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Abstract 

A Simulation Study on Control Chart Performances in Monitoring Batch 

Production Processes 

Amirreza Hooshyar Telegraphi 

 

Quality control charts are graphical tools for monitoring quality characteristics of manufacturing 

or service systems. Control charts have been applied in many manufacturing systems such as long-

run production and short-run production since 1931. It is worth noting that less research is done in 

applying control charts in batch production and job-shop manufacturing. In this thesis, numerical 

simulation is used to find appropriate control charts in batch production. For quality improvement 

in such or similar processes, different control charts for batch production, e.g. 𝑥̅ chart, 𝑥̅ chart with 

Western Electric Rules, Q chart, EWMA Q chart, T chart, EWMA T chart, and Schewhart sign 

chart are simulated and assessed. The main task of this thesis is to study control charts capabilities 

to detect mean shifts of the considered processes.  

Key Words: statistical quality control, batch production, control charts, process mean, numerical 

simulation 
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1 Introduction 

 

1.1 Motivation 

Product and process quality is the main issue for companies to be successful in today’s business 

world. One of the traditional definitions of quality is based on the perspective that products and 

services must meet the requirements of consumers (Montgomery, 2013). However, a modern 

definition of quality pays more attention to the variability as an inseparable part of all 

manufacturing systems. Accordingly, a commonly used definition for quality is “inversely 

proportional to variability” (Montgomery, 2013). As one of the main techniques for quality 

improvement, statistical process control (SPC), a set of statistical techniques, provide powerful 

tools for monitoring the manufacturing process and allow high quality products to be produced 

(Castagliola et al, 2015). Among SPC tools, control charts are the mostly adopted tool to find the 

variabilities in the process parameters. Control charts demonstrate the variation of one or several 

key characteristics during the time period that the process is observed.   The statistical control chart 

based on 3 times of process standard variation was first suggested by Walter A. Schewhart in 1920s 

and has been used in manufacturing and applicable processes ever since. However, since Schewhart 

control charts resort to the information contained in the current sample observation, they may not 

be capable of detecting small variations of process parameters (Montgomery, 2013). Therefore, 

when small shifts of parameters are of interest, other types of control charts such as moving average 

(EWMA) or cumulative sum (Cusum) charts are appropriate alternatives.  

Design of experiment is an approach to study the effect of pertinent factors (possible causes) on 

the quality characteristics (Maynard, 2011). A designed experiment can be defined as an approach 

that systematically changes the controllable input factors in a manufacturing process to determine 

their influences on the final product. Due to the practical usage of design of experiment during 
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development activities and at the beginning of manufacturing, it is considered as a major off-line 

quality control technique (Montgomery, 2013). Acceptance sampling is one of the oldest statistical 

techniques in quality control. Acceptance sampling is to inspect and categorize sample of units 

selected at random from a larger batch or lot in order to decide whether accept or dispose the lot. 

(Montgomery, 2013). 

 

1.2 Batch Production 

Batch production is the subset of intermittent system of operations. According to Browne et al. 

(1996), the main characteristic of the batch production is medium production volume and medium 

product variety. Indeed, batch production is to manufacture products in batches or small lots 

through different operations so that before starting the latest operations, previous operations had to 

be done. It is worth noting that in such systems machines have typically multiple functions, and 

workers with multiple skills may be employed. 

 

1.3 Batch Production Control Charts 

Control charts in both long-run production and short-run production have been tested in this thesis 

to identify effective control charts for batch production. Control charts which have better success 

rates (detection ability) and average times to detect, are selected in such systems. Schewhart control 

chart, originated in the 1920s, is the most widely used chart for monitoring the mean of a process 

(Castagliola, 2015). Schewhart chart is simpler in comparison to other charts. Quesensberry (1991), 

developed Q chart which is based on Q statistic, a standard normal variable. It can be plotted on 

the standard normal control chart with center line at zero and control limits at ±3 sigma. Another 

chart that studied in this thesis is the T control chart. This chart was considered by Zhang et al. 
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(2009) for more accurately estimating process standard deviation. As mentioned before, Schewhart 

control charts may not be capable of finding small variations in process parameters. For detecting 

small shifts, different EWMA charts such as EWMA 𝑥̅ , EWMA Q, and EWMA T charts are 

examined in this thesis. Moreover, Schewhart sign chart which is based on more realistic 

assumptions about the distribution of collected data after consecutive setups, will also be tested.  

 

1.4 Objectives 

The main purpose of this thesis is to compare the detection ability of different quality control charts 

for mean shift in batch production. More specifically, we have the following objectives: 

• To review the papers related to both short-run and long run control charts and to summarize the 

conclusions and observations. 

• To summarize the model for each available control charts that are applicable in batch 

production. 

• To compare performances of several control charts using common parameter values.  

• To test the detection ability on mean shift of several popular control charts under different 

conditions and observe their performances.  

 

1.5 Methodology 

The main approach used in this thesis is numerical simulation. We compare the performances and 

effectiveness of control charts applied to batch production. A Microsoft Excel programming is used 

to establish and conduct required simulation runs. 
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1.6 Organization 

Chapter 2 reviews and summarizes the existing research on both short run and long run control 

charts that are applicable in batch production. In Chapter 3, models for different control charts are 

presented. In Chapter 4, we present simulations for control charts to find their detection ability and 

the average time to detect the process mean shifts. Finally, we present conclusions and future 

research in Chapter 5.  
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2 Literature Review 

 

2.1 Non Self Starting Control Charts 

In some manufacturing systems, process parameters (mean and standard deviation) are unknown, 

and have to be estimated. Hence, for monitoring the system by using non self-starting control charts, 

unbiased estimators for the process parameters should be calculated first if there values are not 

given as targets. For constructing non self-starting control charts usually two phases are needed. In 

the first phase sample measurement data from the quality characteristics are collected based on 

designated intervals to determine control limits and center line of the control chart. It must be 

assured that in the first phase all the assignable causes are removed to have accurate estimates of 

the process parameters before the second phase can start to monitor the system. Furthermore, 

effective usage of the control charts depends on verifying the control limits and the center line 

regularly. There should not be assignable causes in the process at the starting point of the second 

phase due to purifying the data from important causes of variations in the first phase. In the first 

phase, practitioners usually take 20 to 25 samples from production line with reasonable sub-group 

sizes. (Saleh et al. 2015). It is notable that the most commonly used non self-starting control charts 

for variables are 𝑥̅-R charts and 𝑥̅-S chart.  R chart and S chart monitor the process standard 

deviation. R chart is created based on the range of the sub-groups, and S chart resorts to sample 

standard deviations. The combination of 𝑥̅ chart with R chart or S chart is used to monitor the 

process mean and process standard deviation simultaneously. The sub-group size usually is 4 or 5.  
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Ma et al. (2010) improved the detection ability of S chart for different shift sizes by using two 

supplemental run rules. They demonstrated that applying those rules can decrease the out-of-

control average run length (ARL) for detecting various shifts in the process standard deviation.   

Yang et al. (2012) studied in-control and out-of-control ARL performances of  𝑥̅  chart and 

individual X chart. Results demonstrated that individual X chart has always better ARL 

performances comparing to 𝑥̅  control charts with larger sample sizes. Furthermore, detection 

ability of 3-cusum chart proposed in Reynolds and Stoumbos (2004) was compared to individual 

X chart.  Unless the shift range is quite small, 3-cusum chart with optimal parameters has slightly 

better ARL performances (Yang et al. 2012). However, individual X chart is easier to use in terms 

of design and implementation.  

Non self-starting control charts are also available for attributes such as p chart for nonconforming ratio, 

c chart for number of nonconformities and u chart for the proportion of the nonconformities 

(Montgomery, 2013). 

Noskievicova et al. (2014) discussed the use of control charts for attributes for identifying very 

small variations in the process parameters. Conventional attribute control charts are not capable to 

observe very small variations (in terms of ppm) since many lots have zero defects. The cumulative 

count of conforming (CCC) and cumulative quantity of conforming (CQC) charts demonstrated 

superior enactment than the original p chart or c chart. They resorted to Matlab software in order 

to setup a program to construct CCC chart and CQC chart for attributes. By utilizing the software, 

it is easy to implement such charts in practice. 

Darestani and Aminpour (2014) suggested the use of Z-MR chart for monitoring short run 

processes where available data may not be sufficient to set up Schewhart control charts. Z-MR 

chart can be used when a process has multiproducts and multi-dimensions products. 
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2.2 Self-Starting Control Charts 

For monitoring manufacturing processes, process parameters such as process mean and process 

standard deviation should be known or they can be estimated. In short-run production when the 

process parameters are not known, there may not be sufficient data to estimate the process 

parameters. Even in long-run processes, at the early stage of the process, there may not be enough 

data to estimate the process parameters. Accordingly, a control chart can be built after knowing its 

process parameters. However, practitioners may need to start monitoring the system as quickly as 

possible. Self-starting control chart can be applied in short-run circumstances.  

 

2.2.1 Q Charts     

Quesensberry (1991) proposed the use of Q charts for monitoring short-run and long-run processes. 

Q statistic which is the standardized individual measurements and four different cases were 

presented: 

 Both mean and standard deviation of the process are known; 

 The mean is known and the standard deviation is unknown; 

 The mean is unknown and the standard deviation is known; and 

 Both mean and standard deviation are unknown. 

Q statistic is a standard normal variable which is derived from t-statistic.  It is possible to plot the 

Q statistic on a standard normal chart with center line 0 and the upper and lower control limits at 

+3 and -3 respectively.   It is also possible for a Q chart to plot different measurements for different 

parts in one chart because of the standardized control limits.  



 

8 
 

Castillo and Montgomery (1994) studied the ARL performances of Q chart to verify that usually Q 

charts do not show appropriate ARL enactments. Therefore, they proposed four alternatives based 

on four different assumptions about the mean and the standard deviation. They proposed EWMA 

chart and adaptive Kalman filtering approach in case of known process mean and unknown process 

standard deviation. Furthermore, they suggested using of Kalman filtering approach with tracking 

signal in order to enhance the detection capability of Q charts when both mean and standard 

deviation of the process are unknown. One of the main concerns was to identify the mean shift as 

soon as possible. If a control chart is not capable to diagnose the mean shift immediately, the 

process will become steady at a new level and the shift may be masked (Castillo and Montgomery, 

1994). 

Quesenberry (1996) demonstrated that the results in some cases in Castillo and Montgomery (1994) 

are inaccurate. Quesenberry (1996) showed that the average run length (ARL) and standard 

deviation of the run length (SRL) are not proper criteria for comparing the control techniques for 

the situations that Castillo and Montgomery (1994) considered in their paper. 

Roes et al. (1999) investigated the effect of additional run rules and tightening control limits on the 

performance of Q control chart compared with an EWMA chart. They developed a QR control 

chart based on mean moving range for estimating the standard deviation of the process. Rose et al 

(1999) showed that EWMA chart based on the QR statistic provided the best out-of-control ARL 

performances among all the combinations of the considered control charts and run rules. 

Zantek (2005) compared the signal probability of each observation following a mean shift and 

observed that the Q chart signal probability reduced when the number of observations following 

the process mean shift increased. Unless an out-of-control signal is obtained quite quickly, it is 
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likely that the run length (RL) will become quite long. By updating the sample mean and the sample 

standard deviation after each new observation is obtained, Q statistic tends to become closer to zero, 

so the shift may be masked to some extent (Zantek, 2005). 

Snoussi et al. (2005) discussed the use of Q statistics in conjunction with residuals control charts 

for auto correlated data in short-run processes. Results showed that residuals control charts have 

much better shift detection capability than charts based on Q statistics. Simulation results showed 

that when the number of under control data set increases, the advantage of residuals charts 

decreases. An important advantage of using the Q statistics to the process residuals is to allow 

practitioners plot many quality measurements with diverse time series models in a unique control 

chart (Snoussi et al. 2005). 

He et al. (2008) demonstrated that a control chart is biased when the out-of-control ARL is larger 

than the desired in-control ARL. They studied the bias problem of the Q chart before detecting the 

process mean shift at the start-up of the process. They suggested resorting to two schemes for 

reducing the bias problem of the Q chart. According to He et al. (2008), when the process variance 

is known Q chart is not biased. 

Zhu and Zhou (2010) suggested resorting to a weighted Q control chart based on difference-

declining weight parameters. Simulation study revealed that when the process parameters such as 

process mean and process standard deviation are not known, (ARL) performances of weighted Q 

chart are better than the original Q chart proposed by Quessenberry (1991). 

Khoo et al. (2010) compared in-control and out-of-control average run length of Q chart for 

different cases regarding process mean and process standard deviation. According to Khoo et al. 

(2010) the case with known process mean and known process standard deviation has better ARL 
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performances than the case with unknown parameters. They demonstrated that when c, the number 

of observations, increases the performance of the Q chart (when the parameters are unknown) will 

improve. For larger c, ARL performances of cases with at least one unknown parameter is similar 

to the cases when both mean and standard deviation are known. Simulation results shown that the 

out-of-control ARL for the cases when the  process mean is known and the process standard 

deviation is unknown (KU) is lower than the cases when the process mean is unknown and the 

process standard deviation is known (UK), except for one of the western electric rules. In addition, 

the case when both process mean and process standard deviation are not known (UU) has the lowest 

sensitivity for finding the mean shifts among other cases (Khoo et al. 2010). 

Lamperia and Requeijo (2012) discussed the use of Q chart and multivariate Q (MQ) control charts 

for monitoring vibrations of manufacturing machines. The data were not independent, but were 

normally distributed. Simulation results demonstrated that the proposed methodology of on-line 

monitoring with small samples had acceptable ARL performances. 

 Wen and Zhao (2012) investigated the use of a variable sampling interval Q chart in batch 

production. They demonstrated that Q chart in batch production has better detection ability than 

traditional Schewhart control charts such as 𝑥̅-R and 𝑥̅-S charts. Q chart does not show appropriate 

out-of-control ARL performance at early stages of the process. Using variable sampling interval 

(VSI) Q chart can boost its detection ability (Wen and Zhao, 2012).  

Kawamura et al. (2013) studied the effectiveness of Q control chart using real data acquired from 

a horizontal low-pressure chemical vapor deposition process. They demonstrated that Q chart can 

plot different types of data on the same chart. Also, they indicated that Q statistics applied to the 
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residuals of a time series model are useful alternatives for monitoring the semi-conductor 

manufacturing process. 

Chang et al. (2013) discussed the use of a Q chart in software development processes (SDPs). 

Conventional control charts such as 𝑥̅-R and 𝑥̅-S were not suitable for the SDPs. One important 

issue regarding the use of conventional control charts is that they require a large amount of data 

from a homogeneous source of variation for calculating the control limits. However, such large 

data set was unattainable from the SDPs (Chang et al. 2013). They demonstrated that collecting 

data from different projects with the same attributes to obtain the required number of observations 

may lead to wide control limits when applying a conventional control chart. Q chart allows 

practitioners to monitor the process at the early stages of the process. In software industry experts 

want to start monitoring the system at very near points after start of a process to notice process 

shifts quickly (Chang et al. 2013). According to Chang et al. (2013) one of the benefits of using a 

Q chart is that it allows practitioners to plot different performance measurements on the same chart 

using the same control limits since Q statistics follow standard normal distribution. 

Lampreia and Requeijo (2014) reviewed statistical process control (SPC) techniques for long-run 

productions, short-run productions and processes where the data of the process are auto correlated. 

They proposed a road map to control the process as “Golden Methodology for Monitoring the 

Manufacturing Quality”. 
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2.2.2 CUSUM Q Chart and EWMA Q Chart 

Quesenberry (1995) studied the use of Q chart, EWMA Q chart and CUSUM Q chart for short-run 

processes. Simulation results demonstrated that for detecting one-step permanent shift EWMA Q 

chart and CUSUM Q chart have better out-of-control ARL performances than Q chart. 

 Zantek (2006) demonstrated that the optimal design constants for CUSUM 𝑥̅ chart in detecting a 

given shifts may not be optimal for CUSUM Q chart. The reason is that the derivation of CUSUM 

𝑥̅ chart constants may not take into account the distribution of Q statistics for finding the shift. 

Zantek (2006) improved the design of CUSUM Q chart for finding larger range of shifts of the 

process mean. 

Garjani et al. (2010) proposed a neural network based approach for finding trends on control charts 

when finding the shifts in the start-up of certain manufacturing processes. Simulation results 

indicated that artificial neural network-based control scheme outperforms CUSUM Q chart for 

finding small to moderate shifts of the considered process mean. 

One important issue regarding CUSUM Q charts is that the reference value (k) is determined by 

the shift size of the process mean. When the shift size is unknown, it may be difficult to apply 

CUSUM Q chart. Li and Wang (2010) developed an adaptive cumulative sum (ACQ) control chart 

capable of detecting wide range of shifts in the process parameters without collecting large number 

of observations. In estimating the shift of the process mean, they used EWMA control chart with a 

reflecting boundary as a one-step-ahead forecast. Simulation results showed that the ACQ chart 

has better in-control ARL performance than the CUSUM 𝑥̅ chart with known parameters. ACQ 

chart has also better ARL performances than CUSUM Q chart with fixed reference value and the 

change point method proposed in Hawkins and Dang (2010). Li and Wang (2010) demonstrated 
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that both ACQ chart and Q chart can be applied for short-run production because both of them do 

not need Phase I to establish the control chart. ACQ charts are also relatively simple and easy to 

implement (Li and Wang, 2010). 

Theroux et al. (2013) investigated the performance of individual measurement Q (IMR Q) control 

chart resorting to Q statistics for short-run productions in aerospace manufacturing. They compared 

IMR Q chart with other control charts such as CUSUM Q chart, CUSUM X chart and individual 

measurement X (IMR X) control chart based on success rate for finding the shifts in process 

parameters and average time to detect the shifts. Simulation results demonstrated that CUSUM X 

chart has better detection ability and average time to detect. Implementing CUSUM Q chart may 

not be considered in conjunction with the CUSUM X chart. 

Li et al. (2010) discussed the use of variable sampling interval adaptive CUSUM Q (VSIACQ) 

chart for the start-up of processes. CUSUM 𝑥̅ chart has optimal ARL performances only for fixed 

sizes of shifts in the process mean. However, VSIACQ chart is quite robust for detecting a range 

of shifts in process mean. Moreover, they studied the distribution of CUSUM Q chart to solve the 

shift masking problem of Q chart. 

Capizzi et al. (2012) proposed a new self-starting ACQSCORE control chart which uses 

consecutive observations to jointly update process mean and process standard deviation. Reference 

value of the ACQSCORE chart is updated using an adaptive EWMA control chart. Simulation 

results demonstrated that ACQSCORE chart has better out-of-control ARL performance for 

detecting small mean shifts than control charts designed to detect constant mean shifts such as 

EWMA or CUSUM control charts. Also, results show that ACUSCORE control chart has almost 

the same out-of-control ARL performance for detecting large shifts as EWMA and CUSUM charts.  
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2.2.3 Other CUSUM Schemes 

Liu et al. (2015) proposed a self-starting sequential rank-based dual nonparametric CUSUM chart 

to detect shifts in the process mean. Simulation studies demonstrated that the proposed control chart 

not only performs well for detecting different magnitudes of shifts, but also performs robustly for 

different distributions. Also, they suggested a new nonparametric EWMA control chart which has 

more robust out-of-control ARL performance than the change-point control chart proposed in 

Hawkins and Deng (2010).  

Amdouni et al. (2015) discussed the use of a self-starting adaptive Schewhart control chart 

implementing variable sample sizes. In some manufacturing processes both process mean and 

process standard deviation may vary, but their ratio can be constant. If the process standard 

deviation is the linear function of the process mean, control charts monitoring the coefficient of 

variation can be used effectively (Amdouni et al. 2015). The authors showed that when the process 

is in control and the coefficient of variation is constant (ϒ = 
𝜇

𝜎⁄ ), then assignable causes may 

change this ratio. Simulation results demonstrated that the proposed procedure has better ARL 

performances than fixed sampling rate Schewhart chart for the coefficient of variation.   

Castagliola et al. (2015) proposed two separate one-sided Schewhart-type control charts monitoring 

the coefficient of variation in short-run production. A downward (upward) Shewhart-type chart 

aiming at detecting a shift decreasing (increasing) the in-control coefficient of variation when the 

shift size is deterministic.  
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2.2.4 T Charts 

Zhang et al. (2009) proposed a T chart and an EWMA T chart to monitor process mean. Usually 𝑥̅ 

charts are applied in processes under the well-estimated assumption of process standard deviation 

or stable standard deviation (Zhang et al. 2009). Simulation results showed that T chart is more 

robust in estimating errors and unstable process standard deviation. Furthermore, EWMA T chart 

is more robust than EWMA 𝑥̅ chart in estimating errors and variations in the process standard 

deviation. They demonstrated that EWMA T chart is less dependent on the dispersion charts such 

as S chart or R Chart than EWMA 𝑥̅ chart. 

Celano et al. (2011) investigated the implementation of T chart for monitoring process mean in 

short-run production. They considered two initial setup conditions such as fixing the population 

mean at the process target with an initial setup error affecting the statistic distribution. Simulation 

results showed that T chart and EWMA T chart have appropriate ARL performances in short-run 

production. 

Amin et al. (1995) discussed the use of a nonparametric procedures for the problem of detecting 

changes in the process median (or mean), or changes in the process standard deviation when 

samples are taken at regular time intervals. Their proposed procedures were based on sign-test 

statistics computed for each sample, and are used in Shewhart sign chart. An advantage of the non-

parametric control charts is that the variance of the process does not need to be estimated in order 

to stablish a control chart for the mean. 

Celano et al. (2015) proposed a nonparametric (distribution free) Schewhart sign (SN) control chart 

for monitoring the location of a process parameter in a manufacturing process. They demonstrated 

any model assumption about the distributions of the observations after consecutive set-ups would 
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be true due to the nonparametric characteristic. Simulation results demonstrated that the Schewhart 

sign chart has better ARL performances than T chart. 

 

2.2.5 CUSUM T Chart and EWMA T Chart 

Celano et al. (2012) designed an economic CUSUM T chart for monitoring short-run processes. 

According to Celano et al. (2012) CUSUM T chart can be applied in the process without 

implementing Phase I of the control charts. Simulation results demonstrated that the CUSUM T 

chart has better economic performance than CUSUM 𝑥̅ chart.  

Celano et al. (2013) compared the ARL performances of T chart, EWMA T chart and CUSUM T 

chart with unknown shift sizes of process mean. They proposed uniform and triangular distributions 

to model the unknown shift sizes. Simulation results showed that both EWMA T chart and CUSUM 

T chart have good performances. Moreover, for sample size n > 10 statistical performances of 

EWMA T chart and CUSUM T chart are comparable to those with known distribution parameters. 

Practitioners should select chart design parameters according to the range of the shifts rather than 

simplifying the design by selecting a fixed amount of shift (Celano et al. 2013). 

Castagliola et al. (2013) studied ARL performances of variable sample size T chart regarding both 

fixed shift sizes and unknown shift sizes. They demonstrated that when the shift size is fixed, 

variable sample size T chart outperforms fixed parameter T chart for medium to large shift sizes. 

Also, variable sample size T chart has better ARL performances than fixed parameter T chart for 

unknown shift sizes. They showed that T chart does not need Phase I in control chart 

implementation when the process mean is perfectly setup at the start point of the process, or the 

initial setup error is known a priory.  
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2.2.6 X Chart, CUSUM X Chart, and EWMA X Chart  

Klein (1996) studied ARL and percentiles points of run length performances of Schewhart-EWMA 

chart. Simulation results indicated that Schewhart-EWMA control chart using either time-

dependent or constant control limits has better ARL performances than standard Schewhart-runs 

rules control schemes. When the percentile points of the run length are used, constant control limits 

Schewhart-EWMA chart has better ARL performances than Schewhart-runs rules control schemes 

(Klein, 1996). 

Albin et al. (1997) compared ARL performances of  X chart, X &MR chart, X & EWMA chart and 

EWMA 𝑥̅ chart with and without applying run rules in short-run production. Simulation results 

showed that X & EWMA chart without run rules has the best ARL performances. 

Amin and Ethridge (1998) discussed the use of a MR chart beside an individual X chart. Simulation 

results demonstrated that there is no disadvantages of using MR chart beside X chart in terms of 

ARL performances. In some cases using an X-MR chart is better than individual X chart when 

estimating the process parameters in process capability analysis (Amin and Ethridge, 1998). 

Liu and Tien (2011) discussed the use of a single featured EWMA-X (SFEWMA-X) to 

simultaneously monitor both small and large mean shifts and standard deviation shifts using only 

one set of statistics and control limits. Simulation results demonstrated that the proposed chart has 

better ARL performances than traditional control charts such as X chart and EWMA 𝑥̅  chart. 

According to Liu and Tien (2011), SFEWMA-X chart is easier to interpret than the original 

EWMA-X chart which had two statistics along with two sets of control limits. 

Sitt et al. (2014) proposed run sum T chart based on run sum control chart and T chart combination. 

Also, they investigated the economic design of the run sum T chart. Simulation results 
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demonstrated that T type charts have more robust ARL and economic performances than 𝑥̅ chart. 

EWMA X chart has better ARL performances than run sum T chart for small mean shifts detection. 

Saleh et al. (2015) studied the standard deviation of the average run length (SDARL) of 𝑥̅ chart 

and X charts by taking practitioner to practitioner variability into account. They showed that this 

type of variability happens because practitioners use different historical data sets for calculating 

the process parameters estimation. They demonstrated that taking this variability into account will 

result far larger samples than those proposed in Quessenberry (1995). The required number of 

Phase I samples based on SDARL is far larger than that based on the average of average run length 

(AARL). Moreover, they studied the effect of using different estimators for the process standard 

deviation on 𝑥̅ chart ARL performances. They suggested that practitioners should not expect to get 

in-control performance obtained under known process parameters assumption. 

Li et al. (2014) discussed the use of a self-starting control chart for a process producing high-

dimensional products. One limitation of using Hoteling T2 control chart for high-dimensional 

products is that monitoring cannot begin until after the number of sample data surpasses the 

dimensionality of the measurements. Accordingly, Hoteling T2control chart cannot be applied in 

short-run production because the detection capability to find early shifts is decreased and 

monitoring the process can be continued after accumulating substantial amount of sample data. 

They proposed a control chart which allows monitoring with the second observation irrespective 

of the dimensionality of the products. Simulation results showed the effectively of the proposed 

control chart based on ARL performances. 
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2.2.7 Variable Sample Size 𝒙 Chart 

Jensen et al. (2008) discussed design issues of variable sample size 𝑥̅ chart. Furthermore, they 

showed that how the process parameters’ estimation can affect the control chart’s performance. 

Moreover, they showed that with numerical simulation, adaptive charts should only be used for 

mature processes. Also, their simulation studies were based on initial state performances which 

assume that the process is out-of-control at the beginning of Phase II. 

Castagliola et al. (2014) studied the performance of variable sample size 𝑥̅  charts based on that the 

exact values of process parameters are known.  

Noorossana et al. (2015) proposed using VSSIt control chart instead of standard Schewhart chart 

for detecting small to medium shifts. They considered two sets of warning limits and adaptive 

sampling plan for the suggested chart. They demonstrated that proposed chart has better detection 

ability than variable sample size𝑥̅ chart, variable sampling interval and variable sample size 𝑥̅ chart, 

and special variable sample size and sampling interval 𝑥̅ control charts based on average run length 

and average time to signal.  

 

Lim et al. (2015), studied the performance of the variable sample size and variable sampling 

interval 𝑥̅  chart based on estimated process parameters. They demonstrated that varying both 

sample size and sampling interval can improve the detection ability of the control chart dramatically. 
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2.3 Summary 

Tables 2.1 ~ 2.5 summarizes the research papers reviewed in this chapter. From the literature 

review, we may see that many researchers have studied various control charts for optimal ARL 

performances for short-run production and long-run production. Research is limited on finding 

suitable control charts for batch production processes which may not be considered as short-run 

nor long-run production due to medium production volume and medium products variety. 

Practitioners working with batch production processes or job-shop manufacturing should assess 

both long-run production and short-run production control charts to find control schemes with good 

ARL performances. 
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Table 2.1 Summary of the Literature Review part 

Author  Year  Main Work  Method  Results 

Non Self-Starting Control Charts  

Ma et al.  2010  

 

Established supplemental 

run rules for S chart.  

 

Markov 

Chain   

 

Improved the detecting 

capability of s chart when 

the shift size is small.  

Yang et al.  2012  

 

Compared X chart and 3-

CUSUM chart.  

Numerical 

simulation  

 

Showed the advantage of 

simple X chart with 

sample size n=1.  

Noskievicova 

et al.  
2014  

 

CCC and CQC charts for 

attributes in Matlab 

software.  

Coding in 

Matlab 

Software 

 

Implementation of the 

CCC and CQC charts in 

practice.  

Self-Starting Control Charts  

Q Chart 

Quesensberry  1991  
Q chart for monitoring the 

short-run production 

Numerical 

Simulation  

 

 

Monitoring the start-up 

of the process by 

estimating the process 

parameters. 

Castillo and  

Montgomery  
1994  

 

 

ARL problems of Q charts 

and proposed weighted 

moving average and an 

adaptive Kalman filtering 

method to boost the ARL 

performances  

Numerical 

simulation  

Proposed weighted 

moving average and an 

adaptive Kalman filtering 

method the methods. 

Zantek  2005  

Calculating signal 

probability of each 

observation following 

mean shift in Q chart 

Analytical 

and 

numerical 

simulation  

Solved the masking 

problem of the shift for Q 

chart.  

He et al.  2008  

Investigated the bias of Q 

charts. Proposed two 

alternative Q charts to 

decrease the bias  

Analytical 

and 

numerical 

simulation  

Solved the bias problem 

of Q charts.  
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Table 2.2 Summary of the Literature Review Part (continued) 

CUSUM Q Chart and EWMA Q Chart 

     

Quesenberry 
 

 

1995 Designed EWMA Q and  

CUSUM Q chart 

Numerical 

Simulation 

Appropriate ARL 

performances for 

detecting mean shift 

Zantek 

 

2006 Changed the design of 

CUSUM Q chart  

Numerical 

Simulation 

This approach can detect 

a broad range of shifts in 

the process parameters 

Li and Wang 

 

2010 Designed ACQ chart Numerical 

Simulation 

ACQ has better ARL 

performances than 

CUSUM Q chart  

Li et al. 

 

2010 Presented VSIACQ chart Numerical 

Simulation 

It has the capability to 

detect a range of shifts 

Garjani et al. 2010 A neural network-based 

approach for finding 

patterns on the control 

charts  

Genetic 

Algorithm  

This method outperforms 

the CUSUM Q chart for 

finding small to moderate 

mean shifts 

Capizzi and 

Masarotto 

 

2012 Presented ACUSCORE 

control chart 

 

Numerical 

Simulation 

 

It has better ARL 

performances than 

EWMA 𝑥̅ and CUSUM 𝑥̅  

charts 

 

 

 

 

Author Year Main Work Approach Results 

Wen and Zhao 2012 
Designed variable 

sampling Interval Q chart 

Analytical 

and 

Numerical 

Simulation  

Adaptive feature can 

improve the Q chart’s 

ARL performance to 

some extent.  

Kawamura et 

al. 
2013 

Applied Q chart to auto 

correlated data  
Analytical 

Showed the application 

of Q chart for auto 

correlated data  

Roes et al.  1999  

                                                                                     

Investigated the 

supplemental run rules 

application on Q chart. 

Presented Q(R) chart  

Numerical 

simulation  

Efficiency of the 

supplemental rules for Q 

chart.  
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Table 2.3 Summary of the Literature Review Part (Continued) 

 Other CUSUM Schemes  

Liu et al. 2015 Proposed a sequential 

rank-based dual 

nonparametric CUSUM 

chart and Nonparametric 

EWMA Chart 

Numerical 

Simulation 

Nonparametric control 

charts that performs 

robustly for different 

distributions. 

Amdouni et 

al. 

2015 A self-starting adaptive 

Schewhart control chart 

implementing variable 

sample sizes in a finite 

horizon process 

Markov 

chain  

Proposed chart has better 

ARL performances than 

fixed sampling rate 

Schewhart chart for the 

coefficient of variation 

Castagliola et 

al. 

2015 One-sided Shewhart-type 

charts for monitoring the 

coefficient of variation 

Numerical 

Simulation 

Schewhart-type chart for 

monitoring the process 

coefficient of variation 

 T Charts 

Zhang et al. 

 

 

2009 

Proposed T chart and 

EWMA T chart 

Numerical 

Simulation  

 

T and EWMA T chart is 

more robust against 

estimation errors rather 

than 𝑋̅ chart or EWMA 

𝑥̅ 

Celano et al. 

 

2011 Inspected the perfect setup 

and imperfect setup for 

using T chart 

Numerical 

Simulation  

 

EWMA T chart is more 

strength than Schewhart 

T chart for detecting 

changes in the mean of 

the process 

Celano et al. 

 

2012 Designed Economic 

CUSUM T chart  

Numerical 

Simulation  

 

Economic loss of the 

CUSUM T chart is due 

to the imperfect setup 

 

 

 

Author Year Main Work Approach Results 

Li et al. 2014 Proposed a self-starting 

control chart instead of 

Hoteling  𝑇2chart for 

short-run production  

Numerical 

Simulation 

 

 

Developed a control 

chart that is robust for 

high-dimensional 

observations instead of 

Hoteling 𝑇2 chart in 

short-run 
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Table 2.4 Summary of the Literature Review Part (Continued) 

 

X Chart, EWMA X Chart and CUSUM X Chart 

 

Klein 

 

1996 

Compared a group of 

Schewhart-EWMA 

charts with simulations 

Numerical 

Simulation 
EWMA 𝑥̅ control chart 

has better ARL 

performances than 

standard Schewhart 

runs rules control 

procedures 

 

Albin et al 

 

1997 

Compared four different 

chart such as X chart, X 

&MR chart, X and 

EWMA chart and 

EWMA 𝑥̅ chart 

 

Numerical 

Simulation 

 EWMA & X charts 

with no run rules has 

the best ARL 

performances 

 

Amin and 

Ethridge 

 

1998 

Advantages and 

disadvantages use of an 

MR chart beside an X 

chart  

 

Numerical 

Simulation 

Using an X-MR is 

better than individual X 

in certain cases 

 

Liu and Tien 

 

2011 

Single Featured 

EWMA-X chart instead 

of using two different 

statistics   

 

Numerical 

Simulation 

Utilizing SFEWMA-X 

is visually easier than 

using EWMA & X 

chart because of using 

only one statistic 

 

 

 

 

Author Year Main Work Approach Results 

Celano et al.  

 

2013 Compared the statistical 

performance of 

Schewhart T chart, 

EWMA T chart and 

CUSUM T chart 

Analytical  EWMA and CUSUM T 

charts should always be 

preferred to the 

Schewhart T chart when 

the shift is in a certain 

range 

Castagliola et 

al.  

 

2013 Resorting to variable 

sample size (VSS) T 

chart 

Analytical 

and 

Numerical 

Simulation  

 

Utilizing variable 

sample size T chart is 

more robust than fixed 

parameter T chart for 

detecting different 

variations in the process 

parameters 
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Table 2.5 Summary of the Literature Review Part (Continued) 

Schewhart Sign Chart 

Author Year Main Work Approach Results 

Amin et al. 1995 Schewhart Sign Chart Analytical Nonparametric control 

charts that performs 

robustly for different 

distributions for the 

collected data 

Celano et al. 2015 Schewhart Sign Chart Markov 

Chain and 

Numerical 

Simulation 

Nonparametric control 

charts that performs 

robustly for different 

distributions for the 

collected data 

                                                       Variable Sample Size 𝒙̅ Chart 

Jensen et al. 2008 Variable Sample Size 𝑥̅ 

Chart 

Markov 

Chain and 

Numerical 

Simulation 

Application of variable 

sample size 𝑥̅ chart with 

estimated parameters in 

mature processes 

Castagliola et 

al. 

2014 Variable Sample Size 𝑥̅ 

Chart 

Markov 

Chain  
variable sample size 𝑥̅ 

chart with estimated 

parameters 

Noorossana et 

al. 

2015 Variable Sample Size 𝑥̅ 

Chart 

Markov 

Chain and 

Numerical 

Simulation 

variable sample size and 

sampling interval 𝑥̅ 

chart  

Lim et al. 2015 Variable Sample Size 𝑥̅ 

Chart 

Markov 

Chain and 

Numerical 

Simulation 

variable sample size and 

sampling interval 𝑥̅ 

chart has better 

performances among 

other adaptive charts 
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3 Modeling of Batch Production Control Charts 

 

3.1 Introduction 

From literature review, we see that many researchers have studied different control charts for 

optimal ARL performances for short-run and long-run production. Research is limited on finding 

control charts for processes with medium production volume and medium products variety. 

Practitioners working with processes of batch production or job-shop manufacturing should 

evaluate both long-run and short-run production control schemes for better ARL performances.  

This chapter studies several modern and traditional control charts to be assessed based on ARL 

performances for process mean shift using simulations. 𝑥̅ chart is the most widely used control 

chart in long-run production which will be simulated in Chapter 4 to compare its detection ability 

with other charts in batch production. Q chart and T chart are frequently used in short-run 

production where there is often paucity of relevant data to estimate process parameters when 

production volume is low. However, both Q chart and T chart can be applied in batch production. 

Since Schewhart charts sometimes are less capable of finding small mean shifts, different EWMA 

charts such as EWMA 𝑥̅ chart, EWMA Q chart, and EWMA T chart are presented in this chapter. 

EWMA charts and Western Electric Rules are applied for 𝑥̅ chart to increase the detection ability 

of these charts in finding process mean shifts. Also Schewhart sign chart, a non-parametric control 

chart, is used in this chapter.  

 

3.2 𝒙̅ Chart 

One of the commonly used control charts in batch production is Schewhart 𝑥̅-R chart. 𝑥̅ control 

chart is used to monitor process mean and R chart is used to monitor process variability. The 
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development and application of 𝑥̅-R chart are based on normal distribution. Even if the quality 

characteristic follows distribution rather than normal, results with sufficient sample sizes are valid 

with regard to central limit theorem. Process parameters such as process mean and process standard 

deviation are usually unknown in practice. Often process parameters are estimated from 20 to 25 

subgroups (m), usually each of them has 4 to 5 units (n) (Montgomery, 2013). Let x̅1, x̅2… x̅m be 

the mean of each sub-group. According to Montgomery (2013), grand mean (𝑥̿) is an unbiased 

estimator for the process mean. 

x̿ = 
x̅1+ x̅2+⋯+ x̅m

m
 

𝑥̿  will be used as the centerline of the 𝑥̅  control chart. In order to calculate control limits, an 

estimator is required for the process standard deviation. Standard deviation can be estimated using 

sub-groups ranges. The difference between the largest and smallest observations in a sub-group is 

the subgroup range. LetR1, R2 … Rm be the ranges of m samples. The mean of the sub-groups 

ranges is:  

R̅ = 
R1+ R2+⋯+ Rm

m
 

The ratio of 
𝑅̅

𝑑2
 would be an unbiased estimator for the process standard deviation.  

𝑥̅ control limits for monitoring the process mean would be: 

UCL = 𝑥̿ + 𝐴2 𝑅̅ 

Center line = 𝑥̿ 

LCL = x̿ - A2 R̅ 

Where  A2 =  
3

d2 √n
 .  
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Factors for constructing variables control charts such as 𝑑2 and 𝐴2, based on different number of 

observations in sub-groups are available in quality control manuals and quality control text books 

such as Introduction to Statistical Quality Control by Montgomery (2013).   

 

 

3.3 Q Charts 

Quesensberry (1991) proposed the use of Q charts for monitoring short-run and long-run processes. 

He presented Q statistics for four different cases: 

 Both mean and standard deviation of the process are known; 

 The mean of the process is known and the standard deviation is unknown; 

 The mean of the process is unknown and standard deviation is known; and 

 Both process mean and standard deviation are unknown. 

 

Q statistic is a standard normal variable which is derived from t-statistic.  It is possible to plot the 

Q statistic on the standard normal chart with center line at 0 and the upper and lower control limits 

at ±3.   It is also possible for a Q chart to plot different measurements for different parts in one 

chart because of its standardized control limits, which simplifies the work for front-line workers. 

Let X1,X2,.., Xi be the samples of subgroup i where i = {1, 2, …, n}. The Q statistic for monitoring 

the process mean are calculated by: 

Case 1: µ = µ0, σ = 𝜎0 (both known) 

Qi(𝑥̅𝑖) =  
(x̅i− μ0)√ni

σ0
            

Case 2: µ unknown and σ = 𝜎0 known 
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Qi(x̅i) = √
ni (n1+⋯+ ni−1)

n1+⋯+ ni
 (

x̅i− x̿i−1

σ0
)          i = 2, 3, … 

Case 3: µ = 𝜇0 known and σ unknown 

For this case put 

s0,i
2 = 

∑ ∑ (Xaj− μ0
)2na

j=1
i
a=1

n1+⋯+ ni
 

Qi(𝑥̅𝑖) = 𝜑−1 [𝐺𝑛1+⋯ 𝑛𝑖
(

(x̅i− μ0)√ni

𝑠0,𝑖
)]           i = 2, 3, … 

Case 4: Both µ and σ are unknown 

Put 

Wi = √
ni (n1+ n2+⋯ni−1)

n1+ n2+⋯ni
 (

x̅i− x̿i−1

sp,i
 ) 

Qi (x̅i) = δ−1 {Gn1+n2+⋯ni−1−i(Wi)}     i = 2, 3, … 

It is worth mentioning, 𝜑−1  is the inverse of standard normal. For all values of t distribution 

function statistic, (Gn1+n2+⋯ni−1−i)  will have (n -1)*i degrees of freedom. 

Q statistics can be plotted with: 

UCLQ = +3 

Center Line = 0 

LCLQ = -3 

Most of the time the mean and standard deviation of the process are unknown, so case 4 often 

occurs. 
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3.4 Western Electric Rules 

Western Electric Handbook was published in 1956 by Western Electric Company. When small 

shifts of parameters are of interest, using Western Electric Rules is useful for control charts. 

Resorting to Western Electric Rules may, to some extent, improve the detection ability of 𝑥̅-R chart 

to find the mean shifts. Widely used Western Electric Rules include: 

 One point plots outside the three-sigma control limits, 

 Two out of three consecutive points plot beyond the two-sigma warning limits, 

 Four out of five consecutive points plot at a distance of one-sigma or beyond from the center 

line. 

 Eight consecutive points plot on one side of the center line. 

 

3.5 EWMA 𝒙 Chart 

To detect small shifts in the process mean, EWMA 𝑥̅ charts is a suitable alternative of Schewhart 

charts (Montgomery, 2013). The statistic of EWMA 𝑥̅ chart is constructed as follows: 

𝑧𝑖 = λ 𝑥̅𝑖 + (1 – λ) 𝑧𝑖−1 

In this equation λ is a constant value between [0, 1], and the initial value for 𝑧𝑖 is the target value 

of the mean. Furthermore, λ can be designed for appropriate average run length. 

𝑧0 = µ0 

EWMA 𝑥̅ control limits can be defined as:  

UCL = µ0 + 𝐿𝑧 𝜎𝑥̅ √
𝜆

2− 𝜆
 [1 − (1 −  𝜆)2𝑖] 

Center Line = µ0 
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LCL = µ0 - 𝐿𝑧 𝜎𝑥̅ √
𝜆

2− 𝜆
 [1 − (1 −  𝜆)2𝑖] 

 [1 − (1 −  𝜆)2𝑖] tends to become 1 after some periods as i increases. Furthermore, control limits 

tend to approach their steady-state values at: 

UCL = µ0 + L 𝜎𝑥̅ √
𝜆

2− 𝜆
 

LCL = µ0 - L 𝜎𝑥̅ √
𝜆

2− 𝜆
 

Similar to λ, L can be designed for suitable average run length. Since sample mean are used in 

EWMA 𝑥̅ chart for plotting process measurements, 𝜎𝑥̅ is equal to 
𝜎

√𝑛
. 

 

3.6 EWMA Q Chart 

EWMA Q statistics are similar to those of Schewhart EWMA chart with small modifications. The 

statistic for constructing EWMA Q chart is presented below: 

zi = λ Qi + (1 – λ) zi−1 

Where 𝑧0 is considered to be 0 and the control limits are: 

UCL = + K √
λ

2−λ
 

LCL = - K √
λ

2−λ
 

K and λ are constant parameters which can be designed according to the desired average run length. 
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3.7 T Chart  

Zhang et al. (2009) proposed a T chart to monitor process mean. According to Zhang et al. (2009) 

𝑥̅ charts are applied in processes with well-estimated process standard deviation or stable standard 

deviation. They showed that T chart is more robust against estimation errors and unstable process 

standard deviation. In this thesis, we applied T chart in batch production. To construct a T chart 

one needs to compute the mean and standard deviation of the sub-group data: 

X̅i = 
1

n
 ∑ Xi,j

n
j=1  

Si = √
1

n−1
∑ (Xi,j −  X̅i)2n

j=1  

The T statistic is: 

 Ti =
X̅i− μ0

Si
√n

  

The required control limits are: 

UCLt = Ft
−1 (1 - 

α

2
, n – 1) 

LCLt = - UCLt 

Ft
−1 (. |n − 1) is the inverse of t distribution with n – 1 degrees of freedom. α is the probability of 

Type I error equal to 0.0027.  
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3.8 EWMA T Chart 

Zhang et al. (2009) discussed the use of an EWMA T chart to monitor the small mean shifts. 

EWMA T chart is robust for the standard deviation estimation errors and for the variations of 

process standard deviation. The required statistics for plotting EWMA T charts are: 

 

Y0 = 0 

Yi = λ Ti + (1 – λ) Yi−1           i = 1, 2 … 

 

λ is the smoothing parameter between [0, 1]. If the smoothing parameter is 1, the EWMA T chart 

converts to a T chart. The required control limits for EWMA T chart are: 

UCLt = + K √
λ

2− λ
 

Center Line = 0  

LCLt = - K √
λ

 2− λ
 

 

In the above formula it can be assumed that K = L x 𝜎0 is the multiplier to the standard deviation 

of the process which can be determined based on the desired value of  in-control average run length. 
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3.9  Schewhart Sign Chart 

Celano et al. (2015) proposed a nonparametric (distribution free) Schewhart sign (SN) control chart 

for monitoring the location of a process parameter in a finite horizon manufacturing process. They 

demonstrated that any model assumption about the distributions of the observations after 

consecutive set-ups would be true due to the non-parametric characteristic. The required statistic 

for this chart is:    

 

SNi = ∑ Sign (Xi,j − TM)N
j=1  

𝑇𝑀 is target value of the mean or median of the collected data which is equal to µ0. The value of 

the sign function, sign(X) are:       

                                                                               1     if X > 0 

Sign(X) =    0     if X = 0 

                                                                               -1    if X < 0 

As soon as the set-up activities are done without errors, 𝑇𝑀 would be equal to µ0, the process mean, 

and the process starts in-control. In-control distribution of the sign(X) can be attained by the 

following formulae: 

SNi = 2 x Di - n 

𝐷𝑖 is the number of positive signs in a sub-group, and n is the number of samples that have been 

collected in each sub-groups. Without presence of assignable causes the in-control value for 

𝑆𝑁𝑖 would become zero. It can be demonstrated that P (Xi,j  >  TM|TM =  θ0 ) = 0.5 for all i = 1, 

2 … I and j = 1, 2 …n. Accordingly, symmetric control limits around zero can be applied. Control 

limits for plotting Schewhart sign chart statistics would be: 
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UCL = c = n 

CL = 0 

LCL = - c = - n 

3.10 Summary 

In this chapter different control charts for batch production or job-shop environment are introduced 

to be evaluated in simulation study presented in the next chapter.  
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4 Simulation Study 

 

4.1 Introduction 

In this chapter, different control charts are simulated and assessed to study the detection ability in 

finding process mean shifts and average times to detect the mean shifts. The main objective of the 

work presented in this chapter is to investigate the use of different control charts in batch production 

and job-shop manufacturing. 

𝑥̅ chart is the most widely used control charts in batch production which is simulated to compare 

its detection ability with other charts. Q chart and T chart are frequently used in short-run 

production. However, both Q chart and T chart can be also applied in batch production. Since 

Schewhart charts sometimes are less capable of finding small mean shifts, different EWMA charts 

such as EWMA 𝑥̅ chart, EWMA Q chart, and EWMA T chart are tested in this chapter. Western 

Electric Rules are applied for 𝑥̅ chart to increase the detection ability of this chart in finding process 

mean shift. We study the success rates and average times to detect mean shifts of the following 

charts through numerical simulation: 

 𝑥̅ chart 

 𝑥̅ chart with Western Electric Rules 

 Q chart 

 EWMA 𝑥̅ chart 

 EWMA Q chart 

 T chart 

 EWMA T chart 

 Schewhart sign chart 
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4.2 Setting Simulation Experiments 

All simulated experiments were run using Microsoft Excel. Success rates of control charts to find 

the shifts of the process mean and average times to detect the shifts in control charts based on out-

of-control ARL are assessed for Schewhart charts, EWMA charts, and a nonparametric chart 

(Schewhart sign chart) for batch production. When a process undergoes assignable causes of 

variations, the mean or the standard deviation of the process will change from their target values. 

In order to study the control charts performances, various amounts of shifts are implanted in all 

tested control charts based on their applications. For example, the objective of using EWMA charts 

is to find smaller shifts in process parameters. However, Schewhart charts are appropriate 

alternatives for finding larger shifts of the process parameters. Simulation assumptions and 

parameter settings are explained below. 

 

Distribution Function 

We used normal distribution functions built in Microsoft Excel to simulate control charts in batch 

production studied in this research since it is the most commonly used distribution in studying 

manufacturing processes.  

  

Number of Samples   

Both short-run production and long-run production control charts were evaluated in this thesis. 45 

random sub-groups each had 5 measurements following normal distribution (1, 1) were generated 

in each simulation run. Each experiment were replicated 40 times. There may not be sufficient data 

for the measured quality characteristics in batch production or job-shop manufacturing to 

implement long-run control charts.  
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Implanted Shifts 

A single permanent shift would be implanted at the 5th sub-group. Any out-of-control shifts 

appears on the control charts after the 5th sub-group will be counted as a signal of the mean shift. 

It is worth noting that any shifts before the 5th sub-group will be considered as false alarms. 

 

Shift Size 

Let µ′ = µ0 + 𝛿μ 𝜎0 and 𝛿μ is the mean shift. For all the control charts  𝛿μ was set to 0.6, 1.0 and 

1.5 respectively. These shift sizes are the representatives of the small, medium and large shifts in 

the process mean. 

 

4.3 Statistical Errors 

As discussed in Montgomery (2013), there are Type I error and Type II error associated with the 

use of control charts. Type I error is the probability when process is actually in statistical control 

where the control charts show otherwise. The probability of this occurring is denoted by α. Type II 

error is the probability that the process is out-of-control where the control charts show otherwise. 

The probability of this occurring is denoted by β.  

 

4.4 Schewhart 𝒙̅ Chart Simulation and Results 

𝑥̅ chart is the most widely used control charts in both long-run production and short-run production. 

In this thesis, 𝑥̅  chart is simulated to compare its detection ability with other charts for batch 

production. 𝑥̅ chart statistics and control limits are constructed as: 



 

39 
 

 

x̿ = 
x̅1+ x̅2+⋯+ x̅m

m
 

R̅ = 
R1+ R2+⋯+ Rm

m
 

UCL = x̿ + A2 R̅ 

Center line = x̿ 

LCL = x̿ - A2 R̅ 

𝑥̿ will be used as the centerline of the 𝑥̅ control chart. In order to calculate the control limits, an 

estimator is required for the process standard deviation. Standard deviation of the process can be 

estimated using sub-groups ranges (R). The difference between the largest and smallest 

observations in a sub-group is the sub-group range. The mean of the sub-groups ranges is 𝑅̅. The 

ratio of 
𝑅̅

𝑑2
 would be an unbiased estimator for the process standard deviation. Factor 𝑑2 is available 

for different sample sizes in quality control manuals and quality control text books such as 

Introduction to Statistical Quality Control by Montgomery (2013).   

To implement a 𝑥̅ chart in a manufacturing process, typically a two phase approach is needed. In 

the first phase, process parameters such as process mean and process standard deviation are 

estimated to build the control limits.  According to Montgomery (2013), the “rule-of-thumb” is to 

use about 100 units of products in which 20 samples with 5 units in each sample are collected from 

production line. In the second phase after the control chart is established, monitoring the 

manufacturing system will be started. For the sake of experiment, we assume that process mean 

and process standard deviation are known and both are 1.0. Since n = 5, 𝑥̅ control chart can be set 

as: 
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UCL = 2.34; Center Line = 1; LCL = - 0.34. 

 To investigate the effectiveness of the 𝑥̅ chart to detect mean shifts, 3 different shift sizes are used 

by letting µ1 = µ0 + 0.6 𝜎0, µ1 = µ0 + 1.0 𝜎0, and µ1 = µ0 + 1.5 𝜎0 in simulations. 45 random sub-

groups following N (1, 1) are generated for each replication by Microsoft Excel. 3 separate 

experiments are implemented to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. In each experiment, a 

mean shift is implanted at the 5th sub-group. The first effective signal will be counted if it is plotted 

outside the control limits after the shift is implanted. Each experiment is replicated 40 times. 

Results of these experiments for 𝑥̅ chart are presented in Tables 4.1 and 4.2. Table 4.1 demonstrates 

alarm points for 𝑥̅ chart. The results in Table 4.1 demonstrate that in the first simulation run for 1.0 

σ shift, for example, the shift is detected at sample 9. The sign “/” in Table 4.1 indicates that the 

control chart was not able to detect the shift in the particular run. Table 4.2 demonstrates success 

rates and average times to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. 
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Table 4.1 Alarm Points for 𝑥̅ Chart 

Runs/Shifts 0.6 σ 1.0 σ 1.5 σ 

1 39 9 6 

2 16 5 6 

3 5 7 6 

4 32 5 6 

5 45 6 6 

6 41 5 5 

7 31 7 5 

8 19 13 5 

9 41 18 6 

10 24 11 5 

11 28 6 5 

12 14 5 7 

13 / 11 5 

14 40 8 6 

15 20 9 8 

16 43 14 8 

17 38 6 7 

18 12 16 6 

19 19 5 7 

20 7 7 5 

21 / 9 6 

22 / 14 5 

23 11 5 5 

24 21 11 6 

25 24 8 5 

26 / 7 7 

27 43 5 5 

28 5 5 6 

29 18 8 6 

30 9 5 5 

31 6 6 6 

32 13 13 5 

33 28 7 6 

34 29 10 6 

35 35 11 5 

36 9 6 5 

37 / 6 5 

38 19 6 7 

39 9 12 7 

40 18 12 5 
 

 



 

42 
 

Table 4.2 Simulation Results for 𝑥̅ Chart 

40 Runs Success Rates Average Times to Detect 

0.6 σ 35 (88%) 23.17 

1.0 σ 40 (100%) 8.32 

1.5 σ 40 (100%) 5.82 

 

As can be seen from the results in Table 4.2, success rates for 0.6 σ, 1.0 σ, and 1.5 σ are 88%, 100%, 

and 100% respectively. From Table 4.2, average times to detect the shifts decreased with the 

increase of the mean shifts. Accordingly, average times to detect 0.6 σ shift is 23.17 while average 

time to detect 1.0 σ and 1.5 σ shifts are 8.32 and 5.82 respectively. Figures 4.1 and 4.2 present 

graphically the data in Table 4.2. 

 

Figure 4.1 Success Rates of the 𝑥̅ Chart 
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Figure 4.2 Performance of the 𝑥̅ Chart 

 

4.4.1 Average Run Length (ARL) for 𝒙̅ Chart 

Average run length (ARL) to detect a process mean shift using regular 𝑥̅ chart can be calculated. 

Following the general approach in Montgomery (2013), we consider a 𝑥̅ chart which has a fixed 

and known standard deviation σ. If the process mean shifts from its in control value 𝜇0 to an out-

of-control value 𝜇1 = 𝜇0 + k σ, the probability of not detecting a shift in the process mean by next 

immediate sample is: 

β = P (LCL ≤ 𝑥̅ ≤ UCL │µ1 = µ0 + k*σ) 

Since 𝑥̅ ~ Normal (µ, 
𝜎2

𝑛
 ), and control limits which are UCL = µ0 + L (

𝜎

√𝑛
) and LCL = µ0 - L (

𝜎

√𝑛
) 

respectively, 𝛽 can be calculated by: 

β = φ (
𝑈𝐶𝐿−(μ0+𝑘𝜎)

𝜎

√𝑛

) - φ (
𝐿𝐶𝐿 −(μ0+𝑘𝜎)

𝜎

√𝑛

) = φ (
(μ0+𝐿∗ 

𝜎

√𝑛
)−(μ0+𝑘𝜎)

𝜎

√𝑛

) - φ (
(μ0−𝐿∗ 

𝜎

√𝑛
)−(μ0+𝑘𝜎)

𝜎

√𝑛

) = 

Φ (L – k√𝑛) – Φ (-L – k√𝑛)        

23.17

8.32

5.82
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For example, we can calculate out-of-control ARL for 0.6 σ, 1.0 σ, and 1.5 σ shifts using sample 

size n = 5.    

For 0.6 σ Shift                φ (3 – 0.6 √5) – φ (-3 – 0.6 √5) = 0.95 

For 1.0 σ Shift               φ (3 – √5) – φ (-3 – √5) = 0.77 

For 1.5 σ Shift                φ (3 – 1.5 √5) – φ (-3 – 1.5 √5) = 0.36 

   Then 

ARL for 0.6 σ = 
1

1− 𝛽
 = 

1

1−0.95
 = 20 

ARL for 1.0 σ = 
1

1− 𝛽
 = 

1

1−0.77
 = 4.34 

ARL for 1.5 σ = 
1

1− 𝛽
 = 

1

1−0.36
 = 1.56 

4.4.2 Comparing Analytical and Simulation Results for 𝒙̅ Chart 

We want to demonstrate that both of the analytical and simulation approaches show approximately 

the same performances for 𝑥̅ chart. This validates the simulation procedure presented in this study. 

Out-of-control ARL is the number of samples to detect a mean shift. In the simulation approach, 

we implanted a shift in the 5th sub-group. Each alarm after the 4th sub-group will be considered as 

an effective alarm. In each run, we calculate the run length separately and these values are added 

up and divided by the number of runs to calculate the average run length. Table 4.3 and Table 4.4 

demonstrate out-of-control ARLs from numerical simulation and those calculated in Section 4.4.2. 

 

 

 

 

 



 

45 
 

Table 4.3 Out-of-Control ARL for 𝑥̅ Chart based on Simulation Approach 

 

 

 

 

 

Table 4.4 Out-of-Control ARL for 𝑥̅ Chart based on Analytical Approach 

40 Runs Out-of-Control ARL 

0.6 σ shift 20.00 

1.0 σ shift 4.34 

1.5 σ shift 1.52 

 

As can be seen from Tables 4.3 and 4.4, simulation results confirm analytical results. For the 

purpose of comparison, the number of runs were increased to 60, 80, and 100. The results are shown 

in Table 4.5. 

Table 4.5 Out-of-Control ARL for 𝑥̅ chart 

Shifts/ Runs 40 Runs 60 Runs 80 Runs 100 Runs 

0.6 σ 18.17 17.22 17.46 16.35 

1.0 σ 3.32 3.89 3.81 3.83 

1.5 σ 0.82 0.87 0.89 0.88 

 

As can be seen from Table 4.5, out-of-control ARL performance of the 𝑥̅ chart based on numerical 

simulation is similar to analytical results for mean shifts.  

 

4.4.3 Applying Western Electric Rules on 𝒙̅ Chart 

Western Electric Rules have traditionally been used for 𝑥̅ chart. Western Electric Rules include a 

set of rules to increase the detection ability of control charts. When small shifts of parameters are 

40 Runs Out-of-Control ARL 

0.6 σ shift 18.17 

1.0 σ shift 3.32 

1.5 σ shift 0.82 
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of interest, using Western Electric Rules can be useful for early detection. We evaluate the 

performance of 𝑥̅ control chart in conjunction with some Western Electric Rules. In this section, 

we present simulation experiments to implement Western Electric Rules on 𝑥̅ chart. One individual 

and two combinations of the following Western Electric Rules for 𝑥̅ chart are considered in this 

study respectively: 

(A) 1-of-1 test - signals if the last point is beyond the control limits (±3); 

(B) 2-of-3 test - signals if two out of the last three points are beyond the same warning limit (±2);  

(C) 4-of-5 test - signals if four of the last five points are beyond the same auxiliary limit (±1). 

  

To investigate the effectiveness of the Western Electric Rules to detect mean shifts for 𝑥̅ chart, a 

shift size of µ1 = µ0 + 0.6 𝜎0 is used in the simulation.  45 random sub-groups following N (1, 1) 

are generated for each replication by Microsoft Excel. 3 separate experiments are implemented to 

detect this mean shift. Each experiment is replicated 40 times. In each experiment, a mean shift is 

implanted at 5th sub-group. The first effective signal is counted if it is plotted outside the warning 

limit or the auxiliary limit after the shift is implanted at the 5th sub-group. For example, for applying 

Western Electric Rule “BC”, the signal will be considered if 2 points are out of the 2.0 σ limit 

points or 4 points are out of the 1.0 σ limit points appear after the 4th sub-group. Table 4.6 

demonstrates alarm points after applying Western Electric Rules “B”, “BC” and “ABC”. Table 4.6 

shows, for example, at the run number 10 combination of Rules “BC” can detect the 0.6 σ shift at 

5th sub-group or at run number 13 combination of Rules “ABC” can detect the 0.6 σ shift at 12th 

sub-group. In Table 4.6, the sign “/” indicates that control chart cannot detect the 0.6 σ shift in the 

particular run. For example, after applying Western Electric Rule “B”, 𝑥̅ chart cannot detect the 
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shift at the 8th sub-group. Results of these experiments are presented in Table 4.7. Table 4.7 presents 

the success rates and average times to detect corresponding to some of the different individual or 

combinations of Western Electric Rules. In Tables 4.7, for example, “BC” means that the shift is 

detected by Western Electric Rule B or Rule C. “ABC” means that the shift is detected by Western 

Electric Rules A or B, or C.  
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Table 4.6 𝑥̅ Chart Alarm Points after Applying Western Electric Rules 

Runs/Rules B BC ABC 

1 6 6 6 

2 9 22 14 

3 23 17 9 

4 10 5 26 

5 6 8 9 

6 5 5 15 

7 32 6 5 

8 / 15 11 

9 14 14 8 

10 20 5 14 

11 / 5 8 

12 26 8 9 

13 / 22 12 

14 15 7 6 

15 5 9 18 

16 38 6 5 

17 18 5 5 

18 16 25 7 

19 5 6 9 

20 / 37 11 

21 5 9 7 

22 11 10 9 

23 / 5 14 

24 41 13 5 

25 / 7 14 

26 / 7 8 

27 11 12 5 

28 25 8 6 

29 / 6 6 

30 / 5 5 

31 30 9 7 

32 35 7 6 

33 / 19 5 

34 15 11 5 

35 7 9 6 

36 21 18 8 

37 19 14 5 

38 25 5 8 

39 12 13 7 

40 6 5 17 
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Table 4.7 Western Electric Rules Performances on 𝑥̅ Chart for 0.6 σ Shift 

40 Runs B BC ABC 

Success Rates 30 (75%) 40 (100%) 40 (100%) 

Average time to Detect 17.03 10.87 9.00 

 

As shown in Table 4.7, combinations of Western Electric Rules “BC” and “ABC” demonstrate 

highest success rates to the shift. Average times to detect the 0.6 σ shift was 23.17 before 

implementing Western Electric Rules. Table 4.7 shows, average times to detect the 0.6 σ shift 

decreased for both combinations “BC” and “ABC”. For combination “BC”, average times to detect 

is 10.87 while 0.6 σ shift can be detected on average at 9th sub-group if the combination of “ABC” 

is used. For individual Rule “B”, average times to detect 0.6 σ shift decreased compared with 

original experiment results in Table 4.2 where Wester Electric Rules were not used.  

 

4.4.4 Calculating Type I Error with Western Electric Rules “BC” and “ABC”  

According to Champ and Woodall (1989), using Western Electric Rules for synthetizing control 

charts will boost Type I error. In this experiment, individual Rule “B”, Combination of Rules “A”, 

“B”, and “C” and combination of Rules “B” and “C” were used. According to Montgomery (2013), 

the value of Type I error for a control chart with three-sigma limits α = 0.0027 is the probability 

that a single point falls outside the limits when the process is in control. In this section, Type I 

errors are calculated in conjunction with the use of combination of Rules “B”, “ABC” and “BC” 

for 𝑥̅ chart in three separate experiments. In these experiments, 25 random subgroups each has 5 

units following N(1, 1) are generated by Microsoft Excel. No shifts are implanted. Both process 

mean and the standard deviation of the process are assumed to be 1.0. Each experiment is replicated 

100 times. In each replication the number of false alarms are counted regarding the use of Rules 

“B”, “BC” and “ABC”.  To calculate the Type I error, the number of false alarms in 100 replications 
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are divided into 2500. Table 4.8 demonstrates the calculations of Type I error and in control ARL 

regarding the use of Rule “B” and combinations of Rules “BC” and “ABC”.  

Table 4.8 Type I error and in Control ARL after implementing Runs Rules 

Rules B BC ABC 

Number of False Alarms 7 8 17 

Type I error 0.0028 0.0032 0.0068 

In Control ARL 357.14 312.5 147.0 

 

As shown in Table 4.8, in control ARL decreased for Rule “B” and both the combinations of Rules 

“BC” and “ABC” compared with in control ARL equal to 370.  
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4.5 Q Chart Simulation and Results 

Quesensberry (1991) first proposed Q chart in an attempt to overcome the difficulties in estimating 

the process mean and standard deviation in short production runs. As explained in Quesensberry 

(1991) along with Castillo and Montgomery (1994), Q chart can be well used for certain types of 

short-run productions. In this thesis, we discussed the use of Q chart in batch production chart 

statistics are brought below.  

 

𝑊𝑖 = √
𝑛𝑖 (𝑛1+ 𝑛2+⋯𝑛𝑖−1)

𝑛1+ 𝑛2+⋯𝑛𝑖
 (

𝑥̅𝑖− 𝑥̿𝑖−1

𝑠𝑝,𝑖
 ) 

𝑄𝑖 (𝑥𝑖) = 𝛿−1 {𝐺𝑛1+𝑛2+⋯𝑛𝑖−1−𝑖(𝑊𝑖)} 

According to the characteristics of Q statistics which are identically, independently and normally 

distributed, they can be plotted in a unique Schewhart chart with: 

UCLQ = +3 

Center Line = 0 

LCLQ = -3 

 

Q statistic is a standard normal variable which is derived from t-statistic.  In a Q chart, Q statistics 

are plotted in a standard normal chart with center line at 0 and the upper and lower control limits 

at +3 and -3 respectively. To investigate the effectiveness of the Q chart to detect mean shifts, 3 

different shift sizes are used by letting µ1 = µ0 + 0.6 𝜎0, µ1 = µ0 + 1.0 𝜎0, and µ1 = µ0 + 1.5 𝜎0 in 

simulations. 45 random sub-groups following N (1, 1) are generated for each replication by 
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Microsoft Excel. 3 separate experiments are implemented to detect 0.6 σ, 1.0 σ, and 1.5 σ mean 

shifts. In each experiment, a mean shift is implanted at the 5th sub-group. The first effective signal 

will be counted if it is plotted outside the control limits after the shift is implanted at the 5th sub-

group. Each experiment is replicated 40 times. Results of these experiments for Q chart are 

presented in Tables 4.9 and 4.10. Table 4.9 demonstrate alarm points for Q chart. The results in 

Table 4.9 demonstrate that in the 16th simulation run for 1.5 σ shift, for example, the shift is detected 

at sample 5. The sign “/” in Table 4.9 indicates that the control chart was not able to detect the shift 

in the particular run. Table 4.10 demonstrates success rates and average times to detect 0.6 σ, 1.0 

σ, and 1.5 σ mean shifts. 
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Table 4.9 Alarm Points for Q Chart 

Runs/Shifts 0.6 σ 1.0 σ 1.5 σ 

1 / / 5 

2 21 / 6 

3 37 20 5 

4 5 / / 

5 / 14 5 

6 8 6 / 

7 / 6 5 

8 5 7 7 

9 38 22 5 

10 6 7 7 

11 / 5 37 

12 41 / 5 

13 41 / / 

14 30 / 5 

15 10 / 10 

16 30 5 5 

17 10 / 6 

18 5 29 / 

19 6 10 5 

20 / 7 6 

21 8 5 6 

22 / 9 / 

23 / 8 5 

24 6 5 8 

25 / 5 / 

26 11 10 5 

27 5 10 7 

28 24 13 5 

29 15 5 5 

30 16 5 6 

31 / / / 

32 23 10 8 

33 / 5 / 

34 36 / 5 

35 / 23 27 

36 / 12 5 

37 5 23 5 

38 / / 5 

39 / 5 6 

40 / 22 16 
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Table 4.10 Simulation Results for Q Chart 

40 Runs Success Rate Average Time to Detect 

0.6 σ 25 (63%) 17.68 

1.0 σ 30 (75%) 10.8 

1.5 σ 32 (80%) 7.75 

 

As shown in Table 4.10, success rates of the Q chart increased with the increase of the mean shifts. 

As can be seen from the results in Table 4.10, success rates for 0.6 σ, 1.0 σ, and 1.5 σ are 63%, 

75%, and 80% respectively. As shown in Table 4.10, average times to detect the shifts decreased 

with the increase of the mean shifts. Accordingly, average times to detect 0.6 σ shift is 17.68 while 

average time to detect 1.0 σ and 1.5 σ shifts are 10.80 and 7.75 respectively. Figures 4.3 and 4.4 

present graphically the data in Table 4.10.  

 

Figure 4.3 Success Rates of the Q Chart 
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Figure 4.4 Performance of the Q Chart 

 

4.6 EWMA 𝐱̅ Chart Simulation and Results 

In order to detect small shifts in process mean and process standard deviation, EWMA charts may 

be useful. EWMA charts is a suitable alternative of the Schewhart charts when small shifts of 

process parameters are of interest. 

𝑧𝑖 = λ 𝑥̅𝑖 + (1 – λ) 𝑧𝑖−1 

UCL = µ0 + 𝐿𝑧 𝜎𝑥̅ √
𝜆

2− 𝜆
 [1 − (1 −  𝜆)2𝑖] 

Center Line = µ0 

LCL = µ0 - 𝐿𝑧 𝜎𝑥̅ √
𝜆

2− 𝜆
 [1 − (1 −  𝜆)2𝑖] 

After some periods control limits tend to their steady formulas:  
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UCL = µ0 + L 𝜎𝑥̅ √
𝜆

2− 𝜆
 

LCL = µ0 - L 𝜎𝑥̅ √
𝜆

2− 𝜆
 

In the above equations, Zi is the exponentially moving average and λ is the smoothing parameter 

that has value between 0 and 1 usually. In this thesis, we use the Crowder (1989) to identify optimal 

parameters and control limits for EWMA 𝑥̅ chart. Optimal parameters from Crowder (1989) are 

brought in Table 4.11 as follows: 

Table 4.11 Optimal Parameters from Crowder (1989) for EWMA 𝑥̅ Chart 

Shifts Optimal Parameters 

0.6 σ λ = 0.05, K = 2.5 

1.0 σ λ = 0.14, K = 2.8 

1.5 σ λ = 0.25, K = 2.9 

 

To study the effectiveness of the EWMA 𝑥̅ chart to detect mean shifts, 3 different shift sizes are 

implanted by letting µ1 = µ0 + 0.6 𝜎0, µ1 = µ0 + 1.0 𝜎0, and µ1 = µ0 + 1.5 𝜎0 in the simulation. 45 

random sub-groups following N (1, 1) are generated for each replication by Microsoft Excel. 3 

separate experiments are implemented to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. In each 

experiment, a mean shift is implanted at the 5th subgroup. The first effective signal will be counted 

if it is plotted outside the control limits after the shift is implanted. Each experiment is replicated 

40 times. Results of these experiments for EWMA 𝑥̅ chart are presented in Tables 4.12 and 4.13. 

Table 4.12 demonstrates alarm points for EWMA 𝑥̅ chart. The sign “/” in Table 4.12 indicates that 

the control chart was not able to detect the shift in a particular run. Table 4.13 demonstrates success 

rate and average times to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. 
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Table 4.12 Alarm Points for EWMA 𝑥̅ Chart 

Runs/Shifts 0.6 σ 1.0 σ 1.5 σ 

1 9 5 6 

2 7 6 6 

3 14 7 6 

4 11 6 6 

5 9 9 7 

6 8 7 6 

7 8 6 6 

8 7 7 6 

9 10 7 6 

10 9 6 7 

11 6 6 6 

12 14 7 6 

13 10 9 6 

14 18 7 5 

15 9 8 5 

16 15 7 7 

17 7 9 6 

18 8 5 6 

19 10 6 6 

20 7 7 6 

21 8 7 6 

22 8 7 6 

23 10 7 7 

24 13 11 6 

25 12 7 6 

26 10 9 6 

27 10 8 6 

28 8 8 6 

29 6 8 6 

30 11 7 5 

31 17 5 6 

32 6 7 6 

33 12 7 6 

34 9 9 6 

35 7 9 7 

36 7 6 6 

37 8 7 6 

38 8 7 6 

39 10 9 5 

40 10 7 6 
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Table 4.13 Simulation Results for EWMA 𝑥̅ Chart 

40 Runs Success Rate Average Time to Detect 

0.6 σ 40 (100%) 9.65 

1.0 σ 40 (100%) 7.22 

1.5 σ 40 (100%) 6.02 

 

As shown in Table 4.13, success rates of the EWMA 𝑥̅ chart increased with the increase of the 

mean shifts. It also shows that, success rates for 0.6 σ, 1.0 σ, and 1.5 σ are all 100% respectively 

and average times to detect the shifts decreased with the increase of the mean shifts. Average times 

to detect 0.6 σ shift is 9.65 while average time to detect 1.0 σ and 1.5 σ shifts are 7.22 and 6.02 

respectively. Figure 4.5 presents graphically the data in Table 4.13.  

  

 

Figure 4.5 Performance of the EWMA 𝑥̅ Chart 
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4.7 EWMA Q Chart Simulation and Results 

Sub-groups sample means (x̅i) are used in EWMA 𝑥̅ chart statistics to plot process measurements. 

EWMA Q chart uses Q statistics calculated from each sub-group (Qi) instead of sample means to 

plot process measurements.  It is worth noting that when the small shifts of parameters are of 

interest, using EWMA Q chart may be useful to monitor the process mean. EWMA Q chart 

statistics are constructed as: 

𝑍𝑖 = λ 𝑄𝑖 + (1 – λ) 𝑍𝑖−1       i = 1, 2… 

UCL = +K √
𝜆

2− 𝜆
 

CL = 0 

LCL = - K √
𝜆

2− 𝜆
 

Quessenberry (1993) first used exponentially weighted moving average (EWMA) Q chart to detect 

small shifts of process mean and process standard deviation. Crowder (1989), calculated optimal 

smoothing parameters and control limit constants to make the design of EWMA charts easier. In 

this thesis, we use the results in Crowder (1989) to identify optimal parameters and control limits 

for EWMA Q chart. Optimal smoothing parameters from Crowder (1989) are shown in Table 4.14: 

Table 4.14 Optimal Parameters from Crowder (1989) for EWMA Q Chart 

Shifts Optimal Parameters 

0.6 σ λ = 0.05, K = 2.5 

1.0 σ λ = 0.14, K = 2.8 

1.5 σ λ = 0.25, K = 2.9 
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  To study the usefulness of the EWMA Q chart to detect mean shifts, 3 different shift sizes are 

implanted by letting µ1 = µ0 + 0.6 𝜎0, µ1 = µ0 + 1.0 𝜎0, and µ1 = µ0 + 1.5 𝜎0 in our simulations. 

45 random sub-groups following N (1, 1) are generated for each replication by Microsoft Excel. 3 

separate experiments are implemented to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. In each 

experiment, a mean shift is implanted at the 5th sub-group. The first effective signal will be counted 

if it is plotted outside the control limits after the shift is implanted. Each experiment is replicated 

40 times. Results of these experiments for EWMA Q chart are presented in Tables 4.15 and 4.16. 

Table 4.15 demonstrates alarm points for EWMA Q chart. The sign “/” in Table 4.15 indicates that 

the control chart was not able to detect the shift in the particular run. Table 4.16 demonstrates 

success rates and average times to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 
 

Table 4.15 Alarm Points for EWMA Q Chart 

Runs/Shifts 0.6 σ 1.0 σ 1.5 σ 

1 10 8 6 

2 8 / 8 

3 6 7 7 

4 25 21 6 

5 16 / 6 

6 / 9 9 

7 6 18 6 

8 11 6 12 

9 41 10 7 

10 6 10 6 

11 / 6 7 

12 6 6 7 

13 37 6 8 

14 / 6 6 

15 32 7 6 

16 14 6 7 

17 / 37 7 

18 / 8 6 

19 / 6 6 

20 27 21 6 

21 11 / / 

22 23 8 9 

23 33 7 6 

24 6 6 6 

25 24 6 6 

26 8 28 15 

27 30 9 6 

28 13 / 7 

29 14 / 6 

30 6 6 6 

31 7 / / 

32 / 6 7 

33 15 19 6 

34 10 / 6 

35 6 6 / 

36 6 6 / 

37 12 26 7 

38 14 6 6 

39 12 6 6 

40 / 6 6 
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Table 4.16 Simulation Results for EWMA Q Chart 

40 Runs Success Rate Average Time to Detect 

0.6 σ 32 (80%) 15.46 

1.0 σ 34 (85%) 8.17 

1.5 σ 36 (90%) 6.94 

 

From Table 4.16, success rates of the EWMA Q chart increased with the increase of the mean shifts. 

As can be seen from the results in Table 4.16, success rates for 0.6 σ, 1.0 σ, and 1.5 σ are 80%, 

85%, and 90% respectively. From Table 4.16, average times to detect the shifts decreased with the 

increase of the mean shifts. Accordingly, average times to detect 0.6 σ shift is 15.46 while average 

times to detect 1.0 σ and 1.5 σ shifts are 8.17 and 6.94 respectively. Figures 4.6 and 4.7 present 

graphically the data in Table 4.16.  

 

Figure 4.6 Success Rates of the EWMA Q Chart 
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Figure 4.7 Performance of the EWMA Q Chart 

 

4.8 T Chart Simulation and Results 

Zhang et al. (2009) showed that T chart is more robust against estimation errors and unstable 

process standard deviation. To construct a T chart one needs to compute the mean and standard 

deviation of the sub grouped data. In this thesis we applied T chart in batch production. 

X̅i = 
1

n
 ∑ Xi,j

n
j=1  

Si = √
1

n−1
∑ (Xi,j −  X̅i)2n

j=1  

Ti =
X̅i− μ0

Si
√n

  

UCLt = Ft
−1 (1 - 

α

2
, n – 1) 

LCLt = - UCLt 
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There are two primary reasons that T chart may be implemented to monitor batch production. First, 

the use of T chart does not need Phase I sample collection to stablish 𝜇0 and 𝜎0. The second reason 

is that T chart is easy to implement. In conducting our simulation, we assume that process mean is 

known at 1.0. Initial setup assume that the process is in control with the population mean 𝜇0 at the 

target M. Since n = 5, T control chart can be set as: 

UCL = 6.62; 1; LCL = - 6.62. 

Initially, we simulated T chart so as to calculate its in control ARL. Accordingly, 45 random subg-

roups following N (1, 1) are generated each had 5 units for each replication by Microsoft Excel. 

No shifts are implanted at a particular run. This experiment was replicated 100 times. The result 

indicates that T chart monitoring the process mean gives false alarm after producing 375 units. To 

study the usefulness of the T chart in detecting mean shifts, 3 different shift sizes are implanted by 

letting µ1 = µ0 + 0.6 𝜎0, µ1 = µ0 + 1.0 𝜎0, and µ1 = µ0 + 1.5 𝜎0 in simulations. 45 random sub-

groups following N (1, 1) are generated for each replication by Microsoft Excel. 3 separate 

experiments are implemented to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. In each experiment, a 

mean shift is implanted at the 5th sub-group. The first effective signal will be counted if it is plotted 

outside the control limits after the shift is implanted. Each experiment is replicated 40 times. 

Results of these experiments are presented in Tables 4.17 and 4.18. Table 4.17 demonstrates alarm 

points for T chart. The sign “/” in Table 4.17 indicates that the control chart was not able to detect 

the shift in a particular run. Table 4.18 demonstrates success rates and average times to detect 0.6 

σ, 1.0 σ, and 1.5 σ mean shifts.   
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Table 4.17 Alarm Points for T Chart 

Runs/Shifts 0.6 σ 1.0 σ 1.5 σ 

1 25 6 13 

2 / / 7 

3 / 16 6 

4 20 15 7 

5 / 36 6 

6 / / / 

7 / 40 10 

8 7 11 6 

9 15 13 9 

10 7 14 11 

11 33 / 7 

12 / 8 21 

13 / 40 16 

14 37 6 6 

15 31 12 7 

16 / 20 10 

17 / 13 6 

18 / / 24 

19 / 6 9 

20 29 8 9 

21 / 25 13 

22 / 13 27 

23 42 22 19 

24 14 14 25 

25 24 15 19 

26 9 8 12 

27 / 35 17 

28 / / 12 

29 36 18 6 

30 38 7 13 

31 / 26 6 

32 39 9 16 

33 29 12 6 

34 28 30 7 

35 / 28 7 

36 / 34 6 

37 32 10 9 

38 45 29 7 

39 44 / 13 

40 / / 9 
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Table 4.18 Simulation Results for T Chart 

40 Runs Success Rate Average Time to Detect 

0.6 σ 21 (53%) 27.8 

1.0 σ 33 (83%) 18.15 

1.5 σ 39 (98%) 15.13 

 

As can be seen from the results in Tables 4.18, the T chart can detect 0.6, 1.0 σ and 1.5 σ shifts 

with success rates of 53 %, 83 %, and 98 % respectively. Table 4.18 also shown that average times 

to detect 0.6 σ shift is 27.80 while average times to detect 1.0 σ and 1.5 σ shifts are 18.15 and 15.13 

respectively. Figures 4.8 and 4.9 present graphically the data in Table 4.18.  

 

Figure 4.8 Success Rates of the T Chart 

 

 

 

 

 

53%

83%

98%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.6 σ 1.0 σ 1.5 σ



 

67 
 

 

Figure 4.9 Performances of the T Chart 

 

4.9 EWMA T Chart Simulation and Results 

When the small shifts of process parameters such as process mean and process standard deviation 

are of interest, resorting to an EWMA charts may improve the detection ability of the control 

procedures. EWMA T chart uses T statistics to plot the process measurements. However, EWMA 

Q chart uses Q statistics and EWMA 𝑥̅ chart uses sub-groups sample means for plotting process 

measurements.  

Yi = λ Ti + (1 – λ) Yi−1 

Y0 = 0 

UCLt = + K √
λ

2− λ
 

LCLt = - K √
λ

2− λ
 

K = L * σ0 
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In the above equation λ is the smoothing parameter and 𝑇𝑖 is the exponentially moving average. 

The lower and upper control limits of EWMA T chart satisfy 𝐿𝐶𝐿𝑡 = −𝑈𝐶𝐿𝑡 and the center line is 

0. The control limits are ±𝐾 √
𝜆

2−𝜆
where 𝐾=𝐿 x 𝜎0. L is the constant parameter. 

We use optimal parameters in Zhang et al. (2009) in which they calculated optimal parameters for 

EWMA T Chart with the use of markov chain approach. Table 4.19 demonstrates the optimal 

parameters for EWMA T chart as follows: 

Table 4.19 Optimal Parameters for EWMA T Chart 

Shifts Optimal Parameters 

0.6 σ λ = 0.09, K = 3.9 

1.0 σ λ = 0.14, K = 4.5 

1.5 σ λ = 0.25, K = 4.8 

 

To study the usefulness of the EWMA T chart to detect mean shifts, 3 different shift sizes are 

implanted by letting µ1 = µ0 + 0.6 𝜎0, µ1 = µ0 + 1.0 𝜎0, and µ1 = µ0 + 1.5 𝜎0 in simulations. 45 

random subgroups following N (1, 1) are generated for each replication by Microsoft Excel. 3 

separate experiments are implemented to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. In each 

experiments, a mean shift is implanted at the 5th sub-group. The first effective signal will be counted 

if it is plotted outside the control limits after the shift is implanted. Each experiment is replicated 

40 times. Results of these experiments for EWMA T chart are presented in Tables 4.20 and 4.21. 

Table 4.20 demonstrates alarm points for EWMA T chart. The sign “/” in Table 4.20 indicates that 

the control chart was not able to detect the shift in the particular run. Table 4.21 demonstrates 

success rates and average times to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. 
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Table 4.20 Alarm Points for EWMA T Chart 

Runs/Shifts 0.6 σ 1.0 σ 1.5 σ 

1 8 9 6 

2 12 9 9 

3 9 7 9 

4 15 7 7 

5 12 8 7 

6 13 11 7 

7 11 7 7 

8 11 7 6 

9 17 8 7 

10 5 8 6 

11 21 15 7 

12 9 9 9 

13 16 9 8 

14 8 6 9 

15 14 7 8 

16 13 7 6 

17 9 7 5 

18 19 9 7 

19 7 14 6 

20 19 8 8 

21 10 11 7 

22 22 6 5 

23 10 11 7 

24 12 7 7 

25 15 8 7 

26 15 10 6 

27 10 9 7 

28 7 10 8 

29 10 7 6 

30 11 9 6 

31 21 8 6 

32 13 8 7 

33 9 7 7 

34 12 8 6 

35 15 6 8 

36 9 7 7 

37 10 7 7 

38 11 7 7 

39 12 8 7 

40 12 5 7 
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Table 4.21 Simulation Results for EWMA T Chart 

40 Runs Success Rate Average Time to Detect 

0.6 σ 40 (100%) 12.35 

1.0 σ 40 (100%) 8.27 

1.5 σ 40 (100%) 6.97 

 

As can be seen from the results in Tables 4.21, EWMA T chart can detect 0.6, 1.0 σ and 1.5 σ shifts 

with the success rates of 100%. According to Table 4.21, average times to detect 0.6 σ shift is 12.35 

while average times to detect the 1.0 σ and 1.5 σ shifts are 8.27 and 6.97 respectively. Figure 4.10 

presents graphically the data in Table 4.21. 

 

Figure 4.10 Performance of EWMA T Chart 
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4.10 Schewhart Sign Chart Simulation and Results 

Schewhart sign chart is based on the assumption that the distribution of collected data is 

nonparametric. The previous experiments of control charts are based on the assumption that the 

process characteristics follow normal distribution. In this section, we also assume normal 

distribution to test Schewhart sign chart. 

SNi = ∑ Sign (Xi,j − TM)N
j=1  

SNi = 2*Di – n 

 

UCL = c = n 

CL = 0 

LCL = - c = - n 

In the above equations, 𝐷𝑖 is the number of positive signs in a sub-group, and n is the number of 

samples that have been collected in each sub-groups. Without presence of assignable causes in-

control value for 𝑆𝑁𝑖  would become zero. Di is a random variable which has binomial 

distribution(Di~ B (n, p0)). The constant c is computed as c = 2 × d − n. TM is target value of the 

mean or median of the collected data which is equal to µ0 (process mean). As soon as the set-up 

activities are done without errors, TM would be equal to µ0. 

To investigate the effectiveness of the Schewhart sign chart to detect mean shifts, 3 different shift 

sizes are used by letting µ1 = µ0 + 0.6 𝜎0, µ1 = µ0 + 1.0 𝜎0, and µ1 = µ0 + 1.5 𝜎0 in simulations. 45 

random sub-groups following N (1, 1) are generated for each replication by Microsoft Excel. 3 

separate experiments are implemented to detect 0.6 σ, 1.0 σ, and 1.5 σ mean shifts. In each 
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experiment, a mean shift is implanted at the 5th sub-group. The first effective signal will be counted 

if it is plotted outside the control limits after the shift is implanted. We assume that TM is equal to 

1. Each experiment is replicated 40 times. Results of these experiments for Schewhart sign chart 

are presented in Tables 4.22 and 4.23. Table 4.22 demonstrates alarm points for Schewhart sign 

chart. The sign “/” in Table 4.22 indicates that the control chart was not able to detect the shift in 

the particular run. Table 4.23 demonstrates success rates and average times to detect 0.6 σ, 1.0 σ, 

and 1.5 σ mean shifts. 
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Table 4.22 Alarm Points for Schewhart Sign Chart 

Runs/Shifts 0.6 σ 1.0 σ 1.5 σ 

1 9 6 5 

2 29 6 5 

3 16 10 5 

4 6 5 5 

5 5 5 6 

6 5 5 5 

7 6 10 5 

8 7 5 5 

9 11 5 6 

10 9 5 5 

11 5 6 5 

12 11 5 5 

13 6 5 5 

14 22 7 6 

15 7 5 6 

16 6 5 6 

17 14 5 7 

18 6 7 6 

19 9 7 6 

20 6 7 5 

21 16 6 5 

22 5 7 5 

23 7 6 5 

24 8 6 6 

25 19 10 5 

26 17 8 8 

27 7 6 6 

28 8 7 6 

29 7 8 5 

30 7 7 5 

31 11 5 6 

32 5 7 5 

33 12 5 5 

34 15 6 6 

35 13 8 5 

36 5 6 5 

37 6 9 5 

38 18 5 5 

39 8 5 5 

40 5 7 5 
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Table 4.23 Simulation Results for Schewhart Sign Chart 

40 Run Success Rate Average Time to Detect 

0.6 σ 40 (100%) 9.85 

1.0 σ 40 (100%) 6.37 

1.5 σ 40 (100%) 5.43 

 

From Table 4.23, success rates of the Schewhart sign chart increased with the increase of the mean 

shifts. As can be seen from the results in Table 4.23, success rates for 0.6 σ, 1.0 σ, and 1.5 σ are all 

100%. From Table 4.23, average times to detect the shifts decreased with the increase of the mean 

shifts. Accordingly, average times to detect 0.6 σ shift is 9.85 while average times to detect 1.0 σ 

and 1.5 σ shifts are 6.37 and 5.43 respectively. Figure 4.11 presents graphically the data in Table 

4.23.  

 

Figure 4.11 Performance of the Schewhart Sign Chart 
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4.11 Comparison of Tested Control Charts  

Control charts simulated in this chapter are compared in this section based on success rates and 

average times to detect. Success rates indicate the number of successes (detecting a mean shift) in 

40 runs for all simulation experiments and average times to detect is the out-of-control ARL. The 

difference between the point where the shift is detected at a particular sub-group and the implanted 

shift at the 5th sub-group is used to calculate out-of-control ARL. Various control charts were tested 

in this thesis to investigate their capabilities to detect mean shifts in batch production. 𝑥̅ chart, 𝑥̅ 

chart with Western Electric Rules, Q chart, T chart, EWMA 𝑥̅ chart, EWMA Q chart, EWMA T 

chart and Schewhart sign chart were simulated in this chapter to identify appropriate control charts 

for batch production. To study the usefulness of control charts in detecting mean shifts, 3 different 

shift sizes were implanted by letting µ1 = µ0 + 0.6 𝜎0, µ1 = µ0 + 1.0 𝜎0, and µ1 = µ0 + 1.5 𝜎0 in 

simulations. 45 random sub-groups following N (1, 1) are generated for each replication by 

Microsoft Excel. Figure 4.12 demonstrates control charts success rates in detecting 0.6 σ mean shift 

and Figure 4.13 shows control charts average times to detect. 

 

Figure 4.12 Success Rates of the Different Charts to Detect 0.6 σ Mean Shift 
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Figure 4.13 Performances of the Different Charts to Detect 0.6 σ Mean Shift 

 

As can be seen from Figures 4.12 and 4.13, EWMA 𝑥̅ chart and Schewhart sign chart has better 

success rates and ARL performances in detecting 0.6 σ mean shift in comparison to other charts. 

EWMA T chart could be another appropriate alternative in detecting 0.6 σ mean shift. As shown 

in Figures 4.12 and 4.13, EWMA 𝑥̅ chart, Schewhart sign chart, and EWMA T chart are 100 % 

successful to detect 0.6 σ shift, but EWMA 𝑥̅ chart and Schewhart sign chart are able to detect the 

0.6 σ mean shift earlier than EWMA T chart. From Figure 4.13, average times to detect 0.6 σ for 

EWMA 𝑥̅ chart and Schewhart sign chart are 9.65 and 9.85 respectively while average times to 

detect 0.6 σ for EWMA T chart is 12.35. Figures 4.12 and 4.13 also shown that T chart is not 

capable enough to detect 0.6 σ mean shift in comparison with other charts. Also, Q chart does not 
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Figure 4.14 Success Rates for 𝑥̅ Chart before and after Applying Western Electric Rules 

 

 

Figure 4.15 Performances of 𝑥̅ Chart before and after Applying Western Electric Rules 
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increases the probability of Type I error occurrence. Practitioners should consider Type I error 

augments which cause the number of false alarms to increase. 

Figure 4.16 demonstrates control charts success rates to detect 1.0 σ mean shift and Figure 4.17 

shows control charts average time to detect for 1.0 σ mean shift. 

 

Figure 4.16 Success Rates of the Different Charts to Detect 1.0 σ Mean Shift 

 

Figure 4.17 Performances of the Different Charts to Detect 1.0 σ Mean Shift 
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As can be seen from Figures 4.16 and 4.17, Schewhart sign chart has better success rates and ARL 

performances in comparison to other charts. Accordingly, Schewhart sign chart is 100 % successful 

in detecting 1.0 σ shift and average times to detect 1.0 σ mean shift is 6.32. From Figures 4.16 and 

4.17, EWMA 𝑥̅ chart, 𝑥̅ chart, and EWMA T chart are 100 % successful in detecting 1.0 σ shift 

while average times to detect for EWMA 𝑥̅ chart, 𝑥̅ chart, and EWMA T chart are 7.22, 8.32, and 

8.27 respectively. Although EWMA Q chart is 85 % successful in detecting 1.0 σ shift, EWMA Q 

chart has better average times to detect in comparison with 𝑥̅ chart and EWMA T chart. Q chart 

has appropriate ARL performance which is 10.80. However, success rates for the Q chart is 75 % 

which is the minimum among the tested charts. Q chart has better out-of-control ARL performances 

in comparison to T chart. As shown in Figure 4.17, average times to detect for T chart is 18.15 

which is the maximum time to detect 1.0 σ mean shift in comparison to other charts. 

Figure 4.18 demonstrates control charts success rates to detect 1.5 σ mean shift and Figure 4.19 

shows control charts average time to detect for 1.5 σ mean shift. 

 

Figure 4.18 Success Rates of the Different Charts to Detect 1.5 σ Mean Shift 
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Figure 4.19 Performances of the Different Charts to Detect 1.5 σ Mean Shift 

 

From Figures 4.18 and 4.19, Schewhart sign chart and 𝑥̅ chart has better success rates and ARL 

performances in comparison with other charts. Accordingly, both of the Schewhart sign chart and 

𝑥̅  chart are 100 % successful and average times to detect for these chart are 5.43 and 5.82 

respectively. As shown in Figures 4.18 and 4.19, EWMA 𝑥̅ chart has nearly the same performances 

as Schewhart sign chart and 𝑥̅ chart. Figures 4.18 and 4.19 show that although EWMA T chart has 

better success rates than EWMA Q chart to detect 1.5 σ shift, both of them have the same average 

times to detect which is 6.9 approximately. From Figures 4.18 and 4.19, T chart has better success 

rates than Q chart, but Q chart can detect 1.5 σ mean shift earlier than T chart. Figure 4.19 shows 

that average times to detect 1.5 σ mean shift is 7.75 for Q chart while average times to detect 1.5 σ 

mean shift is 15.13 for T chart.  
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In conclusions, different control charts are suggested for batch production and job-shop 

manufacturing as shown in Table 4.24 based on their success rates and average times to detect for 

different sizes of process mean shifts. 

Table 4.24 Suggested Control Charts for Batch Production 

0.6 σ (Small Mean Shift) 

EWMA X-Bar Chart, EWMA T 

Chart, Schewhart Sign Chart 

1.0 σ (Medium Mean Shift) 

EWMA X-Bar Chart, X-Bar Chart 

EWMA T Chart, Schewhart Sign 

Chart 

1.5 σ (Large Mean Shift) 

EWMA X-Bar Chart, X-Bar Chart 

EWMA T Chart, EWMA Q Chart 

Schewhart Sign Chart 
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4.12 Summary 

In this chapter, various control charts were simulated and assessed to investigate their capabilities 

in finding small, medium and larger shifts in process mean. The main objective of this chapter was 

to investigate the usefulness of different control charts in batch production and job-shop 

manufacturing. In the first part of Chapter 4, analytical approach to calculate out-of-control ARL 

for 𝑥̅ chart was presented. The results from analytical and simulation were compared to investigate 

conformity between the results of the two different approaches. Western Electric Rules were 

applied for 𝑥̅  chart and it was shown that resorting to Western Electric Rules increases the 

probability of Type I error and decreases in control ARL which gives higher false alarms rates.  

In the second part of Chapter 4, all the simulation experiments and results were brought to compare 

different control charts for batch production and job-shop manufacturing. In order to detect 0.6 σ 

mean shift (small mean shift), Schewhart sign chart, EWMA 𝑥̅ chart and EWMA T chart are more 

effective. For detecting 1.0 σ mean shift (medium mean shift), EWMA 𝑥̅ chart, EWMA T chart, 𝑥̅ 

chart and Schewhart sign chart are preferred. To detect 1.5 σ mean shift (large mean shift), EWMA 

T chart, EWMA Q chart, Schewhart sign chart, EWMA 𝑥̅  chart, and 𝑥̅  chart have good 

performances. 
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5 Conclusions and Future Research 

 

5.1 Summary  

The main objective of this thesis is to compare different quality control charts for on-line 

monitoring of manufacturing processes of batch production. Monitoring such processes is a 

challenging issue when processes should be frequently reconfigured to produce different parts and 

maintain small inventory levels. In Chapter 2, different control charts and quality control 

procedures were reviewed. In Chapter 3, models and formulas of control charts were presented for 

monitoring batch production. Those control charts were tested by simulation and were evaluated in 

terms of success rates and average times to detect the mean shifts in Chapter 4.  

 

5.2 Contributions of the Thesis   

In this thesis, detection abilities of various quality control charts for batch production and job-shop 

manufacturing were tested using simulation. The main intention of using simulation in this thesis 

is its simplicity to study the control charts performances. Furthermore, all companies should have 

access to Microsoft Excel to model and study their manufacturing processes.  

Production volume is typically larger in batch production comparing to job-shop production and is 

smaller comparing to mass production. Quality control charts more suitable for batch production 

are simulated in this thesis for production of medium volume and medium variety of products. 

Researchers have studied different control charts for optimal ARL performances for short-run and 

long-run production. Research is limited on finding control charts for processes with medium 

production volume and medium products variety.   
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From simulation results, we have the following general observations: 

Various control charts are recommended in batch production which were less studied in the 

literature. 𝑥̅ chart is applied to batch production and its detection ability is compared with other 

charts. Both Q chart and T chart are applied in batch production in this thesis to check their 

detection abilities to find various sizes of the process mean shifts. EWMA 𝑥̅ chart, EWMA Q chart, 

and EWMA T chart are tested in this thesis to compare their detection abilities with regular 

Schewhart charts. Also Schewhart sign chart was tested in this thesis. Western Electric Rules were 

applied for 𝑥̅ chart to increase the detection ability of this charts in finding small process mean shift.  

 

5.3 Future Research     

Future research can deal with statistical measure of performance which uses Markov chains to 

calculate average run length (ARL), average number of sample size before shift (ANOS) or average 

time to signal (ATS). Furthermore, cost analysis is another interesting topic which deals with 

operation research techniques to design economic control charts. Studying adaptive control charts 

such as variable sample size (VSS) charts, variable sampling interval (VSI) charts, variable sample 

size and variable sampling interval (VSSI) charts and variable parameters (VP) charts are other 

topics which can be followed in the future research. 
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