
Cellular-Enabled Machine Type Communications:

Recent Technologies and Cognitive Radio Approaches

Abdelmohsen Ali

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University
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Abstract

Cellular-Enabled Machine Type Communications: Recent

Technologies and Cognitive Radio Approaches

Abdelmohsen Ali, PhD.

Concordia University, 2016

The scarcity of bandwidth has always been the main obstacle for providing reliable high

data-rate wireless links, which are in great demand to accommodate nowadays and imme-

diate future wireless applications. In addition, recent reports have showed inefficient usage

and under-utilization of the available bandwidth. Cognitive radio (CR) has recently emerged

as a promising solution to enhance the spectrum utilization, where it offers the ability for

unlicensed users to access the licensed spectrum opportunistically. By allowing opportunis-

tic spectrum access which is the main concept for the interweave network model, the overall

spectrum utilization can be improved. This requires cognitive radio networks (CRNs) to con-

sider the spectrum sensing and monitoring as an essential enabling process for the interweave

network model.

Machine-to-machine (M2M) communication, which is the basic enabler for the Internet-of-

Things (IoT), has emerged to be a key element in future networks. Machines are expected to

communicate with each other exchanging information and data without human intervention.

The ultimate objective of M2M communications is to construct comprehensive connections

among all machines distributed over an extensive coverage area. Due to the radical change

in the number of users, the network has to carefully utilize the available resources in order to

maintain reasonable quality-of-service (QoS). Generally, one of the most important resources

in wireless communications is the frequency spectrum. To utilize the frequency spectrum in

IoT environment, it can be argued that cognitive radio concept is a possible solution from

the cost and performance perspectives. Thus, supporting numerous number of machines is

possible by employing dual-mode base stations which can apply cognitive radio concept in

addition to the legacy licensed frequency assignment.
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In this thesis, a detailed review of the state of the art related to the application of spec-

trum sensing in CR communications is considered. We present the latest advances related to

the implementation of the legacy spectrum sensing approaches. We also address the imple-

mentation challenges for cognitive radios in the direction of spectrum sensing and monitoring.

We propose a novel algorithm to solve the reduced throughput issue due to the scheduled

spectrum sensing and monitoring. Further, two new architectures are considered to signifi-

cantly reduce the power consumption required by the CR to enable wideband sensing. Both

systems rely on the 1-bit quantization at the receiver side. The system performance is analyt-

ically investigated and simulated. Also, complexity and power consumption are investigated

and studied.

Furthermore, we address the challenges that are expected from the next generation M2M

network as an integral part of the future IoT. This mainly includes the design of low-power

low-cost machine with reduced bandwidth. The trade-off between cost, feasibility, and per-

formance are also discussed. Because of the relaxation of the frequency and spatial diversities,

in addition, to enabling the extended coverage mode, initial synchronization and cell search

have new challenges for cellular-enabled M2M systems. We study conventional solutions with

their pros and cons including timing acquisition, cell detection, and frequency offset estima-

tion algorithms. We provide a technique to enhance the performance in the presence of the

harsh detection environment for LTE-based machines. Furthermore, we present a frequency

tracking algorithm for cellular M2M systems that utilizes the new repetitive feature of the

broadcast channel symbols in next generation Long Term Evolution (LTE) systems. In the

direction of narrowband IoT support, we propose a cell search and initial synchronization

algorithm that utilizes the new set of narrowband synchronization signals. The proposed

algorithms have been simulated at very low signal to noise ratios and in different fading

environments.
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Chapter 1

Introduction

1.1 Machine Type Communications and Internet Of

Things

The Internet technology has undergone enormous changes since its early stages and it has be-

come an important communication infrastructure targeting anywhere, anytime connectivity.

Historically, human-to-human (H2H) communication, mainly voice communication, has been

the center of importance. Therefore, the current network protocols and infrastructure are

optimized for human-oriented traffic characteristics. Lately, an entirely different paradigm of

communication has emerged with the inclusion of ”machines” in the communications land-

scape. In that sense, machines/devices that are typically wireless such as sensors, actuators,

and smart meters are able to communicate with each other exchanging information and data

without human intervention. Since the number of connected devices/machines is expected

to surpass the human-centric communication devices by tenfold, machine-to-machine (M2M)

communication is expected to be a key element in future networks [1]. With the introduction

of M2M communications, the next generation Internet or the Internet-of-Things (IoT) has

to offer the facilities to connect different objects together whether they belong to humans or

not.

Due to the radical change in the number of users, the network has to carefully utilize the

available resources in order to maintain reasonable quality-of-service (QoS). Generally, one

of the most important resources in wireless communications is the frequency spectrum. To

support larger number of connected devices in the future IoT, it is likely to add more degrees

of freedom represented in more operating frequency bands. However, the frequency spectrum
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is currently scarce and requiring additional frequency resources makes the problem of sup-

porting this massive number of devices even harder to solve. In fact, this issue is extremely

important especially for the cellular architecture since the spectrum scarcity problem directly

influences the reliability and the QoS offered by the network.

With the large coverage and flexible data rates offered by cellular systems, research efforts

from industry have recently been focused on optimizing the existing cellular networks consid-

ering M2M specifications. Among other solutions, scenarios defined by the 3rd Generation

Partnership Project (3GPP) standardization body emerge as the most promising solutions

to enable wireless infrastructure of M2M communications [2]. In this front, two special

categories, namely CAT-M for machine-type-communication (MTC) and Narrowband-IoT

(NB-IoT), have been incorporated by the 3GPP to Long-Term-Evolution (LTE) specifica-

tions to support M2M and IoT features. Due to the M2M communication challenges and

the wide range of supported device specifications, developing the features for M2M commu-

nication started as early as release 10 (R10) for the advanced LTE standard. This continued

to future releases including release 13 (R13) that is currently developed and expected to be

released late in 2016. By introducing the new systems, many implementation challenges arise

and have to be addressed by innovative solutions.

1.2 Cognitive Radio

The rapid demand for providing high throughputs in wireless communications that support

new applications such as video-streaming, cellular phones and high-speed Internet etc. makes

wireless communications a challenging field. For instance, cellular systems have experienced

a tremendous growth over the last decade, and this translates to requiring more frequency

spectrum to accommodate this unprecedented increase in the number of subscribed users.

However, spectrum is very scarce, and, if available, it is very expensive. At the same time,

the allocated spectrum has been shown to be severely under-utilized. This scarcity and

under-utilization of the spectrum usage necessitate exploiting the available spectrum oppor-

tunistically.

Cognitive radio (CR), as an emerging solution, offers the cognitive (secondary) users (SUs)
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the ability to access the licensed spectrum in an opportunistic manner. More specifically,

the CR techniques allow SUs to sense the unused spectrum and share it without significant

interference with other users (Spectrum sensing)[3], to manage the best available spectrum

to fulfill the user communication demands (Spectrum management)[4], to maintain certain

required quality of service (QoS) during switching to better spectrum (Spectrum mobility)[5],

and to provide a fair spectrum sharing among all coexisting users (Spectrum sharing)[6].

In addition to the small cell design, the application of the heterogeneous network concept

was investigated where cellular MTC networks can utilize other networks such as WiFi to

reduce the number of directly connected machines/users. On the other hand, cognitive radio

(CR) support is a promising solution for supporting massive MTC devices. It can be argued

that cognitive radio concept is a possible solution from the cost and performance perspec-

tives [7]. However, there are more practical challenges that need efforts from researchers in

order to have a reliable and a mature solution. Future standards are encouraged to provide

both options (i.e. the cognition concept and the heterogeneous network model).

1.3 Motivation

The key objectives of this thesis are to:

1. study the challenges for the next generation MTC cellular networks and provide an

efficient solution based on cognitive radio concept for the massive interconnected devices

in a scarce spectrum;

2. provide practical solutions in terms of spectrum sensing and monitoring to enable the

design of the interweave cognitive radio networks;

3. partially address the practical implementation challenges for the next generation cellu-

lar MTC networks;

4. develop analytical and simulation frameworks for the developed techniques.

The proposed work is important in various ways. It certainly addresses a timely topic

(cognitive radio systems in conjunction with cellular MTC and IoT), which is expected to play
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a major role in many of the future wireless communication systems. In fact, this technology

is expected to revolutionize how wireless communication networks will be implemented or

deployed in the future, with a focus on addressing the problems of spectrum under-utilization

and supporting numerous number of interconnected MTC devices.

The interweave cognitive radio network model has been chosen by many standards to im-

plement the cognition concept. Applying spectrum sensing and monitoring in both narrow-

band and wideband spectrum have been addressed by many researchers. However, increasing

the cognitive radio throughput given the constraint of reducing the harmful interference to

the primary user is a real challenge. Furthermore, the trade-off between complexity, power

consumption, and sensing performance is a critical aspect. An up to date architectures are

required to address these issues. In light of this, we believe that simpler and more practically

implementable spectrum sensing and monitoring techniques are still lacking in the literature.

MTC devices are expected to be deployed in harsh environments which typically can

be characterized by low coverage, ultra low power consumption, and reduced complexity.

Due to these reasons, a significant number of implementation challenges come to the picture

while defining the specifications for enhanced coverage user equipments in cellular enabled

networks. For instance, cell search and initial synchronization are significant challenges at

these low receiver capabilities with ultra low received power. Unconventional and system-

specific solutions are required to tackle these issues and to enable a reduced-complexity

enhanced-coverage devices. Due to the recent introduction to the MTC and IoT systems,

the current literature lacks this innovative techniques.

1.4 Thesis Contributions

The contributions of this thesis can be summarized as follows.

• Among various network models, we focus on the enabling technique for the interweave

cognitive radio networks which have received great attention from standards perspective

due to its reliability to achieve the required QoS. Several researchers have already

considered various aspects to realize efficient techniques for spectrum sensing. In this

direction, we have provided a detailed review of the state of the art related to the
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application of spectrum sensing in CR communications [8]. We present the latest

advances related to the implementation of the legacy spectrum sensing approaches [9].

• We address the challenges that are expected from the next generation MTC network

as an integral part of the future IoT. This mainly includes the design of low-power

low-cost machine with reduced bandwidth. The trade-off between cost, feasibility,

and performance are also discussed. Supporting numerous number of MTC devices is

possible by employing dual-mode base stations which can apply cognitive radio concept

in addition to the legacy licensed frequency assignment [7].

• We address the implementation challenges for cognitive radios in the direction of spec-

trum sensing and monitoring. We propose a novel algorithm to solve the reduced

throughput issue due to the scheduled spectrum sensing and monitoring [10][11][12].

Furthermore, we provide two new solutions for the high power consumption required

by the CR to enable wideband sensing. Both techniques employ one-bit quantizer to

significantly reduce the power budget [13][14][15]. However, the architectures for the

two solutions are different.

• Because of the relaxation of the frequency and spatial diversities, in addition, to en-

abling the extended coverage mode, initial synchronization and cell search have new

challenges for LTE-MTC systems. We study conventional solutions with their pros and

cons including timing acquisition, cell detection, and frequency offset estimation algo-

rithms for non LTE-MTC systems. We propose a technique to enhance the performance

by folding the time [16]. Furthermore, we propose a frequency tracking algorithm for

LTE-MTC systems that utilize the new repetitive feature of the broadcast channel

symbols [17]. In the direction of NB-IoT, we propose a cell search and initial synchro-

nization algorithm that utilizes the new set of narrowband synchronization signals [18].

The proposed algorithms have been simulated at very low Signal to Noise Ratios (SNR)

and in different fading environments.
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1.5 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter 2, we present some relevant background on the fundamentals of opportunistic

CR systems. We begin by introducing the CR concept, where we focus on interweave model

and mainly spectrum sensing and monitoring. We also present briefly the various types of

narrowband and wideband spectrum sensing schemes. Then, we introduce the basic concepts

of physical LTE systems and its relevant transmission technique, namely the Orthogonal

Frequency Division Multiplexing (OFDM). The essential information about the MTC and

NB-IoT categories are also covered. In the last part of this chapter, we provide the related

works to this research in the literature.

In Chapter 3, we present the major challenges of future M2M cellular networks such as

spectrum scarcity problem, support for low-power, low-cost, and numerous number of devices.

As being an integral part of the future IoT, the true vision of M2M communications cannot

be reached with conventional solutions that are typically cost inefficient. To this extent,

we present a complete fundamental understanding and engineering knowledge of cognitive

radios, heterogeneous network model, and power and cost challenges in the context of future

M2M cellular networks. Furthermore, we highlight the main challenges in CR systems that

would enable practical implementations.

As a step to address the CR challenges, in Chapter 4, we present a spectrum monitoring

algorithm for OFDM-based cognitive radios by which the primary user reappearance can

be detected during the secondary user transmission. The proposed technique reduces the

frequency with which spectrum sensing must be performed and greatly decreases the elapsed

time between the start of a primary transmission and its detection by the secondary net-

work. The OFDM impairments such as power leakage, Narrow Band Interference (NBI), and

Inter-Carrier Interference (ICI) are investigated and their impact on the proposed technique

is studied. Both analysis and simulation show that the energy ratio algorithm can effec-

tively and accurately detect the appearance of the primary user. We consider the algorithm

complexity in comparison to the conventional energy detector.

In Chapter 5, we present an ultra low power wideband spectrum sensing architecture by
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utilizing a one-bit quantization at the CR receiver. The impact of this aggressive quantiza-

tion is quantified and it is shown that the proposed method is robust to low signal-to-noise

ratios. Two different architectures are considered. The first approach assumes the Fast

Fourier Transform (FFT) based detection with the introduction of the one bit quantizer.

In the second technique, a window-based autocorrelation is utilized to estimate the power

spectral density of the quantized signal. We derive closed-form expressions for both false

alarm and detection probabilities for the fist approach and we analytically provide a proof

for the autocorrelation detector showing the impact of the aggressive quantization on the

autocorrelation function. For both techniques, the sensing performance and the analytical

results are assessed through comparisons with respective results from computer simulations.

In Chapter 6, we mainly address couple of challenges for the practical implementation side

for both LTE-MTC and NB-IoT systems. For LTE-MTC systems, we present an evaluation to

the conventional cell search and initial synchronization algorithms subject to the new system

requirements. The performance of most of the algorithms can be enhanced by utilizing

time averaging on the account of increasing the processing time. Furthermore, we present,

analyze, and evaluate a frequency tracking technique that relies on the repetitive nature of

the MTC broadcast channel. Moreover, we present a procedure for NB-IoT cell search and

initial synchronization subject to the special system design. In all cases, by simulating exact

LTE-MTC and NB-IoT systems, the performance of various algorithms is obtained with the

expected time budget to meet LTE-MTC and NB-IoT specifications.

In Chapter 7, we present a brief summery of our investigation and some important con-

clusions. We also suggest some potential topics for future research.
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Chapter 2

Background and Literature Review

In this chapter, a brief background pertaining to the main topics of this thesis is given,

including cognitive radio, spectrum sensing and monitoring, OFDM systems, legacy LTE

systems, and next generation LTE systems. It also summarizes recent works that relate to

the problems studied in this thesis.

2.1 Cognitive Radio

The electromagnetic radio frequency (RF) spectrum is a scarce natural resource, the use of

which by transmitters and receivers is typically licensed by governments. Static spectrum

access is the main policy for the current wireless communication technologies. Under this

policy, fixed channels are assigned to licensed users or primary users (PUs) for exclusive use

while unlicensed users or secondary users (SUs) are prohibited from accessing those channels

even when they are unoccupied. Nowadays, it becomes obvious that this frequency allocation

scheme cannot accommodate the constantly increasing demands of higher data rates. On the

contrary, it has been reported that localized temporal and geographic spectrum utilization

is extremely low [19]. Cognitive radio has emerged as an innovative technology to solve this

spectrum under-utilization problem in the next generation networks [20]-[21]. Following its

introduction, a great deal of effort has been expended to improve the efficiency of cognitive

radio networks. These works have been dedicated to develop technologies that either exploit

opportunities in time, frequency, and space domains or allow SUs to coexist with PUs in the

same spectrum bands with minimal interference.

Generally, there are three different models for the cognitive radio networks (CRN): the
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interweave, the underlay, and the overlay models. First, in the interweave network model,

unlicensed or secondary users are not allowed to access an occupied band by the licensed or

primary user. In fact, the Federal Communications Commission (FCC) is currently devel-

oping new spectrum policies that will allow SUs to opportunistically access a licensed band

when the PU is absent [22]. In these networks, the CR has to identify the available sub-bands

of the radio spectrum, or equivalently the spectrum holes, that are under-utilized (in part or

in full) at a particular instant of time and specific geographic location. Therefore, the funda-

mental task for CR is to sense the spectrum in order to detect whether the PU is present or

not. Indeed, industrial standardization bodies have preferred the interweave cognitive radio

model not only due to its applicability for these low under-utilization usage of the radio

spectrum, but also due to the fact that the interweave model can provide sufficient reliability

and reasonable guaranteed QoS. As a consequence, standards such as IEEE 802.22, IEEE

802.11af, and Ecma-392 have been built to utilize the interweave network model.

Second, in the underlay network model, the coexistence of primary and secondary users

is allowed and hence the network is also termed as a spectrum sharing network [23][24].

However, PUs are always allocated a higher priority to use the spectrum than SUs. Fur-

thermore, the sharing must be maintained under the PU’s predefined interference constraint

(i.e., a predefined interference threshold which is also termed interference temperature). Due

to this constraint, the underlay technique is mainly useful for short range communications.

Third, in overlay cognitive networks, SUs and PUs are allowed to transmit concurrently.

The defining assumption made in the current overlay models is that the primary message is

known to the secondary transmitter in prior [24]. There are two main approaches to realize

this model: (1) with the help of advanced coding techniques [25] such as dirty paper coding

(a technique which completely mitigates a priori known interference over an input power

constrained additive white Gaussian noise (AWGN) channel), where the secondary user can

precode the transmitted stream in order to effectively null the interference at the secondary

receiver. While this approach violates the cognitive radio principle of protecting the primary

users, it provides a theoretical upper bound on the maximum throughput achievable by the

secondary users. (2) The secondary user splits its own power into two parts, one used to raise

the primary user power in order to mitigate the interference effect caused by the secondary
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Figure 2.1: Dynamic Spectrum Management Framework for interweave network

model [27][28]

user data and the other part is utilized to carry the secondary user data [26].

2.2 Spectrum Sensing in Interweave Network Model

The basic concept behind interweave cognitive radio is to exploit the available under-utilized

spectral resources by reusing unused spectrum in an opportunistic manner [20][27][29]. There-

fore, the process of realizing efficient spectrum utilization using the interweave cognitive radio

technology requires a dynamic spectrum management framework (DSMF) which provides a

complete architecture for the model with detailed functionalities. The DSMF proposed in [28]

is adopted due to its clear functionality, well-defined interfaces among various blocks, and

relevance to our discussion. This DSMF consists of four main blocks: spectrum sensing

and monitoring, spectrum analysis, spectrum decision and spectrum mobility, as shown in

Fig. 2.1. The tasks required for adaptive operation in one cognitive cycle can be briefly

discussed as follows [20]:

• Spectrum sensing and monitoring: A cognitive radio senses the available spectrum,

captures their information, and then detects the spectrum holes. Spectrum sensing is

also able to capture the proper observations about the spectrum holes in order to assist

the analysis stage for the spectrum characterization. If the CR is already camping on
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a spectrum slice for communication, then the occupied narrowband is monitored to

determine whether the original licensed user reappears or not.

• Spectrum analysis: The characteristics of the spectrum holes that are detected through

spectrum sensing are estimated. The primary user activity and the spectrum band

information such as operating frequency and bandwidth have to be considered for in-

dividual holes. In fact, it is essential to define parameters such as interference level,

channel error rate, path-loss, link layer delay, and holding time that can represent the

quality of a particular spectrum band.

• Spectrum decision: A cognitive radio determines the data rate, the transmission mode,

and the bandwidth of the transmission. Then, the appropriate spectrum band is chosen

according to the spectrum characteristics and user requirements.

• Spectrum mobility: is the ability of a CR to vacate the channel when a licensed user is

detected.

Spectrum sensing is the most important component for the establishment of interweave

cognitive radio network. Indeed, spectrum sensing is the task of obtaining awareness about

the spectrum usage [30][3]. Spectrum sensing and monitoring techniques can be classi-

fied based on the size of the band of interest as shown in Fig. 2.2. Narrowband sens-

ing/monitoring [29][3] tackles the problem of deciding whether a particular slice of the spec-

trum is a hole or not. On the contrary, wideband spectrum sensing [30][31] is based on

classifying individual slices of a wideband to be either occupied or vacant. As a matter of

fact, both sensing procedures are required during the cognitive cycle. We have to empha-

size that there are usually two distinct phases for the PU detection in interweave networks.

During the initial sensing phase, wideband sensing is required to provide varieties for the

available spectrum holes. This piece of information assists the spectrum analysis and deci-

sion logic to characterize the spectrum holes and to select the proper suitable hole that best

fits the cognitive radio requirements.

11



Spectrum Sensing

Narrowband Wideband

Sensing Monitoring Nyquist based SubNyquist based

Dynamic 

Frequency 

Hopping

Monitoring 

during 

Reception

FFT-based
Multi-bank 

Filter
Multi-Coset

Compressive 

Sensing (CS)
Coherent

Non-

Coherent

Receiver 

statistics
Energy Ratio

Wavelet 

Transform

Power 

Efficient 

Version
Digital CS Analogue CS

Sequential 

sensing

Sampling
Spectrum 

Construction
Localization

Non-uniform 

quantization

Random 

Sampling

Optimization 

Model

Optimization 

Algorithms

Other 

Algorithms

Orthogonal 

Matching 

Pursuit (OMP)

Basic Pursuit 

(BP)

Energy 

Detector

Matched 

Filter

Eigen-value 

based 

detector

Feature 

Detector

Waveform 

detector

Correlation 

Detector

Cyclo-

stationary 

detectorOther 

techniques

Figure 2.2: Classification for the spectrum sensing approaches based on the bandwidth size.

2.3 Narrowband Sensing and Monitoring

In interweave networks, prior to communication, secondary user must sense the spectrum to

detect whether it is available or not. Since the CR users do not access the spectrum during

the sensing period, this period is called the quiet period (QP) [32]. As a result of this limited

sensing duration, only a certain accuracy can be guaranteed for spectrum sensing results.

Moreover, the spectrum efficiency is decreased as some portion of the available time slot

is used for sensing instead of data transmission [33]. One approach to reduce the effect of

the wasted time in QPs is to employ Dynamic Frequency Hopping (DFH) which assumes

that the SU is scheduled to switch from one band to another based on a prior knowledge of

the hopping pattern [34][35]. During communication, SU must be able to detect very weak

signals generated by the primary user in order to quickly vacate the occupied spectrum. Thus,

primary user detection is essential by continuously monitoring the utilized spectrum to release

the spectrum. Traditionally, spectrum monitoring techniques rely on the periodic spectrum

sensing during quiet periods [36]. The processing is usually applied over the received signal
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the Nyquist-based wideband sensing techniques. (c) Block diagram for the digital logic of

the wideband compressive sensing approach.

at the SU to explore a specific feature to the primary user.

In general, the problem of narrowband spectrum sensing is to decide whether a particular

slice of the spectrum is ”available” or not. That is, in its simplest form, it is required to

discriminate between the two hypotheses defined by (2.1), where x(n) represents a primary

user’s signal observed at the SU receiver, w(n) is a complex symmetric AWGN with zero-

mean and variance σ2
w such that w(n) ∼ CN (0, σ2

w), and n represents time. The received

signal y(n) can be vectorized to probably represent the received signal at different antenna

ports in case of multi-receive antenna systems. H0 : y(n) = w(n)

H1 : y(n) = x(n) + w(n)
(2.1)

The performance of the detection algorithm can be summarized with two probabilities:

the probability of miss-detection PMD and the probability of false alarm PFA [37][38]. PMD
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is the probability of miss-detecting a primary signal when it is truly present. For a given

decision statistic Λ, the miss-detection probability can be defined by PMD = Pr
[
Λ < γ |H1

]
where γ is a threshold that should be determined. On the other hand, PFA is the probability

that the test incorrectly decides that the primary user is present when it is actually not. The

false alarm probability can be defined by PFA = Pr
[
Λ > γ |H0

]
. Generally, PFA should be

kept as small as possible in order to prevent under-utilization of transmission opportunities

while PMD needs to be minimized.

Typically, the performance of a detector is quantified in terms of its receiver operating

characteristics (ROC) curve, which represents the probability of miss-detection PMD as a

function of the probability of false alarm PFA. By varying the threshold γ, the operating

point of a detector can be chosen anywhere along its ROC curve. Clearly, the fundamental

problem of detector design is to choose detection criteria, and to set the decision threshold γ

to achieve good detection performance. These matters are treated in detail in the literature

of detection theory. Detection algorithms are either designed in the framework of classical

statistics, or in the framework of Bayesian statistics [39]. In the classical approach, either H0

or H1 is deterministically true, and the objective is to minimize PMD subject to a constraint

on PFA; this is known as the Neyman-Pearson (NP) criterion. In the Bayesian framework,

by contrast, it is assumed that the source selects the true hypothesis at random, according

to some priori probabilities. The objective is to minimize the so-called Bayesian cost.

2.3.1 Narrowband Spectrum Sensing Approaches

In this section, we will be focusing on the most popular narrowband sensing techniques

to which most of the recent research activities have been directed. Thus, matched filter

detection, energy detection, and cyclostationary feature detection will be considered. A

general block diagram for these approached is shown in Fig. 2.3-(a). Also, a brief summary

of the main approaches is introduced in Table 2.1.

1. Energy Detection: It is a non-coherent detection method that avoids the need for

prior knowledge of the PUs and the complicated receivers required by a matched fil-

ter [3][38]. The signal is detected by comparing the output of the energy detector
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Sensing tech-

niques

Advantages Disadvantages

Matched-

filtering

• Optimal performance.

• Low computational cost.

• Require prior information of

the primary user.

Energy detec-

tion

• No prior information.

• Low computational cost.

• Poor performance for low

SNR.

• Cannot differentiate users.

Cyclostationary

feature

• Valid in low SNR region.

• Robust against interference.

• Need partial prior informa-

tion.

• High computational cost.

Table 2.1: Pros and cones for different narrowband sensing techniques

with a threshold which depends on the noise floor. Both the implementation and the

computational complexity are relatively low. A major drawback is that it has poor

detection performance under low SNR scenarios and cannot differentiate between the

signals from PUs and the interference from other cognitive radios. Also, it can not

detect spread spectrum signals since they seem to be noise.

2. Matched-filtering Detection: Known patterns are usually utilized in wireless sys-

tems to assist synchronization or for other purposes [40][41]. Such patterns include

preambles, regularly transmitted pilot patterns, spreading sequences etc. In the pres-

ence of a known pattern, sensing can be performed by correlating the received signal

with a known copy of itself. This approach represents the optimal solution for spec-

trum sensing since it maximizes the signal-to-noise ratio in the presence of additive

noise. However, it relies on prior knowledge of the PUs and requires cognitive radios

to be equipped with carrier synchronization and timing devices, leading to increased

implementation complexity.

3. Feature Detection: First, a subclass of feature detectors, known as waveform de-

tector, relies on a prior knowledge of the PU signal construction. Usually, preambles,

mid-ambles, pilot carrier, and/or spreading sequences are intentionally added to the PU
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signal to help synchronization process [3]. Waveform detection is a coherent sensing

method that makes use of the known signal patterns. In the presence of known signals,

the decision statistic is formed by correlating the received signal to a true-copy of the

know pattern. The output is then compared to a threshold value in order to detect the

presence or absence of a PU [42]. Second, another subclass of feature detectors depends

on the second order statistics of the received signal. In some cases such as OFDM, the

feature is attached to the periodicity of the PU signal itself and second order statistics

such as autocorrelation can reveal the explicit correlation structure imposed by the

insertion of CP at the PU transmitter. Due to the popularity of OFDM in advanced

communication systems nowadays, a special attention has been made to design good

decision statistic that provides good detection performance and requires the minimum

set of known information about the OFDM signal [43][44]. Third, since PU signals are

typically digitally modulated, the second order periodicity inherited in these signals ex-

ploit a cyclostationary feature. These detection algorithms can differentiate noise from

primary users’ signals. Usually, cyclostationary features arise due to the periodicity

in the signal or in its statistics. Indeed, cyclostationary signals exhibit second order

periodicity. Thus, the Cyclic Autocorrelation Function (CAF) at a cyclic frequency α

is defined by (2.2) where τ is the lag value, E denotes expectation, and (∗) refers to

the conjugate operation. From the implementation perspective, the CAF is estimated

based on the received samples, y(n), and prior knowledge to α and/or τ [45]. It acts as

a decision statistic which is compared to a threshold to decide whether a PU is present

or not.

Ry(α, τ) =
1

N

N−1∑
n=0

E
[
y(n)y∗(n+ τ)

]
e−jαn (2.2)

4. Other techniques: Due to the limitations of practical system implementation and

coherent detection for the conventional narrowband sensing techniques, more investi-

gations and innovative solutions have been recently presented. Among those methods,

the eigenvalue based detection [46][47] has been proposed. Some communication signals

impart a specific known structure to the covariance matrix which can be obtained based

on the correlation among the received signal samples. In general, advanced communi-
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cation systems, that include digital modulation, multiple antenna system, Space-Time

Block Code (STBC), Space-Frequency Block Code (SFBC), or OFDM, impose specific

structure to the primary signal characteristics. Research efforts are directed to design

detectors for each of these properties to explore the spectrum occupancy of the primary

signal.

2.4 Wideband Spectrum Sensing

Wideband spectrum sensing techniques aim to sense a frequency bandwidth that exceeds the

coherence bandwidth of the channel. Based on the sampling frequency, two main classes of

solutions are available to deal with the wideband sensing problem. The first approach to

realize wideband sensing assumes that it is feasible to sample the desired spectrum by the

ordinary Nyquist rate [30]. The common challenge in these approaches is the high computa-

tional complexity attached to the required ultra high sampling rates, the high computational

complexity of the solutions, and the required sensing time especially when practical consid-

erations are taken into account such as the Automatic-Gain-Control (AGC) settling time,

the switching time for the Phase-Locked-Loop (PLL), and the processing delay.

The second approach to perform wideband sensing is based on the sub-Nyquist techniques.

These approaches [48] are utilized to relax the long sensing delay or the higher computational

complexity and hardware cost resulted from the high sampling rate implementations. Com-

pressive sensing [30] becomes a promising candidate to realize this sub-Nyquist approach.

Here, a signal can be efficiently acquired using relatively few measurements by which unique

representation of the signal can be found based on the signal’s sparsity or compressibility in

some domain. Other techniques such as multi-cosets [49] [50] can also be used to reconstruct

the spectrum from fewer samples. The idea here is to chose a sampling sequence that enables

this reconstruction. In this section, we introduce the basic concepts for the conventional

approaches to perform wideband sensing. Also, we include the recent research advances

introduced for each approach to enhance its feasibility.
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2.4.1 Nyquist-based Wideband Sensing Approaches

A simple approach of wideband spectrum sensing is to directly acquire the wideband signal

using a standard ADC and then employ digital signal processing techniques to detect spec-

tral opportunities. A general block diagram for these approached is shown in Fig. 2.3-(b).

We present the most common approaches along with their recent enhancements. Various

techniques are available for the Nyquist-based wideband sensing.

1. Multiband Sensing or FFT-based Sensing: An FFT-based technique is originally

proposed in [51]. In this approach, the wideband signal is sampled by a conventional

ADC at a high sampling rate. The samples are then divided into segments, where

the discrete Fourier transform is obtained for each segment individually. The wideband

spectrum from various segments are utilized to obtain an estimate for the power spectral

density which is then divided into a series of narrowband spectra. Spectral opportunities

are detected using binary hypotheses tests for various narrowbands.

2. Wavelet-based Sensing: A wavelet-based spectrum sensing algorithm is proposed

in [52][53]. In this algorithm, the power spectral density of the wideband spectrum

was modelled as a train of consecutive frequency sub-bands, where the PSD is smooth

within each sub-band but exhibits discontinuities and irregularities on the transitions of

two neighbouring sub-bands. Unlike conventional Fourier transform, wavelet transform

has been used as it provides information about exact location of frequency transition

locations and spectral densities. Therefore, the wavelet transform is used to locate the

singularities of the wideband PSD. The trade-off is usually the performance versus the

sensing time and complexity.

3. Filter-bank Sensing: A bank of prototype filters (with different shifted central fre-

quencies) is presented in [54] to process the received wideband signal. The baseband

can be directly estimated by using a prototype filter. Other bands can be obtained

by modulating the prototype filter so that its center frequency is adjusted to select

the desired band. In each band, the corresponding portion of the spectrum for the

wideband signal is down-converted and filtered to form a baseband version to which
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a narrowband sensing algorithm is applied. This algorithm can therefore capture the

dynamic nature of wideband spectrum by using low sampling rates. Unfortunately,

due to the parallel structure of the filter bank, the implementation of this algorithm

requires a large number of RF components.

2.4.2 Sub-Nyquist Wideband Sensing Approaches

Due to the drawbacks of high sampling rate or high implementation complexity in Nyquist

systems, sub-Nyquist approaches are drawing more and more attention in both academia and

industry. Sub-Nyquist wideband sensing refers to the procedure of acquiring wideband signals

using sampling rates lower than the Nyquist rate and detecting spectral opportunities using

these partial measurements. In addition to the multi-coset approach, compressive sensing is

the most common technique that facilitate the sub-Nyquist wideband sensing. Thus, we will

briefly provide some background about compressive sensing in cognitive radio networks just

for reference.

There are some basic definitions that need to be considered in the conventional compressed

sensing theory [48]:

• x is an M × 1 vector (i.e. x ∈ CM) which is sparse in the basis of Ψ where Ψ is an

M ×M transform matrix (i.e. Ψ ∈ CM×M).

• s is an M × 1 sparse vector (i.e. s ∈ CM) which has only K non-zero elements such

that K ≪ M . Finally, we have the transform relation x = Ψ s.

• y is N × 1 vector (i.e. y ∈ CN) which represents the available measurements such that

N ≪ M . Assume that y can be represented as M linear combinations of x such that

y = ΦT x where Φ is the projection matrix or the measurement matrix and Φ ∈ RM×N .

• When Nyquist sampling is used, the measurement matrix is a simple identity matrix

(i.e. Φ = IM), therefore the measured vector is the same as the Nyquist samples.

Compressive sensing theory attempts to recover the exact or very accurate version of

the original sparse signal s from few measurements y by solving the linear set of equations

y = ΦT Ψ s = A s, where A is the sensing matrix such that the signal s can be reconstructed
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from few measurements represented by the signal y. In fact, the classical theory of linear

algebra has some basic rules to solve this linear system of equations. If there are fewer

measurements than unknowns (N < M) which is the case, then the problem is under-

determined even when A has full rank. Knowledge of A s = y restricts s to an affine subspace

of CM , but does not determine s completely. In order to have an accurate and guaranteed

solution to the under-determined system, the sensing matrix should be properly selected

to satisfy some constraints. A large number of algorithms that attempt to solve the linear

system within the broader field of compressed sensing have been studied using the restricted

isometry property (RIP) for the matrix A [55]. This property characterizes matrices which

are nearly orthonormal, at least when operating on sparse vectors.

Compressive sensing theory was firstly introduced to sense wideband spectrum in [56].

This technique used fewer samples closer to the information rate, rather than the Nyquist

rate, to perform wideband spectrum sensing. To implement compressive sensing in cogni-

tive networks, [56] shows the detailed procedure which is shown in Fig. 2.3-(c). First, a

sub-Nyquist sampler is required to obtain the few measurements. Second, the spectrum is

reconstructed from the measured samples. Third, a localization and identification for the

occupied sub-bands are explored to finalize the wideband sensing decisions.

1. Sub-Nyquist Sampling: Let the received signal y(t) be sampled by the conventional

Nyquist rate. After conversion, the discrete time signal can be denoted by y(n) =

y(t)|t=nT0 where T0 is the Nyquist sampling period. Assume that the sensing period

Tsensing = MT0, therefore we have traditionally M digital samples from the signal y(t)

within the time period Tsensing. Instead, the digital receiver converts the continuous-

domain signal y(t) to a discrete sequence y ∈ CN of length N such that N ≪ M .

This process is defined as the sub-Nyquist-rate sampling process. One solution is the

recurrent and non-uniform sampling that is equivalent to choosing some samples from

a uniform grid, which can be obtained using a sampling rate fs that is higher than the

Nyquist rate. The uniform grid is then divided into blocks of M consecutive samples,

and in each block N samples are retained such that N ≤ M while the rest of samples

are skipped. The process is repeated periodically to continuously achieve sub-Nyquist

sampling.

20



Another realization for non-uniform sampling is the random sampler which is the class

of non-recurrent sampling. The sampling process does not show any periodicity and

can only be described statistically. The theoretical framework is based on the random

sampling theory. Unlike uniform sampling, the Nyquist rate is no longer the barrier

under a random sampling scheme [57] [58]. It is possible to unambiguously reconstruct

a class of spectrally sparse signals that is sampled randomly below the Nyquist rate.

2. Spectrum Reconstruction: The main challenge for compressive sensing is the spec-

trum reconstruction part. It is required to accurately reconstruct the signal spectrum

s represented by M frequency samples at the Nyquist rate from the available measure-

ment set y which has a reduced size of N < M elements. If s represents the spectrum of

the Nyquist rate samples x, then the transform matrix Ψ represents the inverse discrete

Fourier transform matrix such that Ψ = F−1 where F ∈ CM×M is the discrete Fourier

transform matrix. Then, we have a linear set of equations y =
(
ΦT F−1

)
s = A s

where A is the sensing matrix. Assuming that the sensing matrix AN×M is known, of

course with some constraints, one can minimize the error between the measurements y

and the linear system of equations A s to find the best guess for s.

The reconstruction of sparse signals can be reduced to an optimization problem with

efficient algorithms. One of them is the Orthogonal Matching Pursuit (OMP) which

formulates the problem as finding the sparsest solution of linear equations y = A s

such that the linear programming is used to find the solution based on the optimization

problem given by (2.3). Unfortunately, ℓ0 minimisation is computationally intractable.

In fact, in complexity theory, ℓ0 minimisation can be classified as an NP-hard problem

in general [59]. An NP-hard (or Non-deterministic Polynomial hard) is at least as

hard as the NP-Complete problems which is the problem of solving all possible set of

NP problems. When s is sparse, ℓ0 minimisation is often correct, but very difficult

to compute. The Basis Pursuit (BP) [60] method considers a convex relaxation of

(2.3). For certain RIP properties, the sparse signal can be exactly recovered via the ℓ1

minimization, given by (2.4). The necessary condition that every 2K columns of A have

to be linearly independent, has to be strengthened somewhat. The precise condition is
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being RIP of order 2K [55] which is obeyed by many types of matrices (e.g. Gaussian

random matrices obey the RIP with high probability).

ŝ = argmin
s

∥s∥0 , s.t. y = A s (2.3)

ŝ = argmin
s

∥s∥1 , s.t. y = A s (2.4)

3. Localization and Identification: After the reconstruction of the wideband spec-

trum, the spectrum holes are localized and identified so that the SU can decide which

band is suitable for its transmission. The spectrum is assumed to be K sparse. The

typical approach here is to obtain the wavelet transform for the estimated spectrum

and hence the spectrum discontinuities can be obtained. The locations of those discon-

tinuities determine the boundaries for the occupied and vacant bands. Now, the bands

are localized by having proper corner frequencies for both vacant and occupied bands.

The last step is to distinguish which band is vacant and which is occupied. In fact, this

reduces the problem of wideband sensing into a narrowband one in which the spectrum

is known. Therefore, a simple energy detection can do the job of identifying the band

type of being whether a spectrum hole or not.

In fact, compressive sensing has concentrated on finite-length and discrete-time signals.

Thus, innovative technologies are required to extend the compressive sensing to continuous-

time signal acquisition, i.e., implementing compressive sensing in analogue domain. To realize

the analogue compressive sensing, an analogue-to-information converter (AIC), which could

be a good basis for the above-mentioned algorithms, is proposed in [61]. For sparse input

signals, AIC promises greatly reduced digital data rates (matching the information rate of the

signal). The AIC-based model consists of a pseudo-random number generator, a mixer, an

accumulator, and a low-rate sampler [62][63]. The pseudo-random number generator produces

a discrete-time sequence that demodulates the signal x(t) by a mixer. The accumulator is

used to sum the demodulated signal for Ts seconds, while its output signal is sampled using

a low sampling rate. After that, the sparse signal can be directly reconstructed from partial

measurements using compressive sensing algorithms.
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2.5 OFDM Systems

OFDM is a multi-carrier modulation technique that is used in many wireless systems and

proven as a reliable and effective transmission method. In an OFDM scheme, a large number

of orthogonal, overlapping, narrow band sub-channels or sub-carriers, transmitted in parallel,

divide the available transmission bandwidth. The separation of the sub-carriers is theoreti-

cally minimal such that there is a very compact spectral utilization. The attraction of OFDM

is mainly due to how the system handles the multipath interference at the receiver. Multi-

path generates two effects: frequency selective fading and Inter Symbol Interference (ISI).

The ”flatness” perceived by a narrow-band channel overcomes the former, and modulating

at a very low symbol rate, which makes the symbols much longer than the channel impulse

response, diminishes the latter. Using powerful error correcting codes together with time

and frequency interleaving yields even more robustness against frequency selective fading,

and the insertion of an extra guard interval between consecutive OFDM symbols can reduce

the effects of ISI even more.

In general, OFDM reduces the need for complex equalizers at the receiver side. Other

advantages of OFDM include robustness against NBI, scalability, and easy implementation

using FFT algorithm. OFDM can be also used as a multiple access technique, namely

Orthogonal Frequency Division Multiple Access (OFDMA), where independent sources can

share both time and frequency to transmit their data. Due to these advantages, OFDM is

utilized as the physical layer modulation technique for so many wireless systems including

DVB-T/T2, LTE, IEEE 802.16d/e, IEEE 802.11a/g, and the first cognitive standard IEEE

802.22. For cognitive radios, OFDM is preferred but also it has some challenges that have

been studied [64].

On the other hand, there are some challenges in OFDM systems, the large dynamic range

of the signal (also referred as peak-to-average power ratio (PAPR)) and its sensitivity to

frequency errors which may result in ICI. Moreover, the finite time-window in the receiver

DFT will result in a spectral leakage from any in-band and narrow band signal onto all

OFDM sub-carriers. In this introduction, we will focus on the ICI reasons and solutions.
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2.5.1 ICI In OFDM Systems

OFDM system may have an ICI, which means a sub-carrier frequency component is influenced

by other sub-carrier frequency components. Generally, the observed frequency domain signal

at each sub-carrier has three components [65]: (1) The original transmitted symbol whose

magnitude and phase are distorted due to the effects of Carrier Frequency Offset (CFO),

Sampling Frequency Offset (SFO), and the channel. (2) An ICI term whose source may be

the carrier signal distortion or the sampling clock distortion or both. (3) The AWGN noise.

The bit error rate of the OFDM system is significantly degraded by having considerable ICI

term, and hence traditional OFDM system design should be able to carefully reduce ICI

effect.

In general, there are two types of distortion associated with the carrier signal [66]. One is

the Phase Noise (PN) due to the instability of carrier signal generators used at the transmitter

and receiver, which can be modelled as a zero-meanWiener random process. The ICI from PN

can be estimated and then compensated for all sub-carriers by applying the common phase

error over the pilot tones. Actually, the effect of PN can be greatly reduced by increasing

the sub-carrier spacing, ∆f . We will (optimistically) assume that ∆f is large enough such

that the ICI introduced by the PN is neglected with respect to the ICI generated by either

CFO or SFO.

The other type of distortion is the carrier frequency offset caused by the difference between

the carrier frequencies generated by the transmitter and receiver oscillators, or by the Doppler

frequency shift. If foffset denotes the frequency offset between the transmitter and receiver,

then the normalized CFO is defined as ε = εi+εf = foffset/∆f where εi is the integer part of

the normalized CFO while εf is the fractional part. In fact, if ε is only integer (i.e: εf = 0),

this means that the sub-carriers are shifted by a non-zero integer number. Although the

orthogonality among the sub-carrier frequency components is not destroyed in this case, the

receiver will decode wrong symbols as the symbol order has been changed by this frequency

shift. Therefore, powerful estimation and compensation techniques, that can guarantee a zero

miss detection probability for the CFO integer part, should be used even if the complexity

is relatively high. Even after estimating and compensating both integer and fractional CFO,
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a residual CFO, εr, which represents the remaining uncompensated fractional CFO always

exist. The SNR degradation, SNRDCFO, due to this residual CFO is analytically analysed

in [65]. The analysis shows that in the AWGN channel and when the number of sub-carriers

is large, the SNR degradation is given by,

SNRDCFO =
10

3 ln(10)

(
π εr

)2
SNR dB (2.5)

The most important sampling clock distortion that causes ICI is the sampling frequency

offset between the transmitter and receiver which mainly occurs due to the mismatch between

the transmitter and receiver oscillators. SFO gives rise to the phase offset between the

transmitter and receiver clocks to vary with time such that the received continuous-time

waveform is sampled at an interval of (1 + δ)Ts instead of Ts where Ts is the ideal sampling

period and δ (usually expressed in part per million or ppm) is the normalized difference

between the periods of the two clocks. If δ is estimated by the receiver, the compensation

can be carried out by feeding the clock generator with the amount of time shift in order

to adjust the clock or by interpolating the received time domain samples with a fractional

delay [67]. In both cases, there will be a residual SFO, δr, by which the SNR over different

frequency sub-carriers is degraded. Actually, the SNR degradation due to SFO in the kth

sub-carrier, SNRDSFO(k), is analysed in [68] and is given by,

SNRDSFO(k) = 10 log10

(
1 +

1

3

(
π δr k

)2
SNR

)
dB (2.6)

2.5.2 OFDM System Block Diagram

For the functionality level, a typical block diagram of the OFDM transmitter and receiver is

shown in Figure 2.4. This model is very close to the OFDM system discussed in [64].

At the transmitter side, data coming from the source is firstly segmented into blocks where

each block is randomized, channel encoded, and interleaved separately. After interleaving, the

data is modulated by a QAM mapper. The frequency domain OFDM frame is constructed

by combining: (a) One or more training symbols or preambles that are used for both time

and frequency synchronization at the receiver side. (b) The modulated data. (c) The BPSK

modulated pilots which are useful for data-aided synchronization algorithms employed by the

receiver.

25



Randomizer
Channel 

Encoder
Interleaver Mapper Frame Builder

Preamble

Insertion

Null 

Insertion

Pilot

Insertion

Reserved 

Sub-carriers 

Insertion

IFFT
CP 

Insertion

Preamble 

Detection

SFO & CFO 

Estimation

SFO & CFO 

Compensation

CP 

Removal
FFT

Channel 

Estimation

Channel 

Equalization

SFO and CFO 

Tracking

C
h

an
n

el

DeRandomizer
Channel 

Decoder
DeInterleaverDeMapper

Transmitter

Receiver

Spectrum 

Monitoring

Figure 2.4: Secondary user transmitter and receiver structures

It should be mentioned that each OFDM symbol has a guard band or a number of null

sub-carriers that develop a spectrum mask for the transmitted signal. Each Ns encoded

complex data symbols generated by the frame builder are used to construct one OFDM

symbol by employing the Inverse Discrete Fourier Transform (IDFT) block that is used to

synthesize the OFDM symbol, where Ns denotes the number of sub-carriers per one OFDM

symbol. Thus, the nth time-domain sample of the mth symbol can be expressed as given

by (2.7) where C(k,m) is the modulated data to be transmitted on the mth OFDM symbol

with the kth sub-carrier. To reduce the effect of ISI, the last Ng samples of the time domain

OFDM symbol are copied to the beginning of the symbol in order to form a guard time or

cyclic prefix.

s(n,m) =
1√
Ns

Ns/2−1∑
k=−Ns/2

C(k,m) ej2πkn/Ns (2.7)

At the receiver, the inverse blocks are applied. After timing synchronization (frame

detection, start of symbol timing, and SFO estimation and compensation) and frequency

synchronization (CFO estimation and correction), the cyclic prefix is removed. Then, the
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received OFDM symbol is transformed again into the frequency domain through an Ns point

DFT. The channel is then estimated and the received data is equalized. The complex data

output is then mapped to bits again through the De-mapper. De-interleaving, decoding, and

De-randomization are applied later to the received block to recover the original source bits.

2.6 Conventional and Next-Generation LTE Systems

2.6.1 Legacy LTE Framework

LTE has been designed as a highly flexible radio access technology to support several system

bandwidth configurations including 1.4, 3, 5, 10, 15, and 20 MHz. Radio spectrum access

is based on OFDM scheme. In particular, Single Carrier Frequency Division Multiple Ac-

cess (SC-FDMA) and OFDMA are used in uplink and downlink directions, respectively [69].

Differently from basic OFDM, they allow multiple access by assigning sets of sub-carriers to

each individual user. OFDMA can exploit sub-carriers distributed inside the entire spectrum,

whereas SC-FDMA can use only adjacent sub-carriers. OFDMA is able to provide high scal-

ability, simple equalization, and high robustness against the time-frequency selective nature

of radio channel fading. On the other hand, SC-FDMA is used in the LTE uplink to increase

the power efficiency of UEs, given that they are battery supplied.

Radio resources are allocated into the time/frequency domain. In particular, in the time

domain they are distributed every Transmission Time Interval (TTI), each one lasting 1 ms.

The time is split in frames, each one composed of 10 consecutive TTIs [70]. Furthermore,

each TTI is made of two time slots with length 0.5 ms, corresponding to 7 OFDM symbols in

the default configuration with short cyclic prefix. Indeed, two types of cyclic prefixes (CP)

are defined: the normal CP and the extended CP. For both, a single sub-frame duration is

1ms which is further divided into two slots with equal periods. For the normal CP type, a

slot is composed of 7 OFDM symbols. The CP length, say Ng, of the first symbol in each slot

is 10 samples and those of the other symbols are 9 samples long. For the extended CP type,

a slot consists of only 6 OFDM symbols and the CP length of each symbol is 32 samples.

In the frequency domain, instead, the total bandwidth is divided in sub-channels of 180
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kHz, each one with 12 consecutive and equally spaced OFDM sub-carriers. A time/frequency

radio resource spanning over two time slots in the time domain and over one sub-channel

in the frequency domain is called Physical Resource Block (PRB) and corresponds to the

smallest radio resource unit that can be assigned to an UE for data transmission. As the

sub-channel size is fixed, the number of PRBs varies according to the system bandwidth

configuration (e.g., 25 and 50 RBs for system bandwidths of 5 and 10 MHz, respectively).

On the uplink side, the call is initiated through the Physical Random Access Channel

(PRACH) which carries the preamble to the base station (eNodeB in LTE context). The data

and control are carried through the Physical Uplink Shared Channel (PUSCH) and Physical

Uplink Control Channel (PUCCH), respectively. For the physical downlink channels, there

are couple of channels dedicated for information exchange. Downlink data and signalling

information are time multiplexed within the subframe. In details, control channels occupy,

in each TTI, the first 1 to 3 OFDM symbols over the 14 available. Consequently, data

transmission is allowed during the remaining time. Downlink control signalling is carried by

three physical channels [71], namely the Physical Broadcast Channel (PBCH), the Physical

Downlink Control Channel (PDCCH), and the Physical Control Format Indicator Channel

(PCFICH). The PBCH carries the Master Information Block (MIB) which provides the most

essential system information such as the system bandwidth and the frame timing. This is in

a broadcast mode to which any user can listen. It is mapped to the first 4 OFDM symbols

in the second slot of a radio frame [72].

The network provides the UE with Downlink Control Information (DCI) messages that

are typically carried by the PDCCH [73]. This DCI carries the essential information by

which a UE can decode the coming data. For instance, the adaptive modulation and coding

information, the repetition index of the frame, the new data indication and other uplink

grants and downlink assignments are transmitted through DCIs. Thus, PDCCH is one of

the most important channels since it is the precondition for the correct data decoding. The

PDCCH is mapped to the first few symbols of the subframe. The number of OFDM symbols

that carry the control information is signalled by a fixed channel, namely the PCFICH.

Downlink data are transmitted by the eNB over the PDSCH [74]. As its name states, it is

shared among all the users in the cell as, in general, no resource reservation is performed in
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Figure 2.5: Radio frame structure for legacy LTE system for 20MHz bandwidth and Normal

CP type.

LTE. Transmission of PDSCH payloads is allowed only in given portion of the spectrum and

in certain time interval according to a scheme. An example of the typical structure of the

LTE downlink subframe is shown in Fig. 2.5, where it is possible to observe the case of a

LTE downlink subframe when 2 OFDM symbols. are dedicated to control messages.

2.6.2 LTE-MTC Framework

In this section, we present the main concepts that have been introduced to LTE-MTC. Since

part of the contribution of this thesis is related to the synchronization signals and the physical

broadcast channel employed by LTE-MTC, we provide a brief introduction for those topics.

In fact, MTC has the main weight of contribution for LTE future releases including Release-

13 (R13) that is currently being developed [75][76]. LTE-MTC systems are being improved

to support the special requirements including low cost, low data rate, and low power features

for M2M communications over LTE [76][77]. This can be realized by employing no spatial or

frequency diversity at the UE, low modulation orders, and very long duty cycles to entourage

the UE to sleep more. In addition, since MTC UE can suffer from a reachability issue, the
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specifications define enhanced coverage UEs that can still decode signals with an SNR of as

low as -15dBs. Moreover, frequency hopping is a new added feature to enhance detection

within the reduced bandwidth.

Since regular PDCCH crosses the whole system bandwidth, an LTE-MTC UE does not

have the capability of demodulating the legacy PDCCH as MTC UE bandwidth is restricted

to 1.4MHz. In [71], the authors have presented a new control channel design to support

enhanced coverage for LTE-MTC based on the existing Enhanced PDCCH (EPDCCH). The

EPDCCH is introduced in LTE-A Release-11 to achieve better spectral efficiency by exploit-

ing frequency selectivity and beamforming and also to provide greater flexibility of dynamic

allocation of control channel resources. The main contribution in [71] is to support repe-

tition codes which utilize the conventional time averaging to enhance the control channel

performance in LTE-MTC systems. Fortunately, this proposal has been accepted by LTE-

MTC group in their recent agreements [78]. However, the agreement indicates well-defined

specifications for the new control channel for MTC, namely MTC-PDCCH or MPDCCH,

which have not been considered by [71][70]. The new rules take into account the new system

structure and the performance targets for various applications.

In frequency-division duplexing mode, traditional LTE signal can be carried over 1.4, 3,

5, 10, 15, or 20MHz of bandwidth. To maintain the current base station (eNodeB in LTE

terminology) with minimal changes, the concept of a narrowband (NB) has been introduced

to support only 1.4MHz MTC UEs [77][79]. A narrowband is defined as a contiguous set of

6 PRBs or correspondingly 72 sub-carriers used for MTC operation. For example, Fig. 2.6

shows 16 different NBs for the typical 20MHz bandwidth. A normal CP is considered such

that a single sub-frame consists of 14 OFDM symbols. Due to the allowed number of PRBs,

the MTC UE shall employ 128-point FFT block at the receiver side to synthesize the received

time domain samples into the frequency domain sub-carriers. With the small bandwidth

offered to MTC UE, there is a significant loss of frequency diversity. To recover portion of this

gain, the LTE-MTC system will make use of frequency hopping between narrowbands [77][70].

The MTC UE has to hop from one NB to another after a predefined time period. The hopping

sequence shall be known in advance by the UE and it will be a cell specific feature.

Coverage enhancement (CE) is one of the main objectives for LTE-MTC which aims to
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achieve a goal of 15 dB improvement in the link budget when compared to legacy LTE.

To realize this objective, two broad categories, namely CE Mode A and CE Mode B, are

defined [78]. Typically, CE Mode A describes a set of behaviours for no CE or small CE

while CE Mode B is defined for UEs with medium and large CE. The CE mode is signalled

to the UE when the connection is established to the network. Initially, the UE shall estimate

its CE level based on its own power measurements.

2.6.2.1 Cell Specific Synchronization Signals

PSS and SSS sequences are two synchronization signals that introduce 504 distinct cell

IDs [80]. The cell IDs are grouped into 168 cell ID groups, and each group contains three

IDs for distinct sectors in a cell. A physical layer cell identity Ncell
ID = 3N1

ID +N2
ID is thus

uniquely defined by a number N1
ID in the range of 0 to 167, representing the cell ID group,

and a number N2
ID in the range of 0 to 2, representing the sector ID within the group.

The PSS is constructed from a frequency domain Zadoff-Chu sequence of length 63 [81].

The ZC sequence satisfies the constant amplitude zero autocorrelation property which limits

the PAPR and provides ideal cyclic autocorrelation. Three PSS sequences are employed in

LTE, corresponding to the three sector IDs. The SSS sequence is a second synchronization
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signal and is constructed as an interleaved concatenation of two binary m-sequences, each

of length 31. The combination of these two sequences differs between sub-frames 0 and 5.

The concatenated sequence is scrambled with a scrambling sequence given by the primary

synchronization signal.

2.6.2.2 Broadcast Channel in LTE-MTC Systems

To support coverage enhancement, repetition is introduced for the PBCH [82]. Fig. 2.7 shows

how that repetition is structured for FDD with Normal CP. There are five repetitions in total

that are spread across sub-frame 9 and the following sub-frame 0. The legacy PBCH is shown

as R0 (repetition 0). Three OFDM symbols are left for the legacy downlink control channels.

Fig. 2.8 shows the downlink transmitter chain for the LTE-MTC broadcast channel. The MIB

payload is first generated, encoded, interleaved and then rate matched to fit the amount of

resources used for the legacy broadcast channel transmission. The Rate Matching (RM)

output is scrambled and QPSK modulated. The Resource Elements (REs) are mapped to

the proper broadcast channel elements on the central narrowband. According to LTE-MTC

agreements [78], the PBCH symbols are repeated as discussed above. The time domain

symbols are synthesized using Inverse Fast Fourier Transform (IFFT) after which the CP is

inserted.
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2.6.3 LTE NB-IoT Framework

Since the core IoT devices or massive MTC devices typically send small amounts of data

and require extended coverage, a special category, namely NB-IoT, has been incorporated to

LTE specifications to support IoT features [83]. The design targets for this special category

require reduced complexity, promote battery longevity, and enhanced coverage. Furthermore,

the need to support high data rates seldom applies to massive MTC. The link budget of NB-

IoT has a 20dB improvement over conventional LTE-A [84]. These requirements have been

realized by utilizing a single receive antenna system, supporting only QPSK modulation

in the downlink side, and employing extended discontinuous reception cycles to reduce the

power consumption in deep sleep modes. Moreover, signal repetition is considered as the key

factor to provide performance gain [85].

NB-IoT intends to occupy a narrow bandwidth of only 200KHz, which is not backward

compatible to the supported bandwidths by the legacy LTE. Therefore, NB-IoT redefines

the cell attach procedure including cell search and initial synchronization [86]. During initial

synchronization, CFO is estimated and compensated to enable proper signal detection. The

UE acquires the physical cell identification by employing the cell search procedure. To cope

with these changes, NB-IoT employs new set of synchronization signals, namely Narrowband

Primary Synchronization Signal (NPSS) and Narrowband Secondary Synchronization Sig-

nal (NSSS) [84]. The new sequences have different bandwidth, mapping, periodicity, and

generation when compared to the legacy LTE synchronization signals. Unlike conventional
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LTE, cell ID is encapsulated only in the secondary sequence without involving the primary

sequence.

With a carrier bandwidth of just 200KHz, an NB-IoT carrier can be deployed within

an LTE carrier, the LTE guard band, or as a standalone system. Fig. 2.9 shows a 3MHz

LTE carrier in which a single PRB is assigned to NB-IoT. An operating NB-IoT band is

defined as a contiguous set of 12 sub-carriers forming one PRB. A single radio frame is

10ms which consists of 10 sub-frames with equal duration. Each sub-frame is divided into

two slots with equal periods. Unlike conventional LTE which defines two CP types with

different CP patterns, NB-IoT in Release-13 supports only the normal CP type, where a

slot is composed of 7 OFDM symbols. According to the specification [84], if the signal is

sampled at 1.92MSamples/sec, similar to LTE-MTC, the CP length of the first symbol in

each slot is 10 samples and those of the other symbols are 9 samples long. Also, in this case,

the OFDM symbol spans N = 128 sub-carriers. Since NB-IoT devices tend to be placed in

signal-challenged locations, the standard defines enhanced coverage UEs to decode signals at

very low SNRs of about -12.6dBs.

Unlike legacy LTE-A, NPSS and NSSS sequences are constructed from a frequency domain

Zadoff-Chu sequence where NPSS length is 11 samples while the NSSS consists of 132 samples.

The NPSS, Pl(n), is generated such that Pl(k) = Q(l)e−jπuk(k+1)/11, where 0 ≤ k < 11,

3 ≤ l < 14 is the OFDM symbol index, the sequence root u = 5, and Q(l) is a modulation
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sequence given by {1, 1, 1, 1,−1,−1, 1, 1, 1,−1, 1}, respectively. In NB-IoT system, there are

still 504 unique physical cell IDs. However, all of them are only indicated by the NSSS. The

NSSS, S(k), is generated according to,

S(k) = C̄q(k
′) e−j2πθfk e−j

πuk(k+1)
131 , 0 ≤ k < 132 (2.8)

where k′ = k mod 128, the root sequence, u, is related to the cell ID, NNcell
ID , by u = (NNcell

ID

mod 126) + 3, and the cyclic shift, θf , is related to the radio frame index, nf , such that

θf = 31
132

(nf/2) mod 4. The modulated sequence, C̄q(k
′), is given by C̄q(k

′) = 2Cq(k
′) − 1,

where q is a cell specific parameter that is given by q = ⌊NNcell
ID /126⌋ and Cq forms four

complementary 128-bits binary sequences.

In conventional LTE, primary and secondary synchronization signals (i.e., PSS and SSS,

respectively) are mapped to two consecutive OFDM symbols in the same slot with a peri-

odicity of 5msec. However, NPSS is mapped to subframe 5 of every radio frame. NSSS is

mapped to the last 11 ODFM symbols of subframe 9 in radio frames having nf mod 2 = 0.

Sequences are mapped to frequency sub-carriers in an increasing order, then applied across

time as shown in Fig. 2.9.

2.7 Conclusion

In this chapter, we have presented a general background about the interweave cognitive

radio network model and the next generation cellular M2M communications based on OFDM

systems. It is clear that the next generation Internet would serve numerous number of objects

and hence the spectrum scarcity would be a real challenge. On the other hand, cognitive

radio network models can solve the underutilization problem of the frequency spectrum.

Motivated by these facts, in the following Chapter, we present the framework to employ the

interweave cognitive radio network model in order to address the spectrum scarcity problem

for the M2M communications. In addition, we discuss the challenges of providing low power

and low cost devices for next generation cellular networks.

In Chapter 4, we address one of the issues in nowadays interweave CR networks, namely

the throughput reduction of the cognitive network due to the spectrum monitoring in the
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presence of the quiet periods. In this regard, we introduce an OFDM based spectrum moni-

toring algorithm that allows the coexistence of the continuous reception while the spectrum

is monitored. The technique does not only allow a high throughput cognitive network, but it

shows a reliable and efficient spectrum monitoring in real environment with real impairments.

As a second challenge of interest, the power consumption for the Nyquist-based wideband

spectrum sensing is considered in Chapter 5. To operate at ultra low power consumption,

a one-bit quantization process can be employed to significantly reduce the analogue to dig-

ital conversion power consumption. This process can be efficient only if the proper system

architecture is utilized.

For this reason, two separate architectures are presented, in Chapter 5, to enable the one-

bit quantization approach. The first technique uses a feedback from the RF processing about

the total observed power along with the PSD estimation from FFT-based wideband sensing.

By defining the proper threshold, the performance of the FFT-based one-bit quantizer system

is quantified at a reduced complexity and power consumption. A second architecture for

the one-bit quantizer that relies on the window-based autocorrelation is also presented. In

this technique, we prove that the statistical autocorrelation for the quantized system fully

reflects the spectrum occupancy of the wideband system. Therefore, the estimated PSD

can be utilized to discriminate between occupied sub-bands and spectrum holes. A sub-

optimal detection algorithm is designed and simulated. Complexity and power consumption

are analysed for this technique as well.

In Chapter 6, we consider some of the challenges attached with the new cellular M2M

communications. For example, the cell search and initial synchronization for the LTE-MTC

system are quantified. Time averaging can help in enhancing the performance of the conven-

tional algorithms subject to he new system requirements. In addition, we present a frequency

tracking approach for the LTE-MTC systems based on the repetition nature of the broadcast

channel. Last, we address the new challenge of cell search and initial synchronization in

NB-IoT LTE-based system.
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Chapter 3

Cognitive Radio and Next Generation M2M

Cellular Networks

3.1 Introduction

The ultimate objective of M2M communications is to construct comprehensive connections

among all machines distributed over an extensive coverage area. Recent reports show that

the projected number of connected machines/devices to the IoT will reach approximately

50 billions by 2020. For instance, the rapid growth of the number of connected devices to

the Internet has been reported by Cisco [87] as shown in Fig 3.1. This massive introduc-

tion of communicating machines has to be planned for and accommodated with applications

requiring wide range of requirements and characteristics such as mobility support, reliabil-

ity, coverage, required data rate, power consumption, hardware complexity, and device cost.

Other planning and design issues for M2M communications include the future network ar-

chitecture, the massive growth in the number of users, and the various device requirements

that enable the concept of IoT.

In terms of M2M, the future network has to provide machine requirements as power and

cost are critical aspects of M2M devices. For instance, a set-and-forget type of application in

M2M devices such as smart meters require very long battery life where the device has to op-

erate in an ultra low-power mode. Moreover, the future network should allow for low complex

and low data rate communication technologies which provide low cost devices that encourage

the large scale of the IoT. The network architecture, therefore, needs to be flexible enough

to provide these requirements and more. In this regard, a considerable amount of research
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Figure 3.1: Expected number of connected devices to the Internet. This chart is obtained

from recent reports developed by both Cisco and Ericsson.

has been directed towards available network technologies such as Zigbee (IEEE 802.15.4)

or WiFi (IEEE 802.11b) by interconnecting devices in a form of large heterogeneous net-

work [88]. Furthermore, solutions for the heterogeneous network architecture (connections,

routing, congestion control, energy-efficient transmission, etc.) have been presented to suit

the new requirements of M2M communications. However, it is still not clear whether these

sophisticated solutions can be applied to M2M communications due to constraints on the

hardware complexity.

In this chapter, we address the issues that facilitate the existence of cellular MTC includ-

ing the network architecture, the spectrum scarcity problem, and the device requirements.

We review different approaches, including small cell design and interconnecting the cellular

network to other wireless networks, based on research efforts and industrial technologies to

tackle these issues. Also, we propose a scenario in which cognitive radio can be employed

to solve the spectrum scarcity problem that would become significant with this increase in

the number of connected devices. Furthermore, we provide a comparison of the potential

solutions and the challenges and open issues that require future work to allow for practical

development of each solution. Based on these challenges, the following chapters in this thesis
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consider solutions to some issues related to cognitive radio network deployment and to enable

the implementation of the next generation cellular M2M systems.

3.2 MTC Development

Current M2M markets are highly fragmented and most vertical M2M solutions have been

designed independently and separately for each application, which inevitably impacts large-

scale M2M deployment [89]. However, when it comes to standardizations, the global coverage,

the cellular network stability and maturity, together with the speed offered by recent cellular

networks (LTE rates up to 150 Mbps for mobile objects), render wireless cellular technologies

as the best candidate for the implementation of secure and reliable business critical M2M

services. Several working groups in radio-access-networks (RAN) contribute very actively to

the work on MTC-related optimization for 3GPP LTE networks. From day one, the support

for MTC was one of the major concerns for the 3GPP and the development for a robust MTC

design was divided across different releases [90]. Fig. 3.2 shows the development steps and

features for MTC in different releases. Since LTE has the ability to support high performance,

high throughput devices, the objective was to develop high volume, low cost, low complexity,

and low throughput user-equipment LTE-based MTC devices.

It is worth to mention that seven of the worlds leading standards bodies, including for

example the European Telecommunications Standards Institute (ETSI) and the Association

of Radio Industries and Businesses (ARIB), have come together to create oneM2M. The main

objective of oneM2M is to minimize M2M service layer standards market fragmentation by

consolidating currently isolated M2M service layer standards activities and jointly developing

global specifications. Although this solution considers some test cases for predefined devices

such as smart metering, smart grids, eHealth, and automotive applications, not much atten-

tion has been taken on the underlying connectivity layer since oneM2M leverages on current

and future technologies such as LTE networks. From the history of MTC/LTE development,

the first generation of a complete feature MTC device has emerged in R12. In this release,

the 3GPP committee has defined a new profile referred to as category 0 or CAT-0 for low-cost

MTC operation. Also a full coverage improvement is guaranteed for all LTE duplex modes.
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On the other hand, R13 is a future release for LTE-A in which MTC has the main weight of

contribution. Its main goal is to further enhance the MTC LTE-based UE beyond R12. The

main objectives for the MTC improvements are, (a) Supporting ultra low-power, low-cost,

and narrow-band UE, (b) Enhancing the monitoring of service quality, and (c) Cooperation

with other service delivery platforms represented in only the oneM2M [91].
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3.3 Small Cell Versus Heterogeneous Network Model

The next generation cellular MTC network has to efficiently interconnect several billions of

wireless machines to support IoT. The traditional method to support these devices is to

employ a well-designed M2M technology over a small cell structured system. In this case,

cellular network providers need to deploy several thousands of eNodeBs, each with a smaller

cell radius rather than full-power transmitters with large cells. Of course, this solution is

cost-inefficient. Moreover, with such large number of small cells, co-channel interference is a

limiting factor and complex designs are needed to maintain the required QoS. Another major

drawback of this approach is the significant traffic increase due to signalling congestion and

network management burden.

Although the ”heterogeneous network” model is not currently recommended for MTC due

to the limited capabilities of the machines, research efforts [92] have been invested to support
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the idea of utilizing the cellular network itself as a small type of a heterogeneous network.

The concept is that, in many applications, machines can be clustered geographically where

the members of each cluster can be interconnected together through certain technology. To

reduce the number of machines connected to the cellular network, each cluster would select

a representative, a cluster head, to connect with the cellular network. Inside the cluster, the

cellular network is transparent to all machines and only the cluster head will be responsible

for relaying the aggregate traffic of the entire cluster. For example, if all machines have

WiFi interfaces, then WiFi technology can be utilized to interconnect cluster members. In

that sense, the cluster head will be communicating over its WiFi interface inside the cluster

while using the LTE interface, for example, to connect to the cellular network as shown in

Fig. 3.3. In this model, the cellular network has offloaded part of its traffic to the individual

clusters and therefore, reduces the effective number of covered users. The main benefit of

this approach is the relaxation on congestion that would result if no clusters are formed.
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3.4 Cognitive Cellular M2M Networks

The idea of cognitive radios was originally proposed to offer more efficient utilization for

the RF spectrum [93]. In this context, there are two approaches to apply the CR concept

in cellular M2M networks. The first approach [94] assumes that there can be two types of

eNodeB stations, one for typical UEs and other for MTC UEs coexisting with each other

(Fig. 3.3), to relax signalling congestion and management burden. In this case, M2M devices

seek to opportunistically use the spectrum when the H2H devices are idle. Therefore, M2M

and H2H devices are not allowed to simultaneously operate over H2H links. This can be done

through coordination between the corresponding eNodeB stations. Once a radio resource is

occupied by M2M communications, this radio resource is regarded as suffering from server

interference and will not be utilized by H2H communication. Even though this approach is

simple to apply, it can degrade the QoS of H2H applications especially when the number of

MTC devices is very large.

To overcome the aforementioned problems, we propose a second approach which supports

unlicensed bands in addition to existing licensed bands. Here, it is assumed that the network

will sense unlicensed bands to find extra vacant bands. If complexity permits, more than

one unlicensed band per cell can be utilized by a Smart-eNodeB (S-eNodeB), a coined term

to differentiate between the traditional eNodeB and the proposed one, to further increase

the number of devices (Fig. 3.3). Indeed, this solution leverages on the huge amount of

free spectrum available around the 5GHz and the TV white space. However, current radio

access standards such as IEEE 802.22 and IEEE 802.11af already allow the use of this free

unlicensed spectrum. Therefore, spectrum sensing and monitoring is a must. This can be

implemented by introducing a new layer for spectrum management to support cognition over

the unlicensed bands. That is, the S-eNodeB should be capable of (a) sensing the spectrum,

(b) gathering information about the available suitable bands, (c) taking decisions on the

conditions of these bands, (d) informing the neighboring S-eNodeB’s about the allocated

unlicensed band, (e) monitoring the allocated unlicensed band, and (f) always providing an

alternative band.

If the S-eNodeB handles multiple unlicensed bands, then it should classify the machines
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based on their performance tolerance so that a machine is switched to the proper unlicensed

band that meets its requirement. Of course, this assumes that the machine would have a

group ID to declare its needs which in turn has to be shared with the S-eNodeB during

call setup. To clarify how machines and S-eNodeB can work in this scenario, a detailed call

procedure is demonstrated to show how a machine can access the unlicensed band. Once the

machine is switched on, it goes to the calibration process in which the RF front-end adjusts

or even estimates the IQ mismatch parameters. The following procedure is shown in Fig. 3.4

and is discussed below.

• The machine would start the usual frequency scanning over the licensed LTE carriers.

Once it locates a strong serving cell, a synchronization procedure is followed so that

the machine is locked to the base station. It further decodes the master information

block to recognize the cell specification.

• The machine sends a random access request to connect to the cell. The Smart eNodeB

then requests the group ID which will be sent over the uplink control channel.

• The S-eNodeB will request the machine to switch to another carrier in the unlicensed

band. Full information about the carrier such as modulation, coding, and relative

timing to the licensed carrier are also sent to the machine. Afterwards, the S-eNodeB

assumes that the session is complete and the machine has been configured.

• The machine will then switch its RF to the desired carrier and enter the synchronization

mode to lock itself to the S-eNodeB at the unlicensed carrier.

• The machine defines itself one more time by sending a random access request over this

carrier. If it is permitted, the machine can exchange data with the S-eNodeB over the

physical uplink and downlink shared channels.

• The S-eNodeB can interrupt the machine by scheduling a measurement gap in which

the machine measures and reports the power of a certain carrier in the unlicensed or

licensed bands.
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• The unlicensed carrier can be dynamically changed based on the collected measurements

at the S-eNodeB. In this case, machines have to be informed about the new carrier and

its settings.
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Figure 3.4: Handshake messaging for MTC device over cognitive cellular network.

3.5 Ultra Low-Power and Low-Cost Networks

To save battery life, low-power design is always desired for wireless communication systems.

However, power reduction is not an easy task as it is related to the system reliability, rate of

data exchange, and the radio chip design and implementation constraints. When the com-

munication link is unreliable, higher layers translate this into retransmissions which results in

longer active times and hence, high power consumption. Similarly, if the system continuously
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exchange data then it will consume more power. Based on a case study for ZigBee [89], it

is shown that if the radio is switched-on all the time, it will deplete a typical AA battery

within a week. However, turning the radio duty cycle to 25% extends the lifetime to about

a month. Turning it further down to 1% yields years of lifetime. Therefore, low power can

be achieved through a reliable communication link with small duty cycle. In LTE-advanced,

the concept of discontinuous reception (DRX) cycles is applied where the eNodeB schedules

a silent period (DRX cycle) to encourage the device to switch-off the radio chip so that low

duty cycle is achieved. To support ultra low-power design in recent releases, a long DRX

cycle mode has been employed (with a maximum period of 2.56sec in R12) to further reduce

the duty cycle.

Another important aspect of future MTC devices is their low-cost design which is typi-

cally provisioned by reducing the complexity of the system while providing the same coverage.

The communication system architecture usually involves a general processor to run the soft-

ware, a memory to hold both instructions and data, and a physical-layer modem to handle

the communication protocol. As expected, most of the complexity reduction comes from

the physical-layer modem features along with a small portion of data memory reduction.

Therefore, a low-cost design is typically related to a feature reduction while the coverage is

carefully kept unchanged. For specific applications, low data rates and/or low latency are

acceptable. In this case, the modem features can be relaxed to target low-cost design. In

recent LTE releases, special category has been defined to support MTC for low data rates

which leads to complexity reduction. In LTE-R12, this category supports only one receive

antenna and a maximum data rate of 1Mbps. However, those features will be further reduced

in LTE-R13 with the expected maximum data rate being 300Kbps (for Narrowband IoT).

3.6 Challenges, Open Issues, and Future Directions

3.6.1 Heterogeneous Networks

When a number of machines is able to form clusters, the cellular network becomes lightly

loaded. This conclusion has been investigated by many researchers and even practically
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demonstrated on WiFi as the internal technology inside the cluster. However, it is hard to

judge if the machines can really form clustering or not. In fact, clusters are formed only if the

WiFi connectivity between cluster members is acceptable (data rates are higher than the LTE

load generated in the cluster). Also, clustering allows machines to enjoy seamless connectivity

to the cellular system while spending more time on a secondary, WiFi-based interface, which

is less power consuming than LTE. On the other hand, shifting the responsibility of the

aggregate traffic from all cluster members to the cluster head can be challenging especially

if the link from the cluster head to the eNodeB is poor. Since the architecture assumes a

centralized control at the head node, it is expected that the full cluster will fail. Therefore,

more research effort is required to investigate the possibility of dynamically selecting the

head node based on the channel quality with the cellular system. One challenge with this

solution is to select the optimum period after which a rescheduling has to be done.

3.6.2 Cognitive Radio Network

As discussed earlier, spectrum sensing and monitoring are essential to utilize the cognitive

radio concept in which some of the machines operate over an unlicensed band. However,

there are many challenges to address this problem.

• Spectrum sensing techniques : The sensing can be either centralized at the S-eNodeB

or done in cooperation with the machines. Better performance is expected from the

latter case since more spatial diversity is utilized. Generally, cooperation is achieved

by sending either local decisions [95], which can be either hard or soft decision, or by

sending the useful portion of the received data set. Processing power of the machines

limits the first approach while high traffic over the control channel is the main challenge

for the second approach [96]. Moreover, the link between the machine and the S-eNodeB

is not ideal and the sensing decisions/data can be received incorrectly which may alter

the sensing accuracy at the S-eNodeB.

• Wideband sensing methodology : During the initial sensing stage, a wideband (around

1GHz) has to be assessed to locate a suitable vacant band [30]. This can be implemented

by scanning different bands one after another and measuring the in-band power. This
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Figure 3.5: Effect of compression ratio (i.e., ratio of the non-uniform sampling rate to the

conventional Nyquist rate) on the detection performance when the false alarm rate is 1%.

16 contiguous non-overlapped bands are investigated where each has a bandwidth of 1MHz.

Only four active bands are considered, therefore the sparsity level K = 4.

technique is simple but it requires time and power to find a suitable band. Another al-

ternative is to examine the power spectral density of the entire wideband at once. Since

this method requires high speed analogue-to-digital conversion which is power consum-

ing, compressive sensing (CS) [95] is a promising technique to obtain the power spectral

density of the wideband spectrum while sampling at rates lower than the Nyquist rate.

The concept is to capture few measurements of the sparse spectrum. The wideband

spectrum is related to those raw measurements by a linear under-determined system of

equations. Optimization techniques can be employed to solve this set of equations in

order to find the best solution that satisfies the original assumption for the spectrum

which is being sparse. Fig. 3.5 shows the detection performance as a function of the

ratio of non-uniform sampling frequency to the typical Nyquist rate. It is clear that

CS is able to detect the spectrum occupancy by a ratio of 1/10 of the Nyquist rate at

high SNR. Although CS is very promising in this context, many challenges exist due

to the current algorithmic complexity as well as the basic assumptions. For example,

the spectrum is dynamically loaded and the sparse assumption may not be valid which
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results in performance degradation (K = 4, 7 cases in Fig. 3.5). Cooperation may be

utilized to enhance the accuracy, however finding a high-performance low-complex/low-

data rate cooperative sensing technique is not a trivial task. In that direction, more

research efforts are needed to develop efficient algorithms to render CS possible with

reasonable complexity, especially for MTC where complexity is a real challenge.

• Narrowband sensing techniques : A signal processing algorithm is needed to decide on

the activities within each of the wideband slices [5]. Conventional detectors [97] include

the energy detector, the cyclostationary detector, and the matched-filter detector. In all

cases, a decision statistic is computed and compared to a threshold to decide whether

a specific band is occupied or not. Complexity, performance, and prior information

about the signal to be detected are the main metrics to judge the quality of the detector.

Among those detectors, the energy detector is known to be the only simple non-coherent

detector. From performance perspective, the matched-filter is known to be the optimal

detector. However, it requires full knowledge of the detected signal.

The Cyclostationary detector can be used only if the signal possesses the cyclosta-

tionarity property where its statistics, mean and autocorrelation, are periodic with

some known period. Therefore, it requires partial information about the detected sig-

nal which is typically the period of cyclostationarity. Fig. 3.6 shows the probability

of miss-detection for various narrowband sensing techniques against SNR. Effects of

timing errors, noise uncertainty, and hard decision cooperative sensing have been in-

cluded. The performance results show that: (a) Any uncertainty of the noise level will

significantly alter the performance of the energy detector, (b) Matched-filter detection

is very sensitive to timing errors, and (c) Cooperation involves high diversity gain.

However, these results assume an ideal channel (no noise and no fading) between the

machines and the S-eNodeB. The conclusion is that, improvements and/or new sens-

ing techniques are needed to provide less-complex, non-coherent, and robust practical

algorithms. One of the significant drawbacks of the current narrowband sensing is that

it requires a quiet period which causes sever reduction in the cognitive radio network

throughput.
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Figure 3.6: These curves are plotted for a false alarm rate of 1%. The window size for the
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detector period which is 32 samples. For the cooperative sensing, hard decision is used with

K-out-of-N rule where K=5 users and N=10 users. The noise uncertainty error is ±0.5 dBs

for the energy detection case.

3.6.3 Low-Power Low-Cost Networks

Although longer DRX cycle significantly reduces the power, it also introduces some challenges

to the system design. Since the radio chip will be off during the DRX cycle, the device/UE

has no way to synchronize itself to the eNodeB. Therefore, the typical behaviour for the

device/UE would be to wake-up as early as required to quickly resynchronize itself to the

eNodeB before receiving further packets. One of the issues is to determine the best wake-up

time so that the synchronization performance is met and no additional power is lost. Another

issue is related to the cooperative sensing architecture, if applicable, where the device/UE

will not be able to sense or monitor any band while it is in a deep sleep mode. The band

can suffer from high interference levels caused by other networks that attempt to access the
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same band. Finally, the power can be minimized by properly designing power domains in

the hardware to decide which module is not needed to be switched-off.

A low-cost design always comes at the account of system performance with less features

provided. For instance, reducing the number of receive antennas from two to one would

reduce the spatial diversity of the modem. Therefore, advanced signal processing algorithms

for synchronization, cell detection, and decoding will need to be revised to guarantee the

same performance with less diversity gain. Indeed, reducing the cost is not only related to

the required features from the network, but it also depends on the hardware design process

and underlaying technology. For example, optimizing the internal word sizes of the various

hardware modules inside the modem will result in a low gate count and low power consump-

tion. However, the optimization algorithms that can achieve this are not unique as signal

statistics across various modules are system dependent.

3.7 Conclusion

In this chapter, we considered the next generation cellular M2M communications challenges.

With the rapid growth of the number of connected machines, the spectrum occupancy has to

be extremely utilized. Thus, conventional solutions such as small cell planning and heteroge-

neous network architecture seem to be cost inefficient. We presented the idea of utilizing the

cognitive radio to overlay less important connections to the cognitive band. In this direction,

we presented the concept of smart eNodeB with an expected call setup while the current

available physical LTE channels can be used. Heterogeneous network concept is discussed to

address the same problem and its challenges are discussed. Future standards are encouraged

to provide both options (i.e. the cognition concept and the heterogeneous network model).

Finally, a design of low-power low-cost machine is discussed. However, there are important

design challenges to make it possible.
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Chapter 4

Energy Ratio Algorithm For Spectrum

Monitoring

4.1 Introduction

For interweave networks, prior to communication, secondary user must sense the spectrum

to detect whether it is available or not. Moreover, during communication, it must be able

to detect very weak signals from the primary user in order to quickly vacate the occupied

spectrum. Thus, primary user detection is essential to release the spectrum. The CR system

may spend a lot of time on this detection. Since the CR users do not access the spectrum

during the detection time, this period is called the quiet period [32].

In IEEE 802.22 system, the quiet period consists of a series of consecutive spectrum

sensing using energy detections followed by feature detection [98]. Since the energy detection

checks only the energy level of the channel, it requires relatively short time but cannot identify

the source of energy among primary users and noise. If the CR system detects the energy

level higher than the predefined value, that is, it is alarmed by the energy detection, the

system performs the feature detection that is able to discern the source of signal by finding

the unique feature of each signal but the feature detection spends long time when compared

to energy detection [99].

In fact, if the CRs must stop communicating in order to detect the emergence of the

primary signal, there will be a trade-off between the performance of the secondary network

and the performance of the primary network. During sensing intervals (i.e: the time intervals

during which the secondary transmitters are silent while the frequency band is examined),
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the secondary network achieves no throughput. If the frequency or duration of the sensing

intervals is too large, then the secondary network’s average throughput is low and its average

delay is high. Between consecutive sensing intervals, traditional spectrum sensing provides

no information about the status of the frequency band. Thus, if the frequency or duration

of the sensing intervals is too small, then the interference to the primary users are excessive.

Rather than be caught in this trade-off, we can search for a method by which CRs

can monitor the frequency band without interrupting their communications. Such methods

can detect the reappearance of the primary user during the secondary user transmission.

This may supplement traditional spectrum sensing and provide enhanced communications

efficiency. If spectrum monitoring determines correctly that there is no primary signal in

the band, then the time that would have been spent performing spectrum sensing is used to

deliver packets in the secondary network. If spectrum monitoring detects a primary signal

in the band during a time period in which spectrum sensing would not have been scheduled,

then the disruption to the primary user can be terminated more quickly. Thus the spectrum

efficiency of the secondary network is improved and the impact of secondary communications

on the primary user is lessened. We are examining two different approaches for the spectrum

monitoring done by the CR receiver during reception. These techniques are not replacements

for traditional spectrum sensing. Instead, they are supplemental techniques that reduce the

frequency with which spectrum sensing must be performed and decrease the elapsed time

between the start of a primary transmission and its detection by the secondary network.

The last approach is followed by [100] where the spectrum is monitored by the CR receiver

during reception and without any quiet periods. The idea is to compare the bit error count,

that is produced by a strong channel code like Low Density Parity Check (LDPC) codes,

for each received packet by a threshold. If the number of detected errors is above certain

value, the monitoring algorithm reports the primary user activity. The threshold is obtained

by considering the hypothesis test between the receiver statistics when the primary signal is

absent and the receiver statistics for the desired Secondary-to-Primary power Ratio (SPR).

Although this technique is simple and adds almost no complexity to the system, the

receiver statistics are subject to change by varying the system settings. In real systems,

there are many parameters that can disturb the receiver error count such as RF impairments
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including PN and CFO, SFO, and NBI. The error count will depend not only on the presence

of a primary signal but it will also depend on the parameters for those impairments. The

receiver statistics may change from one receiver to the other based on the residual errors

generated from estimating and compensating different impairments. Since it is a little bit

hard to study the receiver statistics for individual CR receiver, it is better to search for an

algorithm that is robust enough for synchronization errors and channel effects.

In this chapter, we present a spectrum monitoring technique, namely the energy ratio

(ER) technique, that is suitable for OFDM-based cognitive radios. During CR reception,

this monitoring technique is designed to detect the reappearance of the primary user which

has no constraints about its transmission scheme. Here, different signal chain impairments

due to CFO, SFO, and NBI as well as frequency selective fading channels are considered.

The technique operates over the OFDM signal chain and hence, it does not require to wait

for the decoded bits. This implies fast response to PU appearance. Furthermore, the most

important OFDM challenges for cognitive radios like power leakage are investigated and their

effects on the proposed monitoring technique are considered.

4.2 Energy Ratio Algorithm Description

In the time-frequency grid for the OFDM frame, some tones are reserved for channel mon-

itoring purpose. The tones are not modulated at the transmitter side and they are left as

null sub-carriers. The tones are reserved for the whole time except the time of the training

symbol(s) transmission as shown in Figure 4.1.

Based on the signal on the reserved tones at the receiver, the secondary user can mon-

itor the band and test the primary user existence. In fact, this technique is not preferred

when energy detection is employed to identify the primary user presence from the reserved

tones [101]. This is totally true as the spectral leakage of the neighbouring sub-carriers will

affect the energy at the reserved tones even for non primary user existence. Here, we propose

another decision making variable that has some immunity for this power leakage.

After the frequency domain processing to the received signal at the secondary receiver,

the reserved tones from different OFDM symbols are combined to form one sequence of
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complex samples. Two consecutive equal-sized sliding windows are passed over the reserved

tone sequence in the time direction. The energy of the samples that fall in one window is

evaluated and the ratio of the two energies is taken as the decision making variable and hence

the name energy ratio. In a mathematical form, let Zi be the i
th sample of the reserved tone

sequence. The decision making variable, Xk, can be defined as given by (4.1) where N is the

number of samples per window, Uk is the energy of the second window, Vk is the energy of

the first window, and k is an integer such that k = 1, 2, 3, ...

Xk =
Uk

Vk

=

∑2N+k−1
i=N+k

∣∣Zi

∣∣2∑k+N−1
i=k

∣∣Zi

∣∣2 (4.1)

The decision variable tests the change in variance on the reserved tones for the time of

the two sliding windows. After the usual spectrum sensing, the receiver would monitor the

reserved tones by evaluating the parameter, Xk. If the variable exceeds certain threshold,

then the secondary user assumes that the primary has reappeared and it is time to vacate

the band. If not, the SU maintains communication. Indeed, if there is no primary user in
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band, then the energy of each window will only represent the noise, the leakage from the

neighbouring symbols, and the ICI effects, and therefore, the ratio will be very close to unity.

Once the primary user appears, the second window will have three types of signalling

which are the noise, the leakage and ICI effects, and the primary user interference. Meanwhile,

the first window will only maintain the noise, the leakage and ICI effects. The ratio of the

energy will result in much higher values when compared to one. This will depend on the

primary user power. We will refer to the ratio of the primary user power to the secondary

user noise at the receiver to be PNR. For the time being, we would neglect the effect of the

leakage just to study the algorithm and we will investigate the effect of the secondary user

power leakage afterwords.

4.3 Energy Ratio Analysis

The problem of spectrum sensing is to decide whether a particular slice of the spectrum is

”available” or not. That is, in its simplest form, we want to discriminate between the two

hypotheses H0 and H1 where the first assumes that the primary signal is not in band and

the other assumes primary user presence. Using the energy ratio algorithm, we can define

these hypotheses as given by (4.2). We have shown that the variable X will be very close to

unity when the two windows carry noise only, on the other hand the ratio U/V will exceed

the unity when there is some meaningful signal for the primary user. H0 : X = U
V
, σ2

u = σ2
v

H1 : X = U
V
, σ2

u > σ2
v

(4.2)

Similar to the conventional detectors, the performance of the detection algorithm can

be summarized with two probabilities: probability of detection PD and probability of false

alarm PFA. PD is the probability of detecting a primary signal when it is truly present. The

detection probability can be defined as given by (4.3) where γ is a threshold that should be

determined. PFA is the probability that the test incorrectly decides that the primary user is

present when it is actually not. The false alarm probability can be defined as given by (4.4).

Generally, PFA should be kept as small as possible in order to prevent underutilization of

transmission opportunities while PD needs to be as large as possible.
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PD = Prob
[
X > γ |H1

]
(4.3)

PFA = Prob
[
X > γ |H0

]
(4.4)

4.3.1 CDF Derivation for the Decision Making Variable

Let z(t) be a Gaussian random process that is complex in general. The process is Gaussian

if their samples are jointly Gaussian. Therefore, if the random process is sampled N times,

we obtain the random variables Z1, Z2, Z3, ..., ZN which are jointly Gaussian. Now, assume

that these random samples are independent and identically distributed, thus the samples are

uncorrelated. Each sample Zi is treated as a scalar complex random variable having a real

part Ri and a complex part Ii. If we further assume that Zi is circularly symmetric complex

Gaussian (CSCG) random variable, then its real and imaginary parts are independent and

have the same distribution such that Ri ∼ N (0, σ2) and Ii ∼ N (0, σ2).

Let V represent the energy of N adjacent samples of the random process z(t) such that:

V =
N∑
i=1

∣∣Zi

∣∣2 =
N∑
i=1

R2
i + I2i (4.5)

Since Ri and Ii are independent and identically distributed (i.i.d) random variables that

follow Gaussian distribution with zero-mean and variance σ2, the probability density function

for the squared random variable Ri or Ii can be obtained as given by (4.6) where Yi represents

the random variable which is the square of either Ri or Ii. The characteristics function for

the random variable Yi can be obtained as given by (4.7).
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fYi
(y) = fRi

(√
y
) dRi

dYi

∣∣∣∣∣
Ri=

√
y

+ fRi

(
−√

y
) dRi

dYi

∣∣∣∣∣
Ri=−√

y

=
1√

2πy σ
e−y/(2σ2) (4.6)

ΦYi
(ω) = E

[
ejωYi

]
=

1√
2π σ

∫ ∞

0

1
√
y
e−y/(2σ2) ejωy dy

=
1√
2π σ

2σ2

1− j2ωσ2

√
1− j2ωσ2

2σ2

∫ ∞

0

ý
1
2
−1 e−ý dý

=
Γ(1

2
)

√
π
√
1− j2ωσ2

=
1√

1− j2ωσ2
(4.7)

As the process z(t) has i.i.d samples, which implies that the sample Yi are also indepen-

dent. The summation of 2N samples of Yi results in the desired random variable V which

has the characteristic function given by (4.8).

ΦV (ω) =
2N∏
i=1

ΦYi
(ω) =

1(
1− j2ωσ2

)N =
1

2N σ2N

(
1

2σ2 − jω

)N
(4.8)

It is known that the characteristic function is nothing but the inverse Fourier transform

for the probability density function. Therefore, if we applied the Fourier transform frequency

derivative property N times on the real exponential function, we would get the characteristics

function of the random variable V and hence having the Fourier transform results in the

probability density function of the random variable V which is given by (4.9). It is obvious

that V follows a Chi-Squared distribution with the parameters σ and 2N such that V ∼

χ2
2N(σ).

fV (v) =
1

2N σ2N (N − 1)!
vN−1 e−v/(2σ2) , v > 0 (4.9)

Now, we can consider the probability density function for the energy ratio random variable

X defined by (4.10). We will assume that the random variables U and V have the same

parameter N but have in general different σ such that V ∼ χ2
2N(σv) and U ∼ χ2

2N(σu).

X =
U

V
=

∑2N
i=N+1

∣∣Zi

∣∣2∑N
i=1

∣∣Zi

∣∣2 (4.10)
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The PDF for the random variables V and U can be written as given by (4.11) and (4.12),

respectively.

fV (v) =
1

2N σ2N
v (N − 1)!

vN−1 e−v/(2σ2
v) , v > 0 (4.11)

fU(u) =
1

2N σ2N
u (N − 1)!

uN−1 e−u/(2σ2
u) , u > 0 (4.12)

The CDF for the random variable X, can be evaluated as given by (4.13).

FX(x) = Prob
[
X ≤ x

]
= Prob

[
U ≤ xV

]
=

∫ ∞

0

∫ xv

0

fUV (u, v) du dv

=

∫ ∞

0

∫ xv

0

1

22N σ2N
v σ2N

u Γ(N) Γ(N)
uN−1 e−u/(2σ2

u) vN−1 e−v/(2σ2
v) du dv

=
1

22N Γ2(N)

∫ ∞

0

[∫ xv́ σ2
v/σ

2
u

0

úN−1 e−ú dú

]
v́N−1 e−v́ dv́ (4.13)

In order to obtain the probability density function fX(x), we have to differentiate FX(x)

with respect to X. This results in a differentiation under integration sign which can be

solved to obtain a closed form expression for fX(x) as given by (4.14). It is obvious that

the probability density function for X follows a scaled F-distribution which has the mean

mX =
(
Γ(N − 1) Γ(N +1)/Γ2(N)

)
×
(
σ2
u/σ

2
v

)
and the variance Var(X) =

(
Γ(N − 2) Γ(N +

2)/Γ2(N)
)
×
(
σ2
u/σ

2
v

)2
.

fX(x) =
d

dx
FX(x) =

1

22N Γ2(N)

∫ ∞

0

d

dx

[∫ xv́ σ2
v/σ

2
u

0

úN−1 e−ú dú

]
v́N−1 e−v́ dv́

=
1

22N Γ2(N)

∫ ∞

0

[(
v́ σ2

v

σ2
u

)(
xv́ σ2

v

σ2
u

)N−1

e−xv́ σ2
v/σ

2
u

]
v́N−1 e−v́ dv́

=
xN−1

Γ2(N)

(
σ2
v

σ2
u

)N
Γ(2N)(

1 + σ2
v x/σ

2
u

)2N
[∫ ∞

0

(
v́
(
1 + σ2

v x/σ
2
u

))2N
22N Γ(2N)

e−v́
(
1+σ2

v x/σ2
2

)
dv́

v́

]

=
σ2
v

σ2
u

Γ(2N)

Γ2(N)

(
σ2
v x/σ

2
u

)N−1

(
1 + σ2

v x/σ
2
u

)2N , x ≥ 0 (4.14)
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Finally, the CDF for X can be derived in a closed form as given by (4.15) where Ib(N,N)

is the regularized incomplete beta function with the parameters b and N .

FX(x) = Prob
[
X ≤ x

]
=

∫ x

−∞
fX(t) dt =

σ2
v

σ2
u

Γ(2N)

Γ2(N)

∫ x

0

(
σ2
v t/σ

2
u

)N−1

(
1 + σ2

v t/σ
2
u

)2N dt

=
Γ(2N)

Γ2(N)

∫ (σ2
1 x/σ2

u)/(1+σ2
v x/σ2

u)

0

uN−1 (1− u)N−1 du

= I (σ2
v x/σ2

u)

(1+σ2
v x/σ2

u)

(N,N) (4.15)

4.3.2 Energy Ratio Performance

We will use the classical NP criterion where the threshold is selected based on a fixed value

for PFA and accordingly, the detection probability is obtained for a known threshold value.

By substituting the CDF function, FX(x), derived in the previous section for the decision

making variable, X, in (4.4), one can write the probability of false alarm in case of energy

ratio algorithm as given by (4.16). Also, we can obtain the threshold γ subjected to a

constant PFA as given by (4.17) where I−1
x (N,N) is the inverse incomplete beta function.

PFA = Prob
[
X > γ |H0

]
= 1− FX |H0(γ) = 1− I (γ)

(1+γ)

(N,N) (4.16)

γ =
I−1
1−PFA

(N,N)

1− I−1
1−PFA

(N,N)
(4.17)

Under H1, the reserved tones carry the noise power and the primary signal power in the

second window (i.e. σ2
u = σ2

noise + σ2
primary) while the first window contains noise only (i.e.

σ2
v = σ2

noise). Therefore, the primary signal power to the secondary noise power, PNR, can

be obtained as given by (4.18) from which the detection probability can be obtained as a

function of PNR as given by (4.19).
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σ2
u = σ2

noise + σ2
primary = σ2

noise

[
1 +

σ2
primary

σ2
noise

]
⇒ PNR =

σ2
u

σ2
v

− 1 (4.18)

PD = Prob
[
X > γ |H1

]
= 1− FX |H1(γ)

= 1− I (σ2
v γ/σ2

u)

(1+σ2
v γ/σ2

u)

(N,N) = 1− I (γ/(1+PNR))
(1+γ/(1+PNR))

(N,N) (4.19)

4.4 OFDM Challenges in Energy Ratio Algorithm

4.4.1 NBI and Power Leakage

By definition, the power of a NBI is concentrated in a small frequency band compared to

the overall system bandwidth [102]. Although the total power of the interference may be

substantially lower than the total received signal power, these disturbances can reach a noise

level which exceeds the received signal level by orders of magnitude inside the interference

band. Therefore, the system performance will be severely degraded. Aside from NBI, the

side-lobes of modulated OFDM sub-carriers even in case of having no NBI are known to be

large. As a result, there is power leakage from sub-carriers to adjacent sub-carriers. It is

known that the most efficient solution to NBI is to disable the sub-carriers corresponding

to this interference. This will eliminate the effect of NBI at those sub-carriers, however, the

signal to noise ratio at the other sub-carriers will be slightly reduced.

For the power leakage, recent research has carefully addressed this problem. For example,

the out of band leakages can be reduced by including special cancelling carriers at the edge of

the band [103]. These sub-carriers are modulated with complex weighting factors which are

optimized such that the side-lobes of the those carriers cancel the side-lobes of the original

transmitted signal in a certain optimization range. Another solution is proposed in [104]

where the power leakage is totally suppressed by a pre-coding technique. This pre-coding is

applied to the frequency domain OFDM signal before IDFT block at the transmitter side.

At the receiver, a decoder is applied to omit the spectral distortion to the OFDM signal

caused by pre-coding. This technique can totally eliminate the effect of spectral leakage but
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of course it needs full revision for all synchronization algorithms applied to traditional OFDM

system.

By utilizing the fact that energy ratio can perfectly counter any consistent noise like sig-

nals, windowing can be applied to the time domain OFDM symbols [105] to limit the leakages

and to reduce the influence of NBI. Thus, if a windowing function (e.g., Nyquist window) is

carefully chosen to only affect the interference while leaving the OFDM signal unchanged,

then spectral leakage can be avoided. In [105], a folding technique is proposed in order not to

use a double length DFT. In this case, the samples preceding the OFDM symbol to the end

of the symbol are added to the samples following the symbol to its beginning. To evaluate

the performance of our energy ratio detector in the presence of NBI and power leakage, we

turn off the sub-carriers corresponding to the NBI. Moreover, the time domain windowing

technique with folding is applied at the receiver side, as it offers the lowest computational

complexity with sufficiently good performance.

4.4.2 ICI Effect

Since CFO and SFO estimation and compensation is a must for traditional OFDM systems,

we have to consider these issues when the energy ratio algorithm is evaluated in the presence

of ICI. Since the energy ratio is concerned with the amount of change for the signal strength

on the reserved tones, the performance of the algorithm will not be destroyed by ICI. However,

this interference can be considered as an increase of the noise level and hence the energy ratio

performance may be a little bit degraded due to the primary signal to noise ratio reduction

at the reserved tones. It is worth to mention that we are not going to design or evaluate a

synchronization engine for an OFDM system. Our target is just to emphasize that the energy

ratio technique does not require any new solutions for the OFDM synchronization problems.

4.4.2.1 CFO Estimation and Compensation

Any practical system assumes a maximum acceptable frequency offset, CFOmax, between

the transmitter and receiver. Therefore, the integer CFO range is known in prior as the

maximum integer CFO is εimax = ⌊CFOmax/∆f⌋ and hence the integer CFO range will be

L =
[
− εimax − εimax + 1 ... − 1 0 1 ... εimax − 1 εimax

]
. In [106], a two step time domain
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estimation technique is introduced for CFO. This approach depends on the training symbols

that are transmitted at the front of the OFDM frame. Actually, a good compromise between

performance and complexity is achieved by this technique.

The idea is to first estimate the fractional CFO by a maximum likelihood estimator as

given by (4.20) where y(n) is the received time domain signal and D = Ns +Ng. It applies

an autocorrelation to the time domain waveform with the condition that two or more training

symbols are inserted at the beginning of the frame. The time domain signal is compensated

for the fractional CFO resulting in the signal ycomp(n). This signal is then cross-correlated

with the transmitted time domain waveform for the training symbols, yt, after applying a

progressive phase shift that depends on the desired integer CFO as given by (4.21). This

cross-correlation is repeated for each integer CFO in L and the maximum is searched for.

The integer CFO that corresponds to the maximum correlation is taken as the estimated

integer CFO. Once the normalized CFO is estimated, the OFDM signal can be compensated

by rotating the phase of the time domain signal by −2π(ε̂f + ε̂i)n where n is the time index.

ε̂f =
1

2πD
∠
{

n=Ns−1∑
n=0

y(n) y∗(n+D)

}
(4.20)

ε̂i = max
m∈L

∣∣∣∣∣
n=Ns−1∑

n=0

ycomp(n) y
∗
t (n) e

−2πjmn/D

∣∣∣∣∣ (4.21)

4.4.2.2 SFO Estimation and Compensation

In [67], the carrier-frequency and timing offsets are jointly estimated by applying a Weighted

Least-Squares (WLS) algorithm where a weighting matrix, W, is designed to improve the

estimation accuracy of the least-squares. The analytical results show that this matrix should

be a function of the noise variance. In fact, if an incorrect (estimated) value of the noise

variance is used, then the resulting estimation accuracy may perform rather poorly.

Since the energy ratio is strong enough to compact ICI, we can simply apply the WLS

algorithm by replacing W with an identity matrix. This reduces the WLS algorithm into

the well-known least-squares estimation. First, we compute the averaged phase difference

between the pilots contained in two consecutive OFDM training symbols in the frequency

domain to obtain y =
[
y0 y1 ... yJ−1

]T
where J is the number of pilots inserted in one

62



preamble symbol. Second, the pilot sub-carrier indexes denoted by xj , j = 0, 1, 2, ... J−1 are

arranged to construct the helping matrix X which is given by (4.22). Finally, the estimated

carrier-frequency offset ε̂ and timing offset δ̂ can be obtained by (4.23).

X =

 x0 x1 x2 . . . xJ−1

1 1 1 . . . 1

T

(4.22)

[
δ̂ ε̂

]T
=

Ns

2π(Ns +Ng)

(
X∗ X

)−1
X∗ y (4.23)

4.5 Energy Ratio Algorithm Over Fading Channels

To study the effect of the frequency selective fading channel on the energy ratio algorithm,

we are going to first consider the single-input single output (SISO) model where a secondary

transmitter communicates with its own receiver over the channel hss. During the transmis-

sion, the primary user may try to send his own data which is received by the secondary

receiver across the channel hps. Both signals are combined at the receiver antenna and then

processed as one received stream. The receiver noise is added to the combined signals and the

result is converted to the frequency domain by the DFT block. The reserved tone sequence

is then organized in order to be processed by the monitoring algorithm.

If rki , i = 0, 1, ..., NRT −1 denotes the reserved tone indices for the kth OFDM data symbol

where NRT is the number of reserved tones per OFDM symbol, then the jth reserved tone

can be modelled as given by (4.24) where Xs(r
k
j ), Xp(r

k
j ), Hss(r

k
j ), Hsp(r

k
j ), and n(rkj ) are

the secondary user transmitted symbol, the primary user transmitted symbol, the frequency

domain response for the secondary channel, the frequency domain response for the primary

channel, and the noise sample, respectively, where all are observed at sub-carrier rkj . Since

the secondary transmitter forces the reserved tones to be nulls, then Xs(r
k
j ) = 0 , ∀j and

hence the received reserved tones reduce to just the effect of the primary user and the noise

of the secondary receiver under perfect synchronization and neglecting the power leakage

effect. Therefore, if (by luck) the primary signal power is fairly distributed among different

sub-carriers, then the energy ratio algorithm can behave as AWGN even when the channel
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is frequency selective fading channel for both primary and secondary users.

Y (rkj ) = Hps(r
k
j )Xp(r

k
j ) +Hss(r

k
j )Xs(r

k
j ) + n(rkj ) = Hps(r

k
j )Xp(r

k
j ) + n(rkj ) (4.24)

Unfortunately, the power transmitted by the primary user is in practice scaled by different

weights over different sub-carriers so that the power spectral density of the primary user

received signal is not constant over the observed band. In fact, when the monitoring tones

are reserved at fixed sub-carrier indices and the channel exhibits a deep fade at those tones,

the primary signal power sensed by the monitoring algorithm is very weak even if the average

primary power is high. Moreover, the primary signal to noise ratio on the reserved tones

changes with different channel realizations as we do not consider the whole band in which

the primary user appears. The problem is that we just monitor a very limited band inside

the desired band and the channel may affect the amount of power seen in this very narrow

band.

The problem can be overcome by considering large number of monitoring sub-carriers

which is equivalent to monitor wider band or by fully determining the primary user channel.

These solutions are obsolete as the throughput of the secondary user will be highly reduced

and the primary signal is assumed to be totally unknown for the secondary receiver, thus the

channel can not be estimated. We propose a simple and efficient solution for this problem

instead of observing wider band and without the need to estimate the primary channel. We

can in fact allocate the reserved tones dynamically so that the reserved tones indices span the

whole band when successive OFDM symbols are considered in time. The tones are advanced

by ∆r positions every OFDM symbol as shown in Figure 4.1. When the last index of the

available sub-carriers is reached, the spanning starts again from the first sub-carrier. Now, by

considering small values for ∆r, the reserved tone sequence injected to the energy ratio spans

the whole band and the channel effect is averaged over time. If the energy ratio window is

large enough and ∆r is small enough, then the average power of the primary user is almost

included in the second window when the primary user appears.

To further reduce the narrow band effect without increasing the number of reserved

tones per one OFDM symbol, multiple-antennas at the receiver side can totally enhance

the monitoring performance. For Single-Input Multiple-Output (SIMO) or Multiple-Input
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Multiple-Output (MIMO) systems, if the number of receiver antennas is NRx, there will be

NRx available sets of reserved tones at the receiver for each OFDM symbol or equivalently

NRx × NRT reserved tones every OFDM symbol. The energy ratio technique will combine

all these sets together to form the reserved tone sequence. The confidence of primary user

presence is increased by the diversity gain obtained from the independent channel paths.

This allows more robust decision when compared to the SISO case. The channel effect is

reduced and a good averaging for the channel is done by combining more samples at the

same time. Effectively, applying SIMO or MIMO is equivalent to increasing the window size

by a factor of NRx. If the same performance is required, the window size can be reduced by

NRx which implies that the primary user power is sensed in less time when compared to the

SISO case. Otherwise, increasing the window size directly increases the mean of the decision

making variable when the primary signal is active which allows higher detection probability

and less false alarm.

4.6 Simulation Results

In this section, we will show the simulation results for the energy ratio algorithm and we will

study different aspects from simulation point of view. Throughout these simulations, we have

used an OFDM system that employs a total of Ns = 1024 sub-carriers, 224 of which are used

as guard bands on both ends of the signal band. There are 32 pilot sub-carriers and Nr =

4 reserved tones, distributed across the entire 800 sub-carriers. Therefore, the throughput

reduction due to reserved tones is only 0.5% which is an inconsiderable amount for high data

rates. The cyclic prefix is Ng = 64 samples long and the sampling frequency is 16MHz. The

sub-carrier spacing is then ∆f = 15.625 KHz which is large enough to neglect the phase

noise distortion and the time domain windowing effect. Unless otherwise specified, the frame

has two consecutive training symbols and 256 OFDM data symbols. The data is modulated

by 64-QAM mapper and the secondary power to noise ratio in the absence of primary signal

is assumed 9dB. When the system operates under non-perfect synchronization, the maximum

acceptable CFO is assumed to be 400KHz, the CFO is 320KHz, and the sampling clock offset

is assumed to be 100 ppm.
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4.6.1 Analytical Verification

Figure 4.2 shows a comparison between the PDF given by (4.14) and the one obtained from

simulation where we have used 10 log10(σ
2
u/σ

2
v) = 5dB and an energy ratio window N =

32. To obtain the simulated PDF, 107 circularly symmetric Gaussian distributed samples

are generated and scaled properly for both windows. The samples are then applied to the

energy ratio algorithm and the PDF is obtained by considering the histogram of the decision

making variable. It is obvious that the analytical results are in excellent agreement with the

simulated ones.

Figure 4.2: Simulated PDF versus analytical PDF for the energy ratio decision making

variable with N =32 and 10 log10(σ
2
u/σ

2
v) = 5dB

Next, the hypothesis test is to be verified by exploring the conditional PDF under both

H0 and H1. In fact, when there is no primary user in band, the decision variable follows only

one unique PDF that is shown in Figure 4.3. Under H1, the conditional PDF depends on

the PNR ratio. Four additional curves are also shown in Figure 4.3 for the conditional PDF

under H1 with four different PNR values (-2, 0, 2, and 4 dB). It is clear that the decision

variable can distinguish between no primary user case and primary user presence based on

the PNR.
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4.6.2 Receiver Characteristics

The detection probability for four different false alarm probabilities is shown in Figure 4.4.

The horizontal axis denotes the secondary to primary power ratio (SPR) which is related

to the primary to secondary noise ratio (PNR) such that PNR
∣∣
dB

= SNR
∣∣
dB
-SPR

∣∣
dB
, where

SNR is the secondary power to noise power ratio. It is to be noticed that, PNR is the ratio

that determines the performance of the energy ratio algorithm whereas SPR is assumed to

be the main parameter by which a monitoring algorithm is evaluated.

Figure 4.3: Conditional PDF under H0 and conditional PDF under H1 for PNR=-2, 0, 2,

and 4 dB

The ROC for the energy ratio for different values of SPR is shown in Figure 4.5. These

results are obtained by simulating the OFDM system twice, one when primary signal is

present and the second when it is absent. The system is run over 106 realizations and

the probability of detection or false alarm is evaluated. The threshold is set based on the

theoretical value given by (4.17).

In order to compare the proposed monitoring algorithm with the receiver statistics tech-

nique found in [100], the OFDM system is simulated such that the system parameters match

the simulation environment followed by [100]. The simulation is run for 4-QAM under

SNR=6dB, PFA =0.04, and N=128. Figure 4.6 shows the simulation results for the de-
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tection probability of the energy ratio algorithm in comparison with the results obtained

in [100]. In addition of having fast detection, it is noted that the energy ratio shows a better

performance than the receiver statistics algorithm.

Figure 4.4: The detection probability at fixed false alarm probability under perfect synchro-

nization and neglecting the power leakage effect

Figure 4.5: Receiver operating characteristics for different PNR values under perfect syn-

chronization and neglecting the power leakage effect

68



6 8 10 12 14
0.7

0.75

0.8

0.85

0.9

0.95

1

Secondary to Primary Power Ratio, SPR, in dB

D
et

ec
tio

n 
pr

ob
ab

ilit
y,

 P
D

Energy Ratio
Receiver Statistics 

Figure 4.6: Comparison between energy ratio and receiver statistics [100] algorithms in case

of QPSK, SNR= 6dB, PFA = 0.04, and N =128

4.6.3 OFDM Challenges

The power leakage is modelled by applying oversampling to the frequency domain signal,

where the number of points at the receiver DFT is four times the number used at the trans-

mitter. Time domain Hanning window with folding is applied at the receiver to limit the NBI

and power leakage. Also the phase of the time domain samples is rotated by 2πεn to model

the receiver CFO where n is the time index. Moreover, the received signal is re-sampled at

time instances that are multiple of (1+ δ)Ts to model the receiver SFO. The preamble detec-

tion and the exact frame timing is assumed to be perfect. Here the time domain preamble is

used to estimate and compensate for the CFO. The CFO compensated signal is converted to

the frequency domain via DFT. The SFO, δ̂, and the residual CFO are further estimated by

applying the least squares algorithm discussed in Section 4.4.2.2. Moreover, the time domain

signal is re-sampled according to the delay δ̂ to compensate for the SFO.

Figure 4.7 shows the mean square error for the estimated CFO and SFO. From these

results, we can see that the residual fractional CFO and SFO at 9dB are 9 × 10−3 and

5 × 10−6, respectively. This implies SNR degradation of SNRDCFO = 0.0092 dB for CFO,

and SNRDSFO(1023) = 0.003 dB for SFO at the last sub-carrier, based on (2.5) and (2.6),
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respectively. This shows the advantages of the powerful estimation techniques we have chosen

for the OFDM synchronization engine.

Figure 4.7: MSE for both CFO and SFO estimation under AWGN and Rayleigh fading

channels. The MSE for SFO is measured in samples.

To examine the combined effects of OFDM impairments, the detection probability for

the energy ratio is simulated in the presence of power leakage, CFO, and SFO as shown in

Figure 4.8. As we claimed earlier, the energy ratio is shown to be robust to OFDM challenges

as only minor degradation in detection performance is noted compared to the perfect case.

For instance, the overall loss due to all impairments is only 0.4 dB at a detection probability

PD = 0.9.

4.6.4 Effect of Frequency-Selective Fading

To study the effect of frequency-selectivity on the proposed energy ratio technique, the chan-

nel is modelled as a linear time-varying filter whose impulse response, h(n), is obtained by:

(1) Ng circularly symmetric Gaussian samples with unit variance. The number of channel

taps is defined by the cyclic prefix length as we assume that the cyclic prefix fully defines the

channel maximum excess delay. (2) The samples are scaled to fit the required Power Delay

Profile (PDP) which is assumed to be exponentially decaying [107]. The OFDM system is
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simulated in Rayleigh fading channel for different SPR. In Figure 4.9, we show the effect of

Rayleigh fading channel on the energy ratio performance for SISO, 2× 2 MIMO, and 4× 4

MIMO systems. The Rayleigh fading channel effect is compared with the AWGN channel

where a minor degradation is noticed due to the narrow band problem. From these results,

it is clear that having more receive antennas will offer great enhancement to the detection

accuracy of the energy ratio detector.

Figure 4.8: Power leakage, CFO, and SFO effects on the energy ratio algorithm at PFA =

0.025
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Figure 4.9: Rayleigh fading channel effect on energy ratio for SISO and MIMO systems taking

power leakage and ICI into consideration. PFA = 0.025, ∆r = 2, and N = 128

4.7 Summary

In this chapter, we have presented a spectrum monitoring algorithm that can sense the

reappearance of the primary user during the secondary user transmission. The ”energy ratio”

algorithm is designed for OFDM systems such as Ecma-392 and IEEE 802.11af systems. We

also derived the detection probability and the probability of false alarm for AWGN channels in

order to analyze the performance of the proposed algorithm. Simulation results indicate that

the detection performance is superior than the receiver statistics method. For computational

complexity, the energy ratio architecture is investigated where it was shown that it requires

only about double the complexity of the conventional energy detector. When frequency-

selective fading is studied, the energy ratio algorithm is shown to achieve good performance

that is enhanced by involving SIMO or MIMO systems. We have proven that the multiple

receive antenna system will further result in a better detection accuracy by emulating the

increase in sliding window size. Therefore, our proposed spectrum monitoring algorithm can

greatly enhance the spectrum monitoring performance of OFDM-based cognitive networks

with a very limited reduction in the secondary network throughput.
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Chapter 5

Low Power Nyquist-based Wideband Sensing

5.1 Introduction

One major issue with Nyquist approaches is the power consumption associated with the

RF front end, ADCs, and even the digital processing part that is operated by a very high

sampling rate. Actually, low power consumption makes wideband sensing possible even at

the secondary user equipments. These devices typically operate through batteries which have

strict life time constraints. In this regard, it has been shown that ADC power consumes a

significant portion of the total power dissipation and it needs a special attention [108]. We

present a recent survey based on Texas Instruments ADCs to provide figure of merits for

those quantities as shown in Figure 5.1, where part numbers are explicitly mentioned for all

ADC items. These commercially available ADCs with these specifications consume power on

the order of several Watts.

Reducing the ADC power consumption generally has three main axes. First, the sensing

performance based on the conventional Nyquist approaches assume infinite precision of the

acquired measurements in order to evaluate the presented algorithmic effort. In practice,

signals need to be quantized before further processing, that is, the real-valued measurements

need to be mapped to discrete values over some finite range. For this reason, the quantization

impact on the spectrum sensing detection performance has been considered [109]. However,

the influence of the quantization on the power consumption was not the main focus of this

research effort. Second, wideband Nyquist approaches assume the availability of an ultra high

sampling rate. However, it should be emphasized that all simulation results presented by

previous research work including [110]-[111], consider relatively small band (order of 300MHz)
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Figure 5.1: Power consumption versus sampling frequency of ADCs for resolutions 8, 10, 12,

14, and 16 bits

which is somehow in the order of a medium-sized band when compared to the practical

wideband in the order of GHz. Allowing wideband sensing in the range of GHz makes it even

challenging from the power budget perspective. Third, with lower bit resolution, the ADC

power consumption can be significantly reduced. However, low resolution will again impact

the sensing performance, which may result in a degradation in secondary network throughput.

Thus, it is not easy to develop a wideband Nyquist-based sensing technique that maintains

reasonable performance with efficient power consumption and reduced complexity. Due to

the power consumption issue attached to high-speed high-resolution ADCs that are employed

in the classical Nyquist-based approaches, in this chapter, we present two ultra low-power

wideband sensing techniques. Both rely on employing 1-bit quantization which can provide

significant power reduction.

5.2 System and Signal Models

From the network point of view, we consider a cognitive radio network of M PUs and many

SUs. The CR system operates over a wideband channel divided into N non-overlapping sub-

bands out of which M sub-bands are randomly assigned to the active PUs. Conventionally,

it is assumed that the sub-bands have equal-size bandwidths B [112][113]. Each PU occupies
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a spectrum slice with a bandwidth of B for its transmission. In fact, the spectrum is totally

investigated or sensed by one SU (the master node or the fusion node) to decide whether

each slice is a hole or not. At the fusion node receiver, the signal is sampled at the Nyquist

sampling rate Fs = NB. The fusion node sends different data to the other SUs (the slave

nodes) informing them about the slice to be used for their transmission.

At the fusion node receiver, an N×1 vector can represent the received signal in the

frequency domain as given by,

R =
M∑

m=1

Sm +W =
M∑

m=1

HmTm +W (5.1)

where Hm is a diagonal N × N channel matrix representing the static fading channel over

the sensing interval, Tm is an N×1 vector representing the spectrum of the mth primary

signal at the PU transmitter over the mth active sub-band, Sm is an N×1 vector representing

the spectrum of the mth primary signal at the SU receiver over the mth active sub-band,

and W is an N×1 vector representing the frequency domain independent and identically

distributed circularly-symmetric AWGN with zero-mean and variance E[WWH ] = Nσ2
W ,

where E denotes expectation. Similar to [114], it is assumed that the distribution of the

received primary signal over a single sub-band is also circularly-symmetric complex Gaussian

(CSCG) with zero-mean and variance σ2
S. It should be emphasized that this assumption

certainly holds only when primary radios deploy uniform power transmission strategies given

no channel knowledge at the transmitter side [51][115]. Finally, all primary users and the

noise are assumed to be statistically independent.

From the time domain perspective, due to the ultra high sampling rate compared to

the typical PU baud rate, the mth narrowband PU signal can be represented by a single

complex tone centred at the frequency fm (which is the central frequency for one of the sub-

bands). Accurately, the random variable representing the envelope of the received narrow-

band PU signal is assumed to change at a rate of 1/N times slower than the sampling

frequency. Therefore, after the multipath channel, each PU signal can be modelled as a

narrowband signal with a complex envelop that has independent identically distributed (i.i.d)

coefficients. The signal also can suffer from a general random delay that accounts for the

channel excess delay and the general propagation delay within the observation interval or
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observation window, namely T . Let us define the continuous time received signal at the SU

receiver by r(t) and the corresponding discrete version of the same signal by r(n/Fs) as given

by (5.2) and (5.3), respectively, where τm and correspondingly εm represent the amount of

time shift for the candidate PU, Am and Bm are independent Gaussian random variables

with zero-mean and variance σ2
S/2, and w(t) is the time domain version of the AWGN noise

process. The notation ⌊(n− εm)/N⌋ interprets the index of the random variable sample with

time. Notice that εm is also a random variable that can be modelled as a uniform random

variable in the range [0, N − 1]. Also, it has been assumed that the signals from various

users and the noise are independent.

r(t) =
M∑

m=1

[
Am

⌊(t−τm)/T ⌋ cos(2πfm(t− τm))−Bm
⌊(t−τm)/T ⌋ sin(2πfm(t− τm))

+j

(
Am

⌊(t−τm)/T ⌋ sin(2πfm(t− τm)) +Bm
⌊(t−τm)/T ⌋ cos(2πfm(t− τm))

)]
+w(t), 0 ≤ t < T, j =

√
−1 (5.2)

r(n) =
M∑

m=1

[
Am

⌊(n−εm)/N⌋ cos
(
2π(n− εm)fm/Fs

)
−Bm

⌊(n−εm)/N⌋ sin
(
2π(n− εm)fm/Fs

)
+j

(
Am

⌊(n−εm)/N⌋ sin
(
2π(n− εm)fm/Fs

)
+Bm

⌊(n−εm)/N⌋ cos
(
2π(n− εm)fm/Fs

))]
+wI(n/Fs) + jwQ(n/Fs), 0 ≤ n < N (5.3)

5.3 One-Bit Quantization for FFT-based Wideband

Sensing

Here, we have modified the classical FFT-based energy detector so that the ADC is imple-

mented through a comparator. A complete architecture for the sensing mode is considered,

where the RF front end collaborates with the digital processing to implement a practical solu-

tion. Since classical FFT-based energy detector assumes reasonably high sensing period, we

present a modified mathematical tool to better express the system performance irrespective

to the quiet period duration. Closed form expressions for the system performance represented

by the receiver operating characteristics are derived. Then, we discuss how the 1-bit quan-

76



tization influences these expressions by considering the power balance problem. Thus, 1-bit

quantization performance with imperfect RF front end is obtained and evaluated through

simulation results.

5.3.1 Proposed Spectrum Sensing Procedure

The architecture for the proposed 1-bit quantized system is shown by Figure 5.2. After the

signal is received, it is processed by various RF blocks to reduce the noise, amplify the signal

power, down-convert the signal to the baseband, and mitigate the introduced distortion. The

processed signal is then sampled by the ultra high speed ADC. In this work, we are extremely

aggressive with the ADC resolution to extremely reduce the power consumption. We deploy

a 1-bit quantizer which is typically a comparator that compares the incoming sample, after

the sample and hold circuit, to zero in order to retrieve the sign from the sample value. To

further reduce the power consumption, it is likely for the digital processing to operate at

low clock frequency. Also, the RF can be switched off once the sensing period is complete.

Since only the samples that fall within the sensing period are required to be processed, a

high speed buffer is employed to store one window of captured samples. Then, the digital

processing is applied over the stored samples by relatively low clock frequency.

By introducing the 1-bit quantizer, the soft information about the signal power contained

in the received signal disappears. Fortunately, current RF processors provide the received

signal power that is measured by a received signal strength indicator (RSSI) block [116].

The measured value is reported to the digital processor through a standalone high resolution

ADC that operates at relatively low sampling rate, F̄s. The objective is to supply the digital

processor by a soft value for the power so that AGC loop complexity is significantly reduced.

In this work, the RSSI is measured at the end of the sensing period and it is utilized to scale

the quantized samples so that the received power is preserved. Precisely, the samples are

segmented into non-overlapped captures in time where each capture has exactly N samples.

During the sensing period, it is assumed that the high speed buffer can hold a complete

window of samples consisting of L different captures. Each capture is processed by the FFT

block to obtain the frequency spectrum over N frequency bins where each bin corresponds
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Figure 5.2: General architecture for the low power wideband sensing system

to a single sub-band. The frequency transformation can be defined by,

Yn,i =
Pj√
2N

N−1∑
k=0

Xk,i e
−j2πkn/N , j =

√
−1 (5.4)

where Xk,i is the quantized sample value at time index k and capture index i, Pj is the

measured signal power, j is an integer representing the window index over time, and n is

the sub-band index. According to our model, the measured power value corresponds to the

total received power (i.e, Pj = E[RRH ]). However, it is unlikely to perfectly estimate the

power by the RSSI block. Therefore, we typically model an imperfect measured power to be

Pj = (1+δ)(Mσ2
S+Nσ2

W ), where δ refers to the percentage of the perfect received power that

models the measurement error. For each frequency bin n and window index j, the energy

contained in one window consisting of L samples can be defined as given by (5.5). Hence,

the decision statistic, Zn,j = Tn,j/L, is defined to be a power estimator that is employed to

decide whether this sub-band is a hole or not.
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Tn,j =
L−1∑
k=0

∣∣∣Yn,j×L+k

∣∣∣2, 0 ≤ j (5.5)

5.3.2 FFT-based 1-Bit Quantization Performance

In this section, we present the classical FFT-based energy detector theory and its corre-

sponding conventional approximated performance. Due to the quantization effect and the

assumption of infinite averaging, we provide an accurate analysis for the FFT-based energy

detector that can be used for practical environments. From this analysis and as a straightfor-

ward extension, we conclude the performance of the presented 1-bit quantized system. From

the developed detection and false alarm probabilities, the system can be designed to achieve

a predefined target performance.

5.3.2.1 Classical FFT-based Energy Detector for Wideband Sensing

Let Rk be the Discrete Fourier Transform (DFT) of the received wideband non-quantized

signal at sub-band k out of N sub-bands. To decide whether the kth sub-band is occupied

or not, the following binary hypotheses is tested, H0,k : Rk = Wk

H1,k : Rk = HkSk +Wk, k = 0, 1, ... N − 1
(5.6)

where H0,k and H1,k indicate, respectively, the absence and presence of the primary signal in

the kth sub-band, Wk is the AWGN observed at the frequency domain, HkSk is the contribu-

tion of the primary users at the kth sub-band if this sub-band is occupied. Figure 5.3 shows

the general architecture for the classical energy detection technique employed for wideband

sensing. In the energy-based detection algorithm, each output bin from the discrete Fourier

transform block, that is typically implemented by a Fast Fourier Transform (FFT) algorithm,

is utilized to compute the energy over the corresponding sub-band. For each sub-band k,

the summary statistic is computed as the sum of received signal energy over an interval of L

samples as given by,

Zk =
L∑
l=1

∣∣Rk(l)
∣∣2 (5.7)
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Figure 5.3: Classical energy detection for wideband sensing by employing a high speed ADC

and an FFT.

The decision rule is simply given by (5.8) where λk is the corresponding decision threshold

employed for the sub-band k.  H0,k : Zk < λk

H1,k : Zk ≥ λk

(5.8)

If the averaging is large enough, the decision statistic (i.e, Zk) can be asymptotically ap-

proximated to a Normally distributed random variable [117][118]. The mean and the variance

of this random variable will depend on the averaging depth, the AWGN variance, the signal

to noise ratio, and the decision of the hypotheses. Let us assume that the noise has a variance

of σ2
W and the signal to noise ratio at sub-band k is given by γk = E[|HkSk|2]/σ2

W . In this

case, the random variable will have the mean E[Zk] and the variance VAR[Zk] given by,

E[Zk] =

 H0,k : Lσ2
W

H1,k : Lσ2
W (1 + γk)

(5.9)

VAR[Zk] =

 H0,k : 2Lσ4
W

H1,k : 2Lσ4
W (1 + 2γ2

k)
(5.10)

Thus, these statistics can be written compactly as Zk ∼ N (E[Zk]),VAR[Zk]). Based

on this analysis, the detector performance can be derived in terms of the receiver operating
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characteristics (ROC) that is represented by the probability of detection, PD, and probability

of false alarm, PFA. The detection probability is the probability of detecting a primary signal

when it is truly present. Of course, one can interpret the same meaning by referring to the

probability of miss-detection which refers to the rate of miss-detecting a primary user when

it truly present. The false alarm probability is the probability that the test incorrectly

decides that the primary user is present when it is actually not. Since Zk follows a Normal

distribution, these quantities can be directly obtained such that,

PFA = Prob[Zk > λk|H0,k] = Q

(
λk − Lσ2

W

σ2
W

√
2L

)
(5.11)

PD = Prob[Zk > λk|H1,k] = Q

(
λk − Lσ2

W (1 + γk)

σ2
W

√
2L(1 + 2γ2

k)

)
(5.12)

For cognitive radio networks, the probabilities of false alarm and miss have unique im-

plications. Low probabilities of false alarm are necessary in order to maintain possible high

throughput in cognitive radio systems, since a false alarm would prevent the unused spectral

segments from being accessed by cognitive radios. On the other hand, the probability of miss

measures the interference from cognitive radios to the primary users, which should be limited

in opportunistic spectrum access. These implications are based on a typical assumption that

if primary signals are detected, the secondary users should not use the corresponding channel

and that if no primary signals are detected, then the corresponding frequency band will be

occupied by secondary users.

It is quite clear that this analysis miss two important features that can be summarized.

• The received input signal is assumed to have infinite precision where the ADC quanti-

zation has not taken into consideration. In real systems, the ADC resolution influences

the distribution of the power after the FFT. The quantization noise has to be taken

into account. In fact, the effort presented in [119] considers the quantization effect

but it still assumes that the soft information about the frequency occupancy is always

preserved after quantization since sequential sensing is considered and the problem is

converted in a narrow-band sensing problem. In aggressive quantization strategies for

non-sequential sensing approaches like the presented FFT-based energy detector, this

is not the case.
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• It is assumed that the averaging depth is quite high so that the decision statistic can

be approximated to a Norma distribution. However, this assumption adds one more

implication to the algorithm since the sensing period will be correspondingly high to

accommodate for enough samples to average over. If the signal to noise ratios are

reasonably high, the averaging depth can be reduced to save more time and increase

the secondary network throughput. In this case, the above analysis has to be revised

and a better approximation is needed to relax the assumption of having large averaging

depth.

5.3.2.2 Energy Detection Performance for Non-quantized Systems

As presented in the previous section, for a large number of samples to average (e.g., L > 40),

the central limit theorem is typically employed to approximate the probability distribution

function of the decision statistic Zn as a normal distribution under both hypothesises. The

sensing time has to be quite long which results in higher power consumption. It is essential to

update this mathematical tool to support any averaging length. In this section, we provide

closed form expressions for the sensing performance by considering the non-quantized system.

For each sub-band, n, we wish to discriminate between the two hypotheses H0,n and H1,n

where the first assumes that the primary signal is not in band and the second assumes that

the primary user is present. Using the average energy decision statistic, one can define these

hypotheses under the assumption of infinite ADC precision as given by (5.13) where it is

assumed that the vacant sub-band contains noise only while the occupied sub-band includes

both signal and noise.  H0,n : Zn ≤ λn, σ2
Y = σ2

W

H1,n : Zn > λn, σ2
Y = σ2

S + σ2
W

(5.13)

As the wideband sensing objective is to explore the spectral occupancy of primary signals

over numerous number of sub-bands (e.g., N ≫ 100), then the FFT output sequence follows

a circularly symmetric complex Gaussian distribution by central limit theorem. Let Yn,i ∼

CN (0, σ2
Y ) as Xk always has a zero mean and the samples are statistically independent, the

random variable Tn follows a Chi-Square distribution with L degrees of freedom [120] (i.e,

Tn ∼ χ2
L(t )). By applying a linear transformation between random variables such that
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Zn = Tn/L, one can obtain the PDF for the decision statistic as given by (5.14) where

fZn(z) = LfTn(Lz) and σ2
Z = σ2

Y /L. Consequently, the mean and variance for the power

estimator can be evaluated where µZ = E[Zn] = Lσ2
Z = σ2

Y and V AR(Zn) = E[(Zn −

µZ)
2] = Lσ4

Z = σ4
Y /L. Further, the cumulative distribution function can be obtained in a

closed form as given by (5.15).

fZn(z) =
1

σ2L
Z Γ(L)

zL−1 e−z/σ2
Z , z > 0 (5.14)

FZn(z) = Prob[Zn ≤ z] =

∫ z

−∞
fZn(t) dt = 1−

∫ ∞

z

fZ(t) dt

= 1− 1

Γ(L)

∫ ∞

z

(
t

σ2
Z

)L−1

e−t/σ2
Z
dt

σ2
Z

dt = 1− 1

Γ(L)

∫ ∞

z/σ2
Z

t́L−1 e−t́ dt́

= 1−
Γ
(
L, z/σ2

Z

)
Γ(L)

= 1−
L−1∑
k=0

1

k!

(
z

σ2
Z

)k

e−z/σ2
Z (5.15)

The performance of the detector is quantified in terms of its ROC curve, which represents

the probability of detection, PD, as a function of the probability of false alarm, PFA. By

varying a certain threshold λn for each sub-band n, the operating point of a detector can be

chosen anywhere along the ROC curve. PFA and PD can be defined as given by (5.16) and

(5.17), respectively.

PFA = Prob
[
Zn > λn |H0

]
= 1− FZn|H0,n(λn)

=
L−1∑
k=0

1

k!

(
λnL

σ2
W

)k

e−λnL/σ2
W (5.16)

PD = Prob
[
Zn > λn |H1

]
= 1− FZn|H1,n(λn)

=
L−1∑
k=0

1

k!

(
λnL

σ2
W + σ2

S

)k

e−λnL/(σ2
W+σ2

S) (5.17)

In classical statistics framework known as Neyman-Pearson (NP) criterion [121], either

H0,n or H1,n is deterministically true, and the objective is to maximize PD subject to a

constraint on PFA. Therefore, one can obtain the threshold λn subjected to a constant PFA.

This step requires linear programming to be applied to (4.4), then the detection probability

cab be evaluated by substituting in (4.3).
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5.3.2.3 Energy Detection Performance for the 1-bit quantized System

In conventional systems that consider the quantization effect [119], the effect is modelled by

adding one more term to the signal variance representing the quantization noise power which

is a function of the ADC resolution. Unfortunately, this procedure cannot be applied for the

1-bit quantizer case since the ADC aggressively saturates the incoming signal to two possible

outcomes {−1,+1} that are uniformly distributed.

By introducing the power scaling operation after the FFT module under perfect power

measurement (i.e, δ = 0), a total power transfer is guaranteed to the frequency domain

since the defined transform itself is linear and unitary. However, the main objective of the

transformation is to reshape the power across various sub-bands. If the input is left un-

quantized, the information required for this redistribution process is known in full and the

detection error is only introduced due to the noisy environment. When the input is quantized

to a single bit and no power gain or loss is guaranteed, then simply the quantization effect

can be interpreted as a power leakage process due to the reduced amount of information

about the power distribution.

In reality, the 1-bit quantization influences the power balance for various sub-bands. Since

the overall system performance gets degraded, it is expected that the power of the allocated

sub-bands is reduced while the noise level of the unoccupied sub-bands is increased. It is

understood that an occupied sub-band leaks more power for its adjacent sub-bands when

compared to other neighbours that are located far away. However, the number of occupied

sub-bands is large enough and is uniformly distributed across the whole band. Therefore, the

leakage contribution from various PUs at any bin can still be modelled as a Gaussian signal

by central limit theorem. This can be illustrated as shown in Figure 5.4.

To derive the amount of this leaked power, let us assume αMσ2
S be the amount of total

leakage power from all occupied sub-bands, where α is a constant. As the occupied sub-

bands spread randomly across the entire band, the leakage will also be distributed across all

sub-bands (i.e, N bins) in an unbiased distribution process. Due to this leakage, the amount

of interfering power to any bin is αMσ2
S/N . Therefore, the power contained by one sub-band

under H0,n would be σ2
0 = σ2

W (1 + αγM/N) instead of just σ2
W in a non-quantized system,
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where γ = σ2
S/σ

2
W is the SNR over one sub-band. On the other hand, the occupied sub-bands

that have already paid αMγσ2
W of its total power will gain portion of this power due to the

fair distribution process. Thus, one can write the power contained in one occupied sub-band

as σ2
1 = σ2

W (1 + γ − γα + αγM/N) instead of just σ2
W (1 + γ), where −γα represents the

contribution of this sub-band in the total leakage power. In this work, we rely on extensive

computer simulations by varying σ2
W , σ2

S, M , L, and N to find an optimum estimate for this

constant which is found to be α = 0.3675 ≃ e−1.

It is worth to study the effect of the imperfect power measurement on the system per-

formance. The FFT output samples are scaled so that the total power fits the measured

power provided by the RSSI block. In this case, the power contained by one sub-band

will be adjusted according to whether this sub-band is occupied or not. Based on the

previous discussion, if the sub-band is signal free, the sub-band power under H0,n will be

σ̃2
0 = (1+ δ)σ2

W (1 +αγM/N). On the other hand, if the sub-band includes signal plus noise,

the sub-band power under H1,n will be σ̃2
1 = (1 + δ)σ2

W (1 + γ − γα + αγM/N). As a result,

the closed-form expressions for the false alarm and detection probabilities in case of 1-bit

quantizer system with imperfect power measurements can be obtained by,
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PFA

∣∣∣
1−bit

=
L−1∑
k=0

1

k!

(
λnL

σ̃2
0

)k

e−λnL/σ̃2
0 (5.18)

PD

∣∣∣
1−bit

=
L−1∑
k=0

1

k!

(
λnL

σ̃2
1

)k

e−λnL/σ̃2
1 (5.19)

5.3.3 Simulation Results

In the simulation, we consider a wideband system that employs a total band of 1.024GHz that

is divided into N = 1024 non-overlapped sub-bands, M of which are occupied by primary

signals that uniformly spread over the entire band. Each of those allocated sub-bands carries

QAM signal that is passed over a multipath channel filter such that the received signal is

CSCG with a normalized power level (without loss of generality, σ2
S = 1). The signal is then

up-converted to the desired carrier. The channel is randomly generated every processing

window. However, the filter taps are always scaled to fit an exponential power delay profile

(PDP) [122]. A Gaussian white noise is added to the sum of the up-converted primary signals

such that its power spectral density is 1/γ. To simulate the system behaviour, 105 trials are

processed and the system performance is evaluated based on the decision outcomes. In each

trial, a single window containing NL samples is generated where the sub-band occupancies

are never changed within a single window. The signs of the received samples are captured to

be processed by the detector. The detection performance is taken based on the miss-detection

of the occupied sub-bands while the false alarm decisions are considered over the detected

vacant sub-bands.

First, the approximated ROC proposed by [114] is compared to our exact closed form ROC

performance under different SNR values and for relatively high averaging rate (e.g, L = 8).

The performance curves are shown in Figure 5.5. It is clear that the Normal approximation

introduces considerably large errors in performance even for relatively high averaging rate.

The exact expressions are a must to accurately and reliably evaluate the system performance

especially for critical systems in which a small performance degradation is accepted to relax

other implementation aspects. The simulation results for the non-quantized system are also

shown to demonstrate the accuracy of our derivations. Furthermore, Figure 5.5 shows the
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ROC for the 1-bit quantizer and the non-quantized systems. We emphasize the fact that the

simulations exactly match the analysis for the 1-bit quantizer case for various SNR cases and

for a different averaging rate L = 8 than the one used in Figure 5.6.

Next, extensive simulations are performed to verify the constant value α ≃ e−1. In these

results, more than 100 false alarm rates are simulated. Different SNR values and different

averaging depths are considered. Figure 5.6 shows the exact match of the performance be-

tween the simulation and the analysis for all possible spectrum utilization ratios (percentage

of the occupied bands) and for different false alarm rates. Although these results assume

fixed values for other parameters such as L = 4 and SNR=0dB, we rely on other results (in

Fig. 5.5 and Figure 5.7) to demonstrate the confidence and the effectiveness of our selected

constant value.

In Figure 5.7, we show the effect of the quantization effect when compared to the non-

quantized system. It is clear that a degradation of about 2dB is observed between the

non-quantized system and the 1-bit quantized system. Moreover, it is obvious that the

averaging depth significantly influence the performance. In fact, increasing the averaging

depth improves the detection rate. However, increasing the averaging depth requires longer
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Figure 5.6: Detection performance for the one bit quantizer versus the spectrum utilization

at γ = 0dB, L = 4, and δ = 0

sensing intervals which typically reduces the overall secondary network throughput.

Figure 5.8 introduces the imperfect power measurement to compare the detector perfor-

mance based on the closed form expressions and the performance obtained by simulations.

The threshold, λn, has been evaluated at δ = 0. At a fixed threshold value, it is clear that

increasing the tolerance presents higher degradation for the false alarm on the account of a

corresponding enhancement for the detection rate. Therefore, it is better to select an RF

IC that provides an accurate power measurements with reasonable complexity and power

budget.

5.4 One-Bit Quantization for Autocorrelation-based

Wideband Sensing

In this section, we present the second wideband spectrum sensing system in which a 1-bit

ADC is employed. The technique best fits with the sparse systems in which few sub-bands

are utilized. To support this proposal, a complete architecture for the sensing engine is

presented. A practical window-based autocorrelation based processing followed by a DFT
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block is employed to estimate the power spectral density of the wideband spectrum. The

basic idea is that a low baud rate signal representing the PU signal is extensively sampled

by an ultra high sampling rate which makes it possible for an autocorrelation to identify if a

specific carrier frequency is in use or not. The aggressive quantization effect is fully analysed

to provide closed form expressions for the correlation output. A detection algorithm is

designed, verified, and simulated to provide the detector performance in terms of ROC curve

that determines both a false alarm probability and a detection probability for a given set of

the system parameters.

5.4.1 Proposed Spectrum Sensing Procedure

The architecture for the proposed 1-bit quantized system is shown by Fig. 5.9. After the

signal is received, it is processed by various RF blocks to reduce the noise, amplify the signal

power, down-convert the signal to the baseband, and mitigate the introduced distortion. The

processed signal is then sampled by the ultra high speed ADC. To significantly reduce the

power consumption, a special system architecture is designed, analysed, and verified. In this
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work, we are extremely aggressive with the ADC resolution to come to the bottom line of

the power consumption provided by the ADC given a unique sampling rate. We consider

a wideband sensing system in which a 1-bit ADC is used for each inphase and quadrature

baseband received signal. For 1-bit quantization, binary antipodal signaling was found to be

optimal [123]. Therefore, for a Single-Input Single-Output system, the quantized received

samples belong to the set {1 + j, 1 − j, −1 + j, −1 − j}. It was also shown that in the

low SNR regime, the use of low-resolution ADCs incurs a surprisingly small loss in spectral

efficiency compared to unquantized observations [124]. It is worth to mention that the typical

RF chip usually employs Voltage Gain Amplification stages along with AGC, however, these

blocks are not utilized for 1-bit quantizer systems. Therefore, these blocks are deactivated in

Fig. 5.9. The reason is that a 1-bit quantizer is typically implemented as a comparator that

compares the incoming sample, after the sample and hold circuit, to zero in order to retrieve

the sign from the sample value.

To further reduce the power consumption, it is likely for the digital processing to operate

at low clock frequency. Also, the RF can be switched off once the sensing period is complete.

Since only the samples that fall within the sensing period are required to be processed, a

high speed buffer is employed to store one window of captured samples. Then, the digital
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Figure 5.9: System architecture for the correlation based 1-bit quantizer system

processing is applied over the stored samples by relatively low clock rate. The samples are

segmented into non-overlapped captures in time where each capture has exactly N samples.

During the sensing period, it is assumed that the high speed buffer can hold a complete

window of samples consisting of L different captures. Therefore, the buffer size will precisely

contain LN samples. By introducing the 1-bit quantizer, the soft information about the

signal power contained in the received signal disappears. Fortunately, the quantized signal

still has partial information about the spectrum occupancy. To retrieve the power spectral

density of the received random signal, each capture is processed by a bank of correlators to

obtain a window-based autocorrelation of the received sequence. An averaging process over

L consecutive correlations is applied to reduce the effect of the noise over the correlation.

Let us define the window based correlation after averaging to be,

R(k) =
1

L

L−1∑
i=0

[
1

N − k

N−k−1∑
n=0

r∗q(n, i)rq(n+ k, i)

]
(5.20)

where i is the capture index, k is the time index for the averaged autocorrelation, rq(n, i) is

the complex received sample value after quantization at time index n such that 0 ≤ i < L

and 0 ≤ k < N , and R(k) is the averaged autocorrelation function. To obtain the PSD,

the averaged correlation is converted to the frequency domain through a discrete Fourier

transform (that could be implemented through an FFT block if N is properly chosen). The

DFT size is exactly N such that each bin corresponds to a single sub-band. To evaluate

the power spectral density at sub-band m, the absolute value of the normalized frequency

transformation can be defined by,

S(m) =
1

N

∣∣∣∣∣
N−1∑
k=0

R(k) e−j2πkm/N

∣∣∣∣∣, 0 ≤ m < N (5.21)
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Based on the obtained PSD, the noise floor can be estimated by averaging the bins that lie

within a predefined noise region. The methodology to choose those bins is that the PSD value

for a selected sub-band has to be close to, within a predefined tolerance, the minimum possible

PSD value. Since the spectrum is typically sparse, the PSD values within the noise region will

interpret two quantities. First, it includes the noise power introduced to the system. This will

be an accurate estimate for the noise level if enough averaging has been considered while the

autocorrelation is being evaluated. However, this averaging has to be also carefully designed

because more averaging means not only improved PSD evaluation, but also it impacts the

system by introducing more sensing time and more buffer storage. The second item that is

inferred from the minimum power values is the interference induced from the occupied sub-

bands at the desired bin. It is understood that an occupied sub-band leaks more power to its

adjacent sub-bands when compared to other neighbours that are located far away. However,

the number of occupied sub-bands is small enough and is uniformly distributed across the

whole band (if sparsity assumption holds). Thus, the interference contribution from various

PUs at any bin can still be insignificant if the band is extremely large (i.e., N ≫ 500). A

noise plus interference power can be estimated and used to develop a threshold by which the

detection procedure classifies the individual sub-bands to be either vacant or occupied. More

details about this detection algorithm will be discussed in Section 5.4.3.

5.4.2 Statistical Autocorrelation and PSD Functions for One-Bit

Quantizer System

From the basic concepts, the statistical window-based autocorrelation, R(k), for the 1-

bit quantized system is derived in closed form expression as given by (5.22), where ηk =

1
M

(
1 − k/N

) ∑M
m=1 γm cos

(
2πfmk/Fs

)
, ζk = 1

M

(
1 − k/N

) ∑M
m=1 γm sin

(
2πfmk/Fs

)
, γ̄ =

1
M

∑M
m=1 γm is the average primary signal to noise ratio, γm is the signal to noise ratio for

the occupied sub-band m, β = M/N is the utilization factor (see Appendix A). The power

spectral density for the 1-bit quantized system can be obtained by taking the Fourier trans-

form of the closed form expression for the window-based autocorrelation function. Precisely,

the continuous-frequency PSD is given by S(f) =
∑N−1

k=0 R(k)e−j2πkf/Fs where 0 ≤ f < Fs.
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In fact, it is not easy to derive a closed form expression for the power spectral density in this

case due to the existence of the arcsine function which is non-linear. However, one still needs

to understand the effect of quantization on the spectral density which is the key element in

the sensing algorithm. The arcsine function can be approximated to only the first term of

its Taylor expansion (a unity slope ramp function) if the operand value is quite small (i.e.,

sin−1(x) = x for |x| ≤ 0.2). Using simple computer simulation, one can evaluate the mean

square error of the approximated arcsine and the exact one to be in the order of 3 × 10−7.

For the arcsine approximation to be valid given that |ζk| ≤ γ̄, there will be a restriction on

the product βγ̄ such that
∣∣βζk/(1+ γ̄β)

∣∣ ≤ 0.2. To jointly satisfy both conditions, we should

have 4γ̄β ≤ 1. In this case, the approximated correlation function can be written as given by

(5.23) where u(k) is the typical unit-step function. The corresponding approximated PSD is

given by (5.24).

R(k) =
4

π

[
sin−1

(
δ(k) + βηk
1 + γ̄β

)
+ j sin−1

(
βζk

1 + γ̄β

)]
(5.22)

R̃(k) = 2δ(k) +
4

Mπ

β

1 + γ̄β

[(
1− k

N

) M∑
m=1

γme
j2πkfm/Fs

]
u(k − 1), γ̄β ≤ 1

4
(5.23)

S̃(f) = 2 +
4

Mπ

β

1 + γ̄β

M∑
m=1

γm

[
N−1∑
k=1

e−j2πk(f−fm)/Fs − 1

N

N−1∑
k=1

ke−j2πk(f−fm)/Fs

]
(5.24)

The approximated power spectral density includes three terms that respectively corre-

spond to the ones provided by the autocorrelation expression: (1) A white noise term rep-

resented by the constant value. (2) Impulse train (or equivalently sinc-shaped pulses in the

discrete frequency domain) spread exactly at the occupied sub-bands. The impulses are

scaled based on the spectrum utilization and the signal-to-noise-ratio. (3) An interference

term from every occupied sub-band to the whole spectrum. This term comes from differenti-

ating the impulse train located at the used carriers. If an impulse function (or the equivalent

sinc-shaped pulses) is modelled by a narrow triangle function, then its derivative will im-

pact the close neighbours by introducing higher interference power when compared to far

sub-bands.
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By taking the absolute value of S̃(f), it is straightforward to show that the function has

local maxima at the occupied frequencies. We can start by the Triangle inequality which

states that ||x + y|| ≤ ||y|| + ||y|| for arbitrary vectors x and y lying in the same plane

where || • || is the usual norm operator. It is clear that the local maxima for |S̃(f)| are

the same local maxima for E(f) =
∣∣∑M

m=1 γm
∑N−1

k=1 (1 − k/N)e−j2πk(f−fm)/Fs
∣∣ since the first

vector of the Triangle inequality is a constant numeric. Some of those local maxima for E(f)

are obtained at f = fm ∀m. However, the function E(f) exhibits other small local maxima

representing the side-lopes of the sinc-shapes. Based on this discussion, it is quite clear

that the PSD of the window-based autocorrelation for the quantized system fully reflects the

spectrum occupancy and hence occupied sub-bands can be effectively sensed by utilizing this

approach.

Typically, the quality of the detector is measured in terms of the detection probability as

well as the false alarm probability. The detection probability is the probability of detecting a

primary signal when it is truly present while the false alarm probability is the probability that

the test incorrectly decides that the primary user is present when it is actually not. In classical

detector design, the decision statistic formulation is helpful to maximize the detection rate, to

minimize the false alarm, or generally to optimize the detector performance as a function of

some cost function based on the decision statistic variable. It has been shown that searching

for local maxima in |S̃(f)| is not an optimum solution that maximizes the detection rate.

Let us define the detection probability as PD = Pr
[
|S̃(f)| > Λ|f = fm∀m

]
where Λ is a

threshold and |S̃(f)| is the absolute value of the PSD at an arbitrary frequency f .

The main issue of maximizing this detection rate is that it really depends on the knowledge

of the unknown spectrum parameters such as the number of occupied bands M and the

spacing between the occupied sub-bands which defines the amount of interference. Recall that

the amount of interference increases by increasing the number of occupied bands, therefore

the optimum threshold would absorb this fact by being a function of the occupied bands

parameters. Furthermore, although this approximation provides enough confidence about

the effectiveness of the proposed approach to detected PUs in the framework of a 1-bit

quantizer, it is unlikely to have 4γ̄β ≤ 1 especially when the sparsity level increases even

at low signal-to-noise ratios. Actually, violating this condition means that non-linear terms
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will be introduced to the arcsine approximation. Those non-linear terms represent more

harmonics from each occupied band to be introduced as interference to the whole spectrum.

Since the number of non-linear terms are infinite and the occupied sub-bands spread randomly

across the wideband, the interference contribution from various occupied sub-bands at a

specific carrier can be modelled as a Gaussian noise by utilizing the central limit theorem.

The noise power depends on the amount of leakage arises from the occupied sub-band in a

form of interference. In fact, this noise power is added to the known white noise power and

hence; the noise floor of the system varies depending on the spectrum utilization and the

SNR. This makes it even hard to blindly optimize any cost function to obtain an optimum

performance measure. Due to the mentioned reasons, we propose a sub-optimal detection

algorithm that enables the 1-bit correlation-based wideband sensing.

5.4.3 Detection Algorithm

In this section, we discuss the detection algorithm that utilizes the computed power spec-

tral density to individually differentiate between occupied and vacant sub-bands in case of

window-based correlation for the 1-bit quantized system being utilized. To design a good de-

tection algorithm, important factors have to be taken into consideration: (1) The background

system noise is magnified by introducing the interference from the occupied sub-bands. Since

the spectrum utilization factor is unknown, the noise plus interference power is random. (2)

The algorithm has to take the practical implementation into consideration. For example, it is

impossible to average infinite number of correlations to reject the effect of independent ran-

dom variables and the noise samples. (3) The algorithm should consider the complexity, the

reduced sensing time, and of course the high performance by achieving the highest possible

detection rate at very low false alarm rate.

Since the noise level varies with the spectrum utilization which is typically unknown,

practical and reliable implementation of the proposed technique requires that the detection

algorithm is able to estimate the noise floor introduced to the system for a given sensing

interval. Based on the discussion presented in section 5.4.2, the PSD has enough information

about the noise-plus-interference power since the sub-bands, that would have the smallest

power values, mainly express the unoccupied sub-bands. Therefore, a noise-plus-interference
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Figure 5.10: Illustration for the detection algorithm and parameter definitions for the

correlation-based 1-bit quantized systems

power estimate, σ̃2
W , can be obtained by averaging the power of the sub-bands that have been

classified to be in the noise region. The noise region is defined by introducing a tolerance

above the minimum power level found in band. If the minimum power level is defined by

Smin, then an upper bound for the noise region will be αSmin where α is a system parameter

that defines the amount of tolerance. One interesting point of this approach is that α can be

designed to satisfy certain false alarm rate for a given SNR and spectrum utilization.

To decide whether a sub-band is vacant or occupied, a binary hypothesis is formed based

on the power spectral density of this sub-band. In fact, the value of the power spectral density

at a given sub-band is compared to a threshold. If the value of the power level exceeds the

threshold, this sub-band will be marked as occupied. Otherwise, the sub-band is assumed to

be vacant. The threshold in this algorithm is defined to be a relative threshold to the noise

floor. Thus, it mainly represents how much power is required above the noise floor to mark

a sub-band as occupied. Once the noise floor (noise-plus-interference estimate) is found,

the threshold value is defined to be λ dBs above the noise floor. Motivated by the classical

framework of a detector design or the Neyman-Pearson (NP) criterion [39], the value of λ

is optimized (through simulations) to provide the maximum detection rate for a given false

alarm rate. The definitions for various parameters that are involved in detection algorithm

are illustrated in Fig. 5.10. Furthermore, the detection algorithm is listed in Fig. 5.11 where

the procedure of evaluating the noise floor and classifying the sub-bands as occupied or not is

fully described. Recall that the only input to this algorithm is the computed power spectral
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1: Evaluate the normalized Power spectral Density, S(k)

2: Search for the minimum PSD value, Smin

3: Initialize: Temp=0 and Counter=0

4: for k = 1 : N do

5: if Smin ≤ S(k) < αSmin then

6: Temp=Temp+S(k)

7: Counter=Counter+1

8: end if

9: end for

10: Evaluate the noise floor: σ̃2
W=Temp/Counter

11: for k = 1 : N do

12: if S(k) ≥ λσ̃2
W then

13: Set the flag for sub-band k (mark it as occupied)

14: else

15: Clear the flag for sub-band k (mark it as a hole)

16: end if

17: end for

18: Report all flags for various sub-bands

Figure 5.11: Detection algorithm for the correlation-based 1-bit quantized systems

density, S(k), defined by (5.21) where each bin represents a sub-band.

5.4.4 Simulation Results

The same simulation settings utilized by Section 5.3.3 have been inherited to this simulation

as well. Thus, the signal to noise ratio per sub-band γm = γ. The false alarm probability is

investigated for various system parameters. In fact, the false alarm rate depends mainly on

the selected threshold, the accuracy of the noise floor, the spectrum utilization, and the SNR.

As a first step towards the detector design problem, the noise tolerance, α, and the threshold

are selected jointly to set the false alarm rate at a given SNR and spectrum utilization.

Fig. 5.12 shows the simulation results for the false alarm probability as a function of both
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Figure 5.12: False alarm probability versus threshold under different tolerance values α =0.01,

0.1, or 1 dB and different averaging depths L =10, 50, or 100. Fixed spectrum utilization

and signal to noise ratio are utilized such that β=100/1024 and γ=-3 dB

the relative threshold, λ, and the noise tolerance, α. One of the fundamental parameters that

would influence the threshold value is the amount of averaging introduced to the window-

based correlation. The more averaging we apply, the smoother the noise region we obtain.

Therefore, less relative threshold can be employed to produce the same false alarm rate.

However, a compromise between the sensing period and the smooth noise region applies.

Since the sensing period is directly proportional to the averaging depth (simply, the sens-

ing period is LN/Fs), the averaging depth should have an upper bound to limit the sensing

period and to achieve reasonable smooth power spectral density. Motivated by Fig. 5.12, it

is worth to mention that the noise estimation quality is reflected in the false alarm rate for a

given averaging depth. If reasonable averaging is applied, the impact of the noise estimation

is minimized. For the rest of the simulations, we have limited the averaging to be over 100

correlations. In this case, the sensing period is as low as 10µsec for a wide band of 1GHz

and as high as 1000 sub-bands. Therefore, L = 100 is a reasonable choice that provides

enough smoothing and low sensing duration. It is clear from Fig. 5.12 that the tolerance

value importance reduces with the increase of the averaging limit.

It can be understood that the utilization factor significantly affects the detector perfor-

mance due to two reasons: (1) increasing M would increase the interference introduced from
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Figure 5.13: False alarm probability versus threshold under different utilization factors β

=50/1024, 100/1024, or 200/1024 and different signal to noise ratios γ=-12, -9, or -6 dB.

Fixed averaging depth and tolerance values are assumed such that L =100 and α=0.1 dB

the occupied sub-bands to the vacant bands and thus influence the false alarms. (2) It is

quite obvious from (5.23) that the second term has a division by M . Therefore, it is expected

that increasing M reduces the values of the impulses located at the occupied carriers in the

power spectral density. This results in less detection for the occupied sub-bands even at very

high SNR values. Fig. 5.13 shows the false alarm probability versus the relative threshold

values for various utilization factors and SNRs. It can be seen that the upper bound on

the false alarm rate is controlled through the utilization factor due to the fact that more

occupied sub-bands introduce more interference spikes that increase the false alarms. On the

other hand, the SNR mainly affect the selected threshold to achieve a fixed false alarm rate

at a given spectrum utilization. The reason is that very high noise power requires infinite

averaging so that smooth noise region is obtained. In this case, the relative threshold will

require fine adjustments to achieve the same false alarm rate at a given spectrum utilization.

It is worth to mention that FCC revealed that the radio spectrum utilization in the band

below 3 GHz varies vastly where occupancy is found to be around from 15% [125]. Motivated

by this practical percentage, we have utilized an occupancy range 5% to 30%.

A typical detector design starts by choosing the detector parameters to fix the false alarm
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Figure 5.14: Detection probability versus spectrum utilization factor under different signal

to noise ratios γ=-12 or -6 dB and different false alarm rates PFA=0.05, 0.1, or 0.15. Fixed

averaging depth and tolerance values are assumed such that L =100 and α=0.1 dB

rate. The corresponding detection rate is then obtained to fully characterize the detector

performance through the ROC. It is worth to study the effect of various system parameters

on the detection rate for given false alarms to be able to fully define the performance of

the detector. Fig. 5.14 shows the effect of the utilization factor on the detection rate for

given false alarm rates and SNRs. To develop these results, the simulations are adjusted

first to find the threshold value at which the required false alarm rate is achieved for given

spectrum utilization and SNR. Then, this threshold is used to measure the detection rate

for the same system parameters. As discussed before, more utilized spectrum reduces the

detection accuracy due to the impact on the impulse values at the occupied sub-bands in the

power spectral density. It is clear that the detection rates are very close for various SNRs

since the proper threshold is chosen to achieve a fixed false alarm rate.

In the FFT-based sequential sensing approach [119], the ultra wideband is divided into

non-overlapping narrow bands. These narrow bands are sensed sequentially by employing an

FFT module that computes the signal energy over the sub-bands which should be averaged

over some time to strengthen this power estimation. A threshold is used to take decisions

about individual sub-bands. Although there is no constraint about the spectrum utilization,

the main weak point to this approach is the long sensing interval implied by sequentially
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Figure 5.15: ROC curves for the proposed 1-bit quantized detector versus the FFT-based

sequential sensing approach [119] and the multi-band detection approach [51]. Different

utilization ratios apply for the 1-bit quantizer such that M =50, 100, 200, or 300. Averaging

is applied over 100 captures for all techniques. α=0.1 dB for the 1-bit quantizer cases.

sensing the narrow bands and the time averaging. This technique is simulated at relatively

high SNR (i.e., γ = −3dB) as shown in Fig. 5.15. In addition to the large power consumption

and the desolation of the quantization effect, our proposed 1-bit quantizer system performs

better even at very low SNR (i.e., γ = −12dB) with the condition of having a sparse spectrum.

Finally, the 1-bit quantizer performance is compared to the multi-band detection tech-

nique [51]. N bandpass filters have been designed to disjoint the sub-bands and hence narrow

band energy detector can be applied to each sub-band. Each energy detector computes the

average energy of the time domain samples presented by the corresponding filter. Averaging

is applied over 100 samples. Although this technique shows better performance when com-

pared to the FFT based, still the 1-bit quantizer can perform better for ultra sparse systems.

Moreover, the complexity (requires 1024 filters) and power consumption (minimum of 1Watt)

for the multi-band detector is quite significant when compared to the 1-bit quantizer.
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5.5 Complexity and Power Consumption

5.5.1 Complexity

For the 1-bit quantized system based on the FFT-based energy detector, the complexity of

the new system is very close to the classical FFT-based approach except for the additional

buffers which have been compensated by the loss in the FFT complexity itself. The standard

FFT complexity is represented by the number of arithmetic operations where the complexity

is of O(N log(N)), if N is chosen to be a power of two. However, the processed samples

are quantized to only {−1,+1} and hence the twiddle multiplication are trivial since they

will be implemented by a controlled negation operation. In this case, the complexity of the

FFT reduces to only O(N log(N)/2) as the first stage of the FFT does not involve any real

multiplications.

Theoretically, autocorrelation has to be evaluated based on very large number of samples

so that the statistical properties of the signal are captured. Practically, this is not an option

due to complexity issues such as supporting large memory size and because of the unlimited

sensing time. However, if correlation does not involve enough samples, the performance of

the presented algorithm will be significantly impacted. One of the strongest points of our pro-

posed architecture is that it utilizes window-based autocorrelation which provides practically

implementable design. In addition, the 1-bit quantizer significantly reduces the complexity of

the correlators. In reality, no real multipliers are required to process the correlation since only

signs are multiplied. For a correlation window of size N and averaging over L windows, the

complexity of the averaged window correlation reduces to only 2NL additions/subtractions.

It is worthy to mention that the maximum word length of the correlation output is simply

1 + log2(LN) as the input is only 1-bit quantized. One side note is that our approach em-

ploys a division operation to compute the unbiased correlation. Since these divisions are by

constants, they are not involved in this complexity analysis. Moreover, the detection algo-

rithm relies on the full knowledge of the thresholds which will be computed off-line based

on the target performance, the operating SNR values, and the upper bound of the expected

sparsity of the spectrum. Therefore, complexity for the detection algorithm mainly resides

102



on the comparisons that are employed by any other wideband sensing procedure utilizing a

threshold approach.

5.5.2 Power Consumption

The overall power is distributed among three major blocks: RF processing, digital process-

ing, and ADC. First, various voltage gain amplification stages can be removed from the RF

chain as long as a 1-bit quantizer is employed. The reason is that 1-bit ADC intentionally

requires the sign of the input signal and it does not rely on its strength. For the currently

available ultra-wideband (UWB) systems operating at 500MHz bandwidth, it has been re-

ported that 33% of the power consumption for the RF processing is dissipated by various

gain amplifiers [126]. As a consequence, systems that employ 1-bit quantization would save

this percentage of power at the RF chip.

Second, the power consumption for the digital processing depends on the system archi-

tecture, the complexity, the operating clock frequency, the word length of various variables,

and the fabrication technology. As many parameters are involved to evaluate this part of the

power consumption, it is hard to tell how much power is really consumed if the proposed ar-

chitectures are employed as it is mainly an implementation dependent parameter. However,

our architectures are compared to the closest one presented in [119]. For the FFT-based

approach, the high speed buffer is an additional module and for the autocorrelation-based,

the correlators will be the only additional processing since the FFT and the comparison logic

present in both architectures. However, the power consumed from this additional increase in

complexity has been compensated by reducing the operating clock frequency for the digital

processor. The proposed architectures actually allow this feature due to the existence of the

high speed buffers. For the autocorrelation-based approach, it is true that the correlation

logic complexity (represented by 2NL additions) is comparable to the FFT complexity (rep-

resented by N log(N) operations). Therefore, if the operating clock frequency is reduced by

50% of the sampling rate, then the presented architecture will consume the same power, if

not less, for the digital part as the FFT-based approach.

Third, ADC power consumption depends on ageing parameters such as the fabrication

technology, the internal architecture, the operating frequency, and the resolution. As far
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as the resolution is concerned, we can certainly claim that reducing the resolution to only

one bit would make it possible for an ADC to dissipate the minimum power if all other

factors remain unchanged. However, it is worth to elaborate on some details to support

this idea. In general, the comparator is a fundamental component in the design of ADC

converters. Various architectures can be utilized to design high-speed ADCs having low

power consumption [127]. For K bits ADC, 2K − 1 comparators can be used alone with

an encoder circuit to form a single flash ADC architecture. The power scales exponentially

when compared to a single comparator power consumption. In reality, a single comparator

will dissipate about 2−K of the total power absorbed by this flash ADC. On the other hand,

Successive Approximation (SAR) ADCs are power efficient for higher resolutions with lower

speeds [128]. A SAR ADC usually employs a comparator, a digital-to-analogue converter

(DAC), an up-down counter, and control logic where very recent designs show that the

comparator consumes only 30% of the total power for SAR ADC [129]. However, SAR rates

still do not follow the requirements for the ultra high speed conversion.

Alternatives to flash and SAR ADCs for high-speed low-power operation are hybrid and

time-interleaved (TI) ADCs. The former uses a combined flash SAR configuration in a

pipelined fashion [128] while the second approach employs multiple parallel low-speed high-

resolution ADCs in a non-overlapped time intervals to quantize successive time samples [130].

Both architectures provide high throughput conversion on the account of employing multiple

low-speed converters with low complexity proper calibration. In [128], 8-bit hybrid ADC is

designed by employing one 3-bit flash ADC, four 5-bit SAR ADCs, and four comparators.

In this case, the ADC consumes higher than or equal to 23 − 1 + 50/3 + 4 ≃ 28 times of the

1-bit ADC. Moreover, if a TI ADC utilizes n SAR ADCs, then it will consume a power of

at least 10n/3 when compared to a single-bit ADC. Therefore, it is clear that a 1-bit ADC

consumes power that is lower than the high resolution ADCs by order of magnitudes. From

this discussion, one can conclude that the proposed architecture is optimized to dissipate

significantly low power when compared to other approaches that employ high resolution

ADCs.
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5.6 Conclusion

Since the Nyquist-based wideband sensing relies on ultra high sampling rates, the correspond-

ing power consumption from the high-resolution analogue to digital conversion is significantly

high which makes it hard to reliably realize such solutions. In this chapter, we have presented

two different approaches to utilize the 1-bit quantizer in Nyquist-based wideband spectrum

sensing. The key objective is to reduce the power consumption from few watts to micro watts

at the ADC stage. The first procedure can detect the activity of primary users over various

sub-bands by monitoring the signal strength in frequency domain. Here, we derived the

exact non-quantized ROC independent on the sensing interval to analyze the performance

of the proposed algorithm. Further, we found expressions for the false alarm and detection

rates in case of the 1-bit quantizer. Simulation results indicate that the derivations are ac-

curate and reliable for various system parameters. As a result, our proposed architecture

can greatly enhance the complexity and power consumption by selecting the proper system

parameters so that the detection performance does not severely degraded when compared to

the non-quantized case.

For the second approach, we presented an autocorrelation-based approach to estimate the

PSD of the 1-bit quantized signal and hence to detect the presence of the PU in individual

sub-bands. We derived the closed form expression for the window-based autocorrelation func-

tion which clearly shows the spectrum occupancy. We presented a detection algorithm that

employs the average PSD to discriminate between vacant and occupied sub-bands. Com-

plexity and power consumption have been quantified with respect to other architectures.

Simulation results indicate that the detection accuracy is promising for sparse systems. As

a result, our proposed system can greatly enhance the complexity, power consumption, and

the performance for the wideband spectrum sensing problem.
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Chapter 6

Synchronization and Cell Search Algorithms

for LTE-MTC and NB-IoT Systems

6.1 Introduction

As mentioned earlier, one of the basic challenges to realize the next generation cellular M2M

communication is the spectrum scarcity which has been addressed in the previous chapters.

However, due to the challenging conditions at which devices are required to operate, there

are other difficulties to implement practical and efficient devices. It is unusual for the con-

ventional systems to design cellular low-power, low-cost, and enhanced-coverage equipments

that can operate at ultra very low SNR values with reduced complexity. Although LTE-MTC

systems share some of the transmission capabilities with the conventional LTE systems (for

example, both systems can receive the same synchronization signals), practical algorithms

have to be developed in order to detect these signals at very low SNR values and under fad-

ing conditions. In addition, it should be understood that systems with new signal structures

such as NB-IoT require novel techniques to address its implementation challenges. In this

chapter, we focus on some of the challenges to realize both LTE-MTC and NB-IoT systems.

In specific, due to their important roles in data communication, we address the problems of

initial synchronization, cell search, and frequency tracking [131] in LTE-MTC systems. We

also consider the initial synchronization and cell detection for the NB-IoT systems which have

new set of synchronization signals that are different from the conventional LTE (and LTE-

MTC) synchronization signals. Other implementation challenges and issues are considered

as future extension to his work.
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During the initial physical channel setup [132], the UE shall search for a serving cell by

acquiring the cell identity (ID) and the proper cell timing. Since OFDM systems are known to

be sensitive to frequency errors, initial synchronization including CFO estimation is typically

carried along with the cell search as CFO can be jointly estimated with the cell ID and symbol

timing. LTE standard provides two synchronization signals, namely PSS and SSS, to assist

completing the synchronization and cell search procedure. In literature, there are various

techniques presented to perform both initial synchronization and cell search. All share the

same procedure in the following order: (1) A coarse symbol timing has to be obtained first

so that the received signal can be converted from time domain to frequency domain. At this

stage, there are algorithms to estimate the fractional part of CFO as well [133][134]. (2) PSS

(or sector ID) will be detected in the second step. (3) SSS (or cell ID group) will be found

next [81][80]. (4) The detection of the integer part of CFO can be fulfilled. Some algorithms

have been presented to enable this estimation within either Step 2 or Step 3 [132]. Other

algorithms try different time domain approaches [135].

Since LTE-MTC introduces new challenges to the system, conventional cell search and

initial synchronization techniques have to be revised. These techniques are designed to meet

certain performance requirements, given by the cell detection accuracy and an acceptable

frequency tolerance, in a well-defined environment with many degrees of freedom. In this

regard, we provide a study and an evaluation to the conventional cell search approaches

with respect to LTE-MTC specifications. It turns out that the current techniques with their

default parameters fail to achieve the target performance at the desired SNR for extended

coverage LTE-MTC mode. Fortunately, the consistent theme of the LTE-MTC specifications

is to allow repetition that enhances the detection at very low SNR values. Following this

standard spirit, we have utilized the allowed degree of freedom which is the time diversity to

improve the performance of the conventional cell search approaches at such low SNR values.

Without the help of any additional signalling, we prove by simulation that time averaging

is a solution to meet the requirements for MTC-LTE for specific algorithms. On the other

hand, it turns out that even with very long time averaging, some other algorithms fail to

achieve the target performance at the required SNR.

After initial synchronization, residual frequency errors are always present due to the
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Doppler shift and uncompensated residual errors, hence frequency tracking is required. Two

issues arise with the introduction of LTE-MTC: (1) During EDRX cycles, frequency tracking

is deactivated and DRX wakeup procedure requires resynchronization. (2) Enhanced coverage

UEs are required to track frequency errors in very low SNR regimes. A new challenge is

then introduced to keep tracking loops with high accuracy at these low SNRs. A compromise

between accuracy and processing time appears here. For example, the widely used Maximum

Likelihood (ML) CFO estimator [131], that relies on time domain autocorrelation for cyclic

prefix samples, shows slow performance enhancements in deep fade environments and at low

SNRs. Also, due to the limited bandwidth for the LTE-MTC system, insufficient number of

Reference Symbols (RSs) are available for data aided approaches (e.g., [136] and references

therein) to provide accurate frequency tracking in short processing time given the constrains

of low SNR and fading condition. Fortunately, LTE-MTC employs the concept of repetition to

enhance the detection of the physical broadcast channel. To achieve backward compatibility,

the legacy PBCH symbols are repeated either four or five times in two consecutive sub-

frames to form a well structured pattern. The MTC UE is supposed to soft combine these

symbols to enhance the broadcast information detection under low SNRs. In this front, we

propose a frequency tracking algorithm that utilizes the well structured repetitions of the

MPBCH symbols. In addition to the analytical solution, we compare the performance of the

presented algorithm with the conventional ML estimators. The performance is investigated

with respect to the operating SNR and also to the required processing time.

When it comes to the most recent system, namely LTE NB-IoT, we present a novel

algorithm to provide an initial timing and frequency acquisition and efficiently search for

the serving cell ID. The coarse subframe timing is jointly obtained with the integer CFO

by employing NPSS time domain correlation. Cell ID is acquired by utilizing differential

frequency domain correlations to NSSS sequences. In fact, a new challenge is to keep the

cell search and initial synchronization with high accuracy and reasonable complexity at very

low SNRs. Therefore, an averaging mechanism is provided to tackle the trade-off between

performance and processing time. In addition to the reduced complexity, the performance is

investigated with respect to the operating SNR and also to the required processing time for

various channel conditions.
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6.2 System Model

Let s(n) be a transmitted baseband OFDM signal. The received signal is given by,

y(n) =
[
s(n) ⋆ h(n) + w(n)

]
e−j2πεn (6.1)

where h(n) is the impulse response of the multipath channel, w(n) represents the AWGN,

ε is the normalized CFO, and ⋆ denotes convolution. As stated before, in OFDM systems,

CFO is typically normalized to the sub-carrier spacing where the total normalized CFO, ε,

is represented by two terms: the fractional CFO, εF , and the integer CFO, εI , such that

ε = εI + εF . Once the symbol timing is acquired and the CP type is known, the FFT engine

is utilized to obtain the frequency domain representation of the received signal which can be

derived from (6.1) as given by,

Y (k) = H(k)S(k − εI)e
j2π(k−εI)τ/Nej2πεF

N−1
N × sin(πεF )

N sin(πεF/N)
+ I(k) +W (k) (6.2)

where N is the FFT size which is 128 for LTE-MTC, τ denotes the time misalignment error,

I(k) refers to the inter-carrier interference term due to the non-orthogonal sub-carriers, and

H(k), S(k), Y (k), and W (k) are the frequency domain versions for h(n), s(n), r(n), and

w(n), respectively.

6.3 Cell Search and Initial Synchronization in

Conventional LTE Systems

In this section, we present the cell search and initial synchronization algorithms that provide

potential solutions for the conventional LTE systems. The presented algorithms focus on

the three main axes of the problem represented in timing acquisition, cell detection, and the

frequency offset estimation.

6.3.1 Timing Acquisition Techniques

During timing acquisition, the UE requires setting the FFT window with proper timing

alignments. In this front, two major techniques have been considered.
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6.3.1.1 ML Timing Detection

In [131][132], several approaches on time and frequency synchronization for LTE have been

investigated. According to conclusions of this study, the cyclic prefix based method for

acquisition of the OFDM symbol timing and the fractional CFO is preferred. The cyclic

prefix based method remains unaffected by the presence of high CFO, but estimates only the

fractional part εF .

The log-likelihood function for the OFDM symbol start (θ) and the frequency mismatch

(εF ) can be written as given by,

Λ(θ, εF ) = 2
∣∣γ(θ)∣∣ cos (2πεF + ∠γ(θ)

)
− ρE(θ) (6.3)

where γ(θ) =
∑n+L−1

k=n y(k)y∗(k+N) is the correlation term, E(n) =
∑n+L−1

k=n |y(k)|2+ |y(k+

N)|2 is the energy term, ρ is the magnitude of the correlation coefficient between y(k) and

y(k + N) such that ρ = SNR/(1 + SNR), and ∠ refers to the argument of the following

complex variable. According to [132], the ML estimate of θ and εF maximizes the function

Λ(θ, εF ) such that θ̂ML = argmaxθ[2|γ(θ)| − ρE(θ)] and ε̂F,ML = −1
2π
∠γ
(
θ̂ML

)
6.3.1.2 PSS Timing Detection

Since there are only three combinations for sector IDs, it is feasible, from the complexity

perspective, for a UE to cross-correlate the received signal and the PSS symbol replica in

time domain. Maximizing such a correlation provides a joint estimate to the PSS symbol

timing and the sector ID of the serving cell [137][138] as given by,

(θ̂, N̂2
ID) = arg max

θ
j∈{0, 1, 2}

∣∣Λ̄(θ, j)∣∣ (6.4)

where Λ̄(θ, j) =
∑θ+N−1

n=θ y(n)d∗j(n − θ) is the correlation cost function, dj(n) represents

the time domain reference PSS symbol with sector ID of j. The correlation period should

respect the repetition of the PSS that takes place every 5ms. Unfortunately, similar to the

ML approach, the timing still does not provide information about the frame timing as the

differentiation between sub-frame 0 and sub-frame 5 is encountered by the SSS not the PSS.
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6.3.2 Conventional Cell Detection and Initial Synchronization

Techniques

The PSS detection was proposed to be performed in Time Domain (TD) [135][139] as men-

tioned in section 6.3.1.2 by employing a matched filter approach. However, it is generally

assumed [132][140] that the oscillator mismatch produces an integer frequency offset in the

range εI ∈ [−2, +2]. The existence of this integer frequency offset will certainly degrade

the performance for detecting PSS in time domain. Hence, the PSS detection and integer

frequency offset are proposed to be jointly estimated [141] where the cost function is rede-

fined as given by (6.5). The idea is to introduce progressive phase shifts for the reference

PSS symbols before applying the cross correlation. Hypotheses are defined to generate the

pre-correction phase shifts as a function of the claimed integer frequency offset. Maximizing

the cost function over all possible sector IDs and all possible integer frequency offsets will

provide a joint estimate for the sector ID and the attached integer frequency offset. The

main disadvantage of this approach is the complexity where the number of correlation banks

is triple the number of the expected integer frequency offset since the correlation is applied

for the three possible PSS IDs.

Λ̄(θ, j, εI) =
θ+N−1∑
n=θ

y(n)d∗j(n− θ)e
j2πεI (n−θ)

N (6.5)

On the other hand, if CP correlation is involved to obtain timing, PSS (and SSS) can be

detected by employing correlations in frequency domain [81]. However, there usually exists

a non-negligible symbol timing error due to not only the unequal CP lengths for normal

CP type [142] but also the estimation accuracy. As noticed from (6.2), any time mismatch

introduces phase rotations to the frequency domain sub-carriers which degrade the detection

for PSS/SSS. To improve the PSS detection in the presence of a timing error, the differential

correlation scheme was proposed in [142]. Here, the cross-correlation between the received

differential PSS and the local differential reference PSS is maximized as given by (6.6).

N̂2
ID = arg max

j∈{0, 1, 2}

∣∣∣∣ 31∑
k=−31
k ̸=0, 1

Y(k)D∗
j (k)

∣∣∣∣ (6.6)
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where Y(k) = Y (k)Y ∗(k − 1), Dj(k) = Dj(k)D
∗
j (k − 1), Y (k) is the received PSS symbol at

sub-carrier k, and Dj(k) is the reference PSS symbol for sector ID, j, at sub-carrier k. It is

assumed that the coherence bandwidth of the channel is much higher than the sub-carrier

spacing so that adjacent sub-carriers almost suffer from the same channel effect. In case of

perfect synchronization, the term Y(k) = [H(k)S(k)+W (k)][H(k− 1)S(k− 1)+W (k− 1)]∗

has implicitly three noise terms other than H(k)H∗(k− 1)S(k)S∗(k− 1). Statistically, those

noise terms vanish since W (k) and W (k−1) are assumed to be independent and E[W (k)] = 0

where E denotes expectation. However, practical realization for this averaging is not easy

especially for very low SNR values and limited number of sub-carriers to average over.

Due to complexity issues for the SSS detection, research proposals prefer to process SSS

detection in Frequency Domain (FD) as symbol timing is assumed to be already acquired

by timing acquisition. The main difference is whether to apply coherent detection or non-

coherent detection. In coherent detection [143][139], the channel estimates are provided by

the PSS symbol as it is assumed that the channel does not rapidly vary from one OFDM

symbol to the following one. The SSS symbol is equalized by the channel estimates before

applying the correlations to maximize the detection accuracy. In its simplest form, least

squares channel estimates are computed from the PSS symbol [144] by which SSS is equalized.

The maximization problem over the coherent SSS correlations is given by (6.7), where S∗
j (k)

represents the reference SSS symbol with index j at sub-carrier k and HPSS(k) is the least

squares channel estimate obtained from the PSS symbol at sub-carrier k. Similar to PSS

detection, non-coherent detection based on differential correlation for SSS has been also

presented [132][139]. The channel effect is removed by considering the differential cross-

correlation between successive sub-carriers. Again, it is expected to have poor performance

for this approach at very low SNR values. However, the complexity of the former is higher

due to involving channel estimation and equalization.

N̂1
ID = arg max

j∈[0,167]

∣∣∣∣∣
31∑

k=−31
k ̸=0

Y(k)S∗
j (k)H

∗
PSS(k)∣∣HPSS(k)
∣∣2

∣∣∣∣∣ (6.7)

The detection of integer CFO may be processed along with the search process of SSS [132]

or with PSS [81] if either or both will be processed in the frequency domain. Different

frequency lags are introduced to the cross-correlations and more hypotheses are generated.
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Figure 6.1: General architecture for the proposed averaging methodology for various cell

search and initial synchronization algorithms.

The maximum cross-correlation jointly estimates the sector or the group ID as well as the

integer CFO. For example, frequency lags can be introduced to the non-coherent SSS detector

as given by (6.8), wehere the intger frequency offset is assumed to be in the range [−2,+2].

The estimator can now jointly detect the SSS index in addition to the proper integer frequency

lag.

{N̂1
ID, εI} = arg max

j∈{0, 1, 2}
p∈[−2,+2]

∣∣∣∣ 31∑
k=−31
k ̸=0, 1

Y(k − p)S∗
j (k)

∣∣∣∣ (6.8)

6.4 Proposed Cell Search and Initial Synchronization

for LTE-MTC Systems

Conventional LTE specifications define an operating point of SNR=-6dBs for cell search

and initial synchronization. However, extended coverage LTE-MTC specifications are more

challenging since the operating SNR value should be as low as -15dB. In fact, traditional

methods utilize two receive antennas that provides a diversity again of about 3dB for AWGN

unlike the LTE-MTC that employs only one receive antenna. Furthermore, a maximum

system bandwidth of 20MHz for conventional LTE provides about 4dBs gain when compared

to only 1.4MHz for LTE-MTC. All these challenges do not allow a room for a solution except

if time diversity is employed.

In this section, we modify the conventional techniques for cell search and initial synchro-
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Table 6.1: Different approaches to realize cell search and initial synchronization for LTE

systems

Approach 1 2 3 4 5 6

Timing Acq. ML CP Correlation PSS TD Correlation

PSS Detection Direct

Corr.

Diff.

Corr.

Direct

Corr.

Diff.

Corr.

-

SSS Detection Coherent Diff. Corr. Coherent Diff. Corr.

εI Est. FD PSS Corr. TD PSS Corr.

nization to include more averaging over the decision statistic. Introducing this averaging will

enhance the noise rejection and hence provides better performance at very low SNR values.

Yet, the decision statistic evaluation is repeated M times. Then the final decision statistic

is obtained by averaging all the outcomes. On the other hand, this noise filtering approach

consumes longer detection/estimation time depending on the number of repetitions and the

period of each trial. Simulations will be employed to decide on the required processing time,

or alternatively the parameter M , to achieve the target performance.

Regarding the timing acquisition problem, the performance of the ML estimator does not

perform well at low SNR and for fading channels as well. Averaging Λ(θ, εF ) over several

OFDM symbols is required to improve the performance. In fact, Normal CP mode requires

careful attention as the number of CP samples differs from the first OFDM symbol of the

slot to other symbols in the slot. To overcome this problem, the CP correlation is reset

every slot whose number of samples is exactly 960 samples. The correlation outputs from

multiple slots are averaged as a first step. Next, the correlation output is divided into 7

regions that are averaged together to have a single symbol-like correlation from which timing

is obtained. When PSS timing is utilized, the cross-correlations from the same base sequence

are averaged over M consecutive windows where each window involves TD samples for 5ms.

The definition for the modified decision statistic is given by (6.9) where Λ̄m(θ, j, εI) is the

decision statistic over a window of 5ms samples whose index is m. Similarly, if PSS is to

be detected in the frequency domain, the decision statistic of the cross-correlation either for

114



the direct cross-correlation or the differential one is averaged every 5ms. The maximization

is applied to detect the sector ID jointly with the integer frequency offset over the averaged

decision statistic. Similar to PSS, the periodicity of the SSS symbol is every 5ms. Therefore,

the detection of either PSS or SSS will be multiple of 5ms depending on the number of

windows to average over.

Λ̄Mod(θ, j, εI) =
1

M

M∑
m=1

Λ̄m(θ, j, εI) (6.9)

A general architecture for the proposed modified algorithms is shown in Fig. 6.1. A corre-

lator is employed to either autocorrelate the incoming sequence (in case of CP correlation) or

to cross-correlate the incoming sequence with known reference sequences (in case of PSS and

SSS correlations). The correlation output is added to the contents of the correlation buffer

to which the sum is saved. Of course, the correlation buffer is initialized to zeros. Once the

iteration count comes to M , the correlation sum is directed to another path in which the

maximum absolute is evaluated. The estimated parameters such as the symbol timing, PSS

index, SSS index, or the integer CFO part are then obtained as a function

Motivated by the presented discussion, we define the most common scenarios for cell

search and initial synchronization as listed by Table 6.1. Each scenario assumes specific

algorithms for the four parameters of interest. Our objective is to evaluate the performance

of various techniques when averaging is involved. Different channel models such as AWGN

and standard LTE fading channels have to be involved in addition to the target SNR=-15dB

for extended coverage LTE-MTC UEs. By strictly defining the expected accuracy of each

stage, one can assume independent performance measures for various blocks.

6.4.1 Simulation Results

We carried out link level simulations for evaluating the performance of the presented algo-

rithms. The 1.4MHz LTE-MTC system is considered, with a sampling frequency of 1.92

MHz, 128-point FFT/IFFT, 15kHz sub-carrier spacing, one antenna at transmitter and re-

ceiver, and a Normal CP mode. In extended coverage mode, it is not likely for LTE-MTC

device to move as fast as a high speed train. Therefore, we have considered low mobility

channels. For instance, AWGN and EPA-5 [75][145] were simulated. EPA-5 is a standard
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Figure 6.2: Performance for various timing acquisition techniques under different channel

conditions and for SNR=-6dB and -15dB. Horizontal axis is related to the averaging length

for timing acquisition techniques.

LTE channel with large coherence time (maximum Doppler spread is 5Hz). Simulations were

performed over 106 sub-frames over independent channel realizations for the conventional

SNR of -6dBs and the extended coverage LTE-MTC SNR of -15dBs. We also considered

a frequency misalignment of 31.5KHz (i.e, ε = 2.1). A maximum time frame of 150ms is

assumed to evaluate the averaging performance gain.

Fig. 6.2 shows the performance (represented by the timing error rate) for the timing

acquisition techniques versus the required processing time. Since the CP is 9 samples long,

we assume that the timing is in error if the estimated symbol start is shifted from the true

one by 4 samples at most. The reason is that OFDM orthogonality can be maintained if the

timing is adjusted up to the edge of the cyclic prefix. For conventional acquisition SNR, it is

clear that the ML method is sensitive to fading channels more than the PSS timing approach.

Originally, fading channels introduce inter-symbol interference which is absorbed by the cyclic

prefix and hence the CP is no longer a true copy of the OFDM symbol tail (if the noise is

ignored). For extended coverage LTE-MTC, it is obvious that the noise dominates and the

difference between fading and AWGN channels is relatively small. Although PSS timing

provides better performance, the absolute processing time is quite large (order of 0.2sec or
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Figure 6.3: Integer frequency offset detection rate for different estimation approaches and

under different channel conditions.

more for 1% error rate). A possible solution to have good timing accuracy with reasonable

performance is that LTE-MTC specifications provide repetition to the synchronization signals

more than once within the 5ms period.

Fig. 6.3 shows the estimation accuracy for the integer frequency offset under different

channel conditions and different SNR values. In reality, TD estimation approach is powerful

in performance when the processing time is fixed. It is also clear that the differential PSS

approach is far away from the other techniques at SNR=-6dB due to the noise magnification

issue discussed in section 6.3.2. The problem will be even worse for SNR=-15dB. One of the

conclusions is that differential detection approaches have very little chances for LTE-MTC

environment compared to other techniques. It will be shown by the following results that

the differential approaches not only have issues with integer frequency offset but also the

detection accuracy for PSS/SSS is not a prayer.

Fig. 6.4 shows the detection accuracy for PSS detection under different channel conditions

and different SNR values. In addition to the time domain PSS detection approach, PSS

detection is processed in frequency domain if ML timing acquisition is utilized. It is clear

that TD PSS consumes less averaging to achieve the same performance when compared to

other approaches. Again, differential detection is away from the rest even at the conventional
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Figure 6.4: Detection probability versus processing time for PSS under different detection

techniques. Different channel conditions are considered with SNR=-6dB and -15dBs.

SNR. Therefore, we do not recommend the differential approach with averaging for LTE-MTC

systems. Once PSS is detected, SSS detection is applied in the frequency domain by either

coherent or differential detection. Fig. 6.5 shows the simulated SSS detection probability

under different channels and different SNR values. In case of coherent detection, simple least-

squares channel estimation is applied for the PSS symbol. To evaluate the channel estimates,

the received PSS sub-carriers are multiplied by the conjugate of the corresponding reference

PSS sub-carrier. The output is smoothed by averaging adjacent sub-carriers (5 sub-carriers

are considered from each side). SSS symbol is equalized using a simple zero-forcing equalizer

that employs the PSS channel estimates. Based on these simulations, we cannot only provide

the 90%-detection time budget for an algorithm, but also we can conclude that TD PSS along

with coherent SSS would work faster for the cell search and initial synchronization problem

in LTE-MTC systems.

6.5 Frequency Tracking For LTE-MTC Systems

In this section, we summarize the common estimators that have been employed to track

the frequency in conventional LTE systems. Also, we present the details of the proposed
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Figure 6.5: Detection probability versus processing time for SSS under different detection

techniques. Different channel conditions are considered with SNR=-6dB and -15dBs.

estimator based on MPBCH data repetition. In order not to cause any inconvenience, in

this section, the frequency error is represented by εc. Typically, this frequency error is the

residual error in estimating the fractional frequency offset and hence it is much smaller than

εF obtained from the initial synchronization procedure.

6.5.1 Time Domain ML Estimator

The same approach defined in section 6.3.1.1 can be utilized to track the fractional fre-

quency offset. Thus, an ML estimator for εc can be defined by (6.10), where γ(θ) =∑n+L−1
m=n y(m)y∗(m+N) is the correlation term.

ε̂c,ML =
−1

2π
∠γ
(
θ̂ML

)
(6.10)

6.5.2 Frequency Domain Pilot-Based Estimator

The frequency offset can be tracked by measuring the phase shift of pilot symbols in OFDM

symbols that contain pilots in two consecutive LTE slots [136]. Let J , pj, and Sl(pj) denote

the number of pilot tones, the location of the jth pilot tone, and the pilot value located at pj

in the frequency domain at the lth OFDM symbol, respectively. If two OFDM symbols spaced
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by D symbols contain pilots at the same pilot positions, an ML estimator is designed in [146]

to estimate the frequency offset as given by (6.11) where α−1 = 2π(DN+DL+1)/N for FDD

LTE with Normal CP. For a single transmit antenna configuration, four pilot symbols are

allocated for each subframe such that the spacing between identical pilot symbols is D = 7.

In this case, the estimation range reduces to only |εc| < 64/960.

ε̂c = α ∠
{ J−1∑

j=0

Y ∗
l (pj)Yl+D(pj)Sl(pj)S

∗
l+D(pj)

}
(6.11)

6.5.3 Proposed MPBCH-Based CFO Estimator

One typical data-aided frequency tracking approach is to employ repetitive preambles which

remain identical after passing through the transmission channel except for a phase shift

produced by the frequency offset. The frequency offset is thus estimated by measuring the

induced phase shift [106]. Let us assume that sl(n) and sl+D(n) are two identical transmitted

symbols in MPBCH such that the symbols are spaced byD−1 symbols. In this case, under the

assumption that the channel remains constant over adjacentD+1 symbols, the corresponding

noise-free received symbols are related to each others such that rl+D(n) = rl(n)e
jεc/β where

β = N/(2πD(N + L)). Consequently, the frequency domain symbols will inherit the same

scaling and hence Rl+D(k) = Rl(k)e
jεc/β. In vector notation, this relation is rewritten as,

Yl = Rl +Wl

Yl+D = Rl+D +Wl+D = ΘRl +Wl+D

(6.12)

where Θ = ejεc/βI is an N × N matrix representing the CFO coefficients, I is the iden-

tity matrix, Yi = [Yi(0) ... Yi(N − 1)]T represents the ith received symbol vector, Ri =

[Ri(0) ... Ri(N − 1)]T represents the ith noise-free received symbol vector, and Wi is the

noise vector at symbol i. In [147], it has been shown that an ML estimator for the differen-

tial phase can be obtained by minimizing the cost function 𝟋(Θ) given by (6.13) where H

denotes hermitian transpose operator. By differentiating 𝟋(Θ) with respect to εc, equate the

result to zero, and employ the fact that Θ[dΘ/dεc]
H + [dΘ/dεc]Θ

H = 0, it follows that an
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unbiased estimator for the CFO can be achieved and the estimated CFO is given by (6.14).

𝟋(Θ) =
[
Yl+D −ΘYl

]H [
Yl+D −ΘYl

]
(6.13)

ε̂c = β ∠
[
YH

l Yl+D

]
(6.14)

As shown in Fig. 2.7, in the proposed MPBCH, the separation between different repeti-

tions is irregular. Thus, to estimate the CFO based on repetitive MPBCH symbols, we have

divided the repetitions into four groups, namely G0 to G3. Each group has two sets of OFDM

symbols. Each set represents the closest replica for the other set. The spacing, Di, between

each OFDM symbol and its corresponding repetition in a group Gi is the same for all OFDM

symbols contained by group Gi. With this definition, averaging over phase differences for

all OFDM symbols enclosed by one group is possible. This averaging reduces the estimation

noise and enhances the accuracy. Let the decision statistic over a certain radio frame m for

group Gi be denoted by Γi
m =

∑
∀ l∈Gi

YH
{l,i,m}Y{l+Di,i,m} where Y{l,i,m} is the received FD

symbol l inside one of the two sets contained by group Gi at radio frame m.

Since the estimation formula given by (6.14) is different for each group, we employ a

weighted averaging for the estimates produced by various groups to finally evaluate the CFO

estimate. If we define the CFO estimate for group i at radio frame m to be ε̂c,i,m = βi∠Γi
m,

then the final estimated CFO at radio frame m is obtained by ε̂c,m =
∑3

i=0 ωiε̂c,i,m. In its

simplest form, the weighting coefficients ωi = 1/4 to preserve unbiased estimator. It is worth

to mention that the proposed approach limits the CFO estimation range to the minimum

range achieved by all groups. To emphasize, the frequency offset that can be measured

without ambiguity is |εc| < 64/549 or equivalently 1.75KHz, where we accounted for four

symbols to represent the separation D.

For insufficient number of observations, the performance of ML estimators may not per-

form very well at very low SNR and for deep fading conditions as well. In this case, averaging

the decision statistic over multiple observation windows is required to improve the perfor-

mance [106]. In case of the proposed MPBCH estimator, a single observation window is a

complete radio frame (i.e., 10ms). The CFO estimator after M windows is defined by (6.15).

Similar averaging can be defined to the other estimators. However, the processing time for an

estimation algorithm is defined by the window periodicity and the number of processed win-
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Figure 6.6: Normalized MSE showing the averaging effect for MPBCH-based estimator for

M ∈ {1, 10, 20} and under different channel conditions.

dows. It is worth to mention that the pilot-based estimator and the time domain estimator

are repeated and averaged every sub-frame (i.e., 1ms).

ε̂c =
3∑

i=0

ωiβi ∠
[M−1∑

m=0

Γi
m

]
(6.15)

6.5.4 Simulation Results

Again, we carried out link level simulations for evaluating the performance of the presented

algorithms. The same LTE-MTC settings, including a sampling frequency of 1.92 MHz,

128-point FFT/IFFT, 15kHz sub-carrier spacing, fc = 2.6GH, one antenna at transmitter

and receiver, and a Normal CP mode, are considered. Thus, a total of 12 × 4 = 48 pilot

sub-carriers are allocated per subframe. AWGN and two standard LTE channels, namely

EPA-5 and ETU-70 [75], were simulated. ETU-70 is a dispersive channel with maximum

Doppler spread of 70Hz. The frequency offset is assumed to be 1.5KHz. However, due to the

estimation range limit, it is 750Hz in case of the pilot-based estimator.

For various channel conditions, Fig. 6.6 shows the performance of the MPBCH-based esti-

mator represented in the normalized Mean Squared Error (MSE) defined by (6.16), where ε̂ p
c

is the estimated frequency error from trial p and up to P trials are considered. The averag-

ing over observation windows is activated such that three averaging periods are investigated
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Figure 6.7: Normalized MSE for various estimator versus SNR under AWG, EPA-5, and

ETU-70 channels. No averaging is employed.

where M =1, 10, or 20. It is clear that deep fading channels like EPA-5 affect the per-

formance. However, averaging over longer periods significantly enhances the accuracy. For

example, increasing the averaging from M=10 to M=20 provides a again of about 6dBs at

MSE=2×10−3. With high speed Doppler (i.e., ETU-70), the performance is close to AWGN.

Thus, the estimator is more robust against high Doppler which validates the assumption of

a constant channel over consecutive symbols.

MSE =
1

P

P∑
p=1

∣∣∣∣∣ ε̂ p
c − εc
εc

∣∣∣∣∣
2

(6.16)

To compare various estimators in the LTE-MTC environment, the normalized MSE for

various estimators against SNR is evaluated when averaging is deactivated as shown in

Fig. 6.7. Two aspects arise: (1) although the time domain estimator provides the widest

estimation range (i.e., |εc| < 0.5) [131], its performance is quite poor. In reality, the num-

ber of CP samples for LTE-MTC is quite small when compared to legacy LTE in which

this estimator performs better. (2) Due to the insufficient number of pilots for LTE-MTC

system, the pilot-based estimator performance degrades when fading is employed. However,

it still performs better than the CP correlation estimator in all cases. It is also clear that

the performance difference between the pilot-based and the MPBCH estimator in noticeable

for ETU-70 in which the constant channel assumption is almost acceptable for MPBCH-
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Figure 6.8: Normalized MSE versus processing time for various estimators and under AWGN,

EPA-5, and ETU-70 channels such that SNR=-10dBs

based estimator but not for the pilot-based especially at high SNR values. The source of

this distinction is the spacing between the repetitions which is high in case of utilizing pi-

lots. Further, even without averaging, the MPBCH estimator performs better for all channel

conditions when compared to other techniques.

By changing the averaging period and accounting for different observation window periods

for various estimators, Fig. 6.8 shows the performance for various estimators versus the

processing time. The main point here is how fast an estimator can reach a desired performance

under this challenging environment. For a fixed target performance, the frequency tracking

loop will converge quickly if the processing time for the open loop estimator is relatively small.

It is clear that less averaging is required for the proposed MPBCH estimator to achieve the

target performance independent on the channel. It is also obvious that performance slope is

slowly changing but the MPBCH estimator reaches its floor quickly.

6.6 Proposed Initial Synchronization and Cell Search

for NB-IoT Systems

As presented in Section 2.6.3, the NB-IoT system has new special requirements than LTE-

MTC. With only 180KHz bandwidth which can be deployed as a single physical resource
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block in LTE network or as a standalone system, NB-IoT system cannot reuse the legacy

synchronization signals that span 1MHz. For this reason, NB-IoT systems have new intro-

duced synchronization signals, namely NPSS and NSSS, which carry the cell information

including the cell timing and cell ID. Based on the new signal structure, periodicity, and

NB-IoT capabilities in general, in this section, we present an initial synchronization and cell

search procedure for NB-IoT systems. The procedure has two parts: timing and frequency

acquisition, followed by cell search.

6.6.1 Timing and Frequency Acquisition

As a general OFDM system, symbol timing can be acquired in LTE systems by employing a

CP correlation algorithm. Again, the ML approach defined by section 6.3.1.1 can be employed

to acquire the general symbol timing. In legacy LTE, symbol timing can be also acquired

though PSS detection [139] by trying all possible timing hypothesis within the PSS window

(i.e., 5msec). However, in addition to the CP type detection, the subframe numbering is

associated with SSS detection since only SSS carries the information about the slot index.

Thus, timing acquisition in legacy LTE is a challenging process as it requires solving many

hypotheses about PSS, SSS, and CP type. For the frequency synchronization, research

proposals [144] prefer to estimate the integer CFO jointly with the SSS index by introducing

frequency lags to the FD SSS correlations. Since SSS is a binary sequence, complexity is

reduced as correlations have trivial multiplications.

In NB-IoT, neither NPSS is a function of the cell ID nor NSSS is a binary sequence. In

addition, NPSS and NSSS almost span complete subframes and the CP pattern is known in

advance. By employing a matched filter to the NPSS, symbol timing and subframe boundaries

can be jointly obtained. However, due to a possible integer frequency offset, the performance

is degraded because of the poor cross-correlation. We present an acquisition approach in

which timing and frequency are jointly acquired. Let us define the cross-correlation cost

function, Λm(δ, εI), within a correlation window m, as given by (6.17), where p(n) is an

NP -samples sequence representing the concatenated TD OFDM symbols carrying the NPSS
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and Nw is the number of samples per NPSS window (i.e., 10msec).

Λm(δ, εI) =

δ+NP−1∑
n=δ

y(n)p∗(n− δ)e
j2πεI (n−δ)

N (6.17)

The idea is to introduce progressive phase shifts for the reference TD NPSS sequence

before applying the cross correlation. Hypotheses are defined to generate the pre-correction

phase shifts as a function of the claimed integer frequency offset. Since the NPSS is relatively

immune to fractional CFO, it is generally assumed [140] that the oscillator mismatch produces

an integer frequency offset in the range εI ∈ [−2, +2]. The main limitation of this approach

is the complexity, where the number of correlation banks is exactly the same number of the

expected integer frequency offsets. It is expected that at very low SNR values, the noise power

dominates over the correlation and thus the performance is degraded. In order to preserve

a good performance with reasonable complexity, the decision statistic is averaged over M

consecutive NPSS windows to further reject the noise. Maximizing the average cost function

over all possible integer frequency offsets and various timing offsets within NPSS window will

provide a joint estimate for the proper subframe timing and the attached integer frequency

offset. Thus, the averaged decision statistic is evaluated as, Λ̄(δ, εI) = 1
M

∑M−1
m=0 Λm(δ, εI),

and timing and frequency offset estimation can be formed as,

(δ̂, ε̂I) = arg max
∀δ, εI∈[−2,+2]

∣∣∣Λ̄(δ, εI)∣∣∣ (6.18)

6.6.2 Cell Search

In legacy LTE, SSS can be coherently identified [144]. Before applying correlations with

the reference sequences, the SSS symbol is equalized by the channel estimates to maximize

the detection accuracy. The channel estimates are provided by the PSS symbol as it is

assumed that the channel does not rapidly vary from one OFDM symbol to the following one.

Unfortunately, there are couple of challenges to apply a similar procedure to NB-IoT. The

NSSS is no longer adjacent to NPSS and hence channel estimates can not be easily obtained.

Also, the NSSS samples are cyclic shifted according to the radio frame number and this

doubles the number of hypotheses to detect the cell ID. Motivated by these challenges and

the legacy LTE cell detection in [139][148], we present a differential cross-correlation scheme
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for cell ID identification in NB-IoT. For a given NSSS window, m, the decision statistic for

the differential cross-correlation between the received FD NSSS and the local reference NSSS

is defined by (6.19), where k0 is the first sub-carrier to which NSSS is mapped, Y m
l (k) is

the received NSSS within window m, at sub-carrier k and OFDM symbol l, and Si
l (k) is the

reference NSSS for cell ID i, at sub-carrier k and OFDM symbol index l.

Λm(i) =
13∑
l=3

k0+10∑
k=k0

Y m
l (k)Y m∗

l (k + 1)Si∗
l (k)S

i
l (k + 1) (6.19)

In the context of NB-IoT, there are couple of advantages for this definition. First, it is

assumed that the coherence bandwidth of the channel is much higher than the sub-carrier

spacing so that adjacent sub-carriers almost suffer from the same channel effect. Therefore,

non-coherent detection is possible without any prior knowledge about the Channel State

Information (CSI). Indeed, the channel effect is removed by considering the differential cross-

correlation between successive sub-carriers. Second, the sequence [Si
l (k)]

∗Si
l (k + 1) is a new

sequence derived from the NSSS such that it involves a common phase rotation of e−j2πθf in-

dependent on the sub-carrier index. Actually, this factor vanishes when the absolute operator

is applied. Thus, the dependency on the radio frame number has been removed.

On the other hand, there are couple of limitations. Let Hm
l (k) be the channel coefficient

at sub-carrier k, OFDM symbol l, and NSSS window m. The term Y m
l (k)[Y m

l (k + 1)]∗ =

[Hm
l (k)Sl(k)+Wm

l (k)][Hm
l (k+1)Sl(k+1)+Wm

l (k+1)]∗ has implicitly three noise terms other

than Hm
l (k)Sl(k)[H

m
l (k+1)Sl(k+1)]∗. Statistically, those noise terms vanish as Wm

l (k) and

Wm
l (k+ 1) are assumed to be independent and E[Wm

l (k)] = 0 where E denotes expectation.

However, practical realization for this averaging is not easy especially for very low SNR

values and limited number of sub-carriers to average over. It is expected to have a degraded

performance at very low SNR values. The other limitation is the complexity since flat

correlations for the whole set of 504 involve numerous computations. For instance, since

the sequence length is 132 samples, then 132 × 504 ≃ 67K multiply-accumulate operations

are required. However, the throughput of these operations is low since they repeat at least

every 10msec which is half the periodicity of the NSSS sequences.

Again, to encourage noise rejection and to improve performance at very low SNR values,
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the final decision statistic, Λ̄(i), is obtained by averaging the correlation over M consecutive

windows such that Λ̄(i) = 1
M

∑M−1
m=0 Λm(i). The estimated cell ID is then evaluated as,

N̂Ncell
ID = argmaxi∈[0, 503]

∣∣Λ̄(i)∣∣. To obtain the best gain, averaging has to be careful about

which windows to average so that they have the same possible θf . Fortunately, divide and

conquer can be applied to reduce the number of multiplications to its one-fourth and hence

reduce the complexity. The idea is that for every 4 cell IDs, there will a single root ZC

sequence while the cells are differentiated according to the complementary sequences. Thus,

computing the correlation can be divided into two sequential processes. During multiplication

process, only ZC sequence is utilized to represent the reference NSSS. Next, accumulation is

evaluated four times for each ZC sequence, where each complementary sequence is employed

as weighting factors before applying the accumulation. Further optimization is possible by

identifying the portions of the complementary sequences that are shared among multiple

complementary sequences. This could save repeating the same accumulation for this portion

again.

6.6.3 Simulation Results

To evaluate the performance of the presented procedure, the baseband downlink NB-IoT

system has been simulated assuming a sampling rate of 1.92 MHz, 128-point FFT, 15kHz

sub-carrier spacing, one antenna at transmitter and receiver. AWGN and EPA-5 standard

channels were simulated. Simulations were performed over 104 sub-frames over independent

channel realizations for the SNR range [−16, 0] dBs. The frequency offset is assumed to be

17.5KHz.
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Figure 6.9: Estimation error for the subframe timing and integer CFO versus SNR under

different channel conditions. No averaging is applied.

Fig. 6.9 shows the performance of the NPSS detection algorithm in comparison to the

CP ML approach for various channel conditions. To guarantee no inter-carrier interference,

a timing error is assumed if the estimated timing deviates from the true timing by half of

the CP length. It is clear that, the performance of the ML estimator does not perform well

at low SNR and it is moving very slowly. The idea is that with no further averaging, CP

correlations are sensitive to the fading conditions and the short CP length. On the other

hand, acquisition based on the NPSS has a superior performance which reflects the deserved

complexity increase. However, introducing fading channel degrades the performance and

averaging is required.

By changing the averaging period and accounting for different observation window periods

for ML CP correlation and NPSS approach, Fig. 6.10 shows the performance for the two

techniques versus the processing time for different channel conditions and SNR values. It

is quite obvious that averaging across windows improves the performance on the account of

the required processing time. Indeed, for a fixed target performance, the NPSS algorithm

converges quickly to the proper timing and frequency offset unlike the CP correlation which

is still moving slowly due to the insufficient number of CP samples and fading sensitivity.

Thus, the effect of the fading channel can be absorbed by increasing the averaging period

since NPSS is able to achieve the target performance independent of the channel conditions.
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Figure 6.10: Estimation error for the subframe timing and integer CFO versus processing

time under different channel conditions. SNR of -16 and -12dBs are considered.

To evaluate the cell search, in addition of simulating the presented differential-based de-

tection approach, we have considered a benchmark scenario in which the reference NSSS

sequence is cross-correlated with the received NSSS after applying channel equalization. Per-

fect CSI is assumed to be known at the UE side. In fact, this is a hypothetical scenario

that emulates the ideal system conditions. Fig. 6.11 shows the detection accuracy of the cell

detection after timing and frequency acquisition. Different averaging intervals are employed

for various SNR values. It is clear that the differential approach is away from the perfect

one when no averaging is employed. However, the performance is significantly improved by

introducing longer averaging periods even for fading conditions.

6.7 Conclusion

In this chapter, we addressed couple of challenges and issues related to the LTE-based cellular

M2M communication. First, we presented the enhancements provided by LTE Release-13 to

support future MTC operation. Initial synchronization and cell search have new challenges

for LTE-MTC systems and need to be revised. We studied the conventional solutions includ-

ing timing acquisition, cell search, and initial CFO estimation algorithms for non LTE-MTC

130



−16 −14 −12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

SNR in dBs

C
el

l I
D

 D
et

ec
tio

n 
R

at
e

Diff. Corr. EPA
Diff. Corr. AWGN
Known CSI EPA
Known CSI AWGN

M=1

M=10

M=20

Figure 6.11: Cell search detection accuracy versus SNR. Averaging is employed such that

M ∈ {1, 10, 20}. AWGN and EPA-5 are considered.

systems. Modifications to these algorithms are proposed and evaluated by computer simu-

lations. By employing the time averaging for various decision statistics, the performance of

various algorithms is enhanced on the account of the processing time. We evaluate different

algorithms from processing time perspective to help select a solution for the future LTE-MTC

design.

Second, we addressed the problem of frequency tracking to estimate the residual frequency

error in LTE-MTC systems. We proposed a frequency tracking algorithm that utilizes the

new repetitive feature of the broadcast channel symbols. We evaluated the performance of

the presented algorithm for various SNR values, channel conditions, and processing times.

When compared to conventional approaches, in addition to the substantial performance en-

hancement noticed from the results, the proposed algorithm can quickly lock the UE to the

network under very low SNRs and in different fading environments. Finally, we presented a

cell search and initial synchronization algorithm for NB-IoT systems that utilizes the new set

of synchronization signals (i.e., NPSS and NSSS). Timing acquisition and initial CFO esti-

mation are jointly acquired through time domain NPSS correlation. The cell ID is captured

by differential frequency domain NSSS correlations. The proposed algorithm can quickly lock

the UE to the network under very low SNRs and in different fading environments.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Interweave cognitive radio systems are being investigated to solve the problems resulting from

the bandwidth scarcity and the spectrum usage inefficiency by exploiting the existing licensed

spectrum opportunistically. Wireless systems, equipped with the substantial capabilities of

CR, will provide an ultimate spectrum-aware communication model in wireless networks.

Furthermore, CR concept can be employed to facilitate the reduced-cost realization for next

generation M2M cellular networks including future LTE-MTC and LTE-based NB-IoT sys-

tems. In this thesis, we have tackled a major thrust of research in the CR area and M2M

physical implementation, namely narrowband spectrum monitoring, low power wideband

spectrum sensing, synchronization and cell detection for LTE-based M2M communications.

We have made significant contributions, which is evident from the track record of publications

that resulted from this research. Below, we briefly summarize those accomplishments.

As introduced in Chapter 3, we investigated the possibility of solving the massive increase

in the number of connected devices for cellular M2M communications by involving the in-

terweave cognitive radio model. In that sense, the base station is defined to be smart so

that it can overlay the less priority machines to the cognitive band. Smart eNodeB should

be able to handle the cognition part of the solution as well as the typical behaviour for LTE

system. Various network models to support next generation MTC have been discussed in-

cluding the heterogeneous network model and cellular model. Implementation aspects for the

future devices including low-power and low-cost features have been considered. Based on this

proposal, we addressed practical implementation issues for the current CR networks. This
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mainly includes the low cognitive radio network throughput due the quiet period scheduling.

Also, the power consumption problem attached to the wideband sensing due to the ultra

high sampling rate. Furthermore, we studied the recent advances in LTE systems to include

both MTC and NB-IoT categories. We provided algorithmic solutions for the initial syn-

chronization and cell search for both categories. Also, we addressed the frequency tracking

issue for MTC systems and we presented an algorithm to operate at the introduced harsh

environment with respect to low SNR and fading conditions.

While we considered the challenges of interweave cognitive radio in Chapter 3, the low

throughput issue for the cognitive radio network arises due to the utilization of the quiet

periods. Also, power consumption for the wideband sensing is noticed due to the ultra high

sampling rates. First, in Chapter 4, we considered a novel spectrum monitoring algorithm

that is designed for OFDM systems. The energy ratio algorithm can detect the activity of

the primary user during the secondary user transmission by monitoring the signal strength

variations over some reserved tones. We derived the ROC in order to analyze the performance

of the proposed algorithm. Simulation results indicate that the detection performance is

superior than the receiver statistics method. Also over inter-carrier interference effect due

to CFO and SFO, the energy ratio algorithm offers good performance. As a result, our

proposed spectrum monitoring algorithm can greatly improve the OFDM-based cognitive

radio network throughput by enhancing the spectrum monitoring performance during SU

transmission with a very limited reduction in the secondary network throughput.

In Chapter 5, we presented two architectures for wideband spectrum sensing in interweave

cognitive radio networks. For both techniques, the ultimate goal is to extremely reduce

the power consumption and complexity by employing the smallest allowed ADC precision

(i.e., 1-bit ADC). The first architecture is an update for the classical FFT-based energy

detector, where the 1-bit quantizer replaces the high-precision ADC. Furthermore, to preserve

the total power at the receiver side, the RF is assumed to provide the estimated RSSI, of

course within a tolerance. In this piece of work, we have derived the exact performance

for the frequency domain energy detector in order to relax the infinite precision and large

averaging assumptions. We have also discussed the impact of the introduced aggressive

quantization. Results show promising detection capabilities for various RSSI tolerances.
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The other solution relies on evaluating the window-based autocorrelation for the received

quantized signal. In this regard, we have derived the closed form expression for the window-

based autocorrelation function which clearly shows the spectrum occupancy. We presented

a detection algorithm that employs the average PSD to discriminate between vacant and

occupied sub-bands. Simulation results indicate that the detection accuracy is promising

for sparse systems. As a result, our presented solutions can greatly enhance the complexity,

power consumption, and the performance for the wideband spectrum sensing problem.

Chapter 6 considers the contribution in the direction of LTE-MTC and LTE-based NB-

IoT systems. Although there are many implementation issues for the new systems due to

the introduced harsh environment which includes ultra low SNR requirements under fading

conditions in addition to the RF impairments. Our focus is directed to the initial synchro-

nization, cell search, and frequency tracking for LTE-MTC systems. In this direction, we have

evaluated the classical initial synchronization and cell search algorithms for the conventional

LTE systems in the LTE-MTC framework. Applying time averaging over all techniques can

enhance the performance under low SNR regimes with reasonable increase in the complexity.

For the frequency tracking, we have presented an algorithm to track the frequency errors due

to fading or residual offsets resulting from the initial synchronization process. This technique

relies on the repetitive nature of the modified broadcast channel for LTE-MTC systems. The

frequency estimation is applied by measuring the differential phase of the repeated symbols.

Averaging over multiple repetition patterns enhances the estimation accuracy. For NB-IoT

systems, new synchronization signals have been introduced and hence new techniques have to

be developed in order to apply initial synchronization and cell search. The new synchroniza-

tion signals, namely NPSS and NSSS, span complete subframes. NPSS does not include any

information about the cell but it is mainly used for timing acquisition on both the symbol

level and frame boundaries. On the other hand, NSSS carries the full information about the

cell ID. In this front, we have presented two algorithms that rely on the TD correlation for

NPSS and FD correlation for NSSS in order to capture the timing and the initial frequency

offset, and to acquire the cell ID. Results show that the presented techniques can not only be

efficient from the performance perspective, but also they can provide reasonable complexity.

134



7.2 Future Work

In our research, we have utilized the energy ratio algorithm to detect the reappearance of

the PU from a reserved tone sequence in OFDM system. The system has been investigated

over some RF impairment including CFO, SFO, and NBI. However, there are still other

impairments such as phase noise and IQ imbalance that can be considered as a future exten-

sion. Furthermore, we assumed typical fading channels such as a frequency selective channel,

however this can be extended to other general fading channels such as Nakagami channels.

Indeed, we feel that the energy ratio algorithm can be utilized to tackle couple of other

problems in cognitive radio networks such as detecting the power boosting of a PU in spec-

trum sharing network. Actually, one problem for SU in spectrum sharing networks is that

PU always changes its nominal power according to power control mechanism. Accordingly

there should be a method to track this power change from the SU perspective in order to

adjust its interference threshold.

For the FFT-based 1-bit quantizer architecture, we have assumed the coordination be-

tween PUs so that the power is almost uniformly distributed over the wideband. However,

this assumption may not be possible in some scenarios. Hence, a relaxation to this assump-

tion is considered as another direction of research. Moreover, analytical derivations for the

power distribution constant might be part of this future work.

For the 1-bit quantizer system based on autocorrelation, the detection is a function of the

system sparsity which varies with time. A more sophisticated detection algorithm is required

to post process the estimated PSD. In this case, the relation between the allocated bands,

possibly through a random variable, will be a key factor in the design of this sub-optimal

detector. This has not been tackled yet.

In the direction of LTE-MTC and NB-IoT systems, we have investigated a single cell

detection. Thus, multi-cell search is a direct extension to this work. Indeed, there are

numerous challenges that would require the research effort. For example, coherent detection

can be applied only when channel estimates are available. Estimating the channel at this

low SNR with high Doppler spreading is a real challenge especially with the introduction

of the frequency hopping. Furthermore, the current techniques for soft combining, control
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channel detection, and channel quality measurements have to be revised based on the MTC

requirements. Last but not least, the time tracking and frequency tracking loops for NB-IoT

become a challenge due to the insufficient number of pilots for the extremely low bandwidth.
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Appendix A

Proof of the Correlation Function For One-Bit

Quantizer System

In this appendix, we provide an analysis for the proposed autocorrelation-based wideband

sensing. Throughout the analysis, we assume that the signal to be detected does not have any

known structure that could be exploited. Therefore, a PU signal is modelled via a zero-mean

circularly symmetric complex Gaussian distribution as presented in Section 5.2. The target

of this analysis is to find closed form expressions for the statistical autocorrelation function in

case of the one-bit quantized system. We start by evaluating the covariance matrix between

various signal components for two samples of the non-quantized received signal. Then, the

effect of quantization is explored and reflected on the covariance matrix.

A.1 Covariance Matrix Evaluation

To develop the autocorrelation of the quantized signal, we start by evaluating the covariance

between various signal components for the non-quantized signal. Let us define z1 = r(n) =

X1 + jY1 and z2 = r(n+ k) = X2 + jY2. It is known that the real and imaginary parts of the

complex envelop signal r(n) are independent as they form a circularly symmetric complex

Gaussian distribution. Therefore, we do not need to prove that E[X1Y1] = E[X2Y2] = 0.

Further, the signal components carry the same power level, therefore E[X1X1] = E[Y1Y1] =∑M
m=1 σ

2
m/2+Nσ2

W/2. The covariance matrix for the four real random variables X1, Y1, X2,

and Y2 can be obtained if we find only E[X1X1], E[X1X2], and E[X1Y2] since it has been

shown in [149] that E[XmXl] = E[YmYl] and E[XmYl] = −E[XlYm] for any l ̸= m.
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E[X1X2] = E

[( M∑
m=1

Am
⌊(n−εm)/N⌋ cos

(
2π(n− εm)fm/Fs

)
−Bm

⌊(n−εm)/N⌋ sin
(
2π(n− εm)fm/Fs

))
( M∑

l=1

Al
⌊(n−εl+k)/N⌋ cos

(
2π(n− εl + k)fl/Fs

)
−Bl

⌊(n−εl+k)/N⌋ sin
(
2π(n− εl + k)fl/Fs

))]
+E

[
wI(n)wI(n+ k)

]
=

1

2

M∑
m=1

E
[
Am

⌊(n−εm)/N⌋A
m
⌊(n−εm+k)/N⌋

(
cos

(
2πkfm/Fs

)
+ cos

(
4π(n− εm + 0.5k)fm/Fs

))]

+
1

2

M∑
m=1

E
[
Bm

⌊(n−εm)/N⌋B
m
⌊(n−εm+k)/N⌋

(
cos

(
2πkfm/Fs

)
− cos

(
4π(n− εm + 0.5k)fm/Fs

))]
+
Nσ2

W

2
δ(k)

=

M∑
m=1

[
E
[
Am

−1A
m
−1

]
P
[
n+ k < εm < N

]
+ E

[
Am

0 Am
0

]
P
[
0 < εm < n

]
+E

[
Am

−1A
m
0

]
P
[
n < εm < n+ k

]]
cos

(
2πkfm/Fs

)
+

Nσ2
W

2
δ(k)

=

M∑
m=1

[
σ2
m

2

(
1− n+ k

N

)
+

σ2
m

2

n

N

]
cos

(
2πkfm/Fs

)
+

Nσ2
W

2
δ(k)

=
Mσ2

W

2

[
1

M

(
1− k

N

) M∑
m=1

γm cos
(
2πkfm/Fs

)]
+

Nσ2
W

2
δ(k) =

σ2
W

2

[
Mηk +Nδ(k)

]
(A.1)

As a first step and by utilizing the definition for r(n) given by (5.3), the cross-correlation

between the real parts can be given by (A.1) where we have used the facts that:

• Am, Bm, and εm are independent.

• Am and Al are independent as long as m ̸= l.

• Am ∼ N (0, σ2
m/2) and also Bm ∼ N (0, σ2

m/2).

• εm is uniformly distributed within the range [0, N − 1].

• Noise components are independent such that wI(n) ∼ N (0, Nσ2
W/2) and wQ(n) ∼

N (0, Nσ2
W/2).

• The noise is independent on Am, Bm, and εm.

• γm = σ2
m/σ

2
W is the signal-to-noise-ratio per sub-band.

Similarly, the cross-correlation between X1 and Y2 can be obtained by,

E[X1Y2] =
σ2
W

2

[(
1− k

N

) M∑
m=1

γm sin
(
2πkfm/Fs

)]
=

Mσ2
W

2
ζk, 0 ≤ k < N (A.2)
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where we have defined,

ηk =
1

M

(
1− k

N

) M∑
m=1

γm cos
(
2πfmk/Fs

)
(A.3)

ζk =
1

M

(
1− k

N

) M∑
m=1

γm sin
(
2πfmk/Fs

)
. (A.4)

In fact, the parameters ηk and ζk reflect the information of the spectrum occupancy. To

study the statistical properties of the autocorrelation function, the cross-correlation between

every two random variables has to be obtained. The objective is to utilize those cross-

correlations to derive the autocorrelation function when quantization takes place. Let us

define w = [X1 Y1 X2 Y2]
T to be a real vector. Cross-correlation between every two random

variables can be obtained by just deriving the covariance matrix of w. By using the facts that

E[Y1Y2] = E[X1X2] and E[X2Y1] = −E[X1Y2] as derived in [149], we can write the covariance

matrix of w as given by (A.5). It is clear that the matrix is a function of the spectrum

occupancy as well as other system parameters such as N , M , σ2
m, and σ2

W .

A.2 Quantization Effect

Let X1q and X2q be the quantized versions of the two samples X1 and X2, respectively.

Further, let Y1q and Y2q be the quantized versions of the two samples Y1 and Y2, respectively.

Recall that we only study the effect of the aggressive quantization in which each variable is

quantized to a single bit. The quantized version for any of these random variables can only

take a value of either +1 or -1 such that X1q = sgn(X1), X2q = sgn(X2), Y1q = sgn(Y1),

Y2q = sgn(Y2), and sgn denotes the well-known signum sign function. The autocorrelation of

the quantized version of the received signal r(n) is given by (A.6) where rq(n) = X1q + jY1q

and rq(n+ k) = X2q + jY2q.

E[wwT ] =
σ2
W

2


N +

∑M
m=1 γm 0 Mηk +Nδ(k) Mζk

0 N +
∑M

m=1 γm −Mζk Mηk +Nδ(k)

Mηk +Nδ(k) −Mζk N +
∑M

m=1 γm 0

Mζk Mηk +Nδ(k) 0 N +
∑M

m=1 γm

 (A.5)
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R(k) = E[r∗q(n)rq(n+ k)] = E[X1qX2q] + E[Y1qY2q] + jE[X1qY2q]− jE[X2qY1q] (A.6)

In reality, each pair of the underlying random variables are jointly Gaussian as they are

simply samples of a stationary Gaussian process. Correspondingly, the correlation coefficient

can be defined for any pair. For example, the correlation coefficient between X1 and X2 is

given by (A.7), where γ̄ = 1
M

∑M
m=1 γm is the average primary signal power. Here, we have

utilized the covariance matrix results defined by (A.5) to write closed form expressions for

the cross-correlation between X1 and X2 and also to define the variances for both X1 and X2.

Furthermore, we have defined β = M/N to represent the fraction of the occupied sub-bands

or simply the spectrum utilization.

ρX1X2 =
E[X1X2]√

E[X1X1]E[X2X2]
=

Mηk +Nδ(k)

N +
∑M

m=1 γm
=

δ(k) + βηk
1 + βγ̄

(A.7)

To find the probability mass function for the correlation of the quantized version of

the signal r(n), one needs to evaluate four probabilities for the four quadrants. Since both

random variables have zero mean and common variance, then the probabilities can be directly

evaluated [150]. The joint probability mass function of X1q and X2q can be summarized by

Table A.1. The correlation between the quantized two samples can be then obtained by

(A.8).

E[X1qX2q] = 2P [X1 ≥ 0, X2 ≥ 0]− 2P [X1 ≥ 0, X2 ≤ 0]

=
2

π
sin−1

(
δ(k) + βηk
1 + βγ̄

)
(A.8)
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Table A.1: PMF for the quantized samples for X1 and X2

X1q X2q P [X1q = x1q, X2q = x2q]

+1 +1 P [X1 ≥ 0, X2 ≥ 0] = 1
4
+ 1

2π
sin−1(ρX1X2)

-1 +1 P [X1 ≤ 0, X2 ≥ 0] = 1
4
− 1

2π
sin−1(ρX1X2)

+1 -1 P [X1 ≥ 0, X2 ≤ 0] = 1
4
− 1

2π
sin−1(ρX1X2)

-1 -1 P [X1 ≤ 0, X2 ≤ 0] = 1
4
+ 1

2π
sin−1(ρX1X2)

The same procedure can be applied for the remaining random variables. One can sim-

ply show that E[X1qX2q] = E[Y1qY2q] and E[X1qY2q] = −E[X2qY1q]. Further, closed form

expressions for these quantities can be written as given by (A.9) and (A.10). Finally, the

autocorrelation of the quantized signal can be derived as given by (A.11).

E[X1qX2q] = E[Y1qY2q] =
2

π
sin−1

(
δ(k) + βηk
1 + βγ̄

)
(A.9)

E[X1qY2q] = −E[X2qY1q] =
2

π
sin−1

(
βζk

1 + βγ̄

)
(A.10)

R(k) = E[r∗q(n)rq(n+ k)] = E[X1qX2q] + E[Y1qY2q] + jE[X1qY2q]− jE[X2qY1q]

=
4

π

[
sin−1

(
δ(k) + βηk
1 + βγ̄

)
+ j sin−1

(
βζk

1 + βγ̄

)]
(A.11)
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