E1 = D1 + P−r1 DoH1. By defining the error

e(t) = P1x(t)− ω1(t) and following along the same steps as in Section 2.2, one can

obtain

ė(t) = F1e(t) + P1L1f1(t),

r1(t) =M1e(t).

(4.26)

By invoking Lemma 4.39, it follows that the error dynamics (4.26) is exponentially

stable. Therefore, if f1 ≡ 0 (for any value of f2) then r1(t) → 0. Otherwise,

||r1(t)|| 6= 0. This completes the proof of the theorem.

Remark 4.41. Note that the FDI problem was solved by designing a fault detection

filter to estimate x1. However, unlike the Fin-D case, the condition N = 0 (the

unobservable subspace) is not sufficient for the existence of an observer for a general

Inf-D system [130]. Therefore, the condition (4.24) is not sufficient for solvability of

the FDI problem, and one needs the extra condition that is stated in Theorem 4.40.

Remark 4.42. 1. The condition that A and Ao must have only finite many com-

mon eigenvalues is only needed for ”only if” part of the above proof. Note that

this condition is necessary to show that Q−1N e is an unobservability subspace.

2. For ”if part”, we do not need this condition, since

(a) We do not deal with the augmented system.
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(b) Directly by using Lemma 14, we assume that Ap+DoM1 is asymptotically

stable (i.e. the error dynamics of the detection filter is asymptotically

stable).

4.3.3 Solvability of the FDI Problem Under Two Special

Cases

In this subsection, we investigate two special cases, where the condition (4.24) pro-

vides a single necessary and sufficient condition for solvability of the FDI problem.

Case 1

The following theorem provides a necessary and sufficient condition for solvability of

the FDI problem when the number of positive eigenvalues of the quotient subsystem

is finite.

Theorem 4.43. Consider the faulty system (4.17) with C specified as in equation

(4.2), and let the operator (A+D1C) has only finite number of positive eigenvalues

and the operator Ap = (A+D1C)|X/E+ is asymptotically stable, where E+ is the

sum of eigenspaces corresponding to the positive eigenvalues. The FDI problem is

solvable if and only if the condition (4.24) holds.

Proof. (if part): Consider the detection filter (4.25). As stated above, the observer

gain Do is designed such that the operator Ap +DoM1 is asymptotically stable.

Given that the unobservable subspace of system (M1, Ap) is zero (since it is

obtained by factoring out S∗1 ), the pair Fin-D (M+
1 , A+

p ) (that are induced fromM1

and Ap on X+
1 ) is observable. Therefore, there exists an operator Do : Rqh → X+

1

such that all the eigenvalues of A+
p +DoM

+
1 are negative. By invoking the asymptotic

stability of A−p , and considering Do as the extension of Do, one can show that the
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error dynamics (4.26) is asymptotically stable. By following along the same lines as

in the proof of Theorem 4.40, it follows that the FDI problem is solvable.

(only if part): This follows from the results that are stated in Theorem 4.40.

This completes the proof of the theorem.

Case 2

In this case, the system (4.17) is specified according to the operator given by equation

(4.2), however ci are governed and restricted to

ci =
nc∑
i=1

ζi,jψj. (4.27)

In other words, ci vectors lie on a finite dimensional subspace of X . Since <

φi, ψj >= δij, it follows that Cφi = 0 for all i > nc. Therefore, span{φi}∞i=nc+1 ⊆

ker C, and consequently, ker C = C 0
f ⊕ span{φi}∞i=nc+1, where C 0

f ⊆ span{{φj}ncj=1} .

By invoking Lemma 4.13 and the fact that dim(C 0
f ) < ∞, we have ker C = C 0

f ⊕

span{φi}∞i=nc+1. Since every {φi}∞i=nc+1 ⊆ ker C is also TA+DC-invariant and con-

tained in kerHC, it follows that the unobservability subspace S containing a given

subspace L necessarily contains the Inf-D subspace {φi}∞i=nc+1. Therefore, the fac-

tored out quotient subsystem (M1, Ap) is Fin-D and one can provide necessary

and sufficient conditions for solvability of the FDI problem. The following theorem

summarizes this result.

Theorem 4.44. Consider the faulty system (4.17) that is assumed to be an RS

system and specified according to the output operator (4.27). The FDI problem is

solvable if and only if S∗i ∩Li = 0, where S∗i is the smallest unobservability subspace

containing Lj, j = 1, · · · , p and j 6= i.

Proof. (if part): Since X/S∗1 is a Fin-D vector space and the system (M , A11)

(where A11 = (A+DC)|S∗1 and MP = HC) is observable and Fin-D. Therefore,
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there always exists the operator Do such that the observer (4.19) can both detect

and isolate the fault fi. Given that the detection filter is Fin-D, the stability of the

error dynamics is gauranteed by the observability of the system (M , A11).

(only if part): This follows from the results that are stated in Theorem 4.40.

This completes the proof of the theorem.

4.3.4 Summary of Results

In this section, the FDI problem was formulated by invoking invariant subspaces

that were introduced and developed in Section 4.2. We first derived in Theorem 4.40

necessary and sufficient conditions for solvability of the FDI problem. Moreover, it

was shown that for two special classes of regular RS systems there exists a single

necessary and sufficient condition (that is, the condition (4.24)) for solvability of the

FDI problem. Table 4.1 summarizes and provides a pseudo-code and procedure for

detecting and isolating faults in the RS system (4.17).

Remark 4.45. As illustrated above, the main difficulty in deriving a single nec-

essary and sufficient condition for solvability of the FDI problem for a general RS

system has its roots in the relationship between the condition N = 0 and the exis-

tence of a bounded observer gain D such that the corresponding error dynamics is

exponentially stable. Another possible approach that one can investigate and pursue

is through a frequency-based approach that was originally developed in [101] to inves-

tigate the disturbance decoupling problem. This approach deals with the Hautus test,

and as shown in [134] the Hautus test does also involve certain new challenges for

Inf-D systems. Specifically, there exist certain Inf-D systems that pass the Hautus

test, however they are not observable. Notwithstanding the above, the investigation

of utilization of a frequency-based approach for tackling the FDI problem and its

relationship with invariant subspaces introduced in this chapter is beyond the scope

of this thesis, therefore we suggest this line of research as part of our future work.
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Table 4.1: Pseudo-algorithm for detecting and isolating the fault fi in the regular
RS system (4.17).

1. Compute the minimal conditioned invariant subspace W ∗

containing all Lk subspaces such that k 6= i (by using the

algorithm (4.11) where L =
∑

j 6=i Lj).

2. Compute the unobservability subspace S∗i containing
∑

j 6=i L1
j (by

using the algorithm (4.14)).

3. Compute the operator Di such that Di ∈ D(W ∗).

4. Find the operator Hi such that kerHiC = W ∗ + ker C = S∗i + kerC.

5. If S∗i ∩ Li = 0, then the necessary condition for solvability

of the FDI problem is satisfied. Moreover, if one of the

following conditions are satisfied, the FDI problem is

solvable. In other words, one can design a detection filter

according to the structure provided in (4.19) to detect and

isolate fi,

• If there exists a bounded operator Do such that the

conditions of Theorem 4.40 are satisfied, or

• The operator Ap = (A+DiC)|X/S∗i has finite number of

positive eigenvalues, or

• If dim(X/S∗i ) <∞.

The operators in the detection filter (4.19) are defined as

follows. Let Pi be the canonical projection of S∗i , then

Ao = (A+DiC)|X/S∗i + DoMi, Bo = PiB, MiPi = HiC, E = DoHi and

Do is selected such that Ao satisfies the condition of Lemma

4.39. Moreover, the output of the detection filter (i.e.,

ri(t)) is the residual that satisfies the condition (4.18).

Finally, to add further clarification and information we have provided in Figure

4.1 a schematic summarizing and depicting the relationships among the various

lemmas, theorems and corollaries that are presented and developed in this chapter.
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4.4 Numerical Example

In this section, we provide a numerical example to demonstrate the applicability

of our proposed approach. We consider a PDE system that represents a linearized

approximation to the model that corresponds to a large class of chemical processes,

such as the two-component reaction-diffusion process (for more detail refer to [79]).

Consider the following parabolic PDE system.∂x̃1(t,z)
∂t

∂x̃2(t,z)
∂t

 =

 ∂2

∂z2
0.1

0.1 ∂2

∂z2

x̃1(t, z)

x̃2(t, z)

+ b1(z)ũ1(t, z) + b2(z)ũ2(t, z) + L1(z)f̃1(t, z)

+ L2(z)f̃2(t, z) +

ν1(t, z)

ν2(t, z)

 ,
y1(t) =

∫ π

0

c1(z)x̃(t, z)dz + w1(t, z), x̃i(t, 0) = 0, i = 1, 2, (4.28)

y2(t) =

∫ π

0

c2(z)x̃(t, z)dz + w2(t), x̃i(t, π) = 0, i = 1, 2,

where x̃(t, z) = [x̃1(t, z), x̃2(t, z)]T ∈ R2 and ũi(t, z) ∈ R denote the state and input,

respectively. Also, z ∈ [0, π] denotes the spatial coordinate, and ci ∈ L2([0, π],R),

where L2([0, π],R) denotes the space of all square integrable functions over [0, π].

Also νi and wi (i = 1, 2) denote the process and measurement noise that are assumed

to be normal distributions with 0.5 and 0.2 variances, respectively. Note that the

boundary conditions assure that the temperatures at z = 0 and z = π are fixed.

Here for simplicity of presentation we assume x̃i(t, 0) = 0 and x̃i(t, π) = 0, i = 1, 2.

Moreover, the faults f1 and f2 represent malfunctions in the heat jackets (that are

modeled by invoking the input vectors b1 and b2).

The system (4.28) can be expressed in the representation of (4.17) (by neglect-

ing the disturbances and noise signals νi and wi) by utilizing the spectral operator

A =

 ∂2

∂z2
0.1

0.1 ∂2

∂z2

, where the domain of A is defined by [14, Chapter 1]:

D(A) = {x ∈ L2([0,π]) | x, dx

dz
are absolutely continuous}.
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By solving the corresponding Sturm-Liouville problem [135], the eigenvalues ofA are

obtained as λ1
k = 0.1− k2, λ2

k = −0.1− k2, k ∈ N, and the corresponding eigenfunc-

tions are given by φ1
k =

√
2
π
[sin(kz), sin(kz)]T and φ2

k =
√

2
π
[sin(kz),− sin(kz)]T.

Note that φ1
k and φ2

k are bi-orthonormal. In other words, φ1
k ⊥ φ2

j , for all j ∈ N and

φ1
k ⊥ φ1

j , for j 6= k. Therefore, ψik = φik, i = 1, 2 and k ∈ N. Consider the system

(4.28), where

c1(z) =


[1, 1]T 0 ≤ z ≤ π/4

0 ; Otherwise

, c2(z) =


[1,−1]T 3π/4 ≤ z ≤ π

0 ; Otherwise

(4.29)

Note that from practical point of view the structure of c1 and c2 is determined by

characteristics of sensors.

Let us assume bi(z) =
∑∞

k=5 ζ
i
kφ

i
k, where ζ1

k = [ 1
k
, 1
k
]T, and ζ2

k = [ 1
k2
,− 1

k2
]T

for k ≥ 5. Moreover, let Li(z) = bi(z) i = 1, 2 (for all z ∈ [0, π]) represent actuator

faults. Finally, let C = [< c1, · >, < c2, · >]T, with c1 and c2 given above. As

observed below the condition for the Case 1 stated in Section 4.3.3 does hold.

In the following, a detection filter is designed for detecting and isolating the

fault f1. Since L2 = span{L2} ∈ D(A) and L2 6∈ ker C, we obtain Z ∗ = Z1 = L2

from the algorithm (4.11). Hence, one can write W` = 0 (since LN = 0). Therefore,

W ∗ = L2. By setting W ∗
φ,f = W ∗

f and since c1 ⊥ φ2
k for all k ∈ N, 0 ∈ ρ∞(A), we

have N +L2 = span{φ2
k} k∈N (i.e., the unobservable subspace of system (4.28) with

only one input y = c1x). Given that W ∗ = L2, we obtain that S∗1 = span{φ2
k} k∈N.

It follows that L1 ∩ S∗1 = 0, and a solution for the corresponding maps D1 and H1

is given by D1 = 0 and H1 = [1, 0]. The factored out subsystem can therefore be

specified by using the canonical projection on S∗1 , that is P1 : X → X/S∗1 , as follows

ω̇1(t) = Apω(t) + P1Bu(t) + P1L1f1(t),

yω(t) =M1ω1(t),

(4.30)

where ω1 ∈ X/S∗1 , u = [u1, u2]T, yω = H1y, Ap andM are solutions to the equations
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ApP1 = P1A and MP = HC, respectively, and are given by

Ap =
∂2

∂z2
+ 0.1, M1ω1 =< c2, ω1 > . (4.31)

By solving the corresponding Sturm-Liouville problem [135], the eigenvalue of

Ap is given as λ1
k = 0.1−k2, i ∈ N. The eigenvalue of Ap is Since all the eigenvalues

of Ap are negative (the condition for Case 1 in Subsection 4.3.3), by using Theorem

4.43 a detection filter is therefore specified according to

ω̇1(t) = Aoω1(t) + P1Bu(t),

r1(t) = H1y(t)−M1ω1(t),

(4.32)

where Ao = Ap. In other words, the detection filter to detect and isolate the fault

f1 is given by

∂ω̃1(t, z)

∂t
=
∂2ω̃1(t, z)

∂z2
+ 0.1ω̃1(t, z) + b11(z)ũ1(t, z) + b21(z)ũ2(t, z) (4.33)

where ω̃1(t, z) ∈ R is the corresponding function to ω1(t) ∈ X , [b11(z), b21(z)]T =

P1[b1(z), b2(z)]T. The error dynamics corresponding to the above detection filter

(i.e., e(t) = P1x(t) − ω1(t)) is given by ė(t) = Ape(t) + P1L1f1(t). Therefore, if

f1 = 0, the error converges to the origin exponentially. Otherwise, e 6= 0. The above

residual (i.e, r1) corresponding to the fault f1 is also decoupled from f2. By following

the same steps as above, one can design a detection filter to detect and isolate the

fault f2. These details are therefore not included. We no have S∗2 = span{φ1
k} k∈N,

and the filter to detect and isolate f2 is given by

∂ω̃1(t, z)

∂t
=
∂2ω̃1(t, z)

∂z2
− 0.1ω̃1(t, z) + b12(z)ũ1(t, z) + b22(z)ũ2(t, z), (4.34)

where [b11(z), b21(z)]T = P2[b1(z), b2(z)]T, and P2 : X → X/S∗2 is the canonical

projection on S∗2 .

For the purpose of simulations, we consider a scenario where the fault f1 with

a severity of 2 occurs at t = 5 sec and the fault f2 with a severity of −1 occurs
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at t = 7 sec. Figure 4.2 shows the states of the system (4.28) (namely, x̃1 and

x̃2 with disturbances and noise signals νi and wi included in the simulations), and

Figure 4.3 depicts the residuals r1 and r2. It clearly follows that ri is only sensitive

to the fault fi, i = 1, 2. Note that the thresholds are computed based on running

70 Monte Carlo simulations for the healthy system with the thresholds selected as

the maximum residual signals r1 and r2 during the entire simulation runtime. The

selected thresholds are th1 = 0.09 and th2 = 0.064, corresponding to the residual

signals r1 and r2, respectively. The faults f1 and f2 are detected at t = 5.051 sec

and t = 7.31 sec, respectively. Table 4.2 shows the detection times corresponding

to various severity fault cases that are simulated. This table clearly shows the

impact of the fault severity levels on the detection times. In other words, the lower

the fault severity, the longer the detection time delay. Moreover, the minimum

detectable fault severities associated with f1 and f2 are determined to be 0.05 and

0.15, respectively.

Remark 4.46. The conducted simulations are performed by using the finite-element

methods that are not based on the eigenvalues of A. More specifically, we use the

“pdepe” function in MATLAB to generate the data and simulate the filters. In other

words, we design the filters based on the eigenvalues and eigenvectors and perform the

simulations by using a different approach. Therefore, the provided results emphasize

that the proposed method can detect and isolate faults in the actual PDE system.

Remark 4.47. When compared with approximate approaches that are developed

in [15, 17] and [20] two main issues are worth pointing out:

1. The approximation of the system (4.17) is based on only the operator A. As

stated in [20], system (4.17) was approximated by using the first two to four

eigenvalues. However, since the fault signatures (namely, L1 and L2) in the

above example have no effect on the eigenspaces of the first five eigenvalues,
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(a) The state x̃1. (b) The state x̃2.

Figure 4.2: The states of the system (4.28). The faults f1 and f2 occur at t = 5 sec
and t = 7 sec with severities of 2 and −1, respectively.
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(a) The residual signal r1 for detect-
ing and isolating the fault f1.
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(b) The residual signal r2 for detect-
ing and isolating the fault f2.

Figure 4.3: The residual signals for detecting and isolating the faults f1 and f2. The
faults occur at t = 5 sec and t = 7 sec with severities of 2 and −1, respectively.
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Table 4.2: Detection time delay of the faults f1 and f2 corresponding to various
severities.

XXXXXXXXXXXXSeverity
Fault

f1 (sec) f2 (sec)

f1 = 2,
f2 = −1

0.051 0.31

f1 = 0.5,
f2 = 0.5

0.21 0.555

f1 = 0.09,
f2 = 0.2

1.18 1.04

f1 = 0.05,
f2 = 0.15

4.7 1.34

the faults f1 and f2 would not have been detectable by using the approaches

in [15, 17] and [20].

2. In the references [15, 17] and [20], it is necessary that the Inf-D system has

eigenvalues that are far in the left-half plane, that result in extremely fast

transient times (refer to Assumption 1 in [15]), whereas our proposed approach

in this chapter does not suffer from this restriction and limitation.

4.5 Summary

In this chapter, geometric characteristics associated with the regular Riesz spectral

(RS) systems are investigated and new properties are introduced, specified, and

developed. Specifically, various types of invariant subspaces such as the A- and T-

conditioned invariant and T-unobservability subspaces are developed and analyzed.

Moreover, necessary and sufficient conditions for equivalence of various conditioned

invariant subspaces are also provided. Under certain conditions, the algorithms

corresponding to computing invariant subspaces are shown to indeed converge in a

finite number of steps. Finally, we formulate and introduce the problem of fault

detection and isolation (FDI) of RS systems, for the first time in the literature,
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in terms of invariant subspaces. For regular RS systems, we have developed and

presented necessary and sufficient conditions for solvability of the FDI problem.

146



Chapter 5

Fault Detection and Isolation of

Inf-D Systems by Using

Semigroup Invariant Subspaces

In this chapter we focus on derivation of necessary and sufficient conditions for

equivalence of invariant subspaces of Inf-D systems with their applications on the

FDI problem. The Inf-D system that is considered in this chapter is more general

than RS systems (which were addressed in Chapter 4).

As stated earlier, due to complexity of unbounded operators various defini-

tions of invariant subspaces are introduced, where these subspaces are equivalent in

Fin-D systems and inequivalent in Inf-D systems. In this chapter, we first address

invariant subspaces of Fin-D systems from a new point of view by invoking resol-

vent operators. This approach enables one to extend the results to Inf-D systems.

Particularly, we derive necessary and sufficient conditions for equivalence of various

types of conditioned and controlled invariant subspaces of Inf-D systems. Duality

properties of Inf-D systems are then investigated. Finally, by introducing unobserv-

ability subspaces for Inf-D systems we precisely formulate the FDI problem, and
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necessary and sufficient conditions for solvability of the FDI problem are provided.

5.1 Inf-D Systems

Consider the following Inf-D system.

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

(5.1)

where x(t) ∈ X , u(t) ∈ Rm and y(t) ∈ Rq are the state, input and output vectors,

respectively. X is a real separable Hilbert space equipped by the dot-product <

·, · >. As in Chapter 4, we consider the following input and output operators,

B : Rm → X , Bu =
m∑
i=1

uibi, (5.2)

where u =
[
u1, · · · , um

]T

and bi ∈ X , i = 1, · · · ,m, and

C =
[
< c1, · >,< c2, · >, · · · , < cq, · >

]T

(5.3)

in which ci ∈ X , i = 1, · · · , q. It follows that the operators B and C are bounded

and finite rank. However, unlike Chapter 4, in this chapter we do not restrict A to

be a regular RS operator. More precisely, we consider the unbounded operator A :

D(A)→ X that is closed and is the infinitesimal generator of a strongly continuous

(C0) semigroup TA(t) [14]. Therefore, system (5.1) is more general than the RS

system (4.1).

5.2 Invariant Subspaces of Fin-D Systems

As mentioned earlier, one of main problems in geometric theory of Inf-D systems

is to characterize conditioned and controlled invariant subspaces. As we observed

in Chapter 4, due to inherent complexities of unbounded operators. For example,
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consider domain of unbounded operators. Unlike bounded ones, domain of an un-

bounded operator is not X and indeed D(A) = X ), extension of invariant concepts

from Fin-D to Inf-D systems faces certain challenges. In this subsection, we review

invariant subspaces of Fin-D systems from a new perspective and point of view

that is not available in the literature. Specifically, we provide below two important

lemmas on conditioned and controlled invariant subspaces that can be generalized

and extended (unlike the available results in geometric theory of Fin-D systems

in [74,112]) to Inf-D systems.

Consider the following Fin-D system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

(5.4)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rq denote the state, input and output

vectors, respectively. Based on [74], a subspace V is A-invariant if AV ⊆ V , and

the A-invariance property is equivalent to eAt-invariance. In other words, eAtV ⊆V

if and only if AV ⊆ V . However, as discussed in Chapter 4, these subspaces are

not necessarily equivalent in Inf-D systems.Therefore, one cannot formally and fully

characterize the Inf-D system (5.1) by only addressing the A-invariant subspaces

[103]. The main reason for this fact is unboundedness property of A. However, the

resolvent operator of an unbounded operator is always a bounded operator. Hence,

in this section we investigate the invariant subspaces of Fin-D systems by using the

resolvent operator and then generalize and extend these results to Inf-D systems in

the next section.

The following lemma describes the relationship between the R(λ,A)-invariance

and the A-invariance concepts.

Lemma 5.1. Consider the system (5.4) and the A-invariant subspace V . Then for

all λ ∈ ρ∞(A) we have R(λ,A)V = V .
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Proof. Let {v1, · · · , vk} denote a basis of V and λ ∈ ρ∞(A). Since (λI − A) is

invertible, {(λI − A)v1, · · · , (λI − A)vk} are independent. By the A-invariance

property of V , it follows that (λI − A)vi ∈ V for all i ∈ {1, · · · , k}. Therefore,

{(λI−A)v1, · · · , (λI−A)vk} is a basis of V , and consequently (λI−A)V = V . Also,

since (λI −A) is invertible, R(λ,A) is well-defined, so that we have R(λ,A)V = V .

This completes the proof of the lemma.

As pointed out in [14, 101], R(λ,A)V ⊆ V is equivalent to AV ⊆ V (since

D(A) = Rn). However, the above lemma shows that the condition R(λ,A)V =

V is not stronger than AV ⊆ V , and they are indeed equivalent. The following

lemma provides an important perspective on the unobservable subspace (that is

N =
⋂n−1
k=0 kerCAk) for the system (5.4).

Lemma 5.2. Consider the Fin-D system (5.4) and its unobservable subspace N =⋂n−1
k=0 kerCAk. The subspace N can be computed as

N =
n−1⋂
k=0

kerCR(λ,A)k (5.5)

Proof. It is well-known that N is largest A-invariant and consequently largest eAt-

invariant for all t ≥ 0 contained in kerC [74]. Also, as stated above every A-invariant

is also R(λ,A)-invariant. Now, we show that Nr =
⋂n−1
k=0 kerCR(λ,A)k is the largest

R(λ,A)-invariant contained in kerC and therefore, Nr = N .

First, we show Nr is R(λ,A)-invariant. It is lucid that Nr ⊆ kerC. Let

x ∈ Nr. Since x ∈ kerCR(λ,A)k and x ∈ kerCR(λ,A)k+1 for k = 0, · · · , n− 2, we

obtain R(λ,A)x ∈
⋂n−2
k=0 kerCR(λ,A)k. Also, by using Cayley-Hamilton theorem

for R(λ,A) (note that R(λ,A) is a matrix with the same dimension as A), it follows

that R(λ,A)x ∈ kerCR(λ,A)n−1, and consequently R(λ,A)x ∈ Nr. Therefore, Nr

is R(λ,A)-invariant. Now, we show Nr is the largest R(λ,A)-invariant subspace

contained in kerC. Let V ⊆ kerC is a R(λ,A)-invariant, and set x ∈ V . It

follows that x ∈ kerC and since V is R(λ,A)-invariant, we obtain R(λ,A)kx ∈
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V ⊆ kerC, for k ∈ N. Hence, x ∈ kerCR(λ,A)k for all k = 0, · · · , n − 1, and

consequently x ∈ Nr (i.e., V ⊆ Nr). Therefore, Nr is the largest R(λ,A)-invariant

(and consequently, A-invariant) subspace contained in kerC, and consequently Nr =

N . This completes the proof of the lemma.

Next, let us review the conditioned and controlled invariant subspaces of the

system (5.4).

Definition 5.3. [74]

1. The subspace W ⊆ Rn is called a conditioned invariant subspace if A(W ∩
kerC)⊆W .

2. The subspace V ⊆Rn is called a controlled invariant subspace if AV ⊆B+V .

The following lemma provides the main available result in the literature on

conditioned and controlled invariant subspaces of Fin-D systems.

Lemma 5.4. [74] Consider the system (5.4) and the conditioned (controlled) in-

variant subspace W (V ). Then, there exists a map D : Rq → Rn (F : Rn → Rm)

such that W (V ) is invariant with respect to e(A+DC)t (e(A+BF )t).

As shown in the next section, the above lemma

emphdoes not hold for Inf-D systems. Therefore, we subsequently use the resolvent

operator instead of A to address the conditioned and controlled invariant subspaces

of Fin-D systems. This new point of view will subsequently enable us to formally

address the conditioned and controlled invariant subspaces for the Inf-D systems.

Lemma 5.5. Consider system (5.4), and the subspace W ⊆Rn. The subspace W is

conditioned invariant if and only if for any λ ∈ ρ∞(A), we have R(λ,A)W ∩kerC =

W ∩ kerC.
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Proof. (if part): Let W ∩ kerC = R(λ,A)W ∩ kerC. Therefore, we have W ∩
kerC⊆ R(λ,A)W ∩ kerC⊆ R(λ,A)W . Since R(λ,A) is invertible it follows that

(λI − A)(W ∩ kerC)⊆ W . Now, let x ∈ W ∩ kerC. Hence, λx − Ax ∈ W ,

and consequently Ax ∈ W . In other words, A(W ∩ kerC)⊆W . Therefore, W is

conditioned invariant.

(only if part): Let W be a conditioned invariant subspace and an arbitrary λ ∈

ρ∞(A). Since A(W ∩ kerC) ⊆ W , we obtain (λI − A)(W ∩ kerC) ⊆ W , and

consequently (W ∩ kerC)⊆R(λ,A)W . Also, since (W ∩ kerC)⊆ kerC, it follows

that (W ∩ kerC)⊆R(λ,A)W ∩ kerC.

We now show thatR(λ,A)W ∩kerC⊆(W ∩kerC). Let x ∈ R(λ,A)W ∩kerC.

it follows that there exists a y ∈ W such that R(λ,A)y = x or (λI − A)x = y.

Since x ∈ kerC, we obtain (λI − A − DC)x = (λI − A)x = y and therefore

x ∈ R(λ,A + DC)W . Since W is conditioned invariant, by using Lemma 5.1, we

have R(λ,A+DC)W = W , and hence x ∈ W . It follows that x ∈ W ∩ kerC which

completes the proof.

Remark 5.6. It should be pointed out that the condition R(λ,A)W ∩ kerC⊆W ∩
kerC is not sufficient for conditioned invariance. For example, consider the system

(5.4) with A =

1 1

0 1

 and C = [1, −1]T. Also, let W = span{[1, 1]T} . It follows

that 0 = R(λ,A)W ∩ kerC ⊆ (W ∩ kerC) = W , however W is not conditioned

invariant (since A(W ∩ kerC) = span{[2, 1]T} 6⊆ W ).

By following along the same lines as above, one can derive the following lemma.

Lemma 5.7. Consider the system (5.4). Then the subspace V is controlled invariant

if and only if for any λ ∈ ρ∞(A), we have R(λ,A)(V + B) = V +R(λ,A)B, where

B = ImB.

Proof. We show the result by using duality property that holds for Fin-D systems

[74].
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(if part): Let R(λ,A)(V +B) = V +R(λ,A)B and W = V ⊥. Since kerBT = B⊥

and (F−1R)⊥ = FTR⊥ for any R ∈ Rn and operator F : Rn → Rn [136], it

follows that (λI − AT)(W ∩ kerBT) = W ∩ (λI − AT) kerBT, and consequently,

R(λ,AT)W ∩ kerBT = W ∩ kerBT (note that ρ∞(AT) = ρ∞(A)). By using Lemma

5.5, W is a conditioned invariant subspace of the pair (BT, AT). Therefore, by

duality V = W ⊥ is a controlled invariant subspace for the pair (A,B).

(only if part): By following along the same steps as above one can show this part.

This completes the proof of the lemma.

5.3 Invariant Subspaces for Inf-D Systems

As stated earlier in Chapter 4, invariant subspaces play a prominent role in geometric

control theory that includes studies in FDI and disturbance decoupling problems

[41, 50, 74, 112]. In the FDI problem, one needs three types of invariant subspaces,

namely TA-invariant, conditioned invariant, and unobservability subspaces. For the

disturbance decoupling problem, the controlled invariant subspace is necessary. In

the literature, TA-invariant, conditioned and controlled invariant subspaces (that

are subsequently defined) have been introduced for Inf-D systems [103, 105, 110,

130]. The necessary and sufficient condition for equivalence of A-invariance and

TA-invariance has been addressed in the literature. However, the conditioned and

controlled invariant subspaces have been partially addressed. More specifically, the

necessary and sufficient conditions for equivalence of various types of these subspace

is still an open problem. In this section, we first review invariant concepts of Inf-D

systems and develop two important results that are related to the conditioned and

controlled invariant subspaces. Then, an unobservability subspaces of Inf-D systems

is addressed.
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5.3.1 A-Invariant Subspace

As stated in Chapter 4, there are two different definitions that are related to the TA-

invariance property, and unlike the Fin-D case, these definitions are not equivalent

for Inf-D systems. We repeat the definitions as follows,

Definition 5.8. [130]

1. The closed subspace V ⊆X is called A-invariant if A(V ∩D(A))⊆ V .

2. The closed subspace V ⊆X is TA-invariant if TA(t)V ⊆V for all t ∈ [0,∞),

where TA is the C0 semigroup generated by A.

In the geometric approach of the FDI problem one needs the subspaces that

are TA-invariant. Since dealing with TA-invariant subspaces are more challenging

than A-invariant subspaces, we are interested in cases where the Definition 5.8 item

1) and 2) are equivalent. The necessary and sufficient condition for TA-invariance

is provided in the literature that is presented as follows.

Lemma 5.9. [101, Lemma I.4] Consider the C0 semigroup TA and its infinitesi-

mal generator A. Let V be a closed subspace. Then the following statements are

equivalent.

1. V is TA-invariant.

2. V is R(λ1,A)-invariant for a λ1 ∈ ρ∞(A) (for definition of ρ∞(A) refer to

the Notation Section 1.6).

3. V is R(λ,A)-invariant for all λ ∈ ρ∞(A).

4. The range of (λI − A) restricted to V is V (that is, (λI − A)(V ∩D(A)) =

V ).
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As in the previous chapter, a subspace of particular TA-invariant of inter-

est that we are mainly concerned in this chapter is the unobservable subspace.

The unobservable subspace of the system (5.1) is defined as N =< ker C|TA >=⋂
t≥0 ker CTA(t) [103] that is the largest TA-invariant that is contained in ker C [103].

By extending Lemma 5.2, the following lemma shows an important property for N .

Lemma 5.10. The unobservable subspace can be computed as

N =
∞⋂
k=0

ker CR(λ,A)k (5.6)

Proof. Since N is the largest T-invariant contained in ker C, it is also the largest

R(λ,A)-invariant subspace in ker C. Set Nr =
⋂∞
k=0 ker CR(λ,A)k. As in Lemma

5.2, we show that Nr is the largest R(λ,A)-invariant subspace contained in ker C

and consequently N = Nr.

First, we show that Nr is R(λ,A)-invariant. It is lucid that Nr ⊆ ker C. Also,

since C and R(λ,A)k (and consequently CR(λ,A)k) are bounded, the null space

of ker CR(λ,A)k is closed for all k ∈ N. Therefore, Nr is a closed subspace. Let

x ∈ Nr by following along the same steps in the proof of Lemma 5.2, one can

show that R(λ,A)x ∈ ker CR(λ,A)k for all k ∈ N, and consequently it follows that

R(λ,A)x ∈ Nr. Therefore, Nr is R(λ,A)-invariant.

Next, we show that Nr is the largest R(λ,A)-invariant subspace contained in

ker C. Let V ⊆ ker C be a R(λ,A) invariant subspace and set x ∈ V . It follows

that R(λ,A)kx ∈ V ⊆ ker C for all k ∈ N, and consequently x ∈ Nr. Therefore,

V ⊆ Nr and Nr is the largest R(λ,A) in variant subspace contained in ker C. This

completes the proof of the lemma.

We use the unobservable subspace N to introduce the unobservability sub-

spaces for Inf-D systems.
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As emphasized in Chapter 4, there are three different definitions for condi-

tioned invariant subspaces (Definition 4.11). In order to derive necessary and suffi-

cient conditions for equivalence of these definitions, we need the following lemma.

Lemma 5.11. Consider the infinitesimal generator A, λ ∈ ρ∞(A) and the A-

invariant subspace V such that V ∩D(A) = V . If there exists a Fin-D A-invariant

subspace Vf such that VR = V + Vf is R(λ,A)-invariant, then V is R(λ,A)-

invariant.

Proof. As Lemma 4.17, we first show that one can assume Vf ⊂ D(A). Given that

VR is R(λ,A)-invariant [101], we have VR ∩D(A) = VR. Also, as an assumption

we have V ∩D(A) = V . If VR is Fin-D, V is Fin-D and hence Vf ⊆ V ⊂ D(A).

Let, VR be Inf-D. By following along the same steps in the proof of Lemma 4.14, we

define the basis {vi}∞i=1 of V such that vi ∈ D(A) for all i ∈ N and {vi}∞i=nf+1 is a

basis for VR, where nf = dim(Vf). Set Vff = span{wi} nf
i=1 ⊂ D(A), and it follows

that V = VR + Vff . Therefore, without loss of any generality we assume Vf ⊂ D(A).

Next, by following along the same steps as in Lemma 5.1, we show (λI − A)Vf =

Vf . Let {v1, · · · , vnf
} denote a basis of Vf , where vk ∈ D(A), k = 1, . . . , nf and λ ∈

ρ∞(A). Since (λI − A) is invertible, {(λI − A)v1, . . . , (λI − A)v−−−−nf} are in-

dependent. By theA-invariance property of V andR(λ,A)-invariant property VR, it

follows that Vf is A-invariant, and (λI − A)vk ∈ Vf for all k ∈ {1, · · · , nf . Therefore,

{(λI − A)v1, · · · , (λI − A)vk} is a basis of Vf , and consequently (λI − A)V = V .

Now, we show the result by contradiction. Assume that V is not R(λ,A)-

invariant. Therefore, there exists Uf ⊂ V such that Vu,f = R(λ,A)Uf (i.e. (λI − A)Vu,f =

Uf) and Vu,f ∩ V = 0. Now, let λ1 = λ + ζ, where ζ > 0. By definition of ρ∞(A),

it follows that λ1 ∈ ρ∞(A) and (λ1I − A)Vu,f ∩ V = 0 (given that vu ∈ Vu,f , we

obtains (λ1I − A)vu = (λ1I − A)vu + ζvu, (λ1I − A)vu ∈ V , and consequently

(λ1I − A)Vu,f ∩ V = 0). Moreover, (λ1I − A)(V ∩ D(A)) ⊂ V , and given that
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(λ1I − A)(VR ∩ D(A)) = VR (by using Lemma 5.9) and R(λ1,A)Vf = Vf , we ob-

tain (λ1I − A)(V ∩ D(A)) = V (otherwise, there exists v ∈ V ⊂ VR such that

R(λ1,A)v 6∈ VR), and by Lemma 5.9, item 4), V isR(λ1,A)-invariant that is in con-

tradiction with the above assumption. This completes the proof of the lemma.

Remark 5.12. In the above proof, the finite dimensionality of Vf plays a crucial

role as explained, below.

1. Since dim(Vf) <∞, we obtain R(λ,A)Vf = Vf .

2. If dim(Vf) =∞, then V + Vf 6= V + Vf does not hold in general.

5.3.2 Conditioned Invariant Subspaces

In this subsection, the conditioned invariant subspaces of the system (5.1) are char-

acterized. As in Chapter 4, we have the following definitions.

Definition 5.13. [103]

1. The closed subspace W is called (C,A)-invariant if A(W ∩D(A)∩ker C)⊆W .

2. The closed subspace W is feedback (C,A)-invariant if there exists a bounded

operator D : Rq → H such that W is invariant with respect to (A+DC) as

per Definition 5.8.

3. The closed subspace W is T-conditioned invariant if there exists a bounded

operator D : Rq → H such that (i) the operator (A+DC) is the infinitesimal

generator of a C0-semigroup TA+DC; and (ii) W is TA+DC-invariant.

Example 5.14. Definitions 5.13 are not equivalent.

Let us now consider the following dynamical system

∂x̃

∂t
=
∂2x̃

∂z2
,

y(t) =

∫ 0.5

0

x̃(t, z)dz,

(5.7)
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where z ∈ [0, 1] and x̃(t, 0) = x̃(t, 1) = 0. Let W denote the subspace of all func-

tions satisfying the boundary conditions and are equal to zero almost everywhere in

(0.5, 1]. By following the same steps as in [101, Example I.6], it can be shown that

W is

emphnot TA-invariant. However, by setting D = 0, W is feedback (C,A)-invariant

and invoking Lemma 4.15, it follows that W is not T-conditioned invariant). There-

fore, the T-conditioned invariance property is more stronger than feedback (C,A)-

invariant.

For developing a solution to the FDI of Inf-D systems, we are interested in

cases in which the Definition 5.13, items 1) to 3) coincide. To the best of our

knowledge, there is no necessary and sufficient condition for this equivalence in the

literature. It should be pointed out that the results in [108] are applicable to

emphonly single input single output systems. Also, the results of Chapter 4 are

mainly applied to regular RS systems.

Motivated by the above example, and following Lemmas 5.1 and 5.5, we pro-

vide the main result of this section in theorem, below.

Theorem 5.15. Consider the system (5.1) and the bounded finite rank output op-

erator C (rank(C) = q). Also, let W denote a (C,A)-invariant subspace such that

D(A) ∩W = W .

1. W is T-conditioned invariant.

2. There exists a λ1 ∈ ρ∞(A)∩ρ∞(A+DC) such that R(λ1,A)W ∩ker C⊆W ∩

ker C and

(a) The subspace W can be represented as W = WR + Wf such that WR is a

R(λ,A)-invariant subspace contained in W , and Wf is a Fin-D subspace,

or
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(b) There exists a Wf ⊆ D(A) such that (i) Wf ∩ ker C = 0, (ii) D(W ) ∩

D(Wf) 6= ∅, and (iii) WR = W + Wf , where WR is a R(λ,A)-invariant

containing W .

3. For every λ ∈ ρ∞(A) ∩ ρ∞(A+DC), we have R(λ,A)W ∩ ker C ⊆W ∩ ker C

and

(a) The subspace W can be represented as W = WR + Wf such that Wf is a

Fin-D subspace, or

(b) There exists a Fin-D Wf such that(i) Wf∩ker C = 0, (ii) D(W )∩D(Wf) 6=

∅, and WR = W + Wf .

Proof. Since W is (C,A)-invariant, by using Lemma 4.14 there exists a bounded

operator D such that (A+DC)(W ∩ D(A)) ⊆ W and the operator A+DC is

infinitesimal generator of the C0 semigroup TA+DC. By using Theorem 2.1.12 in [14]

(the Hille-Yosida theorem), where it is shown that for every infinitesimal generator

A there exists a finite real number r ∈ R such that [r, ∞) ⊂ ρ∞(A)), it follows that

(ρ∞(A) ∩ ρ∞(A+DC)) is not empty.

(1 ⇒ 2 and 3): Assume W is T-conditioned invariant, and consider the bounded

operator D such that TA+DCW ⊆ W . Let λ1 ∈ ρ∞(A) ∩ ρ∞(A+DC). By using

Lemma 5.9, one obtains R(λ1,A+DC)W ⊆ W . Let x ∈ R(λ1,A)W ∩ ker C and

y = (λI − A)x ∈ W . Since x ∈ ker C one can write y = (λ1I − A+DC)x =

(λ1I − A)x. and consequently since W is R(λ1,A+DC)-invariant we have x =

(λ1I − A)−1y ∈ W . In other words, R(λ1,A)W ∩ ker C ⊆ W .

By invoking contradiction we show that one of the conditions 2-a) or 2-b) is

a necessary condition. Assume that both conditions fail, and consider the small-

est subspace Wf such that WR = W + Wf is R(λ1,A)-invariant containing W and

dim(Wf) = ∞. Note that Wf does not contain any R(λ1,A)-invariant subspace

(since Wf is the smallest subspace to construct WR). Given that C is finite rank and
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R(λ1,A)W ∩ ker C ⊆W , it follows that W1 = R(λ1,A)W ∩ (R(λ1,A)W ∩W )⊥ ⊂

D(A) is Fin-D and W1 ∩ ker C = 0. Moreover, W1 ⊂ Wf , and since WR is R(λ1,A)-

invariant, and conditions 2-a) and 2-b) are not satisfied there are only two possibil-

ities as follows:

1. There exists a k0 ≥ 0 such that for every n ≥ k0 we haveR(λ1,A)nW1∩W = 0.

Note that if the condition 2-b) is satisfied, this condition fails. For example,

assume condition 2-b) is satisfied (i.e., there exists a Fin-D Wf,2 ⊆ W1 satisfying

condition 2-b) and consider the Inf-D subspace Wc ⊂ W such that Wc +Wf,2 is

R(λ,A)-invariant. Therefore, for k0 it is possible to have n and y ∈ Wf,2 such

that R(λ1,A)ny ∈ W ⊂ W .

By selecting Wf,R = span{R(λ1,A)ny} ∞n=k0
and y ∈ W1, it follows that

Wf,R ⊆ Wf and Wf,R is R(λ1,A)-invariant that is in contradiction with the

definition of Wf .

2. For every k ≥ 1, there exists an n ≥ k and yk ∈ W1 such that xk =

R(λ1,A)ny ∈ W . If xk ∈ ker C, it follows that (λ1I − A)xk 6∈ W that

is in contradiction with the (C,A)-invariance assumption of W . Hence, let

xk 6∈ ker C, and given that C is finite rank, it follows that there exist k0 suffi-

ciently large such that span{xk} k0k=1 constructs aR(λ1,A)-invariant subspace,

and consequently W + span{xk} k0
k=1 is also R(λ1,A)-invariant that is again

in contradiction with definition of Wf .

Hence, it is necessary that the condition 2-b) is satisfied (that is in contradiction

with the assumption) or to have dim(Wf) < ∞ that is equivalent to the condition

2-a). Therefore, at least one of the conditions 2-a) or 2-b) is satisfied.

Finally, given that the above analysis holds for any λ1 ∈ ρ∞(A) ∩ ρ∞(A+DC), it

follows that the condition 1) also implies conditions 3).

(3 ⇒ 1): Let y ∈ W such that x = R(λ,A)−1y ∈ ker C. It follows that

y = (λI − A−DC)x = (λI − A)x for any bounded operator D and λ ∈ ρ∞(A) ∩
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ρ∞(A+DC). Consequently, we obtain R(λ,A+DC)y ∈ W (since R(λ,A)W ∩

ker C ⊆W ).

First, assume that condition 3-a) is satisfied and let W = WR + Wf . Without

loss of any generality we assume WR∩Wf = 0. Since W ∩D(A) = W , WR ∩D(A) =

WR and dim(Wf) <∞, without loss of any generality we assume Wf ⊂ D(A). Also,

given that W is (C,A)-invariant and WR is A-invariant, we obtain Wf is (C,A)-

invariant, and consequently it is T-conditioned invariant (by using Lemma 4.12).

Therefore, there exists an operator D such that DCWR = 0 and (A+DC)Wf ⊆Wf

(since WR ∩Wf = 0 and Wf is T-conditioned invariant, by following along the same

steps as in Theorem 4.17, the operator D always exists). Now, let y = yr + yf ∈ W

and x = R(λ,A+DC)y, where yr ∈ WR and yf ∈ Wf . Also, set x = xr + xf ,

where xr = R(λ,A)yr and xf = R(λ,A)yf ∈ W . It follows that xr ∈ WR and

(λI − A)xr = (λI − A+DC)xr = R(λ,A)yr, and consequently x ∈ W . In other

words, W is R(λ,A+DC)-invariant, and hence it is T-conditioned invariant.

Now, assume that the condition 3-b) is satisfied and let W
R

= W + Wf , where

dim(Wf) < ∞ and Wf is the smallest subspace to ensure W
R

is R(λ,A)-invariant

and λ ∈ ρ∞(A). As above, without loss of any generality we assume Wf ⊂ D(A),

and W ∩Wf = 0. We first show that W
R

is R(λ,A+DC). Since W
R

is A-invariant,

it can be shown that ImDC ⊂ W
R

, and also by definition we have (λI − A)(W
R
∩

D(A))⊆ W
R

. Now, set x = R(λ,A+DC)y for an arbitrary y ∈ W
R

. It follows

that z = (λI − A)x = y + DCx ∈ W
R

. Given that W
R

is R(λ,A)-invariant, it

follows that x ∈ W
R

. Therefore, W
R

is R(λ,A+DC)-invariant. Finally, since W is

(A+DC)-invariant, Wf is Fin-D and (A+DC)-invariant, by using Lemma 5.11 we

obtain W is R(λ,A+DC)-invariant. This completes the proof of the theorem.

Remark 5.16. By invoking Corollary 4.9 in Chapter 4, every TA-invariant subspace

of RS systems can be expressed as a sum of sub-eigenspaces (as per (4.8)). Therefore,

for RS systems conditions 2-a) can be represented as W = Wφ + Wf .
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As emphasized earlier, for design of an FDI scheme, one needs to determine

the smallest unobservability subspace (in the inclusion sense) containing a given

subspace. For computing the smallest unobservability subspace one needs first to

compute the minimal conditioned invariant subspace [3]. However, as shown in [105]

the smallest T-conditioned invariant may not always exist. In [103], the following

algorithm is proposed for computing the minimal (C,A)-invariant subspace (and

emphnot T-conditioned invariant) containing a given subspace L . Specifically,

Set W 0 = L , W k = L +A(W k−1 ∩ ker C ∩D(A)). (5.8)

However, as pointed out in [103], given that the above algorithm is non-decreasing,

its limiting subspace may not be closed, and consequently it is not conditioned

invariant in the sense of Definition 5.13, item 1)-item 3). Note that the above

algorithm may not converge to the minimal T-conditioned invariant even if such a

subspace exists.

5.3.3 Controlled Invariant Subspaces

In this subsection, we address the controlled invariant subspaces and investigate the

duality property between conditioned and controlled invariant subspaces.

Consider system (5.1) and the finite rank input operator (5.2). Corresponding

to a conditioned invariant subspace, we have three different controlled invariant

subspaces as follows:

Definition 5.17. [103]

1. The closed subspace V ⊆ X is called (A,B)-invariant if A(V ∩ D(A)) ⊆
V + ImB.

2. The closed subspace V ⊆X is feedback-(A,B)-invariant if there exists an op-

erator F : X → Rm such that V is invariant with respect to (A+ BF) as per

Definition 5.8.
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3. The closed subspace V ⊆X is T-controlled invariant subspace if there exists an

operator F : X → Rm such that (i) the operator (A+ BF) is the infinitesimal

generator of a C0-semigroup TA+BF ; and (ii) V is invariant with respect to

TA+BF .

Note that since B is finite rank (dim(ImB) < ∞), using Lemma 4.13 we

have V + ImB = V + ImB. Also, as mentioned before we consider the controlled

invariant subspaces that V ∩D(A) = V . As T-conditioned invariant subspaces,

for the T-controlled invariant subspace, the set of all state feedbacks F such that

TA+FBV ⊆ V (i.e., F is friend operator of V ) is denoted by F (V ).

Now, we provide an important result on the controlled invariant subspaces. In

fact, this theorem is dual to that of Theorem 5.15.

Theorem 5.18. Consider the system (5.1) and the (A,B)-invariant subspace V

such that V ∩D(A) = V . Then the following statements are equivalent.

1. V is T-controlled invariant.

2. There exists a λ1 ∈ ρ∞(A)∩ρ∞(A+ BF) such that R(λ1,A)V ⊆R(λ1,A)B+

V and

(a) The subspace V can be represented as V = VR ∩ V ⊥f such that VR is

R(λ1,A)-invariant and is defined in Section 1.6 and Vf ⊂ D(A∗), or

(b) There exists a Fin-D Vf ⊂ D(A∗) such that (i) V ⊥f + B = X , (ii) V ⊥f

is T-controlled invariant with F (V ⊥f ) ∩ F (V ) 6= 0, and VR = V ∩ V ⊥f ,

where VR R(λ1,A)-invariant is defined in Section 1.6.

3. For every λ ∈ ρ∞(A) ∩ ρ∞(A+ BF), we have R(λ,A)V ⊆R(λ,A)B + V

and

(a) The subspace V can be represented as V = VR ∩ V ⊥f such that VR is

R(λ,A)-invariant and is defined in Section 1.6 and Vf ⊂ D(A∗), or
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(b) There exists a Fin-D Vf ⊂ D(A∗) such that (i) V ⊥f + B = X , (ii) V ⊥f is

T-controlled invariant with F (V ⊥f )∩F (V ) 6= 0 and VR = V ∩V ⊥f , where

VR R(λ,A)-invariant is defined in Section 1.6.

where B is the range of the input operator B (i.e. B = ImB).

Proof. We show the results by using the duality property.

(1 ⇒ 2 and 3): Since V is T-controlled invariant, it follows that W = V ⊥ is

T-conditioned invariant with respect to the operator (A∗ + F∗B∗) (by using Lemma

4.29). From Theorem 5.15 it follows that R(λ,A∗)W ∩ kerB∗ ⊆ W . Hence, we

obtain V ⊆ ((λI − A)(V ∩D(A)) + B). Therefore, R(λ,A)V ⊆ V +R(λ,A)B.

Now, we show that the conditions 2-a) and 2-b) are dual to the conditions 2-a)

and 2-b) in the Theorem 5.15, respectively. By using Theorem 5.15, there are two

cases as follows:

1. Let W = WR + Wf such that WR is defined in Theorem 5.15 and Wf is a Fin-D

subspace. Since D(A∗) is densely defined in the both subspaces W and WR,

we obtain Wf ⊂ D(A∗). Given that WR is TA∗+F∗B∗-invariant, the subspace

VR = (WR)⊥ is R(λ1,A)-invariant. Moreover, set Vinf = (Wf)
⊥. Consequently,

V = VR ∩W ⊥
f .

2. Assume that there exists a Fin-D Wf such that Wf ∩ kerB∗ = 0, and WR =

W + Wf , where WR is defined in Theorem 5.15 for A∗. As above, VR = (WR)⊥

is R(λ1,A)-invariant, and Wf ⊂ D(A∗). Moreover, since Wf ∩ kerB∗ = 0, we

obtain W ⊥
f +B = X , and W ⊥

f is T-controlled invariant with F (W ⊥
f )∩F (V ) 6=

∅ (since Wf is T-conditioned invariant with D(Wf )∩D(W )). Finally, it follows

that VR = V ∩W ⊥
f .

Since all the above derivations hold for every λ1 ∈ ρ∞(A) ∩ ρ∞(A+ BF), we also

obtain the conditions 3-a) and 3-b).
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(3 ⇒ 1): By following along the same steps (i.e. by applying the duality property),

one can show this part. This completes the proof of the theorem.

In the next section, we use the above theorem to address unobservability sub-

spaces.

5.3.4 Unobservability Subspace

In the geometric FDI approach, one needs another invariant subspace, namely the

unobservability subspace. In this section, we characterize this subspace.

Definition 5.19. Unobservability subspace

1. The subspace S is called an A-unobservability subspace for the system (5.1), if

there exist two bounded operators D : Rq → X and H : Rq → Rqh where qh ≤ q

such that S is the largest (A+DC)-invariant subspace contained in kerHC.

We denote the largest A-invariant subspace contained in C by < C |A >, and

hence we have S =< kerHC|A+DC >.

2. The subspace S is called an T-unobservability subspace for the system (5.1), if

there exist two bounded operators D : Rq → X and H : Rq → Rqh where qh ≤ q

such that S is the largest TA+DC-invariant subspace contained in kerHC, and

hence we have S =< kerHC|TA+DC >.

It follows that the T-unobservability subspace S is the unobservable sub-

space of the system (HC,A+DC). Also, every T-unobservability subspace is a

T-conditioned invariant subspace.

Remark 5.20. As conditioned invariant there is no algorithm that compute the

smallest conditioned invariant. However, if the following algorithm converges in a

finite number of steps the limiting subspace is the smallest unobservability subspace
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containing a Fin-D subspace L ⊂ D(A) [103].

S0 = X , Sk = W ∗ +R(λ,A)Sk−1 ∩ ker C, (5.9)

where W ∗ is the smallest T-conditioned invariant subspace containing L .

5.3.5 Summary

In this section, we have first reviewed TA-invariant subspaces. Necessary and suf-

ficient conditions for equivalence of conditioned invariant subspaces were derived

and obtained. Also, we reviewed the duality and controlled invariant subspaces.

Moreover, we have introduced the unobservability subspace of Inf-D systems.

5.4 Fault Detection and Isolationof Inf-D Systems

In this section, we first formulate the FDI problem and then by using the methodol-

ogy that is developed in the previous section, we provide a necessary and sufficient

conditions for solvability of this problem.

5.4.1 The FDI Problem Statement

Consider the following faulty Inf-D systems

ẋ(t) = Ax(t) + Bu(t) +

p∑
i=1

Lifi(t),

y(t) = Cx(t),

(5.10)

where fi and the bounded operator Li are fault signals and signatures, respectively.

The other operators are defined as in (5.1), (5.2) and (5.3). The FDI problem is

now specified as that of generating a set of residual signals, ri(t) , i = 1, · · · , p such

that each residual signal ri(t) is decoupled from the inputs and all faults, but one
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fault fi(t). In other words, the residual signal ri(t) satisfies the following conditions

∀u, fj, if fi = 0 ⇒ ri → 0, (5.11a)

∀u, fj, if fi 6= 0 ⇒ ri > ε, ε > 0. (5.11b)

In other words, condition (5.11a) ensures that ri is decoupled from all faults but fi

and condition (5.11b) guarantees that ri is sensitive to fi. Moreover, the realization

of the residual signal ri(t) is accomplished by using the following fault detection

filter

ω̇i(t) = Aoωi(t) + Bou(t) + EiCx(t),

ri(t) = Hiy(t)−Miωi(t),

(5.12)

where ωi(t) ∈ X i
o and X i

o is a separable Hilbert space (Fin-D or Inf-D). The operators

Ao, Bo, and Ei are closed with appropriate domains and codomains. For example,

Ao : X i
o → X i

o and Ei : Rq → X i
o . However, unlike Chapter 4, in this chapter the

operators A and Ao are not necessarily RS operators. The specific characteristics of

the filter operators and parameters will be designed and determined subsequently.

Remark 5.21. As in Chapters 3 and 4, the problem of detection and isolation of

a fault fi involves two main steps as follows: First, (i) derive a subsystem that

is decoupled from all faults but fi (this is denoted as the decoupling problem), and

second (ii) design a detection filter (as per equation (5.12)) to detect and isolate the

fault fi. If both steps are solvable, we then say that the FDI problem is solvable.

5.4.2 Necessary and Sufficient Conditions for Solvability of

the FDI Problem

In this subsection, by using the methodology that was developed above, necessary

and sufficient conditions for solvability of the FDI problem are provided. As stated
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in Subsection 5.4.1, the FDI problem can be cast as that of designing detection

filters as per equation (5.12) such that each residual is decoupled from all faults but

one.

By augmenting the system (5.1) and the detection filter (5.12), one can write

ẋe(t) = Aexe(t) + Beu(t) +

p∑
i=1

Leifi(t),

ri(t) = Cexe(t),

(5.13)

where xe(t) =

 x(t)

ωi(t)

 ∈ X e = X ⊕ X i
o , Ce =

[
HiC −Mi

]
and

Ae =

 A 0

EiC Ao

 , Be =

B
Bo

 , Lei =

Li
0

 . (5.14)

Given thatAo in equation (5.12) is an infinitesimal generator of a C0 semigroup

and Ei, and consequently EiC are bounded operators, by using Lemma 4.36 - item

1) the operator Ae is an infinitesimal generator of a C0 semigroup. The following

lemma characterizes the resolvent operator of Ae.

Lemma 5.22. Consider the operator Ae =

A11 0

A21 A22

, where A11 A22 are in-

finitesimal generator and A21 is a bounded operator. If λ ∈ (ρ∞(A11) ∩ ρ∞(A22)),

then λ ∈ R(λ,Ae) and R(λ,Ae) =

 R(λ,A11) 0

−R(λ,A22)A21R(λ,A11) R(λ,A22)

.

Proof. Let λ ∈ (ρ∞(A11) ∩ ρ∞(A22)). Therefore, R(λ,A11) and R(λ,A22) are well-

defined and bounded. Now, let R =

 R(λ,A11) 0

−R(λ,A22)A21R(λ,A11) R(λ,A22)

. It

follows that (λI−Ae)R = I. Also, given thatR(λ,A11) andR(λ,A22) are bounded,

it follows thatR is bounded. Hence, R(λ,Ae) = R and λ ∈ ρ∞(Ae). This completes

the proof of the lemma.
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The following lemma shows the relationship between the unobservable sub-

space of the system (5.13) and the unobservability subspace of the system (5.1).

This property will be used to derive the necessary conditions for the FDI problem

solvability.

Lemma 5.23. Consider the system (5.13) and let N e =< ker Ce|TAe >. Then,

Q−1N e is an unobservability subspace of the system (5.1), where Q is the embedding

operator given by Q : X → X e and Qx =

x
0

.

Proof. Since N e is TAe-invariant, it is alsoAe-invariant [103]. Also, by using Lemma

5.9 we have R(λ,Ae)N e⊆N e, where λ ∈ ρ∞(Ae). Let S = Q−1N e, and assume

that

x
0

 ∈ N e and x ∈ D(A) ∩ ker C. It follows that Ax ∈ S (or A(S ∩ ker C ∩

D(A))⊆ S). Since N e ∩D(A) = N e, by following along the same steps as in

Lemma 4.37, we obtain S ∩D(A) = S. Therefore, by using Lemma 4.14, it follows

that S is a feedback (C,A)-invariant subspace.

Now consider

x
0

 ∈ N e, such that x ∈ R(λ,A)S∩ker C, where λ ∈ (ρ∞(A)∩

ρ∞(Ao)). By using Lemma 5.22, one can write λ ∈ ρ∞(Ae), and (refer to Lemma

5.22)

R(λ,Ae) =

 R(λ,A) 0

−R(λ,Ao)ECR(λ,A) R(λ,Ao)

 . (5.15)

Therefore, by using the fact that N e isR(λ,Ae)-invariant one can writeR(λ,Ae)

x
0

 =

 R(λ,A)x

−R(λ,Ao)ECR(λ,A)x

 ∈ N e. Invoking the assumption R(λ,A)x ∈ ker C, we

have R(λ,A)x ∈ S ⊆ kerHC. In other words, R(λ,A)S ∩ ker C ⊆ S ∩ ker C.

Finally, by invoking contradiction, we show that one of the conditions 2-a) or

2-b) in Theorem 5.15 is satisfied. Hence, let us now assume that both conditions fail

169



and SR = S + Sf , where dim(Sf) = ∞, Sf contains no R(λ,A)-invariant subspace,

and SR is R(λ,A)-invariant subspace. Since both conditions 2-a) and 2-b) fail and

R(λ,A)S ∩ ker C ⊆ S, it follows that there is a subspace Sr ⊂ S such that Sr ∩

(kerHC)⊥ 6= 0, and for all n ∈ N, we have R(λ,A)nSr 6⊆ S. Again, since R(λ,A)S∩

ker C ⊆ S, there exists a k0 and y ∈ Sr such that Sk0 = span{R(λ,A)ny} ∞n=k0

and R(λ,A)Sk0 ⊆ Sk0 that is in contradiction with the definition of Sf . In other

words, S satisfies at least one of the conditions 2-a) and 2-b), and consequently it is

T-conditioned invariant of the system (5.1). Moreover, since N e is the largest TAe-

invariant subspace in ker
[
HiC Mi

]
, the subspace S is the largest T-conditioned

invariant subspace that is contained in kerHiC. Therefore, S is an unobservability

subspace of the system (5.1). This completes the proof of the lemma.

To provide sufficient conditions, one needs to show that the error dynamics of

the designed fault detection observer is stable. As in Chapter 4, we use Lemma 4.39

for this purpose. Now, we are in the position to provide the necessary and sufficient

conditions for solvability of the FDI problem.

Theorem 5.24. Consider the system (5.10). The FDI problem is solvable only if

S∗i ∩Li = 0, (5.16)

where S∗i =< kerHiC|A+DiC > is the smallest unobservability subspace containing

all Lj = span{Lj} , where j = 1, · · · , p and j 6= i, and Li = span{Li} . Moreover,

if there exist two maps E and Pe such that (Ap+DoHiC) and Pe satisfy the condition

(4.23), then the FDI problem is solvable, where Ap = (A+DiC)|X/S∗i is the induced

operator of A+DiC on the factor space X/S∗ and Di ∈ D(S∗i ).

Proof. Without loss of generality, we consider the system (5.10) that is subject to

two faults f1 and f2. However, the results are applicable to any number of faults.

(Necessary Part): Assume that the detection filter (5.12) is designed such that

the residual (the output of the filter) is decoupled from f2 but it is sensitive to f1.
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By considering the augmented system (5.13), it is necessary that L e
2 ⊆N e, (L e

i

is defined in equation (5.14)), where N e is the unobservable subspace of system

(5.13), and by using Lemma 5.23, the subspace S = Q−1N e is an unobservability

subspace of the pair (C,A) that contains Q−1L e
2 = L2 (i.e., L2⊆S). By detecting

the fault f1 (that is an arbitrary function of time), it implies that N e ∩L e
1 = 0,

and consequently S ∩ L1 = 0. Since S∗1 is the minimal unobservability subspace

containing L2 (i.e., S∗1 ⊆S), the necessary condition for satisfying the above con-

dition is S∗1 ∩L1 = 0.

(Sufficient Part): If the condition (5.16) is satisfied for f1, one can write X =

X/S∗1 ⊕ S∗1 , and S∗1 is TA+DC-invariant. As in previous chapters, consider the canon-

ical projection P1 : X → X/S∗1 and the following detection filter

ω̇1(t) =F1ω1(t) + G1u(t)− E1y(t)

r1(t) =M1ω1(t)−H1y(t)

(5.17)

where F1 = Ap +DoM1, G = P1B and E1 = D1 +P−r1 DoH1. By following along the

same steps in Section 2.2 one obtains the error dynamics associated with the signal

e(t) = P1x(t)− ω1(t) is given by

ė(t) = F1e(t) + L11f1(t). (5.18)

By using results in Lemma 4.39, the error dynamics (5.18) can be made to be

exponentially stable. Therefore, if f1 = 0 then e(t) → 0. Otherwise ||e(t)|| > ε,

ε > 0, where e(t) ∈ Rqh and qh = dim(ImH). By setting r1(t) = Me(t), the

conditions in equation (5.11) are satisfied and the FDI problem is rendered solvable.

This completes the proof of the theorem.

As developed in Chapter 4, the following corollaries present two special cases,

where the condition (5.16) is a single necessary and sufficient condition for solvability

of the FDI problem (5.11).
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Corollary 5.25. Consider the unobservability subspace S∗ and the system (M1,

Ap), where the operator Ap is exponentially stable (by satisfying the condition in

Lemma 4.39). The condition (5.16) is necessary and sufficient for solvability of the

FDI problem (5.11).

Proof. The necessary condition follows from Theorem 5.24. Hence, we show the

sufficient part. As illustrated above, the detection and isolation of the fault fi is

restricted to design of an observer for the quotient subsystem (M1,Ap) (that is to

obtain Do). However, given that Ap is exponentially stable, by defining Do = 0, we

obtain the following detection filter

ω̇1(t) = Apω1(t) + G1u(t),

r1(t) = H1y(t)−M1ω1(t), (5.19)

whereM1 is the solution ofM1P1 = H1C. It follows that the error dynamics (that

is e(t) = P1x(t) − ω1(t)) is given by ė(t) = Ape(t), which is exponentially stable.

Therefore, if f1(t) = 0, it follows that r1(t) → 0, and if f1(t) 6= 0 one obtains

||r1(t)|| > ε, ε > 0. This completes the proof of the corollary.

Corollary 5.26. Consider the system (5.10) and the unobservability subspace S∗

such that X/S∗ is Fin-D. The condition (5.16) is necessary and sufficient for solv-

ability of the FDI problem (5.11).

Proof. The necessary condition follows from the results in Theorem 5.24. Moreover,

by following along the same steps as in Theorem 5.24 one obtains the quotient

subsystem (M1, Ap) such that it is decoupled from all fault but one. Moreover,

since this subsystem is a Fin-D system with N = 0, it follows that it is observable

and there exists an observer gain such that Ap + DoM1 is Hurwitz. By following

along the same steps as in the Corollary 5.25 the sufficient result follows. This

completes the proof of the corollary.
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Figure 5.1: The diagram showing the relationships among lemmas, theorems and
corollaries that are developed and presented in this chapter. For definition of the
contributions refer to Subsection 1.4.2.

5.4.3 Summary

In this section, we have formulated the FDI problem and by utilizing the geometric

theory that was developed in the preceding section, we have derived, for the first

time in the literature, necessary and sufficient conditions for solvability of the FDI

problem for Inf-D systems. For more details and clarification Figure 5.1 provides

a schematic that depicts the relationship among the various lemmas, theorems and

corollaries that are developed in this chapter. The contribution of this chapter has

been summarized in Subsection 1.4.2.

Moreover, Table 5.1 summarizes the FDI scheme that was developed in this

section.
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Table 5.1: A Pseudo-algorithm for detecting and isolating the fault fi for the Inf-D
system (5.10).

1. Obtain the smallest conditioned invariant subspace W ∗

containing all Lk subspaces such that k 6= i.

2. Obtain the unobservability subspace S∗i containing
∑

j 6=i L1
j.

3. Compute the operator Di such that Di ∈ D(W ∗).

4. Find the operator H such that kerHi = CS∗i .

5. If S∗i ∩ Li = 0, then the necessary condition for solvability

of the FDI problem is satisfied. Moreover, if one of the

following conditions are satisfied, the FDI problem is

solvable. In other words, one can design a detection filter

according to the structure provided in (5.12) to detect and

isolate the fault fi,

• If there exists a bounded operator Do such that the

conditions of Theorem 5.24 are satisfied, or

• The condition of the Corollary 5.25 is satisfied.

• If dim(X/S∗i ) < ∞ (i.e. the condition of the Corollary

5.26 is satisfied).

The operators in the detection filter (5.12) are defined as

follows. Let Pi be the canonical projection of S∗i , then

Ao = (A+DiC)|X/S∗i , Bo = PiB, MiPi = HiC, E = DoHi and

Do is selected such that (Ap + DoMi) satisfies the condition

of Lemma 4.39. Moreover, the output of the detection filter

(i.e., ri(t)) is the residual that satisfies the conditions in

equation (5.11).

5.5 Numerical Example

In this section, we provide a numerical example to emphasize the applicability of

our proposed approach in this chapter. Consider the following Inf-D system

ẋ(t) = Ax(t) + Bu(t) + L1f1(t) + L2f2(t) + ν(t),

y(t) = Cx(t) + w(t), (5.20)
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where νi and wi (i = 1, 2) denote the process and measurement noise that are

assumed to be normal distributions with 0.1 and 0.2 variances, respectively. Also,

Jk =



−k 1 0 0

0 −k 1 0

0 0 −k 1

0 0 0 −k


,A = diag(J1, J2, · · · ),

b1,1 =
[
1 0.5 0 0 0 0 0 0

]
, b2,1 =

[
0 1 0 0 1 2 0 0

]
,

bk =
[

1
k3

1
k3

1
k3

1
k3

]
, b1 =

[
b1,1 b3 b4 · · ·

]T

, b2 =
[
b2,1 b3 b4 · · ·

]T

,

c1,1 =
[
0 1 0 1 0 0 0 0

]
, c21 =

[
0 0 1 1 1 0 0 0

]
,

ck =
[

1
k3

0 0 0

]
, c1 =

[
c11 c3 c4 · · ·

]
, c2 =

[
c2,1 c3 c4 · · ·

]
, C =

c1

c2

 ,
B =

[
b1 b2

]
,L1 = b1,L2 = b2.

(5.21)

It should be pointed out that the Inf-D system (5.20) is not a regular RS

system (since the number of multiple eigenvalues in A is infinite), and consequently

the approach in Chapter 4 is not applicable to this system.

In the following, a detection filter is designed for detecting and isolating the

fault f1. Since L2 = span{L2} ∈ D(A) and L2 6∈ ker C, we obtain W ∗ = L2

(L2 ∈ D(A) is (C,A)-invariant and therefore by Lemma 4.12 L2 is T-conditioned

invariant). Given that W ∗ = L2, we obtain that S∗1 = W ∗ + span{bs} (by using

Remark 5.20), where

bs,1,2 =
[
1 0 0 0 0 0 0 0

]
, bs,k = − 1

k2

[
1 1 1 1

]
,

bs =
[
bs,1,2 bs,3 bs,4 · · ·

]
.

(5.22)

It follows that L1 ∩ S∗1 = 0, and a solution for the corresponding maps D and H is

given by D1 =

1 1 0 0 · · ·

0 0 0 0 · · ·

 and H1 = [−1, 1].
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Since all the eigenvalues of Ap are negative, by using Corollary 5.25 a detection

filter is therefore specified according to

ω̇1(t) = Aoω1(t) + P1Bu(t),

r1(t) = H1y(t)−M1ω1(t),

(5.23)

where Ao = Ap. The error dynamics corresponding to the above detection filter (i.e.,

e(t) = P1x(t) − ω1(t)) is given by ė(t) = Ape(t) + P1L1f1(t). Therefore, if f1 = 0,

the error converges to origin exponentially. Otherwise, e 6= 0. The above residual

(i.e, r1) corresponding to the fault f1 is also decoupled from f2. By following along

the same steps as above, one can design a detection filter to detect and isolate the

fault f2.

For the purpose of simulations, we consider a scenario where the fault f1 with

a severity of 1 occurs at t = 5 sec and the fault f2 with a severity of 1 occurs at

t = 8 sec. Figure 4.3 depicts the residuals r1 and r2. It clearly follows that ri is

only sensitive to the fault fi, i = 1, 2. Note that the thresholds are computed based

on running 100 Monte Carlo simulations for the healthy system with the thresholds

selected as the maximum residual signals r1 and r2 during the entire simulation

runtime. The selected thresholds are th1 = 0.1 and th2 = 0.15, corresponding to

the residual signals r1 and r2, respectively. The faults f1 and f2 are detected at

t = 5.51 sec and t = 8.25 sec, respectively. Table 4.2 shows the detection times

corresponding to various severity fault cases that are simulated. This table clearly

shows the impact of the fault severity levels on the detection times. In other words,

the lower the fault severity, the longer the detection time delay. Moreover, the

minimum detectable fault severities associated with f1 and f2 are determined to be

0.22 and 0.17, respectively.
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Table 5.2: Detection time delay of the faults f1 and f2 corresponding to various
severities.

XXXXXXXXXXXXSeverity
Fault

f1 (sec) f2 (sec)

f1 = 3,
f2 = 3

0.2 0.15

f1 = 1,
f2 = 1

0.51 0.25

f1 = 0.35,
f2 = 0.2

1.02 1.07

f1 = 0.22,
f2 = 0.17

4.2 1.35
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(a) The residual signal r1 for detect-
ing and isolating the fault f1.
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r 2

Intioal condition error
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(b) The residual signal r2 for detect-
ing and isolating the fault f2.

Figure 5.2: The residual signals for detecting and isolating the faults f1 and f2. The
faults occur at t = 5 sec and t = 8 sec with severities of 1 for both faults.

5.6 Conclusions

In this chapter, the semigroup invariant subspace of infinite dimensional (inf-D)

systems were addressed. Particularly, for the first time in the literature, we have

provided necessary and sufficient conditions for equivalence of various types of con-

ditioned invariant subspaces. These represent extensions of new geometric perspec-

tives of finite dimensional dynamical systems that were provided in this work and

generalized to Inf-D systems. By utilizing duality, controlled invariant subspaces

were addressed. The unobservability subspaces of Inf-D systems were then devel-

oped and provided. Finally, by utilizing the developed geometric methodology the
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fault detection and isolation (FDI) problem of Inf-D systems was first formally

formulated and then the necessary and sufficient conditions for the FDI problem

solvability were presented.
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Chapter 6

Conclusions and Future Directions

of Research

This dissertation was mainly concerned with the fault detection and isolation (FDI)

of infinite dimensional (Inf-D) systems by using a geometric approach. We developed

FDI algorithms by using both approximate and exact methods, where in the former

approach the original Inf-D system is first approximated and then the currently

available results for Fin-D systems are applied (with certain modifications) to the

approximate model. In the exact approach, we dealt with Inf-D systems without

any approximation, where extension of the Fin-D systems to Inf-D systems is more

challenging than the approximate method. For example, compare the results in

Chapter 3 with those in Chapters 4 and 5. Below, we provide the thesis summary

based on the results that were provided in Chapters 3 to 5.

6.1 FDI of Multi-Dimensional Systems

As shown in Chapter 3, a set of Inf-D systems (including hyperbolic PDE systems)

can be approximated by a multidimensional (n-D) model. In Chapter 3, the FDI

problem for discrete-time n-D systems was addressed, where we first generalized the
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invariant subspaces of one-dimensional (1-D) systems to n-D systems by using an

Inf-D representation. Sufficient conditions for existence of an asymptotically conver-

gent n-D state estimation observer were derived, where an LMI-based approach was

utilized to show the stability of the error dynamics. Finally, we provided necessary

and sufficient conditions for solvability of the FDI problem by using our proposed

methodology. It should be pointed out that although the sufficient conditions for

applicability of the currently available geometric results in the literature are also

sufficient for our proposed approach to accomplish the FDI goal, however, there are

n-D systems where the geometric approaches in the literature are not applicable to

detect and isolate the faults, whereas our approach can still accomplish the FDI

mission.

The future directions for research can be summarized as follows:

• It is well-known that the disturbance decoupling (DD) and the FDI problems

are highly related to each other. Therefore, one can applied the proposed

approaches in Chapter 3 to the DD problem of n-D systems.

• As mentioned in Chapter 3, we formulate n-D systems as Inf-D systems defined

on X =
⊕

(Rm), where X is the largest Banach vector space contained in R∞.

Although R∞ is not a Banach space, but it can be shown that it is topological

vector space (refer to Chapter 2). Therefore, one may extend the results of

Chapter 3 to Inf-D systems that are defined on topological vector spaces.

6.2 Invariant Subspaces of Riesz Spectral Systems

In Chapter 4, we first reviewed the available geometric control theory results on Riesz

Spectral (RS) systems and then invariant subspaces of RS systems (with bounded

input and output operators) were formally introduced. Specifically, necessary and

sufficient conditions for equivalence of various conditioned invariant subspaces were
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provided. Moreover, by using the developed geometric machinery, necessary and

sufficient conditions for solvability of the RS system FDI problem were derived.

The future directions of research is this area can be summarized below.

• Development the DD controller for the RS system, by using the duality prop-

erty and our proposed approach in Chapter 4.

• Generalize the results for the regular RS systems, where the output injection

operator (for example D in the Definition 4.11) can be unbounded.

6.3 Fault Detection and Isolation of Infinite Di-

mensional Systems

Chapter 5 considered a more general class of Inf-D systems than those that were

addressed in Chapters 3 and 4. In this chapter, we first reviewed the invariant sub-

spaces of Fin-D system from a new point of view such that it enables one to investi-

gate the invariant subspaces of Inf-D systems by using resolvent operators.However,

as stated in Chapter 5, the computing algorithms the conditioned and controlled

invariant are still open problem. It was shown that for accomplishing the FDI

objectives one needs semigroup invariant subspaces. Necessary and sufficient con-

ditions for equivalence of invariant subspaces were provided. The FDI problem of

Inf-D systems was formulated based on the invariant concepts. Finally, by using the

developed generic tools we derived necessary and sufficient conditions for solvability

of the Inf-D systems FDI problem.

The future directions for research are provided below.

• Development of computing algorithms for conditioned and controlled invariant

subspaces.

• Development of a DD controller for Inf-D systems.
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• In this thesis, we considered static output injector operators, whereas one can

consider dynamic feedback that results in dynamic feedback invariant sub-

spaces. Dynamic feedbacks have been investigated for Fin-D systems. How-

ever, dynamic feedback invariant subspaces have not been addressed for Inf-D

systems. Therefore, this direction could open a new door to geometric control

theory of Inf-D systems.
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