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Abstract

Traveler Mobility and Activity Pattern Inference Using Personal Smartphone Applications
and Artificial Intelligence Methods

Ali Yazdizadeh, Ph.D.

Concordia University, 2020

Recent advances in communication technologies have enabled researchers to collect travel data

from location-aware smartphones. These advances hold out the promise of allowing the automatic

detection of the critical aspects (mode, purpose, etc.) of people’s travel. This thesis investigates

the application of artificial intelligence methods to infer mode of transport, trip purpose and transit

itinerary from traveler trajectories gathered by smartphones. Supervised, Random Forest models

are used to detect mode, purpose and transit itinerary of trips. Deep learning models, in particular,

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), are also employed

to infer mode of transport and trip purpose. The research also explores the use of Generative Adver-

sarial Networks (GANs), as a semi-supervised learning approach, to classify trip mode. Moreover,

we investigate the application of multi-task learning to simultaneously infer mode and purpose.

The research uses several different data sources. Trip trajectory data was collected by the MTL

Trajet smartphone Travel Survey App, in 2016. Also, other complementary datasets, such as loca-

tional data from social media, land-use, General Transit Feed Specification (GTFS), and elevation

data are exploited to infer trip information.

Mode of transport can be inferred with Random Forest models, ensemble CNN models, and

RNN approaches with an accuracy of 87%, 91% and 86%, respectively. The Random Forest and

multi-task RNN models to infer trip purpose achieve an accuracy of 71% and 78%, respectively.

Also, the Random Forest transit itinerary inference model can predict used transit itineraries with

an accuracy of 81%. While further improvement is required to enhance the performance of the

developed artificial intelligence models on smartphone data, the results of the research indicate the

iii



capability of smartphone-based travel surveys as a complementary (and potentially replacement)

surveying tool to household travel surveys.

·
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Glossary

Accuracy: The fraction of predictions that a classification model got right. In multi-class classifi-

cation, accuracy is defined as follows [1]:

Accuracy =
CorrectPredictions

TotalNumberofExamples

Activation Function: A mathematical function (such as sigmoid) that is fed by the sum of inputs,

usually the inputs of the previous layer in a neural network, and then produces an (nonlinear) output

value, to the next layer in a neural network [1].

Activity/Purpose: In this thesis an activity is considered as the purpose of trip at a destination, for

example “Work” can be defined as an activity at trip destination. Activity and trip purpose have

been used alternatively in this thesis.

Choice model: Choice model attempts to explain and predict the choice between two or more

alternatives, usually mode of transport, such as taking bus or taxi to travel to work.

Choice set: Choice set is a set of available alternatives an individual is faced with while making a

choice. The alternatives in a choice set should be mutually exclusive.

Classification model: A machine learning model for determining a label or class (among two or

more classes) for an observation [1]. For example, a mode classification model can determine

whether an input trip trajectory has been done by bike, car, walk or transit.

Computational graph: A directed graph consists of the nodes that are either operations or vari-

ables. The variable nodes contain multi-dimensional arrays (i.e. tensors) values. Operation nodes

can be fed by the value of variable nodes or the output of other operation nodes. Indeed, every node

in a computational graph defines a function of the variables [1].
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Confusion matrix: A table that summarized the results of a classification model. It shows the

correlation between the true label and the predicted label (i.e. the label generated by the model).

Confusion Matrix usually consists of N rows and N columns, where N is the number of classes. The

label predicted by the classification model is presented on one axis, and the true label is presented

on the other axis [1].

F1-measure: The F1-measure is calculated as a weighted average of the precision and recall. It is

defined by the following formula:

F1−measure = 2 ∗ (Precision ∗Recall)
Precision+Recall

Keras: An open-source neural-network library written in Python. It is capable of running on top of

TensorFlow, Microsoft Cognitive Toolkit, R, or Theano [1].

Mode of transport: Mode defines the ways of transport and mobility, examples of modes of trans-

port are car, bike, walk, etc.

Precision: Precision explains the frequency of the correct predicted positive class. It is defined by

the following formula [1]:

Precision =
TruePositives

TruePositives+ FalsePositives

Prediction: The output of a classification model while being fed by an input example [1].

Recall: Recall explains how many of the all true examples have been predicted correctly by the

classification model. It is defined by the following formula [1]:

Recall =
TruePositives

TruePositives+ FalseNegatives

Segment: In this thesis a segment is considered as part of a trip’s GPS trajectory with a specific

number of GPS points.

Sequence model: A model which is fed by the sequential data, i.e. the data with sequential depen-

dence. For example, a mode classification model which is fed by a GPS trajectory [1].

TensorFlow: A large-scale, distributed, machine learning platform. The term also refers to the base
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API layer in the TensorFlow stack, which supports general computation on dataflow graphs [1].

Tour: A tour is a journey originated and destined at a same location (ex. work or home location)

and consists of different trips with specified purposes and intervening stops.

Trajectory: A trajectory (or GPS trajectory) refers to a sequence of time-stamped points, usually

recorded with some other information about latitude, longitude, altitude, speed, and acceleration,

etc. The GPS trajectories can be recorded by different type of devices, such as GPS loggers or

GPS-enabled smartphones.

Transit Itinerary: A transit itinerary is the details of scheduled events relating to a transit trip,

generally including the bus number or metro line taken by the traveler at specific times and locations.

Trip: A trip is considered as a single journey between two points made by a specific mode of

transport and has a defined purpose. As an example, a trip can be done from home to work by car.

Travel Time: While travel time is usually considered as the time it takes to travel door-to-door, in

this thesis travel time is defined as the time between the first and last GPS point along a detected

trip trajectory.
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Chapter 1

Introduction

Contemporary cities, with rapidly changing urban mobility patterns resulting from the growth of

new technologies, such as on-demand ride-sharing services like Uber and Lyft, location-aware

smartphones as well as emerging technologies like autonomous vehicles, face transportation plan-

ning challenges. For several decades, transportation practitioners have used Household Travel Sur-

veys (HTS), along with travel demand modeling [2], as a central tool in the analysis of transporta-

tion plans, projects, and policies in urban areas. Traditionally, HTSs have been done via various

approaches such as face-to-face interviews, mail-back paper travel diaries, phone interviews (i.e.

Computer-Assisted Telephone Interviews or CATI), or web-based travel surveys [3, 4].

With the rapid changes in technology, transportation planners need to be able to gather and update

commuter datasets and models more frequently, for example on yearly basis, instead of every four

or five years. However, traditional HTS methods suffer from several issues, such as heavy burden

on respondents, high implementation costs, poor accuracy in terms of time and location, and lack of

detail in recorded trips. Moreover, due to the high burden on respondents, response rates for such

travel surveys tend to be low [3]. Furthermore, any attempts to improve the quality of collected data

through the gathering of more detailed travel diaries increases respondent burden and negatively

affects response rates further. In addition, the marginal cost1 of implementing traditional HTS is

usually relatively high [5], which leads to increasing implementation costs over time (as populations

and sample sizes typically increase). Indeed, the high marginal cost of traditional HTS methods
1The additional cost of one more respondents.
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not only increases their implementation costs over time, but also it may inhibit practitioners from

expanding the study region easily or increasing their frequency. Hence, implementing HTS more

frequently for growing urban areas requires confronting the above mentioned problems at the first

step.

Over the last two decades, advances in other technologies, such as smartcards, the Global Posi-

tioning System (GPS), roadside sensors, and mobile phone data, have provided scientists and re-

searchers with new and huge volume data sources, summarized under the term “Big Data”. One

of the advantages of such data gathering tools is that they collect data automatically with minimum

need for human resources, which can decrease collection costs considerably. The use of such data

sources has become an important avenue of research for understanding travel behavior. Particularly,

smartphones equipped with different sensors such as Global Positioning Systems (GPS) and iner-

tial measurement units (IMU), which comprise accelerometers and gyroscopes, have been changing

the options available for the collection of transportation demand data. It should be mentioned that

GPS loggers have also been used for gathering travelers trajectories, however such devices are not

a practical tool in large-scale surveys, due to the relatively large burden and cost of their use. For

example, Wolf et al. [6] used GPS loggers, carried by respondents, to collect traveler trajectory

data. They report, however, that respondents often forgot to bring devices with them. Moreover,

providing participants with dedicated GPS loggers increases surveying costs. Hence, the focus of

this thesis is on smartphone travel surveys, which are different from surveys conducted via GPS

loggers.

To take advantage of smartphone technologies in travel surveying, researchers have designed mo-

bile applications to collect traveler mobility data [7, 8]. Travel surveys implemented via smartphone

applications are one of the most suitable options to overcome the disadvantages of traditional HTS

methods for the following reasons. First, they collect data automatically without imposing consider-

able burden on travelers. Second, their total cost is low compared to traditional HTS methods [5, 9].

For example, Flake et al. [9] have reported a 50% decrease in “cost per collected day” for their

smartphone travel surveys over their household travel survey, both implemented in the same region.

Third, the marginal cost of smartphone travel surveys is lower than traditional HTS methods. As

Zhao et al [10] have found, the marginal cost of gathering an extra day of data with smartphone
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travels surveys is minimal. Some studies [11] have estimated an increase between 23% to 67% in

total surveying costs while adding an additional day in traditional HTS methods. However, adding

one day to smartphone travel survey only increases the data administration expenses, which is min-

imal due to efficient cloud services. Today, the data administration systems of smartphone travel

surveys can be implemented over cloud services, such as Amazon Web Services (AWS), which are

cheaply scalable, and adding one day does not require large human resources. Such advantages of

smartphone-based travel surveys will enable transportation practitioners to implement travel surveys

more frequently at very low and reasonable costs, with lower respondent burden [12, 13, 14].

Nowadays, mobile phones equipped with different technologies can gather mobility and activity

data. As shown in Figure 1.1, these technologies can be categorized into two types[15]:

• Locational technologies, such as cellular networks, GPS, WiFi, and Bluetooth,

• Built-in motion sensors, including accelerometer, magnetic sensors and gyroscopes.

The systems and technologies shown in Figure 1.1 are explained in Appendix A.1. Each of the

above mentioned technologies possesses its own advantages and disadvantages, as explained in

Appendix A.1. The most important issues are the accuracy and the accessibility of the data, as well

as the effect of the data collection technique on mobile phone battery usage [16]. For example,

cellular data, which is usually gathered by mobile phone network providers, is only obtainable

through specific agreements and contracts, which potentially restricts their usage in transportation

demand studies due to privacy issues [17]. Using more mobile phone sensors and technologies,

such as accelerometer or gyroscope sensors along with embedded GPS technology, can potentially

increase the data quality. However, deploying more sensors for data gathering may considerably

increase smartphone battery usage, and may not be applicable to large-scale and long-term data

collection surveys.

In this thesis, we used data from the application MTL Trajet, which is an instance of the smart-

phone travel survey app and platform, Itinerum [8, 18]. The Itinerum platform consists of a mobile

application, which is installed on participant smartphones, and the web-based data administration

platform. The mobile application collects the GPS records of travelers. It enables researchers to

design a questionnaire inside the application to collect respondent socio-demographic and typical
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travel details. It also prompts respondents when stops are detected, and asks them to validate trip

mode and purpose. The models developed in thesis has been developed on MTL Trajet 2016 dataset,

during which more than 8,000 individuals participated.

Figure 1.1: Different Mobile Phone Data Collection Technologies and Systems

While smartphone technologies promise great benefits for mobility data collection, there are many

challenges in using them as a surveying tool in transportation demand studies. Such challenges are

explained in the following section. Moreover, while smartphone-based travel surveys enable us to

gather detailed travel data, GPS trajectories cannot be used directly in transportation demand analy-

sis. Since the main aim for the use of travel data from smartphone surveys is for use in transportation

demand analysis, we first need to consider the role of travel data in transportation demand modeling,

and what type of data are essential in such uses. Hence, Section 1.2 is devoted to describing the role

of travel data in transportation demand analysis and identifying the most important trip informa-

tion in transportation demand modeling. Identifying the critical trip information in travel demand

analysis helps us to determine which type of data should be collected by smartphone-based travel

surveys and how we should analyse such data to elicit the information required in travel behavior

studies. Following that, a section explains the different methods for inferring trip information from
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smartphone-based travel surveys. Finally, the contribution of the thesis and dissertation outline are

described.

1.1 Challenges in Using Mobile Phone Data in Transportation Studies

As explained in the previous section, smartphones have great potential to gather mobility data for

transportation demand analysis. However, there are still some challenges to overcome. First, raw

trajectory data collected by smartphones is not ready to use in transportation demand studies. For

example, collected trajectory data cannot be directly converted into mode-based Origin-Destination

(O-D) matrices, one of the the most important outputs of HTSs. To construct an OD matrix, we first

need to be able to identify trips as well as trip mode and purpose. Such information needs to be

inferred from raw collected GPS trajectories, before constructing an O-D matrix.

The second challenge is related to obtaining “Ground Truth” data for GPS trajectories[19]. Artifi-

cial intelligence researchers usually use the term “ground truthing” to refer to the series of actions or

methods to achieve the proper data for testing the performance of AI algorithms[20]. With respect

to trip trajectory data, ground truth data can include mode of transport associated to a trajectory by

a respondent or a researcher. With ground truth data we can test the performance of inference algo-

rithms and find out how much error may have occurred during the inference procedure. Obtaining

ground truth data is not straightforward and usually is not achievable without placing some degree

of burden on travelers. Different ground truthing methods are explained in Appendix A.2.

Third, many studies in the literature have been implemented in controlled environments where con-

ditions are far from real-world situations. For example, as shown in Chapter 2, the majority of

studies have been conducted on small-sized datasets or with small numbers of participants. Such

limitations prevent researchers from generalizing their results for use with real-world populations.

In other words, small-sized datasets are not always a broadly representative sample of the whole

population, compared to large-scale household travel surveys. Moreover, survey data in many cases

is gathered in controlled environments, i.e. with brand-new smartphones and without any concern

about smartphone battery life. In large-scale and real-world implementations of smartphone-based
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travel surveys, different groups of respondents, with different types of smartphones, may partici-

pate. While participants in research-based small-size surveys are probably more familiar with the

travel survey app and more dedicated to collecting and validating data, due to the more involved

training they usually receive, this may not be the case in the real-world implementations. Indeed,

during large-scale travel surveys, it may not be possible to provide all the participants with the same

level of training as those participants in small-size surveys, except when individuals are hired to

train participants, which considerably increases implementation costs. Moreover, some participants

may not use the application during the whole surveying interval, due to its negative impact on bat-

tery life. Furthermore, an application’s ability to record data from all sensors may be restricted due

to the differences between respondent smartphones. Hence, conducting the research on large-scale

real-world datasets can provide a broader perspective on the challenges and limitations to replacing

HTSs with smartphone-based travel surveys.

Fourth, there is the question of the degree to which smartphone users represent the larger population,

and how much different age groups will participate in smartphone travel surveys. A particularly

important concern is that older individuals, i.e. beyond 60 years old, may not be familiar with using

smartphone applications, resulting in lower participation rates in smartphone-based travel surveys

than younger age groups.

These issues currently present challenges to the use of smartphone travel surveys as a standalone

travel surveying tool. However, as explained in the previous sections, their advantages, such as

lower distribution and implementation costs, compared to traditional travel surveys, and not suffer-

ing from respondent fatigue or forgetfulness [21, 22], make them a suitable candidate for completely

or largely replacing traditional household travel surveys. By using standalone smartphone travel

surveys, transportation practitioners can benefit from a data collection technique that not only econ-

omizes their surveying costs, but also enables them to continuously gather traveler data over weeks

or months, instead of a limited number of days. Also, they can enable transportation practitioners

to collect data annually, instead of every four or five years, and from a huge number of individuals

at a very low cost, compared to traditional HTS methods.

While transportation practitioners are faced with the aforementioned challenges, this thesis focuses

on addressing the application of artificial intelligence to infer the most critical trip information
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from mobile phone data. The results will help to enable practitioners to produce the information

required in many travel demand studies from smartphone data. Moreover, the results can be used in

transportation network design as explained in the following section.

Next section explains the role of travel diary data in transportation demand modeling. We cover

different approaches in transportation behavioural analysis and identify their data requirements,

which gives us an overview of main travel information that should be gathered by smartphone-based

travel surveys.

1.2 The Role of Travel Diary Data in Transportation Demand Analy-

sis

Information gathered by travel diaries, either via traditional surveying methods or smartphone-based

travel surveys, is mainly used to model traveler behaviour, typically through trip-based, tour-based

or activity-based models [2, 23]. Trip-based models are mainly focused on modeling the number

of trips between origin and destinations, as well as trip- mode, purpose and route choice. The most

well-known trip-based approach is the “four-step transportation demand model”, which attempts

to model the travel demand through four sequential steps: trip generation, trip distribution, mode

choice and traffic assignment [2]. Activity-based travel demand modeling focuses on all possible

combinations of activity and travels over the course of a day, instead of individual trips or tours

[24]. Whether we use trip-based or activity-based demand modeling, we require travel information

to develop our models. But how useful is data collected with smartphone-based travel diaries for

transportation planners in their travel demand modeling studies? To answer this question, we need

to know which trip information is used in transportation demand modeling.

In trip-based transportation demand analysis, the trip is the unit of travel or the unit of demand. For

example, in trip-based demand modeling, the demand for transportation between two traffic zones

is described by the number of trips originating from one zone and destined to another. Even, with an

activity-based approach, each tour is comprised of several trips. A trip can be inferred by detecting

its departure and arrival time. Hence, finding the departure and arrival time of the movement is the

first step in processing the trajectory data, as it helps us to identify the trips.
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Moreover, the output of the transportation demand studies is usually a mode-based origin-destination

matrix, which is a matrix explaining how many trips by each mode of transport are originate from

each traffic zone and are destined to other traffic zones. Also, in designing the road or transit net-

work, knowing the share of each mode of transport is an important issue and helps transportation

planners to properly allocate resources to develop transportation networks. Hence, mode of trans-

port is another critical trip characteristic that should be inferred from smartphone trajectory data.

Furthermore, in transportation demand analysis, there is a widely-accepted principal that “trans-

portation is a derived demand” [25], which means the need for travel is derived from another need,

for example the need for work, education, recreation etc. More explicitly transportation demand

is about satisfying a need for participating in an activity at the end of the trip, i.e. the destination.

Hence, the purpose of trip at the destination plays an important role in many transportation demand

studies and should be the focus of any study that aims to infer the trip information from smartphone

trajectory data.

Furthermore, in travel demand studies, the last step of the “four-step transportation demand mod-

eling”, referred to as “Route Assignment”, “Route choice”, or “Traffic Assignment”[26] step. The

traffic assignment step attempts to assign transportation demand to the transportation network, and

focuses on modeling how travelers have chosen their route to move between their origins and desti-

nations. Hence, we need to infer the chosen routes for each trip from trajectory data, as it is required

in transportation demand modeling for traffic assignment step. However, for non-transit trips, such

as trips taken by car, the road segments on which an individual has traveled can be inferred, with

high accuracy, with the well-developed map-matching algorithms [27]. Hence, this thesis does not

focus on inferring the routes for non-transit trip. However, finding transit routes from trajectory data

is not straightforward and requires some considerations, as explained in Chapter 3.

Hence, transit itinerary (i.e. the bus route or metro line used for completing a transit trip) is another

critical aspect of trip information that should be inferred from smartphone trajectory data. Also,

from the perspective of transit network design, the demand for each transit route (i.e. metro line or

bus route) is important information for transit scheduling and timetabling [28]. Moreover, transit

route information, i.e. transit itinerary, has been collected via some traditional household travel

surveys [29, 30, 31], and inferring it should be in the focus of any study attempting to show the
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potential of smartphone-based travel surveys in transportation demand modeling.

To summarize, this thesis focuses on inferring the most important trip features that are typically

used in transportation demand studies and forecasting, i.e.:

(1) Trips (departure and arrival time and location)

(2) Mode of transport

(3) Purpose of the trip

(4) Transit itinerary (the bus route or metro line used for completing a transit trip)

These attributes are the basic characteristics of a trip, upon which we can infer other travel character-

istics. For example, the “travel cost” or “out-of-vehicle travel time” can be inferred using traditional

techniques upon detecting the mode of transport and departure and arrival time. Even trip tours,

used in activity-based demand analysis, can be constructed by joining together the successive trips.

Among the aforementioned, this thesis concentrates on the characteristics 2-4. While trip determi-

nation is critical for the rest of the analysis, we adopt a typical rule-based approach, which demon-

strated good results in detecting trips from GPS trajectories collected by the Itinerum platform. The

details of the algorithm are explained in Chapter3.

To infer the other important trip information, i.e. mode of transport, trip purpose, and transit

itinerary, this study focuses on the application of Artificial Intelligence (AI) methods on smartphone-

based travel survey data. In the next section, the inference methods in artificial intelligence domain

are briefly reviewed and the most appropriate ones applicable for trajectory data are explained. In

Section 2.1, we explain why the different artificial intelligence methods are appropriate for inferring

trip information.

1.3 Inference Methods

This section introduces the inference methods applicable to smartphone data to infer trip mode, pur-

pose and transit trip itinerary. The most basic inference methods to analyze smartphone trajectory

data are rule-based methods, which try to predict mode or purpose or detect the stop and transition
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points, based on a set of formulated rules, established upon the experience and expertise of scientists

and researchers in the field. However, methods developed in other fields of science, such as statis-

tics, computer vision and natural language processing, have the potential to improve the accuracy

of mode, purpose or transit itinerary prediction from smartphone-based travel data and have been

used in the literature. In this thesis three terms have been used, sometimes alternatively, to address

such inference methods: “Artificial Intelligence”, “Machine Learning”, and “Deep Learning”. The

relationship between these three terms is shown in Figure 1.2. Artificial intelligence was first in-

troduced in 1956 [32] and refers to automated inference systems to emulate human inference [33].

Machine learning models are a subset of artificial intelligence and learn from the data which is pro-

vided to them. By “learning” we refer to the procedure consisting of estimating model parameters

so that the learned model (algorithm) can perform a specific task [34].

Deep Learning is a subset of machine learning, which deals with learning via neural networks.

While the concepts behind neural network algorithms have been developed since 1980s [35], the

popularity of the term “deep learning” increased with industrial applications of neural networks

since the late 2000s, especially those using Convolutional Neural Networks (CNN) in image recog-

nition and Recurrent Neural Networks in speech recognition tasks [34]. The word “deep” refers to

the number of layers in neural networks, i.e. the higher the number of layers, the deeper the neural

network.

In this thesis, the term “artificial intelligence” is used to refer to inference methods in general.

The term “machine learning” addresses the classical inference algorithms, such as decision trees,

Support Vector Machines or Bayesian Networks, which are able to learn from data. The term “deep

learning” refers to neural network algorithms developed in natural language processing or image

recognition, such as Recurrent Neural Networks (RNN) or Convolutional Neural Networks (CNN)

[33].

The machine learning algorithms applicable to travel trajectory data can be categorized based on

three criteria, as shown in Figure 1.4:

• Label type: Labeled and unlabeled data

• Feature Type: disaggregated point-based or aggregated segment-based features
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Figure 1.2: Artificial Intelligence VS. Machine Learning VS. Deep Learning

• Number of learned tasks (labels) per each observation: Single-task and Multi-task learning

We explain each of these categories below. First, with respect to label type, there are three types

of learning approaches in artificial intelligence research: supervised, semi-supervised and unsuper-

vised learning [33, 36], based on whether input data is labeled or unlabeled. In supervised learning,

a set of labeled training data is used to infer a function that maps an input to an output based on

input-output pairs. Semi-supervised learning is also a supervised learning class but where only a

subset of training data is labeled. Semi-supervised learning methods can still take advantage of

unlabeled data for training. In unsupervised learning, all training data are unlabeled. Unsupervised

learning infers a function that describes the structure of data and groups them. Supervised learning

approaches are highly dependent on labeled data, i.e. the data for which the class or label of each

observation was previously validated by a human. For example, the mode of transport of each trip

can be validated by travelers in the travel survey smartphone application upon detecting a stop or

reaching a destination. On the other hand, it is often the case that not all data in a dataset (collected

by a smartphone-based travel survey) has labels, if e.g. respondents haven’t validated mode of trans-

port for a trip. Semi-supervised learning approaches try to estimate a label for unlabeled data and

use them along with labeled data for data classification 2 [37]. Also, semi-supervised generative
2The definition of the terms in artificial intelligence or transportation planning domain has been provided in
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models, such as generative adversarial networks, can generate observations, i.e. the characteris-

tics of observation are generated, by looking at the statistical distribution of the real labeled data.

Unsupervised learners are those applied on completely unlabeled data for categorizing data into a

pre-defined number of categories [33]. Each of these learner types have their advantages and disad-

vantages. However, the majority of learners developed in different fields of science have tended to

use supervised learning. Semi-supervised and unsupervised learners are the approaches most open

to further investigation.

Second, based on our knowledge and experience during doing this thesis, classification methods for

analyzing trip trajectory data can be classified into segment-based and point-based methods, based

on whether the features used in the model are aggregate or disaggregate features. As shown in

Figure1.3, in point-based methods, the features of each GPS point are analyzed in the prediction

procedure at a disaggregate level. In the segment-based methods, aggregated features for the whole

trip trajectory, such as average speed, are calculated and used in prediction procedure.

For example, for mode of transport classification, point-based classification methods try to predict

mode of transport based on a set of features for “each point” along a trip, ex. longitude, latitude and

time of each GPS point as shown in Figure 1.3. Segment-based methods, on the other hand, predict

mode based on aggregate features of the whole trip, such as average speed, as shown in Figure

1.3. Point-based methods should be capable of being fed all the points along a trip and considering

the features of each point in their prediction process. The example of such models are the ones

developed in image recognition or natural language processing. In image recognition, RGB values,

i.e. the values for Red, Green and Blue colors, of all the pixels in an image are fed to a neural

network model. In language processing, the words in a sentence comprise a sequential data form,

which is fed into a neural network. Similarly, each point along a trip can play the role of a pixel in

an image or the role of a single word in a phrase. Considering the points as pixels or words enables

the researchers to use the pioneering algorithms in machine/deep learning research.

Third, artificial intelligence algorithms can be categorized into two groups based on the number of

tasks they infer[38]: single-task and multi-task classifiers. Single-task classifiers predict only one

task at a time, for example, a single-task mode inference model is only able to predict the mode

of transport for each trip trajectory. On the other hand, there are multi-task learners, which deal
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Figure 1.3: (a) Disaggregated Points-based Features VS. (b) Aggregated segment-based Attributes
(“lon” means longitude, “lat” means latitude)

with two or more tasks simultaneously. As an example, a multi-task classifier to predict mode and

purpose outputs two tasks simultaneously. Multi-task learners take advantage of situations in which

two tasks are strongly correlated, like mode of transport and trip purpose in transportation planning

studies.

In this thesis, we start by developing Random Forest models in Chapter 3, as supervised single-task

segment-based learners to infer the important trip information, i.e. the mode of transport, pur-

pose of trip and transit itinerary. Afterwards, Chapter 4 examines the application of Convolutional

Neural Networks (CNN) as a point-based learner to take advantage of the detailed information re-

lated to each GPS point along a trip in the learning procedure. Next, to test the application of a

semi-supervised technique, Generative Adversarial Networks (GANs) on point-based features are

implemented. Both the CNN and GANs models in this thesis are single-task learners. Finally,

in Chapter 6, we examine supervised multi-task learners on both point-based and segment-based

features, using two Recurrent Neural Network (RNN) approaches, i.e. Long-Short Term Memory

(LSTM) and Gated Recurrent Units (GRU) and compare their prediction results with single-task

learners.
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Figure 1.4: Categorization of Artificial Intelligence Algorithms for Analyzing Smartphone-based
Travel Data

1.4 Contribution

The research in this dissertation contributes to the academic literature in the following ways:

Trip information inference: Recent supervised methodologies and frameworks from computer vi-

sion and natural language processing are investigated using Convolutional Neural Networks and

Recurrent Neural Networks to infer mode of transport. Furthermore, a semi-supervised modeling

approach is examined using generative adversarial networks to detect mode of transport. Also, the

effectiveness of ensemble methods in inferring transportation mode is tested and their superiority

over single learners is shown. The state of the art in deep learning studies is explored to infer the

mode of transport from trajectory data.

For trip purpose, both machine learning and deep learning models, i.e. Recurrent Neural Networks

and variants, are applied on trajectory data to infer trip purpose. The deep learning approach uses

both point-based characteristics and socio-demographics, as auxiliary data, to infer trip purpose.

With respect to transit itinerary, a machine learning framework is developed to predict the corre-

sponding bus routes and metro lines of trajectory data.

Overall, the above models and frameworks are developed on the MTL Trajet/Itinerum dataset to

show the high potential in real-world smartphone-based travel survey to replace the traditional

household travel surveys.

Inclusion of Complementary Data sources in inferring trip information: In addition to the main

MTL Trajet dataset, a variety of data sources were used as complementary data to improve the
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prediction accuracy of inference models. Social media data, Google Transit Feed Specification

(GTFS) data, elevation data, and land use data are fed into different modeling approaches to enhance

the prediction accuracy of trip information.

Multi-task learning of mode and purpose: To take advantage of the correlation between mode and

purpose of each trip, a multi-task learning approach is developed based on different types of Recur-

rent Neural Networks. The model depicts how jointly predicting mode and purpose can improve the

prediction accuracy of each, compared with a single-task learning approach.

1.5 Dissertation Outline

The main contributions of the dissertation are divided into four articles/chapters, each focusing on

different methodological approaches to infer trip information from smartphone-based travel sur-

veys. Before that, a chapter is dedicated to reviewing the literature and explain the background

of the models and approaches used in the study. The detailed formulas and mathematical opera-

tions of Random Forest models, Convolutional Neural Networks, Recurrent Neural Networks, and

generative adversarial networks are explained in Chapter 2.

Chapter 3, introduces the Random Forest models developed to detect all trip information from

trajectory data, i.e. mode, purpose, and transit itinerary. A rich source of complementary data

and their importance in the prediction of the trip information has been analyzed and explained in

Chapter 3.

The subsequent chapter, Chapter 4, is devoted to Convolutional Neural Networks and ensemble

methods in inferring mode of transport. Different point-based attributes for each trajectory are

fed to the developed Convolutional Neural Networks to infer mode of transport. Also, different

ensemble methods are explained and their performance tested against each other.

Chapter 5 concentrates on the application of semi-supervised Generative Adversarial Networks

(GANs) to infer mode of transport. A GANs classifier is developed using Convolutional Neural

Networks as discriminator and generator. The performance of the GANs model is tested in this

chapter.

The subsequent chapter, Chapter 6, deals with multi-task learners and shows their superiority over
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single-task models. Different single-task Gated Recurrent Units (GRU) and Long-Short Term Mem-

ory (LSTM) are developed and their performance is compared with each other. Also, the trajectory

data are fed into multi-task learner frameworks along with auxiliary data, i.e. socio-demographics

and destination-related data, to predict the mode of transport and purpose of trip simultaneously.

Finally, the concluding chapter, Chapter 7, summarizes the findings of this thesis and provides

directions for future studies.
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Chapter 2

Background

This chapter reviews the literature of inference methods on mobile phone data to infer trip infor-

mation. It also introduces the background of the models used in this thesis. The current chapter

comprises two subsections: first, a review on mode, purpose and transit itinerary studies. The dif-

ferent methods are categorized and reviewed based on criteria in Figure 1.4. The next section, i.e.

Section 2.2, covers the background of models developed in this thesis. All the models explained in

Section 2.2, are developed in the field of artificial intelligence, mainly in image classification and

natural language processing (NLP). We explain each model in detail.

2.1 Literature Review

This section reviews the studies on inferring trip information, i.e. mode of transport, purpose of

trip, and transit itinerary from mobile phone data. It then attempts to review different studies and

categorize them based on the criteria demonstrated in Figure 1.4. Also, dataset size and validation

methods used in each study are reviewed. The goal of this section is to explain which categories (in

Figure 1.4) have been covered in the literature, and which categories are worth of more attention.

This section starts with reviewing studies on mode, purpose and transit itinerary inference. Finally,

the section concludes on different aspects of the literature and shows the directions that researchers

should address in future studies.
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2.1.1 Mode Detection

The literature on mode detection is larger than trip purpose or transit itinerary. Several researchers

have proposed algorithms to infer mode of transport from various smartphone data sensors, such as

mobile phone GPS and accelerometer data [39, 40], or mobile phone cellular data [41]. While some

studies have used only one data source, such as GPS data [42], others [43] have used combinations

of GPS and accelerometer data to infer mode of transport. Furthermore, some studies have used

other mobile sensors, such as magnetometers or gyroscopes, to gather mobility data to infer mode

of transport [44, 45]. While there are several systems and technologies embedded in smartphones,

as explained in Appendix A.1, using all of these technologies is not feasible and practical in large

scale data collection efforts, as not all respondent mobile phones are equipped with the all types of

sensors and technologies. As such, and as is clear from Table 2.1, the majority of research has been

conducted using GPS and accelerometer data.

The methods in the mode detection literature have adopted various approaches, including: rule-

based [46, 47], fuzzy logic [48, 49], artificial intelligence [39, 40], and discrete choice[50] ap-

proaches. As shown in Table 2.1, the studies in the literature have been primarily done using the

aggregate features for whole trips, or segments of the trip, instead of analyzing detailed informa-

tion of each GPS point. Furthermore, a few studies [37, 51] have investigated the application of

semi-supervised learning approaches.

With respect to dataset size and groundtruthing procedures (Different ground truth procedures are

explained in Appendix A.2), the majority of datasets reported in the literature are small in size or

have been collected by only a small number of participants, as shown in fifth column of Table 2.1.

The large difference between dataset sizes for studies reported in the literature compared with what

real-world HTS studies has a major implication: the majority of experiments in the literature have

been done with small number of smartphones, where data or labelling quality is potentially far from

a real-world experiment. For example, the US National Household Travel Survey [52], conducted

on 2009, collected data from more than 150,000 households. In Montreal, the latest CATI Origin-

Destination survey surveyed around 74,000 households [53].
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In a real-world smartphone-based survey, there are large numbers of participants with many dif-

ferent types of smartphones, each equipped with different sensors and capabilities. For example,

in MTL Trajet travel survey [18] around 8,000 individual participated. Moreover, in small-size

experiments, participants have usually received training to use the surveying app and validate trip

information. In real-world experiments it may not always be always possible to train participants as

thoroughly. Furthermore, labeling procedures, that produce ground truth data, vary among studies:

from prompted recall surveys [7, 54] and in-app validation [39] to manually annotated surveys [55].

Prompted recall surveys potentially can collect more accurate and detailed data. However, as they

increase surveying implementation costs and place more burden on respondents, there is always a

trade-off between collecting higher-quality data and increasing the surveying costs.

Besides the aforementioned differences among studies, in the following, the studies on mode de-

tection, and their methodology and results are explained. Tree-based ensemble classification algo-

rithms have been used by Xiao et al. [40] to classify mode of transport. Their best ensemble method

achieved a prediction accuracy of 90.77%. Wang et al. [56] develop a Random Forest classifier

combined with a rule-based method to detect six modes of transportation using seven GPS-related

features. Their method is able to detect more than 98% of subway trips with an overall accuracy

of the classification of the other five modes being as high as 93.11%. Assemi et al. [57] deployed

a nested logit model with eight attributes to infer mode of transport from smartphone travel sur-

veys, implemented in New Zealand and Australia. They have reported an accuracy of 97% for New

Zealand which includes data cleaning and 79.3% for Australia without any pre-processing.

Endo et al. [58] proposed a deep neural network approach to automatically extract high-level fea-

tures. Their innovative approach converted raw GPS trajectories into a 2-D image structure and fed

it as the input to a deep neural network. As an alternative to the RGB (Red, Green, Blue) values of

an image pixel, stay time, i.e. the duration that a user stays in the location of the pixel, was used

as the pixel value. They integrated hand-crafted features with image-based features. Eventually,

they deployed traditional machine learning models, such as logistic regression and decision tree, to

predict mode of transport. Although they devised an innovative idea to convert GPS trajectories into

2-D images, the pixel values only contained stay time without taking into account the spatiotemporal

or motion characteristics, such as speed or acceleration, of the GPS trajectories.
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Their best models were able to detect the mode of transport with prediction accuracy of 67.9% on

the GeoLife dataset and 83.2% on the Kanto Trajectories dataset. Zhang et al. [65] suggested a

multi-stage method to identify mode of transport. In the first stage they used a rule-based algo-

rithm using three features, mean speed, maximum speed and heading rate, to distinguish between

motorized, i.e. walking and cycling, and non-motorized modes of transport. In the next stage, they

proposed a Support Vector Machine (SVM) to classify car, bus, tram and train. They reported a

high prediction accuracy rate of 93%. They have used an in-app validation and modification pro-

cedure, where travelers can specify the start and stop of each trip as well as selecting their mode

of transport from a list. Moreover, their application gives travelers the chance to modify trip in-

formation later. Furthermore, the application sends users notifications and wants them to identify

their mode of transport every 10 minutes. Also, whenever the application detects a signal loss more

than 20 seconds, it sends notifications after gaining the signal and ask the users to validate their

mode of transport, to record the possible change in mode of transport during the signal loss. Such

consideration enabled the researcher to gather more accurate data and prevent the signal loss effect

on labeling quality.

Regarding point-based algorithms, which are able to be fed by disaggregate GPS point features,

more recently, Dabiri and Heaslip [39] used CNN models to train a mode detection classifier. They

developed different architectures of CNN models on GPS trajectories, and finally combined their

output via an ensemble method. Their ensemble library comprised seven CNN models. They took

the average of the softmax class probabilities, predicted by each CNN model to generate the trans-

portation label posteriors.

With respect to semi-supervised algorithms, Rezaie et al. [37] have used a semi-supervised approach

to infer mode of transport from GPS trajectory data. They implemented the Label Propagation

(LP) technique using the k-nearest neighbors (KNN) algorithm to produce labels for the unlabeled

part of the data to find out how much it may enhance the prediction accuracy rate of the mode

classification. They compared the performance of semi-supervised LP models against Random

Forest (RF) and Decision Tree (DT) classifiers. They found that the RF model in many cases

performs better than the semi-supervised LP approach to infer mod of transport from GPS trajectory.

Their results demonstrates that only where the proportion of unlabeled data is more than 80% of the
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training data, the LP model outperforms the RF model. For example they reported 83% and 81%

prediction accuracy for LP and RF model respectively, where the training dataset comprised of 80%

unlabeled data.

In the context of semi-supervised learning for mode of transport inference, Dabiri et al. [51] have de-

veloped Variational Auto-Encoders to detect mode of transport from GPS trajectories using both la-

beled and unlabeled data in the dataset. Their proposed Semi-supervised Variational Auto-Encoder

model outperformed the supervised models, such as Convolutional Neural Networks and Recurrent

Neural Networks. Specifically, when they included all the labeled segments in the training dataset,

their proposed semi-supervised model achieved a prediction accuracy of 76.8%, where their best

supervised approach achieved an accuracy of 71.4%.

This section reviewed the studies on detecting mode of transport from GPS trajectory data. The

rule-based and supervised machine learning algorithms have been well covered in the literature.

However, the semi-supervised algorithms and deep learning model have not been thoroughly inves-

tigated by the researcher. Moreover, the majority of studies have been carried out on small sized

datasets, which prevent transportation practitioners from generalizing the results.

2.1.2 Purpose Detection

The literature on trip purpose detection from mobile phone data is not as extensive as mode infer-

ence. This section reviews purpose detection methods applied on GPS, smartphone and HTS data.

Several approaches have been utilized to detect trip purpose from mobile phone data: rule-based

algorithms, probabilistic methods and artificial intelligence methods [69]. Rule-based methods in

the field of trip-purpose detection are the most common ones [70]. Rule-based methods involve a

set of heuristic rules to infer trip purpose from GPS data, and other data sources, such as land-use

data. Wolf et al. [71] developed a set of rules to find the correspondence between the land-use

data and trip purpose. They combined these rules with dwell time and occupation to determine trip

purpose.

However, despite their popularity in trip purpose identification literature, the rule-based algorithms

suffer from several limitations: first, they depend on background knowledge of the model builder

[72]. Second, they depend on the dataset that they are built on. For example, the rules to infer trip
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purpose need to be modified depending on the resolution of land-use data, as in some regions the

land-use data is available in parcel-level, while in other regions we may access only to the land-use

information in lower resolutions, such as census divisions or blocks.

The second type of trip purpose inference methods are probabilistic methods. Axhausen et al. [73]

established a set of matching rules to impute the purpose of trip using data gathered by GPS devices

installed on 186 vehicles. They clustered destination locations based on the closeness (<200m) to

the driver’s household location. Activities in the vicinity of home location were assigned as Home

or Return Home purpose. For other trip purposes, they used Point of Interest (POI) information

such as restaurants, gas stations, as well as land-use data to impute trip purpose. They defined a

distance of 300-meter around each trip destination to define an evaluation area of potential activities.

Afterwards, they calculated the probability of each type of activity in the defined area around each

destination. They also assigned a weight to each activity type with respect to its distance to the

destination. For example, activities within 50m of destinations were assigned the weight of 1.5;

between 50m and 100m the weight of 1, and so on. They do the similar procedure for land-use

data. Finally, they assigned trip purpose to each trip destination based on calculated activities in the

destination vicinity and a set of rules. It should be mentioned that their data was not labeled and

they compared their results with the national household travel survey to find how similar imputed

trip purpose was to the reported purpose of similar trips in the household travel survey. While

the probabilistic methods infers trip purpose based on the calculated probability of surrounding

activities around a destination, such methods still rely on a set of decision rules to estimate trip

purpose from the calculated probabilities.

Artificial intelligence methods have been rarely applied to estimate trip purpose [70]. McGowen et

al. [74] used decision tree models to infer trip purpose from GPS trajectory collected by GPS loggers

attached to each traveler. They used land-use and socio-demographic data as complementary data

sources. They have also applied a discriminant analysis to infer trip purpose. Deng et al. [75] used

decision tree models to infer trip purpose using trip ending time, mode of transport, travel time and

length, and socio-demographics such as age, income, etc.

Gong et al. [70] developed several machine learning approaches, including a classification tree,

Support Vector Machine, neural network, and discriminant analysis methods. Their results show the
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superiority of tree-based methods over the other tested algorithms. They categorized the features

into three categories: activity features, trip features, weather features, and demographic features; all

of which aggregated features or features related to the destination point or socio-demographics.

Oliveira et al. [76] developed a decision tree model to differentiate between 12 trip purposes. In

their study, a decision tree model achieved a prediction accuracy of 65%. They also used a Nested

Logit model that predicted trip purposes with 60% accuracy. Wu et al. [4] developed two models, a

rule-based and a Random Forest model to classify indoor, outdoor static (i.e., when an individual is

relatively stationary while outdoors), outdoor walking, and in-vehicle travel activities. Both of the

models successfully predicted indoor activities and in-vehicle travel with 96% and 88% accuracy,

respectively. However, they observed moderate performance for identifying walking trips, com-

pared to the performance of their methods in identifying the other modes of transport. Also, they

have reported a low precision (17.6 %) for detecting outdoor statistics. Furthermore, they did not

find any considerable differences in performance between the rule-based and the Random Forest

models. They concluded that the Random Forest model was easy to implement and efficient in

terms of running time, but showed less robustness than the rule-based model while being imple-

mented on biased or poor quality training data. Kim et al. [77] developed a Random Forest model

to differentiate between 16 purposes. They used age and gender variables in the modeling process

to improve the prediction performance of the model. Their Random Forest model can predict trip

purpose by 75.5% prediction accuracy.
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Support Vector Machines (SVM) were used by Zhu et al. [78] to infer trip purpose from household

travel survey data. They used location-based social network data to augment household travel survey

data. They have demographic features, temporal features, like the duration stayed in a destination,

and other spatial features, such as the nearby venue from Foursquare [81] data. Their SVM model

classified trip purpose with 75.28%.

Kim et al. [77] implemented ensemble learning to infer trip purpose from the Future Mobility Sur-

vey (FMS) [7]. The dataset is among the largest datasets, nearly 1,000 participants, collected via

a prompted recall smartphone-based survey. The developed Random Forest model predicts 16 ac-

tivity classes with 75.54% accuracy. They also tested the performance of a Random Forest model

to classify 4 activity classes, instead of 16 classes, and found higher prediction performance, i.e.

84.08%, in trip purpose classification.

Some trip purpose inference studies have been implemented on large-scale traditional household

travel surveys. Ermagun et al. [79] deployed Random Forest and Nested Logit models to infer trip

purpose for trip destination data collected during “2010 Travel Behavior Inventory (TBI)” survey,

in the “Twin Cities”. The dataset comprised a travel diary from 30,286 individuals [79]. Random

Forest and Nested Logit models predicted trip purpose with 57.69% and 64.17% prediction accu-

racy, respectively. They used Google Places locational data as complementary data to HTS data.

In a similar context, Zhu et al. [78] investigated the potential of location-based social networks to

predict trip purpose based on data from traditional household travel surveys. They trained a Support

Vector Machine (SVM) algorithm that achieved over 75% accuracy in predicting trip purposes.

This section reviewed the studies on trip purpose detection from GPS, mobile phone and HTS

data. Although the literature on trip purpose is not as rich as the literature on mode detection, rule-

based algorithms and some machine learning models have covered in the literature. However, as

demonstrated in Table 2.2, the majority of models to detect trip purpose have been developed on

small-size datasets obtained from GPS devices or mobile phone data. Hence, more investigation is

required on developing machine/deep learning methods on larger dataset sizes to detect trip purpose.

The next section addresses the limitations in the current literature on mode and purpose detection.

Since the literature on transit itinerary inference is too small, we mention it briefly in the following

section as well.
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2.1.3 Limitations of Existing Work and Future Prospects

In the previous sections, the literature on inference methods on mobile phone data to elicit trip

information was reviewed. With respect to mode of transport, As shown in Table 2.1- 2.2 the

majority of the literature is based on aggregate trip(segment)-based features, while fewer focus on

disaggregate point-based features, to infer mode of transport. That most work has been based on

aggregate data is partially due to the characteristics of classical machine learning models, like the

Random Forest or SVMs, which cannot be fed the detailed features of each GPS point along a

trajectory or each pixel in an image. However, the rise of deep learning models, specifically the

CNN and RNN models, have recently provided researchers with algorithms able to process detailed

features of each point (e.g. along a trajectory), or each pixel (in an image), or each word (in a

sentence). Given the success that such dissagregate methods have had in other fields of computer

science (e.g. image recognition), it is now possible to evaluate their potential in the context of

disaggregate spatial data from smartphones. Given the limited use of such methods in transportation

as well as increasing availability of disaggregate data, there is also a need to evaluate such algorithms

and examine their advantages and disadvantages in mode of transport inference.

Moreover, the majority of the studies in Table 2.1- 2.2 have been conducted using supervised algo-

rithms. Developing semi-supervised or unsupervised approaches enables researchers to take advan-

tage of large amounts of unlabeled data in smartphone-based travel surveys. Hence, more research

is required to examine semi-supervised and unsupervised approaches in mobile phone data analysis.

Regarding trip purpose, as mentioned in Table 2.2, there are fewer studies inferring it from mo-

bile phone data. Based on studies reviewed in Table 2.2, the majority of research on trip purpose

detection are conducted on small-size datasets.

Unlike mode of transport, trip purpose occurs at a specific geographic location, the trip destination,

while the mode of transport can be characterised by all the GPS points along the trip trajectory. Due

to the correlation between mode of transport and trip purpose, inferring trip purpose can be achieved

by using both features, i.e. disaggregate features related to GPS trajectory and features related to

destination location, such approach have been analyzed in Chapter 6.

One of the advantages of deep neural network models, such as RNNs or CNNs is that they can
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handle both aforementioned feature types. That is, we can infer trip purpose analyzing trajectory

related features, and socio-demographic or features related to the destination. Examining the per-

formance of such deep neural network models is not addressed in the current literature and deserve

researchers’ attention.

In reviewing the literature on transit itinerary, we found just one study that analysed GPS trajectories

to infer transit itinerary using rule-based methods. Zahabi et al. [82] implemented a rule-based

algorithm on a GPS travel survey to detect transit itinerary. They used GTFS data to find a set of

nearest active transit routes around each GPS point, and then inferred transit route by checking the

history of all GPS points along a trip. While finding the demand for transit network is important

information in transportation network design, there is a need for data collection efforts and artificial

intelligence modeling experiments to infer transit itinerary from smartphone-based travel surveys.

Also, the literature lacks attempts at multi-task learning, despite the correlation between different

trip characteristics such as mode and purpose. This is not to say that multi-task learning has not

been used at all in transportation. Multi-task learning has been used in traffic data imputation studies

[83]. Rodrigues et al. [83] proposed multi-output Gaussian processes (GPs) to model the spatial

and temporal patterns in traffic data. They demonstrated that the multi-output GP model is able

to capture the complex dependencies and correlations between nearby road segments to improve

imputation accuracy. Their multi-output model outperforms other imputation methods, such as

Recurrent Neural Network model, by taking into account the complex spatial dependency between

subsequent road segments. Almost all studies reviewed at the time of writing this thesis, have tested

the single-task mode or purpose inference. Hence, testing the multi-task learners to predict mode of

transport and trip purpose from mobile phone data is another topic worth to focus on.

Based on the above summary of the literature, this study attempts to address the limitations in the

literature in the following directions:

• Exercising the deep learning methods able to analyze the disaggregate point-based features to

infer mode of transport and trip purpose

• Examining a semi-supervised method to infer mode of transport

• Using sequence labeling approaches, such as Recurrent Neural Networks, that can capture
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the relation between sequences of GPS points along a trip trajectory.

• Predicting mode of transport and trip purpose via a multi-task learning.

• Inferring transit itinerary using a machine learning method.

Beyond the above methodological directions, there are also some other novel additions to the liter-

ature addressed in this thesis:

• Examining the application of location-based social media data, such as Foursquare and Google

Place, to infer mode of transport.

• Testing the application of Google Transit Feed Specification (GTFS) data on mode of trans-

port inference.

2.2 Background on Models Used in This Thesis

This section explains the background of the models used in this thesis. To do so we review the

following machine and deep learning approaches:

• Random Forest model

• Convolutional Neural Networks

• Semi-supervised Generative Adversarial Networks

• Recurrent Neural Networks

Based on the categorization of artificial intelligence methods in Figure 1.4, the models developed

in this study can be categorized as shown in Table 2.3. All the Random Forest models developed

in Chapter 3 are supervised single-task trip-based learners. The CNN models in Chapter 4 can be

categorized as supervised single-task point-based learners. The GANs models developed in Chap-

ter 5 are semi-supervised single-task point-based classifiers. Finally the LSTM and GRU learners

in Chapter 6 are supervised multi-task learners that are fed with both point-based and trip-based

features.
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Table 2.3: Categorization of the Models Developed in this thesis

Model Categories (As explained in Section 1.3 and Figure 1.4)

Supervised Semi-
Supervised Single-task Multi-task Point-based

features
Trip-based

features
Random Forest in Chapter 3 X - X - - X
Convolutional Neural Network
in Chapter 4

X - X - X -

Generative Adversarial Networks
in Chapter 5

- X X - X -

Long-Short Term Memory (LSTM)
and Gated Recurrent Units (GRU)
in Chapter 6

X - X X X X

We use Random Forest models to infer mode of transport, trip purpose and transit itinerary, since

they have been shown to have good performance in many studies across many applications. The

CNN model is able to analyse the disaggregate point-based features. Moreover, it has shown excel-

lent results in image recognition studies during last years. Semi-supervised GAN models are also

tested as a semi-supervised approach. The convolutional GANs model in this thesis can also be

trained on disaggregate point-based features. Finally, we implemented Recurrent Neural Networks

as they have the capability of being fed disaggregate point-based features, and moreover, they can

consider the relations between the GPS points along a trip.

2.2.1 Tree-based Models

The Random Forest model was developed by Breiman [84]. The RF method is based on a combi-

nation of decision tree predictors. However, unlike the decision trees, it has no pruning or stopping

rule [85]. The RF method first generates a series of training samples (TK) from the original training

dataset (dataset T in 2.1 with bootstrapping [84]. Then, about one-third of each bootstrap training

sample is left out, named as the Out-of-bag (OOB) set, and a decision tree is constructed on the

remaining observations (about two-thirds of the bootstrap sample, named as InBag set) [84].

The constructed decision trees are generated with “random split selection“ [86] where a random

selection of attributes is used at each node to determine the split [84]. Finally, these decision trees

will later vote to form the bagged predictor [84]. As Breiman [84] has explained, the OOB sets are

used to compute the prediction error rate of each tree. The average of these prediction error rates

is reported as the generalization error rate of the RF model. There are two user-defined parameters
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Figure 2.1: The flow chart of Random Forest for classification

in growing a forest. First, the number of randomly selected attributes used for each split. Second,

the number of trees grown in the forest. Liaw and Wiener [87] suggested that for stable estimates

of variable importance, a great number of trees is essential. The importance of each attribute in

classification is useful information many researchers need to know. Several ways are suggested in

the literature to measure the variable importance [85, 88]. The most well-known criteria are ”mean

decrease in Gini“ and ”mean decrease in accuracy“ which have been used by many studies [87].

The mean decrease in Gini is calculated for the variable ai (i is the total number of variables in the

forest) as the average of all decreases in the Gini impurity where a split is formed by the variable ai

[85, 89]. Mean decrease in accuracy is calculated using the OOB observations as follows [85]: For

each OOBk set (k= 1,2 ...,K):
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• Predict the class of each observation in OOB set using the decision tree constructed on the

corresponding InBag set.

• Sum the number of times the decision tree classifies observations correctly.

• For each attribute ai in the Random Forest:

◦ Set the values of ai equal zero in OOB set, call it the “permuted OOB set.”

◦ Predict the class of each observation in OOB set using the decision tree constructed on

the corresponding InBag set.

◦ Sum the number of times the decision tree classifies the observations correctly.

◦ Subtract the number of votes for the correct class in “permuted OOB set” from the

number of votes for the correct class in the OOB set.

Finally, the variable importance of ai is calculated as the average difference in the accuracy of the

OOB versus permuted OOB over the K decision trees [85]. We have applied the same RF model

explained above to classify trip mode, purpose as well as transit itinerary.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks are a class of neural networks for processing grid-like topology

data [33]. Examples of such data vary from 1D time-series data to 2D images. The underlying

operation of Convolutional Neural Networks is affine transformation [90]. This involves a vector

of inputs being multiplied by a matrix (also called a kernel or filter) to produce an output. In

addition, a bias vector is typically added to the result of the matrix multiplication. Afterwards, the

output is passed through a non-linear function, called an activation function. Typically, after the

non-linear activation function, a pooling operation is applied (these operations are explained later).

These stages, and how they are connected, are shown in Figure 2.2. The convolution operation is

briefly described below. Also, different non-linear functions and pooling operation are described in

Appendix C.1.

Generally, these mathematical operations form one “hidden layer” of a neural network. The out-

put of each layer can be fed as input into the next layer. The final layer (also called “output” or
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“classification layer”) of a neural network in classification problems produces class probabilities by

applying an activation function, such as the sigmoid or softmax functions. Figure 2.3 demonstrates

the general architecture of CNN models.

The above mathematical procedures can be applied to any type of data, such as images, sound clips,

or trajectories [90]. Regardless of the dimensionality, the input data for a neural network should

possess three properties: (a) they can be stored as fixed-size multi-dimensional arrays (or tensors),

(b) their characteristics can be presented along one or more axis, and (c) each axis (or variable),

referred to as a channel, is used to store different information of the data. For example, an RGB

(color) image usually has three channels: red, green and blue values for each pixel of the image [90].

In our case, GPS trajectories need to be converted to fixed-sized arrays with different channels.

2.2.3 The Convolution Operation

Convolution can be viewed as multiplication by a matrix. The dimensions of the matrix depend on

the dimensions of the input data (also referred to as the input feature map). Figure 2.5 demonstrates

an example of a convolution operation applied to a 1-D tensor, like the series of GPS points in

our application. In this figure, a kernel steps by a “stride” of 1 across the 1-D tensor from left to

right until it reaches the end [90]. At each step, the element of the kernel is multiplied by the input

element it overlaps and the results are summed up to calculate the output at the current location

of the kernel [90]. The boxes with arrows indicate how the left-most element of the output tensor

is formed by applying the kernel to the corresponding left-most region of the input tensor. The

convolution operation in Figure 2.5 is applied only to positions where the kernel lies entirely within

the 1-D tensor. This kind of operation is called “valid” convolution, or non-zero padding[33]. The

Figure 2.2: Typical Mathematical Procedures Involved in a Convolutional Layer
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Figure 2.3: General architecture of a Convolutional Neural Network. (CONV: Convolution)

final output of this operation is called the output feature map [90]. This process can be repeated

with different numbers and sizes of kernels. In Figure2.5, the kernel is defined by the [w, x, y]

tensor. The kernel weights, i.e. w, x, and y, are obtained through the minimization of the loss

function. One thing to recognize is that without any other modifications to the input feature map,

the dimensionality of the output feature map necessarily decreases with each convolution layer.

It is, however, often desirable for the dimensionality of the output feature map to be the same as

the input feature map. To do this, “padding” is required. Padding involves concatenating zeros to

the input feature map, and the beginning and end of a 1-D tensor. Figure 2.4b shows a convolution

operation that shares the same properties of the convolution operation in Figure 2.4a, except that the

padding is equal to 1. That is, a zero is added to the beginning and end of the tensor. This is referred

to as “half padding” as opposed to “valid” padding described above.

Four properties affect the convolution operation and the size of the output feature map (o) [90]: input

size (i), kernel size (k), stride size (s) and padding size (p). For example, in Figure 2.5 the input is

of size [1 × 7], and the kernel is a [1 × 3] tensor. Stride is the distance between two consecutive

positions of the kernel [90]. The output size of a convolution operation can be obtained from the

following formula [90]:

o =
i+ 2× p− k

s
+ 1 (1)

Also, the number of channels for the output of a convolution layer is equal to the number of kernels

used in that layer. There are two particular instances of zero padding that have been used widely in

the literature because of their specific properties: half (same) padding and full padding. Half (same)

padding is used when we require an output size that is the same as the input size. The padding size

for half padding can be obtained from Equation 1 by setting o = i.
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(a) An example of 1-D convolution with kernel size of 3, stride=1 and “valid” or “half” convolution over a
GPS trajectory of size [7× 1]. The output shape is a tensor of size [5× 1].

(b) An example of 1-D convolution with kernel size of 3, stride=1 and “half” padding over a GPS trajectory
of size [7× 1]. The output shape is a tensor of size [7× 1].

Figure 2.4: Convolution Operation on 1-D Input (Ex. A GPS Trajectory)

Figure 2.5: An example of 1-D convolution with kernel size of 3, stride=1 and “valid” convolution.

Figure 2.6: An example of 1-D convolution with kernel size of 3, stride=1 and half padding.
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For example, Figure 2.4b shows half padding where kernel size is k=3, and the padding size has

been set to 1.

2.2.4 Recurrent Neural Networks

Many learning methods make allowances for the dependency between observations. While this as-

sumption, i.e. the independence of subsequent observations, has led to the rapid progress of learning

models, it hinders taking into account long-range dependencies [91]. In many cases, artificial intel-

ligence modeling aims to interact with a human being over time, such as AI-powered chatbots or

recommendation systems, or virtual assistant software, like Apple’s Siri.

It is not necessary for sequence data to be dependent over time. For example, in natural language

processing (NLP), a sentence can be viewed as an ordinal sequence of words [91], without any

explicit notation of time duration. Indeed, a great amount of literature in sequence labeling has been

dedicated to natural language processing and speech recognition, where the dependency between

data points is not necessarily temporal. Genomic data also can be regarded as DNA sequences.

Predicting the properties and functions of DNA sequences is a valuable task in the broad field of

genomics [92].

With respect to transportation applications, there are several cases in which data is inherently time-

dependent. For example, trajectory data which consists of sequential GPS points is inherently time-

dependent. Each GPS point along a trip trajectory has been recorded at a specific time.

The above-mentioned explanation describes an advantage of sequential labeling approaches, such as

RNNs, over the approaches which mainly ignore the spatiotemporal dependencies, such as Random

Forest, Support Vector Machines or logistic regression.

While sequences can be temporal, ordinal or spatiotemporal, a similar time-indexed notation can be

denoted to all types of sequences [91]. A sequence of data points, ex. words of a sentence, activities

of an activity pattern, frames of a video, can be presented as (x(1), x(2), ..., x(T )), where x(t) is a

vector of attributes of each data point, and T is the length of the sequence where the sequence is

finite. By applying a sequence model, each sequence of data points is mapped into a target sequence

with a similar or different length [91].
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Figure 2.7: Unfolded Computation Graph of Equation 2

Terminology of Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks developed to analyze a sequence

of data points. To take into account the dependencies between the data points in sequential data,

the parameters in Recurrent Neural Networks are shared across different parts of the model. Re-

searchers usually use computational graph language to explain neural networks [33, 93]. Each

computational graph is accompanied by a set of allowable operations.

The difference between the computational graph of a neural network and a Recurrent Neural Net-

work is that the latter includes cycles, which enable the graph to share parameters across deep

network structures.

To include cycles in a computational graph, we first introduce the recurrent function. Equation 2

presents a recurrent function to define the status of a dynamical system at time t, s(t) based on its

status at time t-1, i.e. s(t−1).

s(t) = f(s(t−1); θ) (2)

where, θ is the vector of weights for function f. Second, we unfold the Equation 2 by repeatedly ap-

plying the f function. The resulting expression can be represented in a directed acyclic computation

graph.

The computation graph in Figure 2.7 does not contain the characteristics of input sequential data.

Indeed, the state at time t, i.e. s(t), depends also on the corresponding input at time t, i.e. x(t) (as

introduced in the previous section). In addition, at each time step t, the system may produce an

output o(t).

To incorporate all the elements of a Recurrent Neural Network into a computational graph, the
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Figure 2.8: Computational Graph of a Recurrent Neural Network

following parts should be introduced. First, each data point x(t) in a training dataset has a corre-

sponding target (or label) y(t). Second, the final goal of a Recurrent Neural Network is to generate

outputs o(t) as close to the real targets y(t). To measure how far y(t) and o(t) are close to each other,

researchers use a loss function L(t). Finally, the vector of weights to connect state at time t-1 to the

state at time t is defined by θ and the vector of weights to connect each input x(t) to s(t) is defined

by W . A full computational graph of a Recurrent Neural Network has been shown in Figure 2.8.

Challenges and limitations of conventional Recurrent Neural Networks

There are several challenges and limitations in conventional Recurrent Neural Networks that result

in different approaches and architectures in developing Recurrent Neural Networks. We mention

some of them here.

First, the conventional neural network only captures the impact of previous states on the current

state of a system. For example, in a sequence of words fed into a conventional RNN, at each time

step t, only the dependencies between the current word and the previous words are captured by

the model. In other words, a link between hidden units of a conventional RNN has a delay of

size one, as it begins from time step t-1 to time step t. However, RNN can benefit from capturing
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long-term dependencies, i.e. including links with delays d larger than one. Indeed, there are many

cases, especially in speech recognition or language translation, that capturing the dependencies

between all the neighbors in a sequence may improve the performance of sequence labeling. In

such applications, conventional RNN which reads a sequence in an uni-directional way, from the

beginning of a sequence to the current position, is not able to capture the dependencies between the

current position and the next elements in the sequence.

Second, the conventional RNN is shallow in terms of transformations involved in any of its three

main blocks, i.e. hidden-to-hidden, input-to-hidden and hidden-to-output. A shallow transformation

is a transformation represented by only one layer of multilayer perceptron, i.e. an affine transfor-

mation followed by a nonlinearity function. Some studies have mentioned the inadequacy of depth

in conventional RNN to perform the required mapping from input sequence to output [94].

Third, the conventional RNN is not able to map a sequence to a sequence with different length,

they only maps a sequence to a sequence with the same length. There are many cases in language

translation or other fields that the input and output sequence does not have the same length.

For any of the above-mentioned limitations and challenges, different approaches have been proposed

in the literature. Furthermore, some studies have suggested different architectures that can enable

us to overcome two or more of the above limitations. We have explained the most well-known RNN

architectures in Appendix C.2.

2.2.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were first introduced by Goodfellow et al. [95] who for-

mulated a GANs learning algorithm based on a game theory scenario. They trained generative

models through an objective function that implemented a two-player zero-sum game between a dis-

criminator D and a generator G [95]. The discriminator attempts to discriminate between real and

fake input data, while the generator is optimized to generate input data (from noise) that “fools” the

discriminator [95]. The “game” between the generator and the discriminator begins with the gener-

ator function that produces an example from random noise that is intended to fool the discriminator.

As Goodfellow [95] explains, the generator can be conceived of as being like a counterfeiter, trying

to make fake money. The discriminator acts like the police, trying to identify counterfeit money
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from genuine money. To win in the game, the counterfeiter must learn to make fake money that is

indistinguishable from genuine money, while the generator network must learn to create samples

that are drawn from the same distribution as the training data [95].

GANs have been widely employed in image and text recognition, such as image generation [96],

text to image synthesis [97], and image to image translation [98]. GANs were introduced primarily

as unsupervised learners that benefit from setting up a supervised learning framework. However,

besides unsupervised learning, GANs are also able to undertake semi-supervised learning. Salimans

et al. [99] have added samples from the GANs generator G to their data set, as a new “generated”

class, and then used a standard classifier to do the semi-supervised learning. So, if we consider a

standard classifier for classifying a data point x into one of K possible classes, the semi-supervised

classifier will classify the data point into K+1 classes, with the K+1th class containing the observa-

tions “generated” by a GAN [99].

Other studies have used GANs for multi-class labeling instead of having one “real“ class and one

“fake” class. Springenberg [100] has proposed Categorical Generative Adversarial Networks (Cat-

GANs) for multi-class semi-supervised learning. In this framework, he considers a change in the

GANs protocol. Instead of asking discriminator D to predict the probability of x being “fake,” we

can ask the discriminator to assign all examples to one of K classes, while assigning a “fake” label

to output for samples from the generator G. With this change in the GANs protocol, the problem

posed to the generator changes from “generate samples that belong to the real dataset” to “gener-

ate samples that belong to precisely one out of K classes” [100]. CatGANs was shown to exhibit

classification performance competitive with state-of-the-art results for semi-supervised learning for

image classification. Also, the study demonstrated the capability of the generator, which is learned

alongside the classifier, to generate images of high visual fidelity [100].

Another semi-supervised GANs model to be developed is Conditional GANs. It endeavors to im-

plement multi-class labeling, in a different way. As Mirza and Osindero [101] have explained, the

unconditioned (traditional) generator in GANs has no control over the class labels of the data being

generated. Mirza and Osindero, proposed a model able to direct the generating process by condi-

tioning the generator on additional information [101]. They explain how GANs will be able to do
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multi-class labeling by conditioning the generator on class labels. Their proposed model can gen-

erate samples for each class. For example, in image classification problems, you ask Conditional

GANs for the horse class, and it draws you a picture of a horse.

As explained above, while GANs is mainly used as a generative model to generate samples through

labeling the data into “fake” and “real” [102], some studies have extended GANs for multi-class

labeling. However, almost all implementations of GANs models have been conducted in image

processing or speech recognition studies. Analyzing GPS trajectories with semi-supervised GANs

models to detect the mode of transport has not been applied in the literature, yet. In the next section,

we describe the GANs framework and related concepts.

Concepts and Framework

A representation of the traditional (unsupervised) GANs framework is shown in Figure 2.9. The

GANs training strategy is defined as a Nash equilibrium to a two-player, non-cooperative game

[95, 99]. It consists of two “adversarial” models, each of which wants to minimize its own cost

function, J (D)(θ(D), θ(G)) for the discriminator and J (G)(θ(D), θ(G)) for the generator. The Nash

equilibrium is the condition where neither player can do better than the strategy of the other player.

A Nash equilibrium is satisfied where J (D) is at its minimum with respect to θ(D) and J (G) is at

its minimum with respect to θ(G). As Goodfellow [102] explains since each player’s cost depends

only on the other player’s parameters, but each player does not have any control on the other player’s

parameters, the GANs framework is most straightforward to be considered as a game between two

players, rather than as an optimization problem.

Both generator and discriminator models in GANs can be a mapping function that converts an input

to an output through a non-linear transformation. In the original GANs framework (Goodfelow et

al. [95]) the generative model captures the data distribution and the discriminator receives either a

generated sample (from the generator) or a true data sample and must estimate the probability that

a sample came from the training data rather than the generator. Indeed, we train the discriminator

to maximize the probability of correctly labeling both training examples and samples from the

generator. The training process of GANs consists of simultaneous gradient descent. On each step

of the training, two minibatches are sampled. The first minibatch contains x values sampled from
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Figure 2.9: General Framework of Generative Adversarial Network.

the dataset, while the other minibatch consists of z values drawn from the model’s prior over latent

variables [102]. The gradient steps are applied on both minibatches simultaneously.

One updates the θD (the discriminator parameters), to reduce the cost function of the discriminator

(JD). The other updates θG (the generator parameters) to reduce the generator cost function (JG)

[102].

An important aspect of the GANs framework is the definition of cost functions used by the generator

and the discriminator. In the original GANs framework, the discriminator is a binary classifier and

usually uses standard cross-entropy cost. The cost function for binary classification is represented

as the expectation (referred to as E in the following formula) taken across the training set, as [33]:

J(θ) =− Ex,y∼pdataL[f(x, θ); y] (3)

where, L is the loss function, f(x, θ) is the classifier output when input is x, y is the true label of

samples in the training dataset, and pdata is the empirical distribution, i.e. the distribution of training

dataset. If we apply the cross-entropy cost function in Equation 3, we obtain:

J(θ) =− Ex,y∼pdataylog(f(x, θ)) − Ex,y∼pdata(1− y)log(1− f(x, θ)) (4)

The only difference between the cost function of a binary classifier with the cost function of the

discriminator in the GANs framework is that the latter is trained on two minibatches of data. One
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minibatch comes from the training dataset where all the samples have label 1. The other minibatch

contains the generated samples from the generator where all the samples have label 0. Hence, we

can set y = 1 for the samples in the training dataset, and y = 0 for the generated (fake) samples

from the generator. Also, the discriminator output for the samples from the training dataset is shown

as D(x), and the discriminator output for the fake samples is represented by D(G(z)).

Finally, the discriminator cross-entropy cost function is explained with the following equation [95]:

JD(θD, θG) =− Ex∼pdata [log D(x)] − Ez log[1−D(G(z))] (5)

The generator cost function can be determined by the zero-sum game [95], in which the total cost of

the discriminator and the generator should be zero. With this approach, the generator cost function

can be defined as [99]:

J (G) =− J (D) (6)

In the zero-sum game (sometimes referred to as the minimax game), the discriminator minimizes a

cross-entropy while the generator tries to maximize the same cross-entropy [102], as in Equation 6.

This is solved through gradient descent optimization.

In gradient descent optimization, the cost function eventually approaches zero when the classifier

has chosen the correct class with high confidence. However, in the zero-sum game, when the dis-

criminator correctly predicts the generated samples by the generator, the cross-entropy, i.e. J (D),

approaches zero, and there is no chance for the generator to maximize the cross-entropy as its gra-

dient already vanishes [95]. To solve this issue, Goodfellow [102] suggests “flipping” (multiplying

by -1) the generator target used in Equation5, instead of flipping the discriminator cost function as

in Equation 6. The author suggests using the following generator cost:

J (G) =− Ez logD(G(z)) (7)

With the above cost function, the zero-sum game is no longer valid for the GANs framework (par-

ticularly J (G) + J (D)! = 0). At the same time, it guarantees that each player has a strong gradient
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when losing the game.

Semi-Supervised Generative Adversarial Networks

The GANs framework described in the previous section only differentiates between real and gener-

ated (or fake) samples and does not apply to multi-class labeling. In a neural network classification

model, an input data point x is classified into one of K possible classes. Such a classifier is fed by

x and outputs a K-dimensional vector of logits [l1, l2, ..., lK ]. Where logits refer to the raw predic-

tions resulting from the last layer of a neural network, converted to class probabilities by applying

the softmax function [99, 103]

Pmodel(y = j|x) = exp
(lj)∑K

k=1 exp
(lk)

(8)

Such a model is then trained by minimizing the cross-entropy between the true labels and the pre-

dicted class probabilities, i.e. Pmodel(y = j|x).

Recently, Salimans et al. [99] used GANs for semi-supervised learning. The semi-supervised GANs

framework (as shown in Figure 2.10) has a lot in common with the GANs framework for binary

“real” and “fake” classification. The primary difference between them is the number of classes

(k+1 instead only two) in the output. We can take advantage of semi-supervised learning with any

standard classifier by simply including generated samples by GANs in our dataset, and assigning

a new “generated” class label (y = K + 1) to them, while at the same time increasing the output

dimension of our classifier from K to K + 1, as shown in Figure 2.10.

We can consider pmodel(y = K +1|x) as the probability of x being fake. A semi-supervised model

can also learn from unlabeled data, considering the fact that it corresponds to one of the K real

classes by maximizing the logarithm of pmodel(y ∈ 1, ...,K|x) [99]. Considering that datasets in a

semi-supervised context are made up of both generated and real data, the following loss function,

proposed by Saliman et al. [99], is used to train the classifier:
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Figure 2.10: The Framework of Semi-supervised Generative Adversarial Network.

L = −Ex,y∼pdata(x,y)[log pmodel(y|x)]− Ex∼G[log pmodel(y = K + 1|x)] (9)

= Lsupervised + Lunsupervised

where:

Lsupervised =− Ex,y∼pdata(x,y)[log pmodel(y|x, y < K + 1)] (10)

Lunsupervised =− {Ex∼pdata(x,y)log[1− pmodel(y = K + 1|x)]

+ Ex∼Glog[pmodel(y = K + 1|x)]} (11)

In Equations 9-11, the total cross-entropy loss is decomposed into two components. The supervised

lossLsupervised is the logarithm of the probability of the labels of the real data (data from the training

dataset). The unsupervised loss (Lunsupervised) is in fact the GANs discriminator loss function in

Equation5. By replacing D(x) = 1− pmodel(y = K + 1|x) in Equation 11, we will have:

Lunsupervised =− Ex∼pdata(x)log D(x) − Ezlog(1−D(G(z))) (12)

This is the GANs discriminator loss function. The above cost functions in Equations 9-11 allows

the GANs to learn a generative model and a classifier simultaneously. In this study we implement

the same approach and present our empirical results to classify the mode of transport from GPS

trajectories.
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As Saliman et al. [99] have mentioned the optimal solution for minimizing the above loss functions,

i.e. Lsupervised and Lunsupervised, is to have exp[lj(x)] = c(x)p(y = j, x)∀j < K + 1 and

exp[lK+1(x)] = c(x)pG(x), where c(x) is an scaling function. By trainingG to minimize the GANs

game-value, using the discriminator D defined by our classifier, we can train G to approximate

the data distribution. Saliman et al. [99] have found that this approach introduces an interaction

between G and classifier that can be used for semi-supervised learning. In this study we use the

same approach. The mathematical procedures and architecture of GAN model are described in

Appendix C.3.
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Chapter 3

An Automated Approach from GPS

Traces to Complete Trip Information

Preamble

This chapter introduces a machine learning framework to predict the mode of transport, trip purpose

and transit itinerary from MTL Trajet dataset. The goal of this chapter is to demonstrate the capa-

bility of a large-scale real-world smartphone-based travel survey to provide transportation planners

with the most important trip information, as explained in Section 1.2, required in transportation

demand analysis.

We used Random Forest model as a supervised learner to infer the most important trip information.

As explained in Section 2.2, the Random Forest model is only able to process the aggregate trip-

based features. After developing Random Forest models, the most important features in detecting

each trip information are presented. We also compare our results against other modeling approaches

in the literature. The Random Forest model developed in this chapter to infer transit itinerary is the

first one in the kind that shows the capability of artificial intelligence to infer route-wise transit

demand from trajectory data. This research article appeared in “International Journal of Transporta-

tion Science and Technology”: Ali Yazdizadeh, Zachary Patterson, Bilal Farooq, “An automated

approach from GPS traces to complete trip information”, International Journal of Transportation

Science and Technology, Volume 8, Issue 1, 2019, Pages 82-100, ISSN 2046-0430.
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Abstract

Recent advances in communication technologies have enabled researchers to collect travel data

based on ubiquitous and location-aware smartphones. These advances hold out the promise of al-

lowing the automatic detection of the critical aspects (mode of transport, purpose, etc.) of people’s

trips. Until now, efforts have concentrated on one aspect of trips (e.g. mode) at a time. Such

methods have typically been developed on small data sets, often with data collected by researchers

themselves and not in large-scale real-world data collection initiatives. This research develops a ma-

chine learning-based framework to identify complete trip information based on smartphone location

data as well as online data from GTFS (General Transit Feed Specification) and Foursquare data.

The framework has the potential to be integrated with smartphone travel surveys to produce all trip

characteristics traditionally collected through household travel surveys. We use data from a recent,

large-scale smartphone travel survey in Montréal, Canada. The collected smartphone data, aug-

mented with GTFS and Foursquare data are used to train and validate three random forest models

to predict mode of transport, transit itinerary as well as trip purpose (activity). According to cross-

validation analysis, the Random Forest models show prediction accuracies of 87%, 81% and 71%

for mode, transit itinerary and activity, respectively. The results compare favorably with previous

studies, especially when taking the large, real-world nature of the dataset into account. Further-

more, the cross validation results show that the machine learning-based framework is an effective

and automated tool to support trip information extraction for large-scale smartphone travel surveys,

which have the potential to be a reliable and efficient (in terms of cost and human resources) data

collection technique.
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3.1 Introduction

Travel demand forecasting and modeling are central tools in the analysis of transportation plans,

projects, and policies in urban areas. During the last two decades, there have been rapid advances

in the collection of data used in transportation modeling. In particular, the use of new technologies

such as location-aware smartphones to collect data have become increasingly common [12, 13, 14].

These advances have enabled researchers to implement travel surveys with smartphone applications

[14, 104] that gather respondent traces with lower costs, when compared with traditional travel

surveys such as face-to-face interviews [6], Computer-Assisted Telephone Interviews (CATI) [105],

or mail-back paper surveys [12]. Moreover, traditional surveys suffer from other shortcomings such

as trip under-reporting [21, 22], time inaccuracies and origin-destination location errors, which

generally caused by respondent fatigue or forgetfulness.

A great deal of research in this field has concentrated on methods of inferring trip characteristics

(e.g. mode) from passively collected data. When this has been done, it often has considered one type

of trip characteristic at a time, and has primarily used small or researcher-collected smartphone data;

not on large-scale, real-world data collection efforts. The goal of this study is to show the potential

of automatically detecting “complete” trip information based on data from a large-scale smartphone

travel survey. We refer to “complete” trip information as including the following characteristics

for a trip: geographic origin/destination, start and end time, mode, itinerary (route), as well as

purpose the destination of a trip. These are the the characteristics typically required in trip-based

transportation modeling [2].

In the literature, methods of origin/destination and mode detection have been studied extensively

[4, 55, 69, 106]. By contrast, activity detection and itinerary inference have received less attention

still [69, 82, 107], and the field is open to further research.

We believe that one reason for the lack of research on the two latter characteristics is their depen-

dence on information apart from simple GPS traces of travelers. For example, transit itinerary detec-

tion depends on transit schedule and route information. Activity detection relies on comprehensive

data from existing land-use as well as popular places around trip destinations [76, 79]. Recently,

due to the widespread use of location-base social networks like Foursquare and Yelp [69, 79] a
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comprehensive list of popular activities in urban areas is freely accessible and has the potential to

be used in activity detection. Furthermore, General Transit Feed Specification (GTFS) data, which

defines a common format to share public transportation schedules and associated geographic infor-

mation [108], enables us to deploy detailed transit schedules and related locational information to

infer transit itinerary from raw GPS data.

Apart from the data required, there is also the question of methodological approaches to infer in-

formation from smartphone and other data sources. Recently, there has been widespread use of

machine learning classifiers, such as Neural Networks (NN) or Random Forests (RF), particularly

in mode detection [55, 59]. Such success in mode detection encourages us to take advantage of such

classifiers in transit itinerary and activity detection steps as well. In this study, we have developed

a series of machine learning (Random Forest [84]) models (See Figure 3.1), to automatically detect

mode, transit itinerary and activity from smartphone travel survey data. Also, regarding trip/segment

detection we have used a rule-based algorithm developed by Patterson and Fitzsimmons [109].

The overall goal of this study is to show how it is possible to derive all critical trip information

gathered by traditional travel survey methods such as CATI or mail-back surveys but through the

processing of a large-scale smartphone travel survey data. This research has been conducted using

data collected by the MTL Trajet [18], smartphone Travel Survey App. MTL Trajet was an instance

of the smartphone travel survey app, DataMobile [109]. Datamobile was recently renamed Itinerum

when it was built out into a travel survey platform in 2017 [8]. MTL Trajet was released as part of a

large-scale pilot study on the 17th of October 2016 in a study that lasted 30 days. The location data

collected from MTL Trajet is shown on a map of Greater Montreal in Figure 3.2. Also, a typical

trip trajectory (sequence of GPS points) from MTL Trajet is shown in this figure.

The paper is organized as follows: a background section describes the literature related to GPS-

based travel surveys and the algorithms used to process and derive information from them. The

Methodology Section describes the methodology and algorithms used to detect the above men-

tioned “complete” trip information. The Data preparation section introduces the data collected in

the MTL Trajet app during the study, as well as additional data used in the analysis. Afterwards,

the model estimation section describes the estimated RF models and their attributes. The follwing

section describes the prediction accuracy of the RF models based on the cross-validation results and
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Figure 3.1: MTL Trajet App and Machine Learning-based Framework to Derive Complete Trip
Information

compares these results with previous studies. Finally, we present our conclusions in the last section.

3.2 Related Background

Urban travel surveys were first introduced in the 1950s, where paper-based face-to-face interviews

were conducted to elicit household trip information [3]. Disadvantages related to this method,

such as labour and time costs caused them to be replaced by mail surveys in the 1960s [6]. The

main drawback of mail surveys was their low response rates, which gave rise to Computer Assisted

Telephone Interviews (CATI) as well as Computer-Assisted Self-Interviews (CASI) [46]. More

recently, web surveys, which can be considered as a practice of CASI methods, have been used.

However, both CATI and CASI suffer from non-response and misreporting [3].

Advances in Information and Communication Technologies (ICT) and the shortcomings of tradi-

tional travel survey methods brought about automated travel surveys based on GPS technology,

beginning in the late 1990s [3]. In the beginning, GPS surveys were launched as a supplement to

traditional surveys to increase their accuracy. However, the potential for GPS surveys in gathering
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more accurate spatio-temportal characteristics of trips eventually caused them to be considered as

a potential alternative to traditional surveys. Furthermore, by using prompted-recall surveys [110],

which enabled travelers to validate their trips later on a website, GPS travel surveys grew in popular-

ity. Nevertheless, even prompted-recall surveys face similar problems as traditional survey methods,

such as the forgetfulness of travellers when validating their trips after the fact. Some studies, such

as Xiao et al. [111], have implemented surveyor-intervened prompted recall surveys to enhance the

accuracy of validations. In such surveys, the surveyors ask respondents by telephone to recall the de-

tails of their trips. However, this comes at the expense of rising the surveying cost. Recently, the trip

validating step has been carried out in almost real-time by developing in-app prompts [8, 18, 112]

that ask respondents to validate their trips as they go.

With respect to the theoretical concepts of machine learning algorithms, there is a considerable

amount of literature in computer science as well as previously published transportation studies.

Witten et al. [113] have clearly explained the machine learning algorithms such as decision trees,

Random Forest, Support Vector Machines, etc., and their application in different fields of study. The

book written by Goodfelow et al. [33] is a comprehensive reference to neural network algorithms

and their applications. Regrading the transportation studies, Ghasri et al. [114] have explained in

detail the decision tree and Random Forest classifiers. Dabiri and Heaslip [39] and Gonzales et al.

[59] have described neural networks models and their application in transportation mode detection.

In this section, we review studies using GPS-based travel surveys that also developed algorithm(s)

for detecting trip mode, transit itinerary or activity. Table 3.1 and 3.2 report different approaches

applied for trip/segment and mode detection, transit itinerary as well as activity detection, and their

prediction accuracy.

3.2.1 Trip/segment Detection

With respect to detecting trip/segment, several studies have used rule-based algorithms, as shown

in Table 3.1. Recently, Zhou et al.[115] have developed a Random Forest model to identify the

trips ends using large-scale smartphone-based GPS tracking data. Their model achieved an accu-

racy of 96.17% for the identification of trip ends. With respect to the rule-based algorithms, dwell
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Table 3.1: Studies on trip/segment and mode detection

Author/s Method Attributes Validation Accuracy
Trip/Segment Detection
Stopher et al.[46] Rule-based Dwell time n/a
Wolf et al.[71] Rule-based Dwell time n/a

Schuessler and Axhausen [49] Rule-based
Dwell time, distance between
points

n/a

Biljecki [48] Rule-based
Dwell time, distance between
points

91%

Gonzalez et al. [59]
Manually segmented
by the cell
phone user

Speed, acceleration, data
quality, travel distance

n/a

Shafique and Hato [116] Rule-based Dwell time n/a

Nitsche[55] Rule-based
Speed, high amplitudes
accelerometer signal

n/a

Dalumpines and
Scott [50]

Rule-based Dwell time and Speed n/a

Xiao et al. [54] Rule-based
Dwell time, Critical
length, critical distance

96 %

Patterson and
Fitzsimmons [109]

Rule-based
Dwell time, distance to
metro stops, speed

n/a

Zhou et al.[115] Random Forest

24 attributes including: instantaneous speed,
acceleration, average absolute acceleration
standard deviation of the instantaneous speed
average heading change etc.

96.17 %

Mode detection
Stopher et al.[46] Rule-based Speed, GIS, car/bike ownership 95 %
Bohte and Maat [47] Rule-based Average and maximum speed, GIS land use data n/a
Schuessler and Axhausen [49] Fuzzy-logic approach Speed, Acceleration n/a
Biljecki [48] Fuzzy System Proximity of trajectories to nearest net- work, speed n/a

Gonzalez et al. [59] Neural Network
Maximum speed, Average speed, Maximum
acceleration, Average acceleration,Total Distance

91.23 %

Feng and Timmermans [43] Bayesian Belief Networks Speed, Accelerate, Car/ Bike/ Motor- cycle ownership, data quality 96 %

Shafique and Hato [117] Random Forest
Acceleration and standard deviation,
skewness, kurtosis, maximum and average
acceleration

99.6 %

Nitsche et al. [55]

Ensemble of probabilistic
and Discrete
Hidden Markov
Model (DHMM)

5th, 50th and 95th percentile of speed,
accelerations, decelerations, direction
change, standard deviation of the highfrequency
accelerometer magnitudes,
and power Spectrum of the accelerometer
signal for Frequencies

Range from
65 % to 95 %

Dalumpines and Scott [50] Multinomial Logit
Median speed, Median change in heading,
total travel time

90 %

Xiao et al. [54] Basyesian Network

Travel distance, average speed, average
absolut acceleration, 95 % percentile
speed, low speed rate, and average
heading change

92.74 %

Eftekhari & Ghatee [44] Rule-based acceleration data from gyroscope and accelerometer sensors 95.2 %

Bantis & Haworth. [118] Basyesian Network Speed and socio-demographic data
Range from
82 % to 90 %

Endo et al. [58] Deep Neural Networks
Time series of speed,head change, time interval,
distance of the GPS points

Range from
84.8 %

Dabiri & Heaslip. [39] Convolutional Neural Networks
Speed, acceleration, jerk (the rate of change in the acceleration)
and bearing rate (rate of change in the heading direction)

Range from
84.8 %

time between GPS points has been considered as the most prominent criterion for detecting the seg-

ment/trips, ranging from 1 to 3 minutes. Additional rules have also been applied for trip/segment

detection [3], such as point density [49], latitude and longitude change [105] or speed threshold and

amplitude of the accelerometer signals [55].

Zhou et al.[115] have used several attributes as input for the Random Forest classifier, namely (1)

local attributes such as time difference, instantaneous speed and acceleration, (2) global extreme



Figure 3.2: Location Data Collected in the MTL Trajet Study

value attributes like total duration and total duration, (3) speed-related attributes such as average

speed and standard deviation of the instantaneous speed (4) acceleration-related attributes like the

average absolute acceleration and the largest absolute acceleration, (5) tracking points clustering

attributes, such as the largest distance between any two points within one neighborhood point set

and (6) heading change attributes, like the average heading change in the neighborhood point set.

They also proposed the concept of neighborhood point set to describe the temporally continuous

points near a specific GPS tracking point.

3.2.2 Mode Detection

Mode detection, now well examined in the literature has been done using various approaches. Rule-

based algorithms [46, 47], fuzzy systems [48, 49], machine learning classifiers [43, 54, 55, 59, 117]

and discrete choice models [50] have been implemented. Mode detection algorithms have been ap-

plied on various data sources including raw GPS trajectories [37, 39, 64], smartphone’s accelerom-

eters [44], call detail records (CDRs) from smatrphones [119] , and smartphone’s GSM data [120].
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Moreover, some of the mode detection studies has exploited multiple data sources to improve the

prediction accuracy of classifiers. Stenneth et al. [42] integrated the GPS and GIS information for

developing a mode detection algorithm. Other studies [44, 55] have used gyroscope, rotation vector,

and magnetometer data to improve the mode detection accuracy. In addition to the smartphone data,

traveller’s socio-demographics can result in higher prediction accuracy of classifiers [118]. A com-

prehensive and comparative review of existing studies on travel mode detection have been presented

in the paper by Wu et al. [121].

Zheng et al. [64] developed a framework to automatically infer mode of transport from GPS tra-

jectories. They have applied a rule-based segmentation algorithm to split a trip into segments with

distinct modes of transport. Afterwards, various features such as mean and variance of the speed,

top three speeds and accelerations have been utilized to develop classifiers, such as decision trees, to

detect mode of transport. Sun and Ban [122] extracted acceleration- and deceleration-based features

to classify vehicle type by Support Vector Machine (SVM) classifier.

Stenneth et al. [42] developed five classification algorithms (Bayesian Net, Decision Tree, Ran-

dom Forest, Naı̈ve Bayesian, and Multilayer Perceptron) to detect mode of transport. Their result

demonstrated the superiority of Random Forest over other developed classifiers, in terms of predic-

tion accuracy rate.

Recently, Xiao et al. [40] developed tree-based ensemble classification algorithms that outperform

traditional ones such as the decision tree. Endo et al. [58] and Wang et al.0 [123] developed Deep

Neural Network (DNN) algorithms to detect mode of transport. Also, Dabiri and Heaslip [39] have

used Convolutional Neural Network (CNN) to train a mode detection model.

3.2.3 Activity Detection

Unlike mode detection, transit itinerary and activity detection have not received as much attention in

the literature. With respect to activity detection, the methods in the existing literature have been cat-

egorized by Gong et al. [69] into three broad categories: rule-based algorithms, statistical methods

and machine learning methods. However, recent studies in the field tend to use machine learning

approaches along with geo-tagged information from social media, such as FourSquare or Google
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Places [79]. Rashidi et al. [124] reviewed the studies on social media data and concluded that geo-

tagged data possess a great potential to improve our knowledge in understanding activity behaviour.

Geo-tagged social media data have been utilized by several studies from social science, computer

science, and transportation science to extract meaningful activity behaviour patterns [124]. The

studies include activity recognition [125], activity choice patterns [126], and understanding life-

style behaviour from activity-location patterns [127]. Lee et al. [128] utilized geo-tagged tweets to

generate individual activity spaces based on minimum bounding geometry (convex hull). Hasan and

Ukkusuri [126] investigated Foursquare check-in data to infer individual weekly activity patterns

using probabilistic topic models. However, as Rashidi et al. [124] have mentioned, the capacity of

social media platforms such as Facebook, Twitter, LinkedIn, Foursquare, and Yelp to provide infor-

mation on household daily travel has been minimally examined [124]. Zhang et al. [129] proposed

a sequential model-based clustering method to investigate the potential of social media (Twitter) to

realize the longitudinal household survey. They concluded that geo-tagged data (tweets) provide a

sample of human activity space through a list of locations. Zhu et al. [78] investigated the poten-

tial of location-based social networks to explain the travellers’ behaviour. They trained a Support

Vector Machine (SVM) algorithm that achieved over 75% accuracy in predicting trip purposes com-

bining with the traditional travel survey. Also, Lee et al. [128] reviewed studies on emerging data

collection technologies for mode of transport and trip purpose prediction.

As demonstrated in Table 3.2, different attributes have been used in the literature to predict activity,

such as information on land use types around each trip destination, related activity characteristics

(e.g., duration of the activity at the destination, previous activity, activity start/end time), socio-

demographics data (e.g., respondent’s age, occupation and income), and Point of Interest (POI)

data.

Oliveira et al. [76] developed a decision tree model to differentiate between 12 trip purposes. In

their study, the decision tree model achieved a prediction accuracy of 65%. They also used a Nested

Logit model that predict trip purposes with 60% accuracy. Wu et al. [4] developed two models, a

rule-based and a Random Forest model to classify indoor, outdoor static (i.e., when an individual

is relatively stationary while outdoors), out-door walking, and in-vehicle travel activities. Both of
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Table 3.2: Studies on Trip Activity Detection and Transit Itinerary Inference

Author/s Method Attributes Validation Accuracy
Activity Detection

Stopher et al.[46] Rule-based
GIS land-use data, home and workplace/school
addresses, address of the
two most frequently used grocery stores

over 60 %

Wolf et al. [71] Rule-based GIS land-use data 69 %

Bohte and Maat [47] Rule-based
GIS land-use data, home and workplace/
school addresses

43 %

Wu et al. [4] Random Forest Distance, speed, acceleration

97% for indoor,
84% for in-
vehicle travel, and
lower for other

Lu and Liu [130] Decision tree
Socio-demographics, land use,
temporal information,previous
& next trip attributes

73.4%

Pereira et al. [7]
Historical data
matching rules

Activity duration,
POI, socio-demographics,
work hours travel time

n/a

Zhu et al. [78]
Support Vector
Machine

Demographic Features: gender, age, occupation
spatial Features: Foursquare venue category and tips
temporal Features: duration stayed at a destination

75%

Oliveira et al.[76] Decision tree
Land use, temporal information,
socio-demographics

65%

Kim et al. [77] Random Forest
Point of interest,
age, gender

75.5%

Xiao et al. [111] Neural Networks
Polygon-based information and point of
interest

96.5 %

Zhang et al.[129]
Sequential model-
based clustering method

Visiting frequency, most frequently
-visited locations, distance between
visited locations, relation between
a location and its surrounding

n/a

Ermagun et al. [79] Random Forest
Travel mode, previous activity type, trip
characteristic, Nearby place characteristics,
socio-demographics

64.17%

Transit Itinerary Inference
Zahabi & Patterson [82] Rule-based Nearby bus routes (GTFS data), dwell time, speed 87 %

the models successfully predicted indoor activities and in-vehicle travel with 96% and 88% accu-

racy, respectively. However, the both models were fairly successful in identifying outdoor static

and walking points. Kim et al. [77] developed a Random Forest model to differentiate between 16

purposes. However, they have distilled the set of 16 purposes into a set of 4 conceptually exclusive

purposes: a) work (including work, education, and business), b) home, c) transportation-related ac-

tivities (including pick up/drop off, and transfer or change the mode) and d) maintenance activities

(including shopping, personal task, meal/eating break, health, etc.). They used age and gender vari-

ables in the modeling process to improve the prediction performance of the model. Their Random

Forest model can predict the trip purpose by 75.5% prediction accuracy.
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3.2.4 Transit Itinerary Detection

With respect to transit itinerary detection, we only found the study by Zahabi et al. [82] that imple-

mented a rule-based algorithm on a GPS travel survey to detect transit itinerary. They used GTFS

data to find a set of nearest active transit routes around each GPS point, and then inferred transit

route by checking the history of all GPS points along a trip.

Based on this literature review, we note the following. First, studies typically consider only one trip

characteristic at a time. Second, studies on mode and activity detection have been primarily based

on small or researcher-collected smartphone data. For example, among 11 mode detection studies

reviewed by Wu et al. [121] the sample sizes are less than 45 persons or less than 114 trips. Third,

we observe that there is relatively little literature on detecting trip activity, and even less on transit

itinerary. As such in this paper, we develop a framework to predict trip mode, activity as well as

transit itinerary; that is, all trip characteristics typically required in trip-based modeling approaches,

using data from the same large-scale study. In the activity detection step, we use FourSquare data as

a standardized and highly accessible source for data on nearby places surrounding a trip destination.

Also, in transit itinerary detection step, we use OpenTripPlanner router [131] to generate all possible

transit options between each trip origin and destination.

3.3 Data Used

The following data sources were used to developing the models and algorithms to infer “complete”

trip information from the MTL Trajet study:

(1) The MTL Trajet survey

(2) A Transit Itinerary survey

(3) Land-use Data

(4) Foursquare data

(5) General Transit Feed Specification (GTFS) data

(6) Bing Elevation data
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A brief description of the above mentioned datasets is provide below.

3.3.1 MTL Trajet Survey

The purpose of the MTL Trajet study [18, 132] was to implement a large-scale pilot study by the

City of Montreal to contribute to the development of their “Smart City” initiatives. The study was

live from the 17th of October until the 17th of November 2016. In order to participate in the study,

respondents needed to download the application, agree to the consent form, answer a few socio-

demographic and daily travel-related questions and then allow the app to operate in the background

of their phone. Respondents would be prompted after each stop to validate the mode and purpose

of their trips. By the end of the study, there were 11,433 downloads of the Itinerum app, 4,780 on

Android and 6,653 on iOS. Among them, 8,033 users responded to the socio-demographic and sur-

vey questions. In the end, there were 7,773 users for whom at least two data points were collected.

These users provided data for 88,629 person days for an average of 11.4 days of participation per

person. With respect to validations, 6,845 respondents validated at least one trip. Altogether, there

were 131,777 validated trips, for an average of 19.2 validations per person.

3.3.2 Transit Itinerary Survey

The Transit Itinerary Inference (TII) data [82] was collected with the iOS version of the Datamobile

app through a data collection initiative conducted at Concordia University in Montreal during July

and August of 2016. The main goal was to collect validated transit itinerary data. There were 10

student surveyors who were asked to recreate transit trips identified randomly selected from the

2013 regional household survey in Montreal. The participants were asked to validate all public

transit routes they used during the course of their trips. In the end, 599 validated transit segments

were used in this analysis. We used this data set to train a Random Forest model to detect the transit

itinerary.
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3.3.3 Land-Use Data

Land-use information is one of the data sources with which the activities around a GPS coordinate

can be inferred. The last updated Montreal land-use data was compiled by the provincial gov-

ernment ministry “MAMROT” [133] for 2011 for the “Montreal Metropolitan Community.” This

land-use data contains land-use characteristics of buildings. There are around 970 land-use types

which have been classified into 23 categories. The 23 categories and the frequency of each land-use

category has been shown in Table B.1 in Appendix B. However, as a large part of land-use parcels

are residential buildings, using only land-use data may cause the activity detection algorithm to

be prone to classification error, due to myriad residential parcels around trip destinations. Thus,

we sought other location based data sources, such as Foursquare, to use them as a complement to

land-use data.

3.3.4 Foursquare Data

Foursquare is an online location-based social network through which individuals can “connect” with

the places they visit throuh “check-ins” using the Foursquare app. In general, a check-in specifies

that a certain user has been present at a given venue. The check-ins are then associated with the

venue as well as to other “friends” with the app [134]. For this study, for each trip destination,

we sent a request to the Foursquare API to search all venues within 250 meter of a trip destination.

According to the online Foursquare API documentation [81], each request to Foursquare API returns

maximum of 50 venues. For each venue, there are 35 fields of information, among which the

following were used in the current study, as they represent the most important activities/venues in

the vicinity of a trip destination:

• Categories that indicate the Foursquare sub- or sub-sub-category to which the venue belongs

• Stats, which contains two pieces of useful information:

(1) checkinsCount, which is the total check-ins ever in a venue

(2) usersCount, which is the total users who have ever checked in a venue

As explained in the Foursquare API Documentation for Venue Categories [135] Foursquare has
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categorized venues into the 10 top-level categories, as shown in Table B.2 in Appendix B. Each top-

level category has “sub-” and “sub-sub-” categories that result in a total of 910 categories. In this

study, we have aggregated all checkinsCount for each top-level category, giving 10 checkinsCount

(as in Table B.2) for each trip destination. Also, the same procedure has been applied on usersCounts

(as in Table B.2). This information is used in the Random Forest model to predict the trip purpose.

3.3.5 Bing Elevation Data

We used elevation data to approximate maximum and minimum slope of the earth along a trip. Ac-

cording to the documentation of Bing Elevation API [136], we can get elevations at equally-spaced

locations along a path. By dividing the difference between the elevation of each two consecutive

points by the direct distance between those points, we are able to approximate the slope of the earth

between each pair of points. Then, the maximum and minimum slope along a trip were used in

mode detection.

3.4 Research Design and Methodology

The framework developed to infer complete trip information, i.e. mode of trasport, trip purpose and

transit itinerary, is illustrated in Figure 3.1. The MTL Trajet app was the data collection tool that

gathered user location information and sent it to the MTL Trajet server. Afterwards, the data was

transferred to a PostgreSQL database and cleaned through procedures explained below. Finally,

the machine learning-based framework was developed to infer complete trip information. In this

research, we have used one of the most common classifiers in machine learning, the Random Forest

method, as it has shown to provide high prediction accuracy in many transportation classification

situations [42, 79, 114, 116, 121]. Furthermore, since Random Forest is an ensemble learning

approach, where predictions are made based on multiple decision trees, it is less prone to over

fitting [79, 114]. The research includes four major steps: (1) data preparation, (2) model selection

and attribute description, (3) model estimation, and (4) model accuracy validation. In this section,

the first two steps are discussed. First, data preparation procedures are discussed. Afterwards, as the

Random Forest (RF) model is the core machine learning algorithm in this study, a brief explanation

62



of Random Forest basics and related terminology is provided. Finally, the approaches used to derive

complete trip information are explained.

3.4.1 Data Preparation

The MTL Trajet dataset contains over 33 million location (primarily GPS) points. To detect trips

and segments we used the rule-based trip-breaking algorithm developed in Patterson & Fitzsim-

mons [109]. The algorithm detects segments based on 3-minute gaps in data while controlling for

velocity and parameters relating to the public transit network (i.e. transit junctions and metro station

location). Applying the trip-breaking algorithm on the MTL Trajet dataset resulted in 623,718 trips,

of which 102,904 trips were validated by respondents.

Validated mode data was derived from the survey questions presented to respondents upon instal-

lation. In particular, respondents were asked the location of home, work and school, as well as the

mode(s) of transport used for trips to these locations. Only trips from users who declared using

only one mode option to travel between home and work or home and school were used. This pro-

cedure provided us with 10,518 validated trips. With respect to trip activity detection, six activity

categories were used to predict trip purpose: “education,” “health,” “leisure,” “shopping/errands,”

“return home” and “work.” We used 102,904 prompt validated trips to train an RF model to detect

the trip purpose.

3.4.2 Random Forest Model: Basics and Terminology

The RF method is based on a combination of decision tree predictors. The RF method first generates

a series of training samples from the original training dataset with bootstrapping [84]. Then, about

one-third of each bootstrap training sample is left out, called the Out-of-bag (OOB) set, and a

decision tree is constructed on the remaining observations (the other two-thirds of the bootstrap

sample is referred to as the InBag set) [84]. The newly constructed decision trees are generated

with “random split selection” [86] where a random selection of attributes are used at each node to

determine the split[84]. Finally, these decision trees will later “vote” to form the bagged predictor

[84]. As RF model consists of multiple trees, the results are more stable than the individual decision

tree models and less prone to overfitting [84].
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The OOB observations are used to make a natural test set for calculating the error of each tree, rather

than using the cross-validation method to estimate the error of the RF [85, 89]. In addition, the OOB

sets can be used to calculate variable importance. The importance of each variable in classification

is crucial information for the model builder to know. Several ways are suggested in the literature

to measure the variable importance [85, 89]. The best-known criteria is the “mean decrease in

accuracy”, that has been used in several studies in the field [79, 85, 87]. The larger mean decrease

of a variable, the more important that variable is deemed. The details of the calculation of the “mean

decrease in accuracy” have been well explained by Breiman [89] and Archer [85]. For each tree in

the Random Forest model, the importance of a variable V is defined as the decrease in the predictive

accuracy on OOB data when the variable V is permuted. Overall variable importance is calculated

as the average variable importance across all trees in the Random Forest. By definition, if variable

V is not in a tree, its importance is set to zero.

Moreover, as Breiman and Culter [88] have explained, since the values of variable importance from

tree to tree are independent, we can compute the standard error of each variable’s importance.

Finally, dividing a variable’s importance by its standard error gives us a z-score that can be used to

assign a significance level to each variable. Also, we can test the null hypothesis of zero importance

for variable V and reject it where the calculated variable importance exceeds the -quantile of N(0,1).

There are two hyperparameters in growing a forest. First, the number of randomly selected attributes

used for each split. Second, the number of trees grown in the forest. Liaw and Wiener [87] suggested

that for stable estimate of variable importance, a large number of trees is essential.

We have applied the RF model explained above to classify trip mode, activity as well as transit

itinerary. All the RF models in current research were fitted using the randomForest package [87] in

R version 3.4.0 [137].

3.4.3 Mode Detection

For this paper, a Random Forest (RF) model has been generated based on 10,518 validated trips from

the MTL Trajet Survey. The mode of transport has been classified into five categories: walk, bike,

car, public transit as well as car and public transit. Also, various attributes, summarized in Table 3.3,

have been selected for generating the mode detection model. We have used trip characteristics such
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Table 3.3: Attributes Used in Mode Detection Analyses.

Attribute Definition
Trip characteristics
CUM DIST Cumulative distance (meter) between O-D
DIR DIST Direct distance (meter) between O-D
TR TIME Travel Time (min.) between O-D
AVG SPEED Average speed (km/h) between O-D
85 SPEED 85th percentile speed (km/h2) between O-D
MAX ACC Maximum Acceleration (km/h2) between O-D
MIN ACC Minimum Acceleration (km/h2) between O-D
DIFF ACC Difference between Min. and Max. Acceleration (km/h2) between O-D
SLOPE MIN Minimum slope between O-D
SLOPE MAX Maximum slope between O-D
MAX TIME POINTS Max time interval (min) between each consecutive pair of GPS point
MAX DIST POINTS Max distance (meter) between each consecutive pair of GPS point

Time and Day characteristics
TIME DAY Time of day from 0 to 24
DAY 1-7 for Monday to Sunday

Socio-demographics characteristics
AGE 0: age between 16-24 ,1: 25-34 , 2: 35-44, 3: 45-54, 4: 55-65, 5: 65+
GENDER 0:male, 1: female, 2: other/neither
OCCUPATION 0: full-time worker, 1: part-time worker, 2: Student, 3: Student and worker, 4: Retired 5: At home
AVG PRICE NEIGH The average municipality value of residential buildings around each individual’s home (in 250 meters radius)

Geographical and closeness characteristics
GTFS ORIGIN Direct distance between the origin and nearest public transit stop from GTFS data
GTFS DESTIN Direct distance between the destination and nearest public transit stop from GTFS data
CBD ORIGIN 1: if the origin is located in Montreal’s CBD, 0: otherwise
CBD DESTIN 1: if the destination is located in Montreal’s CBD, 0: otherwise

as 85th percentile speed, max/min acceleration and their difference, direct and cumulative distance.

As traveler behavior varies on different days of the week and during different hours of a day, we

also included time and day attributes related to a trip. Socio-demographic such as age, sex and

occupation are the other attributes we considered in the RF model.

3.4.4 Transit Itinerary Inference

Automatic detection of transit itineraries from smartphone travel surveys is valuable to transporta-

tion planners for analyzing transit planning scenarios [82]. Our approach to infer transit itinerary is

two-fold: first, it finds all possible transit itineraries between each origin and destination. Second,

by training a machine learning model, the actual transit itinerary (i.e. the one chosen by the travel-

ers) is detected. From a graph theoretical perspective, finding possible transit itineraries between an

Origin-Destination requires a graph search algorithm, such as Dijkstra’s [138], Bellman-Ford [139]

or Multiobjective A∗ [140, 141] algorithm. Such algorithms search among all possible paths for the

65



one that incurs the smallest cost (e.g. shortest travel time or minimum travel distance) [140, 141].

Detected itineraries are made up of a series of nodes and links from the transit and street networks.

In this study, we have used the GTFS-based transit network, and the street network is taken from

OpenStreetMap [142]. The graph search algorithm used is the one available through OpenTrip-

Planner (OTP) [131], an open-source, multimodal trip planning software system. OTP uses the

Multiobjective A∗ [140, 141] algorithm to find candidate transit itineraries (sequence of routes)

between each origin and destination.

One approach to identifying transit itinerary among a set of possible alternatives is to match the trip

trajectory and all candidate transit itineraries to find the itinerary chosen by the traveller. However,

some problems arise with this approach. It is not always straightforward to identify the actual transit

itinerary by matching the travel trajectories and all possible transit itineraries. First, GPS trajectories

do not always perfectly match candidate transit itineraries due to errors in GPS recordings as well as

signal loss in some urban areas or during underground trips. Second, when a transfer has occurred

during a trip, there is a walking connection between the two transit routes which is not easy to

detect, especially when transfers occur between bus and metro.

To solve such problems, some rules need to be applied. For example, a rule is required to specify the

acceptable overlap (matching) percentage between the trip trajectory and alternative transit routes

in order to say that the alternative route and the trip trajectory are the same. However, there is a

wide spectrum of overlapping percentage values, from around 10% for metro trips where there is

signal loss, or above 90% when the trip is done by bus without any transfer or signal loss.

Furthermore, we found that besides the overlapping percentage value, other attributes can help us

to identify the chosen alternative, such as walking distance or waiting time during a transit trip. In

addition, as the routing algorithm finds all possible transit routes between each Origin-Destination,

sometimes it return unreasonable transit itineraries (e.g., far too long or circuitous) that can be easily

rejected by setting a condition on the length or duration of transit itinerary. Hence, we decided to use

a classifier, i.e. Random Forest, instead of a set of rules to identify transit itinerary. The attributes

used in the RF model are shown in Table 3.4. The flow chart of the processing and estimation of the

transit itinerary detection algorithm is shown in Figure 3.3.
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Table 3.4: Attributes Used in Transit Itinerary Inference Analyses.

Attribute Description
GPS tracks attributes
GPS AVG SPEED GPS tracks average speed
GPS TIME Time interval between the first and last GPS track of a trip
GPS AVG DIST Average distance between consecutive GPS point

Attributes from OTP
OTP LEN Itinerary length
OTP TRANS TIME Total transit time of each returned (by OTP) itinerary
OTP WALK TIME Total walking time of each returned (by OTP) itinerary
OTP WAIT TIME Total waitingtime of each returned (by OTP) itinerary
OTP TIME Total travel time of each returned (by OTP) itinerary
OTP TRANS Number of transfers along each returned (by OTP) itinerary
OTP WALK DIST Walking distance of each returned (by OTP) itinerary
OTP ORDER The order of itinerary returned by OTP
OTP AVG SPEED Itinerary average speed

Attributes from GPS Tracks and OTP
DIFF LEN Difference between GPS tracks length and itinerary length
OVL PERC Overlapping percentage of itinerary and GPS tracks

3.4.5 Activity Detection

The flow chart of activity detection algorithm is shown in Figure 3.4. The RF model is generated

based on attributes shown in Table 3.5. The attributes come from three different data sources: MTL

Trajet, land-use and Foursquare data. There are 61 attributes altogether, categorized into four major

levels: (a) Socio-demographics, (b) Trip Characteristics, (c) Land-use, and (d) Foursquare.

3.5 Model Estimation

This section represents the results of mode detection, transit itinerary inference and activity detec-

tion models.

3.5.1 Mode Detection

As our basic/reference model, we started with the decision tree. However, as the prediction accuracy

of decision tree models were around 70-80% and since the Random Forest model is an ensemble of

decision trees and always achieves higher prediction accuracies, we continued our work on Random
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Figure 3.3: Flow Chart of Transit Itinerary Inference Model.

Forest models. To detect mode of transport, we generated Random Forest models with different

numbers of trees, ranging from 100 to 2000. We observed no change in variable importance or

prediction accuracy for Random Forests with more than 1000 trees. Also, we allowed up to 8

attributes to be randomly sampled at each split based on previously published recommendations

[79, 84, 87]. Figure 3.5 demonstrates the variable importance plot pointing to how important each

variable in classifying trip mode. The variable importance values have been calculated by dividing

the raw variable importance by the standard error, as explained in Section 3.4.2. Hence, we use the

these values to test the null hypothesis of zero importance for the variables at 95 percent confidence

level (i.e. |z| ≥ 1.96). Obviously, for all the variables in the Random Forest we can reject the null

hypothesis, as all the values in Figure 3.5 exceed the z-score at 95 percent confidence value.

The most important variable, by far, is 85th percentile of speed. Average speed, direct distance,

cumulative distance and “distance between trip origin and nearest transit stop” are the next most

important variables. Among socio-demographics, average neighborhood price, as an indicator of

income, is most important attribute.
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Figure 3.4: Flow Chart of Activity Detection Model

3.5.2 Transit Itinerary Detection

We developed one binary RF classifier to detect true transit itinerary among a set of transit itineraries

generated by OTP. The RF classifier was allowed to grow with 1,000 trees, with 8 randomly sampled

input attributes in each split. Figure 3.6 demonstrates how important (as explained in Section 3.4.2)

each attribute is to labeling the itineraries. The most important variable is overlap percentage be-

tween actual chosen itinerary and the itinerary produced by routing algorithm (OTP). The next most

important variables are waiting time, in-vehicle transit time, walking distance and number of trans-

fers along each transit itinerary, pointing to the fact that travelers tend to minimize the waiting and

in-vehicle time, walking distance as well as number of transfers. Also, we tested the null hypothesis

of zero importance for the variables in Figure 3.6. As the importance of all the variables exceeds

the z-score at 95 a percent confidence level, we can reject the null hypothesis.

3.5.3 Activity Detection

To detect the activities at trip destinations a RF model was developed using the attributes listed

in Table 3.3. The RF model was generated with the same values as the two previous RF models

for hyperparameters. Figure 3.7 shows the variable importance results of the RF model. Obvi-

ously, socio-demographic variables, i.e. age and average neighborhood price, as well as mode
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Table 3.5: Attributes Used in Activity Detection Analyses.

Attribute Definition
Socio-demographics
AGE 0: age between 16-24 ,1: 25-34 , 2: 35-44, 3: 45-54, 4: 55-65, 5: 65+
AVG PRICE NEIGH The average value of residential buildings around each individual’s home

OCCUPATION
0:full-time worker, 1: part-time worker, 2: Student,
3: Student and worker, 4: Retired 5: At home

SEX 0:male, 1: female, 2: other/neither

Trip Characteristics
DAY 1-7 for Monday through Sunday
CBD ORIGIN 1: if the origin is located in Montreal’s CBD, 0: otherwise
CBD DESTIN 1: if the destination is located in Montreal’s CBD, 0: otherwise
HOME DEST Direct distance between trip destination and individual home location
STUDY DEST Direct distance between trip destination and individual education location
WORK DEST Direct distance between trip destination and individual work location
HOME ORG Direct distance between trip origin and individual home location
STUDY ORG Direct distance between trip origin and individual education location
WORK ORG Direct distance between trip origin and individual education location
HOUR Time of day from 0 to 24
MODE Validated mode of transport via which the trip as been done
MTL ORIGIN 1: if the origin is located in Montreal Island, 0: otherwise
MTL DESTIN 1: if the destination is located in Montreal Island, 0: otherwise
TRAVEL TIME Total travel time of the trip

Land-use (number of land-use parcels in 250 meters around a trip destination)

LU *
23 different attributes each one shows the frequency of the corresponding
land-use category

Foursquare (number of checkinCounts in 250 meters around a trip destination)

CH *
10 different attributes each one shows the checkinCounts for the corresponding
Foursquare category

Foursquare (number of usersCounts in 250 meters around a trip destination)

UC *
10 different attributes each one shows the usersCounts for the corresponding
Foursquare category

and “distance between destination and individual’s home” are among the most important variables.

Foursquare checkinCounts for “recreation,” “transport infrastructure” as well as “art and entertain-

ment” follow in importance. The next important variables are unoccupied land-uses and Foursquare

usersCounts for “recreation”. Also, the null hypothesis of zero importance for the variables in

Figure 3.7 is rejected at the 95 percent confidence level.

In the next section, we have implemented a cross-validation procedure to validated the generated
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Figure 3.5: Variable Importance Plot Showing the Mean Decreases in Predictive Accuracy of Mode
Detection Model.

RF models.

3.6 Discussion

This section presents the predictive accuracy of the different models as well as comparing the results

with previous studies in the literature.

3.6.1 Prediction Accuracy Assessment

To assess the predictive performance of the RF models, k-fold cross-validation was used, where k

= 10, as commonly adopted in the literature [59, 79]. The cumulative results of the 10-fold cross-

validation for the RF models have been presented in a confusion matrix. Tables 3.6 to 3.8 show the

analysis for the mode, transit itinerary and activity detection Random Forest models, respectively.

The confusion matrices used in this section were generated based on the methodology described by

Aggarwal [143]. Each column of a confusion matrix shows the total actual number of observations
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Figure 3.6: Variable Importance Plot Showing the Mean Decreases in Predictive Accuracy of Transit
Itinerary Inference

for a given class over 10 iterations. In other words, each column indicates the total number of

observations for a given class in the original dataset. On the other hand, each row is equal to the

number of observations predicted by a prediction model to be of a given class [79]. Each confusion

matrix also presents two complementary measures to assess the per-class accuracy of the predictive

model: precision (positive predictive value) and recall (sensitivity) [143]. The precision value for

a given class i indicates the percentage of observations predicted by the model as class i that are

actually of class i in the test dataset. Also, recall that the value for a given class i represents the

percentage of actual observations of class i that have been predicted by the model as class i.

For illustration, looking at the very first column of Table 3.6 indicates that of the actual 1,176 walk

trips the mode detection RF model predicted 933 trips as walk, 41 trips as bike, 108 trips as public

transit, 92 trips as car and 2 trips as “car and public transit”. This indicates that 79.34% of the actual

walk trips have been predicted correctly by the model. Similarly, looking at the very first row of

Table 3.6 we can see that the mode detection model predicted 1,127 trips to be walk trips, out of

which 933 were truly walk, 41 trips were bike, 95 trips were public transit, 53 trips were car and

5 trips were “car and public transit.” This corresponds to a 82.79% precision performance of the

mode detection model for walking. Overall, the prediction performance of “car,” “public transit”
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Figure 3.7: Variable Importance Plot Showing the Mean Decreases in Predictive Accuracy of Ac-
tivity Detection Model (the first 30 important variables)

Table 3.6: Confusion Matrix Analysis for Mode Detection Model.

Trip Mode Walk Bike Public transit Car Car and public transit Precision(%)
Walk 933 41 95 53 5 82.79
Bike 41 527 31 48 6 80.70
Public transit 108 42 1907 146 83 83.42
Car 92 47 279 4660 37 91.10
Car and public transit 2 0 20 7 67 69.79
Recall (%) 79.34 80.21 81.78 94.83 33.84

and “walk” trip modes is high both in terms of precision and recall. As we expected “Car and public

transit” trip mode has the lowest precision and recall values, indicating this trip mode has similar

attribute values to both “car” and “public transit.” This caused these trips to be wrongly classified

as car or public transit relatively often. Looking at the “Car and public transit” column, we see that

of the 198 “Car and public transit” trips, 67 were correctly detected, While 83 trips were detected

as car and 37 trips were detected as public transit, resulting in a low recall rate of 33.84%.

With respect to transit itinerary detection (Table 3.7), two classes, i.e. true and false itineraries,

were validated. The third column of Table 3.7 shows the total number of transit trips in TII dataset.
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Table 3.7: Confusion Matrix Analysis for Transit Itinerary Inference Model.

Class False Itinerary True Itinerary Precision(%)
False Itinerary 566 111 83.60
True Itinerary 111 488 81.47
Recall(%) 83.60 81.47

Table 3.8: Confusion Matrix Analysis for Activity Detection Model.

Activity Education Health Leisure Shopping/errands Return home Work Precision (%)
Education 4,426 219 485 478 241 212 73.02
Health 61 1,902 74 47 42 50 87.41
Leisure 677 609 11,487 1,386 955 971 71.41
Shopping/errands 1,070 1,009 3,778 22,656 2,360 2,747 67.39
Return home 615 464 1,965 2,633 16,474 2,050 68.07
Work 328 513 1,020 1,656 862 16,382 78.91
Recall(%) 61.67 40.33 61.07 78.51 78.69 73.09

Among the 599 transit trip segments in the TII dataset, 488 of them were validated correctly result-

ing in an 81.47% recall rate. Also, there were 677 not chosen, or false itineraries, among which 566

itineraries were correctly classified as False.

The confusion matrix for the activity detection model is shown in Table 3.8. The highest predic-

tion accuracy belongs to the purpose health, with about 87% accuracy. However, looking at the

“health” column in Table 3.8 indicates that among 4,716 trips with health as purpose in the MTL

Trajet dataset, only 1,902 trips were correctly classified as “health” trips. This low recall rate tells

us that a large number of health purpose trips are classified wrongly, predominantly as shopping

trips, maybe due to the similarities between the attributes of these two activities or maybe because

many health-related activities are accompanied by some shopping activities causing respondents to

incorrectly validate the health purpose trips as shopping trips. The return home trip purpose has the

highest recall rate in Table 3.8, meaning that 78.69% of return home trips in the dataset are correctly

classified. The lowest prediction accuracy belongs to the shopping/errands activities, with 67% ac-

curacy rate. This low prediction accuracy may be due to the similarity between shopping/errands

trips and leisure trips, causing the RF model to predict shopping/errands as leisure trips. Also, the

model has predicted a considerable number of return home trips as shopping/errand trips. This error

may due to the fact that individuals usually do their daily shoppings on their way to home from

work and at grocery stores close to home.

Summarizing the results, the mode, transit itinerary and activity detection RF models demonstrates
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an overall accuracy of 87%, 81% and 71%, respectively.

3.6.2 Comparison with the previous studies

Comparing prediction accuracy rates across studies needs to be done carefully because of differ-

ences in sample sizes, number of classes, and the quality of data across studies [79]. As mentioned

in Section 5.2, many studies in the literature have been based on small or researcher-collected

smartphone data. In addition, the validation process can also effect the prediction accuracy of

the models. Validation processes in smartphone travel surveys are usually done through an in-app

prompt, a prompted-recall survey or a combination of them. Validating trip characteristics through

a prompted-recall surveys can enhance the accuracy of reported trip characteristics and has a critical

effect on the prediction accuracy of classifiers. The recall is usually implemented on the internet,

when respondents are required to correct their trip characteristics if necessary [111]. Surveyor-

intervened prompted recall surveys have also been used in some studies [111]. In such surveys, the

surveyors ask respondents by telephone to recall the details of their trips.

Also, the number of categories varies across studies, ranging from very coarse (e.g. motorized/stationary

[44]) to relatively fine (e.g. walk/bike/bus/metro/car [39]). Such differences are also observed

across activity detection studies, ranging from very general (e.g. indoor/outdoor [4]) to fine (e.g.

work/education/shopping/eating out/recreation/Personal business/return home [79]). Such differ-

ences need to be considered when comparing the prediction accuracy of classifiers.

Furthermore, smartphone travel surveys varies regarding data from mobile phone sensors, such as

GPS, accelerometer, gyroscope, rotation vector and magnetometer [44, 45] all of which have been

used when detecting mode of transport [39, 43]. However, the larger the number of sensors that

are used by an app, the greater the impact on battery life on respondent devices [54]. In addition,

middle to low end smart-phones are not usually equipped with the all sensors. Hence, for large-scale

applications, using few sensors is often optimal [39, 54, 118].

Taking these considerations into account, our results compare well with other research in the litera-

ture. With respect to mode detection (Table 3.6), we have chosen studies that have used data from

GPS sensors and whose validation process is similar to the in-app prompt validation process of the

MTL Trajet data set. Dabiri and Heaslip [39] have reported test accuracies of 84.8% and 78.1%,
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on the GeoLife dataset [144], for their Convolutional Neural Network and Random Forest models,

respectively. Their best model, is able to predict walk, bike, bus, driving and train, with 81.6%,

90.3%, 80.7%, 86.6%, 92.3% precision, respectively. Also, the study of Zheng et al. [64], which

is the first solid mode detection framework from 2008, reported accuracies of 89%, 86%, 66% and

65% for the walk, driving, bus and bike modes, respectively. Their decision tree-based inference

model, results in an overall accuracy of 76.2%. Both the aforementioned studies [39, 64] have used

GPS data from mobile phones, similar to the MTL Trajet. Moroever, they have small sample sizes

of 69 and 65 persons, respectively.

The Random Forest model in this study shows an overall accuracy of 87% and can predict walk,

bike, public transit, car as well as car and public transit with 82.79%, 80.70%, 83.42%, 91.10% and

69.79% precision, respectively. The results demonstrates that overall accuracy of our Random For-

est model is higher than the overall accuracy of both aforementioned comparable studies, although

regarding bike trips our accuracy is lower than the corresponding accuracy in Dabiri and Heaslip’s

study and higher than that of Zheng et al [64].

Also, Gonzalez et al. [69] produce similar accuracy rates of 92% for car trips and 81% for bus trips,

where our mode detection RF model predicts car trips with 90% and public transit trips with 83%

accuracy rate.

Bantis and James Haworth [118] have developed several models, including a Random Forest model,

to detect three modes of transport (walk, bus/car and train) as well as stationary points from GPS

and accelerometer data as well as users characteristics. Their training data contains trips from 5

individuals. They have proposed a hierarchical dynamic Bayesian network and compared the results

against Random Forest, SVM, and Multilayer Perceptron classifiers. The accuracy of their proposed

model is 90%, while it can predict Stationary status as well as Walk, Bus/Car and Rail trips with

94%, 65%, 88%, 91% precision, respectively. Although their categories are different from ours and

the sample size of two studies are not similar, our Random Forest model predicted walking trips

with higher precision, i.e. 65% vs. 82.79%. However, the overall prediction accuracy of our model

is about 4% lower than their result, maybe due to lack of accelerometer data in our data set.

Eftekhari and Ghatee [44] have applied different models to detect the movement and the stationary

statuses in the motorized and non-motorized modes on a smartphone travel survey of 9 users. Their
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data set contains data from accelerometer, magnetometer and gyroscope sensors. Their best infer-

ence model can recognize the motorized mode with 95.2% accuracy. However, their result is not

comparable with the results of this study or other studies with dissimilar categories.

We could not find any result of accuracy for “car and public transit” trips in the literature. Our

Random Forest model can predict this mode with 69.79% precision, which shows that more work

is needed regarding detecting multimodal trips.

With respect to activity detection (Table 3.8), the Random Forest model developed by Ermagun et

al. [79] produced an overall accuracy of 64% for predicting 5 trip purposes.They have reported the

precision of 50.10%, 61.49%, 51.92%, 55.62% and 47.04% for predicting Eat out, Education, Per-

sonal business, Shopping, as well as Social, recreation, and community, respectively. Our Random

Forest model is able to predict Education, Shopping/errand and Leisure with 73.02%, 67.39% and

71.41% precision, respectively and shows an overall accuracy of 71%. Also, the RF model gen-

erated by Oliveira et al. [76] predicts activities with a 65% accuracy rate, which is lower than the

result in this study.

Xiao et al. [111] have applied artificial neural networks combined with particle swarm optimization

on a surveyor-intervened prompted recall survey to detect 5 trip purposes (Home, Work/education,

Eating out, Shopping, Social visit, Picking up/dropping off someone). Their sample size is 352

respondents and their proposed model shows the accuracy of 96.5%, which is higher from our

model. We think that, besides the differences between modeling approaches, the high quality of

their validated data, gathered by a surveyor-intervened prompted recall survey, contributes to the

high prediction accuracy of their classifier.

Regarding transit itinerary detection (Table 3.7), we found only one study in the literature, that of

Zahabi et al. [82], who reported an accuracy of 87% of for their rule-based transit itinerary detection

algorithm. The study reported correctly predicted distance of transit trips while our Random Forest

model uses trip segment as unit of analysis. As such, the results of the two studies are not perfectly

comparable.
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3.7 Conclusion

This research contributes to the literature on GPS-based travel diary surveys in four important ways:

(1) it demonstrates the potential of deriving complete trip information (i.e. not only commonly

inferred trip characteristics such as mode, but also purpose and transit itinerary) from smartphone

travel surveys; (2) it shows that socio-demographic characteristics of travellers can play an important

role in predicting the mode and activity from smartphone travel surveys; (3) it also contributes to

the literature of transit itinerary inference by introducing a new approach to infer transit itinerary

from GPS data; and finally (4) it shows the advantages of using other complementary data sources

such as location-based social network APIs, like Foursquare, or GTFS data alongside GPS traces to

develop more accurate predicting models.

Although there are still some hurdles to overcome, we believe that smartphone travel surveys have

the potential to replace traditional travel surveys. Here, we try to address some of these hurdles.

First, large-scale smartphone travel surveys may not produce the same quality of validated data

as small or researcher-collected smartphone travel surveys. Prompted-recall surveys can improve

the quality of gathered data by reducing the self-report errors, however, this comes at the expense

of rising the surveying cost and more burden on the respondents. Actually, the need for labelled

data is a requirement of supervised machine learning models used in the literature and the current

study. Using semi-supervised or unsupervised models may help to reduce or eliminate the need

for labelled data. Although there are some studies [37] investigating semi-supervised approaches

to detect mode of transport, more research is needed to adequately evaluate these methods in this

context. Second, detecting multimodal trips is usually harder than detecting uni-mode trips from

GPS traces. Future studies should also investigate multimodal trip detection methods. Third, the

data from traditional household travel surveys are also have used in activity-based models [24]

which need the information about tours of travellers as well as the sequence of their activities along

a day. While a lot of studies in the literature aim to detect trip characteristics and single activities,

there are few studies, like Lin et al. [119], aim to infer activity sequences as well as tours from

smartphone travel surveys. Hence, more research is needed in the field to make the data from

smartphone travel surveys applicable for activity-based modeling approaches.
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The benefits related to smartphone travel surveys, such as lower costs and less user burden, provide

encouragement for future research in the area to improve the prediction performance of models

as well as overcome the above mentioned hurdles along the way. The results of current research

demonstrate the potential of smartphone travel survey apps to be used as a stand-alone large-scale

household travel survey in the future. Also, this paper shows that the trip characteristics extracted

from GPS traces have the potential to be as complete as those of traditional survey methods, such

as CATI or paper-based household travel surveys.
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Chapter 4

Ensemble Convolutional Neural

Networks for Mode Inference in

Smartphone Travel Survey

Preamble

This chapter provides an application of deep learning for mode of transport detection using disaggre-

gate point-based features. In the previous chapter, Random Forest model was developed, to detect

mode of transport, as a machine learning approach. However, as Random Forest model was devel-

oped using aggregated segment-based features, in the current chapter we deployed a deep learning

model, i.e. Convolutional Neural Network(CNN), which is fed with disaggregated point-based fea-

tures and enables us to analyze the detailed information of each GPS point along a trajectory. More-

over, due to the success of CNN models in other fields of study, particularly in image recognition

tasks, there was a question about the application of such deep learning methods on the trajectory

data. Hence, the other goal of this chapter is to show the potential of one of the well-known deep

learning approaches in trip information inference. The CNN approach has been widely used in

image recognition tasks to analyse the pixel-wise information of the images in 2-dimension space.

However, the CNN models developed in the current study can analyze the point-based features in

80



trajectory data in a 1-dimensional space of GPS trajectories.

The models developed in this study are fed a smaller number of features compared to the Random

Forest model in Chapter 3. Moreover, as we had focused on the point-based features, the socio-

demographics have not used in the modeling procedure. Besides developing CNN models, we also

investigated different ensemble methods on top of several Convolutional Neural Networks. We

compared the results against other studies in the literature.

This research article appeared in “IEEE Transactions on Intelligent Transportation Systems”:

A. Yazdizadeh, Z. Patterson, and B. Farooq. Ensemble Convolutional Neural Networks for Mode

Inference in Smartphone Travel Survey. IEEE Transactions on Intelligent Transportation Systems,

pages 1–8, 2019.
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Abstract

We develop ensemble Convolutional Neural Networks (CNNs) to classify the transportation mode

of trip data collected as part of a large-scale smartphone travel survey in Montreal, Canada. Our

proposed ensemble library is composed of a series of CNN models with different hyper-parameter

values and CNN architectures. In our final model, we combine the output of CNN models using

“average voting”, “majority voting” and “optimal weights” methods. Furthermore, we exploit the

ensemble library by deploying a Random Forest model as a meta-learner. The ensemble method

with Random Forest as meta-learner shows an accuracy of 91.8% which surpasses the other three

ensemble combination methods, as well as other comparable models reported in the literature. The

“majority voting” and “optimal weights” combination methods result in prediction accuracy rates

around 89%, while “average voting” is able to achieve an accuracy of only 85%.
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4.1 Introduction

In the last two decades, advances in data collection techniques, particularly in the use of new tech-

nologies such as Global Positioning Systems (GPS) and smartphones have been changing the op-

tions available for collecting transportation demand data. Using the data collected from these emerg-

ing technologies typically requires methods of data processing and inference. Detecting transport

mode has received the lion’s share of attention in the literature as researchers have tried to infer

mode with methods ranging from rule-based approaches to artificial intelligence algorithms.

In recent years, deep neural networks have achieved considerable success in various applications,

particularly in image recognition tasks. The performance of traditional machine learning methods

are highly dependent on the choice of data representation (or features). Also a major part of efforts

in applying them is spent on pre-processing data and extracting “hand-crafted” features [145]. This

process of feature engineering is not only labor-intensive, but also underlines the weakness of many

machine learning algorithms; their lack of ability for them to derive important factors from data

[145, 146]. Moreover traditional approaches to feature engineering are highly dependent upon prior

or commonsense knowledge. Deep Learning approaches are increasingly used to automatically

engineer features for use in machine learning algorithms since they can uncover multiple levels of

representation, with higher-level features representing more abstract aspects of underlying datasets

[145].

With respect to inferring transportation mode with machine learning algorithms, hand-crafted ag-

gregate trip features such as trip length, mean speed, mean acceleration, etc. are typically provided

to classifier algorithms. As such, these methods typically fail to take account of the potentially rich

data available on individual GPS points along a trip. In addition, some engineered features, such

as maximum speed or average acceleration can be strongly collinear making it difficult for classi-

fiers to use them to distinguish between modes. Deep learning approaches allow for the automated

discovery of abstraction that can not only reduce the dependence of mode inference algorithms on

feature engineering, or on prior knowledge of the modeller, but can also discover factors related

to each GPS point that are usually overlooked by traditional machine learning algorithms. In this

study, we use GPS-point information as input for Convolutional Neural Networks (CNN) to infer
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the mode of transport. In addition, we take advantage of ensemble learning strategies to improve

the prediction accuracy of CNN models.

This research uses data collected by the smartphone travel survey app, MTL Trajet, which is an

instance of the smartphone travel survey platform, DataMobile/Itinerum [109]. MTL Trajet was

released as part of a large-scale pilot study on the 17th of October 2016 in a study that lasted 30

days. Over 8,000 people participated in the study [18].

The rest of the paper is organized as follows: a background section describes previous work on

transport mode inference. The methodology section sets out the framework of the CNN as well as

of the data pre-processing and ensemble method configuration. The next section after that presents

the results of the CNN and ensemble models on the MTL Trajet dataset. The last section concludes

the paper.

4.2 Background

This section reviews previous research related to mode detection from smartphone data. We also

describe the mathematical operations used in the Convolutional Neural Networks (CNN).

4.2.1 Mode Detection and Machine Learning

Mode detection has been done using various approaches in the literature, which include: rule-based,

machine learning, and discrete choice approaches. Elhoushi et al. [147] have done a comprehensive

and comparative literature review on travel mode detection using different sensors and different

classification methods.

Tree-based ensemble classification algorithms have been used by Xiao et al. [40] to classify mode

of transport. Their best ensemble method achieved a prediction accuracy of 90.77%. Wang et al.

[56] develop a Random Forest classifier combined with a rule-based method to detect six modes

of transportation using seven GPS-related features. Their method is able to detect more than 98%

of subway trips with an overall accuracy of the other five modes classification as high as 93.11%.

Assemi et al. [57] deployed a nested logit model with eight attributes to infer mode of transport

from smartphone travel surveys, implemented in New Zealand and Australia. They have reported
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an accuracy of 97% for New Zealand which includes data cleaning and 79.3% for Australia without

any pre-processing.

Endo et al. [58] proposed a deep neural network approach to automatically extract high-level fea-

tures. Their innovative approach converted raw GPS trajectories into a 2-D image structure and fed

it as the input to a deep neural network. As an alternative to the RGB (Red, Green, Blue) values of

an image pixel, stay time, i.e. the duration that a user stays in the location of the pixel, was used

as the pixel value. They integrated hand-crafted features with the image-based feature. Eventually,

they deployed traditional machine learning models, such as logistic regression and decision tree, to

predict mode of transport. Although they devised an innovative idea to convert GPS trajectories into

2-D images, the pixel values only contained stay time without taking into account the spatiotem-

poral or motion characteristics, such as speed or acceleration, of the GPS trajectories. Their best

models was able to detect the mode of transport with prediction accuracy of 67.9% on the GeoLife

dataset and 83.2% on the Kanto Trajectories dataset.

More recently, Dabiri and Heaslip [39] used CNN models to train a mode detection classifier. They

developed different architectures of CNN models on GPS trajectories, and finally combined their

output via an ensemble method. Their ensemble library comprised seven CNN models. They took

the average of the softmax class probabilities, predicted by each CNN model to generate the trans-

portation label posteriors. Although the study carried out by Dabiri and Heaslip [39] used the CNN

models, their study is different from our study in the following ways.

The segmentation method, the CNN architectures (explained in Section 4.3.1) and the survey size

used in two studies are different. The latter is particularly important. The current study is based on

a large-scale, real-world travel survey with about 8,000 participants, while the Dabiri and Heaslip

study used trajectory data from 69 users. Furthermore, we have used a different ensemble method,

i.e. a Random Forest model as a meta-learner explained in Section 4.3.1, which demonstrates better

prediction performance over the ensemble method developed by Dabiri and Heaslip [39].

Apart from the features used in the mode inference literature, features used in other fields of study

may contribute to transportation mode detection [39]. “Jerk” has been used in traffic safety analysis

to identify critical traffic events. Jerk is defined as the derivative of acceleration, or the rate of change

of acceleration over time [39]. GPS bearing rate has been used in driver behaviour profiling using
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smartphone data [148]. Bearing rate is defined as the change of bearing between three consecutive

GPS points [39] (Jerk and bearing rate are further explained in Section 4.3.1).

With respect to Convolutional Neural Networks, numerous architectures have been implemented in

the broad Deep Learning literature, although their fundamental elements are very much alike. With

respect to data dimensions, CNNs have been implemented on 1D, 2D and 3D data [146]. Since

CNNs can learn features as well as estimate classifier coefficients, they are able to accomplish

better prediction accuracy on large-scale datasets [146]. The success of CNNs in other fields of

study encourages us to implement it as a classifier to infer mode of transport. The data used in this

study represents a sequence of GPS points for each trip and can be considered as one-dimensional

data. However, since CNNs typically use same-size input, we split the trip trajectories into same-

length segments. The data preparation steps and modeling approaches have been explained in the

next section.

4.2.2 Convolutional Neural Networks

CNN models are a class of neural networks suitable for processing grid-like topology data [33],

which vary from 1D time-series data to 2D images. CNN models rely on affine transformation [33],

which involves a vector of inputs being multiplied by a matrix (also called kernels, or filters) to

produce an output. The multiplication by a matrix is referred to as convolution operation. Typically,

a bias vector is added to the result of the matrix multiplication. Next, a non-linear function, called

an activation function, is applied to the output of aforementioned operations. After the non-linear

activation function, a pooling operation is typically applied. We briefly explain each of these stages

below.

Generally, these mathematical operations, i.e. matrix multiplication, function activation and pool-

ing, form one “hidden layer” of a CNN model. The output of each hidden layer of a CNN model

can be fed as input into the next layer. The last layer of a CNN model produces class probabilities

by applying an activation function, such as the sigmoid or softmax functions. Figure C.3a shows

the general architecture of a CNN model.

Regardless of the dimensionality, the input data for a CNN model can be stored as fixed-sized multi-

dimensional arrays (or tensors) [90]. Hence, GPS trajectories in our dataset need to be converted to
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Figure 4.1: General architecture of Convolutional Neural Network. (CONV: Convolution)

fixed-sized arrays with different channels. This procedure is explained in Section 4.3.1.

4.2.3 Ensemble methods

Ensemble methods combine multiple classifiers and have been found to provide the possibility of

higher accuracy results than a single classifier. Well-known ensemble techniques include boosting,

bagging and stacking. Stacking combines the outputs of a set of base learners and lets another algo-

rithm, referred to as the meta-learner, make the final predictions [149]. A super learner is another

method that calculates the final predictions by finding the optimal weights of the base learners by

minimizing a loss function based on the cross-validated output of the learners [149].

The most common ensemble method used for neural networks is average voting that generates pos-

terior labels by calculating the average of the softmax class probabilities or predicted labels for all

the base learners [149]. Majority voting is another ensemble approach that counts the predicted

labels from all the base learners and reports the label with the maximum number of votes as the

final prediction. Another approach is to calculate the optimal weights of individual base learners.

The optimal weight of each base learner can be obtained by minimizing a loss function, i.e. the

mean square error (MSE), given output of the base-learners. By minimizing the loss function, better

performing classifiers are assigned larger weights. The final predictions of the ensemble are ac-

quired by voting using the optimal weights of classifiers. Using a meta-learner is another ensemble

approach that trains a learner, e.g. a Random Forest model, on the predicted class probabilities (or

labels) of all base-learners to make the final prediction.

4.3 Methodology

In this section, we describe the data used, data pre-processing, the CNN architectures used, hyper-

parameter value determination, and ensemble model configuration.
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4.3.1 Data

Three types of data from the MTL Trajet dataset were used in this analysis; trip mode of frequent

trips, coordinates data and user validated mode data. Upon installation of MTL Trajet, respondents

were asked a series of questions. Two of these questions related to travel mode for trips from

home to work or study location. For trips between these locations, respondents were asked what

mode of travel they typically used, and whether or not other modes were ever used. Coordinates

data contain respondent latitude and longitude obtained primarily through GPS. There are over 33

million location (primarily GPS) points in the MTL Trajet 2016 database. User validated mode

data include information on trip mode, i.e. walk, bike, car, public transit, provided by respondents.

When analyzing the data, it was found that mode data for trips between home, work and study

for respondents that used one (and only one) mode was less noisy than mode data recorded from

prompts. Hence, only validated trips from users who declared they used only one mode option to

travel between home and work or home and school were used.

We used the rule-based trip-breaking algorithm developed in Patterson & Fitzsimmons [109] to

detect start and end point of trips from raw GPS trajectories. The trip-breaking algorithm considered

dwell time between GPS points as the most prominent criterion for detecting trips. The trip-breaking

algorithm detects trip segments based on 3-minute gaps in data. Segments are then stitched back

together while controlling for velocity and parameters relating to the public transit network (i.e.

transit junctions and metro station location). For example, when two consecutive points are detected

within 300m of a metro station (data collection is sparse when underground), and the gap is less than

the maximum travel time by metro, the segments are joined as part of the same trip. Similarly, when

two consecutive points fall within the same intersection with bus correspondences, additional time

(10 minutes instead of 3 minutes gap) was allowed.

4.3.2 Data Preparation

We considered five channels for the input data for the CNN models: distance to previous point,

speed, acceleration, jerk, and bearing rate, as recommended in the literature [39]. Speed is calcu-

lated using the distance between each two consecutive GPS points divided by their time interval.
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Figure 4.2: A 70-point Segment with 5 Channels.

Acceleration is also defined as the derivative of speed or the rate of change of speed over time.

These characteristics constitute the channels of each segment as shown in Figure 4.2. These seg-

ments are fed as input to the CNN models. Jerk is defined as the rate of change in acceleration.

Bearing is a term used typically in navigation and defined as the angle between the direction of

vehicle to the destination and the magnetic north. Bearing is different from heading, as heading is

the direction in which a vehicle is moving. However, like bearing, the heading is defined in degrees

from magnetic north. Figure 4.3 demonstrates the bearing rate of a moving vehicle.

Bearing rate values vary across different transportation modes. For example, buses and cars usually

do not experience sharp changes in steering angle while travelling between traffic lanes. As a result,

their heading does not change regularly. However, pedestrians and bike riders more commonly

experience changes in their heading. The formula to calculate the bearing (β) of two consecutive

GPS points (p1, p2) is defined by following equations [39]:

β1 = arctan(X,Y ) (13)

where:

X = cos(latp1) ∗ sin(latp2)− sin(latp1) ∗ cos(latp2)∗

cos(lonp2 − lonp1)

Y = sin(lonp2 − lonp1) ∗ cos(latp2)

The lon and lat represents the longitude and latitude of GPS points in radians. The bearing rate is
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Figure 4.3: Bearing (β1andβ2) and Heading of a Moving Vehicle.

defined as the absolute change in the bearing of two consecutive GPS points and can be obtained by

the following formula [39]:

Bearing Rate =| β2 − β1 | (14)

Where β1 and β2 are the bearing of points p1 and p2 calculated by Equation 13. As shown in

Figure 4.3, at least three consecutive GPS points are required to calculate the bearing rate, since

the bearing of a GPS point is calculated according to its following point. For example, as shown in

Figure 4.3 the bearing of vehicle at the first position, i.e. p1, is calculated according to p2, and the

bearing of the vehicle at p2 is calculated according to p3, as in above formulas.

The input data of the CNN models needs to be of fixed size. As the number of GPS points along

trips vary, we tried to split trips into m-point segments, where m was the average (70 points) or

median (120 points) number of points for trips in the dataset. After examining both 70 and 120 point

segments we found the best performance of CNN with seventy-point (average length) segments. For

those segments with the number of points less than 70, the remainder of the segment was padded

with zeroes. The resulting dataset consisted of 3,845; 8,515; 7,415 and 15,275 walk, bike, transit

and car segments, respectively.

We also implemented other data pre-processing steps to remove errors from GPS trajectories. We

removed trajectories with less than 10 GPS points. Furthermore, we only considered segments from
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Figure 4.4: Convolutional Neural Network Architecture with N convolution layers and one Fully-
connected layer.

those respondents who had validated at least three trips during the survey. Also, restrictions on

speed and acceleration between two consecutive GPS points was applied as suggested by Dabiri

and Heaslip [39].

4.3.3 CNN Architecture

The overall architecture of the CNNs used in the current study is illustrated in Figure 4.4. A typ-

ical CNN architecture consists of three layers: convolutional, pooling and fully-connected layers.

Our model begins with segments of size 70 × 5 that contains the 70 GPS points and 5 channels.

The convolutional layers of the CNN are formed by a convolution operation followed by a max-

pooling operation. The Leaky Rectified Linear Unit (Leaky ReLU) activation function is applied

to the output of every convolutional layer. The last layer is fully-connected. The output of the last

fully-connected layer is fed to a 4-way softmax that produces a distribution over the 4 modes of

transportation.

Six different CNN architectures, shown in Table 4.1, were evaluated. Model A is a basic model

with only one convolutional and one fully-connected layer. Model B consists of four convolutional

and one fully-connected layer with convolutional and pooling kernels of size 8 × 1. Model C uses

a deeper architecture consisting of 20 convolutional layers and one fully connected layer. It has the

same number of kernels and kernel sizes for convolution as Model B, but with a max-pooling layer

of size 4 × 1. We make a deeper architecture in Model C by repeating the layers five times. We

implement Model C (and also Model E, as explained below) to evaluate the performance of wide

versus deep architectures for CNN models on our dataset.
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Model D is a wide neural network, i.e. it uses a large number of convolutional kernels relative

to the number of layers. The architecture consists of 5 convolutional layers followed by one

fully connected layer. The number of kernels in each layer is similar to the ones suggested by

Krizhevsky [150]. The first convolutional layer consists of 96 kernels of size 8 × 5, which are

applied with a stride of 1 on the 70 × 5 input segment. The second convolutional layer takes the

output of the first convolutional layer as input and has 256 kernels of size 8 × 96. There are 384

kernels of size 8 × 256 in the third and 384 kernels of size 8 × 384 in the fourth convolutional

layer. Also, the fifth convolutional layer consists of 256 kernels of size 8× 384. Each convolutional

layer is followed by a Leaky ReLU activation function and a max-pooling layer of size 8 × 1. To

keep the output size the same as the input size we use the same padding for both convolutional and

max-pooling kernels [90]. Also, we use stride 1 for both convolutional and max-pooling layers to

allow a high spatial resolution of GPS points.

Model E uses a deeper architecture, relative to Model D, consisting of 20 convolutional layers and

one fully connected layer. The architecture of Model E is similar to the architecture of Model

D in terms of number of kernels and kernel sizes. To reach a deeper architecture, each layer is

repeated four times. We use a 2 × 1 max-pooling layer after each convolutional layer with unit

stride and the same padding. Model F contains a larger number of kernels than the previous models.

We implement Model F to assess how far the larger number of kernels can improve the prediction

accuracy of a CNN model. The model consists of 6 convolutional layers with 128, 256, 512, 1024,

1024 and 512 kernels. The convolutional and pooling kernels are of size 8× 1. Finally, we applied

the fully-connected layer. For all the models, to avoid over-fitting we applied the Dropout method

before the fully-connected layer, and set each hidden neuron to zero with a probability of 0.5.

We tested different values for the size of convolutional (kernel) and pooling size, from 2 to 16.

We found lower prediction accuracies when the kernel or pooling sizes were set to 16. However,

with respect to kernel size, all the models with kernel size of 8 showed higher prediction accuracy.

This was not the same for pooling size, where as in deeper models, such as models B and E, the

prediction accuracies were better when we set the pooling size to 4 in Model B and 2 in Model E in

Table 4.1.
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Table 4.1: CNN Model Architectures

Model A Model B Model C Model D Model E Model F
2 layers 5 layers 21 layers 6 layers 21 layers 7 Layers

Input segment
conv 8-4

maxpool 4
conv 8-4

maxpool 8 5×
(
conv8− 4
maxpool4

)
conv 8-96
maxpool 8 4×

(
conv8− 96
maxpool2

)
conv 8-128
maxpool8

conv 8-8
maxpool 8 5×

(
conv8− 8
maxpool4

)
conv8-256
maxpool 8 4×

(
conv8− 256
maxpool2

)
conv8-256
maxpool 8

conv 8-16
maxpool 8 5×

(
conv8− 16
maxpool4

)
conv8-384
maxpool 8 4×

(
conv8− 384
maxpool2

)
conv8-512
maxpool 8

conv 8-32
maxpool 8 5×

(
conv8− 32
maxpool4

)
conv8-384
maxpool 8 4×

(
conv8− 384
maxpool2

)
conv8-1024
maxpool 8

conv8-256
maxpool 8 4×

(
conv8− 256
maxpool2

)
conv8-1024
maxpool 8
conv8-512
maxpool 8

Dropout
Fully Connected

4.3.4 Ensemble Model

In addition, we apply four methods to combine the predictions of CNN models: (a) average voting

(b) majority voting (c) optimal weights of individual base learners and (d) a random-forest model

as meta learner. For the third method, to find the optimal weight of each base-learner, we minimize

a loss function, i.e. the mean square error (MSE), given output of the base-learners. By minimizing

the loss function, better performing classifiers are assigned larger weights. The final predictions of

the ensemble are acquired by voting using the optimal weights of classifiers.

With respect to the fourth method, the predictions of base learners are fed to a Random Forest

classifier to make the final predictions. The Random Forest model was built using 800 trees. Also,

we allowed up to 8 attributes to be randomly sampled at each split.

In this study a series of CNN models as well as an ensemble method have been used. We used

ensemble models to improve the prediction accuracy of the CNN models. In addition, we tested

four different ensemble approaches for achieving the highest prediction accuracy. We refer to the

CNN models in the ensemble library as level-0 models and the methods to make the final predictions

as level-1 models. Level-0 includes models A-F (Table 4.1) as well as other base learners developed

based on different CNN architecture types and hyper-parameter values, shown in Table 4.2. Level-0

contains 75 base learners. Finally, each method in level-1 is applied on the output of Level-0 models
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Table 4.2: Hyper-parameter values used in Ensemble

Name Hyper-parameter value

Convolutional layer

Num. of layers: 6, 7, 11, 21
Num. of kernels: 2,4,8,16,32,98,128,256,384,512,1024
Kernel size: 2, 4, 8
Stride size: 1, 2
Stride type:SAME
Activation function: Leaky ReLU

Max pooling layer
Pooling size: 2, 4, 8
Stride size: 1, 2
Stride type:SAME

Output layer Activation: Softmax

Optimization method Adam optimizer with learning rate = 1e-4

Batch size 16

Number of epochs 20, 50, 100

to predict the final labels.

4.4 Results and Discussion

The CNN architectures were programmed in Tensorflow with GPU support. We used randomized

stratified sampling to ensure that all modes were represented equally in the training and test sets.

4.4.1 CNN models

In our first experiment we assess different CNN architectures in terms of: number of layers and

kernels, kernel and pooling size, stride size, activation function, optimization method and batch

size. We tested both Gradient Descent and Adam optimization algorithms, and found that the Adam

algorithm compares favorably to Gradient Descent. For Adam, we used a decay learning rate equal

to 0.95 and set the starting learning rate to 0.01. We also tested the fixed learning rate equal to

1e − 4 and found there is not any significant difference between the results of models with decay

or constant learning rates. Hence, we set the learning rate to 1e − 4 for all the models. We did our

first experiments with number of epochs equal to 20 and 50. To avoid over-fitting we used dropout

and early stopping methods [151]. With respect to batch size, we tested sizes of 16, 32, 64 and 128,

and got better results with a batch size of 16. We also tested “Tanh”, “Relu” and “Leaky Relu”

activation functions and achieved better results with Leaky Relu function.
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Table 4.3: Test Accuracy of the Models

Model type Model A Model B Model C Model D Model E Model F
Ensemble

(Average Voting)
Ensemble

(majority voting)
Ensemble

(optimal weights)
Ensemble

(RF as meta-learner)
Accuracy(%) 72.5 75.6 75.7 81.3 80.6 80.1 85.0 89.1 89.4 91.8

Table 4.4: confusion matrix analysis (ensemble with RF as meta-learner)

Mode of
Transport

Walk Bike Transit Car Precision(%) Recall (%) F-score(%)

Walk 708 32 29 0 91.1 92.0 91.6
Bike 32 1573 60 38 91.8 92.3 92.1
Transit 30 66 1296 91 84.8 87.4 86.1
Car 7 42 142 2864 95.7 93.8 94.7

Table 4.3 shows the results of six CNN models as well as the ensemble models. Model A is a

basic model and shows that a CNN with only one convolutional layer is able to predict the mode

of transport with 72.5% accuracy. Models B and C have different numbers of layers, i.e. 6 and 21

layers respectively, and possess the same number of kernels as well as kernel and pooling size. The

prediction accuracy of Models B and C is almost identical, although model C is marginally better

than model B.

Models D-F comprise higher numbers of kernels in each layer than the previous models and display

higher prediction accuracies. Models D-F show prediction accuracies of 81.3%, 80.6% and 80.1%,

respectively. The trade-offs between the depth (number of layers) and width (number of kernels)

of neural networks have been investigated by some researchers [152]. In fact, deeper networks can

show better results than shallower networks [152]. However, as He et al. [152] have mentioned, at

some point, the error in prediction accuracy of CNN models not only gets saturated, but gets worse

as the models get deeper. We see such a pattern when comparing models E and F with model D that

while deeper has lower prediction accuracy. Similar observations have been reported by Dabiri and

Heaslip [39]; they also found that a shallower network performed better than a network with deeper

configuration.

4.4.2 Ensemble model Results

Table 4.3 illustrates the prediction accuracy of ensemble models with different combining methods.

The first method (average voting) leads to a higher accuracy than even the best CNN model, i.e.

Model D. A better performance (89.4% prediction accuracy) is obtained using the majority voting

95



Figure 4.5: Train and Test Accuracy for Different Numbers of Epochs (Model D).

method. Finding the optimal weights of base CNN models leads to the same prediction accuracy as

the majority voting method. The highest prediction accuracy is obtained when using the Random

Forest model as meta-learner (roughly 91.8%).

Table 3.6 shows the confusion matrix of the ensemble method with RF as meta-learner, using a 5-

fold cross validation. Walk, bike, transit and car segments are predicted with 91.1%, 91.8%, 84.8%,

95.7% precision, respectively. Recall and F-score are also reported with the highest and lowest

values for car and transit. Car trips are easier to infer due to their higher speed and acceleration.

However, bus trips share some similarities with car trips, especially in dense urban areas where cars

and buses experience the same traffic conditions.

Figure 4.5 shows the accuracy of Model D on train and test . The accuracy on train dataset increases

with the number of epochs and the test accuracy remains constant after around 50 epochs. Apart

from what was mentioned above, another reason that accuracy on test dataset in neural networks

does not increase while the train accuracy goes higher without any over-fitting is the insufficient

number of samples in the training data [39]. Hence, the inclusion of more transit trips to the dataset

could possibly enhance the prediction accuracy of the CNN models.
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4.4.3 Comparison with classical machine learning models and previous studies

To assess the prediction accuracy of the CNN models and ensemble methods in this study, we

developed a Decision Tree (DT) as a classical machine learning algorithm as well as a Random

Forest (RF) model, which is an ensemble machine learning approach. We used several hand-crafted

features, as explained in [153], including average speed (km/h), 85th percentile speed, maximum

and minimum acceleration, travel time, etc. Like CNN models, there are hyper-parameters for DT

and RF. The tree depth is controlled by the required minimum number of observations in each node.

We tested different values, ranging from 1 to 40 for this parameter. The highest prediction accuracy

on test datasets was acquired with the required minimum number of observations in each node equal

to 20. With respect to the RF model we tried different numbers of trees in each forest, ranging from

100 to 2000. We found no improvement in prediction accuracy of RF models with number of trees

higher than 1000. The resulting DT reached the prediction accuracy of 73.4% for detecting mode

of transport. Also, the RF model, reached a predicting accuracy of 86.8%. Comparing these results

with the results of CNN models and ensemble models shows that the ensemble methods, either a

Random Forest (ensemble of decision trees) model or an ensemble of CNN models, outperform the

single learners, such as the DT or single CNN models in our study. In addition, the CNN model

in some cases, such as Models A-C in Table 4.3, demonstrates a prediction accuracy close to the

DT. However, with wider or deeper CNN architectures, such as Models D-F, we can reach higher

accuracy prediction performance.

It has been said that comparing prediction accuracy rates from different studies can be misleading

because of differences in sample sizes, number of classes, and the quality of data across studies.

Bearing these considerations in mind, our findings compare favorably with previously obtained

results in the literature. Dabiri and Heaslip [39] have reported a test accuracy of 84.8% for an

ensemble Convolutional Neural Network. Their best model, is able to predict walk, bike, bus,

driving and train, with 81.6%, 90.3%, 80.7%, 86.6%, 92.3% precision, respectively. Also, Zheng

et al. [64] have reported accuracies of 89%, 86%, 66% and 65% for walk, driving, bus and bike

modes, respectively. Their decision tree-based inference model, results in an overall accuracy of

76.2%. Both the aforementioned studies [39, 64] used GPS data from mobile phones, similar to
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that collected in the MTL Trajet data, although they had much smaller sample sizes of 69 and 65

persons, respectively. Our best ensemble model shows an overall accuracy of 91.8% and is able to

predict walk, bike, public transit, car with 91.1%, 91.8%, 85.8%, 95.7% precision based on data

from over 8,000 users. The results demonstrate that overall accuracy of our best model is superior

to the overall accuracy of both aforementioned comparable studies.

Also, Gonzalez et al. [69] produced precision rates of 92% for car trips and 81% for bus trips. Bantis

and Haworth [118] developed several models to detect three modes of transport (walk, bus/car and

train) using stationary points from GPS, accelerometer data as well as user characteristics. Their

training data contained trips from 5 individuals. They proposed a hierarchical dynamic Bayesian

network and compared the results against Random Forest, SVM, and Multilayer Perceptron classi-

fiers. The accuracy of their proposed model was 90%, while it could predict Stationary status as well

as Walk, Bus/Car and Rail trips with 94%, 65%, 88%, 91% precision, respectively. Although their

categories are different from ours and the sample size of the two studies are not similar, our best

ensemble model predicts walking trips with much higher precision, i.e. 91.1% vs. 65%. Moreover,

our best ensemble model predicts car trips with 95.7% precision, higher than all aforementioned

studies.

4.5 Conclusion

We developed a series of Convolutional Neural Networks augmented by different ensemble methods

to infer travel mode from trajectories gathered by a large-scale smartphone travel survey. The raw

trajectories of travellers were tailored in a manner that allowed feeding them as an input layer to a

CNN. Each trip was segmented into fixed sized segments with five channels. The channels include

“distance to previous point”, “speed”, “acceleration”, “jerk”, and “heading rate”. We investigated

different CNN architectures and combined their results via different ensemble methods to obtain the

highest prediction accuracy. Our ensemble library was composed of a series of CNN models with

different hyper-parameter values and CNN architectures. Afterwards, we combined the results of

CNN models with “average voting,” “majority voting” and predicting the optimal weight of each
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classifier. Furthermore, we exploited the ensemble library by deploying Random Forest as a meta-

learner. We find that all the ensemble methods outperform the individual CNN models. Moreover,

the ensemble method with Random Forest as meta-learner shows an accuracy of 91.8% which sur-

passes the other three methods. Finally, the “majority voting” and “optimal weight” combination

methods result in similar prediction accuracy rates around 89%.

This study contributes to the mode detection literature and the ITS community by using a meta-

learner classifier (Random Forest in our case) to aggregate the output of several base-learners (CNN

models). While an approach using a meta learner ensemble, i.e. applying a learner over the output

of a set of CNN base-learners, has been used in some applications in other fields [149], to the best

of our knowledge the approach has not been used in previous mode detection studies. Furthermore,

the data set used in this study has been collected as part of a large-scale travel survey, that shows

the capability of such smartphone-based travel surveys as a complementary (or even a replacement)

surveying tool to the current real-world household travel surveys.

In addition, considering that our study has been developed on trajectories gathered as part of a large-

scale and real world travel survey, we believe that smartphone travel surveys have the potential to

replace traditional travel surveys, such as face-to-face or computer assisted telephone interview-

ing(CATI), although there are still many hurdles to overcome. One of these hurdles is the quality of

the labelled trajectories. The labelled trajectories produced by large-scale smartphone travel surveys

may not show the same quality as labelled trajectories from small or researcher-collected smart-

phone travel surveys. Improving the trajectory collection and validation techniques for large-scale

travel surveys should be a focus of future studies while deploying state-of-the-art classification tech-

niques. Furthermore, as the need for labelled data is a requirement of supervised machine learning

models used in the literature and the current study, using semi-supervised or unsupervised models

may help to reduce or eliminate the need for labelled data.
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Chapter 5

Semi-supervised Generative Adversarial

Networks to Infer Transportation Mode

from GPS Trajectories

Preamble

This chapter introduces Generative Adversarial Networks (GANs) as a semi-supervised approach

to detect mode of transport. The models developed in Chapters 3 and 4 were supervised learners.

However, as mentioned in the literature review, Section 2.1, the are very few studies addressing

the application of semi-supervised learning approaches in trip information inference from trajectory

data. The GANs model developed in this chapter is a single-task learner and uses the point-based

features of GPS trajectory to identify mode of transport.

The semi-supervised approach in this chapter, is a generative model, which produces synthesized

trajectories similar to the real trajectories in the MTL Trajet dataset, and attempts to enhance the per-

formance of mode inference learner. The learner (discriminator) is this chapter has been developed

based on the architecture of the CNN learner in Chapter 4.
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Abstract

This study experiments with the use of adversarial networks to classify travel mode based on one-

dimensional smartphone trajectory data. We use data from a large-scale smartphone travel survey

in Montreal, Canada. We convert GPS trajectories into fixed-sized segments with five channels

(or variables). We develop different GANs architectures and compare their prediction results with

Convolutional Neural Networks (CNNs). The best semi-supervised GANs model led to a prediction

accuracy of 83.4%, while the best CNN model was able to achieve the prediction accuracy of 81.3%.

The results compare favorably with previous studies, especially when taking the large, real-world

nature of the dataset into account. The developed semi-supervised GANs models share the same

architectural innovations used in the image recognition literature, that we show can be used in

travel information inference from smartphone travel survey data, not only to generate more labeled

samples, but also to improve the prediction performance of the classifier . Future work will allow

exploration of better performing models either with more channels and/or improved architectures.
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5.1 Introduction

Over the past few decades, transportation planners have used travel surveys to collect travel demand

behavior in transportation planning and demand modeling. Traditional survey methods, such as

face-to-face interviews or Computer Assisted Telephone Interviewing (CATI) suffer from some

disadvantages including considerable implementation costs and decreasing response rates. Other

shortcomings, such as burden on respondents and respondent fatigue or forgetfulness, which cause

inaccuracies and error in gathered data, have been identified in many studies [21, 22]. With the

ubiquity of smartphones and advances in their technology, such as being equipped with different

sensors such as GPS and accelerometers, researchers are beginning to employ smartphones as a

travel data gathering tool. Inferring transport mode from GPS traces is one of the important steps in

deriving trip information from smartphone-based travel surveys.

Different approaches in the literature have been used to infer mode of transport from GPS traces,

such as rule-based algorithms [46], machine learning classifiers [59, 117], deep learning [39] and

discrete choice modeling [50]. Machine/deep learning methods can be divided into three large cate-

gories of learning approaches: supervised-, semi-supervised- and unsupervised learning (explained

in the next section). Most of the literature concerning machine learning and information inference

from GPS and smartphone data has used supervised learning approaches. Moreover, deep learning

(supervised) algorithms typically show their best performance on extremely large labeled datasets

[102]. One of the main challenges of these methods is thus obtaining (or gaining access to) such

datasets. Semi-supervised learning is one flexible strategy to reduce the required number of labeled

examples by studying large unlabeled data sets, which are easier to obtain [102].

Recently, Generative Adversarial Networks (GANs) [95] have shown promising results in image

and language processing. In the GANs framework, a generative model is set against an adversarial,

or a “discriminative” model, that learns to distinguish between the observations produced by a

“generative model” and real data observations [95]. While the GANs framework has mainly been

used for generating samples, it can be trained for semi-supervised learning, where the labels for a

considerable part of examples are missing. One example is CatGANs [100], which successfully

trained a discriminator classifier on unlabeled and partially labeled data.
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This study investigates the development of a semi-supervised GANs to infer mode of transport from

the GPS traces of travelers. The paper is organized as follows: a background section describes

the literature related to transportation mode inference and generative adversarial networks. Next

we describe the methodology used to train a semi-supervised GANs framework to detect mode

of transport from smartphone data. Also, the methodology section introduces the data processing

steps. Afterwards, the results section describes the developed models and their prediction results.

Finally, we present our conclusions and future directions.

5.2 Background

As mentioned in the previous section, there are three basic approaches for training in machine/deep [154]:

supervised, semi-supervised and unsupervised approach. In supervised learning, a set of labeled

training data is used to infer a function that maps an input to an output based on input-output pairs.

Semi-supervised learning is also a supervised learning class but where only a subset of training data

is labeled. Semi-supervised learning methods can still take advantage of unlabeled data for training.

In unsupervised learning, all training data are unlabeled. Unsupervised learning infers a function

that describes the structure of data and groups them. This section, briefly describe the unsupervised

and semi-supervised GANs approaches. Before that, we briefly review previous research related to

machine/deep learning used in mode detection from smartphone data.

5.2.1 Mode Detection and Machine Learning

Mode detection methods have been applied on various data sources including GPS trajectories

[37, 39, 153], accelerometer data from smartphones [44], and Wi-Fi signals [155]. Endo et al. [58]

attempted to use deep neural networks to automatically extract high-level features. They introduced

an innovative idea to convert the raw GPS trajectory points into a 2-D image structure as the input

into the deep neural network model. Instead of RGB (Red, Green, Blue) values of an image pixel,

they equivalently consider the duration time that a user stays in the location of the pixel. They de-

ployed traditional classifiers, such as logistic regression and decision tree, to predict transportation

mode. Their best models were able to detect the travel mode with prediction accuracy of 67.9%.
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Assemi et al. [57] developed a nested logit model to infer travel mode from smartphone travel

surveys, using eight attributes, i.e. speed distribution skewness, percentage of total trip travel time

with the speed ranging between 2 and 8 m/s, percentage of total trip travel time with the speed

ranging between 8 and 15 m/s, maximum speed, 95 percentile of acceleration, acceleration vari-

ance, maximum acceleration, and ratio of direct distance to travelled distance between origin and

destination. Their model can predict travel mode on GPS data gathered in Australia with 79.3%

of accuracy. They have also reported an accuracy of 97% based on the GPS data gathered in New

Zealand. However, they have mentioned that the high accuracy has been gained after undergoing an

excessive data pre-processing step. Wang et al. [123] used CNN models for deep feature learning.

They categorized the attributes into two classes: the point-level features and the trajectory-level

features. They selected speed, heading change, time interval, and distance as the point-level hand-

crafted features. They considered average speed, variance of speed, heading change rate, stop rate,

and speed change rate as the trajectory-level handcrafted features. Finally, they fed both type of

features into a deep neural network classifier.

More recently, Dabiri and Heaslip [39] used Convolutional Neural Network (CNN) to train a mode

detection model with an accuracy of 79.8%. They implemented different CNN models on GPS

trajectories, and finally combined the output of the CNN models via an ensemble method. Their

ensemble library was made up of seven CNN models from which they took the average of softmax

class probabilities, predicted by each CNN model, to generate the transportation label posteriors.

5.2.2 Generative Adversarial Networks

GANs were introduced primarily as unsupervised learners that benefit from setting up a super-

vised learning framework. However, besides unsupervised learning, GANs are also able to under-

take semi-supervised learning. Semi-supervised GANs have been implemented via three different

approaches in the literature. Class-conditional GANs were first introduced by Mirza and Osin-

dero [101]. As Mirza and Osindero [101] have explained, the unconditioned (traditional) generator

in GANs has no control on the class labels of the data being generated. Mirza and Osindero [101],

proposed a model able to direct the generating process by conditioning the generator on additional

information [101]. They explain how GANs are able to do multi-class labeling by conditioning the
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generator on class labels. Their proposed model can generate samples for each class. For example,

in image classification problems, you can ask Conditional GANs for a “horse” class, and it will

produce a picture of a horse.

The second approach for semi-supervised GANs enables it to predict K different output classes.

In this approach, instead of predicting one “real” class and one “fake” class, the GANs predicts K

different real classes. Fake (generated) data should result in the GANs being not confident about

which class to output. This approach was first developed by Springenberg [100] in the CatGAN

mode.

In the third approach, the GANs model outputs K+1 different classes. This semi-supervised GANs

approach was first introduced by Salimans et al. [99] and Odenda [156]. Salimans et al. [99] added

samples from the GANs generator G to their dataset, as a new “generated” class, and then used a

standard classifier to do the semi-supervised learning. So, if we consider a standard classifier that

classifies a data point x into one of K possible classes, the semi-supervised classifier will classify

the data point into K+1 classes, with the K+1th class containing the observations “generated” by a

GAN [99].

In this research we use the third approach proposed by Salimans et al. [99], because our main

objectives of using GANs is to classify the mode of transport and take advantage of generated

samples to improve the accuracy of classifier. The first approach, i.e. the conditional GANs, is more

relevant for generating samples for each specific class, not classification. The second approach is

able to classify the mode of transport, but does not directly benefit from the generated sample, as

the classifier only classifies the K real classes. But, the third approach, the one that we aim to use,

can do the classification and directly gaining advantage of generated samples (by considering them

as “K+1”th class) to enhance the prediction performance.

While GANs is mainly used as a generative model to generate samples through labeling the data

into “fake” and “real” [102], some studies have extended GANs for multi-class labeling. However,

almost all implementations of GANs models have been conducted in image processing or speech

recognition studies. To the best of our knowledge, analyzing GPS trajectories with semi-supervised

GANs models to detect the travel mode has not been done in the literature yet. Investigating how

semi-supervised GANs can benefit to mode detection by using generated samples is a question
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worth exploring.

5.3 Research Design and Methodology

The most well-known GANs architecture is the Deep Convolutional GAN (DCGAN) [157]. Most

GANs use at least some of the architectural innovations proposed in the DCGAN architecture. This

section describes the architectures of semi-supervised DCGANs models that are developed. More-

over, a data section describes the data and the pre-processing steps implemented on the trajectory

data.

5.3.1 Data

The entire MTL Trajet dataset comprises more than 33 million GPS points from over 8,000 re-

spondents. To identify trips and segments, the trip-breaking algorithm, which is a rule-based algo-

rithm, developed in Patterson & Fitzsimmons [109] was used. The algorithm recognizes segments,

whenever it detects a 3-minute gaps in data while checking speed and the public transit network

locational data. After implementing the trip-breaking algorithm on the GPS points, 623,718 trips

were detected, among which 102,904 trips were validated by respondents. Afterwards, we applied

several pre-processing and segmentation steps explained in the following.

Data Preparation

The input layer to the CNN or DCGAN models need to be of fixed size [39, 154], due to the

mathematical procedures and calculations [90], such as fixed-size kernel and stride in each layer of

a CNN model. However, the number of GPS points along a trip are not equal for all the trips in

the MTL Trajet dataset. Hence, we split the detected trips into fixed size segments. We examined

the average (70 points) and median (120 points) number of points for the length of the fixed size

segments. Following testing both 70 and 120 point segments, we observed stronger performance

of neural network models on seventy-point segments. We padded with zero when the segment size

was less than seventy points.

With respect to the labeling method, the smartphone app prompted travelers to validate their travel
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mode whenever a stop was detected throughout their movements during the day. In addition, re-

spondents were asked to declare their travel mode to main destinations by answering a questionnaire

when installing the MTL Trajet application. In particular, respondents were asked to reveal the lo-

cation of home, school and work and home, along with the transportation mode(s) used to travel to

these locations. We considered only the validated trips of those users who stated that they used only

one mode option to make a trip between home and work/school. The final dataset thereby consists

of 3845, 8515, 7415 and 15275 walk, bike, transit and car segments, respectively.

We calculated five characteristics for each point along a segment: “distance to previous point”,

“speed”, “acceleration”, “jerk”, and “bearing rate”, which have been used in several studies [39,

158, 159]. These characteristics are shown as channels of each segment in Figure 5.1. Afterwards,

these segments were fed as input to the discriminator of the semi-supervised DCGANs model. Jerk

describes the rate of change of acceleration. Bearing, as shown in Figure 5.2, is defined as the angle

between magnetic north and the direction of a point to its consecutive next point.

We can obtain the bearing (β) by applying the following equations on any two consecutive GPS

points, i.e. p1,and p2 [39]:

β1 = arctan(X,Y ) (15)

where:

X = cos(latp1) ∗ sin(latp2)− sin(latp1)) ∗ cos(latp2) ∗ cos(lonp2 − lonp1) (16)

Y = sin(lonp2 − lonp1) ∗ cos(latp2) (17)

Figure 5.1: A 70-point Segment with 5 Channels.
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The lon and lat are the longitude and latitude of GPS points in radians. The bearing rate is the

absolute change in the bearing of two consecutive GPS points and calculated by the following

formula [39]:

Bearing Rate =| β2 − β1 | (18)

Where β1 and β2 are the bearing of points p1 and p2 calculated by Equations 15-17. From this for-

mula, the bearing rate is equal to the absolute change in the bearing of two consecutive points. Also,

it is necessary to have at least three consecutive points to measure the bearing rate (as demonstrated

in Figure5.2), because the bearing of each point is calculated according to its following point.

Figure 5.2: Bearing (β1andβ2) and Heading of a Moving Vehicle.

5.3.2 Details of GANs Training

We trained the semi-supervised DCGANs on the MTL Trajet dataset. Hyperparameter optimization

is very important in training GANs. We trained models based on hyperparameters values previously

examined in the literature and random values that we thought were useful to test. We tested different

numbers of layers for both discriminators and generators from 2, 3, 4 and 12. Also, with respect to

the kernel size, different values were tested; 4,8,16, and 32. The number of filters per discriminator

and generator layer were tested based on the following values: 8, 16, 32, 64, 128, 256 and 512.

We trained different models with different batch sizes of 16, 32, 64 and 128. The models with

a batch size of 16 demonstrated better results. With respect to the activation function, we tested
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’Relu’, ’Leaky Relu’ and ’Tanh’ functions and got higher prediction accuracies with the Leaky

Relu function.

We applied one-sided label smoothing [99] to the positive labels of the generator. Label smoothing is

a technique that replaces the 0 and 1 labels for a classifier with smoothed values like 0.9 or 0.1. This

technique has been shown to enhance the performance of neural networks while facing adversarial

examples [160]. We used the Adam optimizer for training both generator and discriminator. In

addition, gradient clipping was used to keep the training procedure in steady state. Gradient clipping

prevents the norm of the gradient from exceeding a given value [33]. In the next section the results

of best trained GANs architecture for detecting GPS trajectories have been presented. Moreover,

we trained different CNN architectures and presented the best models as the baseline models to be

compared with GANs.

5.3.3 The Model Architecture

Table5.1a shows the architecture of different CNN and DCGANs models developed in this paper.

Models A, B and C, in Table 5.1a, are the CNN models and Models E and F are the semi-supervised

GANs models.

The generator and discriminator architecture of Model E are illustrated in Figure 5.3a and 5.3b, re-

spectively. We used convolutional layers for training the discriminator in the DCGANs framework.

There are usually three types of layers in a typical CNN architecture: convolutional, pooling and

fully-connected layers. We did not use any pooling layer in the DCGAN discriminator as suggested

by Radford et al. [157]. Our discriminator, in Model E, begins with segments of size 70 × 5 that

contains the 70 GPS points and 5 channels. Afterwards, three convolution operations with kernel

size of 8 and stride of 2 are used. The number of kernels in each layer is equal to 128, 256, and

512, respectively. The first convolution operation converts the input segment into a 35×128 output.

The output of the second and third convolutions are of size 18 × 256 and 9 × 512, respectively.

Afterwards, a fully connected operation is applied to the output of the third convolution layer and

produces a fully-connected layer of size 1 × 4608. The output of the last fully-connected layer is

fed to a 5-way softmax that produces a distribution over the 4 modes of transportation plus the fake

class, in other words the discriminator has K+1 output units corresponding to [Class-1, Class-2,...,
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(a) Architectures of Convolutional Neural Networks and Semi-supervised GANS

Model A Model B Model C Model D Model E

CNN CNN CNN Semi-supervised GANS Semi-supervised GANS
Generator Discriminator Generator Discriminator

Input [70× 5] Input [70× 5] Input [70× 5] Z [100] Input [70× 5] Z [100] Input [70× 5]
CONV8-32

MAXPOOL8
CONV8-128
MAXPOOL8

CONV8-96
MAXPOOL8

Projection&
reshape CONV8-32

Projection&
reshape CONV8-128

CONV8-64
MAXPOOL8

CONV8-256
MAXPOOL8

CONV8-256
MAXPOOL8 FS-CONV8-128 CONV8-64 FS-CONV8-512 CONV8-256

CONV8-128
MAXPOOL8

CONV8-512
MAXPOOL8

CONV8-384
MAXPOOL8 FS-CONV8-64 CONV8-128 FS-CONV8-256 CONV8-512

FC FC
CONV8-384
MAXPOOL8 FS-CONV8-32 FC FS-CONV8-128 FC

CONV8-256
MAXPOOL8 FS-CONV8-5 FS-CONV8-5

FC
CONV: convolution operation, MAXPOOL: Max pooling operation, FS-CONV: Fractionally-strided convolution, FC: Fully-connected

(b) Prediction Accuracy of the Models

Model A Model B Model C Model D Model E
76.2% 78.4% 81.3% 81.6% 83.2%

Table 5.1: Model Architectures and their Prediction Accuracy

Class-K, Fake].

Model C is a CNN model based on the architecture developed by Krizhevsky [150] for Convolu-

tional Neural Networks. We used the same number of kernels of CNN models corresponding to the

values suggested by the aforementioned study.

The Leaky ReLU activation function [161] is applied to the output of every convolutional layer (the

activation functions on hidden layers are not shown in Figure 5.3a and 5.3b. Also, we applied batch

normalization [162] after each convolutional layer and dropout with keep probability of 0.5.

The generator architecture is shown in Figure 5.3b. In GANs modeling studies, usually the generator

has the inverse architecture of the discriminator, i.e. generator starts from a noise and outputs fake

samples that have the same size of the inputs to the first layer of discriminator. Hence, the best

approach is to design the generator architecture in accordance with discriminator architecture, but

in an inverse way. The generator begins with the input Z of size 100, which is sampled from a

random uniform distribution. The input Z is reshaped and projected into a 1024 × 5 output. After,

there are four fractionally-strided convolution layers. The output of the final layer is a 70-point

segment with 5 channels which generates the fake samples. Finally, the generated fake samples,

along with the 70-point segments from the MTL Trajet dataset, are fed to the discriminator as the

input layer.
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(a) Discriminator Architecture

(b) Generator Architecture

Figure 5.3: Architecture of Model E

5.4 Results

The results of models in Table 5.1a are shown in Table 5.1b. The CNN models A, B and C can

achieve the prediction accuracy of 76.2%, 78.4% 81.3%, respectively. The semi-supervised DC-

GANs models D and E predict the travel mode with 81.6% and 83.2% accuracy. In total, the

developed DCGAN models were able to predict the travel mode with higher accuracy than the CNN

models.

One of the major issues related to generative models is evaluating the generated samples [99]. While

in the image processing context the generated images can be evaluated visually, it is not the case for

generated trajectory segments. Finding proper evaluation metrics for generated trajectories, with

different architectures or hyperparemeters values, should be the focus of future studies. One of the

disadvantages of the GANs models is their high computational time and memory requirements.

The supervised, unsupervised, and total loss for different numbers of training steps are shown in

Figures 5.4-5.6. The supervised loss is the negative log probability of labels, given that the data

come from the real dataset. The unsupervised loss is composed of two terms: a) the negative log of
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1 minus the probability of fake labels given that the data is real, b) the negative log probability of

fake labels given that the data is generated (being fake). The unsupervised loss function introduces

an interaction between the generator and discriminator (i.e. the classifier), which is indeed the

GANs game value [99]. As expected, the values of unsupervised loss are higher than those of the

supervised loss, due to the fact that the generator, i.e. G(Z), produces samples by transforming the

random noise vectors, i.e. vector Z in Figure 5.3b, to the real data distribution [99].

5.4.1 Comparison with previous studies

While comparing the prediction accuracy rates of different studies, several considerations should

be taken into account. Such as differences in the quality of data across studies, the number of

output categories (classes), and sample sizes. Moreover, the methods of validating the labels of

observations in a dataset may affect data quality and the prediction accuracy rate of the developed

models. The validation of the MTL Trajet data was carried out without any recall or surveyor-

intervened validation process. Indeed, the respondents validated their travel mode through an in-

app questionnaire. Although such a method of validation places less burden on respondents, it may

reduce the quality of the labeled data. Furthermore, the MTL Trajet data comprises primarily GPS

data (i.e. no accelerometer data) from user smartphones, to cut down on battery consumption.

Taking into account these considerations, our results are on par with previously obtained findings in

the mode detection literature. Dabiri and Heaslip [39] have arrived at a test accuracy of 79.8% for

their best Convolutional Neural Network model. Also, the ensemble of their best model was able to

reach an accuracy as high as 84.8%. Zheng et al. [64] have developed a decision tree model with

an overall accuracy of 76.2%. The aforementioned studies [39, 64] have used only GPS data from

smartphones, similar to the data gathered by MTL Trajet. The results of our best semi-supervised

DCGANs model outperforms the findings of both indicated studies, that is 83.2% versus 79.8%

and 76.2% of prediction accuracy, respectively. Apart from the aforementioned differences between

the databases and different modeling approaches among the studies, we think that DCGANs model

improves the prediction accuracy of discriminator by generating more samples and enlarging the

original MTL Trajet dataset.

Bantis and Haworth [118] built several classifiers to infer travel mode using GPS and accelerometer
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data as well as user socio-demographics. Their hierarchical dynamic Bayesian network can reach

an accuracy of 90%. However, their model was built on a training data containing trips from only 5

individuals. Apart from the different modeling approaches between our study and theirs, the rich-

ness of the accelerometer data together with the different sizes of datasets may give an explanation

to differences in the prediction accuracy.

Figure 5.4: Supervised Loss of DCGANs Model for Different Numbers of Training Steps.

Figure 5.5: Unsupervised Loss of DCGANs Model for Different Numbers of Training Steps.
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Figure 5.6: Total Loss of DCGANs Model for Different Numbers of Training Steps.

5.5 Conclusion and future work

Generative adversarial networks have proven their ability in unsupervised and semi-supervised im-

age and text recognition. This study developed semi-supervised generative adversarial networks to

infer transportation mode from GPS trajectories.

The developed semi-supervised DCGANs models share the same architectural innovations used in

the image recognition literature. We have shown that similar architecture can be used in travel

information inference from smartphone travel survey data. Generative models have the advantage

of increasing the prediction accuracy of classifiers (as seen here) without increasing the number

of labeled samples. The semi-supervised DCGANs model in this article shows a slightly higher

classification accuracy than Convolutional Neural Network models.

In general, GAN models have gained a reputation for being difficult to train. We also investigated

another alternative method for training GANs suggested by Chavdarova and Fleuret [163], referred

to as SGAN, in which multiple pairs of adversarial networks, i.e. “local” pairs of generators and

discriminators, are independently trained. Also, on top of them, there is a global discriminator and

generator, which is trained with the corresponding “local” opponent in each epoch. We developed

SGAN models with different number of local pairs, in which each local adversarial network was

a DCGAN model, and a global generator and discriminator was trained against each of its local

opponents. However, we found that the results of the SGAN in the context of mode of transport
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inference were sufficiently unstable so as not to present them here.

In future work the framework developed in this study could be extended along the following dimen-

sions. Apart from the semi-supervised DCGANs developed in this study, there are other types of

semi-supervised GANs such as Conditional GANs [101], that enable the GANs generator to gener-

ate labeled samples, that could be tested. Examining different distributions to sample Z from while

training the generator to see how it affects the performance of the discriminator. GAN requires more

training time and memory resources compared to CNN or other machine learning models. The most

time-consuming part of GANs is the gradient descent calculations applied simultaneously on both

generator and discriminator. Developing methods that need fewer gradient descent steps could sig-

nificantly decrease the computation time of GANs. The exploration of methods of inferring multiple

modes for trips based on smartphone travel survey data. Creating an ensemble of DCGANs models

to achieve higher prediction accuracies.

Mode prediction accuracies among studies have high degree of heterogeneity, due to different

datasets and data quality, data preparation procedures, and classification approaches. While the

prediction accuracies of the models in this paper are among the extremely high prediction accura-

cies in the literature, they are good relative to other comparable studies, in terms of dataset size and

modeling approach, in the literature. As well, the fact that the dataset used was from a large-scale,

real-word study likely introduces a great deal more variability than controlled, small-scale studies.

Finally, the purpose of this paper was to demonstrate the use of DCGANS developed primarily

for image processing in the context of mode inference with 1-D smartphone trajectory data. Future

work will allow exploration of better performing models either with more channels and/or improved

architectures.
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Chapter 6

Multi-task Recurrent Neural Networks

to Infer Mode and Purpose from

Smartphone Trajectory Data

Preamble

This chapter introduces multi-task learning in the context of mode and purpose inference using Re-

current Neural Networks. As mentioned in the literature review, Section 2.1, at the time of writing

this thesis we did not find any studies focusing on inferring mode and trip purpose simultaneously,

in a unique modeling structure. Until now, the models developed in the domain of mode or pur-

pose inference have focused on single-task learning approaches. This chapter takes advantage of

sequential deep learners developed in Natural Language Processing (NLP), referred to as Recurrent

Neural Networks (RNN). The RNN models in this chapter can be fed multi-input, such as disaggre-

gate point-based features as well as socio-demographics and features related to the destination point

(such as land-use data around the destination). Moreover, they produce multi-output, i.e. mode and

purpose of trips. While the goal of this chapter is to demonstrate the potential of multi-task learning

approaches in trip information inference, it also tests the performance of RNN models against the

CNN or Random Forest models developed in Chapters 3 and 4.
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Abstract

Multi-task learning is used to simultaneously infer mode of transport and trip purpose from trav-

eler data collected as part of a smartphone-based travel survey. GPS trajectory data along with

socio-demographics and destination-related characteristics are fed into a multi-input neural net-

work framework to predict two outputs; mode and purpose. We deployed Recurrent Neural Net-

works (RNN) which are fed by sequential GPS trajectories. To process the socio-demographics

and destination-related characteristics, another neural network, with different embedding and dense

layers is used in parallel with RNN layers in a multi-input multi-output framework. The results are

compared against the single-task learners that classify mode and purpose independently. We also

investigate different RNN approaches such as Long-Short Term Memory (LSTM), Gated Recurrent

Units (GRU) and Bi-directional Gated Recurrent Units (Bi-GRU).

The best multi-task learner was a Bi-GRU model and able to classify mode and purpose with 84.33%

and 78.28% of F1-measure, while the best single-task learner to infer the mode of transport was

GRU model and achieved 86.50% of F1-measure, and the best single-task Bi-GRU purpose de-

tection model reached 77.38% of F1-measure. The results demonstrate the multi-task learning ap-

proach slightly benefits to purpose classification, however, it did not improve the mode classification

performance.
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6.1 Introduction

During the last decade, transportation practitioners and planners have begun using the smartphone-

based surveys to collect the respondent trajectories and other trip-related information. Researchers

have investigated various inference methods to elicit the trip information from smartphone-based

travel surveys, especially to detect the mode of transport and trip purpose.

In recent years, deep neural networks have demonstrated remarkable accomplishments in various

fields of science, particularly in natural language processing and image recognition tasks. Concern-

ing GPS trajectory analysis, deep learning approaches allow discovering factors related to each GPS

point that are overlooked by traditional machine learning algorithms that use aggregated features for

whole trips.

Deep learning models typically care about predicting a single task by training one model or an

ensemble of models. However, by focusing on training a single-task model we may ignore ad-

vantageous representations derived from shared layers of related tasks. Taking into account the

correlation between related tasks may improve the prediction accuracy of deep learning models. In

the deep learning literature, this approach is called Multi-Task Learning [164]. Other names have

been utilized in the literature in the guise of “Multi-task learning”: learning with auxiliary informa-

tion or tasks, joint learning, or learning to learn [164]. However, any deep learning model dealing

with the optimization of two or more loss functions can be considered as a multi-task learner. Even

supposing our goal is to optimize a single loss function, as is the case in many neural network imple-

mentations, we can benefit from auxiliary information or tasks to improve our main task [164, 165].

As Caruana [165] has summarized the goal of multi-task learning: “Multi-task learning improves

generalization by leveraging domain-specific information contained in the training signals of related

tasks”.

In transportation demand analysis, trip purpose and mode of transport are arguably the most im-

portant trip characteristics. The importance of trip purpose can be drawn from a widely-accepted

principal stating that “transportation is a derived demand” [25], which means the need for travel is

derived from another need, for example the need for work, education, recreation etc. More explic-

itly, transportation demand is about satisfying a need for participating in an activity at the end of
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the trip, i.e. the destination. Moreover, mode of transport and trip purpose are highly correlated

[25]. For example, due to the limited number of parking spaces in downtown or Central Business

Districts (CBD) in metropolitan areas, many travelers destined there use public transit for commut-

ing. Hence, we can say work trips have high correlation with public transit, as mode of transport.

Therefore, due to the correlation between mode and purpose, as well as the joint role of mode and

purpose in stimulating the transportation demand, this study attempts to infer mode and purpose

simultaneously from trajectory data using deep learning models.

We feed point-wise trajectory information as input into different multi-task Recurrent Neural Net-

works (RNN) architectures to infer mode of transport and trip purpose. As well, the models take

advantage of single-observation auxiliary data, such as socio-demographics, to improve the predic-

tion accuracy of mode and purpose of trips.

The study has been conducted using data collected by the smartphone travel survey app, MTL Trajet,

which is an instance of the smartphone travel survey platform, DataMobile/Itinerum [8]. The MTL

Trajet data was collected as part of a large-scale pilot study on the 17th of October 2016 in a 30-day

travel survey study, in which over 8,000 respondents participated [18].

The rest of the paper is organized as follows: a background section describes previous work on

multi-task learning and RNNs in mode or activity detection from trajectory data. The methodology

section sets out the framework of the RNN models as well as of the data pre-processing. The next

section after that presents the results of the different multi-task RNN architectures on the MTL

Trajet dataset. The last section concludes the paper.

6.2 Background

This section reviews previous research related to mode and purpose detection from smartphone

data and briefly introduces the RNN models, especially the Long Short-Term Memory (LSTM) and

Gated Recurrent Units (GRU). Comprehensive reviews on mode and purpose detection have been

conducted by Wu et al. [121], Elhoushi et al. [147], and Wang et al. [15]. Different Recurrent

Neural Network approaches have been explained in detail by Goodfellow et al. [33]. Also, recent

applications of multi-task learning have been fully covered by Ruder et al. [164].
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Mode and purpose detection has been studied in the literature using various approaches, which

include: rule-based, machine learning, deep learning, and discrete choice approaches. Ensemble

tree-based methods [40], Random Forest models [153], hybrid rule-based and Random Forest ap-

proaches [56] and other machine learning models have been widely used in the literature to detect

mode of transport. Methods from other fields of science have been applied for the mode detection

task. For example, Assemi et al. [57] utilized a nested logit model to infer mode of transport from

smartphone travel surveys. The next section reviews the studies on mode and purpose detection

from mobile phone data using deep learning approaches.

6.2.1 Mode and Purpose Detection

In recent years, deep neural network models, such as Convolutional Neural Networks (CNN) and

Recurrent Neural Networks have been deployed for mode detection. Convolutional Neural Net-

works (CNN) used by Dabiri and Heaslip [39] and Yazdizadeh et al [166] to detect the mode of

transport. Endo et al. [58] suggested a framework to automatically calculate trajectory features

by converting GPS-points along a trip into a two-dimension (2D) image structure. They have then

deployed a deep learning model and fed it with the “stay time” of each GPS point (as a correspon-

dence to pixel values of an image). Finally, they used traditional machine learning models, such as

logistic regression and decision trees, to predict mode of transport based on pixel values and other

hand-crafted features.

Recurrent Neural Networks, Long-Short Term Memory (LSTM), Gated Recurrent Units (GRU),

control gate-based Recurrent Neural Networks (CGRNN) have been applied on smartphone data

to detect the mode of transport [167, 168]. Vu et al. [167] analyzed different RNN approaches

and found the superiority of GRU and CGRNN models over the simple RNN and LSTM models

to infer the mode of transport from accelerometer data. Simoncini et al. [169] utilized the RNN

model for vehicle classification from low-frequency GPS data1. They used different features, such

as timestamp, longitude and latitude, speed and odometer to detect vehicle type. They have used an

RNN architecture with a 1-D pooling layer, which aggregates the final recurrent layer of RNN, to
1Vehicle classification studies focus on determining the type of vehicle, for example categorizing vehicles based on

the number of axles.
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predict vehicle type.

Liu et al. [170] developed a bidirectional LSTM (Bi-LSTM) to classify mode of transport from GPS

data. The Bi-LSTM model demonstrated good performance while only considering time interval,

longitude, and latitude of trajectory GPS data. Moreover, they suggested an enhanced embedding

Bi-LSTM model that considers the time interval as an external feature fed into an embedding layer,

where the Bi-LSTM part uses the same architecture as their base Bi-LSTM model.

With respect to purpose detection, there are fewer studies in the literature compared to mode in-

ference studies. While mode detection is related to GPS-point features, for example, speed or

acceleration, trip purpose has more correlation with trip destination attributes, such as different

land-use types in the vicinity of a destination, socio-demographics, and other trip attributes such

as time-of-day or day-of-week of the [153]. While trip trajectories can be treated as sequential ob-

servations and fed to RNN or CNN models to detect the mode of transport, the trip destination is

a single-point observation, and cannot be fed to RNN or CNN models. This limitation has caused

researchers to use more classical machine learning algorithms, such as Random Forest [107, 153],

or rule-based methods [80] for purpose detection. However, due to the correlation between mode

and purpose in travel choice behavior, one may expect better prediction accuracies while training a

single multi-task model, rather than training two single-task learners. Multi-task learning has been

used in traffic data imputation studies [83]. Rodrigues et al. [83] proposed multi-output Gaussian

processes (GPs) to model the spatial and temporal patterns in traffic data. They demonstrated that

the multi-output GP model is able to capture the complex dependencies and correlations between

nearby road segments to improve imputation accuracy. Their multi-output model outperforms other

imputation methods, such as a Recurrent Neural Network model, by taking into account the complex

spatial dependencies between subsequent road segments.

This study investigates using a multi-task approach, i.e. a multi-task learner, based on both trip

trajectory and destination characteristics, and socio-demographic information. By implementing

a multi-task learning approach, We aim to capture and exploit the correlation between mode of

transport and trip purpose in our dataset and find out to what extent such an approach can enhance

the prediction performance for both mode and purpose of trips. The model architecture is explained

in Section 6.3.
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6.2.2 Recurrent Models

Recurrent Neural Networks have been a popular choice for training sequential data [33]. However,

their capability is restricted by a lack of memorization of long and short term dependencies across

sequential data points, due to the vanishing or exploding of gradients in long sequences [171].

LSTM and GRU approaches were developed to overcome these shortcomings of RNN models. We

briefly explain each component of LSTM and GRU models and their differences.

Inside an RNN Block

In the core of each RNN model, there is a recurrent hidden state described by [172]:

ht = g(Wxt + Uht−1 + b) (19)

where xt is the input vector (in our case a vector of GPS points along a trip) at time t, ht is the

hidden state at time t, g is any activation function, such as tangent hyperbolic, W and U are the

trainable weights, and b is the trainable bias. Finally, ht−1 is the hidden state (or output) of the

previous time step t − 1. Hence, each RNN block has two inputs: xt and ht−1, and outputs the

hidden state at the current time step, i.e. ht to the next RNN block.

Inside an LSTM Block

The LSTM model introduces three gating (control) signals: input, forget and output gating signals

at each time step t. These gating signals are similar to the Equation 19, with their weights and bias

parameters, and a sigmoid activation function. One can imagine these gating signals as valves that

control the flow of water in pipelines. However, these valves, with sigmoid functions, control the

flow of memory, input, and output between LSTM blocks.

The forget, input and output gating signals have the following equations:

ft = σ(Wfxt + Ufht−1 + bf ) (20)
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it = σ(Wixt + Uiht−1 + bi) (21)

ot = σ(Woxt + Uoht−1 + bo) (22)

where σ is sigmoid function.

Moreover, LSTMs benefit from using internal memory cell, c̃t, inside each LSTM block. The flow

of memory between blocks is determined by forget and input control signals. Indeed, an LSTM

block can forget the memory, when the output of the sigmoid function of a forget gating signal is 0,

or keep the memory if the sigmoid outputs 1.

As shown in Equation 20, the forget gating signal ft is calculated based on the hidden state of

previous time step ht−1, and the input of the current LSTM block xt. The output of the sigmoid

function of the forget gating signal ft is then applied on the old memory cell ct−1 by a element-wise

multiplication, as in Equation 23:

ct = ft e© ct−1 + it e© c̃t (23)

The element-wise multiplication is denoted by e©. The second term in the above equation controls

how much of the memory in current memory cell c̃t should influence the new memory, i.e. ct.

Indeed, this role is played by the input gating signal while multiplied (element-wise) with the c̃t.

The current memory cell c̃t is defined as:

c̃t = g(Wcxt + Ucht−1 + bc) (24)

where g is usually the hyperbolic tangent function or the rectified Linear Unit (ReLU) [172].

After calculating the current memory cell of an LSTM block by Equations 20, 21, 23 and 24, the

hidden state, ht of the LSTM block is obtained by the following formula:

ht = ot e© g(ct) (25)

where the ot is the output gating signal, defined by Equation 22, which controls how much memory

should transfer to the next LSTM block.
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As explained in the above equations, the distinctive characteristic of the LSTM model is the concept

of the memory cell, which is passed through LSTM blocks and the flow of memory is regulated by

the implementation of different gating signals.

Inside a GRU Block

The main difference between an LSTM and GRU block is the number of gating signals, with two

gating signals in GRU instead of three gating signals in LSTM. GRUs possess an update gate,

denoted by zt, and a reset gate, rt [172]. The hidden state of a GRU block is calculated based on

the following equations [172]:

ht = (1− zt) e© ht−1 + zt e© h̃t (26)

h̃t = g(Whxt + Uh(rt e© ht−1 + bh) (27)

The two gating signals in GRU blocks are defined by similar formulas for the gating signals in an

LSTM:

zt = σ(Wzxt + Uzht−1 + bz) (28)

rt = σ(Wrxt + Urht−1 + br) (29)

Various studies have demonstrated the comparable performance of GRU and LSTM in many cases

[173]. Moreover, some studies have shown GRU outperforms the LSTM models [172, 173].

6.3 Methodology

In this section, we describe the data used, data pre-processing, the RNN architectures used and

hyperparameter value determination.
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6.3.1 Data

The MTL Trajet dataset consists of three types of data; validated mode and purpose of trips, GPS co-

ordinates, timestamps, and respondent socio-demographic information. The MTL Trajet app is sup-

ported by an in-app mode and purpose validation process, which prompted and asked respondents

to validate their mode of transport and trip purpose upon detecting a stop during their movements

(stops are detected by a rule-based algorithm that works in the background of MTL Trajet app).

Furthermore, upon the installation of MTL Trajet, a series of questions are asked of respondents to

gather their socio-demographics, such as age, sex, occupation, home location, work or school loca-

tion, etc. During the MTL Trajet 2016 survey, over 33 million GPS points were recorded. There

were four modes of transport, i.e. walk, bike, car, public transit, validated by respondents. Also, six

trip purposes were collected including education, health, return home, shopping, work and return

home.

To detect the trips, we utilized a rule-based trip-breaking algorithm explained in Patterson & Fitzsim-

mons [109]. The algorithm detects start and end point of trips based on the 3-minute dwell time

between GPS points as the most prominent criterion for detecting trips. Afterward, the algorithm

verifies the velocity and parameters relating to the public transit network (i.e. transit junctions and

metro station location) and then stitches segments back together into complete trips. As an example,

wherever two consecutive GPS points are located within 300 meters of two different metro stations

(due to the sparsity of data collection when underground), and the time interval between them is less

than the maximum travel time by metro, the segments are considered as part of the same trip. Also,

wherever two consecutive GPS points fall within the same intersection with bus correspondences,

the algorithm allows for a wider time interval (10-minute instead of 3-minute gap).

6.3.2 Data Preparation

The dataset consists of two type of data: sequential data (trip trajectories), that comes from the

GPS points, and auxiliary data, i.e. single-observation data including socio-demographics and trip

destination characteristics. Each trip in our dataset comprises GPS points with three GPS features:

time interval, longitude, and latitude, used in the sequence part of our models. While the number
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of GPS points along a trip varies between 15 to more than 1000 points, we considered only the 70

points of each trip (as 70 is the average number of points along all trips in our dataset). Also, to

select the 70 points for each trip, we considered the first 35 and the last 35 GPS points along each

trip. When the number of points along a trip was less than 70, we padded the trajectories.

While in Chapter 3, we analysed mode and purpose separately, in this chapter, the focus is on trips

for which both mode and purpose have been validated. As some of the trips have not been validated

for both mode and purpose, our data size decreased to 7,763 trips. The auxiliary features used are

shown in Table 6.1. Socio-demographics and trip characteristics are obtained from the MTL Trajet

dataset. Land-use data are derived from Montreal land-use data (compiled by the provincial gov-

ernment ministry “MAMROT” [133]). Foursquare data consists of checkinsCount and usersCount,

where checkinsCount is the total number of check-ins in a venue near a trip destination, while

usersCount accounts for the total number of users who have ever checked into a venue near a trip

destination (in a 250-meter vicinity).

6.3.3 Time Transformation

Regarding GPS features, we treat the recorded time of each GPS point as the number of seconds after

midnight, which is inherently a cyclical feature. For example, 5 minutes after and before midnight,

are recorded as 300 and 86,100 seconds, respectively. While the time interval between these two

times is only 600 seconds, their values in seconds suggest a too-large time interval, i.e. 85,800

seconds, which does not represent the cyclical behavior of time during a day. To let the neural

network recognize that an attribute is cyclical, one can transform the time into two dimensions,

using the cosine and sine functions, as follows:

sinusoid time = sin(2 ∗ π ∗ seconds/total seconds) (30)

cosinusoidal time = cos(2 ∗ π ∗ seconds/total seconds) (31)

where the seconds is the number of seconds after midnight, and total seconds is the total number of

seconds of each day. For example, 5 minutes after midnight will represent as 0.021 for the sinusoid

dimension, and 0.999 for the cosinusoidal dimension. Also, 5 minutes before midnight will be
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Table 6.1: Auxiliary Features Used in Mode and Purpose Detection.

Attribute Definition Embedding size
Trip Characteristics
DAY of WEEK 1-7 for Monday through Sunday 4
HOUR START Trip start hour, ranging from 0 to 24 12
HOUR End Trip end hour, ranging from 0 to 24 12
CBD ORIGIN 1: if the origin is located in Montreal’s CBD, 0: otherwise 1
CBD DESTIN 1: if the destination is located in Montreal’s CBD, 0: otherwise 1
HOME DEST Direct distance between trip destination and individual home location -
STUDY DEST Direct distance between trip destination and individual education location -
WORK DEST Direct distance between trip destination and individual work location -
HOME ORG Direct distance between trip origin and individual home location -
STUDY ORG Direct distance between trip origin and individual education location -
WORK ORG Direct distance between trip origin and individual education location -
MTL ORIGIN 1: if the origin is located in Montreal Island, 0: otherwise 1
MTL DESTIN 1: if the destination is located in Montreal Island, 0: otherwise 1

Trip Destination Features
Land-use (number of land-use parcels in 250 meters around a trip destination)

LU *
23 different attributes each one shows the frequency of the corresponding
land-use category

-

Foursquare checkinCounts (number of checkinCounts in 250 meters around a trip destination)

CH *
10 different attributes each one shows the checkinCounts for the corresponding
Foursquare category

-

Foursquare userCounts (number of usersCounts in 250 meters around a trip destination)

UC *
10 different attributes each one shows the usersCounts for the corresponding
Foursquare category

-

Socio-demographics
AVG PRICE NEIGH The average value of residential buildings around each individual’s home -
SEX 0:male, 1: female, 2: other/neither 2

OCCUPATION
0:full-time worker, 1: part-time worker, 2: Student,
3: Student and worker, 4: Retired 5: At home

2

AGE 0: age between 16-24 ,1: 25-34 , 2: 35-44, 3: 45-54, 4: 55-65, 5: 65+ 3

transformed into -0.021 for the sinusoid dimension, and 0.999 for the cosinusoidal dimension. Such

transformation enables the neural network to consider the cyclical character of time over 24 hours.

6.3.4 Entity Embedding

We utilized the entity embedding approach [174] for the categorical data related to the trip desti-

nation or socio-demographics, instead of the one-hot Encoding approach. Both approaches have

been utilized by researchers to deal with categorical data where there is no intrinsic ordering to the

categories. The advantage of using entity embedding over the one-hot encoding is that each cate-

gorical variable is mapped into a higher dimension space which is richer in capturing the correlation
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Figure 6.1: Schematic Framework of a Multi-input Multi-output Learner to Infer Mode and Trip
Purpose.

between different levels of a variable. For example, “days of the week” is usually coded as a cate-

gorical variable in a 1 to 7 scale. However, with entity embedding each day of the week is usually

mapped into 4-dimensional vector space enabling the model to capture the similarities, for example

between “Saturday” and ”Sunday”.

The dataset in the current study contains 17 categorical and 50 numerical non-sequential attributes.

The categorical attributes are first fed into an embedding layer and the output is then concatenated

with the output of non-sequential numerical data, as shown in Figure 6.1.

6.3.5 Model Architecture

This section explains the architecture of the models to examine the performance of multi-task and

single-task learners. As mentioned in the previous sections, the dataset in the current study consists

of two types of data: the sequential data, which is the sequence of GPS points along a trip trajectory,
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Table 6.2: Hyperparameter values used in the Study

Name Hyperparameter value

Recurrent layers

Types:LSTM, GRU, Bi-LSTM, Bi-GRU,
Num. of layers: 1, 3, 6

Num. of nodes: 70, 210,
Activation function: Leaky ReLU

Activity Funciton Relu, LeakyRelu(α = 0.05)
Dropout 0.2, 0.25, 0.5

Output layer Activation: Softmax for both mode and purpose of trip
Optimization method Adam optimizer

Batch size 16, 32, 64, 128

and the single-observation data, which are the characteristics of the trip destination and the socio-

demographics of travelers. To deal with the sequential data, we investigated different Recurrent

Neural Networks architectures, developed by researchers across various fields. Among them, Long-

Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) have gained the lion’s share of

attention. Also, we investigate the bi-directional GRU (Bi-GRU) to probe how the bi-directional

architecture may improve the performance of the model. We also tested different hyperparameter

values in Table 6.2.

Our approach toward the single-observation data, which contains two data types: categorical and

numerical, is to develop entity embedding layers to process the categorical data, and dense layers

to analyze the numerical data. A schematic of developed multi-input architecture to process all

data types, i.e. trajectory sequential data, categorical auxiliary data, and numerical auxiliary data

have been shown in Figure 6.1. The output of entity embedding layer and dense layers is concate-

nated and passed through further dense and dropout layers. Finally, the outputs from trajectory and

auxiliary data are concatenated and fed into shared dense layers.

In the multi-task learning framework, the output of the shared dense layers in Figure 6.1 is fed

into two cross-entropy loss functions, for generating labels for mode and trip purpose. In single-

task models, the output of the shared dense layers is fed into one loss function, for either mode or

purpose classification.
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6.4 Results

This section presents the results of different single- and multi-task learners. We developed three

series of models: single-task purpose classifiers, single-task mode classifiers, and multi-task mode

and purpose classifiers. For each type of these classifiers, three different RNN architectures (i.e.

LSTM, GRU, and Bi-GRU), for the RNN part of the framework have been tested. The accuracy,

precision, recall and F1-measure of the developed models have been shown in Table 6.3.

To compare the single- and multi-task learners on a fair ground, the characteristics of the developed

models were kept similar among all. The RNN part of models consists of three 70-node recurrent

layers, each of which followed by a dropout layer. The dense layers for analyzing the auxiliary

numeric data in Figure 6.1 compromise of one 256-node dense layers. Afterwards, the output

of the final dense layer of numerical auxiliary input, is concatenated with the output of the entity

embedding layer, which process the categorical auxiliary input. Subsequently, three 128-node dense

layer process the output of concatenate layer. Afterwards, the results of RNN layers is concatenated

with the results of the numerical and categorical input data. Later, the output of three 64-node

dense layers, each of which followed by a dropout layer, amount to the shared dense layers of the

framework in Figure 6.1. We tested different dropout probability values, i.e. 0.2, 0.25 and 0.5,

and find the dropout layer with a probability of 0.2 results in better performance after RNN layers.

However, after dense and shared layers, dropout layers with a probability of 0.5 demonstrated higher

performance. While these characteristics are hold among multi-task and single-task learners, the

output of the final layer of multi-task learners is fed into two cross-entropy loss functions. The two

loss functions are then summed up, with equal weights.

The results of single-task purpose and mode classifiers as well as multi-task models are presented in

Sections 6.4.1- 6.4.3. All the models are trained to epoch 200, and the results have been presented

in Figure 6.2. Obviously, the performance of almost all the models in Figure 6.2 does not improve

beyond the 100 epochs. Hence, we reported and compared the performance of the models on the

test data for epoch 100 in Table 6.3, in order to compare them on a fair ground.

All the models are implemented in Python, using the Keras backend API with GPU support. Dif-

ferent hyperparameter values were tested to select the best model architectures and configurations.
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Table 6.3: Prediction Results of Different Purpose and Mode Classifiers (Epoch = 100, test data)

Single/Multi Task Task Model Accuracy (%) Precision (%) Recall (%) F1-Measure (%)

Single-task Learners

Mode classification
LSTM 84.65 86.58 83.75 85.11
GRU 86.07 87.49 85.58 86.50

Bi-GRU 86.07 86.82 85.37 86.07

Purpose Classification
LSTM 75.48 82.79 70.57 75.98
GRU 75.99 83.62 71.02 76.59

Bi-GRU 77.08 81.41 73.93 77.38

Multi-task Learners

Mode classification
LSTM 79.91 83.50 76.67 79.83
GRU 84.08 85.94 81.52 83.59

Bi-GRU 84.08 86.24 82.61 84.33

Purpose Classification
LSTM 76.70 84.67 69.79 76.20
GRU 77.34 85.56 71.44 77.61

Bi-GRU 77.92 84.41 73.34 78.28

Models are trained on the Google Colab supported GPUs with 12.0 GB of RAM.

6.4.1 Single-task Mode of Transport Classification

We developed three baseline single-task mode inference models to compare the performance of

multi-task learners in comparison with them. The accuracy, precision, recall and F1-measure of

single-task purpose classifiers have been demonstrated in Table 6.3. With respect to F1-measure,

the GRU model demonstrates highest performance, with F1-measure equal to 86.50%, comparing

to LSTM and Bi-GRU models. Regarding the accuracy, the GRU and Bi-GRU demonstrated equal

accuracy, 86.07%, and both superior to the single-task LSTM mode classifier. Also, GRU and Bi-

GRU models achieved better recall values, 85.58% and 85.37%, compared to LSTM recall which is

equal to 83.75%. Based on the results of single-task mode classifiers in Table 6.3, the GRU models

demonstrated a better performance comparing with LSTM and Bi-GRU.

6.4.2 Single-task Trip Purpose Classification

The LSTM, GRU and Bi-GRU models are developed testing their performance on single task trip

purpose classification. Table 6.3 demonstrates accuracy, precision, recall and F1-measure of single-

task purpose classifiers. The Bi-GRU model achieved the highest F1-measure of 77.38%, while

LSTM and GRU models demonstrated F1-measure of 76.59% and 75.98%, respectively. Moreover,

the Bi-GRU model is superior to GRU and LSTM with respect to recall.
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Figure 6.2: F-1 Measure of Different Classifiers over Epochs (top row left: single-task mode, top
row right: single-task purpose, bottom row left: multi-task mode, and bottom row right: multi-task
purpose classifier)

6.4.3 Multi-task Mode and Purpose Classification

Multi-task learners developed in this thesis posses the same architecture of single-task learners,

except for the final loss functions, where two cross-entropy loss functions generate the final class

labels. Optimization of the whole network is carried out by deploying an Adam optimizer on the

sum of cross-entropy loss functions for mode and purpose.

As shown in Table 6.3, the F1-measure for multi-task LSTM learner to classify the mode of transport

and trip purpose is %79.83 and %76.20, respectively. Comparing with F1-measure of single-task
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LSTM mode classifier, which was 85.11%, shows a considerable drop in the classification perfor-

mance of the LSTM model when being deployed in a multi-task framework. However, the multi-

task LSTM model predicted the purpose of trips with a F1-measure a bit higher than the single-task

LSTM purpose classification.

With respect to the multi-task GRU classifier, the model classifies the mode and purpose with F1-

measure of 83.59% and 77.61%, respectively. Comparing these results with the single-task mode

classifier shows that mode classification does not benefit from a multi-task framework, as single-

task GRU achieved a F1-measure of 86.50%. Nonetheless, similar to the LSTM case, the multi-

task GRU classifier depicts higher F1-measure comparing to single-task GRU when classifying trip

purpose.

Regarding the multi-task Bi-GRU classifier, the model can achieve the F1-measure of 84.33%,

which is higher than the F1-measure of both multi-task LSTM and GRU mode classifiers. However,

mode classification with the single-task Bi-GRU classifier shows superiority over the multi-task Bi-

GRU classifier. Similar to multi-task LSTM and GRU purpose classifiers, the multi-task Bi-GRU

purpose classifier demonstrates a slightly better performance compared to the single-task Bi-GRU

model.

Based on the results in Table 6.3, the highest F1-measure for mode classification belongs to the

single-task GRU model, while among all the purpose classification models the multi-task Bi-GRU

achieved the highest F1-measure.

6.4.4 Comparison with other Learning algorithms

This section compares the performance of algorithms developed in the previous sections against

other machine learning approaches: Random Forest (RF) and Convolution Neural Networks. Two

RF models are developed to infer mode of transport and trip purpose. As the point-based GPS in-

formation cannot be fed to the RF models, the aggregated features of the whole trip have been used

to predict mode of transport. The socio-demographics also have been used to enhance the predic-

tion accuracy of the RF model. For trip purpose inference with the RF model, a single-task RF

model is developed using land-use, Foursquare and socio-demographic data. The best RF model to

predict the mode of transport achieves F1-measure of 85.68%, while the RF model for trip purpose
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prediction reaches F1-measure of 71.53%. The single-task GRU and Bi-GRU mode classifiers can

predict the mode of transport better than RF model, 86.5% and 86.07%, respectively. However,

the RF model shows better classification performance compared to all other mode classifies in Ta-

ble 6.3. Nevertheless, comparing the RF purpose classier with the the models in Table 6.3 reveals

the superiority of all single- and multi-task purpose classifier over RF model. We also developed a

Convolutional Neural Network (CNN) model, with the same characteristics as the best single model

explained in Chapter 4, to detect mode of transport. The model can achieve F1-measure of 79.13%

to detect mode of transport.

6.5 Conclusion

Multi-task learning is known as a powerful inference method in machine learning [175]. Specifi-

cally, where there is a considerable correlation between multiple tasks, predicting them in a unique

framework can potentially enhance prediction results. This research developed several single-task

models to compare their results against multi-task learners to infer the mode of transport and pur-

pose of trip from smartphone-based travel survey data. Based on the literature, mode of transport

has been largely explained by point-wise GPS features, such as time, longitude and latitude. we also

deployed features related to trip destination and socio-demographics to infer mode and trip purpose.

We considered the LSTM, GRU and Bi-GRU modeling approachs, which are well-known RNN

methods in the Natural Language Processing literature. The results of single-task mode detection

models showed that the GRU approach can slightly better predict mode over the LSTM and Bi-GRU

model. Surprisingly, the bi-directional approach, i.e. the Bi-GRU, implemented on both LSTM

and GRU, does not improve the performance of the single-task mode classifier. We tested several

architectures for the RNN models, and found that models with three RNN layers and three dense

layer at the end, produced the best results. To prevent over-fitting, we applied a drop-out of p=0.20

at the end of each RNN layer, and a drop-out of p=0.50 at the end of each dense layer. The best

model to detect the mode of transports is the single-task GRU model, which can detect the mode of

transport with 86.50% of F1-measure.

The single-task purpose classifiers were deployed using the same modeling architectures as mode
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classifiers. The best single-task purpose classifier was a Bi-GRU model with 77.38% of F1-measure.

Unlike mode of transport classification, trip purpose classification benefits when predicted simul-

taneously in the same framework with mode of transport. The multi-task Bi-GRU model achieved

the F1-measure of 78.28% to classify trip purpose. However, mode of transport classification in a

multi-task framework did not gain the same advantage.

This study also examined the performance of the well-known RNN architectures, i.e. LSTM, GRU,

and Bi-GRU in the field of transportation data inference. The results demonstrated that for the

single-task mode classifier, the GRU slightly outperforms the LSTM and Bi-GRU architecture.

However, almost for all the other models, i.e. single-task purpose classifier and multi-task mode

and purpose classifier the Bi-GRU model showed higher performance over LSTM and GRU.

Furthermore, this research used an entity embedding approach to encode categorical data, such as

time of day and day of the week, to capture the correlation between different levels of each category.

All the embedded layers were trained simultaneously with sequential GPS trajectory data and other

numeric non-sequential data. However, while land-use and social network data around each trip

destination are included in the models, the study lacks the inclusion of such information around

GPS trajectories. That is, for example, infrastructure data, such as whether a metro line or highway

or bike route is in the vicinity of a GPS trajectories, which may help the algorithm to detect mode

of transport more accurately. Finding methods to include all such information around each GPS

trajectories is left to future studies.

Moreover, besides the target tasks, such as mode and purpose in the current study, some studies

[175] have proposed including auxiliary tasks in modeling procedures. Auxiliary tasks are those

not as important as the target task for the researcher, but they may improve the performance of the

inference model on target tasks. In the current study, the socio-demographics that we asked from

travelers, such as “occupation”, could play the role of auxiliary tasks instead of being fed as an

input feature to the models. Examining such approaches may also help the future studies to develop

inference models, that achieve higher-performance.

136



Chapter 7

Conclusion

For several decades the Household Travel Survey (HTS) along with transportation demand modeling

have been used as central tools in transportation planning. With the rapid changes in transportation

technologies, transportation practitioners require the collection of data more frequently over larger

metropolitan regions. Traditional HTS methods are costly due to human resource requirements and

suffer from several other disadvantages. Moreover, they are not well adapted for cities aiming to

collect travel data more frequently, for example on yearly or mid-yearly basis. Over the last two

decades, new technologies such as GPS systems, now embedded in smartphones, have begun to

provide transportation planners with new data collection tools. Such mobile phone technologies

have attracted more attention over the last decade due to the pervasiveness of mobile phones and

higher quality sensors and systems embedded inside them.

However, while the smartphone-based travel surveys potentially offer great benefits over traditional

HTS methods, inferring trip information from collected data has proven to be more difficult than at

first hoped for. Many studies have examined the application of artificial intelligence in inferring trip

information from trajectory data. This thesis has addressed a few limitations in the literature and

has considered the future directions and challenges for inference methods applicable to trajectory

data.

With this aim, the study first identified the trip information to be inferred from trajectory data. The

“mode of transport”, “trip purpose” and “transit itinerary”, are among the most important types

of information for use in transportation demand modeling and transportation network design, as
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explained in Section 1.2.

Afterwards, we identified the following limitations of the current literature, namely:

• The potential of smartphone-based travel surveys as a large-scale real-world travel survey

have not been studied enough, due to the lack of large-scale datasets.

• The majority of studies have focused on using aggregate trip-based approaches

• Few studies have addressed the application of semi-supervised methods

• Transit itinerary inference has not been covered enough

• Multi-task learning for mode and trip purpose detection have not been applied on trajectory

data

• Sequential learner algorithms have been understudied in trip information inference.

Based on these limitations, the contributions of this thesis are explained in the next section. The

contributions section is then followed by sections describing the limitations of the research and

future work directions.

7.1 Contributions

We used the MTL Trajet dataset to demonstrate the potential in smartphone-based applications for

conducting real-world, large-scale travel surveys. The Random Forest models developed in Chap-

ter 3 showed that a smartphone-based travel survey platform, such as Itinerum, if backed by a series

of AI algorithms, can collect and produce the most important trip information with acceptable pre-

diction accuracies (although there is room to improve the performance of the algorithms, especially

for purpose detection). The mode detection Random Forest model was found to predict mode of

transport with 87% accuracy. With respect to trip purpose, the Random Forest model attained an

accuracy of 71% by taking advantage of complementary data sources such as land-use data, social

media data (Foursquare) and General Transit Feed Specification (GTFS) data. Indeed, inferring trip

purpose only based on trip features does not demonstrate a strong prediction accuracy and the above

mentioned complementary data and socio-demographics are essential in achieving higher prediction
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rates for trip purpose detection. Also, a Random Forest model developed to infer transit itinerary

achieved an 80% prediction accuracy. Transit itinerary has been covered very little in the literature

and requires more attention. Indeed, the RF model in this thesis is the only AI approach, at the time

of writing this thesis, applied for transit itinerary inference.

Afterwards, Convolutional Neural Networks (CNN) were developed to infer mode of transport by

using disaggregate point-based features, the GPS points along a trajectory. Considering each GPS

point along a trajectory in a similar way to the way pixels are analyzed in image processing with

CNN models was our first attempt to consider point-based features to predict mode of transport.

Moreover, the application of ensemble methods was examined to enhance the performance of CNN

learners. Indeed, considering GPS points along a trajectory as pixels in an image opened the door to

benefiting from the many other algorithms developed in the field of image recognition and more at-

tention and research is required to reveal how much the travel data field can benefit from algorithms

developed in the domain of image recognition.

The Random Forest and CNN models in Chapter 3 and 4 have been deployed as supervised learners.

Semi-supervised learning was considered by applying semi-supervised Generative Adversarial Net-

works to detect mode of transport. Based on our experience with CNN architecture as a supervised

learner in Chapter 4, we used the convolutional architecture as the discriminator in the GAN frame-

work. However, the semi-supervised GAN was not found to achieve remarkable improvements of

performance over the supervised approach. GANS are well-known for being hard to train, and it

seems that more effort is required to take advantage of GAN architecture for information inference

from smartphone survey data.

Besides considering GPS points as analogous to pixels, we considered the sequence of GPS points

along a trip as analogous to the sequence of words in a sentence. Such similarity enabled us to

deploy the sequential learners developed in the realm of Natural Language Processing (NLP) to

infer the mode of transport. We developed two of the most well-known RNN models, i.e. GRU and

LSTM models, to infer mode of transport, and found that GRU slightly outperforms LSTM when

applied to mode detection.

Trip purpose was also inferred from smartphone data using neural network models (with embedding

layers for analyzing the categorical data, such as socio-demographics, and trip-related data). These
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models were found to be better able to infer trip purpose than the RF model.

To examine the use of multi-task learning in purpose and mode inference, a multi-input, multi-

output framework was developed using GRU and neural network layers. The multi-task learning

framework was fed by two data types: (a) GPS trajectory data fed into the GRU layers, and (b)

auxiliary data, i.e. categorical and numerical socio-demographics and destination related data, fed

into embedding and neural network layers. Moreover, the multi-task learner outputs two tasks:

(a) mode of transport and (b) trip purpose. The multi-task GRU learner resulted in slightly better

prediction performance for trip purpose, over single-task GRU learner. However, the performance

of multi-task GRU classifier to infer mode of transport was not as good as the single task GRU

classifiers. We also compared the results of the single-task GRU classifier with the single-task

CNN and RF models developed in this thesis to infer mode of transport. The single-task GRU

classifier outperforms the other single-task learners to classify mode of transport. However, its

superiority over RF model was not substantial. With respect to trip purpose, the multi-task classifier

outperforms the single-task RF model.

One of the advantages of point-based algorithms developed in this study, such as GRU and CNN,

is their autonomy from feature engineering and huge data pre-processing, which make them a more

suitable tool for data analyzing tasks. This is potentially particularly important for the embedding

of algorithms in mobile applications to analyze data in real-time; in this context the autonomy from

data pre-processing and feature engineering would be a great advantage. Moreover, when the goal

of a smartphone-based travel survey platform is to collect travel data in different cities or even in dif-

ferent countries, the autonomy of point-based AI algorithms from expertise knowledge make them

a more flexible and transferable option. However, the trip-purpose detection algorithm in Chap-

ter 6 still depends on some local expert knowledge, for example the distance around the destination

within which the land-use and social network data are considered in the inference procedure. De-

veloping a method to automatically find the appropriate distance within which land-use data should

be considered in the modeling procedure could help a trip-purpose detection algorithm to act more

independently and could result in higher prediction performance.

While the CNN or RNN algorithms may attract more attention these days, the Random Forest al-

gorithm was also capable of predicting mode of transport or transit itinerary to a fairly high level of
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accuracy, although it requires more feature engineering compared with GRU and CNN models and

is more dependent on the expertise knowledge to pick appropriate features. However, the simplicity

of the Random Forest model makes it a convenient and easy to understand model for everyone. Par-

ticularly, when the goal is explaining AI algorithms to people in applied, professional environments,

its simplicity may be advantageous.

Such trade-offs among different models prevent the recommendation of one algorithm as the best

approach. However, as shown in different studies across different fields of science, multi-task learn-

ing approach developed in this thesis deliver better performance over single-task purpose classifier.

Moreover, the ensemble methods developed in this thesis shows superiority over single learners.

7.2 Current Limitations

While this thesis contributed in several directions, as explained in the previous section, there are

some limitations related to it. First, although the goal of the study was to show the potential of

smartphone-based travel surveys to partially or completely replace the traditional HTS, the study

lacks cost-benefit analysis between smartphone travel surveys and HTS methods. While smart-

phone technological capabilities can contribute greatly to travel surveying by easing the burden on

travelers or bringing down the total implementation cost of travel surveys, a full economic analysis

can distinguish between all the advantages and disadvantages of public and private sectors involved

in smartphone travel surveys. Moreover, while some studies have evaluated the total surveying costs

of traditional HTS and smartphone surveys, the effort for post-processing trajectory data and devel-

oping AI algorithms should be included in cost evaluation methods to compare HTS and smartphone

travel surveys accurately.

One should also consider that when applying AI algorithms on smartphone-based travel data, the

quality of collected data and ground truthing methods play an important role in the performance of

the learning algorithms, sometimes maybe more than the AI algorithms themselves. Hence, col-

lecting high quality data, such as gathering high-frequency GPS data using more reliable ground

truthing techniques (such as recall surveys in which travelers can modify and validate their trips
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periodically with the help of a surveyor), can provide AI algorithms with richer information and af-

fect their performance much more than the effect of methodological approach. The effect of ground

truthing methods on the performance of the AI algorithms has been reported in some studies[111].

However, when considering that ground truthing method can play an important role on the quality

of the labeled data, the trade-offs between the cost of ground truthing techniques, such as recall or

follow-up surveys, and the performance of AI algorithms is not studied well. Such considerations

will surely be important as large-scale smartphone-based surveying becomes more commonplace

and requires further research to reveal which type of ground truthing methods and data quality

trade-offs can and should be made.

Regarding mode detection, more work on semi-supervised methods is required to enhance their per-

formance and take advantage of the large quantities of unlabeled data that are collected from many

different sources. Other generative approaches, such as Variational Autoencoder and Decoders

(VAE) may deliver better performance over GANs. Moreover, the conditional GAN method [101],

which can produce samples conditioned on the class labels, may provide discriminators with more

accurate samples and enhance the classification performance.

With respect to activity detection, we applied a uniform 250 meter distance around all the destina-

tions to consider land-use and social network data. However, such distance may not be appropriate

for all destinations, as in some populated urban areas there are lots of land-use data within the vicin-

ity of a destination and in some uncrowded or rural neighborhoods there might be very few data

points. Therefore, a method to find the appropriate distance around each destination could make

purpose detection algorithms more flexible and independent from expertise knowledge.

The transit itinerary algorithm developed in this thesis does not include point-based features in

predicting transit routes. The inclusion of such attributes may enhance the performance of transit

itinerary learners, especially the closeness of GPS points to different transit routes, which may

reveal more information about the chosen transit route by travelers.

Although this study has included several complementary data sources, such as land-use, GTFS, and

Foursquare data, there remains a great deal of information about urban infrastructure and form that

have not been included in the processing. We only considered land-use and social media data in the

vicinity of destinations, while a huge amount of data that form the whole urban environment have
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not been taken into account. In the next section, we suggest some directions and methodologies

researchers can focus on to deal with such weakness.

7.3 Future work

The efficiency of smartphone-based travel surveys, in terms of operational costs and human resource

requirements, provides motivation for further development of inference algorithms and designing

higher-quality apps capable of collecting more detailed and precise GPS trajectories. Many different

adaptations and experiments have been left for future work.

First, all the models developed in this thesis lack holistic information about urban infrastructure,

communities, and social contexts1 in their prediction procedure. Such holistic contextual informa-

tion enables AI algorithms to recognize rich information for different neighborhoods and regions

across a city. Such holistic contextual information is comparable to the knowledge of someone very

familiar with the city. Usually, such an individual, when they look at a GPS trajectory over the

map of a city (e.g. with Google Maps) can predict the mode of transport or even trip purpose, as

his knowledge about a city’s infrastructure and urban form (such as the location of metro lines and

stations, bus stops, bridges, highways and freeways, popular buildings, business areas, parks, event

venues, etc.) can help him to infer the mode and purpose. We can enhance the neural networks

developed in Chapter 6, by providing them with such contextual knowledge. For this aim, we need

a system to encode the whole contextual information of a city and feed them as input to the Neural

Network model [177]. One can benefit from the geospatial indexing system developed by Google,

known as S2Geometry [178, 179], or Uber, known as H3 [180]. Both systems index the earth sur-

face to a fine grid, in Google S2 system, or hexagonal grid, in the Uber H3 system. After indexing

the whole city into a grid system, we can encode detailed contextual information into the grid sys-

tem and feed them as input into an embedding algorithm(s). Such contextual information could

potentially play the role of large corpus of text in word embedding models, such as Word2vec[181].

The word embedding models are trained on large corpuses of text, such as Wikipedia or dictionary

texts, and generate a vector space with several hundred dimensions. Such pre-trained models are
1Here, by context we mean “the interrelated condition in which something exists in space and time. It encompasses

everything about the people, place, and circumstances of a spatial unit, be it a neighborhood, city or region.” [176]
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then used in many Natural Language Processing (NLP) models. It would be possible to follow the

same approach to reconstruct the structural, social and community context of a city and use it in our

training algorithms.

Second, the trip information identified in this thesis are among the most essential required in many

transportation demand modeling applications. However, there are other attributes that could and

will need to be inferred from smartphone data, especially those used in activity-based transporta-

tion demand analysis, such as tours and sub-tours or “with-whom” an individual has traveled. For

example, inferring the tours from trajectory data can be accomplished by using sequential modeling

approaches, such as RNN. Other trip information, such as “with-whom” an individual has com-

pleted a trip, requires further travel surveying efforts involving all household members and all the

users who share a ride to participate in the travel survey.

Third, to make a strong case for fully replacing traditional household travel surveys with smartphone-

based ones, one should compare them with respect to their final outputs, i.e. origin-destination(OD)

matrices. It is important to evaluate the degree to which these emerging methods can compare with

the traditional HTS methods on these dimensions.

Fourth, we developed all the models in this thesis based on data that had already been collected.

However, real-time mode or purpose detection is an approach worth exploring, especially if the

researcher aims to enhance the quality of trip validations by recommending the inferred mode of

transport or trip purpose in real-time to the respondents.

Fifth, more detailed data cleaning procedures using unsupervised approaches to clustering GPS

points and removing outliers and noisy data points may enhance the performance of mode detection

models.

Sixth, while the performance of learning algorithms can be enhanced by predicting “target tasks”,

i.e. the tasks that are important for the researcher, in a multi-task framework, some studies [175]

have suggested that machine learning algorithms can learn from “auxiliary tasks” too. Auxiliary

tasks are labels for data not directly important for the researcher, but that have the potential to help

algorithms learn target tasks better. In the context of travel data, auxiliary tasks can be any other

information we asked from respondents. For example, “occupation“ can play the role of an auxiliary

task, instead of a feature. The assumption behind such approaches is that: the relationship between
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auxiliary tasks while being trained within task-specific layers and task-specific loss functions can

be better understood [175], and can help to infer target tasks more efficiently. Moreover, auxiliary

tasks can be trained simultaneously inside a unique framework with target tasks and their output fed

as input to the target task layers. Some studies [175] have also proposed algorithms to combine and

transfer the auxiliary tasks and feed them into target tasks network, also showing a dimension for

future improvement and work.

Overall, while more effort is required in the future to improve the performance of inference al-

gorithms to detect trip information from trajectory data, the results of this research demonstrate

that AI-backed smartphone-based travel survey platforms, such as Itinerum, have the potential to

play an important role in future data collection for transportation demand studies. Indeed, with the

rapid changes in transportation technologies, gathering mobility data is more essential than ever and

smartphone-based travel surveys have the capability to respond to this need.

Besides, the future technological advances in smartphones, such as technologies deliver longer bat-

tery life or more power-efficient sensors, or more advanced wireless technologies, such as 5G that

offers the possibility to enhance the positioning accuracy [182], can also benefit to the field and give

more superiority to smartphone travel surveys over traditional HTS methods. Moreover, with the

emergence of autonomous vehicles in the future, researchers will have access to a rich source of

image and video data, recorded daily by autonomous vehicles, which can be utilized as a valuable

data source in inferring trip information from trajectory data. However, how much and when such

technological advances, in smartphone travel surveys and other fields of science, can lead to entirely

replacing traditional HTS methods requires more research and experiments on large-scale datasets

across different cities.
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[10] Fang Zhao, Francisco Câmara Pereira, Rudi Ball, Youngsung Kim, Yafei Han, Christopher

Zegras, and Moshe Ben-Akiva. Exploratory analysis of a smartphone-based travel survey in

Singapore. Transportation Research Record, 2494(1):45–56, 2015.

[11] David T Hartgen and Elizabeth San Jose. Costs and trip rates of recent household travel

surveys. Hartgen Group, Charlotte, NC, USA, 2009.

[12] Cambridge Systematics. Travel Demand Forecasting: Parameters and Techniques, volume

716. Transportation Research Board, 2012.

[13] Lara Montini, Sebastian Prost, Johann Schrammel, Nadine Rieser-Schüssler, and Kay W

Axhausen. Comparison of travel diaries generated from smartphone data and dedicated GPS

devices. Transportation Research Procedia, 11:227–241, 2015.

[14] Na Ta, Mei-Po Kwan, Yanwei Chai, and Zhilin Liu. Gendered space-time constraints, activity

participation and household structure: A case study using a GPS-based activity survey in

suburban beijing, china. Tijdschrift voor economische en sociale geografie, 107(5):505–521,

2016.

[15] Zhenzhen Wang, Sylvia Y He, and Yee Leung. Applying mobile phone data to travel be-

haviour research: A literature review. Travel Behaviour and Society, 11:141–155, 2018.

[16] Jerald Jariyasunant, Raja Sengupta, and Joan Walker. Overcoming battery life problems of

smartphones when creating automated travel diaries. Technical Report No. UCTC-FR-2014-

05, 2014.

[17] Gregory Bucci, Tom Morton, et al. Cell phone data and travel behavior research: symposium

summary report. Technical report, United States. Federal Highway Administration, 2014.

147



[18] Zachary Patterson and Kyle Fitzsimmon. MTL Trajet. Technical Report 2017-2, Concordia

University, TRIP Lab, Montreal, Canada, July 2017.

[19] Peter R Stopher, Li Shen, Wen Liu, and Asif Ahmed. The challenge of obtaining ground

truth for GPS processing. Transportation Research Procedia, 11:206–217, 2015.

[20] Scott Krig. Ground truth data, content, metrics, and analysis. In Computer Vision Metrics,

pages 247–271. Springer, 2016.

[21] Jean Wolf, Marcelo Oliveira, and Miriam Thompson. Impact of underreporting on mileage

and travel time estimates: Results from global positioning system-enhanced household travel

survey. Transportation Research Record: Journal of the Transportation Research Board,

(1854):189–198, 2003.

[22] D Pearson. A comparison of trip determination methods in GPS-enhanced household travel

surveys. In 84th annual meeting of the Transportation Research Board, Washington, DC,

2004.

[23] John L Bowman, Mark Bradley, Joe Castiglione, and Supin L Yoder. Making advanced travel

forecasting models affordable through model transferability. In the 93rd Annual Meeting of

Transportation Research Board, Washington, DC, 2014.

[24] John L Bowman and Moshe E Ben-Akiva. Activity-based disaggregate travel demand model

system with activity schedules. Transportation Research Part A: Policy and Practice, 35(1):

1–28, 2001.

[25] Patricia L Mokhtarian and Ilan Salomon. How derived is the demand for travel? some

conceptual and measurement considerations. Transportation Research Part A, 35(695):719,

2001.

[26] Michael Patriksson. The traffic assignment problem: models and methods. Courier Dover

Publications, 2015.

[27] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang. Map-matching

148



for low-sampling-rate GPS trajectories. In Proceedings of the 17th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems, pages 352–361. ACM,

2009.

[28] Ehsan Mazloumi, Mahmoud Mesbah, Avi Ceder, Sara Moridpour, and Graham Currie. Effi-

cient transit schedule design of timing points: a comparison of ant colony and genetic algo-

rithms. Transportation Research Part B: Methodological, 46(1):217–234, 2012.

[29] Jerry CN Ng and Paul M Sarjeant. Use of direct data entry for travel surveys. Transportation

Research Record, (1412), 1993.

[30] K Habib, Joffre Swait, and Sarah Salem. Investigating structural changes in commuting mode

choice preferences with repeated cross-sectional travel survey data: the contexts of Greater

Toronto and Hamilton (GTHA) area. In 13th International Conference on Travel Behaviour

Research, Toronto, volume 1520, 2012.

[31] Ying Long and Jean-Claude Thill. Combining smart card data and household travel survey to

analyze jobs–housing relationships in beijing. Computers, Environment and Urban Systems,

53:19–35, 2015.

[32] Selmer Bringsjord and Naveen Sundar Govindarajulu. Artificial intelligence. In Edward N.

Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

University, summer 2020 edition, 2020.

[33] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-

ume 1. MIT press, Cambridge, 2016.

[34] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike,

Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K Asari. The

history began from AlexNet: A comprehensive survey on deep learning approaches. arXiv

preprint arXiv:1803.01164, 2018.

[35] Rina Dechter. Learning while searching in constraint-satisfaction problems. University of

California, Computer Science Department, Cognitive Systems., 1986.

149



[36] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning. IEEE

Transactions on Neural Networks, 20(3):542–542, 2009.

[37] Mohsen Rezaie, Zachary Patterson, Jia Yuan Yu, and Ali Yazdizadeh. Semi-supervised travel

mode detection from smartphone data. In 2017 International Smart Cities Conference (ISC2),

pages 1–8. IEEE, 2017.

[38] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. IEEE

Transactions on Knowledge and Data Engineering, 26(8):1819–1837, 2013.

[39] Sina Dabiri and Kevin Heaslip. Inferring transportation modes from GPS trajectories using a

convolutional neural network. Transportation Research Part C: Emerging Technologies, 86:

360–371, 2018.

[40] Zhibin Xiao, Yang Wang, Kun Fu, and Fan Wu. Identifying different transportation modes

from trajectory data using tree-based ensemble classifiers. ISPRS International Journal of

Geo-Information, 6(2):57, 2017.

[41] Mogeng Yin, Madeleine Sheehan, Sidney Feygin, Jean-François Paiement, and Alexei Pozd-

noukhov. A generative model of urban activities from cellular data. IEEE Transactions on

Intelligent Transportation Systems, 19(6):1682–1696, 2017.

[42] Leon Stenneth, Ouri Wolfson, Philip S Yu, and Bo Xu. Transportation mode detection using

mobile phones and GIS information. In Proceedings of the 19th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems, pages 54–63. ACM,

2011.

[43] Tao Feng and Harry JP Timmermans. Transportation mode recognition using GPS and ac-

celerometer data. Transportation Research Part C: Emerging Technologies, 37:118–130,

2013.

[44] Hamid Reza Eftekhari and Mehdi Ghatee. An inference engine for smartphones to prepro-

cess data and detect stationary and transportation modes. Transportation Research Part C:

Emerging Technologies, 69:313–327, 2016.

150



[45] Arash Jahangiri and Hesham Rakha. Developing a support vector machine (SVM) classifier

for transportation mode identification by using mobile phone sensor data. In 93rd Annual

Meeting of Transportation Research Board, number 14-1442, 2014.

[46] Peter R Stopher. The travel survey toolkit: where to from here? In Transport survey methods:

Keeping up with a changing world, pages 15–46. Emerald Group Publishing Limited, 2009.

[47] Wendy Bohte and Kees Maat. Deriving and validating trip purposes and travel modes for

multi-day GPS-based travel surveys: A large-scale application in the Netherlands. Trans-

portation Research Part C: Emerging Technologies, 17(3):285–297, 2009.

[48] Filip Biljecki, Hugo Ledoux, and Peter van Oosterom. Transportation mode-based segmen-

tation and classification of movement trajectories. International Journal of Geographical

Information Science, 27(2):385–407, 2013.

[49] Nadine Schuessler and Kay Axhausen. Processing raw data from global positioning systems

without additional information. Transportation Research Record: Journal of the Transporta-

tion Research Board, (2105):28–36, 2009.

[50] Ron Dalumpines and Darren M Scott. Making mode detection transferable: extracting ac-

tivity and travel episodes from GPS data using the multinomial logit model and python.

Transportation Planning and Technology, 40(5):523–539, 2017.

[51] S. Dabiri, C. Lu, K. Heaslip, and C. K. Reddy. Semi-supervised deep learning approach for

transportation mode identification using gps trajectory data. IEEE Transactions on Knowl-

edge and Data Engineering, 32(5):1010–1023, 2020.

[52] A Santos, N McGuckin, HY Nakamoto, D Gray, and S Liss. Summary of travel trends: 2009

national household travel survey, us department of transportation, federal highway adminis-

tration. Technical report, FHWA-PL-11022, Jun, 2011.

[53] L’enquête origine-destination 2018. Technical report, l’Autorité régionale de transport
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for base calling in MinION nanopore reads. PLoS One, 12(6):e0178751, 2017.

[203] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,

and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statis-

tical machine translation. CoRR, abs/1406.1078, 2014.

[204] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural

networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[205] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

167



[206] Jordan B Pollack. Recursive distributed representations. Artificial Intelligence, 46(1-2):77–

105, 1990.

[207] Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes and

natural language with recursive neural networks. In Proceedings of the 28th International

Conference on Machine Learning (ICML-11), pages 129–136, 2011.
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comprehensive study of deep bidirectional LSTM RNNs for acoustic modeling in speech

recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2462–2466. IEEE, 2017.

169



Appendix A

Mobile Technologies for Mobility Data

Collection

This chapter includes more detailed information on the following issues:

• Mobile Technologies for Mobility Data Collection

• Ground Truthing Methods and Technologies

A.1 Mobile Technologies for Mobility Data Collection

Current section covers different data collection technologies in mobile phones, as shown in Fig-

ure 1.1 applicable in travel surveying.

Cellular networks locate a mobile user based on measured radio signals from a cellular tower [183].

Such locational data is gathered automatically by mobile network providers, without any burden on

the users[15]. Also, there is no need for any mobile application being installed on the users’ phones,

as the data is gathered by phone network provider not by the mobile phone of the users. However, as

the spatial information in cellular networks is estimated and gathered by cellular towers, their spatial

accuracy is lower compared to other techniques such as GPS positioning. Such cellular networks

can gathered locational data with accuracy varies between 100 and 10,000 meters [183].

GPS positioning is a system of embedded GPS sensors which locate the mobile phone devices by

170



signals transmitted by satellites. The GPS positioning can record high spatial resolution data, with

few meters accuracy. However, gathering such locational data requires installing an application on

users’ mobile phones. It should be mentioned that recording trajectories of travelers can also be

carried out via GPS devices [73]. Such studies requires travelers to bring a GPS device every where

they go, which is not applicable in large-scale HTS studies and put a lot burden on the participants.

However, GPS positioning system, in general, suffers from the signal lost, specially in urban areas,

which reduce the accuracy of recorded data [184].

WiFi positioning technique locates the mobile phone devices using embedded wireless and WiFi

access points. It can detect the position of mobile phones based on the strength of received signal,

using algorithms known as RSSI (Received Signal Strength Indication) methods[185]. The spa-

tial resolution of WiFi positioning technique is higher than cellular network, but is not always as

accurate as GPS positioning. However, the spatial resolution can be enhanced to few meters with

applying some positioning techniques [15]. The other disadvantage of WiFi positioning technique

is that the WiFi access points are scarce in suburbs or on the highways or roads far from residential

or businesses buildings, which prevent collecting data over large urban areas.

Bluetooth positioning locates the Bluetooth enabled smartphones whenever they pass through places

with Bluetooth beacon 1. The advantage of such technology is that most mobile phones are equipped

with Bluetooth today. However, in many cases, the location is recorded without any timestamp and

it can only cover devices within a certain distance (normally 100 meters) [15].

Regarding the motion systems, accelerometer is the most well-know sensor in today’s smartphones

that have been widely used in many activity recognition studies. It enables us to measure the ac-

celeration and motion status of smartphone user. Digital compass or Magnetometer sensor detects

the orientation of the mobile device relative to the magnetic earth. Gyroscope is another sensor in

mobile phones that records changes in orientation or, in some devices, it can detect the changes in

rotational velocity [15].
1A beacon is a small Bluetooth radio transmitter that constantly transmits Bluetooth signals. It can be used to broadcast

advertisements and notifications to the Bluetooth enabled smartphones in their vicinity [186]
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While each of the above mentioned technologies possess their own advantages, we should also con-

sider other issues when considering them in a travel survey context. The most important considera-

tions are the resolution and the accessibility of the data, and the effect of data collection technique on

mobile phone battery usage. The cellular data gathered by network providers is obtainable through

specific agreements and contracts, which potentially restricts their usage in HTS studies due to pri-

vacy issues[17]. Moreover, in many urban areas the resolution of cellular data is low. Bluetooth

technology is restricted to very short distances and cannot be applied on large distance trips. WiFi

positioning system also is not accurate enough, specially in areas with sparse or no WiFi coverage.

However, GPS positioning can locate the mobile phone devices with enough accuracy, usually with

a 5-meter accuracy[15]. Moreover, the GPS data can be easily collected by installing an application

on the smartphones, which record the GPS trajectory of travelers with timestamp. Furthermore,

the accuracy of data can be improved if the GPS information is recorded with high frequency, for

example every 5 or 1 second. Indeed, there is a trade-off between the quality of collected data and

the battery usage. Recording the GPS positioning information with high frequency or using motion

sensors, such as accelerometer or gyroscope, may considerably increase the smartphones’ battery

usage, and may not be applicable on large-scale and long-term data collection surveys.

A.2 Ground Truthing Methods and Technologies

Ground truthing in GPS trajectory data means labeling the trajectory with valuable trip information,

such as mode(s) of transport. Such labels are usually obtainable by asking respondents to validate

their trip information through three techniques: in-app prompted technique [8], web-based valida-

tion technique [110, 187], and recall (sometime referred to as follow-up or surveyor-intervened)

technique [10]. The in-app prompted technique is achieved via asking respondent to validate their

trip information inside the mobile phone application. Some applications, such as Itinerum[8], en-

able researchers to prompt the users and ask them some questions upon detecting a stop. The goal

of such questions is mainly gathering the ground truth data.

The recall validation technique is another method where the traveler will be contacted via phone

call or mail to ask questions about their recorded trajectories. Such validation technique usually
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requires human resources and increase the surveying costs.

In the web-based validation technique, the respondents are asked to log into a website and validate

their trip at the end of the day. The trajectories usually are shown to the travelers on the map [187]

and travelers can review and validate his trip information on the map or through a series of questions.

While there are different validation methods in the literature, each of them have their own advan-

tages and disadvantages. The in-app validation is the most efficient methods in terms of human

resource requirements and implementation costs, as there is no need to hire surveyors like the

follow-up technique, or design and develop a website in web-based validation technique. It also

does not suffer from the forgetfulness of travelers at the end of the day, which is a well-known

disadvantage of recall surveys or traditional HTS methods [188]. The recall techniques places more

burden on the travelers, sometimes as much as the traditional HTS methods. However, if we do not

consider the implementation and human resource costs and the amount of burden on travelers, the

best validation method is the combination of in-app validation with recall or web-based techniques.

For example, Xiao et al. [111], have implemented surveyor-intervened prompted recall surveys to

enhance the accuracy of validations. Next section introduces the Itinerum, which is the platform

used to gather travel data in current study.
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Appendix B

Complementary Data

This Appendix includes more detailed information on the following issues:

• Land-use data

• Foursquare data

B.1 Montreal Land-use Data

Land-use information is one of the data sources from which the activities around a GPS coordinate

can be derived. The last updated Montreal land-use data is collected by MAMROT 1 in 2011. Mon-

treal land-use data contains land-use characteristics at the parcel level for the Montreal Metropolitan

Area. There are around 970 land-use types which have been classified into 23 categories. As shown

in Table B.1, a great part of land-use parcels are residential buildings. Hence, using just land-use

data may cause the trip purpose detection algorithm to be prone to classification error, due to myriad

residential parcels around trip destinations. Thus, we sought other location based data sources, such

as Foursquare, to use them as a complement to land-use data.
1Ministere des Affaires Municipales, des Regions et de l’Occupations du Territoire
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Table B.1: Land-use Categories and Their Frequency in Montreal Metropolitan Area

ID Category Frequency
1 Residential 977,302
2 Unoccupied 83,215
3 Public Ways 26,001
4 Malls and Shopping Centres 8,948
5 Agriculture-Forest 8,715
6 Business & Services 6,844
7 Industry 5,500
8 Recreational 3,992
9 General Goods Retailers 3,012
10 Governmental Buildings 2,596
11 Hotels & Accommodation 2,480
12 Health-Related Buildings 1,722
13 Transportation Infrastructures (Motor Vehicle) 1,619
14 Parking 1,523
15 Public Services 1,509
16 Educational 1,410
17 Food Retailers 749
18 Wholesale 708
19 Freight Service & Railways Infrastructures 568
20 Cloth & Furniture Retailers 360
21 Transportation Infrastructures (Aviation) 305
22 Construction Material Retailers 255
23 Transportation Infrastructures (Maritime) 134
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B.2 Foursquare Data

Foursquare is an online location-based social network through which individuals can connect with

the places they visit by ’check-ins’ using the Foursquare app. In general, a check-in specifies that

a certain user has been presented at a certain venue. The check-ins then is shared with the venue

as well as the friends who installs the app [134]. In current study, for each trip destination we sent

a request to Foursquare API to search all the venues in 250 meter radius around a trip destination.

According to the online Foursquare API documentation [81], each request to Foursquare API returns

maximum of 50 venues. For each venue, there are around 35 fields of information, among which

the following have been used in current study:

• Categories, which indicates the Foursquare sub- or sub-sub-category to which the venue be-

longs

• Stats, which contains two useful information:

(1) checkinsCount which is the total check-ins ever in a venue

(2) usersCount which is the total users who have ever checked in a venue

As stated in Foursquare API Documentation for Venue Categories [135] Foursquare has categorized

venues into 10 top-level categories, as shown in Table B.2.

Table B.2: Foursquare Top-level Venue Categories, their Frequency, CheckinsCount and User-
sCount, in our data set (Ranked by CheckinsCount).

id Category name Frequency checkinsCount usersCount
1 Food 9290 85,441,649 39,023,641
2 Shop & Service 14,557 69,297,192 24,410,157
3 Professional & Other Places 13,255 68,545,764 9,713,876
4 Outdoors & Recreation 4,007 35,732,827 6,889,983
5 Travel & Transport 3,985 31,126,901 6,950,913
6 College & University 1,794 29,589,063 5,434,526
7 Nightlife Spot 2,104 16,541,388 7,489,199
8 Arts & Entertainment 2,603 16,485,299 8,555,722
9 Residence 2,568 8,511,930 826,256
10 Event 23 137,351 85,447

Also, each top-level category has ’sub-’ and ’sub-sub’ categories which results in total 910 cate-

gories. In current study we have aggregated all checkinsCount for each top-level category, resulted
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in 10 checkinsCount attribute around each trip destination. Also, the same procedure has been done

for usersCount. This information further will be included in the random forest model to predict

the trip purpose. The values of frequency, checkinsCount and usersCount for Foursquare top-level

venue categories in our data set have been demonstrated in Table B.2.
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Appendix C

Explanation of Mathematical

Operations and Concepts of the

Developed Models

This Appendix includes more detailed information on the following modeling approaches:

• Convolutional Neural Network

• Recurrent Neural Networks

• Generative Adversarial Networks

C.1 Convolutional Neural Network

C.1.1 Non-linear Activation Functions

The second stage of a convolutional layer in a CNN model is non-linear activation. Several non-

linear activation functions are used in developing neural networks, among which the Hyperbolic

tangent (tanh) function, rectified linear units (ReLU), and leaky rectified linear unit (LeakyReLU)

are the most well-known [33]. Figure C.1 shows the plots and equations of these functions.
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(a) tanh(x) = ex−e−x

ex+e−x (b) Relu(x) =
{
0 forx < 0
x forx ≥ 0

(c) LRelu(x) =
{
αx forx < 0
x forx ≥ 0

Figure C.1: Generally Known Non-linear Activation Functions Used in Convolutional Neural Net-
works

C.1.2 Pooling

Typically, after the non-linear activation function, pooling operation is applied. A pooling operation

reduces the size of the output feature maps by replacing the elements of them with a summary

statistic of those elements, like taking the maximum value (max pooling) [33, 90]. Pooling makes

the representation of the input data approximately invariant to small translations (changes) of the

input details. Invariance to translation means that if we make small changes to input data, the output

of the pooling operation (the pooled output) does not change [33].

FigureC.2 shows an example of max pooling and how the invariance to local translation works.

Both Figures C.2.a and C.2.b show a max pool operation with pooling window size=3 and stride=1.

Figure C.2.a is a view of the middle output of a convolutional layer. The top row demonstrates the

output of the non-linear activation function. The bottom row shows the outputs of the max pooling.

Figure C.2.b shows a view of the same network after the values of three elements (for example the

acceleration of three GPS points) have been changed. Despite the change in the three values of the

top row (red circle in Figure C.2), the values of the bottom row have not changed, because the max

pooling operation is sensitive only to the maximum value in a neighborhood and is approximately

invariant to the changes in small values in the pooling region[33].
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Figure C.2: Max pooling operation and how it introduces invariance (window size=1, stride=1).

C.2 Recurrent Neural Network

This section provides different architectures of Recurrent Neural Networks that have been developed

across different fields of science.

C.2.1 Other Architectures of Recurrent Neural Networks

Bidirectional RNNs

The RNN models explained in the previous section, only captures the information from the past. In

other words, at time step t, only the impact of previous sequence of inputs (x(1), x(2), ..., x(t−1), x(t))

on (y(t) are captured by the recurrent neural network structure. However, there are cases where

the output (y(t) depends on the whole sequence of inputs, i.e (x(1), x(2), ..., x(T−1), x(T )) [33].

Bidirectional RNNs responds to that need. A Bidirectional RNN is comprised of two RNNs, one

contains the sequences from the start of the sequence and moves forward through time, the other

RNN, begins from the the end of the sequence and move backward through time [33].
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There are three main subject areas were the bidirectional RNNs have been used:

• speech recognition

• handwriting recognition

• bioinformatics

Also, the bidirectional RNNs have been applied to other fields of study, and we have tried to cover

them as much as possible.

In speech recognition, the correct interpretation of a phoneme at step t may depend not only on the

previous phonemes but also on the next few phonemes. Schuster et al. [189] developed the first

Bidirectional RNNs that processes data in both directions through two separate hidden layers. The

two hidden layers are fed forward into the same output layer.

In handwriting recognition, the similar dependencies between nearby words in a text require a dif-

ferent network structure to capture the future and the past sequence of inputs at time step t. Bidirec-

tional RNNs responds to that need in handwriting recognition.

Deep Recurrent Neural Networks

Deep and hierarchical networks can result in better prediction performance than a shallow one [190,

191]. Moreover, other researchers observed that the depth of a neural network is more important

than layer size [192, 193, 194]. Experiments proved the need for enough depth to provide the

required mapping in neural networks [33, 94].

RNNs consists of three sets of parameters, and their corresponding transformations, to carry out all

the computations [33]:

• parameters for input-to-hidden function

• parameters for hidden-to-hidden function

• parameters for hidden-to-output function

There are lots of ways to make a recurrent neural network deep. We can add an intermediate,

nonlinear hidden layer to any of the above transitions, i.e. hidden-to-hidden, input-to-hidden and

hidden-to-output [193, 194]. For example, we can add intermediate nonlinear layers between two
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consecutive hidden states h(t−1) → h(t), or between the input x(t) to hidden state h(t). In general

making an RNN deep can be achieved through four ways [194]:

(1) deep input-to-hidden function

(2) deep hidden-to-output function

(3) deep hidden-to-hidden transition

(4) stack of hidden states

We briefly explain these methods.

A. Deep input-to-hidden function

Making the input-to-hidden transition deep, we produce a higher-level representation of the original

input, which leads to a better job at disentangling the underlying factors of variation [194, 195].

Such higher-level representations hypothetically facilitate the learning of the temporal structure be-

tween successive time steps, as the relation between such abstract features can be revealed more

easily [194]. This idea has been demonstrated by the work of Mikolov et al. [181]. Their study

showed that word embedding from neural network language processing models is related to their

temporal neighbors by simple algebraic relationships. Chen and Dang [196] have developed a deep

recurrent neural network for speech recognition by making the input-to-hidden function deep. They

used a fully connected deep neural network to compute the input sequence to the RNN. The deep

neural network plays the role of a feature extractor that receives its input from raw data sequences.

While their deep RNN was among the first to replace input with the extracted feature, their deep

input-to-hidden function was not jointly trained with other sets of parameters of the RNN.

B. Deep hidden-to-output function

Adding more layers to hidden-to-output transition can help RNN to better predict the output [33].

We can add feedforward layers as intermediate layers between the hidden state and the output.

Changing the hidden to output layers is another method to makes the RNNs deep. For example,

Boulanger-Lewandowski et al. [197] developed an RNN model to discover temporal dependencies

in high-dimensional sequences, such as short-term spectra in audio music. They replace the output
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layer of an RNN model with a Restricted Boltzmann Machines (RBMs) to predict the conditional

distribution of the next time step given previous time steps in symbolic sequences of polyphonic

music [194, 197].

C. Deep hidden-to-hidden transition

In a conventional RNN the transition between the consecutive hidden states is an affine transfor-

mation followed by an element-wise nonlinearity, which is indeed a shallow operation. In some

cases, such shallow operation does not allow the hidden state of an RNN to rapidly adapt quickly

changing modes of the input, while still preserving a useful summary of the past [194]. Pascanue et

al. [194] has argued that the procedure of producing a new hidden state, from the previous hidden

state and the new input, should be highly nonlinear. Hornik et al. [198] proposed using a multi-layer

perceptron(MLP) with one or more hidden layers, to model the highly nonlinearity transition. Later,

Bengio et al. [171] argued that with a deep transition more gradient descent steps are required to

propagate back in time. Such change may cause the training of an RNN to be more difficult with a

deep transition. To address such problem, Raiko et al.[199] suggested adding shortcut connections

in deep transitions. The added shortcut (skip) connections skip the intermediate layers of MLP in

hidden-to-hidden transitions.

The hidden-to-hidden transition can also be replaced by other types of neural networks. For exam-

ple, Pinheiro and Collobert [200] deployed convolutional neural network as the transition between

consecutive hidden states. Their recurrent convolutional neural network (RCNN) demonstrated

faster scene parsing and achieved the cutting-edge result in Stanford Background and SIFT Flow

datasets.

Furthermore, the above three methods can be combined to make an RNN deep. Pascanu et al. [194]

proposed having a separate MLP for each of the above mentioned functions, i.e. hidden-to-hidden

transition, input-to-hidden function and hidden-to-output function.

D. Stack of hidden states

We can extend an RNN deeper by decomposing the hidden recurrent state of it into hierarchical

recurrent hidden layers [33]. The resulted RNN referred to as stacked RNN [194], have multiple
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recurrent layers that are stacked on top of each other. Each of the stacked recurrent layers operates

a different timescale.

Having multiple hierarchical hidden layers in an RNN showed significant benefit in the study done

by Graves et al. [201]. Their proposed stacked RNN model consists of three hidden layers, each

feeding up to the layer above. Also, they used skip connections between inputs and all hidden layers,

as well as skip connections from all hidden layers to the outputs. The stacked RNN was used for

handwriting synthesis, which showed the ability to produce favorably realistic cursive handwriting

in a vast variety of styles.

Stacked RNN is recently used to develop a DNA base caller. Boza et al. [202] used an RNN with

three hidden state layers to translate the sequence of nanopores into the DNA sequence. By passing

single-stranded DNA fragments through nanopores, changes in the electric current are measured.

The value of electric current is highly dependent on the context of several DNA bases moving

through the pore during the measurement. Depend on these changes, the sequence of electric current

measurements is split into events. Afterward, the sequence of events is fed into a base caller (i.e.

the stacked RNN), which translates the sequence of the events into a DNA sequence.

Encoder-Decoder Architectures

An RNN can map an input to an output in different ways:

• mapping a sequence to a fixed-size vector

• mapping a fixed-size vector to a sequence

• mapping a sequence to a sequence of the same length

• mapping a sequence to a sequence of different length

The first three ways have been explained in the previous section. Mapping a sequence to a sequence

of different lengths occurs in many studies, e.g. speech recognition, machine translation, and chat-

bots [33]. The first RNN model that mapped a sequence to another sequence with different length

was proposed by [203] and [204] for language translation. The proposed architecture was called

encoder-decoder or sequence-to-sequence architecture.
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Encoder-decoder RNNs consist of two RNN models: an encoder RNN is fed by the input sequence

X = (x(1), ...., x(nx)) and generates a representation of input context, which is a function of its final

hidden state in a form of a fixed-size vector. A decoder RNN is fed by this fixed-size vector and

generates the output sequence Y = (y(1), ...., y(ny)) . It should be mentioned in this architecture nx

and ny can be different values. By jointly training the two RNNs we maximize the log probability of

Y given X, i.e. max(logP (y(1), ...., y(ny)|x(1), ...., x(nx))) [33]. We can see that in this architecture

there is no constraint of nx = ny, hence the encoder and decoder can have different size of hidden

layers.

The only limitation of this architecture is the fixed-size of encoder vector that makes it too small to

properly represent a long sequence in some cases. Bahdanau et al. [205] proposed an architecture

that its encoder generates a variable-sized vector, instead of a fixed-sized one. They also introduced

an attention mechanism for processing large sequences. Their attention-based architecture consists

of three components:

• reading process reads raw data (such as word sequences) and maps them to distributed repre-

sentations. In this stage, one feature vector is associated with each position in the sequence.

• a memory that contains the list of featured vectors obtained from the output of the reading

process.

• exploiting process that exploits the memory content and puts attention on one element of

memory at each time step. This component generated the output of the decoder.

Recursive Neural Networks

Recursive neural networks are a generalization of RNNs, which are structured as a tree, rather

than the sequence-like (chronological) structure of RNNs. Recursive structures are usually found

in different modalities. For instance, syntactic rules of a language are commonly considered as

recursive. The noun phrases that contain relative clauses, that themselves consist of noun phrases,

e.g. the house which has nice balcony. Pollack [206] first introduced recursive neural networks to

natural language processing. They presented a connectionist model to develop compact distributed

representations of variable-sized recursive data structures, such as trees.
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Tree structures also exist in scene images that discover the proximity and part-of relationship. For

example, a bus is often found on top of street regions in an image. Also, a region in an image

that contains a bus can be recursively broke down into smaller bus regions characterizing some

parts like windows, tires, lights, etc. A window can also be part of a church or a house, or a tire

can be found in other contexts such as a car or bike region, too. Socher et al. [207] developed

recursive neural networks to predict the recursive structure in multiple modalities. Their model was

able to successfully merge image segments or natural language words by learning the semantic c

transformations of their original features.

One challenge of developing recursive neural networks is choosing the appropriate tree structure

[33]. Many studies have suggested a structure that is not dependant on the data, as a balanced binary

tree [33]. Other studies suggest using external methods to choose the tree structure. For example,

in natural language sentence processing, a natural language parser provides the parse tree of the

sentence, which can be used as the tree structure for the recursive network. The other approach is

to let the learner itself determine the appropriate tree structure for a given input data [208].

Inclusion of multiple time scales in recurrent neural networks

Recurrent neural networks can benefit from learning long-term dependencies. While a conven-

tional RNN contains single-step connections, it is possible to create connections between units with

longer delays [209]. However, gradients propagated over many time-steps (stage) tend to vanish or

explode [209]. Moreover, in many cases, the weights associated with long-term interactions are ex-

ponentially smaller compared to short-term ones, due to the multiplication of many Jacobians [33].

There are several strategies in the literature to solve such problems, such as adding skip connections

through time, leaky units and removal of connections. We briefly explain these ideas.

Skip connections across time were the first approach to add long-term dependencies to recurrent

neural networks. They allow the RNN model to operates over multiple time scales. In this case,

some parts of the model capture the small details over fine-grained time scales, and the other parts

handle the information from remote past over coarse time scales. Adding skip connections, also

known as direct connections, from variables in the far past to the variables in the present is the most

common way to obtain coarse time scales [209]. While in a conventional RNN the connections

186



starts from a unit at time t to a unit at time t+1, it is possible to create connections between units

with longer delays [209]. Recurrent connections with longer delays mitigate the gradient vanishing

problem, however, gradients may still explode exponentially, as the model contains both single step

and delayed connections [209].

The most well-known strategy to include long-term dependencies in RNNs is the leaky unit. Leaky

units were first proposed by Mozer [210] and El Hihi and Bengio [211]. Leaky units integrate

different time scales through linear self-connections with weights near one. To explain the linear

self-connections let first explain the concept of moving average. A running average is a term in

statistics that refers to an average that continuously changes as more data points are gathered. To

calculate the running average, µ(t), of a value x(t), we can apply µ(t) ← αµ(t−1)+(1−α)x(t). The

α in this formula is an instance of a linear self-connections from time step t-1 to t [33]. To force a

linear self-connections to remember information from far past, the value of α should set near one.

When α is near zero, the information from the previous time step will quickly be discarded. The

hidden units with such linear self-connections are referred to as leaky units.

The main difference between skip connections and linear self-connections is in the way they convey

information from past to present. While skip connections always transfer information from d time

steps earlier (where d is an integer number), the linear self-connections allow smoothly transferring

information from past by adjusting α value (where α is a real number). It should be mentioned that

the time constants, i.e. α values, in leaky units can be set to fix value or free parameters that their

value should be learned [194, 210].

Gated networks

Gated networks are considered as the most effective sequence modeling technique in practical appli-

cations [33]. Both leaky units and gated networks can accumulate information over a long duration

and forget it when it is useful. However, the forgetting process, i.e. clearing the old information, in

gated networks is done automatically, instead of manually deciding when to forget the disadvanta-

geous information.

The idea behind the gated recurrent neural networks is to create paths through time, that their deriva-

tives neither vanish nor explode [33]. Gated RNNs accomplish this by considering connection
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weights that may change at each time step. The most well-known gated recurrent neural network

are long short-term memory. We explain the LSTM in the following.

Hochreiter and Schmidhuber [212] firstly introduced the long short-term memory unit. Afterward,

there have been several minor modifications on the LSTM unit, however, the idea of introducing

internal recurrence (a self-loop), that provide long-term paths through which gradient can flow, is

the main contribution of original LSTM model. While the weights on the self-loops were fixed in

the original LSTM, later, Gers et al. [213] proposed to make the weight on the self-loop conditioned

on the context.

The main difference between LSTM recurrent networks and conventional RNNs is that the former

contains internal recurrence in addition to the outer recurrence of conventional RNNs. While each

cell of an LSTM recurrent network has the same inputs and outputs of a conventional RNN, the

internal recurrence controls the flow of information through additional weights and a system of

gated hidden units [33]. The internal recurrence contains a linear self-loop, similar to the leaky

units explained above. While the time constant in leaky units, i.e. α, is determined manually, the

weights of linear self-loop of an internal recurrence are under control of a forget gate unit, which is

defined for each time step t and each LSTM cell i. The forget unit is indeed a sigmoid function that

maps the associated weights to a value between 0 and 1. The gated units also control the time scale

of integration dynamically. Even, an LSTM with fixed parameters can change the time scale of

integration based on the input sequence. These characteristics allow LSTM to be fed with different

size of sequences.

LSTM have been applied in various field of study, such as image captioning [214, 215, 216], speech

recognition[193], machine translation[217, 218], and parsing[219]. Deeper architecture of LSTM

also have been deployed for speech recognition.

Deep LSTM

As mentioned previously deep neural networks can result in better prediction performance than a

shallow one [190, 191]. Li and Wu [190] implemented a stacked LSTM architecture for a large

vocabulary conversational telephone speech recognition task. They also analyzed the developed

models based on three main functions used in RNN architecture, i.e. input-to-hidden function,

188



hidden-to-hidden transition, and hidden-to-output function.

Bidirectional LSTM

Graves and Schimhuber [220] combined Bidirectional RNNs with LSTM for framewise phone

classification. Their model mapped a sequence of speech frames to a corresponding sequence of

phoneme labels. The developed Bidirectional RNN can access long-range context in both input di-

rections and outperformed both the unidirectional RNN and Long Short Term Memory (LSTM).

They concluded where context is vitally important in speech processing tasks the bidirectional

LSTM is a befitting architecture.

Recently, Bidirectional LSTM has been used to predict the remaining useful life of a physical sys-

tem1 [221]. In such problems, the output is not a sequence and only the value of ” remaining useful

life” should be predicted. The authors have proposed an architecture that processes the observed

sequence in both directions sequentially, instead of processing both forward and backward sequence

simultaneously. Their proposed architecture first processes the sequence in the forward direction.

Afterward, it initializes processing the backward direction by using the LSTM final states. The

architecture produces two different yet linked mappings of the observation sequences to the desired

output value.

Deep bidirectional LSTM

Graves et al. [193] have stacked multiple forward and backward LSTM hidden layers on top of each

other, where the output sequence of one layer plays the role of the input sequence for the next layer.

Their deep bidirectional LSTM architecture was applied to speech recognition, and they found that

it provided a noticeable improvement over single-layer LSTM.

Training deep bidirectional LSTMs is expensive in terms of time and effort to tune. Zayer et al.

[222] have carried out a comprehensive study of different aspects of training LSTM and deep bidi-

rectional LSTMs for speech recognition tasks, such as network topology, sequence chunking and

batch sizes, optimization methods and regularization. They trained a series of deep bidirectional
1“Remaining useful life (RUL) prediction is the attempt to predict the remaining period of normal operation, at a

certain level of performance, for a physical system” [221]
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LSTM models with up to 10 layers for speech recognition. They also tuned the other aforementioned

hyperparameters and noticed that the more improvement of other hyperparameters, the deeper the

optimal network becomes. They also compared the Bidirectional vs. Unidirectional architectures

of deep LSTM models and found that bidirectional networks outperform better than unidirectional

ones. As mentioned above, such observation has been confirmed by other researchers [189, 220],

too.

C.3 Generative Adversarial Networks

C.3.1 Mathematical Procedures and Architecture

The most well-known GANs architecture is the Deep Convolutional GAN (DCGAN) [157]. Most

GANs use at least some of the architectural innovations proposed in the DCGAN architecture. As

shown in FigureC.3c, in the DCGANs architecture, the discriminator consists of the convolutional

layer(s) (explained in the next section) followed by a non-linear activation function. Afterward,

there are one or two fully-connected layer(s). The final layer produces the class probabilities through

a non-linear activation function such as softmax (for multi-class classification), sigmoid or tanh (for

binary classification). As shown in FigureC.3b, the generator consists of several hidden layers,

however, instead of convolutional layers, fractionally-strided (also referred to as transposed) convo-

lutional layers are used. The final layer of the generator produces the desired output shape that can

be an image or, in our case a series of GPS trajectories.

The building blocks of DCGANs are mainly borrowed from CNN architecture. As a result, the

next section explains terms and concepts from the CNN literature, necessary to understand the

architecture proposed in this paper. Also, since the results of our semi-supervised GANs model

are compared with those of a CNN model, we explain the pooling operation most typically used in

CNN models.
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(a) General architecture of convolutional neural network (CNN)

(b) General architecture of GANs Generator.

(c) General architecture of GANs Discriminator.

Figure C.3: General architecture of Different Models. (CONV: Convolution, FS-CONV:
Fractionally-Strided Convolution

C.3.2 The Transposed Convolution Operation

AS mentioned previously, a typical layer of a convolutional neural network has three stages: the

convolutional operation, the non-linear activation, and pooling. The convolution layer(s) trans-

form(s) the input data into the desired output shape (class logits, or probabilities). These stages and

how they are connected are shown in Figure C.4a We briefly describe each stage below. In a GANs

generative model, we need a transformation going in the opposite direction, i.e. from something

that has the shape of the output to something that has the shape of its input. To do this, transposed

(fractionally-strided) convolution is used (further explained below). However, the pooling layer is

not used in a transposed convolutional layer, as shown in Figure C.4b.

The generator model in the GANs framework needs to transform a latent variable input (such as

variable z defined in Section 2.2.5) into an image, GPS trajectory or sound clip. This procedure

requires mapping input to a higher-dimensional space [90]. For example, in Figure 2.5 the con-

volution operation maps from a 7-dimensional space to a 5-dimensional space, and by transposed

convolution, we want to go the other way around. The transposed convolution operates by swapping
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(a) Typical Mathematical Procedures Involved in a Convolutional Layer

(b) Typical Mathematical Procedures Involved in a Transposed Convolutional Layer

Figure C.4: Typical Operations in Convolutional and Transposed Convolutional Layers

the forward and backward passes of a convolution [90]. Hence, we can consider transposed con-

volution on input as the result of a direct convolution applied to an initial feature map [90]. Using

this representation, assume we want to implement a transposed convolution on a 4 × 1 input (see

the top row in green in Figure C.5a) with a kernel size of 3 × 1, unit stride and no zero padding.

The transposed convolution here can be considered as a direct convolution on a [2× 1] initial tensor

with a [3×1] kernel and a [2×1] border of zeros with stride=1. The kernel starts from the left-most

element of the bottom row and slides with stride=1 until it reaches the far right.

In Figure 2.4b the convolution operation can be represented by a sparse matrix C as below. The

output in Figure 2.4b can be obtained by multiplying the matrix C with input tensor.

c =



w x y 0 0 0 0

0 w x y 0 0 0

0 0 w x y 0 0

0 0 0 w x y 0

0 0 0 0 w x y


Based on this representation of convolution operation, the backward pass of a convolution is simply
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(a) The transpose of convolving a 3×1 kernel over a 4×1 input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).
It is equivalent to convolving a 3× 1 kernel over a 2× 1 input padded with a 2× 1 border of zeros using unit strides (i.e.,
i
′
= 2, k

′
= k, s

′
= 1 and p

′
= 2).

(b) The transpose of convolving a 3 × 1 kernel over a 5 × 1 input using 2 × 1 strides (i.e., i = 5, k = 3, s = 2 and
p = 0). It is equivalent to convolving a 3× 1 kernel over a 2× 1 input (with 1 zero inserted between inputs) padded with
a 2× 1 border of zeros using unit strides (i.e., i = 2, i = 3, k = k, s = 1 and p = 2).

Figure C.5: Two Examples of a Transposed Convolution Operation

derived by transposing matrix C. In other words we can take the output in Figure 2.6 and produce

the input by multiplying it with cT .

Another way of implementing the transposed convolution is to insert zeros between the input ele-

ments as shown in Figure C.5b. This causes the kernel to slide at a slower pace than with a unit

stride and this is why in the literature sometimes the transposed convolution is called fractionally

strided convolution [90].
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