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Abstract 
A Generic Form for Capturing Unobserved Heterogeneity in Discrete Choice 

Modelling: Application to Neighborhood Location Choice 

Discrete choice models and their strength to predict individual choices mostly depend on the 

quality of datasets that have been used for model generation. However, even the most 

comprehensive and detailed datasets are not able to observe all factors pertinent to someone’s 

choice. This issue in the choice modelling literature has been addressed as unobserved 

heterogeneity, which means that individuals across populations are not affected identically by 

alternative attributes. Furthermore, such variation in preferences across populations and their 

sources are not always recognized by researchers. 

There are different methods to capture unobserved heterogeneity proposed in the discrete 

choice literature among which the random parameters approach, also referred to as mixed logit 

models, the latent class approach and the agent effect approach are the most well know 

methods. The main contribution of this study is to extend the formulation of LC-MMNL model 

to capture the agent effect by including a random term in the utility function of the model. 

Three types of models, Mixed Multinomial Logit (MMNL), Latent Class Mixed Multinomial Logit 

(LC-MMNL) and Agent Effect Latent Class Mixed Multinomial Logit (AGLC-MMNL) have been 

generated and the results compared. Considering agent effect simultaneously with other 

sources of unobserved heterogeneity in a latent class context demonstrates improvement in 

terms of model fit as well as cross section validation. It enables us to generate a latent class 

model with a larger number of classes explaining more heterogeneity across the population of a 

neighborhood location choice study.  The AGLC-MMNL model is able to detect four distinct 

classes of individuals in Montreal, exhibiting different behaviours while facing neighborhood 

location choices in the context of a Discrete Choice Experiment. The classes of the model are 

able to explain different behaviours of individuals based on their income level, whether they 

are transit or car oriented, and the importance of privacy to them. 
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Introduction 

Discrete choice models have been widely used by researchers in the past several decades in a 

variety of disciplines. These models were pioneered in the domain of transportation by the 

works of McFadden (1977) and Ben-Akiva et al. (1980). More recent developments of this 

approach have resulted from the work of Hensher and Greene (2013), Bierlaire et al. (2015), 

Bhat et al. (2016) and Akay (2012), to name but a few. 

Discrete choice models firstly were used for analysing the decision making behaviour of 

travellers by McFadden (1977). However, these models have turned out to be widely useful in 

economics and other fields of science. Transportation demand modelling and neighbourhood 

location choice are related fields of study and have major impacts on each other. For example, 

people usually choose their residential location based on how much it is close to transportation 

networks or how much a neighbourhood is accessible by car or public transit. Hence, so quickly 

discrete choice models found their way to residential location choice (McFadden, 1978).  

Discrete choice models are econometric tools for predicting and explaining choices 

between two or more alternatives. For example, while buying a car or house an individual 

should make a decision to choose a car or house among a set of alternatives. In every discrete 

choice modelling there are two parties involved. First, the decision maker, who chooses an 

alternative among a set of alternatives which gives him the highest utility. On the other hand, 

there is a researcher who does not know anything about the utility of the decision maker. Also, 

she is not aware about the decision making procedure happened in the mind of the decision 

maker. She only observes the chosen alternative, some attributes of the alternatives as well as 

some characteristics of the decision makers. In other words, there are many unobserved 

attributes and characteristics about which the decision maker is not aware. Discrete choice 

modeling tries to establish a connection between these observed and unobserved factors to 

the decision maker’s utility.  

Discrete choice models commonly assume decision makers have a utility-maximizing 

behaviour. This assumption, based on Random Utility Maximization (RUM) theory (McFadden, 

1977), says that the decision maker chooses the alternative with the highest utility for him 
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(Train, 2009).  

It should be mentioned that the assumption of utility-maximizing decision makers is not 

the only one choice rule in the literature of choice modelling. There are other choice rules, such 

as utility satisficing (Simon, 1956; Stüttgen, Boatwright, & Monroe, 2012) and random regret 

minimising (Thiene, Boeri, & Chorus, 2012). Utility satisficing rule says that the decision maker 

chooses the alternative which first satisfies some criterion (Stüttgen, Boatwright, & Monroe, 2012). 

In other words, the decision maker does not choose the alternative with the highest utility, but he 

chooses the first alternative that is good enough for him.  

Random regret minimising rule is another paradigm in discrete choice literature. It assumes 

that the decision maker not only considers the utility of each alternative, but also he considers the 

possibility of that the non-chosen alternative has higher utility than the chosen one.  In other words, the 

random regret minimization rule assumes that the decision maker anticipate the possible regret 

associated with the chosen alternative and consider this in his decision making procedure. (Thiene, 

Boeri, & Chorus, 2012).   While there are other choice rules have been applied in several studies, the 

current study focuses on utility-maximizing rule, which is the most used in the literature.  

As mentioned above, the researchers only observe some attributes of alternatives as 

well as some characteristics of individuals. Hence, there are many other factors that affect the 

individuals’ choices which are not observed by the researcher and cannot be estimated by the 

model. However, the initial versions of discreet choice models, called Multinomial Logit (MNL) 

models, tried to consider the effects of unobserved factors in modelling procedure by including 

an error term in the mathematical formulation of the model. In any typical discrete choice 

model, there is a linear utility function that consists of two parts: first, the observed or 

representative utility, which is the utility measured by the observed attributes of alternatives 

and characteristics of decision makers. The representative utility can be measured by some 

parameters estimated statistically. Second, the error term that constitutes aspects of the utility 

that the researcher cannot observe. In other words, the error term is the difference between 

the true utility, perceived by decision maker, and the representative utility observed by the 

researcher. By decomposing the utility function into two parts, i.e. the representative 

(observed) utility and the error term, the researcher tries to capture unobserved factors, 

affecting decision maker utility, as well as the observed attributes of alternatives and 
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characteristics of the decision maker.  

 As mentioned above, discrete choice models are applied on datasets, hence, the quality 

of dataset can largely affect the model results. It is worth to briefly explain the methods largely 

used in the literature for gathering data. Discrete choice models are usually estimated on 

datasets obtained from two different sources: Revealed Preference (RP) and Stated Preference 

(SP) (Louviere, Hensher, & Swait, 2000).  

RP data are obtained by observing actual respondent behaviour in its usual context 

(Houthakker, 1950; Morikawa, Ben-Akiva, & McFadden, 2002). RP surveys were widely used in 

early econometrics literature on the topic, as the traditional view was that valid choice data 

resulted only from actual choices having been made (Morikawa et al., 2002).  

SP data are used when the available RP data are limited for various reasons, such as 

introducing a new alternative which is not available to the decision makers in actual context.  

Also, in some cases, the alternative is available to the decision makers, however, there is not 

sufficient variability in actual choices and researcher cannot analysis the attributes of interest, 

in this case, again the SP data are used. In addition, in some cases the researcher wants to 

estimate the utility of a hypothetical choice which is not available to the decision makers, in this 

case also she decides to design a SP experiment. 

Stated Preferences are elicited through Discrete Choice Experiments (DCEs) (Louviere, 

Flynn, & Carson, 2010). DCEs, are surveys that aim to simulate choices of individuals by 

including the attributes of alternatives each individual faced. Researchers ask individuals to 

choose among a hypothetical set of alternatives (referred as choice tasks) each of which has 

different levels of attributes characterizing the alternatives. The levels of each attribute of each 

alternative are defined beforehand based on a study of previous relevant studies, focus groups, 

piloted versions of the survey, and an experimental design. A simple example of a choice task 

can be given with three transportation modes e.g. Car, Metro and Bike as alternatives. Each of 

them has time and cost as varying attributes, with different levels. For example, the travel time 

of Car, Metro and Bike can be defined as 20, 30, and 45 minutes, respectively. Also, the total 

travel cost by each alternative can be defined as 8, 3 and 2 CAD, respectively. The respondent is 

asked to choose an alternative among these three alternatives in each choice task. The 
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researcher can design different choice tasks and ask the respondents to respond to them, 

repeatedly. 

Then, the responses to choice tasks (the choices that respondents make) are analyzed 

using discrete choice models. There is a large body of literature on the use of stated preference 

surveys from myriad fields of science including economics (Louviere et al., 2000), marketing 

(Louviere et al., 2008), environmental valuation (Boxall, Adamowicz, Swait, Williams, & 

Louviere, 1996), and health economics (de Bekker-Grob, Ryan, & Gerard, 2012) to name but a 

few.  

Through analyzing the respondents’ preferences, researchers can reveal details about 

the effects of different attributes’ levels on respondents’ choices. In addition, while there are 

several attributes considered in each choice task, the results can specify which attributes of the 

alternatives are the most important from individual’s point of view. Furthermore, the results of 

a SP can show how much the different levels of attributes can affect the people’s preferences.   

Both types of aforementioned surveys, i.e. RP and SP surveys, have their pros and cons. 

However, regardless of data source, as mentioned earlier, not all factors pertinent to 

someone’s choice can be observed from either stated or revealed preference data. In other 

words, with both types of data, some of the many factors affecting the likelihood of an 

alternative are not likely to be observed by the researcher.  

For example, we can consider gender as an observed human characteristic that affects 

survey outcomes. While there are obviously differences between men and women (providing a 

rationale for using a dummy variable such as 1 for male and 0 otherwise) (Mannering, Shankar, 

& Bhat, 2016), there is also considerable heterogeneity across individuals of the same gender, 

including differences in attitudes and life styles that are generally unobservable to the 

researcher. These differences, i.e. heterogeneities, are not taken into account even when other 

observable variables have been included in the model. Furthermore, such differences cannot be 

identified by the SP or RP data.  

As mentioned earlier, the classic formulation of discrete choice models, the researcher 

assumes that these unobserved factors are captured by the error term. However, this approach 

will lead to large estimated variances for parameters of the model, referred to as biased 
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estimated parameters in the literature (Dugundji & Walker, 2005; Heckman & Singer, 1984; 

Reader, 1993). In other words, the more unobserved attributes are not represented by 

observed utility, the more error will be entered into the estimation of the model. Hence, the 

lack of knowledge about a major part of an individual’s characteristics and alternative attributes 

will affect the model, and generally, the classic models in discrete choice family cannot capture 

them. 

The above-mentioned issue in choice modelling has been addressed as unobserved 

heterogeneity, which means that individuals across populations are not affected identically by 

the same alternative attributes. Furthermore, as mentioned above, such variation in 

preferences across populations and, more importantly their sources, are not always recognized 

by researchers.  

This issue has been documented in a number of studies as: the failure to consider 

unobserved heterogeneity in choice models, inherently leading to biased and inefficient 

parameter estimation (Dugundji & Walker, 2005; Heckman & Singer, 1984; Reader, 1993). This 

can consequently result in incorrect inferences and predictions. There are various approaches 

in the literature to account for unobserved heterogeneity: 

1- Random parameter discrete choice models, 

2- Latent class discrete choice models, and 

3- Agent effect discrete choice models. 

Among the above mentioned approaches the random parameter approach (M. Ben-

Akiva, Bolduc, & Walker, 2001; Bhat, 2001; Hensher & Greene, 2003; McFadden & Train, 2000) 

is the most well-known and widely used. Random parameter discrete choice models, also 

known as Mixed Multinomial Logit (MMNL) models (McFadden & Train, 2000; Revelt & Train, 

1998) or Logit Kernel (M. Ben-Akiva et al., 2001), allow the parameters of a model to vary 

across observations (M. E. Ben-Akiva & Lerman, 1985) in a sense that a distribution, instead of 

having unique value, will be estimated for each random parameter in the utility function of 

model. The most important aspect of an MMNL model is to define an appropriate distribution 

for the population under study. Usually, the researcher selects a distribution among different 

available distributions introduced in statistical analysis, based on a prior modelling procedure to 
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find the best distribution fitting the dataset. Hence, some parameters of the MMNL model can 

be estimated as random values with a user-defined distribution (e.g. Normal, Triangular or 

Uniform distributions) and then a mean, as well as standard error will be estimated by the 

model.  

Expressed in a different way, MMNL models try to decrease the weight of the error term 

component in the utility function of discrete choice models by capturing, to some extent, 

unobserved heterogeneity in the random parameters of the model. However, a major issue 

related to this approach is that MMNL model assumes a single average behaviour and 

deviations from it across population. In other words, the MMNL model assumes only one 

average behaviour for all the individuals in a population. As a result, the behaviour of any 

individual in the dataset can be estimated by a deviation from this average behaviour - 

something that is not a valid assumption in many cases. In reality, we have many “average” 

behaviours in a dataset, as different segments of the population will behave totally differently 

according to the characteristics of their members. This limitation of MMNL models has resulted 

in an alternative model, referred to as the Latent Class (LC) model (Boxall & Adamowicz, 2002; 

Greene & Hensher, 2003) which will be discussed in the following. However, one major issue is 

the prior assumption about the distribution of the random parameters in the MMNL model that 

are estimated. The typical approach used in the literature is to generate models with different 

distributions, such as the normal, triangular and uniform, and test which model fits better and 

estimates more meaningful parameters. Also, as Green and Hensher (2003) mentioned, for 

some attributes that are expected a priori to produce a negative mean estimate we can use the 

lognormal distribution. However, choosing the distribution for estimating random parameters 

requires prior knowledge about the population and a sense about how the real behavior is 

distributed (Green and Hensher, 2003). 

The LC model assumes that there are different segments of a population that behave 

relatively homogenously within each segment but heterogeneously across (differently from 

other) segments (Wen, Huang, Fu, & Chou, 2013). While the MMNL model defines random 

parameters as a continuous probability distribution and assumes an average behaviour for all 

segments of the population, LC models rest on the assumption that individuals in each segment 
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of the population behave differently and an average behaviour for each segment should be 

estimated. Hence, the LC models are closer to the reality of the population by considering 

different average behaviours for different segments of the population.  

By means of estimating discrete numbers of classes, LC models provide multiple and 

totally distinct average behaviours among classes. Each class is associated with a different set of 

parameters in a “class-segmenting” utility function (Shen, 2009). LC models have been applied 

in various fields of marketing research, economics, transportation and geography, such as, 

route choice modelling (Greene & Hensher, 2003), mode choice modelling (Atasoy, Glerum, & 

Bierlaire, 2011; Gopimatj, 1997a), international air carrier choice (Wen & Lai, 2010), 

environmental preferences (Morey, Thacher, & Breffle, 2006) and household location choice 

(Joan L Walker & Li, 2007). 

In LC models each individual is assigned to a “class” according to a logit-like probability 

function (the class membership function) considering individual characteristics. The term 

“latent” stems from the fact that the class to which each respondent is assigned is not available 

to the analyst (Greene & Hensher, 2013).  Also, in many cases the number of classes is not 

known by the analyst. One of the issues regarding latent class models is how to define the 

number of classes that best represents the true segments across population. In other words, 

since the research does not know the number of classes, how can she determine the number of 

classes that should be included in the model? In this case, the best method, widely used by 

different researchers (Greene & Hensher, 2013; Teichert, Shehu, & von Wartburg, 2008; Joan L 

Walker & Li, 2007), to determine the number of classes is generating a series of LC models with 

different number of classes. Then, based on a selection criteria, such as the Bayesian 

Information Criterion (BIC), the generated models can be compared with each other and the 

best model selected (Greene & Hensher, 2013).  

It should be mentioned that LC models do not allow the parameters of the model to be 

continuously distributed within each class. Hence, within each class unobserved heterogeneity 

is not captured, like the MNL model, and only represented by the error term in the utility 

function of each class. In other words, LC modelling assumes only an average behaviour for all 

the members of each class without any deviation from it. This limitation has been considered as 
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a drawback in the literature of LC modelling (Greene & Hensher, 2013; Mannering et al., 2016).  

The aforementioned limitation of LC models has led researchers to combine the random 

parameter and latent class approaches to consider the unobserved heterogeneity within each 

class in the model. Within this approach, also known as the Latent Class Mixed Multinomial 

Logit (LC-MMNL) model (Greene & Hensher, 2013), first the number of latent classes are 

specified and then the parameters are allowed to be varied (based on user-defined probability 

distributions) within each class. The advantage of this combined approach over the LC model is 

that it not only considers multiple average behaviours across a population, but it also estimates 

multiple deviations from these average behaviours. 

By using LC-MMNL models, the limitations of LC models that estimate one average 

behaviour within each class is relaxed. Hence, in theory, LC-MMNL models should account for 

unobserved heterogeneity more efficiently than either LC or random parameters approaches 

alone. In fact, recently this assumption has been approved by two studies done in 

transportation context (Bujosa, Riera, & Hicks, 2010; Greene & Hensher, 2013). However, 

ongoing research is needed to demonstrate the superiority of LC-MMNL models over LC and 

MMNL models applied on different datasets. 

Another source of unobserved heterogeneity in datasets is the correlation across 

sequential observations (choices) (Mannering et al., 2016). It is worth mentioning that SP 

datasets can be gathered using two different approaches: times-series and cross-sectional. 

Time-series data are the sequence of observations of individuals at two or more periods in 

time. Cross-sectional data, on the other hand are the observations of individuals at the same 

point in time (Bierlaire, 2014), which means that no sequence of observations for an individual 

have been gathered. By using time-series data, individual related unobserved factors that are 

persistent over time would be another source of unobserved heterogeneity. This type of 

unobserved heterogeneity is known as an “agent” or “panel” effect in the literature (Bierlaire, 

2014). Obviously, the MMNL, LC and LC-MMNL models cannot capture this kind of 

heterogeneity, as they consider choice tasks independently, whether they are faced by the 

same individual or not. In other word, the above-mentioned models assume that there is no 

correlation between the choice tasks of the same individual.  
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In order to accommodate the agent effect in a discrete choice model, many researchers 

have included a random parameter in every utility function with which an individual is faced. By 

doing this, the correlation among choice tasks related to a same individual will be captured by 

this random parameter.  However, to my knowledge, no attempt has been made to generate a 

model that accounts for all aforementioned methods of capturing unobserved heterogeneity. 

Hence, the intent of this study is to combine the LC-MMNL approach (which itself accounts for 

unobserved heterogeneity via two other approaches, i.e. random parameter and latent class) 

and the agent effect approach to allow analysts to make more accurate inferences.  

The remaining part of this thesis is organized as follows. In the next section, the 

formulation of Multinomial Logit, Mixed Multinomial Logit, and Latent Class models will be 

introduced. Afterwards, the literature on different approaches for capturing the unobserved 

heterogeneity is reviewed. Finally, the co-authored article, submitted to 96th annual meeting of 

Transportation Research Board is presented. It should be mentioned that the combined 

approach in this study requires a new mathematical formulation (of utility function and log-

likelihood function of discrete choice models introduced in the literature) 1.  

The initial version of discrete choice models, i.e. MNL model, rests on the above-

mentioned assumptions about observed utility. The observed utility has a linear formulation 

and the unobserved utility is represented in the error terms. It is assumed that the error term in 

the MNL model is distributed independently, identically extreme value (Train, 2009). However, 

the assumption that the error term for each alternative is independent from the error term of 

other alternatives is restrictive and is not satisfied in many cases. As in fact, alternatives have 

some common attributes that cause them to be correlated.  

 

Mathematical Formulation of Discrete Choice Models Accounting for Unobserved 
Heterogeneity 

In this section, I first describe the basic discrete choice model (MNL) that does not account for 

unobserved heterogeneity across observations, and then continue to describe two other 

formulations that do. Three discrete choice models, i.e. Multinomial Logit (MNL), LC and LC-

                                                           
1 This issue is explained in detail in the co-authored article.   
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MMNL, will be discussed respectively.  

In the discrete choice family of models, it is usually assumed that a sampled individual 

faces a choice amongst a set of alternatives in each of T choice situations. An individual n is 

assumed to consider the full set of offered alternatives and to choose the alternative with the 

highest utility. Denoting as a vector of attributes of alternative in choice situation t 

and characteristics of individual  and  as a vector of estimated parameters associated 

with , the utility for alternative  may be expressed as (Greene & Hensher, 2003): 

                 (1) 

where  is the utility associated with alternative  held by individual  in choice situation t 

and  reflects unobserved influences on utility. The choice probability of alternative  is given 

as in the Multinomial Logit (MNL) model (Greene & Hensher, 2003): 

                (2) 

where 

                 (3) 

and  refers to any alternative in choice set .  is the observed utility, also referred to as 

systematic utility.  

In the MNL model, we assume that  is independent and identically extreme value 

distributed (iid). However, in reality, there might be correlations across the alternatives in each 

choice situation and indeed across alternatives. Hence, we can assume the parameters of the 

model to be random parameters with a distribution across observations and define the vector 

of parameters  as (Bierlaire, 2014): 

                  (4) 

Where  and are the mean and variance of the , e.g.  and  is a random 

value with a specified distribution, e.g. . The utility function of alternative  

observed by individual  can be expressed as: 

 +                  (5) 
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where  is random term with zero mean and independent and identically (iid) distribution2. 

The conditional probability of alternative  being chosen by individual  is: 

                      (6) 

and the unconditional probability is demonstrated as: 

                                              (7) 

where  is the probability density function of . This choice probability is a weighted 

average of the MNL model choice probability function evaluated at different values of , with 

the weight given by the probability density function . In most applications, the normal 

distribution is frequently used for random coefficients. However, other continuous distributions 

such as the Lognormal, Uniform,  Triangular are applicable (Train, 2009).  

As shown above, unobserved heterogeneity across observations can be taken into 

account by the MMNL Model which allows the parameters of the model to vary over 

observations and estimates them based on an assumed probability distribution (Lee, Fujiwara, 

Zhang, & Sugie, 2003). Some parameters of the MMNL model can be estimated as random 

values with a specific mean and a standard error. However, although the MMNL model tries to 

explicitly consider heterogeneity in the population, the sources of heterogeneity cannot be 

explained by them. For, as mentioned earlier, in many cases these sources relate to the 

characteristics of individuals, which cannot be captured by MMNL models.  

In LC models, each individual is assigned to a “class” according to a probability function, 

referred to as a Class Membership Function, which is a logit-like probability function 

considering individual characteristics. The term “latent” stems from the fact that the class to 

which each respondent is assigned is not available to the analyst (Greene & Hensher, 2013).  

By considering different classes, LC models try to explain taste variation across observations (or 

individuals) as well as their sensitivity to the variations of alternative variables.  In an LC model 

formulation, the conditional utility function of alternative  for individual  of class is similar 

to the MNL model (Greene & Hensher, 2003): 

                                                           
2 In probability theory and statistics, a sequence or other collection of random variables is independent and 
identically distributed (iid) if each random variable has the same probability distribution as the others and all are 
mutually independent (Parzen, 1962). 
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      (8) 

In the latent class model, the probability of alternative  being chosen by individual  of class  

is given by: 

                (9) 

where 

                           (10) 

                           (11) 

Where  is a vector of class variables consisting of individual socioeconomic characteristics 

and  is a vector of parameters for class . Equation (9) calculates the probability of 

alternative  being chosen by individual  of class , while, Equation (10) is the class 

membership function of decision maker  in class s.   

As mentioned earlier, although LC models offer an alternative perspective to the MMNL, they 

assume preference homogeneity within each class. Instead of considering latent class model 

parameters fixed, we can allow them to be random thus allowing for preference heterogeneity 

within a class (Greene & Hensher, 2013). To accommodate the new layer of heterogeneity, 

continuous variation of the parameters within classes will be allowed. Hence, the utility 

function of the LC-MMNL model is (Greene & Hensher, 2013): 

                                         (12) 

Where:  

  

where  and are the mean and variance of the , e.g.  and  is a random 

value with a specified distribution. The utility function of alternative  observed by individual  

can be expressed as: 

 +                           (13) 

where  is random term with zero mean and iid distribution. The conditional probability of 

alternative  in class  being chosen by individual  is: 

                          (14) 
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The class heterogeneity is defined by class membership function like the LC model: 

                            (15) 

The contribution of individual  to the log-likelihood of the model is obtained by integrating the 

two-layer heterogeneity: within-class heterogeneity and class heterogeneity (Greene & 

Hensher, 2013). The unconditional probability of alternative  in class  being chosen by 

individual  in LC-MMNL model is given as follows: 

                           (16) 

Although the MMNL, LC and LC-MMNL account for unobserved heterogeneity across 

observations, they do not consider the heterogeneity across individuals when using panel 

(multiple observations from the same respondent) data. While using panel data, each individual 

faces more than one choice situation at different points of time. This can cause observations 

from the same individual to be correlated. The source of such correlation is individual related 

unobserved factors that are persistent across time (Bierlaire, 2014). Hence, addressing the 

source of this correlation in the LC-MMNL model, first we add the  subscript to the utility 

function:  

                                (17) 

here  is the utility for alternative  being chosen by individual  in class  at time point . 

Afterwards we relax the assumption that are independent across t: 

                             (18) 

while  is independent across ,  capture permanent taste heterogeneity.  

Consequently, the conditional probability (on  and ) of alternative  being chosen by 

individual  in class  at time  is: 

                       (19) 

where  is the vector gathering all parameters . Removing the probability conditions on  

and  we will have:   

                             (20) 

Also, the contribution of individual  to the log likelihood is: 

                              (21) 
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where  is the number of choice situations in which individual  is engaged. In addition, 

the choice probability of alternative  unconditional on  would be:  

                              (22) 

where  is the probability density function of . Finally, the unconditional contribution of 

individual  to the log likelihood is: 

                      (23) 

One of the issues regarding any random parameter discrete choice model formulation is 

that solving the integral in unconditional probability functions of such models, such as Equation 

(7) , (16) and (23), needs simulation (Train, 2009), as such integrals do not have a closed form 

expression.  By simulation, random values (for random parameters) are drawn from an 

assumed distribution, and then, the integral can be approximated by getting a summation over 

the values of the function under the integral, while the random parameters of the model have 

been substituted by the randomly drawn values. Hence, Equation (22) can be approximated by: 

                                       (24) 

where R is the number of draws in simulating procedure. 

Also, the overall simulated log-likelihood is given by the following equation: 

                                     (25) 

where  is the number of individuals in data set. 
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Literature Review 
This literature review seeks to cover the most prominent studies, mainly conducted in the fields 

of transportation and market research, which have considered unobserved heterogeneity in 

discrete choice modelling. Also, the most relevant studies on SP surveys and their application 

have been reviewed. The reason for reviewing the SP survey literature is that the data used in 

this study, explained in detail in the co-authored article, has been gathered via the use of a 

video game SP survey in 2014 (Patterson, Darbani, Rezaei, Zacharias, & Yazdizadeh, 2017).  

Stated Preference Surveys 
As mentioned in the Introduction, there are two methods for gathering data for discrete 

choice models: revealed preferences data and stated preferences data. The term revealed 

preference was first used by Samuelson (Samuelson, 1938). He considered individual behaviour 

as a series of choices. He suggested that by comparing observed behaviour with available 

alternatives, individual’s preferences can be inferred. This theory was subsequently expanded 

on and eventually resulted in the development of choice models (Abley, 2000). Revealed 

preference data is gathered either through direct observation, or through surveys asking about 

actual behaviour. The collected information about actual choices can be used to estimate 

choice models (Boxall et al., 1996).  

Although revealed preference methods have been used widely to identify individual 

choices in real world, the technique exhibits a number of severe limitations (Abley, 2000): 

1- There is a lack of sufficiently large variations in attributes of interest using revealed 

preference data. 

2- There is often considerable correlation between the variables in revealed preference 

data. This can cause several problems (i.e. it can be difficult to distinguish between 

the effects of different variables, which make the estimation of the model 

parameters impossible). 

3- Since RP data is based on actual alternatives, the use of these techniques proves 

difficult for predicting the effect of new products or services. 

Due to the problems that researchers have encountered using RP techniques, they have 

looked for new methods of predicting individual preferences. Their efforts have led to the 
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introduction of SP methods in the field of choice modeling. 

Stated preference (SP) techniques are a class of market research tools that allow 

researchers to identify how consumers value different product or service attributes and choose 

their preferred alternative among a set of options (Abley, 2000). In an SP survey respondents 

are asked to rank, rate or choose between different hypothetical product or service scenarios, 

which consist of different attribute mixes. These choices can be used to infer how respondents 

value different attributes (Abley, 2000). 

SP methods have been widely used by researchers because of the two following 

reasons: first, RP data cannot exist for alternatives that are currently unavailable alternatives. 

Second, in some choice sets, there are some existing alternatives without any considerable 

differences in attribute mixes. As SP methods allow the researchers to include hypothetical 

alternatives, and ensure sufficient variation in, and orthogonality between, attributes they can 

be useful for studying such choice sets (Hensher, 1994). 

SP surveys can be applied to measure the total economic value; i.e. both non-use value 

and option value are embodied in SP surveys methods. This characteristic offers consequential 

potential for estimating the value of future or hypothetical (but realistic) goods and 

interventions. Stated preference methods show their primacy in providing a more direct route 

to the valuation of the characteristics or attributes of a good, and of marginal changes in these 

characteristics, rather than the value of the good as a whole. This can result in consequences of 

great importance in management, decision making, project evaluation and policy appraisal in 

which the decisions depends on changes in levels of attributes (Stephens, 2010).  

 While SP methods enjoy several advantages, the efficacy of their results depends on 

their ability to present realistic hypothetical alternatives for respondents. This important aspect 

of SP methods is partly related to the method of presenting alternatives or scenarios, which can 

be categorized into two major methods: traditional text format and modern visual 

technologies.  

In the traditional text format, respondents only see a written explanation of each 

alternative and based on its attributes she can choose her preferred choice among a set of 

alternatives. However, the use of modern visual techniques, such as including video clips or 3D 
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simulation models has been popular among researchers in the context of SP surveys (Appleton 

& Lovett, 2005; Arnberger & Eder, 2011; Bateman, Day, Jones, & Jude, 2009; Bienabe & Hearne, 

2006; R. Laing et al., 2009; R. A. Laing, Davies, Hargreaves, & Scott, 2004; Mostofi-Darbani, 

Rezaei, Patterson, & Zacharias, 2014; Vriens, Loosschilder, Rosbergen, & Wittink, 1998). 

These technologies can be categorized into two major types: 2-Dimension technologies 

and 3-Dimension ones. There are several examples of using both types in the literature. The 

following literature describes research using SP surveys as well as other types of surveys using 

visualization techniques.  

2D visual aid techniques usually use images, photos and maps to make surveys more 

comprehensible. For example, some studies have mentioned that the inclusion of images can 

help respondents visualize and better understand the attribute levels in choice tasks (Beharry-

Borg & Scarpa, 2010; Berninger, Adamowicz, Kneeshaw, & Messier, 2010). In other studies, 

photographs have been used to present different landscape types to the respondents 

(Arnberger & Eder, 2011; Molnarova et al., 2012; Yannes, Lownes, Garrick, & Johnston, 2010).  

Maps are another kind of 2D visualization technique that can improve the perception of 

respondents. The contribution of Geographic Information Systems (GIS) to producing more 

realistic maps has been studied (Bienabe & Hearne, 2006; Yamada & Thill, 2003). Use of “public 

consultation geographic information systems” to increase public involvement in policymaking 

procedures as well as the contribution of GIS to promote the goals of nongovernmental 

organizations, grassroots groups, and community-based organizations has been studied as well 

(Brown, Weber, & de Bie, 2015; Sieber, 2006).  

Using 3D visualization techniques has emerged more recently. For example, Tilahun et 

al. (2007) have used video-clips from cyclists perspective to show different bicycle facilities to 

the respondents. Furthermore, 3D modelling software has also been used by different 

researchers in recent past (R. Laing et al., 2009; R. A. Laing et al., 2004). For example, 3D 

simulated choice tasks for presenting different housing preferences have been used in the field 

of urban planning by different studies (Orzechowski, Arentze, Borgers, & Timmermans, 2005). 

Moreover, virtual reality (VR) technologies have been used to allow the participant an 

interactive virtual product experience (Tovares, Boatwright, & Cagan, 2014). The use of 3D GIS 
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for presenting the built environment more realistically, by coupling GIS to 3D visualization 

software, is another kind of modern visual technique for presenting plans and scenarios. 

Recently, Perdomo et al. (2014) have used 3D traffic simulation software for presenting various 

characteristics of roundabouts in a SP survey design. 

 
Choice Models Accounting for Unobserved Heterogeneity  

The random parameter latent class approach (formally described above) was first 

applied by Green and Hensher (2003) on three DCE datasets in Australia: 

1- A Stated choice experiment for long distance car travel 

2- A Stated choice experiment for urban commuting 

3- A revealed preference study of long distance non-commuting modal choice 

 After a detailed comparison based on Bayesian Information Criterion (BIC) index, 

significant level of parameters, and willingness to pay estimates for the value of total travel 

time savings and on-time delivery, they concluded that the LC-MMNL model showed superiority 

over the LC and MMNL models.  

Also, the authors stated that several issues should be considered in estimating a mixed 

logit model. First, selecting the parameters, among all the parameters included in the model, 

which would be treated as random parameter and their distribution are very important in 

generating any random parameter discrete choice model. They used Lagrange Multiplier tests 

(McFadden & Train, 2000) for testing the presence of random components. In addition, they 

considered Normal, Triangular, Uniform and Lognormal distributions for the distribution of 

random parameters in their model. Several models were generated based on above-mentioned 

statistical distributions and their results compared. However, their empirical results showed 

that all the distributions have at least one major deficiency – typically with respect to sign and 

length of the tail(s). Hence, they applied truncated or constrained distributions.  

Furthermore, as mentioned above, random parameter models need simulation for 

solving the integral of log-likelihood function. The authors discussed about the number of 

draws required in the simulation procedure of their MMNL model. They found that as a general 

rule, the greater the complexity of the model, in terms of the number of random parameters 

and the treatment of heterogeneity around the mean, correlation of attributes and 
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alternatives, the larger the number of draws is required for having stable parameter estimates. 

However, they did not suggest a specific number of draws, instead they have stated that the 

best way to find whether parameter estimates are stabilized is to estimate models over a range 

of draws (e.g. 25, 50, 100, 250, 500, 1,000 and 2,000 draws).  

Considering the latent class approach, LC models have been applied in various contexts 

of marketing research, economics, transportation and geography arena, for example, route 

choice models (Greene & Hensher, 2003), mode choice (Atasoy et al., 2011; M. Ben-Akiva & 

Boccara, 1995; Gopimatj, 1997b; Hosoda, 1999), international air carrier choice (Wen & Lai, 

2010), environmental preferences (Morey et al., 2006) and household location choice (Joan L 

Walker & Li, 2007), to name but a few.  

Greene and Hensher ( 2003) in 2003 applied MMNL and LC models on a Stated 

Preference (SP) dataset of long distance travel by three road types (2-lane, 4-lane without a 

median and 4-lane with a median) by car in New Zealand. A triangular distribution was selected 

for the random parameters in mixed logit model. The authors generated a series of LC models 

with 2, 3, 4 and 5 classes, and among them the model with three latent classes demonstrated 

the best fit. However, they did not explain the class membership function for each class. 

Afterwards, they compared the results of the LC model with a MMNL and MNL model. 

For comparing the LC model with MMNL, they argued that since the MMNL and LC 

models don’t have the same structure, comparing them based on a likelihood ratio test is not 

appropriate. In addition, the authors mentioned that comparing the absolute values of the 

parameters across models is not informative because of scale differences between the 

parameters estimated in two models. Their comparison, of LC and MMNL models, is based on 

willingness to pay indicators and elasticities. Comparing the implied Values of Travel Time 

Savings (VTTS) across the three latent classes shows a considerable difference across the 

classes. Overall, the LC model revealed three apparent segments for the mean estimates of 

VTTS. This interesting result demonstrates that the classes can mainly be distinguished by the 

values of VTTS for each class. In other words, there is a great variation across individuals with 

respect to VTTS. 

Regarding choice elasticities for travel time and travel cost, they observed substantial 
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differences between MMNL and LC models, especially for travel time. The behavioural response 

to changes in travel time in LC model is far less than the one in MMNL. They also plotted choice 

probabilities for each respondent’s choice set in the MMNL and LC models.  Based on these 

graphs they concluded that there is a relatively weak relationship between the predicted choice 

probabilities under the MMNL model and the LC model. In other words, they concluded that 

each model is representing choice responses quite differently for the majority of the sample. 

Finally, they have stated that each of the two models has its own merits (Greene & Hensher, 

2003): 

“The latent class model has the virtue of being a semi parametric specification, which 

frees the analyst from possibly strong or unwarranted distributional assumptions about 

individual heterogeneity. The mixed logit model, while fully parametric, is sufficiently 

flexible that it provides the modeler a tremendous range within which to specify 

individual, unobserved heterogeneity. To some extent, this flexibility offsets the 

specificity of the distributional assumptions.” 

However, despite the stronger statistical support overall for the LC model, they did not 

conclud the LC model was superior to the MMNL model.  

Walker and Li (2007) employed latent class choice models to represent the effect of “lifestyle” 

on household location choice. They used the data gathered with an SP survey with five 

alternatives in each choice task. For the class membership function, they specified a logit 

equation with socio-economic characteristics of individuals as explanatory variables. They used 

various individual characteristics to identify different classes across the population, such as the 

information on household structure, employment, the age of the head of household, and 

resources available to the household (measured in terms of income).  

For determining the number of classes, the authors estimated a series of models with 

different numbers of classes. They used BIC, AIC, and rho-bar-squared statistics to compare 

different models. These statistics that weigh model fit against model parsimony or number of 

parameters, are: 

1- The AIC (Akaike Information Criterion), that is equal to -2*(LL( )-K). Where K is the 

number of parameters estimated by the model and LL( ) is the final log-likelihood 
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value (Joan Leslie Walker, 2001).  

2- The rho-bar-squared, that is so similar to AIC and is equal to 1-(LL( )-K)/LL(0) where 

LL(0) is the log-likelihood of the initial model with no parameters.  

3- The BIC (Bayesian Information Criterion), that is widely used for comparing the 

latent class models and is equal to (-2*LL( ) + K/LN(N))/N where N is the number of 

respondent (not the number of choice situations). 

The authors generated latent class models with 2, 3, and 4 classes as well as an MNL 

model. Comparing the results of the latent class models and the MNL model showed the 

superiority of the latent class models, based on all the statistics mentioned above (Joan L 

Walker & Li, 2007). However, among the latent class models, the results showed that the model 

with two classes had the largest BIC, while 4-class model had the largest AIC value. Finally, the 

authors selected the latent class model with three classes as it revealed great advantages in 

terms of interpretation of estimated parameters in class membership functions and class-

specific choice models.  

Also, the authors applied another method for comparing the different classes in the 

latent class model, referred to as the “importance rating” of variables for each class. In this 

method, the ten most important variables were determined by taking the difference between 

the highest and lowest value of each variable, as observed in the dataset, and multiplying this 

difference by the estimated coefficient for that variable (Joan L Walker & Li, 2007). Afterwards, 

the variables were ranked based on this rating that demonstrates the potential impact of the 

variable on the utility function. Then, based on the most important variables in each class, the 

authors made inferences on the lifestyle of individuals in each class. For example, they 

concluded that Class 1 was oriented towards a suburban, auto-oriented lifestyle because 

variables “larger residence”, “off-street parking” and “single house on a lot” were the most 

important ones in Class1. In addition, Class 2 is transit-oriented lifestyle, which is indicated by 

the presence of travel time to work by transit as the most important variable.  

Furthermore, the results of the class membership function were used to examine 

whether the socio-economic characteristics were good predictors for the latent lifestyle classes 

or not. For example, they observed that, based on the estimated coefficients in the class 
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membership function, households in Class 1 were affluent, more established and professional 

families which is consistent with the most important variables in the utility function of this 

class. In other words, they expected that affluent, more established and professional families 

were more suburban and auto-oriented. The overall results of Walker and Li’s research show 

the potential of latent class models unobserved heterogeneity across population.  

Teichert et.al. (2008) used latent class models to identify segments across airline 

passengers. They also divided passengers into two categories: Business and Economy 

passengers and made two logit models on each category. Afterwards, they compared the 

results of these models with the latent class models.  

Based on BIC statistic, the authors selected the latent class model with five classes 

among a series of models with 2,3,4,5 and 6 classes. Based on statistical and contextual 

considerations, they described each segment and interpreted it from an airline’s marketing 

perspective. They selected the first three coefficients with the highest t-value in each segment. 

Based on these coefficients each segment was explained and characterized. For example, as the 

punctuality, flexibility and schedule are the most significant attributes in the first class, this class 

was labeled as “Efficiency/Punctuality”.  

After labeling the classes, the authors argued that using coefficients in the utility 

function of each class does not directly deliver information about the composition of the class. 

Hence, they used two procedures for gaining class based insight: First, they assigned each 

customer to the class in which he/she had the highest membership probability. Secondly, they 

used socio-demographics of passengers in each to generate class-based demographic and 

attitudinal profiles. Based on the profiling process were able to describe the individuals in each 

class based on their demographic characteristics. For example, passengers in first class were 

identified as mainly frequent flyers who fly several times per week and were predominantly 

male. Such inferences depict the strength of the LC model in capturing different behaviours and 

segments across population. In addition, the results of latent class model in their study 

demonstrated that the attitudes and socio demographic profiles led to a specific set of 

preferences in each class.  

Shen (2009) investigated the difference between the LC and MMNL models for 
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predicting transportation mode choice based on two SP surveys in Japan. Regarding the MMNL 

model, all time-associated attributes were defined as random parameters and a Normal 

distribution for them was selected. However, the results showed a positive value for VTTS, 

which seems counter-intuitive at first blush. However, the author justified it based on the 

results from other similar studies such as (Redmond & Mokhtarian, 2001). Redmond and 

Mokhtarian found that in some cases, an individual is drawn toward longer time associated 

attributes due to some individual specific reasons, and in such cases the positive sign of time-

associated attributes could be possible. This result is very important, as it shows the strength of 

the LC models to identify behaviours that are surprising at first, but in fact, reflect actual 

behaviour of groups of individuals in the population that researcher is not aware of. 

Shen (2009) also mentioned that three segments of low, medium and high VTTS can be 

found in the LC model. Moreover, the author compared the choice elasticities of different 

attributes of LC and MMNL models and concluded that the elasticity of in-vehicle time and 

travel cost are apparently different between the MMNL and the LC models.  

For determining the number of classes, Shen used the AIC and CAIC (Consistent AIC) 

criteria. The CIC formulation in his study was defined as: -2[LL( ) – . Where 

 is the number of parameters in the utility functions of choice model, is the total number 

of parameters in the class membership function, N is the number of observations in the sample 

and S is the number of classes in LC model. This formula was suggested by Louviere et al. 

(Louviere et al., 2000) and is a bit different from the one used by Walker and Li (2007), as 

mentioned above. Also, the CAIC, which is a variant of the AIC is defined by: 2LL( ) –

[ .  

Hess et al. (2012) have applied a LC structure to examine whether different underlying 

choice paradigms work well on a given data set. In their modelling approach, individual classes 

behaved based on different underlying paradigms. Hence, the difference across classes arose 

not just from the use of different parameters, but also from different underlying decision 

paradigms. The results of their study showed the potential of the latent class framework to 

investigate the source of heterogeneity within a population caused by different decision 

protocols, as well as taste variation.  
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Recently, Bujosa et al. (2010) have applied a latent class random parameter multinomial 

logit model for capturing unobserved heterogeneity in recreational demand. They used 

Revealed Preference data for recreational trips in Spain. They incorporated different site 

attributes (such as picnic areas or hiking trails, kilometers of roads, distance to coast, etc.), 

travel cost and environmental attributes in the utility function of alternatives. In addition, they 

gathered visitor socio-demographic data, such as income, age and place of residence, and used 

them in the class membership function of the LC-MMNL model. For determining the number of 

classes they used BIC for comparing LC-MMNL models with different number of classes.  

They tried different distributional forms, such as Normal, Lognormal and Uniform 

distributions and applied the Normal distribution for random parameters in their model. The 

results of their study demonstrated that both LC and LC-MMNL models can reveal two 

behavioural classes in the dataset. They concluded that the LC and LC-MMNL models 

outperformed the MMNL in terms of goodness of fit and in-sample validation. Finally, they 

stated that LC-MMNL model shows superiority over all models investigated in their study. 

Greene and Hensher (2013) also applied a random parameter latent class structure for 

capturing unobserved heterogeneity in choice modelling. They used SP data gathered from 

freight transporters in Sydney. Each respondent chose between two alternative freight trips 

characterized by different levels of travel time and travel cost. They argued that a large number 

of classes will cause estimated coefficients to be imprecise. In addition, they stated that 

generating latent class models with large numbers of classes can result in large estimated 

standard errors for the coefficients of the model.  

With respect to labeling of classes, they believe that it is hard to put a name on classes, 

for classes themselves are indeterminate. Instead, they used numbering for naming the classes 

of their model, such as class 1, class 2, and etc. The results of their model showed the 

superiority of LC-MMNL model over LC and MMNL models based on BIC index.  Another issue 

mentioned in their study was that while all the coefficients in MMNL model were statistically 

significant, this was not the case for LC and LC-MMNL models, as the results showed that some 

coefficients of the LC and LC-MMNL models are significant only in one class.  

Moreover, they observed that only one parameter could be considered as a random 
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parameter. In addition, this random parameter was significant only in one class. When 

comparing the estimated coefficients between two classes, they found that individuals in class 

1 focused on trade-offs between total time and total cost, while the respondents in class 2 

focused on the trade-off between on time delivery total cost.  

Finally, they concluded that there is a need for applying LC-MMNL model structure on 

different data sets to ensure the superiority of this model over LC or MLM model, regardless of 

data set characteristics. The authors mentioned that in their current study they suspected the 

gain from inclusion of random parameters in LC model was data-set specific. 

In this section, I reviewed the most dominant studies on MMNL, LC and LC-MMNL 

models. However, to my knowledge no study has been done for capturing the agent effect in 

LC-MMNL model context by using the formulation in Equation (17) to (25). So, the aim of this 

study is to capture the agent effect in latent class mixed multinomial logit context by 

implementing the mathematical formulation discussed in above mentioned equations on a SP 

dataset.  
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Manuscript: A Generic Form for Capturing Unobserved Heterogeneity in Discrete 
Choice Modelling: Application to Neighborhood Location Choice 

 
Context 

This section includes a co-authored paper that builds on a combined approach accounted for 

unobserved heterogeneity in discrete choice models. The paper extends the methods used in 

discrete choice family of models for capturing the agent effect as well as other source of 

heterogeneity that are controlled for by mixed logit and latent class models.  

The method, proposed in this paper can be used by researchers to generate more 

precise predicts of individuals’ behaviours while using SP and RP surveys. Also, the method 

can identify different segments across population and explain the behaviours and 

preferences of individuals who have high membership probability in each segment. 

In the following manuscript, submitted to Transportation Research Board’s 96th 

annual meeting, I had the role of lead author. Bilal Farooq and Zachary Patterson, the 

paper’s second and thirds authors, formulated the research question and analysis methods. 

Also, Ali Rezaei, the forth author, at the first stages of the study, analysed the models 

specification. 

The findings indicate that considering the generic form proposed by this study for 

analyzing heterogeneity across population has great potential to detect unobserved 

heterogeneity due to individual’s characteristics as well as agent effect. Also, the method is able 

to identify latent behaviours, such as considering house price and shopping time as positive 

utility, which cannot be captured by previous models in the literature and used in this study.  

The results of this study also can be considered by researchers designing SP surveys 

with the aim of generating latent class models on the results of the survey.  As mentioned in 

the conclusion of the following paper, researcher should consider more detailed attributes 

and variables in experimental design step of a SP survey. Failing to define and include such 

detailed attributes in SP surveys, can cause latent class models not be able fully identify the 

behaviours of different segments of the population.  

Finally, the agent effect mixed multinomial logit model in this study shows 



36 
 

superiority over previous models in the literature. Capturing temporal heterogeneity (agent 

effect) as well as behavioural heterogeneity with the formulation proposed in this study can 

be considered as a contribution to the literature. 

The paper appears below as it was submitted for consideration to be presented at 

Transportation Research Board’s 96th annual meeting on 1st August, 2016. 

 

Abstract 
This article extends the latent class mixed multinomial logit model to accommodate agent 

effect through the use of random parameters. Three types of models, Mixed Multinomial Logit 

(MMNL), Latent Class Mixed Multinomial Logit (LC-MMNL) and Agent Effect Latent Class Mixed 

Multinomial Logit (AGLC-MMNL) have been generated and the results compared. Considering 

agent effect simultaneously with other sources of unobserved heterogeneity in a latent class 

context demonstrates improvement in terms of model fit as well as cross section validation. It 

enables us to generate a latent class model with more number of classes explaining more 

heterogeneity across population in a neighborhood location choice study.  The AGLC-MMNL 

model is able to detect four distinct classes of individuals in Montreal, exhibiting different 

behaviours while facing neighborhood location choice resulting from a stated preference 

survey. Not only different behavioural classes have been identified by the model, but also some 

unexpected behaviours, such as preferring more expensive houses or considering shopping 

time as positive utility, in one class observed, which have been explained in detailed. The 

classes of the model are able to explain different behaviours of individuals based on their 

income level, whether they are transit or car oriented, and the importance of privacy in their 

point of view. 

 

Key words: Agent effect mixed latent multinomial logit model, Unobserved heterogeneity, 

Stated preference survey, Neighborhood location choice 
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Introduction 
Discrete choice models and their strength to predict individual’s choices mostly depends on the 

quality of datasets which have been used for model generation. However, even the most 

comprehensive and detailed datasets are not able to observe all factors pertinent to someone’s 

choice. This issue in the choice modelling literature has been addressed as unobserved 

heterogeneity, which means that individuals across populations are not affected identically by 

alternative attributes. Furthermore, such variation in preferences across populations and their 

sources are not always recognized by researchers.  

One of the issues documented in a number of studies is the failure to consider  

unobserved heterogeneity in choice models, inherently leading to  biased and inefficient 

parameter estimation (Heckman & Singer, 1984; Reader, 1993). This can consequently result in 

incorrect inferences and predictions. There are various approaches in the literature to account 

for unobserved heterogeneity, among which the random-parameter approach is the most well-

known and widely used. Random parameter discrete choice models, also known as Mixed 

Multinomial Logit (MMNL) models (McFadden & Train, 2000) or Logit Kernel (M. Ben-Akiva et 

al., 2001), allow the parameters of the model to vary across observations (M. E. Ben-Akiva & 

Lerman, 1985). Some parameters of the MMNL model can be estimated as random values with 

a user-defined distribution (e.g. Normal, Triangular or Uniform distributions) and then a mean, 

as well as standard error are estimated for them. Although MMNL models try to explicitly 

consider heterogeneity in the population, they assume a single average behaviour and 

deviations from it across population. In other words, although sources of heterogeneity can be 

explained by MMNL models by considering the characteristics of individuals, they force the 

model to estimate only an average value, for the population, of a random variable and then the 

variance around it. This limitation of MMNL models has resulted in an alternative model, 

referred to as Latent Class (LC) model in the literature (Greene & Hensher, 2003). LC models 

relax this constraint in the sense that there are multiple average behaviours. Different from the 

MMNL model, that defines random parameters as a continuous probability distribution, LC 

models provide a discrete number of classes that account for unobserved heterogeneity across 

a population. By means of estimating discrete number of classes, LC models provide multiple 

and totally distinct average behaviours among individuals.  
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 Besides the two mentioned approaches for accommodating unobserved heterogeneity, 

recently a combination of these two approaches has also been adopted in the literature 

referred to as the random parameter latent class model. Within this approach, also known as 

the Latent Class Mixed Multinomial Logit (LC-MMNL) model (Hensher & Greene, 2003), first the 

number of latent classes are specified and then the parameters are allowed to be varied (based 

on user-defined probability distributions) within each class. The advantage of this combined 

approach over LC model is that it not only considers multiple average behaviours across a 

population, but it also estimates multiple deviations from these average behaviours. 

 Another source of unobserved heterogeneity in datasets is the correlation across 

sequential observations (choices) (Mannering et al., 2016) in time series data. By using such 

type of data, individual related unobserved factors that are persistent over time would be 

another source of unobserved heterogeneity. This type of unobserved heterogeneity is known 

as an “agent” or “panel” effect in the literature (Bierlaire, 2014).  

While the MMNL, LC or LC-MMNL approaches account for unobserved heterogeneity due 

to individual related unobserved characteristics across observations, the agent effect approach 

tries to capture the unobserved heterogeneity due to individual related unobserved factors 

across individuals. The intent of this study is to combine the LC-MMNL approach and agent 

effect approach to allow analysts to make more accurate inferences. Our paper begins with a 

quick review of the literature on random parameters and latent class discrete choice models. The paper 

then moves on discussion the methodology and formulation of the model for combining random 

parameter latent class and agent effect approach. Afterwards, the dataset on which the models have 

been generated is explained. The paper concludes with the results of the generated models and 

discussing them. 

 

Literature Review  
MMNL and LC models have been applied in various contexts such as route choice models 

(Greene & Hensher, 2003), mode choice(Atasoy et al., 2011; Hosoda, 1999), environmental 

preferences (Morey et al., 2006) and household location choice (Joan L Walker & Li, 2007), to 

name but a few. Greene and Hensher (Greene & Hensher, 2003) applied MMNL and LC models 

on a Stated Preference (SP) dataset in which respondents choose among three road types (2-
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lane, 4-lane without a median and 4-lane with a median) for long distance travels by car in New 

Zealand. A triangular distribution has been selected for the random parameters in MMNL. The 

authors generated a series of LC models with 2, 3, 4 and 5 classes, and among them the three-

class model demonstrated the best fit. They mentioned that since the mixed logit and latent 

class models are not nested the comparison on a likelihood ratio test is not appropriate. In 

addition, the authors mentioned that comparing the absolute parameter values across models 

is not informative because of scale differences. Comparing the implied Values of Travel Time 

Savings (VTTS) across the three latent classes showed high degree of difference among the 

classes. Overall, they concluded that the LC model has revealed three apparent segments for 

the mean estimates of VTTS.  

Walker and Li ( 2007) employed LC models to represent the effect of lifestyle on 

household location choice. They used a SP dataset with five alternatives in each choice task. In 

order to determine the number of classes, the authors generated LC models with 2, 3, and 4 

classes as well as a model without segmentation. Comparing the results of the latent class 

models and the model without latent segmentation showed the superiority of the latent class 

models, based on BIC index (Joan L Walker & Li, 2007).  

 Shen (2009) compared LC and the MMNL models for transport mode choice based on 

two SP surveys in Japan. With respect to LC model, three segments of low, medium and high 

VOTS have been found in each LC model. Also, the choice elasticities, due to in-vehicle time and 

travel cost, was apparently different between the MMNL and the LCM. Another finding of this 

study was identifying a positive value for VTTS, which seems counter-intuitive at the first sight. 

However, the author has explained and justified it based on the results from other similar 

studies. As Redmond and Mokhtarian (Redmond & Mokhtarian, 2001) stated, in some cases an 

individual is more toward the longer commute time as it offers some benefits (such as a 

transition between home and work). Hence, time-associated attributes should not be 

considered as an unequivocal source of disutility in discrete choice models.  

Recently, Bujosa (2010) applied LC-MMNL model accounted for heterogeneity in 

recreational demand. They used Revealed Preference (RP) data for recreational trips in Spain. 

The results demonstrated the heterogeneity among individuals’ preferences for environmental 
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attributes related to socioeconomic characteristics, specifically the LC-MMNL model revealed 

two behavioural classes in the data set. Furthermore, they compared the LC-MMNL model with 

a MMNL and LC model and concluded that, in general, the LC-MMNL model shows superiority 

over all models, based on goodness-of-fit and in-sample validation. 

Greene and Hensher ( 2013) also applied random parameter latent class structure for 

capturing heterogeneity in choice modelling. They used panel data resulted from a SP survey in 

Sydney among freight transporters. Each respondent chose among two alternative freight trips 

characterized by different levels of travel time and travel cost. The results showed the 

superiority of LC-MMNL model over LC and MMNL model based on the BIC index and 

parameter estimation.  

As mentioned earlier, using time-series data can cause another source of heterogeneity 

referred to as agent or panel effect. It is worth mentioning that SP and RP datasets can be 

gathered via two different approaches: times-series and cross-sectionally. Time-series data are 

the sequence of observations of individuals at two or more time points. Cross-sectional data, on 

the other hand are the observations of individuals at the same point in time (Bierlaire, 2014), 

which means that no sequence of observations for an individual have been gathered. Also, it 

should be mentioned that, capturing the unobserved heterogeneity due to panel effect can be 

done via two methods: first, by allowing random coefficients of variables in utility functions to 

be correlated amongst the observations common to each respondent. Second, by including a 

random term in utility functions and allowing it to be correlated among all observations 

common to each individual. To our knowledge, only Hensher and Greene (2013) considered 

panel effect in their LC-MMNL model via the first above mentioned method. 

While there is a large body of literature on MMNL as well as LC models, the combination 

of them, i.e. LC-MMNL models, is still considered as new field of research. Hence, there is a 

need for applying LC-MMNL model structure on different data sets to ensure that the 

superiority of this model (over LC and MMNL models) is not data set specific. Also, to our 

knowledge no study has been done yet that accounts for agent effect via the above mentioned 

approach. So, the aim of this study is to capture the agent effect in latent class mixed 

multinomial logit model via the second approach, which needs new formulation of LC-MMNL 
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model, that will be explained in the next section. 

 

Methodology 
In the discrete choice family of models, it is usually assumed that a sampled individual faces a 

choice amongst a set of alternatives in each of T choice situations. An individual n is assumed to 

consider the full set of offered alternatives and to choose the alternative with the highest 

utility. Denoting as a vector of attributes of alternative in choice situation t and  

as a  vector of estimated parameters in class  associated with , the utility for 

alternative  in class  may be expressed as in the LC-MMNL(Bierlaire, 2013):  

                         (1) 

Where:  

                       (2) 

where  and are the mean and variance of the , i.e.   is random term 

with zero mean and iid distribution, and  is a random value with a specified distribution. 

Hence, the utility function of alternative  observed by individual  can be expressed as: 

 +                     (3) 

The conditional probability of alternative  in class  being chosen by individual  is: 

                    (4) 

The class heterogeneity is defined by class membership function: 

                                  (5) 

Where  is a vector of class variables consisting of individual socioeconomic characteristics 

and  is a vector of parameters for class . The contribution of individual  to the log-

likelihood of the model is obtained by integrating the two-layer heterogeneity: within class 

heterogeneity and the class heterogeneity (Greene & Hensher, 2013). The unconditional 

probability of alternative  in class  being chosen by individual  in LC-MMNL model is given as 

follows: 

                                   (6) 

 Although the LC-MMNL accounted for unobserved heterogeneity across observations, it 
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does not consider the heterogeneity across individuals when using panel (multiple observations 

from the same respondent) data. While using panel data, each individual faces more than one 

choice situation at different points of time. This can cause observations from the same 

individual to be correlated. The source of such correlation is individual related unobserved 

factors that are persistent across time (Bierlaire, 2014). Hence, addressing the source of this 

correlation in the LC-MMNL model, first we add subscript  to the utility function:  

                          (7) 

Here  is the utility for alternative  being chosen by individual  in class  at time point . 

Afterwards we relax the assumption that are independent across t: 

                       (8) 

while  is independent across ,  capture permanent taste heterogeneity.  

Consequently, the conditional probability (on  and ) of alternative  being chosen 

by individual  in class  at time  is: 

                              (9) 

where  is the vector gathering all parameters . Removing the probability conditions on 

 we will have:   

                                    (10) 

Also, the contribution of individual  to the log likelihood is: 

                                     (11) 

where  is the number of choice situations in which individual  is engaged. In addition, 

the choice probability of alternative  unconditional on  would be:  

                                     (12) 

where  is the probability density function of . Finally, the unconditional contribution of 

individual  to the log likelihood is: 

                 (13) 

Solving the above equation for large choice sets needs simulation by generating draws 

 from  for each random coefficient in each class utility function, and 

 from  for capturing agent effect that is the same in all choice situations with 
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which an individual will be faced.  

Equation (13) can be approximated by: 

                                  (14) 

Also, the overall simulated log-likelihood is given by the following equation: 

                                 (15) 

where  is the number of individuals in data set.  

 

Dataset 
With the aim of comparing the MMNL, LC-MMNL and Agent Effect Latent Class Mixed 

Multinomial Logit (AGLC-MMNL) a DCE dataset collected for a neighborhood location choice 

study in Montreal, Canada (Patterson et al., 2017) was used. The survey was developed and 

analyzed in a manner conforming with the standards in the field (Louviere et al., 2000). As such, 

survey development included secondary research and focus groups to establish attributes (and 

their ranges), as well as the piloting of the surveys.  

The survey employed for data gathering was a multimedia version administered through 

a virtual reality platform developed with Unity (Patterson et al., 2017), where respondents 

received supplementary textual information as they navigated a residential street in a virtual 

environment. 

Regarding the survey structure, each choice task had two alternative neighborhoods 

that were characterized by the following attributes: dwelling type (apartment, detached 

houses, townhouses, and triplexes); front yard depth (6 feet, 9 feet), space between buildings 

(no space, 20 feet); average home value (low - 20% below base price; medium and high - 20% 

base price); travel time to work by car (20, 35, 50 minutes); travel time to work by transit (5% 

below, 30% above travel time to work by car); and finally, travel time to nearby shops on foot 

(5, 15, 25 minutes).  

The socio-economic characteristics of respondents were also gathered. Respondent 

were asked about their income level. Afterwards, respondents were put into four categories 

based on their income: low-income (annual income below 20,000 CAD), medium-income 
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(annual income above 20,000 and below 90,000 CAD), high-income (annual income above 

90,000 CAD), and non-represented income. We also asked respondent whether they were 

Francophone or Anglophone as well as their employment status: full time employment, part 

time employment, unemployed, retired, student and student with part time job. Another 

characteristic asked from respondents was the type of their current residence: apartment, 

townhouse, triplex and detached house. Having driver license or not and whether the 

respondents reside in urban core were another characteristics were also used.  

Survey attributes and respondent characteristics have been summarized in TABLE1. 

Also, TABLE2, presented below, summarizes the characteristics of the sample used to estimated 

discrete choice models.  The surveys were administered at coffee shops in June 2013 and also in 

February 2014. The sample available for estimation contains 1,104 observations collected from 

184 respondents. 

 

Results 
Sequence of models was generated to reach the preferred MMNL, LC-MMNL and AGLC-MMNL 

models. First, regarding the identification of random taste variation, several MMNL models with 

Normal, Triangular and Uniform distribution were generated and the MMNL model with 

Normal distribution demonstrates the best overall fit.  

 Regarding LC-MMNL and AGLC-MMNL models, series of models with two, three, four 

and five classes were generated. We used three criteria in this step to select among models 

with different numbers of latent classes: first, the model should be identified based on the 

smallest singular value of the second derivatives matrix of log-likelihood function (M. E. Ben-

Akiva & Lerman, 1985; Bierlaire, 2015). Second, the model should not have any estimated 

parameters, in the utility functions that are insignificant in all of the classes.  Third, among the 

models that satisfied the first and second criteria, the model with the smallest Bayesian 

Information Criterion (BIC) was selected. We have used the BIC index with the following 

formula (Greene & Hensher, 2010, 2013): 

                             (16) 
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TABLE 1 Summary of Survey Attributes and Respondents Characteristics 

Attributes Levels 
Dwelling type in 
neighborhood 

a) Single detached Houses b) 2-storey Townhouses 
c) Triplexes d) 3-Storey Apartments (6 or 8 units) 

Space between 
buildings 

a) No space 
b) 20 feet 

Front yard depth 
a) 9 feet (specific to Triplex dwellings) 
b) 6 feet deep (for all dwelling types except triplexes) 
c) 25 feet deep 

Travel time to work 
by car 

a) 20 minutes 
b) 35 minutes 
c) 50 minutes 

Travel time to work 
by 
public transit 

a) 18 minutes (when travel time to work by car was 20  
minutes) b) 25 minutes 

a) 30 minutes 
b) 45 minutes 

(when travel time to work by car was 35 
minutes) 

a) 50 minutes 
b) 65 minutes 

(when travel time to work by car was 50 
minutes) 

Travel time to nearby 
shops on foot 

a) 5 minutes 
b) 15 minutes 
c) 25 minutes 

Average home value 
a) % 20 below base price 
b) Base price 
c) % 20 above base price 

Socio-economic Characteristics 
High Income a) Above 90,000 CAD 
Medium Income a) Above 20,000 and below 90,000 CAD  
Low Income a) Below 20,000 CAD  
Non-represented 
Income a) Individuals who did not state their income level  

Employment status 

a) Full time 
b) Part time 
c) Unemployed 
d) Student 
e) Student with part time job 

Language  a) French 
b) English 

Driver a) Having driver license  
b) Others  

Urban Core Residency a) Reside in Urban Core   
b) Others  

Current Residency  
a) Apartment 
b) Townhouse 
c) Triplex 
d) Detached house 
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TABLE 2 Descriptive Statistics of the entire sample 

Characteristics Share 

Gender Female 41% 
Male 59% 

Age 

34 and under 34% 
35-44 25% 
45-54 23% 
55-64 16% 

65 and above 1% 

Employment status 

Full-time  71% 
Part-time 10% 

Student and employed  10% 
Student  4% 

Unemployed  4% 

Current dwelling type 

Apartment 33% 
 Townhouse 17% 

Triplex 6% 
Detached house 44% 

Urban Core Residency 

Reside in Urban Core   19% 
Others 81% 

High Income 32% 
Medium Income 54% 

Low Income 6% 
Non-represented Income 8% 

Language 
French 56% 
English 44% 

Driver 
Driver 59% 
Others 41% 

where  is the number of observations in the dataset,  the number of parameters and  the 

final likelihood of the model. There are other fit measures in the literature for evaluating the 

discrete choice models, such as  ,  or AIC with the following formulations (Greene 

& Hensher, 2010): 

                             (17) 

                             (18) 

                            (19) 

Where  is the likelihood of an initial model, i.e. a constant only model (Greene & Hensher, 

2010).  However, as Greene and Hensher (2010) have discussed  and  mainly 
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compare the improvement in the final log likelihood of the model to a constant only model 

(Although  decreases when the number of parameters increase). Considering the 

fact that the log likelihood function, itself, measures the improvement of model fit whenever a 

variable is added to the model, we can conclude that these statistics, i.e.  and , 

only do a transformation between zero and one. Obviously, this transformation is worth noting 

as it only strict the measures to be between zero and one. In other words, the final log 

likelihood of models can be compared directly to each other, without any need for such a 

transformation. In addition, even when a model predicts the data perfectly, neither   nor 

 can achieve one (Greene & Hensher, 2010). But, AIC and BIC only consider the 

final log likelihood of the model as well as the number of observations and the number of 

parameters (Greene & Hensher, 2010).  

              It should be mentioned that the larger the number of parameters and observations, the 

better fit of model will results. Hence, by considering the number of parameters and 

observations, these indices reward a model with a lower number of parameters and 

observations (Greene & Hensher, 2010). However, we couldn’t find any preference toward BIC 

or AIC in the literature. Some studies (Greene & Hensher, 2010) have used them 

simultaneously, and some of them (Greene & Hensher, 2013) have used only BIC or AIC .  In the 

current study, we have used BIC for comparing the models with different number of classes and 

parameters.   

 The results of different LC-MMNL and AGLC-MMNL models are shown in TABLE31. In the 

series of LC-MMNL models, the model with two classes was identifiable and also seemed to be 

a better model in terms of estimated values of parameters and their level of significance. LC-

MMNL models with three, four and five classes not only had a considerable number of 

parameters that were highly insignificant in all classes (significant levels less than %20), but also 

were unidentifiable. We tried to improve these models by removing the highly insignificant 

variables from their utility function. However, the resulting models neither improved (in terms 

of level of significant of parameters) nor turned out to be identifiable. The reasons for this 

                                                           
1 The complete results of all generated models in TABLE 3 have been presented in Appendix A. 
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observation are unclear other than there might be correlation amongst the observations 

related to each individual which cause the estimated parameters of these models, i.e. LC-

MMNL models with more than two classes, to be insignificant.  

Among AGLC-MMNL models, the ones with two, four and five classes were identifiable. 

However, based on the BIC value and the significant level of estimated parameters, the model 

with four classes demonstrates the best model fit. Hence, for the aim of comparison, we 

selected LC-MMNL model with two classes and AGLC-MMNL model with four classes. 

It should be mentioned that in addition to testing the number of classes, different 

random distributions, i.e. Normal, Lognormal (for home value and travel time attributes), 

Triangular and Uniform were tested on LC-MMNL and AGLC-MMNL model. However, as with 

the MMNL model, the Normal distribution resulted in the best model fit.  

The results of estimated models are shown in TABLE 4. Comparing the three models based on 

their BIC statistics suggest that the AGLC-MMNL model is a statistically significant improvement 

over the others, given the additional 29 parameters, compared to the LC-MMNL model and 42 

extra parameters over MMNL model.  

As it is clear in TABLE 4, there are some coefficients of the models that have been 

removed from one or more classes. The reason for removing such coefficients is that in the 

modelling procedure, they turned out to be highly insignificant or including them caused model 

fit to get worse. Hence, we decided not to include these coefficients in the model. 

In the AGLC-MMNL model, permanent taste heterogeneity was captured by including a 

random error parameter (Sigma), which is the same in all utility functions of an individual in all 

choice situations. The estimated value for Sigma in AGLC-MMNL model is significant at 62% 

level (TABLE 4). The rather low significant level of Sigma can be explained by the lack of 

repetition (the number of choice situations each individual faced) available in the dataset. 

However, we believe that its inclusion helps the AGLC-MMNL model to provide better 

parameter estimation and model fit, as it has captured the permanent heterogeneity in the 

model, which is not accounted for by the LC-MMNL model.  
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TABLE 3. Results of LC-MMNL and AGLC-MMNL models with different number of classes  

Model 
Number of 

Classes 

Final log-

likelihood 

Number of 

parameters 
BIC Identifiable/Unidentifiable 

LC-MMNL 

2 -550.378 24 1.0002 Identifiable 

3 -514.919 41 0.9381 Unidentifiable 

4 -501.218 53 0.9149 Unidentifiable 

5 -492.128 61 0.8994 Unidentifiable 

AGLC-

MMNL 

2 -538.686 25 0.9791 Identifiable 

3 -497.582 42 0.9068 Unidentifiable 

4 - 499.197 54 0.9113 Identifiable 

5 -502.495 62 0.9183 Identifiable 

  

As it has been shown in TABLE 3, the probability of the first and second class in LC-

MMNL model are 0.2424 and 0.7575 respectively. In AGLC-MMNL model the probability of class 

1 is close to the one of class 1 in LC-MMNL model and then the class 2 in LC-MMNL model has 

divided into the class 2, 3 and 4 in AGLC-MMNL model. This shows that by incorporating agent 

effect we were able to explain more heterogeneity across population 

Turning next to the detailed results, the MMNL estimates show the expected negative 

marginal utilities for cost of house and all the travel times. The coefficients for dwelling type are 

pointed out relative to the category of single detached houses. For townhouses, triplexes and 

apartments the coefficients bear negative sign which bring to mind respondents would prefer 

single detached houses to these dwelling types. The result obtained for space is positive as we 

expected and highly significant. 

With respect to front yard depth, the MMNL model was not able to estimate a 

coefficient with an acceptable level of significance, so we removed it from MMNL model. These 

results are consistent with what was found in Patterson et al. (32). 
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TABLE 4 Estimated MMNL, LC-MMNL and AGLC-MMNL models 
Attribute MMNL LC-MMNL AGLC-MMNL 

Class 1 Class 2 Class 1 Class 2 Class 3 Class 4 
ASC -0.0895 

(-0.94) 
-33.9 

(-3.09) 
-0.029 
(-0.12) 

13.9 
(6.84) 

18.7 
(5.73) 

-39.2 
(-3.40) 

-51.9 
(-2.52) 

Dwelling 
type 

Detached houses fixed fixed fixed fixed fixed fixed fixed 
Townhouse -0.429 

(-2.08) - -1.12 
(-1.12) 

-70.0 
(-6.79) 

-13.4 
(-3.50) 

76.5 
(3.84) 

4.73 
(2.17) 

Triplex -1.06 
(-3.61) 

-18.2 
(-5.99) 

-3.44 
(-0.80) 

-51.7 
(-6.43) 

-48.2 
(-4.94) 

17.2 
(5.70) 

-68.5 
(-2.71) 

Apartment -1.01 
(-4.55) - -2.35 

(-1.80) 
15.0 

(5.62) 
-86.7 

(-5.26) 
-0.974 
(-0.38) - 

Space between buildings (in 
feet) 

0.0332 
(3.09) - 0.0638 

(1.43) - 2.93 
(5.50) - - 

Front yard depth (in feet) - -9.73 
(-3.96) 

0.0362 
(0.64) 

-0.710 
(-6.08) 

-0.062 
(-0.62) 

2.10 
(3.35) 

-0.286 
(-1.92) 

Travel time to nearby shops on 
foot (in minutes) 

-0.0502 
(-5.40) 

4.62 
(4.28) 

-0.117 
(-1.03) 

2.70 
(6.73) 

-3.18 
(-5.44) 

-3.99 
(-3.50) 

-5.04 
(-2.44) 

Average home value (in 
thousands CDN) 

-0.0062 
(-4.92) 

-3.22 
(-3.22) 

-0.005 
(-0.79) 

0.167 
(6.43) 

-0.129 
(-4.18) 

-5.22 
(-3.50) 

-0.064 
(-2.39) 

Travel time to work by car (in 
minutes) 

-0.0474 
(3.16) 

-40.3 
(-4.22) 

- 0.025 
(-0.79) 

-10.7 
(-6.68) 

-1.51 
(-4.95) - - 

Travel time to work by transit (in 
minutes) 

-0.0315 
(-3.14) 

-5.55 
(-4.37) 

-0.043 
(-1.17) 

-2.74 
(-6.47) 

-0.452 
(-5.49) 

-5.09 
(-3.51) 

-1.69 
(-2.9) 

Variance of random parameters 
Space 0.0419 

(2.05) - 0.114 
(1.05) - 0.794 

(6.48) - - 

Apartment 0.826 
(1.01) - 0.774 

(0.89) 
25.9 

(6.19) 
-1.07 

(-0.99) 
0.0915 
(0.35) - 

Triplex - - -2.86 
(-1.48) 

-0.160 
(-0.70) 

11.4 
(6.63) 

0.114 
(0.85) 

35.2 
(2.11) 

Travel time to work by car 
 (in minutes) 

0.0942 
(3.93) 

-14.7 
(-4.33) 

-0.175 
(-0.78) 

-1.24 
(-5.38) 

3.24 
(5.09) - - 

Sigma (agent effect parameter) - - -0.371 
(-0.87) 

Class Membership Attributes 
High Income - -0.347 

(-0.80) - 0.272 
(0.67) - - - 

Medium Income - - - - - - -0.307 
(-0.82) 

Low Income - - - - -0.283 
(-0.79) 

-0.283 
(-0.79) - 

Zero or Non-represented Income - - - -0.961 
(-1.31) - - - 

Employment Status (Full time 
=1, other = 0) - - - -0.238 

(-0.82) - - - 

Language (French=1, English=0) - -0.810 
(-3.15) - -0.379 

(-2.21) - - - 
Driver (Having driver license=1, 

other =0) - - - - - -1.21 
(-4.61) 

-1.21 
(-4.61) 

Urban Core Residency(Reside in 
Urban Core =1, other = 0) - - - - -0.882 

(-3.14) - -0.882 
(-3.14) 

Current Residency (Apartment 
=1, other = 0) - 0.544 

(1.70) - - - 0.232 
(0.76) - 

Class membership probability - 0.2424 0.7575 0.2272 0.3793 0.2296 0.1637 
Number of parameters 12 25 54 

Final Log-likelihood -596.68 -550.38 -499.19 
BIC 1.0825 1.0003 0.9113 

* The three models are generated using Pythonbiogeme Software (Bierlaire, 2003). 
** The number of draws for estimating all random parameters was set to 10 draws.  
***t ratios in parentheses 
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In the estimates for the LC-MMNL model, a drop in the significance level of some 

attributes in one class is observed. Hensher and Greene (3) and Bujosa (29) also found a 

number of statistically insignificant parameter estimates in one class. Indeed, the estimates for 

“Space” and “Front-yard depth” in class 2 is only significant around the 50% level, with the 65% 

level applying for the estimate of the variance of “Space”. This result could in part be explained 

by the fact that these attributes lack statistical merit for one class. Furthermore, identifying the 

source of low significance levels in latent class models, Hess et al. (Hess, Ben-Akiva, Gopinath, & 

Walker, 2011) has mentioned that the drop in the significant level of some attributes could be 

partly due to respondents who are largely indifferent between the alternatives in the SP choice 

data. However, finding the exact source of the drop in the significance level of some attributes 

of the current dataset requires more research, which is beyond the scope of current study. 

Also, providing another reason, given the complicated and highly nonlinear form of the LC-

MMNL model, in order to estimate coefficients with high level of significance we need enough 

observations and heterogeneity for each segment of the model which was not always the case 

in the dataset used. 

The estimates for Travel time to work by car and transit are negative in both classes of 

LC-MMNL. However, the walking time to nearby shops in class 1 bears a positive sign. At first 

glance this result seems surprising, however considering the dissimilarity between purposes of 

shopping trips and work or educational trips, we can think of satisfactory explanations strongly 

support this positive sign for walking time to nearby shops. In fact, as Davis et al. (Davis & 

Hodges, 2012) have mentioned, it is well-known that shopping is a complex human behaviour 

driven by a broad spectrum of consumer needs which result in different shopping motivations 

to fulfill them. Research addressing some of these motivations has mentioned diversion from 

daily routine, self-gratification and physical activity (Tauber, 1972), to kill time and to enjoy 

shopping as a social event (Buttle & Coates, 1984), adventure shopping, social shopping and 

gratification shopping (Arnold & Reynolds, 2003) , to name but a few. In fact, some shoppers do 

shopping as it helps them to relax, de-stress, or have a break from routine. So, its sign is 

perhaps not counter-intuitive if we assume some shoppers prefer longer walking time for 

shopping to make the most of their leisure time.  
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Regarding average home value in LC-MMNL, the coefficients in both classes have the 

expected negative sign. The different values of price coefficient between two classes (-3.22 vs -

0.005 for class 1 and class 2, respectively) support the presence of different attitudes toward it 

in the data set. 

In the LC-MMNL model, the front yard depth in class 1 and 2 have different sign and also 

different levels of significance (t-ratios are -3.96 vs. 0.64 for class 1 and 2 respectively), as 

mentioned above. This suggests that not only this attribute has more statistical merit for latent 

class 1 (up to a class membership probability), but also a different sign for this attribute in two 

latent classes show totally different points of view across the population.  

 In the AGLC-MMNL model, a drop in the significance level of some coefficients is also 

observed, like the LC-MMNL model. The estimates for travel time to work by car and transit 

bear negative sign as expected. However, like the LC-MMNL model, the estimate for walking 

time to nearby shops in class 1 has positive sign. It should be mentioned that class 1 and class 2 

in the LC-MMNL and AGLC-MMNL models are not equivalent in any sense, and should not be 

directly compared per se.  

Regarding the estimates for average home value in the AGLC-MMNL model, while this 

coefficient has the expected negative sign in classes 2, 3 and 4, the corresponding estimate for 

class 1 has a positive sign. It should be mentioned that during the model generating step, we 

assumed the average home value attribute as a random parameter with lognormal distribution, 

to force estimate to be negative. However, the resulting model showed weak results regarding 

goodness of fit and significance level of estimated parameters, i.e. the model was not 

identifiable and the estimate for home value and some other parameters, like travel time by 

transit, were totally insignificant. Hence, we concluded there must have been some reasons 

why these individuals chose the alternative with the higher price in a choice task. While 

numerous studies in economic theory of behaviour assume price as an indicator of monetary 

sacrifice, there is a large body of literature in marketing research that concentrates on price as 

an indicator of product quality (Völckner & Hofmann, 2007). Indeed, numerous studies state a 

positive and significant relationship between price and customer perceived quality 
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(Hinterhuber, 2015). Thus, it seems possible that some decision makers found higher prices 

more satisfying, for they perceived it as an increases in product quality (and vice versa) that 

result in positive price elasticity of demand.  

 In the field of choice modelling, Völckner and Sattler (2005) carried out a study to 

estimate separate roles of price, i.e. price as an indicator of money sacrifice and price as an 

indicator of product quality, by using latent class models and a hierarchical Bayes procedure. 

Their results could predict the positive effect of price in the latent class model context. Hence, 

the positive sign for value of home in class 1 of AGLC-MMNL model, can be explained by the 

fact that some individuals, who have high membership probability in class 1, may consider 

home value as an indicator of its quality and are toward choosing alternatives with higher 

prices in a choice set.  

Also, we can provide another complementary explanation for the positive sign of home 

value coefficient in class 1. First, it is a well-known phenomenon that wealthy people tend to 

pay more for a product (Horowitz & McConnell, 2003). Second, considering the fact that in the 

probability membership function of class 1 the High Income attribute has a positive sign, which 

implies individuals with high income have higher membership probability in this class, support 

the reason why a positive sign for home values has been found in this class. In other words, 

individuals with higher income may be willing to pay more for a product and prefer the more 

expensive alternative, and they definitely consider the relation between price and quality when 

making such a decision.  

 There are some other results that demonstrate the relation between the estimated 

parameters in the class-membership and utility function of each class. First, class 2 is the only 

class in which the Space between buildings parameter is significant. Regarding the utility 

function of this class, we can identify a clear preference toward detached houses comparing 

other classes. So, not surprisingly, if only individuals who exhibit a definite preference toward 

detached houses concern about the space between buildings. Second, in class-membership 

function of class 3 and 4 Driver attribute indicate that individuals without driver license have 

higher probability in this class. Considering that in these classes Travel time to work by car is 

not significant we can conclude that individuals without driver license are indifferent to Travel 
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time to work by car.  

Regarding dwelling type in the AGLC-MMNL model, the coefficient estimates for triplex 

and townhouse have negative signs in class 1 while the estimate for apartment in this class has 

a positive sign. This result is different from the estimates for apartment in MMNL and LC-MMNL 

model. However, it is not counter-intuitive if we assume some people prefer luxury apartments 

(or penthouses) in high-rise buildings rather than detached houses. This variation among the 

estimates for dwelling type is also observable in class 3 and 4, where townhouse and triplex 

have positive sign, implying their preferred utility over detached house. This observation shows 

the ability of latent class models to identify unobserved heterogeneity among individuals in a 

population.  

Regarding the semantic meaning of the classes, it is not always possible to put a name 

on the classes, as these classes are themselves indeterminate (Greene & Hensher, 2013) and 

explained by their probability function. However, we can use the estimated parameters of the 

model to find which part of the population has higher class-membership probability in each 

class. Considering this approach, in class 1 of AGLC-MMNL model, the High Income parameter 

shows a positive sign and Language pose a negative sign in class-membership function. Also, 

regarding the utility function of Class 1, as mentioned above Average home value has a positive 

sign. In addition, Apartment shows a fairly positive sign relative to detached house, which 

means apartments and detached houses are more preferable in this class. Besides, Travel Time 

to Work by Car shows a negative sign and its absolute value is higher than the absolute value of 

Travel Time by Transit. Hence, putting all the things together, we can say that class 1 represents 

(up to a probability) effluent, car-oriented, luxury apartment and detached house loving 

Anglophone Montrealers for whom the affordability is not a problem and the house, a status 

symbol.  

 Considering the same approach, in class 2, Urban Core Residency and Low Income 

parameters have a negative sign and Front Yard Depth poses positive sign which can be 

interpreted as middle class and upper middle class non-urban core residents who highly value 

privacy have higher class-membership probability in this class. 

 With regard to class 3, Current Residency has a positive sign and Driver has been 
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estimated as a negative value. Also in this class Travel time to work by transit have a negative 

sign while Travel time to work by car was totally insignificant. Hence, we can assume that 

transit-oriented, middle class and upper middle class apartment dwellers have higher 

probability in this class. 

 With respect to class 4, Medium Income, Driver and Urban Core Residency have 

negative sign. Also, like class 3, in the utility function of this class, Travel time to work by transit 

has a negative sign and Travel time to work by car was not significant at all. So, we can say 

transit-oriented non-urban core residents whose income level is not in the medium income 

range have higher membership probability in this class. 

 

Validation 
One of the most important goals of estimating a choice model is to predict the future behaviour 

of population. Hence, predictive performance of a choice model is highly important while 

comparing different model structures. One of the methods to assess the predictive 

performance of a model is cross-validation. Cross validation consists of partitioning the data 

into two datasets: a training dataset and validation dataset. For assessing the model’s fit on the 

validation dataset, a performance measure, usually based on predicted choice probabilities, is 

used.  

 The estimation dataset contains 1,104 observations. The MMNL, LC-MMNL and AGLC-

MMNL models are then applied to the validation dataset (containing 220 out-of-sample 

observations) to simulate the choice for each observation. The results of the simulated choices 

have been summarized in a confusion matrix, demonstrated in TABLE 5. The results of the 

confusion matrix show that the specification of AGLC-MMNL model is better over the MMNL 

and LC-MMNL models.  The overall rate of the true predicted choices is, 60.0 %, 67.3% and 

71.4%, for MMNL, LC-MMNL and AGLC-MMNL models, respectively. 
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TABLE5. Confusion Matrix of Simulated Choice under MMNL, LC-MMNL, and AGLC-MMNL Models 

Model 
Confusion Matrix Overall True 

prediction rate Alternatives Simulated Choice 
Alt.1 Alt.2 

MMNL 

Actual 

Alt.1 69 
(61.1%) 

44 
(38.8%) 60.0% 

Alt.2 44 
(41.1%) 

63 
(58.9%) 

LC-MMNL 
Alt.1 77 

(66.4%) 
39 

(33.6%) 65.9% 
Alt.2 31 

(34.6%) 
68 

(65.4%) 

AGLC-MMNL 
Alt.1 82 

(71.9%) 
32 

(28.1%) 71.4% 
Alt.2 31 

(29.2%) 
75 

(70.1%) 
 

Conclusion 
This article extends the latent class mixed multinomial logit model to accommodate agent 

effect through the use of random parameters. Considering agent effect simultaneously with 

other sources of unobserved heterogeneity in a latent class context demonstrates 

improvement in terms of model fit as well as cross section validation. The results of confusion 

matrix for the models show the superiority of AGLC-MMNL model over other two models in 

simulating and predicting the choices of individuals.  

 Also, the results of this study shows the strength of latent class models in identifying 

different behaviours across population, especially in complex choice situations, like 

neighborhood location choice, while a broad spectrum of variables drive the individuals 

preferences. Some attributes such as dwelling type were estimated with varying values and 

signs across classes, which present differing viewpoints of individuals’ toward type of dwelling. 

Also, generating models with more latent classes enabled us to predict some unexpected (but 

realistic) behaviours, i.e. preferring more expensive homes or considering shopping time as 

positive utility, which were unrecognizable by MMNL model.  

Another finding is that, while using latent class models, the variables being included in 

the SP surveys should be clearly defined to represent distinctive tastes across population. For 

example, while there are broader types of apartments in the housing markets, from low-price 

studios to expensive and luxury penthouses, we had considered only one variable representing 

apartment in our SP survey. As mentioned above, the results of AGLC-MMNL model showed 

that effluent individuals in our dataset perceived Apartments almost as preferable as detached 
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houses. It is hypothesized that the apartment considered by that class of individuals were 

luxury and large apartments or penthouses in high-rise buildings, and seemingly dissimilar to 

the definition of apartment from our point of view. Hence, it is important to include more 

precisely and clearly defined variables in SP surveys on which a latent class model will be 

applied.  

Finally, due to the fact that in latent class models the log likelihood will increase when 

the number of classes increases (Greene & Hensher, 2013), it is not possible to exactly 

determine the contribution of agent effect to the log likelihood of the LC-MMNL model, as the 

LC-MMNL models in this study have different numbers of classes. However, it is noticeable that 

considering the agent effect in this study can help the LC-MMNL model to be identifiable with 

higher number of classes. An ongoing research question will be to test this model on additional 

datasets to ensure that these results are not dataset specific. 
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Conclusion 
This thesis set out to extend the latent class multinomial mixed logit model by incorporating the 

agent effect as a random parameter in the utility function of each alternative faced by an 

individual. The influence of agent effect on discrete choice models has been studied in the 

literature by the means of two methods: the first method is widely used when there are 

random coefficients in the model to capture taste heterogeneity, e.g. mixed multinomial logit 

models. The draws (from a specified statistical distribution) for simulating and solving the log-

likelihood integral will be the same for a random coefficient in all utility functions with which an 

individual is faced. In other words, in the first method, the agent effect is estimated by the 

same parameters accounting for heterogeneity due to taste variation. The second method 

considers a random parameter in the utility function of each alternative with which a given 

individual is faced.  

The main contribution of this study is to extend the formulation of LC-MMNL model to 

capture the agent effect by implementing the second method. The other sources of unobserved 

heterogeneity are captured by employing a latent class, as well as a random parameters (mixed 

multinomial logit model) approach. The results showed that while the LC-MMNL model was 

able to capture two classes of individuals across the population, the AGLC-MMNL model was 

able to identify four classes across the same population that can be interpreted as a strength of 

the agent effect approach in capturing unobserved heterogeneity. 

Comparing the results of AGLC-MMNL and LC-MMNL model showed that the former is 

better in terms of model fit, based on the BIC index. In addition, the AGLC-MMNL model in this 

study revealed some surprising behaviour among individuals in the population. It should be 

mentioned that similar unexpected behaviour has also been observed in the literature and can 

be explained by the results of studies in the relevant field of science. For example, in class 1 of 

the AGLC-MMNL model, the estimated coefficient for House Price was positive, while we 

expected it to be negative. The positive sign for price can be explained by the fact that some 

individuals, likely affluent ones, perceive price as an indicator of quality, and hence, related a 

positive utility to the price while choosing an alternative. This explanation has long roots in 

economic theories that observe price not only as a monetary sacrifice, but also as an indicator 

of product quality. 
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Limitations 
One of the most important issues in generating discrete choice models is the data used for 

modelling. Gathering precise and detailed data is time consuming and expensive, and needs a 

great deal of research to identify the best variables to include in discrete choice experiments. 

The data used in this study was not specifically designed for using latent class models. Hence, 

the variables in the models were not defined in detail to reflect all taste variation across 

population. For example, the variable Apartment in this model had not been defined precisely. 

As we know there are several types of apartments in housing markets, from low-price studios 

to expensive and luxury penthouses. However, in our dataset all types of apartment have been 

defined under the label of Apartment. This limitation in the dataset can be partly captured by 

the AGLC-MMNL model, however, it is obvious that if were to provide the model with more 

detailed attributes, the model results would be more accurate and efficient.  

The small size of the dataset in this study. While a wide range of alternative attributes 

were included in the model, the sample size was not large enough to provide sufficient 

variation across this population.  This limitation resulted in low significant levels for some 

estimated coefficients in the model.    

The other limitation is that while there were other characteristics of individuals in our 

dataset, like gender or age, these attributes did not turn out to be significant in any of the 

models in this study. Many studies have showed that there are significant differences between 

individuals of different age and gender. However, for reasons unclear for us, these attributes 

were not significant in our model. 

Another limitation of the current thesis is the correlation of systematic part of the utility 

with the error term, referred to as “endogeneity” in the literature. As mentioned by Guevara 

and Ben-Akiva (2012), endogeneity in discrete choice models can be caused by errors in 

variables or omission of variables that are correlated with the observed ones, especially in 

choice of residential location. There are methods for controlling endogeneity in the literature that 

can be incorporated in the modelling procedures of the current study. 

Also, as it is obvious from TABLE5, the size of coefficients has changed  in different 

classes of LC-MMNL and AGLC-MMNL model. Although such changes were observable in other 

studies such az the one done by Greene and Hensher (2013), this fact also should be 
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investigated and explained in the future works.  

Although, considering the agent effect in this study helps up to identify more classes 

across the population, it is not possible to exactly determine the contribution of the agent 

effect on the log likelihood of the LC-MMNL model, as the LC-MMNL models in this study have 

different numbers of classes, and as mentioned in the literature, the greater the number of 

classes, the better is models fit. 
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Future work 
The agent effect latent class mixed multinomial logit model can be applied on different datasets 

to identify different classes of individuals across populations and to analyse their behaviour. 

However, the strength of this model highly depends on the quality and size of the datasets. 

Hence, for future work, before any application of this model, one should be aware about the 

experimental design procedure for gathering data from a population. In other words, while 

aiming to use latent class, random parameter and agent effect approaches all in the same 

structure, there should be enough variation in the dataset. Identifying all segments of the 

population and designing an experiment to cover all the segments and include detailed 

attributes could help the model to efficiently predict and estimate the individual behaviour. 

Furthermore, as we guess that the results of AGLC-MMNL model in this study are 

dataset specific, there is a need to implement the AGLC-MMNL model on other datasets from 

different fields of study, like route choice or destination choice, to find out whether the model 

results are dataset specific or not.  

Another issues, mentioned in the previous section, such as the endogeneity and the 

large changes in the scale of estimated parameters should be investigated in the future and find 

answers for them. 

Finally, as mentioned above, due to the different number of classes, it is hard to specify 

the contribution of the agent effect to the log-likelihood of the AGLC-MMNL model. Hence, 

further research is needed to develop statistical tools that can determine the true contribution 

of agent effect in AGLC-MMNL model. 
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Appendix A 
 

The results of LC-MMNL and AGLC-MMNL model with different number of classes. 

TABLE A1 Estimated LC-MMNL Model with Three Classes 

Attribute LC-MMNL 
Class 1 Class 2 Class 3 

ASC -100.0 
(0.00) 

7.10 
(12.48) 

-.0719 
(-0.39) 

Dwelling type 

Detached houses Fixed Fixed Fixed 
Townhouse 144.00 

(134.27) 
2.24 

(2.36) 
-0.99 

(-2.55) 

Triplex -60.70 
(-53.34) 

-117.00 
(-107.47) 

-1.80 
(-2.57) 

Apartment -74.8 
(-64.61) 

-100 
(-39582266.95) 

-1.15 
(-2.8) 

Space between buildings (in feet) - 6.41 
(81.52) - 

Front yard depth (in feet) -1.72 
(-41.15) 

0.35 
(11.16) 

-0.01 
(-.70) 

Travel time to nearby shops on foot (in minutes) -7.50 
(-109.45) 

-3.48 
(-76.37) 

-0.07 
(-4.11) 

Average home value (in thousands CDN) -14.90 
(-123.79) 

-0.64 
(-112.24) 

0.01 
(2.00) 

Travel time to work by car (in minutes) -10.20 
(-99.72) 

-4.57 
(-45.71) - 

Travel time to work by transit (in minutes) 0.80 
(16.32) 

0.13 
(3.04) 

-0.07 
(-5.32) 

Variance of random parameters 

Space - 0.00 
(-2.12) - 

Apartment 0.17 
(39.32) 

-0.10 
(-2.65) 

0.28 
(0.20) 

Triplex -0.12 
(-69.99) 

0.11 
(1.47) 

1.10 
(1.19) 

Travel time to work by car 
(in minutes) 

-0.01 
(-14.13) 

0.01 
(0.45) - 

Class Membership Attributes 

High Income -0.48 
(-1.23) - - 

Low Income - -0.14 
(-0.38) - 

Zero or Non-represented Income 0.54 
(1.21) - - 

Employment Status (Full time =1, other = 0) -0.43 
(-1.530) - - 

Language (French=1, English=0) -0.19 
(-1.13) - - 

Driver (Having driver license=1, other =0) - 0.04 
(0.19) 

0.04 
(0.19) 

Urban Core Residency(Reside in Urban Core =1, other = 0) - -12.90 
(-8.12) -  

Current Residency (Apartment =1, other = 0) - - -0.48 
(-1.92) 

Number of parameters 44 
Final Log-likelihood -543.449 

BIC 0.9901 
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TABLE A2 Estimated LC-MMNL Model with Four Classes 
Attribute LC-MMNL 

Class 1 Class 2 Class 3 Class 4 

ASC 17.8 
(5.58) 

7.94 
(5.45) 

5.45 
(-0.18)  

-46.9 
(-2.94) 

Dwelling type 

Detached houses Fixed Fixed Fixed Fixed 
Townhouse -71.5 

(-5.43) 
-2.51 

(-1.45) 
54.80 
(0.12) 

-4.00 
(-2.35) 

Triplex -55.10 
(-5.32) 

-36.7 
(-4.95) 

2.59 
(0.04) 

-67.5 
(-3.01) 

Apartment 20.6 
(5.43) 

-85.5 
(-6.45) 

-29.1 
(-0.26) - 

Space between buildings (in feet) - 4.49 
(6.78) - - 

Front yard depth (in feet) -1.7 
(-5.46) 

0.4 
(5.14) 

2.12 
(0.15) 

-0.08 
(-1.55) 

Travel time to nearby shops on foot (in minutes) 4.47 
(5.56) 

-4.47 
(-6.96) 

-2.18 
(-2.60) 

-4.77 
(-3.10) 

Average home value (in thousands CDN) 0.262 
(5.45) 

-0.17 
(-6.85) 

-12.4 
(-0.16) 

-0.126 
(-3.09) 

Travel time to work by car (in minutes) 22.00 
(5.44) 

1.19 
(5.25) - - 

Travel time to work by transit (in minutes) -2.60 
(-5.34) 

-0.987 
(-6.120) 

-4.81 
(-0.16) 

-1.350 
(-2.95) 

Variance of random parameters 

Space - 4.49 
(6.78) - - 

Apartment 23.0 
(5.33) 

-2.41 
(-1.16) 

0.218 
(0.11) - 

Triplex 0.028 
(0.41) 

35.5 
(6.98) 

0.264 
(0.05) 

43.3 
(3.07) 

Travel time to work by car 
(in minutes) 

-6.88 
(-5.40) 

4.43 
(6.79) - - 

Class Membership Attributes 

High Income 0.143 
(0.40) - - - 

Medium Income - - - -0.231 
(-0.62) 

Low Income - -0.317 
(-0.78) 

-0.317 
(-0.78) - 

Zero or Non-represented Income -1.10 
(-1.29) - - - 

Employment Status (Full time =1, other = 0) -0.319 
(-1.12) - - - 

Language (French=1, English=0) -2.82 
(-1.650) - - - 

Driver (Having driver license=1, other =0) - - -1.290 
(-4.54) 

-1.290 
(-4.54) 

Urban Core Residency(Reside in Urban Core =1, other = 0) -1.030 
(-3.03) - - -1.030 

(-3.03) 

Current Residency (Apartment =1, other = 0) - - 0.138 
(0.44) - 

Number of parameters 53 
Final Log-likelihood -501.218 

BIC 0.9148 
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TABLE A3 Estimated LC-MMNL Model with Five Classes 

Attribute LC-MMNL 
Class 1 Class 2 Class 3 Class 4 Class 5 

ASC 62.2 
(3.19) 

3.78 
(6.16) 

-20.3 
(-7.59) 

-25.9 
(-3.36) 

-70.1 
(-4.79) 

Dwelling type 

Detached houses Fixed Fixed Fixed Fixed Fixed 
Townhouse -46.4 

(-3.56) 
12.8 

(3.53) 
-17.2 
(-7.2) 

19.5 
(4.38) 

69.4 
(3.89) 

Triplex -121.0 
(-3.18) 

-159.0 
(-3.42) 

-81.4 
(-7.17) 

-48.5 
(-3.94) 

-60.3 
(-4.75) 

Apartment -78.9 
(-3.12) 

-137.0 
(-3.21) 

-113.0 
(-7.25) - - 

Space between buildings (in feet) - 8.53 
(3.07) - - - 

Front yard depth (in feet) 0.364 
(2.92) 

0.577 
(4.32) 

-1.77 
(-7.21) 

26.4 
(3.82) 

-9.16 
(-4.55) 

Travel time to nearby shops on foot (in minutes) 7.96 
(3.27) 

-7.23 
(-3.18) 

0.70 
(7.37) 

-39.10 
(-3.87) 

-4.72 
(-4.66) 

Average home value (in thousands CDN) -1.02 
(-3.2) 

-0.495 
(-3.26) 

-12.4 
(-7.15) 

-1.14 
(-4.28) 

0.179 
(-4.28) 

Travel time to work by car (in minutes) 29.8 
(3.1) 

5.68 
(3.32) - - - 

Travel time to work by transit (in minutes) 1.13 
(2.9) 

-2.23 
(-2.97) 

-6.53 
(-6.97) 

8.97 
(3.88) 

-18.7 
(-4.63) 

Variance of random parameters  

Space - 0.0147 
(0.14) - - - 

Apartment 0.191 
(2.53) 

-1.96 
(-2.89) 

0.028 
(43.9) - - 

Triplex 0.0445 
(0.77) 

-63.0 
(-3.46) 

0.0289 
(20.47) 

0.0325 
(9.21) 

-98.0 
(-4.28) 

Travel time to work by car 
(in minutes) 

-0.00801 
(-0.99) 

0.4 
(2.87) - - - 

Class Membership Attributes  

High Income -0.413 
(-0.63) - - - - 

Medium Income - - - 0.478 
(1.91) 

0.478 
(1.91) 

Low Income - 0.0571 
(0.13) 

0.0571 
(0.13) - - 

Zero or Non-represented Income -0.673 
(-0.68) - - - - 

Employment Status (Full time =1, other = 0) -0.803 
(-1.690) - - - - 

Language (French=1, English=0) -0.292 
(-1.05) - - - - 

Driver (Having driver license=1, other =0) - - -1.67 
(-7.9) 

-1.67 
(-7.9) 

-1.67 
(-7.9) 

Urban Core Residency(Reside in Urban Core =1, other = 0) - -1.65 
(-4.11) - -1.65 

(-4.11) 
- 

Current Residency (Apartment =1, other = 0) - - 0.616 
(1.93) - - 

Number of parameters 61 
Final Log-likelihood -492.128 

BIC 0.899 
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TABLE A4 Estimated AGLC-MMNL Model with Two Classes 

Attribute 
LC-MMNL 

Class 1 Class 2 

ASC -0.123 
(-0.72) - 

Dwelling type 

Detached houses Fixed Fixed 

Townhouse - -0.82 
(-1.85) 

Triplex 8.59 
(4.06) 

-2.08 
(-2.07) 

Apartment - -1.73 
(-2.49) 

Space between buildings (in feet) - 0.05 
(1.55) 

Front yard depth (in feet) -29.6 
(-4.06) 

0.0242 
(1.14) 

Travel time to nearby shops on foot (in minutes) 16.60 
(3.96) 

-0.09 
(-2.30) 

Average home value (in thousands CDN) -8.9 
(-4.20) 

-0.00384 
(-2.21) 

Travel time to work by car (in minutes) 71.80 
(4.23) 

0.02 
(1.16) 

Travel time to work by transit (in minutes) -17.20 
(-4.01) 

-0.04 
(-2.03) 

Variance of random parameters 

Space - -0.0649 
(-1.26) 

Apartment - -0.778 
(-0.50) 

Triplex - -0.553 
(-1.30) 

Travel time to work by car 
(in minutes) 

0.00047 
(0.05) 

-0.13 
(-1.70) 

SIGMA 0.249 
(0.20) 

Class Membership Attributes 

High Income -0.32 
(-0.66) - 

Language (French=1, English=0) -0.89 
(-3.48) - 

Current Residency (Apartment =1, other = 0) 0.57 
(1.85) - 

Number of parameters 25 
Final Log-likelihood -548.69 

BIC 0.997 
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TABLE A5 Estimated AGLC-MMNL Model with Three Classes 

Attribute 
LC-MMNL 

Class 1 Class 2 Class 3 

ASC 44.3 
(1.36) 

2.99 
(0.29) 

-52.6 
(-3.07) 

Dwelling type 

Detached houses Fixed Fixed Fixed 

Townhouse - 33.3 
(0.41) 

145 
(3.02) 

Triplex -42.8 
(-1.27) - 63.8 

(3.1) 

Apartment 121 
(1.3) 

-220 
(-0.35) 

65.8 
(2.71) 

Space between buildings (in feet) - 14.4 
(0.36) - 

Front yard depth (in feet) -2.05 
(-1.24) 

1.32 
(0.35) 

-1.8 
(-3.62) 

Travel time to nearby shops on foot (in minutes) 6.58 
(1.26) 

-13 
(-0.35) 

-5.76 
(-3.24) 

Average home value (in thousands CDN) 0.678 
(1.28) 

-0.503 
(-0.34) 

-4.54 
(-3.13) 

Travel time to work by car (in minutes) 48.3 
(1.25) 

2.93 
(0.36)  

Travel time to work by transit (in minutes) -7.88 
(-1.31) 

-1.76 
(-0.35) 

-5.34 
(-3.17) 

Variance of random parameters 

Space - 0.296 
(0.29) - 

Apartment -1.72 
(-1.2) 

-2.05 
(-0.23) 

152 
(3.26) 

Triplex 83.2 
(1.33) - -0.506 

(-1.23) 
Travel time to work by car 

(in minutes) 
-19.9 

(-1.25) - -13.2 
(-0.35) 

SIGMA -0.536 
(-0.12) 

Class Membership Attributes 

High Income 0.198 
(0.58) 

 
- - 

Low Income - -0.197 
(-0.5) 

-0.197 
(-0.5) 

Zero or Non-represented Income -1.78 
(-2.38) - - 

Employment Status (Full time =1, other = 0) -0.207 
(-0.76) - - 

Language (French=1, English=0) -0.358 
(-2.01) - - 

Driver (Having driver license=1, other =0) - - -1.16 
(-4.48) 

Urban Core Residency(Reside in Urban Core =1, other = 0) - -0.643 
(-2.25) - 

Current Residency (Apartment =1, other = 0) - - 0.168 
(0.53) 

Number of parameters 42 
Final Log-likelihood -497.582 

BIC 0.907 
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TABLE A6 Estimated AGLC-MMNL Model with Five Classes 

Attribute LC-MMNL 
Class 1 Class 2 Class 3 Class 4 Class 5 

ASC 8.28 
(1.42) 

0.43 
(0.38) 

-8.78 
(-1.64) 

-19.02 
(-3.47) 

-4.03 
(-0.11) 

Dwelling type 

Detached houses Fixed Fixed Fixed Fixed Fixed 
Townhouse -5.88 

(-1.24) 
-3.93 

(-0.73) 
11.2 

(1.62) 
3.69 

(2.64) 
1.25 

(0.03) 
Triplex -14.4 

(-1.62) 
-9.52 

(-1.00) 
1.45 

(1.24) 
5.82 
(2.8) 

-5.51 
(-0.05) 

Apartment -10.1 
(-1.5) 

-7.15 
(-0.92) 

-5.92 
(-1.7) - - 

Space between buildings (in feet)  0.138 
(0.73) 

 
   

Front yard depth (in feet) 0.021 
(0.33) 

0.0327 
(0.74) 

0.467 
(1.53) 

0.431 
(3.85) 

-0.763 
(-0.06) 

Travel time to nearby shops on foot (in minutes) 1.19 
(1.45) 

-0.258 
(-0.77) 

-0.532 
(-1.42) 

-1.91 
(-3.44) 

-0.421 
(-0.06) 

Average home value (in thousands CDN) -0.15 
(-1.44) 

-0.00532 
(-0.73) 

-2.75 
(-1.67) 

-0.0939 
(-3.88) 

0.0132 
(0.22) 

Travel time to work by car (in minutes) 3.92 
(1.45) 

0.145 
(1.03)    

Travel time to work by transit (in minutes) 0.213 
(1.2) 

0.00108 
(0.02) 

-0.936 
(-1.62) 

-0.324 
(-3.14) 

-1.52 
(-0.07) 

Variance of random parameters  
Space  -0.0294 

(-0.4    

Apartment 0.213 
(0.2) 

-3.85 
(-1.07) 

0.482 
(0.25)   

Triplex 0.448 
(0.32) 

2.3 
(1.86) 

0.103 
(0.08) 

0.519 
(0.45) 

-9.34 
(-0.06) 

Travel time to work by car 
(in minutes) 

0.107 
(1.05) 

0.272 
(0.87)    

SIGMA -1.49 
(-0.42) 

Class Membership Attributes  
High Income -0.302 

(-0.32) - - - - 

Medium Income    0.382 
(0.37) 

0.382 
(0.37) 

Low Income  0.288 
(0.7) 

0.288 
(0.7)   

Zero or Non-represented Income -1.04 
(-1.14)     

Employment Status (Full time =1, other = 0) -1.04 
(-1.18)     

Language (French=1, English=0) -0.276 
(-1.12)     

Driver (Having driver license=1, other =0)   -2.33 
(-2.95) 

-2.33 
(-2.95) 

-2.33 
(-2.95) 

Urban Core Residency(Reside in Urban Core =1, other = 0)  -1.6 
(-2.15)  -1.6 

(-2.15)  

Current Residency (Apartment =1, other = 0)   0.426 
(0.96)   

Number of parameters 62 
Final Log-likelihood -502.495 

BIC 0.918 

 


