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Abstract 

 

High-order Simple-input Methods for Thick Laminated 

Composite Straight and Curved Tubes 

 

Hamidreza Yazdani Sarvestani, Ph.D. 

Concordia University, 2016 

Composites have proven their great potential for many aerospace applications, where high 

performance justifies high cost. One of the potential applications of composites is helicopter 

landing gears. Helicopter landing gears consist of straight and curved tubes. A new analysis 

and design tool is required to consider the manufacturing technology. In this study, high-order 

analytical methods are proposed to analyze and design thick laminated orthotropic straight 

and curved tubes subjected to different boundary and loading conditions. 

In the first part of this thesis, the elasticity displacement field of thick laminated 

composite straight tubes is developed. In this investigation, thick composite cantilever tubes 

under transverse loading are studied using the newly displacement-based method. This 

method provides a quick, convenient and accurate procedure for the determination of 3D 

stresses in thick composite straight tubes subjected to both bending and shear loadings. In 

addition, this method is used to study stress and strain distributions in thick composite straight 

tubes with different simple and complex lay-up sequences. Note that thick laminated 

composite straight tubes subjected to cantilever loading conditions are investigated for the 

first time. Moreover, the developed method is used to analyze thick laminated composite 

straight tubes subjected to different mechanical loadings such as axial force, torque and 

bending moment. 

In the second part of this thesis, the general displacement field of thick laminated 

composite curved tubes is developed. By proposing a new high-order displacement-based 

method, single-layer composite curved tubes are examined. First, a displacement approach of 

Toroidal Elasticity is chosen to obtain the displacement field of single-layer composite curved 

tubes. Then, a layer-wise method is employed to develop the most general displacement field 
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of elasticity for thick arbitrary laminated composite curved tubes. The developed method is 

used to analyze single-layer and laminated composite curved tubes subjected to pure bending 

moment. Note that displacement-based Toroidal Elasticity is applied to study thick laminated 

composite curved tubes for the first time. In addition, the failure analysis on thick composite 

curved tubes subjected to pure bending moment is conducted. Effects of lay-up sequences of 

composite curved tubes on stress distributions and failure sequences are investigated, as well. 

The accuracy of the proposed methods is verified by comparing the numerical results 

obtained using the proposed methods against finite element method, experimental data and 

solutions available in the literature. 

The methods that proposed in this thesis do not require meshing. They simplify greatly 

inputs that the user has to do, once the program for solution is available. This presents a clear 

advantage over FEM. Therefore, the most important advantage of the proposed methods is 

that inputs for modeling and analyzing of composite straight and curved tubes with complex 

lay-up sequences are simple, easy to use and fast to run. In addition, using FEM for the 

parametric study is cumbersome. By applying the proposed methods, the parametric study for 

thick laminated composite straight and curved tubes is simple with low computational cost. 
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Chapter 1 

 

Introduction, Motivation, Research goals, Methodology and Thesis 

organization 

 

 

 

1.1. Introduction 

Composites are one of the most widely used materials in the aerospace industry because 

of their adaptability to different situations and the relative ease of combination with other 

materials to serve specific purposes and exhibit desirable properties. This is due to their high 

strength-to-weight ratio and stiffness-to-weight ratio. However, the stress analysis of a 

composite structure is often a complex task. Three reasons are mentioned for such a 

complexity. First of all, the governing equations for composite structures are much more 

complicated than those of the structures made of isotropic materials. Second, as the material 

and structure are made at the same time, thus many more parameters are involved. As such, 

parameters involved in fabrication can play a significant role in the physical and mechanical 

properties of the material and, as a result, the behavior of the structure. Finally, a major source 

of intricacy is the layer-wise failure of composite materials. In fact, as soon as a layer fails, a 

sort of delamination occurs or a crack propagates in plies, and material properties and 

sometimes governing equations could be different. This readily adds a lot of complexity to the 

analysis of composite structures. Having mentioned all of the complexities, still analytical and 

numerical methods are the only reliable sources for a preliminary design. They are well 

employed to calculate the required dimensions of sections, lay-up sequences and to predict the 

behavior of the structure at least in the elastic limit. 
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Composite straight and curved tubes are structures that are frequently used by aerospace, 

offshore and infrastructure industries. One such structure is a helicopter landing gear. 

Prediction of the state of stresses and strains in different layers of laminated composite 

straight and curved tubes within helicopter landing gears are of theoretical interest and 

practical importance. 

 

1.2. Motivation 

Currently, most helicopter landing gears are made of high-grade aluminum alloys and 

despite their major problems in maintenance and fabrication, as well as failure weakness due 

to the corrosion, aluminum landing gears have remained the only option for helicopter 

manufacturing industries. In an effort to develop thermoplastic composite tubes for helicopter 

landing gears [1], Derisi manufactured composite straight tubes and performed several 

mechanical tests to determine strains to failure of different balanced laminates. These tubes 

are relatively thick. Derisi used a procedure called strain-controlled design and based on that, 

lay-up sequences for composite tubes were developed. This procedure paid particular 

attention to the strain limit in each of the layers, in order to provide maximum flexibility for 

the tube, while maintaining good stiffness and strength. However, rigorous analytical methods 

for the determination of stresses, strains and deformations are not available. Subsequently, 

there is a need to develop high-order simple-input methods for the stress and failure analyses 

of thick laminated composite straight and curved tubes subjected to different mechanical 

loadings. 

 

1.3. Research Goals 

Analysis and design of composite helicopter landing gears are challenges. Analytical, 

numerical and experimental methods may be used in the design and analysis of composite 

helicopter landing gears. Even though experimental works have been done on developing 

landing gears, an analytical method does not exist to analyze thick composite straight and 

curved tubes which are main parts of helicopter landing gears. Concerning the analytical 

works, most studies on the stress analysis of composite tubes are limited to straight tubes with 

symmetric loading conditions while, in contrary, landing gears are made of straight and 
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curved tubes subjected to non-symmetric loadings. In addition, most of the techniques for the 

stress analysis of curved tubes have been developed for isotropic materials. Concerning the 

numerical works, one can use finite element method (FEM) to analyze tubes subjected to 

different types of loadings. However, for structures such as tubes where the geometry is not 

that complex, the use of FEM is unnecessarily cumbersome. Each time one changes some 

parameters such as the number of layers, lay-up sequences, length and radius of tube cross 

section, one has to re-mesh and this is cumbersome. 

The main objectives of this thesis are divided in three main categories in the following: 

1. Developing a new high-order simple-input method to investigate stress and strain 

distributions in thick laminated composite straight tubes subjected to mechanical loading 

conditions. A method, which does not require meshing, simplifies inputs that the user has 

to do. 

2. Developing a new simple-input method to investigate stress and strain distributions in 

thick laminated composite curved tubes subjected to mechanical loading conditions. 

3. The new high-order methods are proposed in order to gain an in-depth and 

comprehensive understanding of the stress and failure analyses of thick laminated 

composite straight and curved tubes. Due to the complexity of stress and strain 

distributions in thick composite tubes, it is not easy to obtain some intuition as to the 

behavior of the tube under different loading conditions, for the purpose of design. In 

order to provide some insight into this behavior, the developed methods are used for the 

parametric study. 

 

1.4. Methodology 

The main objective of this study is to develop new analysis and design tools to consider 

the manufacturing technology (design for manufacturing). The first step in theoretical study is 

analyzing of a lamina of composite straight and curved tubes. The second step is stress 

analyzing of laminated composite straight and curved tubes. Next, the analysis will be done to 

compare the theoretical results with those obtained from tests. Therefore, the work is 

performed through following steps: 
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Step 1: The first step in the structural design is to understand the nature of the loads and the 

working condition. While the loads are known, the designer would be able to select 

proper materials for the structure; considering other design parameters such as weight, 

cost, manufacturing and maintenance. 

Step 2: The second step of this research is to select a proper composite material, which could 

properly be employed in the design and manufacturing of helicopter landing gears. 

Accordingly, Carbon AS4/PEKK was selected as the material to be used in 

manufacturing [1]. 

Step 3: The third step is the stress and failure analyses of the structure and finding out the 

appropriate cross sections and lay-up sequences while the material is known. The 

analytical methods for stress and failure analyses of composite straight and curved 

tubes subjected to different boundary and loading conditions are developed and the 

advantages of the proposed methods are highlighted. 

 

1.5. Thesis Organization 

This thesis has nine chapters which are briefly described as following: 

Chapter 1 provides a brief introduction to composite materials and their applications such 

as helicopter landing gears. The motivation, research goals and methodology of this thesis are 

also presented in this chapter. 

Chapter 2 includes a comprehensive literature review on different methods used to 

investigate the behavior of composite straight and curved tubes under different types of 

boundary conditions and mechanical loadings. 

Chapter 31 starts with developing a new high-order simple-input method to obtain stresses 

and strains in thick arbitrary laminated composite straight tubes. The most general 

displacement field of elasticity for a thick laminated composite straight tube is developed. A 

layer-wise method is employed to analytically determine local displacement functions and 

                                                           
1
 Chapter 3 is published as: H. Yazdani Sarvestani, S.V. Hoa, and M. Hojjati, “Stress analysis of thick 

orthotropic cantilever tubes under transverse loading,” Advanced Composite Materials, 2016:1-28. 
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stresses under transverse loading. The accuracy of the proposed method is verified by 

comparing the theoretical results with experimental data, FEM and Lekhnitskii solution. 

In Chapter 42, by using the new simple-input displacement-based method developed in the 

previous chapter, the behavior of stress distributions in thick laminated composite straight 

tubes with different lay-up sequences considering effects of the shear load part of the 

cantilever loading condition is studied. Knowledge is extracted from the parametric study 

showing effects of the orientations of different layers on stresses. 

In Chapter 53, the developed analytical method is used to study thick laminated 

composite straight tubes subjected to combined axial force, torque and bending moment. The 

accuracy of the proposed method is subsequently verified by comparing the numerical results 

obtained using the proposed method with finite element method (FEM) and experimental 

data. The proposed method provides advantages in terms of computational time compared to 

FEM. 

Chapter 64 proposes a new method to investigate single-layer composite curved tubes 

subjected to pure bending moment by employing a displacement approach of Toroidal 

Elasticity. The governing equations are developed in three toroidal coordinates system. The 

method of successive approximation is used to find the general solution. The accuracy of the 

proposed method is assessed by comparing the numerical results obtained using the present 

method with FEM, stress-based Toroidal Elasticity and Lekhnitskii solution. 

In Chapter 75, the displacement field of single-layer composite curved tubes obtained in 

the previous chapter is used to develop the most general displacement field of elasticity for 

                                                           
2
 Chapter 4 is published as: H. Yazdani Sarvestani, S.V. Hoa, and M. Hojjati, “Effects of shear loading on stress 

distributions at sections in thick composite tubes,” Composite Structures, 2016;140:433-445. 

3
 Chapter 5 is published as: H. Yazdani Sarvestani, and M. Hojjati, “A high-order analytical method for thick 

composite tubes,” Steel & Composite Structures, 2016;21(4):755-773. 

4 Chapter 6 is published as: H. Yazdani Sarvestani, S.V. Hoa, and M. Hojjati, “Three-dimensional stress 

analysis of orthotropic curved tubes-part 1: single-layer solution,” European Journal of Mechanics - A/Solids, 

2016. 

5 Chapter 7 is published as: H. Yazdani Sarvestani, and M. Hojjati, “Three-dimensional stress analysis of 

orthotropic curved tubes-part 2: laminate solution,” European Journal of Mechanics - A/Solids, 2016. 
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thick arbitrary laminated composite curved tubes. The principle of minimum total potential 

energy is applied to calculate stresses in thick composite curved tubes under pure bending 

moment. The accuracy of the proposed method is evaluated by comparing the numerical 

results obtained from the developed method against FEM, experimental data and a solution 

available in the literature. 

Chapter 86 presents failure analysis on thick laminated composite curved tubes subjected 

to pure bending moment. By employing results of the proposed method, the progressive 

failure analysis is performed using Tsai-Wu criterion. Effects of lay-up sequences of thick 

composite curved tubes on stress distributions and failure sequences are investigated. 

Chapter 9 summarizes the conclusions and contributions of this study and presents a list of 

recommendations for future works. 

  

                                                           
6 Chapter 8 will be shortly published as: H. Yazdani Sarvestani, and M. Hojjati, “Failure analysis of thick 

composite curved tubes,” Composite Structures, 2016. 
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Chapter 2 

 

Literature review 

 

 

2.1. Helicopter Landing Gears 

 The conventional Bell helicopter landing gears consist of two parallel curved cross tubes, 

which are connected by two longitudinal skid tubes (see Figure 2.1). Cross tubes of helicopter 

landing gears consist of straight tubes at the middle and curved tubes at the sides. In the 

present chapter, the works which have been performed by researchers to study stress and 

strain behavior of composite tubes are reviewed in two main following categories including 

composite straight and curved tubes. 

 

Figure 2.1: Helicopter landing gear. 

 

2.2. Composite Straight Tubes 

 Composites have many applications due to the properties, which they provide with the 

essential advantages over other materials. In many examples, composite materials are the 

skid

straight part

curved part

curved part

cross tube

F

F
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correct answer if designed, manufactured and used properly. Composites have specific 

advantages in many areas when their properties are designed into the ultimate product. One 

type of composite structures is a straight tube that is frequently used in many engineering 

applications. Although thin tubes have been the thrust of the initial applications, more 

attention is now being paid to thick tubes. In addition, stress analysis of thick composite tubes 

is often a complex task. A few reasons are responsible for such a complexity. The governing 

equations of composite tubes are complicated. In addition, a major source of intricacy is the 

layer-wise failure of composite materials. In fact, as soon as a layer fails, a sort of 

delamination occurs or a crack propagates in the plies, material properties and sometimes the 

governing equations could be different. Above all, tube geometries are a lot more complicated 

than flat geometries. Therefore, it is necessary to review different methods, which have been 

used to analyze a thick composite straight tube to find out gaps in developing a simple method 

to investigate complex phenomena in such a structure. The following two sections are a 

literature review of composite straight tube analyses based on whether methods are analytical 

or numerical. 

 

2.2.1. Analytical Methods 

 Lekhnitskii [2] was one of the first researchers who developed elasticity solutions for 

monolithic homogeneous orthotropic cylindrical shells subjected to different mechanical 

loadings including cantilever loading conditions. By using stress functions, Lekhnitskii 

assumed out-of-plane stress components equal to zero. Vibration behavior of circular 

cylindrical shells were analyzed by Sheinman and Weissman [3] to study effects of the 

extension-shear elastic couplings. Kollár and Springer [4] studied the stress analysis of 

composite cylinders and cylindrical segments subjected to hygrothermal and mechanical 

loads. The case of uniform external pressure and orthotropic homogeneous material was 

developed by Kardomateas [5]. Miki and Sugiyama [6] proposed a method to optimum 

designs for required in-plane stiffness, maximum bending stiffness, buckling strength and 

natural frequency of laminated plates by using lamination parameters as fundamental design 

variables. The three-dimensional stress and displacement analyses of transversely loaded of 

composite hollow cylinders with cross-ply laminates were investigated [7]. To obtain a 

prediction of structural response, a third-order shell theory was proposed by Huang [8] based 
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on Reddy’s parabolic shear strain distribution. Jolicoeur and Cardou [9] developed a general 

analytical solution for stresses and displacements of a composite cylinder subjected to 

bending, tensile and torsion loads. Di and Rothert [10] calculated stress fields of orthotropic 

cylindrical shells using a higher-order shear deformation theory. Their formulations were 

derived to present displacement and transverse shear stresses for bending of a thin cross-ply 

composite straight tube with the simply-supported boundary condition at one end. Basar and 

Ding [11] investigated the theoretical fundamentals based on a layer-wise theory. Their 

solutions included transverse shear and transverse normal strains. Based on the three-

dimensional theory of elasticity, Kardomateas [12] developed benchmark solutions for the 

buckling problem of orthotropic cylindrical shells. He assumed that the shell was under 

external pressure or axial compression. Brank and Carrera [13] investigated multilayered 

composite plates and shells based on a piece-wise linear variation of the displacement field 

through-thickness using a shell theory. The analysis of a three-layered cross-ply laminated 

square plate and shell panel with simply supported boundary conditions was performed. The 

method was presented for a case of a square plate loaded by bi-sinusoidal transverse pressure 

and buckling of a cylindrical panel under a point load. By extending solutions for monolithic 

structures, closed form elasticity solutions for sandwich shells under external and/or internal 

pressure were developed [14]. Khare et al. [15] analyzed thermo-mechanical behavior of 

simply supported cross-ply laminated composite and sandwich cylindrical shell panels. By 

using three-dimensional (3D) elasticity, shell theory and ABAQUS; the buckling of a 

sandwich cylindrical shell under uniform external hydrostatic pressure was analyzed by Han 

et al. [16]. IJsselmuiden et al. [17] used Tsai-Wu failure criterion into the lamination 

parameter design space in the most general setting to derive a conservative failure envelope 

that guarantees a failure-free region of the lamination parameter space. Silvestre [18] 

developed a formulation to study shear and material coupling effects on the linear structural 

behavior of composite straight cylinders and tubes. Bending modes and deformed 

configurations of the cross section for thin composite tubes under different boundary 

conditions were investigated. His formulation was presented only for the variation of thin tube 

cross sections along the length; not for stress distributions of thick composite tubes within 

layers. A multi-step framework for a design of composite panels was presented by using a 

guide-based genetic algorithm to avoid lay-up sequence mismatch [19]. Derisi et al. [20, 21] 
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proposed lay-up sequences to manufacture thick composite straight tubes that exhibit large 

deformation. Three-point and four-point bending tests were performed to assess results 

obtained from experimental data with those obtained from a finite element method. A 

composite tube that shows the same strength and stiffness as a high-grade aluminum tube for 

helicopter landing gear applications was designed, fabricated and tested (see Figure 2.2). 

They showed that aluminum straight tubes for helicopter landing gears are replaced by the 

lighter manufactured composite straight tubes. Note that the investigation was only conducted 

on straight tubes. In addition, they did not investigate stress distributions of the whole 

composite landing gear to modify the presented lay-up sequence. 

 

 

Figure 2.2: Axial strain distribution across thickness of a composite tube under bending [20]. 
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Shadmehri et al. [22] developed theoretical formulations by using a three-dimensional 

laminate theory to obtain the stiffness of composite tubes. They compared theoretical 

formulations and experimental results. In addition, the mechanical behavior of straight tubes 

subjected to bending was examined in their work. To find out the energy absorption 

capabilities of glass-fiber straight tubes, a study was performed by Pickett and Dayal [23]. 

Effects of the tube geometry, ply orientations, number of plies and tube thickness on the 

specific energy absorption in composite tubes were studied and compared with results 

obtained by experiments. Recently, a method was developed to investigate pure bending of 

laminated composite straight tubes. Stress distributions for thin composite tubes with simple 

lay-up sequences were presented. In addition, a formula to calculate the flexural stiffness for 

composite straight tubes was derived. They used NASTRAN to evaluate theoretical results 

[24] (see Figure 2.3). 

 

 

Figure 2.3: Pure bending of a composite tube [24]. 

 

The stress analysis of composite hollow straight tubes subjected to pressure, axial force, 

torsion, shear and bending was performed by Sun et al. [25]. The stress analysis follows 

Lekhnitskii formulation, which was based on stress functions. They provided solutions for a 

homogenized tube and a composite tube with a single-layer. Consequently, their method was 

efficient for thin hollow composite tubes. The results obtained from the proposed method 

were compared with those obtained from FEM. Menshykova and Guz [26] performed the 
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stress analysis on thick laminated composite tubes subjected to bending loads. They found 

stresses as a function of the material properties, thickness, lay-up sequence and the magnitude 

of the bending load (see Figure 2.4). Capela et al. [27] investigated the fatigue behavior of 

composite tubes under bending/torsion dynamic loadings. Effects of the torsion stress on the 

fatigue strength and failure mechanisms were shown. The static analysis of carbon nanotube-

reinforced composite cylinders under thermo-mechanical was studied [28]. Radial and 

circumferential stress distributions were presented and influences of ply orientations and 

volume fraction of carbon nanotubes on stress distributions were analyzed. 

 

 

Figure 2.4: Multi-layered filament-wound pipe in cylindrical coordinates [19]. 

 

Nowak and Schmidt [29] presented a model to study fiber metal laminated cylinders under an 

axisymmetric load. A developed theoretical model was validated by FEM results. 

Jonnalagadda et al. [30] investigated bend-twist coupling effects on composite tubes by 

proposing an analytical model for thin straight tubes subjected to combined bending and 

torsion loading conditions. In addition, a formula was developed to obtain the shear center 

distance (see Figure 2.5). They found out that the shear center distance was independent of 

the radius of the tube cross section but proportional to the tube length. They verified the 

theoretical results with FEM analysis. 
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Figure 2.5: A composite tube with shear center away from the tube axis [30]. 

 

2.2.2. Numerical Methods 

 Mackerle [31] reported a recent comprehensive review of finite element formulations for 

tubes. Hinrichsen and Palazotto [32] investigated a nonlinear thick composite shell element to 

impose a cubic spline function on the thickness deformation. Hamdallah and Engblom [33] 

analyzed moderately thick laminated composite shells by using plate-type element 

formulations. Hossain [34] studied the stress of anisotropic moderately thick composite 

doubly curved shells and shell panels using a finite element model. The first-order shear 

deformation shell theory was employed to propose the finite element model. In addition, a 

simply supported composite spherical shell panel subjected to uniformly distributed and 

sinusoidal transverse loads was investigated. Kress et al. [35] proposed a finite element 

model, which diminishes the number of free parameters for each layer, to determine 

interlaminar stress distributions in laminated singly curved structures. By using the third-order 

shear deformation theory of Reddy with a meshless numerical method, the deformation of 

composite plates and shells was analyzed [36]. Salahifar and Mohareb [37] presented a finite 

element model based on a thin shell theory to study circular cylinders under harmonic forces. 

Based on the proposed method using shape functions, an element was designed to capture 

warping, ovalization and radial extensibility. By using the Taylor series of expansion, a limit-

based approach was presented to study stresses of composite tubes under bending moments 

[38]. Their solution is only limited to provide solutions for the cases where the layers are 

oriented at 0° or 90° with respect to the cylinder axis. Bai et al. [39] investigated the 

mechanical behavior of moderately thick thermoplastic tubes under combined bending and 

tension based on the nonlinear ring theory using the principle of virtual work. Only axial, 
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hoop and shear stresses were considered to study buckling responses. They verified 

formulations with FEM results obtained using ABAQUS. 

 Even though many analytical and numerical works have been performed for analyzing 

composite straight tubes subjected to different types of mechanical loadings, no work has 

been found to investigate stress distributions of thick laminated composite straight tubes 

under cantilever loading conditions. In addition, above review shows that there is a need to 

propose a simple analytical method to develop design guidelines for lay-up sequences of 

cantilever thick composite straight tubes. Although finite element methods are used, it is 

necessary to do the meshing for each structure every time some dimensions and/or lay-up 

sequences are changed. Therefore, it is desired to have a method where inputs to obtain the 

solution are simple. In order to develop the desired method to study the mechanical behavior 

of thick composite straight tubes, layer-wise theory is employed in this research. 

 

2.2.3. Layer-wise Theory 

 Several displacement-based methods have been developed to study behavior of laminated 

composite structures. In general, these methods may be divided into two groups: the 

equivalent single-layer theories (ESL) and layer-wise theories, which are based on variation 

of the displacement field through thickness. For some applications, ESL theories provide a 

sufficiently accurate behavior of the global laminate response (e.g. deflection, vibration 

frequency and buckling load); however, ESL theories are mostly insufficient to determine 3D 

stress and strain fields at the ply level. This weakness is perceptible in relatively thick 

laminated composite structures such as thick laminated tubes (see Figure 2.6). However, 

layer-wise theory (LWT) allows each layer of the laminate to act like a real three-dimensional 

layer being able to present accurate results for the local quantities such as interlaminar 

stresses [40]. Briefly, different methods are reviewed in the following to get a better idea of 

advantages of layer-wise methods in comparison with other methods. 
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(a) 

(b)  

Figure 2.6: (a) Local Lagrangian linear interpolation functions, (b) a lay-up in a laminated composite tube. 

 

Basic characteristics of interlaminar stresses in a double-layered circular cylindrical shell with 

simply supported ends and under a uniform pressure were investigated by Li et al. [41]. Then, 

Hinrichsen and Palazotto [32] developed a nonlinear thick composite shell element to impose 

a cubic spline function on the thickness deformation. Out-of-plane thermo-mechanical 

stresses were investigated in [42] for a simply supported cross-ply cylindrical shell with 

different ending boundary conditions. Fraternali and Reddy [43] used a penalty-based 

numerical procedure to cover the stretching of the transverse normal in a spherical shell. 

Huang [8] presented a third-order shell theory based on Reddy’s parabolic shear strain 

distributions to get a better prediction of structural responses. Similarly, the stress field was 

calculated in orthotropic cylindrical shells [10], where an effective piece-wise linear function 

was utilized (see Figure 2.7). 
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Figure 2.7: Piece-wise linear through-thickness functions [10]. 

 

A post-process method based on a higher-order theory was used in order to estimate 

interlaminar stresses in a simply supported cylindrical shell [44]. Superimposing a cubic 

global displacement field on a zig-zag linearly varying field, a higher-order shell theory was 

presented in [45] for cylindrical bending of simply supported laminated composite shells. Rao 

and Ganesan [46] used three-dimensional models to study interlaminar stresses in clamped 

cross-ply spherical shells. Accuracy of layer reduction techniques on the analysis of 

interlaminar shear stresses in laminated cylindrical shells was assessed through a combination 

of the typical single-layer and multiple-layer shell theories [47]. Wu and Chi [48] performed 

three-dimensional analyses for laminated composite doubly curved shells subjected to 

transverse loads by using separation of variables and a state-space approach. Brank and 

Carrera [49] developed a refined shell theory based on a zig-zag variation of displacement 

field through-thickness to analyze multilayered composite shells. Through-thickness 

distributions of transverse normal stresses were added to the formulation of the first and 

higher-order shear deformable shell elements in [50]. A global-local higher-order model was 

also proposed in [51] to determine through-thickness stress distributions in laminated shells 

under cylindrical bending. Roque and Ferreira [36] studied the deformation of plates and 

shells using the third-order shear deformation theory. Reddy's layer-wise theory was 

employed to study stresses of composite plates subjected to different types of mechanical 

loadings by using the elasticity displacement field for long laminates [52-54]. 
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2.3. Composite Curved Tubes 

 Composite curved tubes are structures that are frequently used in the aerospace, offshore 

and infrastructure industries. These structures usually are thin or thick and are subjected to 

certain load conditions such as tension, torsion, shear and bending loads. One such application 

is the helicopter landing gear. Prediction of the state of stress and strain in different layers of 

composite curved tubes is of theoretical interest and practical importance. Note that the 

analysis of a curved tube structure is a lot more complicated than a straight tube structure. 

Analytical and/or numerical methods have been used to study mechanical behavior of curved 

tubes by many researchers. At the following section, different methods used to study curved 

structures are reviewed to find an appropriate method for our purpose. 

 

2.3.1. Analytical and Numerical Methods 

 Qatu [55] analyzed thin and moderately thick laminated composite curved beams to find 

natural frequencies. The theoretical modelling of laminated composite shells of arbitrary 

shapes was developed to estimate shear stresses and avoid shear correction factors [56]. 

Zhang et al. [57] presented an analytical method to obtain interlaminar stresses at curved 

boundaries of symmetric composite shells under in-plane loadings based on the zeroth order 

approximation of a boundary-layer theory. Khare et al. [15] analyzed thermo-mechanical 

behavior of simply supported cross-ply laminated composite and sandwich doubly curved 

cylindrical and spherical shell panels. Kress et al. [35] proposed a finite element model, which 

diminished the number of free parameters for each layer, to determine interlaminar stress 

distributions in laminated singly curved structures. Shearing and radial stresses in curved 

beams were derived based on satisfying both equilibrium equations and static boundary 

conditions on the surfaces of beams [58]. Dryden [59] obtained stress distributions across a 

functionally graded circular beam subjected to pure bending by using stress functions. Oktem 

and Chaudhuri [60] used a higher-order shear deformation theory to obtain an analytical 

solution for the deformation of a finite-dimensional cross-ply doubly-curved panel (see 

Figure 2.8). 
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Figure 2.8: Geometry of a laminated doubly-curved panel [60]. 

 

Interlaminar normal stress distributions in moderately thick singly curved laminates were 

obtained to predict critical delamination loads observed in experiments [61]. Unidirectional 

and cross-ply laminated specimens were designed and tested under tensile and compressive 

loads to compare with results. Interlaminar shear stresses were considered in equilibrium 

equations to improve their model. They found out that the interlaminar normal stress leads 

specimens to delaminate in tensile load conditions and the interlaminar shear stress made 

specimens to fail in compression conditions. In the other work by the same authors in [62], 

moderately thick doubly curved laminates were investigated based on the through-the-

thickness equilibrium equations for arbitrary shells. Interlaminar normal stresses obtained by 

their method were verified with finite element model results for simple lay-up sequences [62]. 

The free vibration analysis was performed on functionally graded beams with curved axis by 

using a finite element method to discretize the motion equations [63]. The first-order shear 

deformation theory was used to study static and free vibration behavior of laminated curved 

beams. The exact solution for simply supported boundary conditions was presented. Shear 

deformation, curvature complexity and material couplings, which affect the analysis of thick 

composite curved beams, were investigated in [64]. Analytical models were proposed using 

Timoshenko beam model to study the stress response of functionally graded curved bars 

under pure bending conditions in elastic states and plane stress assumptions [65]. Wang and 

Liu [66] presented elasticity solutions for curved beams with functionally graded layers 

subjected to a uniform load on the outer surface using Airy stress function method. A 
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mathematical model was developed to analyze behavior of laminated curved beams [67]. 

Coupled partial differential governing equations were developed in polar coordinates by 

applying variational and energy principles to model behavior of the structure. Experiment and 

finite element data were utilized to verify the theoretical model [67]. Arefi [68] proposed an 

analytical solution for a functionally graded curved beam subjected to pure bending. Arefi 

employed the linear theory of elasticity to obtain the general relation for distributions of radial 

and circumferential stresses. Flexural behavior of functionally graded doubly curved shell 

panels were studied numerically under thermal and/or mechanical loads using a higher-order 

shear deformation theory [69]. Their analysis was included the linear and non-linear terms in 

the mathematical model to obtain the exact flexure of the structure. The variational principle 

was used to derive governing equations of the panel structure. 

 The above review shows that most of researchers have worked on inhomogeneous curved 

bars which have rectangular cross sections (see Figure 2.9). Therefore, there is a need to 

develop a method that can provide the displacement field and subsequently stresses for thick 

laminated composite curved tubes subjected to different types of mechanical loadings based 

on simple inputs. Since displacement and stress fields are required to be obtained through the 

desired method, displacement-based of Toroidal Elasticity is utilized for this propose. 

 

 

Figure 2.9: The geometry of the curved bar under pure bending [65]. 
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2.3.2. Theory of Toroidal Elasticity 

 Theory of Toroidal Elasticity (TE) is employed to determine stress and displacement 

fields in toroidal rings, elbows and tubes where are used in different applications in industries. 

Gohner [70] was the first researcher to develop TE theory to study an isotropic curved solid 

circular ring sector under pure twist and bending moments. Figure 2.10 presents the 

coordinate system used in Gohner works to obtain the solution. The progress made by Gohner 

on TE was only on axisymmetric cases. In addition, the coordinate system used in Gohner 

works only is applied for the boundary conditions of a solid circular cross-section. 

 

 

Figure 2.10: Gohner coordinate system [11]. 

 

 In 1911, Von Karman [71] developed a theoretical description to explain why a curved 

tube has more flexibility in bending than a straight one. His works provided the fundamentals 

for the further isotropic curved tube analysis. In general, Toroidal Elasticity is divided in two 

major methods. Some researchers have been using stress-based TE to describe mechanical 

behavior of isotropic curved tubes and other researchers have been using displacement-based 

TE. 

 

2.3.2.1. Stress-based Toroidal Elasticity (SBTE) 

 The stress-based Toroidal Elasticity (SBTE) is used to obtain the stress field in a thick 

curved tube. A constant thickness curved tube is represented by Toroidal coordinate system r, 

Φ and θ where r and Φ are polar coordinates in the plane of the curved tube cross section and 

θ defines the position of the curved tube cross section as shown in Figure 2.11. Kornecki [72] 

and McGill [73] developed the theory of Toroidal Elasticity by extending Gohner works. 
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Kornecki [72] used the method of successive approximation to solve governing equations. 

The finite difference method was employed by McGill [73]. Both of the studies were based on 

the assumption of axisymmetric condition. 

 

Figure 2.11: Geometry and coordinate system [85]. 

 

 The method of successive approximation or perturbation method is a useful and powerful 

method to obtain solutions to equations. The solution for each component of the displacement 

is assumed to be a series in terms of a small parameter. 

 A significant contribution to the theory of Toroidal Elasticity was made by Lang [74]. 

The stress-based Toroidal Elasticity (SBTE) was studied comprehensively by Lang since 

1984 [74]. He summarized previous research works [75-84] and developed the stress-based 

Toroidal Elasticity in the Toroidal coordinate system. He recast the three equilibrium 

equations and six compatibility equations into the Toroidal coordinate system. The method of 

successive approximation was used to develop solutions. This theory is employed to solve 

either axisymmetric problems or non-axisymmetric problems. In Lang’s works, the stress 

approach method was used, subsequently, he did not obtain displacement fields directly. 

 Lang [75-84] performed comprehensive studies on thick isotropic curved tubes under 

different types of loadings. The problem of an isotropic curved tube subjected to internal and 

external pressure was studied by Lang [75, 76]. The zeroth, first and second order fields of 

stress series were developed. He obtained one set of numerical results for a thick isotropic 

curved tube under internal pressure. Lang [77] obtained stresses for an isotropic toroidal tube 

subjected to end bending moments, as well. The stress-based Toroidal Elasticity was 
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employed so that the solution satisfied compatibility equations. The solution was developed 

up to the first-order state using the method of successive approximation. The solution was 

extended to the second order in [78]. A thick 90° curved tube subjected to torsion [84], out-of-

plane bending by end shear forces [83], in-plane end shear forces [79] and end normal forces 

[80] were subsequently investigated. For these four load conditions, the zeroth and first order 

stress fields were developed, and no numerical results were presented. The solution of the 

torsion problem was developed up to the third order using successive approximation method. 

 

2.3.2.2. Displacement-based Toroidal Elasticity (DBTE) 

 Displacement-based Toroidal Elasticity (DBTE) is employed to develop the displacement 

field within a thick curved tube. This method has the advantage of yielding immediately the 

displacements as well as the stresses as compared with SBTE. Moreover, the zeroth order 

displacement functions required for starting the method of successive approximation are 

easily set up based on the general mechanical knowledge. Note that the displacement 

components are important information for considering special restriction and for a fracture 

analysis. 

 The works of Lang have been extended by Redekop [85]. Redekop selected the 

displacement components ur, uΦ and uθ as the basic variables (see Figure 2.12) and developed 

the governing Navier equations in this coordinate system. Solutions were found by the 

method of successive approximation. 

 

Figure 2.12: Displacement and stress components [85]. 
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 Redekop [85] investigated isotropic curved tubes under in-plane loading by the 

displacement-based Toroidal Elasticity. Numerical solutions for thick curved tubes subjected 

to internal pressure loads were given as well. The stress and displacement fields were given 

up to the third order. The numerical solutions obtained for this case were verified with finite 

element results. Redekop and Zhu [86] provided a computer program based on displacement-

based Toroidal Elasticity to obtain stresses for a thick isotropic curved tube spanning a curved 

segment of 90° subjected to five different loading conditions including internal pressure, in-

plane couple bending, out-of-plane couple bending, torsion and out-of-plane shear force. A 

displacement-based solution for an isotropic curved tube under out-of-plane loading condition 

was presented by Zhu and Redekop [87] using DBTE. The method of successive 

approximation was used again to obtain the solution. They provided the governing Navier 

equations up to the third order in toroidal coordinates system. An analytical solution was 

proposed using displacement-based Toroidal Elasticity theory to obtain the displacement 

components and stress field of the band loading of a thick isotropic curved tube as shown in 

Figure 2.13 [88]. Results obtained using the analytical solution were compared with results 

obtained from the finite element method. 

 

Figure 2.13: Geometry and loading [88]. 

 

 For the first time, the theory of displacement-based Toroidal Elasticity has been adapted 

in this study to investigate the behavior of thick laminated orthotropic curved tubes subjected 
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to mechanical loadings; as opposed to isotropic materials as have been investigated by the 

other researchers reviewed in this chapter. 
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Chapter 3 

 

 

 

 

 

 

 

This chapter starts with developing a new high-order simple-input method to obtain stresses 

and strains in thick arbitrary laminated composite straight tubes. The most general 

displacement field of elasticity for a thick laminated composite straight tube is developed. A 

layer-wise method is employed to analytically determine local displacement functions and 

stresses under transverse loading. The accuracy of the proposed method is verified by 

comparing the theoretical results with experimental data, FEM and Lekhnitskii solution. 
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Abstract 

In this chapter, a new high-order displacement-based method is proposed to investigate 

stresses and strains in thick arbitrary laminated orthotropic cantilever straight tubes under 

transverse loading. The most general displacement field of elasticity for an arbitrary thick 

laminated orthotropic straight tube is developed. A layer-wise method is employed to 

analytically determine the local displacement functions and stresses under transverse loading. 

The accuracy of the proposed method is subsequently verified by comparing the theoretical 

results with experimental data, finite element method (FEM) and Lekhnitskii solution. The 

results show good agreement. In addition, high efficiency in terms of computational time is 

shown when the proposed method is used as compared with FEM. Finally, several numerical 

examples for stress and strain distributions in various thick cantilever straight tubes subjected 

to transverse loading are discussed. 

 

Keywords: Displacement field; Thick orthotropic cantilever straight tube; Displacement-based 

method; Layer-wise theory; Stress analysis; Transverse loading. 

 

3.1. Introduction 

Composite tubes are structures that are frequently used in the aerospace, offshore and 

infrastructure industries. Prediction of the state of stress and strain in different layers of 

composite tubes is of theoretical interest and practical importance. Although thin shell 

structures have been the thrust of the initial applications, more attention is now being paid to 
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thick tube structures. In all applications, accurate design and inclusive analysis are important 

to guarantee safety. It should be noted that stress analysis of cylindrical composite structures 

is often a complex task. A few reasons are responsible for such a complexity. The governing 

equations of composite tubes are complicated. In addition, a major source of intricacy is the 

layer-wise failure of composite materials. In fact, as soon as a layer fails, a sort of 

delamination happens or a crack propagates in the plies, material properties and sometimes 

the governing equations could be different. Above all, the composite tube geometry is a lot 

more complicated than flat geometries. 

Mackerle [31] reported a recent comprehensive review of finite element formulations for 

tubes. Hinrichsen and Palazotto [32] investigated a nonlinear thick composite shell element to 

impose a cubic spline function on the thickness deformation. Hamdallah and Engblom [33] 

analyzed moderately thick laminated composite shell structures by using plate-type element 

formulation. Kardomateas [5] developed the case of uniform external pressure and orthotropic 

homogeneous material. Elasticity solutions for other types of loading of homogeneous 

composite shells were summarized in [12]. Lekhnitskii [2] developed elasticity solutions for 

monolithic homogeneous orthotropic cylindrical shells. To obtain a prediction of structural 

response, a third-order shell theory was proposed by Huang [8] based on Reddy’s parabolic 

shear strain distribution. In a similar way, Di and Rothert [10] calculated stress fields in 

orthotropic cylindrical shells. Basar and Ding [11] investigated the theoretical fundamentals 

based on a layerwise theory. Their solutions included transverse shear and transverse normal 

strains. By properly extending the solutions for monolithic structures, elasticity solutions for 

sandwich shells were developed [14]. Sheinman and Weissman [3] studied the effect of the 

extension-shear elastic couplings to analyze vibration behavior of circular cylindrical shells. 

Silvestre [18] developed a formulation of Generalized Beam Theory (GBT) to study the non-

classical effects on the structural behavior of fiber reinforced polymer composite circular 

hollow members. To find out the energy absorption characteristics of glass-fiber circular 

crush tubes, a study was developed by Pickett and Dayal [23]. Brank and Carrera [13] 

investigated some aspects of refined analysis for multilayered composite plates and shells 

based on a piece-wise linear variation of the displacement field through-thickness. Khare et al. 

[15] analyzed thermo-mechanical behavior of simply supported cross-ply composite and 

laminated sandwich doubly curved cylindrical and spherical shell panels. Hossain [34] 



28 
 

investigated the stress of anisotropic doubly curved thick composite shells and shell panels 

using a finite element model. Kress et al. [35] proposed a finite element model, which 

diminishes the number of free parameters for each layer, to determine interlaminar stress 

distribution in singly curved laminated structures. Roque and Ferreira [36] studied the 

deformation of plates and shells by using third-order shear deformation theory of Reddy. In 

addition, to obtain the shape parameters an optimization technique was applied. By using 

three dimensional (3D) elasticity, shell theory and ABAQUS, the buckling of a sandwich 

cylindrical shell under uniform external hydrostatic pressure was analyzed by Han et al. [16] 

in three ways. Salahifar and Mohareb [37] presented a finite element model based on thin 

shell theory to study the circular cylinders under general harmonic forces. Recently, a method 

was developed to analyze the pure bending of arbitrary laminated composite tubes. They used 

NASTRAN to compare with theoretical results [24]. 

The above review shows that little work has been done to address the analysis for stresses 

and strains in thick composite cantilever straight tubes under transverse loading. Although 

finite element methods are used for analyzing such structures, it is necessary to do the 

meshing for each structure every time some dimensions are changed. Therefore, it is desired 

to have a method where inputs for the solution are simple; i.e. one only needs to enter in the 

actual dimensions and lay-up sequences without the meshing work. The present chapter is 

devoted to develop an analytical high-order method that can provide stresses, strains and 

deformations for thick laminated composite straight tubes subjected to cantilever loading with 

simple inputs. The layer-wise method, which includes the full three-dimensional constitutive 

relations, is employed to calculate the three-dimensional stress distributions within the 

aforementioned tube. Then, comparison is made between results obtained for the proposed 

analytical method with experimental data, FEM (ANSYS) and Lekhnitskii solution. Good 

agreement is obtained. Finally, the stress and strain distributions in tube cross sections are 

studied through a number of examples. In addition, the stresses and strains are investigated at 

different cross sections and for different applied force values. 
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3.2. Motivation 

In an effort to develop thermoplastic composite tubes for helicopter landing gears [1], 

Derisi designed and manufactured composite straight tubes and performed three-point 

bending tests to determine the strains to failure of different balanced laminates. These tubes 

are relatively thick (more than 100 layers giving thickness of more than 11 mm). Derisi used a 

procedure called strain-controlled design and based on that, lay-up sequences for composite 

tubes were developed. This procedure paid particular attention to the strain limit in each of the 

layer, in order to provide maximum flexibility for the tube, while maintaining good stiffness 

and strength. However, rigorous analytical techniques for the determination of stresses, strains 

and deformations are not available. In this study, a simple-input method for the stress analysis 

of thick composite tubes subjected to cantilever loading is developed. 

 

3.3. Formulation 

3.3.1. Strain-Displacement Relations 

A thick laminated orthotropic cantilever straight tube with mean radius R and thickness h 

is subjected to the transverse loading F as shown in Figure 3.1. The cylindrical coordinates (x, 

θ, r) are placed at the one of the composite tube’s end so that x and r are the axial and radial 

coordinates, respectively. Within the kth layer of an orthotropic straight tube, the infinitesimal 

strain-displacement relations of elasticity in cylindrical coordinate system (x, θ, r) are given 

by [89] (see Figure 3.1): 
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(a)  

(b)  

Figure 3.1: (a) The geometry of a straight tube and the coordinate system. (b) The lay-up sequence in a 

laminated composite tube. 

 

where 
   1 , ,
k

u x r , 
   2 , ,
k

u x r  and 
   3 , ,
k

u x r  represent the displacement components in 

the x, θ and r directions, respectively, of a material point located at (x, θ, r) in the kth ply of a 

composite straight tube in Figure 3.1. Next, by taking integration, one can determine the most 

general form of the displacement components for composite straight tubes as explained in the 

detailed in the following. Integrating Eq. (3.1) yields; 

             1 , , , , 3.7
k k k

xxu x r x r u r      
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Substituting Eq. (3.7) into Eq. (3.5) yields; 
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Integrating Eq. (3.8) yields: 
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Substituting Eq. (3.9) into Eq. (3.3) yields; 
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From Eq. (3.10), we conclude that; 
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Substituting Eq. (3.11) back into Eqs. (3.7) and (3.9) yields; 
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Next, we substitute Eq. (3.12) into Eq. (3.6) to have; 
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Integrating Eq. (3.14) yields; 
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
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   
     

    

By substituting Eq. (3.15) and Eq. (3.13) into Eq. (3.4), the following is obtained: 

   
                   

               
 
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

      
 

  
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 

     
       

        

   
    

    

From Eq. (3.10), we conclude that; 
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




    
     

      

From Eq. (3.17a), it is concluded that; 

       3 6 3.18
k k

f C 

Combination of Eq. (3.15), Eq. (3.13) and Eq. (3.2) yields; 

   
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        


 
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From Eq. (3.19), it is concluded that; 

             
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



 
  

 


 


Therefore, from Eq. (3.20b), we have: 

         2 5 4cos sin 3.21
k k k

f C C     

By substituting derivative of Eq. (3.20a) with respect to r into derivative of Eq. (3.17b) with 

respect to θ while considering Eq. (3.20a) at the same time, the following is obtained: 

         
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1

12
0 3.22

k

kf
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





 


Therefore; 

         1 1 2sin cos 3.22
k k k

f C C b   

From Eq. (3.20a), we have: 

   
             1 2 1
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r C C h r a
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


   




   


By combination of Eq. (3.22) and Eq. (3.17b), it is concluded that; 
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       1 3 3.23
k k

h r C r b

Finally, substituting Eqs. (3.18), (3.21), (3.22b) and (3.23b) into Eqs. (3.12), (3.13) and (3.15) 

yields; 

              

                   

                   
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2

2 1 2 3 4 5

2
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1
, , cos sin cos sin ,

2

1
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2

k k k k k
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u x r xr C C C x u r

u x r x C C C r x C C v r

u x r x C C x C C w r

   

     

     

   

     

    

 
1

k
u , 

 
2

k
u  and 

 
3

k
u  present the displacement field within composite straight tubes. However, 

the unknown functions and constants have to be determined. 

 

3.3.2. Elasticity Displacement Field 

A thick laminated orthotropic cantilever straight tube with mean radius R and thickness h 

is subjected to the transverse loading F as shown in Figure 3.1. The cylindrical coordinates (x, 

θ, r) are placed at the one of the composite tube’s end so that x and r are the axial and radial 

coordinates, respectively. The appropriate integration of the linear strain-displacement 

relations of elasticity, within cylindrical coordinate system, as derived in the previous section, 

yields the displacement field for the kth layer (Eq. (3.24)). In order to satisfy the interfacial 

continuities of the displacement components, it is necessary for the integration constants 

appearing in Eq. (3.24) to be the same for all layers. It is therefore concluded that the most 

general form of the displacement field for the kth layer of laminated composite straight tubes 

is given as: 

         

           

             
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2

2 1 2 3 4 5

2

3 1 2 5 4

, , cos sin ,

1
, , cos sin cos sin ,

2

1
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2
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u x r xr C C C x u r

u x r x C C C r x C C v r

u x r x C C x C C w r

   

     

     

   

     

    

 

 

3.3.3. Layer-wise Theory (LWT) 

 

The equivalent single-layer theories are not able to precisely find stresses and strains in 

laminated composites. However, layer-wise theory (LWT) allows each layer of the laminate 
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to act like a real three-dimensional layer while being able to present good results for the local 

quantities. In LWT, the displacement components of a generic point in the laminate are 

assumed as [53, 54]: 

     

     

         

1

2

3

, , ,

, , ,

, , , 1,2,..., 1 3.26

k k

k k

k k

u x z u x z

u x z v x z

u x z w x z k N

 

 

 

 

 

   

with k, here and in what follows, being a dummy index implying summation of terms from 

k=1 to k=N+1. The variable N corresponds to the total number of numerical layers within the 

laminated orthotropic tube. In Eq. (3.26), u1, u2 and u3 denote the total displacement 

components in the x, θ and z directions, respectively. Also,  ,ku x  ,  ,kv x   and  ,kw x   

represent the displacements of the points initially located at the kth plane (defined by z=zk, see 

Figure 3.2) within the composite straight tube in the x, θ and z directions, respectively. The 

variable N in Eq. (3.26) corresponds to the total number of numerical layers within the 

laminated orthotropic tube. Furthermore,  k z  is the global Lagrangian interpolation 

function associated with the kth plane. It is used for the discretization of the displacement 

through-thickness coordinate z (note that r which is thickness coordinate used in the previous 

section has the following relation with z, r=R+z). Depending upon the polynomial order of 

the interpolation function, Eq. (3.26) exhibits piecewise polynomial variation. It is noted that 

the accuracy of LWT is enhanced by subdividing each physical layer into a finite number of 

numerical layers. Clearly, as the number of subdivisions (p) through-thickness is increased, 

the number of governing equations and the accuracy of the results are increased. 

To find unknown local functions,  ,ku x  ,  ,kv x   and  ,kw x  , the LWT 

displacement field (Eq. (3.26)) is applied. Therefore, the elasticity displacement field in Eq. 

(3.25) is rewritten in a simpler form as: 

        

          

           
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2

2 1 2 3 4 5

2

3 1 2 5 4

, , z cos sin

1
, , z cos sin cos sin

2

1
, , z sin cos cos sin 3.27

2

k k

k k

k k

u x x R z C C C x U z

u x x C C C R z x C C V z

u x x C C x C C W z

   

     

     

     

       

     

It is pointed out here that, by employing through-thickness linear interpolation functions (see 
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Figure 3.2), the continuity of displacement components through the thickness of the laminate 

is identically satisfied. On the other hand, the transverse strain components remain 

discontinuous at the interfaces that will subsequently amplify the possibility of having 

continuous interlaminar stresses at the interfaces of adjacent layers by increasing the number 

of numerical layers through the physical laminate. The linear global interpolation function is 

defined as: 

   

   
 
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1 1 1

1

1

1 1

1

0
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k
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k k k k

k

k

z z

z z z z z z
h

z

z z z z z z
h

z z







  



 





    


  
    





where  1and 2j

k j   are the local Lagrangian linear interpolation functions (see Figure 3.2), 

with hk is the thickness of the kth layer. 

 

Figure 3.2: Local Lagrangian linear interpolation functions. 

 

By introducing r=R+z, the strain-displacement relations are as given as: 
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 
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  
 

  


   
    
      

   
     

      
Substitution of Eq. (3.27) into the strain-displacement relations (3.29) yields the following 

results: 

  

 

    
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1 2

1 2 3
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W V
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C C C R z

R z
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



    

   

  

 
       



 
        



 
    


 

In Eq. (3.30) and what follows, a prime indicates an ordinary differentiation with respect to an 

appropriate variable (i.e., either θ or z). The equilibrium equations of a laminated orthotropic 

straight tube with N numerical layers are obtained by employing Eq. (3.30) in the principle of 

minimum total potential energy [90]. The results are, in general, 3(N+1) local equilibrium 

equations corresponding to 3(N+1) unknown functions Uk, Vk and Wk and six global 

equilibrium equations associated with the six parameters C1, C2, C3, C4, C5 and C6. 

According to the principle of minimum total potential energy [90] at the equilibrium 

configuration of a body the variation of the total potential energy   of the body must vanish. 

That is: 

 0 3.31U V     

where U  is the variation of total strain energy of the body, i.e., 

   
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0 /2

d dzdx 3.32
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xx xx zz zz z z xz xz x x

h
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
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             


 

         

and V is negative of the work done on the body by the specified external forces. Here, 

     
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

          

  

 



and therefore, 0 34V F R a h C   . Note that F0 is the shear load that is uniformly distributed 
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on lines aligned on radius as shown in Figure 3.1a. In addition, the variations of strains in Eq. 

(3.30) are found as: 

  

 

    
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1 2

1 2 3
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       
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 
       



 
        


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Upon substituting 0 34V F R a h C    into Eq. (3.31), carrying out the necessary integrations, 

and employing the fundamental lemma of calculus of variations the equilibrium equations and 

the associated boundary conditions of a laminated composite straight tube subjected to 

transverse force are obtained as: 
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where the generalized stress and moment resultants are defined as: 
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The following boundary conditions must be satisfied at the ends of the composite straight 

tube: 

   
         1 2 3

0 at z = ±h/2 3.38

0 at x=0 3.38
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x z
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R Q N a

u u u b

   
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Note that in Eq. (3.35) the superscript k refers to the kth interface in the laminated orthotropic 

tube. The three-dimensional constitutive law within the kth layer of a laminated orthotropic 

tube given as follows [91]: 
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where 
 k

ijC represent the off-axis stiffnesses. By substituting Eq. (3.30) into Eq. (3.39) and the 

subsequent results into Eq. (3.37), the stress resultants are given the following relations: 
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where the laminate rigidities in Eq. (3.40) are defined as: 
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The local displacement equilibrium equations are obtained merely by substituting Eq. (3.40) 

into Eq. (3.35): 
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In addition, the global equilibrium equations of the composite straight tube are expressed in 

terms of displacement functions by substituting Eq. (3.30) into Eq. (3.39) and the subsequent 

results into Eq. (3.36). The results present as: 
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where the extra laminate rigidities appearing in Eqs. (3.43) are defined as: 
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3.4. Analytical Solution (State-space Method) 

 The system in Eqs. (3.42) shows 3(N+1) coupled ordinary differential equations with 

constant coefficients which may be displayed in a matrix form as follows: 
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The coefficient matrices [M], [K], {F1}, {F2}, {F3} and {F4} in Eq. (3.45) are defined in 

Appendix A. It is confirmed that the general solution of Eq. (3.45) may be presented as: 
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and [sinh (λθ)] is a 3(N+1)×3(N+1) diagonal matrix. That is: 

           1 2 3 1
sinh sinh ,sinh ,...,sinh 3.48

N
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
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Also [ψ] and (λ1
2 , λ2

2 , … , λ3(N+1)
2 ) are the modal matrix and eigenvalues of (-[M]-1[K]), 

respectively. Vector {𝑘} is an unknown vector representing 3(N+1) integration constants. The 

constants Cj (j=1, 2, 3, 4, 5 and 6) could be calculated within LWT analysis. Therefore, the 

boundary conditions in Eq. (3.39) are first imposed to find the vector {𝑘} in terms of the 

unknown parameters Cj (j=1, 2, 3, 4, 5 and 6). These constants are then determined in terms 

of the specific shear force F0 by the satisfaction of the global equilibrium equations in Eq. 

(3.43). For completeness, the steps details involved in computing unknown parameters are 

displayed in Appendices B & C. 
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3.5. Lay-up Sequence Selection 

As it is mentioned, Derisi [1] developed a lay-up sequence to be used for making 

composite landing gears for helicopters that may provide large deformation and gradual 

fracture. A composite tube with the [(90°10/0°10)3/±45°25] lay-up was manufactured and tested 

to study the behavior of orthotropic tubes subjected to bending load [1, 20]. Table 3.1 shows 

the different types of lay-up sequences considered. First, the [0°] composite tube is selected to 

compare with Lekhnitskii solution. Composite tubes with lay-up sequence of the 

[(90°10/0°10)3/±45°25] lay-up are studied for comparison with experimental data. Finally, in 

spite of the complex experimental lay-up considered, the simple lay-up sequence of the 

[0°55/90°55] laminated composite tube is selected in order to gain an in-depth and 

comprehensive understanding of stress and strain distributions. The number 110 is obtained 

based on the availability of experimental data for the composite tubes with 110 layers, for 

comparison purpose. 

 

Table 3.1: Lay-up sequence number. 

Laminate 

number 
Lay-up sequence Purpose 

1 [0°] Comparison with Lekhnitskii solution 

2 [(90°10/0°10)3/±45°25] Comparison with experimental data 

3 [0°55/90°55] Stress and strain distributions 

 

3.6. Results and Discussion 

Numerical results are presented and discussed for various arbitrary laminated composite 

cantilever tubes subjected to the shearing load. All physical layers are modeled as being made 

up of p numerical layers. The mechanical properties of the composite tube are given in Table 

3.2. 

Table 3.2: Characteristics of the composite tube [1, 20]. 

Properties E1 (GPa) E2=E3 (GPa) G12=G13= G23 (GPa) ʋ12=ʋ13 ʋ23 

Carbon AS4/PEKK 140 10 5.56 0.31 0.33 
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Furthermore, the stress and strain components are normalized as 𝜎𝑖𝑗=𝜎𝑖𝑗/𝜎0 and ɛ̅𝑖𝑗=ɛ𝑖𝑗/ɛ0, 

respectively, where 𝜎0=(F.x.r)/(π/64*(OD4-ID4)) and ɛ0=𝜎0/E1 with the outer diameter OD 

and the inner diameter ID of the composite straight tube. In the present cases, the composite 

tube section has an internal diameter of 56 mm and an external diameter of 78 mm, i.e. a wall 

thickness of 11 mm. In addition, the length of the composite tube is 405 mm. All physical 

layers have equal thickness (=0.1 mm) [1]. 

 

3.6.1. Comparison of the Proposed Method and Lekhnitskii Solution 

Since Lekhnitskii [2] proposed the elasticity method for monolithic homogeneous 

orthotropic cylindrical shells with σzz=σθθ=σzθ=0 assumptions, the [0°] composite tube is 

considered to compare the results between the proposed method and Lekhnitskii solution for 

the cantilever tube. Figures 3.3 and 3.4 show 𝜎xx, 𝜎zx and 𝜎θx distributions at the middle cross 

section of the [0°] composite tube at x=a under the shear force. Good agreement is seen 

between the results obtained by two methods. 

 

 

Figure 3.3: Distribution of the axial stress for the [0°] laminate at x=a. 
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3.6.2. Comparison of the Proposed Method and FEM 

The radial stresses, σzz, at the 0°/90° interface of the [0°55/90°55] laminated orthotropic 

straight tube at x=a obtained by the present method and FEM (ANSYS) are compared in 

Figure 3.4. Good agreement between the analytical analysis and FEM (ANSYS) results is 

obtained. The present method results are obtained for p= 6, 10, 12 and 15 (numerical layers 

within LWT=p). It is seen that the results for p=12 and 15 are the same. Therefore, p=12 is 

selected to achieve the other results for the present method (in all the subsequent calculations, 

p is set equal to 12). Note that the accuracy of LWT method is improved by increasing the 

number of numerical layers (p) in each lamina. The mesh-independency study is performed 

for ANSYS. Mesh refining is performed two times while the element aspect ratio is kept 

constant. It is noted that for the initial mesh, 46200 elements (15axial× 28circumferential× 

110thickness directions) are used to model the structure. For the 1st refined mesh, the 

thickness and circumferential directions are refined twice as much as the initial mesh (184800 

elements totally). In addition, for the 2nd refined mesh, the axial and circumferential directions 

are refined twice as much as the initial mesh and the thickness direction is refined 4 times as 

much as the initial mesh to model the orthotropic straight tube (739200 elements totally). 

Also, modeling and analyzing of the laminated orthotropic straight tube with simple lay-up 

(0° and 90°) and the initial mesh take around 7200 seconds while they take around 10800 and 

18000 seconds for the 1st and 2nd refined meshes, respectively. In addition, modeling and 

analyzing complex lay-up composite structures (see experimental lay-up) take so much 

longer, around 21600 and 25200 seconds for the 1st and 2nd refined meshes, respectively. 

While the modeling and analyzing of the same structure (same complex lay-up) using the 

developed method take 600 seconds (with using p=12 in the proposed method). 
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Figure 3.4: Comparison of the radial stress obtained by the present method and ANSYS at the 0°/90° 

interface of the [0°55/90°55] laminated straight tube at x=a. 

 

3.6.3. Comparison of the Proposed Method with Experimental Data 

In this part, the proposed method results are compared with experimental data. A 

composite tube with the [(90°10/0°10)3/±45°25] lay-up was manufactured and tested to study 

the behavior of composite tubes subjected to bending loads [1, 20]. The properties of that 

composite tube are given in Table 3.2. In the experimental case, the tube section has an 

internal diameter of 56 mm and an external diameter of 78 mm. The composite tube has 110 

layers in total. The tube was made using a fiber placement machine. Three-point bending test 

was carried on a few composite tubes [1, 20]. Since, here, the cantilever composite tube is 

studied, three-point bending test situation is considered as two cantilever straight tubes 

connected at one end (x=0) and F=P/2 applied at the other end (x=2a) (P is force considered 

in [1, 20]) as shown in Figure 3.5. 
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Figure 3.5: Three-point bending test and consideration as two cantilever composite tubes. 

 

To compare, the results are taken from strain gauges installed on the composite tube to 

measure axial and hoop strains at 120 mm offset from the midpoint at the bottom line of the 

composite tube (see Figure 3.5). The tube was loaded (the maximum applied load was 20 

KN) until maximum axial strain at the midpoint reached to 0.003 which was well in the elastic 

zone of all layers. The comparison of the proposed method results at x=120 mm and θ=90° 

while the composite tube length is 405 mm (2a=405 mm, see Figure 3.5) with experimental 

data is shown in Figure 3.6 showing the force variation versus axial strains and hoop strains, 

respectively. Good agreement between the analytical analyses and experimental results is 

obtained. In addition, FEM (ANSYS) results are shown in Figure 3.6 to present the accuracy 

of the proposed method. It is seen that the proposed method results are closer to the 

experimental data than those of FEM. In addition, with increasing load, the present method is 

more accurate than FEM. Note that the 2nd refined mesh is used to get FEM results here. 
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Figure 3.6: Load-hoop strain at 120 mm offset. 

 

3.6.4. Advantages of the Proposed Method 

The most important advantage of the proposed method is that the inputs for the modeling 

of composite structures with complex lay-up sequences (see the experimental lay-up) are 

simple, easy to use and fast to run. Contrary, to model complex lay-up composite structures in 

FEM, it is necessary to create several parts individually, mesh every part separately, and 

assign every lay-up sequence to the attributed part of structures. However, through using the 

proposed method, one just needs to simply define dimensions and lay-up sequences at the 

beginning of the program. Therefore, it is obvious that the modeling of complex lay-up 

orthotropic structures using FEM takes much longer than using the developed method. In 

addition, using FEM for parametric study is cumbersome. For example, to study the thickness 

effect on stress and strain distributions by using FEM, it is necessary to model the geometry 

for different thicknesses and obviously it takes longer than using the proposed method. By 

applying the proposed method, the parametric study of thick composite tubes is simple with 

low computational cost. 
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In addition, in FEM, to keep the aspect ratio between different directions of the element 

reasonable, one has to use a large number of elements. However, that is almost impossible for 

the real composite structures including thick composite tubes in engineering applications 

since there are so many layers with small thicknesses. Therefore, the laminated approximation 

in the thickness direction has to be employed not only for laminated shell elements but also 

for composite solid elements. For this reason, researchers are always interested in the 

theoretical methods for real composite structures. LWT is a popular candidate to obtain the 

solution with more accuracy for composite structures. However, for general composite 

structures subjected to different loading conditions, LWT can only be used in the thickness 

direction together with the company of FEM in other directions. For this sense, LWT can only 

be considered as a better laminated approximation in the thickness direction than CLT 

(Classical Lamination Theory). In this chapter, the more accurate solution for composite 

cantilever tubes is obtained not only by using LWT in the thickness direction (i.e., the radial 

direction) as general case but also by using the theoretical approaches in other directions, 

including the longitudinal direction as well as the circumferential direction. To add to the 

advantages, high efficiency in terms of computational time is obtainable when the proposed 

method is used as compared with FEM. 

 

3.6.5. Stress and Strain Distributions 

A discussion performed here is on the cantilever orthotropic straight tube subjected to the 

transverse force. The stress and strain distributions are discussed through several numerical 

examples based on the proposed method at x=a (i.e., x=202.5 mm), unless otherwise 

mentioned. 

The variations of the interlaminar radial stress, σzz, the shear stress, σθz, and the hoop 

stress, σθθ, at the 0°/90° interface of the [0°55/90°55] laminated orthotropic straight tube are 

presented in Figure 3.7a. It is seen that the radial stress, σzz, and the hoop stress, σθθ, have 

negative values from 0° to 180° (the upper region of the tube cross section). In addition, the 

results show anti-symmetric behavior for the lower region of the tube cross section (180°-

360°). Therefore, the positive maximum value of σzz occurs at θ=270°. Note that the positive 

interlaminar radial stress, σzz, can cause delamination failure in the composite tube. It is 

observed that the maximum positive value of σzz occurs at θ=270°, while the maximum 
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positive value of σθz occurs at θ=0° of the composite tube cross section. The distributions of 

the radial, σzz, hoop, σθθ, and shear stresses, σθz, at three different sections (x=50 mm, x= 

202.5 mm and x=355 mm) are shown in Figures 3.7b, 3.7c and 3.7d, respectively. It is 

observed that the values of all stresses at x=50 mm are greater than those at the other cross 

sections (x= 202.5 mm and x=355 mm). However, the increase rates for these stresses are 

different. The hoop stress, σθθ, increases more than the other stresses and the shear stress, σθz, 

increases less than the others at x=50 mm. In addition, the shear stress, σθz, decreases less than 

the other stresses at x=355 mm and the hoop stress, σθθ, decreases more than the others at 

x=355 mm. 

 

 

Figure 3.7a: Distribution of the stresses at the 0°/90° interface of the [0°55/90°55] laminated straight tube at 

x=a. 
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Figure 3.7b: Distribution of the radial stress, σzz, at the 0°/90° interface of the [0°55/90°55] laminated straight 

tube at different cross sections. 

 

 

Figure 3.7c: Distribution of the hoop stress, σθθ, at the 0°/90° interface of the [0°55/90°55] laminated straight 

tube different cross sections. 
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Figure 3.7d: Distribution of the shear stress, σθz, at the 0°/90° interface of the [0°55/90°55] laminated straight 

tube different cross sections. 

 

Figure 3.8: Distribution of the stresses at the 0°/90° interface of the [0°55/90°55] laminated straight tube at 

x=a. 
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Figure 3.9a: Distribution of the strains at the 0°/90° interface of the [0°55/90°55] laminated straight tube at 

x=a. 

 

The variations of the axial stress, σxx, and the shear stresses, σxz and σxθ, at the 0°/90° 

interface of the [0°55/90°55] composite tube, in whole tube cross section with respect to θ are 

shown in Figure 3.8. It is observed that the magnitude of the axial stress, σxx, is greater than 

those of shear stresses σxz and σxθ. It is further observed that whereas the sign of shear 

stresses, σxz and σxθ, is changed in the half upper region (0°-180°), the axial stress, σxx, retains 

its sign in this region. 

The variations of the strains ɛzz, ɛzθ and ɛθθ at the 0°/90° interface of the [0°55/90°55] cantilever 

laminated orthotropic tube are displayed in Figure 3.9a. It is seen that the strains, ɛzθ and ɛθθ, 

have the same trend in the tube cross section. It is also observed that the shear strain, ɛzθ, 

decreases toward θ=90° and increases toward θ=180° at the upper region of the tube cross 

section. Figures 3.9b, 3.9c and 3.9d represent the distribution of the radial, ɛzz, hoop, ɛθθ, and 

shear strains, ɛzθ, at three different sections (x=50 mm, x= 202.5 mm and x=355 mm), 

respectively. It is seen that the values of all strains at x=355 mm are less than those at the 
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other cross sections (x= 50 mm and x=202.5 mm). However, the increase rates of these strains 

are different. The hoop strain, ɛθθ, increases more than the other strains and the shear strain, 

ɛzθ, increases less than the others at x=50 mm while the shear strain, ɛzθ, decreases less than 

the other strains at x=355 mm and the hoop strain, ɛθθ, decreases more than the others at 

x=355 mm. 

 

  
Figure 3.9b: Distribution of the radial strain, ɛzz, at the 0°/90° interface of the [0°55/90°55] laminated straight 

tube at different cross sections. 
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Figure 3.9c: Distribution of the hoop strain, ɛθθ, at the 0°/90° interface of the [0°55/90°55] laminated straight 

tube at different cross sections. 

 

 

Figure 3.9d: Distribution of the shear strain, ɛzθ, at the 0°/90° interface of the [0°55/90°55] laminated straight 

tube at different cross sections. 
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Figure 3.10 presents the variation of strains, ɛxx, ɛxθ and ɛxx, at the 0°/90° interface of the 

[0°55/90°55] cantilever laminated orthotropic tube. The strains depend on distance from neutral 

axis. It is also observed that the maximum positive value of ɛxx occurs at θ=90°, while the 

maximum positive value of ɛxθ occurs at θ=180° of the composite tube cross section. 

 

Figure 3.10: Distribution of the strains at the 0°/90° interface of the [0°55/90°55] laminated straight tube at 

x=a. 

 

3.7. Conclusions 

The high-order simple-input displacement-based method was developed to investigate 

stresses and strains in thick laminated orthotropic cantilever straight tubes subjected to 

transverse loading. The most general form of the displacement field in laminated orthotropic 

cylindrical straight tubes was derived from the displacement-strain relations. LWT was then 

employed to analytically determine the displacement components. The equilibrium equations 

of LWT were subsequently solved through a state-space approach. Moreover, the accuracy of 

the stresses was examined by comparing the experimental results and those obtained by the 

proposed method. The numerical results showed good agreement between the present method 

with the experimental results, FEM and Lekhnitskii solution. Furthermore, the present method 
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was found to be more cost effective and accurate; therefore, it was employed to obtain the 

stresses and strains instead of using FEM. In the numerical study, various composite tubes 

were discussed to illustrate stress and strain distributions in the tube cross section. In addition, 

the stresses and strains were investigated at different cross sections and for different applied 

force values. 
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Chapter 4 

 

 

 

 

 

 

 

In this chapter, by using the new simple-input displacement-based method developed in the 

previous chapter, the behavior of stress distributions in thick laminated composite straight 

tubes with different lay-up sequences considering effects of the shear load part of the 

cantilever loading condition is studied. Knowledge is extracted from the parametric study 

showing effects of the orientations of different layers on stresses. 
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Abstract 

In the previous study [92], the new simple-input displacement-based method (based on 

layer-wise formulation) was developed for the stress analysis of thick laminated composite 

straight tubes subjected to cantilever loading. This method provides a quick, convenient and 

accurate solution for the determination of 3D stresses in thick composite tubes subjected to 

both bending and shear loading. The technique in this method is now used to study the 

behavior of stress distributions in thick composite straight tubes with different lay-up 

sequences considering effects of the shear load part of cantilever loading. Knowledge is 

extracted from the parametric study showing effects of the orientations of different layers on 

the stresses. 

 

Keywords: Shear load; Lay-up sequences; Thick composite cantilever straight tubes; Stress 

distribution; General displacement field. 

 

4.1. Introduction 

Composites have many applications due to the properties, which they provide with the 

essential advantages over other materials. In many examples, composite materials are the 

correct answer if designed, manufactured and used properly. Composites have specific 

advantages in many areas when their properties are designed into the ultimate product. The 

important thing is to use composite materials’ uniqueness to get the best designs. However, 

over the years it has been learned that using composites for efficient structural parts requires 
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composites to be designed and manufactured with sound engineering judgment. One type of 

composite structures is a straight tube, which is frequently used in many engineering 

applications. In order to develop design guidelines, understanding effects of lay-up sequences 

on stresses, strains and deformations of composite straight tubes is essential. 

Mackerle [31] reported a recent comprehensive review of finite element formulations for 

tubes. A nonlinear thick composite shell element was proposed to impose a cubic spline 

function on the thickness deformation [32]. Hamdallah and Engblom [33] developed a finite 

element formulation to analyze laminated circular cylindrical shells with both clamped and 

simply supported ends in order to observe effects of transverse interlaminar shear and normal 

stresses. An elasticity solution was obtained to investigate buckling of orthotropic cylindrical 

shells subjected to external pressure [5]. Lekhnitskii [2] has provided elasticity solutions for 

monolithic homogeneous orthotropic cylindrical shells. Miki and Sugiyama [6] proposed a 

method to optimum designs for required in-plane stiffness, maximum bending stiffness, 

buckling strength, and natural frequency of laminated plates by using the lamination 

parameters as fundamental design variables. Another investigation was performed for linear 

analysis of thick laminated anisotropic curved panels by using an improved finite element 

model [34]. Silvestre [18] proposed a beam theory to study the effect of non-classical 

consequences on the structural behavior of FRP composite circular hollow section members. 

By using the third-order shear deformation theory of Reddy with a meshless numerical 

method, the deformation of composite plates and shells was analyzed statically [36]. They 

also utilized an optimization technique to obtain the shape parameters. IJsselmuiden et al. [17] 

used Tsai-Wu failure criterion into the lamination parameter design space in the most general 

setting to derive a conservative failure envelope that guarantees a failure-free region of the 

lamination parameter space. A multi-step framework for design of composite panel was 

presented by using a guide-based genetic algorithm to avoid lay-up sequence mismatch [19]. 

Jolicoeur and Cardou [9] developed a general analytical solution for stresses and 

displacements of a composite cylinder subjected to bending, tensile and torsion loads. 

Shadmehri et al. [22] developed theoretical formulations by using a three-dimensional 

laminate theory to obtain the stiffness of composite tubes. They compared theoretical 

formulation and experimental results. The mechanical behavior of straight tubes subjected to 

bending was examined. Derisi et al. [21] found that the absorption of energy for composite 



60 
 

straight tubes upon fracture depended on the strategic placement of layers along the thickness 

direction. By using the Taylor series of expansion, a limit-based approach was presented to 

study stresses of composite tubes under bending moment [38]. The stress analysis of hollow 

composite cylindrical structures subjected to different loads was performed by Sun et al. [25]. 

Their method was efficient for thin hollow composite tubes. Bai et al. [39] investigated 

mechanical behavior of thermoplastic tubes under combined bending and tension based on the 

nonlinear ring theory. They verified formulations with FEM results obtained using ABAQUS. 

Menshykova and Guz [26] performed a stress analysis on thick laminated composite tubes 

subjected to bending loading. They found stresses as a function of the material properties, 

thickness, lay-up and the magnitude of bending load. Capela et al. [27] investigated the 

fatigue behavior of composite tubes under bending/torsion dynamic loadings. Recently, static 

analysis of carbon nanotube-reinforced composite cylinder under thermo-mechanical was 

studied using Mori-Tanaka theory [28]. A method was developed to analyze the pure bending 

of arbitrary laminated composite tubes. They used NASTRAN to compare with theoretical 

results [24]. 

Even though many works have been carried out for analyzing and designing composite 

tubes, no work has been found to provide a simple analytical method to develop design 

guidelines for lay-up sequences of thick composite tubes considering the effects of shear load 

part of cantilever loading at tube sections (i.e., combined bending and shear loads). Although 

finite element methods are used, it is necessary to do the meshing for each structure every 

time some dimensions and/or lay-up sequences are changed. Therefore, it is desired to have a 

method where inputs to obtain the solution are simple. Recently, a method focused on the 

development of a simple-input analytical method to analyze stress distributions of the 

composite cantilever straight tube was developed [92]. This method is now used to examine 

effects of shear on the stress distributions at tube sections in thick composite cantilever tubes. 

The advantage of this method is simple-input as compared to elaborate-input as in FEM. 

Finally, effects of lay-up sequences of laminated composite straight tubes on stress 

distributions are discussed through a number of numerical results. 
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4.2. Motivation 

In an effort to develop thermoplastic composite tubes for helicopter landing gears [1], 

Derisi designed and manufactured composite straight tubes and performed three-point 

bending tests to determine the strains to failure of different balanced laminates. These tubes 

are relatively thick (more than 100 layers giving thickness of more than 11 mm). Derisi used a 

procedure called strain-controlled design and based on that, lay-up sequences for composite 

tubes were developed. This procedure paid particular attention to the strain limit in each of the 

layer, in order to provide maximum flexibility for the tube, while maintaining good stiffness 

and strength. However, rigorous analytical techniques for the determination of stresses, strains 

and deformations are not available. Subsequently, different methods have been developed for 

the stress, strain and deformation for thick composite tubes subjected to pure bending [24, 

38]. Recently, a simple method for the stress analysis of thick composite tubes subjected to 

cantilever loading (i.e., combined bending and shear loads) was developed [92]. Due to the 

complexity of stress distributions in a thick composite tube, it is not easy to obtain some 

intuition as to the behavior of the tube under shearing load, for the purpose of design. In order 

to provide some insight into this behavior, the developed method is used for a parametric 

study. Systematic variation of lay-up sequences and effects of these lay-up sequences on the 

stress distributions have been examined. This chapter presents the knowledge obtained from 

this study. 

 

4.3. Formulation 

For completeness, a summary of the developed method is given below. More details are 

found in [92]. 

 

4.3.1. Elasticity Displacement Field 

The general problem under study is a thick laminated orthotropic cantilever straight tube 

with mean radius R and thickness h subjected to the transverse loading F as shown in Figure 

4.1a. The cylindrical coordinates (x, θ, r) are placed at the one of the tube’s end so that x and r 

are the axial and radial coordinates, respectively. The appropriate integration of the linear 
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strain-displacement relations of elasticity, within cylindrical coordinate system will yield the 

following displacement field for the kth layer [92]: 

 

(a)   

 

(b)  

Figure 4.1: (a) The geometry of a straight tube and the coordinate system. (b) The ply sequencing in a laminated 

tube. 
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where 
   1 , ,
k

u x r , 
   2 , ,
k

u x r  and 
   3 , ,
k

u x r  represent the displacement components in 

the x, θ and r directions, respectively, of a material point located at (x, θ, r) in the kth ply of 

the laminated orthotropic tube as shown in Figure 4.1b. 

 

h 
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4.3.2.  Layer-wise Theory (LWT) 

In the layer-wise theory (LWT), the displacement components of a generic point in the 

laminate are assumed as [53, 54]: 

     
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 

 

 
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with k, here and in what follows, being a dummy index implying summation of terms from 

k=1 to k=N+1. In Eq. (4.2), u1, u2 and u3 denote the total displacement components in the x, θ 

and z directions, respectively. Also,  ,ku x  ,  ,kv x   and  ,kw x   represent the 

displacements of the points initially located at the kth surface (defined by z=zk, see Figure 

4.1b) within the laminated composite straight tube in the x, θ and z directions, respectively. 

Furthermore, Φk (z) is the global Lagrangian interpolation function associated with the kth 

surface. Based on the elasticity displacement field in Eq. (4.1), the LWT displacement field in 

Eq. (4.2) is rewritten in a simpler form as: 
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The equilibrium equations of a laminated composite straight tube with N numerical layers are 

obtained by employing strain-displacement relations in the principle of minimum total 

potential energy [89]. The results are, in general, 3(N+1) local equilibrium equations 

corresponding to 3(N+1) unknown functions Uk, Vk and Wk and six global equilibrium 

equations associated with the six parameters C1, C2, C3, C4, C5 and C6 derived as follow: 
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The following boundary conditions must be satisfied at the ends of the laminated straight 

tube: 

   
         1 2 3

0 at z = ±h/2 4.6

0 at x=0 4.6

k k k

x z

k k k

R Q N a

u u u b

   
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Note that in Eq. (4.6), the superscript k refers to the kth surface in the laminated orthotropic 

tube. By substituting the strain-displacement relations into three-dimensional constitutive law, 

the stress resultants are obtained in terms of displacement functions. Then, the local 

displacement equilibrium equations within LWT are obtained merely by substituting 

displacement-based stress resultants into Eq. (4.4). 

 

4.3.3. Analytical Solution 

 The system of displacement-based local equilibrium equations shows 3(N+1) coupled 

ordinary differential equations with constant coefficients which may be displayed in a matrix 

form as: 
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It can readily be confirmed that the general solution of Eq. (4.7) may be presented as: 
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and [sinh (λθ)] is a 3(N+1)×3(N+1) diagonal matrix. That is: 
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Also [ψ] and (λ1
2 , λ2

2 , … , λ3(N+1)
2 ) are the modal matrix and eigenvalues of (-[M]-1[K]), 

respectively. Vector {𝑘} is an unknown vector representing 3(N+1) integration constants. The 

constants Cj (j=1, 2, 3, 4, 5 and 6) must be calculated within LWT analysis. Therefore, the 

boundary conditions in Eq. (4.6) are first imposed to find the vector {𝑘} in terms of the 

unknown parameters Cj. These constants are next computed in terms of the specific shear 

force F by the satisfaction of the global equilibrium conditions in Eq. (4.5). The authors have 

developed the detailed procedures to obtain the solution in [92]. 

 

4.4. Obtaining Stresses for a Tube Subjected to Shear Loading 

The thick composite straight tube as shown in Figure 4.1 is under cantilever loading. At 

any section of the tube, there is a shear load and a bending moment. In order to obtain the 

effect due to shear loading only, either one of the two following methods is used: 

 Obtain the stress distribution at a section very close to the end of the tube (i.e., x≈2a). 

Since this section is close to the end of the tube, the bending moment is minimum. 

 Obtain the stress distribution at a regular section (for example at x=a). The results are for 

the case where both bending moment and shear are involved. The results for the case of 
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pure bending moment are available using the method in reference [24]. The results from 

[24] with the same bending moment are subtracted from the results obtained using the 

developed method outlined in [92]. The difference should be the stresses due to the shear. 

In this following section, the results using both methods are obtained and compared. 

 

Verifying the Proposed Method 

Figure 4.2 presents the interlaminar stresses, 𝜎zz and 𝜎zθ (normalized refer to section 4.6), 

of the [±30°]55 laminated orthotropic straight tube along the circumferential direction at x=a, 

x≈2a and r=32.8 mm for the case of cantilever loading and pure bending obtained by the 

present method and reference [24], respectively. Note that at r=32.8 mm, the magnitudes of 

the radial stresses are maximum. The solid lines show the stress distribution of the composite 

straight tube subjected to cantilever loading at x=a. Figure 4.2 also shows the stresses for the 

case of pure bending, using both methods of reference [92] (dashed line) and reference [24] 

(points). Good agreement is obtained. Results for the case of shear loading at tube sections are 

obtained using two methods. In method one, the results due to pure bending (at x=a) are 

subtracted from the results due to cantilever loading (at x=a). In method two, the results from 

cantilever loading (at x≈2a) are obtained. Good agreement is observed, as shown in Figure 

4.2. Remark that the magnitudes of interlaminar stresses, 𝜎zz and 𝜎zθ, caused by the shear load 

are 0.12% to 0.15% of those obtained subjected to cantilever load for different lay-up 

sequences. 

 
 

 
 

(b) 

 

(a) 
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Figure 4.2: Comparison of interlaminar stresses obtained from the present method and another solution [24] of 

the [±30°]55 laminated straight tube at x=a , x≈2a and r=32.8 mm. (a) Normal stress σzz, (b) Shear stress σzθ. 

 
 

 
 

(b) 

 

Figure 4.3: Comparison of stresses obtained from the present method and another solution [24] of the [±30°]55 

laminated straight tube at x=a , x≈2a and r=28 mm. (a) Hoop stress σθθ, (b) Shear stress σxθ. 

 

Comparison of the hoop and shear stresses, 𝜎θθ and 𝜎xθ, of the [±30°]55 laminated orthotropic 

straight tube along the circumferential direction at x=a, x≈2a and r=28 mm obtained by the 

present method and another solution in [24] is shown in Figures 4.3a and 4.3b, respectively. 

Note that at r=28 mm, the magnitudes of the hoop and shear stresses are maximum. Similar 

agreement is obtained. The magnitudes of the hoop and shear stresses, 𝜎θθ and 𝜎xθ, subjected 

to the shear load are 0.15% to 0.18% of those obtained subjected to cantilever load for 

different lay-up sequences. In addition, this range becomes 0.03% to 0.05% for the axial and 

shear stresses, 𝜎xx and 𝜎zx. 

Another way to verify the proposed method is by checking Eq. (4.5). It is noted that the 

integration of the shear stress, σxθ, on the whole cross section along the tube thickness is equal 

to total shear load, -2F. The tube cross section at x≈2a is divided to 180 segments along the 

circumferential direction (i.e., rdθ = 0.0349r) and 110 segments along the thickness direction 

(i.e., dr=0.1 mm) as shown schematically in Figure 4.4. The elements are assumed to be 

rectangle since they are small. The shear stresses, σxθ, at all elements are known (calculated) 

and assumed to be constant. Integration their product with the element area (i.e., dr×rdθ) on 

the whole elements in the tube cross section, the transverse loading is determined. This is 

(a) 
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done numerically. For example, F=5 N is applied on the composite tube as shown in Figure 

4.1. The shear stress is σxθ=6482 Pa at r=33.5 mm and θ=180° obtained using the proposed 

method. By integrating elements over the whole section, the total shear load, 2F= 9.84 N, is 

calculated. 

 

Figure 4.4: The tube cross section at x≈2a and one element. 

 

4.5. Guidelines for the Parametric Study 

As it is mentioned, Derisi [1] developed a lay-up sequence to be used for making 

composite landing gears for helicopters that may provide large deformation and gradual 

fracture. A composite straight tube with the [(90°10/0°10)3/±45°25] lay-up was manufactured 

and tested to study the behavior of orthotropic tubes subjected to bending load [1, 20]. In 

order to obtain generic knowledge from effects of the lay-up sequences, a systematic variation 

of the lay-up sequence is selected. Table 4.1 shows the different types of lay-up sequences 

considered. First, composite tubes with the lay-up sequences of the [0°]110 and [90°]110  tubes 

are examined. The number 110 is obtained based on the availability of experimental data for 

tubes with 110 layers [1, 20], for comparison purpose. Subsequently, composite tubes with 

lay-up sequences of the [θ°55/-θ°55] and [±θ°]55 tubes with θ° having the values of 25°, 30°, 

45° and 60° are studied. Finally, lay-up sequences of the [90°m/0°m/(±θ°)k] tube are examined, 

where m and k take up different numbers and as shown in Table 4.1, and with θ° having the 

values of 25°, 30°, 45° and 60°. 

 

 

 

τxθ

dr
rdθ
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Table 4.1: Lay-up sequence number. 

Laminate 

number 
Lay-up sequence 

Laminate 

number 
Lay-up sequence 

1 [0°]110 5 
[0°n/(±θ°)k] 

θ = 25°, 30°, 45° and 60° 

2 [90°]110 6 
[90°m/(±θ°)k] 

θ = 25°, 30°, 45° and 60° 

3 
[θ°55/-θ°55] 

θ = 25°, 30°, 45° and 60° 
7 

[90°m/0°m/(±θ°)k] 

θ = 25°, 30°, 45° and 60° 

4 
[±θ°]55 

θ = 25°, 30°, 45° and 60° 
8 

[(90°m/0°m)l/(±θ°)k] 

θ = 25°, 30°, 45° and 60° 

 

4.6. Results and Discussion 

All physical laminates are assumed to have equal thickness (=0.1 mm [1]) and are 

modeled as being made up of p numerical layers. In all the subsequent calculations, p is set 

equal to 12 [92]. The on-axis mechanical properties of the composite tube are given in Table 

4.2. 

 

Table 4.2: Mechanical properties of the manufactured composite tube [1, 20]. 

Properties E1 (GPa) E2=E3 (GPa) G12=G13= G23 (GPa) ʋ12=ʋ13 ʋ23 

Carbon AS4/PEKK 140 10 5.56 0.31 0.33 

 

It is noted that the axial stress, σxx, is estimated with a simple calculation; therefore, only the 

interlaminar radial and shear stresses (i.e., σzz, σxz and σθz) are examined. In addition, the hoop 

stress, σθθ, is selected to study. The hoop stress could show any significant variation along the 

circumferential direction and the radial stress could cause delamination between the layers. 

Although radial stresses show smaller values than the others do, they are important because 

they are out-of-plane and note that out-of-plane strengths are small for composite straight 

tubes. Furthermore, the stress components are normalized as 𝜎𝑖𝑗=𝜎𝑖𝑗/𝜎0 where 

𝜎0=(F.x.r)/(π/64*(OD4-ID4)) with the outer diameter OD and the inner diameter ID of the 

composite tube. In the present cases, the tube section has an internal diameter of 56 mm and 

an external diameter of 78 mm, i.e. a wall thickness of 11 mm. Also, the length of the 

composite tube is 405 mm [1]. Therefore, for this case 𝜎0=(F.x.r)×7.5×105. Assume F=10 N, 

x=405 mm (mid length) and r=33.5 mm (mid thickness), 𝜎0 = 0.1 MPa. 
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4.6.1. Simple Lay-ups (laminate numbers of 1, 2, 3 and 4) 

In this part, effects of the shear load at tube sections with the consideration of different 

lay-up sequences on stress distributions of the orthotropic cantilever straight tube are studied. 

The [0°]110, [90°]110, [θ°55/-θ°55] and [±θ°]55 tubes which have 110 layers in total are selected 

to study. The angle-plies of 25°, 30°, 45° and 60° are considered. The results are discussed 

based on the proposed method at x≈2a (i.e., shear load). 

Figure 4.5 shows the comparison of the interlaminar radial stress, 𝜎zz, of the [0°]110, [90°]110, 

[±25°]55, [±30°]55, [±45°]55 and [±60°]55 laminated orthotropic straight tubes at x≈2a and 

θ=90° along the tube thickness. The followings are observed: 

 The [90°]110 tube shows minimum magnitude of the radial stress, while the [0°]110 tube 

shows maximum magnitude of the radial stress. 

 The magnitude of the radial stress of the [±25°]55 tube is greater than those of the other 

[±θ°]55 tubes. In addition, the radial stress, 𝜎zz, of all tubes are negative at θ=90° of cross 

section. The maximum positive value of 𝜎zz of the [±θ°]55 tube occurs at θ=270° 

(compression zone, see Figure 4.2a). Note that the positive radial stress, 𝜎zz, could cause 

delamination failure in the composite tube. 

 The maximum magnitude of the radial stress of the [0°]110 tube occurs at zmax=-0.7 mm 

(i.e., layer 48, see Figure 4.5) which is 0.44 (i.e., 48/110) of the total thickness. 

 Radial stresses have the same trend for all lay-up sequences.  

 The location of the maximum magnitude of the radial stress (rmax) in the [±θ°]k tubes is 

studied for all cases (different values for θ). It is observed that it occurs at 0.44 of the total 

thickness which is rmax=0.44(2kt)+ri, where t is the thickness of a ply. 

 The shape of the stress curves is parabolic. 

Figure 4.6 illustrates the comparison of the interlaminar radial stress, 𝜎zz, of the [25°55/-25°55], 

[30°55/-30°55], [45°55/-45°55] and [60°55/-60°55] laminated cantilever straight tubes at x≈2a and 

θ=90° along the tube thickness. The followings are observed: 

 The magnitude of the radial stress, 𝜎zz, of the [25°55/-25°55] tube is greater than those of 

the other lay-up sequences. 
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 Comparison of Figure 4.5 with Figure 4.6 shows that the magnitudes of the interlaminar 

radial stress, 𝜎zz, of the [±θ°]55 tubes are greater than those of the [θ°55/-θ°55] tubes. 

 The maximum magnitude of the radial stress in the [25°55/-25°55] tube occurs at zmax=-2.4 

mm (i.e., layer 31, see Figure 4.6) which is 0.56 (i.e., 31/55) of thickness of the θ° part. 

 Radial stresses have the same trend for all lay-up sequences. 

 The location of the maximum magnitude of the radial stress (rmax) in the [θ°k/-θ°k] tubes is 

investigated for all cases (different values for θ). It is seen that it occurs at 0.56 of the 

thickness of the θ° part which is rmax=0.56(kt)+ri, where t is the thickness of a ply. 

 

 

Figure 4.5: Comparison of the radial stress σzz of the [0°]110, [90°]110, [±25°]55, [±30°]55, [±45°]55 and [±60°]55 

laminated cantilever straight tubes at x≈2a and θ=90° along the tube thickness (subjected to shear load F). 

 

zmax=-0.7 mm 
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Figure 4.6: Comparison of the radial stress σzz of the [25°55/-25°55], [30°55/-30°55], [45°55/-45°55] and [60°55/-

60°55] laminated cantilever straight tubes at x≈2a and θ=90° along the tube thickness (subjected to shear load F). 

 

To provide a reason why the magnitude of the interlaminar radial stress of the [0°]110 tube is 

greater than those of the other tubes as observed in Figure 4.5, the formula for obtaining the 

radial stress of kth ply is reinvestigated as [92]: 

                   13 23 33 36 4.11
k k k k k k k k k

zz xx zz xC C C C        

The comparison of strains ɛzz, ɛxx and ɛθθ of the [±30°]55 laminated orthotropic straight tube 

along the circumferential direction at x≈2a and r=32.8 mm is displayed in Figure 4.7. 

 

zmax=-2.4 mm 
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Figure 4.7: Comparison of strains ɛzz, ɛxx and ɛθθ of the [±30°]55 laminated orthotropic straight tube along the 

circumferential direction at x≈2a and r=32.8 mm (subjected to shear load F). 

 

As seen in Figure 4.7, the magnitudes of ɛzz and ɛxx are much less than that of ɛθθ for the case 

of shear load. Considering that 𝐶3̅3
(𝑘)

 is same for all lay-up sequences, and at θ=90°, 
 k

x =0; 

           
13 33 36

k k k k k k

xx zz xC C C      is neglected in calculating the radial stress, σzz. Consequently, the 

radial stress is compared for different lay-up sequences based on the following formula: 

       23 4.12
k k k

zz C    

Based on Eq. (4.12), ɛθθ is dominant in the radial stress for the case of shear load. For 

example, the radial stress of the [0°]55 tube is greater than that of the [90°]55 tube (see Figure 

4.5). That is because 
 k

  for the [0°]55 tube is larger than 
 k

  for the [90°]55 tube. 

Comparison of the hoop stresses, 𝜎θθ, of the [0°]110, [90°]110, [±25°]55, [±30°]55, [±45°]55 and 

[±60°]55 laminated cantilever straight tubes at x≈2a and θ=90° along the tube thickness is 

shown in Figure 4.8. The followings are observed: 

 The hoop stress, 𝜎θθ, is 0 at z=0.5 mm which is layer 60 (5 layers upper mid-thickness). 

The hoop stress varies linearly across the thickness of the laminate making up the wall of 

the tube. 
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 The [0°]110 tube shows the minimum hoop stress while the [90°]110 tube shows the 

maximum hoop stress. 

 The magnitude of the hoop stress of the [±60°]55 tube is greater than those of the other 

lay-up sequences. This is explained by the fact that for composite tubes, 90° layers play 

the roles that enhance the hoop strength of the tube. Layers with fiber orientations closer 

to 90° would bear more loads, and as such would have higher hoop stress. 

 At a certain radial location, the hoop stress sign of the [90°]110 tube is opposite of those of 

the [±θ°]55 tubes. 

 The maximum positive of the hoop stress in the [±θ°]55 tubes happens at θ=270° (see 

Figure 4.3a). The magnitude of the hoop stress increases with moving from the mid-

thickness toward the outside surface of the composite tube for all lay-up sequences. 

 The maximum positive of the hoop stress in the [±θ°]k tubes occurs at the outside surface 

while the maximum negative of the hoop stress occurs at the inside surface. 

 

 

Figure 4.8: Comparison of the hoop stress σθθ of the [0°]110, [90°]110, [±25°]55, [±30°]55, [±45°]55 and [±60°]55 

laminated cantilever straight tubes at x≈2a and θ=90° along the tube thickness (subjected to shear load F). 
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Figure 4.9: Comparison of the hoop stress σθθ of the [25°55/-25°55], [30°55/-30°55], [45°55/-45°55] and [60°55/-

60°55] laminated cantilever straight tubes at x≈2a and θ=90° along the tube thickness (subjected to shear load F). 

 

Figure 4.9 presents the comparison of the hoop stress, 𝜎θθ, of the [25°55/-25°55], [30°55/-30°55], 

[45°55/-45°55] and [60°55/-60°55] laminated cantilever straight tubes at x≈2a and θ=90° along 

the tube thickness. The followings are observed: 

 The magnitude of the hoop stress, 𝜎θθ, of the [60°55/-60°55] tube is greater than those of 

the other lay-up sequences. It is seen that the θ° part of lay-up sequence has the same 

trend as -θ° part. The explanation is similar to that give for the behavior in Figure 4.7. 

 The hoop stresses for the inner block of layers are 0 at the mid-thickness of this block. 

The hoop stress distribution is linear within the block. 

 The hoop stresses for the outer block have the same value (not 0) at mid-thickness of the 

block. The hoop stress distribution is linear within the block. 

 There is a discontinuity of the stress distribution at the interface between the two blocks 

of layers. 

 The maximum positive of the hoop stress in the [θ°k/-θ°k] tubes occurs at the largest-

diameter θ° part and the outside surface while the maximum negative of the hoop stress 

occurs at the inside surface of the tube. 
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Comparison of the shear stress, 𝜎zθ, of the [±θ°]55 and [θ°55/-θ°55] (for θ = 25°, 30°, 45° and 

60°) laminated orthotropic straight tubes at x≈2a and θ=0° along the tube thickness is shown 

in Figures 4.10a and 4.10b, respectively. The shear stress, 𝜎zθ, could cause the movement of 

the layers on each other in the hoop direction of the laminated composite tube. The followings 

are observed: 

 The magnitudes of the shear stress increase monotonically from the [±60°]55 tube to the 

[±25°]55 tube. 

 The magnitudes of the shear stress increase monotonically from the [60°55/-60°55] tube to 

the [25°55/-25°55] tube. 

 Note that the maximum shear stresses, 𝜎zθ, of the [±θ°]55 and [θ°55/-θ°55] tubes occur at 

the same locations as the maximum normal stresses, σzz (see Figure 4.5). 

 The maximum value for each curve moves toward the inside of the tube as the fiber angle 

increases from [±25°]55 to [±60°]55 . 

 

 

 

(b) 

Figure 4.10: Comparison of the shear stress σzθ of the laminated cantilever straight tubes at x≈2a and θ=0° along 

the tube thickness (subjected to shear load F) where the lay-up sequences of (a) are [±25°]55, [±30°]55, [±45°]55 

and [±60°]55 and (b) are [25°55/-25°55], [30°55/-30°55], [45°55/-45°55] and [60°55/-60°55]. 

 

(a) 
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Figure 4.11: Comparison of shear stress σxθ of the [±25°]55, [±30°]55, [±45°]55 and [±60°]55 laminated cantilever 

straight tubes at x≈2a and r=33.5 mm (subjected to shear load F). 

 

Figure 4.11 shows the comparison of the shear stress, 𝜎xθ, of the [±25°]55, [±30°]55, [±45°]55 

and [±60°]55 laminated orthotropic straight tubes along the circumferential direction at x≈2a 

and r=33.5 mm (i.e., layer 55). It is observed that the shear stress, 𝜎xθ, of the [±60°]55 tube at 

r=33.5 mm is greater than those of the other lay-up sequences. 
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Figure 4.12: Comparison of shear stress σzx of the [±25°]55, [±30°]55, [±45°]55 and [±60°]55 laminated cantilever 

straight tubes at x≈2a and r=33.5 mm (subjected to shear load F). 

 

Figure 4.12 shows the comparison of the shear stress, 𝜎zx, of the [±25°]55, [±30°]55, [±45°]55 

and [±60°]55 laminated orthotropic straight tubes along the circumferential direction at x≈2a 

and r=33.5 mm (i.e., layer 55). As compared to all lay-up sequences, the shear stress, 𝜎zx, of 

the [±25°]55 tube has the minimum magnitude. The shear stress, 𝜎zx, could cause the 

movement of the layers on each other in the axial direction of the laminated composite 

straight tube. Therefore, considering Figure 4.12, the layers, placed between 0° to 180° of the 

tube cross section, may tend to move inward in the axial direction while the layers, placed 

between 180° to 360° of the tube cross section, may tend to move outward in the axial 

direction of the laminated composite tube. 

 

4.6.2. Experimental Lay-ups (laminate numbers of 5, 6, 7 and 8) 

4.6.2.1. Effects of 90° and 0°-plies on the [±θ°]k Tube 

In this section, effects of the addition of 90° and 0°-plies on distributions of interlaminar 

radial and hoop stresses of the [±θ°k] laminated composite tube are examined considering the 

shear load part of subjected cantilever loading. The [90°m/±θ°k] and [0°m/±θ°k] tubes which 
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have 110 layers in total are selected to study. The 30°-plies are considered for ±θ°. The results 

are discussed based on the proposed method at x≈2a (i.e., shear load). 

 

 
 

(b) 

Figure 4.13: Comparison of the radial stress σzz of the laminated cantilever straight tubes at x≈2a and θ=90° 

along the tube thickness (subjected to shear load F) where the lay-up sequences of (a) is [90°m/±30°k] and (b) is 

[0°m/±30°k]. 

 

Figures 4.13a and 4.13b illustrate the comparison of the interlaminar radial stress, 𝜎zz, of the 

[90°m/±30°k] and [0°m/±30°k] laminated cantilever straight tubes at x≈2a and θ=90° along the 

tube thickness, respectively. It is seen from Figure 4.13a that the location of the maximum 

interlaminar radial stress, 𝜎zz, of the [90°m/±30°k] tube always occurs at the end of the 90°-

plies while the location of the maximum interlaminar radial stress, 𝜎zz, of the [0°m/±30°k] tube 

depends on the number of 0°-plies of the lay-up sequence. In addition, the followings are 

observed: 

 The behavior in Figure 4.13, does not seem to converge to the situation when there are 

the [90°]110 or [0°]110 tubes, as shown in Figure 4.5. Note that the existence of even one 

angle-ply in the lay-up sequence can make a significant change to the radial stress 

distribution. The radial stress has to adjust itself based on a lay-up sequence to distribute 

continuously since it is continuous along the tube thickness.  

 When m and 2k are substantially close to each other, in the lay-up sequences of 

[0°m/±θ°k] and [90°m/±θ°k], the radial stress is at its maximum magnitude in comparison 

to all other possible m and k combinations.  

(a) 
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 The location of the maximum magnitude of the radial stress (rmax) in the [90°m/±θ°k] tube 

is studied for all cases (different values for θ). It occurs at the largest-diameter 90°-ply of 

the lay-up sequence which is rmax=mt+ri. 

 The maximum magnitude of the radial stress of the [0°24/±30°43] tube occurs at layer 24 

which is the largest-diameter 0°-ply. In this case, 0°-plies make up 21% (i.e., 24/110) of 

this lay-up sequence. 

 The study is performed for the [0°m/±θ°k] tubes (different values for θ). rmax in the 

[0°m/±θ°k] tubes is dependent on m. When 0°-plies make up more than 20% of a lay-up 

sequence, the maximum magnitude of the radial stress will occur at the largest-diameter 

0°-ply, which is rmax=mt+ri; otherwise it varies along the tube thickness. 

 

 

 

(b) 

Figure 4.14: Comparison of the hoop stress σθθ of the laminated cantilever straight tubes at x≈2a and θ=90° along 

the tube thickness (subjected to shear load F) where the lay-up sequences of (a) is [90°m/±30°k] and (b) is 

[0°m/±30°k]. 

 

Figures 4.14a and 4.14b show the comparison of the hoop stress, 𝜎θθ, of the [90°m/±30°k] and 

[0°m/±30°k] laminated cantilever straight tubes at x≈2a and θ=90° along the tube thickness, 

respectively. The followings are observed: 

 Comparing Figure 4.14a with Figure 4.8, it is seen that with the addition of 90°-plies to 

the [±30°k], the whole ±30°k part of the [90°m/±30°k] tube shifts to positive value while 

the trend is kept the same as before. 

(a) 
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 With increasing the number of 90°-plies (i.e., m) of the [90°m/±30°k] tube, the magnitude 

of the hoop stress, 𝜎θθ, of the 90°m part decreases (see Figure 4.14a); because there are 

more 90°-plies to carry the hoop stress, 𝜎θθ. In addition, with increasing m (i.e., 

decreasing k), the magnitude of the hoop stress of the 30°-plies decreases since there are 

more 90°-plies to carry hoop stress, 𝜎θθ. 

 It is observed from Figure 4.14b that the trend of ±30°k part of the [0°m/±30°k] tube is not 

changed much due to the addition of 0°-plies to the [±30°k] tube (see Figure 4.8) while its 

magnitude is changed as seen in Figure 4.14b. 

 The maximum positive of the hoop stress in the [90°m/±θ°k] and [0°m/±θ°k] tubes occurs 

at the outside surface while the maximum negative of the hoop stress occurs at the 

largest-diameter 90°-ply and 0°-ply, respectively. 

 

4.6.2.2. Effects of Layer-group on the [±θ°]k Tube 

Finally, the [(90°10/0°10)3/±25°25], [(90°10/0°10)3/±30°25], [(90°10/0°10)3/±45°25] and 

[(90°10/0°10)3/±60°25] tubes which have 110 layers in total are selected to study effects of the 

shear load part of cantilever loading on stress distributions of the tube sections. The results are 

presented based on the proposed method at x≈2a (i.e., shear load). 

Figure 4.15a presents the comparison of the interlaminar radial stress, 𝜎zz, of the 

[(90°10/0°10)3/±25°25], [(90°10/0°10)3/±30°25], [(90°10/0°10)3/±45°25] and [(90°10/0°10)3/±60°25] 

laminated cantilever straight tubes subjected to the shear load part at x≈2a and θ=90° along 

the tube thickness. The followings are observed: 

 The magnitude of the radial stress, 𝜎zz, of the [(90°10/0°10)3/±25°25] tube is greater than 

those of the others. It is observed that the maximum magnitude of the interlaminar radial 

stress of different lay-up sequences occurs at z=-0.5 mm which is the last 90° layer-group 

from the inside (i.e., layer 50). Therefore, these layers tend to separate from 0° layer-

group, with the largest possibility. Derisi [20] observed the same phenomena during his 

experimental tests. 
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 The maximum magnitude of the radial stress of the [(90°10/0°10)3/±45°25] tube occurs at 

layer 50 which is the largest-diameter 90°-ply. In this case, 90° and 0°-plies make up 

54% (i.e., 60/110) of this lay-up sequence. 

 The study is performed for the [(90°10/0°10)3/±θ°25] tubes (different values for θ). The 

maximum magnitude of the radial stress (rmax) in the [(90°m/0°m)l/±θ°k] tubes is dependent 

on m and l. When 90° and 0°-plies make up more than 10% of a lay-up sequence, the 

maximum magnitude of the radial stress will occur at the largest-diameter 90°-ply, which 

is rmax = (2ml-m)t + ri. 

In addition, effects of lay-up sequences of layer-group on the stress distributions are 

investigated. Figure 4.15b shows the comparison of the radial stress, 𝜎zz, of the 

[90°30/0°30/±25°25], [90°30/0°30/±30°25], [90°30/0°30/±45°25] and [90°30/0°30/±60°25] laminated 

cantilever straight tubes at x≈2a and θ=90° along the tube thickness. Comparison of Figures 

4.15a and 4.15b, it is seen that by considering layer-group of the lay-up sequence, the first 

two 0° layer-groups are subjected to less radial stress. In addition, the maximum radial stress 

which occurs at z=-0.5 mm (i.e., layer 50) in Figure 4.15a shifts to the inside of the composite 

tube at z=-2.5 mm (i.e., layer 30) in Figure 4.15b while in both types of lay-up sequences, 90° 

layer-group tends to delaminate. 

 

 

(b) 

Figure 4.15: Comparison of the radial stress σzz of the laminated cantilever straight tubes at x≈2a and θ=90° 

along the tube thickness (subjected to shear load F) where the lay-up sequences of (a) are [(90°10/0°10)3/±25°25], 

[(90°10/0°10)3/±30°25], [(90°10/0°10)3/±45°25] and [(90°10/0°10)3/±60°25] and (b) are [90°30/0°30/±25°25], 

[90°30/0°30/±30°25], [90°30/0°30/±45°25] and [90°30/0°30/±60°25]. 

 

(a) 
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In addition, observation of Figure 4.15 shows that the magnitude of the radial stress of the 

[90°30/0°30/±25°25] tube is greater than those of the other tubes are. This is explained by using 

Eq. (4.12). 

 

Figure 4.16: Comparison of the hoop stress σθθ of the [(90°10/0°10)3/±25°25], [(90°10/0°10)3/±30°25], 

[(90°10/0°10)3/±45°25], [(90°10/0°10)3/±60°25], [90°]110 and [90°55/0°55] laminated cantilever straight tubes at x≈2a 

and θ=90° along the tube thickness (subjected to shear load F). 

 

Comparison of the hoop stress, 𝜎θθ, of the [(90°10/0°10)3/±θ°25] (for θ = 25°, 30°, 45° and 60°), 

[90°]110 and [90°55/0°55] laminated cantilever straight tubes at x≈2a and θ=90° along the tube 

thickness is shown in Figure 4.16. The followings are observed: 

 The [90°]110 tube has positive hoop stress on the inner radius and negative hoop stress on 

the outer radius. 

 For lay-ups containing the ±θ° layer-group, the ±θ° layer-group now assumes the tensile 

stress, while the 90° layer-group (in the inner side of the tube) now has compressive 

stress which is the opposite for the case of the [90°]110 tube. 

 Among the lay-up sequences containing the ±θ° layer-group, tubes with ±60o have higher 

magnitude of tensile stress than tubes with lower angle, with monotonic variation. This is 
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explained by the fact that the closer is the fiber orientation to 90°, the more load along the 

circumferential direction it will carry. 

 The hoop stress, 𝜎θθ, of the 90° layer-group of the [(90°10/0°10)3/±25°25] tube is greater 

than those of the other lay-up sequences; because 25°-plies have less contributions in 

resisting hoop stress. 

 The 0° layers contribute little to the support of the hoop stress, 𝜎θθ. 

 The maximum positive of the hoop stress in the [(90°m/0°m)l/±θ°k] tubes occurs at the 

outside surface while the maximum negative of the hoop stress occurs at the largest-

diameter 90°-ply. 

Comparison of the shear stress, 𝜎zθ, of the [(90°10/0°10)3/±25°25], [(90°10/0°10)3/±30°25], 

[(90°10/0°10)3/±45°25] and [(90°10/0°10)3/±60°25] laminated orthotropic straight tubes at x≈2a 

and θ=0° along the tube thickness is presented in Figure 4.17. It is observed that the shear 

stress, 𝜎zθ, of the [(90°10/0°10)3/±25°25] tube is greater than those of the [(90°10/0°10)3/±30°25], 

[(90°10/0°10)3/±45°25] and [(90°10/0°10)3/±60°25] tubes. 

 

 

Figure 4.17: Comparison of the shear stress σzθ of the [(90°10/0°10)3/±25°25], [(90°10/0°10)3/±30°25], 

[(90°10/0°10)3/±45°25] and [(90°10/0°10)3/±60°25] laminated cantilever straight tubes at x≈2a and θ=0° along the 

tube thickness (subjected to shear load F). 
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Figure 4.18: Comparison of the shear stress σxθ of the [(90°10/0°10)3/±25°25], [(90°10/0°10)3/±30°25], 

[(90°10/0°10)3/±45°25] and [(90°10/0°10)3/±60°25] laminated cantilever straight tubes at r=35.3 mm (subjected to 

shear load F). 

 

Figure 4.18 displays the comparison of the shear stress, 𝜎xθ, of the [(90°10/0°10)3/±25°25], 

[(90°10/0°10)3/±30°25], [(90°10/0°10)3/±45°25] and [(90°10/0°10)3/±60°25] laminated straight tubes 

along the circumferential direction at x≈2a and r=35.3 mm. It is observed from Figure 4.18 

that the shear stress, 𝜎xθ, of the [(90°10/0°10)3/±60°25] tube has the maximum values among 

these lay-ups. Since angle-plies are placed at z=1.8 mm, the 60°-plies of the 

[(90°10/0°10)3/±60°25] tube could carry more shear stress in comparison with the other angle-

plies (i.e., 25°, 30° and 45°) of the other lay-up sequences. 

 

4.6.3. Advantages of the Proposed Method 

The most important advantage of the proposed method is that the inputs for the modeling 

of composite structures with complex lay-ups are simple, easy to use and fast to run. 

Contrary, to model complex lay-up composite structures in FEM, it is necessary to create 

several parts individually, mesh every part separately, and assign every lay-up to the 

attributed part of structures. However, through using the proposed method, one just needs to 

simply define the dimensions and the lay-up at the beginning of the program. Therefore, it is 
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obvious that the modeling of complex lay-up orthotropic structures using FEM takes much 

longer than using the developed method. In addition, using FEM for parametric study is 

cumbersome. For example, to study the effect of thickness on stresses and strains distribution 

by using FEM, it is necessary to model the geometry for different thicknesses and obviously it 

takes longer than using the proposed method. By applying the proposed method, the 

parametric study for composite tubes is simple with low computational cost. To add to the 

advantages, high efficiency in terms of computational time is obtainable when the proposed 

method is used as compared with FEM. 

 

4.6.4. Observations 

A complete structural analysis for designing composite laminates is extensive and 

complicated. This usually requires different analysis steps such as laminate stress and strength 

analysis. Therefore, there is still a need to come up with some preliminary knowledge of the 

lay-up sequence of composite laminates. Generally, the lay-up sequences have influences on 

structural properties of composite laminates such as stiffness and strength. The obtained 

observations contain the followings: 

1. The shear stress, σzθ, shows the same behavior as the radial stress, 𝜎zz, with a 90° phase 

shift. 

2. Positive interlaminar radial stresses cause delamination at composite tubes. Radial 

stresses are positive at the compression zone of tube cross sections. Table 4.3 

summarized the location (rmax) of the maximum magnitude of the interlaminar radial 

stress, 𝜎zz, in different lay-up sequences along the tube thickness. Note that all plies are 

assumed to have equal thickness (= t). The composite tube thickness is h. 

3. When there are enough 90°-plies in the lay-up sequence (see Table 4.3), always 

maximum magnitude of the interlaminar radial stress, 𝜎zz, occurs at the last 90°-ply of the 

lay-up. 

4. Locations of the maximum positive and negative of the hoop stress, 𝜎θθ, in different lay-

up sequences are summarized in Table 4.4. Note that ri and ro indicate the inside and 

outside surfaces of the composite straight tube, respectively. 
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Table 4.3: Locations (rmax) of the maximum interlaminar radial stress σzz along the tube thickness. 

Refer to Lay-up sequence Position of maximum interlaminar radial stress 

Figure 4.5 [θ°k] rmax = 0.44h + ri        (h=kt) 

Figure 4.5 [±θ°k] rmax = 0.44h + ri        (h=2kt) 

Figure 4.6 [θ°k/-θ°k] rmax = 0.56(kt) + ri        (h=2kt) 

Figure 4.13a [90°m/±θ°k] rmax = mt + ri        (h=mt+2kt) 

Figure 4.13b [0°n/±θ°k] If (nt/h)˃꞊ 0.2 → rmax = nt + ri        (h=nt+2kt) 

Figure 4.15a [(90°m/0°m)l/±θ°k] 

If (2mlt/h)˃꞊ 0.1 → rmax = (2ml-m)t + ri         (h=2mlt+2kt) 

If (2mlt/h)˂0.1 → rmax = 2mlt + 0.44(2kt) + ri         

(h=2mlt+2kt) 

Figure 4.15b [90°m/0°m/±θ°k] 

If (2mt/h)˃꞊ 0.1 → rmax = mt + ri         (h=2mt+2kt) 

If (2mt/h)˂0.1 → rmax = 2mt + 0.44(2kt) + ri         

(h=2mt+2kt) 

 

Table 4.4: Locations of the maximum hoop stress σθθ along the tube thickness. 

Refer to Lay-up sequence 

Maximum 

negative hoop 

stress 

Zero hoop 

stress 

Maximum 

positive hoop 

stress 

Figure 4.8 [θ°k], [±θ°k] ri ri+h/2 ro 

Figure 4.8 [90°m] ro ri+h/2 ri 

Figure 4.9 [θ°k/-θ°k] ri ri+h/4, ri+3/4h ro, ri+h/2 

Figure 4.14 
[0°m/±θ°k], 

[90°m/±θ°k] 
ri+mt ---- ro 

Figure 4.16 [90°m/0°m/±θ°k] ri+mt ---- ro 

Figure 4.16 [(90°m/0°m)l/±θ°k] ri+(2ml-m)t ---- ro 

 

4.7. Conclusions 

A practical design of composite structures is a critical and time-consuming step to ensure 

that the composite stack would perform satisfactorily in service. In this chapter, effects of lay-

up sequences and orientations on stress distributions at tube sections in thick orthotropic 
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straight tubes under shearing load are studied. The investigation was performed based on the 

new simple-input displacement-based method. The positive radial stress may cause 

delamination of some layers from the rest of the laminate. If such delamination occurs, the 

tube would fail prematurely by localized buckling. Since the radial stress affects delamination 

and the hoop stress affects buckling, the interlaminar radial and hoop stresses distributions 

were studied, in the majority of this chapter. Finally, locations for the maximum radial and 

hoop stresses in the composite straight tube with different lay-up sequences are given. 
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Chapter 5 

 

 

 

 

 

 

 

In this chapter, the developed analytical method is used to study thick laminated composite 

straight tubes subjected to combined axial force, torque and bending moment. The accuracy of 

the proposed method is subsequently verified by comparing the numerical results obtained 

using the proposed method with finite element method (FEM) and experimental data. The 

proposed method provides advantages in terms of computational time compared to FEM. 
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Abstract 

In the present chapter, a new high-order simple-input analytical method is used to study 

thick laminated composite straight tubes subjected to combined axial force, torque and 

bending moment. The most general displacement field of elasticity for an arbitrary laminated 

composite straight tube is obtained to analytically calculate stresses under combined loadings 

based on a layer-wise method. The accuracy of the proposed method is subsequently verified 

by comparing the numerical results obtained using the proposed method with finite element 

method (FEM) and experimental data. The results show good correspondence. The proposed 

method provides advantages in terms of computational time compared to FEM. 

 

Keywords: Stress analysis; Thick laminated composite straight tube; High-order 

displacement-based method; Combined loadings. 

 

5.1. Introduction 

Composite tube structures are increasingly used in many aerospace industries. The 

prediction of the state of stress in different layers of laminated composite tubes is of 

theoretical interest and subsequently practical applications. In aerospace applications, accurate 

design and analysis are important to ensure safety and proper performance of composite 

structures. Note that stress analysis of thick cylindrical composite structures is often a 

complex task. A few reasons exist for such a complexity. First, the governing equations of 

composite tubes are complicated. Second, a major source of intricacy is the layer-wise failure 

of composite materials. In fact, as soon as a layer fails, a delamination happens or a crack 
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propagates in between the plies, material properties degrade and sometimes the governing 

equations could be different. Moreover, the tube geometry is a lot more complicated than flat 

geometry. 

Many researchers have performed investigations on composite straight tubes under 

different types of loadings. Lekhnitskii [2] developed the solution for composite tubes under 

bending load by using partial differential equations. Kollár and Springer [4] conducted a 

stress analysis on thin to thick composite tubes under hydrothermal and mechanical loads. 

Jolicoeur and Cardou [9] developed a general analytical solution in order to find stress and 

displacement fields of composite tubes subjected to bending, tensile and torsion loads. Tubes 

made of functionally graded materials (FGM) under tension and bending were analyzed [93]. 

An analysis on a cylindrically anisotropic elastic body was made when the body was 

subjected to extension, torsion, bending and thermo-mechanical loads [94]. Shadmehri et al. 

[22] developed theoretical formulations by using a three-dimensional laminate theory to 

obtain the stiffness of composite tubes. They compared theoretical formulation with 

experimental results. Zozulya and Zhang [95] developed a high order shell theory for FG 

axisymmetric cylindrical shells based on the expansion of the axisymmetric equations of 

elasticity. A method was presented to analyze arbitrary laminated composite tubes subjected 

to pure bending. They performed FEM using NASTRAN to compare with theoretical results 

[24]. The stress analysis of composite hollow cylindrical structures subjected to different 

loadings was performed [25]. Their method was efficient for thin composite hollow tubes. 

Based on the nonlinear ring theory, mechanical behavior of thermoplastic tubes under 

combined bending and tension was investigated [39]. They verified formulations with FEM 

results obtained using ABAQUS. Menshykova and Guz [26] performed a stress analysis on 

thick laminated composite tubes subjected to bending loading. They found stresses as a 

function of the material properties, thickness, lay-up sequences and the magnitude of bending 

load. Capela et al. [27] investigated the fatigue behavior of composite tubes under 

bending/torsion dynamic loadings. Recently, a static analysis of a carbon nanotube-reinforced 

composite tube under thermo-mechanical was studied using Mori-Tanaka theory [28]. A 

method to obtain and analyze stress distributions in composite cantilever straight tubes was 

developed [92, 95 and 97]. The effect of cumulative damage on the seismic behavior of steel 

tube-reinforced concrete columns through experimental testing was investigated [98]. Nowak 
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and Schmidt [29] compared some methods to study fiber metal laminated tubes under an 

axisymmetric load. The developed theoretical model was validated by FEM analyses. 

Jonnalagadda et al. [30] presented an analytical model for a special design of a thin composite 

tube subjected to combined bending and torsion. They verified the theoretical results with 

FEM analyses. 

Although many works described above show promise to analyze composite tubes, it is 

desired to have a method where the inputs (i.e., dimensions and lay-up sequences) for the 

solution are simple; i.e. one only needs to enter the actual dimensions without meshing work. 

The present chapter is devoted to develop a high-order analytical method that can provide 

stresses, strains and deformations with low computational cost for thick laminated composite 

straight tubes subjected to different mechanical loading conditions such as axial force, torque 

and bending moment. 

 

5.2. Motivation 

In an effort to develop thermoplastic composite tubes for helicopter landing gears, Derisi 

[1] designed and manufactured composite straight tubes and performed four-point and three-

point bending tests to determine the strains to failure of different balanced laminates. Derisi 

used a procedure called strain-controlled design and based on that, lay-up sequences for 

composite tubes were developed. Even though they have done experimental works, the 

analytical method does not exist to analyze thick composite straight tubes. Due to the 

complexity of stress distributions in a thick composite tube, it is not easy to obtain some 

intuition as to the behavior of the tube under combined loadings, for the purpose of design. 

Now, in order to provide some insight into this behavior, a new high-order method is 

developed. 

 

5.3. Theoretical Formulation 

5.3.1. Displacement Field 

A thick laminated composite straight tube with mean radius R and thickness h is subjected 

to an axial force F0, torque T0 and bending moment M0 as shown in Figure 5.1. The cylindrical 

coordinates (x, θ, r) are placed at the middle surface of the composite straight tube where x 
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and r are the axial and radial coordinate, respectively. The appropriate integration of the linear 

strain-displacement relations of elasticity, within cylindrical coordinate system yields the 

following displacement field for the kth layer [92]: 

                
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Figure 5.1: The geometry of a composite straight tube and the coordinate system. 

 

where 
   1 , ,
k

u x r , 
   2 , ,
k

u x r  and 
   3 , ,
k

u x r  represent the displacement components in 

the x, θ and r directions, respectively, of a material point located at (x, θ, r) in the kth ply of 

the laminated composite straight tube in Figure 5.1. In order to satisfy the interfacial 

continuities of the displacement components, it is necessary that the integration constants 

appearing in Eqs. (5.1) to be the same for all layers. Thus, Eqs. (5.1) are represented as: 



94 
 

           

             

             

1 5 4 6

2

2 1 2 3 4 5

2

3 1 2 5 4

, , cos sin , 5.2

1
, , cos sin cos sin , 5.2

2

1
, , sin cos cos sin , 5.2

2

k k

k k

k k

u x r xr C C C x u r a

u x r x C C C r x C C v r b

u x r x C C x C C w r c

   

     

     

   

     

    

Moreover, in Eq. (5.2a), 
   ,
k

u r  is replaced by 
   1 sin ,
k

C r u r   . It is shown that the 

terms involving C1 in Eq. (5.2) correspond to an infinitesimal rigid-body rotation. These terms 

will, therefore, be ignored in the following developments since they will not generate any 

strain. Similarly, it is readily shown that the terms involving C2 must also be eliminated since 

they represent another rigid-body rotation of the tube. Furthermore, as long as the loading 

conditions at both ends of the tube are identical, the constant C4 must vanish in order to 

satisfy the symmetry condition in deformation 
       3 3, , , ,
k k

u x r u x r    . It is thus 

concluded that the most general form of the displacement field for the kth layer of a thick 

composite straight tube is given as: 
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5.3.2. Layer-wise Theory (LWT) 

The equivalent single-layer theories are not capable of representing the local phenomena 

in laminated composites, like stress and strain distributions. However, LWTs, which consider 

real 3D behavior of each layer, are able to present accurate results considering the localized 

phenomena. In LWT, the displacement components of a generic point in the laminate are 

conveniently given as [52, 53]: 

       
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where k, here and in what follows, being a dummy index implying summation of terms from 

k=1 to k=N+1. In Eqs. (5.4), u1, u2 and u3 denote the displacement components in the x, θ and 
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z directions, respectively (see Figure 5.1). Also,  ,ku x  ,  ,kv x   and  ,kw x   represent 

the displacements of the points initially located on the kth surface of the laminated composite 

tube in the x, θ and z directions, respectively. Furthermore, Φk (z) is the global Lagrangian 

interpolation function that is used for the discretization of the displacement through-thickness 

and can have linear, quadratic or higher-order polynomial variations of the thickness 

coordinate z (see Appendix D). It is noted that the accuracy of LWT is enhanced by 

subdividing each physical layer into a finite number of numerical layers. Clearly, as the 

number of subdivision through-thickness (p) is increased, the number of governing equations 

and the accuracy of the results are increased. Based on the elasticity displacement field in Eqs. 

(5.3), LWT displacement field in Eqs. (5.4) is rewritten as: 
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It is pointed out here that, by employing through-thickness linear interpolation functions, the 

continuity of displacement components through the thickness of the laminate is identically 

satisfied. On the other hand, the transverse strain components remain discontinuous at the 

interfaces, which will subsequently amplify the possibility of having continuous interlaminar 

stresses at the interfaces of adjacent layers by increasing the number of numerical layers 

through the physical laminate. By introducing r=R+z (see Figure 5.1), the strain-

displacement relations are as given as: 

 

31 2 2 1

3 3 32 2 1

1 1
, ,

1
, , 5.6

xx x

z xz zz

uu u u u

x R z R z x R z

u u uu u u

R z z R z x z z

 



  
 

  


   
    
      

   
     

      

 

Substitution of Eqs. (5.5) into the strain-displacement relations (5.6) yields the following 

results: 
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In Eq. (5.7) and what follows, a prime indicates an ordinary differentiation with respect to an 

appropriate variable (i.e., either θ or z). The equilibrium equations of a thick composite 

straight tube with N numerical layers are obtained by employing Eqs. (5.7) in the principle of 

minimum total potential energy [89]. The results are, in general, 3(N+1) local equilibrium 

equations corresponding to 3(N+1) unknown functions Uk, Vk and Wk and three global 

equilibrium equations associated with three parameters C3, C5 and C6. Employing the 

fundamental lemma of calculus of variations, the equilibrium equations of thick laminated 

composite straight tubes under axial force, torque and bending moment are obtained as: 

 

 

 

: 0 5.8

: 0 5.8

: 0 5.8

k
k x

k x

k
k k

k

k
k k

k z

dM
U Q a

d

dM
V Q R b

d

dR
W M N c

d




 













 

  

  

 

   

   

 

/2
2

3 0

/2

/2
2

5 0

/2

/2

6 0

/2

: 5.9

: cos 5.9

: 5.9

h

x

h

h

xx

h

h

xx

h

C R z dzd T a

C R z dzd M b

C R dzd F c















  

   

  

 

 

 

 

 



 

 

 

 

where F0, T0 and M0 represent the prescribed values of the axial force, torque and bending 

moment, respectively, applied at both ends of the composite straight tube. The generalized 

stress and moment resultants are defined as: 
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Note that in Eqs. (5.8) and Eqs. (5.10), the superscript k refers to the kth surface in the 

laminated composite tube. Also, the following traction-free boundary conditions must be 

satisfied: 

   0 at z=±h/2 5.11k k k

x zR Q N     

By substituting Eq. (5.7) into three-dimensional constitutive law and the subsequent results 

into Eqs. (5.10), the stress resultants are given the following relations: 
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where the laminate rigidities in Eq. (5.12) are defined as: 
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The local displacement equilibrium equations within the proposed method are obtained by 

substituting Eq. (5.12) into Eq. (5.8): 
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Also, the global equilibrium equations of the composite straight tube are expressed in terms of 

displacement functions by substituting Eq. (5.7) into three-dimensional constitutive law and 

the subsequent results into Eqs. (5.9). The results are given as: 
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where the extra laminate rigidities appearing in Eqs. (5.15) are written as: 
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5.4. Analytical Solution 

  The system in Eqs. (5.14) shows 3(N+1) coupled ordinary differential equations with 

constant coefficients which may be displayed in a matrix form as follows: 

          5.17M K F C   

where 
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The coefficient matrices [M], [K] and {F} in Eq. (5.17) are defined in Appendix E. It can 

readily be confirmed that the general solution of Eq. (5.17) may be presented as: 

              
1

sinh 5.19k K F C  


     

and [sinh (λθ)] is a 3(N+1)×3(N+1) diagonal matrix. That is: 

           1 2 3 1
sinh sinh ,sinh ,...,sinh 5.20

N
diag     


    

Also [ψ] and (λ1
2 , λ2

2 , … , λ3(N+1)
2 ) are the model matrix and eigenvalues of (-[M]-1[K]), 

respectively. Vector {𝑘} is an unknown vector representing 3(N+1) integration constants. The 

constants Cj (j=3, 5 and 6) must be calculated within the analytical analysis. Therefore, the 

boundary conditions in Eq. (5.11) are first imposed to calculate the vector {𝑘} in terms of the 

unknown parameters Cj (j=3, 5 and 6). These constants are then obtained in terms of the 

specified axial force F0 or/and bending moment M0 or/and torque T0 by the satisfaction of the 

global equilibrium conditions in Eqs. (5.15). 

 

5.5. Lay-up Sequence Selection 

Composite straight tubes with the [90°20/0°20] and [90°30/±25°45/90°5/±30°20/90°5/±45°20] 

lay-up sequences were manufactured and four-point and three-point bending tests were 

performed, respectively, to be used for making composite landing gears for helicopters [1]. 

Table 5.1 shows two types of lay-up sequences considered here. First, the [90°20/0°20] 

composite tube is selected to compare the numerical results obtained using the proposed 

method with finite element method (ANSYS) and experimental data for the thick laminated 

composite straight tube subjected to pure bending moment. Finally, the thick 
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[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite tube is considered to study stress 

distributions in composite straight tubes under combined loading conditions. 

 

Table 5.1: Lay-up sequence number. 

Laminate 

number 
Lay-up sequence 

1 
[90°20/0°20] 

Available experimental data 

2 
[90°30/±25°45/90°5/±30°20/90°5/±45°20] 

Study stress distributions 

 

5.6. FEM Analysis 

The stress analysis of the composite tube is conducted by finite element method using 

ANSYS. Stress distributions are also generated to compare with the numerical results 

obtained using the proposed method. The element used to perform the analysis was the 

layered solid element, SOLID 185. The properties of the composite tube are given in Table 

5.2. The composite tubes are modeled according to the manufactured composite tube. The 

mesh-independency study is done for ANSYS. Mesh refining is performed two times while 

the element aspect ratio was kept constant. It is emphasized that for the initial mesh, 22680 

elements (9 (Axial) × 12 (circumferential) × 210 (thickness directions)) are used to model the 

structure. For the 1st refined mesh, the thickness and circumferential directions are refined 

twice as much as the initial mesh (90720 elements totally). In addition, for the 2nd refined 

mesh, the axial and circumferential directions are refined twice as much as the initial mesh 

and the thickness direction is refined 4 times as much as the initial mesh to model the 

composite tube (362880 elements totally). Figure 5.2 presents the hoop stress distribution 

along the length in the thick laminated composite straight tube using ANSYS 14.5. 
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Figure 5.2: Distribution of the hoop stress in the composite tube subjected to combined loadings using ANSYS 

14.5 (unit: Pa). 

 

5.7. Results and Discussion 

Numerical results are presented in four following sections. First, in Section 5.7.1, the 

comparison is made between the experimental data with those obtained using the present 

method. Second, in Section 5.7.2, the numerical results obtained by the proposed method are 

compared with FEM results. Third, in Section 5.7.3, the advantages of the proposed method 

over FEM and other methods are discussed. Finally, in Section 5.7.4, stress distributions in 

thick laminated composite straight tubes subjected to axial force, torque and bending moment 

are studied. In all the subsequent calculations, p is set equal to 12 [92]. The mechanical 

properties of the composite tube are given in Table 5.2 [1]. 

 

Table 5.2: Mechanical properties of the manufactured composite tube. 

Properties E1 (GPa) E2=E3 (GPa) G12=G13= G23 (GPa) ʋ12=ʋ13 ʋ23 

Carbon 

AS4/PEEK 
140 10 5.56 0.31 0.33 

 

1

MN

MX

X

Y

Z

                                                                                
-31651.7

-26514.6
-21377.5

-16240.4
-11103.3

-5966.2
-829.091

4308.02
9445.13

14582.2

JUN 22 2015

21:52:07

ELEMENT SOLUTION

STEP=1

SUB =1

TIME=1

SY       (NOAVG)

LAYR=30

RSYS=11

DMX =.310E-05

SMN =-31651.7

SMX =14582.2



102 
 

Furthermore, the stress components are normalized as 𝜎𝑖𝑗=𝜎𝑖𝑗/𝜎0 where 

𝜎0=(M0.r)/(π/64*(OD4-ID4)) + (T0.r)/(π/32*(OD4-ID4)) + (F0)/(π/4*(OD2-ID2)) where the 

outer diameter and the inner diameter of the composite straight tube are represented as OD 

and ID, respectively. In the present cases, the tube section with the 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] lay-up sequence has an internal diameter of 56 mm and 

an external diameter of 98 mm, i.e. a wall thickness of 21 mm (totally 210 layers). Also, the 

length of the composite straight tube is 405 mm. Thickness is kept constant for all physical 

layers [1]. Note that in this chapter, mentioning combined loadings are meant by all loading 

conditions (i.e., axial force, torque and bending moment) are applied together. In addition, 

remark that M0=10 N.m, T0=10 N.m and F0=10 N are assumed. 

 

5.7.1. Comparison of the Proposed Method with Experimental Data 

In this part, the proposed method results are compared with experimental data. The 

bending behavior of thick composite tubes was investigated experimentally [1]. The thick 

[90°20/0°20] thermoplastic composite tubes were manufactured using automated fiber 

placement technique and tested using a four-point bending test setup. The properties of the 

manufactured composite tube are given in Table 5.2. In the experimental case, the tube 

section has an internal diameter of 56 mm and an external diameter of 64 mm. In addition, the 

whole length of the composite tube is 810 mm while the tube length under the pure bending 

condition is 405 mm. The composite tube was made with 40 layers. Since four-point bending 

test results are available, the composite tube is studied under pure bending moment just to 

compare with experimental data. In the experimental investigation [1], the strain gage was 

used on the surface of the composite tube at the top line of the tube (θ=90°) to measure strains 

at the mid-span. The measured strain results are compared with the calculated strain results 

using the proposed method at θ=90°. In Figure 5.3, the force variation versus experimental 

axial strains is shown. Good agreement is obtained between the analytical analysis and 

experimental results. In addition, FEM (ANSYS) (see Figure 5.3) is used to evaluate the 

accuracy of the proposed method. It is seen that the proposed method results are closer to the 

experimental data compared to those of FEM (ANSYS). In addition, the results obtained 

using the proposed method show good correspondence at the higher level of load compared to 
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those of FEM. It is noted that the 2nd refined mesh (see Section 5.6) is used to get FEM results 

here. 

 

 

Figure 5.3: Force-axial strain at the top line of the tube (θ=90°). 

 

5.7.2. Comparison of the Proposed Method and FEM 

The interlaminar stresses, 𝜎zz and 𝜎zx, of the [90°30/±25°45/90°5/±30°20/90°5/±45°20] 

laminated composite straight tube under combined loadings at r=31 mm and r=40 mm 

obtained by the present method and FEM (ANSYS) are compared in Figure 5.4. Good 

agreement is observed between analytical analysis and FEM (ANSYS) results. Analyzing of 

the composite straight tube with the initial mesh takes around 1200 seconds while it takes 

around 2100 and 4200 seconds with the 1st refined and the 2nd refined meshes, respectively. 

However, the analyzing of the same structure (same complex lay-up) using the developed 

method takes 560 seconds. 
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Figure 5.4: Comparison of the radial and shear stresses, 𝜎zz and 𝜎zx, obtained from the proposed method and 

ANSYS of the [90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite straight tube. 

 

5.7.3. Advantages of the Proposed Method 

FEM has a unique limitation: every time the geometry, loading, lay-up sequences or 

materials change, simulations need to be carried out afresh, which might involve a new mesh 

generation and computation. The most important advantage of the proposed method is that 

inputs for the modeling of composite structures with complex lay-up sequences (see Table 

5.1) are simple, easy to use, and fast to run. Contrary, to model complex lay-up composite 

structures in FEM, it is necessary to create individual sections and mesh them separately with 

different lay-up attributes. However, through using the proposed method, it is required to 

simply input dimensions and lay-up sequences at the beginning of the program. Therefore, it 

is obvious that the modeling of composite structures with complex lay-up sequences using 

FEM takes much longer compared to using the developed method. In addition, the proposed 

method takes less computational time as compared to the conventional 3D FEM and 

providing the better level of accuracy. 
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One of the other advantages of the developed method is the accuracy of the obtained 

results (see Figure 5.3). It was shown that the results obtained using the proposed method is 

more accurate than FEM results compared to experimental data. In addition, using FEM for 

parametric study is cumbersome while this method is applied easily for any parametric study 

with low computational cost. For example, to study the effects of thickness on stress and 

strain distributions by using FEM, it is necessary to model the geometry for different 

thicknesses and obviously it takes much longer than using the present method. 

 

5.7.4. Stress Distributions 

  The thick [90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite tube which has 210 

layers in total is selected to study stress distributions of the thick composite straight tube 

subjected to axial force, torque and bending moment. The results are presented based on the 

proposed method at r=31 mm (the last 90°-ply of the first 90° layer-group from inside, i.e., 

layer 30), r=40 mm (the last 25°-ply of the ±25° layer-group, i.e., layer 120), r=44.5 mm (the 

last 30°-ply of ±30° layer-group, i.e., layer 165) and r=45 mm (the last 90°-ply of the third 

90° layer-group, i.e., layer 170) as shown in Figure 5.5. 

 

 

Figure 5.5: The lay-up sequence of the thick laminated composite straight tube. 

90°30

[90°30/±25°45/90°5/±30°20/90°5/±45°20] 

±25°45

±30°20

±45°20



106 
 

 

Figure 5.6a: Distributions of the axial stress 𝜎xx of the [90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated 

composite straight tube. 

 

Figure 5.6b: Distributions of the shear stress 𝜎xθ of the [90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated 

composite straight tube. 
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The distributions of the axial, 𝜎xx, and shear stresses, 𝜎xθ, of the thick 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite tube along the circumferential 

direction are shown in Figures 5.6a and 5.6b. It is seen that the axial, 𝜎xx, and shear stresses, 

𝜎xθ, have an asymmetric behavior. In addition, the shear stress, 𝜎xθ, is positive at the whole 

tube cross section while the axial stress, 𝜎xx, is negative at a part of the lower region of the 

tube cross section (180°-360°). In addition, to understand the stress behavior better, the polar 

distribution of the axial stress, 𝜎xx, and the shear stress, 𝜎xθ, at r=44.5 mm and r=40 mm of 

the thick laminated composite tube obtained by the present method is shown in Figures 5.6a 

and 5.6b, respectively. Note that in all polar distributions in the rest of the chapter, blue circle 

represents the zero stress condition while red lines represent the stress distributions. Also, the 

lengths of arrows represent the magnitudes of stresses. Therefore, those red lines where are 

placed inside the blue circle represent the compressive stress while the other red lines where 

are placed outside of the blue circle represent the tensile stress. 

The distributions of the interlaminar radial stress, 𝜎zz, and the shear stress, 𝜎zx, of the 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite tube along the circumferential 

direction are shown in Figure 5.7a. The positive maximum value of the interlaminar normal 

stress, 𝜎zz, occurs at θ=270°. It is noted that the positive radial stress, 𝜎zz, can cause 

delamination phenomena in the cross section of the composite tube. The magnitude of the 

interlaminar radial stress, 𝜎zz, is greater than that of the shear stress 𝜎zx. Figure 5.7b presents 

the polar distributions of the interlaminar radial stress, 𝜎zz, and the shear stress, 𝜎zx, of the 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite tube over cross section at r=45 

mm and r=31 mm, respectively, obtained based on the present method. 

Figure 5.8a presents the distributions of the hoop stress, 𝜎θθ, and the shear stress, 𝜎θz, of the 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite tube along the circumferential 

direction. It is observed that the hoop stress, 𝜎θθ, is positive at the upper region of the tube 

cross section while the shear stress, 𝜎θz, sign changes in this region (0°-180°). The maximum 

value of the hoop stress, 𝜎θθ, occurs at θ=90° while maximum value of the shear stress, 𝜎θz, 

occurs at θ=0°. Figure 5.8b presents the polar distributions of the hoop stress, 𝜎θθ, and the 

shear stress, 𝜎θz, of the [90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite tube over 

cross section at r=44.5 mm and r=40 mm, respectively, obtained based on the present method. 
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Figure 5.7a: Distributions of the interlaminar radial stress 𝜎zz and shear stress 𝜎zx of the 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite straight tube. 

 

 
 

Figure 5.7b: Polar distributions of the interlaminar radial stress 𝜎zz and shear stress 𝜎zx of the 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite straight tube. 
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Figure 5.8a: Distributions of the hoop stress 𝜎θθ and shear stress 𝜎θz of the [90°30/±25°45/90°5/±30°20/90°5/±45°20] 

laminated composite straight tube. 

 

 
 

Figure 5.8b: Polar distributions of the hoop stress 𝜎θθ and shear stress 𝜎θz of the 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite straight tube. 

 

Since the radial stress affects delamination and the hoop stress affects buckling, the 

interlaminar radial and hoop stresses distributions along the tube thickness are studied. The 
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distributions of the interlaminar radial stress, 𝜎zz, and the hoop stress, 𝜎θθ, of the thick 

[90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated composite tube under pure bending moment 

along the thickness at θ=90° are shown in Figures 5.9a and 5.9b, respectively. It is seen that 

the radial stress, 𝜎zz, is compressive totally along the tube thickness while the hoop stress, 𝜎θθ, 

is compressive at the inside surface and becoming positive by closing to the outside surface of 

the composite straight tube. As it is expected from Eqs. (5.11), Figure 5.9a shows that the 

interlaminar radial stress, 𝜎zz, is zero at the inside and outside surfaces of the composite tube 

(Nz
k=0 at z= ±h/2). The maximum value of the radial stress, 𝜎zz, occurs at r=31 mm along the 

tube thickness, where the last 90°-ply of the first 90° layer-group is placed. While the 

maximum magnitude of the hoop stress, 𝜎θθ, occurs at r=45 mm, where the last 90°-ply of the 

third 90° layer-group is placed. 

 

 

Figure 5.9a: Distributions of the interlaminar radial stress 𝜎zz of the [90°30/±25°45/90°5/±30°20/90°5/±45°20] 

laminated composite straight tube along the thickness at θ=90°. 
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Figure 5.9b: Distributions of the hoop stress 𝜎θθ of the [90°30/±25°45/90°5/±30°20/90°5/±45°20] laminated 

composite straight tube along the thickness at θ=90°. 

 

5.8. Conclusions 

A new high-order simple-input displacement-based method was developed to investigate 

stresses in thick laminated composite straight tubes subjected to axial force, torque and 

bending moment. LWT was used to analytically determine the displacement components 

considering the most general displacement field of elasticity. The equilibrium equations of 

LWT were subsequently derived through a state-space approach. Also, the accuracy of the 

results was studied by comparing the experimental data and FEM with numerical results 

obtained from the proposed method. Good agreement was seen. Furthermore, the stresses 

were obtained using the present method, which was shown to be more cost effective and 

accurate compared to FEM. 
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Chapter 6 

 

 

 

 

 

 

This chapter proposes a new method to investigate single-layer composite curved tubes 

subjected to pure bending moment by employing a displacement approach of Toroidal 

Elasticity. The governing equations are developed in three toroidal coordinates system. The 

method of successive approximation is used to find the general solution. The accuracy of the 

proposed method is assessed by comparing the numerical results obtained using the present 

method with FEM, stress-based Toroidal Elasticity and Lekhnitskii solution. 
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Abstract 

In this chapter, a new displacement-based method is proposed to investigate orthotropic 

curved tubes subjected to pure bending moment. A displacement approach of Toroidal 

Elasticity is chosen to analyze orthotropic curved tubes with a single layer. The governing 

equations are developed in three toroidal coordinates system. The method of successive 

approximation is used to find the general solution. Then, the governing equations are 

decomposed into different orders, based on a small parameter. The formulas for calculating 

different order displacement components are derived. The accuracy of the proposed method is 

subsequently verified by comparing the numerical results obtained using the proposed method 

with finite element method (FEM), stress-based Toroidal Elasticity and Lekhnitskii solution. 

The results show good correspondence. The proposed method provides advantages in terms of 

computational time compared to FEM. 

 

Keywords: Displacement approach of Toroidal Elasticity; Orthotropic curved tubes; 

Successive approximation; Stress analysis; Finite element method. 

 

6.1. Introduction 

Composite tubes are structures that are frequently used in the aerospace, offshore and 

infrastructure industries. Prediction of the state of stress and strain in different layers of 

composite tubes is of theoretical interest and practical importance. In all applications, accurate 

design and inclusive analysis are important to guarantee safety. It should be noted that stress 
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analysis of composite cylindrical structures is often a complex task. A few reasons are 

responsible for such a complexity such as governing equations of composite tubes and the 

layer-wise failure of composite materials. In addition, the curved tube geometry is a lot more 

complicated than a flat geometry. Many researchers have investigated composite shells and 

tubes. The following two sections are a literature review of composite shell and tube analyses, 

and are based on whether structures have free-edges (i.e., shells) or closed cross sections (i.e., 

tubes). 

 

6.1.1. Shell Analysis 

To obtain a prediction of structural response, a third-order shell theory was proposed by 

Huang [8] based on Reddy’s parabolic shear strain distribution. The theoretical modelling of 

laminated composite shells of arbitrary shape was developed to estimate the shear stresses and 

avoid shear correction factors [56]. In a similar way, Di and Rothert [10] calculated stress 

field in orthotropic cylindrical shells. Elasticity solutions for other types of loading of 

homogeneous composite shells were summarized in [12]. Zhang et al. [57] presented an 

analytical method to obtain the interlaminar stresses at curved boundaries of symmetric 

composite shells under in-plane loading on the basis of a zero-order approximation of the 

boundary-layer theory. Khare et al. [15] analyzed thermo-mechanical behavior of simply 

supported cross-ply composite and sandwich laminated doubly curved cylindrical and 

spherical shell panels. Hossain [34] studied the stress of anisotropic thick composite doubly 

curved shells and shell panels using a finite element model. Kress et al. [35] proposed a finite 

element model, which diminished the number of free parameters for each layer, to determine 

interlaminar stress distributions in laminated singly curved structures. Oktem and Chaudhuri 

[60] used a higher order shear deformation theory to obtain analytical solution for the 

deformation of a finite-dimensional cross-ply doubly-curved panel. Interlaminar normal stress 

distributions in moderately thick single-curved laminates were obtained to predict the critical 

delamination loads observed in experiments [61, 62]. 
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6.1.2. Tube Analysis 

Lekhnitskii [2] developed elasticity solutions for monolithic homogeneous orthotropic 

cylindrical tubes. Kardomateas [5] developed the case of uniform external pressure. To find 

out the energy absorption characteristics of glass-fiber circular tubes, Pickett and Dayal [23] 

performed a study. A method was developed to analyze the pure bending of arbitrary 

laminated composite tubes [24]. They verified formulations with FEM results obtained using 

ABAQUS. Menshykova and Guz [26] performed a stress analysis on thick laminated 

composite tubes subjected to bending load. They found stresses as a function of the material 

properties, thickness, lay-up and the magnitude of loads. Capela et al. [27] investigated the 

fatigue behavior of composite tubes under bending/torsion dynamic loadings. Recently, 

Nowak and Schmidt [29] compared some methods to study fiber metal laminated cylinders 

under an axisymmetric load. A developed theoretical model was validated by FEM analysis. 

Jonnalagadda et al. [30] presented an analytical model for a special design of thin composite 

tubes subjected to combined bending and torsion. They verified the theoretical results with 

FEM analysis. 

The above review shows that there has been no work done to predict stress distributions in 

composite curved tubes subjected to mechanical loadings. Although finite element methods 

are used for analyzing such structures, it is necessary to do the meshing for each structure 

every time some dimensions or lay-up sequences are changed. Therefore, it is desired to have 

a method where the inputs to obtain solutions are simple; i.e. one only needs to enter in the 

actual dimensions or lay-up sequences without re-meshing work. The present chapter is 

devoted to develop a method that can provide stresses for composite curved tubes subjected to 

pure bending moment based on simple inputs. Displacement approach of Toroidal Elasticity 

(TE) and successive approximation method are used. Comparison is made between results 

obtained for the proposed method with finite element method (FEM), stress-based Toroidal 

Elasticity (SBTE) and Lekhnitskii solution. Good agreement is seen. 

 

6.2. Motivation 

The conventional landing gears for helicopters consist of two parallel curved cross tubes, 

which are connected by two longitudinal skid tubes as seen in Figure 6.1. The cross tube of 
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the helicopter landing gear consists of straight and curved tubes. Derisi [1] designed and 

manufactured composite straight tubes and performed four-point bending test to determine the 

strains to failure of different laminates. Recently, a method for the stress analysis of thick 

composite straight tubes subjected to cantilever loading was developed [92, 97]. Now, in 

order to provide some insight into the mechanical behavior of the curved part of helicopter 

landing gear, a simple-input displacement-based method is developed to examine stresses in a 

composite curved tube. 

 

 

Figure 6.1: Helicopter landing gear. 

 

6.3. Displacement Field of a Single-layer Composite Curved Tube 

Toroidal Elasticity (TE) is a three-dimensional theory used for the elastostatic analysis of 

thick curved tubes. Although a few researchers performed earlier studies on TE, Lang [78] 

made a major improvement on the development of TE. This researcher employed specifically 

a stress approach, obtaining solutions and satisfying the equilibrium equations. Redekop [87] 

developed a displacement approach of TE for isotropic materials. Solutions satisfied Navier 

equations. Such an approach has the advantage of yielding immediately the displacements, as 

well as stresses. In this study, the displacement field of a single-layer composite curved tube 

is derived using a displacement approach of Toroidal Elasticity and the method of successive 

approximation. 

 

skid

straight part

curved part

curved part

cross tube

F

F
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6.3.1. Governing Equations in Toroidal Coordinates 

An orthotropic curved tube with a bend radius R and thickness h is subjected to a pure 

bending moment, M, acted in the plane of ϕ=90° as shown in Figure 6.2. Annular cross 

section is bounded by radii a and b. Toroidal coordinate system (r, ϕ, θ) is placed at the mid-

span of the composite curved tube where r and ϕ are polar coordinates in the plane of the tube 

cross section and θ defines the position of the tube cross section. 

  

Figure 6.2: Geometry and coordinate system of the composite curved tube. 

 

Zhu and Redekop [87] have given a derivation of the governing equations for linear three-

dimensional theory of elasticity in the toroidal coordinates for isotropic material. The theory 

is extended here to cover the case for orthotropic materials. The toroidal governing equations 

are presented as [87]: 
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where cosR r   . The kinematics relations are: 
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where u, v and w represent the displacement components in the r, ϕ and θ directions, 

respectively. For the orthotropic materials, the constitutive equations are [91]: 

      6.3C 

where 
 k

ijC  represent the off-axis stiffnesses. Upon substitution of Eqs. (6.2) into Eq. (6.3), 

the stress-displacement relations are obtained: 
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Substituting Eq. (6.4) into Eq. (6.1), the governing Navier equations in toroidal coordinate are 

obtained as: 
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where the coefficients in Eqs. (6.5) are defined in Appendix F. The three Navier equations 



119 
 

serve as the fundamental equations for the displacement-based Toroidal Elasticity. Eqs. (6.5) 

are composed of three parts. The first part is independent of 1/ρ. The second part and the third 

part are linear and non-linear parts of 1/ρ. The Navier equations (Eqs. (6.5)) in the toroidal 

coordinate system are much more complicated than those in the Cartesian system. As it is 

impossible to find an exact solution for the Navier equations, the method of successive 

approximation is used to obtain an approximate solution. 

 

6.3.2. Method of Successive Approximation 

The method of successive approximation is a useful and powerful method to obtain 

solutions to equations. The solution for each component of the displacement is assumed a 

series in terms of a small parameter. The parameter ε is chosen as ε=a/R. Therefore, the 

displacement components take the following form: 
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where the subscripts of the right hand side terms indicate the order of the displacement 

components in the series. The functions of Navier equations are expanded as: 
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where the coefficients in Eqs. (6.7) are defined in Appendix F. The quantities 1/ρ and (1/ρ)2 

which appear in the Navier equations are functions of r. These quantities are expanded in a 

series of the parameter ε using the Taylor Theorem as: 
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Substituting the expanded Navier functions (Eqs. (6.7)) and Eq. (6.8) into Eqs. (6.5), 

matching terms in ε, and setting the coefficients for each order of ε to zero, one obtains the 

governing equations for the different orders. The equations are expressed for the zeroth order 

as: 
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For the second order as: 

 

2 1 0 0

2 1 0 0

2 1 0 0

ˆcos

ˆcos 6.11

ˆcos

U U U r U

V V V r V

W W W r W







   

   

   

And for the third order as: 
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 The solution series through successive approximation method are local in ε and global in 

r. When ε is small, a good approximation to the solution by summing the first few terms of 

the series is obtained. When ε is not small, it may still be possible to generate a good 

approximation to the solution from converging series. In general, it is possible to select a ε so 

that the zeroth-order solution is found as a closed-form analytical expression. 

The zeroth order governing equations (Eqs. (6.9)) are homogeneous equations. The right 

hand side terms for orders greater than zero carry contributions from the lower orders, and the 

complexity of the right hand side terms increases with order (see Eqs. (6.9)-(6.12)). There is 
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only a complementary solution for the zeroth order governing equations. For orders greater 

than zeroth, the solutions are made of a complementary and a particular part. The 

complementary part is obtained from the homogeneous part of that order’s governing 

equations, which has the same form as that of the zeroth order. The particular part is found to 

satisfy the right hand side terms of the governing equations. The particular part is determined 

by using trial displacement functions with free constants, to match the right hand side terms of 

the governing equations of that order. 

Solutions are developed consecutively for the various orders, starting from the zeroth 

order. The zeroth order solution is selected from the trial displacement functions. For orders 

greater than zero, the right hand side members of the Navier equations are obtained. The 

particular part is set up using trial functions. The total solution is the sum of the particular and 

complementary solutions of all orders factored by the appropriate power of ε (see Eq. (6.6)). 

 

6.3.3. General Solution for In-plane Pure Bending 

The solution is requested for a single-layer composite curved tube subjected to pure 

bending moment. The equations for the complementary part have the same form for all orders 

and it is useful to derive a general solution. A direct solution is formulated to avoid the 

complications, which arise from the use of stress function. The solution for the displacement 

components is thus sought in the following form for orders n=0, 1, 2 and 3: 

   

     

   

cos cos

sin cos 6.13

cos sin

m

n n

m

n n

m

n n

u p r n

v x r n

w s r n

 

 

 







 

The quantities pn, xn, sn, m and �̅� are constants and parameters. By substituting Eq. (6.13) into 

the homogeneous parts of Eqs. (6.9)-(6.12) for each order separately, the quantities pn, xn, sn, 

m and �̅� are determined for each order (see Table 6.1). The solution in the successive 

approximation method is given up to the 3rd order. The detailed solution is presented for a 90° 

composite curved tube with a single layer subjected to bending moment, M, as shown in 

Figure 6.2. Some points are fixed to avoid rigid body motion. It is seen from Eq. (6.13) that 

w=0 at θ=0°, and u and v are zero at ϕ=90° and 270°, respectively. In addition, the boundary 

conditions satisfied for the problem are as follows: 
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On the free curved surfaces, on r=a and r=b 

 0 6.14rr r r       

On the end surfaces, at θ = ±π/4 

   

 

2

0

2 3

0 1 2 3

sin for n=0,1,2and3 6.15

6.15

b

n n
a

M r rd dr a

M M M M M b



  

  



    

 

where M and Mn are the total applied bending moment and the moment component of the nth 

order, respectively. Note that the boundary conditions, Eq. (6.14), are satisfied by each order 

separately. Since total stresses are the sum of stresses of all orders factored by the appropriate 

power of ε, it is concluded that imposing the boundary conditions on each order physically 

represent correctly the problem. Therefore, these boundary conditions, Eq. (6.14), are 

applicable not only for each order but also on the whole solution. In addition, the moment 

components, Mn, are obtained for each order based on Eq. (6.15a) and then, Eq. (6.15b) is 

used to link all moment components to the total applied bending moment. The contributions 

from the various orders to the total solution are now developed, starting from the zeroth order. 

 

6.3.3.1. The Zeroth Order Solution 

The zeroth order governing equations are homogeneous, and thus only the complementary 

solution is required. By substituting Eq. (6.13) into Eqs. (6.9), considering Eqs. (D.1), (D.4) 

and (D.7) simultaneously, the zeroth order governing equations are obtained as: 

 

 

 

 

0

0

0 0 1,

0 0 2,

0

0

0

0

Complementary solution (the zeroth order):

cos

cos

0 6.16

Particular solution (the zeroth order):

0

0

0 6.16

c m

c m

c

p

p

p

u a B

v a A

w a

u

v

w b







 









Therefore, the zeroth order displacement components are obtained as: 
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 

 

 

0

0

0 0 0 0 1,

0 0 0 0 2,

0 0 0

cos

cos

0 6.17

c p m

c p m

c p

u u u a B

v v v a A

w w w





  

   

  

where the parameters 
0 01, 2,andm mB A  are defined in Eq. (6.28b). Constant a0 of this order is to 

be determined later from the boundary conditions at the ends of the composite curved tube, 

Eq. (6.15). 

 

6.3.3.2. The First Order Solution 

In preparation for the solution of the first order, the right hand side terms of the governing 

equations are first evaluated (see Eq. (6.10)). Those are found from Eqs. (D.2), (D.5), (D.8), 

Eq. (6.10) and the zeroth order displacement components (Eq. (6.17)). The first order 

solutions comprise of a complementary and a particular part. The complementary part is 

obtained from Eq. (6.13) as follow: 

   

     

   

1 1

1 1

1 1

cos cos

sin cos 6.18

cos sin

m

m

m

u p r

v x r

w s r

 

 

 







 

By substituting Eq. (6.13) into the homogeneous parts of Eqs. (D.1), (D.4) and (D.7), the 

quantities p1, x1, s1, m and �̅� are determined for the first order as below: 

        

 

1 2

1 1 1 1 1

2

1 1 11 44 22

1 22 44 1 44 12

0 cos cos 0

1

2

1 1
6.19

2 2

mU r p A x B

A m C C C

B C C m C C a

  
   

  

   
       

   

 

        

 

1 2

1 1 2 1 2

2 22 44 1 44 12

2

2 1 44 22 44

0 cos cos 0

1 1

2 2

1 1
6.19

2 2

m
V r p A x B

A C C m C C

B m C C C b

  
   

   
       

   

  
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   

 

1 2

1 1 3

2

3 1 55 66

0 sin 0

1 1
6.19

2 2

m
W r s A

A m C C c

 
  

 

Since p1 and x1 are connected to each other with observing Eq. (6.19a) and (6.19b), the 

solution is found from the following equations: 

   

     

1 1 1 1 1

1 1 2 1 2

0 0

0 0 6.20

U p A x B

V p A x B

   

   
 

In order to find a solution set for Eq. (6.20): 

     

 

1 2 1 2

4 2 2

44 11 1 11 22 11 44 44 22 12 44 12 1

0

1 1 1
0 6.21

2 2 2

A B B A

C C m C C C C C C C C C m

  

   
         

   

 

By solving Eq. (6.21), the roots are obtained as: 

 

1

1
2 2

22 44 22 12 12
1

44 11 11 44

0

2 2 2
6.22

m

C C C C C
m

C C C C



  
    

 

Also, from Eq. (6.19c), it is concluded that: 

 

1

2
2 66

3 1 55 66 1

55

1 1
0 6.23

2 2

C
A m C C m

C

 
      

 

Therefore, the complementary part of the first order is derived as: 

 

 

     

1 1

1 1 1

1 1

1 1 1

1 1

1 1 1, 1 1, 1 1,

1 1 2, 1 2, 1 2,

1 1 1

Complementary solution (the first order):

1 1 1
cos cos

2 2 2

1 1 1
sin cos

2 2 2

sin 6.24

m m

c m m m

m m

c m m m

m m

c

u a B b B r c B r

v a A b A r c A r

w e r f r a

 

 





 



 



 
   
 

 
    
 

 

The particular part is derived to match the right hand side of the governing equations. 
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 
 

 
   

0

13 23

1 0 1,

22

1

66 55

1 1

66

Particular solution (the first order):

cos cos

0

sin 6.24

p m

p

p

C C
u ra B

C

v

C C
w re b

C

 











where the parameters 
1 1 1 11, 1, 2, 2,, , andm m m mB B A A   are defined in Eq. (6.28b). Adding together 

the complementary and particular parts (Eqs. (6.24a) and (6.24b)), the first order displacement 

components are determined. The free constants a1, b1, c1, e1 and f1 are determined by forcing 

the stress components 0rr r r       (on r=a and b) to satisfy the boundary conditions, 

Eq. (6.14). Constant a0 is still later determined by applying Eq. (6.15). 

The displacement components for the second and third orders are derived with the similar 

procedure that is used to obtain the first order displacement components. 

Integrating the longitudinal stress, σθθ, up to the 3rd order over both end surfaces, is 

expressed as: 

 

   

2 3

0 1 2 3

2

0

6.25

sin at , for n=0,1,2and3 6.26
4

b

n n
a

M M M M M

M r rd dr




  


   

    

   
 

Note that M is the specific applied bending moment while Mn of all orders is unknown only 

based on constant a0. Thus, Eq. (6.25) is enough to determine constant a0. Therefore, the total 

solution for a single-layer composite curved tube subjected to pure bending moment is 

developed by considering the solutions for all orders and substituting them into Eqs. (6.6). 

Eventually, the general form displacement field of single-layer composite curved tubes up to 

the nth order is presented as: 

       

       

          

, , cos cos

, , sin cos

, , cos 1 sin 6.27

n

n

n

n

n

n

u r B r n

v r A r n

w r C r n

    

    

    





 

 

with n being a dummy index implying summation of orders from n=0 to the nth order (n=1, 2, 

3,…). Moreover, 
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 

 

     

1, 1, 1, 1,
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1 1 1 1

1 1 1 1
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C r e r f r a
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  

  

  



 
    

    

 
     

    

 

 
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 
   

 

   
        

   

   
        

   

 

and , , andn n n nm m m m    are, in general, the 4 roots of the following equation: 

 

4 2 2 2 2 2

44 11 11 22 11 44 44 22 12 44 12

4 2

22 44

1 1 1

2 2 2

2 1
0 6.29

2

n nC C m n C C C C C C n C C n C m

n n
C C

   
        

   

 
 

where ijC represent the off-axis stiffnesses and n presents the order number (i.e., n = 0, 1, 2, 3, 

…). The unknowns in stresses and displacements cannot be solved for simultaneously but 

independently through a set of equations of the boundary conditions. For example, the 

unknowns in the bending moment stress (i.e., a0) and displacements (i.e., an, bn, cn, dn, en and 

fn) are solved through Eq. (6.25) and Eq. (6.14) respectively (see Table 6.1). 

 

Table 6.1: Unknowns and equations. 

Type Unknown constants or parameters Equation number 

1 pn, xn, sn, m and �̅� at Eq. (6.13) Eqs. (6.9)-(6.12) 

2 an, bn, cn, dn, en and fn of orders n=1, 2, and 3 at Eq. (6.28a) Eq. (6.14) 

3 a0 of order n=0 at Eq. (6.17) Eq. (6.25) 

 

6.4. Results and Discussion 

The single-layer composite curved tube with 0.1 mm thickness is examined. The 

mechanical properties of the materials making up the composite curved tube are given in 

Table 6.2. In the present cases, the composite curved tube section has an internal radius of 28 
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mm. In addition, a composite curved tube spanning a curved segment of 90° with R/a=10 is 

considered (unless otherwise mentioned). Furthermore, the stress components are normalized 

as 𝜎𝑖𝑗 = 𝜎𝑖𝑗/𝜎0 where 𝜎0 = (M0.r)/(π/4*(b4-a4)) with the outer radius b and the inner radius a of 

the composite curved tube. The results are presented based on the proposed method at θ=0°. 

Note that there is a possibility of compression buckling of the composite curved tube in 

bending, which is not taken into account in the proposed formulation. 

 

Table 6.2: Mechanical properties of the materials making up the composite curved tube [1]. 

Properties E1 (GPa) E2=E3 (GPa) G12=G13= G23 (GPa) ʋ12=ʋ13 ʋ23 

Carbon AS4/PEKK 140 10 5.56 0.31 0.33 

 

6.4.1. FEM Analysis 

The stress analysis of a single-layer composite curved tube is conducted by finite element 

method using ANSYS. Stress distributions are also generated to compare with the results 

obtained using the proposed method. The element used to perform the analysis is the layered 

solid element, SOLID 185. A rigid surface is modeled and glued to both end surfaces of the 

composite curved tube. Then, a bending moment is applied to the center node of the surface 

meshed using shell elements, SHELL 181. This is how the bending moment applied for the 

composite curved tube in FEM. The mesh-independency study is done for ANSYS based on 

Table 6.3. Mesh refining is performed two times while the element aspect ratio is kept 

constant. For the initial mesh, Mesh Number 1, 36000 elements are used to model the 

structure. For Mesh Number 2, the thickness and circumferential directions are refined twice 

as much as the initial mesh. For Mesh Number 3, the axial and circumferential directions are 

refined twice as much as the initial mesh and the thickness direction is refined 4 times as 

much as the initial mesh to model the curved tube (see Table 6.3). Figure 6.3a shows the 

meshed composite curved tube used to perform the stress analysis using ANSYS 14.5. Figure 

6.3b presents the radial and hoop stresses obtained using ANSYS for different Mesh Numbers 

mentioned in Table 6.3. As Figure 6.3b shows, the differences of the stresses for Mesh 

Numbers 2 and 3 are 1%, therefore, Mesh Number 2 is selected to obtain the results using 

FEM to compare with the theoretical results. Mesh Number 2 is called the final mesh in the 

following sections. 
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Table 6.3: Mesh characteristics. 

Mesh 

Number 

Mesh size  

(Axial)×(Circumferential)×(Thickness) 

Number of 

elements 

Analyzing time 

(sec) 

1 9×10×4 360 180 

2 9×20×8 1440 400 

3 18×20×16 5760 600 

 

 

Figure 6.3a: Modeling of the composite curved tube using ANSYS. 

 

Figure 6.3b: The mesh-independency study of the composite curved tube. 
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6.4.2. Verifying the Proposed method 

The developed method is compared and verified with the 3 other methods or data. First, in 

Section 6.4.2.1, the developed method is applied for an isotropic material case so that results 

could be compared with the results available in the literature. Then, in Section 6.4.2.2, the 

results obtained for a composite curved tube with a single layer using the developed method 

are compared with the results obtained using FEM. Finally, in Section 6.4.2.3, the results are 

compared for a composite curved tube based on the developed method with Lekhnitskii 

solution [2]. In addition, the convergence study for developed method regarding using 

different numbers of orders is performed. 

 

6.4.2.1. Comparison of the Proposed Method for the Isotropic Case 

Lang [78] used stress-based Toroidal Elasticity (SBTE) to present a solution for an 

isotropic curved tube subjected to in-plane bending moment. The following geometric and 

material parameters are considered for the isotropic case: 

b/a=2, R/a=10, ν=0.3, E=206 GPa 

The convergence study is performed to find out how many orders are enough to get 

accurate results. Table 6.4 presents the radial and hoop stresses obtained based on the present 

method considering different orders and SBTE. Note that the stresses in Table 6.4 are 

obtained at ϕ=270°, θ=0° and the middle surface of the isotropic curved tube. It is seen that 

with increasing the number of orders used in the developed method, the difference between 

the obtained results using the developed method in comparison with SBTE decreases. Since 

the differences for considering up to the 2nd and 3rd orders in comparison with SBTE are close 

to each other, the solution up to the 2nd order is selected to compare the results for the 

isotropic case. 

 

Table 6.4: The convergence study for the isotropic curved tube. 

     Order number 

 

Normalized  

Stress 

The 0th order 

(Difference %) 

Up to 1st order 

(Difference %) 

Up to 2nd order 

(Difference %) 

Up to 3rd order 

(Difference %) 

SBTE 

[78] 

Radial stress 0.366 (22%) 0.336 (12%) 0.312 (4%) 0.309 (3%) 0.30 

Hoop stress -0.384 (24%) -0.350 (13%) -0.326 (5%) -0.319 (3%) -0.31 
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Figure 6.4a presents the comparison for the radial and hoop stresses, 𝜎rr and 𝜎ϕϕ, at the 

middle surface of the isotropic curved tube obtained based on the present method and SBTE. 

Good agreement between the developed method up to the 3rd order and SBTE results is 

obtained as seen in Figures 6.4a and 6.4b. The shear stresses, 𝜎θr and 𝜎ϕθ, at the middle 

surface of the isotropic curved tube obtained based on the present method and SBTE are 

compared in Figure 6.4b. 

 

 

Figure 6.4a: Comparison of the stresses, 𝜎rr and 𝜎ϕϕ, at the middle surface of the isotropic curved tube obtained 

using the present method up to the 3rd order and SBTE. 
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Figure 6.4b: Comparison of the shear stresses, 𝜎θr and 𝜎ϕθ, at the middle surface of the isotropic curved tube 

obtained using the present method up to the 3rd order and SBTE. 

 

The deformations of the isotropic curved tube cross sections subjected to bending moments at 

θ= 0°, 22.5° and 45° are plotted in Figure 6.5. All cross sections at the top and bottom regions 

(at ϕ=90° and 270°) deform inward while they deform outward at both sides (at ϕ=0° and 

180°). As the cross section is getting closer to the end surfaces of the curved tube (θ=45°, see 

Figure 6.2), the deformation of the tube cross section increases. Note that the magnitudes of 

the deformations of the same tube cross-section at ϕ=0° and 90° are identical. Note that in the 

developed method, the end sections of the curved tube are free to deform in their planes, 

whereas in the FEM model they are not. 
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At θ=45° At θ=22.5° At θ=0° 

Figure 6.5: Plots of displacements for different cross-sections. 

 

6.4.2.2. Comparison of the Proposed Method with FEM 

In this section, the convergence study for a composite curved tube with a single layer using 

the developed method is performed. The study is done to see how many orders are enough to 

obtain accurate results (see Eq. (6.6)). Table 6.5 presents the convergence study done for the 

[0°] composite curved tube in comparison with FEM (ANSYS) using the final mesh (see part 

6.4.1). Remark that the [0°] composite curved tube means that the fibers are along the θ 

direction (see Figure 6.2). The stresses are obtained at ϕ=270°, θ=0° and the middle surface of 

the composite curved tube. It is seen that with considering more orders to obtain the total 

solution, the difference between the results obtained using the developed method and FEM 

decreases. Observing Table 6.5, the solution up to the 2nd order is selected in the developed 

method to obtain results for the single-layer composite curved tube. 

 

Table 6.5: The convergence study for the single-layer composite curved tube. 

     Order number 

 

Normalized  

Stress 

The 0th order 

(Difference %) 

Up to 1st order 

(Difference %) 

Up to 2nd order 

(Difference %) 

Up to 3rd order 

(Difference %) 

FEM 

(ANSYS) 

Radial stress 1.34 (20%) 1.23 (10%) 1.18 (5%) 1.16 (4%) 1.12 

Hoop stress -15.15 (22%) -13.79 (11%) -13.16 (6%) -13.04 (5%) -12.42 

Longitudinal 

stress 
-32.71 (21%) -29.73 (10%) -28.65 (6%) -28.38 (5%) -27.03 
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The radial stress, 𝜎rr, at the middle surface of the [0°] composite curved tube obtained on 

the basis of the present method and FEM (ANSYS) is compared in Figure 6.6. Good 

agreement between the developed analysis and FEM (ANSYS) results using the final mesh is 

obtained. The analyzing of the orthotropic curved tube using ANSYS with Mesh Number 1 

takes around 180 seconds while it takes around 400 and 600 seconds for Mesh Numbers 2 and 

3, respectively, while the analyzing of the same structure using the developed method 

considering up to the 2nd order takes 60 seconds (see Table 6.3). It is seen that the radial 

stress, 𝜎rr, is tensile from 225° to 315° (90° of the upper region of the tube cross section). It is 

observed that the maximum positive value of 𝜎rr occurs at ϕ=270°. 

 

 

Figure 6.6: Comparison of the radial stress, 𝜎rr, obtained from the present method and ANSYS at the middle 

surface of the [0°] curved tube. 

 

The comparison of the hoop stress, 𝜎ϕϕ, with FEM (ANSYS) over cross section at the middle 

surface of the [0°] composite curved tube is presented in Figure 6.7. Good agreement between 

the proposed analysis and FEM (ANSYS) results using the final mesh is obtained. It is seen 

that the hoop stress, 𝜎ϕϕ, is tensile from 225° to 315°. In addition, the maximum value of the 

hoop stress is positive and it occurs at ϕ=270°. 
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The comparison of the shear stresses, 𝜎θr and 𝜎ϕθ, over cross section at the middle surface of 

the [0°] composite curved tube obtained based on the present method and FEM (ANSYS) is 

presented in Figure 6.8. Good agreement is seen for the results obtained using the developed 

method with the results obtained using FEM based on the final mesh. Note that the shear 

stress, 𝜎θr, is positive at the whole upper region of the cross section (180° to 360°) while the 

shear stress, 𝜎ϕθ, is positive from 0° to 90° and 270° to 360°. In addition, the maximum 

positive value of 𝜎θr occurs at ϕ=225° and ϕ=315° of the tube cross section while maximum 

positive and negative values of the shear stress, 𝜎ϕθ, are at ϕ=0° and ϕ=180°, respectively. 

 

 

Figure 6.7: Comparison of the hoop stress, 𝜎ϕϕ, obtained using the present method and ANSYS at the middle 

surface of the [0°] curved tube. 
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Figure 6.8: Comparison of the shear stresses, 𝜎θr, and 𝜎ϕθ, obtained using the present method and ANSYS at the 

middle surface of the [0°] curved tube. 

 

The comparisons of the longitudinal stress, 𝜎θθ, and the shear stress, 𝜎rϕ, obtained using the 

developed method and FEM (ANSYS) over cross section at the middle surface of the [0°] 

composite curved tube are presented in Figures 6.9a and 6.9b, respectively. The theoretical 

results show good correspondence with FEM using the final mesh. Observing from Figure 

6.9a, the maximum magnitude of the longitudinal stress, 𝜎θθ, is compressive and it occurs at 

ϕ=-90°. It is seen that the longitudinal stress is tensile at the upper region of the curved tube 

cross section. Figure 6.8b shows that the shear stress, 𝜎rϕ, is positive from 0° to 90° and 180° 

to 270°. The positive maximum value of 𝜎rϕ occurs at ϕ=45° and then at ϕ=225°. 
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Figure 6.9a: Comparison of the longitudinal stress, 𝜎θθ, obtained using the present method and ANSYS at the 

middle surface of the [0°] curved tube. 

 

 

Figure 6.9b: Comparison of the shear stress, 𝜎rϕ, obtained using the present method and ANSYS at the middle 

surface of the [0°] curved tube. 
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6.4.2.3. Comparison of the Proposed Method with Lekhnitskii Solution 

 Lekhnitskii [2] proposed the elasticity method for monolithic homogeneous orthotropic 

cylindrical straight shells subjected to pure bending moment with σθϕ=σrθ=0 assumptions. 

Therefore, the [0°] composite curved tube is considered to compare the results between the 

proposed method and Lekhnitskii solution. Note that a composite straight tube is modeled 

based on the present method by assuming the bend radius R to be very large compared to r, so 

that a curved tube will be closer to a straight tube. In order to obtain the results using the 

proposed method, the solution up to the 2nd order is obtained. 

The convergence and verification studies are performed for the developed method against 

Lekhnitskii solution [2] with considering different R/a ratios. Figure 6.10a presents the 

convergence of the radial stress, 𝜎rr, obtained based on the present method against Lekhnitskii 

solution at the middle surface of the [0°] composite curved tube considering R/a=10, 15, 25, 

35, 50 and 75 ratios. It is seen from Figure 6.10a that the results obtained using R/a=75 in the 

developed method are close enough to the results obtained based on Lekhnitskii solution [2]. 

Therefore, considering R/a=75 causes that the composite curved tube with a single layer is 

modeled as the composite straight tube with a single layer. In addition, as R/a ratio increases, 

the distribution of the radial stress appears to be more asymmetric. Note that the magnitudes 

of the radial stress, 𝜎rr, decrease as R/a ratio increases. 

 



138 
 

 

Figure 6.10a: Convergence of the radial stress, 𝜎rr, obtained using the present method against Lekhnitskii 

solution at the middle surface of the [0°] curved tube considering different R/a ratios. 

 

 

Figure 6.10b: Convergence of the hoop stress, 𝜎ϕϕ, obtained using the present method against Lekhnitskii 

solution at the middle surface of the [0°] curved tube considering different R/a ratios. 
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Figure 6.10b presents the convergence of the hoop stress, 𝜎ϕϕ, obtained on the basis of the 

present method against Lekhnitskii solution at the middle surface of the [0°] composite curved 

tube considering R/a=10, 15, 25, 35, 50 and 75 ratios. Good agreement between Lekhnitskii 

solution and the developed method using R/a=75 is obtained. Observing Figure 6.10b, with 

increasing R/a ratio, as the shape of the composite curved tube is getting closer to the 

composite straight tube, the magnitude of the hoop stress decreases and its distribution is 

getting more anti-symmetric. The convergence of the longitudinal stress, 𝜎θθ, obtained based 

on the present method against Lekhnitskii solution [2] at the middle surface of the [0°] 

composite curved tube considering R/a=10, 15 and 25 ratios is shown in Figure 6.11. The 

developed method using R/a=25 and Lekhnitskii solution results show good correspondence. 

For the convergence study of the longitudinal stress, R/a =25 seems accurate enough so that 

the composite curved tube is modeled as the composite straight tube and consequently, good 

agreement is seen between two method’s results at R/a =25. 

 

 

Figure 6.11: Convergence of the longitudinal stress, 𝜎θθ, obtained using the present method against Lekhnitskii 

solution at the middle surface of the [0°] curved tube considering different R/a ratios. 
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6.5. Concluding Remarks 

The displacement-based Toroidal Elasticity for orthotropic materials was proposed to 

address challenges within the study of stress fields of single-layer orthotropic curved tubes 

subjected to pure bending moment. The most general form of the displacement field in an 

orthotropic curved tube with a single layer was derived using Toroidal Elasticity (TE) and 

successive approximation method. The accuracy of the results was examined by comparing 

the proposed method with FEM and Lekhnitskii solution. The present method has the 

advantage of yielding the displacements as well as the stresses as compared with SBTE. 

Moreover, the zeroth order displacement functions required for starting the approach of 

successive approximation are easily set up based on the general mechanical knowledge. Note 

that displacement components are important information for considering special restriction 

and for fracture analysis. Furthermore, the present method promises to be more cost effective 

and accurate; therefore, it is employed to obtain the stresses instead of using FEM. 
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Chapter 7 

 

 

 

 

 

In this chapter, the displacement field of single-layer composite curved tubes obtained in the 

previous chapter is used to develop the most general displacement field of elasticity for thick 

arbitrary laminated composite curved tubes. The principle of minimum total potential energy 

is applied to calculate stresses in thick composite curved tubes under pure bending moment. 

The accuracy of the proposed method is evaluated by comparing the numerical results 

obtained from the developed method against FEM, experimental data and a solution available 

in the literature. 
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Abstract 

The study described in this chapter presents a new simple-input method to study thick 

laminated composite curved tubes subjected to pure bending moment. First, a displacement 

approach of Toroidal Elasticity was chosen to obtain the displacement field of single-layer 

orthotropic curved tubes. Then, a layer-wise method is employed to develop the most general 

displacement field of elasticity for arbitrary laminated orthotropic curved tubes. The principle 

of minimum total potential energy is applied to develop governing equations in thick 

composite curved tubes under pure bending moment. The accuracy of the proposed method is 

subsequently verified by comparing the numerical results obtained using the proposed method 

with finite element method (FEM), experimental data and a solution available in the literature. 

The results show good correspondence. In addition, the proposed method provides advantages 

in terms of computational time compared to FEM. 

 

Keywords: Thick laminated composite curved tubes; Displacement field; Layer-wise method; 

Stress analysis; Lay-up sequences; Helicopter landing gear. 

 

7.1. Introduction 

Composite tubes are structures that are frequently used in the aerospace, offshore and 

infrastructure industries. These structures usually have thin or moderately thick walls and are 

subjected to certain loads such as tension, torsion, shear and bending. Prediction of the state 

of stress and strain in different layers of composite tubes is of theoretical interest and practical 
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importance. In all applications, accurate design and inclusive analysis are important to 

guarantee safety. It should be noted that stress analysis of cylindrical composite structures is 

often a complex task. A few reasons are responsible for such a complexity such as: governing 

equations of composite tubes and the layer-wise failure of composite materials. In addition, 

the curved tube geometry is a lot more complicated than flat geometries. Many researchers 

have investigated composite straight and curved tubes. 

 

7.1.1. Straight Beams and Tubes 

Lekhnitskii [2] developed elasticity solutions for monolithic homogeneous orthotropic 

cylindrical shells. Kollár and Springer [4] studied stress analysis of composite cylinders and 

cylindrical segments subjected to hygrothermal and mechanical loads. Kardomateas [5] 

developed the case of uniform external pressure and orthotropic homogeneous material. 

Three-dimensional stress and displacement analyses of transversely loaded for laminated 

hollow cylinders with cross-ply lay-up were investigated [7]. To find out the energy 

absorption characteristics of glass-fiber circular tubes, Pickett and Dayal [23] performed a 

study. Sun et al. [25] performed a general stress analysis for anisotropic hollow composite 

cylindrical structures subjected to different loads. A method was developed to analyze the 

pure bending of arbitrary laminated composite tubes [24]. They verified formulations with 

FEM results obtained using ABAQUS. Menshykova and Guz [26] performed a stress analysis 

on thick laminated composite pipes subjected to bending loads. They found stresses as a 

function of the material properties, thickness, lay-up and the magnitude of load. Recently, 

static analysis of carbon nanotube-reinforced composite cylinder under thermo-mechanical 

was studied using Mori-Tanaka theory [28]. Nowak and Schmidt [29] compared some 

methods to study fiber metal laminate cylinders under an axisymmetric load. A developed 

theoretical model was validated by FEM analysis. Jonnalagadda et al. [30] presented an 

analytical model for a special design of thin composites tube subjected to combined bending 

and torsion. They verified the theoretical results with FEM analysis. 
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7.1.2. Curved Beams and Tubes 

Qatu [55] analyzed thin and moderately thick laminated composite curved beams to find 

natural frequencies. Shearing and radial stresses in curved beams were derived based on 

satisfying both equilibrium equations and static boundary conditions on the surfaces of beams 

[58]. Dryden [59] obtained stress distributions across a functionally graded circular beam 

subjected to pure bending by using stress functions. The free vibration analysis was 

performed on functionally graded beams with curved axis by using the finite element method 

to discretize the motion equations [63]. A first-order shear deformation theory was used to 

study static and free vibration behavior of generally laminated curved beams [64]. Wang and 

Liu [66] presented elasticity solutions for curved beams with orthotropic functionally graded 

layers subjected to a uniform load on the outer surface by means of Airy stress function 

method. A mathematical model was developed to analyze behavior of laminated curved glass 

beams [67]. 

The above review shows that there is a need of developing a simple-input method to 

analyze thick laminated composite curved tubes. Although finite element methods are used 

for analyzing such structures, it is necessary to do meshing for each structure every time some 

dimensions or lay-up sequences are changed. Therefore, it is desired to have a method where 

inputs to obtain solutions are simple; i.e. one only needs to enter in the actual dimensions or 

lay-up sequences without re-meshing work. The present chapter is devoted to develop a 

method that can predict stresses in thick composite curved tubes subjected to pure bending 

moment with simple inputs. Displacement approach of Toroidal Elasticity (TE) and a layer-

wise method are used. Comparison is made between results obtained for the proposed 

procedure with experimental data, FEM (ANSYS) and a solution available in the literature. 

Good agreement is obtained. 

 

7.2. Formulation 

The displacement field of single-layer composite curved tubes was derived using Toroidal 

Elasticity and method of successive approximation [99]. In this chapter, by developing the 

displacement field of laminated composite curved tubes based on the displacement field of 

single-layer composite curved tubes using a layer-wise method, a new displacement-based 
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method is proposed to analyze stresses in thick laminated orthotropic curved tubes subjected 

to pure bending moment. 

 

7.2.1. Displacement Field of Laminated Composite Curved Tubes 

A thick laminated orthotropic curved tube with a bend radius R, mean radius R1 and 

thickness h is subjected to pure bending moment, M, as shown in Figure 7.1a. Annular cross 

section is bounded by radii a and b. Toroidal coordinate system (r, ϕ, θ) is placed at the mid-

span of the composite curved tube where r and ϕ are polar coordinates in the plane of the 

curved tube cross section and θ defines the position of the tube cross section. 

 

 

(a) 

(b   

Figure 7.1: (a) Geometry and coordinate system of the composite curved tube. (b) The ply sequencing in a thick 

laminated composite curved tube. 
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Based on the developed displacement components in [99], the general form displacement 

field of single-layer composite curved tubes of the kth plane and up to the nth order is 

presented as (the detailed derivation is found in [99]): 
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with n, here and in what follows, being a dummy index implying summation of orders from 

n=0 to the nth order. 
 k

ijC  represent the off-axis stiffnesses. Also, n and k present the order 

number (i.e., n=0, 1, 2, 3, 4,…) and plane number (i.e., k=1, 2,…, N+1), respectively. 

 

7.2.2. Layer-wise Theory (LWT) 

The equivalent single-layer theories are not able to precisely find stresses and strains in 

laminated composites. However, LWT allows each layer of the laminate to act like a real 
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three-dimensional layer while being able to present good results for the local quantities. In 

LWT, the displacement components of a generic point in the laminate are assumed as: 

     
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with k, here and in what follows, being a dummy index implying summation of terms from 

k=1 to k=N+1. Note that z is the local direction starting from the mid-thickness of the curved 

tube cross section. The variable N corresponds to the total number of numerical layers within 

the laminated orthotropic curved tube. In Eq. (7.3), U, V and W denote the total displacement 

components in the z, ϕ and θ directions, respectively (see Figure 7.1b). Moreover,  ,ku   , 

 ,kv    and  ,kw    represent the displacements of the points initially located at the kth 

plane within the laminated composite curved tube in the z, ϕ and θ directions, respectively. 

 k z  is the global Lagrangian interpolation function associated with the kth plane. 

Depending upon the polynomial order of the interpolation function, Eq. (7.3) exhibits 

piecewise polynomial variation. It is noted that the accuracy of LWT is enhanced by 

subdividing each physical layer into a finite number of numerical layers. Clearly, as the 

number of subdivisions (p) through-thickness is increased, the number of governing equations 

and the accuracy of the results are increased. 

The procedure for solving a specific problem can now be outlined. The displacement 

components of a single-layer composite curved tube are taken based on Eq. (7.1). By applying 

layer-wise method, Eq. (7.3), the displacement components of a laminated composite curved 

tube are obtained. Then, by employing the displacement components and their corresponding 

strains in the principle of minimum total potential energy and using the fundamental lemma of 

calculus of variations, the equilibrium equations and associated boundary conditions of 

laminated composite curved tubes under pure bending moment are obtained. 

Consequently, by applying the LWT displacement field (Eq. (7.3)) on general 

displacement field of single-layer composite curved tubes in Eq. (7.1), the elasticity 

displacement field of thick laminated composite curved tubes is rewritten up to the nth order 

in following form as: 
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In order to satisfy the interfacial continuities of the displacement components, it is necessary 

that the constants appearing in Eqs. (7.4) (i.e., an, bn, cn, dn, en and fn) to be the same for all 

layers. Also, by employing linear interpolation functions, the continuity of displacement 

components through-thickness of the laminated curved tube is identically satisfied. Thus, Eqs. 

(7.4) are represented as: 
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The linear global interpolation function is defined as: 
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where  1and 2i

k i   are the local Lagrangian linear interpolation functions, with hj is the 

thickness of the jth layer. By introducing r=R1+z and cosR r    (see Figure 7.1b), the 

strain-displacement relations are as given as: 
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Substitution of Eq. (7.5) into the strain-displacement relations (7.7) yields the following 

results: 
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In Eq. (7.8) and what follows, a prime indicates an ordinary differentiation with respect to an 

appropriate variable (i.e., either ϕ or z). The equilibrium equations of a laminated orthotropic 

curved tube with N numerical layers are obtained by employing Eq. (7.8) in the principle of 

minimum total potential energy [90]. The results are, in general, 3(N+1) local equilibrium 

equations corresponding to 3(N+1) unknown functions Uk, Vk and Wk and, in general, six 

global equilibrium equations for every order (n=0, 1, 2, 3,…) up to the nth order associated 

with six parameters an, bn, cn, dn, en and fn of the same order. 

According to the principle of minimum total potential energy at the equilibrium 

configuration of a body, the variation of the total potential energy   of the body must vanish. 

That is: 
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where δU is the variation of total strain energy of the structure, i.e., 
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and V is negative of the work done on the structure by the specified external forces. Here, 
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and therefore, 
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It is noted that M represents the bending moment applied at both ends of the composite curved 

tube as shown in Figure 7.1a. 

Upon substituting δV into variations of strains (Eq. (7.8)), carrying out necessary 

integrations and employing the fundamental lemma of calculus of variations, the equilibrium 

equations of laminated composite curved tubes under bending moments up to the nth order 

are obtained as: 
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where the functions Θ1, Θ2, Θ3, Θ4, Θ5 and Θ6 in Eqs. (7.13) are defined in Appendix G. 

The generalized stress and moment resultants are defined as: 
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Note that the numbers of the global equilibrium equations, Eqs. (7.13), depend on the 

numbers of unknown constants are employed in Eq. (7.5) to develop the displacement field 

for laminated composite curved tubes. Based on the detailed derivation in [99], there are one 

unknown constant for the zeroth order (i.e., a0), 5 unknown constants for the 1st order (i.e., a1, 

b1, c1, e1 and f1) and 6 unknown constants for the nth order (n=2, 3,…) (i.e., an, bn, cn, dn, en 

and fn). Table 7.1 presents unknown constants and corresponding global equilibrium 

equations, which are used to calculate them. 

 

Table 7.1: Unknowns and equations. 

Type Unknown constants Equation number 

The zeroth 

order  
a0 of the zeroth order Eq. (7.13a) for n=0 

Up to the 

1st order 

a0 of the zeroth order Eq. (7.13a) for n=0 

a1, b1, c1, e1 and f1 of the first order 
Eqs. (7.13a), (7.13b), (7.13c), (7.13e) 

and (7.13f) for n=1 

Up to the 

2nd order 

a0 of the zeroth order Eq. (7.13a) for n=0 

a1, b1, c1, e1 and f1 of the first order 
Eqs. (7.13a), (7.13b), (7.13c), (7.13e) 

and (7.13f) for n=1 

a2, b2, c2, d2, e2 and f2 of the 2nd order 
Eqs. (7.13a), (7.13b), (7.13c), (7.13d), 

(7.13e) and (7.13f) for n=2 
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Up to the 

nth order 

a0 of the zeroth order Eq. (7.13a) for n=0 

a1, b1, c1, e1 and f1 of the first order 
Eqs. (7.13a), (7.13b), (7.13c), (7.13e) 

and (7.13f) for n=1 

an, bn, cn, dn, en and fn of the nth orders n=2, 

3, … 

Eqs. (7.13a), (7.13b), (7.13c), (7.13d), 

(7.13e) and (7.13f) for n=2, 3, … 

 

The following boundary conditions must be satisfied on the free inner and outer curved 

surfaces: 

     0 at z= ±h/2 1,2,..., 1 7.15k k k

x zR Q N k N       

Note that in Eq. (7.15) the superscript k refers to the kth interface in the laminated orthotropic 

curved tube. By substituting Eq. (7.8) into three-dimensional constitutive law [33] and the 

subsequent results into Eq. (7.14), the stress resultants based on displacement components are 

obtained which are presented in Appendix H. The local displacement-based equilibrium 

equations are obtained by substituting Eqs. (F.1)-(F.5) into Eqs. (7.12). Also, the global 

equilibrium equations of the laminated composite curved tube are expressed in terms of 

displacement functions by substituting Eq. (7.8) into three-dimensional constitutive law and 

the subsequent results into Eqs. (7.13). 

 

7.3. Analytical Solution 

 The system of local displacement equilibrium equations (Eq. (7.12)) shows 3(N+1) 

coupled ordinary differential equations with constant coefficients which may be displayed in a 

matrix form as: 
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The coefficient matrices [M], [K1], [K2] and {F} in Eq. (7.16) are defined in Appendix I. It is 

confirmed that the general solution of Eq. (7.16) is presented as [100]: 
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And Ti (i=1, 2,..., N+1) are Jordan blocks associated to the eigenvalues of matrix [Q] where 
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where Xi (i=1, 2,..., N+1) are co-solutions of [Xi][Ti]
2+[M]-1[K1][Xi][Ti]+[M]-1[K2][Xi]=[0]. 

Vector {k} is unknown vector representing 3(N+1) integration constants. The constants an, bn, 

cn, dn, en and fn must be calculated within LWT analysis through the following steps: 

1. The boundary conditions in Eq. (7.15) are first imposed to calculate vector {k} in terms 

of the unknown constants an, bn, cn, dn, en and fn. 

2. These constants are then obtained by the satisfaction of the global equilibrium conditions 

in Eqs. (7.13) as presented in Table 7.1. 

 

7.4. Lay-up Sequence Selection 

Derisi [1] developed a lay-up sequence to be used for making composite landing gears for 

helicopters that may provide large deformation and gradual fracture. A composite straight 

tube with the [90°20/0°20] lay-up was manufactured and a four-point test was performed. Table 

7.2 shows the lay-up sequences considered here. The lay-up sequence of the [90°20/0°20] 

composite curved tube is selected to verify the numerical results obtained using the proposed 
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method with finite element method (ANSYS) and experimental data for the thick laminated 

composite curved tube subjected to pure bending moment. Moreover, the [25°20/-25°20] lay-up 

is considered to compare the developed method with a solution available in the literature [9]. 

 

Table 7.2: Lay-up sequence number. 

Laminate 

number 
Lay-up sequence Purpose 

1 [90°20/0°20] Compare with experimental data and FEM 

2 [25°20/-25°20] Compare with a solution available in the literature 

 

7.5. Results and Discussion 

All physical layers are assumed to have equal thickness (=0.1 mm [1]) and are modeled as 

being made up of p numerical layers. In all the subsequent calculations, p is set equal to 12 

[92]. The mechanical properties of the materials making up the composite curved tube are 

given in Table 7.3. In the present cases, the curved tube section has an internal radius of 28 

mm and an external radius of 32 mm, i.e. a wall thickness of 4 mm. In addition, a composite 

curved tube spanning a curved segment of 90° with R/a=10 is considered (unless otherwise 

mentioned). Furthermore, the stress components are normalized as 𝜎𝑖𝑗 = 𝜎𝑖𝑗/𝜎0 where 𝜎0 = 

(M.r)/(π/4*(b4-a4)) with the outer radius b and the inner radius a of the composite curved tube. 

The results are presented based on the proposed method at θ=0°. 

 

Table 7.3: Mechanical properties of the materials making up the composite curved tube [1]. 

Properties E1 (GPa) E2=E3 (GPa) G12=G13= G23 (GPa) ʋ12=ʋ13 ʋ23 

Carbon AS4/PEKK 140 10 5.56 0.31 0.33 

 

7.5.1. FEM Analysis 

The stress analysis of the thick composite curved tube is conducted by finite element 

method using ANSYS. Stress distributions are also generated to compare with the results 

obtained using the proposed method. The element used to perform the analysis is the layered 

solid element, SOLID 185. The number of integration points (1, 3, 5, 7 or 9), located through 

the thickness of each layer used for element calculations, is designated. Two points are 
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located on the top and bottom surfaces and the remaining points are distributed with an equal 

distance between two points. Here, three integration points are used through the thickness of 

each layer. In addition, one element or more, depend on Mesh Number (see Table 7.4) for 

each layer in the lay-up sequence, is defined to recover the interlaminar stresses in FEM. A 

rigid surface is modeled and glued to both end surfaces of the composite curved tube. Then, a 

bending moment is applied to the center node of the surface meshed using shell elements, 

SHELL 181. This is how the bending moment applied for the composite curved tube in FEM. 

The mesh-independency study is done for ANSYS (see Table 7.4). Mesh refining is 

performed two times while the element aspect ratio is kept constant. It is emphasized that for 

the initial mesh, Mesh Number 1, 360000 elements are used to model the structure. For Mesh 

Number 2, the thickness and circumferential directions are refined twice as much as the initial 

mesh. For Mesh Number 3, the axial and circumferential directions are refined twice as much 

as the initial mesh and the thickness direction is refined 4 times as much as the initial mesh to 

model the curved tube (see Table 6.4). Figure 7.2a shows the meshed composite curved tube 

used to perform the stress analysis using ANSYS 14.5. Figure 7.2b presents the radial and 

hoop stresses obtained using ANSYS for different mesh numbers mentioned in Table 7.4. As 

Figure 7.2b shows, the differences of the stresses for Mesh Numbers 2 and 3 are less than 2%, 

therefore, Mesh Number 2 is selected to obtain the results using FEM to compare with the 

theoretical results. Mesh Number 2 is called the final mesh in the following sections. Note 

that in the developed method, the end sections of the composite curved tube are free to deform 

in their planes, whereas in the FEM model they are not. 

 

Table 7.4: Mesh characteristics. 

Mesh 

Number 

Mesh size  

(Axial)×(Circumferential)×(Thickness) 

Number of 

elements 

Analyzing time 

(sec) 

1 9×10×40 3600 1800 

2 9×20×80 14400 4000 

3 18×20×160 57600 6000 
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Figure 7.2a: Modeling of the composite curved tube using ANSYS. 

 

 

Figure 7.2b: The mesh independency study of the laminated composite curved tube. 

 

7.5.2. Verifying the Proposed method 

The proposed method is compared and verified with other 3 methods or data. First, in 

Section 7.5.2.1, the results are compared for a laminated curved tube using the developed 
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method with FEM. In addition, the convergence study for the developed method is performed. 

Then, in Section 7.5.2.2, the verification is done with the experimental data. Finally, in 

Section 7.5.2.3, the proposed method is verified with a solution available in the literature [9]. 

 

7.5.2.1. Comparison of the Proposed Method for Laminated Curved tubes with FEM 

Here, the results obtained for a laminated composite curved tube using the developed 

method are compared with results obtained using FEM (ANSYS) based on the final mesh. 

First, the convergence study is performed for the [90°20/0°20] laminated orthotropic curved 

tube. Table 7.5 presents the radial, hoop and longitudinal stresses obtained at ϕ=270°, θ=0° 

and the middle surface of the [90°20/0°20] laminated orthotropic curved tube with considering 

different order numbers in the developed method to obtain the total solution. It is seen that 

with increasing the order number, the difference between the present method and FEM 

decreases. Eventually, the solution up to the 3rd order is considered to obtain stresses based on 

the developed method. 

 

Table 7.5: The convergence study for the laminated composite curved tube. 

     Order 

number 

 

Normalized  

Stress 

The 0th order 

(Difference) 

Up to the 1st 

order 

(Difference) 

Up to the 2nd 

order 

(Difference) 

Up to the 3rd 

order 

(Difference) 

Up to the 4th 

order 

(Difference) 

FEM 

Radial stress 4.54 (35%) 4.10 (22%) 3.76 (12%) 3.59 (7%) 3.53 (5%) 3.36 

Hoop stress -51.05 (37%) -46.58 (25%) -41.36 (11%) -39.50 (6%) -39.12 (5%) -37.26 

Longitudinal 

stress 

-107.85 

(33%) 
-97.31 (20%) -89.20 (10%) -85.14 (5%) -84.33 (4%) -81.09 

 

The interlaminar radial stress, 𝜎zz, at the middle surface (r=30 mm, 90°/0° interface) of the 

[90°20/0°20] laminated orthotropic curved tube obtained based on the present method and FEM 

(ANSYS) is compared in Figure 7.3a. Good agreement between theoretical analysis and FEM 

(ANSYS) results based on the final mesh is obtained. The analyzing of the laminated 

orthotropic curved tube using ANSYS based on the initial mesh, Mesh Number 1, takes 

around 1800 seconds while it takes around 4000 and 6000 seconds for Mesh Numbers 2 and 

3, respectively; while the analyzing of the same structure (same lay-up) based on the 
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developed method considering up to the 3rd order takes 310 seconds. In addition, to 

understand better the stress behavior, the polar distribution of the radial stress, 𝜎zz, at the 

middle surface of the composite curved tube obtained by the present method is shown in 

Figure 7.3a. Note that in all polar distributions in the rest of this chapter, blue circle represents 

the zero stress condition while red lines represent the stress distributions. In addition, the 

lengths of arrows represent the magnitudes of stresses. Therefore, those red lines where are 

placed inside the blue circle represent the compressive stress while the other red lines where 

are placed outside of the blue circle represent the tensile stress. 

 

 

Figure 7.3a: Comparison of the radial stress, 𝜎zz, obtained using the present method and ANSYS at the 90°/0° 

interface of the [90°20/0°20] laminated curved tube. 
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Figure 7.3b: Comparison of the interlaminar radial stress, 𝜎zz, obtained using the present method and ANSYS of 

the [90°20/0°20] laminated curved tubes at ϕ=270° along tube thickness. 

 

To ensure the verifications are done in all layers of the laminated composite curved tube, the 

comparison must be performed by using the developed method and FEM (ANSYS) based on 

the final mesh along tube thickness. Figure 7.3b presents the comparison of the interlaminar 

radial stress, 𝜎zz, of the [90°20/0°20] laminated orthotropic curved tube at ϕ=270° along the 

tube thickness based on the present method and ANSYS based on the final mesh. There is a 

good agreement seen along tube thickness. Note that the maximum magnitude of the 

interlaminar radial stress occurs at z=0 mm where is the last 90°-ply placed (i.e., layer 20). 

Therefore, these layers tend to separate from 0°-plies, with the largest possibility. The 

interlaminar radial stress, 𝜎zz, is zero at the inside and outside surfaces of the composite 

curved tube as expected from Eqs. (7.13) (Nz
k=0 at z= ±h/2). 

Figure 7.4a compares the hoop stress, 𝜎ϕϕ, obtained based on the proposed method and FEM 

(ANSYS) over cross section at the outside surface of the [90°20/0°20] laminated orthotropic 

curved tube. Good agreement between theoretical analysis and FEM (ANSYS) results using 

the final mesh is obtained. Note that the hoop stress, 𝜎ϕϕ, is compressive from 45° to 135° and 

225° to 315°. In addition, the maximum values of the hoop stress are negative and they occur 

at ϕ=90° and then, at ϕ=270°. 
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Comparison of the hoop stress, 𝜎ϕϕ, of the [90°20/0°20] laminated orthotropic curved tube at 

ϕ=90° along tube thickness using the developed method and ANSYS based on the final mesh 

is shown in Figure 7.4b. The final mesh used in FEM to obtain results makes a good 

agreement along the tube thickness. Note that the 0° layer-group experiences a compressive 

stress while the hoop stress of the 90° layer-group (in the inner surface of the curved tube) is 

tensile. The maximum positive of the hoop stress in the [90°20/0°20] laminated orthotropic 

curved tube occurs at the largest-diameter 90°-ply while the maximum negative of the hoop 

stress occurs at the outside surface. 

 

 

Figure 7.4a: Comparison of the hoop stress, 𝜎ϕϕ, obtained using the present method and ANSYS at the outside 

surface of the [90°20/0°20] laminated curved tube. 
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Figure 7.4b: Comparison of the hoop stresses, 𝜎ϕϕ, obtained using the present method and ANSYS of the 

[90°20/0°20] laminated curved tube at ϕ=90° along tube thickness. 

 

 

Figure 7.5a: Comparison of the shear stresses, 𝜎θz, and 𝜎ϕθ, obtained using the present method and ANSYS at the 

90°/0° interface of the [90°20/0°20] laminated curved tube. 
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Figure 7.5b: Polar distributions of the shear stresses, 𝜎θz, and 𝜎ϕθ, obtained using the present method at the 

90°/0° interface of the [90°20/0°20] laminated composite curved tube. 

 

The comparison of the shear stresses, 𝜎θz and 𝜎ϕθ, over cross section at the middle surface of 

the [90°20/0°20] laminated orthotropic curved tube obtained based on the present method and 

FEM (ANSYS) is presented in Figure 7.5. Good agreement is seen for the results obtained 

using the developed method with the results obtained using FEM based on the final mesh. 

Note that the shear stress, 𝜎θz, is positive at the whole upper region of the cross section (180° 

to 360°) while the other shear stress, 𝜎ϕθ, is tensile from 0° to 60° and 300° to 360°. In 

addition, the maximum positive values of 𝜎θz occur at ϕ=225° and ϕ=315° of the tube cross 

section while maximum negative values of the shear stress, 𝜎ϕθ, occur at ϕ=45° and ϕ=135°. 

Figure 7.5b presents the polar distributions of the shear stresses, 𝜎θz and 𝜎ϕθ, over cross 

section at the middle surface of the [90°20/0°20] laminated composite curved tube obtained 

based on the present method. 

The comparisons of the longitudinal stress, 𝜎θθ, and the shear stress, 𝜎zϕ, obtained based on 

the developed method and FEM (ANSYS) using the final mesh over cross section at the 

inside, middle and outside surfaces of the [90°20/0°20] laminated orthotropic curved tube are 

plotted in Figures 7.6a and 7.6b, respectively. The results show good correspondence in all 

plotted layers. Observing from Figure 7.6a that the maximum longitudinal stress, 𝜎θθ, at the 

middle and outside surfaces is compressive and it occurs at ϕ=-90°, while at the inside surface 
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it occurs at ϕ=90° and it is tensile. It is seen that the longitudinal stress is compressive at the 

upper region of the composite curved tube cross section. 

 

  
Figure 7.6a: Comparison of the longitudinal stress, 𝜎θθ, obtained using the present method and ANSYS over 

cross section at the inside, middle and outside surfaces of the [90°20/0°20] laminated curved tube. 

 

Figure 7.6b shows that the shear stress, 𝜎zϕ, is positive from 0° to 90° and 180° to 270°. The 

positive maximum values for 𝜎zϕ occur at ϕ=45° and then, at ϕ=225°. Note that the trends of 

the shear stress, 𝜎zϕ, for the inside, middle and outside surfaces are the same. The magnitude 

of the shear stress, 𝜎zϕ, for the middle surface is maximum while the magnitude of the shear 

stress, 𝜎zϕ, for the outside surface is minimum, in comparison with the other surfaces. 

To examine the accuracy of the developed method for complex lay-up sequences, the thick 

[(90°10/0°10)3/±45°25] laminated composite curved tube is selected for the comparison 

purpose. Note that this lay-up sequence was used to manufacture a thick straight tube used for 

composite helicopter landing gear applications [1]. Figure 7.7 presents the comparison of the 

interlaminar radial stress, 𝜎zz, of the thick [(90°10/0°10)3/±45°25] laminated composite curved 

tube at ϕ=270° along the tube thickness based on the present method and ANSYS based on 

the final mesh. There is a good agreement seen along tube thickness. 
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Figure 7.6b: Comparison of the shear stress, 𝜎zϕ, obtained using the present method and ANSYS over cross 

section at the inside, middle and outside surfaces of the [90°20/0°20] laminated curved tube. 

 

 

Figure 7.7: Comparison of the interlaminar radial stress, 𝜎zz, obtained using the present method and ANSYS of the 

[(90°10/0°10)3/±45°25] laminated composite curved tubes at ϕ=270° along tube thickness. 
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7.5.2.2. Comparison of the Proposed Method with Experimental Data 

In this section, the proposed method results are validated against the experimental data. 

The bending behavior of thick composite straight tubes was investigated experimentally [1]. 

The thick [90°20/0°20] thermoplastic composite straight tubes were manufactured using 

automated fiber placement technique and tested using a four-point bending test setup. The 

properties of the manufactured composite tube are given in Table 7.3. In the experimental 

investigation [1], the strain gage was used at the top line of the composite straight tube 

(ϕ=90°) to measure strains at the mid-span as seen in Figure 7.8a. A composite straight tube is 

modeled using the present method by assuming the bend radius R to be very large compared 

to r, so that a curved tube will be close to a straight tube (see Figure 7.8a). Since the 

experimental strains are measured at mid-span of the straight tube, the theoretical strains are 

obtained based on the proposed method at θ=0° of the curved tube, for the comparison 

purpose. The measured strain results are compared with the calculated strain results using the 

proposed method at ϕ=270°. In Figure 7.8b, the force variation versus experimental axial 

strains is shown. The theoretical analysis results in good agreement with the observations 

from the experiment done in [1]. As Figure 7.8b shows, the theoretical results are getting 

closer to experimental results with increasing R/a, while the shape of the curved tube is 

getting closer to the straight tube. 

 

 
 

Figure 7.8a: Four-point bending test and a composite curved tube. 
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Figure 7.8b: Load-axial strain at the mid-span. 

 

7.5.2.3. Comparison of the Proposed Method with a Solution in Literature 

Jolicoeur and Cardou [9] presented a solution to obtain stresses in an orthotropic straight 

hollow circular cylinder subjected to bending, tensile and torsion loads. The solution was 

developed just for angle-ply lay-up sequences. Here, that solution under bending moment [9] 

was programed so that it is compared with the present method. The [25°20/-25°20] lay-up 

sequence for a composite straight tube with the same geometrical and mechanical properties 

used in the previous sections is considered based on Jolicoeur and Cardou [9] to make 

comparison with the results obtained based on the present method. A composite straight tube 

is modeled based on the present method by assuming the bend radius R to be large compared 

to r. In order to obtain stresses using the proposed method, the solution up to the 3rd order is 

taken in the theoretical procedure. 

Figure 7.9 shows the convergence of the interlaminar radial stress, 𝜎zz, obtained based on 

the present method against Jolicoeur and Cardou solution [9] at ϕ=90° along the tube 

thickness of the [25°20/-25°20] laminated orthotropic curved tube considering different 

R/a=10, 50, 100, 300 and 500 ratios. It is observed that the magnitude of the interlaminar 
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radial stress decreases with increasing R/a ratios. With considering R/a=500 in the proposed 

method, the radial stress is in good agreement with the results obtained based on reference [9]. 

Note that with increasing R/a ratio, the shape of the composite curved tube is getting closer to 

the composite straight tube. 

 

 

Figure 7.9: Convergence of the radial stress, 𝜎zz, obtained using the present method against another solution at 

ϕ=90° along tube thickness of the [25°20/-25°20] laminated curved tube considering different R/a ratios. 

 

The convergence of the hoop stress obtained using the present method against Jolicoeur and 

Cardou solution [9] at ϕ=90° along tube thickness of the [25°20/-25°20] laminated orthotropic 

curved tube considering different R/a=10, 50, 100, 300 and 500 ratios is plotted in Figure 

7.10. By using R/a=500 in the proposed method, good correlation between the results 

obtained based on two methods is seen in Figure 7.9. In addition, the magnitude of the hoop 

stress decreases as the shape of the composite curved tube is getting closer to the composite 

straight tube with increasing the R/a ratio. 
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Figure 7.10: Convergence of the hoop stress, 𝜎ϕϕ, obtained using the present method against another solution at 

ϕ=90° along tube thickness of the [25°20/-25°20] laminated curved tube considering different R/a ratios. 

 

7.5.3. Advantages of the Proposed Method 

 Indeed, one can use FEM to analyze thick composite curved tubes. However, for 

structures such as thick laminated composite curved tubes where the geometry is not that 

complex (the only complexity is the layers in the thickness), the use of FEM is unnecessarily 

cumbersome. The discretization has to be done along three directions (axial, circumferential 

and radial). In addition, to keep the aspect ratio between different directions of the element to 

be reasonable, one has to use a large number of elements. Each time one changes some 

parameters such as number of layers, orientation of layers, length, radius of curved tube, etc. 

The structure has to be re-meshed which is time-consuming. The method we propose does not 

require meshing. It simplifies greatly inputs that the user has to do, once the program for 

solution is available. This presents a clear advantage over FEM. Therefore, the most 

important advantage of the proposed method is that inputs for the modeling of composite 

curved tubes with complex lay-up sequences are simple, easy to use and fast to run. 
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Note that it is almost impossible for real composite structures to use a large number of 

elements since there are many layers of small thickness. Therefore, the laminated 

approximation in thickness direction has to be employed not only for laminated shell elements 

but also for composite solid elements. For this reason, researchers are always interested in 

theoretical methods for composite structures. LWT is a popular candidate to obtain the 

solution with more accuracy for composite structures. However, for general composite 

structures subjected to different mechanical loadings, LWT can only be used in the thickness 

direction together with the company of FEM in other directions. For this sense, LWT can only 

be considered as a better laminated approximation in the thickness direction than CLT (the 

classical lamination theory). In this chapter, the accurate solution for thick laminated 

composite curved tubes is obtained not only by using LWT in the thickness direction (i.e., the 

radial direction) as a general case but also by using displacement approach of Toroidal 

Elasticity in other directions, including the longitudinal direction. To add to the advantages, 

high efficiency in terms of computational time is obtainable when the proposed method is 

used as compared with FEM. 

 

7.6. Conclusion 

The displacement-based approaches were used to investigate stresses in thick orthotropic 

curved tubes subjected to pure bending moment. The most general form of the displacement 

field of laminated orthotropic curved tubes was derived using Toroidal Elasticity (TE) and 

layer-wise method. The accuracy of the results was examined by comparing the experimental 

results and those obtained from the proposed method. The numerical results showed good 

agreement between the present method with the experimental results, FEM (ANSYS) and a 

solution available in the literature. Furthermore, the present method was found to be more 

cost effective and accurate in order to gain an in-depth and comprehensive understanding of 

stress analysis of composite curved tubes; therefore, it is employed to obtain stresses instead 

of using FEM. 
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Chapter 8 

 

 

 

 

 

 

 

This chapter presents failure analysis of thick laminated composite curved tubes subjected to 

pure bending moment. By employing results of the proposed method, the progressive failure 

analysis is performed using Tsai-Wu criterion. Effects of lay-up sequences of thick composite 

curved tubes on stress distributions and failure sequences are investigated. 
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Abstract 

In the present chapter, the failure analysis on thick laminated composite curved tubes 

subjected to pure bending moment is conducted by proposing a novel high-order 

displacement-based method. The most general displacement field of elasticity of thick 

laminated composite curved tubes is developed by employing a displacement approach of 

Toroidal Elasticity and a layer-wise method. Subsequently, the accuracy of the proposed 

method is verified by comparing the numerical results obtained using the proposed method 

with finite element method (FEM) and experimental data. By employing the results of the 

proposed method, the progressive failure analysis is performed using Tsai-Wu criterion. 

Finally, effects of lay-up sequences of thick composite curved tubes on stress distributions 

and failure sequences are investigated. 

 

Keywords: Thick laminated composite curved tubes; Toroidal Elasticity; Layer-wise method; 

Stress analysis; Progressive failure analysis; Lay-up sequences. 

 

8.1. Introduction 

Composite straight and curved tubes are used as primary load-bearing structures in many 

engineering fields such as aerospace, offshore and infrastructure industries. One such 

application is that of the cross-piece for helicopter landing gears. These structures usually are 

moderately thick and they are subjected to certain loads such as tension, torsion, shear and 

bending. The study on failure behavior of composite tubes subjected to mechanical loadings is 

required to figure out their design capability. Due to the anisotropic behavior, composite 
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curved tubes are much more difficult in analysis especially in an ultimate failure analysis than 

an isotropic tube. Moreover, prediction of the state of stress and strain in different layers of 

laminated composite tubes is of theoretical interest and practical importance. The accurate 

evolution of stresses is essential for failure analysis and better design of these structures. A 

large number of studies have been conducted to obtain stresses and perform failure analysis 

on composite straight and curved tubes. 

 

8.1.1. Stress Analysis 

8.1.1.1. Isotropic Curved Tubes 

Von Karman [71] found a theoretical explanation for the phenomenon of a curved tube 

having more flexibility in bending than a straight one. The particular case of the Karman 

problem, the so-called Brazier effect, which included the buckling analysis of straight or 

curved tubes, was more complex [101]. Their works provided the fundamentals for much of 

the subsequent tube analyses. Boyle [102] used a nonlinear theory of shells to formulate the 

tube bending problem. Emmerling [103] determined the nonlinear deformation of elastic 

curved tubes subjected to bending loads. He also studied the pre-critical deformation of tubes 

based on the semi-membrane theory. Levyakov and Pavshok [104] investigated a thin elastic 

curved tube subjected to pure bending by using finite element method. In addition, the 

buckling behavior of curved tubes was analyzed and effects of geometrical parameters of 

tubes on the critical bending moment were studied. The stress analysis of curved tubes 

subjected to in-plane bending was performed based on finite curved elements [105]. A fifth-

order polynomial and Fourier series were used to define displacement components. 

Kolesnikov [106] analyzed large pure bending deformations of homogenous, incompressible, 

isotropic and hyperelastic curved tubes with a closed cross-section. The equilibrium equations 

were reduced to ordinary differential equations in his chapter based on the membrane 

assumptions. Yudo and Yoshikawa [107] used nonlinear FEA to study the buckling 

phenomenon for straight and curved tubes under a pure bending moment. Effects of a cross-

sectional deformation on elastic buckling moment were investigated by considering the 

length-to-diameter ratio and the diameter-to-thickness ratio. 
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8.1.1.2. Orthotropic Curved Beams and Tubes 

Ting [108] and Chen et al. [109] investigated a cylindrical anisotropic circular tube 

subjected to pressure, shear, torsion and extensive loads for axisymmetric deformation of a 

homogeneous tube assuming the stresses as a function of radial distance. Shearing and radial 

stresses in curved beams were developed based on satisfying both equilibrium equations and 

static boundary conditions on the surfaces of beams [58]. Dryden [59] obtained stress 

distributions across a functionally graded circular beam subjected to pure bending by using 

stress functions. The free vibration analysis was performed on functionally graded beams with 

curved axis by using the finite element method to discretize the motion equations [63]. A first 

order shear deformation theory was used to study static and free vibration behavior of 

generally laminated curved beams [64]. Wang and Liu [66] presented elasticity solutions for 

curved beams with orthotropic functionally graded layers subjected to a uniform load on the 

outer surface by means of Airy stress function method. A mathematical model was developed 

to analyze the mechanical behavior of laminated glass curved beams [67]. 

 

8.1.2. Failure Analysis 

Thuis and Metz [110] investigated effects of the lay-up sequence on the energy absorption 

of composite cylinders loaded in compression. Different failure modes for the different 

laminates were observed. An energy based failure model was used to analyze the impact 

resistance of laminated composite shells [111]. Effects of pressure and curvature on the 

impact response were investigated. In another work [112], ABAQUS finite element code was 

used to study composite laminates and shell structures subjected to low-velocity impact. 

Element type, impactor modeling method, meshing pattern and contact modeling were 

investigated to obtain an accurate solution. Ismail et al. [113] studied buckling failures of thin 

composite cylindrical shells under axial compressive loading. Initial geometric and loading 

imperfections were investigated to find out their effects on buckling failure. Romano et al. 

[114] performed a progressive failure analysis to study both post buckling and final failure of 

damaged composite stiffened panels subjected to compressive load. Damage locations and the 

reduction of the panel stiffness were studied. Mahdavi et al. [115] investigated different 

failure mechanisms of filament-wound tubes subjected to tensile forces. They obtained the 
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hoop and tensile strength of tubes with the specific geometry and layer numbers. Chaudhuri 

[116] studied long thick composite cylindrical shells subjected to applied hydrostatic pressure. 

Effects of modal imperfections, transverse shear/normal deformation on propagation of 

fracture mode were analyzed. Tan et al. [117] performed experimental tests to investigate 

failure mechanisms of a quasi-isotropic CFRP laminate, containing a circular hole, under 

combined tension and shear or compression. 

The above review shows that there is a need to work on stress and failure analyses for thick 

composite curved tubes subjected to mechanical loadings. Although finite element methods 

are used for analyzing such structures, it is necessary to do meshing for each structure every 

time some dimensions or lay-up sequences are changed. In response to this need for an 

alternative, rapid and low computational cost method, the focus of this chapter is to propose a 

method where inputs to obtain solutions are simple; i.e. one only needs to enter in the actual 

dimensions or lay-up sequences without re-meshing work. The present chapter is devoted to 

develop a method that can provide stresses, strains and displacements for thick composite 

curved tubes subjected to pure bending moment with simple inputs. Displacement approach of 

Toroidal Elasticity (TE) and layer-wise method are used. Comparison is made between results 

obtained for the proposed analytical method with experimental data and FEM. There is a good 

agreement of the developed method with experimental data and FEM. Practical lay-up 

sequences are considered to study their effects on stress distributions of thick laminated 

composite curved tubes. Finally, the progressive failure analysis using Tsai-Wu criterion is 

conducted to determine maximum bending moments and failure sequences of thick composite 

curved tubes. 

 

8.2. Motivation 

Conventional helicopter landing gears consist of two skids running along the main 

direction of the helicopter, and two parallel cross tubes connecting the skids together. The 

cross tubes of the helicopter landing gear consist of both straight and curved tubes which 

support the weight of the helicopter. Despite the numerous advantages of composite materials, 

they generally suffer from poor impact resistance, poor fracture toughness and poor 

delamination strength when used in the aforementioned applications. These problems are 
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addressed by using thermoplastic-matrix composites. Derisi [1] designed and manufactured 

thermoplastic composite straight tubes for helicopter landing gears. Another technique to 

solve the drawbacks of thermoset-matrix composites, such as poor delamination strength, is 

the lay-up sequence design. Recently, a method for stress analysis of thick composite straight 

tubes subjected to cantilever loading was developed [92, 97]. Now, in order to provide some 

insight into the mechanical behavior of the curved part of composite helicopter landing gears, 

a simple-input displacement-based method is developed. Specifically, the method is used to 

evaluate stresses and perform failure analysis in thick laminated composite curved tubes. 

 

8.3. Formulation 

First, in Section 8.3.1, the displacement field for a composite curved tube with a single 

layer is derived using Toroidal Elasticity and the method of successive approximation. Then, 

in Section 8.3.2, by using the developed displacement field of single-layer composite curved 

tubes and layer-wise method, a new displacement-based method is proposed to analyze thick 

laminated composite curved tubes. Note that the detailed derivations are found in [99, 118]. 

Here, the necessary formulations are explained briefly allowing readers to understand the 

procedure. 

 

8.3.1. Displacement Field of Single-layer Composite Curved Tubes 

Toroidal elasticity is a three dimensional theory used for the elastostatic analysis of thick 

curved tubes. Here, a displacement approach of Toroidal Elasticity is chosen to analyze 

composite curved tubes. The governing equations are developed in three toroidal coordinate 

system. The method of successive approximation is used to obtain the displacement field of 

single-layer composite curved tubes. 

 

8.3.2. Governing Equations in Toroidal Coordinates 

A thick laminated composite curved tube with a bend radius R, mean radius R1 and 

thickness h is subjected to a pure bending moment, M, as shown in Figure 8.1a. Annular cross 

section is bounded by radii a and b. Toroidal coordinate system (r, ϕ, θ) is placed at the mid-
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span of the composite curved tube where r and ϕ are polar coordinates in the plane of the 

curved tube cross section and θ defines the position of the curved tube cross section. 

 

 

(a) 

(b)    

Figure 8.1: (a) Geometry and the coordinate system of a composite curved tube. (b) The lay-up sequence in a 

thick laminated composite curved tube. 

 

Zhu and Redekop [87] have given a derivation of the governing equations for linear three-

dimensional theory of elasticity in the toroidal coordinates for isotropic materials. The theory 

is extended here to cover the case for orthotropic materials. The toroidal governing equations 

are presented as [87]: 
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where u, v and w represent the displacement components in the r, ϕ and θ directions, 

respectively. For orthotropic materials, the constitutive equations are [91]: 
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where 
 k

ijC  represent the off-axis stiffnesses. Upon substitution of Eqs. (8.2) into Eq. (8.3), 

the stress-displacement relations are obtained: 
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Substituting Eq. (8.4) into Eq. (8.1), the governing Navier equations in toroidal coordinates 

are obtained as: 
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where the coefficients in Eq. (8.5) are defined in [99]. The three Navier equations serve as the 

fundamental equations for the displacement-based Toroidal Elasticity. Eqs. (8.5) are 

composed of three parts. The first part is independent of 1/ρ. The second part and the third 

part are linear and non-linear parts of 1/ρ. The Navier equations (Eq. (8.5)) in the toroidal 

coordinate system are much more complicated than those in Cartesian system are. As it is 

impossible to find an exact solution for the Navier equations, the method of successive 

approximation is used to obtain an approximate solution. 

 

8.3.3. General Solution for In-plane Pure Bending 

A direct solution is formulated to avoid the complications, which arise from the use of 

stress function. The solution for the displacement is thus sought in the following form: 
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The quantities a, b, c, m, �̅� and n are constants and parameters, which are determined in the 

reference [99]. Eventually, the general form displacement field of single-layer composite 

curved tubes of the kth plane and up to the nth order is presented as (the detailed derivation is 

found in [99]): 
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where
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with n, here and in what follows, being a dummy index implying summation of orders from 

n=0 to the nth order. 
 k

ijC  represents the off-axis stiffnesses. Also, n and k present the order 

number (i.e., n=0, 1, 2, 3, 4,…) and plane number (i.e., k=1, 2,…, N+1), respectively. 

 

8.3.4. Displacement Field of Thick Laminated Composite Curved Tubes 

8.3.4.1. Layer-wise Theory (LWT) 

The equivalent single-layer theories are not able to precisely find stresses and strains in 

laminated composite structures. However, LWT allows each layer of the laminate to act like a 

real three-dimensional layer while being able to present good results for the local quantities. 

In LWT, the displacement components of a generic point in the laminate are assumed as: 
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with k, here and in what follows, being a dummy index implying summation of terms from 

k=1 to k=N+1. Note that z is the local direction starting from the mid-thickness of the curved 

tube cross section (see Figure 8.1b). The variable N corresponds to the total number of 

numerical layers within the laminated composite curved tube. In Eq. (8.9), U, V and W 

represent the total displacement components in the z, ϕ and θ directions, respectively. 

Moreover, uk(ϕ,θ), vk(ϕ,θ) and wk(ϕ,θ) represent the displacements of the points initially 

located at the kth plane within the laminated composite curved tube in the z, ϕ and θ 

directions, respectively. Φk(z) is the global Lagrangian interpolation function associated with 

the kth plane. Depending upon the polynomial order of the interpolation function, Eq. (8.9) 

exhibits piecewise polynomial variation. Note that the accuracy of LWT is enhanced by 

subdividing each physical layer into a finite number of numerical layers. Clearly, as the 

number of subdivisions (p) through-thickness is increased, the number of governing equations 

and the accuracy of the results are increased. 

The procedure for solving a specific problem can now be outlined. The displacement 

components of single-layer composite curved tubes are taken based on Eq. (8.7). By applying 

layer-wise method, Eq. (8.9), the displacement components of thick laminated composite 

curved tubes are obtained. Then, by employing the displacement components and their 

corresponding strains in the principle of minimum total potential energy and using the 

fundamental lemma of calculus of variations, the equilibrium equations of composite curved 

tubes under pure bending moment are derived. 

According to the previous discussion, by applying the LWT displacement field (Eq. (8.9)) 

on general displacement field of single-layer composite curved tubes in Eq. (8.7), the 

elasticity displacement field of thick laminated composite curved tubes is rewritten up to the 

nth order in following form as: 
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By employing linear interpolation functions, the continuity of displacement components 

through-thickness of laminate is identically satisfied. Thus, Eqs. (8.10) are represented as: 
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In order to satisfy the interfacial continuities of the displacement components, it is necessary 

that the constants appearing in Eqs. (8.11) (i.e., an, bn, cn, dn, en and fn) to be the same for all 

layers. The linear global interpolation function is defined as: 
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where 
i

k (i=1 and 2) are the local Lagrangian linear interpolation functions, with hj is the 

thickness of the jth layer. By introducing r=R1+z and cosR r    (see Figure 8.1b), the 

strain-displacement relations are as given as: 
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The equilibrium equations of a thick composite curved tube with N numerical layers are 

obtained by employing Eq. (8.13) in the principle of minimum total potential energy [90], 

carrying out necessary integrations and employing the fundamental lemma of calculus of 

variations. The results are, in general, 3(N+1) local equilibrium equations corresponding to 

3(N+1) unknown functions Uk, Vk and Wk and, in general, six global equilibrium equations for 

every order (n=0, 1, 2, 3,…) up to the nth order associated with the six parameters an, bn, cn, 
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dn, en and fn of the same order. The equilibrium equations of thick laminated composite curved 

tubes under bending moments up to the nth order are obtained as: 
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where the functions Θ1, Θ2, Θ3, Θ4, Θ5 and Θ6 in Eqs. (8.15) are defined in [118]. Note that 

M represents the bending moment applied at both ends of the composite curved tube as shown 

in Figure 8.1a. The generalized stress and moment resultants are defined as: 
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Note that the numbers of the global equilibrium equations, Eqs. (8.15), depend on the 

numbers of unknown constants are employed in Eq. (8.11) to develop the displacement field 

for laminated composite curved tubes. Based on the detailed derivation in [99], there are one 

unknown constant for the zeroth order (i.e., a0), five unknown constants for the 1st order (i.e., 

a1, b1, c1, e1 and f1) and six unknown constants for the nth order (n=2, 3,…) (i.e., an, bn, cn, dn, 

en and fn). Table 8.1 presents unknown constants and corresponding global equilibrium 

equations, which are used to calculate them. 

 

Table 8.1: Unknowns and equations. 

Type Unknown constants Equation number 

The zeroth 

order  
a0 of the zeroth order Eq. (8.15a) for n=0 

Up to the 

1st order 

a0 of the zeroth order Eq. (8.15a) for n=0 

a1, b1, c1, e1 and f1 of the first order 
Eqs. (8.15a), (8.15b), (8.15c), (8.15e) 

and (8.15f) for n=1 

Up to the 

2nd order 

a0 of the zeroth order Eq. (8.15a) for n=0 

a1, b1, c1, e1 and f1 of the first order 
Eqs. (8.15a), (8.15b), (8.15c), (8.15e) 

and (8.15f) for n=1 

a2, b2, c2, d2, e2 and f2 of the 2nd order 
Eqs. (8.15a), (8.15b), (8.15c), (8.15d), 

(8.15e) and (15f) for n=2 

Up to the 

nth order 

a0 of the zeroth order Eq. (8.15a) for n=0 

a1, b1, c1, e1 and f1 of the first order 
Eqs. (8.15a), (8.15b), (8.15c), (8.15e) 

and (8.15f) for n=1 

an, bn, cn, dn, en and fn of the nth orders 

n=2, 3, … 

Eqs. (8.15a), (8.15b), (15c), (8.15d), 

(8.15e) and (8.15f) for n=2, 3, … 

 

The following boundary conditions must be satisfied on the free inner and outer curved 

surfaces: 

     0 at z= ±h/2 1,2,..., 1 8.17k k k

x zR Q N k N       

Note that in Eq. (8.17) the superscript k refers to the kth interface in the laminated composite 

curved tube. By substituting the strain-displacement relations into three-dimensional 

constitutive law [90] and the subsequent results into Eq. (8.16), the stress resultants based on 

displacement components are obtained which are presented in [118]. The local displacement-

based equilibrium equations are obtained by substituting Eqs. (8.16), the stress resultants 

based on displacement components, into Eqs. (8.14). In addition, the global equilibrium 
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equations of laminated composite curved tubes are expressed in terms of displacement 

functions by substituting the strain-displacement relations into three-dimensional constitutive 

law and the subsequent results into Eqs. (8.15). 

 

8.4. Analytical Solution 

 The system of local displacement equilibrium equations (Eq. (8.14)) shows 3(N+1) 

coupled ordinary differential equations with constant coefficients which may be displayed in a 

matrix form as: 

            1 2 8.18M K K F       

where 

        
             1 2 1 1 2 1 1 2 1

, ,

, ,..., , , ,..., , , ,..., 8.19

T
T T T

T T T

N N N

U V W

U U U U V V V V W W W W



  



  

 

The coefficient matrices [M], [K1], [K2] and {F} in Eq. (8.18) are defined in [118]. It is 

confirmed that the general solution of Eq. (8.18) is presented as [100]: 

       

 

              

                

 

0 0

1 1 1

0 0 1 0 0 0

0
1 1 1

0
1 0 0 0

0

exp

exp exp

exp

8.20

s

X T k

T s X s M K X T X

X ds

k u M K X T X M F u du



 


  

  

   

        
 
             




 

where 

 
   

   
1 1

0 1 2 1, ,..., 8.21
N N

NT diag T T T
  

  

And Ti (i=1, 2,..., N+1) are Jordan blocks associated to the eigenvalues of matrix [Q] where 

 
   

 
   

 
   

       
 

66 1 1

3 1 3 1 3 1 3

1

1

1 1

2

0
8.22

N N

N N N N
I

Q
M K M K

   

 



   
 
 
   
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In addition, 

 
   

   
3 1 3 1

0 1 2 1, ,..., 8.23
N N

NX X X X
  

  

where Xi (i=1, 2,..., N+1) are co-solutions of [Xi][Ti]
2+[M]-1[K1][Xi][Ti]+[M]-1[K2][Xi]=[0]. 

Vector {k} in Eq. (8.20) is unknown vector representing 3(N+1) integration constants. The 

constants an, bn, cn, dn, en and fn must be calculated within the analysis through the following 

steps: 

3. The boundary conditions in Eq. (8.17) are first imposed to calculate vector {k} in terms of 

the unknown constants an, bn, cn, dn, en and fn. 

4. These constants are then obtained by the satisfaction of the global equilibrium conditions 

in Eqs. (8.15) as presented in Table 8.1. 

 

8.5. FEM Analysis 

The stress analysis of the thick composite curved tube is conducted by finite element 

method using ANSYS. Stress distributions are also generated to compare with the results 

obtained using the proposed method. The element used to perform the analysis is the layered 

solid element, SOLID 185. A rigid surface is modeled and glued to both end surfaces of the 

composite curved tube. Then, a bending moment is applied to the center node of the surface 

meshed using shell elements, SHELL 181. This is how the bending moment applied for the 

composite curved tube in FEM. The mesh-independency study is done for ANSYS (see Table 

8.2). Mesh refining is performed two times while the element aspect ratio is kept constant. It 

is emphasized that for the initial mesh, Mesh Number 1, 3600 elements are used to model the 

structure. For Mesh Number 2, the thickness and circumferential directions are refined twice 

as much as the initial mesh. For Mesh Number 3, the axial and circumferential directions are 

refined twice as much as the initial mesh; and the thickness direction is refined 4 times as 

much as the initial mesh to model the curved tube (see Table 8.2). 
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Table 8.2: Mesh characteristics. 

Mesh 

Number 

Mesh size 

(Axial)×(Circumferential)×(Thickness) 

Number of 

elements 

Analyzing time 

(sec) 

1 9×10×40 3600 1800 

2 9×20×80 14400 4000 

3 18×20×160 57600 6000 

 

 

Figure 8.2: The mesh independency study of the laminated composite curved tube. 

 

The stress components are normalized as 𝜎𝑖𝑗=𝜎𝑖𝑗/𝜎0 where 𝜎0=(M.r)/(π/64*(OD4-ID4)) 

where the outer diameter and the inner diameter of the composite curved tube are presented as 

OD and ID, respectively. Figure 8.2 presents the radial and hoop stresses obtained using 

ANSYS for different mesh numbers mentioned in Table 8.2. As Figure 8.2b shows, the 

differences of stresses for Mesh Numbers 2 and 3 are less than 2%, therefore, Mesh Number 2 

is selected to obtain the results using FEM to compare with the theoretical results. Mesh 

Number 2 is named as the final mesh in the following sections. 

 

8.6. Lay-up Sequences for the Parametric Study 

Derisi [1] developed a lay-up sequence used for making straight tubes in helicopter 

composite landing gears that may provide large deformation and gradual fracture. Composite 
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straight tubes with the [90°20/0°20] and [90°30/±25°45/90°5/±30°20/90°5/±45°20] lay-up 

sequences were manufactured and four-point bending tests were performed. Table 8.3 shows 

two types of lay-up sequences considered here. The lay-up sequence of the [90°20/0°20] 

composite curved tube is selected to compare the numerical results obtained using the 

proposed method with finite element method (ANSYS) and experimental data for the 

composite straight tube subjected to pure bending moment. The 

[90°30/±α°45/90°5/±α°20/90°5/±45°20] lay-up, a systematic variation of the lay-up sequence, is 

selected in order to obtain generic knowledge from effects of lay-up sequences as presented in 

Table 8.3. The 90°-plies are placed at the innermost layer to resist the hoop stress. The ±45°-

plies, placed as a jacket at the outermost layer to provide large deformation, are necessary in 

lay-up sequences for composite helicopter landing gears. In addition, thin 90°-plies are placed 

between the layers to help connecting layers in the lay-up sequence to provide large 

deformation in the composite tube [1]. The latter is one of techniques, which addresses the 

composite toughness. Subsequently, thick [90°30/±α°45/90°5/±α°20/90°5/±45°20] laminated 

composite curved tubes are examined where α having the values of 0°, 25°, 30°, 45° and 60°. 

Note that the ±α° layer-groups are the main layers responsible for flexural and extensional 

stiffness of this specific thick composite curved tube. 

 

Table 8.3: Lay-up sequence number. 

Laminate 

number 
Application Lay-up sequence 

1 
Comparison with FEM 

and experimental data 
[90°20/0°20] 

2 Parametric study 
[90°30/±α°45/90°5/±α°20/90°5/±45°20] 

α=0°, 25°, 30°, 45° and 60° 

 

8.7. Results and Discussion 

All physical plies are assumed to have equal thickness (=0.1 mm [1]) and are modeled as 

being made up of p numerical layers. In all the subsequent calculations, p is set equal to 12 

[118]. The mechanical properties of the composite curved tube are given in Table 8.4 [1]. In 

addition, a thick laminated composite curved tube spanning a curved segment of 90° with 

R/a=10 is considered (unless otherwise mentioned). In the present cases, the thick laminated 

composite curved tube sections with the [90°30/±α°45/90°5/±α°20/90°5/±45°20] lay-up sequence 
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have an internal diameter of 56 mm and an external diameter of 98 mm, i.e. a wall thickness 

of 21 mm (totally 210 layers). The results are presented based on the proposed method at θ=0° 

(see Figure 8.1). Since the radial stress affects delamination and the hoop stress affects 

buckling, interlaminar radial and hoop stress distributions are investigated. 

 

Table 8.4: Mechanical properties of the composite curved tube. 

Mechanical properties Value 

E11 

E22=E33 

G12= G13= G23 

ʋ12=ʋ13 

ʋ23 

140 (GPa) 

10 (GPa) 

5.56 (GPa) 

0.31 

0.33 

 

8.7.1. Verifying the Proposed method 

The proposed method is compared and verified with FEM and experimental data. First, in 

Section 8.7.1.1, the results are compared for the composite curved tube using the developed 

method with FEM. In addition, the convergence study for the developed method is performed. 

Then, in Section 8.7.1.2, the verification is done with the experimental data for the case of the 

composite straight tube. 

 

8.7.1.1. Comparison of the Proposed Method for Laminated Curved tubes with FEM 

Here, the results obtained for a laminated composite curved tube using the developed 

method are compared with results obtained using FEM (ANSYS) based on the final mesh. To 

ensure the verifications are done in all layers of the laminated composite curved tube, the 

comparison must be performed by using the developed method and FEM (ANSYS) based on 

the final mesh along tube thickness. Figure 8.3 presents the comparison of the interlaminar 

radial stress, 𝜎zz, of the [90°20/0°20] laminated composite curved tube at ϕ=270° along the tube 

thickness based on the present method and ANSYS based on the final mesh. There is a good 

agreement seen along tube thickness between the theoretical analysis and FEM (ANSYS) 

results based on the final mesh. The analyzing of the thick composite curved tube using 

ANSYS based on the initial mesh, Mesh Number 1, takes around 1800 seconds while it takes 

around 4000 and 6000 seconds for Mesh Numbers 2 and 3, respectively, while the analyzing 
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of the same structure (same lay-up) based on the developed method considering up to the 3rd 

order takes 310 seconds. 

 

Figure 8.3: Comparison of the interlaminar radial stress, 𝜎zz, obtained using the present method and ANSYS of 

the [90°20/0°20] laminated curved tubes at ϕ=270° along tube thickness. 

 

Figure 8.4: Comparison of the hoop stresses, 𝜎ϕϕ, obtained using the present method and ANSYS of the 

[90°20/0°20] laminated curved tube at ϕ=90° along tube thickness. 
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Comparison of the hoop stress, 𝜎ϕϕ, of the [90°20/0°20] laminated composite curved tube at 

ϕ=90° along tube thickness using the developed method and FEM based on the final mesh is 

shown in Figure 8.4. The final mesh used in FEM to obtain results makes a good agreement 

along the tube thickness. Note that the 0° layer-group experiences a compressive stress while 

the hoop stress of the 90° layer-group (in the inner surface of the curved tube) is tensile. 

 

8.7.1.2. Comparison of the Proposed Method with Experimental Data 

In this section, the proposed method results are validated against the experimental data. 

The bending behavior of thick composite straight tubes was investigated experimentally [1]. 

The thick [90°20/0°20] thermoplastic composite straight tubes were manufactured using 

automated fiber placement technique and tested using a four-point bending test setup. The 

properties of the manufactured composite tube are given in Table 8.4. In the experimental 

investigation [1], the strain gage was used at the top line of the composite straight tube 

(ϕ=90°) to measure strains at the mid-span. A composite straight tube is modeled using the 

present method by assuming the bend radius R to be very large compared to r, so that a curved 

tube will be close to a straight tube. Since the experimental strains are measured at mid-span 

of the straight tube, the theoretical strains are obtained based on the proposed method at θ=0° 

of the curved tube, for the comparison purpose. The measured strain results are compared 

with the calculated strain results using the proposed method at ϕ=270°. In Figure 8.5, the 

force variation versus experimental axial strains is shown. The theoretical analysis results in 

good agreement with the observations from the experiment done in the reference [1]. As 

Figure 8.5 shows, the theoretical results are getting closer to experimental results with 

increasing R/a, while the shape of the curved tube is getting closer to the straight tube. 
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Figure 8.5: Load-axial strain at the mid-span. 

 

8.7.2. Effects of Lay-up Sequences on Stress Distributions 

The thick [90°30/±α°45/90°5/±α°20/90°5/±45°20] laminated composite curved tubes with 

considering α=0°, 25°, 30°, 45° and 60° which have 210 layers in total are selected to study 

stress distributions of the composite curved tube subjected to pure bending moment. The 

results are presented based on the proposed method. 

Figure 8.6 presents the comparison of the interlaminar radial stress, 𝜎zz, of the 

[90°30/±α°45/90°5/±α°20/90°5/±45°20] (for α=0°, 25°, 30°, 45° and 60°) laminated composite 

curved tubes subjected to pure bending moment at ϕ=90° along the tube thickness. The 

followings are observed: 

 The magnitude of the radial stress, 𝜎zz, of the [90°30/±45°45/90°5/±45°20/90°5/±45°20] 

composite curved tube is greater than those of the others are. It is observed that the 

maximum magnitude of the radial stress of different lay-up sequences occurs at z=-0.3 mm 

which is the last ply from the first 90° layer-group from the inside surface (i.e., layer 30). 

Therefore, these layers tend to separate from the ±α° layer-group, with the largest 
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possibility. Derisi [21] observed the same phenomena during the experimental tests for a 

composite straight tube with the same lay-up sequence. 

 The radial stress, 𝜎zz, of all composite curved tubes are compressive at ϕ=90° of the cross 

section. The maximum positive value of 𝜎zz of the [90°30/±α°45/90°5/±α°20/90°5/±45°20] 

composite curved tube occurs at ϕ=270° (compression zone). Note that the positive radial 

stress could cause delamination failure in composite tubes. 

 Radial stresses have the same trend for all lay-up sequences. 

 The location of the maximum magnitude of the interlaminar radial stress of the thick 

[90°30/±α°45/90°5/±α°20/90°5/±45°20] laminated composite curved tubes is investigated. 

Locally, it occurs at the end of 90° layer-group while globally, it occurs at the last ply of 

the innermost 90° layer-group. 

 The interlaminar radial stress is zero at the inside and outside surfaces of the composite 

curved tube. 

 

 

Figure 8.6: Comparison of the radial stress, σzz, of the [90°30/±α°45/90°5/±α°20/90°5/±45°20] laminated composite 

curved tubes for α=0°, 25°, 30°, 45° and 60° at ϕ=90° along the curved tube thickness. 
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Comparison of the hoop stress, 𝜎ϕϕ, of the [90°30/±α°45/90°5/±α°20/90°5/±45°20] (for α=0°, 25°, 

30° and 45°) laminated composite curved tubes subjected to pure bending moment at ϕ=90° 

along the tube thickness is shown in Figure 8.7. The followings are observed: 

 Fibers with orientation angles closer to 90° carry more the circumferential direction load. 

 The hoop stress, 𝜎ϕϕ, of the 90° layer-group of the [90°30/±0°45/90°5/±0°20/90°5/±45°20] 

composite curved tube is greater than those of the other lay-up sequences; because the 0°-

plies have less contributions in resisting the hoop stress. 

 The 0°-plies contribute little to the support of the hoop stress, 𝜎ϕϕ. 

 

 

Figure 8.7: Comparison of the hoop stress, 𝜎ϕϕ, of the [90°30/±α°45/90°5/±α°20/90°5/±45°20] laminated composite 

curved tubes for α=0°, 25°, 30° and 45° at ϕ=90° along the curved tube thickness. 

 

 The maximum positive of the hoop stress in the [90°30/±α°45/90°5/±α°20/90°5/±45°20] 

laminated composite curved tubes occurs at the outside surface while the maximum 

negative of the hoop stress occurs at the largest-diameter 90°-ply from the innermost 90° 

layer-group. 
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 The magnitude of the hoop stress, 𝜎ϕϕ, of the 45° layer-group of the 

[90°30/±α°45/90°5/±α°20/90°5/±45°20] laminated composite curved tube (for α=0°, 25°, 30° 

and 45°) is greater than those of the other ±α° layer-groups. This is explained by the fact 

that for composite curved tubes, 90° layers play the roles that enhance the hoop strength of 

a tube. Layers with the fiber orientation closer to 90° would bear more loads, and as such 

would have the higher hoop stress. 

 

8.7.3. Effects of Lay-up Sequences on Failure 

 In this section, failure analysis of the aforementioned tube is performed with 

investigating failure locations, failure sequences and failure modes. Following obtaining 

stress distributions in the composite tube by employing the proposed method, progressive 

failure analysis using Tsai-Wu criterion is done subsequently to find out the maximum 

bending moment and failure sequence of the thick laminated composite curved tube up to the 

final failure. This analysis shows the ability of the developed method to represent a low 

computational-cost method for failure analyzing thick composite curved structures. 

 

8.7.3.1. Procedure for the Failure Analysis 

 The procedure used to determine the ultimate bending moment and failure sequence is as 

follows: 

1. Use the developed method to find the local stresses in each ply under the assumed bending 

moment. 

2. Compare the stresses of each ply of the lay-up sequence with the failure criterion. 

3. Once failure is predicted, the elastic properties of that ply are degraded before the analysis 

is resumed as follows: 

[E11, E22, Gij, ν12, ν23] → [0.01E11, 0.01E22, 0.01Gij, 0.01ν12, 0.01ν23] 

where E11, E22, Gij and νij are the longitudinal modulus, transverse modulus, shear modulus 

and Poisson’s ratio, respectively. 

4. Use again the developed method to find the local stresses under the same assumed bending 

moment to re-check the failure for each ply. 

5. Apply the incremental bending moment and go to step 1. 
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6. Continue the above steps with the reduced properties until all plies in the laminated 

composite curved tube have failed. The maximum bending moment where all plies of the 

lay-up sequence have failed is called the ultimate bending moment for the composite tube. 

Note that the properties of the materials are defined in Table 8.5 [1]. A parametric study is 

performed to examine effects of lay-up sequences on the maximum bending moment of the 

thick laminated composite curved tubes. 

 

Table 8.5: Mechanical properties of Carbon AS4/PEKK. 

Material properties Value 

0° Tension strength 

90° Tension strength 

0° Compression strength 

90° Compression strength 

Interlaminar shear strength 

In-plane shear strength 

2.42 (GPa) 

0.044 (GPa) 

1.561 (GPa) 

0.24 (GPa) 

0.1 (GPa) 

0.175 (GPa) 

 

8.7.3.2. Prediction of the Failure Sequence 

 Figure 8.8 presents the cross section of the thick laminated composite curved tube. The 

failure sequence in different layers of the [90°30/±α°45/90°5/±α°20/90°5/±45°20] composite 

curved tube based on the developed method using the mentioned failure procedure is shown 

by locations 1 to 6 in Figure 8.8. The failure starts in the lower part (i.e., ϕ=270°) of the 

composite curved tube where is under the tensile interlaminar radial stress and then jumps to 

the upper part (i.e., ϕ=90°) of the composite curved tube where is subjected to the 

compressive interlaminar radial stress. The detailed failure sequences are explained as follow: 

1. 90º-plies are expected to fail first since these layers have minimum bending stiffness in the 

bending loading condition. There are three 90º layer-groups in the lay-up sequence. As the 

bending moment increases, the stress at the lower part of 90°5 layers, indicated with 

location 1, exceeds the failure criterion of 90º layers, and this layer fails. 

2. Further increase in the bending moment will cause the stress in other two 90º layer-groups 

(i.e., 90°5 and 90°30 layers) to overpass from the failure criterion of 90º layers. Therefore, 

the subsequent failed layers are shown in Figure 8.8 by locations 2 and 3. 
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3. At higher bending moment levels, the ±α° layer-groups in the upper part (i.e., ϕ=90°) of 

the composite curved tube would fail due to their lower strength in compression than in 

tension since they are subjected to the compressive interlaminar radial stress. The failure 

starts from the ±α°20 layers where are at further distance from the centroid and carry higher 

load. The failure sequence in ±α° layer-groups is shown in Figure 8.8 by locations 4 and 5. 

4. At this point, the ±45°20 layers still are able to keep the integrity of the composite curved 

tube. As the bending moment increases, the ±45°20 layers would also fail due to shear and 

normal stresses indicated with location 6 in Figure 8.8. At this point, it is expected that the 

composite curved tube would totally fail. The final failure is in compression. 

 

 

Figure 8.8: Cross section of the composite curved tube and its failure sequence from 1 to 6. 

 

The proposed method and the progressive failure analysis are employed to predict the 

maximum bending moments presented in Table 8.6 for the different assumed lay-up 

sequences for thick laminated composite curved tubes. The thick 

[90°30/±0°45/90°5/±0°20/90°5/±45°20] composite curved tube could carry the maximum bending 

moment of 50.2 kN.m theoretically before the final failure. However, this composite curved 
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tube (i.e., the composite curved tube with α=0° in the lay-up sequence) does not show the 

highest fracture strain in comparison with the other composite curved tubes. 

 

Table 8.6: Effects of lay-up sequences on maximum bending moments. 

Lay-up sequences of thick composite 

curved tubes 

Maximum 

bending moment 

(kN.m) 

[90°30/±0°45/90°5/±0°20/90°5/±45°20] 

[90°30/±25°45/90°5/±25°20/90°5/±45°20] 

[90°30/±30°45/90°5/±30°20/90°5/±45°20] 

[90°30/±45°45/90°5/±45°20/90°5/±45°20] 

[90°30/±60°45/90°5/±60°20/90°5/±45°20] 

50.2 

38.6 

35.2 

30.8 

32.9 

 

It is observed from Table 8.6 that with increasing α from 0° to 45° in the lay-up sequence, the 

maximum bending moment, which the composite curved tube can carry, decreases while with 

increasing α from 45° to 60°, the maximum bending moment increases. Note that fiber 

orientations in the lay-up sequences of thick composite tubes have different effects on the 

tube’s strength and bending stiffness than in thin composite tubes. Consequently, thick 

composite tubes show different failure behavior compared to thin composite tubes. Thick 

composite tubes fail because of partial delamination of the outer layers while thin composite 

tubes fail due to buckling [119]. Although the inner layers of thick laminated composite 

curved tubes have lower bending stiffnesses, they play a significant role in tube strength. 

They are employed as stiffeners in the axial and hoop directions for the outer layers. This 

prevents buckling of the thick composite tubes subjected to bending moment. For thick 

composite curved tubes subjected to bending moment, the most important parameter is the 

longitudinal flexural stiffness and the ±α° layer-groups are the main layers responsible for this 

as mentioned. Therefore, the thick [90°30/±0°45/90°5/±0°20/90°5/±45°20] composite curved 

tube, where α=0° in the lay-up sequence, can carry the higher bending moment up to failure 

compared to the other composite curved tubes (i.e., α=25°, 30°, 45° or 60° in the lay-up 

sequence). Figure 8.9 presents the maximum bending moments versus the axial strains for the 

thick [90°30/±α°45/90°5/±α°20/90°5/±45°20] laminated composite curved tubes (for α=0°, 25°, 

30°, 45° and 60° in the lay-up sequence) at the mid-span of the curved tubes (i.e., θ=0°, ϕ=90° 

and r=b). Note that the maximum bending moments of all composite curved tubes occur right 
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after failing the first ply in the lay-up sequences. It is seen from Figure 8.9 that with 

increasing α from 0° to 45°, the bending stiffness and strength of thick composite curved 

tubes decrease while with increasing α from 45° to 60°, the bending stiffness and strength 

increase. It is noted that with increasing the bending stiffness and strength, the deflections of 

the tubes decrease. Moreover, it is observed back from Figure 8.6 that the 

[90°30/±0°45/90°5/±0°20/90°5/±45°20] composite curved tube has the minimum interlaminar 

radial stress in comparison with the other tubes. α=0° in the lay-up sequence makes the 

interlaminar strength of the composite curved tube increases. This can improve the resistance 

of thick composite curved tubes for delamination and subsequently, their bending moment 

capacities increase. 

 

 

Figure 8.9: Maximum bending moment-axial strains at the mid-span of the composite curved tubes. 

 

8.7.4. Observations 

One of the composite toughening techniques is the lay-up sequence design. The lay-up 

sequence design for a composite tube is dependent on its application and manufacturing 

method. The obtained preliminary design guidelines contain the following: 
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1. Medium angle-plies such as 45° or 60° enhance the hoop strength of laminated composite 

curved tubes. 

2. Low angle-plies such as 25° or 30° are extremely stiffer than medium angle-plies such as 

45° or 60° along the fiber direction. Low angle-plies could help 0°-plies to be responsible 

for flexural and extensional stiffnesses of composite curved tubes. They increase load 

carrying capacity of composite tubes. Even at some points, they could be used as 

substitutes for 0°-plies. 

3. The lay-up sequence of composite curved tubes could be affected by the necessity to 

maximize one or the other major bending stiffnesses, depending on loading directions 

and applications. However, the buckling resistance is maximized in most cases by placing 

the ±45°-plies on the outer surface. In addition, ±45°-plies in lay-up sequences of 

composite tubes would keep the integrity of tubes, provide large deformation and restrict 

the movement of layers that failed due to compression stresses. 

4. There should be a group-layer of 90°-plies in the lay-up sequence as a foundation for 

laying up of thick composite curved tubes in order to improve the hoop and radial 

resistances. 

5. Using 0°, 25° and 30°-plies in a lay-up sequence is improved the delamination resistance 

of thick composite curved tubes in comparison with using 45° and 60°-plies in the lay-up 

sequence. 

6. Positive interlaminar stresses could cause delamination at composite curved tubes. One of 

interlaminar stresses is the radial stress where is positive at the compression zone of tube 

cross section. The location of the maximum interlaminar radial stress of different lay-up 

sequences along curved tube thickness occurs at the end of the largest 90° layer-group of 

the lay-up sequence. 

7. Considering thick [90°30/±α°45/90°5/±α°20/90°5/±45°20] composite curved tubes, with 

increasing α from 0°, the bending stiffness and strength of thick composite curved tubes 

decrease while the deflection of thick composite curved tubes under the loading condition 

increases. In addition, failure behavior becomes more gradual. 

8. Thick composite curved tubes show different failure behavior compared to thin 

composite curved tubes. Moreover, failure behavior depends on the fiber orientation and 

lay-up sequence of thick laminated composite curved tubes. 
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8.8. Conclusion 

With the focus on developing fast and computationally cost efficient methods, e.g. for 

thick composite structures, simple-input methods are becoming more important than FEM. 

The displacement-based approaches were used to study stresses and failure behavior in thick 

laminated composite curved tubes subjected to pure bending moment. The most general form 

of the displacement field of thick laminated composite curved tubes was derived using 

Toroidal Elasticity (TE) and layer-wise method. The accuracy of the results was examined by 

comparing the experimental results with those of the proposed method. The numerical results 

showed good agreement between the present method with the experimental results and FEM. 

A progressive failure analysis using Tsai-Wu criterion based on the results of the proposed 

method was done to obtain maximum bending moments, which thick composite curved tubes 

can carry up to the final failure. Effects of lay-up sequences on stress distributions and failure 

behavior were investigated. The key advantage of the developed method is its suitability for 

parametric study, enabling simple-inputs and being fast to run. In addition, the developed 

method proved the potential to perform failure analysis instead of using FEM especially for 

thick composite curved tubes with complex lay-up sequences. 
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Chapter 9 

 

Conclusions, Contributions and Future works 

 

 

 

9.1. Conclusions 

Regarding the first part of this thesis, Chapters 3, 4 and 5, the following conclusions are 

summarized: 

The displacement-based approach was developed to investigate stresses and strains in 

thick composite cantilever straight tubes subjected to transverse loading in Chapter 3. The 

most general form of the displacement field of thick laminated composite straight tubes was 

derived from the displacement-strain relations. Layer-wise method was then employed to 

analytically determine the displacement components. The equilibrium equations of composite 

straight tubes using layer-wise method were subsequently solved through a state-space 

approach. Moreover, the accuracy of stresses was assessed by comparing the results obtained 

from the proposed method with the experimental data. The numerical results showed good 

agreement between the present method with the experimental results, FEM and Lekhnitskii 

solution. Furthermore, the developed method was found to be more cost effective and 

accurate; therefore, it was employed to obtain stresses and strains instead of using FEM. In 

the numerical study, various thick composite tubes were studied to demonstrate the stress and 

strain distributions in the tube cross section. In addition, stresses and strains were investigated 

at different tube cross sections and for different applied transverse force values. 

In Chapter 4, effects of lay-up sequences and orientations on stress distributions at tube 

cross sections in a thick composite straight tube under shearing load were studied. The lay-up 

sequences used to manufacture the straight part of helicopter landing gears were chosen to 
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study stress and strain distributions where were useful to develop practical design guidelines. 

The investigation was performed based on the new high-order simple-input displacement-

based method developed in Chapter 3. The positive radial stress may cause delamination of 

some layers from the rest of the laminate. If such delamination occurs, the composite tube 

would fail prematurely by localized buckling. Since the radial stress affects delamination and 

the hoop stress affects buckling, the interlaminar radial and hoop stresses distributions were 

studied, in the majority of Chapter 4. In addition, locations for the maximum radial and hoop 

stresses in the thick laminated composite straight tube with different lay-up sequences were 

given. 

In Chapter 5, the developed method was used to study thick laminated composite straight 

tubes subjected to axial force, torque and bending moment. The accuracy of the proposed 

method was verified by comparing the numerical results obtained using the proposed method 

with finite element method (FEM) and experimental data. The proposed method provided 

advantages in terms of computational time compared to FEM. 

Regarding the second part of this thesis, Chapters 6, 7 and 8, conclusions are summarized 

as follows: 

In Chapter 6, displacement-based Toroidal Elasticity, which was adapted for orthotropic 

materials, was proposed to address challenges within the study of stresses for single-layer 

composite curved tubes. The most general form of the displacement field in a composite 

curved tube with a single layer was derived using Toroidal Elasticity and successive 

approximation method. The contributions of different orders on stress distributions of 

composite curved tubes subjected to pure bending moments have been investigated. The 

accuracy of the results was examined by comparing the proposed method with FEM and 

Lekhnitskii solution. The numerical results showed good agreement. Furthermore, the present 

method could promise to be more cost effective and accurate; therefore, it is employed to 

obtain stresses instead of using FEM. 

In Chapter 7, an investigation was performed on the study of thick laminated composite 

curved tubes by proposing the new displacement-based approach. The developed method was 

used to study stresses in thick composite curved tubes subjected to pure bending moment. The 
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most general form of the displacement field of thick laminated composite curved tubes was 

derived using displacement-based Toroidal Elasticity and layer-wise method. The accuracy of 

the results was verified by comparing the experimental and FEM results with those obtained 

from the proposed method. The numerical results showed good agreement between the 

present method with experimental results, FEM and a solution available in the literature. 

Furthermore, the developed method was found to be more precise in order to gain an in-depth 

and comprehensive understanding of the stress analysis of thick composite curved tubes; 

subsequently, it is employed to calculate stresses instead of using FEM. 

Chapter 8 presented the failure analysis on thick laminated composite curved tubes 

subjected to pure bending moment by using the displacement-based method developed in 

Chapters 6 and 7. By employing the results of the proposed method, the progressive failure 

analysis was performed using Tsai-Wu criterion. In addition, effects of lay-up sequences of 

thick composite curved tubes on stress distributions and failure sequences were investigated. 

 

9.2. Contributions 

Each part of this thesis has produced contributions to knowledge, which all combine to 

allow for development of new practical methods to study the mechanical behavior of thick 

composite straight and curved tubes, which are structure can be found in helicopter landing 

gears. The contributions of this thesis are highlighted as follows: 

1. The new high-order simple-input method has been proposed to analytically study the 

mechanical behavior of thick laminated composite straight tubes subjected to different 

types of mechanical loading conditions. 

2. For the first time, the stress and strain fields of thick laminated composite straight tubes 

subjected to cantilever loading conditions have been developed. 

3. The parametric study has been performed in order to provide some insight and knowledge 

into mechanical behavior of cantilever thick laminated composite straight tubes under 

shearing load. Systematic variations of lay-up sequences, orientations, number of layers 

and their effects on stress distributions have been examined at composite tube cross 

sections, for the purpose of design.  
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4. Formulations for locations of the maximum radial and hoop stresses within cantilever 

thick laminated composite straight tubes subjected to transverse loadings for different 

simple and complex lay-up sequences have been presented. 

5. The developed simple-input method has been extended for analyzing thick laminated 

composite straight tubes subjected to different mechanical loadings such as axial force, 

torque and bending moment. 

6.  For the first time, a displacement-based Toroidal Elasticity has been adapted to analyze 

and design thick laminated composite curved tubes subjected to different types of 

mechanical loadings. The displacement field of single-layer composite curved tubes has 

been developed using a displacement-based Toroidal Elasticity and successive 

approximation method. The proposed displacement field has been employed to obtain 

stress distributions of single-layer composite curved tubes subjected to pure bending 

moments. 

7. The displacement field of thick laminated composite curved tubes has been developed 

using displacement-based Toroidal Elasticity and layer-wise method. The proposed 

method is employed to study the mechanical behavior of thick composite curved tubes 

subjected to different loading conditions. In addition, stress distributions of thick 

laminated composite curved tubes under pure bending moments have been presented. 

8. By using the proposed methods for composite straight and curved tubes, the more 

accurate solutions for structures have been obtained not only by using layer-wise method 

in the thickness direction (i.e., the radial direction) as general case but also by using the 

theoretical approaches in other directions, including the longitudinal direction as well as 

the circumferential direction. 

9. The failure analysis on thick laminated composite curved tubes subjected to pure bending 

moment has been conducted to provide the failure sequences in the cross section and 

study effects of lay-up sequences on failure behavior of thick composite curved tubes. 

 

9.3. Future Works 

As an extension to this research, the following future suggestions are recommended: 

1. A method can be developed to do an analysis for the mechanical behavior of whole 

helicopter landing gears subjected to different mechanical loading conditions. 



205 
 

2. More experimental studies can be performed to assess theoretical studies on the behavior 

of entire and undivided helicopter landing gears under different mechanical loading 

conditions. 

3. A dynamic analysis of thick laminated composite straight and curved tubes should be 

considered. 

4. An analysis for helicopter landing gears under impact loading conditions should be 

conducted. 

5. An optimization technique can be developed to propose proper lay-up sequences based on 

results of impact analyses. 
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Appendix A 

Constant coefficients of coupled ordinary differential equations presented 

in Section 3.4 

 

 

The coefficient matrices [M], [K], {F1}, {F2}, {F3} and {F4} in Eq. (3.45) are: 
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Appendix B 

Boundary Conditions and Unknown Vector presented in Section 3.4 

 

 

B.1. The First Group Boundary Condition 

 The boundary conditions (Eq. (3.38a)) in displacement form are obtained by substituting 

Eq. (3.41) into Eq. (3.38a): 
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The system of Eqs. (B.1) is displayed in a matrix form as: 
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Finally, the unknown vector, {k}, is obtained by substituting Eq. (3.47) into Eq. (B.2): 
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where 
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B.2. The Second Group Boundary Condition 

The boundary conditions (Eq. (3.38b)) are: 
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The unknown vector, {k}, is obtained: 
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Appendix C 

Unknown constants [C] presented in Section 3.4 

 

 

For obtaining unknown constants (Cj (j=1, 2, 3, 4, 5 and 6)) in terms of the specific shear 

force F0, after the integration of the global equilibrium conditions in Eq. (3.43), it is obtained: 
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3 66 26

1 1

26 66 2 66 26 66 3 16 0

4 13 122

: 2 2 0 sinh

0 0 2 2 0 0 2 2 2

: 0 0 2 2 sinh
1

1 2 3 4 5 6 C 0

w

R
C A B k

h

R
B A K F D B A K F B C F

h

R
C F B k

A A A A A A R

  



  




 

     

      
 

 
      



            

  

            

                   

2 2

5 16 122 2

6 16 12

1 1

12 16 2 16 12 16 3 11

2 2
: 0 sinh

1 1

7 8 0 10 11 0 C 0

: 2 2 0 sinh

0 0 2 2 0 0 2 2 C 0 C.1

u v

u v

R R
C B B k

A A A A R

C R F R F k

F F K F B F F K F A R

 
  

 



  


 

 
        



     

     
 

where 
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   

               

               

               

               

               

1 2 3 4 5 6

1 1

12 13 4 12 16 4 16

1 1

12 13 2 12 16 1 11

1 1

12 13 1 12 13 3

1 1

12 16 4 16 12 13 4

1 1

12 13 1 12 16 1 11

1: 2 :

3: 2 4 :

5 : 6 : 2

7 : 8 :

10 : 11:

T
C C C C C C C

A B F K F A B B K F B

A B F K F A B B K F D

A B F K F A B F K F

A B B K F B A B F K F

A B F K F A B B K F D

 

 

 

 

 



   

  

 

  

   

 

             

                   

                       

1

1 45 45 55 26 66 4

1 1

2 45 26 36 4 4 45 26 36 1

1 1

3 45 45 55 2 5 45 45 55 26 66 1

,

2 2 2 ,

L F A A F F K F

L F F B K F L F F B K F

L F A A K F L F A A F F K F



 

 

     

      

         

 

                   

                     

             

                   

1 1

6 45 45 55 3 7 45 26 36 4

1 1

8 45 55 45 26 66 4 9 26 36 2

1

10 45 55 26 45 66 1

1 1

11 45 26 36 1 12 26 36 3

2 2 2 ,

, 2 2

, 2 2 C.2

L F A A K F L F F B K F

L A A F F F K F L F B K F

L A A F F F K F

L F F B K F L F B K F

 

 



 

      

        

     

     

 

which is displayed in a matrix form as: 

       10 9

0

0

2
C.3

0

0

0

F
Z k Z C

 
 
 
 

   
 
 
 
 

 

where 
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 

55 1 66 2 3 4 16 5 6

55 7 8 66 9 10 16 11 12

33 36

9

41 42 43 44 45 46

51 52 54 55

63 66

0 0 0 0

0 0

0 0 0 0

A L A L L L B L L

A L L A L L B L L

z z
Z R

z z z z z z

z z z z

z z

        

        

   
 

    
 

  
 
 
 
  

 

               

               

       

               

               

       

1 1

41 12 13 4 51 16 12 16 4

1 1

42 12 16 4 16 52 12 13 4

1

43 12 13 2

1 1

44 12 16 1 11 54 12 13 1

1 1

45 12 13 1 55 11 12 16 1

1

46 12 13 3

: :

: :

: 2

: :

: :

: 2

z B F K F z B B B K F

z B B K F B z B F K F

z B F K F

z B B K F D z B F K F

z B F K F z D B B K F

z B F K F

  

  



  

  



 

 



 

 



   

   



   

  


 

               

               

1 1

63 16 12 16 2 33 66 26 66 2

1 1

66 11 12 16 3 36 16 26 66 3

2 2
: 2 2 :

2 2
: 2 2 :

z B F F K F z D B A K F
h h

z A F F K F z B B A K F
h h

 
 

 
 

 

 

     

   

 

 

           

           

     

       

     

     

2 2

55 66 45 45 262 2

2 2

55 66 45 45 262 2

66 26
10

13 12

2 2

16 122 2

16 12

2 2
2 2 2 0

1 1

2 2
2 2 2 0

1 1

1
2 2 0

0 0 2 2

2 2
0

1 1

2 2 0

u v

u v

u v

u v

u v

u v

A F A F F

A F A F F

A BZ R h

F B

B B

F F

 

 

 

 

 

 

  
    

   
 
 
    
   
 
  

   


   


 
     

  
  

     sinh C.4   







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Finally, unknown constants are obtained by substituting Eq. (C.4) into Eq. (C.3): 

 
 

   

1

2
1

3 0

10 9

4

5

6

0

0

22
C.5

02 2

0

0

f u

C

C

C Fa xx
Z k k Z

C a a

C

C



   
   
   
      

        
     

   
   
    
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Appendix D 

Global Lagrangian interpolation function in Section 5.3.2 

 

 

The linear global interpolation function is defined as [52]: 

 

 
   

1

2

11

1

1

1

0

( ) 1,2,..., 1 .1

0

k

k kk

k

k kk

k

z z

z z zz
z k N D

z z zz

z z

















 
  

 
 

 

where  1,2j

k j   represent the local Lagrangian linear interpolation functions within the kth 

layer which are defined as: 

         1 2

1

1 1
and .2k k k k

k k

z z z z z z D
h h

      

where hk is the thickness of the kth layer. 
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Appendix E 

Coefficient matrices [M], [K] and {F} in Section 5.4 

 

 

The coefficient matrices [M], [K] and {F} in Eq. (5.17) are obtained as: 

 

          
            
     

 

     

             

                     

66 26 26 36 45

26 22 22 23 44 44

44

55 45

45 45 44 44 44 44

45 26 36 44 44 22 23 22 23 23 33

,

0 0

0

0 ,

T

T

T

T

T T T

H H H B B

M H H H B B H

H

A B

K A B A B B H

B H B H B H B H B B A

     
 
 

       
 

 
 

 
 
     
 
         
 

 

 

     

     

              

 
16

12

36 26 13 12 13 12

0 sin 0

0 sin 0 .1

sin

B

F B E

B B B B A F





  

 
  

  
 

      
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Appendix F 

Coefficients of Governing Equations in Toroidal Coordinates in Section 6.4 

 

 

The coefficients of orders n=0, 1, 2 and 3 in Eqs. (6.5) and (6.7) are expressed as: 

 

 

2 2

44
11 112 2 2

11 22 12 222 2

44
11 12 11

1 1

2 2 2

1 1

2

1 1 1
.1

2 2 2

n n n
n

n n

n n n

u u C u
U C C

r r r r

u v
C C C C

r r

u C v u
C C C F

r r r r







  
  

  

 
    

 

    
     
    

 

 

 

   

44
11 13

44
12 23

55
13

13 23

cos sin
2

1 1
sin cos

2

cos sin
2

1
cos sin .2

n n
n

n n n n

n n
n n

n
n n

u v C
U C C

r r

C u v v u
C C

r r r r

C w w
C u v

r

w
C C u v F

r

 

 
 

 
 

 


 
  

 

    
       

    

     
     
    

 
    

 

 

 

2

55 55

2

33

ˆ cos
2 2

cos cos sin .3

n n
n

n
n n

C Cu w
U

w
C u v F


 

  


 
 

 

 
   

 
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 

2 2

44 22
442 2 2

44 442 2

44
22 12 22

1

2 2 2

1 1 1

2 2

1 1
.4

2 2

n n n
n

n n

n n n

C v v C v
V C

r r r r

v u
C C

r r

u C u v
C C C F

r r r r





 

  
  

  


 



    
     

    

 

 

 

44
12 13

44
22 23

66
23

cos sin
2

1 1
sin cos

2

1
cos sin .5

2

n n
n

n n n n

n n
n n

C v u
V C C

r r

v u C u v
C C

r r r r

C w w
C u v F

r

 

 
 

 
  

 
  

 

    
       

    

     
     

    

 

2

66 66

2

33

ˆ sin
2 2

sin cos sin .6

n n
n

n
n n

C Cv w
V

w
C u v F


 

  


 
 

 

 
   

 

 
2 2

66
55 552 2 2

1 1
.7

2 2 2

n n n
n

Cw w w
W C C F

r r r r 

  
  

  

 

55 55 66 66

55 66 55
13 23 23

1 1
cos cos sin

2 2 2 2

1 1
.8

2 2 2

n n
n n

n n
n

C C C Cw w
W w

r r r

C C Cu v
C C C u F

r r r

  


 

  
    

  

        
           
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Appendix G 

Definition of functions Θ1, Θ2, Θ3, Θ4, Θ5 and Θ6 in Section 7.3 

 

 

The functions Θ1, Θ2, Θ3, Θ4, Θ5 and Θ6 in Eqs. (7.13) are defined as: 
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Appendix H 

Definition of stress resultants based on displacement components in Section 

7.3 

 

 

The stress resultants in Eq. (7.14) based on displacement components are presented as: 
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where the laminate rigidities in Eqs. (H.1)-(H.5) are defined as: 
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Appendix I 

Definition coefficient matrices [M], [K1], [K2] and {F} in Section 7.4 

 

 

The coefficient matrices [M], [K1], [K2] and {F} in Eq. (7.16) are presented as: 

 

   

 

 

44,

22 26

26 66

0 0

0

0

nB

M B B

B B

  
  

          
 

     
    

 

 

         

   

 

12 22 23, 44 44 16 26 36 45 45

1 44, 12 22 23 44 23, 23 36 26

45 26 36

ˆ ˆ ˆ0 cos cos cos

ˆ ˆ ˆ ˆ ˆcos sin sin sin sin

ˆ co

T T

n

T

n n

T

B B B B B B B B B B
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B B B

  

    

                 
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  

   16 45 36 26,
ˆ ˆ ˆs cos sin sin 0nB B B B   
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