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Abstract

Identifying Self-Admitted Technical Debt

Everton da S. Maldonado

Technical debt is a metaphor coined to express the trade off between productivity

and quality, e.g., when developers take shortcuts or perform quick hacks during the

development of software projects. These non optimal solutions are often implemented

to allow the project to move faster in the short term, at the cost of increased main-

tenance in the future. The accumulation of technical debt during the ever changing

life-cycle of a project is unavoidable, and if not properly managed can severely hin-

der the development of the project. To help alleviate the impact of technical debt,

a number of studies focused on the detection of technical debt. However, a recent

study has shown that one possible source to detect technical debt is using source

code comments, also referred to as self-admitted technical debt. Therefore, in this

dissertation we use empirical studies and NLP techniques to propose an approach to

automatically identify self-admitted technical debt.

First, we examine source code comments to determine the different types of tech-

nical debt, and we propose four simple filtering heuristics to eliminate comments that

are not likely to contain technical debt. Then, we read through more than 33K com-

ments, and we find that self-admitted technical debt can be classified into five main

types - design debt, defect debt, documentation debt, requirement debt and test debt.

In addition, two most common types of self-admitted technical debt are design and

requirement debt, making up between 42% to 84% and 5% to 45% of the classified

comments, respectively.
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Second, we leverage the knowledge obtained in our first study to present an ap-

proach to automatically identify design and requirement self-admitted technical debt

using Natural Language Processing (NLP). We study 10 open source projects: Ant,

ArgoUML, Columba, EMF, Hibernate, JEdit, JFreeChart, Jmeter, JRuby and SQuir-

rel SQL and find that 1) we are able to effectively identify self-admitted technical

debt, significantly outperforming state-of-the-art techniques; 2) that words related

to sloppy or mediocre source code are the best indicators of design debt, whereas

for requirement debt, words related to enhancing or completing tasks are the best

indicators; and 3) we can achieve 90% of the best classification performance, using as

little as 23% of the comments for both design and requirement self-admitted technical

debt, and 80% of the best performance, using as little as 9% and 5% of the comments

for design and requirement self-admitted technical debt, respectively.

iv



Acknowledgments

At the conclusion of a stage, you must look back and take the time to thank and to be

grateful for those who have been by our side, because happiness is meaningless without

someone to share. First, I am grateful to God who gives me strength, guidance and

the opportunity to pursue my masters degree.

I would like to express my gratitude to my advisor Dr. Emad Shihab for his

support and dedication during this last two years. Thank you Emad for believing in

my potential, for teaching me how to overcome my limitations and that, through hard

work, everything is achievable. I must tell you that it has been quite an enjoyable

adventure, and that I learned a lot from you.

Apart from my advisor, I would also like to thank my thesis examiners, Dr. Juer-

gen Rilling and Dr. Peter C. Rigby, for taking the time to read my thesis and for

their valuable suggestions. Also, I would like to acknowledge Dr. Nikolaos Tsantalis

for his help in my research, as well as all other faculty members of the Department of

Computer Science and Software Engineering, for providing the necessary guidance.

In addition, a big thank you to all my lab mates and everyone else that I had the

opportunity to work with. A special thanks to Moiz Arif, Davood Mazinanian, Ahmad

Al-Sheikh Hassan, Samuel Donadelli, Rabe Abdalkareem and Shahriar Rostami. All

of you made this experience so much more enjoyable.

More than anyone else, I would like to thank my wife Fabiana Maldonado. It was

your love, continued support and encouragement that made this degree possible. You

v



are more than I could wish for. Also, during this journey, I was very fortunate to

count with so many dear friends. I would like to thank Eduardo Lomonaco, Kênia
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Chapter 1

Introduction

At the core of any software system is the software team who develop it. Their decisions

and expertise is what makes the difference between solid well built systems and brittle

implementations that my lead to countless hours of patch work. Ensuring the high

quality of a software project is not easy, on the contrary it has been proven to be quite

a challenge, almost utupic [KNO12]. Developers often have to deal with conflicting

goals while developing a software system. Software needs to delivered quickly, without

defects and on budget, all of these must happen in a rapidly changing environment.

In practice what happens is that all these conflicting constrains force a tradeoff

to be made by software developers [Cun92]. Often this tradeoff means shortcuts and

workarounds that results sub-optimal solutions [SG11, KNOF13]. These workarounds

allow the project to move faster at first, helping software developers achieve short-

term goals at the expense of increased maintenance effort in the future. This phe-

nomena is called technical debt (TD). Acquiring careless technical debt can halt a

software system to a full stop.

Unfortunately, prior research on technical debt has shown that technical debt is

widespread, unavoidable, and therefore, needs to be properly managed to not have

a negative impact on the quality of the software system [LTS12]. The first step to
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manage technical debt is the identification of technical debt, which is the main focus

of this thesis.

A number of studies empirically examined technical debt and proposed techniques

to enable its detection and management. Most approaches to identify technical debt

are based on static source analysis tools, as described in more detail in Chapter

2. However, there are limitations to these approaches. First, static analysis tools

depends on arbitrary metrics and thresholds to detect technical debt, and deriving

appropriate threshold values is a challenging open problem that has attracted the

attention and effort of several researchers [OVPL14, FFZY15, FMZM15]. In ad-

dition, the approaches based on source code analysis suffer from high false positive

rates [FDW+16]. Also, static analysis tools requires the construction of Abstract Syn-

tax Trees or other more advanced source code representations. For instance, some

code smell detectors that also provide refactoring recommendations to resolve the

detected code smells [TC11, TMK15] generate computationally expensive program

representation structures, such as program dependence graphs [Gra10], and method

call graphs [AL12] in order to match structural code smell patterns and compute

metrics.

More recently, another approach used source code comments to identify technical

debt. Potdar and Shihab [PS14] devised an approach, which uses 62 comment patterns

(i.e., words and phrases) used by software developers to indicate “not quite right

code”. The detection of technical debt through source code comments does not suffer

of the same limitations that static analysis tools. For example, it is a more lightweight

process that does not depend of source code representations, and does not depend on

thresholds of any kind as the developers themselves are admitting the debt. Due to its

nature, technical debt found in source code comments is referred to as self-admitted

technical debt.

However, the identification of self-admitted technical debt poses many challenges.
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Since comments are written in natural language, it is very difficult to automatically

analyze them, and therefore, comments were analyzed manually by reading through

each of them to identify those that indicated self-admitted technical debt. This poses

a serious treat to the scalability of this approach. In addition, the comment patterns

approach does not take into consideration the many different types of technical debt

and it has no means to be evaluated in terms of precision and recall.

At the same time, automatic techniques that leverage machine learning have been

proposed to help automatically classify natural language corpora, referred to as NLP

techniques. In this thesis, we apply these NLP techniques to automatically identify

technical debt from source code comments. The thesis provides two main contribu-

tions. The first part focuses on the definition and understanding of technical debt

where we manually analyze source code comments to gain insights on the nature

of self-admitted technical debt. The second part proposes an approach to identify

technical debt using Natural Language Processing (NLP) techniques.

1.1 Research Hypothesis

Prior research and our industrial experience lead us to the formation of our research

hypothesis. We believe that:

The identification of technical debt remains limited, and mostly dependent of

static source code analysis tools that require expensive and heavy analysis pro-

cesses, while yielding too many false positives. We hypothesize that source code

comments can improve the identification of technical debt. Thus far, the ap-

proaches that uses source code comments heavily depend on manual processes,

which often do not scale well. We believe that Natural Language Processing

(NLP) techniques, when provided with the appropriated training dataset, can

tackle the current challenges in the identification of technical debt.
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1.2 Thesis Overview

Chapter 2: Literature Review: In this chapter we discuss the definition of the

technical debt metaphor and its expansion over time as more developers kept adopt-

ing the term to communicate suboptimal solutions and “not quite right code”. The

literature review provides summarized and concise information that was extracted

from websites, blogs and research papers ranging from the creation of the metaphor

to the present date in a chronological order. The chapter concludes with our criti-

cal evaluation of the current limitations in the field and the challenges surrounding

technical debt.

Chapter 3: Analyzing Source Code Comments and Different Types of Self-

Admitted Technical Debt: In this chapter we examine source code comments from

5 open source projects to determine the different types of technical debt. First, we

propose four simple filtering heuristics to eliminate comments that are not likely to

contain technical debt. Filtering out irrelevant comments is very helpful as it allows

us focus our attention to the more insightful comments. Second, we manually classify

the remaining comments (i.e., more than 33K comments), and we find that self-

admitted technical debt can be classified into five main types - design debt, defect

debt, documentation debt, requirement debt and test debt. The two most common

types of self-admitted technical debt are design and requirement debt, making up

between 42% to 84% and 5% to 45% of the classified comments, respectively.

Chapter 4: Proposing an Approach to Automatically Identify Self-Admitted

Technical Debt: In this chapter, we present an approach to automatically identify

design and requirement self-admitted technical debt using Natural Language Pro-

cessing (NLP). We study 10 open source projects. We show that our approach can

accurately identify self-admitted technical debt, we also discuss the features (i.e.,
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words) that are the best indicators of design and requirement debt. Lastly, as train-

ing data is the most crucial point to apply and expand our approach, we conduct a

detailed analysis of the quantity of training data to obtain satisfactory classification

performances.

1.3 Thesis Contributions

The major contributions of this thesis are as follows:

• A concise review of the state-of-the-art in the technical debt field. Such a review

provide the necessary background to enable interested researchers to focus on

the main challenges in the field of technical debt.

• We contribute a rich dataset of self-admitted technical making the data used in

this thesis publicly available. To the best of our knowledge, there is no similar

data available and we believe that the dataset will help future research in the

area of self-admitted technical debt providing the necessary means to evaluate

and apply different approaches.

• We propose an automatic, NLP-based, approach that outperforms the current

state-of-the-art in the identifying design and requirement self-admitted technical

debt. Moreover, we investigate the amount of training data necessary to effec-

tively identify technical debt through an empirical experiment, giving support

to future enhancement and expansion of our approach, such as the detection of

self-admitted technical debt comments in different programming languages or

idioms.

5



Chapter 2

Literature Review

In this chapter we present related work on technical debt. These studies set the

current background of technical debt. More specifically, the studies presented in this

chapter are classified into two categories. First, we present studies that discuss the

definition and the extensibility of the technical debt metaphor. This first part lays the

foundation of what it is technical debt and how it is being used nowadays. Second,

we present studies that investigate the identification and the implications of technical

debt in the source code, including studies that are more related to our own work

which is the identification of self-admitted technical debt.

Although we provide a broad review of related work of technical debt in this

chapter, related work that is closely related to each of our contributions can be found

in the chapters 3 and 4.

2.1 Defining and Expanding the Technical Debt

Metaphor

At first, most information about technical debt were available on blogs. These blogs

were written by industry specialists and evangelists of Agile Methodologies, such as
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Martin Fowler [Mar]. Nowadays, academia and industry alike study the applications

of the technical debt metaphor. Thus, a large number of studies were dedicate to this

matter, and therefore, the original metaphor has been expanded and refined.

The metaphor, technical debt, was introduced by Ward Cunningham [Cun92] more

than two decades ago to facilitate the communication between developers and non-

technical personnel working on the same software project. Cunningham explains how

“not quite right code” will affect the maintainability of a project (i.e., require more

effort to maintain the project in the future) as interest does on incurred debt.

In other words, every time that an implementation around the code affected by

the non-optimal implementation is needed, an interest in the form of effort will be

expend in the task. Although debt may speed up the project development at first,

accumulated debt will bring the project to a standstill in the long-run. Thus, the

technical debt metaphor, provides insight to managers of why it is beneficial to use

resources to enhance a particular portion of the code even if it is not broken.

The term has been refined and expanded since, notably by Steve McConnell [McC]

in his taxonomy and by Martin Fowler [Mar] with his four quadrants. As these works

were very important to the development of a deeper understanding of technical debt

and its applicability on software engineering we dedicated subsections 2.1.1 and 2.1.2

for further explanation on the authors’ definition of technical debt.

2.1.1 Unintentionally Incurred Debt vs. Intentionally In-

curred debt

According to Steve McConnell, technical debt can be divided into two main types:

unintentionally incurred debt and intentionally incurred debt.

Examples of unintentionally incurred debt range from a design approach that

just turns out to be error-prone to a junior programmer who writes bad code. This

technical debt is the non-strategic result of doing a poor job. In some cases, this type
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of debt can be incurred unknowingly, for example, when a company acquires another

company that has accumulated technical debt over the years.

The second type of technical debt, incurred intentionally, commonly occurs when

an organization makes a conscious decision to optimize for the present rather than

for the future. An “If we do not get this release done on time, there will not be a

next release” type of situation. This leads to decisions like, “We do not have time

to reconcile these two databases, so we will write some glue code that keeps them

synchronized for now and reconcile them after we ship.” Or “We have some code

written by a contractor that does not follow our coding standards; we will clean that

up later.” Or “We did not have time to write all the unit tests for the code we wrote

the last 2 months of the project. We’ll right those tests after the release” [McC].

Moreover, technical debt incurred intentionally can be of two types: short-term

and long term debt. Like with real debt, short-term debt is expected to be paid off

frequently. Short-term debt is taken on tactically and reactively, usually as a late-

stage measure to get a specific release out the door, whereas long term debt is taken

on strategically and pro-actively. For example, “We do not think we are going to

need to support a second platform for at least five years, so this release can be built

on the assumption that we are supporting only one platform”.

The implication is that short-term debt should be paid off quickly, perhaps as the

first part of the next release cycle, whereas long-term debt can be carried for a few

years or longer.

Therefore, McConnell presents the following taxonomy for technical debt to

summarize his thoughts on technical debt:

1. - Debt incurred unintentionally due to low quality work

2. - Debt incurred intentionally

(a) - Short-term debt, usually incurred reactively, for tactical reasons

8



i. - Focused Short-Term Debt. Individually identifiable shortcuts (like a

car loan)

ii. - Unfocused Short-Term Debt. Numerous tiny shortcuts (like credit

card debt)

(b) - Long-term debt, usually incurred pro actively, for strategic reasons

2.1.2 Technical Debt Quadrant

On the other hand, Fowler’s definition of technical debt is slightly different, and it is

represented by four quadrants namely reckless, prudent, deliberate and inadvertent.

According to Fowler, debt can be any combination of these four quadrants.

For example, prudent deliberate debt is the one that the team knows they are

taking on, and thus puts some thought as to whether the payoff for an earlier release

is greater than the costs of paying it off. However, a team not aware of design

practices is taking on its reckless debt without even realizing how much workarounds

it is getting into (inadvertent). Although reckless debt may not be inadvertent. A

team may know about good design practices, but decide to go “quick and dirty”

because they think they can not afford the time required to write clean code. The

fourth cell of the quadrant is prudent/inadvertent debt. This case represent the case

where a skilled development team is creating a project applying the best design to

handle the current requirements, however over time, the chosen design proves to be

inadequate to the future need of the project. Fowler points out that the point is that

while you are programming, you are also learning. It is often the case that it can

take a year of programming on a project before you understand what the best design

approach should have been.

Figure 1 presents the actual technical debt quadrant, and illustrates on each cell

the possible cases that can happen with a development team while working on a

software project.
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Figure 1: Technical Debt Quadrant[Mar]

In addition, from the original description “not quite right code which we postpone

making it right” various people have used the metaphor of technical debt to describe

many other kinds of debts or faults of software development, including anything that

is related to deploying, evolving a software system or anything that is intrinsic to

software development such as test debt, people debt, architectural debt, requirement

debt, documentation debt, or just an broad generalized software debt [Ste10].

In this matter, Kruchten et al. [KNO12] express their concern about how the use

(or abuse) of the metaphor could spread it too thin making the metaphor lose its

communication power. For example, a not yet implemented requirement, function, or

feature does not translate to requirement debt. Similarly, postponing the development

of a new function is not a planning debt. Another danger pointed out by the authors

relates to the assistance of static code analysis tools on the identification of technical

debt. Although these tools are very useful there is a danger of equating whatever

the tools can detect with what is technical debt. This approach leads to leaving

aside large amounts of potential technical debt that is undetectable by tools, such as
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structural or architectural debt, technological gaps or self-admitted technical debt as

discussed later on this chapter.

Later, Spinola et al. [SZV+13] identified and organized a number of statements

about technical debt expressed by practitioners in online websites, blogs and published

papers. The authors chose 14 statements related to technical debt and conducted two

surveys with 37 participants to evaluate the level of agreement on each statement.

They found that practitioners strongly agree that if technical debt is not managed

effectively, maintenance costs will increase at a rate that will eventually outrun the

value it delivers to customers. In addition, they found that practitioners strongly

disagree that all technical debt is intentional, the results found by the authors support

the expanded technical debt definition proposed by McConnel and Fowler.

Moreover, the authors state that the acceptance and use of the technical debt

metaphor is in large part because it is easily understood. However, this can also be

a concern to accurately define technical debt. Their reasoning is that because the

technical debt metaphor is easy to understand, it is also easy to talk about, expand

on, and relate experience to. A quick search of technical debt literature reveals

subjective opinions, personal views, and catch phrases on such channels as blogs and

online essays. Therefore, more analysis on the use of the metaphor is necessary to

organize the technical debt landscape.

Alves et al. [ARC+14, AMdM+16] proposes an ontology of terms on technical debt

in order to organize a common vocabulary for the area. In their work they extracted

and organized concepts derived from the results of a systematic literature mapping. In

total, 100 studies, dated from 2010 to 2014, were evaluated. Their work contributed

towards the evolution of the technical debt landscape through the organization of the

different types of technical debt and their indicators. The authors found the following

types of debt in the literature: design debt, architecture debt, documentation debt,

test debt, code debt, defect debt, requirements debt, infrastructure debt, people debt,
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test automation debt, process debt, build debt, service debt, usability debt and ver-

sioning debt. Moreover, they state that some instances of technical debt can fit more

than one type of technical debt.

These works summarize the definition and expansion of the technical debt metaphor.

2.2 Identification and Implications of Technical Debt

2.2.1 Using Source Code and Static Analysis Tools

A number of studies have focused on the detection and management of technical

debt. Much of this work has been driven by the Managing Technical Debt Workshop

community. Static analysis tools can help to detect source code anomalies and object

oriented violations using metrics and thresholds to evaluate code quality. These

violations are commonly referred as bad smells and they follow under the design

technical debt type of debt.

Zazworka et al. [ZSSS11] conducted a case study to investigate how design debt, in

the form of god classes, affects the maintainability of software projects. The authors

analyzed two commercial applications of a small-size software development company.

They found that god classes suffer more changes and contain more defects than non-

god classes showing that technical debt has a negative impact on software quality,

and should therefore be identified and managed closely in the development process.

Fontana et al. [FFS12] also analyzed design debt in the form of bas smells. The

authors focus their attention on three specific code smells (i.e., god class, data class

and duplicate code) extracted from open source systems of different domains. They

proposed an approach to suggest which bad smell should be addressed first based on

the negative impact they have on the quality of the project.

In a follow up study, Zazworka et al. [ZSV+13] conducted an experiment where

a development team was asked to identify technical debt items in artifacts from a
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software project that they were familiar with. Then, the authors collected the output

of three static analysis tools to automatically identify technical debt and compared

it to the results of human elicitation. The authors found that there is little overlap

between the technical debt reported by different developers, so aggregation, rather

than consensus, is an appropriate way to combine technical debt reported by multiple

developers. Moreover, they confirmed that static analysis tools can not detect many

different types of technical debt, and therefore, involving humans in the identification

process is necessary.

2.2.2 Using Source Code Comments (Self-Admitted Techni-

cal Debt)

A lot of effort has been made to identify and manage technical debt. Despite the help

provided by static source code analysis tools the identification of technical debt is still

an open challenge. More recently, Potdar and Shihab [PS14] found that source code

comments can be analyzed to identify technical debt. Differently from most source

code analysis tools, that rely on suggested metrics and thresholds to detect a sup-

posed debt, technical debt found in the source comment is written by the developer

of the program as a confession. These developers are explicitly saying that a partic-

ular implementation is not ideal, in other words this implementation is self-admitted

technical debt.

Potdar and Shihab [PS14] conducted the first study to explore source code com-

ments to identify technical debt. They extracted the source comments from 5 open

source projects, and manually inspected them. In total, the authors read and an-

alyzed more than 100K comments, and they come up with 62 different comment

patterns that indicates the presence of self-admitted technical debt. These comment

patterns are words or small phrases such as “retarded”, “stupid” and “remove this
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ugly code”. Besides of the 62 comment patterns they found that self-admitted tech-

nical debt comments are present in 2.4% to 31% of the analyzed files, that developers

with higher experience tend to introduce most of the self-admitted technical debt and

that time pressures and complexity of the code do not correlate with the amount of

self-admitted technical debt. This work is the current state-of-the-art in the identifi-

cation of self-admitted technical debt.

Bavota and Russo [BR16] presented differentiated replication of the work by Pot-

dar and Shihab. The authors analyzed 159 software projects to investigate the diffu-

sion and evolution of self-admitted technical debt and its relationship with software

quality. During this study the authors extracted over 600K commits and 2 Billion

comments. Their main findings showed that self-admitted technical debt is diffused,

with an average of 51 instances per system, increases over time due to the introduction

of new instances that are not fixed by developers, and even when fixed, it survives a

long time (over 1,000 commits on average) in the system.

Also, Farias et al. [FNSS15] developed a Contextualized Vocabulary Model for

identifying technical debt on code comments (CVM-TD). CVM-TD uses word classes

and code tags to support technical debt identification based on the comment pat-

terns devised in [PS14]. The model created by the authors provided a structure that

systematically allows combining terms creating a large vocabulary on technical debt.

However, the author point out that CVM-TD needs to be calibrated in order to

improve its accuracy.

Wehaibi et al. [WSG16] also took advantage of the comment patterns to examine

the relation between self-admitted technical debt and software quality. The authors

analyzed if files with self-admitted technical debt have more defects compared to files

without self-admitted technical debt, if self-admitted technical debt changes are more

likely to introduce future defects, and if self-admitted technical debt changes tend to

be more difficult. They analyzed 5 open source projects to find that there is no clear
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relationship between defects and self-admitted technical debt, however, self-admitted

technical debt changes are more difficult to perform (i.e., they are more complex).

The work mentioned so far relied on the identification of technical debt through

source code comments, specifically using the comment patterns approach. One as-

pect that is not explored however is how good is the comment patterns approach in

identifying technical debt. Another topic that is not explored is that the comment

patterns approach does not provide support for the identification of different types of

technical debt. The first step to address the afore-mentioned limitations is to create a

golden dataset of self-admitted technical debt comments where different approaches

can be compared in terms of precision and recall. Also, such dataset, if available

could provide insights on the different types of self-admitted technical debt.

Believing that this is a very important step towards the advance of the state-of-

the-art in the automatic identification of self-admitted technical debt we focused our

efforts to create an golden dataset of manually classified self-admitted technical debt.

In the next chapter we explain in detail our approach to create such a dataset of self-

admitted technical debt comments. We also analyze the insights achieved during the

creation of this dataset, such as what are the different types of self-admitted technical

debt comments, how their distribution look likes and the definition of each type of

self-admitted technical debt.
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Chapter 3

Analyzing Source Code Comments

and Different Types of

Self-Admitted Technical Debt

3.1 Introduction

The software development process is filled with challenges. There are short deadlines,

complex changes that need to be made, high quality expectations and an ever changing

environment. Often there is much more that needs to be done than time to accomplish

it. These conditions puts developers under increasing pressure to implement their

tasks, while achieving many conflicting constraints. In this context, some decisions

are made to allow the short term development of the project at the cost of its increased

maintenance effort in the future. This phenomena is know as Technical Debt [Cun92].

With the organization of the technical debt community through the managing

technical debt workshop [FKNO14], recent work has focused on the detection of tech-

nical debt [PS14, ZSV+13], studying the impact of technical debt [ZSSS11] and the
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appearance of technical debt in the form of code smells [FFS12]. Despite many ef-

forts to detect technical debt, its detection remains a challenge [PS14]. One relatively

unexplored aspect of technical debt is self-admitted technical debt, that is technical

debt reported in source code comments. Self-admitted technical debt refers to the

situation where developers know that the current implementation is not optimal and

write comments alerting the inadequacy of the solution.

Recently, Potdar and Shihab [PS14] developed an approach to identify technical

debt from code comments, and through manual inspection, were able to mine 62 pat-

terns that effectively identify self-admitted technical debt. However, their approach

does not take into consideration the different types of technical debt. Understanding

the different types of self-admitted technical debt is important since: 1) it helps the

community understand the limitations of understanding technical debt through code

comments, 2) it allows us to complement existing technical debt detection approaches

and 3) it provides us with a better understanding of the developer’s point of view of

technical debt.

Therefore, in this chapter we examine and quantify the different types of self-

admitted technical debt. To do so, we extract source code comments from 5 well com-

mented open source projects that belongs to different application domains, namely

Apache Ant, Apache Jmeter, ArgoUml, Columba and JFreeChart. In total, we ex-

amined more than 166K comments. We applied a set of 4 simple filtering heuristics

to remove comments that are not likely to contain self-admitted technical debt (e.g.,

license comments, commented source code, Javadoc comments). Finally, these filter-

ing heuristics resulted in a dataset of 33,093 comments that the first author manually

analyzed and classified into different types of self-admitted technical debt.

When classifying the code comments, we found 5 types of self-admitted technical

debt which are: design debt, defect debt, documentation debt, requirement debt

and test debt. Analyzing the distribution of the comments we found that the most
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common type of self-admitted technical debt is design debt, making up between 42%

- 84% of all the classified comments. In addition to our findings, we contribute a

rich dataset of self-admitted technical making the data used in this study publicly

available. To the best of our knowledge, there is not similar data available and we

believe that the dataset will encourage future research in the area of self-admitted

technical providing the necessary foundation for more advanced techniques as Natural

Language Processing.

The rest of the chapter is organized as follows. Section 3.2 presents related work.

We describe our approach and setup our case study in Section 3.3. Section 3.4 presents

the case study results. The threats to validity are presented in Section 3.5 and in

Section 3.6 concludes the chapter and discusses future work.

3.2 Related Work

Our work uses code comments to classify self-admitted technical debt. Therefore,

we divide the related work into two categories: source code comments and technical

debt.

3.2.1 Source Code Comments

A number of studies examined the co-evolution of source code comments and the

rationale for changing code comments. For example, Fluri et al. [FWG07] analyzed

the co-evolution of source code and code comments, and found that 97% of the com-

ment changes are consistent. Tan et al. [TMTL12] proposed a novel approach to

identify inconsistencies between Javadoc comments and method signatures. Malik et

al. [MCHM+08] studied the likelihood of a comment to be updated and found that

call dependencies, control statements, the age of the function containing the com-

ment, and the number of co-changed dependent functions are the most important
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factors to predict comment updates.

Other work used code comments to understand developer tasks. For example,

Storey et al. [SRB+08] analyzed how task annotations (e.g., TODO, FIXME) play a

role in improving team articulation and communication. The work closest to ours is

the work by Potdar and Shihab [PS14], where code comments were used to identify

technical debt.

Our work complements the prior work using code comments. Similar to the prior

work, we also leverage source code comments, however, we use the comments to

identify self-admitted technical debt. In particular, we focus on the detection and

quantification of the different types of self-admitted technical debt.

3.2.2 Technical Debt

A number of studies have focused on the study of, detection and management of

technical debt. Much of this work has been driven by the Managing Technical Debt

Workshop community. For example, Seaman et al. [SG11], Kruchten et al. [KNOF13],

Brown et al. [BCG+10] and Spinola et al. [SZV+13] make several reflections about the

term technical debt and how it has been used to communicate the issues that devel-

opers find in the code in a way that managers can understand. Alves et al. [ARC+14]

proposes an ontology on technical debt terms. In their work they gathered definitions

and indicators of technical debt that were scattered across the literature. Their re-

sulting ontology provides several different types of technical debt (e.g., architecture

debt, build debt, code debt, design debt, defect debt, etc) grouped by their nature

(i.e., the factor that lead to the introduction of the debt at the first place).

Other work focused on the detection of technical debt. Zazworka et al. [ZSV+13]

conducted an experiment to compare the efficiency of automated tools in comparison

with human elicitation regarding the detection of technical debt. They found that

there is small overlap between the two approaches, and thus it is better to combine
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them than replace one with the other. In addition, they concluded that automated

tools are more efficient in finding defect debt, whereas developers can realize more

abstract categories of technical debt.

In follow on work, Zazworka et al. [ZSSS11] conducted a study to measure the im-

pact of technical debt on software quality. They focused on a particular kind of design

debt, namely God Classes. They found that God Classes are more likely to change,

and therefore, have a higher impact in software quality. Fontana et al. [FFS12] inves-

tigated design technical debt appearing in the form of code smells. They used metrics

to find three different code smells, namely God Classes, Data Classes and Duplicated

Code. They proposed an approach to classify which one of the different code smells

should be addressed first, based on a risk scale. Moreover, Potdar and Shihab [PS14]

used code comments to detect self-admitted technical debt.They extracted the com-

ments of four projects and analyzed more than 101,762 comments to come up with 62

patterns that indicates self-admitted technical debt. Their findings show that 2.4% -

31% of the files in a project contain self-admitted technical debt.

Our work is different from the aforementioned work that uses code smells to detect

design technical debt since we use code comments to detect technical debt. Also,

our focus is on self-admitted technical debt. Our work advances the prior work on

self-admitted technical debt by detecting and quantifying the different types of self-

admitted technical debt and classifying them accordingly. We also contribute a rich

data set of code comments that are classified into the different types of self-admitted

technical debt.

3.3 Approach

The main goal of our study is to identify and quantify the different types of self-

admitted technical debt found in source code comments. Figure 2 shows an overview
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Figure 2: Dataset Creation Approach Overview

Table 1: Details of the Projects Used to Create the Dataset

Project Release
# of

classes
SLOC

# of
comments

# of
contributors

Apache Ant 1.7.0 1,475 115,881 21,587 74
Apache Jmeter 2.10 1,181 81,307 20,084 33
ArgoUML 0.34 2,609 176,839 67,716 87
Columba 1.4 1,711 100,200 33,895 9
JFreeChart 1.0.19 1,065 132,296 23,474 19

of our approach, and the following subsections detail each step of it.

3.3.1 Project Data Extraction

To perform our study, we obtain the source code of five open source projects, namely

Apache Ant, Apache Jmeter, ArgoUML, Columba and JFreeChart. We chose the

aforementioned projects, since they belong to different application domains, and vary

in size (e.g., SLOC), and in the number of contributors.

Table 1 provides statistics about each one of the projects used in our study. We

provide details about the release used, the number of classes, the total source lines

of code (SLOC), the total extracted comments and the number of contributors. A

source line of code contain at least one valid character, which is not blank spaces

or source code comments. In our study, we only use the Java files to calculate the

SLOC, and to do so, we use the tool SLOCCount [Whe04].

The number of contributors was extracted from OpenHub, an on-line community

and public directory that offers analytics, search services and tools for open source
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software [Ope]. It is important to notice that the number of comments shown for each

project does not represent the number of commented lines, but rather the number

of individual line, block, and Javadoc comments. In total, we obtained more than

166,756 comments, found in 8,041 Java classes.

3.3.2 Parse Source Code

After obtaining the source code of all projects, we extract the comments from their

source code. We use JDeodorant [TCC08], an open-source Eclipse plug-in, to parse

the source code and extract the code comments. JDeodorant is capable of identify

design flaws (i.e., bad smells) in Java projects, and suggest refactoring opportunities to

solve them. JDeodrant uses the Eclipse AST framework to create an Abstract Syntax

Tree (AST) map of the source code. The AST map contains detailed information

about the project such as: the source code comments, its type (i.e., Block, Single-

line or Javadoc), the line where each one of these comments begins and finishes.

We extract the aforementioned information and store all comments in a relational

database to facilitate the processing of the data.

3.3.3 Filter Comments

Source code comments can be used for different purposes in a project like giving

context, as part of the documentation, to express thoughts, opinions and authorship,

and in some cases, to remove source code from the program. Comments are used freely

for developers and with few formalities, if any at all. This informal environment allows

developers to bring to light opinions, insights and even confessions (e.g., self-admitted

technical debt).

As shown in prior work by Potdar and Shihab [PS14], part of these comments can

be identified as self-admitted technical debt, but they are not the majority of cases.

With that in mind, we develop and apply 4 filtering heuristics to narrow down the
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comments eliminating the ones that are less likely to be classified as self-admitted

technical debt.

To do so, we developed a Java based tool that reads from the database the data

obtained by parsing the source code. Next, it executes the filtering heuristics and

stores the result back in the database. The retrieved data contains information like

the line number that a class/comment begins/ends and the type, considering the Java

syntax, of the comment (i.e., Block, Single-line or Javadoc). With this information

we process the filtering heuristics as described next.

We found that license comments are very not likely to contain self-admitted tech-

nical debt, and that license comments are commonly added before the declaration of

the class. Therefore, we create a heuristic that removes comments that are placed be-

fore the class declaration. Since we know the line number that the class was declared

we can easily check for comments that are placed before that line and remove them.

In order to decrease the chances of removing a self-admitted technical debt com-

ment while executing this filter we calibrated this heuristic to not remove comments

containing one of task-reserved words (i.e., “todo”, “fixme”, or “xxx”).

We also notice that some times developers make long comments, using multiple

single-line comments instead of a Block comment. This characteristic can hinder

the understanding of the message. Consider the case that the reader (i.e., human or

machine) analyze each one of these comments independently, the message would be

incomplete and the meaning lost. To solve that problem, we create a heuristic that

searches for consecutive single-line comments and groups them as one. We identify

consecutive comments by subtracting the line number of both comments. If the result

of the difference is equals a -1 we have a consecutive comment. For example, Single-

line comment A is placed in line number 100 and Single-line comment B is placed in

line 101. The subtraction of the line numbers will result in -1, therefore the comments

are consecutive.
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Similarly, is common to find commented source code across the projects, and

this can be due to many different reasons. One of the possibilities is that the code

is not being used, other is that the code is used for debug purposes only. Based

on our analysis, commented source code does not have self-admitted technical debt.

Our heuristic remove commented source code using a simple regular expression that

captures typical Java code structures.

Lastly, when analyzing Javadoc comments we found that they rarely mention self-

admitted technical debt. For the Javadoc comments that does mention self-admitted

technical debt we notice that they usually contains one of the task-reserved words

(i.e., “todo”, “fixme”, or “xxx”). Based on this, our heuristic remove all comments

of the type Javadoc unless they contain at least one of the task-reserved words. To

do so, we create a simple regular expression that search for the task-reserved words

before removing the comment.

The steps mentioned above significantly reduced the number of comments in our

dataset and helped us focus on the most applicable and insightful comments. For

example, in the Apache Ant project, applying the above steps helped reduce the

number of comments from 21,587 to 4,140 comments meaning that 19.17% of the

comments were kept for analysis. Table 2 provides details for each one of the projects.

Table 2: Filtering Heuristics Details

Project
Total # of
comments

# of
comments

after filtering

% of
TD-related
comments

Apache Ant 21,587 4,140 19.17 %
Apache Jmeter 20,084 8,163 40.64 %
ArgoUML 67,716 9,788 14.45 %
Columba 33,895 6,569 19.38 %
JFreeChart 23,474 4,436 18.89 %
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3.3.4 Manual Classification

To classify the comments, we developed a Java based tool that shows one comment

at a time and gives a list of possible classifications that can be manually assigned

to the comment. The list of possible classifications is based on previous work by

Alves et al. [ARC+14]. After applying the different filtering steps, we successfully

classified 33,093 comments. The more than 33 thousand comments were classified

into five different types of self-admitted technical debt, i.e., design debt, defect debt,

documentation debt, requirement debt and test debt.

The first author who made the classification has more than 8 years of experience

working in the industry as a software engineer, during this time he designed, imple-

mented and maintained several programs using, in particular the Java programming

language. He developed solid skills in object orientated programming and design

patterns. We consider that these qualifications provide the necessary background to

conduct the manual classification of the comments.

3.4 Case Study Results

The goal of our study is to classify and quantify the different types of self-admitted

technical debt. To do so, we divide our study in two parts first, we manually read

trough all comments identifying self-admitted technical debt among them. Once

identified, the self-admitted technical debt, is classified into different types. Second,

we quantify these comments identifying the most common types. Our case study is

formalized with the following research question:

RQ: What are the types of self-admitted technical debt? How frequent are

the different types of self-admitted technical debt in the studied projects

?
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Motivation: As shown in previous work [PS14], self-admitted technical can be an

indicator of non-optimal solutions. However, technical debt is a general term, and

there are many different types of technical debt [ARC+14]. Although we know that

self-admitted technical exists, the different types of self-admitted technical debt are

still unknown. For example, are we able to detect documentation debt from code

comments? Answering this question is important as different types of debt have

different approaches to be solved, and therefore each different type may need a tailored

solution. It also helps us understand the opportunities and limitations of using code

comments to detect technical debt.

Approach: To identify the different types of debt found in the comments we manu-

ally read through source code comments as described in Section 3.3. While examining

the comments we classify each comment by the nature of the debt, using the descrip-

tions provided by Alves et al. as a guideline.

During the classification we notice that some comments can be classified in more

than one type of debt (e.g., a comment reporting a design debt can also be causing an

unexpected behavior, which is defect debt). Although this is an ambiguous situation,

and may have different interpretations depending of who is reading the comments,

we defined that each comment would have just one classification type for the sake of

clarity.

To mitigate the chance of misclassifying these comments, we take in consideration

the more meaningful type for each comment in a given scenario. To do so, whenever

a case like this occurred, we did a more detailed investigation (i.e., by examining the

source code and any available documentation). In total we read and classified 33,093

comments from five open source projects. The classification took approximately 95

hours and was performed by the first author of the paper.

Results: We found five different types of self-admitted technical debt. Below, we list

the different types of technical debt that we were able to detect and provide example
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comments to help the reader grasp the different types of self-admitted technical debt

comments.

• Self-admitted design debt: These comments indicate that there is a problem

with the design of the code. They can be comments about misplaced code, lack

of abstraction, long methods, poor implementation, workarounds or a temporary

solution. Lets consider the following comments:

“TODO: - This method is too complex, lets break it up” - [from Ar-

goUml]

“/* TODO: really should be a separate class */” - [from ArgoUml]

These comments are clear examples of what we consider as self-admitted design

debt. In the above comments, the developers state what needs to be done in

order to improve the current design of the code. Although the above comments

are easy to understand, during our study we came across more challenging

comments that expressed design problems in an indirect way. For example:

“// I hate this so much even before I start writing it. // Re-initialising

a global in a place where no-one will see it just // feels wrong. Oh

well, here goes.” - [from ArgoUml]

“//quick & dirty, to make nested mapped p-sets work:” - [from Apache

Ant]

In the above example comments the authors are certain to be implementing

code that does not represent the best solution. Intuitively, we know that kind

of implementation will degrade the design of the code and should be avoided.

“// probably not the best choice, but it solves the problem of // relative

paths in CLASSPATH” - [from Apache Ant]

27



“//I can’t get my head around this; is encoding treatment needed

here?” - [from Apache Ant]

The above comments expressed doubt and uncertainty when implementing the

code and were considered as self-admitted design debt as well.

• Self-admitted defect debt: In defect debt comments the author states that

a part of the code does not have the expected behavior, meaning that there is

a defect in the code.

“// Bug in above method” - [from Apache Jmeter]

“// WARNING: the OutputStream version of this doesn’t work!” -

[from ArgoUml]

As shown in these examples there are defects that are known by the developers,

but for some reason is not fixed yet.

• Self-admitted documentation debt: In the documentation debt comments

the author express that there is no proper documentation supporting that part

of the program.

“**FIXME** This function needs documentation” - [from Columba]

“// TODO Document the reason for this” - [from Apache Jmeter]

Here, the developers clearly recognize the need to document their code, however,

for some reason they do not document it yet.

• Self-admitted requirement debt: Requirement debt comments express in-

completeness of the method, class or program as observed in the following com-

ments:
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“/TODO no methods yet for getClassname” - [from Apache Ant]

“//TODO no method for newInstance using a reverse-classloader” -

[from Apache Ant]

“TODO: The copy function is not yet * completely implemented - so

we will * have some exceptions here and there.*/” - [from ArgoUml]

The last example shows a comment that could be considered as having more

than one type of debt. (i.e., requirement debt and defect debt), but as men-

tioned in the classification approach, we choose to maintain one type only for

each comment. Based on our understanding, the defect debt expressed in the

comment would not exist if the requirement debt did not exists. Therefore, the

main debt in this comment is a requirement debt (i.e., incomplete implementa-

tion of the copy function).

• Self-admitted test debt: Test debt comments are the ones that express the

need for implementation or improvement of the current tests. As shown in the

examples below, test debt comments are very straight forward in their meaning.

“// TODO - need a lot more tests” - [from Apache Jmeter]

“//TODO enable some proper tests!!” - [from Apache Jmeter]

After classifying the comments, we notice that not all of the types mentioned in

by Alves et al. [ARC+14] could be found. We argue that some types like people debt

or infrastructure debt are less probable to appear in source code comments. Other

types such as build debt could not be found because we are examining comments in

Java classes only, not taking in consideration build scripts that are usually written in

other languages (e.g., Maven and Ant use XML files as build scripts).
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We find five different types of self-admitted technical debt, i.e., design debt,

defect debt, documentation debt, requirement debt and test debt.
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Figure 3: Self-Admitted Technical Debt Types Distribution

In addition to determining the different type of self-admitted technical debt, we

would like to quantify the different types. Doing so will help us understand the

strengths and weaknesses of using code comments to detect technical debt. After

analyzing the more than 33K comments, we found that only 2,457 comments are self-

admitted technical debt comments, representing 7.42% (i.e., 2457
33093

) of all the classified

comments. The percentage of self-admitted technical debt found for each project is

presented in Table 3. ArgoUml is the project with the highest percentage of self-

admitted technical debt and Apache Ant has the lowest percentage, amounting to

16.8% and 3.2% respectively.

Figure 3 shows the percentage of each type of self-admitted technical debt across

the projects. Since each project has a different number of comments we normalized the

data, presenting the percentages of the different types rather than the raw numbers.
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Table 3: Self-Admitted Technical Debt per Project

Project
# of analyzed
comments

# of
self-admitted TD

comments

% of
self-admitted TD

per project

Apache Ant 4,140 134 3.2
Apache Jmeter 8,163 375 4.6
ArgoUML 9,788 1,653 16.8
Columba 6,569 295 4.4
JFreeChart 4,433 219 4.9

For example, if a project has 100 self-admitted technical debt comments and 10 where

design debt type, we say that the project has 10% of self-admitted design technical

debt.

Analyzing the Figure 3 we find that self-admitted design debt is the most common

in 4 out of 5 projects. Self-admitted design technical debt values ranged from 42%,

in Columba project with the lowest percentage, to 84% in Jmeter and JFreeChart,

projects with the highest percentage. The second most frequent type is self-admitted

requirement debt with values between 5% and 45%, followed by self-admitted defect

technical debt making up between 4% to 9% of the comments. Self-admitted test

technical debt ranged from 0% to 7% whereas self-admitted documentation debt had

only 0% to 5% of the comments.

We notice that Columba and ArgoUml have the highest occurrences of self-

admitted requirement debt. Columba is a email client application written in Java,

which has 9 contributors [Ope], and a considerable number of classes 1,711. It is

reasonable to think that developers have limited time to develop features. There-

fore, leaving comments of features that need to be implemented in the future (i.e.,

requirement debt) is more likely.

ArgoUml has a high number of contributors i.e., 87 and yet has a hight number

of self-admitted requirement debt. Analyzing the comments we notice that there
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occurrences about the need of support for internationalization and other comments

express the need to implement code to make features compatible with newer versions

of the UML language.

Based on that we argue that coupling with external changes that are inherent of

the application domain and the adoption of the tool from users all over the world

[Ope] had increased the number of self-admitted requirement debt.

We find that the majority of the self-admitted technical debt comments are

design debt, which ranged from 42% to 84% across the projects. The second

most frequent type was requirement debt that ranged from 5% to 45%. The

remaining types have low frequency if considered that they represented less than

10% of the occurrences

3.5 Threats to Validity

Internal validity consider the relationship between theory and observation, in case

the measured variables do not measure the actual factors. To classify the source code

comments we heavily depended on manual process due the fact that comments are

written in natural language and therefore difficult to analyze by a machine. Like any

human activity, our manual classification is subject to personal bias and subjectivity.

To reduce this bias, in the future, we will ask to other researchers of our lab to classify

the dataset as well, verifying and discussing possible divergences of opinion. This is

important as changes in this dataset may impact our findings.

When performing our study, we used well-commented Java projects. Since our

technique heavily depends on code comments, our results may be impacted by the

quantity and quality of comments in a software project. To alleviate the threat,

we examined multiple projects. Moreover, there is a risk of removing self-admitted
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technical debt comments while filtering license comments. To mitigate this risk we do

not remove comments that contain one of task-reserved words (i.e., “todo”, “fixme”,

or “xxx”).

External validity consider the generalization of our findings. All of our findings

were derived from comments in open source projects. To minimize external validity,

we chose open source projects from different domains. That said, our results may

not generalize to other open source or commercial projects. In particular, our results

may not generalize to projects that have a low number or no comments. Other than

that, we only analyze projects written in Java, therefore the results obtained may not

generalize to projects written in other languages.

3.6 Conclusion and Future Work

The term technical debt is being used for practitioners and researchers in the soft-

ware engineer community to express shortcuts and workarounds employed in software

projects. These shortcuts will most often impact the maintainability of the project

hindering the development if not addressed properly. Our work explore specifically

self-admitted technical debt, that is the technical debt deliberately introduced by the

developers and reported through source code comments.

In our study we analyzed the comments of 5 open source projects which are

Apache Ant, Apache Jmeter, ArgoUml , Columba and JFreeChart. These projects

are considered well commented and they belong to different application domains.

We used them to understand the characteristics of self-admitted technical debt types

creating a rich dataset with more than 33,093 classified comments.

We find that self-admitted technical debt can be classified into five types: design

debt, defect debt, documentation debt, requirement debt and test debt. We also

provide concrete examples of each one of the mentioned types and the rationale to
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classify them as it was. Moreover, we find that the majority of the self-admitted

technical debt comments are design debt. Design debt ranged from 42% to 84% across

the projects. The second most frequent type was requirement debt ranging from 5% to

45%. Based on this result, we can say that the self-admitted technical debt types that

developers admit to the most are related with the design of the project, potentially

indicating that developers feel the need to admit and be forthcoming about such debt.

Examining the reasons for these types of debt is an interesting future direction that

we plan to pursue.

Moreover, in this chapter we explained our filtering heuristics to remove comments

that are not likely to have technical debt. In the next chapter we leveraged all the

knowledge obtained by this first study. We will explain in details how we expanded the

size of our dataset, doubling the amount of projects being analyzed, and consequently,

broadening the application domains involved in the study.

This dataset is then used to train a NLP classifier that is able to automatically

identify self-admitted technical debt. To understand how good our approach is in

identifying self-admitted technical debt we compare the performance that we obtained

with two other baselines, one of these baselines is the current state-of-the-art.
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Chapter 4

Proposing an Approach to

Automatically Identify

Self-Admitted Technical Debt

4.1 Introduction

Developers often have to deal with conflicting goals that require software to be de-

livered quickly, with high quality, and on budget. In practice, achieving all of these

goals at the same time can be challenging, causing a tradeoff to be made. Often,

these tradeoffs lead developers to take shortcuts or use workarounds. Although such

shortcuts help developers in meeting their short-term goals, they may have a negative

impact in the long-term.

Technical debt is a metaphor coined to express sub-optimal solutions that are

taken in a software project in order to achieve some short-term goals [Cun92]. Gen-

erally, these decisions allow the project to move faster in the short-term, but intro-

duce an increased cost (i.e., debt) to maintain this software in the long run [SG11,

KNOF13]. Prior work has shown that technical debt is widespread in the software
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domain, is unavoidable, and can have a negative impact on the quality of the soft-

ware [LTS12].

Technical debt can be deliberately or inadvertently incurred [Mar]. Inadvertent

technical debt is technical debt that is taken on unknowingly. One example of inadver-

tent technical debt is architectural decay or architectural drift. To date, the majority

of the technical debt work has focused on inadvertent technical debt [NOKGR12]. On

the other hand, deliberate technical debt, is debt that is incurred by the developer

with knowledge that it is being taken on. One example of such deliberate technical

debt, is self-admitted technical debt, which is the focus of our paper.

Due to the importance of technical debt, a number of studies empirically examined

technical debt and proposed techniques to enable its detection and management.

Some of the approaches analyze the source code to detect technical debt, whereas

other approaches leverage various techniques and artifacts, e.g., documentation and

architecture reviews, to detect documentation debt, test debt or architecture debt

(i.e., unexpected deviance from the initial architecture) [AMdM+16, XCK+16].

The main findings of prior work are three-fold. First, there are different types

of technical debt, e.g., defect debt, design debt, testing debt, and that among them

design debt has the highest impact [ARC+14, Mar12]. Second, static source code anal-

ysis helps in detecting technical debt, (i.e., code smells) [Mar04, MGV10, ZSV+13].

Third, more recently, our work has shown that it is possible to identify technical debt

through source comments, referred to as self-admitted technical debt [PS14], and that

design and requirement debt are the most common types of self-admitted technical

debt [MS15].

The recovery of technical debt through source code comments has two main ad-

vantages over traditional approaches based on source code analysis. First, it is more

lightweight compared to source code analysis, since it does not require the construc-

tion of Abstract Syntax Trees or other more advanced source code representations.
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For instance, some code smell detectors that also provide refactoring recommendations

to resolve the detected code smells [TC11, TMK15] generate computationally expen-

sive program representation structures, such as program dependence graphs [Gra10],

and method call graphs [AL12] in order to match structural code smell patterns and

compute metrics. On the other hand, the source code comments can be easily and

efficiently extracted from source code files using regular expressions. Second, it does

not depend on arbitrary metric threshold values, which are required in all metric-

based code smell detection approaches. Deriving appropriate threshold values is a

challenging open problem that has attracted the attention and effort of several re-

searchers [OVPL14, FFZY15, FMZM15]. As a matter of fact, the approaches based

on source code analysis suffer from high false positive rates [FDW+16] (i.e., they flag

a large number of source code elements as problematic, while they are not perceived

as such by the developers), because they rely only on the structure of the source

code to detect code smells without taking into account the developers’ feedback, the

project domain, and the context in which the code smells are detected.

However, relying solely on the developers’ comments to recover technical debt is

not adequate, because developers might be unaware of the presence of some code

smells in their project, or might not be very familiar with good design and coding

practices (i.e., inadvertent debt). As a result, the detection of technical debt through

source code comments can be only used as a complementary approach to existing

code smell detectors based on source code analysis. We believe that self-admitted

technical debt can be useful to prioritize the pay back of debt (i.e., develop a pay back

plan), since the technical debt expressed in the comments written by the developers

themselves is definitely more relevant to them.

Despite the advantages of recovering technical debt from source code comments,

the research in self-admitted technical debt, thus far, heavily relies on the manual

inspection of code comments. The current-state-of-the art approach [PS14] uses 62
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comment patterns (i.e., words and phrases) derived after the manual examination

of more than 100K comments. The manual inspection of code comments is subject

to reader bias, time consuming and, as any other manual task, susceptible to errors.

These limitations in the identification of self-admitted technical debt comments makes

the current state-of-the-art approach difficult to be applied in practice.

Therefore, in this paper we investigate the efficiency of using Natural Language

Processing (NLP) techniques to automatically detect the two most common types

of self-admitted technical debt, i.e., design and requirement debt. We analyze ten

open source projects from different application domains, namely, Ant, ArgoUML,

Columba, EMF, Hibernate, JEdit, JFreeChart, JMeter, JRuby and SQuirrel SQL.

We extract and classify the source comments of these projects. Then, using the

classified dataset we train a maximum entropy classifier using the Stanford Classifier

tool [MK03] to identify design and requirement self-admitted technical debt. The

advantages of the maximum entropy classifier over keyword-based and pattern-based

approaches, such as comment patterns, are twofold. First, the maximum entropy

classifier automatically extracts the most important features (i.e., words) for each

class (i.e., design self-admitted technical debt, requirement self-admitted technical

debt, and without technical debt) based on a classified training dataset given as input.

Second, the maximum entropy classifier, apart from finding features that contribute

positively to the classification of a comment in a given class, also finds features that

contribute negatively to the classification of a comment in a given class.

We perform a leave-one-out cross-project validation (i.e., we train on nine projects

and test on one project). Our results show that we are able to achieve an average F1-

measure of 0.620 when identifying design self-admitted technical debt, and an average

F1-measure of 0.403 when identifying requirement self-admitted technical debt. We

compare the performance of our approach to the state-of-the-art approach used to

detect self-admitted technical debt [PS14]. Our results show that on average, we
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outperform the state-of-the-art by 2.3 times, when detecting design debt, and by 6

times when detecting requirement debt.

To better understand how developers express technical debt we analyze the 10

most prevalent words appearing within self-admitted technical debt comments. We

find that the top design debt words are related to sloppy or mediocre source code.

For example, words such as ‘hack’, ‘workaround’ and ‘yuck!’ are used to express

design self-admitted technical debt. On the other hand, for requirement debt, words

indicating the need to complete a partially implemented requirement are the best

indicators. For example, words such as ‘todo’, ‘needed’ and ‘implementation’ are

strong indicators of requirement debt.

Finally, to determine the most efficient way to apply our approach, we analyze

the amount of training data necessary to effectively identify self-admitted technical

debt. We find that training datasets using 23% of the available data can achieve a

performance equivalent to 90% of the maximum F1-measure score for both design

and requirement self-admitted technical debt. Similarly, 80% of the maximum F1-

measure can be achieved using only 9% of the available data for design self-admitted

technical debt, and 5% for requirement self-admitted technical debt.

The main contributions of our work are the following:

• We provide an automatic, NLP-based, approach to identify design and require-

ment self-admitted technical debt.

• We examine and report the words that best indicate design and requirement

self-admitted technical debt.

• We show that using a small training set of comments, we are able to effectively

detect design and requirement self-admitted technical debt.

• We make our dataset publicly available1, so that others can advance work in

1https://github.com/maldonado/tse satd data
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the area of self-admitted technical debt.

The rest of the chapter is organized as follows. Section 4.2 describes our approach.

We setup our experiment and present our results in Section 4.3. We discuss the

implications of our findings in Section 4.4. In Section 4.5 we present the related work.

Section 4.6 presents the threats to validity and Section 4.7 presents our conclusions

and future work.

4.2 Approach

Figure 4: NLP Based Approach Overview

The main goal of our study is to automatically identify self-admitted technical

debt through source code comments. To do that, we first extract the comments

from ten open source projects. Second, we apply five filtering heuristics to remove

comments that are irrelevant for the identification of self-admitted technical debt

(e.g., license comments, commented source code and Javadoc comments). After that,

we manually classify the remaining comments into the different types of self-admitted

technical debt (i.e., design debt, requirement debt, defect debt, documentation debt

and test debt). Lastly, we use these comments as training data for the maximum

entropy classified and use the trained model to detect self-admitted technical debt

from source code comments. Figure 4 shows an overview of our approach, and the

following subsections detail each step.
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4.2.1 Project Data Extraction

To perform our study, we need to analyze the source code comments of software

projects. Therefore, we focused our study on ten open source projects: Ant is a build

tool written in Java, ArgoUML is an UML modeling tool that includes support for

all standard UML 1.4 diagrams, Columba is an email client that has a graphical in-

terface with wizards and internationalization support, EMF is a modeling framework

and code generation facility for building tools and other applications, Hibernate is

a component providing Object Relational Mapping (ORM) support to applications

and other components, JEdit is a text editor written in Java, JFreeChart is a chart

library for the Java platform, JMeter is a Java application designed to load functional

test behavior and measure performance, JRuby is a pure-Java implementation of the

Ruby programming language and SQuirrel SQL is a graphical SQL client written in

Java. We selected these projects since they belong to different application domains,

are well commented, vary in size, and in the number of contributors.

Table 4 provides details about each of the projects used in our study. The columns

of Table 4 present the release used, followed by the number of classes, the total source

lines of code (SLOC), the number of contributors, the number of extracted comments,

the number of comments analyzed after applying our filtering heuristics, and the

number of comments that were classified as self-admitted technical debt together

with the percentage of the total project comments that it represent. The final three

columns show the percentage of self-admitted technical debt comments classified as

design debt, requirement debt, and all other remaining types of debt (i.e., defect,

documentation and test debt), respectively.

Since there are many different definitions for the SLOC metric we clarify that, in

our study, a source line of code contains at least one valid character, which is not

a blank space or a source code comment. In addition, we only use the Java files to

calculate the SLOC, and to do so, we use the SLOCCount tool [Whe04].
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The number of contributors was extracted from OpenHub, an on-line community

and public directory that offers analytics, search services and tools for open source

software [Ope]. It is important to note that the number of comments shown for each

project does not represent the number of commented lines, but rather the number of

Single-line, Block and Javadoc comments. In total, we obtained 259,229 comments,

found in 16,249 Java classes. The size of the selected projects varies between 81,307

and 228,191 SLOC, and the number of contributors of these projects ranges from 9

to 328.
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Table 4: Details of All Studied Projects

Project

Project Details Comments Details Technical Debt Details

Release
#

of Classes
SLOC

# of
Contributors

# of
Comments

# of
Comments

After Filtering

#,(%) of
TD

Comments

% of
Design
Debt

% of
Requirement

Debt

% of
Other
Debt

Ant 1.7.0 1,475 115,881 74 21,587 4,137 131 (0.60) 72.51 09.92 17.55
ArgoUML 0.34 2,609 176,839 87 67,716 9,548 1,413 (2.08) 56.68 29.08 14.22
Columba 1.4 1,711 100,200 9 33,895 6,478 204 (0.60) 61.76 21.07 17.15
EMF 2.4.1 1,458 228,191 30 25,229 4,401 104 (0.41) 75.00 15.38 09.61
Hibernate 3.3.2 GA 1,356 173,467 226 11,630 2,968 472 (4.05) 75.21 13.55 11.22
JEdit 4.2 800 88,583 57 16,991 10,322 256 (1.50) 76.56 05.46 17.96
JFreeChart 1.0.19 1,065 132,296 19 23,474 4,423 209 (0.89) 88.03 07.17 04.78
JMeter 2.10 1,181 81,307 33 20,084 8,162 374 (1.86) 84.49 05.61 09.89
JRuby 1.4.0 1,486 150,060 328 11,149 4,897 622 (5.57) 55.14 17.68 27.17
SQuirrel 3.0.3 3,108 215,234 46 27,474 7,230 286 (1.04) 73.07 17.48 09.44

Average 1,625 146,206 91 25,923 6,257 407 (1.86) 71.84 14.24 13.89
Total 16,249 1,462,058 909 259,229 62,566 4,071 (-) - - -
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4.2.2 Parse Source Code

After obtaining the source code of all projects, we extract the comments from the

source code. We use JDeodorant [TCC08], an open-source Eclipse plug-in, to parse

the source code and extract the code comments. JDeodorant provides detailed infor-

mation about the source code comments such as: their type (i.e., Block, Single-line,

or Javadoc), their location (i.e., the lines where they start and end), and their context

(i.e., the method/field/type declaration they belong to).

Due to these features, we adapted JDeodorant to extract the aforementioned

information about source code comments and store it in a relational database to

facilitate the processing of the data.

4.2.3 Filter Comments

Source code comments can be used for different purposes in a project, such as giving

context, documenting, expressing thoughts, opinions and authorship, and in some

cases, disabling source code from the program. Comments are used freely by devel-

opers and with limited formalities, if any at all. This informal environment allows

developers to bring to light opinions, insights and even confessions (e.g., self-admitted

technical debt).

As shown in prior work [MS15], part of these comments may discuss self-admitted

technical debt, but not the majority of them. With that in mind, we develop and

apply 5 filtering heuristics to narrow down the comments eliminating the ones that

are less likely to be classified as self-admitted technical debt.

To do so, we developed a Java based tool that reads from the database the data

obtained by parsing the source code. Next, it executes the filtering heuristics and

stores the results back in the database. The retrieved data contains information like

the line number that a class/comment starts/ends and the comment type, considering

the Java syntax (i.e., Single-line, Block or Javadoc). With this information we process
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the filtering heuristics as described next.

License comments are not very likely to contain self-admitted technical debt, and

are commonly added before the declaration of the class. We create a heuristic that

removes comments that are placed before the class declaration. Since we know the

line number that the class was declared we can easily check for comments that are

placed before that line and remove them. In order to decrease the chances of remov-

ing a self-admitted technical debt comment while executing this filter we calibrated

this heuristic to avoid removing comments that contain one of the predefined task

annotations (i.e., “TODO:”, “FIXME:”, or “XXX:”) [SRB+08]. Task annotations

are an extended functionality provided by most of the popular Java IDEs including

Eclipse, InteliJ and NetBeans. When one of these words is used inside a comment

the IDE will automatically keep track of the comment creating a centralized list of

tasks that can be conveniently accessed later on.

Long comments that are created using multiple Single-line comments instead of

a Block comment can hinder the understanding of the message considering the case

that the reader (i.e., human or machine) analyzes each one of these comments inde-

pendently. To solve this problem, we create a heuristic that searches for consecutive

single-line comments and groups them as one comment.

Commented source code is found in the projects due to many different reasons.

One of the possibilities is that the code is not currently being used. Other is that,

the code is used for debugging purposes only. Based on our analysis, commented

source code does not have self-admitted technical debt. Our heuristic removes com-

mented source code using a simple regular expression that captures typical Java code

structures.

Automatically generated comments by the IDE are filtered out as well. These

comments are inserted as part of code snippets used to generate constructors, methods

and try catch blocks, and have a fixed format (i.e., “Auto-generated constructor stub”,
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“Auto-generated method stub”, and “Auto-generated catch block”). Therefore our

heuristic searches for these automatically generated comments and removes them.

Javadoc comments rarely mention self-admitted technical debt. For the Javadoc

comments that do mention self-admitted technical debt, we notice that they usually

contain one of the task annotations (i.e., “TODO:”, “FIXME:”, or “XXX:”). There-

fore, our heuristic removes all comments of the Javadoc type, unless they contain at

least one of the task annotations. To do so, we create a simple regular expression

that searches for the task annotations before removing the comment.

The steps mentioned above significantly reduced the number of comments in our

dataset and helped us focus on the most applicable and insightful comments. For

example, in the Ant project, applying the above steps helped to reduce the number

of comments from 21,587 to 4,137 resulting in a reduction of 80.83% in the number

of comments to be manually analyzed. Using the filtering heuristics we were able

to remove from 39.25% to 85.89% of all comments. Table 4 provides the number of

comments kept after the filtering heuristics for each project.

4.2.4 Manual Classification

Our goal is to inspect each comment and label it with a suitable technical debt

classification. Since there are many comments, we developed a Java based tool that

shows one comment at a time and gives a list of possible classifications that can be

manually assigned to the comment. The list of possible classifications is based on

previous work by Alves et al. [ARC+14]. In their work, an ontology on technical debt

terms was proposed, and they identified the following types of technical debt across

the researched literature: architecture, build, code, defect, design, documentation,

infrastructure, people, process, requirement, service, test automation and test debt.

During the classification process, we notice that not all types of debt mentioned by

Alves et al. [ARC+14] could be found in code comments. However, we were able to
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identify the following types of debt in the source comments: design debt, defect debt,

documentation debt, requirement debt and test debt.

In our previous work [MS15], we manually classified 33,093 comments extracted

from the following projects: Ant, ArgoUML, Columba, JFreeChart and JMeter. In

the current study we manually classified an additional 29,473 comments from EMF,

Hibernate, JEdit, JRuby and SQuirrel, which means that we extended our dataset

of classified comments by 89.06%. In total, we manually classified 62,566 comments

into the five different types of self-admitted technical debt mentioned above. The

classification process took approximately 185 hours in total, and was performed by

the first author of the paper. It is important to note that this manual classification

step does not need to be repeated in order to apply our approach, since our dataset

is publicly available2, and thus it can used as is, or even extended with new classified

comments.

Below, we provide definitions for design and requirement self-admitted technical

debt, and some indicative comments to help the reader understand the different types

of self-admitted technical debt comments.

Self-admitted design debt: These comments indicate that there is a problem with

the design of the code. They can be comments about misplaced code, lack of ab-

straction, long methods, poor implementation, workarounds, or temporary solutions.

Usually these kinds of issues are resolved through refactoring (i.e., restructuring of

existing code), or by re-implementing existing code to make it faster, more secure,

more stable and so forth. Let us consider the following comments:

“TODO: - This method is too complex, lets break it up” - [from ArgoUml]

“/* TODO: really should be a separate class */” - [from ArgoUml]

2https://github.com/maldonado/tse satd data
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These comments are clear examples of what we consider as self-admitted design

debt. In the above comments, the developers state what needs to be done in order

to improve the current design of the code, and the payback of this kind of design

debt can be achieved through refactoring. Although the above comments are easy

to understand, during our study we came across more challenging comments that

expressed design problems in an indirect way. For example:

“// I hate this so much even before I start writing it. // Re-initialising

a global in a place where no-one will see it just // feels wrong. Oh well,

here goes.” - [from ArgoUml]

“//quick & dirty, to make nested mapped p-sets work:” - [from Apache

Ant]

In the above example comments the authors are certain to be implementing code

that does not represent the best solution. We assume that this kind of implementation

will degrade the design of the code and should be avoided.

“// probably not the best choice, but it solves the problem of // relative

paths in CLASSPATH” - [from Apache Ant]

“//I can’t get my head around this; is encoding treatment needed here?”

- [from Apache Ant]

The above comments expressed doubt and uncertainty when implementing the

code and were considered as self-admitted design debt as well. The payback of the

design debt expressed in the last four example comments can be achieved through

the re-implementation of the currently existing solution.
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Self-admitted requirement debt: These comments convey the opinion of a devel-

oper supporting that the implementation of a requirement is not complete. In general,

requirement debt comments express that there is still missing code that needs to be

added in order to complete a partially implemented requirement, as it can be observed

in the following comments:

“/TODO no methods yet for getClassname” - [from Apache Ant]

“//TODO no method for newInstance using a reverse-classloader” - [from

Apache Ant]

“TODO: The copy function is not yet * completely implemented - so we

will * have some exceptions here and there.*/” - [from ArgoUml]

“TODO: This dialect is not yet complete. Need to provide implementa-

tions wherever Not yet implemented appears” - [from SQuirrel]

To mitigate the risk of creating a dataset that is biased, we extracted a sample

of our dataset and asked another student to classify it. To prepare the student for

the task we gave a 1-hour tutorial about the different kinds of self-admitted technical

debt, and walked the student through a couple of examples of each different type

of self-admitted technical debt comment. Then, we evaluate the level of agreement

between both reviewers by calculating Cohen’s kappa coefficient [Coh60]. The Cohen’s

Kappa coefficient has been commonly used to evaluate inter-rater agreement level for

categorical scales, and provides the proportion of agreement corrected for chance.

The resulting coefficient is scaled to range between -1 and +1, where a negative value

means poorer than chance agreement, zero indicates exactly chance agreement, and

a positive value indicates better than chance agreement [FC73]. The closer the value
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is to +1, the stronger the agreement. In our work, we randomly selected 96 of each

type of self-admitted technical debt comment that we want to identify (i.e., without

debt, design debt and requirement debt) to create our sample dataset. The level of

agreement achieved between the reviewers was of +0.84 with p-value of 0, meaning

that the agreement is statistically significant.

We also measured the level of agreement in the classification of design and require-

ment self-admitted technical debt individually. We achieved a level of agreement of

+0.89 for design self-admitted technical debt, and +0.83 for requirement self-admitted

technical debt. According to Fleiss [Fle81] values larger than +0.75 are characterized

as excellent agreement.

4.2.5 NLP Classification

Our next step is to use the classified self-admitted technical debt comments as a

training dataset for the Stanford Classifier, which is a Java implementation of a

maximum entropy classifier. Discriminative probabilistic models such as maximum

entropy models have been extensively used in NLP, Information Retrieval and Speech

Recognition because 1) they achieve high accuracy performance, 2) they make it easy

to incorporate lots of linguistically important features and 3) they allow automatic

building of language independent NLP modules [MK03].

A maximum entropy classifier, in general, takes as input a number of data items

along with a classification for each data item, and automatically generates features

(i.e., words) from each datum, which are associated with positive or negative numeric

votes for each class. The weights of the features are learned automatically based on

the manually classified training data items (supervised learning). The Stanford Clas-

sifier builds a maximum entropy model, which is equivalent to a multi-class regression

model, and it is trained to maximize the conditional likelihood of the classes taking

into account feature dependences when calculating the feature weights.
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After the training phase, the maximum entropy classifier can take as input a test

dataset that will be classified according to the model built during the training phase.

The output for each data item in the test dataset is a classification, along with the

features contributing positively or negatively in this classification.

In our case, the training dataset is composed of source code comments and

their corresponding manual classification. According to our findings in previous

work [MS15], the two most common types of self-admitted technical debt are de-

sign and requirement debt (defect, test, and documentation debt together represent

less that 10% of all self-admitted technical debt comments). Therefore, we train the

maximum entropy classifier on the dataset containing only these two specific types of

self-admitted technical debt comments.

In order to avoid having repeated features differing only in letter case (e.g., “Hack”,

“hack”, “HACK”), or in preceding/succeeding punctuation characters (e.g., “,hack”,

“hack,”), we preprocess the training and test datasets to clean up the original com-

ments written by the developers. More specifically, we remove the character structures

that are used in the Java language syntax to indicate comments (i.e., ‘//’ or ‘/*’ and

‘*/’), the punctuation characters, and any excess whitespace characters (e.g., ‘ ’, ‘\t’,
‘\n’), and finally we convert all comments to lowercase. However, we decided not to

remove exclamation and interrogation marks. These specific punctuations were very

useful during the identification of self-admitted technical debt comments, and provide

insightful information about the meaning of the features.

4.3 Experiment Results

The goal of our research is to develop an automatic way to detect design and require-

ment self-admitted technical debt comments. To do so, we first manually classify a

large number of comments identifying those containing self-admitted technical debt.
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With the resulting dataset, we train the maximum entropy classifier to identify de-

sign and requirement self-admitted technical debt (RQ1). To better understand what

words indicate self-admitted technical debt, we inspect the features used by the max-

imum entropy classifier to identify the detected self-admitted technical debt. These

features are words that are frequently found in comments with technical debt. We

present the 10 most common words that indicate design and requirement self-admitted

technical debt (RQ2). Since the manual classification required to create our training

dataset is expensive, ideally we would like to achieve maximum performance with the

least amount of training data. Therefore, we investigate how variations in the size

of training data affects the performance of our classification (RQ3). We detail the

motivation, approach and present the results of each of our research questions in the

remainder of this section.
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Table 5: Comparison of F1-measure Between the NLP-based and the Comment Patterns Approach for Design and Require-
ment Debt

Project

Design Debt Requirement Debt

Our
Approach

Comment
Patterns

Imp. Over
Comment
Patterns

Our
Approach

Comment
Patterns

Imp. Over
Comment
Patterns

Ant 0.517 0.237 2.1× 0.154 0.000 -
ArgoUML 0.814 0.107 7.6× 0.595 0.000 -
Columba 0.601 0.264 2.2× 0.804 0.117 6.8 ×
EMF 0.470 0.231 2.0× 0.381 0.000 -
Hibernate 0.744 0.227 3.2× 0.476 0.000 -
JEdit 0.509 0.342 1.4× 0.091 0.000 -
JFreeChart 0.492 0.282 1.7× 0.321 0.000 -
JMeter 0.731 0.194 3.7× 0.237 0.148 1.6 ×
JRuby 0.783 0.620 1.2× 0.435 0.409 1.0 ×
SQuirrel 0.540 0.175 3.0× 0.541 0.000 -

Average 0.620 0.267 2.3× 0.403 0.067 6.0 ×
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Figure 5: Visualization of the F1-measure for Different Approaches

RQ1. Is it possible to more accurately detect self-admitted technical debt

using NLP techniques?

Motivation: As shown in previous work [MS15], self-admitted technical debt com-

ments can be found in the source code. However, there is no automatic way to identify

these comments. The methods proposed so far heavily rely on the manual inspec-

tion of source code, and there is no evidence on how well these approaches perform.
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Moreover, most of them do not discriminate between the different types of technical

debt (e.g., design, test, requirement).

Therefore, we want to determine if NLP techniques such as, the maximum entropy

classifier, can help us surpass these limitations and outperform the accuracy of the

current state-of-the-art. The maximum entropy classifier can automatically classify

comments based on specific linguistic characteristics of these comments. Answering

this question is important, since it helps us understand the opportunities and limita-

tions of using NLP techniques to automatically identify self-admitted technical debt

comments.

Approach: For this research question, we would like to examine how effectively

we can identify design and requirement self-admitted technical debt. Therefore, the

first step is to create a dataset that we can train and test the maximum entropy

classifier on. We classified the source code comments into the following types of self-

admitted technical debt: design, defect, documentation, requirement, and test debt.

However, our previous work showed that the most frequent self-admitted technical

debt comments are design and requirement debt. Therefore, in this paper, we focus

on the identification of these two types of self-admitted technical debt, because 1)

they are the most common types of technical debt, and 2) NLP-based techniques

require sufficient data for training (i.e., they cannot build an accurate model with a

small number of samples).

We train the maximum entropy classifier using our manually created dataset. The

dataset contains comments with and without self-admitted technical debt, and each

comment has a classification (i.e., without technical debt, design debt, or requirement

debt). Then, we add to the training dataset all comments classified as without tech-

nical debt and the comments classified as the specific type of self-admitted technical

debt that we want to identify (i.e., design or requirement debt). We use the comments

from 9 out of the 10 projects that we analyzed to create the training dataset. The
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comments from the remaining one project are used to evaluate the classification per-

formed by the maximum entropy classifier. We choose to create the training dataset

using comments from 9 out of 10 projects, because we want to train the maximum

entropy classifier with the most diverse data possible (i.e., comments from differ-

ent domains of applications). However, we discuss the implications of using training

datasets of different sizes in RQ3. We repeat this process for each one of the ten

projects, each time training on the other 9 projects and testing on the remaining 1

project.

Based on the training dataset, the maximum entropy classifier will classify each

comment in the test dataset. The resulting classification is compared with the manual

classification provided in the test dataset. If a comment in the test dataset has the

same manual classification as the classification suggested by the maximum entropy

classifier, we will have a true positive (tp) or a true negative (tn). True positives

are the cases where the maximum entropy classifier correctly identifies self-admitted

technical debt comments, and true negatives are comments without technical debt

that are classified as being as such. Similarly, when the classification provided by

the tool diverges from the manual classification provided in the test dataset, we have

false positives or false negatives. False positives (fp) are comments classified as being

self-admitted technical debt when they are not, and false negatives (fn) are comments

classified as without technical debt when they really are self-admitted technical debt

comments. Using the tp, tn, fp, and fn values, we are able to evaluate the performance

of different detection approaches in terms of precision (P = tp
tp+fp

), recall (R = tp
tp+fn

)

and F1-measure (F = 2 × P×R
P+R

). To determine how effective the NLP classification

is, we compare its F1-measure values with the corresponding F1-measure values of

the state-of-the-art approach. We use the F1-measure to compare the performance

between the approaches as it is the harmonic mean of precision and recall. Using the

F1-measure allows us to incorporate the trade-off between precision and recall and
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present one value that evaluates both measures.

The state-of-the-art approach in detecting self-admitted technical debt comments [PS14]

uses 62 comment patterns (i.e., keywords and phrases) that were found as recurrent

in self-admitted technical debt comments during the manual inspection of 101,762

comments.

Results - design debt: Table 5 presents the F1-measure of the two approaches, as

well as the improvement achieved by our approach compared to the other approaches.

We see that for all projects, the F1-measure achieved by our approach is higher than

the other approach. The F1-measure values obtained by our NLP-based approach

range between 0.470 - 0.814, with an average of 0.620. In comparison, the F1-measure

values using the comment patterns range between 0.107 - 0.620, with an average of

0.267. Figure 5(a) visualizes the comparison of the F1-measure values for our NLP-

based approach and the comment patterns approach. We see from both, Table 5

and Figure 5(a) that, on average, our approach outperforms the comment patterns

approach by 2.3 times when identifying design self-admitted technical debt.

It is important to note that the comment patterns approach has a high precision,

but low recall, i.e., this approach points correctly to self-admitted technical debt

comments, but as it depends on keywords, it identifies a very small subset of all the

self-admitted technical debt comments in the project. Although we only show the

F1-measure values here, we present the precision and recall values in Table 8.

Results - requirement debt: Similarly, the last 3 columns of Table 5 show the

F1-measure performance of the two approaches, and the improvement achieved by

our approach over the other approaches. The comment patterns approach was able

to identify requirement self-admitted technical debt in only 3 of the 10 analyzed

projects. A possible reason for the low performance of the comment patterns in

detecting requirement debt is that the comment patterns do not differentiate between

the different types of self-admitted technical debt. Moreover, since most of the debt
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is design debt, it is possible that the patterns tend to favor the detection of design

debt.

That said, we find that for all projects, the F1-measure values obtained by our ap-

proach surpass the F1-measure values of the other approach. Our approach achieves

F1-measure values between 0.091 - 0.804 with an average of 0.403, whereas the com-

ment pattern approach achieves F1-measure values in the range of 0.117 - 0.409 with

an average of 0.067. Figure 5(b) visualizes the performance comparison of the two

approaches. We also examine if the differences in the F1-measure values obtained by

our approach and the other baseline are statistically significant. Indeed, we find that

the differences are statistically significant (p<0.001) for both design and requirement

self-admitted technical debt.

Generally, requirement self-admitted technical debt is less common than design

self-admitted technical debt, which makes it more difficult to detect. Nevertheless, our

NLP-based approach provides a significant improvement over the comment patterns

approach, outperforming it by 6 times, on average. Table 5 only presents the F1-

measure values for the sake of brevity, however, we present the detailed precision and

recall values in Table 9.

In our work, the classification performed by the Stanford Classifier used the maxi-

mum entropy classifier. However, the Stanford Classifier can use other classifiers too.

In order to examine the impact of the underlying classifier on the accuracy of the

proposed approach, we investigate two more classifiers, namely the Naive Bayes, and

the Binary classifiers.

Figures 6(a) and 6(b) compare the performance between the three different clas-

sifiers. We find that the Naive Bayes has the worst average F1-measure of 0.30 and

0.05 for design and requirement technical debt, respectively. Based on our findings,

the Naive Bayes algorithm favours recall at the expense of precision. For example,

while classifying design debt, the average recall was 0.84 and precision 0.19. The two
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other algorithms present more balanced results compared to the Naive Bayes, and the

difference in their performance is almost negligible. The Logistic Regression classifier

achieved F1-measures of 0.62 and 0.40, while the Binary classifier F1-measures were

0.63 and 0.40, for design and requirement self-admitted technical debt, respectively.

Tables 6 and 7 provide detailed data for each classifier and all ten examined projects.

Although the Binary classifier has a slightly better performance, for our purpose,

the Logistical Regression classifier provides more insightful textual features. These

features were analyzed and presented in RQ2.

According to previous work, developers hate to deal with false positives (i.e., low

precision) [BBC+10, EBO+15, SvGJ+15]. Due to this fact, we choose to present our

results in this study using the maximum entropy classifier, which has an average

precision of 0.716 throughout all projects. However, favouring recall over precision

by using the Naives Bayes classifier might still be acceptable, if a manual process to

filter out false positives is in place, as reported by Berry et al. [BGST12].

One important question to ask when choosing what kind of classifier to use is how

much training data is currently available. In most of the cases, the trickiest part of ap-

plying a machine learning classifier in real world applications is creating or obtaining

enough training data. If you have fairly little data at your disposal, and you are going

to train a supervised classifier, then machine learning theory recommends classifiers

with high bias, such as the Naive Bayes [FC04, NJ01]. If there is a reasonable amount

of labeled data, then you are in good stand to use most kinds of classifiers [MRS08].

For instance, you may wish to use a Support Vector Machine (SVM), a decision tree

or, like in our study, a max entropy classifier. If a large amount of data is available,

then the choice of classifier probably has little effect on the results and the best choice

may be unclear [BB01]. It may be best to choose a classifier based on the scalability

of training, or even runtime efficiency.
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Table 6: Comparison Between Different Classifiers for Design Debt

Project

Maximum Entropy Naive Bayes Binary

Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure

Ant 0.554 0.484 0.517 0.072 0.874 0.134 0.620 0.516 0.563
ArgoUML 0.788 0.843 0.814 0.358 0.985 0.525 0.790 0.858 0.822
Columba 0.792 0.484 0.601 0.181 0.786 0.294 0.840 0.500 0.627
EMF 0.574 0.397 0.470 0.057 0.872 0.106 0.633 0.397 0.488
Hibernate 0.877 0.645 0.744 0.288 0.890 0.435 0.895 0.670 0.767
JEdit 0.779 0.378 0.509 0.227 0.791 0.353 0.807 0.342 0.480
JFreeChart 0.646 0.397 0.492 0.140 0.560 0.224 0.658 0.397 0.495
JMeter 0.808 0.668 0.731 0.224 0.801 0.350 0.819 0.671 0.737
JRuby 0.798 0.770 0.783 0.275 0.971 0.429 0.815 0.808 0.811
SQuirrel 0.544 0.536 0.540 0.133 0.947 0.233 0.567 0.550 0.558

Average 0.716 0.5602 0.6201 0.1955 0.8477 0.3083 0.7444 0.5709 0.6348
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Table 7: Comparison Between Different Classifiers for Requirement Debt

Project

Maximum Entropy Naive Bayes Binary

Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure

Ant 0.154 0.154 0.154 0.007 0.769 0.013 0.188 0.231 0.207
ArgoUML 0.663 0.540 0.595 0.119 0.808 0.207 0.659 0.569 0.611
Columba 0.755 0.860 0.804 0.030 0.930 0.057 0.755 0.860 0.804
EMF 0.800 0.250 0.381 0.009 1.000 0.018 0.800 0.250 0.381
Hibernate 0.610 0.391 0.476 0.041 0.781 0.078 0.615 0.375 0.466
JEdit 0.125 0.071 0.091 0.011 0.857 0.022 0.143 0.071 0.095
JFreeChart 0.220 0.600 0.321 0.009 0.800 0.018 0.179 0.467 0.259
JMeter 0.153 0.524 0.237 0.011 0.952 0.022 0.180 0.524 0.268
JRuby 0.686 0.318 0.435 0.058 0.836 0.109 0.679 0.327 0.442
SQuirrel 0.657 0.460 0.541 0.018 0.900 0.036 0.455 0.500 0.476

Average 0.4823 0.4168 0.4035 0.0313 0.8633 0.058 0.4653 0.4174 0.4009
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Figure 6: Underlying Classifier Algorithms Performance Comparison

We find that our NLP-based approach, is more accurate in identifying self-

admitted technical debt comments compared to the current state-of-art. We

achieved an average F1-measure of 0.620 when identifying design debt (an av-

erage improvement of 2.3× over the state-of-the-art approach) and an average

F1-measure of 0.403 when identifying requirement debt (an average improve-

ment of 6× over the state-of-the-art approach).
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Table 8: Detailed Comparison of F1-measure Between the NLP-based and the Comment Patterns Approach for Design Debt

Project

NLP-based Comment Patterns

Precision Recall F1 measure Precision Recall F1 measure

Ant 0.554 0.484 0.517 0.608 0.147 0.237
ArgoUML 0.788 0.843 0.814 0.793 0.057 0.107
Columba 0.792 0.484 0.601 0.800 0.158 0.264
EMF 0.574 0.397 0.470 0.647 0.141 0.231
Hibernate 0.877 0.645 0.744 0.920 0.129 0.227
JEdit 0.779 0.378 0.509 0.857 0.214 0.342
JFreeChart 0.646 0.397 0.492 0.507 0.195 0.282
JMeter 0.808 0.668 0.731 0.813 0.110 0.194
JRuby 0.798 0.770 0.783 0.864 0.483 0.620
SQuirrel 0.544 0.536 0.540 0.700 0.100 0.175
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Table 9: Detailed Comparison of F1-measure Between the NLP-based and the Comment Patterns Approach for Requirement
Debt

Project

NLP-based Comment Patterns

Precision Recall F1 measure Precision Recall F1 measure

Ant 0.154 0.154 0.154 0.000 0.000 0.000
ArgoUML 0.663 0.540 0.595 0.000 0.000 0.000
Columba 0.755 0.860 0.804 0.375 0.069 0.117
EMF 0.800 0.250 0.381 0.000 0.000 0.000
Hibernate 0.610 0.391 0.476 0.000 0.000 0.000
JEdit 0.125 0.071 0.091 0.000 0.000 0.000
JFreeChart 0.220 0.600 0.321 0.102 0.266 0.148
JMeter 0.153 0.524 0.237 0.000 0.000 0.000
JRuby 0.686 0.318 0.435 0.573 0.318 0.409
SQuirrel 0.657 0.460 0.541 0.000 0.000 0.000
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RQ2. What are the most impactful words in the classification of self-

admitted technical debt?

Motivation: After assessing the accuracy of our NLP-based approach in identifying

self-admitted technical debt comments, we want to better understand what words

developers use when expressing technical debt. Answering this question will provide

insightful information that can guide future research directions, broaden our under-

standing on self-admitted technical debt and also help us to detect it.

Approach: The maximum entropy classifier learns optimal features that can be used

to detect self-admitted technical debt. A feature is comment fragment (e.g., word)

that is associated with a specific class (i.e., design debt, requirement debt, or without

technical debt), and a weight that represents how strongly this feature relates to that

class. The maximum entropy classifier uses the classified training data to determine

the features and their weights. Then, these features and their corresponding weights

are used to determine if a comment belongs to a specific type of self-admitted technical

debt or not.

For example, let us assume that after the training, the maximum entropy clas-

sifier determines that the features “hack” and “dirty” are related to the design-debt

class with weights 5.3 and 3.2, respectively, and the feature “something” relates to

the without-technical-debt class with a weight of 4.1. Then, to classify the com-

ment “this is a dirty hack it’s better to do something” from our test data, all

features present in the comment will be examined and the following scores would

be calculated: weightdesign−debt = 8.5 (i.e., the sum of “hack” and “dirty” feature

weights) and weightwithout−technical−debt = 4.1. Since weightdesign−debt is larger than

weightwithout−technical−debt, the comment will be classified as design debt.

For each analyzed project, we collect the features used to identify the self-admitted

technical debt comments. These features are provided by the maximum entropy
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classifier as output and stored in a text file. The features are written in the file

according to their weights in descending order (starting from more relevant, ending

to less relevant features). Based on these files, we rank the words calculating the

average ranking position of the analyzed features across the ten different projects.

Results: Table 10 shows the top-10 textual features used to identify self-admitted

technical debt in the ten studied projects, ordered by their average ranking. The first

column shows the ranking of each textual feature, the second column lists the features

used in the identification of design self-admitted technical debt, and the third column

lists the textual features used to identify requirement self-admitted technical debt.

From Table 10 we observe that the top ranked textual features for design self-

admitted technical debt, i.e., hack, workaround, yuck!, kludge and stupidity, indicate

sloppy code, or mediocre source code quality. For example, we have the following

comment that was found in JMeter:

“Hack to allow entire URL to be provided in host field”

Other textual features, such as needed?, unused? and wtf? are questioning the

usefulness or utility of a specific source code fragment, as indicated by the following

comment also found in JMeter:

“TODO: - is this needed?”

For requirement self-admitted technical debt, the top ranked features, i.e., todo,

needed, implementation, fixme and xxx indicate the need to complete requirements

in the future that are currently partially complete. An indicative example is the

following one found in JRuby:

“TODO: implement, won’t do this now”
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Some of the remaining lower ranked textual features, such as convention, config-

urable and fudging also indicate potential incomplete requirements, as shown in the

following comments:

“Need to calculate this... just fudging here for now” [from JEdit]

“could make this configurable” [from JFreeChart]

“TODO: This name of the expression language should be configurable

by the user” [from ArgoUML]

“TODO: find a way to check the manifest-file, that is found by naming

convention” [from Apache Ant]

Table 10: Top-10 Textual Features Used to Identify Design and Requirement Self-
Admitted Technical Debt

Rank Design Debt Requirement Debt

1 hack todo
2 workaround needed
3 yuck! implementation
4 kludge fixme
5 stupidity xxx
6 needed? ends?
7 columns? convention
8 unused? configurable
9 wtf? apparently
10 todo fudging

It should be noted that the features highlighted in bold in Table 10 appear in all

top-10 lists extracted from each one of the ten training datasets, and therefore can

be considered as more universal/stable features compared to the others.
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We also observe that it is possible for a single textual feature to indicate both

design and requirement self-admitted technical debt. However, in such cases, the

ranking of the feature is different for each kind of debt. For example, the word

“todo” is ranked tenth for design debt, whereas it is ranked first for requirement

debt. This finding is intuitive, since requirement debt will naturally be related to the

implementation of future functionality.

It is important to note here that although we present only the top-10 textual

features, the classification of the comments is based on a combination of a large

number of textual features. In fact, two different types of textual features are used to

classify the comments, namely positive and negative weight features. Positive weight

features will increase the total weight of the vote suggesting that the classification

should be equal to the class of the feature (i.e., design or requirement debt). On

the other hand, negative weight features will decrease the total weight of the vote

suggesting a classification different from the class of the feature. On average, the

number of positive weight features used to classify design and requirement debt is

5,014 and 2,195, respectively. The exact number of unique textual features used to

detect self-admitted technical debt for each project is shown in Table 11. The fact that

our NLP-based approach leverages so many features helps to explain the significant

improvement we are able to achieve over the state-of-the-art, which only uses 62

patterns. In comparison, our approach leverages 35,828 and 34,056 unique textual

features for detecting comments with design and requirement debt, respectively.

We find that design and requirement debt have their own textual features that

best indicate such self-admitted technical debt comments. For design debt, the

top textual features indicate sloppy code or mediocre code quality, whereas for

requirement debt they indicate the need to complete a partially implemented

requirement in the future.
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Table 11: Number of Unique Textual Features Use to Detect Design and Requirement
Debt for Each Project

Project

Design Debt Requirement Debt

Positive
Weight
Features

Negative
Weight
Features

# of
Features

Positive
Weight
Features

Negative
Weight
Features

# of
Features

Ant 5,299 23,623 28,922 1,812 27,673 29,485
ArgoUML 3,917 26,012 29,929 2,779 27,260 30,039
Columba 5,255 24,182 29,437 2,433 27,561 29,994
EMF 5,346 23,667 29,013 1,889 27,637 29,526
Hibernate 4,914 24,070 28,984 2,748 26,654 29,402
JEdit 5,042 24,644 29,686 1,831 28,267 30,098
JFreeChart 5,361 23,530 28,891 1,902 27,439 29,341
JMeter 5,172 23,916 29,088 1,893 27,716 29,609
JRuby 4,856 24,553 29,409 2,850 27,085 29,935
SQuirrel 4,982 25,146 30,128 1,814 26,914 28,728

Average 5,014 24,334 29,348 2,195 27,420 29,615
Total unique 6,327 31,518 35,828 4,015 32,954 34,056

RQ3. How much training data is required to effectively detect self-admitted

technical debt?

Motivation: Thus far, we have shown that our NLP-based approach can effectively

identify comments expressing self-admitted technical debt. However, we conjecture

that the performance of the classification depends on the amount of training data. At

the same time, creating the training dataset is a time consuming and labor intensive

task. So, the question that arises is: how much training data do we need to effectively

classify the source code comments? If we need a very large number of comments to

create our training dataset, our approach will be more difficult to extend and apply for

other projects. On the other hand, if a small dataset can be used to reliably identify

comments with self-admitted technical debt, then this approach can be applied with
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minimal effort, i.e., less training data. That said, intuitively we expect that the

performance of the maximum entropy classifier will improve as more comments are

being added to the training dataset.

Approach: To answer this research question, we follow a systematic process where we

incrementally add training data and evaluate the performance of the classification.

More specifically, we combine the comments from all projects into a single large

dataset. Then, we split this dataset into ten equally-sized folds, making sure that

each partition has the same ratio of comments of self-admitted technical debt and

without technical debt as the original dataset. Next, we use one of the ten folds for

testing and the remaining nine folds as training data. Since we want to examine the

impact of the quantity of training data on performance, we train the classifier with

batches of 100 comments at a time and test its performance on the testing data. It

is important to note that even within the batches of 100 comments, we maintain the

same ratio of self-admitted technical debt and none technical debt comments as in

the original dataset. We keep adding comments until all of the training dataset is

used. We repeat this process for each one of the ten folds and report the average

performance across all folds.

We compute the F1-measure values after each iteration (i.e., the addition of a

batch of 100 comments) and record the iteration that achieves the highest F1-measure.

Then we find the iterations in which at least 80% and 90% of the maximum F1-

measure value is achieved, and report the number of comments added up to those

iterations.

Results - design debt: Figure 7(a) shows the average F1-measure values obtained

when detecting design self-admitted technical debt, while adding batches of 100 com-

ments. We find that the F1-measure score improves as we increase the number of

comments in the training dataset, and the highest value (i.e., 0.824) is achieved with
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Figure 7: F1-measure Achieved by Incrementally Adding Batches of 100 Comments
in the Training Dataset.

42,700 comments. However, the steepest improvement in the F1-measure perfor-

mance takes place within the first 2K-4K comments. Additionally, 80% and 90%

of the maximum F1-measure value is achieved with 3,900 and 9,700 comments in

the training dataset, respectively. Since each batch of comments consists of ap-

proximately 5% (i.e., 2,703
58,122

) comments with design self-admitted technical debt, the

iteration achieving 80% of the maximum F1-measure value contains 195 comments

with design self-admitted technical debt, while the iteration achieving 90% of the

maximum F1-measure value contains 485 such comments. In conclusion, to achieve

80% of the maximum F1-measure value, we need only 9.1% (i.e., 3,900
42,700

) of the training

data, while to achieve 90% of the maximum F1-measure value, we need only 22.7%

(i.e., 9,700
42,700

) of the training data.

Results - requirement debt: Figure 7(b) shows the average F1-measure values ob-

tained when detecting requirement self-admitted technical debt, while adding batches

of 100 comments. As expected, the F1-measure increases as we add more comments

into the training dataset, and again the steepest improvement takes place within the

first 2-3K comments.

The highest F1-measure value (i.e., 0.753) is achieved using 51,300 comments
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of which 675 are requirement self-admitted technical debt. Additionally, 80% of

the maximum F1-measure score is achieved with 2,600 comments, while 90% of the

maximum F1-measure score with 11,800 comments in the training dataset.

Each batch contains two comments with requirement self-admitted technical debt,

since the percentage of such comments is 1.3% (i.e., 757
58,122

) in the entire dataset.As

a result, the iteration achieving 80% of the maximum F1-measure value contains 52

comments with requirement self-admitted technical debt, while the iteration achieving

90% of the maximum F1-measure value contains 236 such comments.

In conclusion, to achieve 80% of the maximum F1-measure value, we need only 5%

(i.e., 2,600
51,300

) of the training data, while to achieve 90% of the maximum F1-measure

value, we need only 23% (i.e., 11,800
51,300

) of the training data.

We find that to achieve a performance equivalent to 90% of the maximum

F1-measure score, only 23% of the comments are required for both design and

requirement self-admitted technical debt. For a performance equivalent to 80%

of the maximum F1-measure score, only 9% and 5% of the comments are re-

quired for design and requirement self-admitted technical debt, respectively.

4.4 Discussion

Thus far, we have seen that our NLP-based approach can perform well in classifying

self-admitted technical debt. However, there are some observations that warrant fur-

ther investigation. For example, when it comes to the different types of self-admitted

technical debt, we find that requirement debt tends to require less training data,

which is another interesting point that is worth further investigation (Section 4.4.1).
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Moreover, we think that is also interesting to know the performance of our ap-

proach when trained to distinguish between self-admitted technical debt and non-

self-admitted technical debt, i.e., without using fine-grained classes of debt, such as

design and requirement debt (Section 4.4.2).

Lastly, we analyze the overlap between the files that contain self-admitted tech-

nical debt and the files that contain code smells. This is an interesting point of

discussion to provide insights on how technical debt found in comments relates to

code smells found by static analysis tools (Section 4.4.3).

4.4.1 Textual Similarity for Design and Requirement Debt

For RQ3, we hypothesize that one of the reasons that the detection of requirement

self-admitted technical debt comments needs less training data is because such com-

ments are more similar to each other compared to design self-admitted technical debt

comments. Therefore, we compare the intra-similarity of the requirement and design

debt comments.

We start by calculating the term frequency-inverse document frequency (tf-idf )

weight of each design and requirement self-admitted technical debt comment. Term

frequency (tf ) is the simple count of occurrences that a term (i.e., word) has in a

document (i.e., comment). Inverse document frequency (idf ) takes into account the

number of documents that the term appears. However, as the name implies, the more

one term is repeated across multiple documents the less relevant it is. Therefore, let

N be the total number of documents in a collection, the idf of a term t is defined as

follows: idft = log N
dft
. The total tf-idf weight of a document is equal to the sum of

each individual term tf-idf weight in the document. Each document is represented

by a document vector in a vector space model.

Once we have the tf-idf weights for the comments, we calculate the cosine similar-

ity between the comments. The Cosine similarity can be viewed as the dot product of
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the normalized versions of two document vectors (i.e., two comments) [MRS08]. The

value of the cosine distance ranges between 0 to 1, where 0 means that the comments

are not similar at all and 1 means that the comments are identical.

For example, the requirement self-admitted technical debt dataset contains 757

comments, for which we generate a 757×757 matrix (since we compare each comment

to all other comments). Finally, we take the average cosine similarity for design and

requirement debt comments, respectively, and plot their distributions. Figure 8 shows

that the median and the upper quartile for requirement self-admitted technical debt

comments are higher than the median and upper quartile for design self-admitted

technical debt. The median for requirement debt comments is 0.018, whereas, the

median for design debt comments is 0.011. To ensure that the difference is statistically

significant, we perform the Wilcoxon test to calculate the p-value. The calculated p-

value is less than 2.2e-16 showing that the result is indeed statistically significant

(i.e., p <0.001). Considering our findings, our hypothesis is validated, showing that

requirement self-admitted technical debt comments are more similar to each other

compared to design self-admitted technical debt comments. This may help explain

why requirement debt needs a smaller set of positive weight textual features to be

detected.

4.4.2 Distinguishing Self-Admitted Technical Debt from Non-

Self-Admitted Technical Debt Comments

So far, we analyzed the performance of our NLP-based approach to identify distinct

types of self-admitted technical debt (i.e., design and requirement debt). However, a

simpler distinction between self-admitted technical debt and non-debt comments can

also be interesting in the case those fine-grained classes of debt are not considered

necessary by a user of the proposed NLP-based detection approach. Another reason

justifying such a coarse-grained distinction is that the cost of building a training
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Figure 8: Textual Similarity Between Design and Requirement Debt Comments

dataset with fine-grained classes of debt is more expensive, mentally challenging, and

subjective than building a training dataset with just two classes (i.e., comments with

and without technical debt).

In order to compute the performance of our NLP-based approach using only two

classes (i.e., comments with and without technical debt), we repeat RQ1 and RQ2

with modified training and test datasets. First, we take all design and requirement

self-admitted technical debt comments and label them with a common class i.e., tech-

nical debt, and the remaining comments we kept them labeled as without technical

debt. Second, we run the maximum entropy classifier in the same leave-one-out cross-

project validation fashion, using the comments of 9 projects to train the classifier and

the comments from the remaining project to test the classifier. We repeat this process

for each of the ten projects and compute the average F1-measure. Lastly, we analyze

the textual features used to identify the self-admitted technical debt comments.
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Table 12: F1-measure Performance Considering Different Types of Self-admitted
Technical Debt

Project
Design
Debt

Requirement
Debt

Technical
Debt

Ant 0.517 0.154 0.512
ArgoUML 0.814 0.595 0.819
Columba 0.601 0.804 0.750
EMF 0.470 0.381 0.462
Hibernate 0.744 0.476 0.763
JEdit 0.509 0.091 0.461
JFreeChart 0.492 0.321 0.513
JMeter 0.731 0.237 0.715
JRuby 0.783 0.435 0.773
SQuirrel 0.540 0.541 0.593

Average 0.620 0.403 0.636

Table 12 compares the F1-measure achieved when detecting design debt, require-

ment debt, separately and when detecting both combined in a single class. As we can

see, the performance when detecting technical debt is very similar with the perfor-

mance of the classifier when detecting design debt. This is expected, as the majority

of technical debt comments in the training dataset are labeled with the design debt

class. Nevertheless, the performance achieved when detecting design debt was sur-

passed in the projects where the classifier performed well in detecting requirement

debt, for example, in Columba (0.601 vs. 0.750) and SQuirrel SQL (0.540 vs. 0.593).

We find that the average performance when detecting design and requirement self-

admitted technical debt combined is better (0.636) than the performance achieved

when detecting them individually (0.620 and 0.403 for design and requirement debt,

respectively).

Table 13 shows a comparison of the top-10 textual features used to detect design

and requirement debt comments separately, and those used to detect both types of

debt combined in a single class. When analyzing the top-10 textual features used to
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Table 13: Top-10 Textual Features Used to Identify Different Types of Self-Admitted
Technical Debt

Project
Design
debt

Requirement
debt

Technical
debt

1 hack todo hack
2 workaround needed workaround
3 yuck! implementation yuck!
4 kludge fixme kludge
5 stupidity xxx stupidity
6 needed? ends? needed?
7 columns? convention unused?
8 unused? configurable fixme
9 wtf? apparently todo
10 todo fudging wtf?

classify self-admitted technical debt, we find once more, a strong overlap with the

top-10 textual features used to classify design debt. The weight of the features is

attributed in accordance to the frequency that each word is found in the training

dataset, and therefore, the top-10 features tend to be similar with the top-10 design

debt features, since design debt comments represent the majority of self-admitted

technical debt comments in the dataset.

4.4.3 Investigating the Overlap Between Technical Debt Found

in Comments and Technical Debt Found by Static Anal-

ysis Tools

Thus far, we analyzed technical debt that was expressed by developers through source

code comments. However, there are other ways to identify technical debt, such as

architectural reviews, documentation analysis, and static analysis tools. To date,

using static analysis tools is one of the most popular approaches to identify technical

debt in the source code [FFS12]. In general, static analysis tools parse the source
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code of a project to calculate metrics and identify possible object oriented design

violations, also known as code smells, anti-patterns, or design technical debt, based

on some fixed metric threshold values.

We analyze the overlap between what our NLP-based approach identifies as tech-

nical debt and what a static analysis tool identifies as technical debt. We selected

JDeodorant as the static analysis tool, since it supports the detection of three popular

code smells, namely Long Method, God Class, and Feature Envy. We avoided the

use of metric-based code smell detection tools, because they tend to have high false

positive rates and flag a large portion of the code base as problematic [FDW+16].

On the other hand, JDeodorant detects only actionable code smells (i.e., code smells

for which a behavior-preserving refactoring can be applied to resolve them), and

does not rely on any metric thresholds, but rather applies static source code analy-

sis to detect structural anomalies and suggest refactoring opportunities to eliminate

them [TCC08].

First, we analyzed our 10 open source projects using JDeodorant. The result of

this analysis is a list of Java files that were identified having at least one instance

of the Long Method, God Class, and Feature Envy code smells. These code smells

have been extensively investigated in the literature, and are considered to occur fre-

quently [OCS10, SYA+13]. Second, we created a similar list containing the files that

were identified with self-admitted technical debt comments. Finally, we examined the

overlap of the two lists of files. It should be emphasized that we did not examine if

the self-admitted technical debt comments actually discuss the detected code smells,

but only if there is a co-occurrence at file-level.

Table 14 provides details about each one of the projects used in our study. The

columns of Table 14 present the total number of files with self-admitted technical debt,

followed by the number of files containing self-admitted technical debt comments and

at least one code smell instance, along with the percentage over the total number of
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files with self-admitted technical debt, for Long Method, Feature Envy, God Class,

and all code smells combined, respectively.

JMeter, for example, has 200 files that contain self-admitted technical debt com-

ments, and 143 of these files also contain at least one Long Method code smell (i.e.,

71.5%). In addition, we can see that 20.5% of the files that have self-admitted tech-

nical debt are involved in Feature Envy code smells, and 48.5% of them are involved

in God Class code smells. In summary, we see that 80.5% of the files that contain

self-admitted technical debt comments are also involved in at least one of the three

examined code smells.

We find that the code smell that overlaps the most with self-admitted technical

debt is Long Method. Intuitively, this is expected, since Long Method is a common

code smell and may have multiple instances per file, because it is computed at the

method level. The overlap between files with self-admitted technical debt and Long

Method ranged from 43.6% to 82% of all the files containing self-admitted technical

debt comments, and considering all projects, the average overlap is 65%. In addition,

44.2% of the files with self-admitted technical debt comments are also involved in

God Class code smells, and 20.7% in Feature Envy code smells. Taking all examined

code smells in consideration we find that, on average, 69.7% of files containing self-

admitted technical debt are also involved in at least one of the three examined code

smells.

Our findings here shows that using code comments to identify technical debt is a

complementary approach to using code smells to detect technical debt. Clearly, there

is overlap, however, each approach also identifies unique instances of technical debt.
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Table 14: Overlap Between the Files Containing self-admitted technical debt and the Files Containing Code Smells as
Detected by JDeodorant

Project
# of

Files with
SATD

# of SATD
Files with

Long
Method

% of SATD
Files with

Long
Method

# of SATD
Files with
Feature
Envy

% of SATD
fFles with
Feature
Envy

# of SATD
Files with

God
Class

% of SATD
Files with

God
Class

# of SATD
Files with
Any Code

Smell

% of SATD
Files with
Any Code

Smell

Ant 73 57 78.0 19 26.0 42 57.5 63 86.3
ArgoUML 419 255 60.8 43 10.2 128 30.5 283 67.5
Columba 117 76 64.9 18 15.3 47 40.1 89 76.0
EMF 53 33 62.2 14 26.4 28 52.8 28 52.8
Hibernate 206 90 43.6 44 21.3 72 34.9 116 56.3
JEdit 108 74 68.5 23 21.2 47 43.5 82 75.9
JFreeChart 106 87 82.0 20 18.8 52 49.0 92 86.7
JMeter 200 143 71.5 41 20.5 97 48.5 161 80.5
JRuby 163 107 65.5 43 26.3 79 48.4 85 52.1
SQuirrel 156 82 52.5 32 20.5 58 37.1 99 63.4

Average 65.0 20.7 44.2 69.7
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4.5 Related Work

Our work uses code comments to detect self-admitted technical debt using a Natural

Language Processing (NLP) technique. Therefore, we divide the related work into

three subsections, namely source code comments, technical debt, and NLP in software

engineering.

4.5.1 Source Code Comments

A number of studies examined the co-evolution of source code comments and the ra-

tionale for changing code comments. For example, Fluri et al. [FWG07] analyzed the

co-evolution of source code and code comments, and found that 97% of the comment

changes are consistent. Tan et al. [TMTL12] proposed a novel approach to iden-

tify inconsistencies between Javadoc comments and method signatures. Malik et al.

[MCHM+08] studied the likelihood of a comment to be updated and found that call

dependencies, control statements, the age of the function containing the comment,

and the number of co-changed dependent functions are the most important factors

to predict comment updates.

Other works used code comments to understand developer tasks. For example.

Storey et al. [SRB+08] analyzed how task annotations (e.g., TODO, FIXME) play a

role in improving team articulation and communication. The work closest to ours is

the work by Potdar and Shihab [PS14], where code comments were used to identify

technical debt, called self-admitted technical debt.

Similar to some of the prior work, we also use source code comments to identify

technical debt. However, our main focus is on the detection of different types of self-

admitted technical debt. As we have shown, our approach yields different and better

results in the detection of self-admitted technical debt.
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4.5.2 Technical Debt

A number of studies has focused on the detection and management of technical

debt. For example, Seaman et al. [SG11], Kruchten et al. [KNOF13] and Brown

et al. [BCG+10] make several reflections about the term technical debt and how it

has been used to communicate the issues that developers find in the code in a way

that managers can understand.

Other work focused on the detection of technical debt. Zazworka et al. [ZSV+13]

conducted an experiment to compare the efficiency of automated tools in comparison

with human elicitation regarding the detection of technical debt. They found that

there is a small overlap between the two approaches, and thus it is better to combine

them than replace one with the other. In addition, they concluded that automated

tools are more efficient in finding defect debt, whereas developers can realize more

abstract categories of technical debt.

In a follow up work, Zazworka et al. [ZSSS11] conducted a study to measure the im-

pact of technical debt on software quality. They focused on a particular kind of design

debt, namely, God Classes. They found that God Classes are more likely to change,

and therefore, have a higher impact on software quality. Fontana et al. [FFS12] inves-

tigated design technical debt appearing in the form of code smells. They used metrics

to find three different code smells, namely God Classes, Data Classes and Duplicated

Code. They proposed an approach to classify which one of the different code smells

should be addressed first, based on its risk. Ernst et al. [EBO+15] conducted a

survey with 1,831 participants and found that architectural decisions are the most

important source of technical debt.

Our work is different from the work that uses code smells to detect design technical

debt, since we use code comments to detect technical debt. Moreover, our approach

does not rely on code metrics and thresholds to identify technical debt and can be

used to identify bad quality code symptoms other than bad smells.
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More recently, Potdar and Shihab [PS14] extracted the comments of four projects

and analyzed 101,762 comments to come up with 62 patterns that indicate self-

admitted technical debt. Their findings show that 2.4% - 31% of the files in a

project contain self-admitted technical debt. Bavota and Russo [BR16] replicated

the study of self-admitted technical debt on a large set of Apache projects and con-

firmed the findings observed by Potdar and Shihab in their earlier work. Wehaibi et

al. [WSG16] examined the impact of self-admitted technical debt and found that self-

admitted technical debt leads to more complex changes in the future. All three of the

aforementioned studies used the comment patterns approach to detect self-admitted

technical debt. Our earlier work [MS15] examined more than 33 thousands com-

ments to classify the different types of self-admitted technical debt found in source

code comments. Farias et al. [FNSS15] proposed a contextualized vocabulary model

for identifying technical debt in comments using word classes and code tags in the

process.

Our work also uses code comments to detect design technical debt. However,

we use these code comments to train a maximum entropy classifier to automatically

identify technical debt. Also, our focus is on self-admitted design and requirement

technical debt.

4.5.3 NLP in Software Engineering

A number of studies leveraged NLP in software engineering, mainly for the traceabil-

ity of requirements, program comprehension and software maintenance. For exam-

ple, Lormans and van Deursen [LVD06] used latent semantic indexing (LSI) to create

traceable links between requirements and test cases and requirements to design imple-

mentations. Hayes et al. [HDS05, HDS06] created a tool called RETRO that applies

information retrieval techniques to trace and map requirements to designs. Yadla

et al. [YHD05] further enhanced the RETRO tool and linked requirements to issue
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reports. On the other hand, Runeson et al. [RAN07] implemented a NLP-based tool

to automatically identify duplicated issue reports, they found that 2/3 of the possible

duplicates examined in their study can be found with their tool. Canfora and Cerulo

[CC05] linked a change request with the corresponding set of source files using NLP

techniques, and then, they evaluated the performance of the approach on four open

source projects.

The prior work motivated us to use NLP techniques. However, our work is different

from the aforementioned ones, since we apply NLP techniques on code comments to

identify self-admitted technical debt, rather than use it for traceability and linking

between different software artifacts.

4.6 Threats to Validity

Construct validity and reliability considers the relationship between theory and

observation, in case the measured variables do not measure the actual factors. The

training dataset used by us heavily relied on a manual analysis and classification of

the code comments from the studied projects. Like any human activity, our manual

classification is subject to personal bias. To reduce this bias, we took a sample of our

classified comments and asked a Phd’s candidate, who is not an author of the paper,

to manually classify them. Then, we calculate the Kappa’s level of agreement between

the two classifications. The level of agreement obtained was +0.84, which according

to Fleiss [Fle81] is characterized as an excellent inter-rater agreement (values larger

than +0.75 are considered excellent). Nevertheless, we also measured Kappa’s level

of agreement for design and requirement self-admitted technical debt separately. The

level of agreement obtained for design and requirement self-admitted technical debt

was +0.89 and +0.83, respectively.

When performing our study, we used well-commented Java projects. Since our
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approach heavily depends on code comments, our results and performance measures

may be impacted by the quantity and quality of comments in a software project.

Considering the intentional misrepresentation of measures, it is possible that even

a well commented project does not contain self-admitted technical debt. Given the

fact that the developers may opt to not express themselves in source code comments.

In our study, we made sure that we choose case studies that are appropriately com-

mented for our analysis.

On the same point, using comments to determine some self-admitted technical

debt may not be fully representative, since comments or code may not be updated

consistently. However, previous work shows that changes in the source code are

consistent to changes in comments [FWG07, PS14]. In addition, it is possible that a

variety of technical debt that is not self-admitted is present in the analyzed projects.

However, since the focus of this paper is to improve the detection of the most common

types of self-admitted technical debt, considering all technical debt is out of the scope

of this paper.

Lastly, our approach depends on the correctness of the underlying tools we use. To

mitigate this risk, we used tools that are commonly used by practitioners and by the

research community, such as JDeodorant for the extraction of source code comments

and for investigating the overlap with code smells (Section 4.4.3) and the Stanford

Classifier for training and testing the max entropy classifier used in our approach.

External validity considers the generalization of our findings. All of our findings

were derived from comments in open source projects. To minimize the threat to

external validity, we chose open source projects from different domains. That said,

our results may not generalize to other open source or commercial projects, projects

written in different languages, projects from different domains and/or technology

stacks. In particular, our results may not generalize to projects that have a low

number or no comments or comments that are written in a language other than
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English.

4.7 Conclusion and Future Work

Technical debt is a term being used to express non-optimal solutions, such as hacks

and workarounds, that are applied during the software development process. Al-

though these non-optimal solutions can help achieve immediate pressing goals, most

often they will have a negative impact on the project maintainability [ZSSS11].

Our work focuses on the identification of self-admitted technical debt through the

use of Natural Language Processing. We analyzed the comments of 10 open source

projects namely Ant, ArgoUML, Columba, EMF, Hibernate, JEdit, JFreeChart, JMe-

ter, JRuby and SQuirrel SQL. These projects are considered well commented and they

belong to different application domains. The comments of these projects were manu-

ally classified into specific types of technical debt such as design, requirement, defect,

documentation and test debt. Next, we selected 61,664 comments from this dataset

(i.e., those classified as design self-admitted technical debt, requirement self-admitted

technical debt and without technical debt) to train the maximum entropy classifier,

and then this classifier was used to identify design and requirement self-admitted

technical debt automatically.

We first evaluated the performance of our approach by comparing the F1-measure

of our approach with the F1-measure of two other baselines, i.e., the comment patterns

baseline and the simple (random) baseline. We have shown that our approach outper-

forms the comment patterns baseline on average 2.3 and 6 times in the identification

of design and requirement self-admitted technical debt, respectively. Moreover, our

approach can identify requirement self-admitted technical debt, while the comment

patterns baseline fails to detect this kind of debt in most of the examined projects.
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Furthermore, the performance of our approach surpasses the simple (random) base-

line on average 7.6 and 19.1 times for design and requirement self-admitted technical

debt, respectively.

Then, we explored the characteristics of the features (i.e., words) used to clas-

sify self-admitted technical debt. We find that the words used to express design and

requirement self-admitted technical debt are different from each other. The three

strongest indicators of design self-admitted technical debt are ‘hack’, ‘workaround’

and ‘yuck!’, whereas, ‘todo’, ‘needed’ and ‘implementation’ are the strongest indica-

tors of requirement debt. In addition, we find that using only 5% and 23% of the

comments in the training dataset still leads to an accuracy that is equivalent to 80%

and 90% of the best performance, respectively. In fact, our results show that devel-

opers use a richer vocabulary to express design self-admitted technical debt and a

training dataset of at least 3,900 comments (of which 195 comments are design self-

admitted technical debt) is necessary to obtain a satisfactory classification. On the

other hand, requirement self-admitted technical debt is expressed in a more uniform

way, and with a training dataset of 2,600 comments (of which 52 are self-admitted

technical debt) it is possible to classify with relatively high accuracy requirement

self-admitted technical debt.

In the future, we believe that more analysis is needed to fine tune the use of the

current training dataset in order to achieve maximum efficiency in the detection of

self-admitted technical debt comments. For example, using subsets of our training

dataset can be more suitable for some applications than using the whole dataset

due to domain particularities. However, the results thus far are not to be neglected

as our approach has the best F1-measure performance on every analyzed project.

In addition, we plan to examine the applicability of our approach to more domains

(than those we study in this paper) and software projects developed in different

programming languages.
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Another interesting research direction that we plan to investigate in the future is

the use of other machine learning techniques, such as active learning to reduce the

number of labeled data necessary to train the classifier. This technique, if proved suc-

cessful, can further expand the horizon of projects that our approach can be applied

to.

Moreover, to enable future research, we make the dataset created in this study

publicly available3. We believe that it will be a good starting point for researchers

interested in identifying technical debt through comments and even experimenting

with different Natural Language Processing techniques. Lastly, we plan to use the

findings of this study to build a tool that will support software engineers in the task

of identifying and managing self-admitted technical debt.

3https://github.com/maldonado/tse_satd_data
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Chapter 5

Summary, Contributions and

Future Work

5.1 Summary of Addressed Topics

The main focus of our thesis is to tackle the challenges of self-admitted technical debt

identification. First, we conducted a survey of the state-of-the-art in the identification

of technical debt research in order to understand the main challenges. Then, we man-

ually analyzed a number of comments from different projects belonging to different

application domains. Next, we propose an approach based on NLP techniques that

outperforms the current state of the art in the identification of self-admitted technical

debt. The remainder of this chapter details the major topics covered in this thesis.

Chapter 2 surveys the state-of-art in technical debt. We believe that such a review

is necessary at this time, since a lot of research is aiming to better understand technical

debt. Therefore, it is an ideal time to reflect on the definitions and applications of

the metaphor as well to evaluate the current challenges in the field.

Chapter 3 presents the result of the quantification of the different types of self-

admitted technical debt. In this chapter we analyzed the comments of 5 open source
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projects. These projects are considered well commented and they belong to different

application domains. We used them to understand the characteristics of self-admitted

technical debt types creating a rich dataset with more than 33,093 classified com-

ments. We find that self-admitted technical debt can be classified into five types:

design debt, defect debt, documentation debt, requirement debt and test debt. How-

ever, the two most prevalent types of self-admitted technical debt are design and re-

quirement self-admitted technical debt. Design debt ranged from 42% to 84% across

the projects, whereas, requirement debt ranged from 5% to 45%.

Chapter 4 presents an approach that uses classified design and requirement self-

admitted technical debt comments to train a maximum entropy classifier to auto-

matically identify self-admitted technical debt. We evaluated the performance of our

approach against two other baselines, i.e., the comment patterns baseline and the

simple (random) baseline. We show that our approach performance surpassed the

comment patterns baseline on average 2.3 and 6 times in the identification of design

and requirement self-admitted technical debt, respectively. Analyzing the features to

identify self-admitted technical debt we find that the words used to express design

and requirement self-admitted technical debt are different from each other. In addi-

tion, we find that using only 5% and 23% of the comments in the training dataset

still leads to an accuracy that is equivalent to 80% and 90% of the best performance,

respectively.

5.2 Contributions

The goal of this thesis is to propose an approach that can effectively identify self-

admitted technical debt comments. We make several contributions towards this goal.

These contributions were motivated by previous research and our industrial experi-

ence. We summarize the main contributions of the thesis in more detail.
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The major contributions of this thesis are as follows:

• A concise review of the state of the art in technical debt: We provide the

readers a concise background evaluation from the the creation of the metaphor

until present date. We choose the most relevant sources that define how the

technical debt is being used and also the challenges involving the identification

of technical debt.

• A rich dataset of manually labeled technical debt: To create such dataset

we read and analyzed the source code comments of 10 open source projects con-

sidered well commented and from different application domains. The comments

of these projects were manually classified into specific types of technical debt

such as design, requirement, defect, documentation and test debt. In total, our

dataset contain 62,566 labeled comments and we made it publicly available to

enable future research on the field.

In addition, to mitigate the risk of creating a biased dataset, we also asked a stu-

dent that was not involved with our work to classify a stratified sample. Then,

we calculate the Kappa’s level of agreement between the two classifications.

The level of agreement obtained was +0.81, which according to Fleiss [Fle81] is

characterized as an excellent inter-rater agreement.

• An automatic, NLP-based, approach to identify design and require-

ment self-admitted technical debt: We have shown that our approach

outperforms the current state-of-the-art on average 2.3 and 6 times in the iden-

tification of design and requirement self-admitted technical debt, respectively.

Moreover, our approach can identify requirement self-admitted technical debt,

while the comment patterns baseline fails to detect this kind of debt in the ma-

jority of the examined projects. Furthermore, the performance of our approach

outperforms the simple (random) baseline on average 7.6 and 19.1 times for
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design and requirement self-admitted technical debt, respectively.

• An empirical study to investigate the amount of training data neces-

sary to effectively identify technical debt: We discuss the implications of

the amount training data that is necessary to apply our approach. For example,

if we need a very large number of comments to create our training dataset, our

approach will be more difficult to extend and apply for other projects. On the

other hand, if a small dataset can be used to reliably identify comments with

self-admitted technical debt, then this approach can be applied with minimal

effort, i.e., less training data. However, we find that using only 5% and 23%

of the comments in the training dataset leads to an accuracy that is equiva-

lent to 80% and 90% of the best performance, respectively. Our results also

show that developers use a richer vocabulary to express design self-admitted

technical debt and a training dataset of at least 3,900 comments (of which 195

comments are design self-admitted technical debt) is necessary to obtain a sat-

isfactory classification. On the other hand, requirement self-admitted technical

debt is expressed in a more uniform way, and with a training dataset of 2,600

comments (of which 52 are self-admitted technical debt) it is possible to classify

with relatively high accuracy requirement self-admitted technical debt.

5.3 Future Work

We believe that our thesis makes a positive contribution towards the goal of effectively

identifying technical debt. However, there are still many open challenges that need to

be tackled in order to improve the identification of technical debt. We now highlight

some avenues for future work.
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5.3.1 Fine tunning the approach to obtain optimal results

Although we conducted a number of diverse experiments with the NLP classifier, we

believe that is still a lot of opportunities to be explored that may improve even further

our approach. For example, we noticed that using subsets of our training dataset can

be more suitable for some applications than using the whole dataset due to domain

particularities.

5.3.2 Expanding the scope of our approach

We plan to examine the applicability of our approach to more domains than those

we study in this paper and software projects developed in different programming

languages. Also, would be interesting to analyze projects that uses comments in

different idioms than English. As we showed, we provide filtering heuristics that

could be easily adapted to remove irrelevant comments from software projects and

that we need a reduced amount of comments to obtain satisfactory results concerning

the identification of technical debt. We believe that these factors will help future

work to expand considerably.

5.3.3 Tool support for software developers

Lastly, we plan to use the findings of this study to build a tool that will support

software engineers in the task of identifying and managing self-admitted technical

debt. We envision that such tool would be useful to monitor debt and focus resources

during the development of the software project, moreover, when properly managed

software developers could take advantage of incurring debt when necessary, without

losing track of the overall quality of the system.
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