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Multiple-inlet Building Integrated Photovoltaic/Thermal system modelling under 

varying wind and temperature conditions 

ABSTRACT 

Air-based, open-loop Building Integrated Photovoltaic/Thermal (BIPV/T) systems are an 

efficient means for generating electricity and useful heat from incident solar energy. However, 

due to the low heat exchange efficiency of air, overheating issues may occur that can reduce the 

electrical production of the system, as well as its durability. With the introduction of multiple 

intakes of air along the PV string, the goal is to improve the heat extraction from all PV panels, 

while achieving lower and more uniform PV temperatures. 

This study presents the results of a numerical investigation on the comparison of the performance 

of single and multiple-inlet BIPV/T systems for a possible retrofit or new buildings, with an 

example of a potential large scale installation on an office building. The comparison was carried 

out considering a cold winter and a hot summer day, under varying wind conditions, in terms of 

electrical and thermal performance, and PV temperature distributions. For the modelling of a 

multiple-inlet BIPV/T system, a flow distribution model was developed utilizing pressure drop 

and flow correlations, as well as wind tunnel pressure measurements representing the wind 

effects on the flow distributions, and a modified energy balance model for the multiple-inlet 

system. 

It was found that a multiple-inlet BIPV/T system may have up to 1% higher electrical efficiency 

corresponding to 7% additional power to the total output of a 120 kW system and up to 24% 

higher thermal efficiency, while resulting in the lowest and most uniform PV temperatures. 

Keywords 

Multiple-inlet; BIPV/T; flow modelling; wind effect 

Nomenclature 

Symbols 

A Orifice area (m
2
) 

Ab.frame Back frame opening area (m
2
) 

Ainlet Inlet area (m
2
) 

cp Specific heat of air (J/kg.
o
C) 

Cp Pressure coefficient 

Dh Hydraulic diameter (m) 

f The Darcy friction factor 

hc1 Convective heat transfer coefficient for the PV layer (W/m
2
.
o
C) 

hc2 Convective heat transfer coefficient for the insulation layer (W/m
2
.
o
C) 

ho Exterior film coefficient (combined radiation and convection) (W/m
2
.
o
C) 

hrad Radiative heat transfer coefficient (W/m
2
.
o
C) 

hwind Wind-induced heat transfer coefficient (W/m
2
.
o
C) 

K Local loss coefficient for flow through an orifice 

Kb.frame Local loss coefficient for flow through the back frame opening 

Kinlet Local loss coefficient for flow through an inlet 

L Characteristic length of the flow (m) 

M Mass flow rate of the air collector (kg/h) 

Nu Nusselt number 
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P Pressure (Pa) 

Pi Wind induced external static pressure (Pa) 

Q Volumetric flow rate (m
3
/s) 

Qchannel Air channel volumetric flow (m
3
/s) 

Qinlet Inlet volumetric flow (m
3
/s) 

Qn n-th channel volumetric flow (m
3
/s) 

Qopening(i) Flow through the i-th opening (m
3
/s) 

Qtot Total flow of the air collector (m
3
/s) 

Qu
 

Heat transferred to the air stream (J) 

R Flow resistance (kg/(m
4
.s)) 

Rchannel Channel flow resistance (kg/(m
4
.s)) 

Rinlet Inlet flow resistance (kg/(m
4
.s)) 

Re Reynolds number 

SPV Radiation absorbed by the PV layer (W) 

Tair Ambient air temperature (
o
C) 

Ti Entrance air temperature (
o
C) 

Tins Temperature of the insulation on the back wall of the BIPV/T (
o
C) 

Tma Temperature of air inside the BIPV/T air channel (
o
C) 

Tn n-th channel air temperature (
o
C) 

To External temperature (
o
C) 

TPV Temperature of the PV module (
o
C) 

TR Temperature of the adjacent room to the BIPV/T (
o
C) 

Uins Insulation layer conductance (W/m
2
.
o
C) 

Vloc Wind velocity at the height of measurements (m/s) 

 

Greek Letters 

ΔP Pressure drop (Pa) 

ΔPchannel(i) Pressure drop within i-th channel 

ΔPopening(i) Pressure drop across the i-th inlet  

ρ Air density (kg/m
3
) 

 

Abbreviations  

BIPV/T Building Integrated Photovoltaic/Thermal 

COP Coefficient of Performance for heat pump 

PV Photovoltaic 

UTC Unglazed Transpired Collector 

 

1. Introduction 

Solar technologies integrated with the building envelope can be efficiently used for electricity 

generation and ventilation air preheating, while replacing common building materials, thus 

increasing the cost effectiveness of the installation (Athienitis et al, 2010). In a BIPV/T system, 

photovoltaic panels (PV) form the external layer of the building envelope (replacing shingles, 

rain-screen cladding, etc.) and a channel is formed between the PV layer and the internal skin of 

the building. In that channel a fluid medium may circulate in an open (only for air) or closed-

loop configuration (normally water), extracting excess heat from the PV panels via convection, 

while part of this heat can be recovered and used through various means. Apart from the 

potential thermal gains, heat extraction from the PV layer results in electrical production 

enhancement, since, according to Florschuetz (1979), the electrical efficiency of the PV module 

is a function of its temperature. Thus, low operating PV temperatures can be beneficial for the 

performance of the systems, especially in large installations. 
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Water-based systems generally have higher heat exchange efficiency, due to the higher specific 

heat capacity and density of water. These systems are more suitable for climates with high levels 

of solar irradiation and ambient temperature. In a review of the state of the art PV/T technology, 

Chow (2010) referred to experimental and outdoors studies, which showed that water-based 

PV/T systems may have a thermal performance equivalent to a conventional solar thermal 

collector, with the added electricity production. However, due to their weight, cost and required 

ducting for the liquid coolant, water-based systems are mainly limited to roof applications. Air-

based systems, on the other hand, are more practical for large roof and façade applications in a 

cold climate since they pose no leakage issues through ducts and joints, there is no need for the 

addition of anti-freezing additives, they are lighter, easier to install and maintain, while being far 

less complicated (Bambara et al, 2012; Tyagi et al, 2012).  

Heat transfer enhancement techniques for air-based systems have been the subject of several 

studies. Hegazy (1999) studied variations of glazed and double pass PV/T collectors, with the PV 

layer set behind a glazing to reduce wind induced heat losses, increasing the thermal efficiency 

of the system, but also resulting in higher PV temperatures and reduced electrical production. By 

increasing the air mass flow rate, the PV temperature dropped, at the cost of increased fan 

consumption. Tonui and Tripanagnostopoulos (2006) investigated additionally the use of fins 

and a thin metal plate within the air channel. Both techniques improved the performance of the 

system, the fin system being superior. The incorporation of a solar air heater in series with an air-

based BIPV/T system as a means to enhance the thermal output of the system and the outlet air 

temperature, has also been investigated (Yang and Athienitis, 2014). 

The above methods achieved higher thermal efficiencies of the studied systems, but also 

produced higher PV temperatures. The employment of a continuous air channel causes a vertical 

temperature stratification of the PV layer. The non-uniform PV temperatures may affect the 

electrical production, depending on the PV array’s connection configuration. For example, if the 

PV modules of the string are connected in series in the vertical sense, then the PV strings 

performance will be determined by the performance of the hottest panel. If the PV modules are 

connected in series horizontally and therefore have similar temperature, then the PV array will 

consist of strings that perform differently and, naturally, not optimally.  

1.1 Multiple-inlet BIPV/T 

A potential method that could counter the effect of temperature stratification and yield lower PV 

temperatures employs more than one opening on the PV system along the flow path of the air 

channel (Figure 1). 

Separate channels are created, one for each PV module, which are interconnected, forming a 

multiple-inlet system. This system aims to enhance heat extraction from each of the PV modules, 

by regulation of the flow, as well as the boundary temperature of air entering each channel, 

which is a mixture of air from the previous channel and outside air at ambient temperature. This 

concept evolved from the hybrid UTC-PV/T system designed by Athienitis et al (2010), 

consisting of a layer of UTC bearing custom made PV modules fixed with supports, covering 

70% of the total UTC area. The concept of that system was that the solar collector could also 

produce electrical energy, increasing its cost-effectiveness, especially in the summer months, 

when space heating is not needed (except for domestic water heating use). While the overall 

thermal performance of the hybrid system was lower than that of a UTC, its overall efficiency 

was found to be 7-17% higher, based on a coefficient of performance (COP) of a heat pump to 
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convert electricity into equivalent heat, assumed to be equal to four (Athienitis et al, 2010; 

Bambara et al, 2012). The system was modelled assuming uniform suction from the UTC 

perforations, according to Kutscher (1994), considering the mass flow entering the exposed UTC 

area and the PV covered area for the energy balance. 

Yang and Athienitis (2014) investigated experimentally a two-inlet BIPV/T variation of a single-

inlet prototype, previously studied by Candanedo et al (2010). Yang developed Nusselt 

correlations for the laminar and the turbulent region of the PV and the insulation layer of the 

collector, which were used to model the improved design with two inlets, intended for inclined 

roof applications. The thermal performance of the system was further enhanced with the addition 

of a vertical glazed solar collector. It was found that the thermal efficiency of the two-inlet 

system was 5% higher than that of the single-inlet prototype. Furthermore, there was a 1.5
o
C 

decrease in the peak PV temperature, as well as a marginal increase in the electrical efficiency of 

the system. It was expected that for larger roof installations of 5-6 m the temperature decrease 

would be from 5-10
o
C, depending on the flow rate and the wind conditions.  

Mizraei et al (2014) investigated experimentally the role of cavity flow on the performance of 

BIPV/T placed on inclined roofs. The experimental configurations included a flat and a stepped 

arrangement, which was essentially a multiple-inlet formation. The cavity was naturally 

ventilated and no mechanical air collector potential was investigated; however, it was found that 

the PV temperatures were significantly lower for the stepped configuration cases, as opposed to 

the flat roof. 

All aforementioned studies assumed uniform air intake from all system openings (Athienitis et 

al, 2010; Yang and Athienitis, 2014), while neglecting the wind effects on the flow distributions 

of the system (Dymond and Kutscher, 1997). However, the flow distributions of such a system, 

depending on the system’s geometric features and wind conditions, may be far from uniform. It 

is therefore important to model these flows, since they define the systems performance, in terms 

of internal convection. The present study focuses on the development of a multiple-inlet BIPV/T 

model, which addresses both the inlet flow distributions and the energy performance of the 

system. The potential performance of a multiple-inlet system, based on a large installation case 

study, is investigated with the aim to improve the PV temperatures, as well as the electrical and 

thermal gains, as opposed to a typical single inlet system. 

 

2. Multiple-inlet BIPV/T modelling 

The modelling of a multiple-inlet system consists of two parts: the flow modelling and the 

energy balance. Multiple-inlet systems have by definition different flow conditions in every 

separate channel. These flow conditions are based on the inlet flows and affect the flow rate of 

each channel and the boundary temperature of air entering each channel, both of which affect, in 

turn, the internal convection. The amount of air entering each opening of a multiple-inlet system 

depends on the geometry of the opening and of the flow channel, the total mass flow of the air 

collector and the effect of wind.  

Both flow and energy modelling are based on finite control volume techniques, every PV module 

and its corresponding cavity/channel forming a control volume. 

2.1 Flow modelling 
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The inlet and the channel flows of a multiple-inlet BIPV/T system form a complex flow network 

with interconnected flow paths. A useful representation of flow networks, especially when 

dealing with complex flows, is the electrical network analogy (Aynsley, 1997).  

There are several methods for solving complex nonlinear flow networks the branches of which 

form closed loops, such as the Hardy Cross method, which calculate the flow through an infinite 

number of loops and nodes making use of the first two laws of Kirchoff for mass and potential 

conservation. 

Such methods have been used for the modelling of trickle ventilators (Karava et al, 2003), wind 

driven flows and pressure distributions in buildings, and compartmentalized double screen 

facades (Lou et al, 2012; Aynsley, 1997). Dymond and Kutscher (1997) used pipe network 

methods for the calculation of the flow distributions in transpired solar collectors, in an effort to 

improve the poor flow distribution occurring in large building installations. The absorber was 

modelled with a three-dimensional set of fictitious pipes and using relations for pressure drop 

across the plenum, within the air collector, due to buoyancy and due to flow acceleration. A 

major assumption of the model was that wind effects were considered insignificant given that the 

pressure difference across the absorber is more than 25 Pa. 

This study employs the electrical network analogy for the modelling of the complex flow 

network that is formed within a multiple-inlet BIPV/T system. A schematic of this general is 

shown in Figure 2. 

The wind effects, represented as equivalent exterior pressure sources, and interior nodes of two 

consecutive inlets form a closed loop. The main principles upon which the flow modelling is 

based are mass continuity (1) and conservation of energy (2): 

( )

1

n

opening i tot

i

Q Q


  (1)

 

( ) channel( ) ( 1) ( 1) ( ) 0opening i i opening i i iP P P P P         (2) 

Conservation of energy is applied to each of the closed loops formed in the flow network in the 

form of pressure drop. The sum of pressure drops in a closed loop should be equal to zero, as 

expressed in equation 2, where ΔPopening(i) is the pressure drop from flow across the i-th inlet 

(flow through an orifice) (Pa), ΔPchannel(i) is the frictional pressure drop from flow within the i-th 

air channel and from flow through the back frame of the PV panels (Pa) and P(i) is the pressure 

exterior to the i-th inlet, defined by the local wind effects (Pa). 

The general form of the pressure drop-flow correlation for the electrical network representation 

is: 

P Q R  
 (3)  

There are two types of pressure drop in a multiple-inlet system: from flow across the inlets and 

from flow within the air channel. The system’s inlets are less than 2% of the BIPV/T area, 

therefore, according to Lo et al (2012), pressure driven flow may be assumed, described by the 

orifice equation (5). The pressure drop from flow within the air channel is a combination of 
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frictional losses, described by the Darcy-Weisbach equation (4), as well as pressure drop from 

flow across the back part of the air channel, due to the sharp entrance of the PV frame, in case of 

a framed configuration, also described by the orifice equation (5). 

2

2h

L V
P f

D

 
     (4) 

2 21
/

2
P K Q A      (5)  

For the friction factor f, used in the Darcy-Weisbach equation, empirical correlations were used 

for the modelling process: 

 For laminar flow (Re<2300): 

64 / Ref   (6) 

For the turbulent regime, several empirical relationships have been suggested (Hegazy, 1999 

Balocco, 2001; Ghani et al, 2012). This study uses the one proposed by Ghani et al (2012), 

which also has good agreement of results with equation (5) for the laminar region: 

2(0.79 ln(Re) 1.64)f     (7) 

  

The resistances, R, are derived from the linearization of equations (4) and (5): 

 Inlet Resistance 

2
( )

2

inlet inlet
inlet

inlet

K Q
R

A
  

 (8) 

 Channel resistance 

. 2

.

(f )
2

channel
channel b frame

h b frame

QL
R K

D A
    


  

 (9) 

  

The loop energy conservation becomes: 

inlet( ) inlet( ) channel( ) channel( ) inlet( 1) inlet( 1) ( 1) ( ) 0i i i i i i i iQ R Q R Q R P P           (10) 

The mass and energy conservation equations may be rewritten and solved in a matrix form using 

an iterative scheme. It is assumed that the system employs a variable speed fan which at all times 

provides a constant air mass outflow through a proportional-integral (PI) control loop. A variable 

speed fan is always recommended for BIPV/T air systems with a closed loop PI control 

algorithm to maintain desired flow rate and pressure rise relative to ambient. With highly 

variable wind conditions, inevitably there will be some fluctuation in the total flow rate, but 
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based on previous experience with hybrid BIPV/T systems (Athienitis et al, 2010), this is 

expected to be small (typically less than 10%) which is acceptable for practical applications.  

Clearly, the integration of an outdoor air ventilation system with the HVAC system has several 

research issues, such as the unsteady flow due to wind effects, which may in turn cause several 

problems (noise, vibrations). However, these issues are not addressed in the present study, but 

will be part of a future study focusing on the design and control aspects of such a system. 

2.2 Wind effects  

The local pressure exterior to the inlets of the system is a result of the local wind effects. The 

wind-induced pressure over the BIPV/T area were implemented in the modelling through wind 

tunnel testing, for various wind directions, on a scaled model of an existing office building 

(Figure 3). 

The available 80 m x 10 m retrofit area was assumed to be covered by 2 m x 1 m framed PV 

modules, thus forming 40 PV strings of 10 modules each. A 203 mm x 27.5 mm Plexiglas 

façade, equipped with 28 pressure taps, was created to represent the retrofit area (Figure 4). 

Wind measurements are difficult to generalize due to the uniqueness of each building features 

and surroundings. However, a general assessment of pressure distributions over a retrofit area, 

for various angles of incidence of oncoming wind, may provide input on the expected 

performance of a multiple-inlet system, as well as design insight concerning the amount and 

placement of the inlets, based on the prevailing local winds. 

The model was tested for an open field exposure, with a flow exponent of α=0.13, and for 5 

directions of oncoming wind, based on the actual building orientation and the prevailing local 

wind conditions for Montreal (Fig. 5). The measurement results were input in the flow 

distribution model as boundary conditions in a similar way as Lo et al (2012). In the 

aforementioned study, averaged wind-induced pressures were measured in a boundary layer 

wind tunnel (BLWT) near the openings (windows) of the test model and then used as pressure 

boundary conditions for CFD analysis of wind-induced cross ventilation. The coupled BLWT-

CFD results showed good agreement with time-averaged full scale measurements in terms of 

overall airflow rate from the openings. 

Figure 6 demonstrates the pressure coefficient contours, CP, (the ratio of the static pressure at 

each point of measurement, over the dynamic pressure of wind), for five angles of oncoming 

wind over the BIPV/T area, as acquired through the wind tunnel testing: 

The first and the second case (0
o
 and 45

o
 wind), seem to create the highest pressure coefficient 

distributions in the vertical sense. For a PV string this would mean highly varying pressure 

values at each inlet of the system which could lead to outflow at the locations under suction for 

an improperly designed system. 

The directions of 135
o
 and 180

o
 created uniform pressure coefficient distributions over the test 

area and the 90
o
 wind resulted in vertical regions of approximately the same pressure conditions, 

which would have small effect on the inlet flow distributions. 

2.2.1. Multiple-inlet BIPV/T energy balance 
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The energy balance of a multiple-inlet BIPV/T is modelled using the finite control volume 

method, with each of the separate channels (and PV modules) of the system comprising a control 

volume (CV). The main difference from the known BIPV/T energy balance is that, by definition, 

each CV has a different flow rate (and therefore different Reynolds and Nusselt number) and air 

temperature boundary conditions, as shown in Figure 7. These parameters were calculated for 

each channel (or CV) individually, according to the inlet and channel flows as acquired from the 

flow model, in order to model the multiple-inlet system as accurately as possible, while 

maintaining a reasonable level of simplicity of the model. 

The various cases of flow conditions for the inlets and the channels, as well as the resulting 

boundary conditions for the air temperature entering each control volume are demonstrated in 

Figure 8. 

For each channel/CV, the subscript “i” denotes the end of the n-th CV closer to the n-th inlet, 

while the subscript “o”, the end closer to the system’s outlet.  

2.3 Modelling assumptions 

The secondary loss factors (K) used in the flow distribution model were assumed from the 

literature (ASHRAE) on duct design. The Nusselt number correlation used in this study were 

those developed by Yang and Athienitis (2014), who studied a similar system with two inlets and 

performed a numerical study on a four-inlet system. 

The wind effects investigated in this study concerned the effect of wind induced pressure 

distributions on the inlet flow distributions, not wind induced convection on the exterior of the 

BIPV/T. An average relationship connecting local wind velocity and external convection was 

used, similar to the ones developed by Liu & Harris (2007): 

6 4wind loch V    (11) 

For simplicity, only one wind reference speed is considered and not the actual velocity 

distributions over the BIPV/T area. This, according to Vasan and Stathopoulos (2014) may lead 

to overestimation of the heat exchange efficiency and underestimation of the wind-induced 

losses. 

 

3. Simulations 

The models developed in part 2 were used for the simulation of the performance of two multiple-

inlet BIPV/T systems considered for the assumed office building. The PV modules were 

assumed to have a nominal efficiency of 15%, with an output of 300 W, forming a 120 kW 

system.  

Two single-inlet systems were also considered as a reference technology. Each type of system 

had identical openings for the intake of air, but varied by channel gap size (0.10 m and 0.15 m) 

to account for its effect on the flow (Figures 9 and 10). “In summary, the systems considered are 

the following: 

 System I: Single-inlet system, with 0.10 m channel gap 

 System II: Single-inlet system, with 0.15 m channel gap 
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 System III: Multiple-inlet system, with 0.10 m channel gap 

 System IV: Multiple-inlet system, with 0.15 m channel gap” 

Furthermore, two total mass outflows from the air collector were considered, namely 400 kg/h 

and 800 kg/h (with maximum channel air velocities of 0.5 m/s and 1 m/s respectively) to account 

for the effect of total air flow on the flow distribution and the energy balance of each channel. 

All systems were based on framed PV modules 2 m wide and 1 m long along the flow path of air 

inside the air channel, thus creating 10 m long and 2 m wide PV strings. 

The goal of these simulations was to investigate the flow distributions of the multiple-inlet 

systems in relation to the system’s geometry, total flow rate and wind effects, as well as the 

performance of a multiple-inlet system against a single-inlet, for typical Montreal weather 

conditions. The systems were compared in terms of electrical and thermal efficiency, as well as 

PV temperature uniformity, which is a major factor of consideration for the durability of large 

PV installations. 

These porosities of the inlets were calculated heuristically in two steps: first, the required flows 

in order to have uniform PV temperatures were evaluated through a trial and error procedure 

using the energy balance model, assuming ambient still air, i.e. no wind conditions, where the 

highest PV temperatures were expected. Secondly, having acquired the required flows through 

each inlet, the flow model was used in order to size the inlets accordingly. 

The simulations were carried out for a cold winter and a hot summer day. Assuming a sinusoidal 

form for the ambient temperature with an average value of -15
o
C and 20

o
C for the cold and the 

hot day respectively, with a ±5
o
C swing and a peak at 3 pm. The solar irradiation was calculated 

assuming clear days for a surface azimuth of -58
o
, according to the actual building orientation. 

The wind-induced pressures were implemented, as acquired from the wind tunnel testing. 

 

4. Results and discussion 

4.1 Flow distributions 

The inlet flows of the two multiple-inlet systems were calculated for 2m/s wind at 45
o
, and 

compared to the case of uniform exterior pressure (no wind/ambient still air). In Figure 11, the 

vertical axis corresponds to the openings 1 through 10 of the system, while the horizontal axis 

shows the calculated inlet flows, normalized by the total air mass outflow of the air collector. 

The error bars indicate the variations of the inlet flows for the 40 PV strings of the BIPV/T 

system from the average flow of the corresponding inlet, due to the pressure distributions 

induced by the 45
o
 degree over the BIPV/T area. 

Effect of total mass air flow and channel gap size 

Results showed that the ratios of the inlet flows to the total air flow of the air collector remain 

the same when the latter is changed. For example, if the total flow rate of the air collector is 

doubled, the flows of each inlet are doubled as well. This was consistent for both gap sizes. 

Doubling the total flow rate produced decreased wind-driven inlet flow variations. 

Reducing the gap size increased the resistance to the flow due to increased friction, as well as 

reduced flow area resulting in reduced inlet flows for the inlets that are located the farthest from 
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the outlet for the system with the reduced gap size (0.10 m). Furthermore, the increased 

resistance reduces the effect of wind on the flow distributions. 

Effect of wind velocity and direction. 

As shown in Figure 11, the 2 m/s wind at 45
o
 resulted in the highest variation of the inlet flows 

from the designed. With increasing wind velocity, these variations became more prominent for 

all wind directions. However, it was found that for wind velocities higher than 2 m/s, the PV 

temperatures for all system types considered dropped drastically and became uniform, due to the 

dominating wind-driven heat losses. Therefore, the comparison of the systems' performance was 

carried out for wind velocities up to 2 m/s. 

Tables 2 and 3 summarize the flow distributions of an average PV string for all considered wind 

directions and for 0 m/s, 1 m/s and 2 m/s wind velocity. This means that the flow of each inlet is 

the weighted average of the 40 PV modules comprising a horizontal array. The results showed 

that the effect of wind for the directions of 90
o
 and 135

o
 was minimal for wind velocities up to 2 

m/s.   

4.2 PV temperatures 

The PV temperatures for the 2 m/s wind at 45
o
 were compared to the ones that would occur in 

the case of 2 m/s wind, but with uniform exterior pressure (designed inlet flows). 

The vertical axis in Figure 12 indicates the 10 PV modules of the PV string and the horizontal 

axis the PV temperatures as calculated due to the inlet flow distributions for 2m/s wind 

approaching at a 45
o
 angle, as well as for the case of uniform exterior pressure. The error bars 

indicate the variations of the PV temperatures for the 40 PV strings of the BIPV/T system from 

the average flow of the corresponding inlet, due to the pressure distributions induced by the 45
o
 

degree wind over the BIPV/T area. The plots are for summer conditions, where the highest PV 

temperatures are expected, for the two channel gap sizes and two total air collector flow rates. 

From these results, the following are noted: 

 Even the high variations in inlet flows (Figure 11) result in insignificant temperature 

variations, from the ones that would be expected according to the designed flows (±3
o
C 

for the system with 0.15m channel gap and total mass air flow rate of 200 kg/h). 

 The system with 0.10 m channel gap has smaller temperature variations which 

correspond to the smaller inlet flow variations. 

 The variations are almost eliminated when the total air collection rate is doubled. The 800 

kg/h air collection rate corresponds to a channel air velocity of approximately 1 m/s 

which is typical for BIPV/T systems. 

 The velocity of wind is more crucial than the actual direction on the PV temperatures, 

concerning the wind effect on the internal convection. 

The temperature variations were minimal for the other two wind directions. Higher wind 

velocities produced higher flow distribution variations. However, with dominating external 

convection, the PV temperatures for all systems were lower and more uniform. Winter PV 

temperatures followed a similar pattern but with considerably lower PV temperatures. 
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Figure 13 presents a comparison on the uniformity of the modules’ temperatures of an average 

PV string for a 400 kg/h total mass flow rate, for summer conditions and three wind velocities 

and the two channel gap sizes. 

Results show the following: 

 Increase of the total air mass flow of the air collector results in lower PV temperatures, 

the differences being more prominent at conditions with no wind. However, with 

increasing wind velocity, external convection dominates and the differences are lower. 

 Increasing wind velocity results in lower PV temperature variations along the same 

string. 

 In all cases, the multiple-inlet systems produce uniform PV temperature distributions, 

with small temperature differences between panels and with the lowest overall PV 

temperatures. 

 Even at a lower total mass flow rate of the air collector, the multiple-inlet system 

maintains low and uniform PV temperatures along the PV string. 

The PV temperature profiles were similar for the air collection rate of 800 kg/h, the temperatures 

being lower. 

4.3 Electrical and thermal efficiency 

Figures 14 and 15 present plots of the electrical and thermal efficiencies of the systems, for the 

assumed cases of weather conditions. These efficiencies are calculated according to the total 

electrical and thermal output of the systems and on the total daily solar irradiation incident on the 

installations. 

The above efficiencies are defined as follows: 

 Daily electrical efficiency: Total electrical energy produced over the total daily solar 

irradiation incident on the BIPV/T surface. 

 Daily thermal efficiency: The daily thermal energy extracted and transferred to the air 

flowing inside the air channel over the total daily solar irradiation incident on the BIPV/T 

surface. 

The single inlet systems had the lowest overall performance, both electrically and thermally. 

Depending on the weather conditions, wind velocity and air collection rate, a multiple-inlet 

system may have an increase in electrical efficiency of 0.3% - 1% and thermal efficiency 

increase of 14% - 25%. It should be noted that the fan consumption has not been addressed in 

this investigation and the net electrical production should be looked into for a more accurate 

comparison. The differences in the electrical efficiency of the systems are lower for increasing 

wind velocity and air collection rate, due to the lower PV temperatures. Also, in accordance with 

previous studies, higher air collection rates yielded higher thermal efficiency.  

 

5. Conclusion 

This study introduces a methodology for the modelling of multiple-inlet BIPV/T systems which 

includes a flow distribution model, incorporating wind effects in the form of exterior pressures, 
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and a simple energy balance model that accounts for the various cases of flow conditions for the 

inlets and the air channels of the system. 

The proposed models were applied for the simulation of two multiple-inlet BIPV/T systems 

considered for a potential retrofit project of an office building. These were compared with two 

single inlet system for the same environmental conditions. The simulation results showed that the 

PV temperatures for the multiple-inlet systems were considerably lower (up to 17
o
C, for low 

wind conditions) with small temperature difference between the coolest and the warmest PV 

panels (3
o
C to 7

o
C). The corresponding temperature difference for the single inlet systems was 

much higher (8
o
C to 26

o
C). 

An increase of up to 1% in electrical efficiency was observed for the multiple-inlet system. For a 

120kW system, this translates in 7% higher electrical output. Furthermore, there was a 14% to 

25% increase in the thermal efficiency, in comparison to the single inlet system, depending on 

the weather conditions.  

The effect of wind direction on the flow distributions and as a result to the internal convection 

part of the energy balance was found to be insignificant for wind velocities up to 2m/s, 

regardless of the wind direction. Higher wind velocities would be expected to cause more 

considerable differences; however, with external convection dominating, the performance of all 

systems investigated would be similarly affected, in that the PV temperatures would be low and 

uniform, while the thermal gains would be minimal.  
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Figure 1: Single and multiple-inlet BIPV/T system. 

 

 

Figure 2: Electrical resistance analogy for flow modelling. 

 

Figure 3: Potential location for BIPV/T retrofit on an office building (highlighted area) and 1:400 scaled model of 

the building (left). 

 

 

Figure 4: BIPV/T façade for the wind tunnel model, equipped with pressure taps. 

Figure



 

Figure 5: Building orientation, wind rose of Montreal and wind directions tested. 
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Figure 6: Pressure coefficient distributions on BIPV/T area. From top to bottom: 0
o
, 45

o
, 90

o
, 135

o
 and 180

o
 angles 

of incidence of wind. 

 

 



 

Figure 7: Multiple-inlet BIPV/T energy balance. 

 

 

Figure 8: The possible channel flows and channel air temperature inlet boundary conditions. 

 



 

 

Figure 9: Single inlet systems (Systems I and II with 0.10 m and 0.15 m channel gap respectively). 

 

 

 

Figure 10: Multiple-inlet systems (Systems III and IV with 0.10 m and 0.15 m channel gap respectively). 

 

 

 

 

 

 

 

 



Inlet flow distributions with 2 m/s wind at 45o 
 0.15 m channel gap   0.10 m channel gap 

 

Figure 11: Normalized flow distributions of multiple-inlet systems with a 0.15 m and 0.10 m channel gap, for 2 m/s 

wind at 45
o
 angle of incidence, for 400 kg/h and 800 kg/h total mass flow rate, for module inlets 1 to 10 (bottom to 

top) of the PV string. 

 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Inlet flow/Total flow rate 

M
o

d
u

le
 In

le
t 

Inlet flow distributions for 400 kg/h 
total mass flow rate 

Flow distributions for 2m/s wind 

Flow distributions for uniform exterior pressure 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Inlet flow/Total flow rate 

M
o

d
u

le
 In

le
t 

Inlet flow distributions for 400 kg/h 
total mass flow rate 

Flow distributions for 2m/s wind 

Flow distributions for uniform exterior pressure 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Inlet flow/Total flow rate 

M
o

d
u

le
 In

le
t 

Inlet flow distributions for 800 kg/h 
total mass flow rate 

Flow distributions for 2m/s wind 

Flow distributions for uniform exterior pressure 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Inlet flow/Total flow rate 

M
o

d
u

le
 In

le
t 

Inlet flow distributions for 800 kg/h 
total mass flow rate 

Flow distributions for 2m/s wind 

Flow distributions for uniform exterior pressure 



PV temperatures with 2 m/s wind at 45o 
 0.15 m channel gap   0.10 m channel gap 

 

Figure 12: PV temperature distributions of multiple-inlet systems with a 0.15 m and 0.10 m channel gap, for 2 m/s 

wind at 45
o
 angle of incidence, for 400 kg/h and 800 kg/h total mass flow rate, for modules 1 to 10 (bottom to top) 

of the PV string. 
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Figure 13: Comparison of PV temperatures for single and multiple-inlet systems for no wind, 1 m/s and 2 m/s wind 

and 400 kg/h total mass flow rate, for modules 1 to 10 (bottom to top). 
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Figure 14: Electrical efficiency of the four systems for summer and winter conditions, with and without wind and at 

total air mass flow rate of 400 kg/h and 800 kg/h. 
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Figure 15: Thermal efficiency of the four systems for summer and winter conditions, with and without wind and at 

total air mass flow rate of 400 kg/h and 800 kg/h. 
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Table 1: Inlet porosities for the multiple-inlet systems. 

Inlet Porosity (%) 

1 10 

2 1 

3 0.5 

4 0.5 

5 0.3 

6 0.2 

7 0.1 

8 0.01 

9 0.01 

10 0.01 

Table
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Table 2: Inlet flow rate distributions for multiple-inlet system with 0.1 m channel gap, with or without wind. 

Total flow rate 400 kg/h 800 kg/h 

Wind direction  - 45
o 

90
o 

135
o 

 - 45
o 

90
o 

135
o 

Wind velocity 

(m/s) 0 1 2 1 2 1 2 0 1 2 1 2 1 2 

In
le

t 
fl

o
w

 r
a
te

s 
(k

g
/s

) 

1 215.4 218.3 227.4 215.7 217.3 215.7 217.4 431.7 433.1 437.5 437.5 432.4 431.6 432.6 

2 42.7 42.6 42.8 42.1 39.9 42.5 41.6 85.3 85.3 85.2 85.2 84.1 85.2 84.8 

3 30.7 30.6 29.9 30.8 31.1 30.7 30.6 61.3 61.3 61.0 61.0 61.6 61.1 61.3 

4 39.5 39.0 37.6 39.5 39.7 39.4 39.3 78.8 78.5 77.6 77.6 78.9 78.6 78.7 

5 28.0 27.5 26.2 28.1 28.2 28.0 27.9 55.9 55.7 55.0 55.0 56.0 56.1 55.8 

6 23.6 22.8 20.3 23.8 23.8 23.7 23.4 47.0 46.6 45.8 45.8 47.1 47.6 46.9 

7 17.7 16.8 12.9 17.6 17.6 17.6 17.5 35.2 34.8 33.4 33.4 35.1 35.2 35.2 

8 0.6 0.5 0.7 0.6 0.6 0.6 0.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

9 0.9 0.9 1.0 0.9 0.9 0.9 0.9 1.8 1.8 1.7 1.7 1.8 1.7 1.8 

10 0.9 0.9 1.1 0.9 0.9 0.9 0.9 1.9 1.9 1.8 1.8 1.9 1.8 1.9 

 

Table 3: Inlet flow rate distributions for multiple-inlet system with 0.15 m channel gap, with or without wind. 

Total flow rate 400 kg/h 800 kg/h 

Wind direction  - 45
o 

90
o 

135
o 

 - 45
o 

90
o 

135
o 

Wind velocity 

(m/s) 0 1 2 1 2 1 2 0 1 2 1 2 1 2 

In
le

t 

1 260.5 265.3 283.3 260.9 264.3 261.0 263.9 521.5 523.8 521.7 522.7 432.4 521.8 522.8 

2 37.2 37.2 37.8 36.5 32.5 36.9 35.4 74.4 74.5 74.1 72.7 84.1 74.3 73.8 

3 24.1 23.8 22.7 24.2 24.4 24.0 23.8 48.0 47.9 48.1 48.3 61.6 48.0 47.9 

4 29.2 28.4 25.2 29.3 29.6 29.1 28.7 58.3 57.9 58.3 58.5 78.9 58.2 58.1 

5 20.0 19.2 15.7 20.0 20.4 19.9 19.8 39.8 39.4 39.9 40.0 56.0 39.8 39.6 

6 16.0 14.7 10.4 16.0 15.8 15.9 15.3 31.8 31.2 31.8 31.7 47.1 31.7 31.6 

7 11.5 9.9 4.6 11.5 11.3 11.6 11.3 22.9 22.2 22.9 22.7 35.1 22.9 22.8 

8 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.8 0.7 0.8 0.8 1.1 0.8 0.8 

9 0.6 0.6 0.5 0.6 0.6 0.6 0.6 1.2 1.2 1.2 1.2 1.8 1.2 1.2 

10 0.6 0.7 -0.4 0.6 0.7 0.6 0.7 1.3 1.3 1.3 1.3 1.9 1.3 1.3 

 




