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ABSTRACT 

 

Large Eddy Simulation of Boundary Shear Stress in Water Channels of Rectangular and 

Trapezoidal Shapes 

 

Rui Zeng 

 

The flow of water in an open channel is typically turbulent, exerting shear stresses on its 

boundaries, i.e. the channel-bed and sidewalls. Knowledge of boundary shear stress (BSS) 

distributed at a channel section has many important applications. For example, the BSS 

distributions affect channel stability, fish habitats, and the resuspension and subsequent transport 

of bed sediments. However, knowledge of the BSS is far from being complete, partly because there 

are technical difficulties in measuring shear stresses distributed across the bed width and sidewalls. 

This research thesis aims to investigate BSS distributions by means of large eddy simulation 

(LES). This numerical technique is superior to the commonly used traditional computational fluid 

dynamics approaches, with respect to detailed predictions of near-boundary flow. 

 

Water channels of rectangular and trapezoidal shapes under open-water as well as ice-covered 

conditions were included as LES domains in this study. The LES results of BSS from this study 

were compared with available data from laboratory experiments. The comparisons show that the 

LES results capture typical features, as reported in the literature, of BSS distributions at rectangular 

and trapezoidal channel sections, including the occurrence of inflection points caused by bottom 

vortices. The BSS is shown to vary across the bed width and sidewalls of the channel sections. 

The bed shear stress is relatively high in the large central portion of the bed width and drops rapidly 

toward the lower corners of the channel sections. The sidewall shear stress has a similar shape as 

the bed shear stress. The normalised bed shear stresses in the corner regions have different 

distributions between the trapezoidal channel and the rectangular channel section. Secondary flow 

in the channels are shown to cause BSS spatial fluctuations in the central portion of the channel-

bed. The maximum BBS does not necessarily occur at the same location as the maximum primary 

velocity. As expected, the flow structures and turbulent shear stresses in the channel sections are 

sensitive to the presence of ice cover as well as to inflow disturbances. 
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The successful predictions are attributed to a proper implementation of no-slip conditions at the 

solid boundaries, as opposed to the use of uncertain estimates of solid surface roughness, and to 

an adequate representation of the viscous sublayer by the LES mesh used. It is crucial to allow 

mesh refinements adjacent to the bed and sidewalls as well as in the corner regions, and to ensure 

that the wall distance of the first node off a solid surface does not exceed unity, which is not the 

case in most of the existing LES applications to open-channel hydraulics. For the first time, this 

research thesis has explored practical LES strategies for accurate and efficient BSS predictions; 

these include the types of conditions imposed at the free surface and the ice cover underside, the 

lateral open boundaries at the upstream and downstream ends of a LES domain, and sensitivity 

tests. It has been demonstrated that the LES technique offers an attractive complement to 

laboratory measurements of BSS. With an exponential increase in computing power, it will 

eventually be feasible to perform LES for high Reynolds number flow in water channels. 
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1. Introduction 

1.1 Background 

Boundary shear stress, frequently referred to as the unit tractive force impacting channel stability, 

is an important parameter of open channel flow. When water flows in the channel, boundary shear 

stress forms on its boundaries as the pull of water acts on the wetted area in the direction of flow. 

The mean boundary shear stress, 
0 , can be estimated using the formula RS 0

, where γ is the 

specific weight of water, R is the hydraulic radius, and S is the bed slope (Chow, 1959, p. 168). 

However, the local boundary shear stress along the wetted perimeter of an open channel is difficult 

to obtain because of its non-uniform characteristics. 

 

The distribution of boundary shear stresses at the bed and on the sidewalls of an open channel is a 

fundamental element that must be accounted for in almost every river engineering project. A good 

understanding of the implications of boundary shear stress has many important applications such 

as monitoring sediment transport, channel stability, and fish habitats.  

 

The local boundary shear stress is relevant when attempting to estimate the initiation of sediment 

motions and subsequent transport. Sediment transport is defined as “a phenomenon that water 

flowing in natural or artificial channels has the ability to scour sands, gravel, or large boulders 

from the bed or banks and sweep them downstream” (Henderson, 1966, p. 405). Also, knowledge 

of local boundary shear stress is of economic importance as it affects the design of hydraulic 

structures, the costs of a flood control scheme, and the storage capacity of a reservoir. The initiation 

of entraining stationary sediment particles from the channel-bed must satisfy the condition that the 

boundary shear stress exerted by the fluid exceeds the critical shear stress. However, merely 

estimating the mean boundary shear stress across an entire cross section is not a realistic method 

of predicting the initiation of sediment motions because this can underestimate sediment transport. 

Local shear stresses vary considerably from point to point. In addition, knowledge of local 

boundary shear stress across a cross section in open channel flows enhances our ability to 

accurately determine sediment transport capacity. 

 

Boundary shear stress is widely accepted as an appropriate erosion criterion in stable channel 

design. For example, the tractive force method is often used to design erodible open channels based 

https://en.wikipedia.org/wiki/Shear_stress
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on the use of boundary shear stress and sediment transport relationships (Akan, 2001). The size 

and type of materials used at different locations in the channel to protect the channel boundaries 

are determined by the distribution of boundary shear stress. An inappropriate channel design can 

lead to serious problems such as bank erosion and channel pattern changes.  

 

Nearly all water contains some solid matter in suspension, which can be physical, chemical, or 

biological in origin. Birtwell (1999) suggested that elevated levels of sediments could be harmful 

to fish species because of the negative impacts on their habitats. Land erosion and sediment input 

to waterways can increase the amount of materials in suspension. As bank erosion is related to 

boundary shear stress distributions, the related knowledge is indispensable to the maintenance of 

stable fish habitats. 

 

In attempts to better avoid undesirable difficulties related to hydraulic engineering applications, 

many researchers have investigated boundary shear stress distributions in water channels. 

However, a completely satisfactory theory that can predict boundary shear stress distribution has 

yet to be developed. Field investigations are difficult because they require a significant amount of 

labour and financial resources, most notably in ice-covered rivers, where environmental 

monitoring and research tend to be logistically challenging. Experimental measurements are 

sometimes inaccurate because of equipment deficiencies, and they are very expensive and time-

consuming. Analytical methods usually use empirical coefficients based on specific experimental 

data. Generally, there are deviations in certain areas, such as the regions near channel corners and 

free surface. The numerical models derived from Reynolds-averaged Navier-Stokes equations 

usually neglect some turbulent transient characteristics. Both poor meshing techniques and the 

wall functions adopted in some numerical models can lead to inaccurate results. Therefore, there 

is a need for a more systematic discussion and elaborate description of the features of boundary 

shear stress distributions in channels with simple geometry. Moreover, there has been very limited 

research so far, dealing with boundary shear stress distributions in ice-covered conditions. This is 

virtually an unexplored area of hydraulic studies. Furthermore, the distribution of boundary shear 

stress at the channel-bed and on its sidewalls depends on the shape of the channel cross section, 

the structure of secondary flow, and the roughness of the solid boundaries. However, accurate 

estimates of roughness are difficult to obtain, which has hindered our ability to predict boundary 
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shear stresses. The use of no-slip conditions helps reduce prediction uncertainties. Large eddy 

simulation offers the hope to accurately capture the effects of secondary flow, which can only be 

estimated roughly in analytical models. 

 

Last but not least, the critical condition of sediment movement is often overestimated if traditional 

sediment transport theories are applied to situations with high turbulence intensities. Hence, a 

thorough understanding of the issues related to the instantaneous distribution of local bed shear 

stress is also of importance. With LES technique, it becomes possible to obtain not only the 

distribution of boundary shear stress but also a deeper comprehension of instantaneous boundary 

shear stress. 

 

LES technique was selected as the modeling approach in this research. The modeling technique is 

an efficient and economical way of exploring the distribution of boundary shear stress. In this 

research, each simulation only requires computing time of 10-30 hours thanks to the use of a 

supercomputer. The technique permits a systematic assessment of the effects of such factors as 

geometry, mesh size, and time step on prediction accuracy. It is possible to explore the details of 

turbulent characteristics near the channel boundaries in channels of various geometrical shapes.  

 

Given the difficulties of attaining boundary shear stress distributions along the boundaries of 

channels of different shapes, is there a feasible numerical approach that avoids the inaccuracies of 

previous numerical studies while reducing expenses? What are the common features of boundary 

shear stress? What are the modeling strategies that allow for proper mesh and reasonable 

parameters? What are the differences in boundary shear stress distributions in open water versus 

ice-covered channels?  
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1.2 Objectives 

We are interested in predicting the distribution of boundary shear stress without having to estimate 

the roughness of boundary surfaces. We expect that the results that are more accurate. We deal 

with both rectangular and trapezoidal open channels. We aim to improve our understanding of 

boundary shear stress distributed along the wetted perimeter of different channels. The specific 

objectives of this research are: 

 to obtain LES predictions of boundary shear stress distributions in channels of various 

shapes under different flow conditions. This includes rectangular open channels, 

trapezoidal open channels, rectangular ice-covered channels, and trapezoidal ice-covered 

channels; 

 to validate the LES predictions with available experimental results; 

 to investigate effective meshing and parameter setup strategies for boundary shear stress 

simulations; and 

 to systematically investigate the functioning of User Defined Functions (UDF), symmetry 

conditions, periodic boundary conditions, and the sweep technique (using hexahedral mesh 

with a specific length to height ratio) in LES. 
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1.3 Scope of this Research Work 

To achieve the objectives mentioned above, the remaining part of the thesis is organised as follows. 

Chapter Two provides a summary of previous investigations of boundary shear stress using 

different approaches. The summary includes analytical, numerical, and experimental studies. It 

also includes field measurements of boundary shear stress. The chapter discusses five basic 

methods for determining the friction velocity (or equivalently the boundary shear stress). In 

addition, the graphical division method and depth-averaged method are discussed. The discussion 

covers the feasibility and accuracy of measurement apparatus, hydraulic parameters (e.g. velocity 

and mean boundary shear stress) in ice-covered channels. 

 

Chapter Three describes the modelling methodologies used in this research thesis. The description 

gives details of the model domains, governing equations, choices of numerical techniques, 

associated parameters, boundary conditions, and initial conditions. This chapter also provides 

reasons for choosing LES and simulation strategies, which help enhance spatial resolutions with 

lower computing costs. 

 

Chapter Four presents LES results for rectangular and trapezoidal channels under open water and 

ice-covered conditions. The results presented include bed and sidewall shear stresses as well as 

velocity contours and profiles. The results correspond to a selection of the amount of nodes, mesh 

dimensions, and model time period. The predicted boundary shear stresses are compared with 

experimental results. 

 

Chapter Five gives conclusions based on this LES study and suggestions for further investigations 

of boundary shear stress in water channels.  
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1.4 Contributions 

A number of contributions have been made through this study, as outlined below: 

1) This study has filled a knowledge gap in shear stress distributions in ice-covered channel 

boundaries. 

2) It has contributed to the establishment of effective LES strategies for reliable predictions 

of turbulent channel flow.  

3) This LES study offers an attractive complement to physical models, laboratory 

experiments, and field measurements. 
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2. Literature Review 

2.1 General  

The distribution of boundary shear stress along the wetted perimeter of a channel is very 

complicated. It depends on many factors, such as the shape of channel cross section, the size and 

distribution of secondary flow cells, and the wall roughness. Section 2.2 will review five basic 

methods for determining the boundary shear stress. 

Since the 1930s, many researchers have made theoretical investigations of the distribution of the 

boundary shear stress. They proposed the concepts of dividing the channel cross section into many 

sub-sections or three different regions. Since then, some researchers have brought new ideas based 

on various hypotheses. They have extensively employed two-dimensional (2D) depth-averaged 

approach before realizing the significance of secondary flow structure. Other methods such as the 

Vorticity Equation Method, the Laminar Flow Solution Method, and the Turbulent Kinetic Energy 

Method, have been developed in the past few decades. Section 2.3 will show details related to this 

topic. 

Numerical predictions appear to be a future trend. Research contributions in this area will be 

elaborated in Section 2.4. The framework of the discussion is based on different types of turbulence 

models employed such as Reynolds-averaged Navier-Stokes (RANS) based turbulence models, 

the Direct Numerical Simulation (DNS), and the Large Eddy Simulation (LES) technique. 

This review intends to present some significant laboratory measurements about local boundary 

shear stress in open channels. Numerous researchers have implemented flume measurements in 

the past, but only those focusing on distributions of shear stress in simple open channels will be 

reviewed in Section 2.5. 

Field measurements have always been prevalent. It is hard to measure the boundary shear stress 

directly in rivers. The estimation of boundary shear stress relies on the observation of velocity 

profiles. Researchers have used different apparatus to obtain realistic data. Section 2.6 summarizes 

typical field studies. 
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Studies of ice-covered channels will be reviewed in Section 2.7. Several researchers have studied 

velocity profiles, the estimation of discharge, and mean boundary shear stress values under the ice-

covered condition, but only limited work is related to distribution of the local boundary shear stress 

in ice-covered channels. 

2.2 Basic Methods for Determining Boundary Shear Stress 

The friction velocity U  is defined as: 

[2.1]  


 0
* U  

where τ0 is shear stress at a solid boundary, ρ is the density of water. Many approaches utilize this 

equation to convert the shear velocity to the boundary shear stress. 

Nezu and Nakagawa (1993, p. 48-49) enumerated various basic methods, which are summarized 

in the following sub-sections, to determine the friction velocity. 

2.2.1 Estimation from Channel Slope  

The shear stress at the boundary can be obtained from the channel slope S, under the conditions of 

normal and uniform flow, and the relationship is: 

[2.2]  RS 0  

where γ is the specific weight of the water, τ0 is the shear stress at solid boundary, and R is the 

hydraulic radius (Henderson, 1966, p. 91). Equation [2.2] expresses the simplest way to obtain the 

boundary shear stress based on the condition that the gravitational force of the water is equal to 

the friction drag along the channel, and there is no acceleration of flow. As a result, the shear stress 

obtained here is a unit tractive force over the unit wetted perimeter, which is a typical way to 

calculate the shear velocity several decades ago (Raichlen, 1967; McQuivey & Richardson, 1969). 

In 2D flow, if the channel width is sufficiently large compared to the depth especially for shallow 

rectangular channels, R in Equation [2.2] is replaced by the flow depth H as: 

[2.3]  HS 0   
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The shear stress in Equation [2.3] is proportional to the flow depth, leading to the Vertical Depth 

Method. Shear stress can also be assumed to be proportional to the area between two verticals 

(Vertical Area Method). If the transverse slope of the channel-bed is steep, it is better to use the 

depth perpendicular to the channel-bed (Normal Depth Method). A corresponding method to 

vertical area method in transverse steep channels is called Normal Area Method, in which shear 

stress is proportional to the area between two perpendiculars. These methods cannot provide 

satisfactory results in deep channels or channels with a steep slope (Khodashenas & Paquier, 

1999). Furthermore, these methods have significant errors at places near the free surface or the 

corners of channel boundary (Yu & Tan, 2007). 

 

2.2.2 Estimation from the Logarithmic Law 

Shear velocity U can be evaluated from the logarithmic law. Equation [2.4] is the ‘log-law’ 

formula, derived by Von-Karman (Keulegan, 1938). This equation, also called Prandtl-Karman 

logarithmic velocity distribution equation, can be expressed as: 

[2.4]  C
yU

U

U
 )ln(

1 *

* 
)20030(  y  

where U is the streamwise Reynolds-averaged velocity at a distance of y from the wall, ν is the 

kinematic viscosity of water, κ is the von Karman constant, C is a constant of integration, and y+ 

is the dimensionless wall distance. In Chapter 2, (x, y, z) are rectangular Cartesian coordinates and 

denote the streamwise direction, the vertical direction, and the spanwise direction. 

 

The velocities are not uniformly distributed in the channel section due to the existence of free 

surface and the friction along the channel walls. There are many other factors, which affect the 

velocity distribution in a channel section, such as the unusual shape of the section, the roughness 

of the channel, and the presence of bends. Therefore, the constants in Equation [2.4] will change 

accordingly with the applied conditions. 

 

Regardless of whether the boundary is acting smooth, transitional or rough, the logarithmic 

Equation [2.4] can be restated as: 

[2.5]  
)/log(

1

1

*
0

ab

ab

yy

UU

C
U







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where Ub and Ua are streamwise mean velocities at a distance of ya and yb from the wall, 

respectively; yb and ya denote the distance from the wall at two different locations, and C1 is a 

constant. The shear velocity can be estimated using a known Reynolds-averaged velocity profile. 

The local shear stress distribution on the boundary can, therefore, be calculated based on two or 

more measured velocity points. One of the applications of this idea is the Clauser Plot Method, 

which involves drawing the right-hand quotients on a semi-logarithmic paper (Section 2.5.1.2). 

 

2.2.3 Estimation from Reynolds Stress Distribution 

Boundary shear stress can be determined from the measured Reynolds Stress distribution. For fully 

developed turbulent channel flow, the total shear stress τ is given by: 

[2.6]  
y

U
vu

H

y
U




 




'')1(2

*  

where H is the flow depth, and u' and v' are fluctuating velocity components in x, y directions. The 

total shear stress varies linearly from the shear stress value τw at the bed to zero at the free surface. 

 

The thickness of the viscous sublayer δ can be determined by (Fox & McDonald, 1992, p.343): 

[2.7]  
*U

y 




  (for y+=5) 

Reynold’s stress ( ''vut   ) rather than viscous shear (
y

U




   ) is dominant over the entire 

center region of a pipe, or rather, the outer region of sublayer. The total shear stress is expressed 

as: 

[2.8]  ''vut   )( Hy   

 

When approaching close to the wall (within the viscous sublayer), the viscous shear is dominant 

due to the viscosity, giving: 

[2.9]  
y

U




   )0(  y  

where μ is the dynamic viscosity of water.  
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If Reynold’s stress ( ''vut   ) is measured near the boundary but outside the region of viscous 

sublayer, the boundary shear stress is approximately equal to the value of Reynolds stress (Figure 

2.1) as: 

[2.10]  ''0 vut   )( y  

This method is the most appropriate for research in turbulent flow because it incorporates 

fluctuating velocity. However, it is challenging to get data at such a close distance to the solid 

boundary (Nezu & Nakagawa, 1993, p 49). 

 

 

Figure 2.1 Distribution of turbulent shear stress along a wall (Fox & McDonald, 1992, p. 342) 

 

2.2.4 Estimation from Velocity Distribution in Sublayer 

Similar to the method discussed in Section 2.2.2, if a viscous sublayer exists in the velocity profile, 

shear velocity U can be determined from the velocity distribution in that region, with the aid of: 

[2.11]  


*

*

yU

U

U
  or 

  yU  (for 0  y+  5)  

where U+ is the dimensionless velocity. Equation [2.11] has been obtained by integrating Equation 

[2.9]. 
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When the mesh is fine enough to resolve the viscous sublayer in LES, the wall shear stress is 

obtained from this relationship (ANSYS, 2013a). 

 

2.2.5 Estimation from Preston Tube 

According to Preston (1954), the dynamic pressure
2

2

1
U , measured using a pitot tube of a given 

geometrical shape, was a universal function of boundary shear stress. The original relation 

suggested by Preston (1954) was: 

[2.12]  )(
)(

2

2

0

2

2

0







d
f

dPP



 

where P is the static pressure at a point in the flow, P0 is the stagnation pressure at the same point, 

and d is the tube diameter. Preston (1954) measured the total pressure at the boundary with a pitot 

tube, where the dynamic pressure 
2

2

1
U  is zero, and the static pressure at the same location, using 

pressure tap in the pipe. Subsequently, researchers combined the measurements of static pressure 

and stagnation pressure into one instrument called Pitot-static tube and applied it to an open 

channel flow.  

 

Equation [2.13] describes the velocity profile when the Pitot tube is placed in a region where the 

log-law holds. A schematic of the typical Pitot-static tube is shown in Figure 2.2. Stagnation 

pressure P0 is measured at point B through the inner tube, while the static pressure P at point C is 

sensed by small holes in the outer tube. Based on Bernoulli equation, the local flow velocity can 

be estimated from the pressure difference between the stagnation pressure and the static pressure 

by a pitot tube (Equation [2.14]) (Thornton, Cox & Sclafani, 2008). To obtain Equation [2.12], 

Equation [2.1] and Equation [2.14] are substituted into Equation [2.13], and dimensionless analysis 

is then used. 

[2.13]  )( *
1

* 

yU
f

U

U
  

[2.14]  


)(2 0 PP
U


  



13 

 

 

Figure 2.2 A schematic of the typical Pitot-static tube (Thornton et al., 2008) 

 

For relatively thick turbulent wall flows and tiny tubes, the measurement could be fully immersed 

in the viscous sublayer. In this case, the Reynolds-averaged velocity profile in Equation [2.13] 

across the tube opening will be linear. In most cases, the finite wall thickness of a typical tube will 

result in the location of the tube opening being primarily in the logarithmic portion of velocity 

profile. It is for these situations that the majority of Preston tube calibrations have been developed. 

 

Calibration of Preston tube is necessary for the relationship to be applicable in a more general 

sense, and it requires to collect velocity data near the bed in the channel with known boundary 

shear stress. Both Preston (1954) and Patel (1965) calibrated Preston tubes using data from pipe 

flow. Ferriss (1965) used channel flow data, and Zarbi and Reynolds (1991) used data from 

boundary layer to perform calibrations for a Preston tube. Though invented several years ago, this 

apparatus is still widely used by many researchers in present studies to obtain the local shear stress 

(Ghosh & Roy, 1970; Chanson, 2000; Kean, Kuhnle, Smith, Alonso & Langendoen, 2009). 

 

Many factors have influences on the accuracy of a Preston tube. The technique is inappropriate for 

highly non-equilibrium wall flows or other situations where the logarithmic velocity profile has 

been significantly altered. The ratio of inner to outer diameter of Preston tube is also an important 

parameter (Patel, 1965). Moreover, alignment of the Preston tube in the flow direction can be a 

significant source of error, especially in three-dimensional (3D) boundary layers where the mean 

flow direction is not always easy to determine. Lastly, care must be taken to ensure that the flow 
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at the static pressure port is not influenced by the presence of wall or other interferences. 

Applications that are more practical are discussed in Section 2.5.1.1. 

 

2.3 Theoretical Effort 

2.3.1 Graphical Division by Ray-isovel Approach 

Leighly (1932) was the first to obtain the boundary shear stress distribution on natural open 

channel boundaries using the Ray-isovel Approach. This graphical division approach divides the 

channel cross section into many subsections by lines (rays) that are perpendicular to the isovels. 

The rays extend from the channel boundaries to the maximum isovel, meaning that water above 

maximum velocity line is not contributing to the boundary shear stress. This approach involves 

the conformal mapping technique, also called conformal transformation, which is a transformation 

that preserves local angles. 

 

By neglecting the effects of secondary currents, it is found that the boundary shear stress acting on 

the channel-bed must be balanced by the downstream component of water weight contained 

between each of two adjacent orthogonal rays. The shear stress on a unit area can be calculated 

by: 

[2.15]  mgSG   

where G is the gravitational force, m is the mass of water between two rays, and g is the 

acceleration of gravity. For a non-uniform flow, S should be replaced by the hydraulic slope. It is 

the same method summarized in Section 2.2.1, but the idea of graphical division using isovels is 

the first time shown in the world. 

 

The distribution of boundary shear stress in an open channel obtained by Leighly (1932) is shown 

in Figure 2.3. It showed the maximum bed shear stress values on the channel-bed are near the base 

of steep sides rather than near the centerline of flat channel-bed. However, there is no trend of a 

dramatic drop of boundary shear stress when approaching the corners. In general, this proposal did 

not render any conclusive results, but it is considered a significant inspiration to other researchers 

(Graf, 1984). 
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Figure 2.3 The distribution of boundary shear stress in an open channel obtained by Leighly (1932) 

 

The velocity distribution is the prerequisite for the graphical division approach. Chiu and Lin 

(1983) developed a mathematic modeling technique (numerical model) to simulate the velocity 

distribution. The simulated flow isovels were then used as a new coordinate system (Figure 2.4) 

to obtain boundary shear stress and secondary flow distributions covering the entire boundary of 

a channel bend. It is concluded that the location of the maximum boundary shear stress is not 

necessary to be the same as the maximum primary velocity. Large discrepancies were found in the 

prediction of secondary flow distribution because some model coefficients were computed using 

measured data. 

 

Subsequently, Chiu and Chiou (1986) extended the model to rectangular open channels. In a given 

channel cross section, the turbulent shear stress on the rays is zero. They investigated the boundary 

shear stress under various Manning's roughness, aspect ratios (the ratio of the width to the depth 

of the channel cross section), and the slope of channel. The results disagree with the experimental 

data on the boundaries. 
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Figure 2.4 Primary flow velocity distribution and ξ-η coordinate system (Chiu & Lin, 1983) 

 

Houjou and Ishii (1990) developed another method for determining the distribution of velocity 

based on the assumption that a scalar eddy viscosity is proportional to the shear velocity in each 

subsection when using the Ray-isovel Approach. The 2D momentum equations proposed by this 

model were solved numerically, and the boundary shear stress distribution was computed for a 

rectangular open channel flow. They confirmed that the roughness and the aspect ratio have an 

influence on the flow structure. In addition, they found a slight difference of bed shear stress with 

the experimental results near the corners due to the lack of secondary flow effect in the model. 

 

The importance of secondary flow was detected by Kean and Smith (2004) and Kean et al. (2009). 

They adopted the turbulent closure technique from the model of Houjou and Ishii (1990). The 

velocity and boundary shear stress distributions were predicted in channels with banks and 

floodplains protected by woody vegetation (Kean & Smith, 2004) and rough cobbles (Kean et al., 

2009). Principal differences between measured and calculated fields are caused by the lack of 

secondary circulation effects. This is because better agreement between their model and 

experimental results can be achieved by distorting the calculated flow field with measured 

secondary flow data. 

 

Yu and Tan (2007) used a flow-net method to obtain the boundary shear stress, based on the 

assumption that the energy production balances its dissipation within each sub-area partitioned by 

two adjacent potential lines. The flow-net method is essentially the same as the Ray-isovel 
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Approach, in which the wetted cross section was mapped by orthogonal streams (rays) and 

potential lines (isovels). The only difference with the Ray-isovel method is that the ends of the 

potential lines are located at the imaginary boundary on the free surface instead of the maximum 

velocity contour. Numerical experiments were carried out to determine this imaginary boundary. 

This model was applied to circular, rectangular, trapezoidal, and compound channels. Reasonable 

agreements with experimental data were shown even near the water margins and corner regions, 

except for locations with sharp corners and protrusions, such as the step-bank of floodplain. The 

omission of the secondary flow effect leads to general overestimation of the boundary shear stress. 

Since the secondary flow cells strengthen the flow and energy exchange, they can average the 

boundary shear stress distribution.  

 

Knowledge of primary velocity distributions is required for the Ray-isovel technique. Going 

forward, proper implementation of the secondary flow effect into the model will be of interest. To 

summarize, despite the fact that Graphical division using the Ray-isovel Approach is simpler than 

the CFD technique, the model using Graphical division technique is still a useful tool to determine 

the distributions of velocity and boundary shear stress in complex channels. The Graphical division 

technique substantially requires less computational efforts than fully 3D flow models (Kean & 

Smith, 2004). 

 

2.3.2 Graphical Division by Hydraulic Radius Separation Approach 

There is another way to achieve the graphical division dating back to the 1930s. Keulegan (1938) 

proposed to separate the flow cross section area into three sections in order to find an expression 

for the bulk mean velocity of each subsection, which is the flow rate averaged over the area of 

each section. The cross section was divided using the bisectors of base angles for a polygonal 

channel. However, the reason to choose bisectors as division lines is not explained. 

 

As shown in Figure 2.5, Einstein (1942) developed another method for partitioning the flow cross 

section into different parts using two sidewalls and a channel-bed through the consideration of 

isovel pattern. It is assumed that the bulk mean velocitiy in each section are the same without any 

explanation. As a result, the shear force on the bed could be separated from the lateral boundaries.  
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Figure 2.5 Partitioning of flow cross section by Einstein (1942) 

 

The mean boundary shear stress is calculated using the basic method mentioned in Section 2.2.1 

in relation to the energy slope (Equation [2.2]). 

 

Each mean boundary shear stress needs its hydraulic radius estimated by the area of each section 

divided by its wetted perimeter. There is no friction at the interface between the areas. The potential 

energy in each section is dissipated by the related boundary, respectively. Therefore, this graphical 

division approach is named as the Hydraulic Radius Separation Approach, which is still widely 

used together with laboratory studies.  

 

Yang and Lim (1997, 1998) developed an analytical method for demarcating the locations of 

division lines in Einstein’s work. The equations are corresponding to the channel shape, aspect 

ratio and roughness distribution on the wetted perimeter. A design of separation lines with the 

steepest descent between the core flow region and the channel corners were generated. The 

division lines were straight with zero stress (Figure 2.6). Only the mean boundary shear stress was 

obtained with poor quality within rectangular cross sections. 
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Figure 2.6 The intersection of straight division lines above the free surface (Yang & Lim, 2005) 

 

The model was used to obtain the boundary shear stress distributions in smooth rectangular 

channels (Yang & McCorquodale, 2004) and rough trapezoidal open channels (Yang & Lim, 

2005). Yang and McCorquodale (2004) applied an order of magnitude treatment to the Reynolds 

equations. Analytical solutions of boundary shear stress distribution were developed by integration 

under different conditions. The solutions involving the secondary current effect, using empirical 

coefficients based on known data, gave better results compared to the rest. However, the local 

boundary shear stress at corner regions on the channel-bed is incorrect, and the equations do not 

incorporate the geometry of the channel, which is not ideal. Yang and Lim (2005) developed three 

equations to describe the shear stress distributions in various sub-sections, where there is no effect 

of secondary flow. It is found that the local boundary shear stress at the free surface is zero, and 

the maximum values (peak point) on the sidewalls approaches to the bed as the base angle 

increases. Furthermore, near corners, the values of sidewall shear stress are not correct. 

 

A new method for partitioning the channel cross section in rectangular channels has been 

developed by Guo and Julien (2005). Analytical equations were developed for the delineating 

lines. Two empirical correction factors were introduced for secondary current and eddy viscosity 

to reduce the overestimation of experimental data. De Cacqueray, Hargreaves and Morvan (2009) 

used the CFD technique to calculate the various terms in the equations proposed by Guo and Julien 
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(2005). The internal shear and secondary currents are important to get the local shear stress. The 

division methods of Keulegan (1938) and Yang and Lim (1997) were proven to be equivalent. It 

is postulated that Guo and Julien’s formulas could potentially be used for any division line 

approach.  

 

Kabiri-Samani, Farshi and Chamani (2012) derived semi-analytical equations to obtain boundary 

shear stress distributions in the best hydraulic trapezoidal sections (the cross section with the 

maximum hydraulic radius) based on the methodology of Guo and Julien (2005). The locations of 

maximum velocity and maximum shear stress were also found to be inconsistent. 

 

Several graphical division methods are summarized above. Correction coefficients were used to 

express the secondary current effect. However, the methods employing these coefficients gave bad 

results near the channel corners. Methods that are more effective are needed to account for the 

secondary flows. 

 

2.3.3 Shiono and Knight Method (SKM) 

A 2D approach based on the depth-averaged Navier-Stokes equations for uniform steady flows 

has been proposed (Knight, Shiono & Pirt, 1989). This method, often called Lateral Distributional 

Method (LDM), involves dividing the area of cross section vertically into some slices and solving 

the depth-averaged Navier-Stokes equations over the slices.  

 

One of the LDMs called SKM is often used to obtain the shear stress distribution in channel flow. 

Shiono and Knight (1991) developed this analytical model in compound channels to get the depth-

averaged velocity across the channel. The boundary shear stress and the discharge can be 

calculated from the velocity distribution by Darcy-Weisbach equation and numerical integration, 

respectively. Three hydraulic parameters related to the bed friction factor, the lateral eddy 

viscosity, and the depth-averaged secondary flow are considered in this method.  

 

These parameters have been studied by different researchers. Ervine, Babaeyan-Koopaei and 

Sellin (2000) replaced the depth-averaged secondary flow parameter by a coefficient accounting 

for the impact of complex 3D mixing processes. Castanedo, Medina and Mendez (2005) proposed 
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different forms of the terms used to express the lateral distribution of turbulent shear stress in 

depth-averaged momentum equations. Sharifi, Sterling and Knight (2009) developed an algorithm 

to study the lateral variation of friction factor. 

 

The prediction of depth-averaged velocity and discharge in natural rivers (Knight et al., 1989), the 

identification of mechanisms that influence the variation of bed shear stress (Sofialidis & Prinos, 

1998), and the prediction of stage-discharge relationship for rivers in flood (Abril & Knight, 2004) 

have been investigated by numerous researchers using the SKM. The SKM was also applied to 

over-bank flow in straight rectangular compound channels (Tang & Knight, 2008). It was shown 

that this model gave better results in slightly shallower channels. 

 

Knight, Omran and Tang (2007) presented a simple model to predict the depth-averaged velocity 

and the boundary shear stress distribution in trapezoidal channels based on the SKM. The 

predictions sometimes disagreed with the experimental data despite obtaining accurate averaged 

streamwise velocity because the secondary cells were modeled inappropriately.  

 

On the one hand, the SKM is physically sound to give depth-averaged velocity and boundary shear 

stress distributions along the wetted perimeter. It can be regarded as an alternative method to the 

relatively traditional CFD approach, offering results for practical problems with much less 

computational effort and expense than CFD models. On the other hand, the SKM is essentially a 

simple one-dimensional (1D) approach with some 3D features, which means it is only useful for 

solving certain types of fluvial problems (Knight, Tang, Sterling, Shiono, & Mc Gahey, 2010) or 

steady flows analyses in prismatic flow (Rezaei & Knight, 2009). It is not effective in predicting 

the distribution of boundary shear in corner regions where the secondary flow effect is powerful.  

 

2.3.4 Vorticity Equation Method 

Zheng & Jin (1998) presented a semi-analytical approach to describe the lateral boundary shear 

stress distribution. It is applicable for the corner regions of rectangular ducts and open channels, 

but only the boundary shear stress in the corner regions can be determined. It was confined to a 

range of 0.5 H (rectangular ducts) to 0.65 H (rectangular channels). ‘H’ represented the flow depth 

of the ducts and channels. The results agree well with the experimental data in the corner region. 
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The effect of secondary flow on the lateral distribution of boundary shear stress was incorporated 

into the model. Prandtl’s momentum transfer model was utilized to model the contribution of 

secondary flow to the transverse turbulent shear stress. The measured data of boundary shear stress 

in square ducts were used to quantify some empirical coefficients in the model.  

 

Jin, Zarrati and Zheng (2004) used this model to calculate shear stress distributions in triangular 

ducts, rectangular and trapezoidal open channels. This model was able to predict shear stress 

distributions along the whole channel banks only in the trapezoidal cases by treating the free 

surface as a plane of symmetry. 

 

Zarrati, Jin and Karimpour (2008) studied distributions of boundary shear stress in straight open 

channels, including rectangular, trapezoidal and compound cross sections. Different terms of the 

simplified vorticity equation were modeled and evaluated based on previous work and 

experimental data. Zarrati et al. (2008)’s work is an extension of the work of Zheng and Jin (1998). 

They thought to separate the wetted periphery into a corner region and an outer region that is not 

affected by the secondary flow. Equations for the distributions of boundary shear stress were 

obtained for both regions instead of only the corner regions. However, derived equations 

incorporating the secondary flow effect still included unknown coefficients, which were calculated 

based on boundary conditions and known experimental data. This model was proven to give bad 

results in the study of Kabiri-Samani et al. (2012). The deficiency of this model was considered as 

the consequence of the inappropriate graphical division technique without considering Einstein’s 

idea mentioned in Section 2.3.2. 

 

2.3.5 Laminar Flow Solution Method and Turbulent Kinetic Energy Method 

In this section, other techniques to obtain the local shear stress are summarized. The Laminar Flow 

Solution Method was considered as a rough estimation of boundary shear stress. Estimation of 

local shear stress from turbulent kinetic energy yields unsatisfactory results.  

 

2.3.5.1 Laminar Flow Solution  

A solution to the laminar flow equations was found a long time ago. Olsen and Florey (1952) came 

up with an idea to apply the simplified laminar solution to the turbulent flow problem. Velocity 



23 

 

and shear stress distributions in a channel were expressed mathematically in the form of a partial 

differential equation. An analytical solution of this equation was a sum of a particular integral and 

a complementary function. Since the governing equation was taken as a 2D linear partial 

differential equation, it was considered well suited to the Finite Difference Method. Secondary 

flow effects were not deemed to obtain velocity distribution in the computed results, which caused 

discrepancies in the location of maximum velocity. 

 

There was a slight discrepancy in the analytical solution due to using only three terms in an infinite 

series to obtain the complementary function. Since no experimental results were presented in the 

study, the results achieved by these methods were not convincing. 

 

2.3.5.2 Turbulent Kinetic Energy 

Tidal environment studies led to another method for obtaining the boundary shear stress 

distribution. Hopkinson and Wynn-Thompson (2012) examined the validity of a relationship in 

open channels that boundary shear stress is proportional to the turbulent kinetic energy (TKE) with 

a coefficient along sloping vegetated streambanks.  

 

Experiments were conducted to obtain boundary shear stress in a sloping streambank. The 

coefficient was calculated using both measured boundary shear stress and boundary shear stress 

estimated from Reynolds stress. It is concluded that models based on Reynolds stress 

underestimated the boundary shear stress by a factor of three, because velocity data cannot be 

obtained very close to a boundary. In general, calculating the boundary shear stress based on the 

TKE led to a significant error in stream environments. 

 

1D and 2D analytical models have been used to compute the open channel flow extensively. 

However, the lateral momentum transfer and the secondary circulation mean that the flows are 

highly 3D. Therefore, considerable difficulties would be encountered with the use of simple 

models (Krishnappan & Lau, 1986). The 3D numerical modeling could be a better complement to 

the experimental work since extensive numerical models could solve the sophisticated influential 

factors properly.  

 



24 

 

2.4 Numerical modeling 

Accurate calculations of boundary shear stress in channels of arbitrary and complicated cross 

section geometry require the use of numerical methods. With the advent of high-speed computers, 

the studies of 2D and 3D flows in open channels have experienced a surge of interest in recent 

years. The potential to apply CFD techniques in such studies shows a promising prospect in terms 

of modeling and detailed flow analyses. Various models such as k-ε model, k-ω model, Reynolds 

Stress Model (RSM), Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS) have 

been developed to simulate the complex flow structure in open channels. However, only a few 

researchers have focused on the distribution of boundary shear stress. 

 

2.4.1 RANS based Turbulence Models 

In turbulent flow, the quantities in governing equations can be decomposed into a mean part and a 

fluctuating part. The Reynolds-averaged Navier-Stokes (RANS) equations govern the mean flow. 

However, the velocity fluctuation appears in the form of Reynolds stress in the equations. The 

objective of turbulence models for RANS equations is to compute the Reynolds stress, so that the 

turbulence closure can be achieved. There are three main categories of RANS models: linear eddy 

viscosity models, non-linear eddy viscosity models, and the Reynolds Stress Model (RSM). 

 

2.4.1.1 Linear Eddy Viscosity Models 

In linear eddy viscosity models, the Reynolds stress is modeled by a linear relationship with the 

mean flow strain rate, known as the Boussinesq eddy-viscosity approximation. Depending on the 

number of transport equations needed to solve the eddy viscosity, the linear eddy viscosity models 

are composed of algebraic models (zero equation model), one-equation models, and two-equation 

models. 

By far, the most popular two-equation model until the last decade of the twentieth century was the 

k-ε model. Straight compound channels have been extensively studied to understand turbulent flow 

behavior and to develop an accurate prediction method for the conveyance capacity. Krishnappan 

and Lau (1986) applied the 3D k-ε model to calculate shear stress distributions in asymmetric 

channels with compound cross sections. The maximum values of local shear stress are in the 

middle of the channel-bed and at the intersection of the floodplain and the main channel. No sign 
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of zero boundary shear stress can be found on the corner of the main channel because the 

calculating node picked in this research thesis was possibly not close enough to the wall.  

 

The resolution of turbulence vertical distribution is rarely of interest in most cases in practical 

applications (Keller & Rodi, 1988). Therefore, a depth-averaged model was used in combination 

with the turbulence k-ε model to calculate the depth-averaged turbulent shear stress. Velocity and 

bed shear stress data taken from the literature in channels of compound cross sections were used 

to calibrate the model. The discrepancies of the predicted boundary shear stress and the 

experimental data was up to 15%. Errors arise when the model was used to predict flood events 

very different from the calibration data.  

 

A 3D finite-volume model was used to predict the flow field in straight compound 

channels with the standard k-ε model (Rameshwaran & Naden, 2003). The boundary shear stress 

at the corner region in the main channel was not well predicted due to the significant secondary 

flow effects. Moreover, the predicted boundary shear stress was slightly over the experimental 

data at the main channel-bed far from the corners. The calibrated roughness height for a uniform 

flow simulation varies with flow depth, which reflects the fact that the interaction between the 

main channel flow and the floodplain flow was inadequately modeled with the standard k-ε model. 

 

The free surface mentioned in the above cases was fixed or using rigid-lid assumption. Jazizadeh 

and Zarrati (2008) presented 3D shallow water equations to calculate flow in asymmetric 

compound channels with the help of a 3D k-ε model. The depth of the flow was divided into several 

layers, and governing equations were integrated over the thickness. The free surface level was then 

computed using the continuity equation and depth correction algorithm. They found a difference 

of 12% in velocity distribution with experimental data at the interaction region where the main and 

floodplain meet. Nevertheless, inflection points were shown in the distribution bed shear stress in 

the main channel near the corner, due to the effect of the bottom vortices. However, their locations 

were not correctly predicted because of the essential deficiency of the linear model. 

 

The results obtained from the studies discussed above were all compared with experimental results 

in fair agreement and applied to specific conditions.  
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Zero-equation models, in which the eddy viscosity is prescribed as a function of channel depth, 

are more economical compared to complicated models, but they are unqualified as predictive tools 

for turbulent flows. This is because the function will vary from flow to flow, and from one cross 

section to the next. Two-equation models are inappropriate for predicting the occurrence of a 

secondary motion in cross-stream planes. Moreover, they do not reproduce the effects of the free 

surface on the turbulence structure. Therefore, models that are more sophisticated are required to 

accurately simulate the effect of secondary flow. 

 

 

2.4.1.2 Nonlinear Eddy Viscosity Models 

The eddy viscosity from the Boussinesq approximation depends on many factors, such as the shape 

of channel boundaries, the freestream turbulence intensity, and the flow-history effects. The flow-

history effects on the Reynolds stress often persist for a long distance. Thus, the linear relationship 

is not reliable in some applications. Generally speaking, linear eddy viscosity models are not 

suitable for the following typical applications: flow with sudden changes in mean strain rate, flow 

over curved surfaces, flow in ducts with secondary motions, flow in rotating fluids, and 3D flows 

(Wilcox, 2006, p. 306). 

 

One approach to approximating the Reynolds stress without introducing any additional differential 

equations is to use the Boussinesq approximation, which deals with only the leading term in a 

series expansion of functions. On this basis, numerous researchers have developed relations of 

different complexity, such as the nonlinear k-ε model and the Algebraic Stress Model (ASM). In 

the nonlinear k-ε model, the adding terms are solved using algebraic relationships, whereas for the 

ASM approximates, the convective and turbulent terms in the new Boussinesq approximation are 

resolved in the full Reynolds-stress equation as proportional to corresponding terms in the equation 

for the turbulence kinetic energy.  

 

Turbulent flow in compound open channels was studied numerically with nonlinear k-ε turbulence 

models of Low-Reynolds type by Sofialidis and Prinos (1998). Most of the models at the same 

period were designed for High-Reynolds turbulence and wall functions were applied at the first 

node adjacent to the walls. Sofialidis and Prinos (1998) integrated the governing equations down 
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to the walls resolving the viscous sublayer. At each solid boundary, at least five nodes were located 

in the region with dimensionless wall distance smaller than two. Overestimations can be seen all 

over the channel-bed. In addition, the sharp corner region on the floodplain is not well estimated. 

 

The Algebraic Stress Model (ASM) was applied to asymmetric compound rectangular open 

channels (Naot, Nezu & Nakagawa, 1993). Shao, Wang and Chen (2003) tried both the ASM and 

the nonlinear k-ε model to obtain boundary shear stress distribution in curved open channels with 

a simple rectangular open channel cross section. 

 

2.4.1.3 Reynolds Stress Models 

Alternatively, one can use Reynolds Stress Models (RSM), also called stress-transport model, to 

resolve the unknown turbulent stress directly from the solution of their differential transport 

equations. These are often referred to as second-order closure or second-moment closure models. 

They include the effects of streamline curvature, secondary motions, and sudden changes in strain 

rate and so on. Researchers used an exact differential transport equation to describe the behavior 

of specific Reynolds stress tensor and to correct some of the Boussinesq approximation’s 

shortcomings (Wilcox, 2006, p. 322).  

 

The closure approximations mentioned above are more elaborate than two-equation models since 

the terms modeled are tensors instead of simpler scalar and vector terms in the k-ε model. Reynolds 

equations are solved directly using RSM instead of simply including a nonlinear effect of 

generalizing the linear strain rate or using algebraic relationships derived, or simplified, from 

Reynolds stress transport equations to optimize the model. This is different from the non-linear k-

ε model and the ASM, discussed in Section 2.4.1.2. As a result, RSM incurs higher computing 

costs than the non-linear k-ε model and the ASM. However, RSM provides better results when 

used in situations of turbulence-driven motions (Cokljat & Younis, 1995). 

 

Cokljat and Younis (1995) used an RSM to predict the boundary shear stress distribution in open 

channels of both simple and compound cross sections. Their model is found to accurately 

reproduce the details of the turbulence-driven secondary motions that occur in the cross-stream 



28 

 

planes. There is a localized region of wall stress deficit that is perceived to move towards the 

sidewalls with increasing aspect ratio in rectangular channel simulations. 

 

Kang and Choi (2006) studied a rectangular open channel of 0.2 mm wide and 0.1 m deep. The 

sidewall shear stress distribution showed almost uniform shear stress between the 10% depth and 

90% depth. In the upper water column within 10% depth, the shear stress appeared to be about 

60% higher than the mean uniform shear stress value. This is attributed to inner secondary currents 

occurring at the juncture of the free surface and sidewall (Kang & Choi, 2006; Broglia, Pascarelli 

& Piomelli, 2003). The inner secondary currents transfer high momentum from the center to the 

sidewalls near the free surface. RSM was also applied to other smooth rectangular open channels 

and compound meander channels (Jing, Guo & Zhang, 2009; De Cacqueray et al., 2009). 

 

2.4.2 Direct Numerical Simulation 

Direct Numerical Simulation (DNS) means a complete direct 3D and time-dependent solution of 

the Navier-Stokes and continuity equations without turbulence closure. Since DNS resolves flow 

motions of all scales, it is recognized to be the most precise simulation tool for the analysis of 

turbulence structures and wall effects (Launder, 1990). 

 

Statistics computed from DNS results can be used to test proposed closure approximations in 

engineering models. It can also be used to obtain an understanding of turbulent structure and 

processes that can be of importance in developing turbulence-control methods or prediction 

methods. Furthermore, DNS can be viewed as an additional source of experimental data, taken 

with unobtrusive measurements. All comments assume the DNS is free of significant numerical 

error.  

 

Mean flow properties and turbulent statistics for square duct flow have been studied using DNS in 

the recent decades. The main difference between a full duct flow and an open channel flow is that 

the flow in the duct is driven by pressure. The shear Reynolds number was 300 based on mean 

friction velocity and the duct width (Gavrilakis, 1992). The dimensionless wall distance was larger 

than one along the cross-sectional direction, so the no-slip wall condition used on the sidewalls 

should be reconsidered. Huser and Biringen (1993) continued the work to use slightly coarser 
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uniform mesh, and the shear Reynolds number was low at 600. They suggested the difference from 

the work of Gavrilakis (1992) was because of the Reynolds number difference. The higher the 

Reynolds number, the steeper the dimensionless wall shear stress drops near the corners. The 

maximum local shear stress values were both found on the bisector of the duct walls. For both 

cases, the no-slip condition applied on the sidewall is questionable. 

 

Joung and Choi (2007) demonstrated the mechanism responsible for generating secondary flows 

in a square duct. The shear Reynolds number was equal to 300. Dimensionless wall distance was 

smaller than one. The results of the local shear stress distribution have some deviations in the 

middle and the corner regions of 10% and 20%, respectively, compared with the experimental data. 

However, it agreed pretty well with Gavrilakis’s (1992) work using the same geometry. Therefore, 

the dimension of the geometry is of importance, because of the pattern of secondary flow changes 

in different geometries. 

 

Since DNS incurs enormous computing cost, it has only been applied to simple flows at low 

Reynolds numbers. LES is a compromise between RANS models and DNS, which can be used to 

solve large-scale motions of flow. Only small-scale motions are modeled. As a result, the number 

of grids can be significantly reduced in LES, and the accuracy of the model can be kept to a 

satisfactory extent (Joung & Choi, 2007). 

 

2.4.3 Large Eddy Simulation 

The methodology of LES will be discussed in detail in Chapter 3. Its applications to open channels 

regarding boundary shear stress distributions will be discussed in this section. Table 2.1 

summarizes basic information about these studies. 
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Table 2.1 Studies of distributions of boundary shear stress using LES 

 

 

Broglia et al. (2003) studied fully developed turbulent open-duct flows at three shear Reynolds 

numbers using LES. They aimed to determine the influence of a free surface on the turbulence 

characteristics in a duct flow. The discretization with 105 or 106 grid points was uniform in the 

streamwise direction, whereas points were clustered towards the walls in the spanwise and normal 

directions. In particular, the first point close to the wall was placed at dimensionless wall distance 

equal to 0.5 and at least 13 points were in the near-wall region (dimensionless wall distance smaller 

than 10). Periodic boundary condition was used in the streamwise direction, and no-slip boundary 

condition was imposed on the walls. The boundary conditions enforced on the top surface of the 

computational domain were either the no-slip conditions or zero-stress boundary conditions to test 

Research 

work 
Geometry Deficiencies Boundary conditions 

Thomas and 

Williams 

(1995) 

Trapezoidal 

compound channel 

Large y+; 

Uniform mesh 

Stress-free water surface; 

periodic boundary condition; 

stress boundary condition (wall) 

Broglia et 

al. (2003) 
Rectangular duct 

Short of effective 

comparison data 

Stress-free water surface; 

periodic boundary condition; 

no-slip wall condition 

Shi et al. 

(1999) 

Rectangular open 

channel 

Large y+; 

Uniform mesh 

Stress-free water surface; 

periodic boundary condition; 

modified power law (wall) 

Sterling et 

al. (2008) 

Rectangular open 

channel 
Large y+ 

Stress-free water surface; 

periodic boundary condition; 

no-slip wall condition 

Kara et al. 

(2012) 

Compound open 

channel 

Large y+; 

Uniform mesh 

Symmetry water surface; 

periodic boundary condition; 

no-slip wall condition 

Xie et al. 

(2014) 

Compound open 

channel 

Large y+; 

Uniform mesh 

Stress-free water surface; 

periodic boundary condition; 

Modified power law (wall) 
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the influence of free surface. However, there were only comparisons with the DNS models 

involving some imperfect settings in the mesh.  

 

Thomas and Williams (1995) utilized the LES technique with the standard Smagorinsky method 

to simulate a trapezoidal compound channel with extensive floodplains at a bulk Reynolds number 

of 430000, estimated from the hydraulic radius and the bulk velocity. The geometry of the 

simulation was similar to an experimental work and was discretized uniformly resulting in the 

dimensionless distance of x+ = 658, y+ = 98, and z+ = 240. The flow field was periodic in the 

streamwise direction with a repeat length of 1.2 m. At the free surface, a stress-free rigid lid was 

added. Around the wetted perimeters, the stress boundary condition was applied meaning that the 

instantaneous stress was assumed to change with the instantaneous velocity linearly τ/τa = U/Ua. 

The subscript represented averages taken over a streamwise strip at a point on the channel 

perimeter. The main deficiency in the simulation was the coarse streamwise resolution. A double 

of the resolution in any one direction would have doubled the memory required. Cater and 

Williams (2008) studied the same case with a higher resolution. However, the mesh was still not 

fine enough to achieve the no-slip wall condition. The same boundary conditions were applied to 

this case. The insufficient development length in the experiments was considered the cause of 

differences in the comparison according to these authors. 

 

Shi, Thomas and Williams (1999) investigated a turbulent flow in a rectangular open channel. The 

bulk Reynolds number was 90400. The aspect ratio was two and the length was six depths. The 

geometry was discretized using uniform mesh giving the dimensionless wall distance of x+ = 250, 

y+ = 75, and z+ = 75. However, this resolution was insufficient to resolve the viscous sublayer and 

buffer region; a length damping function was used to reduce the dissipative effect of the mean 

shear. A periodic boundary condition was applied to the flow. External pressure and tangential 

stress were set to zero at the free surface. At the solid walls, a modified form of power-law 

boundary condition U+ = A(y+)1/7 was utilized, and the first grid point fell on the wide-open channel 

log-law profiles. A greater degree of resolution was suggested to be used in future studies. 

 

Sterling, Beaman, Morvan and Wright (2008) examined the possibility of using LES to obtain a 

database of instantaneous bed shear stress data, from which the behavior of extreme events could 
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be acquired. A significant variation of a fluctuating component of bed shear stress, around the 

time-averaged value of bed shear stress, was found by analyzing the standard variation. Large 

values of skewness suggested that the extreme or peak values of boundary shear stress would occur 

frequently. The behavior of instantaneous shear stress is complex and cannot necessarily be 

attributed to a single flow mechanism. In the simulation, the same geometry as one of the 

rectangular flumes that Knight, Demetriou and Hamed (1984) used was investigated. Periodic 

boundary condition was applied. Stress-free, no-slip boundary conditions were applied to the free 

surface and channel perimeters, respectively. The total number of mesh elements utilized was 

572,000, with 160, 65, and 55 elements in the streamwise, lateral, and vertical directions, 

respectively. The mesh was created by specifying a first cell height to all walls ensuring y+ = 5 

with a growth factor of 1.3 for ten layers. The setting dissatisfied the requirement for a no-slip wall 

condition. The predicted boundary shear stress distributions generally agreed well with the 

experimental data. However, the values at the center regions on the channel-bed were over 

predicted by the LES, which was seen elsewhere in RANS simulations. 

 

Kara, Stoesser and Sturm (2012) studied turbulent flow in a compound open channel with deep 

and shallow floodplain depths. The geometries were taken from the study of Tominaga and Nezu 

(1991). The mesh was discretized uniformly, which was not suitable for no-slip wall condition 

because of the large dimensionless wall distance of 6. Cyclic boundary condition was employed 

in the streamwise direction. The no-slip wall boundary condition was used for smooth walls. The 

free surface was treated as a plane of symmetry. Kara et al. (2012) reported that the inaccurate 

estimation of streamwise velocity profile was due to the insufficient flow development in the 

experiment. Furthermore, the erroneous predictions of bed shear stress on the floodplain were 

considered as the result of using the log-law to obtain the local shear stress in the experimental 

work of Tominaga and Nezu (1991).  

 

Xie, Lin and Falconer (2014) studied the turbulent flow in an asymmetric compound open channel. 

The model was set up based on the previous laboratory model study. The bulk Reynolds and 

Froude numbers were 67000 and 0.39, respectively, based on the mean bulk flow velocity 0.349 

m/s. The computational domain was discretized using a grid of 192×96×384 cells in the 

streamwise, vertical and spanwise directions, respectively. At the bed and on the sidewalls, a near 
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wall modeling approach was employed, as opposed to relating the shear stress to the velocity 

adjacent to the solid boundaries based on a time-averaged wall power law (A modified one over 

seventh law). The free surface was modeled as a free-slip rigid lid. The results of channel-bed 

shear stress have some deviations in comparison to the experimental data. They found that time-

averaged results were similar at different cross sections, although there were significant temporal 

and spatial variations in the 3D turbulent flow fields.  

 

Sinha, Das, Patel and Samtani (2014) applied a 2D two-layered model to a straight compound open 

channel using the LES approach. The non-uniform rectangular grid was generated. The wall 

function was specified on the boundaries, and zero shear stress was specified on the free surface. 

Water depth was equal to the depth of the lower layer and a small water depth was applied to the 

upper layer at the initial condition. Two cases, including symmetry and asymmetry compound 

channels, were simulated based on the experimental work of Fraselle, Bousmar and Zech (2010), 

and Tominaga and Nezu (1991). No local shear stress data are available from the experimental 

work of Fraselle et al. (2010). In Tominaga and Nezu (1991), the minor difference between 

experimental and numerical simulation was due to the depth-averaged assumption.  

 

Constantinescu, Koken and Mccoy (2008) applied the LES technique to the study of a horseshoe 

vortex system at the base of groynes (also known as spur dikes, which are popular river-training 

structures) and the associated distributions of bed shear stress around isolated and multiple groynes 

placed in straight channels. The authors were interested in understanding how the structure and 

intensity of the horseshoe vortex system were affected by an evolving scour hole due to the 

presence of a second groin or due to submergence. Other LES applications reported in the literature 

include studies like turbulence characteristics in flow over dunes (Xie et al., 2014), sediment 

transport in open channel flows (Widera, Toorman & Lacor, 2009; Zedler & Street, 2006), and 

bedform evolution in turbulent flows (Chou & Fringer, 2010; Kraft, Wang & Oberlack, 2011). 

 

The LES technique is a powerful tool to simulate turbulent open channel flows. In previous studies, 

the applications all have some deficiencies, such as coarse mesh close to the boundaries, the use 

of inaccurate wall boundary conditions, and the shortage of actual comparison data. In this research 
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thesis, these difficulties will be overcome using advanced meshing strategies and the no-slip wall 

condition. Moreover, the results will compare with well-cited effective experimental data. 

 

2.5 Experimental Work 

Section 2.2 shows basic methods to obtain wall shear stress using theoretical knowledge. In this 

section, attention is given to the feasible methods to obtain the local shear stress in realistic 

experimental studies. 

 

As flow in the open channel is invariably turbulent, no analytical technique can be expected to 

yield more than an approximate solution. All analytical models and numerical methods are subject 

to experimental verification. Since it is difficult to analyze from a purely theoretical point of view, 

semi-empirical models have been proposed based on measurements.  

 

In this section, different ways to measure local shear stress in laboratory flumes, including direct 

and indirect measurements, are summarized and discussed in the next few sections. 

 

2.5.1 Indirect Measurements 

A standard indirect technique involves measuring velocity and pressure profiles normal to the 

boundary, and then solving for the boundary shear stress. We begin with reviewing the two indirect 

measurement methods.  

 

2.5.1.1 Velocity Profile Method 

The Velocity Profile Method, elucidated in detail in Section 2.2.2, is developed based on 

logarithmic velocity distribution after Prandtl–Karman. It involves measurements of Reynolds-

averaged velocity profiles along lines normal to the boundary.  

 

The theoretical investigations by Prandtl–Karman result in rational formulas for velocity 

distribution and hydraulic resistance over flat plates, in circular pipes and even in open channel 

flows. Since the constants in the formulas change with roughness, aspect ratio, and unusual shape 

of channel sections, the values of these constants have been studied for a long time in rectangular 

and trapezoidal flumes (Ghosh & Roy, 1970) and rectangular open channels (Çiray, 1970). 
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Instead of directly fitting the measured velocity profile into the log-law (summarized in Section 

2.2.2), another applied form of this method is called the Clauser Plot Method. They both are 

indirect tools that measure the wall shear stress in turbulent boundary layers with reasonable 

accuracy. The difference is that the Clauser Plot Method (Clauser, 1954) is a graphical method 

using the properties of the time-averaged velocity profile in the logarithmic portion of the 

boundary layer. 

 

The attractive feature of the Velocity Profile Method is that velocity measurements in the viscous 

sublayer portion of the profile, which are often difficult to obtain, are not required. However, this 

method is inappropriate for flow conditions such as those with strong pressure gradients, low 

Reynolds numbers, and separation. Moreover, it is not suitable to obtain the wall shear stress near 

the sidewalls since the velocity profile near the sidewall deviates significantly from the logarithmic 

law (Broglia et al., 2003).  

 

The accuracy of the Velocity Profile Method, including the Clauser Plot Method, and fitting 

Reynolds-averaged velocity profile into the log-law, is not only dependent on the selection of 

Karman constant 𝜅 and integration constant C (Equation [2.4]), but also the method of measuring 

the velocity profile itself. For example, significant errors can arise in Pitot tube measurements due 

to their sensitivity to large-amplitude velocity fluctuations, misalignment and Low-Reynolds-

number effects at the tube opening (Tropea, Yarin & Foss, 2007, p. 881). The key point of this 

method is to obtain accurate time-averaged velocity profiles, so the choice of apparatus is critical. 

From now on, the remaining literature review in this section is divided according to the apparatus 

used. 

 

2.5.1.1.1 Laser Doppler Anemometer (LDA) 

LDA is a powerful measurement technique, which is especially suited for velocity measurements 

in water. This technique does not require any calibration and is capable of non-intrusive 

measurements of complex flows. 

 

A two-color LDA can measure the longitudinal and vertical velocity component separately with 

high accuracy. A three-component system with a frequency-shifting device can measure all three 
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orthogonal components of velocity in complex flows with reasonable accuracy, including regions 

of separated reversed flow. However, very-near-wall measurements are especially challenging 

because of reflections and the refraction of the laser beams due to the proximity of the wall (Tropea 

et al., 2007, p. 898). This is especially the case if the sidewall is not perfectly transparent due to 

the sidewall roughness or if the sidewall is inclined.  

 

A powerful two-color LDA was applied to obtain boundary shear stress by Nezu and Rodi (1985). 

The secondary patterns in open channels were quite different from those of closed channel flows 

because of the absence of free surface. Nezu and Rodi (1985) reported that the strong free-surface 

vortex produced due to the high anisotropy of turbulence was the cause of the velocity dip on the 

free surface and another vortex generated near the channel-bed.  

 

Differences between the local shear stress distribution in a rectangular channel and a trapezoidal 

channel were studied by Imamoto and Ishigaki (1985). The sidewall shear stress was zero at the 

foot of the sidewall in a rectangular channel, but it showed a non-zero or maximum in a trapezoidal 

channel. A zero value appeared at the free surface in a trapezoidal channel, but a non-zero value 

appeared at the same position in a rectangular channel. Moreover, the distribution along the 

sidewall was wavy with two peaks in a trapezoidal channel with a gentle slope, confirming its 

relationship with the 3D structure of flow (Ghosh & Roy, 1970).  

 

The complex nature of the hydraulic problem of flow in an open channel with varying boundary 

roughness was studied using the LDA and the Velocity Profile Method (Knight & Macdonald, 

1979). The same apparatus was applied to a curved open channel (Jin, Steffler & Hicks, 1990) and 

a compound open channel (Tominaga & Nezu, 1991). 

 

2.5.1.1.2 Hot-film technique 

Researchers have widely used the Hot-wire or the Hot-film for measurements in the air. One of 

the major difficulties encountered when using this apparatus in water is the contamination of the 

wire because the impurities in water prevent stable operation of the hot-wire. Intrusiveness, 

calibration and optimum length of the active hot-element can bring imprecision to the 
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measurement. Also, bubble formation on the surface of heated sensitive element seriously affects 

the measurements. 

 

The Hot-film technique is valuable for measuring wall shear stress fluctuations, although it is not 

very popular today. The measurement of wall shear stress using an electrically heated element set 

into the surface is a well established technique that relies upon the similarity between the velocity 

profile adjacent to the wall and the temperature profile of the thermal boundary layer generated by 

the element. Accurate calibration of this Hot-film probe is conducted depending on the water 

temperature and calibration coefficients of each measuring point.  

 

Tominaga, Nezu, Ezaki and Nakagawa (1989) used the Hot-film to measure secondary currents in 

rectangular and trapezoidal open channel flows, and to study the effects of the aspect ratio, the 

side slope of a trapezoidal channel, and the boundary roughness on the secondary flow structures. 

They confirmed the foundings of Nezu and Nakagawa (1984), and Nezu, Nakagawa and Tominaga 

(1985). The local shear stress is closely associated with secondary flows, which increases in 

regions where the secondary current flows towards the wall, and decreases in regions where the 

secondary current flows away from the wall. In the smooth rectangular channel, an inflection point 

can be found at a distance of 0.8 H away from the sidewall because of the bottom vortices. The 

position of this inflection point corresponds to the spanwise scale of the bottom vortex rather than 

the roughness parameter (Figure 2.7).  
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Figure 2.7 Inflection points on the distribution of bed shear stress (Tominaga et al. 1989) 

 

The trapezoidal channel has a different secondary flow structure from the rectangular open 

channel, where the free surface includes a reverse rotation in the region between the sidewall and 

the free surface, causing no velocity dip phenomenon (Nezu & Rodi, 1985). The sidewall 

maximum shear stress position moves to the corner as the angle of the sidewall decreases, whereas 

it was at 0.6-0.7 H in the rectangular channel. Nezu and Rodi (1985) found that the normalized 

bed shear stress in the trapezoidal channel was larger than that of the rectangular channel in the 

corner regions. 

 

In rough open channels, the distribution of bed shear stress showed considerable undulation 

because of the multi-cellular secondary currents, indicating that the bed shear stress increased at 

the downflow regions and decreased at the upflow regions (Nezu & Rodi, 1985). They found that 

roughness is an independent factor of boundary shear stress distribution.  

 

2.5.1.1.3 Acoustic Doppler techniques 

Profile measurements in the open channel flow are tedious and arduous. Most instruments fail 

when sediment transport occurs. The Acoustic Doppler Velocity Profiler (ADVP) is capable of 
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taking instantaneous, complete velocity profiles with a good resolution instead of point 

measurements. 

 

Blanckaert (2010) investigated boundary shear stress and its interaction with main flow and 

secondary currents using the ADVP. The sidewall shear stress is obtained using the Velocity 

Profile Method, whereas the bed shear stress was obtained from the depth averaged velocity Us 

as: 

[2.16]  
2

,0 Sbedf UC   

Chézy friction coefficient Cf, bed = 0.53 is approximately constant because the roughness of the bed 

is constant in the experiment. This technique is also called the Quadratic Stress Model (QSM) 

(Kostaschuk, Villard & Best, 2004), which offers a lower uncertainty of about 10% compared to 

20% of the Preston Tube Method. 

 

Rodríguez and García (2008) studied the local shear stress distribution in a rectangular channel 

over a rough, flat bed with smooth lateral walls using ADV. The patterns of streamwise velocity 

and secondary circulation presented a cellular structure that scales with flow depth. The shear 

stress value matched the downflow and upflow theory (Tominaga et al., 1989). The existence of 

differing roughness in bed and walls made the distribution of bed shear stress exhibiting a very 

marked oscillation, which is strong even away from the lateral walls. These results apply to urban 

streams, in which the bed is considerably rougher than the lateral walls. 

 

2.5.1.1.4 Particle Image Velocimetry (PIV) 

PIV is one of the well-established non-intrusive techniques for fluid velocity measurement. The 

PIV can provide the flow field, simultaneously at many points, whereas the LDV and the hot-film 

measure the velocity at a single point and do not supply the spatial structure of flow directly. The 

quality of data obtained from PIV technique is subject to the size of seed particles, image quality 

and size, camera frame rate, and processing software. PIV systems often use class IV lasers and 

high-resolution, high-speed cameras, which bring cost and safety constraints. Nguyen, Wells and 

Nguyen (2010) used this technique to obtain wall shear stress over inclined and curved boundaries.  

 

https://en.wikipedia.org/wiki/Laser_safety
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As can be seen above, many instruments, working on a variety of principles, have been developed 

to measure velocity and turbulence in water flows. They all have special features. The Hot-film 

and the LDA can only provide single point measurements. The Hot-film is intrusive while the PIV 

can produce profile measurements but is inconvenient to deploy. Details of a comparison of the 

velocity measuring instruments based on different measurement techniques are given in Table 2.2. 

 

Table 2.2 Comparison of standard velocity measuring instruments based on different principles 

[Modified from Lemmin and Rolland (1997), and Blanckaert and McLelland (2009)] 

 

 

2.5.1.2 Sublayer Profile Method 

The Sublayer Profile Method involves accurately measuring the linear portion of the Reynolds-

averaged velocity profile near the surface. The basic idea of this method is discussed in Section 

2.2.4. Based on Equation [2.11], one can obtain the boundary shear stress. 

 

Purpose/factor 
Instrument type 

Hot-film LDA ADVP PIV 

Velocity calibration Always needed None needed None needed Always needed 

Very low or inverse 

velocity 
Impossible Possible Possible Possible 

Signal processing Easy Difficult Easy Easy 

Seeding No Yes Yes Yes 

Profile determination Point by point Point by point 
In one 

acquisition 

In one 

acquisition 

Point measurement 1 mm 0.15 mm 5 mm 0.1 mm 

Flow perturbation Yes No No No 

Effect on measured 

Environment 
Large effects No effect No effect No effect 

Mobility of 

instrument 
Easily moved 

Difficult to 

move 
Easily moved 

Safety 

constraints 

Cost Low High Low High 
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Major challenges associated with determining 
0  using Equation [2.11] are to find the region 

where the mean profile is linear, accurately and appropriately position the sensor in this region, 

and accurately calibrate the sensor for the measurements. This technique can only apply to flows 

over smooth walls.  

 

Under the vast majority of flow conditions, the dimensions of the viscous sublayer region are 

small, typically a fraction of a millimeter. Therefore, the sensing dimension of the measurement 

probe must be small as well. Optical sensors such as the Laser Doppler Velocimetry (LDV) and 

the Molecular Tagging Velocimetry (MTV) can be used to measure the sublayer profile. 

 

Steffler, Rajaratnam and Peterson (1985) used LDA to measure velocity profiles close to the 

boundary. They not only obtained boundary shear stress by fitting the velocity profile into the log-

law but also used the distribution of Reynolds stress ( ''vut   ) directly. The latter is to use the 

theory mentioned in Section 2.2.3. The disadvantages of this theory are that errors of the Reynolds 

stress measurements become significant and that there is a need for extrapolation problems. 

 

In Steffler et al. (1985), an initial estimate of shear velocity was obtained by first taking the 

maximum value from the Reynolds shear profile, and then using more data points within the 

viscous sublayer. The bed stress was determined directly by a linear curve fitting of these points. 

The shear velocity estimated from longitudinal velocity measurements in the viscous sublayer 

agreed well with that of the law of the wall.  

 

Other researchers have obtained the shear velocity from the viscous sublayer. For example, 

Kirkgöz and Ardiçlioglu developed empirical equations for the boundary shear stress distribution 

as a function of the aspect ratio (Kirkgöz, 1990; Kirkgöz & Ardiçlioglu, 1997). 

 

Table 2.3 presents a summary of studies reviewed in the Section 2.5.1 that used the Velocity Profile 

Method and the Sublayer Profile Method. In the table, the data in the brackets of the Depth and 

Width mean the values are flume sidewall heights (not the depth of flow) and bed widths. Null 

means the data is not available from the cited studies.  
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Table 2.3 A summary of studies that use the Velocity Profile Method and the Sublayer Profile Method to obtain the distribution of 

boundary shear stress 

 
 

 

Rectangular Trapezoidal

(m) (m) (m)  (m3/s)  (m/s) Aspect ratio Side slope  (m) Smooth Rough

Steffler 

(1985)

Glass 

and steel
35.0 1.1

0.093-

0.225 

(0.5)

0.032-

0.126
Null 5.08-12.3 × 21

1.2*10E-03, 

2.3*10E-04
√ × √ × LDA

Nezu and 

Rodi (1985)
Null 20.0 0.6

0.04-

0.195 

(0.65)

Null
0.145-

0.122
1-10 × Null Tiltable √ √ √ × LDA

Tominaga 

et al. 

(1989)

Iron and 

glass
12.0 0.4

0.03-0.19 

(0.4)

0.002-

0.051

0.186-

0.397
2-8

32˚, 44˚, 

60˚
6 Tiltable √ √ √ √ Hot-film anemometer

Imamoto 

and Ishigaki 

(1989)

Null 5.9 0.2
0.0392-

0.0405

0.0016-

0.0085

0.014-

0.028
5 0˚-4˚ 3.9 Tiltable √ √ √ ×

LDA and micro-

propeller 

currentmeter

Kirkgöz 

(1990)
Glass 12.0 0.3 (0.4)

0.0004-

0.02

0.049-

0.903
2.4-11.1 × 6 Tiltable √ × √ √ LDA

Kirkgöz and 

Ardıçlıoğlu 

(1997)

Glass 9.5 0.3
0.025-0.2 

(0.4)

0.003-

0.019
Null 1.5-12 × 6.5 Tiltable √ × √ × LDA

Ardıçlıoğlu 

et al. 

(2006)

Glass 9.5 0.6

0.0353-

0.1414 

(0.6)

0.008-

0.042
Null 4.42-21.6 × 6

0.0006-

0.0050
√ × √ √

Propeller-type velocity 

meter

Rodríguez 

and García 

(2008)

Null 12.2 0.9

0.0353-

0.1414 

(0.6)

0.05-0.11 0.48-0.72 6.3, 8.5 × 6 Tiltable √ √ × √ ADV

Blanckaert 

et al. 

(2009)

Null 9.0 1.3 0.11-0.21 Null 0.38-0.43 3.2-11.9 30˚-90˚ 6.5 Tiltable √ √ √ √ ADVP

Ardıçlıoğlu 

and Kırkgöz 

(2011)

Glass 10.0 0.3
0.025-0.2 

(0.4)

0.0032-

0.0195
Null 1.5-12 × 6.5

0.0005-

0.002
√ × √ × LDA

MaterialResearch Velocity measurement
Location of measurementVelocityDischargeDepthWidthLength

RoughnessAspect 

ratio

Secondary 

flow

Channel shape Influencing factors

Slope
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2.5.2 Direct Measurements 

Direct measurement methods have many advantages since they do not require pre-assumption. For 

example, they can supply time-resolved measurements of the instantaneous wall shear stress. 

Invaluable data from direct measurement can be used to check the efficacy of other indirect 

methods as well as other analytical theories. However, these methods require sensing systems that 

have a high-frequency response and are sufficiently small. Therefore, it is challenging to apply 

these methods for all kinds of flow configurations.  

 

2.5.2.1 Preston Tube Method 

Although the Preston tube technique is developed based on the log-law, it is considered a direct 

measurement technique because of its flexibility and efficiency (Ackerman & Hoover, 2001).  

 

The technique has been frequently used to obtain the time-averaged wall shear in uniform flows. 

The wall function is suitable for describing flow characteristics near the wall. The function 

involves the wall shear stress, and the kinematic viscosity of water or the wall surface roughness. 

However, for non-uniform type flows, the log-law of the wall is not adequate. Also, the sizes of 

Preston tubes can be too large. They disturb the flow and therefore affect the results. Smaller sizes 

are more satisfactory than larges ones, in order to minimize the disturbances (Myers & Elsawy, 

1975).  

 

Ippen (1960) were the first to demonstrate the applicability of Preston tubes to open channels. The 

author investigated boundary shear stress distributions in curved trapezoidal channels under rough 

wall conditions. Davidian and Cahal (1963) studied the relationship between local boundary shear 

stress and Froude number. The distributions of boundary shear stress in a rectangular duct 

(Leutheusser, 1963) and a pipe (Replogle & Chow, 1966) have been measured using Preston tubes.  

 

The aspect ratio was reportedly the only factor affecting the boundary shear stress on smooth 

boundaries (Cruff, 1965). The dimensionless wall shear stress decreases as the aspect ratio 

decreases at the same dimensionless location. For smooth rectangular channels, the region where 

the local shear stress is affected by the wall extends a distance about six flow depths laterally from 

the sidewalls. The shear stress is equal to RS in the middle part as long as the aspect ratio is larger 
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than 12.5, compared to a threshold of 15 as reported in Rajaratnam and Muralidhar (1969). This is 

considered the threshold that the velocity distribution as well as other characteristics will not be 

affected by the sidewall in the middle region. The average shear stress at the channel-bed was 

much larger than that on the channel walls at large aspect ratios and the bed shear stress become 

increasingly uniform as the aspect ratio increases. Ghosh and Roy (1970) compared results from 

the Preston tube with the Float Element Technique and Prandtl-Karman’s Velocity Profile Method 

in the rectangular flume and trapezoidal flume. The dispersion of the measured shear stress 

distribution on the mean value of various estimates was lowest for the Preston tube measurement. 

Therefore, due to its inherent simplicity and reliability, it was considered the ideal choice to 

explore the boundary shear stress distribution in open channels. 

 

Wall roughness was shown to be another influence factor of the boundary shear stress distribution. 

The percentage shear force carried by the wall and the channel-bed was related to the roughness 

(Knight & Macdonald, 1979).  

 

The secondary flow has huge influences on the flow characteristics (Knight et al., 1984). The 

distributions of wall and bed shear stress exhibit certain perturbations, which are called inflection 

points by subsequent researchers. This phenomenon depends on the number and distribution of the 

secondary flow cells within the cross section in a smooth channel of rectangular section. Moreover, 

the secondary flow influences the location of maximum sidewall shear stress, which occurs at a 

certain intermediate position between the water surface and the bed, as opposed to at the water 

surface. The secondary flow effect also displaces the maximum bed shear stress from the centerline 

position towards the corner at low aspect ratios. 

 

The maximum sidewall shear stress and bed shear stress in a compound channel were studied by 

Ghosh and Jena (1971). The boundary shear stress distribution was affected by the secondary flow 

in a rectangular channel as discussed above. Also, the maximum shear stress locations are not at 

the free surface or the centerline of the channel-bed. For the floodplain, the maximum occurs at 

the junction with the internal wall. For rough boundaries, the maximum shear stress location 

changes with the depth of flow on the sidewalls and is at the centerline on the channel-bed (Ghosh 

& Jena, 1971). 
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The interaction mechanism between the main channel and the floodplain was studied thoroughly. 

The shear stress in the floodplain is much larger than its undisturbed value with no interaction with 

the main channel flow (Myers & Elsawy, 1975). Researchers have used the Preston-tube to study 

the transfer of longitudinal momentum from the main channel to the floodplain (Rajaratnam & 

Ahmadi, 1979), lateral momentum transfer (Knight & Demetriou, 1983), and the non-linear nature 

of Reynolds shear stress in the shear layer and local friction (Knight & Shiono, 1990).  

 

The Preston tube has also been used to study the resistance effects of floodplain vegetation (Pasche 

& Rouvé, 1985), to test a numerical model (Rameshwaran & Naden, 2003), and to obtain velocity 

measurements in meandering or non-uniform compound channels (Rajaratnam & Ahmadi, 1983).  

 

The Preston Tube Method is a single point variant of the Clauser Plot technique mentioned in 

Section 2.5.1. Section 2.2.5 gives theoretical information about the Preston tube. 

 

Table 2.4 summarizes experimental studies about the distributions of boundary shear stress in 

various channels using the Preston tube. In the table, the data in the brackets of the Depth and 

Width mean the values are flume sidewall heights (not the depth of flow) and bed widths. Null 

means the data is not available from the cited studies. 
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Table 2.4 A summary of studies that used Preston tubes to obtain the distribution of boundary shear stress  

 

 
 

 

Rectangular Trapezoidal

(m) (m) (m)  (m
3
/s)  (m/s) Aspect ratio Side slope (m) Smooth Rough

Rajaratnam 

and 

Muralidhar 

(1969)

Glass 9.75
0.076-

0.896

0.069-

0.896

0.143-

7.128
0.10-0.16 0.83-20 × 7.32

0.00636-

0.0197
√ × √ × Pitot tube 3 mm

Ghosh and 

Roy (1970)
Glass 13.41 0.20

0.049-

0.175

0.005-

0.033
0.40-0.99 1.2-3.1 0.5-1.5 7.92 Adjustable √ × √ √ Pitot tube 0.125 in.

Cluff 

(1965)
Steel 24.38 1.06 （0.46）

0.011-

0.207
0.84-8.44 4.76-33.3 × 21.34 Adjustable √ × √ × Pitot tube Null

Davidian 

and Cahal 

(1963)

Null 42.67 1.08
0.127-

0.203
Null Null 5.34-8.84 × 35.97 Adjustable √ × √ × Null Null

Knight and 

Macdonald 

(1979)

Perspex 15.00 0.46 （0.38）
0.003-

0.114
Null 1.48-15 × 10.00 9.58*10

-4 √ × √ √

Novar-stream flow 

miniature propeller 

meter

7 mm

Knight et al. 

(1984) 
perspex 15.00 0.61

0.0319-

0.223.7

0.00198-

0.02866

0.0319-

0.2237
0.3-20 × 11.97 9.66*10

-4 √ √ √ ×

Novar-stream flow 

miniature propeller 

meter

7 mm

Research Material

Length

Prestontube 

size

Width Depth Discharge Velocity

Channel shape Influencing factors

Location of 

measurement 

Slope
Velocity measurement 

instrument

Aspect 

ratio

Secondary 

flow

Roughness
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2.5.2.2 Membrane Analogy 

Olsen and Florey (1952) used analytic, membrane analogy, and Finite Difference methods to 

obtain boundary shear stress and velocity distributions in different shapes of channels. These 

included three rectangular channels, five V-notch channels, and six trapezoidal channels that had 

side slopes of 2:1 (horizontal to vertical). The aspect ratio was up to eight. Eleven of these channels 

used the membrane analogy. Two used the Finite Difference Method. The last one used both 

approaches to compare with the analytical solution.  

 

In their study, the velocity and shear distributions in a channel section were governed by partial 

differential equations, leading to the analytical solution discussed in Section 2.3.5. An equation 

for an elastic membrane was expressed mathematically in a similar way as the partial differential 

equations. This analogy adopted an opening in a flat plate with boundary geometry similar to the 

channel cross section with symmetry at the free surface. A thin rubber membrane was then 

stretched over the opening, and a uniform pressure was applied to deform the membrane. The 

solution involves measuring the elevation and slope of the membrane at selected grid points.  

 

Independent solutions by the three methods applied to the simplest rectangular channel showed 

consistent results. In both rectangular and trapezoidal channels, the maximum dimensionless shear 

stress values began to level off at a distance of two flow depths to the sidewalls at the channel-

bed. 

 

2.5.2.3 Float Element Technique 

Perhaps the simplest technique (in theory) for directly measuring wall shear stress is the floating 

element sensor. Unlike other sensors, which indirectly measure the shear stress, floating-element 

sensors are not dependent upon the veracity of correlating functions. Therefore, they are not 

affected by errors associated with the theoretical assumptions.  

 

This Float Element Technique (also called shear plate sensor) has been used firstly by Kempf 

(1929). It involves measuring the force exerted by the bed shear stress on a small element of the 

wall that is separated from the rest of the boundaries with small gaps. Subsequently, the 

development of a floating element instrument was carried forward by Bagnold (1955). The author 
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used this technique because the depth of invisible channel-bed could not be determined. This 

technique was applied to obatin measurements of boundary shear stress in boundary layers (Pujara 

& Liu, 2014) and wave flows (Barnes, O'Donoghue, Alsina & Baldock, 2009).  

 

Petryk and Shen (1971) used the Float Element Technique to measure the shear stress directly on 

the bottom of a laboratory flume floor. The values of shear stress are in good agreement with those 

obtained by the Preston tube technique. The surface area of the float plate exposed to the flow is 

0.00205 m2
. Figure 2.8 shows a schematic diagram of the float element. 

 

 

Figure 2.8 Schematic of the shear plate sensor used in the Float Element Technique (Pujara & Liu, 

2014) 

 

For measurement in open channels, Ghosh and Roy (1970) continued using the three-point 

suspension arrangement originally employed by Bagnold (1955). As shown in Figure 2.9, the 

stagnant pool of water outside the channel is connected with the steady flow inside the test section 

through gaps around the test section. The drag exerted by the flow tends to make the gap 

downstream of the trial section narrower and that of the upstream wider. The float element can be 

brought back to its initial position by the weight on the pan-pulley arrangement. The switching on 

of a glow lamp is the signal of the initial condition. Therefore, one can obtain the shear drag, as 

well as the boundary shear stress.  
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Their work presented the boundary shear distributions in both rough and smooth open channels, 

in which rectangular sections had aspect ratios ranging from 1.2 to 3.1 and trapezoidal sections 

had side slopes ranging from 0.5 to 1.5. The total inner channel length is 44 ft, and the width is 

0.656 ft. 

 

 

Figure 2.9 Scheme for measurements of boundary drag distribution in a rectangular channel using 

the Float Element Technique (Ghosh & Roy, 1970) 

 

The maximum shear occurred at the top surface on the sidewalls and in the middle part of the 

channel-bed in a smooth rectangular channel, whereas on an artificially roughened surface, it 

neither occurs at the free surface nor the channel-bed centerline, but at some distance away from 

the top surface and the centerline towards the corners. In the case of a smooth channel, the degree 

of reliability of the three methods studied is in descending order starting with the Floating Element 

Method, the Velocity Profile Method, and the Preston Tube Method. In the rough channel case, it 

is in descending order starting with the Floating Element Method, the Preston Tube Method, and 

the Velocity Profile Method since the assumption of a constant Karman coefficient is no longer 

valid. The total drag per unit length of the channel is in close agreement among the three methods, 

but each of these methods gives varying results at different locations around the wetted perimeter. 

The influence of secondary flow on the boundary shear distribution was not completely clear in 

the absence of a dependable theory about secondary flow at that time. 
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2.5.3 Other techniques 

2.5.3.1 Surface Coating Techniques 

Tanner and Blows (1976) studied the motion of oil films on surfaces in airflow, with application 

to the measurement of skin friction. Measurement of the shear stress distribution over a surface by 

liquid-crystal coating was studied by Fujisawa, Aoyama and Kosaka (2003). Oil-film 

Interferometry and Liquid-crystal Method are both valuable techniques for direct measurements 

of shear stress, but so far, their applications have been limited to air flows. 

 

2.5.3.2 Surface Fence Method 

The surface fence or sublayer fence, used for measuring the magnitude and direction of the local 

shear stress, was first applied by Konstantinov and Dragnysh (1960). The fence height should 

ensure the dimensionless wall distance y+5 and thus remain within the viscous sublayer. 

Therefore, it is a device independent of the validity of the logarithmic law of the wall. This method 

applies to the turbulent boundary layer and has not been applied to open channels so far. 

 

2.5.3.3 Mean-pressure Gradient Method 

The Mean-pressure Gradient Method is a classic way for estimates of mean shear stress on the 

boundary of a pipe or a duct. Many textbooks discuss the Mean-pressure Gradient Method (Fox & 

McDonald, 1992, p. 340). It describes a relationship between the mean pressure drop P over a 

length of a duct or a pipe and the average wall shear stress acting over the surface area in a control 

volume of a fully developed pipe or duct flow with a constant cross-sectional area: 

[2.17]  
x

PR






2
0  

where R is the radius of pipe or duct half-height, 0  is the mean value of wall shear stress over a 

specific surface area, and x indicates the streamwise direction. 

 

2.5.3.4 Momentum Integral Approach 

The Momentum Integral Approach is useful for estimating boundary layer flows. If the fluctuating 

velocity variances in the streamwise direction are not significant, the local shear stress can be 

expressed using the momentum thickness θ and the displacement thickness δ*, given by: 
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[2.18]  
dx

dU

Udx

d
U e

e

e






 )2(

*
2

0   

where 
eU  is the free stream velocity. This equation includes the effects of axial pressure gradient. 

The last term on the right hand side of this equation is zero for flat-plate boundary layer flow 

(Nagib, Chauhan & Monkewitz, 2005). 

 

Unlike the Mean-pressure gradient method in ducts, the momentum integral approach does not 

require the flow to be fully developed. Considerable care must be given to ensure that the flow 

under investigation is adequately planar. Additional difficulties can arise from the need for 

accurate measurements of axial velocity (Tropea et al., 2007, p. 880). 

 

Compared to indirect measurement techniques, methods for direct measurements are harder to 

implement in the laboratory environment and field conditions, although they are expected to 

produce more accurate results. 

 

Advances in instrumentation for measurements of water velocity, including Preston tubes, Hot-

film, LDV, ADV, and PIV, have increased the spatial and temporal resolutions, providing an 

opportunity to estimate the wall shear stress and to compute the Reynolds stress from velocity 

fluctuations. Some of these techniques have limitations such as intrusion when used in the field 

and near boundaries. Moreover, high costs of instrumentation, and the requirement of time and 

labor for CTA, LDV, and PIV have limited their application in field conditions (Ackerman & 

Hoover, 2001). Experimental as well as field studies are important, producing invaluable data for 

an improved understanding of turbulent flow characteristics. 

 

2.6 Field Measurement 

It takes significant efforts to measure the boundary shear stress in field directly. Therefore, 

researchers usually estimate boundary shear stress from the observation of velocity profiles in 

practice similar to the Velocity Profile Method described in Section 2.5.1.1. 
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2.6.1 Current meter 

Conventional equipment (current meters mounted on hand-held rods) was used by Wilcock (1996) 

under typical field conditions in a large gravel-bed river (the Trinity River in U.S.). The discharge 

was constant and maintained a steady flow condition. Replicate observations were made to 

evaluate the precision of three methods for estimating local bed shear stress from velocity 

observations. The essential idea is to fit velocity values into the logarithmic vertical velocity 

profile. It is possible to use a single near-bed velocity (lower 20% depth of the flow), the depth-

averaged velocity, and the gradient of near-bed velocity profile (the least squares fit to at least six 

observations). The first two choices need estimates of bed roughness. The most accurate estimation 

is to use the depth-averaged velocity. 

 

Nezu, Tominaga and Nakagawa (1993) used an electromagnetic flow meter to study secondary 

currents in a wide river and a narrow river. They identified multicellular secondary currents in the 

wide river and a velocity dip phenomenon, caused by a free-surface vortex in the narrow river. 

The features of these secondary currents coincide well with those obtained in laboratory 

experiments (Nezu & Nakagawa, 1984) and numerical calculations. 3D turbulent structures 

associated with secondary currents are almost universally independent of the Reynolds number 

through a comparison of field data and laboratory data. 

 

Afzalimehr and Rennie (2009), using a micro-current propeller meter, measured velocity profiles 

at 24 cross sections in the Ghamasiab River in Iran. They tested a new method for determining the 

shear velocity in non-uniform flows over gravel-bed channels based on the boundary layer 

displacement thickness and the momentum thickness.  

 

2.6.2 Acoustic Doppler Profiler (ADP) or Acoustic Doppler Current Profiler (ADCP) 

ADP has advantages over conventional current meters. First, the ADP relies on acoustic profiles 

and positioning from a Differential Global Positioning System (DGPS) instead of using an anchor, 

and therefore it can be used from a moving launch. Second, the ADP provides 3D velocity profiles 

to describe flow structures, whereas single-point current meters require continuous repositioning 

of the meter at different elevations above the bed and reanchoring the launch at various positions, 
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which may take several hours (Kostaschuk & Villard, 1996). Last, each profile contains many 

observations along a vertical line measured over a short time.  

 

The most serious limitation of the ADP is the loss of data close to the boundary. The costs are also 

a concern but are usually dwarfed by the expense of the ship required to ensure a safe and 

professional deployment. 

 

Kostaschuk et al. (2004) used a Sontek 1.5 ADP for measurements of velocity profiles over dunes 

in the Fraser River estuary in Canada. They recommended using the QSM (discussed in Section 

2.5.1.1.3) for the calculation of boundary shear stress over the Velocity Profile Method. 

 

Sime, Ferguson and Church (2007) tested the three ways suggested by Wilcock (1996) to obtain 

local shear stress using the Velocity Profile Method (discussed in Section 2.6.1). They used a 

moving boat ADCP and obtained velocity profiles in the lower Fraser River in Canada. The depth-

averaged velocity was proved the most precise matching Wilcock’s (1996) conclusion.  

 

Pieterse, Puleo, McKenna and Aiken (2015) used ADP in narrow tidal channels in a salt marsh of 

the St. Jones River in U.S. The bed shear stress was estimated from the velocity profiles using 

three methods: the log-law, the Reynolds stress, and the TKE. The Reynolds stress and the TKE 

method gave similar results, while the log-law method led to smaller bed shear stress values during 

ebbing tide.  

 

2.6.3 Acoustic Doppler Velocimeter (ADV) 

The main difference between ADV and ADCP is that the former one uses focused beams to 

measure with high sampling rates in only one small point, whereas the latter produces a vertical 

profile using a diverging beam pattern. 

 

Biron, Lane, Roy, Bradbrook and Richards (1998) studied the uncertainty of using the law of the 

wall in shallow streams since most measuring devices used in the field do not allow flow velocity 

to be measured very close to the bed. The selection of measurement heights for the estimation of 

bed shear stress using a fitted logarithmic profile was unknown. Therefore, they investigated this 
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problem using a Sontek field ADV that measures instantaneous flow velocity in three dimensions. 

The measuring volume was 0.125 cm3, and it was situated 5 cm below the sensor head. The 

instrument could sense the distance between the bottom of the measuring volume and the bed 

surface to a high degree of 1 millimeter. Data were sampled at three field locations of different 

roughness in shallow clear water tributaries of a braided river. The results indicate that using the 

full flow depth instead of the bottom 20% of the profile generates an underestimation of the shear 

stress in uniform flow. 

 

The effects of secondary currents on the erosion of cohesive riverbanks were studied by 

Papanicolaou, Elhakeem, and Hilldale (2007) using ADV measurements. They made the 

measurements from the Union Flat Creek with irregular cross sections. They reported that the 

presence of the secondary flow increased the depth-averaged sidewall shear stress. Hilldale and 

Baird (2002) also studied the secondary flow effects and collected 3D velocity data at three cross 

sections with plane beds or dunes in the Low Flow Conveyance Channel of the Middle Rio Grande 

using a SonTek ADV. They reported that the velocity dip phenomenon is pronounced, and the 

distribution of bed shear stress is sinusoidal under plane bed conditions, in comparison to dunes. 

The phenomenon of wavy distributions of bed shear stress also showed consistency in the study 

of rough boundary flumes (Nezu et al., 1993). However, the authors showed a contradiction with 

published data of Nezu and Rodi (1985) in that the velocity dip only occurs below a critical aspect 

ratio of between five and six. 

 

Liu and Wu (2015) used both a PC-ADP and an ADV to estimate bed shear stress in the Pearl 

River estuary. The Velocity Profile Method was reportedly the most suitable way to estimate the 

bed shear stress in non-stratified homogeneous flows among all tested methods, including the 

Reynolds Stress Method (Section 2.2.3), the Turbulent Kinetic Energy Method (Section 2.3.5), 

and an Inertial Dissipation Method. 

 

Ackerman and Hoover (2001) described the use of a Preston-static tube to measure the local shear 

stress in Torpy River watershed of the McGregor Mountains in Canada. It is possible to measure 

local shear stress quickly, consistently, and inexpensively in the field using this technique with 

high spatial resolution. 
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2.7 Ice-covered rivers 

Most of the rivers in Canada are covered with ice during the winter season, and the ice covers have 

a thickness more than 0.6 m for at least four months of the year. Ice covers may persist much 

longer periods with a depth exceeding 0.9 m in northern regions (Robert & Tran, 2012). The 

presence of ice cover on a river results in considerable changes in the structure of the flow. The 

principles, which used to be suitable for open channel flows, are no longer effective in the 

prediction of streamwise velocity distribution, the calculation of discharge, the estimation of local 

boundary shear stress, and the transport of sediment. Investigations of these processes have 

practical and scientific interest.  

 

2.7.1 Velocity Profiles in Ice-Covered Flows 

It is difficult and expensive to obtain field measurements of water velocities from ice-covered 

rivers. It is desirable to obtain a proper expression for velocity profiles for applications in ice-

covered hydraulics. 

 

Ice-covered flow may be considered a two-layer flow, one of which forms near the channel-bed 

and the other under the ice cover. There is a maximum velocity layer with zero velocity gradient 

(also with zero shear stress) at the intersection of the two flow layers (Dolgopolova, 1998). The 

vertical location of the maximum velocity depends on the relative magnitudes of the channel-bed 

and ice cover underside roughness, and the location steers towards the rougher surface (Robert & 

Tran, 2012). However, the plane of zero shear stress is reportedly not coincident with the maximum 

velocity plane (Parthasarathy & Muste, 1994; Chen, Gu, Huai & Zhang, 2015). The plane of zero 

shear stress is slightly displaced towards the smoother surface compared to the maximum velocity 

plane. 

 

Tsai and Ettema (1994) developed a simple two-power law expression for the velocity profile in 

ice-covered flows. The effectiveness of the two-power law was verified using measured velocity 

profiles obtained from rivers and a laboratory flume (Teal, Ettema & Walker, 1994). This two-

power law function is simpler compared to the logarithmic law of the wall. It is continuous and 

differentiable between the ice cover and the riverbed. The logarithmic law has also been applied 
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to ice-covered flows, leading to overestimates of velocities over a large portion of the depth close 

to the location of maximum velocity plane (Lau, 1982).  

 

Healy and Hicks (2004) used the two-power law to obtain curve fits to all observed data, which 

helped to minimize the distorting effects of some measurement errors. Suitable exponents and 

coefficient of a two-power law for ice-covered flows were determined using a multi-parameter 

regression analysis (Attar & Li, 2012).  

 

The two-power law is the most widely used expression for the vertical distribution of streamwise 

velocity in ice-covered flows. However, more 3D flow measurements of improved spatial and 

temporal resolutions from ice-covered rivers are needed to compare with laboratory-based 

findings, and to verify numerical results. Therefore, measurements of streamwise velocity profiles 

under ice-covered conditions in the field and laboratory are reviewed below. 

 

Commonly used instruments [Pulse Coherent Acoustic Doppler Profiler (PC-ADP) and Mini-

ADPs] were used to measure velocity distributions through the ice at Fort Simpson in the North 

West Territories by Mudge and Sloat (2004). The functioning and features of the two apparatus 

were investigated. Unique velocity profiles, including the near-ice and the near-bottom boundary 

layers, were acquired with two different Mini-ADPs, which were considered as the right tool for 

measurements under ice. It has the advantages of small size, working under harsh environment, 

and high resolution. The PC-ADP was able to acquire 50 cm long, high-resolution (1.6 cm) profiles 

of the near-ice boundary layer. It gave the friction velocity within the boundary layer and the 

roughness scale of ice underside, which was highly dynamic and complex. 

 

A series of experiments for the incipient motion of frazil particles were carried out in ice-covered 

flows in the laboratory (Jueyi, Jun, Yun & Faye, 2010). Small wood pieces were added to the 

floating foam to generate an ice cover with different roughness and frazil particles were made of 

wax. Under the same flow condition, the shape of the relative flow velocity profile appeared to be 

identical, independent of flow depth and bulk mean velocity.  

 



57 

 

Two series of experiments were performed using an Acoustic Doppler Velocimeter (ADV) under 

the open channel condition and the rough ice-covered condition (Robert & Tran, 2012). Ice-

covered flows were studied in a flume of 8 m long, 50 cm deep, and 0.6 m wide. The cover was 

constructed using 12 mm thick plywood. It showed that the introduction of an ice cover increased 

the depth of average flow by 10%.  

 

2.7.2 Discharge Estimation in Ice-Covered Flows 

Flow discharge is a key hydrologic parameter that largely controls river regime, hydraulic 

extremes such as flooding or low flows, and many water-dependent ecological processes (Beltaos, 

2011).  

 

Ice-cover formation increases flow resistance and flow depth for a given discharge and a channel 

slope. The presence of an additional boundary almost doubles the wetted perimeter for wide 

channels. Consequently, a stage-discharge relationship developed for the open channel flow may 

not be accurate for ice-covered flows.  

 

To minimize time, costs and discomfort of working under difficult weather conditions, the mean 

discharge is usually estimated by measuring only a few points using the velocity-area approach. 

Teal et al. (1994) evaluated point-measurement methods for estimating the vertical distributions 

of streamwise velocity in ice-covered rivers. The evaluation used profiles generated numerically 

based on the two-power law (Tsai & Ettema, 1994). The two-point method (20% and 80% depth) 

was the most preferred method with the bias of approximately 2%.  

 

Healy and Hicks (2004) explored the viability of using an index velocity approach for winter 

discharge estimation based on limited actual point velocity measurements in the cross section. This 

index velocity could be the maximum point velocity for the entire cross section, the maximum 

vertically averaged panel velocity for the cross section, the maximum point velocity for the panel 

of maximum flow depth, and the vertically averaged velocity for the panel of maximum flow 

depth. Velocity profiles from the laboratory and field measurements were fitted into the two-power 

law to facilitate the determination of the index velocity. An examination of the data suggested the 

existence of a unique relation between the index velocity and the mean velocity.  
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Accurate determination of river discharge under an ice cover requires direct measurements. 

Beltaos (2011) investigated the feasibility of using slope-area hydraulics and the quasi-uniform 

flow concept to develop discharge-stage rating relationship at two stations in the Peace River and 

the Mackenzie River in Canada. The author reported that slope-area methods (Manning’s equation) 

would be the most effective when combined to sporadic winter flow measurements during the ice 

season. The key premises are that the quasi-uniform flow concept applies and slush is not severe.  

 

2.7.3 Boundary Shear Stress in Ice-Covered Flows  

The boundary shear stress, especially the local boundary shear stress in ice-covered flows, is 

poorly understood since the presence of an ice cover makes the structure of the flow more complex, 

compared with that in an open channel of the same geometry.  

 

The ice-covered flows are usually considered fully developed asymmetric turbulent channel flows. 

Such flows are characterized by different boundary shear stress on the two opposite surfaces, 

which are the ice cover and the channel-bed. A widely used two-layer theory divides the cross-

sectional area of an ice-covered channel into an upper ice layer and a lower bed layer at a plane of 

zero shear stress. The plane of zero shear stress does not coincide with the plane of maximum 

velocity except for the symmetric channel flow and the open channel flow, which are respectively 

at the middle depth and the free surface (Tsai & Ettema, 1994). Numerous attempts have been 

made to obtain the mean bed shear stress and mean ice cover shear stress.  

 

Lau and Krishnappan (1985) compared experimental data under open channel condition and ice-

covered condition. They concluded that the lower layer in an ice-covered flow could be treated as 

a free-surface flow for calculating the bed load transport. Mean bed shear stress was obtained using 

the theory discussed in Section 2.2.1. 

 

Velocity measurements were made using a 2D-LDV in turbulent channel flows over a flat 

stationary sediment bed of different roughness (Parthasarathy & Muste, 1994). The measured 

normalized mean streamwise velocity agreed well with the log-law. Therefore, the shear velocity 

can be estimated using the Velocity Profile Method. The lateral change of boundary shear stress 

and the sidewall effect, however, were not included in their study. 
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Einstein’s graphical division theory discussed in Section 2.3.2 can also be applied to the ice-

covered condition. Chen et al. (2015) continued Guo and Julien (2005)’s study, and adopted the 

two-power law for describing vertical velocity profiles in asymmetric channels to determine the 

location of zero shear stress. The conformal mapping technique was used to obtain the functional 

relationship for the division curves within each flow layer. Based on the force balance in each flow 

subsection, Chen et al. (2015) developed an analytical model for the mean shear stress of channel-

bed, ice cover, and sidewall. 

 

Aghaji Zare, Moore, Rennie, Seidou, Ahmari and Malenchak (2015) provided estimates of 

boundary shear stress on ice cover and channel-bed during stable ice cover and the important stage 

of ice cover breakup based on continuous field measurements of velocity profiles, obtained with 

ADCP in the Nelson River in Canada. The boundary shear stress was obtained by fitting velocity 

profiles into the log-law. Boundary shear stress varied dynamically with the transformation of the 

ice cover, including the presence and removal of slush ice and formation of the ice jams. Their 

study focused on the mean shear stress. The bed shear stress during the ice cover period is lower 

than during the open water condition, meaning that the presence of the upper boundary layer has 

a diminishing effect on the bed shear stress. 

 

The mean boundary shear stress in ice-covered flow has been studied considerably in recent years, 

but the local shear stress has barely been investigated. The work of Yamashita, Shimizu and Hohjo 

(1992) was perhaps the only study related to the local shear stress distribution under the ice-

covered condition. They continued the Ray-isovel Approach discussed in Section 2.3.1 and 

proposed a 2D model, which can determine the complete velocity and boundary shear stress 

structure in a cross section covered with ice. The 2D model was verified by experimental data 

obtained from a straight flume covered with a board representing the ice cover. The experiment 

was conducted using a straight acrylic flume of 7 m long and 0.4 m wide, with well-sorted sand 

all over the bed and walls. The Laser Doppler Current Meter and Pitot tubes were adopted to 

measure velocity and boundary shear stress, but the boundary shear stress was only measured at 

three locations: one near the ice cover, and two close to the channel-bed. The effect of sidewalls is 

limited to a region of only 15% width from the sidewalls. The calculated bed shear stress showed 

good agreement with the observed values except for the values close to the sidewalls. 
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The effects of ice cover on sediment transport have attracted some research interest. For a given 

flow rate and bed slope, the water depth increases due to the resistance added by the ice cover. The 

primary effect of this phenomenon is a reduction to the bed shear stress, thereby a reduction to the 

bed-load transport rate (Smith & Ettema, 1997). The existing open-water procedures for estimating 

rates of sediment transport were extended to include the effects of ice-covered in alluvial channel 

flow (Ettema, Braileanu & Muste, 2000). 

 

Ice-covered flows with complex geometries have also been investigated using numerical models. 

Yoon and Patel (1996) used the k-ω numerical model to describe the flow structure in a dune-bed 

channel under ice-cover condition. Inkratas, Gharabaghi, Beltaos and Krishnappan (2009) studied 

distributions of ice-covered flow velocity and the bed shear stress using the k-ε model for a 30 m 

deep hole in the East Channel of the Mackenzie River. 

 

The formation of ice cover complicates gauging of flow in streams and rivers, causing flow records 

for many North American streams to contain either gaps or inaccurate winter-flow information 

(Teal et al., 1994). Cold and miserable working conditions exacerbate measurement difficulties. 

Moreover, the distribution of ice-covered boundary shear stress has not been thoroughly studied 

before. Therefore, numerical modelling in this research thesis will be helpful for the understanding 

of ice-covered flows characteristics. 

 

2.8 Summary 

This chapter summarizes five basic methods for determining the boundary shear stress in Section 

2.2. Several theories, dating back to the 1930s, about the distributions of local boundary shear 

stress are discussed in Section 2.3. The development of theoretical ideas has been in progress for 

almost one hundred years. Researchers are continuously making considerable efforts to develop 

and improve analytical and numerical models. Most of the existing models cannot incorporate the 

effects of secondary flow properly. There are still significant discrepancies between model results 

and experimental data near the corner regions. 

 

Section 2.4 discusses many numerical studies to obtain distributions of boundary shear stress using 

different CFD techniques, including the traditional RANS models, the most accurate but 
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computationally expensive DNS, and the LES technique. LES is the core content of this section; 

most of the existing LES applications in open channel hydraulics have used uniform mesh with 

coarse resolutions. Uniform mesh is not desirable because of low computation efficiency. The use 

of coarse resolutions adjacent to the channel-bed and sidewalls impedes resolving the viscous 

sublayer and prevents the implementation of no-slip condition on boundary surfaces. These are 

significant deficiencies in current boundary shear stress studies using the LES technique.  

 

All analytical models and numerical methods are subject to experimental verification. Researchers 

have conducted experimental work extensively in the last few decades. The selection of 

measurement techniques has always been a tough task. Direct measurements are more accurate 

but difficult to acquire. Indirect measurements usually involve issues such as intrusive apparatus, 

expensive costs, and poor mobility. Section 2.5 provides a summary of features of boundary shear 

stress based on measurements. 

 

Boundary shear stress in the field generally cannot be measured using direct measurements, but 

can be estimated from the observation of velocity profiles. Section 2.6 describes measurements 

using different types of equipment. Current meters, ADV, and ADP are common instruments for 

obtaining velocity profiles. It is understandable that the acquisition of field measurements requires 

considerable labour and financial resources. 

 

Ice-covered river flows are poorly understood and need further investigations. The distribution of 

local shear stress along the wetted perimeter under ice-covered condition is almost an unknown 

domain. The presence of an ice cover makes flow structures more complex. Cold and miserable 

working conditions make field measurements extremely difficult. Numerical studies, therefore, 

could be an efficient way for an improved understanding of the distribution of boundary shear 

stress in ice-covered channels. Section 2.7 contain some details about ice-cover river flows. 

 

We make a new attempt in this research thesis, using the LES technique to obtain distributed 

boundary shear stress in rectangular and trapezoidal channels under open channel and ice-covered 

conditions, while avoiding deficiencies seen in previously published studies.  
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Next chapter gives the modeling methodologies used in this research thesis.  
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3. Methodologies 

3.1 Model channels 

This research thesis focuses on computations of shear stresses distributed along the wetted 

perimeter of a channel cross section (Figure 2.6). Both ice-covered and free surface flow conditions 

are considered. The former reflects the typical condition of Canadian rivers during the winter 

season (Figure 3.1), whereas the latter reflects the river flow condition during the other seasons. 

When a channel cross section is covered with ice, the wetted perimeter consists of the channel-

bed, the two sidewalls and the ice cover underside. In the absence of ice cover, it consists of the 

bed and sidewalls. 

 

   (a)      (b) 

 

Figure 3.1 Velocity contours showing a single core of high streamwise velocities in a cross section 

of the Yukon River in Canada, measured in: (a) January 1990; (b) March 1990. The maximum 

velocity occurred at the location marked by the symbol ‘+’. The ice cover extended from the zero 

depth line to the upper edge of the contour region 

 

For shear stress computations, this research thesis uses rectangular and trapezoidal channels of 

five different geometric configurations that are shown in Figures 3.2 to 3.6, respectively. The 

rectangular computational channels match Knight et al.’s (1984) experimental channels in cross 

sectional dimensions. Thus, we can make a comparison of boundary shear stress between computer 

simulations and laboratory experiments.  
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Figure 3.2 An open channel of trapezoidal shape, for large eddy simulation (LES) of the flow field, 

and boundary shear stresses at the channel-bed and sidewalls. The length of the computational 

channel is taken as six times its depth 

 

 

Figure 3.3 An open channel of rectangular shape, for LES of the flow field, and boundary shear 

stresses at the channel-bed and sidewalls. This computational channel matches Knight et al.’s 

(1984) experimental channel in cross-sectional dimensions, which allows a data comparison. The 

length of the computational channel is taken as six times its depth 
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Figure 3.4 An ice-covered channel of trapezoidal shape, for LES of the flow field, and boundary 

shear stresses at the channel-bed and sidewalls. This channel has the same dimensions as the 

channel shown in Figure 3.2 

 

 

Figure 3.5 An ice-covered channel of rectangular shape, for LES of the flow field, and boundary 

shear stresses at the channel-bed and sidewalls. This channel has the same dimensions as the 

channel shown in Figure 3.3 
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(a) 

 

(b) 

 

Figure 3.6 A rectangular channel for LES of the flow field and boundary shear stresses: (a) 3D 

view of the channel; (b) top view of blocks attached to the bed near the upstream end of the 

channel. This channel matches Knight et al.’s (1984) experimental channel in cross-sectional 

dimensions 

 

The geometric configurations shown in Figures 3.2 to 3.6 are referred to as Cases 1 to 5, 

respectively. For these cases, the setup for shear stress computations is summarised in Table 3.1. 

Case 1 and Case 3 assume domain symmetry, meaning that the flow field is considered 



67 

 

symmetrical about the vertical plane OPMN (Figure 3.2 and Figure 3.4) through the channel 

centreline. Accordingly, computations need to be performed for only half of the model channels. 

The symmetry assumption reduces computing costs. For all the cases, the lengths of the 

computational channels are taken as multiple times the depth of flow. The idea is to minimise 

possible end effects caused by the upstream and downstream lateral open boundaries of the water 

channels. The inlet velocity imposed at the upstream boundary, discharge, and cross section 

dimensions match Knight et al.’s (1984) experimental conditions. 

 

Table 3.1 A summary of channel geometry and setup for LES. Cases 1 to 5 correspond to the 

model channels shown in Figures 3.2 to 3.6, respectively  

 

Case 
Channel 

shape 
Ice 

Domain 

symmetry 

Length-

to-depth 

ratio 

Inlet 

velocity 

(cm/s) 

Discharge 

(litre/s) 

Reynolds 

number 

Boundary 

condition 

1 trapezoidal no yes 6 5.0 1.25 104 UDF 

2 rectangular no no 6 49.5 13.30 105 UDF 

3 trapezoidal yes yes 6 5.0 1.25 104 UDF 

4 rectangular yes no 6 49.5 13.30 105 UDF 

5 rectangular no no 11 49.5 1.25 105 periodic 

 

The Reynolds number, ReL, is expressed as 


LUo
L Re , where Uo is the characteristic velocity, L 

is the characteristic length, and ν is the kinematic viscosity of water. ReL can be evaluated by taking 

the inlet velocity as Uo, and twice the depth (Figures 3.2 to 3.6) as L. The ReL values are of the 

order of 104 to 105, which indicate turbulent flow in the model channels. 

 

With regard to the condition imposed at the upstream boundary of the channel in question, we 

test both a user defined function (UDF) and a periodic boundary condition (Table 3.1, Case 5). 

 

In summary, Case 1 is an open channel of trapezoidal shape (Figure 3.2). Case 2 is an open channel 

of rectangular channel (Figure 3.3). Cases 3 and 4 (Figures 3.4 and 3.5) consider the presence of a 

smooth ice cover in the model channels for Case 1 and Case 2, respectively. The ice underside is 
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a solid, no-slippery wall. Case 5 (Figure 3.6) extends the model channel for Case 2 by five times 

the depth of flow. In the model channel for Case 5, small cubical obstructs are placed on the 

channel-bed near the upstream boundary, in order to enhance the level of turbulence. Their 

dimensions are 10% of the depth of flow. Turbulent flow and shear stresses in the above-mentioned 

channels are obtained through LES. Pertinent model equations are described in the next section. 

 

3.2 Model Equations 

Fluid flows are governed by a coupled set of partial differential equations, known as the Navier-

Stokes equations. Computational fluid dynamics (CFD) models numerically solve these equations 

of different forms, depending on the types of numerical techniques used. For example, direct 

numerical simulation (DNS) numerically solves the instantaneous Navier-Stokes equations of 

transient form by means of spectral technique. Reynolds-averaged Navier-Stokes (RANS) 

equation models separate an instantaneous flow variable into a mean part and a fluctuating part, 

and apply temporal averaging to the Navier-Stokes equations. These models require to 

parameterise unresolved fluctuations with the help of Boussinesq approximation, and to use 

appropriate turbulence closure schemes. 

 

3.2.1 Filtered Navier-Stokes Equations 

LES uses filtering techniques to filter out motions of scales smaller than the mesh size used. In 

other words, motions of sub-grid scales are separated from those of resolvable scales. This is the 

first step in realising LES. A general expression for a filtered variable )(x  (denoted by an 

overbar) is given by: 

[3.1]   ')',()'()( dxxxGxx
D  

where x represents is the location where )(x  is to be determined; x' is the location where Φ(x) is 

considered in the spatial integration; D donates the flow domain; G is the filter function that 

determines the scale of the resolved eddies (Rodi, Constantinescu, & Stoesser, 2013, p.17). Many 

filters have been proposed in the literature, including the simple volume-average box filter of 

Deardorff (1970), and the Fourier cutoff filter and Gaussian filter of Ferziger and Shaanan (1976). 
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This LES study uses the Fluent software package (ANSYS, 2013b, p. 702). The finite-volume 

discretisation itself implicitly provides the filtering operation. After the filtration, the governing 

equations become the filtered Navier-Stokes equations for mass conservation and momentum 

balance, given by: 
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where iu  denotes the resolvable-scale filtered velocity; xi represents the Cartesian coordinates; i = 

1, 2 and 3 corresponds to the spanwise (x), the vertical (y) and the streamwise (z) directions, 

respectively (Figures 3.2 to 3.6); t is the time; p  is the resolvable pressure; and gi is the 

gravitational acceleration. For a channel-bed with an angle θ to the horizontal, gi = (0, -gcosθ, -

gsinθ). 

 

In Equation [3.3], on the left hand side, the first term expresses the rate of change of resolved 

velocity. The second term is a convection term. These two terms can be interpreted as the inertial 

forces. On the right hand side, the first term represents the pressure gradient. The second term is a 

diffusion term, associated with viscous forces. The third term is external forces applied to the fluid. 

 

The convective flux is given by: 

[3.4]  ijijijjiji RCLuuuu   

which contains the Leonard stress term: 

[3.5]  jijiij uuuuL  ; 

the cross-term stress term: 

[3.6]  ijjiij uuuuC  ; 

and the subgrid-scale Reynolds stress term: 

[3.7]  jiij uuR   

where ui', uj' are Subgrid-scale velocities in tensor notation. These three quantities (Equations [3.5] 

– [3.7]) describe the interaction of fluctuations of the larger-scale resolvable field, the interaction 
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of resolvable and unresolvable fluctuations, and the interaction of unresolvable fluctuations, 

respectively. What is important is to obtain accurate estimates of their sum. This can be expressed 

using the subgrid-scale stress tensor, defined as: 

 [3.8]  jijiij uuuu   

Physically, Equation [3.8] represents the effect of the unresolved fluctuations on the resolved 

motion. The subgrid-scale stresses are analogous to the Reynolds stresses. The difference is that 

the latter represents the effect of entire turbulent fluctuations on the mean motion, whereas the 

former only represents the effect of the small-scale motions. 

 

Equation [3.3] can be rewritten as: 

[3.9]   





































ij

j

i

ji

ji

j

i

x

u

xx

P
uu

xt

u




1
 

where τij = -(Qij-Qkkδij/3); 3/ijkkQpP  , δij being equal to one for i = j and zero for i ≠ j; Qij 

= Rij+Cij. The subgrid-scale stress tensor τij is split into an isotropic component and an anisotropic 

component. The isotropic part Qkkδij/3 contains the sum of the subgrid-scale normal stresses which 

is twice the kinetic energy of the subgrid scale fluctuations and acts like a pressure. This 

component is therefore usually added to the filtered pressure term, which leads to a new pressure 

variable P. 

 

3.2.2 Sub-grid Model 

Clearly, a fundamental problem of LES is to establish a satisfactory model for the subgrid scale 

stresses as represented by the stress tensor Qij. Previous researchers have proposed a number of 

models, including the simple gradient diffusion model of Smagorinsky (1963), the one-equation 

model of Lilly (1966), the second order closure model of Deardorff (1973), and the nonlinear 

stress-strain rate relationships of Bardina et al. (1983). 

 

This research thesis uses the Smagorinsky-Lilly model (Smagorinsky 1963; Lilly 1966) for 

estimates of the subgrid scale stresses. Smagorinsky (1963) assumed that τij followed a gradient-

diffusion process similar to molecular motion. In analogy to the viscous stress in laminar flows 

(Equation [2.9]), τij is approximated by relating it to the resolved strain rate, Sij, which involves 
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velocity gradients via an artificial eddy viscosity ντ, called Smagorinsky eddy viscosity, expressed 

as: 

[3.10]  ijij S 2  

where 
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1
. Here, the eddy viscosity νt is not a fluid property but characterises the 

unresolved sub-grid-scale fluctuations and depends on the resolved velocity field, iu . 

 

On the basis of dimensional analysis, the eddy viscosity can be expressed as: 

[3.11]   qLs  

where Ls is the mixing length; q is the velocity scale of sub-grid scale motions. The selection of 

sL  in LES is simple and straightforward. The largest scales of the unresolved turbulence, which 

interact most actively with the resolved motion, are of the size of the filter width Δ. This parameter 

is also known as the grid scale. It is an overall scale of the subgrid-scale motion, equal to 

(Δ1Δ2Δ3)
1/3 if the grid dimensions in the three coordinate directions are different. Hence, the 

characteristic length-scale in the Smagorinsky model is expressed as: 

[3.12]   ss CL  

where Cs is the Smagorinsky coefficient, whose value can be obtained from theoretical 

considerations. 

 

The determination of q can use analogy to Prandtl’s mixing length theory, with the advantage that 

in LES the length scale is known already. Combined with Equation [3.12], this leads to: 

[3.13]   
ijsijs SCSLq   

where ijijij SSS 2 . Combining Equations [3.11] and [3.13] yields 

[3.14]  ijijs SSC 2)( 2  

 

The model has only one adjustable parameter, the Smagorinsky constant Cs, whose effect on the 

statistics of the flow vanishes when decreasing the filter width. An improved formulation of ντ 

incorporating the dynamics of the subgrid scales presented by Lilly (1966) is given by: 
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[3.15]  qCL  

where CL is a closure coefficient, and q2 is the subgrid-scale kinetic energy. A partial differential 

equation for q2 is derived from a moment of the Navier-Stokes equation. This partial differential 

equation contains several terms that need to be modelled. The treatment is very similar to Prandtl’s 

one equation model. 

 

In this research thesis, the form of Equation [3.14] for Smagorinsky eddy viscosity is rewritten as: 

[3.16]  ijijs SSL 22  

[3.17]   ),min( 3/1 dVCL ss   

where d is the distance to the closest wall, and V is the volume of the computational cell. According 

to Rogallo and Moin (1984), Cs values range from 0.10 to 0.24. Lilly (1966) suggested a Cs value 

of 0.17. A Cs value of 0.1 has been found to yield the best results for a wide range of flows, this 

value is used for all the simulations in this research thesis. 

 

3.3 Numerical Techniques 

This section gives a description of the numerical techniques used in order to obtain numerical 

solutions to governing equations [3.2] and [3.9] on the model domains shown in Figures 3.2 to 3.6. 

For this purpose, the governing equations, along with all the auxiliary relations involved, as well 

as the model domains must be discretised. 

 

3.3.1 Discretization Methods 

The governing equations are discretised using the finite volume method (FVM), which is one of 

the most versatile discretisation techniques in CFD. It involves dividing the computational domain 

into a number of control volumes or cells. As an example, the discretisation of the model channel 

plotted in Figure 3.2 for Case 1 (Table 3.1) is shown in Figure 3.7. The cells are non-staggered, or 

co-located grids, meaning that variables of interest like pressure and velocity components are 

stored at the centroid of each control volume or cell. The governing equations of differential form 

(Equations [3.2] and [3.9]) are integrated over each cell to yield algebraic equations for the discrete 

dependent variables such as velocities and pressure. Then, interpolation profiles are applied to 
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describe the variation of variable between cell centroids. The resulting solution must satisfy the 

conservation of mass and momentum.  

 

An advantage of the FVM is that it only needs to evaluate fluxes through cell boundaries. For 

transient simulations, the governing equations need to be discretised in both space and time. A 

proper mesh is critical for the success of LES. We divide the individual model channels into a 

number of smaller elements and increase the local accuracy by refining the mesh. Note that a 

coarse mesh with few nodes may lead to a quick solution but inaccurate results, whereas a dense 

mesh might provide fairly good results but incurs excessively high computational costs and 

difficulties. In this research thesis, we achieve a balance. We generate dense mesh in the areas of 

interest, including corners and near-wall areas (Figure 3.7) where large variations of fluid 

properties are expected, and generate coarse mesh in other areas where there is not much variation 

expected in the fluid properties. 
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Figure 3.7 Cross-sectional view of the finite volume mesh that covers the model channel (Figure 3.2) for Case 1 (Table 3.1). The flow 

of water in the model channel is considered symmetrical about the vertical plane OPMN (Figure 3.2) 
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In this research thesis, we use both structured and unstructured mesh for different cases, and pay 

close attention to the quality of the mesh. A structured mesh has regular connectivity, with cells 

arranged in rows and columns. The type of elements includes hexahedron for 3D geometry. An 

unstructured has irregular connectivity. The type of elements includes tetrahedrons for 3D 

geometry. Unstructured tetrahedral mesh might use up to several times as many elements as 

structured hexahedral mesh, and thus is more computationally expensive for the same geometry. 

A structured mesh is highly space efficient and offers better convergence and higher resolution, 

but may be difficult to cover a complicated computational domain. An unstructured mesh is 

generally more flexible because the connectivity pattern is not fixed. We test the sensitivity of LES 

predictions to slight changes in mesh size and configurations.  

 

Temporal discretisation involves the integration of every term in the model equations over a time 

step ∆t. We use a time step small enough to achieve numerical stability and to enhance prediction 

accuracy, capturing key flow features in each cell. We estimate the appropriate time step based on 

the Courant number, C, defined as 

[3.18]  





tU
C 3  

where U3 is the streamwise bulk mean velocity, ∆t is the maximum time step, and ∆ is the spacing 

of the grid in the numerical model parallel to the direction of flow. For all the simulations, we 

choose a time step that satisfies the restriction that the Courant number is smaller than unity. 

 

3.3.2 Solution Algorithm 

In this study, we solve the integral form of Equation [3.2] and Equation [3.9] using the FVM 

technique. The discrete values of dependant variables are stored at the cell centers (c0 and c1), as 

illustrated in Figure 3.8 (ANSYS, 2013a, p. 632). The solution procedures involve the pressure 

field, and the spatial gradients of all the variables at the faces of the cell in question. The procedures 

also require the selection of the appropriate convection scheme. Thus, it is necessary to estimate 

interfacial values of the involved variables from their cell central values. 
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Figure 3.8 Control volume used to illustrate discretisation of a scalar transport equation, where c0 

and c1 mark the locations of the centres of two adjacent cells, and f denotes the interface between 

them (ANSYS, 2013a, p. 632) 

 

The gradients are used to construct values of a scalar at cell faces (e.g. face f in Figure 3.8), and to 

compute secondary diffusion terms (e.g. 
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  in Equation [3.9]) and velocity derivatives 

(e.g. 
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
 in Equation [3.2]). The accuracy of the least squares cell based method is satisfactory 

and is relatively less expensive. Therefore, this method is used for the calculation of gradients in 

this research thesis. 

 

The face values of variables such as velocities and pressure are needed for the calculation of 

convection terms (e.g.  ji

j

uu
x


 in Equation [3.9]). We use the second order scheme to 

reconstruct the face pressure. This is a central differencing scheme, which improves the accuracy 

of computations. 
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We use the bounded central differencing scheme to solve the momentum equations (Equation 

[3.9]) in this research thesis. This method produces face values for all the variables except the 

pressure field in the equations. 

 

Because of the temporal development, we use the unsteady solver, the bounded second-order 

implicit method is used to integrate the differential equations over time (e.g. 
t

ui




in Equation 

[3.9]). This method has the advantage of maintaining unconditional stability with respect to time 

step. 

 

The flow is incompressible. Accordingly, we select the pressure-based solver to interpolate and 

solve the discretised equations generated by the FVM. In the pressure-based approach, the 

constraint of mass conservation (Equation [3.2]) of the velocity field is achieved by solving a 

pressure equation. This equation is derived from Equation [3.2] and Equation [3.9]. The velocity 

field such obtained, corrected by the pressure, satisfies the continuity principle. As a result, the 

governing equations (Equation [3.2] and Equation [3.9]) are nonlinear and coupled to one another.  

 

The solution to these nonlinear equations involves iterations until the convergence criterion is met 

(10-6). To save computing costs, we use the pressure-velocity coupling method to solve the 

governing equations in a coupled manner (simultaneously). LES usually requires a small time step. 

For fast convergence, we choose the SIMPLE algorithm, which is one of the pressure-velocity 

coupling methods. It is possible to adjust under-relaxation factors to facilitate convergence 

(ANSYS, 2013b, p. 1418). 

 

The solution is considered converged when residuals (measures of the overall conservation of the 

flow properties) are very small. A large number of iterations are usually required to reach a 

converged solution. At each iteration, the residual sum for each of the conserved variables is 

computed and stored, giving a convergence history. The residuals decrease to small values and no 

longer change. 
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This study aims to produce high resolution results. With the limitation of computing power, the 

convergence criteria of all equations are set to 10-6, and the minimum number of iterations is set 

to 120. A summary of solution methods is given in Table 3.2. 

 

Table 3.2 Solution methods used in LES computations 

 

Solution methods 

Pressure-velocity coupling method Simple algorithm 

Spatial discretization scheme 

Gradient Least squares cell based method 

Pressure Second order scheme 

Momentum Bounded central difference scheme 

Transient formuation scheme Bounded second-order implicit method 

 

3.4 Boundary Conditions 

At the boundaries of the model channels (Figures 3.2 to 3.6), conditions of flow variables must be 

specified. These boundaries include the channel-bed, sidewalls, the underside of ice if it exists, the 

free surface in the absence of ice, the inlet at upstream, and the outlet at downstream. 

 

3.4.1 Boundary Condition at the Channel-bed and on the Sidewalls 

The channel-bed is a solid wall. For all the five cases (Table 3.1), no-slip condition is specified at 

the wall. The fluid sticks to the wall and moves with the same velocity as the wall. Because the 

channel-bed and sidewalls are stationary, the fluid velocity at the wall is zero: 

[3.19]  0iu  

where iu  is the resolved velocity in tensor notation, and i = 1, 2 and 3 corresponds to the spanwise 

(x), the vertical (y) and the streamwise (z) directions, respectively. Note that we resolve the viscous 

sublayer in this LES study. The wall shear stress is obtained from the linear stress-strain 

relationship given in Equation [2.11]. Combining this equation with Equation [2.1], gives a 

resultant a relationship between the velocity gradient and the wall shear stress: 

[3.20]  
y

u3
0    
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where 3u is the resolvable filtered velocity in streamwise direction (Figure [3.2]). The no-slip wall 

condition [3.19] is also applied on the sidewalls. 

 

3.4.2 Boundary Conditions at the Ice Underside 

The underside of ice (Figure 3.1) is treated as a solid wall. Thus, the no-slip wall condition [3.20] 

is applied at the ice underside. 

 

3.4.3 Boundary Condition at the Free Surface 

For Case 1, Case 2, and Case 5 (Table 3.1), the x, y, and z components of the shear stress specified 

at the free surface (Figures 3.2 to 3.4) are zero: 

[3.21]   0ij  

where ij  is the shear stress anywhere in fluid. Essentially, the streamwise and lateral velocities of 

the fluid near the free surface are not retarded by the boundary. 

 

For Case 5 (Table 3.1), a symmetry condition is imposed at the free surface. This is to say that 

there is a zero flux of all quantities across the boundary. The velocities normal to the free surface 

are set to zero, and values of all other properties outside the model domain are equated to their 

values at the nearest node just inside. Zero normal gradients of all variables are set at the symmetry 

plane. 

 

3.4.4 Boundary Condition at the Inlet 

At the inlet (Figures 3.2 to 3.6), inflow velocities are defined. The inflow is normal to the inlet. 

For Cases 1 to 4 (Table 3.1), the inflow is given in terms of velocity profiles as user defined 

functions (UDF). This treatment accelerates flow development and reduces computing time. We 

test the performance of a 1/7 power law for free surface flow and a two-power law for ice-covered 

flow: 
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where U3 is the bulk mean velocity in the streamwise direction, and h is the depth of flow; ko is a 

parameter related to per-unit-width discharge; mi is a parameter associated with the frictional effect 

of ice; mb is a parameter associated with the frictional effect of the bed. According to Attar and Li 

(2012), for a smooth ice cover, mi is equal to 1/7, and mb is equal to 1/4. 

 

The value of bulk mean velocity U3 in Equations [3.22] and [3.23] is estimated as 

[3.24]  AQU /3   

where Q is the discharge; and A is the cross-sectional area. 

 

To reflect the condition of turbulence at the inlet, we specify the magnitude of fluctuations in 

velocity components. We adopt the spectral synthesizer to generate fluctuating velocity 

components. The intensity of turbulence and the turbulent viscosity ratio are both set to 10%. 

 

The Cartesian coordinates system is used, with the z-axis pointing positively in the streamwise 

direction (along the channel-bed) against the main flow, the y-axis pointing positively upward in 

the vertical direction (perpendicular to the bed), and the x-axis in the lateral direction (Figures 3.2 

to 3.6). Ten vertical profiles of the streamwise velocity component at selected lines are plotted in 

Figures 3.9 to 3.13 for Cases 1 to 5, respectively. These selected lines are the central lines at the 

middle of the inlet and outlet cross sections for all five cases (plotted in red and blue colours, 

respectively). 

 

In Figure 3.9 (Case 1), Figure 3.10 (Case 2) and Figure 3.13 (Case 5), the streamwise velocity 

profiles at the inlet planes use the 1/7 power law (Equation [3.22]) for open channels. In ice-

covered cases (Case 3 and Case 4), we specify the two-power law Equation [3.23] for the vertical 

distributions of streamwise velocities at the inlet planes (Figure 3.11 and Figure 3.12). In 

comparison to rectangular channel sections, trapezoidal channel sections show stronger spatial 

fluctuations in velocity components at the inlet planes. 

 

Figures 3.9 to 3.13 also show streamwise velocity profiles at the outlet planes. For Cases 1 to 4, 

the velocity profiles change along the channel as a result of the boundary conditions. The velocity 

profiles between the inlet and outlet planes have some differences in pattern. However, the velocity 
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profiles for case 5 are the same between the inlet and outlet planes by definition, and only the 

vertical coordinate changes slightly because of the slope of the channel geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Vertical profiles of the streamwise velocity component at an inlet location (the red 

curve) and an outlet location (the blue curve) for Case 1 
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Figure 3.10 Vertical profiles of the streamwise velocity component at an inlet location (the red 

curve) and an outlet location (the blue curve) for Case 2 

 

 
Figure 3.11 Vertical profiles of the streamwise velocity component at an inlet location (the red 

curve) and an outlet location (the blue curve) for Case 3 
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Figure 3.12 Vertical profiles of the streamwise velocity component at an inlet location (the red 

curve) and an outlet location (the blue curve) for Case 4 

 

 
Figure 3.13 Vertical profiles of the streamwise velocity component at an inlet location (the red 

curve) and an outlet location (the blue curve) for Case 5 
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3.4.5 Boundary Condition at the Outlet 

It is very important to place the outlet at an appropriate location such that the conditions 

downstream have no influence on the solution for the interior of the model domain. At the outlet, 

the gradients of all variables (except pressure) are zero in the flow direction. Pressure outlet 

boundary condition is applied at the outlet for Case 1 to Case 4. This requires the specification of 

a static (gauge) pressure at the outlet boundary. This pressure is set to zero. It means that the 

pressure distribution is hydrostatic at the downstream lateral open boundary (or the outlet). 

 

3.4.6 Periodic Boundary Condition 

For Case 5, a periodic boundary condition is applied between the inlet and outlet. The periodic 

type is translational. The idea is to achieve fully developed flow more efficiently. A mass flowrate 

of 18.34 kg/s is specified, to express the flow in the channel, as estimated based on the discharge 

(Table 3.1). An initial guess of the pressure gradient is zero. The sub-iterations number is set to 

two to help the pressure correction and improve the value of pressure gradient. The relaxation 

factor used is an under-relaxation factor that controls convergence of this iteration process. This 

factor is set to 0.5. On the coordinates shown in Figure 3.6, the flow direction is specified as (0, 

−0.0299, −0.999), as estimated from the slope of 0.01. 

 

A prerequisite for the application of periodic boundary condition is that the mesh with 

translationally periodic boundaries should be parallel to each other and equal in size. This 

prerequisite is not fulfilled for Case 5, where the nodes on the inlet and outlet are not coincident 

because the nine blocks added near the inlet change the mesh configuration. We overcome the 

difficulty by, first, changing the boundary type of inlet and outlet boundaries into interfaces, and 

then making the interfaces into a non-conformal periodic zone. 

 

3.5 Initial Conditions 

In a simulation of transient flow, initial conditions are given to indicate the state of fluid flow at 

the time when the computation starts. At model time of t = 0, initial values of flow variables are 

specified to all computational volumes in the geometry. The specification of proper initial values 

can accelerate the simulation considerably. For Cases 1 to 4, we estimate the initial values from 

the inlet velocity profile as: 
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[3.25]  
1u  = 0;  

2u  = 0;  

[3.26]  050.03 u (m/s)  for Case 1 and Case 3 

[3.27]  495.03 u (m/s) for Case 2 and Case 4  

 

For Case 5 (Figure 3.6, Table 3.1), the sloping bed surface has an angle θ to the horizontal axis, 

and the corresponding gravity components are gi = (0, -gcosθ, -gsinθ). At time t = 0, the initial 

flow velocities in all the grids are set to the mean flow velocity, whose components are (0, −0.0299, 

−0.9995), as estimated from the slope of 0.01. It is understood that the calculations for the periodic 

zone are less accurate.  

 

3.6 Summary 

In this LES study, the computational procedures involve creating the channel geometry, generating 

mesh for the channel, setting up initial and boundary conditions, performing iterations, and post-

processing output results. The motions of large eddies are computed using adequately fine grids, 

whereas the motions of the small, subgrid-scale eddies are modelled. The large eddy motions must 

be computed, because they are directly affected by boundary conditions, and carry most of the 

Reynolds stresses. The small eddies are expected to be isotropic and relatively weak. They have 

nearly universal characteristics, and contribute less to the Reynolds stresses. As a result, their 

motions are less critical and more amenable to modelling. Some highlights of the differences in 

behaviour between large and small eddies are given in Table 3.3 

 

The LES technique is essentially a compromise between RANS and DNS approaches. LES solves 

the 3D time-dependent flow equations much like DNS, but the solutions are limited to the large-

scale motions. In contrast to the RANS model, which must account for the effect of the entire 

spectrum of the turbulent motions, LES uses a subgrid-scale model only for small-scale motions. 

LES is computationally expensive to obtain reliable statistics. The length scale of turbulence 

decreases with increasing Reynold number near a solid wall. Thus, to resolve near-wall regions, 

LES incurs very high computing costs. As a result, it is practically difficult to apply the LES 

technique at high Reynolds numbers. This research made use of the powerful computing 

infrastructure of Calcul Québec, with multiple nodes. 
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Table 3.3 Differences between large and small eddies (Wolfgang 2013, p.15) 

 

   

Large Eddies Small Eddies 

Produced by the mean flow Produced by large eddies 

Depending on geometry and boundaries Universal 

Ordered motion Random motion 

Requiring a deterministic description Modelled statistically 

Inhomogeneous Homogenous 

Anisotropic Isotropic 

Long living and energetic Short living and non-energetic 

Diffusive Dissipative 

Carrying most of the Reynolds stress Contributing less to the Reynolds stress 

Difficult to model Easier to model 

Universal model impossible Universal model possible 
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4. Results 

4.1 Meshing Strategies 

The model channels (Figures 3.2 to 3.6) are discretized into finite elements. An overall view of 

the model channels is shown in Figures 4.1(a) to 4.5(a), respectively. Configurations of the face 

sizing on the plane AMPD (Figure 3.2 and Figure 3.4) and the plane ABCD (Figure 3.3, Figure 

3.5, and Figure 3.6) are shown from Figures 4.1(b) to 4.5(b), respectively. Meshing strategies will 

be discussed in more detail, as shown in Figures 4.1 to 4.5. The meshing strategies were 

implemented in order to achieve fine mesh in areas of interest while reducing computing costs. 

Information regarding the mesh size used in different techniques is summarised in Table 4.1. 

 

4.1.1 Face Sizing and Sweep 

Face sizing is applied to the inlet plane for Cases 1 to 4 [Figures 4.1(b) to 4.4(b)]. This technique 

is a preparation for the construction of structured mesh in relatively regular geometries. Therefore, 

by using the sweep technique, the control volume in the center of the model domain can be set to 

hexahedrons. The mesh configuration on the inlet plane of the model domain is swept consistently 

in the along-channel direction, generating 3D elements between the upstream and downstream 

open boundaries [e.g. Figure 4.2(a)]. A cell length of the hexahedron can be set to three times its 

own width to save even more computing power, as the streamwise change of flow characteristics 

is not as sensitive as that of the cross-sectional change during the simulation.  

 

The size of mesh on the inlet boundary is set to 1×10−3, 3×10−3, 1.5×10−3, and 3×10−3 m for Cases 

1 to 4 [Figures 4.1(b) to 4.4(b)], respectively. These settings create mesh that is fine enough to 

determine the turbulent features. 

  



88 

 

(a)   

(b)  

Figure 4.1 Mesh configuration of Case 1: (a) Overall view; (b) Cross-sectional view. For clarity, 

the mesh size for the middle portion and for regions near the boundaries shown is, respectively, 5 

and 10 times larger than the actual mesh size used in LES (Table 4.1) 
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(a)  

(b)  

Figure 4.2 Mesh configuration of Case 2: (a) Overall view; (b) Cross-sectional view. For clarity, 

the mesh size for the middle portion and for regions near the boundaries shown is, respectively, 5 

and 10 times larger than the actual mesh size used in LES (Table 4.1) 
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(a)  

(b)  

Figure 4.3 Mesh configuration of Case 3: (a) Overall view; (b) Cross-sectional view. For clarity, 

the mesh size for the middle portion and for regions near the boundaries shown is, respectively, 5 

and 10 times larger than the actual mesh size used in LES (Table 4.1) 
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(a)  

(b)  

Figure 4.4 Mesh configuration of Case 4: (a) Overall view; (b) Cross-sectional view. For clarity, 

the mesh size for the middle portion and for regions near the boundaries shown is, respectively, 5 

and 10 times larger than the actual mesh size used in LES (Table 4.1) 
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(a)  

(b)  

Figure 4.5 Mesh configuration of Case 5: (a) Overall view; (b) Cross-sectional view 
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4.1.2 Body Sizing 

For an irregular geometry for Case 5 [Figure 4.5(b)], unstructured mesh is used to better fit the 

complicated regions around the blocks near the inlet, and body sizing is applied to the whole model 

domain in order to generate the mesh while controlling the mesh size. The mesh size used for flow 

computations should be fine enough to give good results, and model results should be independent 

of the configurations of mesh used. The independence of the mesh configuration is verified through 

comparisons of the results of runs tested under the same flow condition settings. 

 

For Case 5, the body sizing is set to 4×10−3. Although it is relatively coarse compared to other 

cases, this is the optimum condition for the currently available computing power.  

 

4.1.3 Inflation 

For all model channels, an inflation of five layers was applied adjacent to the channel-bed, 

sidewalls (Cases 1 to 5), and ice cover underside (Case 3 and Case 4). The first layer of any solid 

wall had a thickness of 3.14×10−4 m for the trapezoidal channels [Figure 4.1(a) and Figure 4.3(a)] 

and 3.76×10−5 mm for the rectangular channels [Figure 4.2(a), Figure 4.4(a), and Figure 4.5(a)]. 

The use of such fine mesh resolutions ensures that the dimensionless wall distance y+ of the first 

node off a wall does not exceed one (1). The growth rate of the layer thickness was set to 1.1 for a 

smooth transition. In this research thesis, the mesh is fine enough to resolve the viscous sublayer. 

The following paragraphs will illustrate how to estimate the first layer’s thickness. 

 

For fluid flow of characteristic velocity Uo over a flat surface of characteristic length L, the 

Reynolds number can be defined as: 

[4.1]  


LU
L

0Re   

A Reynolds number based on x as well as its relationship with ReL can be expressed as follows: 

[4.2]  Lx

xU
Re5.0Re 0 


 

In this expression, x is the distance along the plate from the leading edge.  
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An empirical correlation between the skin friction coefficient Cf and the Reynolds number based 

on distance from the leading edge Rex is given by:  

[4.3]  7

1

Re027.0


 xfC  

The relationship between the skin friction coefficient and wall shear stress is: 

[4.4]  
2

00 )
2

1
/( UC f   

With the help of Equation [2.1], the dimensionless wall distance can be estimated as: 

[4.5]  
*U

y
y


  

In Equation [4.5], we can substitute U from Equation [2.1], then combine Equation [4.3] and 

Equation [4.4] to express τ0 using Rex. We can then replace Rex by ReL and substitute the expression 

for τ0 into Equation [4.5]. Finally, the first layer wall distance can be estimated as: 

[4.6]  
14/13Re  LLyy  

 

4.1.4 Body of Influence 

The Body of Influence technique is applied to the corner regions in order to refine the mesh 

configuration in all five cases.  

 

For Case 1, Case 3, and Case 5, only one arc is specified at each corner region [Figures 4.1(b), 

4.3(b) and 4.5(b)]. The radii of these arcs are 0.5, 0.5, and 0.2 cm, respectively. The mesh sizes 

refined within the arcs are 3.14×10−4, 3.14×10−4, and 2×10−3 m, respectively.  

 

Four arcs of different radius are specified at each corner for Case 2 and Case 4 [Figures 4.2(b) and 

4.4(b)]. The radius of the four arcs are, respectively, 0.2, 0.5, 0.9, and 1.4 cm. The radius gradually 

increases in 0.2, 0.3, 0.4, and 0.5 cm increments. The mesh sizes refined within the sub-regions 

are, respectively, 7.52×10−5, 1.32×10−4, 1.9×10−4, and 2.74×10−4 m. 

 

The mesh size at the corners is smaller than in the center, and, if possible, it will be set to the first 

inflation layer mesh size. However, it is hard to achieve this for Case 5 with the currently available 

computing power. After drawing the arcs in various sketches, they are extruded to be frozen bodies 
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[Figures 4.1(a) to 4.5(a)], which will help refine the corner regions without added influence on the 

boundary conditions.  

 

The size and quantity of the arcs at each corner and the mesh size between arcs in each case are 

summarised in Table 4.1. In addition, the parameters for face sizing at the inlet for Cases 1 to 4, 

the body sizing in the center of Case 5, and the first layer thickness in each case are included. The 

value of cell length is null for Case 5 because the sweep technique cannot be applied. The face size 

for Case 5 is the body size for the middle portion of the model domain. 

 

The total nodes and elements in different cases are summarised in Table 4.2. Note that structured 

mesh is used in the first four cases, and unstructured mesh is used for Case 5. Time step varies 

from case to case, even for similar geometries, because the cell length is different. The total number 

of time step in each case is high enough to simulate three flow-through times for the first four 

cases and ten flow-through times for Case 5. The maximum number of iterations is set to 120, in 

order to achieve high accuracy of calculations. Computing time varies for each case, depending on 

the number of tasks in the queue and the processors requested. The results that are presented in 

Section 4.2 and Section 4.3 are for the last time step of the simulation in question. The results that 

are presented in Section 4.4 and Section 4.5 include three different model times. 
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Table 4.1 Parameters used in mesh generation 

 

 

 

  

Case 

number 

Number 

of arcs 

Radius 

of arcs 

(cm) 

Mesh size between 

arcs (m) 

First layer 

thickness (m) 

Face 

sizing (m) 

Cell 

length (m) 

Case 1 1 0.5 3.14×10−4 3.14×10−4 1×10−3 3×10−3 

Case 2 4 

0.2, 

0.5, 

0.9, 1.4 

7.52×10−5, 

1.32×10−4, 1.9×10−4, 

2.74×10−4 

3.76×10−5 3×10−3 6×10−3 

Case 3 1 0.5 3.14×10−4 3.14×10−4 1.5×10−3 4.5×10−3 

Case 4 4 

0.2, 

0.5, 

0.9, 1.4 

7.52×10−5, 

1.32×10−4, 1.9×10−4, 

2.74×10−4 

3.76×10−5 3×10−3 9×10−3 

Case 5 1 0.2 2×10−3 3.76×10−5 

4×10−3 

(body 

sizing) 

null 
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Table 4.2 A summary of total nodes, elements, and other model parameters used in five cases 

 

 

4.2 Velocity Profiles 

The Cartesian coordinates system is used, with the z-axis pointing positively in the streamwise 

direction (along the channel-bed) against the main flow, the y-axis pointing positively upward in 

the vertical direction (perpendicular to the bed), and the x-axis in the lateral direction (Figures 3.2 

to 3.6). The streamwise velocity profiles of Cases 1 to 5 are shown in Figures 4.6 to 4.10, 

respectively. In the first four cases, the velocity profiles are plotted for the central line at the middle 

of the cross section at a distance of 75% of the total channel length or z = −0.450, −0.439, −0.450, 

and −0.439 m, respectively. These distances are measured from the inlet plane (Figures 3.2 to 3.5). 

For Case 5, the velocity profile is plotted for the vertical line at the middle of the cross section at  

z = −0.813 m from the inlet plane (Figure 3.6). 

 

4.2.1 Trapezoidal (Case 1) and Rectangular (Case 2) Open Channels  

As shown in Figure 4.6 (Case 1) and Figure 4.7 (Case 2), the streamwise velocity profiles are 

similar to a typical velocity profile of flow over a flat plate. 

 

The velocity profiles show gradual changes between the free surface and a depth about 85% of the 

total flow depth below the surface. The 85% depth is seen as a transition point. Further below, the 

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 

Total nodes 3351876 1790316 1129005 1352736 1128209 

Elements 3362000 1717744 1232934 1296100 5729313 

Mesh type Structured, Hexahedron 
Unstructured, 

Tetrahedron 

Time step size (s) 0.02 0.003 0.02 0.01 0.008 

Criterion for convergence 10−6 

Number of time steps 1800 1500 2100 360 2720 

Model time period (s) 36 4.5 42 3.6 21.76 

Max iterations per time step 120 

Simulation time (hr) 47 8 29 4 91 
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profiles show a large drop in velocity magnitude. The velocity profiles have large spatial gradients 

below the 85% depth, and relatively small spatial gradients above. In other words, the upper 

profiles show smoother transitions. At the transition point, the velocity has a magnitude of slightly 

lower than the bulk mean velocity (equal to 0.05 and 0.495 m/s for Case 1 and Case 2, respectively) 

of the channel flow. 

 

The maximum velocity has values of 5.76×10−2 and 5.78×10−1 m/s, for Case 1 and Case 2 (Table 

4.3), respectively. The maximum velocity occurs near the free surface.  

 

The velocity changes only gradually over the depth range of 70 to 90% of the total flow depth in 

the trapezoidal open channel (Case 1, Figure 4.6). 

 

4.2.2 Trapezoidal (Case 3) and Rectangular (Case 4) Ice-Covered Channels  

In ice-covered cases (Table 4.2, Case 3 and Case 4), the vertical distributions of streamwise 

velocities are characterised by a parabolic shape (Figure 4.8 and Figure 4.9). This is the same 

pattern as the two-power law reported in the literature (Dolgopolova, 1998). The velocity profile 

in an ice-covered channel can be considered two velocity profiles: one associated with the ice 

cover, and the other associated with the channel-bed. The two profiles meet at a certain point in 

the water column, where the shear stress is zero (or where the velocity reaches the maximum 

value). 

 

For both Case 3 and Case 4 (Table 4.2), the velocity profiles show a core of relatively strong flow 

between the 15 and 85% flow depths. The flow velocities drop quickly above the core because of 

the ice underside influence and below because of the bed influence. Within the core of high 

velocities, there are only gradual changes in flow velocity, in comparison to the regions outside. 

In other words, the velocity profiles have large spatial gradients in the vicinity of the upper and 

lower boundaries. The spatial gradients in the middle depth are small. 

 

The maximum velocity has a value of 6.39×10−2 m/s for Case 3, and 5.82×10−1 m/s for Case 4 

(Table 4.3). The maximum velocity occurs at a depth of about 40% the total flow depth above the 

channel-bed for both cases. The presence of ice (Case 3 and Case 4) has increased the maximum 
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velocity in the water column, as clearly shown by a comparison to the corresponding maximum 

velocity for Case 1 and Case 2. 

 

 

Figure 4.6 Streamwise velocity profile at a selected vertical line for Case 1 

 

 

Figure 4.7 Streamwise velocity profile at a selected vertical line for Case 2 
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Figure 4.8 Streamwise velocity profile at a selected vertical line for Case 3 

 

 

Figure 4.9 Streamwise velocity profile at a selected vertical line for Case 4 
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Figure 4.10 Streamwise velocity profile at a selected vertical line for Case 5 

 

4.2.3 Rectangular (Case 5) Open Channel with Blocks at the Channel-bed 

The velocity profile for Case 5 is shown in Figure 4.10. Case 5 (Figure 3.6) has the same cross-

sectional geometry as Case 2 (Figure 3.3), but with nine blocks being added to the channel-bed 

within one flow-depth from the inlet plane. The channel length was extended to 11 times the total 

flow depth. The channel-bed has a small longitudinal (1 horizontal to 0.03 vertical). At the 

longitudinal location of about z = −0.813 m (Figure 3.6), the free surface is located at y = 

−8.13×10−3 and the channel-bed at y = −1.06×10−1 m. 

 

For Case 5 (Figure 4.10), the transition point (as discussed in Section 4.2.1) is located at 

approximately 40% the total flow depth above the channel-bed. Between the free surface and the 

transition point, the velocity profile shows insignificantly small spatial gradients. 

 

The maximum velocity has a value of 6.09×10−1 m/s (Table 4.3). In fact, this value is applicable 

to about 70% the total flow depth below the free surface. The maximum velocity is much higher 

for Case 5 than for Case 2 (without blocks, Figure 4.7). 
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The maximum and mean velocities for the five cases are listed in Table 4.3, along with the 

maximum and mean boundary shear stresses. To determine the bulk mean velocity of the channel 

flow, we divide the flowrate by the cross-sectional area.  

 

Table 4.3 The maximum and mean boundary shear stresses and velocities for the five cases 

 

4.3 Velocity Contours 

Contours of the predicted streamwise velocity, w, are shown in Figures 4.11 to 4.15 for the five 

cases. The corresponding longitudinal positions are z = −0.450, −0.439, −0.450, −0.439, and 

−0.813 m (Figures 3.2 to 3.6). The contour values in Figures 4.11 to 4.15 are negative because the 

z-axis points positively in the direction opposite to the main flow direction. The contour plots show 

100 contour levels. 

 

4.3.1 Trapezoidal (Case 1) and Rectangular (Case 2) Open Channels 

The velocity contours for Case 1 (Figure 4.11) and Case 2 (Figure 4.12) exhibit a number of 

common features. First, the maximum velocity occurs slightly below the free surface, and the flow 

velocities drop to almost zero at the channel-bed and on the sidewalls. These predictions are 

realistic. Second, in the central part of the trapezoidal and rectangular open channel sections, there 

is a core of relatively high velocities near the free surface; the velocity magnitude gradually 

decreases as an increasing distance from the core centre. Third, due to the frictional effects of the 

channel-bed and sidewalls, the flow velocities drop quickly toward the solid boundaries. 

 

Case 

Number 

Maximum 

bed shear 

stress (Pa) 

Mean bed 

shear 

stress 

(Pa) 

Maximum 

sidewall 

shear 

stress (Pa) 

Mean bed 

sidewall 

stress 

(Pa) 

Maximum 

velocity (m/s) 

Mean 

velocity 

(m/s) 

Case 1 5.96×10−3 5.66×10−3 8.86×10−3 7.45×10−3 5.76×10−2 5.00×10−2 

Case 2 3.51×10−1 3.16×10−1 6.44×10−1 4.35×10−1 5.78×10−1 4.95×10−1 

Case 3 9.71×10−3 9.17×10−3 1.14×10−2 8.99×10−3 6.39×10−2 5.00×10−2 

Case 4 5.78×10−1 5.24×10−1 8.23×10−1 5.27×10−1 5.82×10−1 4.95×10−1 

Case 5 2.71×10−1 1.49×10−1 2.61×10−1 1.57×10−1 6.09×10−1 4.95×10−1 
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For both channel sections (Figure 4.11 and Figure 4.12), the contours of flow velocity reflect 

boundary layer dynamics, with typical velocity profiles (Figure 4.6 and Figure 4.7), in spite of 

spatial fluctuations in velocities in the corner regions and just below the free surface. These 

fluctuations are probably a result of local turbulence effects. For example, there are crowded 

velocity contours in some small areas in the vicinity of the free surface (Figure 4.12, for Case 2).  

 

 

 

 

Figure 4.11 Contours of streamwise velocity, w, at a selected cross section for Case 1 
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Figure 4.12 Contours of streamwise velocity, w, at a selected cross section for Case 2 

 

 

4.3.2 Trapezoidal (Case 3) and Rectangular (Case 4) Ice-Covered Channels 

These two cases differ from Case 1 (Figure 4.11) and Case 2 (Figure 4.12), in which an ice cover 

is added to the water channels. The ice underside is treated as a no-slip boundary (Figure 4.13 and 

Figure 4.14). Contours of the water velocity for Case 3 (Figure 4.13) and Case 4 (Figure 4.14) 

exhibit some features similar to Case 1 (Figure 4.11) and Case 2 (Figure 4.12). For example, there 

is a significant difference in velocity magnitude between the flow in the central region of the cross 

section and the flow in the boundary layer. The densely distributed contours near the channel 

boundaries correspond to a sharp decrease in velocity magnitude. 

 

The maximum velocity occurs at approximately 40% the total flow depth above the channel-bed 

for both Case 3 (Figure 4.13) and Case 4 (Figure 4.14). This is different from the results for Case 

1 (Figure 4.11) and Case 2 (Figure 4.12), where the maximum velocity occurs at the free surface. 

There is a core of relatively high velocities surrounding the maximum velocity in the central region 

of the channel cross section (away from the solid boundaries). The velocity contour values 

decrease slowly in this region. Small fluctuations of velocity contours occur near the boundaries. 
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Figure 4.13 Contours of streamwise velocity, w, at a selected cross section for Case 3 

 

  

 

Figure 4.14 Contours of streamwise velocity, w, at a selected cross section for Case 4 
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Figure 4.15 Contours of streamwise velocity, w, at a selected cross section for Case 5 

 

 

4.3.3 Rectangular (Case 5) Open Channel with Blocks at the Channel-bed 

Distributions of the velocity contours for Case 5 (Figure 4.15) are different from those for Case 2 

(Figure 4.12). The differences are due to the presence of blocks being added to the channel-bed 

near the inlet plane. These blocks make velocity contours less regular, compared to the velocity 

contours for Case 2 (Figure 4.12). The irregular contours contain wavy patterns. 

 

In the centre of the channel cross section, within the core of high velocities, the velocities change 

little in magnitude. The high velocity core occurs immediately below the free surface. The velocity 

contour values decrease gradually from the irregular fringe of the high velocity core, and drop 

quickly to a low value toward the solid boundaries. The area of densely distributed contours near 

the boundaries for Case 5 (Figure 4.15) is larger than Case 2 (Figure 4.12). 

 

The lower boundary of the high velocity core shows wavy patterns across the channel width for 

Case 5 (Figure 4.15). The wavy fluctuations show a vertical displacement as large as 20% flow 

depth. Clearly, the blocks (Figure 3.6) result in asymmetric patterns of velocity contour. 

 



107 

 

4.4 Distributions of Bed Shear Stress 

The wall shear stress is obtained from the linear stress-strain relationship given in Equation [2.11]. 

Combining the equation with the relationship between the shear velocity and boundary shear stress 

(Equation [2.1]) gives the bed shear stress, τw, (Equation [3.20]), which is similar to the definition 

of viscous shear. The cross-channel distributions of τw are plotted in Figures 4.16(a)-(c) to 4.20(a)-

(c) for Cases 1 to 5, respectively. The corresponding longitudinal positions of the plots are z = 

−0.450, −0.439, −0.450, −0.439, and −0.813 m (Figures 3.2 to 3.6). Panels (a), (b) and (c) of the 

individual figures correspond to three different model times. In each of the plots, the local bed 

shear stresses have been normalised by the mean bed shear stress 
cb . The horizontal axis shows 

the normalised distance (across the channel-bed from the left corner) by the channel-bed width. 

Table 4.3 summarises the mean and maximum bed shear stresses. For Cases 1 to 5, the channel-

bed width (Figures 3.2 to 3.6) is equal to 10.0, 38.1, 10.0, 38.1, and 38.1 cm, respectively. 

 

4.4.1 Trapezoidal (Case 1) and Rectangular (Case 2) Open Channels 

Note that the boundary shear stress refers to the tractive force exerted by the flowing water on the 

boundary in question. From this study, values of local bed shear stress, τw, are relatively high within 

the largest central portion of the channel-bed and drop rapidly to zero toward the corners. This is 

in consistence with the results reported in Chow (1959, p. 169). Chow’s (1959) results are partly 

based experimental data and membrane analogy analysis. It can be argued that the shear stresses 

at the corners must be equal to zero. Non-zero shear stresses at the corners will lead to the 

unphysical condition that the local shear forces approach infinity. 

 

For Case 1, Figure 4.16(a)-(c) show the distributions of bed shear stress at model times of t = 32, 

34, and 36 s, respectively. Between panels (a), (b), and (c) of Figure 4.16, at the dimensionless 

distance (normalised by the channel bed-width) of 0.21, there are differences in shear stress as 

large as 0.019 
cb . For Case 2, the model times are 4.2 [Figure 4.17(a)], 4.35 [Figure 4.17(b)], and 

4.5 s [Figure 4.17(c)]. Between panels (a), (b), and (c) of Figure 4.17, the differences in shear 

stress are small. The maximum difference is 0.0026 
cb at the normalised distance of 0.007. More 

discussions of panels (c) of the figures are given below. 
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The normalised bed shear stresses in the corner regions have different distributions between the 

trapezoidal channel section [Case 1, Figure 4.16(c)] and the rectangular channel section [Case 2, 

Figure 4.17(c)]. 

 

For Case 2 [Figure 4.17(c)], the predicted bed shear stresses across the channel-bed width are in 

reasonable agreement with the experimental data of Knight et al. (1984). The distributions of bed 

shear stress have two inflection points. From these points toward the corners, the bed shear stresses 

decrease dramatically [Figure 4.17(c)]. The inflection points are symmetrical about the central line 

of the channel. They are located at a horizontal distance of 5% the bed width from each sidewall 

corner. At the inflection points, the bed shear stresses have a value of around 60% the mean bed 

shear stress. According to Tominaga & Nezu (1991), secondary flow plays an important role in 

generating inflection points. For Case 1 (trapezoidal channel), no inflection point occurs [Figure 

4.16(c)].  

 

For both Case 1 and Case 2 [Figure 4.16(c) and 4.17(c)], the distributions of bed shear stresses 

show small local peaks before their dramatic drop to lowest values toward the corners. These local 

peaks are located at a horizontal distance of approximately 20% [Case 1, Figure 4.16(c)] and 10% 

[Case 2, Figure 4.17(c)] the total channel width from the sidewall corners.  
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(a) 

 

 

(b) 

 

 

  



110 

 

(c) 

 

 

Figure 4.16 Distribution of predicted bed shear stress for Case 1, where x is the dimensionless 

cross-channel coordinate relative to the corner marked as A (Figure 3.2), and 𝐴𝐵̅̅ ̅̅  is the channel-

bed width (Figure 3.2). Model times are t = 32 [panel (a)], 34 [panel (b)], and 36 s [panel (c)] 

 

(a) 
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(b) 

 

 

(c) 

 

Figure 4.17 Distribution of predicted bed shear stress for Case 2, where x is the dimensionless 

cross-channel coordinate relative to the corner marked as A (Figure 3.3), and 𝐴𝐵̅̅ ̅̅  is the channel-

bed width (Figure 3.3). Knight et al.’s (1984) measurements are shown as the symbols ‘+’ for 

comparison. Model times are t = 4.2 [panel (a)], 4.35 [panel (b)], and 4.5 s [panel (c)]  
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4.4.2 Trapezoidal (Case 3) and Rectangular (Case 4) Ice-Covered Channels 

For Case 3, Figure 4.18(a)-(c) show the distributions of bed shear stress at model times of t = 38, 

40, and 42 s, respectively. Between panels (a), (b), and (c) of Figure 4.18, at the dimensionless 

distance (normalised by the channel bed-width) of 0.65, there are differences in shear stress as 

large as 0.014 
cb . For Case 4, the model times are 2.8 [Figure 4.19(a)], 3.0 [Figure 4.19(b)], and 

3.2 s [Figure 4.19(c)]. Between panels (a), (b), and (c) of Figure 4.19, at the normalised distance 

of 0.94, there are differences in shear stress as large as 0.04 
cb . More discussions of panels (c) of 

the figures are given below. 

 

Under ice-covered condition [Case 3, Figure 4.18(c); Case 4, Figure 4.19(c)], the distributions of 

bed shear stresses have some similar features as open water condition [Case 1, Figure 4.16(c); 

Case 2, Figure 4.17(c)]. The local bed shear stresses have relatively high values within the largest 

central portion of the channel-bed. They decrease dramatically toward the lower corners of the 

channel section. In the corner regions, the normalised bed shear stresses have different 

distributions between the trapezoidal channel [Case 3, Figure 4.18(c)] and the rectangular channel 

section [Case 4, Figure 4.19(c)]. 

 

The inflection points for Case 4 [Figure 4.19(c)] have lower values of bed shear stress than for 

Case 2 [Figure 4.17(c)]. No inflection point occurs in the trapezoidal channel section [Case 3, 

Figure 4.18(c)]. 

 

For Case 4, the distributions of bed shear stress [Figure 4.19(c)] show small local peaks before the 

dramatic drop. These peaks occur at the same locations for Case 2 [Figure 4.17(c)]. For Case 3, 

the distribution of bed shear stress [Figure 4.18(c)] has strong spatial fluctuations, making it 

difficult to identify any peaks.  

 

The presence of ice cover (Case 3 and Case 4) is seen to intensify the mean and maximum bed 

shear stresses (Table 4.3) by a factor of approximately 1.65, in comparison to those under open 

water condition (Case 1 and Case 2). 
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(a) 

 

 

(b) 
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(c) 

 

Figure 4.18 Distribution of predicted bed shear stress for Case 3, where x is the dimensionless 

cross-channel coordinate relative to the corner marked as A (Figure 3.4), and 𝐴𝐵̅̅ ̅̅  is the channel-

bed width (Figure 3.4). Model times are t = 38 [panel (a)], 40 [panel (b)], and 42 s [panel (c)] 

 

(a) 
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(b) 

 
 

(c) 

 
Figure 4.19 Distribution of predicted bed shear stress for Case 4, where x is the dimensionless 

cross-channel coordinate relative to the corner marked as A (Figure 3.5), and 𝐴𝐵̅̅ ̅̅  is the channel-

bed width (Figure 3.5). Model times are t = 2.8 [panel (a)], 3.2 [panel (b)], and 3.6 s [panel (c)]  
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(a) 

 
 

(b) 
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 (c) 

 
Figure 4.20 Distribution of predicted bed shear stress for Case 5, where x is the dimensionless 

cross-channel coordinate relative to the corner marked as A (Figure 3.6), and 𝐴𝐵̅̅ ̅̅  is the channel-

bed width (Figure 3.6). Knight et al.’s (1984) measurements are shown as the symbols ‘+’ for 

comparison. Model times are t = 20.48 [panel (a)], 21.12 [panel (b)], and 21.76 s [panel (c)]  

 

4.4.3 Rectangular (Case 5) Open Channel with Blocks at the Channel-bed 

For Case 5, Figure 4.20(a)-(c) show the distributions of bed shear stress at model times of t = 

20.48, 21.12, and 21.76 s, respectively. Between panels (a), (b), and (c) of Figure 4.20, at the 

dimensionless distance (normalised by the channel bed-width) of 0.83, there are differences in 

shear stress as large as 0.06 
cb . More discussions of panels (c) of the figures are given below. 

 

The introduction of blocks [Case 5, Figure 4.20(c)] causes significant spatial fluctuations in the 

distribution of local bed shear stress in the central portion of the channel-bed. The bed shear 

stresses decrease rapidly to zero toward the corners. As expected, the fluctuation patterns [Figure 

4.20(c)] are not symmetrical about the central line of the channel. The normalised bed shear 

stresses by the mean value, cb , range from 0.45 cb  to 1.8 cb  in the central portion of the channel-

bed. There are no inflection points. 
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For Case 5, the predicted bed shear stresses [Figure 4.20(c)] distributed across the bed width are 

plotted through the experimental data of Knight et al. (1984). Note that the distribution of the 

predicted bed shear stress shown in Figure 4.20(c) corresponds to a snapshot at the model time (t 

= 21.76 s). LES realistically produced temporally evolving bed shear stresses in response to the 

turbulent conditions triggered by the blocks. It is possible to obtain time average of multiple 

snapshots, which is expected to yield a smooth distribution curve matching the experimental data. 

 

In comparison to Case 2, the presence of blocks (Case 5) decreases the maximum bed shear stress 

by a factor of 1.30, and the mean bed shear stress by a factor of 2 (Table 4.3). 

 

4.5 Distributions of Sidewall Shear Stress  

Similar to the bed shear stress (Section 4.4), the sidewall shear stress is obtained from Equation 

[3.20]. Distributions of the sidewall shear stresses, τs, are plotted in Figures 4.21(a)-(c) to 4.25(a)-

(c) for Cases 1 to 5, respectively. The corresponding longitudinal positions are z = −0.450, −0.439, 

−0.450, −0.439, and −0.813 m (Figures 3.2 to 3.6). Panels (a), (b) and (c) of the individual figures 

correspond to three different model times. In each of the plots, the local sidewall shear stresses 

have been normalised by the mean sidewall shear stress value cs . The vertical axis shows the 

normalised distance (across the sidewall from the free surface to the channel-bed) by the flow 

depth. Cases 1 to 5 have a flow depth of 10.0, 9.75, 10.0, 9.75, and 9.75 cm, respectively (Figures 

3.2 to 3.6). Table 4.3 gives a summary of the mean and maximum sidewall shear stresses. 
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(a) 

 

 

(b) 
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(c) 

 

Figure 4.21 Distribution of predicted sidewall shear stress for Case 1. The depth of flow is H = 10 

cm. Model times are t = 32 [panel (a)], 34 [panel (b)], and 36 s [panel (c)] 

 

 

(a) 
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(b) 

 

 

(c) 

 
 

Figure 4.22 Distribution of predicted sidewall shear stress for Case 2. The depth of flow is H = 

9.75 cm. Model times are t = 4.2 [panel (a)], 4.35 [panel (b)], and 4.5 s [panel (c)] 
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4.5.1 Trapezoidal (Case 1) and Rectangular (Case 2) Open Channels 

For Case 1, Figure 4.21(a)-(c) show the distributions of sidewall shear stress at model times of t = 

32, 34, and 36 s, respectively. Between panels (a), (b), and (c) of Figure 4.21, at the dimensionless 

distance (normalised by the flow depth) of −0.28, there are differences in shear stress as large as 

0.034 
cb . For Case 2, the model times are 4.2 [Figure 4.22(a)], 4.35 [Figure 4.22(b)], and 4.5 s 

[Figure 4.22(c)]. Between panels (a), (b), and (c) of Figure 4.22, at the normalised distance of 

−0.055, there are differences in shear stress as large as 0.005 cs . More discussions of panels (c) 

of the figures are given below. 

 

For Case 1 [Figure 4.21(c)] and Case 2 [Figure 4.22(c)], the distributions of sidewall shear stresses 

τs under open water condition show a similar trend as the bed shear stresses [Case 1, Figure 4.16(c); 

Case 2, Figure 4.17(c)]. The sidewall shear stresses at the middle depth are much larger than near 

the top and bottom boundaries. The sidewall shear stresses decrease dramatically toward zero at 

the free surface and the channel-bed. The normalised sidewall shear stresses in the corner regions 

have different distributions in the trapezoidal channel [Case 1, Figure 4.21(c)] and the rectangular 

channel section [Case 2, Figure 4.22(c)]. 

 

For Case 2, the distributions of sidewall shear stresses have two inflection points, one being near 

the free surface, and the other near the channel-bed [Figure 4.22(c)]. These inflection points are 

symmetrically about the middle depth, located at 15 and 85% the flow depth below the free surface. 

The sidewall shear stresses at the inflection points have a values of approximately 60% the mean 

sidewall shear stress. For Case 1, there are moderate spatial fluctuations around the middle depth 

[Figure 4.21(c)], but there is no inflection point. 

 

For Case 1 and Case 2, the distributions of sidewall shear stress are not symmetrical about the 

middle depth [Figure 4.21(c) and Figure 4.22(c)], which is different from the symmetrical 

distributions of the bed shear stress [Figure 4.16(c) and Figure 4.17(c)]. The sidewall shear stresses 

[Figure 4.21(c) and Figure 4.22(c)] have a maximum value (Table 4.3) of 1.16 cs for Case 1 and 

1.45 cs for Case 2. The maximum values are located at a vertical distance of 72 and 65% the total 

flow depth above the channel-bed for Case 1 and Case 2, respectively. These locations are closer 

to the free surface than to the channel-bed.  
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For Case 1, the sidewall shear stress has larger maximum and mean values than the bed shear 

stress, by a factor of 1.48 and 1.32, respectively (Table 4.3). For Case 2, the conditions are similar, 

with greater maximum and mean sidewall shear stresses, by a factor of 1.83 and 1.38, respectively. 
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(b) 

 

 

(c) 

 

Figure 4.23 Distribution of predicted sidewall shear stress for Case 3. The depth of flow is H = 10 

cm. Model times are t = 38 [panel (a)], 40 [panel (b)], and 42 s [panel (c)] 
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(a) 

 
 

(b) 
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(c) 

 
 

Figure 4.24 Distribution of predicted sidewall shear stress for Case 4. The depth of flow is H = 

9.75 cm. Model times are t = 2.8 [panel (a)], 3.2 [panel (b)], and 3.6 s [panel (c)] 

 

4.5.2 Trapezoidal (Case 3) and Rectangular (Case 4) Ice-Covered Channels 

For Case 3, Figure 4.23(a)-(c) show the distributions of sidewall shear stress at model times of t = 

38, 40, and 42 s, respectively. Between panels (a), (b), and (c) of Figure 4.23, at the dimensionless 

distance (normalised by the flow depth) of −0.70, there are differences in shear stress as large as 

0.03 cs . For Case 4, the model times are 2.8 [Figure 4.24(a)], 3.0 [Figure 4.24(b)], and 3.2 s 

[Figure 4.24(c)]. Between panels (a), (b), and (c) of Figure 4.24, at the normalised distance of 

−0.89, there are differences in shear stress as large as 0.044 cs . More discussions of panels (c) of 

the figures are given below. 

 

Under ice-covered condition [Case 3, Figure 4.23(c); Case 4, Figure 4.24(c)], the distributions of 

sidewall shear stresses show some features similar to open water condition [Case 1, Figure 4.21(c); 

Case 2, Figure 4.22(c)]. Sidewall shear stresses around the middle flow depth are higher than those 

near the channel-bed and free surface. The sidewall shear stress is insignificantly small at the free 
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surface and the channel-bed. The normalised sidewall shear stresses have different distributions in 

the corner regions between Case 3 [Figure 4.23(c)] and Case 4 [Figure 4.24(c)].  

 

For Case 4 [Figure 4.24(c)], the distribution of sidewall shear stress shows inflection points at the 

same locations as Case 2 [Figure 4.22(c)]. For Case 3 [Figure 4.23(c)], the sidewall shear stress 

shows spatial fluctuations in the central portion of the sidewalls. 

 

For both Case 3 [Figure 4.23(c)] and Case 4 [Figure 4.24(c)], the distributions of sidewall shear 

stresses are asymmetrical about the middle depth. The sidewall shear stresses (Table 4.3) have a 

maximum value of 1.25 cs and 1.55 cs , located at a vertical distance (above the channel-bed) of 30 

and 35% the flow depth [Figure 4.23(c) and Figure 4.24(c)], respectively. These locations are 

closer to the bed than to the free water surface. 

 

For both Case 3 and Case 4, the sidewall shear stresses have a maximum value of 1.18 and 1.42 

times larger than the maximum bed shear stresses, respectively. However, the mean shear stress 

value on the sidewalls and channel-bed are almost the same for each of the two cases (Table 4.3).  

 

For Case 3 and Case 4, the mean and maximum sidewall shear stresses are 1.2 times larger than 

those under open water condition (Case 1 and Case 2, Table 4.3). 
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(a) 

 

 

(b) 
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(c) 

 

Figure 4.25 Distribution of predicted sidewall shear stress for Case 5. The depth of flow is H = 

9.75 cm. Model times are t = 20.48 [panel (a)], 21.12 [panel (b)], and 21.76 s [panel (c)] 

 

4.5.3 Rectangular (Case 5) Open Channel with Blocks at the Channel-bed 

For Case 5, Figure 4.25(a)-(c) show the distributions of sidewall shear stress at model times of t 

= 20.48, 21.12, and 21.76 s, respectively. Between panels (a), (b), and (c) of Figure 4.25, at the 

dimensionless distance (normalised by the flow depth) of −0.34, there are differences in shear 

stress as large as 0.11 cs . More discussions of panels (c) of the figures are given below. 

 

For Case 5 [Figure 4.25(c)], the local sidewall shear stresses fluctuate to a large extent across the 

sidewall width. The sidewall shear stress has a small value at the channel-bed and increases toward 

the free surface. Unlike Case 2 [Figure 4.22(c)], the distribution of the sidewall shear stress for 

Case 5 has no inflection points. In comparison to Case 2 [Figure 4.22(c)], the presence of blocks 

(Case 5) decreases the maximum of bed shear stress by a factor of 2.45, and the mean bed shear 

stress by a factor of 2.77 (Table 4.3). For Case 5, the maximum sidewall shear stress is slightly 

lower than the maximum bed shear stress, whereas the mean sidewall shear stress is moderately 

higher than the mean bed shear stress (Table 4.3). 

 



130 

 

5. Discussions and Conclusions 

5.1 Discussions 

In this LES study, we predict that the peak boundary shear stress does not necessarily occur at the 

same location as the maximum primary velocity. This finding is consistent with the results of Chiu 

and Lin (1983), Knight et al. (1984), and Kabiri-Samani et al. (2012). Specifically, the results for 

Cases 1 to 4 show that the maximum velocity location deviates from the location of the maximum 

shear stress. A plausible explanation is the effect of the secondary flow. This study shows that the 

distributions of bed and sidewall shear stresses for a rectangular channel contain inflection points 

(Case 2 and Case 4). Knight et al. (1984) suggested that bottom vortices are responsible for the 

existence of the inflection points. In a trapezoidal channel (Case 1 and Case 3), both the bed and 

sidewall shear stresses show spatial fluctuations. Such features were reported earlier in Nezu & 

Nakagawa (1984), who attributed the fluctuations to turbulent vortices. 

 

For given discharge and bed slope, the resistance added by a floating ice cover can increase the 

water depth. Smith & Ettema (1997) argued that the primary effect was a reduction to the bed shear 

stress, which in turn would reduce sediment bedload transport rate. This study has not examined 

this effect. Our study focused on the changes in flow characteristics between open water and ice-

covered conditions, with the same flow depth. The presence of an ice cover is shown to increase 

the mean and maximum boundary shear stresses, and to cause a change to the location of the 

maximum velocity. 

 

In an ice-covered channel (Case 3 and Case 4), vertical profiles of the streamwise water velocity 

are not symmetrical about the middle depth, even if the channel-bed and the ice cover underside 

have the same roughness. This prediction is different from Tsai & Ettema’s (1994) theory of two-

layer flow. The theory predicts that the plane of maximum velocity is at the middle depth 

coincident with the plane of zero shear stress for boundaries with the same roughness. In this study, 

the ice cover and channel bed are treated as no-slip walls, which is expected to lead to symmetrical 

flow. However, the velocity profiles show a maximum value at a depth closer to the channel-bed. 

This is an interesting phenomenon worthy further investigations. 
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In an experimental study of rough open channel flow, Tominaga et al. (1989) reported multi-

cellular secondary currents, with upward and downward motions. These motions are thought to 

affect the distribution of bed shear stress, causing an increase in the shear stress in the downflow 

regions and a decrease in the upflow regions. Their finding supports the predictions of spatial 

fluctuations in bed shear stress for Case 5. The blocks being added to the bed for the case may 

have contributed to an increase in upward and downward cellular motions. The high local bed 

shear stresses [Figure 4.20(c)] may be associated with the downward motions, whereas the 

relatively low local bed shear stress associated with the upward motions. It is understood that the 

blocks enhance the turbulent levels and hence significantly change the flow characteristics from 

the condition without blocks. Higher turbulent levels mean a better reflection to flow conditions 

in natural channels. The occurrence of the maximum sidewall stress near the free water surface 

may be a result of the secondary flow. 
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5.2 Conclusions 

This thesis reports LES results of boundary shear stress (BSS) distributions along the wetted 

perimeters of channel sections. These include a trapezoidal open channel (Case 1), a rectangular 

open channel (Case 2), a trapezoidal ice-covered channel (Case 3), a rectangular ice-covered 

channel (Case 4), and a rectangular open channel with blocks near the inlet (Case 5). An 

examination of the LES results has led to the following conclusions: 

(1) LES gives acceptable BSS predictions. The predicted BSS varies across the channel-bed, 

true for the trapezoidal and rectangular channel sections under both open water and ice-

covered conditions. BSS values are relatively high within the largest central portion of the 

bed and sidewall widths, and drop rapidly toward the corners of the channel sections (Cases 

1 to 4). The predicted BSS distribution across the bed width is in reasonable agreement 

with available experimental data. Under open water condition, the BSS distribution across 

its sidewalls shows a maximum value at a location closer to the free surface than to the 

bed, whereas under ice-covered condition, the location of the maximum shear stress is 

closer to the bed than to the ice-cover underside.  

 

(2) Predicted turbulent flows in the channel sections show features consistent with literature 

reports. The BSS distributions in the rectangular channels show symmetrical inflection 

points in the corner regions (Case 2 and Case 4). In the central region of trapezoidal channel 

sections, BSS has small spatial fluctuations probably caused by secondary flow (Case 1 

and Case 3). The normalised bed shear stresses (normalising the local bed and sidewall 

shear stresses by the spatially averaged values for the bed and sidewalls, respectively) in 

the corner regions have different distributions between the trapezoidal channel and the 

rectangular channel section. The peak BSS does not necessarily need to be in the same 

location as the maximum primary velocity. The maximum and mean sidewall shear stress 

values are generally larger than their corresponding bed shear stress values (Cases 1 to 4). 

 

(3) Predictions of velocity profiles and contours exhibit features that are consistent with the 

literature. The maximum velocity occurs near the free surface under open water condition. 

Transition points of changing velocity gradients are at a distance (above the bed or below 

the ice cover underside) of 15% the total flow depth. There is a core of relatively high 
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velocities away from the solid boundaries. Flow velocities decrease in magnitude gradually 

with an increasing distance from the core centre, dropping rapidly to zero toward the solid 

boundaries. 

 

(4) In LES, it is appropriate to treat ice cover as a no-slip boundary, being added to the top of 

an open channel. The presence of ice cover (Case 3 and Case 4) causes significant changes 

in flow structure and shear stress, in comparison to open water condition.  

 Velocity profiles show a maximum value at more or less the middle depth. The 

frictional effects of ice cover force the maximum velocity to occur at a lower depth, 

in comparison to open water condition, and at the same time cause an increase in 

the maximum flow velocity. 

 Relative to open water condition, the presence of ice cover leads to slightly larger 

spatial fluctuations in BBS in trapezoidal channel sections. The ice cover increases 

the mean and maximum bed shear stress by 65%, and the mean and maximum 

sidewall shear stress by 20% in the rectangular and trapezoidal channel sections. 

 

(5) Small blocks added to the channel bed near the inlet (Case 5) enhance turbulence intensity, 

with significant effects on shear stress and flow characteristics. 

 At the channel bed, the shear stresses show spatial fluctuations to a large extent, 

and are no longer symmetrical. On the sidewalls, the shear stresses also fluctuate 

substantially; the maximum shear stress occurs at the free surface. The maximum 

and mean boundary shear stresses are larger for Case 2 (the same channel geometry 

without blocks) than for Case 5. 

 In comparison to Case 2, the blocks result in less regular contours of water 

velocities, and a larger maximum velocity, which occurs at the free surface. Below 

the free surface to about 70% the total flow depth below, the flow velocities are 

high and close to the maximum velocity.  

  

(6) The use of a proper setup and mesh configurations has been demonstrated as important in 

LES. In particular, it is crucial to implement mesh refinements adjacent to the channel-bed, 

sidewalls, and corner regions. The wall distance of the first node off a solid surface should 
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not exceed unity. This means that reliable BSS predictions require to resolve the viscous 

sublayer. This is not the case in most of the existing LES applications to open channel flow. 

For given hydraulic conditions and channel geometry, it is necessary to test the sensitivity 

of LES predictions to slight changes in mesh size and configurations.  

 

(7) In general, LES incurs high computing costs. The costs can effectively be reduced by using 

User Defined Functions and symmetrical conditions, and by adjusting the ratio of grid 

length. Given the high costs and often technical difficulties in obtaining BSS 

measurements, LES offers an attractive complement to physical models, laboratory 

experiments, and field measurements.  
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5.3 Suggestions for Future Work 

Future work should expand the research on the following aspects: 

 First, investigate BSS in channels of a wide range of aspect ratios, which is known to be 

an important factor in determining BSS distribution. 

 Second, roughness effects on BSS have been ignored in the present study. This is due to 

a lack of ability to incorporate surface roughness in LES. It would be interesting to expand 

the prediction capacity to include surface roughness. 

 Water flows in natural channels are always turbulent, characterised by high Reynolds 

numbers. With an exponential increase in computing power, one should perform LES at 

high Reynolds numbers. The results would better reflect reality. 
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