
On the Semantics of Queries over
Graphs with Uncertainty

A thesis in the

Department of

Computer Science & Software Engineering

Presented in partial fulfilment of the requirements

for the degree of Master of Science

Department of Computer Science and Software Engineering

Concordia University

Montreal, Quebec, Canada

@ Soyoung Kim, 2016



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:  

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair

______________________________________ Examiner

______________________________________ Examiner

______________________________________ Supervisor

Approved by ________________________________________________
Chair of Department or Graduate Program Director

________________________________________________
Dean of Faculty

Date ________________________________________________

Soyoung Kim

On the Semantics of Queries over Graphs with Uncertainty

Master of Computer Science

Dr. Sabine Bergler

Dr. Gosta G. Grahne

Dr. Hovhannes Harutyunyan

Dr. Nematollaah Shiri



Abstract

We study the semantics of queries over uncertain graphs, which are directed

graphs in which each edge is associated with a value in [0, 1] representing its cer-

tainty. In this work, we consider the certainty values as probabilities and show the

challenges involved in evaluating the reachability and transitive closure queries over

uncertain/probabilistic graphs. As the evaluation method, we adopted graph re-

duction from automata theory used for finding regular expressions for input finite

state machines. However, we show that different order of eliminating nodes may

yield different certainty associated with the results. We then formulate the notion

of "correct" results for queries over uncertain graphs, justified based on the notion

of common sub-expressions, and identify common paths and avoid their redundant

multiple contributions during the reduction. We identify a set of possible patterns to

facilitate the reduction process. We have implemented the proposed ideas for answer-

ing reachability and transitive closure queries. We evaluated the effectiveness of the

proposed solutions using a library of many uncertain graphs with different sizes and

structures. We believe the proposed ideas and solution techniques can yield query

processing tools for uncertain data management systems.
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Chapter 1

Introduction

Real world information is not always definite in the manner that we handle degrees

of uncertainty rather than exact information which usually falls under true or false.

Intuitively, a piece of data is uncertain if its truth is not established definitely. Such

uncertain data exist since we are often uncertain about our observations and under-

standing in particular in the presence of noise and error [28, 15, 4]. In the age of

large data, it occurs in many applications due to data collection processes, data pre-

processing methods or privacy-preserving reasons [25, 11, 2]. In these applications,

processing queries without considering this uncertainty information can lead to in-

correct answers. But what is the correct result and what are the challenges to find

one?

1.1 Problems and Motivation

A natural way to capture graph uncertainty is to represent them as probabilistic

graphs [9, 12, 21, 20]. Probabilistic graphs are form of uncertain data, in which
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the edges are annotated with certainty values or weights indicating their associated

probabilities. In this research, we study the semantics of probabilistic graphs and that

of queries over such graphs. An example of frequent such queries is the reachability

problem [7, 6, 16]. The reachability problem is, given an uncertain graph G and a

pair of nodes (i, j), to find the probability of a target node j being reachable from a

source node i, which represents the certainty value connecting i to j. We show this

probability of weight as ω(i, j). Intuitively, this is determined by considering all paths

from i to j, finding the certainty value of each path, and "merging" or "aggregating"

those certainties as one value for the connectivity of i to j. The fact that certainties

are interpreted as probabilities, laws and formula of probability are applied when

processing the reachability query. For answering the query, disjunction function ⊕

is used to "combine" certainties of multiple paths that have the same start and end

points and conjunction function � is used to aggregate certainties of the sequences of

edges that form a path. Essentially we remove all the nodes that are on every path

from i to j while combining the associated probabilities of the edges. This process can

yield different results when considering different order of merging probabilities and

elimination of nodes along the path using particular disjunction function for merge.

To illustrate the issues, consider the uncertain graph in Figure 1.1. Suppose we

want to determine ω(i, j), that is the reachability value from node i to j in this graph.

Figure 1.1: An uncertain graph.
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As can be seen, there are two paths from i to j, i.e., 〈a, b〉 and 〈c, b〉. Suppose

we use the probability independence mode ind as the disjunction function ⊕ and

use the arithmetic product operation × as the conjunction function �. For the

reachability ω(i, j) problem, we may get the following two values: v1 = (a⊕ c)� b or

v2 = (a� b)⊕ (c� b), which are different in general, but which one is correct? To be

more precise, suppose the weight associated with every edge in this graph is 0.5, that

is, a = b = c = 0.5. If we use ind(x, y) = x+ y − xy as the disjunction function and

use the product × as conjunction, we would obtain the different values v1 = 0.375 and

v2 = 0.4375, respectively. It is important to note that while ind is a commutative and

associative function over, it is not distributive over the conjunction function. Sevo

[27] studies the reachability problem but considers max as the disjunction function

⊕. The function does not pose any challenge for computing ω(i, j) in the graph as

the certainty of the result is independent of the order in which nodes are eliminated.

This is because max is distributive over the product operation. As mentioned, when

the weights are a = b = c = 0.5, performing the node elimination process using the

ind mode as the disjunction ⊕, the computed probability value would not be unique,

while using max we would get 0.25 in either case.

It can be even complicated when cycles are present in the input graphs. Figure

1.2 shows that when the input uncertain graph is acyclic, we face a challenge for

answering the reachability problem even if we use max as the disjunction function.

For answering the reachability query, the enumeration of paths based on "state-

elimination" technique proceeds a replacement of node vj between start node vs and

end node vf and its incident edges (vi, vj) and (vj, vk) by a new edge (vi, vk). This

process essentially replaces any pair of multiple edges by a single edge and elimination

3



Figure 1.2: An example uncertain graph with cycle.

of any edges incidents to nodes between vs and vf until one edge remains which

connects vs to vf with the considered disjunction and conjunction functions. In this

uncertain acyclic graph, we have two cases of nodes elimination i.e., "k1, k2" and

"k2, k1", which yield:

1. (a� c)∗ � (a� b⊕ d)� e

2. (a� c)∗ � (a� b� e⊕ d� e)

In both two computations above, edge a(i, k1) contributes multiple times, which re-

sults in overcomputing. The issue is "redundant" repeated computation in the sense

that there exist shared paths contributing multiple times. Even though the reduction

order does not affect the end results when using max as the disjunction function,

overcomputation is not desired in the context of our correct semantics in that we

avoid generating unnecessary repeated computations.

The above two examples show the challenges when processing reachability queries

over uncertain graphs. The main question that may be raised at this point is, what

is a "correct" value from a start node to an end node in an uncertain graph and how

to compute it.

4



1.2 Thesis Contributions

The contributions of this thesis are as follows:

1. We study the semantics of uncertain graphs and show that different orders of

graph reduction may lead to different results for reachability and transitive clo-

sure queries. This is used as a basis to formalize the notion of correct semantics

for uncertain graphs and we propose a solution technique for reachability and

transitive closure queries over such graphs.

2. We formulate correct semantics for uncertain graphs and propose the corre-

sponding reduction techniques that in general involve several steps, depending

on the possible patterns and components that may be present in the input.

We propose a set of rules to assist in the reduction process. To validate our

techniques, we use a large collection of uncertain graphs of different size and

structures, generated and/or collected. We evaluate the performance of the

proposed techniques for reachability and transitive closure queries in terms of

effectiveness and scalability.

3. Our results indicate correctness of the implementation and effectiveness for

the proposed solutions. Potential applications of the proposed solution include

development of an extension of the SQL database query language to support

transitive closure and reachability queries over uncertain graphs. This capability

is needed for next generation systems for management of uncertain data.

5



1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces a background

and provides a survey of related literature. Chapter 3 studies the semantics of uncer-

tain (probabilistic) graphs and investigates suitable reduction algorithms. Chapter

4 presents a design and implementation of the proposed algorithms followed by a

complexity analysis. Chapter 5 illustrates the evaluation results of our proposed so-

lutions using a library of uncertain graphs we created and/or collected, and compiled.

Concluding remarks and possible future directions are discussed in Chapter 6.
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Chapter 2

Background and Related Work

A graph G = 〈V,E〉 is a data structure where V is a set of objects, called vertices or

nodes, and E ⊆ V ×V is a set of edges of the form (x, y), indicating that nodes x and

y are connected. A weighted graph is a digraph (V,E) in which every edge (x, y) is

associated with a value ω(x, y), called its weight where ω is called a weight assignment

function. In a directed graph (also called digraph), presence of an edge (x, y) in

E means that node x is connected to node y. An uncertain graph G = (V,E, ω)

is a weighted graph in which w : E → [0, 1] is the weight assignment function.

Probabilistic graphs are special cases of uncertain graphs in which the weights are

probability values. If the weight associated with an edge (x, y) is 1, it means that

node x is certainty connected to node y. A weight 0, on the other hand, means that

node x is not connected to node y.

In many applications, a frequent query problem [21, 12] in graphs is the reachabil-

ity problem, which given a weighted graph and a pair of nodes (s, t), it asks whether

there is a path from the start node s to the target node t, and if yes, what is the prob-
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ability of this path, which we denote by ω(s, t). Answering this is challenging when

such paths include cycles. To process reachability queries in probabilistic graphs, we

need to identify all the paths between the given nodes and "combine" the probabil-

ities of these paths, using desired conjunction and disjunction functions. Intuitively,

a conjunction function combines the weights of the edges that are on the same path

while a disjunction function combines the weights of parallel edges/paths that have

the same endpoints. Given a graph G and a reachability query (s, t), we say that a

node v ∈ V is relevant to this query if v is on any path from s to t. Similarly, we say

that an edge e(v1, v2) is relevant to a reachability query ω(s, t) if (v1, v2) ∈ E, and v1

and v2 are both relevant to (s, t). To answer the reachability query ω(s, t), we keep

s and t but eliminate every other nodes that are relevant to (s, t) one by one in a

"disciplined" way, while combining the probabilities of the paths that are eliminated.

This process essentially reduces the relevant part of G to a single edge connecting s

to t, and computes the weight associated with this edge.

In automata theory, the state-elimination technique is used to minimize the num-

ber of states in a given deterministic finite state automaton (DFA). The use of state

elimination has also been used to obtain a regular expression for a given finite state

automaton. While the minimal equivalent DFA is unique, different order of eliminat-

ing states may yield different but equivalent regular expressions. For instance, for the

FA shown in Figure 2.1(a), we get two equivalent regular expressions r1 = ab∗ and

r2 = a(λ + b + b2 + b3)(b4)∗, which represent the same set of strings. This example

shows while state elimination technique is useful in automata theory, it is inadequate

in our context of probabilistic graphs.

If we view a and b as probabilities, we get different weights obtained from two

8



(a) A finite automaton M which yields

the regular expression (a + ab + ab2 +

ab3)(b4)∗

(b) Reduced equivalent FA M

which yields the regular ex-

pression ab∗

Figure 2.1: Digraphs with regular expressions.

regular expressions for the reachability probability of Vs to Vs. Let a = 0.5 and

b = 0.4. For r1, (a ⊕ ab ⊕ ab2 ⊕ ab3)(b4)∗, we get 0.016481 for using ind for ⊕ and

get 0.024 for using max. Here we considered only one iteration of the loop from Vf to

Vf . This is good enough to show that the results are different even when we consider

one iteration for the infinite loop denoted by use of ∗. For the "reduced" regular

expression r2 which the reduced FA in Figure 2.1(b) yields, ab∗, we get 0.5×0.4 = 0.2

in both ind and max modes, considering the aggregated weight of a cyclic path (b, b)

of length-one is computed as b�
1

1−b
�. This is a different value compared to the four

different paths between Vs and Vf i.e., (Vs, V1, V2, V3, Vf ), (Vs, V2, V3, Vf ), (Vs, V3, Vf ),

and (Vs, Vf ). The proposed formula for cycle ω� 1
1−ω

�, where ω is the probability of the

cycle node, is explained in Section 3.

Computing and maintaining the weights in cyclic probabilistic graphs can be com-

plicated since there is no basics to consider a "right" way for computing the weights

9



in such graphs. Intuitively, nodes in cycles should be removed earlier than others in

the graphs. Here the term fuse is used to mean "combine all element nodes in a cycle

of empty nodes to be a representative solid node" to solve cyclic path problems. We

then find a correct way to compute it. To see this, consider the cyclic probabilistic

graph in Figure 2.2 and we want to compute ω(i, j). Conforming to state-elimination

Figure 2.2: Another example probabilistic graph with cycle.

to obtain ω(i, j), we have two choices: 1) eliminate k1 first by aggregating and main-

taining the weights of incident edges to k1, and then eliminate k2 to get the final

result by computing and maintaining newly generated weights through reduction, 2)

eliminate k2 first and then k1 while computing as described in case 1. For the reduc-

tion order ′k1, k2 ′, the combined weights from i to j is (bca)∗(bcd ⊕ be), whereas for

the reduction ′k2, k1 ′ we get (bca)∗b(cd⊕ e), described in Figure 2.3.

We are facing two issues to perform the correct computation. The first issue is

which order results in least common sub-expressions. This affects the result when

using the ind mode as the disjunction (aggregation), as the max mode returns a

unique returned result, that is, independent of any specific order. The other issue we

face is "Has any of the resulting expressions correctly captured the semantics of the

underlying uncertain in the reduction process?". The fact that some weights such as

10



(a) Case 1: (k1, k2) (b) Case 2: (k2, k1)

Figure 2.3: Comparison of different order of node reductions.

b or c contribute multiple times to the result, we have to be careful with such over-

computing problem when edges are shared more than once along the paths between

the endpoints. Intuitively, if nodes vi and vj are involved in a same cyclic path, we

consider them as "indistinguishable" nodes, and such nodes are combined into a single

"solid" node. For example, Figure 2.4(a) includes a cyclic path (i, k1, k2, i), shown in

grey. Using the proposed technique based on SCCs, this cycle is reduced to a solid

node i where the weight of i to itself is multiplication of the associated weights on

sequences of edges involved in the cyclic path, which is bca, shown in Figure 2.4(b).

Our proposed reduction method considers nodes i, k1, and k2 to be equivalent, and

11



the weights of connectivity from i to j, denoted as ω(i, j), is (bca)∗(d⊕ e).

(a) Combining (i, k1, k2) as a solid node i (b) The reduced graph

Figure 2.4: Proposed reduced graph based on SCCs.

2.1 Shortest Paths in Weighted Automata

In automata theory, finite state automata (FA) is represented as a directed graph

where nodes represent states and the edges represent transitions [14]. The set of nodes

in a FA includes one start state and any number of final states. Weighted automata

are finite automata with numerical weights on transitions in which each transition

carries some weight in addition to the input and output labels, which are used in

many applications such as text, speech and image processing [18, 3]. In the particular

case of a weighted automaton over the probability semiring, nondeterministic choice

is replaced by probability distributions on successor states [5]. Such automata over

the probability semiring is modeled based on a Bayesian approach where the analysis

asymptotically gives probability 1 to the model that is as close as possible to the true

model, while we handle independent uncertainty value associated with each edge in

a directed graph, which is inadequate in our probabilistic graphs.
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To see this, consider a finite automaton M in Figure 2.1. Note that any au-

tomaton accepts a set of strings that can be represented by a regular expression

and we can use a state-elimination process to convert M into a regular expression r.

The components defining an FA M include a set of alphabet {a, b}, and a finite set of

states {Vs, V1, V2, V3, Vf}, where Vs and Vf are the initial and final states, respectively.

Following the state elimination technique, we get a regular expression ab∗ from the

reduced FA. We can also get (a+ ab+ ab2 + ab3)(b4)∗, which is an equivalent regular

expression for M. As mentioned earlier, while the regular expressions obtained from

state-elimination process are equivalent, they may not be considered as equivalent

when the labels on the edges are probabilities. For example, (a⊕ ab⊕ ab2 ⊕ ab3)(b4)

and ab∗ are equivalent as regular expressions but they yield different probabilities for

reaching Vf from Vs. If we apply the proposed cycle reduction to the graph of Figure

2.1(a), then we get (a⊕ a⊕ a⊕ a)(b4)∗ = 0.024 and max{a, a, a, a} × (b4)∗ = 0.0128

for ind and max, respectively, by replacing the cyclic path of V1, V2, V3, and Vf by a

single solid node, shown in Figure 2.5.

Figure 2.5: The proposed regular expression for FA M.
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We can associate finding the least common sub-expressions in computing the

reachability query problem with the shortest path problem which finds a path be-

tween two nodes in a graph such that the combined weights of its constituent edges

is minimized [17], that is, it yields the minimal cost of the path. When the weights

are probabilities we must avoid overcomputing probabilities. We propose a graph

reduction algorithm that considers an order in which the nodes are eliminated and

their weights are combined to get the minimal weight.

2.2 Strongly Connected Components

A walk in a digraph is a sequence of nodes, that can be traversed in order to

move from one node to another. More formally, a walk of length k from node

v0 to node vk is a non-empty subgraph W = (V, E), where V = {v0, v1, .., vk}, E

= {(v0, v1), (v1, v2), .., (vk−1, vk)}, where w(e) the weight associated with edge e =

(vi, vj).

Definition 2.1. Let Ei = (vi, vi+1) be the edges in G, for i ∈ [1, k]. The sequence

P = (v0, v1, . . . , vk) is a walk of length k from v0 to vk in that vi is adjacent to vi+1,

for all i ∈ [1, k − 1] .

If nodes vi and vj are connected, that is, there is a direct path "(vi, vj)" and at

least one of indirect path "(vi, .., vj)" between vi and vj, weights on the edges in such

paths should be combined to compute ω(vi, vj) with considered disjunction functions.

The length of a walk P is denoted by |P |, in this case |W | = k. We say that a path

P is cyclic when the path starts and ends at the same node with |W | ≥ 1. We also

say that nodes vi and vj are strongly connected being in a same strongly connected
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component (SCC) class when vi and vj are in a same cyclic path [10], which means

there is a path connecting these nodes, regardless of the start node being vi or vj.

Here we want to formalize a relation of such nodes in a same SCC. To consider the

way in which nodes in a same SCC are related to each other, one needs the notion of

"indistinguishable" between nodes. Informally, the transitive closure of a digraph G

is itself a digraph G∗ such that the nodes of G∗ are the same as the nodes of G, and

G∗ has an edge (vi, vj), denote by vi → vj, whenever G has a directed path from vj

to vi written vj → vi, including the case where (vi, vj) is an edge of the original G.

vi is indistinguishable with vj, if vi → vj and vj → vi, written vi ↔ vj such that vi

and vj are in the same SCC . More formally, the transitive closure of G is a graph

G∗ = (V,E∗) such that for all vi, vj in V there is an edge (vi, vj) in E∗ if and only if

there is any path from vi to vj in G. If (vi, vj) ∈ G∗ and (vj, vi) ∈ G∗, then nodes vi

and vj become indistinguishable each other, and such nodes are replaced by a single

representative solid node in a way vi and vj are not distinguishable.

Definition 2.2. For all nodes vi,vj in V, vi and vj are indistinguishable if (vi, vj) ∈ G∗

and (vj, vi) ∈ G∗. That is, we say that vj is reachable from vi and vi is reachable from

vj as well.

We then write vi → vk if vi → vj and vj → vk. Further if vi ↔ vj then vj ↔ vi.

That is, vi and vj are indistinguishable. Tarjan[29] introduced an algorithm that

identifies all the maximal SCCs of a digraph. The problem, however, is that for the

reduction algorithm, we have to find all the basic cycles in a graph and "combine"

them in some order. Tarjan’s algorithm itself is not preferred for the fuse step since

it only returns the maximal SCCs of G whereas complex cycles involving many nodes

15



have to be fused in ascending order of the length of elementary cycles individually.

We propose an algorithm that proceeds as designed by finding and keeping track of

all the cycles by fusing them, which returns the correct weight.

As shown in Figure 2.4(b), the cycle path (i, k1, k2, i) are combined as a solid node

i, and it yields (bca)∗(d⊕ e) which has no common sub-expressions.
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Chapter 3

The Proposed Algorithm

We present a set of patterns of paths and its corresponding rules to reduce a prob-

abilistic graph. Our reduction algorithm is carried out through node reduction and

edge aggregation in an input graph G until one edge, connecting a source node vs to

a target node vf , remains. It induces the relevant subgraph of G and finds the reach-

ability weight as ω(vs, vf ). When the subgraph has cycles, it reduces cyclic to acyclic

and then determines ω(vs, vf ). This is done by repeatedly applying reduction rules

to the reduced subgraph until no more rules can be applied to obtain the aggregated

weight on a single edge (vs, vf ). The proposed solution techniques underlie the proper

order of nodes elimination based on the notion of least common sub-expressions.

3.1 Proposed solution

The key point is to find least common sub-expressions in the final aggregated prob-

abilities, that is, avoiding unnecessary redundant computations. On the one hand, if

two or more nodes in a probabilistic graph belong to the same SCC class [19], then
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such nodes are considered indistinguishable and hence converted into a solid node

which replaces the corresponding SCC. By treating them indistinguishable, we can

avoid overcomputing problems. On the other hand, we strictly regulate the order in

which nodes are eliminated. The proposed algorithm is partitioned into three phases.

In the first phase, it finds the relevant subgraph of an input G if a source node vs and

a target node vf in G. The second phases finds the cycles in G′, if any, and reduce

them into "solid" nodes in a disciplined way. This generate an acyclic graph G′′. The

last phase requires nodes reduction process in G′′. It then computes the reachability

value as ω(vs, vf ).

3.1.1 Finding the Relevant Subgraph

The first phase of the reduction algorithm is to get the relevant subgraph. We first

obtain the set R(vs) of nodes that are reachable from vs. To get the set V ′ of nodes

are only relevant to (vs, vf ), for a node v in R(vs), if v is contributing to vf the v

is included in V ′, that is the subgraph of G = (V,E) induced by V ′ ⊆ V , which is

G′ = (V ′, {(i, j)|(i, j) ∈ E, for i, j ∈ V ′}).

3.1.2 Reducing Cycles in the Relevant Subgraph

The second phase detects cycles and reduces them in the relevant subgraph G′. The

nodes that are on a cyclic path form a strongly connected component, we then replace

them by a single solid node. This phase can be omitted if G′ is acyclic.
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3.1.3 Reducing Nodes in the Reduced Relevant Subgraph

Eliminate all the relevant nodes in G′′ but vs and vf , using the reduction rules/patterns.

This phase eliminates all the nodes but vs and vf one by one until one single edge

remains connecting vs to vf . Finally we get the reachability weight as ω(vs, vf ).

3.2 Types of Nodes

We have two considerations on classifying node types in the presence of cycles in an

input graph G. Suppose G = (V,E) has cycles. If a node v ∈ V is involved in a

cyclic path, we say that v is a cyclic node. Now consider a graph G that does not

include any cycles. Here we denote the number of incoming and outgoing edges of a

node v by deg−(v) and deg+(v), respectively. Depending on the number of incident

edges on a node, we classify the node in an input graph G into five types: source,

sink, isolated, sequence, and split. A source node is a node without any incoming

edges, while a sink node is a node without outgoing edges. An isolated node is a

node having no incident edges. A node is called a sequence node if it has exactly one

incoming and one outgoing edge. Otherwise, a node v is called a split node, that is

deg−(v) + deg+(v) > 2. More specifically, when the summation of incoming edges

and outgoing edges of v is greater than 2, we call node v "split" for deg−(v) ≥ 1 and

deg+(v) ≥ 1. Note that phase 1 removes all the "isolated" nodes since isolated node

is not connected with any node in G while phase 2 removes all "cyclic" nodes.

We use this categories of nodes to classify the types of paths for defining patterns

in that each pattern has its own corresponding rule.
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3.3 Types of Patterns and Rules

There are five patterns and its corresponding rules to compute the weight of each

pattern of path: chain, choice, cycle, merge, and mesh as following.

(a) Rule 1: ω(i, j) = a� b (b) Rule 2: ω(i, j) = a⊕ b (c) Rule 3: ω(j, j) = b∗ = b�
1

1−b �

(d) Rule 4: (a′b′ ⊕ c)d′ ⊕ a′(b′d′ ⊕ e) (e) Rule 5: (a′c⊕ b′f)g ⊕ (a′e⊕ b′d)h

Figure 3.1: Basic node reduction rules: chain, choice, cycle, merge, and mesh.

Rule 1: Chain Rule. The chain rule has higher priority over rule 2. If a node

has exactly one incoming and outgoing edge, we can remove such node by aggregating

incident edges on that node with the considered conjunction function �, shown in

3.1(a).

Rule 2: Choice Rule. When there are more than one of paths between two

nodes in parallel, weights on such paths are aggregated with the considered disjunction

function ⊕ to be a single edge connecting two endpoints, shown in 3.1(b).

20



Rule 3: Cycle Rule. The cycle rule defines a weight computation for a cyclic

path. Computing the weight of a cyclic path can be complicated when the input

graph includes nested cycles. Nodes involved in any cyclic path are reduced to a solid

self-loop in a disciplined way by chain and choice rules. Once a single self-loop node

remains we apply the cyclic equation for length-one path. The proposed formula in

3.1(c) is used to compute ω(j, j) by applying geometric sequence summation equation,

explained in Section 3.2.

After applying the reduction rules mentioned above, to get ω(vs, vf ) in G′, there

are no more of sequence nodes. From that, vs is a source node, vf is a sink node, and

the remaining nodes are split. In such case, more than one node should be eliminated

in a single node reduction phase. There are two cases: one with a unique topological

sort, and the other with multiple topological sort in nodes.

Rule 4: Merge Rule. The merge rule handles the first case where all nodes

are removed together at once. It combines parallel paths correctly under different

possible scenarios, shown in 3.1(d).

Rule 5: Mesh Rule. The mesh rule is applied in the other case when "there

are more than one of topological sort", shown in 3.1(e).

By iteratively applying these reduction rules above, we develop a reduction al-

gorithm that computes the weight associated with every pair of path ω(i, j) in the

graph without any overcomputation.

As for rule 3 corresponding to cycle pattern, to see how to compute the weight

associated with a cyclic path, consider a self-loop from node j to itself, and suppose

we want to determine ω(j, j). For this, we use the formula x� 1
1−x

� used (or defined) in

[27], where x is the weight of the edge (j, j). Consider again the graph M in Figure
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2.1(b). The aggregated weights ω(Vs, Vf ) for the relevant paths from Vs to Vf are

obtained as follows:

a, a⊕ (a� b), a⊕ (a� b)⊕ (a� b� b), . . . , a · (1⊕ b⊕ bb⊕ bbb . . .⊕ bn).

A regular expression for reduced FA M is ab∗, which is a�b∗. Assume it converges

within a finite number n of iterations. In the limit when n approaches infinity, we

get the result: a � (1 ⊕ b)n, which is different in general from the expected, correct

result a � b∗, even if bn = b∗ in regular expression terms. Here, we use the geomet-

ric power series to find the most probable number of n. Essentially, we define the

number of loops n on edge (vf , vf ), and the weight of edge ω(vf , vf ) = b. As for

(a + ab + abb + abbb . . . + abn), using geometric sequence with the first term a1 = 1

and the common ratio r, the sum of the first n terms is given by:

In the special case where |r| < 1, as n goes to infinity, Sn converges to a
1−r

for −1 < r < 1. Here we use this formula where r is associated with probability

and its range satisfies the condition. The most promising number of loops for the

weight b is 1
1−b

, and the floor of this weight, � 1
1−b

, is the number of loops, where

�x = max{k ∈ Z|k ≤ x}, the largest integer less than or equal to x.

Example Figure 3.2 shows a digraph containing 7 nodes and its reduced graph,

SCCs, and condensed graph based on automata theory. By Definition 2.2, there are

four strong components in the graph: K1 = {A}, K2 = {B,G, F}, K3 = {C,D}, and
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K4 = {G}. We get B, G, and F are indistinguishable nodes. In a similar way, C and

D are considered indistinguishable. ω(A,E) is computed from eK1K2 �eK2
∗�eK2K3 �

eK3
∗ � eK3K4 . To put it more clearly, eAB � (eBG � eGF � eFB)

∗ � (eBC ⊕ eBD) �

(eCD � eCD)
∗ � (eBC ⊕ eBD).

(a) A digraph (b) SCC in the graph

(c) Condensation based on automata theory (d) Combining cycles into solid nodes

Figure 3.2: A digraph and its reduction phases.

3.4 Definitions and Notation

We need the following definitions and notation for our graph reduction algorithm.

Definition 3.1. Let G′ = (V ′, E ′) be the subgraph of a graph G = (V,E) where

V ′ is a set of nodes that are relevant to the endpoints of G and E ′ is a set of edges
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(i, j) for nodes i and j in V ′. For node i, we define R(i) to be the set of nodes in

V ′ which are reachable from i such that R(i) = {j ∈ V |i → j}. The kleene plus on

R(i) defines the union of R(i) and {i} itself, that is, R+(i) = R(i) ∪ {i}. Further,

the set of relevant "intermediate" nodes to (i, j) can be defined as R(i) − R+(j) =

{k ∈ V |i → k → j} and the relevant set of reachable nodes from i to j is defined as

R+(i)−R(j) = {k ∈ V |i → k → j} ∪ {i, j}.

Suppose G′ is the relevant subgraph of G to nodes (vs, vf ). Let S be the set of

relevant "intermediate" nodes between vs and vf , and we want to compute ω(vs, vf ).

To compute ω(vs, vf ), all nodes in S should be removed by nodes reduction rules.

Beforehand, we give formal definitions of node types. Note that the degree of a node

v is the number of edges incidents on that node, denoted as deg(v). It is important

to point out that vs is a source node and vf is a sink node while S does not include

any isolated nodes since G′ includes only relevant nodes to (vs, vf ). Then node v in

S can be classified either sequence or split.

Definition 3.2. Suppose S is a set of relevant intermediate nodes between a pair of

nodes in graph G. Node vi ∈ S is a sequence node if vi is on the chain path in that

it has only one incoming edge and one outgoing edge, that is deg(vi) = 2. Otherwise,

vi is a split node.

By Definition 3.2, a node vi ∈ S is a "sequence" node if vi has only one incoming

edge and outgoing edge whereas vi is a "split" node when deg(vi) > 2 then. vi in S

can be removed by rules 1 and 2 if and only if vi is a sequence node. By reduction

of vi, a split node vj ∈ S may become sequence and then can be removed by rules

1 and 2. To see this, suppose S = R(s) − R+(t) = {i, j} in the probabilistic graph
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shown in Figure 3.3. We have sequence node i and split node j by Definition 3.2,

since deg(i) = 2 and deg(j) = 3. After i is eliminated by rules 1 and 2, deg(j)

becomes 2. The fact that j is a sequence node, j can be removed by rules 1 and 2.

Figure 3.3: An example graph.

3.5 Simultaneous Nodes Reduction

After applying the reduction rules 1, 2, and 3 until no more these three rules are

not used immediately, the remaining nodes in S are all split nodes. In this case,

we use rules "merge" or "mesh" to eliminate multiple nodes in one step instead of

eliminating one by one in some order. It is important to point out that patterns of

path in chain, choice, and cycle do not have any topological sort in nodes. However,

we need complex cases which may have one or multiple topological ordering of nodes

in S. We take this aspect into accounts on the reduction process where we need two

additional rules, which we call "merge" and "mesh", respectively.

3.5.1 Topological Sort in Reduction

A topological sort of a partially ordered set of nodes in an acyclic digraph such that

if there is a path from node vi to node vj in the graph, vi appears before vj in the

list. Reduction of "multiple" split nodes is done based on the topological ordering.
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The output of the topological sort may not be unique, that is, it can have multiple

solutions depending on the type of algorithm used for sorting.

Suppose G′ is a graph which is reduced by rules 1, 2, and 3 in previous steps of

the reduction process. Then remaining intermediate nodes between the endpoints are

only split. In this case, single node reduction results in multiple computations for

shared edges. To get a correct value on a basis of least common sub-expressions in

paths, we eliminate such nodes in one step. The result of topological sort of G can

be unique or multiple outputs. If the output is unique, meaning every node in V has

its own unique level, we use rule 4 "merge" for reduction. Otherwise, we use rule 5

"mesh" to reduce nodes in the same level one by one.

3.5.2 Mergeable Edges and Paths

The method we present here relies on the definition of "mergeable" among bridge

edges. We formalize "bridge" edges and paths based on the notion of "mergeable"

by partitioning a set of "all paths" into disjoint mergeable path sets. In the phase

of simultaneous nodes reduction, a graph is acyclic since cycles are reduced in the

previous phases, denoted by GA from now on.

3.5.2.1 Properties of mergeable sets

Suppose L is the partially ordered set of nodes in a graph GA such that L =<

v0, . . . , vn . . . , vm, . . . , vk >. The probabilities of the edges (v0, vm) and (vn, vk) are

follows: ω(v0, vm) : a and ω(vn, vk) : b. We want to determine edges (v0, vm) and

(vn, vk) in Figure 3.4 are "mergeable" in the context of our notion of mergeable edges.

Informally, edges a and b are mergeable when:
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(a) Nonmergeable (b) Mergeable

Figure 3.4: A relation between edge a and edge b in the context of "mergeable".

1 a and b share a node: Cases (1),(2), and (4)

2 a and b do not share any node

(f(x) is a set of relevant nodes to x):

1) f(a) ∪ f(b) = f(a) or f(a) ∪ f(b) = f(b): Case (3)

2) f(a) ∩ f(b) = ∅ : Case (5).
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Essentially two edges are "nonmergeable" if those edges are overlapped in the topo-

logical ordering-layout, shown in Figure 3.4(a). Hence, edges (v0, vm) and (vn, vk) are

nonmergeable. We explain more formally by giving definitions. The term mergeable

is used to describe multiple paths that have the same endpoints are capable of being

merged into a single path in terms of computing the weights in such parallel paths.

Definition 3.3. Given GA = (V,E), for an edge (i, j) in E, (i, j) is bridge if there

are more than one of paths between i and j that is R+(i)−R(j) �= {i, j}. Let �G(E)

be the set of such bridge edges in GA. (i, j) and another edge (u, v) in �G(E) are

nonmergeable if the intersection of the relevant nodes set to (i, j) and the relevant

node sets to (x, y) is not empty and u < j or i < v is true for i → j, u → v then

(i, j), (u, v) are nonmergeable, otherwise (i, j) and (u, v) are mergeable.

To sum up, we say that edges (i, j) and (u, v) in the set of bridge edges �G(E)

are mergeable if (R+(i)−R(j)) ∩ (R(v)−R(u)) �= ∅ or R+(i)−R(j) is a proper

subset/superset of R+(v)−R(u), otherwise (i, j) and (u, v) are nonmergeable.

A path in GA is a sequence of nodes (V0, V1, .., Vk) such that (Vi, Vi+1) ∈ E for

0 ≤ i < k. Note that all the intermediate nodes between two endpoints in GA are

"split". The distance from Vi to Vj, denoted d(Vi, Vj), is the length of a longest

walk from Vi to Vj, instead of shortest path in a general term. Consider a set of

all possible paths between a pair of nodes (s, t), denoted by P = {P1, P2, .., Pm}. In

our algorithm, we are only interested in path Pi ∈ P that has "at most one" bridge

edge. Suppose a set Pst = {P1, P2, .., Pn} where a path Pi has only one bridge edge to

maximum. We then divide into the two sets BPst (a set of paths, having "one" bridge

edge between s and t) and LPst (a set of paths including a sequence of length-one
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edges between s and t that is "zero" bridge edges):

BPst = {Pi ∈ BPst| ∀e ∈ �GA(E), n(e) = 1}

LPst = (Vi, Vj) ∈ E in LPst, d(Vi, Vj) = 1.

In the set BPst, Pi is a sequence of nodes with the form of (Vm−d(s,Vm), . . . , Vm, Vm+θ,

. . . , Vm+θ+d(Vm+θ,t)) with length "d(s, Vm) + θ + d(Vm+θ, t)", where (Vm, Vm+θ) is a

bridge edge with the length θ and m is a node index of topological ordering of GA.

We can say that LPst is a set of the longest path between s and t. To see this,

consider the following graph.

Figure 3.5: An example graph.

We get the set of all paths to (i, j), P = {(i, k1, k2, k3, k4, k5, j), (i, k1, k3, k4, k5, j),

(i, k1, k2, k3, k5, j), (i, k1, k3, k5, j)}. We get Pij = BP ij ∪ LP ij:

BP ij = {(i, k1, k3, k4, k5, j), (i, k1, k2, k3, k5, j)}

LP ij = {(i, k1, k2, k3, k4, k5, j)}

As can be seen, path (i, k1, k3, k5, j) ∈ P is excluded since it has two bridge edges

(k1, k3) and (k3, k5). It is important to note that |LP ij| can be more than one de-

pending on the number of topological sort of the graph. It is discussed in Section.

The reason of having the two sets separately, we need BP to determine mergeable

paths while LP ij is index keys to relevant nodes for bridge edges. For example, a
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set of relevant nodes to (k1, k3) is a sequence of nodes starting from k1 to k3, which

is {k1, k2, k3}. Now the question is how paths in BP can be merged to compute

aggregated weights in a single reduction iteration? We divide into k − cuts of paths

in BP in that any path in a same cut is mergeable with each other. Suppose GA

connecting node s with node t and �GA(E) = (ui, ui+1), (vi, vi+1). We then have

BPst = {P1, P2}. Suppose P1 = (s, . . . , ui, ui+1, . . . t) and P2 = (s, . . . , vi, vi+1, . . . t).

In order to determine whether P1 and P2 are mergeable paths to join in a same group,

we need to check whether (ui, ui+1) and (vi, vi+1) are mergeable beforehand.

Definition 3.4. Given a probabilistic graph GA and a pair of nodes (s, t), suppose

{ei, ej} ∈ �GA(E). We get the set BPst of paths between s and t where |BPst| is 2

since |�GA(E)| is 2. Let BPst be {P1, P2} where P1 and P2 hold ei and ej, respectively.

P1 and P2 are mergeable paths if only if ei and ej are mergeable.

Paths Pi and Pj can be combined as one path and reduced by rules 1 and 2, if

Pi and Pj are mergeable. To see this, consider again the graph G in Figure 3.3 and

we want to compute ω(s, t), where the probabilities of the edges are follows: ω(s, i) :

a, ω(i, j) : b, ω(s, j) : c, ω(j, t) : d, and ω(s, t) : e. The set S of relevant nodes to (s, t)

is R(s) − R+(t) = {i, j, k}. By Definition 3.3, we get �G(E) = {c, e}, derived from

the fact that (s, i) is not bridge in that {s, i} = R+(s) −R(i). Similarly, it is easily

verified that (i, j) and (j, t) are not bridge as well. Conversely, (s, j) and (s, t) are

bridge since {s, j} �= R+(s)−R(j) = {s, i, j} and {s, t} �= R+(s)−R(t) = {s, i, j, t}.

We also know that (s, j) and (s, t) are mergeable since R+(s)−R(j) is a strict subset

of R+(s) − R(t) such that {s, i, j} ⊂ {s, i, j, t}. Thus, G can be reduced by rules

1 and 2, in that j is eliminated by chain and choice rules after i is done first. The
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next step is how to compute aggregated weights of multiple paths when having such

bridge edges. Here we introduce an additional term "shared".

Definition 3.5. An edge (vi, vj) is shared if d(vi, vj) = 1 and (vi, vj) is shared among

paths in multiple times.

Consider the probabilistic graph GA in Figure 3.6(a) and the probabilities of the

edges are follows: ω(i, k1) : a, ω(k1, k2) : b, ω(i, k2) : c, ω(k2, j) : d, and ω(k1, j) : e.

The set S of relevant intermediate nodes to (i, j) is R(i) − R+(j) = {k1, k2}. We

compute ω(i, j) by eliminating nodes in S. By Definition 3.3, we get �G(E) = {c, e}

and �G(E) = {a, b, d} such that �G(E) ∪ �G(E) = GA(E). Also, we deduce that c

and e are nonmergeable. Since k1, k2 ∈ S are split nodes, these two nodes should

be eliminated together. There are three paths to (i, j): (i, k1, k2, j), (i, k1, j), and

(i, k2, j). It is verified that BP ij = {P1, P2}:

1. P1 : (i, k2, j) = (i, k2), (k1, j)

2. P2 : (i, k1, j) = (i, k1), (k2, j)

We first decide how to merge these two different parallel paths. Consider the following

2-cuts of the longest path of (i, j) and duplicated paths in Figure 3.6(b) and (c). We

define m-cuts as disjoint sets of a subset of BP , where m is the number of partitions

in a set of mergeable paths, which satisfies the following conditions:

i) 1 < k ≤ n, where n is the number of unique bridge paths between the endpoints.

ii) A ∈ P and B ∈ P are disjoint if and only if A and B are "nonmergeable".

iii) ∀Pi ∈ K, where K is a subset of BP , Pi must be mergeable with every Pj ∈ K.
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(a) A graph GA (b) 2-cuts of GA

(c) Two parallel paths based on 2-cuts

Figure 3.6: A graph and its cuts.

Going back to the problem of computing ω(s, t), by Definition 3.5, edges (i, k1), (k1, k2),

and (k2, j) appear more than once in two parallel paths, computing the aggregated

weights is (a′b′ ⊕ c)d⊕ a′(b′d′ ⊕ e).

At this point, we have two inquiries to complete our proposed approach:

1. when exactly edge e is "shared" and

2. how to compute x′ for an edge associated weight with x.

As for question 1, essentially, edge (vi, vj) in LP is "shared" if (vi, vj) appears more

than once in BP . To see this, consider the following graph Gc in Figure 3.7. The

probabilities of the edges are follows: ω(i, k1) : a, ω(k1, k2) : b, ω(i, k3) : d, ω(k2, k3) :
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c, ω(k1, k4) : e, ω(k2, k5) : f, ω(k3, k4) : g, ω(k4, k5) : h, ω(k4, k6) : t, ω(k5, k6) :

u, ω(k5, j) : w, and ω(k6, j) : v.

Figure 3.7: A probabilistic graph GC .

Then the set S of intermediate nodes from (i, j) in Gc is R(i)−R+(j) = {k1, k2, k3,

k4, k5, k6}. We compute ω(i, j) by eliminating nodes in S. By Definition 3.3, we get

�Gc(Ec) = {d, e, f, t, w} and �Gc(Ec) = {a, b, c, g, h, u, v} such that �Gc(Ec)∪�Gc(Ec) =

Ec. By Definition 3.2, the fact that all the nodes in S are split, we eliminate them

all together. There are three steps to merge the parallel paths between i and j:

1. Define the sets BP ij and LP ij in Gc.

2. Partition BP ij into disjoints subset of mergeable paths, which generates {K1},

{K2},.., {Km}, where m is the number of subset of nonmergeable paths:m-cuts

3. Compute ω(i, j) while eliminating nodes in S by rules 1 and 2 for m times.

We get BP ij = {P1, P2, P3, P4, P5} from �Gc(E), that is;

1. P1 : (i, k3, k4, k5, k6, j) = (i, k3), (k3, k4), (k4, k5), (k5, k6), (k6, j)

2. P2 : (i, k1, k4, k5, k6, j) = (i, k1), (k1, k4), (k4, k5), (k5, k6), (k6, j)

3. P3 : (i, k1, , k2, k5, k6, j) = (i, k1), (k1, k2), (k2, k5), (k5, k6), (k6, j)
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4. P4 : (i, k1, k2, k3, k4, k6, j) = (i, k1), (k1, k2), (k2, k3), (k3, k4), (k4, k6), (k6, j)

5. P5 : (i, k1, k2, k3, k4, k5, j) = (i, k1), (k1, k2), (k2, k3), (k3, k4), (k4, k5), (k5, j)

along with LP ij = (i, k1, k2, k3, k4, k5, k6, j), described in Figure 3.8.

Figure 3.8: P with computed weights.

Now, we partition P1 ∼ P5 into m-cuts to compute ω(i, j). Note that if edge

(i, j) ∈ A and edge (u, v) ∈ B are mergeable then A and B are mergeable. By

Definition 3.5, we get four possible cases of partitioning BP ij into 3-cuts :
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1) {P1, P4}, {P3}, {P2, P5}

2) {P1}, {P2, P4}, {P3, P5}

3) {P1, P4}, {P2}, {P3}

4) {P1, P5}, {P2, P4}, {P3}.

(a) Case 1: {P1,P4}, {P3}, {P2,P5} (b) Case 2: {P1}, {P2,P4}, {P3,P5}

(c) Case 3: {P1,P4}, {P2}, {P3,P5} (d) Case 4: {P1,P5}, {P2,P4}, {P3}

Figure 3.9: Four different cases of partition based on the 3-cuts.

The question now is which case is the correct way of partitioning into mergeable

path sets. Beforehand, we need to find the effectiveness of different partitions for com-

puting the aggregated weights. As mentioned in Chapter 1, disjunction is associative;
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that is,

A⊕ (B ⊕ C) = (A⊕ B)⊕ C

The operations can be performed in any order. Therefore, in terms of associativity,

we associate different paths in any order, and still get the same result in each case.

As long as we group the paths conforming to the notion of mergeable paths, the end

result will always be unique. We choose case 1 randomly as all different cases yield

an equal value.

In graph Gc, (i, k1), (k1, k2), (k2, k3), (k3, k4), (k4, k5), (k5, k6), and (k6, j) in LP ij

are all shared edges. Thus, computing the reachability probability between i and j,

ω(i, j), is (a′b′c′ ⊕ d)g′(h′u′ ⊕ t)v′ ⊕ a′(b′c′g′ ⊕ e)h′(h′v′ ⊕ w)⊕ a′b′(c′g′h′ ⊕ f)u′v′.

Figure 3.10: The final weights between two endpoints of Gc.

As for simultaneous nodes reduction using the merge rule, we can only handle

the case where the topological sort of a given graph has a unique output. The

problem arises when the possible list of ordered nodes are not unique. To see

this, consider the graph in Figure 3.11. The topological ordering in this graph is
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Figure 3.11: A graph which does not yield a unique topological sort.

{i}, {k11, . . . , k1n}, {k21, . . . , k2m}, and {j}, which includes non-singleton sets {k11, k12
. . . , k1n} and {k21, k22, . . . , k2m}. Let n = 2 and m = 2. The set S of relevant inter-

mediate nodes to the pair (i, j) is R(i) − R+(j) = {k11, k12, k21, k22}. By Definition

3.2, all the relevant intermediate nodes in S are split nodes. We need an additional

rule to manage a special case where all relevant intermediate nodes are "split" and it

does not have a unique ordering in such nodes. To handle such cases, we introduce

the fifth rule, "mesh" based on the left-hand side of topological ordering of the nodes

in a given graph. The proposed solution approach eliminates the nodes in a same set

all together at once. We start by eliminating the nodes in the very left of the ordered

list. While maintaining the newly updated weights of incident edges to such nodes,

we remove multiple nodes in the following set, one by one, until the set of interme-

diate nodes is empty. The following graph to illustrates this rule. The topological

ordering of this graph includes {i}, {k11, k12}, {k21, k22}, {k31, k32}, {k41, k42}, and {j}.

We eliminate the nodes that appear as same order from left. This yields the following
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Figure 3.12: An example of "Mesh" graph.

order to eliminate the nodes:

k11, k12 ⇒ k21, k22 ⇒ k31, k32 ⇒ k41, k42

To compute the weight ω(i, j), we need to consider all the relevant paths involved.

Here, we have 24 = 16 such paths relevant to the pair (i, j). Considering this graph,

we note that it can be divided into 2 − cuts if we eliminate the nodes from the left.

This yields the final weight follows:

{[(a′c1 ⊕ b′d1)′e1 ⊕ (a′c2 ⊕ b′d2)′f1]′g1 ⊕ [(a′c1 ⊕ b′d1)′e2 ⊕ (a′c2 ⊕ b′d2)′f2]′h1}t

⊕ {[(a′c1 ⊕ b′d1)′e1 ⊕ a′c2 ⊕ b′d2)′f1]′g2 ⊕ [(a′c1 ⊕ b′d1)′e2 ⊕ (a′c2 ⊕ b′d2)′f2]′h2}u

We can generalize the mesh rule as follows. In the graph of Figure 3.14(a),

k1, k2, k3, and k4 are split nodes, these nodes should be eliminated simultaneously.

The topological ordering of nodes in this graph includes {i}, {k1, k2}, {k3, k4}, and

{j}, and the corresponding order for node reduction is:

k1, k2 ⇒ k3, k4

By Definition 3.3, since edges (i, k1) and (i, k2) are shared, we represent them as a′

and b′, shown in Figure 3.14(b). The proposed rule yields a desired unique semantics

for computing reachability queries in case where a graph has multiple topological sort
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Figure 3.13: Reduction steps of "Mesh" graph.

and simultaneous nodes reduction are needed. We also defined how to compute x′

for an edge weight x, when x is to be shared among multiple parallel paths, which

means "shared". By Definition 3.5, an edge (vi, vj) in graph G is shared if (vi, vj)

appears at least in two paths. When an edge is shared, its weight is divided "equally"

among all the paths between the same endpoints. Hence, an edge e with weight x

can be divided into two parallel edges of equal weights x′, where x = x′ ⊕ x′. When

the number of parallel edges is 2, x′ can be easily derived as 1 − √
1− x. How to

compute x′, if the number of parallel edges is any integer n? To answer this, we use
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(a) An input (mesh) graph graph (b) 2-cuts of the input graph

Figure 3.14: A graph and its cuts.

the inclusion–exclusion principle that relates the sizes of two sets and their union.

Let A1, A2, . . . , An be a set of events. For n = 2,

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2)

For n = 3, we have that:

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3)

− P(A1 ∩ A2)− P(A1 ∩ A3)− P(A2 ∩ A3)

+ P(A1 ∩ A2 ∩ A3)

and in general, we have the following equation.

P

( n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩ Aj)

+
∑
i<j<k

P(Ai ∩ Aj ∩ Ak)− · · · + (−1)n−1
P

( n⋂
i=1

Ai

)
,
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In our case of dealing with a disjunction function ⊕, the inclusion–exclusion principle

would yield:

n⊕
i=1

xi =
n∑

i=1

xi −
∑
i<j

xixj +
∑
i<j<k

xixjxk − · · · + (−1)n−1

n∏
i=1

xi,

Going back to the problem of finding x′, we consider the last equation above with all

xi is being equal to x′. This yields:

n⊕
i=1

xi = 1− (1− x)n,

from which we get x′ = 1 − n
√
1− x, that is obtained by considering the comple-

ment probability of all links being broken. To illustrate this, let ω(e) = 0.3 be

the probability for edge e. Then σ1 is 0.3 without duplicating e. We want to

get the value for σ4 such that σ4 = σ1 ⊕ σ1 ⊕ σ1 ⊕ σ1. We get σ2 = σ1 ⊕ σ1 =

0.3 + 0.3 − 0.3 × 0.3 = 0.51, σ3 = σ2 ⊕ σ1 = 0.51 + 0.3 − 0.51 × 0.3 = 0.667, and

lastly σ4 = σ3 ⊕ σ1 = 0.667 + 0.3− 0.667× 0.3 = 0.766. If we apply the general form

σn = 1− (1−X)n, then we get σ2 = 1− (1−0.3)2 = 0.51, σ3 = 1− (1−0.3)3 = 0.667,

and lastly σ4 = 1− (1− 0.3)4 = 0.766, which is the same value we obtained directly

above. Note that n is the number of cuts when partitioning parallel paths between

the same endpoints in a given graph. When an edge e with probability x is shared, we

first compute σn for σ1 = x, and then divide σn by the number n of different paths.

The result is denoted by x′, with x′ = σn/n.
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3.6 Illustrative examples

To illustrate how the reduction is done by the merge rule where a graph has a unique

topological sort, consider the following example.

Example Consider a probabilistic graph G = (V,E) of Figure 3.15(a), where the

probabilities of the edges are follows: ω(i, k1) : 0.3, ω(k1, k2) : 0.6, ω(i, k2) : 0.7, ω(k2,

k3) : 0.8, ω(k1, k3) : 0.5, ω(k2, k4) : 0.2, ω(k3, k4) : 0.1, ω(k2, j) : 0.8, and ω(k4, j) :

0.4, and We want to compute the weight between nodes i and j. Then the set S of rel-

evant nodes of (i, j) is R(i)−R+(j) = {k1, k2, k3, k4}. We compute ω(i, j) by eliminat-

ing nodes in S. By Definition 3.3, we get �G(E) = {(i, k2) : 0.7, (k1, k3) : 0.5, (k2, k4) :

0.2, (k2, j) : 0.8} and �G(E) = {(i, k1) : 0.3, (k1, k2) : 0.6, (k2, k3) : 0.8, (k3, k4) :

0.1, (k4, j) : 0.4}. By Definition 3.2, all the nodes in S are "split" nodes, such nodes

should be eliminated together. First, we get the set of all paths to (i, j): P =

{(i, k1, k2, k3, k4, j), (i, k1, k3, k4, j), (i, k1, k2, j), (i, k2, k3, k4, j), (i, k2, k4, j), (i, k2, j)}.

We get Pij = BP ij ∪ LP ij:

BP ij = {(i, k1, k3, k4, j), (i, k1, k2, j), (i, k2, k3, k4, j)}

LP ij = {(i, k1, k2, k3, k4, j)}

We then partition four different parallel paths in BP ij into m-cuts.

1. P1 : (i, k2, k3, k4, j)

2. P2 : (i, k1, k3, k4, j)

3. P3 : (i, k1, k2, k4, j)

4. P4 : (i, k1, k2, j)
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Since P1, P3, and P4 can be merged together but not with P2, by Definition 3.3, we

have 2-cuts of BP ij, which are {P1, P3, P4} and {P2}. Note that m=2 is the number

of different paths between i and j. By Definition 3.5, the edges (i, k1), (k1, k2), (k2, k3),

(k3, k4), and (k4, j) are shared since they appear in at least two paths.

Now, we perform the reduction by eliminating all the nodes in S while computing

and maintaining the weights by considering the edges we combined, that is: (0.3′ ×

0.6′⊕ 0.7)(0.8⊕ (0.2⊕ 0.8′× 0.1′)0.4′)⊕ 0.3′(0.6′× 0.8′⊕ 0.5)0.1′× 0.4′ = 0.59866252,

with x′ = σ2/2. This manual calculation is used for measuring the correctness of the

implementation for our reduction algorithm, which is carried in Chapter 5.

(a) A probabilistic graph G (b) The 2-cuts of G

Figure 3.15: An example graph.

The reduction algorithm we proposed considers an order in which nodes are

eliminated, that are based on the five patterns and its corresponding reduction
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rules, which we called, chain, choice, cycle, merge, and mesh rules. The proposed

techniques extend another way of correct semantics in the existing enumeration of

paths. As mentioned, the problem of the way of enumeration of paths that the

author proposes [27] in terms of node-based reduction has issues with regard to

overcomputation. To see this, consider a probabilistic graph Gp of Figure 3.16.

Note that Gp is taken from the same paper to compare the difference from our

algorithm. Given Gp = (V,E), where the probabilities of the edges are follows:

ω(A,B) : 0.8, ω(A,C) : 0.2, ω(C,B) : 0.9, ω(B,D) : 0.9, ω(D,C) : 0.9, ω(C,E) :

0.1, ω(D,E) : 0.05, ω(D,F ) : 0.05, ω(E,F ) : 0.8, and ω(F,G) : 0.7. Let A and G be

the start and end nodes and we want to determine the probability of reaching from A

to G, ω(A,G). Since the result is irrelevant from the reduction order using max mode

for disjunction function, we choose nodes randomly. First, B and E are eliminated and

then C is done after. Elimination of D causes repetition of D three times conforming

to rule 3, and the probability added to the edge will be (0.9×0.9×0.9)3. Further reduc-

tion reduces Gp to (A,G) with one edge, so that the values added to the edge is the end

result, which is ωmax(A,G) = 0.8×0.9(0.9×0.9×0.9)3×0.9×0.1×0.8×0.7 = 0.0141.

Figure 3.16: A probabilistic graph Gp taken from [27].

44



We want to correct the way of computing the weights in paths while avoiding

unnecessary repeated computations. The state elimination process results in such

redundant computations. For example, ω(B,D) = 0.9 is calculated several times

during reduction, which is inadequate for reducing nodes in our context of uncer-

tain graphs. Noe that if multiple nodes are on a same cycle, we consider them

as indistinguishable nodes, and such nodes are reduced and replaced by a single

"solid" node the result. In this case, B,C,D are combined as a C which yields

ωmax(A,G) = 0.8(0.9 × 0.9 × 0.9)3 × 0.1 × 0.8 × 0.7 = 0.01736. When ind mode is

used as disjunction function, we get different end results depending on the order in

which nodes are reduced. Figure 3.17 describes the reduced graph of Gp by treating

nodes in the same SCC indistinguishable as the combined node C. There are 6(= 3!)

cases of different order in node reduction, shown in Table 1.

Table 3.1: 6 cases of ωind(AG) varying the order of node reduction.

Case Node order Algebraic expression End result

1 C-E-F ((0.84× 0.7293 × 0.145× 0.8)⊕ (0.84× 0.7293 × 0.05× 0.8))0.7 0.03739

2 F-E-C 0.84× 0.7293 × (0.145× 0.8× 0.7⊕ 0.05× 0.7) 0.03689

3 C-F-E
(0.84× 0.7293 × 0.145× 0.8× 0.7)⊕ (0.84× 0.7293 × 0.0.5× 0.7) 0.03752

4 F-C-E

5 E-C-F
0.84× 0.7293 × (0.145× 0.8⊕ 0.05)0.7 0.03649

6 E-F-C

As can be seen in Table 1, < E,C, F > and < E,F,C > cases result in the mini-

mal weight, 0.03649, which is the output of the least common algebraic expressions.

Hence, E should be removed first, which is our proposed reduction order, that is;
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(a) Reduction with SCCs

(b) Reduced graph

Figure 3.17: State elimination process based on ind mode

– The set S of relevant nodes to (A,G) is {B,C,D,E, F}

– Nodes B,C, and D are combined as C and removed from S; then S = {C,E, F}

– E is chain, C and F are choice, therefore E should be eliminated first.

– After elimination of E, both C and F become chain.

– The order of reduction between C and F does not affect the result, which is

0.03649 in both cases.

3.7 Methodology

In this section, we describe our methodology for the reduction algorithm in details.

The steps of the reduction algorithms are as below.
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Steps of reduction algorithms

– Inputs: < G, (vs, vf ),m >, where a probabilistic digraph G, vs ∈ V is a source

node, vf ∈ V is a destination node, and m is a disjunction type from {max, ind}

– Output: Probability of reaching to vf from vs: ω(vi, vj)

1. Find the “relevant” subgraph G′ = (V ′, E): all paths (vs, vf ) in G.

2. Find the cycles in G′ and reduce them into solid nodes.

- Identify the list L of all cycles in G′ and sort L in order by their lengths.

L = [C1|Rest]

- Until L is empty, reduce C1 into a solid node and remove C1 from L.

⇒ It generates G′′ which is acyclic.

3. Eliminate all the relevant nodes in G′′ but vs and vf , using the proposed reduc-

tion rules/patterns, which returns ω(i, j)

As for the disjunction function, we have two user-defined modes: max and ind. Any

suitable disjunction functions can be easily updated and utilized based on the users’

demand. A single process allowing user to attempt to use different disjunction func-

tions makes our reduction technique important.

3.7.1 Phase 1: Finding the Relevant Subgraph

If the connectivity of (vs, vf ) is true, Phase 1 finds the relevant subgraph of G, which

is an induced subgraph G′ = (V ′, E ′), where V ′ = S ∪ {vs, vf} ⊆ V and S = R(vs)−

R+(vf ). Generating the relevant subgraph G′ can be simply done by any graph
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traversal techniques such as Depth First Search or Breadth First Search when G

has no cycles. It, however, is not trivial when G is cyclic since there can be an

exponential number of paths connecting the source node with each reachable node.

The main goal is relevant paths should be kept with non-duplicated cycles in each

path for the reduction algorithm. We use graph reachability and Iterative Deepening

Depth First Search (IDDFS) algorithms [13] to handle cyclic path detection.

3.7.2 Phase 2: Reducing Cycles

First, it detects cycles in the relevant subgraph G′. A cycle in a graph is a path

of the form (i1, i2, .., i1) with the first and last nodes being identical. For the cycle

detection, we identify a set of nodes visited more than once in a path. By traversing

the sequence of path starting i1 and using a data structure to store these nodes, we

test whether each subsequent node has already been stored. Hence, if the number

of occurrence of node i1 is more than 2 in the path developed from IDDFS we then

determine whether such a path W = (i1, .., i1) is cyclic. In that case, we call every

node in W as a cyclic node and each cyclic path is reduced to a self-loop edge for

a representative "solid" node, using our proposed cycle reduction. Now we reduce

cycles in a proper way considering the associated probabilities in every cyclic path as

well as overcomputation. Second, the list of cyclic paths are sorted in ascending order

of their lengths. We then combine each cycle by a representative "solid" node one by

one in left-hand-side of the cycle sets. Let L =< h[C1] : C1, h[C2] : C2, .., h[Cn] : Cn >

be the list of cycles, where h[Ci] is an initial node of Ci which is the primary key in

this list and n is the number of all cyclic paths in G′. Ci is the list of cycles with the
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form < Ci1, Ci2, ... > that is for all Cik, Cik+1 ∈ Ci, h[Cik] = h[Cik+1] for Cik < Cik+1.

Reducing cycles are somewhat different from node reduction since it is edge-based

reduction. To be more specific, reducing a single cyclic path may cause elimination

of more than one nodes if the length of the cyclic path is more than 3 where the cycle

includes only one node except the initial and end nodes: (i1, i2, i1). One more thing

that makes the cycle reduction process tricky is L needs to be updated and sorted

by the length at each iteration recursively until L is empty. Taking into account the

proposed technique, reducing cycles is illustrated as follows.

1. Identify the list L of all cycles of form h[C1] : C1 in the subgraph G′.

2. Sort L in ascending order by their lengths.

3. While L is not empty do:

Case 1: If Ci is involved in nested cyclic paths

While Ci is not empty do:

(a) Reduce Ci1 into a solid node h[C1] and update. ω(Ci, Ci)

(b) Remove Ci1 from Ci.

(c) Sort L in ascending order of the length.

Case 2: Otherwise

(a) Reduce Ci into a solid node h[C1] and update. ω(Ci, Ci)

(b) Remove C1 from L.

4. It returns the reduced acyclic graph G′′.
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The fuse step is only initiated when G′ is cyclic. Then reducing cycles generates

the reduced graph G′′ which becomes an acyclic graph. During the cycle reduction

process, cyclic nodes are eliminated by rules 1, 2, and 3 depending on the path

patterns.

To see this, consider the graph in Figure 3.18(a). The iterations of reducing the

cycles in G′ are as follows:

1. Fusing (i,k3, i) as a combined node i generates a self-loop with the weight af

– L is updated: L =< i : (i, k2, i), (i, k1, k2, i) >

2. Fusing (i,k2, i) with i generates another self-loop with the weight ed

– L is updated: L =< i : (i, k1, i) >

3. Fusing (i,k1, i) with i generates the final self-loop with the weight bc

– L is empty

4. The final weight for the self-loop at node i is af ⊕ ed⊕ bc and then the fuse

step is terminated.

Computing the aggregated weights we get through the fuse step is af ⊕ ed⊕ bc.

3.7.3 Phase 3: Nodes Reduction

Now, we repeatedly apply to get one edge between vs and vf in G′′. The fact G′′

is acyclic, the cycle rule is not applied in this phase. First rule 1 chain and rule

2 choice are applied to eliminate "sequence" nodes in S. If S is not empty, for the
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(a) An original probabilistic graph (b) Its reduced graph

Figure 3.18: An example probabilistic cyclic graph.

simultaneous nodes reduction, rule 4 merge and rule 5 mesh are used depending

on the uniqueness of topological sort of nodes in S. If there is a unique topological

sort, rule 4 is used. Otherwise rule 5 is used to eliminate nodes all together. These

rules are applied continuously to get the reachability probability of vs and vf while

aggregating the weights with considered disjunction function.
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Chapter 4

Implementation

Our algorithm returns ω(vs, vf ) which is the reachability probability between nodes

vs and vf in a given probabilistic graph G. The pseudocode of proposed reduction

algorithm is described in Algorithm 1.

Our algorithm is based on a generalization of the reduction algorithm proposed

by Floyd-Warshall [8], which considers only from the set {1, 2, ..., k} as intermediate

nodes along the path for finding the shortest path from a start node to an end node

in a weighted digraph. The Floyd–Warshall algorithm compares all possible paths

through the graph between each pair of nodes. It is able to do this with O|V |3

Figure 4.1: Floyd-Warshall algorithm.
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Algorithm 1 Reduction algorithm
Inputs: A digraph G = (V,E,w), (vs, vf ), and disjunction mode Fd

Output: ω(vs, vf )

1: Phase 1: G′ ← G

2: if Connect(vs, vf ) is True then

3: Find the subgraph G′ of G that is relevant to (vs, vf )

4: Find all paths from vs to vf in G′

5: else:

6: Return ω(vs, vf ) = 0.0

7: Phase 2: G′′ ← G′

8: Cycle list L = [ ]

9: for path in P

10: if cycles exist in path then reduce cycles

11: for c in sorted(L) until sorted(L) is empty

12: Compute ω(c1, c1) using the proposed rules

13: Phase 3

14: S = V ′′ − {vs, vf}

15: while S �= ∅

16: for node k in S

17: do reduction ω(i, j) ← path(i, k, j)

18: S = S - {k}
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comparisons in a graph, in worst case where there may be up to |V |2 edges in the

graph, and every combination of edges is tested. The shortest possible path from i

to j is shown in Figure 4.1.

4.1 Phase 1: Finding the Relevant Subgraph

To check whether vs and vf are connected, we find the set R(vs) of the relevant nodes

from vs and see if vf is present in R(vs). If not, then the process is terminated:

ω(vs, vf ) = 0.0. This is done through a module called Reachable(graph, node), which

takes a graph G and a node vs as inputs and returns the list of all nodes in G that

are reachable from vs. The input graph is represented as a Dictionary where each

node in the graph is a key vk in the Dictionary, such that (vk, x) is in an edge in

G, and the value associated with vk is a list of the nodes. The use of Dictionary,

namely, hash indexing as a data structure for our reduction algorithm is to speed up

the search process. It allows a quick search of edges in the graph: we can search an

edge in O(1) and enumeration of the reachable nodes in V from node vi is O(|V |).

The advantage of a Dictionary is that it does not scan through its contents to find

values. The key is used to find the desired node rather than having to examine every

single node. Hence, this hash table lookup allows us to access a value very quickly.

The nodes in the returned list may appear in any order, but should not contain any

duplicates. Once we get R(vs), we eliminate nodes in R(vs) that are not reachable

to vf . The module works by marking nodes that can be reached from start node vs.

Initially, only vs is marked. Then, the algorithm performs a series of visits through

all the nodes in G. If it finds an unmarked node that can be reached from a marked
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node, it marks that node. This process stops when an entire pass executes without

marking a single unvisited node. At that point, the marked nodes are precisely those

that can be reached from vs. After finding the set R(vs) of relevant nodes of vs,

for every node v of R(vs), the module checks v is reachable to vf . The set V ′ of

relevant nodes to (vs, vf ) includes nodes that are on any path from vs to vf that

is V ′ = {v ∈ V ′|v → vf , for v ∈ R(vs)}. Then it finds the relevant subgraph

G′ = (V ′, E ′) of G and defines the set S of relevant intermediate nodes which is

S = R(vs) −R+(vf ). We call reachable(graph, vf) again to get R(vf ). Then finally

we get S which induces the subgraph G′ = (V ′, E ′) where V ′ = {vs, vf} ∪ S and

E ′ = V ′ × V ′.

In our case for finding the relevant subgraph through phases 1, the fact that we are

using Python dictionary, hashing, enumerating the reachable nodes requires O(|V |).

To get the reachable node from vs, R(vs), and check all nodes in R(vs) to vf , it

requires O(|V |+ n|V |) where n is the number of nodes in R(vs), which is O(|V |).

4.2 Phase 2: Reducing Cycles

A simplistic DFS is not suitable for our reduction algorithm, since DFS, literally going

depth-first, is blocked if it has a cycle. It results in such cycle is infinitely a trap.

In order to get the desired output of infinite paths to each node in cyclic graphs, a

Breadth-First Search (BFS) can be used. This is because being Breadth-first means

a cycle does not stop searching non-visited nodes to reach other paths. The problem

with BFS is that it consumes much more memory, since it keeps more lists of nodes

during the running time. Here we use Iterative Deepening DFS (IDDFS) to solve
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this issue. A depth-limited search is run repeatedly by increasing the depth-limit on

each iteration until it reaches the defined level of depth. This search is equivalent to

BFS, but uses much less memory. On each iteration, it visits the nodes in the graph

in the same order as DFS, but the accumulated order in which nodes are first visited

is effectively breadth-first.

The module works that, given a graph G′ from Reachable as an input, we find all

possible paths between vs and vf using IDDFS. To begin with, we determine whether

G′ has cycles. Detecting cycles can be done by performing a DFS of the entire graph.

That is to say, if a back edge is found during any traversal, the graph contains a

cycle. Conversely, if all nodes have been visited and no back edge has been found,

the graph is acyclic. The problem, we already mentioned in the previous section, is

to find all the cycles in the graph while computing and maintaining the weights on

edges through traversal. IDDFS, handling a cyclic graph as the way we want it to

be, works by looking for the best search depth d, thus starting with depth limit 0

and make BFS and if the search failed it increases the depth limit by 1 and tries BFS

again with depth 1 and so on. Initially, first d = 0 and it is increased by 1 until a

depth d is reached where the goal is found.

Reducing cycles has two functions: detectCycles and fuseCycles. Given the set

P of all relevant paths from (vs, vf ) in subgraph G′ as inputs, detectCycles identifies

all elementary cycles if any cyclic paths exist in P , generates the reduced graph

G′′ by eliminating cyclic nodes while combining them as a single solid node and

maintaining the aggregated weights. If G′ is acyclic, it returns G′′ = G′. It works

by counting node in path p in P . If node vi ∈ p appears more than once then

p[p.index(vi, 1):p.index(vi, 2)] is sliced from p and appended to cycle list L. Once it

56



loops through for all paths in P then it returns sortedL which is sorted a set of cycles

L in ascending order of their lengths. fuseCycles takes the sortedL as input and

fuses cycle c in sortedL conforming to the node reduction rules. When fusing nodes

in each cycle c path from sortedL, we define a representative node to fuse the cycle

as a combined node. A combined node is a head of c if c does not include start node

vs and end node vf . Otherwise combined node has to be chosen among vs and vf .

If both nodes are contained in c then end node vf takes priority over start node vs.

Finally it returns a reduced acyclic graph G′′.

4.3 Phase 3: Nodes Reduction

Module Reduction takes G′′ and S as inputs, and returns the probability of reacha-

bility from vs to vf , which is ω(vs, vf ) while performing the reduction rules.

Reduction can be classified into four major functions:

1) getBridgeEdges which defines a set of "bridge" and "shared" edges.

2) getMergeablePaths which defines mergeable edges and paths.

3) findPaths which finds paths between vs and vf that having at most one bridge

edge.

4) recursiveReduction which applies reduction rules to all the relevant interme-

diate nodes in S.

From the previous phases, we have the reduced subgraph G′′ and the set S of inter-

mediate nodes from (vs, vf ). The function getBridgeEdges(edge, graph, dictionary)
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and defineMergeablePaths(edge, graph, dictionary) take G′′ = (V ′′, E ′′) as input and

return the number of cuts and the list of mergeable paths P between vs and vs based

on the notion of mergeable using topological sort. findPaths(paths) takes P as input

and returns two sets BPst and LPst. The final step recursiveReduction is done by

taking BPst and LPst as inputs. It has an inside-function getSubstringThree(paths)

which takes path p as input and returns a length-three substring of p, that is, every

substring is form of (i, k, j). We reduce k by applying the proposed reduction rules

recursively until only one edge remains. Then we get the final reachability probability

of reaching vf from vs as ω(vs, vf ).

4.4 Complexity Analysis

Time complexity is a function that describes time performance an algorithm takes

with regard to the input size to the algorithm. Time can be considered as the number

of times for executed inner loops, or some other natural unit regarding real time

process. The fact that many parameters may affect the time performance such as the

use of different programming languages, computer hardware specifications, or other

related factors, we differentiate our analysis from wall-clock time, which considers

only execution time.

In the first phase of getting the relevant subgraph to (vs, vf ) in a graph G, first

we enumerate the reachable nodes from vs, which is O|V |. We then should eliminate

nodes that are not reachable to vf which is O(|V |)2 in worst case. Hence the com-

plexity of phase 1 is |V |+ |V − 1| × |V | for getting the set of relevant nodes and |V |2

for checking the contributing nodes in R(vs) to vf , which is O(|V |2).
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In the second phase of cycle reduction in G′, the reduced graph G′′ is generated

through IDDFS. The space complexity of IDDFS is O(bd), where b is the branching

factor which is the number of children at each node and d is the depth of shortest goal.

In the worst case that goal will be in the shortest level in the search tree resulting in

generating all tree nodes which are O(bd), therefore the time complexity of IDDFS

works out to be: O(bd). Optimal d can be considered based on the size of strongly

connected components and the number of nodes in G′. This can be a depth-limited

version of depth-first search which is run repeatedly with increasing depth limits

until the goal is found within d. As for cycles reduction, in the worst case scenario,

identifying and fusing cycles takes O(n) where n is the number of relevant paths that

are found through IDDFS. After fusing cycles, we call recursive function to eliminate

intermediate nodes between start and end nodes one by one. This recurrence relation

is t(n) = t(n− 1) + C, which means the complexity is O(V 2) [22].

As for the nodes reduction phase in G′′ by nodes reduction rules, the worst-case

scenario is O(|V |2×|V |!). This is because finding all possible paths is a hard problem,

since there are exponential number of simple paths. Suppose a digraph G = (V,E).

Then the simple paths in G would be V !, and for each of them our algorithm does at

least |V |2 computational steps for each node adjacent to the last one in the path, it

does a linear scan over the linked list of previously visited nodes. After counting all

the intermediate stages of the search, the worst-case complexity is O(|V |2 × |V |!).
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Chapter 5

Experimental Studies

In this chapter, we describe the implementation of our algorithm on datasets and eval-

uate its performance. We then analyze the scalability of our algorithm by conducting

numerous experiments using various graphs with different sizes and structures of the

original datasets.

5.1 Datasets

The experimental evaluation is twofold: "correctness" of our implementation for the

proposed reduction algorithm and its performance for large graphs in terms of "scal-

ability". In the first hand, we generated our own graph examples from literature

reviews: 21 graphs, shown in 5.1. This is needed to determine whether our imple-

mentation for the reduction algorithm yields correct results. We compared these

output results with manually calculated results using Excel. If the program arrives

at the same results as the manual calculation, our confidence in it is strengthened.

In the example of probabilistic graph G in Figure 3.15, the correct weight of ω(i, j)
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Figure 5.1: Examples of Input Graphs.

is 0.59866252. To see the correctness of our implementation, we ran the program and

compared the results with the manual calculation, which is 0.59866252. As can be

seen in Figure 5.2, because the results match, we have an increased confidence in the

correctness of our program.

In order to evaluate the scalability of the proposed reduction algorithm, the real-

world datasets are used: Arxiv HEP-TH1 (High Energy Physics THeory) citation

graph from the e-print arXiv which contains all the citations within a dataset of

27,770 papers with 352,807 edges, shown in Table 5.1. This citation graph is a directed

Table 5.1: HEP-PH citation graph data statistics.

Nodes (V) Edges (E) V in largest SCC E in largest SCC Longest shortest path

27,770 352,807 7,464 116,268 13

1https://snap.stanford.edu/data/cit-HepTh.html
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Figure 5.2: Output result of ω(i, j) in the probabilistic graph of Figure 3.15.

graph, where nodes represent papers, and edges represent citation relationships, that

is, if a paper i cites paper j, the graph contains a directed edge from i to j. It covers

papers in the period from January 1993 to April 2003, which represents essentially

the complete history of its HEP-PH section.

The HEP-PH dataset is composed of two files:

1. cit-HepTh: Paper citation network of Arxiv HEP-TH category
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2. cit-HepTh-dates: Time of nodes (paper submission time to Arxiv)

The first dataset contains the citation relationship where each line contains two dif-

ferent user identifiers, namely, FromNodeId and ToNodeId with SQL standard integer

types. The second dataset contains paper submission dates with scientific paper iden-

tifier as a primary key. The samples of these datasets are provided in Table 5.2 and

Table 5.3, respectively.

Since the provided data is large, the experiments are performed using partial sets of

the original data with several times to analyze the scalability of the proposed solution,

that is, using sub-graphs of the original graph. It has two databases: cit-HepTh file

contains the records for each of the 352,807 citation relations and cit-HepTh-dates

file contains 27,700 records of two fields: unique paper identifier and submission dates

in the period from January 1993 to April 2003.

With the use of Python library random.sample(population, k) which returns a

k-length list of unique elements chosen from the population sequence set, we select

different sizes of datasets more efficiently, which is a random sampling without re-

placement: 8 classes of datasets, shown in Figure 5.3. We experimented staring k with

size of 100 records/edges and gradually increase the edges by different increments of

the number of edges i.e., from 100, then to number of nodes 500, 1000, 2000, 10,000,

50,000, 100,000 and then 150,000. Computing the transitive closure over such sub-

graphs is key to find the scalability of our algorithm. We choose such edges randomly

from the original dataset.

In this dataset, we are interested in finding the reachability value of a pair of

nodes with considered disjunction and conjunction functions. We generate the ex-
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Table 5.2: HEP-PH citation graph sample in raw data.

FromNodeId ToNodeId

9907233 9504304

9704296 9502335

9607354 9504304

9607354 9505235

9502335 9302246

212087 9808221

9808221 9703313

Table 5.3: HEP-PH citation graph with dates sample in raw data.

FromNodeId ToNodeId

9505235 1995-05-04

9808221 1998-08-04

9808222 1998-08-04

9907233 1999-07-05

9907234 1999-07-05

tended citation graph dataset 3-tuple (citee, citer, weight) and map into a |E| × 3

matrix. Each line contains two different paper identifiers and the associated value

as probabilities. If a paper cites, or is cited by, a paper outside the dataset, the

graph does not contain any information about this. In order to have edge existence

probabilities, we added the field probability, associated with a random value in (0, 1]

for each record.
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Figure 5.3: Program in Python for Random Sampling.

5.2 Computing the Transitive Closure

It is important to bring out that computing the transitive closure of relations is an

uneasy task in terms of the size of input graphs and the presence of cycles. Sev-

eral approaches were pursued to solve such issues. We first implemented our own

function based on the notion of transitivity where the transitive closure of all in-

coming neighbors are merged to produce the new transitive closure, shown in Figure

5.4. This function, however, takes lots of memory and time since newly generated

edges are added to the original database and it runs thorough all the edges in the

database repeatedly until no more new edges are found. Our second approach was
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Figure 5.4: First approach: Function transitive_closure snippet.

using Prolog which is the most commonly used logic programming language. It sup-

ports non-deterministic programming through backtracking, and pattern matching

through unification. We used a interface PySWIP which is a bridge interface in that

sending queries to a Prolog database and get responses in Python, shown in Figure

5.5.

The problem with the first and second approaches was execution time. Basically

the size of input graphs is quite influential to the transitive closure computations. As

can be seen in Figure 5.6, we could not get the transitive closure of G6, G7, and G8.

The final conclusion was using well developed built-in library that supports transitive

closure computation. NetworkX is a Python language software package for functions

of complex networks such as graphs. One of its algorithms handles the transitive

closure computation, namely "transitiveclosure" which returns transitive closure of a

directed graph2. We used this built-in function, which is shown in Figure 5.7. It uses

Python library "dfs_preorder_nodes" which takes a starting node for depth-first

search and return edges in the component reachable from source. A generator of

nodes in a depth-first-search pre-ordering. The fact Python provides generators it is
2http://orkohunter-networkx.readthedocs.io/en/latest/index.html
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Figure 5.5: Second approach: Using Prolog snippet.

more efficient. This is because generators allow for iterative processing of things, one

item at a time. This does not cause any issues until how much memory is required

when using a normal iterative processing of a list. Basically a large list can take lots of

memory. In our case, the algorithm becomes efficient, since we may have a long chain

of processes/nodes to compute TC. The generators allow each node to get reachable

nodes one at a time. Since function transitive_closure_nx takes only acyclic graphs,

to handle graphs with or without cycles, we added one more function that takes a set of

strongly connected components along with a set of self-loop nodes as inputs. We com-
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Figure 5.6: Execution time vs. Sub-graph size "without" uncertainties.

Figure 5.7: Function Transitive closure with NetworkX in Python.

pute the transitive closure of the input graphs. The code is presented in Figure 5.8.

To see how it works, consider a graph G with V = {a, b, c, d} and E = {(a, a), (a, b),

(b, a), (b, c), (c, d)}. G has four strongly connected components which are {a,b}, {c}
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Figure 5.8: TC computation with SCC components snippet.

and {d}. We are interested in cyclic paths such as (a, a) and (a, b, a). In this case,

nodes a and b are combined as a single solid node in our algorithm. Through strong

components detection, we generate a lookup table which has a name of combined

nodes as key and such components as value where each component is classified based

on the existence of self-loop. In this case, the lookup table is S1 : [a, b], where a is

a self-loop node. We then have an acyclic graph GA where it has only two edges

(S1, c) and (c, d). The fact the input graph is acyclic it can be taken as the input

for networkX function. The transitive closure of G = (V,E) is a graph G∗ = (V,E∗)

such that for all x,y in V there is an edge (x, y) in E∗ if and only if there is a path
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from x to y. Thus, it returns EA
∗ as (S1, c),(S1, d), and (c, d). Additional parts

described in Figure 5.4 snippet, for an edge e in EA
∗ if e includes representative

combined component, we replace it with previous components back while generat-

ing new edges. For example, (S1, c) generates (a, c), (b, c) since S1 has two compo-

nents. Similarly, (S1, d) generates (a, d), (b, d) since S2 has also two components.

Once all the edges in EA
∗ are checked, since nodes in a same SCC are indistinguish-

able, in other words, for node x and node y in the same SCC there exist paths

(x, y), (y, x), (x, x), and y to y itself. We then can add additional edges to EA
∗ which

are (a, b), (b, a), (a, a), and (b, b). The final set of edges in the transitive closure of G

is {(a, c), (b, c), (a, d), (b, d), (a, b), (b, a), (a, a), (b, b)}.

5.3 Results

We performed all the experiments on a MacBook Pro with Linux server, 4 GB mem-

ory, and 2.4 GHz Intel Core 2 Duo CPU in Python 2.7. We studied the performance

of our proposed algorithm for computing the transitive closure, using the "citation

graph" with different sizes created from the HEP-Ph dataset 3, i.e., starting by 100 in

the input graph, then to number of nodes 500, 1000, 2000, 10000, 50000, 100000 and

then 150000. Clearly, the execution time is exponential in the size of input graph.

|E1
∗|, the number of edges in the transitive closure (TC) of the first subgraph G1

where |V1| = 73 and |E1| = 100, is 103. The execution time for both TC and TC with

uncertainties is only 1 second. As for G5 where |V3| = 486, |E3| = 1000, |E3
∗| is 3438

and the execution time for TC and TC with uncertainties are 0.01 and 2.53 minutes,
3https://snap.stanford.edu/data/cit-HepTh.html

70



Table 5.4: Execution time on different size of sub-graphs.

Run-time (minutes)

Subgraph |V| |E| |E∗| TC TC with uncertainty

G1 73 100 103 0.01 0.03

G2 197 500 1,825 0.02 1.56

G3 486 1,000 3,438 0.01 2.53

G4 654 2,000 18,976 0.03 570.63

G5 5,963 10,000 14,006 0.04 0.04

G6 19,828 50,000 120,085 0.52 275.73

G7 18,933 100,000 5,111,122 1.70 -

G8 18,792 150,000 23,694,798 26.52 -

respectively. Essentially, TC computation time is subject to the graph density in

terms of size and structure. Informally, we say that a graph with relatively few edges

is sparse, and a graph with many edges is dense. We also can say that a graph G is

dense when the number of edges |E| in G is closest to |V |2. It is not surprising that

the execution time of computing the transitive closure of graphs depends on the size

of graphs and its density. The experimental results on sub-graphs are illustrated in

Table 5.4 and Figure 5.8. As can be seen in the execution time table, albeit G4 has

smaller size of nodes and edges than G5, the fact the density of G4 is larger than G5,

G4 takes more time than G5. It is shown that computing TC of a graph is exponential

in the size of graph and newly generated edges through transitivity iterations. To

sum up, the execution time is exponential in the size of input graphs.
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Figure 5.9: Execution time vs. 8 classes of subgraphs.

5.3.1 Scalability Issue

The experiments on the real dataset show that our method is practical. Since the

computation time depends on the size of induced subgraph for a given pair of nodes,

it is tricky to analyze the exact computation time in the first hand. Though, to show

the effectiveness of our algorithm, we define a measure called graph density degree

which is the ratio of the number of nodes in an input graph to the number of edges

in the transitive closure of the graph: Density(G) = |V |/|E∗|. We use this metric in

order to demonstrate how efficiently our proposed method can work using different

function evaluation as a disjunction mode in very large graphs. Figure 5.10 shows the

graph density degree as functions of the number of nodes and edges in sub-graphs.

Note that computing an each pair of nodes in sub-graphs utterly depends on the size

of relevant sub-graph to such nodes, which explains why computing G4 takes so much

time than G6.

The main issue to tackle with our algorithm is when the input graph is large,
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Figure 5.10: The ratio of the number of nodes to the number of transitive closure of

edges in 8 classes of Sub-graphs.

there might be exponential number of possible paths between a pair nodes using DFS

graph traversal which uses hash indexing with Python data structure "Dictionary" in

our case. As for graph G7, since the number of paths in the graph was 1737030, we

had to terminate the transitive closure query (Figure 5.11). This was not a problem

for processing the reachability query for a given pair of nodes in the input graph,

as our solution would only consider the relevant subgraph. It is important to note

that the complexity of either of the transitive closure and reachability problems is

exponential, or O(|V |!) to be precise. Basically the fact the order in which nodes

are reduced does not affect the end result when using max, that is, we do not need

simultaneous nodes reduction rules (merge and mesh). In that case, we may use any

desired graph traversal algorithm to find the paths to eliminate the nodes one by one

in any order, without affecting the result.
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Figure 5.11: The outputs of testing G7 on terminal.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this paper, we proposed graph reduction algorithms based on the notion of cor-

rect semantics for queries over uncertain graphs in terms of the least common sub-

expressions in more abstract settings and show that different orders of graph reduction

may lead to different results for reachability and transitive closure queries. We iden-

tified patterns of paths in graphs and introduced its corresponding eduction rules to

reduce a graph. We then conducted numerous experiments to see the performance of

the proposed solution using various graphs of different sizes in the dataset HEP-TH.

The evaluation shows that our algorithm indicates correctness of our implementation

as well as effectiveness of the proposed graph reduction method. Potential appli-

cations of the proposed solution include development of an extension of the SQL

database query language to support transitive closure (TC) and reachability queries

over uncertain graphs. We believe that the proposed solution techniques can con-
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tribute to existing data management systems for uncertain data.

6.2 Future Research

As future work, the presented algorithms are implementable in their present form,

but we need optimizations such as fast graph search for large graphs. It would also

naturally bring us into query answering in probabilistic databases. In reachability

and TC queries on uncertain and probabilistic data, a tuple is an answer to the query

based on tuple-existence uncertainty. It can be extended to data models, which is

probabilistic relational data. Then we are only concerned about the certainty values

within individual tuples where its value depends on the uncertainty of the tuple itself,

which is independent from other tuples. In our research, we have focused on avoiding

unnecessary repeated computations in processing queries over probabilistic graphs.

In this sense, "read-once functions" can be linked to the way we delved into the

query evaluation problem. This approach underlies that, in databases with tuple-

independent assumption, the query evaluation is equivalent to computing marginal

probabilities of Boolean formulas associated with the tuples in the query result [1]. In

that case, the Boolean formulas can be factorized and transformed into a form in which

every variable appears at most once. In [26, 24], the authors consider "provenance

graphs" in the same read-once based approach, which are directed acyclic graphs

represented as event expressions in such a way that most common sub-expressions

for the entire relation are not replicated. We plan to explore how our proposed

reduction algorithm can be linked with provenance minimization in read-once forms

and study how it may contribute to an extension of SQL to support recursion for TC

76



computations.

6.2.1 Recursive SQL Queries on Graphs with Uncertainty

SQL has been successful in its own impact on the database industry. This comes from

strong use of relational algebra which allows set-oriented operations on data formed

by rows, columns, and tables. For example, a network model of committee, data

can be organized in sets having one set manager (parent) and the several members

(child). Such data is called hierarchical model provided all data is captured in a

tree/graph structure with records having parent-child-grandchild relationship. Such

hierarchical model data is a special case of more general recursive fixed-point queries

that compute transitive closures. Recently, hierarchical queries are implemented in

Standard SQL:1999 [23]. A recursive query specifies a temporary view set known

as a recursive Common Table Expression (CTE). Recursive CTEs can be used to

traverse relations as graphs. In other words, we can associate the proposed graph

reduction algorithm with computing the transitive closure of a digraph G, denoted by

G∗ = (V,E∗). It can be regarded as a particular case of transitive closure computation

for uncertain graphs in the following sense. Suppose R(A,B) is such a graph and f

is a probability function that assigns a probability value to each edge/tuple in R.

Then transitive closure of R denoted as R∗ includes all pairs of nodes (x, y) in R

such that y is reachable from x in R. Now in addition to R and its probability

assignment function f , our algorithm also has a pair of nodes (vs, vf ) as an input

and returns the probability of reaching from vf to vf . This is "simply" done by

computing the transitive closure R∗ and then select the tuple (vs, vf ) in R∗ with it
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associated probability value, but rather than computing the entire tuples in R∗. Our

algorithm does this more "directly" and hence more efficiently since it considers only

the relevant nodes/paths in R. So if a database contains the table R(A,B, v), which

is an edge from A to B with probability v, the algorithm we implemented computes

(vs, vf , p), which returns the probability f for the path from vs to vf . Moreover if

this path has cycles, our algorithm also handles it, more efficiently while in standard

transitive closure computation, the computation is slow when the path is acyclic. The

whole process is hidden by the user, hence the user can only see the front-end query

results.

To see the effectiveness of our algorithm, consider the survey [23] in which the

authors investigated the implementation of recursive SQL Common Table Expres-

sions in most of the popular DBMSs such as : IBM DB2 Express-C 9.5, RDBMS

X, Sybase SQL Anywhere 11, PostgreSQL 8.4, Firebird 2.1.3 and Microsoft SQL

Server 2008. Database schema for the tested data-sets consists of the following re-

lations: CITIES(cid, city) contains 200 records, TRAINS(departure, arrival, railline,

tid, price) contains 800 records, and FLIGHTS(departure, arrival, carrier, fid, price)

contains 800 records. One of the queries, Q1, in this paper displays all the cities

reachable by plane starting from Toronto, the number of connections is limited by

the parameter I(= 1 · · · 9) which limits the recursion depth, shown in Figure 6.1. Note

that for cyclic data, using I = 9 was enough to fully exhaust the system resources and

in many cases caused the database system to crash. As can be seen, the execution

time is 2 seconds for depth limit 9. To compare this with our proposed solution,

let us consider example G3 = (V3, E3), where E3 includes 1000 edges, for which the

execution time to compute the transitive closure was 0.7892 seconds. This could be
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(a) Query Q1

(b) Performance results of Q1 for different DBMS

engines

Figure 6.1: (a) Query 1 and (b) its results on a given data.

done faster when searching relevant nodes from a given single node to start with, as

opposed to computing the transitive closure of the input relation. This means that

the reachability queries over uncertain relations can be evaluated using our proposed

technique rather efficiently as expected by restricting to the relevant part of the input

graph.
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