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ABSTRACT 

Dynamic analysis of tapered circular discs made of isotropic and orthotropic materials 

using Rayleigh-Ritz method and ANSYS 

Tapered rotating circular disc provides advantages of preferred stress state compared to 

the uniform-thickness circular disc rotating at the same speed. Hence, linearly-tapered circular 

disc and circular disc with hyperbolic profile along radial direction, often known as Stodola’s 

disc, are increasingly being used in many engineering applications such as in automobiles, 

turbomachinery, steam turbines, flywheels, and space structures. It is important to study the in-

plane dynamics and out-of-plane dynamics of such circular discs as they play a vital role in 

causing vibration and noise. Design of circular disc for such applications also requires the 

knowledge of three-dimensional bending vibration characteristics of the disc. The present 

thesis aims at developing a generalized formulation and then to investigate the three-

dimensional in-plane and out-of-plane vibration characteristics of uniform-thickness circular 

annular disc, linearly-tapered circular annular disc, and Stodola’s disc with clamped-free 

boundary condition.  

The trigonometric functions in circumferential coordinate are employed in all the three 

displacement components in Rayleigh-Ritz method to calculate the natural frequencies. The 

numerical approach based on Rayleigh-Ritz method with finite-element-like modification has 

been developed to study the free vibration behaviour of the tapered circular discs made of 

isotropic and orthotropic materials and of clamped-free boundary condition. Numerical and 

symbolic computations have been performed using MATLAB and MAPLE software. The 

results for natural frequencies have been validated using Finite Element Method using ANSYS 

and results from previous literature wherever available. A comprehensive parametric study is 

conducted to study the effects of various design parameters.   
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Chapter 1                                                                                         

Introduction 

 

1.1    General    
 

Rotating and non-rotating circular discs of uniform thickness and/or with linear 

and non-linear thickness variations have many engineering applications such as 

automobiles, turbomachinery, planetary gear box, steam turbines, flywheels, space 

structures, etc. Moreover, in some of the applications, the circular discs of non-linear 

thickness variations provide certain advantages compared to the uniform thickness or 

linearly-tapered profiles. The rotating discs of non-linear thickness variations are well 

studied in terms of the stresses generated due to rotational effect and proved to be 

advantageous compared to the stressed state of rotating discs of uniform thickness. 

Modal analysis of any structural component is performed in order to determine 

the natural frequencies and associated mode shapes at the design stage. Moreover, the 

modal analysis provides the basis for further detailed dynamic analysis such as transient 

analysis, harmonic analysis, etc. For designing the circular disc for specified 

application, knowledge of in-plane mode vibrations and out-of-plane mode vibrations 

is essential. 

In the automotive application of thick circular disc as a disk brake, it is observed 

that sound radiates from disc effectively when the disc is vibrating at lowest bending 

mode natural frequency [1]. Hence, it is important to study the bending mode vibration. 

Moreover, frictional stresses over the disc serve as external forces and excite in-plane, 

out-of-plane and coupled modes of vibrations. Due to the friction between rotor and 

braking pads, the upper surface of the rotor (i.e. circular disc) wears out with the passage 
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of time due to friction between them, which indeed depends on the material capabilities 

of the rotor (i.e. wear resistance and heat resistance). As a result, slight taper is observed 

at the top rotor side, which can be dealt as tapered circular disc and as a consequence 

dynamic response of the same is changed (in most cases, natural frequency of the 

structure is increased because of the taper), which disturbs the initially investigated 

design parameters of the uniform thickness rotor and results in higher vibration of car 

at higher speed. This is the reason behind the to-and-fro motion of an old car when one 

applies the brake or one drives it at higher speed. Hence, out-of-plane vibration 

response of the thick tapered circular clamped-free disc with respect to rotational speed 

should be studied well in advance in order to increase the robustness in design. In any 

application, if this aspect isn’t studied properly, severe vibrations occur which result in 

the fatigue failure. Therefore, studying the dynamic behaviour of the thick discs is one 

of the major research interests of the researchers. 

Consider the application of the thick circular disc in railway wheels, where the 

lowest in-plane mode and the lowest out-of-plane mode vibrations are to be studied at 

the preliminary design stage. Although there are many factors responsible for the noise 

generation during operation of rail-wheel, a significant reduction in the noise can be 

achieved by minimizing bending mode vibration frequency of the disc [2] (if the rail-

wheel is modelled as circular tapered clamped-free disc). 

The following Figures 1.1 and 1.2 show the application of circular discs of 

clamped-free boundary condition in turbomachinery and automobile.                                                       
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Figure 1.1: Application of non-linearly tapered circular disc in turbomachinery [3] 

 

 

Figure 1.2: Application of uniform thickness circular disc in automobile [4] 
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1.2    Three-dimensional vibration analysis in mechanical design  

 

In actual practice, the critical structural components used for various industrial 

applications may be modelled as specific structural elements such as bar, rod, beam, 

plate or shell, based on their size/shape characteristics. Researchers have developed 

various theories with suitable initial assumptions to study the dynamic behaviour of 

such structural elements. For the realistic dynamic analysis of certain problems like 

thick beams, thick pressure vessels, thick circular discs in turbomachinery or in 

automotive applications, one should go for three-dimensional analysis. Further, the 

advantage of developing three-dimensional elasticity problem is that it can be applied 

to any structural element irrespective of the size/shape of the structural element.  

Furthermore, in many cases, the exact or closed-form solutions to such problems 

are not available. Nowadays, modern three-dimensional finite element solutions are 

available but to achieve accurate results they can’t justify the time and computational 

costs involved in the project. Therefore, researchers always seek accurate and efficient 

three-dimensional Rayleigh-Ritz approximate solutions or two-dimensional 

approximate solutions based on the criticality of the problem. In the three-dimensional 

dynamic analysis, there are no kinematic constraints imposed upon the displacements 

of middle surface unlike the case of classical one-dimensional or two-dimensional plate 

theories. To solve such three-dimensional elasticity problem, various approximate 

methods are widely used which are discussed in the following Section 1.3. 

It is possible to solve the structural dynamics problem with the breakdown of the 

assemblies and subassemblies partially and applying the structural dynamic analysis 

and testing procedures. Modal analysis is one of them and of course the root of all the 

advanced dynamic analysis procedures. Modal analysis can be performed with the 
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analytical techniques or experimental techniques. By carrying out analysis, we describe 

the structure in terms of its natural characteristics such as natural frequencies and 

associated mode shapes and damping.  

1.3    Hamilton’s principle and approximate methods 

 

In many cases, it is cumbersome to describe the physical system by applying 

Newton’s law, especially when the forces acting on the system are uncertain. Trying to 

describe such a system in terms of Newton’s equations of motion requires the 

estimation of the total force, which does not seem feasible always. In such cases, the 

system can be easily described by equations of motion derived by applying Hamilton’s 

principle.  

Hamilton’s principle can be stated as follows: 

                           𝛿 ∫ 𝐿 𝑑𝑡 = 0
𝑡2

𝑡1

   (1.1) 

where 𝐿 = 𝑇 − 𝑊 is the Lagrangian function. Here, 𝑇 is the kinetic energy of the 

system and 𝑊 is the strain energy of the system under consideration. The above integral 

is often known as “action integral”. It states that the variation of integral of Lagrangian 

from time 𝑡1 to 𝑡2 is zero provided that variations of displacements are zero at 𝑡1 and 𝑡2. 

1.3.1 Rayleigh-Ritz method  

 

Walter Ritz has developed the method that is an extension of Rayleigh’s method, 

known as Rayleigh-Ritz method. It provides a better approximation for the fundamental 

natural frequency. To use this method, it is necessary to represent the deformed shape 

of the structure by series of shape functions multiplied by the constant coefficients. We 

know that by taking a finite number of terms in a polynomial, we impose a certain 

limitation on the possible shapes of the deflection of the structure. Therefore, the 
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frequencies calculated using a finite number of terms in Rayleigh-Ritz polynomial often 

overestimate the values of natural frequencies compared to their exact solutions.  

Let Φ1(𝑥),Φ2(𝑥), .. be a series of functions Φ𝑗(𝑥) that suitably represent X, the 

deformed shape of the structure under consideration and also satisfy the boundary 

conditions. Then we have,  

                              𝑋 =  a1Φ1(𝑥) + a2Φ2(𝑥) + ⋯+ a𝑗Φ𝑗(𝑥) (1.2) 

where, a1, a2..  are constant coefficients.  

From the principle of conservation of energy, Rayleigh’s quotient can be derived as 

follows: 

                            𝜔2 =
𝑈𝑚𝑎𝑥

𝑇𝑚𝑎𝑥
∗

 (1.3) 

Here, maximum kinetic energy is expressed as 𝜔2𝑇𝑚𝑎𝑥
∗  . The accuracy of results also 

depends on the selection of the polynomial i.e. how good the polynomial represents the 

deformed shape of vibrating body.  

In order to have the approximation as close as possible to the exact value, Ritz 

proposed to choose the coefficients a1, a2.. such that the result of Equation (1.3) be 

minimum [5]. Hence, a system of equations are obtained as follows: 

                                
𝜕𝜔2

𝜕𝑎𝑗
= 0 (1.4) 

Upon simplification,  

                             
𝜕𝑈𝑚𝑎𝑥

𝜕𝑎𝑗
− 𝜔2

𝜕𝑇𝑚𝑎𝑥
∗

𝜕𝑎𝑗
= 0 (1.5) 

The number of such equations will be the number of coefficients in Equation (1.2). This 

system of equation can yield non-zero solution if the determinant of the coefficients of 

a1, a2..  is equal to zero. A system of Equation (1.5) can be rewritten as follows: 
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                                  [[𝐾] − 𝜔2[𝑀]][{𝑎𝑗}] = 0 (1.6) 

where, [{𝑎𝑗}] = [a1 a2 … ]𝑇 is the column matrix consisting of coefficients. The 

determinant of augmented matrix in Equation (1.6) yields the frequency equation and 

the roots of this equation represent the circular natural frequencies of vibrations.  

1.4    Literature survey  

 

A comprehensive literature review is presented on in-plane and out-of-plane 

vibrations of linearly-tapered and non-linearly tapered circular discs. Research work on 

vibration analysis of circular discs using Ritz method and finite element method have 

been chronicled.  The majority of work done in the past is limited to the vibration 

analysis of linearly-tapered disc and the non-linearly tapered disc of parabolic profiles 

(i.e. convex shape profiles) considering Classical plate theory or Mindlin plate theory. 

At the end of this section, the research work conducted on vibration analysis of 

rotating discs is presented. From that, it can be concluded that the work on the 

transverse vibration of rotating disc with hyperbolic thickness variation is very rare or 

limited. The following is the up to date survey categorized based on the subject:  
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1.4.1 Review of vibration analysis of uniform thickness circular discs 

 

At first, vibration problem of a circular disc of free-free boundary conditions was 

tackled by Love [6] who derived the equations of motion from the concepts of elasticity 

and provided the general solutions. Deresiewicz and Mindlin [7] studied the axially 

symmetric transverse vibrations of a circular disc. The frequency responses for the 

circular disc of free-free boundary condition obtained using both the classical thin plate 

theory and the Mindlin plate theory were presented.  

Venkatesan and Kunukkasseril [8] studied the free vibration response of layered 

circular plates using shear deformation theory. Guruswamy and Yang [9] developed an 

element of 24 DOFs (Degrees Of Freedom) to study the static and dynamic behaviour 

of thick circular plates. Irie et al. [10] conducted free vibration analysis based on the 

Mindlin plate theory considering nine different boundary conditions. Liew et al. [11] 

studied the free flexural vibration of circular and annular Mindlin plates using 

Rayleigh-Ritz method. So and Leissa [12] have proposed the three-dimensional 

Rayleigh-Ritz solution to study the three-dimensional in-plane and out-of-plane 

vibration response of thick circular annular plates. They used the admissible functions 

in all three directions by employing trigonometric function in circumferential 

coordinate and algebraic polynomials in radial and axial coordinates. The scope of their 

formulation was limited to the thick circular discs made of isotropic materials. Kang 

[13] applied this three-dimensional Ritz solution to conduct free vibration analysis of 

shallow spherical dome. Zhou et al. [14] developed the three-dimensional solution for 

circular and annular plates using the Chebyshev-Ritz method. Park [15] introduced 2D 

exact solution for in-plane vibration of a clamped circular plate. He used Helmholtz 

decomposition to derive uncoupled equations of motion from highly coupled equations 

of motion, which were obtained by applying Hamilton’s principle. Recently, Bashmal 
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et al. [16] used the boundary characteristic orthogonal polynomials in the Rayleigh-Ritz 

method to obtain the frequency parameters of the annular disc with point elastic 

support. Moreover, Bashmal et al. [17] also conducted in-plane free vibration of circular 

annular disks considering characteristic orthogonal polynomials in Rayleigh-Ritz 

method. The material properties considered in their model were isotropic. Huang and 

Chen [18] estimated natural frequency of circular discs with V-notches using Ritz 

method. Sridhar and Rao [19] developed a four noded 48 DOF sector element to 

conduct large deformation Finite Element Analysis of laminated circular composite 

plates. They employed Newton-Raphson method as the nonlinear solution technique. 

Recently, Gupta et al [20] studied dynamic behaviour of fiber reinforced composite 

discs considering SHELL 181 element using ANSYS. Wang et al. [21] have developed 

modified Fourier-Ritz approach to study free in-plane vibration of orthotropic annular 

plates with general boundary conditions. They studied the effect of different fiber 

reinforcement configurations and rotational speed on natural frequency.   

Kim and Dickinson [22] studied flexural vibration of thin, flat annular circular 

plates using Rayleigh-Ritz method. They have used a series comprising of orthogonally 

generated polynomial functions in Rayleigh-Ritz method. Comparison is made between 

natural frequency results obtained using three-dimensional Rayleigh-Ritz approach 

(presented in Chapter-2) with results obtained by Kim and Dickinson [22]. This 

validation is presented in Appendix B.  
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1.4.2 Review of vibration analysis of linearly-tapered and non-linearly tapered 

circular discs 

 

The effect of taper on the dynamic behaviour of the circular disc is an important 

parameter to investigate. Early works on analysing the effect of taper were that of 

Chandrika Prasad et al. [23] and Gupta and Lal [24], who conducted a dynamic analysis 

of linearly-tapered circular discs and parabolically-tapered circular discs respectively.  

Soni and Amba Rao’s [25] paper contains the analysis for free axisymmetric 

vibrations of orthotropic circular plates of linear thickness variation. Their study 

doesn’t account for the non-linear thickness variation. Kirkhope and Wilson [26] have 

used the annular finite element method to study the stress and vibration behaviour of 

thin rotating discs. Moreover, their element allows the specific thickness variation in 

the radius direction. They presented numerical data for free vibration response of 

linearly-tapered circular discs and parabolically-tapered circular discs. Mota and Petyt 

[27] developed the semi-analytical finite element based on Mindlin theory for the 

dynamic analysis of circular disc of varying thickness in the radial direction. Their 

formulation was limited to the discs made of isotropic materials.   

Lenox and Conway [28] developed an exact, closed-form solution for transverse 

vibrations of a thin plate having a parabolic thickness variation. Their proposed solution 

involves only the power of radius and constant coefficients which are way simpler than 

that for the case of uniform thickness solution with the involvement of Bessel functions. 

Reddy and Huang [29] presented the finite element formulation for the non-linear 

axisymmetric bending of annular plates considering Reissner-Mindlin plate theory and 

Von Karman non-linearity. Singh and Saxena [30] used the Rayleigh-Ritz method to 

study the axisymmetric transverse vibration of a circular plate of linear thickness 
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variation and made of isotropic materials. In their study, radial direction deformation is 

not accounted in axisymmetric transverse vibration analysis unlike the three-

dimensional formulation presented in this thesis. 

Recently, Duan et al. [31] introduced the transformation of variables to translate 

the governing equation for the free vibration of the thin annular plate into a fourth-order 

generalized hypergeometric equation. Gupta et al. [32] employed the differential 

quadrature method to analyse the free vibration response of non-linearly tapered 

isotropic discs considering classical plate theory assumption. Vishwanathan and  Sheen 

[33] used the point collocation method to study free vibration of a circular plate of 

variable thickness.  

To validate the results of linearly-tapered disc of clamped-free boundary 

condition, natural frequencies of linearly-tapered disc of small taper angle are 

calculated and compared with that of uniform-thickness circular disc with comparable 

thickness. This comparison is given in Appendix B. 

1.4.3 Review of vibration analysis of rotating circular discs 

 

The above literature survey is limited to the free vibration analysis of non-rotating 

circular discs. The modelling of such discs with the inclusion of rotational effects makes 

the problem more relevant to their actual applications. In that case, a problem of rotating 

disc involves the gyroscopic effect and the centrifugal forces generated due to the 

rotation.  

At first, Lamb and Southwell [34] tackled the problem of spinning disc of uniform 

thickness using Rayleigh’s method. Nowinski [35] conducted the non-linear transverse 

vibration analysis of spinning circular discs rotating at constant angular speed and of 

uniform thickness using two-term polynomial in Ritz method. Barasch and Chen [36] 
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have reduced the fourth-order equation of motion to a set of four first-order equations. 

They used the modified Adam’s method to study the variation of transverse mode 

natural frequency of rotating disc of uniform thickness with rotational speed.  

Recently, Baddour [37] derived non-linear equations of motion accounting for the 

rotary and in-plane inertia terms for spinning circular disc using Hamilton’s principle 

for the first time. She proposed the solution of Helmholtz equations via separation of 

variables and further considering the classical Bessel functions. This study was limited 

to thin rotating circular disc of uniform thickness. Khoshnood and Jalali [38] conducted 

the transverse vibration analysis of rotating orthotropic discs of uniform thickness by 

expanding the transverse deformation in Fourier series. Hamidzadeh [39] conducted in-

plane free vibration analysis and stability analysis of rotating annular discs on the basis 

of two-dimensional linear plane stress theory of elasticity. He proposed the time 

independent solution and time dependent solution of governing equations of motion to 

study the influence of rotational speed and radios ratio on the natural frequency of the 

disc. Dousti and Jalali [40] calculated the eigenmodes of linearized questions using  

collocation method and compared the mode shapes of composite disc and isotropic disc.     

The above work is limited to free vibration analysis of the circular rotating discs 

of uniform thickness or the linearly-tapered rotating discs.  
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1.5    Objective of thesis   

 

The main objectives of the present study are as follow: 

1) To calculate the Rayleigh’s damping coefficients based on modal mass participation 

factor to obtain the realistic damping natural frequencies of in-plane mode and out-

of-plane mode vibration of uniform thickness disc, linearly-tapered disc and 

Stodola’s disc.  

2) To investigate the three-dimensional free vibration response of uniform thickness 

circular discs, and linearly-tapered and non-linearly tapered circular discs using 

Rayleigh-Ritz method and finite element method using ANSYS.  

3) To conduct a comprehensive parametric study to study the effects of taper angles, 

taper shapes, radius ratios, material properties, and the degree of orthotropy on free 

vibration frequency response of circular disc considering clamped-free boundary 

condition.  

4) To study the effect of rotational speed on the lowest bending mode natural frequency 

of Stodola’s disc considering Kirchhoff hypothesis and linear strain-displacement 

relationship. Equations of motion are proposed for a hyperbolic profile for the first 

time for further future investigations.  

5) The accuracy of proposed Rayleigh-Ritz solutions and Rayleigh-Ritz solutions with 

finite-element-like modification is verified by comparing them to finite element 

solutions using ANSYS.  
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1.6    Layout of thesis   

 

The present chapter provides a brief introduction, overview of applications and 

literature review on free vibrations of uniform thickness and tapered circular discs.  

In Chapter 2, the modelling of three-dimensional vibration problem is articulated 

considering the theory of elasticity. Then the application of Rayleigh-Ritz method to 

free vibration problem of the uniform thickness discs is presented. The selection 

procedure is proposed to determine the order of polynomials in Rayleigh-Ritz method. 

The procedure for estimation of Rayleigh’s damping coefficients based on modal mass 

participation factor is presented. At the end of the Chapter, strain energy and kinetic 

energy equations are determined for orthotropic discs. Rayleigh-Ritz solutions are 

validated by comparing them with ANSYS solutions. 

Chapter 3 contains the proposed analytical approach to investigate the three-

dimensional vibration response of linearly-tapered circular discs which is developed 

based on the classical Rayleigh-Ritz method with finite-element-like modification. The 

complete mathematical formulation is presented and explained along with the 

numerical data of the lowest in-plane and the lowest out-of-plane modes natural 

frequencies for the linearly-tapered circular disc.  Considering clamped-free boundary 

condition, the parametric study is conducted based on taper angles and radius ratios.   

In Chapter 4, the analytical method derived in Chapter 3 is re-employed to study 

the free vibration behaviour of Stodola’s disc. The parametric study is conducted based 

on the taper parameters of the Stodola’s disc.  

Chapter 5 is devoted to the bending mode vibrations of Stodala’s disc rotating at 

constant speed. The effect of rotation on the lowest bending mode natural frequency of 

Stodola’s disc is studied by considering the Kirchhoff’s hypothesis and linear strain-
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displacement relationship. Here, Rayleigh-Ritz method is employed for the first time 

for the rotating Stodola’s discs. Moreover, the parametric study on the effects of 

constant rotational speeds and degree of orthotropy on free vibration bending mode 

natural frequency is conducted.  

Finally, major contributions of the present thesis and recommendations for future 

work are presented in Chapter 6.  
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Chapter 2                                                                                                    

Three-dimensional in-plane and out-of-plane vibrations of annular 

clamped-free disc of uniform thickness 

 

2.1    Introduction                       
 

This chapter describes the generalized formulation for in-plane and out-of-plane 

vibration analyses of a thick circular disc of clamped-free boundary condition and made 

of isotropic or orthotropic material. The clamped-free boundary condition is taken into 

consideration since this has a wide range of applications. Rayleigh-Ritz method is 

employed to obtain the natural frequencies and mode shapes. To study the free vibration 

response of the circular disc of uniform thickness, trigonometric functions are 

employed in the circumferential coordinate for all the three displacement components 

in Rayleigh-Ritz method. The formulation for the three-dimensional vibration analysis 

is first developed for the isotropic disc and then extended for the orthotropic disc. The 

material chosen for the isotropic disc is Structural Steel having Young’s modulus of 

200 GPa and Poisson’s ratio of 0.3. For the orthotropic disc, Graphite-Polymer 

Composite material are considered. The material properties for the Graphite-Polymer 

Composite material is given in Table 2.6. Rayleigh-Ritz solutions are compared with 

the finite element solutions obtained using ANSYS.  

A three-dimensional vibration model can reveal more comprehensive and 

accurate vibration characteristics of the circular disc involving both in-plane and out-

of-plane modes and coupling between in-plane and out-of-plane motions. For thick 

discs, this coupling between in-plane mode and the out-of-plane mode is strong and this 

fact necessitates the requirement for the development of efficient three-dimensional 
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Rayleigh-Ritz solutions. In many applications, it is required to know the in-plane and 

the out-of-plane response of the disc at the design stage.  

2.2    Modelling 

 

In order to use Rayleigh-Ritz method, expressions for total kinetic energy and 

total strain energy must be formulated. Here, kinetic energy and strain energy of the 

element of the infinitesimal volume are calculated and later integrated over the entire 

volume (non-deformed or initial volume) of the disc to derive the expressions for the 

total strain energy and total kinetic energy. This approach holds true for the continuous 

systems. 

2.2.1 Formulation for strain energy  

 

Strain energy is the energy stored in a body due to deformation. It is difficult to 

keep track of the displacements (deformations), which are usually unknown if it is to 

be measured with respect to the Eulerian frame of reference. Hence, it is advantageous 

to consider the Lagrangian coordinates and they can be employed by fixing a coordinate 

frame on the body. The motion of this body-fixed frame indicates the rigid body motion 

of the body. Displacements (deformations) measured from this frame of reference 

contribute to the strain energy. Hence, it is clear that the strain energy of stationary disc 

and rotating disc are the same if they are derived from this approach.   

As discussed earlier, consider the infinitesimal volume element of the disc. Strain 

energy of such an element can be written as follows: 

 Π𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
1

2
𝜎𝑖𝑗𝜖𝑖𝑗 (2.1) 

where, 𝜎𝑖𝑗 and 𝜖𝑖𝑗 are the stress and strain tensors respectively.  



18 

 

By integrating the Equation (2.1) over the entire domain of the disc, total strain energy 

of the disc can be calculated. 

 

This way total strain energy of the uniform disc is given by: 

 Π =  
1

2
∫ ∫ ∫ [𝜎𝑟𝑟 𝜎𝜃𝜃 𝜎𝑧𝑧   𝜎𝑟𝜃 𝜎𝜃𝑧 𝜎𝑧𝑟

𝑅𝑜

𝑅𝑖

2𝜋

0

ℎ
2

−
ℎ
2

]

[
 
 
 
 
 
𝜀𝑟𝑟

𝜀𝜃𝜃
𝜀𝑧𝑧

2𝜀𝑟𝜃

2𝜀𝜃𝑧

2𝜀𝑧𝑟]
 
 
 
 
 

𝑟𝑑𝑟 𝑑𝜃 𝑑𝑧 (2.2) 

where, h is the total thickness of the disc and 𝑅𝑖 and 𝑅𝑜 are the inner radius and the 

outer radius of the circular disc respectively. Note that the engineering strains are 

considered in Equation (2.2). 

Assuming small strains, the stress-strain relations follow the Hooke’s law and 

hence the relationship is linear. Again, this doesn’t mean that the deformations in r, θ, 

and z directions are small.  To derive the expression for strain energy of the disc in 

terms of displacements, the first step is to write the stresses in terms of strains and the 

strains in terms of displacements. In cylindrical coordinate system, they are as follow: 

 σrr =  λ(εrr + εθθ + εzz) + 2Gεrr (2.3) 

 σθθ =  λ(εrr + εθθ + εzz) + 2Gεθθ (2.4) 

 σzz =  λ(εrr + εθθ + εzz) + 2Gεzz (2.5) 

 σrθ = 2Gεrθ (2.6) 

 σθz = 2Gεθz (2.7) 

 σzr = 2Gεzr (2.8) 

 εrr =
∂ur

∂r
 (2.9) 
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 εθθ =
ur

r
+

1

r

∂uθ

∂θ
 (2.10) 

 εzz =
∂uz

∂z
 (2.11) 

 εrθ =
1

2
(
1

r

∂ur

∂θ
+

∂uθ

∂r
−

uθ

r
) (2.12) 

 εzr =
1

2
(
∂ur

∂z
+

∂uz

∂r
) (2.13) 

 εθz =
1

2
(
1

r

∂uz

∂θ
+

∂uθ

∂z
) (2.14) 

Substituting Equations (2.3) to (2.14) into Equation (2.2), total strain energy as a 

function of displacements (i.e. 𝑢𝑟 , uθ and uz) can be derived. Upon simplification, it 

can be written as below: 

 

Π =
𝐸

4(1 + 𝑣)
∫ ∫ ∫

2𝑣

(1 − 2𝑣)
(
𝜕𝑢𝑟

𝜕𝑟
+ 

ur

r
+

1

𝑟

∂uθ

∂θ
+

∂uz

∂z
)

𝑅𝑜

𝑅𝑖

2𝜋

0

ℎ
2

−ℎ
2

2

+ 2(
𝜕𝑢𝑟

𝜕𝑟
)

2

+ 2(
ur

r
+

1

𝑟

∂uθ

∂θ
)
2

+ 2(
∂uz

∂z
)
2

+ (
1

r

∂ur

∂θ
+

∂uθ

∂r
−

uθ

r
)
2

+ (
∂ur

∂z
+

∂uz

∂r
)
2

   

+ (
1

r

∂uz

∂θ
+

∂uθ

∂z
)
2

𝑟𝑑𝑟 𝑑𝜃 𝑑𝑧 

(2.15) 

In Equation (2.15), E and 𝑣 are the Young’s modulus and Poisson’s ratio of the material 

respectively. Moreover, 𝑢𝑟 , uθ and uz are the displacements in 𝑟, θ and z directions 

respectively.  

To simplify the mathematical calculations, the Equation (2.15) can be reduced to 

the non-dimensional form in r and z coordinates by letting ζ and ξ as non-dimensional 

parameters respectively. 

Let,   ζ =
𝑟

𝑅𝑜
 and ξ =  

𝑧

h
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Recall that h is the total thickness of the disc. 

Let’s introduce β as a radius ratio in the lower limit of integration in Equation (2.15).  

Rewriting the Equation (2.15) in terms of newly introduced non-dimensional 

parameters, one gets: 

 

Π =  
𝐸 ℎ

4(1 + 𝑣)
∫ ∫ ∫

2𝑣

(1 − 2𝑣)
(
𝜕𝑢𝑟

𝜕ζ
+ 

ur

ζ
+

1

ζ

∂uθ

∂θ
+

𝑅𝑜

ℎ

∂uz

∂ξ
)

2𝜋

0

1

β 

1
2

−1
2

2

+ 2(
𝜕𝑢𝑟

𝜕ζ
)

2

+ 2(
ur

ζ
+

1

ζ

∂uθ

∂θ
)
2

+ 2(
𝑅𝑜

ℎ

∂uz

∂ξ
)
2

+ (
1

ζ

∂ur

∂θ
+

∂uθ

∂ζ
−

uθ

ζ
)
2

+ (
𝑅𝑜

ℎ

∂ur

∂ξ
+

∂uz

∂ζ
)
2

   

+ (
1

ζ

∂uz

∂θ
+

𝑅𝑜

ℎ

∂uθ

∂ξ
)
2

ζ𝑑𝜃 𝑑ζ 𝑑ξ 

(2.16) 

where, β is the radius ratio defined by 
𝑅𝑖

𝑅𝑜
 . The above Equation (2.16) describes the 

strain energy of the disc in terms of displacements 𝑢𝑟 , uθ and uz of an arbitrary point 

of the disc.  

2.2.2 Formulation for kinetic energy 

It is confirmed from the formulation developed in sub-section 2.2.1 that the strain 

energy of a stationary disc and that of a rotating disc are the same. It is the kinetic 

energy that is not the same and hence the corresponding two vibration models are 

different based on the kinetic energy. 

The kinetic energy of an infinitesimal volume element of stationary disc is given 

by: 

 𝑇𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 
1

2
𝜌𝑣2𝑑𝑉 (2.17) 
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where, 𝜌 is the density of the material and 𝑑𝑉 is the volume of an element. Equation 

(2.17) can be re-written as follows: 

 𝑇𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 
1

2
𝜌 [(

𝜕𝑢𝑟

𝜕𝑡
)
2

+ (
𝜕𝑢𝜃

𝜕𝑡
)
2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

] 𝑑𝑉 (2.18) 

This kinetic energy of an infinitesimal volume element is integrated over the un-

deformed domain of the disc to determine the total kinetic energy of the non-rotating 

disc. This way one gets:  

 𝑇 =  
1

2
𝜌ℎ𝑅𝑜

2 ∫ ∫ ∫ [(
𝜕𝑢𝑟

𝜕𝑡
)
2

+ (
𝜕𝑢𝜃

𝜕𝑡
)
2

+ (
𝜕𝑢𝑧

𝜕𝑡
)
2

] 𝜁𝑑𝜃 𝑑𝜁 𝑑𝜉
2𝜋

0

1

𝛽 

1
2

−1
2

 (2.19) 

The above Equation (2.19) describes the total kinetic energy of the disc in terms of 

displacements 𝑢𝑟 , uθ and uz of an arbitrary point on the disc.  

2.3    Solution by Rayleigh-Ritz method 

 

The equations of motion could have been derived for the uniform thickness disc 

by applying Hamilton’s principle. Hamilton’s principle states that the variation of the 

integral of the Lagrangian function over time 𝑡1 to 𝑡2 is zero provided that variations of 

displacements are zero at time 𝑡1 and 𝑡2. Lagrangian function can be calculated by 

assembling strain energy and kinetic energy, which are derived in Section 2.2. Variation 

can be performed with respect to each generalized coordinate to generate equations of 

motion i.e. to get the first equation of motion, one should perform the variation of 

Langrangian function with respect to 𝑢𝑟. For deriving second equation of motion, 

perform the variation of Langrangian function with respect to 𝑢𝜃 and so on. This 

approach is handy only for the uniform thickness discs but for non-linearly tapered 

discs, exact or closed-form solutions for the partial differential equations are not 

available.  
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To overcome such difficulty, many approximate methods have drawn the 

attention of researchers such as Ritz method, Rayleigh-Ritz method and Galerkin 

method and are extensively used to solve the structural dynamic problems. In the 

present work, Rayleigh-Ritz method is employed to calculate the approximate natural 

frequencies of the uniform-thickness disc. 

Rayleigh-Ritz method is the extension of the Ritz’s method. To use this method, 

it is necessary to make some assumption of the deflected shape of the vibrating elastic 

body. The frequency of vibration will then be found by employing the conservation of 

energy principle [5]. In Rayleigh-Ritz method, a number of assumed functions are taken 

into consideration to have the closest approximation to the exact solution. Hence, this 

method provides not only the lowest approximate frequency but also higher mode 

approximate frequencies. The accuracy of this method depends on the choice of 

assumed approximation functions that one should select to represent the configuration 

of the system during vibration, which also should satisfy the geometric boundary 

conditions of structural dynamics problem. It is necessary to find the maximum strain 

energy and the maximum kinetic energy of the system in order to derive the Rayleigh’s 

quotient, which is the ratio of maximum strain energy to maximum kinetic energy. 

Let the displacements in 𝑟, θ and z directions be expressed as the following 

assumed sinusoidal variation of vibration response: 

 𝑢𝑟 = 𝑈 𝑠𝑖𝑛 𝑛𝜃 𝑠𝑖𝑛 𝜔𝑡 (2.20) 

 𝑢𝜃 = 𝑉 𝑐𝑜𝑠 𝑛𝜃  𝑠𝑖𝑛 𝜔𝑡 (2.21) 

 𝑢𝑧 = 𝑊 𝑠𝑖𝑛 𝑛𝜃 𝑠𝑖𝑛 𝜔𝑡 (2.22) 

where, 𝑛 is the circumferential wave number (i.e. nodal diameter number). It is taken 

into consideration in order to distinguish between different mode shapes. Here, 𝑈, 𝑉 
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and 𝑊are the amplitudes of vibration in 𝑟, θ and z directions respectively. 𝜔 is the 

circular natural frequency of vibration.  

Furthermore, amplitudes U, V and W can be expressed in terms of the 

combination of the arbitrary coefficients and algebraic polynomials [12].  

 𝑈 = 𝑛𝑟 ∑∑ 𝐴𝑖𝑗

𝐽

𝑗=0

𝐼

𝑖=0

 ζi ξj (2.23) 

 𝑉 = 𝑛𝜃 ∑ ∑ 𝐵𝑘𝑙

𝐿

𝑙=0

𝐾

𝑘=0

 ζk ξl (2.24) 

 𝑊 = 𝑛𝑧 ∑ ∑  𝐶𝑝𝑞

𝑄

𝑞=0

𝑃

𝑝=0

 ζp ξq (2.25) 

where, 𝑛𝑟 , 𝑛𝜃  𝑎𝑛𝑑 𝑛𝑧 are the constraint functions that depend on geometric boundary 

conditions. The functions  𝑛𝑟 ,  𝑛𝜃 𝑎𝑛𝑑 𝑛𝑧 are used to impose the necessary boundary 

conditions to the model. 

Let 𝑛𝑟 = 𝑛𝜃 = 𝑛𝑧 =
ζ(ζ−β)

(1−β)
 for the clamped-free disc. 

For example,  

At inner edge (𝑟 =  𝑅𝑖), 𝑛𝑟 = 𝑛𝜃 = 𝑛𝑧 = 0. Hence, displacements at inner radius are 

restricted to zero. 

At outer edge (𝑟 =  𝑅𝑜), 𝑛𝑟 = 𝑛𝜃 = 𝑛𝑧 =  1. Hence, there are no constraints for 

displacements at outer radius. 

Consider the Equation (2.23). It expresses the amplitude of vibration in 𝑟-direction 

which is again the function of combination of arbitrary coefficients, non-dimensional 

radius and non-dimensional thickness terms. Here, 𝐼 and 𝐽 indicate the maximum 
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number of non-dimensional radius and thickness terms respectively. For example, 

for 𝐼 =  𝐽 = 2, the amplitude in 𝑟 direction consists of 9 terms, which is given by: 

 

𝑈 = 𝑛𝑟 (𝐴22ζ
2ξ2 + 𝐴21ζ

2ξ1 + 𝐴12ζ
1ξ2 + 𝐴20ζ

2 + 𝐴11ζ
1ξ1

+ 𝐴02ξ
2 + 𝐴10ζ

1 + 𝐴01ξ
1 + 𝐴00)  

(2.26) 

As a rule of thumb, Equation (2.23) yields (𝐼 + 1)(𝐽 + 1) number of terms for the 

specific values of  𝐼 and 𝐽. 

2.3.1 Maximum Strain energy  

 

As discussed in earlier Sections, maximum strain energy and maximum kinetic 

energy are the building blocks for the Rayleigh’s quotient. After substitution of the 

assumed displacements expressed by Equations (2.23), (2.24) and (2.25) into Equation 

(2.16), the following maximum strain energy is obtained using MAPLE:  

 

Π𝑚𝑎𝑥 = 
𝐸 ℎ

4(1 + 𝑣)
∫ ∫ ∫   (

2𝑣

  1 − 2𝑣
((

𝜕𝑈

𝜕ζ
) sin 𝑛𝜃 −

𝑛 𝑉 sin 𝑛𝜃

ζ

2𝜋

0

1

β

1
2

−
1
2

+ 
𝑈 sin 𝑛𝜃

ζ
+ 𝑎 (

∂W

∂ξ
sin 𝑛𝜃)

2

) + 2 (
𝜕𝑈

𝜕ζ
sin 𝑛𝜃)

2

+ 2 (
𝑈 sin 𝑛𝜃

ζ
−

𝑛 𝑉 sin 𝑛𝜃

ζ
)
2

+ 2𝑎2 (
∂W

∂ξ
sin 𝑛𝜃)

2

+ (
𝑛 𝑈 cos 𝑛𝜃

ζ
+

𝜕𝑉

𝜕ζ
cos 𝑛𝜃 −

 𝑉 cos 𝑛𝜃

ζ
)
2

+ (𝑎
∂V

∂ξ
cos 𝑛𝜃 +

 𝑛 𝑊 cos 𝑛𝜃

ζ
)
2

+ (𝑎
∂U

∂ξ
sin 𝑛𝜃 +

𝜕𝑊

𝜕ζ
sin 𝑛𝜃)

2

) ζ 𝑑𝜃 𝑑ζ 𝑑ξ 

(2.27) 
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In above Equation (2.27), the maximum value of 𝑠𝑖𝑛2 𝜔𝑡 is considered in order to 

derive the maximum strain energy.  

2.3.2 Maximum kinetic energy  

 

After substitution of the assumed displacements expressed by Equations (2.23), 

(2.24) and (2.25) into Equation (2.19), the following total kinetic energy expression is 

obtained using MAPLE: 

 
𝑇 =

1

2
𝑅𝑜

2ℎ𝜌 𝜔2 ∫ ∫ ∫ (𝑈2 sin2 𝑛𝜃 + 𝑉2 cos2 𝑛𝜃
2𝜋

0

1

β

1
2

−
1
2

+ 𝑊2 sin2 𝑛𝜃) cos2 𝜔𝑡 ζ 𝑑𝜃 𝑑ζ 𝑑ξ 

(2.28) 

To calculate maximum kinetic energy of  the disc, consider the maximum value of 

cos2 𝜔𝑡 in the Equation (2.28). This way one gets: 

 
𝑇𝑚𝑎𝑥 =

1

2
𝑅𝑜

2ℎ𝜌 𝜔2 ∫ ∫ ∫ (𝑈2 sin2 𝑛𝜃 + 𝑉2 cos2 𝑛𝜃
2𝜋

0

1

β

1
2

−
1
2

+ 𝑊2 sin2 𝑛𝜃) ζ 𝑑𝜃 𝑑ζ 𝑑ξ 

(2.29) 

Later, complementary displacement functions are used to derive different mode shapes, 

which are discussed in the following sub-section 2.4.1. Formulations for maximum 

kinetic energy and maximum strain energy hold true for the complementary set of 

displacement functions too. 

2.3.3 Rayleigh’s quotient  

 

The law of conservation of energy implies that the total energy of the isolated 

system is constant. Hence, comparing the maximum kinetic energy and the maximum 

strain energy, neglecting damping, Rayleigh’s quotient can be derived as follows: 

 



26 

 

 Π𝑚𝑎𝑥 = 𝜔2𝑇∗
𝑚𝑎𝑥 (2.30) 

 

where, 𝑇∗
𝑚𝑎𝑥 =

1

2
 𝜌ℎ𝑅𝑜

2 ∫ ∫ ∫  (𝑈2 sin2 𝑛𝜃 + 𝑉2 cos2 𝑛𝜃 +
2𝜋

0

1

β

1

2

−
1

2

𝑊2 sin2 𝑛𝜃) ζ 𝑑𝜃 𝑑ζ 𝑑ξ 

Therefore, 

 

𝐸ℎ

4(1 + 𝑣)
∫ ∫ ∫ (Π𝑢𝑛𝑖 𝑡𝑒𝑟𝑚𝑠) ζ𝑑𝜃 𝑑ζ 𝑑ξ  

2𝜋

0

1

β

1
2

−
1
2

=
1

2
𝜔2𝜌ℎ𝑅𝑜

2 ∫ ∫ ∫   (𝑇∗
𝑢𝑛𝑖

𝑡𝑒𝑟𝑚𝑠) ζ𝑑𝜃 𝑑ζ 𝑑ξ 
2𝜋

0

1

β

1
2

−
1
2

 

(2.31) 

Here, 

 

(Π𝑢𝑛𝑖  𝑡𝑒𝑟𝑚𝑠) =
2𝑣

  1 − 2𝑣
((

𝜕𝑈

𝜕ζ
) sin 𝑛𝜃 −

𝑛 𝑉 sin 𝑛𝜃

ζ
+ 

𝑈 sin 𝑛𝜃

ζ

+ 𝑎 (
∂W

∂ξ
sin 𝑛𝜃)

2

) + 2(
𝜕𝑈

𝜕ζ
sin 𝑛𝜃)

2

+ 2(
𝑈 sin 𝑛𝜃

ζ
−

𝑛 𝑉 sin 𝑛𝜃

ζ
)
2

+ 2𝑎2 (
∂W

∂ξ
sin 𝑛𝜃)

2

+ (
𝑛 𝑈 cos 𝑛𝜃

ζ
+

𝜕𝑉

𝜕ζ
cos 𝑛𝜃 −

 𝑉 cos 𝑛𝜃

ζ
)

2

+ (𝑎
∂V

∂ξ
cos 𝑛𝜃 +

 𝑛 𝑊 cos 𝑛𝜃

ζ
)
2

+ (𝑎
∂U

∂ξ
sin 𝑛𝜃 +

𝜕𝑊

𝜕ζ
sin 𝑛𝜃)

2

 

(2.32) 

     and 

  (𝑇∗
𝑢𝑛𝑖

𝑡𝑒𝑟𝑚𝑠) =  𝑈2 sin2 𝑛𝜃 + 𝑉2 cos2 𝑛𝜃 + 𝑊2 sin2 𝑛𝜃 (2.33) 
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Hence, Rayleigh’s quotient (Ω2) becomes: 

 Ω2 =  

∫ ∫ ∫ (Π𝑢𝑛𝑖 𝑡𝑒𝑟𝑚𝑠) ζ𝑑𝜃 𝑑ζ 𝑑ξ  
2𝜋

0

1

β

1
2

−
1
2

∫ ∫ ∫ (𝑇∗
𝑢𝑛𝑖

𝑡𝑒𝑟𝑚𝑠) ζ𝑑𝜃 𝑑ζ 𝑑ξ 
2𝜋

0

1

β

1
2

−
1
2

=
𝑁

𝐷
 (2.34) 

Note that N and D are the numerator and the denominator of the Rayleigh’s quotient 

respectively. In above Equations (2.32), (2.33) and (2.34), subscript ‘𝑢𝑛𝑖’refers to the 

vibration model of uniform thickness circular disc.  

Upon simplifying the Equations (2.31) and (2.34), 

 Ω = √2𝜔2𝑅0
2
𝜌(1 + 𝑣)

𝐸
 (2.35) 

Equation (2.35) represents the non-dimensional frequency parameter of the uniform 

disc.  

2.3.4 Formulation of eigenvalue problem  

 

To obtain the best possible approximation of natural frequencies for the assumed 

shape functions, arbitrary coefficients are adjusted and natural frequency is made 

stationary. Minimizing the Rayleigh’s quotient with respect to arbitrary constants 

considered in Equations (2.23), (2.24) and (2.25), one gets: 

 

𝜕Ω2

𝜕𝐴𝑖𝑗
= 0 

 

(2.36) 

 

𝜕Ω2

𝜕𝐵𝑘𝑙
= 0 

 

(2.37) 

 

𝜕Ω2

𝜕𝐶𝑝𝑞
= 0 

 

(2.38) 
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These give the set of (𝐼 + 1)(𝐽 + 1) + (𝐾 + 1)(𝐿 + 1) + (𝑃 + 1)(𝑄 + 1) linear 

algebraic equations in terms of arbitrary coefficients (i.e. 𝐴𝑖𝑗 , 𝐵𝑘𝑙 𝑎𝑛𝑑 𝐶𝑝𝑞). These 

equations are given as follow: 

 
𝜕𝑁

𝜕𝐴𝑖𝑗
− Ω2

𝜕𝐷

𝜕𝐴𝑖𝑗
= 0 (2.39) 

 
𝜕𝑁

𝜕𝐵𝑘𝑙
− Ω2

𝜕𝐷

𝜕𝐵𝑘𝑙
= 0 (2.40) 

 
𝜕𝑁

𝜕𝐶𝑝𝑞
− Ω2

𝜕𝐷

𝜕𝐶𝑝𝑞
= 0 (2.41) 

The above equations can be rewritten and represented as the eigenvalue problem, 

 [[𝐾] − Ω2[𝑀]] [

{𝐴𝑖𝑗}

{𝐵𝑘𝑙}
{𝐶𝑝𝑞}

] = 0 (2.42) 

where, {𝐴𝑖𝑗}, {𝐵𝑘𝑙} 𝑎𝑛𝑑 {𝐶𝑝𝑞} are column matrices. The dimensions of these matrices 

depend on the number of terms considered in Equations (2.23), (2.24) and (2.25). 

To have a non-trivial solution, in Equation (2.42) let the determinant of the 

augmented matrix be zero. MAPLE code is developed to determine this determinant 

and solve for unknowns and, as a result,  non-dimensional frequency parameters 

(Ω𝑖 , 𝑖 = 1, 2, 3…) are calculated for the assumed nodal diameter numbers.  

To study three-dimensional vibrations of the tapered disc, the presented approach 

is useful after suitable modifications. For this purpose, the modified Rayleigh-Ritz 

procedure is developed and explained in Chapter 3. 

2.4    Results and Discussion  

It is very clear by now that the number of natural frequencies that can be obtained 

from solving the augmented matrix of Equation (2.42) is equal to the number of terms 

considered in the assumed shape functions. At this point, it is advisable to conduct 

convergence study to determine the exact number of terms to be used in the assumed 
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polynomials, which gives the closest approximation to the exact solution. In Rayleigh-

Ritz method, frequencies should converge to their exact solutions in the upper bound 

manner. This study is conducted and explained in the following section.  

2.4.1 Pure circumferential mode and pure transverse mode  

 

For the stationary uniform-thickness disc case, the in-plane mode is the pure 

circumferential mode, in which there are no radial and transverse deformations present. 

If there is no circumferential deformation, the mode shape can be described as a pure 

transverse mode. In this formulation, assumed displacement functions and their 

complimentary sets are considered to investigate pure transverse mode frequencies and 

pure circumferential mode frequencies of the disc. 

Assumed set (A): 

 𝑢𝑟 = 𝑈 𝑐𝑜𝑠 𝑛𝜃 𝑠𝑖𝑛 𝜔𝑡   (2.43) 

 𝑢𝜃 = 𝑉 𝑠𝑖𝑛 𝑛𝜃  𝑠𝑖𝑛 𝜔𝑡   (2.44) 

           𝑢𝑧 = 𝑊 𝑐𝑜𝑠 𝑛𝜃 𝑠𝑖𝑛 𝜔𝑡 (2.45) 

For 𝑛 = 0, Set (A) describes the lowest transverse mode (i.e. the lowest out-of-plane 

mode or the lowest bending mode) and the displacements for this mode are as follows, 

 𝑢𝑟 = 𝑈 𝑠𝑖𝑛 𝜔𝑡 (2.46) 

 𝑢𝜃 = 0 (2.47) 

 𝑢𝑧 = 𝑊 𝑠𝑖𝑛 𝜔𝑡 (2.48) 

Complimentary set (B): 

 𝑢𝑟 = 𝑈 𝑠𝑖𝑛 𝑛𝜃 𝑠𝑖𝑛 𝜔𝑡   (2.49) 

 𝑢𝜃 = 𝑉 𝑐𝑜𝑠 𝑛𝜃  𝑠𝑖𝑛 𝜔𝑡    (2.50) 

         𝑢𝑧 = 𝑊 𝑠𝑖𝑛 𝑛𝜃 𝑠𝑖𝑛 𝜔𝑡 (2.51) 
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For 𝑛 = 0, Set (B) yields pure circumferential mode (i.e. the lowest in-plane mode) and 

the displacements for this mode are as follows, 

 𝑢𝑟 = 0 (2.52) 

 𝑢𝜃 =  𝑉 𝑠𝑖𝑛 𝜔𝑡   (2.53) 

 𝑢𝑧 = 0 (2.54) 

2.4.2 Coupled mode shapes 

In the lowest bending mode vibrations, there exist ‘small’ radial deformation and 

the transverse component of displacement as the present study is based on a three-

dimensional analysis and is not limited to plane stress or plane strain assumptions. 

For 𝑛 ≥ 1, Set (A) functions are considered. Hence, there exist all the three 

displacement components and hence named as coupled mode shapes, which can be 

identified based on the nodal diameter numbers. If Set (B) functions are chosen to 

investigate the coupled mode shapes, it can be inferred that mode shapes may be rotated 

by 90 degrees due to the nature of assumed trigonometric functions but they should 

have the same frequencies as reported by Set (A). 
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2.5    Example 

A uniform thickness disc made of a structural steel material is considered. Let the 

inner radius and the outer radius of the disc be 0.4 m and 2 m. The thickness of the disc 

is 0.15 m. For the structural steel material, the values of modulus of elasticity and 

Poisson’s ratio are 200 GPa and 0.3 respectively. 

 

Figure 2.1: Geometry and coordinate system for uniform-thickness disc 

 

Note that in Rayleigh-Ritz method, if the upper limit of summation is set to 

1(which gives four constants coupled with four displacement terms), it generates 12x12 

matrix. Just to start with, an equal number of polynomial terms are taken for the ease 

of calculations, though these results may not be closest to their exact solutions. These 

results are given in the following Table 2.1. Non-dimensional frequency parameters 

obtained using MAPLE for 𝐼 = 𝐽 = 𝐾 = 𝐿 = 𝑃 = 𝑄 = 1 are given in the third column.  
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Mode set 

Non-dimensional frequency 

without convergence study 

Ω = √2𝜔2𝑅0
2
𝜌(1 + 𝑣)

𝐸
 

Non-dimensional 

frequency 

parameter 

after convergence 

study 

Set A 

𝑛 = 0 

out-of-plane 

 

0.3639 

2.6783 

3.9915 

 

 

0.2025 

- 

- 

 

Set B 

𝑛 = 0 

in-plane 

 

0.8248 

9.0738 

46.1847 

 

 

0.5945 

- 

- 

Set A 

𝑛 = 1 

coupled 

 

0.3469 

1.7524 

2.7464 

 

0.1856 

- 

- 

Set A 

𝑛 = 2 

coupled 

 

0.3526 

2.8408 

2.9564 

 

0.2406 

- 

- 

Set A 

𝑛 = 3 

coupled 

 

0.5042 

3.3160 

- 

 

0.4565 

- 

- 

Set A 

𝑛 = 4 

coupled 

 

0.8155 

3.7955 

- 

 

0.7829 

- 

- 

Set A 

𝑛 = 5 

coupled 

1.2383 

4.1983 

- 

1.0818 

- 

- 

 

Table 2.1: Lowest non-dimensional frequencies grouped according to corresponding 

mode shapes 
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In above Table 2.1, frequencies of the lowest in-plane mode, the lowest out-of-

plane mode and the coupled modes for the stated example are demonstrated. For three-

dimensional vibrations of the stationary uniform disc case, the lowest out-of-plane 

mode has deformations in transverse as well as in radial directions. 

At this point, convergence study is necessary to get the frequencies approximation 

closest to the exact frequencies. This can be achieved by the following procedure. Here, 

convergence procedure is only explained for the lowest bending mode. 

The natural frequencies and mode shapes are calculated for the above-stated example 

using ANSYS. In the modal analysis in ANSYS, mode 3 represents pure transverse 

mode. In the simulation, SOLID 186 elements are used for the analysis and later results 

are compared with that obtained using SHELL 281. 

The following Figure 2.2 and Figure 2.3 show the geometry of SOLID 186 and 

SHELL 281 elements. The brief descriptions of these elements are given next:  

 

Figure 2.2 : SOLID186 homogeneous structural solid element geometry [41]  

SOLID 186 is a higher-order 3-D element that consists of 20 nodes and it exhibits 

quadratic displacement behaviour. This element has three degrees of freedom per node 

(translations in the nodal X, Y, and Z directions). It supports plasticity, creep, stress 
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stiffening, large deflection and large strain capabilities. The SOLID 186 homogeneous 

structural solid element is well suited to modelling irregular meshes that can be 

produced by various CAD/CAM systems.  

 

Figure 2.3: SHELL 281 element geometry [41]  

The above Figure 2.3 describes the geometry and coordinate system for SHELL 281 

element. Furthermore, a triangular-shaped element option is available by defining the 

same node number for nodes K, L and O. This element has eight nodes with six degrees 

of freedom at each node (three translations in the X, Y and Z axes and rotations about 

X, Y and Z axes). SHELL 281 is well suited for analysing thin to moderately thick shell 

structures. It is well suited for linear, and large rotation and large strain nonlinear 

applications. 

Consider the lowest transverse mode. Now it is possible to extract the deformation 

values of each point, which are deformed in the transverse direction. Later, these can 

be represented as a plot of transverse deformation versus radial coordinate. This 

procedure helps to develop more accurate polynomial that can be fed into the above 

Rayleigh-Ritz formulation. This results in deriving approximate in-plane and out-of-

plane frequencies which are closer to the exact solutions.  
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A total of 49 points are selected in the radial direction lying on the face of the circular 

disc and their respective z-direction deformations are calculated using ANSYS. The 

numerical values of transverse deformation are presented in Table 2.2. 

26 0.0083 0.00E+00 

27 1.6667 0.00E+00 

28 0.25 0.00E+00 

29 0.3333 0.00E+00 

30 0.4166 4.91E-05 

31 0.5 3.00E-04 

32 0.5833 6.45E-04 

33 0.6667 1.10E-03 

34 0.75 1.65E-03 

35 0.8333 2.28E-03 

36 0.9167 2.97E-03 

37 1 3.70E-03 

38 1.0833 4.47E-03 

39 1.1667 5.26E-03 

40 1.25 6.07E-03 

41 1.3333 6.89E-03 

42 1.4167 7.71E-03 

43 1.5 8.54E-03 

44 1.5833 9.35E-03 

45 1.6667 1.02E-02 

46 1.75 1.10E-02 

47 1.8333 1.18E-02 

48 1.9167 1.25E-02 

49 2 1.33E-02 

 

  

 

Table 2.2: Transverse displacement values for different radial coordinate values in the 

lowest out-of-plane mode 

It is obvious and clear from Table 2.2 that there is no transverse deformation at the 

center of the disc and at the inner radius.   

 

 

Radial 

Coordinate 

(m) 

 

 

Transverse 

Displacement 

(m) 
 

 1 -2 1.33E-02 

2 -1.9167 1.25E-02 

3 -1.8333 1.17E-02 

4 -1.75 1.09E-02 

5 -1.6667 1.01E-02 

6 -1.5833 9.34E-03 

7 -1.5 8.52E-03 

8 -1.4167 7.70E-03 

9 -1.3333 6.88E-03 

10 -1.25 6.06E-03 

11 -1.1667 5.25E-03 

12 -1.0833 4.46E-03 

13 -1 3.70E-03 

14 -0.9167 2.96E-03 

15 -0.8333 2.28E-03 

16 -0.75 1.65E-03 

17 -0.6667 1.10E-03 

18 -0.5833 6.44E-04 

19 -0.5 3.00E-04 

20 -0.4166 5.09E-05 

21 -0.3333 0.00E+00 

22 -0.25 0.00E+00 

23 -1.6667 0.00E+00 

24 -0.0083 0.00E+00 

25 0 0.00E+00 
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The comparison between deformation data of the lowest out-of-plane mode with 

different degrees of a polynomial function is given next. 

It is clear from the following Figure 2.4 that second-degree polynomial doesn’t 

represent accurately the deformation that was obtained using ANSYS. This concludes 

the requirement of higher degree polynomial in Rayleigh-Ritz procedure to represent 

the actual deformation shape. 

 

Figure 2.4: Comparison of transverse deformations in the lowest out-of-plane mode 

obtained using ANSYS and second-degree polynomial 
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In the following Figure 2.5, the comparison is made between transverse deformations 

in the lowest out-of-plane mode obtained using ANSYS and third-degree polynomial.  

 

Figure 2.5: Comparison of transverse deformations in the lowest out-of-plane mode 

obtained using ANSYS and third-degree polynomial 

It is concluded from the following Figure 2.6 that 4th-degree polynomial best fits the z-

direction deformation obtained using ANSYS. Both curves coincide in Figure 2.6, 

where the 4th-degree polynomial equation is used. It means that to represent the 

transverse mode shape, one needs higher degree polynomial terms for W. 

In Figure 2.4 to Figure 2.6, the dark dotted line represents the transverse deformation 

curve plotted using the transverse deformation data obtained using ANSYS. The light 

dotted line represents the curve obtained using the equation with assumed degree of the 

polynomial.  
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Figure 2.6: Comparison of transverse deformations in the lowest out-of-plane mode 

obtained using ANSYS and fourth-degree polynomial 

There exists a small radial deformation in the lowest out-of-plane mode, which 

should be taken into account in Rayleigh-Ritz procedure. As it is ‘small’ radial 

deformation in the lowest out-of-plane mode, a number of deformation points are 

considered from ANSYS. 

A total of 491 points are selected in the whole circumference of the disc and radial 

deformations are noted at each point. These deformations are shown in Table 2.3. In 

Table 2.3, the first column indicates the circumferential position of the point and the 

second column indicates the respective radial deformation.  
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Circumferential 

Coordinate 

(m) 

Radial 

deformation 

(m) 

 470 12.029 0.013274 

1 0 0.013274  471 12.055 0.013274 

2 2.56E-02 0.013274  472 12.08 0.013274 

3 5.12E-02 0.013274  473 12.106 0.013274 

4 7.69E-02 0.013274  474 12.131 0.013274 

5 0.10253 0.013274  475 12.157 0.013274 

6 0.1282 0.013274  476 12.182 0.013274 

7 0.15387 0.013274  477 12.207 0.013274 

8 0.17953 0.013274  478 12.233 0.013274 

9 0.20519 0.013274  479 12.259 0.013274 

10 0.23092 0.013274  480 12.285 0.013274 

11 0.25665 0.013274  481 12.31 0.013274 

12 0.28253 0.013274  482 12.336 0.013274 

13 0.30841 0.013274  483 12.362 0.013274 

14 0.33406 0.013274  484 12.388 0.013274 

15 0.35971 0.013274  485 12.413 0.013274 

85 2.1545 0.013277  486 12.439 0.013274 

86 2.18 0.013278  487 12.465 0.013274 

87 2.2055 0.013278  488 12.49 0.013274 

88 2.2312 0.013278  489 12.516 0.013274 

89 2.2569 0.013278  490 12.541 0.013274 

90 2.2824 0.013278  491 12.566 0.013274 

 

Table 2.3: Radial deformation values for circumferential coordinate values in the 

lowest out-of-plane mode 

In the following Figure 2.7 to Figure 2.11, the dark dotted line represents the radial 

deformation curve in pure transverse mode, plotted using the r-deformation data 

obtained using ANSYS. The light dotted line represents the curve represented by the 
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equation with assumed degree of the polynomial. 

 

Figure 2.7: Comparison of radial deformations in the lowest out-of-plane mode 

obtained using ANSYS and second-degree polynomial 

 

 

Figure 2.8: Comparison of radial deformations in the lowest out-of-plane mode 

obtained using ANSYS and third-degree polynomial 
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Figure 2.9: Comparison of radial deformations in the lowest out-of-plane mode 

obtained using ANSYS and fourth-degree polynomial 

 

Figure 2.10: Comparison of radial deformations in the lowest out-of-plane mode 

obtained using ANSYS and fifth-degree polynomial 
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Figure 2.11: Comparison of radial deformations in the lowest out-of-plane mode 

obtained using ANSYS and sixth-degree polynomial 

It is interpreted from Figure 2.7 to Figure 2.11 that, a 6th-degree polynomial best fits 

the radial deformation graph obtained from the ANSYS. Hence, a higher degree of z-

direction terms is needed in ‘U’ to have a closer approximation of the out-of-plane 

mode natural frequency. 

The above convergence study is strictly for the lowest out-of-plane mode vibration 

analysis. The same methodology can be repeated to study the lowest in-plane mode and 

the coupled modes.   

Comparison of Rayleigh-Ritz solutions obtained after convergence study is made 

with Finite Element solutions for natural frequencies of the lowest in-plane mode, the 

lowest out-of-plane mode, and the coupled modes. The comparison is shown in the 

following Table 2.4. 
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Nodal 

diameter 

number  

Degree 

 of 

Polynomial  

 Size of 

augmented  

matrix 

 

  Rayleigh-Ritz 

solution 

 

ANSYS 

solution 

Non- 

dimensional  

frequency 

 Natural  

Frequency 

(in Hz) 

Natural 

frequency         

(in Hz) 

SOLID 

186 

SHELL 

281 

𝑛 = 0        

bending 

mode                           

𝐽 = 𝑃 = 4                  

and                    

𝐼 = 𝑄 = 2  

30x30 0.2025 50.44 47.45 46.74 

𝑛 = 0                           

in-plane  

mode 

𝐾 = 𝐿 = 4  25x25 0.5945 148.09 148.65 148.49 

𝑛 = 1 

coupled 

mode 

 𝐽 = 𝑃 =

𝐿 = 4                                

and             

𝐼 = 𝐾 =

𝑄 = 2  

45x45 

0.1856 46.23 43.67 42.08 

𝑛 = 2 

coupled 

mode 

0.2406 59.93 57.78 57.05 

𝑛 = 3 

coupled 

mode 

0.4565 113.72 112.81 112.39 

𝑛 = 4 

coupled  

mode 

0.7829 195.02 193.88 193.39 

  

 Table 2.4: Comparison of Rayleigh-Ritz solution with ANSYS solution 

Recall that 𝐼, 𝐽, 𝐾, 𝐿, 𝑃 and 𝑄 denote the upper limit of summation in Equations (2.23), 

(2.24) and (2.25).  

The mode shapes of the uniform thickness disc in the lowest bending mode 

vibration, the lowest circumferential mode vibration, and for nodal diameter values of 

one, two, three and four are presented in the following Figure 2.12 to Figure 2.14:  
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Figure 2.12: The 𝑛 = 0 bending mode vibration and circumferential mode vibration 

 

Figure 2.13:The  𝑛 = 1 mode vibration and 𝑛 = 2 mode vibration 

  

  

Figure 2.14: The  𝑛 = 3 mode vibration and 𝑛 = 4 mode vibration 
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2.6    Rayleigh’s damping  

 

Rayleigh’s damping is proportional to a linear combination of mass and stiffness. 

The damping matrix can be written as follows: 

 [𝐶] =  𝛼[𝑀] + 𝛽𝑘[𝐾] (2.55) 

One may assume a constant damping ratio for all significant modes. That’s indeed 

unrealistic. It is observed that modal mass participation decreases as mode number 

increases. From this, it is clear that as mode number increases, frequency increases 

according to the formula, 𝜔𝑛 = √
𝐾

𝑀
 . Considering critical damping formula,                 

𝑐𝑐 = 2√𝐾𝑀  it can be concluded that as mode number increases, critical damping 

should decrease. Damping ratio can be defined as 𝜍 =  
𝐶

𝐶𝑐
. Hence, with an increase in 

mode number damping ratio should increase and this fact violates if one assumes a 

constant damping ratio for all the modes that are taken into consideration.  

Hence, for the system where higher mode contribution is significant, which are pure 

transverse mode and pure circumferential mode in the present analysis, it is unrealistic 

to consider the constant damping ratio for all the modes. The main objective of the 

method followed here is to derive the values of 𝛼 and 𝛽𝑘 such that they should respect 

the variation of mass participation. 

It is desirable to consider the first few modes that have significant mass 

participation. It is observed from the FEA of above example that 90% mass 

participation occurs within the 11th mode. Hence, instead of assigning 5% constant 

damping ratio to all modes, let’s define for the structural steel, minimum damping of 

2% for the first mode and 5% damping for the 11th mode. Now, the primary question is 

to determine damping ratios for the intermediate modes, and they can be best estimated 
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by using few techniques such as the linear interpolation, 11th significant mode 

approximation, full range approximation and damping ratio based on average data. 

These techniques are explained in the following paragraphs [42]. 

Dataset based on linear interpolation can be obtained by, 

 𝜍𝑖 =
𝜍𝑚 − 𝜍1

𝜔𝑚 − 𝜔1

( 𝜔𝑖 − 𝜔1) + 𝜍1 (2.56) 

where, m is the 11th (significant) mode within which 90% of mass participation is 

observed from FEA. 

For the second data set, recall that 90% mass participation factor is found at 11th 

mode from ANSYS. Let’s rename 11th mode as the significant mode. 

For the first mode, 

 2𝜔1𝜍1 =  𝛼 + 𝛽𝑘𝜔1
2 (2.57) 

For the significant mode (i.e. 11th mode), 

 2𝜔11𝜍11 =  𝛼 + 𝛽𝑘𝜔11
2  (2.58) 

Damping coefficients 𝛼 and  𝛽 can be calculated from Equations (2.57) and (2.58). 

 𝛽𝑘 =
2𝜔1𝜍1 − 2𝜔11𝜍11

𝜔1
2 − 𝜔11

2  (2.59) 

 𝛼 = 2𝜔1𝜍1 − 𝛽𝑘𝜔1
2  (2.60) 

For this example, 𝛽𝑘 = 0.000054 and 𝛼 = 7.1. Therefore, the subsequent modal 

damping ratio can be calculated by  𝜍𝑖 = 
𝛼

2𝜔𝑖
+

𝛽𝑘𝜔𝑖

2
 . 

For the third data set, consider generating the second data set using the above 

procedure but for 𝜍1, 𝜔1, 𝜍2.5𝑚 and 𝜔2.5𝑚. Here, 2.5m is considered to have full range 
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approximation. This way we have Rayleigh’s damping coefficients  𝛽𝑘 = 0.0000465 

and 𝛼 = 7.9. 

The fourth data set is based on the average of the second and the third data sets. 

Results of all four data sets are given in Table 2.5. 

Estimation of Rayleigh's damping coefficients 

Mo

de 

nu

mb

er 

Natural  

Frequency  

from 

ANSYS 

(Hz)  

Circular 

natural 

frequency 

from  

ANSYS 

 (rad/sec) 

Damping 

ratio  

based on 

linear 

interpolation  

Damping ratio 

based on  

11th  mode 

approximation  

Damping 

 ratio  

based on 

 full range  

approximation  

Damping 

ratio based 

on average 

data  

1 43.436 273.0263 0.0200 0.0200 0.0208 0.0204 

2 43.487 273.3469 0.0200 0.0204 0.0208 0.0206 

3 47.216 296.7863 0.0205 0.0200 0.0202 0.0201 

4 57.635 362.2771 0.0218 0.0196 0.0193 0.0195 

5 57.659 362.4280 0.0218 0.0196 0.0193 0.0195 

6 112.75 708.7143 0.0287 0.0241 0.0221 0.0231 

7 112.76 708.7771 0.0287 0.0241 0.0221 0.0231 

8 148.61 934.1200 0.0332 0.0290 0.0259 0.0275 

9 193.9 1218.8000 0.0388 0.0358 0.0316 0.0337 

10 193.91 1218.8629 0.0388 0.0358 0.0316 0.0337 

11 283.15 1779.8000 0.0500 0.0500 0.0436 0.0468 

12 294.04 1848.2514 0.0514 0.0518 0.0451 0.0485 

13 294.07 1848.4400 0.0514 0.0518 0.0451 0.0485 

14 301.26 1893.6343 0.0523 0.0530 0.0461 0.0496 

15 301.66 1896.1486 0.0523 0.0531 0.0462 0.0496 

16 363.51 2284.9200 0.0601 0.0632 0.0549 0.0590 

17 363.72 2286.2400 0.0601 0.0633 0.0549 0.0591 

18 387.35 2434.7714 0.0630 0.0672 0.0582 0.0627 

19 387.35 2434.7714 0.0630 0.0672 0.0582 0.0627 

20 411 2583.4286 0.0660 0.0711 0.0616 0.0664 

21 411.04 2583.6800 0.0660 0.0711 0.0616 0.0664 

22 476.76 2996.7771 0.0742 0.0821 0.0710 0.0765 

23 476.89 2997.5943 0.0742 0.0821 0.0710 0.0766 

24 543.47 3416.0971 0.0826 0.0933 0.0806 0.0869 

25 543.52 3416.4114 0.0826 0.0933 0.0806 0.0869 

26 631.91 3972.0057 0.0936 0.1081 0.0933 0.1007 

27 632.02 3972.6971 0.0937 0.1082 0.0934 0.1008 

28 649.57 4083.0114 0.0959 0.1111 0.0959 0.1035 

Table 2.5: Estimation of Rayleigh's damping coefficients 
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Figure 2.15: Variation of damping ratio with circular natural frequency 

It is concluded from above Figure 2.15 that Rayleigh’s damping coefficients 

based on 11th mode approximation are closer to that of the linear approximation and 

hence they are considered as the input for further dynamic analysis. This data set is also 

fed to ANSYS to get the damped natural frequencies. 

This procedure is used here as it is simple to get the spreadsheet for different damping 

ratio values and corresponding values of Rayleigh’s damping coefficients, which 

indeed respect the increasing nature of damping ratio as the mode number increases. 

The obtained values of ‘alpha’ and ‘beta-k’ can be fed as the input data for the dynamic 

analysis to estimate damped natural frequencies.  
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2.7    Formulation for Orthotropic disc  

 

Formulations presented from Section 2.2 to Section 2.5 are limited to the materials 

having isotropic property. Nowadays, composite materials have drawn the attention of 

researchers in many applications due to their many advantageous properties such as 

light weight and higher stiffness to name a few. This section presents in-plane and out-

of-plane vibration analysis of the orthotropic disc. 

2.7.1 Modelling strain energy and kinetic energy 

 

In the presented formulation, the principal material coordinate system is used. The 

axis 1 is aligned with the fiber direction and the axis 2 is in the plane of the layer and 

also perpendicular to the fiber direction. Let axis 3 be in the direction perpendicular to 

the layer and also perpendicular to the fiber direction. 

Recall the strain energy formulation for isotropic disc described in sub-section 2.1.1, 

rewriting it with newly defined coordinate system,  

 Π𝑜𝑟𝑡ℎ𝑜  =  
1

2
∫ ∫ ∫ [𝜎1 𝜎2 𝜎3   𝜎12 𝜎23 𝜎13

𝑅𝑜

𝑅𝑖

2𝜋

0

ℎ
2

−
ℎ
2

]

[
 
 
 
 
 

𝜀1

𝜀2
𝜀3

2𝜀12

2𝜀23

2𝜀13]
 
 
 
 
 

𝑟𝑑𝑟 𝑑𝜃 𝑑𝑧 (2.61) 

For orthotropic disc, stress-strain relationship is as follows: 

 

[
 
 
 
 
 
𝜎1

𝜎2
𝜎3

𝜎23
𝜎13

𝜎12]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11

𝐶12

𝐶13

0
0
0

𝐶12

𝐶22

𝐶23

0
0
0

𝐶13

𝐶23

𝐶33

0
0
0

0
0
0

𝐶44

0
0

0
0
0
0

𝐶55

0

0
0
0
0
0

𝐶66]
 
 
 
 
 

 

[
 
 
 
 
 

𝜀1

𝜀2
𝜀3

2𝜀23

2𝜀13

2𝜀12]
 
 
 
 
 

 (2.62) 
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Furthermore, the strain-displacement relationship is assumed linear. In cylindrical 

coordinate system, 

 ε1 =
∂u1

∂r
 (2.63) 

 ε2 =
u1

r
+

1

r

∂u2

∂θ
 (2.64) 

 ε3 =
∂u3

∂z
 (2.65) 

 ε12 =
1

2
(
1

r

∂u1

∂θ
+

∂u2

∂r
−

u2

r
) (2.66) 

 ε13 =
1

2
(
∂u1

∂z
+

∂u3

∂r
) (2.67) 

 ε23 =
1

2
(
1

r

∂u3

∂θ
+

∂u2

∂z
) (2.68) 

Substituting Equations (2.63) to (2.68) in Equation (2.61), total strain energy of the 

orthotropic disc is given by, 

 

Π𝑜𝑟𝑡ℎ𝑜 = 
1

2
∫ ∫ ∫ 𝐶11 (

∂u1

∂r
)
2𝑅𝑜

𝑅𝑖

+
2𝜋

0

ℎ
2

−ℎ
2

𝐶22 (
u1

r
+

1

r

∂u2

∂θ
)
2

+ 𝐶33 (
∂u3

∂z
)
2

+ 𝐶44 (
1

r

∂u3

∂θ
+

∂u2

∂z
)
2

+ 𝐶55 (
∂u1

∂z
+

∂u3

∂r
)
2

+ 𝐶66 (
1

r

∂u1

∂θ
+

∂u2

∂r
−

u2

r
)

2

+ 2𝐶12 (
∂u1

∂r
) (

u1

r
+

1

r

∂u2

∂θ
) + 2𝐶13 (

∂u1

∂r
) (

∂u3

∂z
)

+ 2𝐶23 (
u1

r
+

1

r

∂u2

∂θ
) (

∂u3

∂z
) 𝑟𝑑𝑟 𝑑𝜃 𝑑𝑧 

(2.69) 
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Equation (2.69) is derived in non-dimensional form, which is given next: 

 

Π𝑜𝑟𝑡ℎ𝑜 =
ℎ

2
∫ ∫ ∫ 𝐶11 (

∂u1

∂ζ
)
22𝜋

0

+
1

β

1
2

−1
2

𝐶22 (
u1

ζ
+

1

ζ

∂u2

∂θ
)
2

+ 𝐶33 (
𝑅𝑜

ℎ

∂u3

∂ξ
)
2

+ 𝐶44 (
1

ζ

∂u3

∂θ
+

𝑅𝑜

ℎ

∂u2

∂ξ
)
2

+ 𝐶55 (
𝑅𝑜

ℎ

∂u1

∂ξ
+

∂u3

∂ζ
)
2

+ 𝐶66 (
1

ζ

∂u1

∂θ
+

∂u2

∂ζ
−

u2

ζ
)

2

+ 2𝐶12 (
∂u1

∂ζ
) (

u1

ζ
+

1

ζ

∂u2

∂θ
) + 2𝐶13 (

∂u1

∂ζ
) (

𝑅𝑜

ℎ

∂u3

∂ξ
)

+ 2𝐶23 (
𝑅𝑜

ℎ
) (

u1

ζ
+

1

ζ

∂u2

∂θ
) (

∂u3

∂ξ
) ζ 𝑑𝜃 𝑑ζ 𝑑ξ 

(2.70) 

Similarly, non-dimensional form of total kinetic energy of the orthotropic disc, 

 𝑇𝑜𝑟𝑡ℎ𝑜 =
1

2
 𝜌ℎ𝑅𝑜

2 ∫ ∫ ∫ [ (
𝜕𝑢1

𝜕𝑡
)

2

+ (
𝜕𝑢2

𝜕𝑡
)
2

(
𝜕𝑢3

𝜕𝑡
)
2

] ζ 𝑑𝜃 𝑑ζ 𝑑ξ 
2𝜋

0

1

β

−1
2

−1
2

 (2.71) 

 
 

Same approach as discussed in Section 2.3.1 and Section 2.3.2 is considered in order to 

derive the maximum strain energy and the maximum kinetic energy for the orthotropic 

disc. 

2.7.2 In-plane and out-of-plane vibration analysis of orthotropic disc 

 

The deformed shape of pure circumferential mode can be best represented by 

evaluating Equation (2.50) at n equals to zero. For in-plane vibration analysis of 

orthotropic disc, an eigenvalue problem can be formulated in the similar manner as 

explained in sub-section 2.3.3. 

Similarly, to calculate the frequency of the lowest out-of-plane mode of the orthotropic 

disc, Equations (2.43) and (2.45) are evaluated for zero nodal diameter number. 
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Afterwards, displacement polynomials in radial and transverse directions are 

substituted in Equation (2.70) and Equation (2.71). Later, Rayleigh-Ritz solutions for 

the lowest in-plane mode and the lowest out-of-plane mode are compared with finite 

element solutions to validate the results. Material properties of the Graphite-Polymer 

composite are given in Table 2.6. 

Material 

properties 

Value Material  

properties 

Value 

𝐸1 155 GPa 𝐺12 4.40 GPa 

𝐸2 12.10 GPa 𝐺13 4.40 GPa 

𝐸3 12.10 GPa 𝐺23 3.20 GPa 

𝑣12 0.248 𝑣23 0.458 

𝑣13 0.248 
𝜌𝑜𝑟𝑡ℎ𝑜 = 1800

𝑘𝑔

𝑚3
 

 

Table 2.6: Material properties of the orthotropic disc [43] 

The dimensions of the orthotropic disc are taken the same as that of the isotropic disc, 

described in Section 2.5. The simulation is conducted using SHELL 281 and SHELL 

181 elements in ANSYS. SHELL 181 is a four-node element with six degrees of 

freedom at each node (translations in the X, Y and Z directions and rotations about the 

X, Y, and Z axes) as shown in the following Figure 2.16. This type of shell element is 

well suited for analysing thin to moderately thick shell structures. Moreover, SHELL 

181 is well-suited for linear, and large rotation and/or large strain nonlinear 

applications. 
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                           Figure 2.16: Geometry of SHELL 181 [41] 

 The following Table 2.7 shows the comparison of the lowest circumferential 

mode and the lowest bending mode natural frequencies of C-F disc made of orthotropic 

material calculated using Rayleigh-Ritz method and ANSYS.  

Lowest in-plane and out-of-plane mode frequencies 

Mode 

type 

Rayleigh-Ritz 

solution 

(in Hz) 

ANSYS solution using 

SHELL 281  elements 

(in Hz) 

ANSYS solution using 

SHELL 181 elements 

(in Hz) 

Circumferential 

𝐾 = 𝐿 = 4 

75.95 78.86 74.55 

Bending 

𝐼 = 𝐽 = 𝑃 = 𝑄

= 3 

39.71 37.00 37.82 

 

Table 2.7: Comparison of natural frequencies for the orthotropic disc 

 It is observed from above Table 2.7 that the lowest bending mode natural 

frequency of the disc is less than circumferential mode natural frequency. It is because 

of the lower stiffness of the orthotropic disc in transverse direction.  
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2.8    Parametric study  

 

Effect of thickness of the disc on the lowest bending mode natural frequency, the 

lowest circumferential mode natural frequency and the coupled mode natural 

frequencies is depicted in the following Table 2.8. It is concluded that the lowest 

bending mode and the coupled mode natural frequencies increase because of the fact 

that the stiffness of the disc increases with thickness. The lowest in-plane mode natural 

frequency is constant with thickness variation. The dimensions and material properties 

are considered as given in Section 2.5. 

Mode set 
Ω of 0.2 m 

thickness disc 

Ω of 0.3 m 

thickness disc  

𝑛 = 0 

bending 

mode 

0.2668 0.3919 

𝑛 = 0 

circumferential 

mode 

0.61255 0.608 

𝑛 = 1 

coupled 

0.2494 0.3491 

𝑛 = 2 

coupled 

0.3132 0.4485 

𝑛 = 3 

coupled 

0.5992 0.8722 

 

Table 2.8: Variation of non-dimensional frequency parameter with thickness of the 

disc 

Effect of thickness of the disc made of Graphite-Polymer composite material is shown 

in the following Table 2.9.  
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Mode 

type 

Outer 

thickness 

(in m) 

RR 

solution 

(Hz) 

ANSYS 

SHELL 

281 

element 

(Hz) 

ANSYS 

SHELL 

181 

element 

(Hz) 

Circumferential 

𝐾 = 𝐿 = 4 

0.2 78.84 78.92 74.58 

0.3 75.73 78.91 74.73 

Bending 

𝐽 = 𝑃 = 7, 𝐼 = 𝑄

= 4 

0.2 46.67 47.27 48.69 

0.3 66.22 65.37 67.42 

 

Table 2.9 : Effect of thickness on in-plane and out-of-plane natural frequencies of 

Graphite-Polymer composite disc 

Note that higher order polynomial is chosen to represent the bending mode shape of a 

composite disc. These are the minimum number of terms required to make the 

polynomial mathematically complete. In Equations (2.23), (2.24) and (2.25), chosen 

upper limits of summation are shown in Table 2.9. Again, in determining the upper 

limits in Equations (2.23) and (2.25) to represent the deformed shape in bending mode 

vibrations, the equal number of cross terms in 𝑟 and 𝑧 directions (i.e. 𝐽 = 𝑃 = 7 ) are 

chosen to prevent the matrix ill-conditioning. 

The variation of non-dimensional frequency parameter √2𝜔2𝑅0
2 𝜌(1+𝑣)

𝐸
 with Poisson’s 

ratio is shown in the following Table 2.10.   
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Mode set 

Non-dimensional frequency 

parameter √2𝜔2𝑅0
2 𝜌(1+𝑣)

𝐸
 

𝑣 = 0.33 𝑣 = 0.4 

𝑛 = 0 

bending 

mode 

0.2083 0.2243 

𝑛 = 0 

circumferential 

mode 

0.5945 0.5945 

𝑛 = 1 

coupled 

0.1745 0.1998 

𝑛 = 2 

coupled 

0.2243 0.2359 

𝑛 = 3 

coupled 

0.4476 0.4527 

 

Table 2.10: Variation of non-dimensional frequency parameter with Poisson’s ratio of 

the circular clamped-free disc of uniform thickness 

It can be seen from above Table 2.10 that the lowest bending mode natural 

frequency increases with the Poisson’s ratio and the lowest circumferential mode 

natural frequency decreases with Poisson’s ratio. The numerical data shown in above 

Table 2.10 is non-dimensional. The non-dimensional factors associated with Poisson’s 

ratio of 0.33 and 0.4 are 246.28 and 240.044 respectively (and they should be multiplied 

with respective frequency parameters shown in above Table 2.10 to calculate natural 

frequencies). 
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2.9    Conclusion  

 

In this Chapter, the elastic behaviour of the circular disc of uniform thickness is 

presented in Section 2.2. In Section 2.3, Rayleigh-Ritz method is presented. The 

trigonometric functions in circumferential coordinate are employed in Rayleigh-Ritz 

method.  In Sections 2.5 and 2.8, free vibration analyses of the circular disc of uniform 

thickness made of Structural Steel material and Graphite-Polymer composite material 

are presented. A summary of observations is as follows:  

 For the circular disc made of Graphite-Polymer composite material, the natural 

frequency of circumferential mode only depends on the shear modulus of the 

material. The circumferential mode natural frequency almost remains constant 

with the variation of the disc thickness parameter.  

 The lowest bending mode natural frequency increases with the thickness in both 

isotropic and orthotropic cases.  

 For the isotropic disc, the lowest bending mode natural frequency increases with 

the Poisson’s ratio of the material. The natural frequencies of vibration modes 

of higher nodal diameter numbers increase with Poisson’s ratio.  

 For the moderately thick discs, it is concluded that, the lowest circumferential 

mode frequency is higher than the lowest bending mode frequency because of 

the fact that the circumferential mode vibration involves shearing, in which the 

sole component of deformation is tangential to the disc middle surface and this 

behaviour causes the higher stiffness of the disc in circumferential mode 

vibration compared to the bending mode vibration in which the sole component 

of displacement present is normal to the disc middle surface (although there 

exists ‘small’ radial displacement component as explained in Section 2.5). 
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 Rayleigh’s damping coefficients calculated based on modal mass participation 

yield more realistic damping characteristic of circular clamped-free disc.  
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Chapter 3                                                                                               

Three-dimensional in-plane and out-of-plane vibrations of linearly-

tapered clamped-free disc 

 

3.1    Introduction 

 

This chapter presents the generalized formulation to investigate the lowest in-

plane mode and the lowest out-of-plane mode natural frequencies of the linearly-

tapered disc by proposed solution technique which employs conventional Rayleigh-

Ritz method with finite-element-like modification. Three-dimensional in-plane and 

out-of-plane mode vibrations of a circular tapered disc made of isotropic and 

orthotropic materials are investigated. In all the parametric studies for the orthotropic 

disc, Graphite-Polymer composite material is considered and for the isotropic disc, 

Structural Steel material is considered. The material properties of Graphite-Polymer 

composite material are given in Table 2.6. The clamped-free boundary condition is 

considered in this Chapter. Effect of linear taper on the lowest circumferential mode 

and the lowest out-of-plane mode natural frequencies is studied. Rayleigh-Ritz 

solutions are compared with the results calculated using ANSYS. 

As discussed in Section 1.2, the increasing demand for realistic dynamic analysis 

of thick structural components such as a tapered circular disc in automotive or 

turbomachinery applications necessitates the requirement for development of robust 

three-dimensional models and their solution procedures. 

Nowadays, finite element solvers are used increasingly for modelling three-

dimensional problems. Industrial finite element packages make use of 3-D elements 

such as tetrahedral, hexahedra etc. One of the major difficulties associated with the use 
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of such 3-D elements is that one needs a large number of elements to solve the static 

analysis problem. This fact is quite true for the dynamic analysis also. Again, this makes 

the finite element solver to solve a large number of simultaneous equations [44]. In this 

Chapter, this problem is tackled with the presented numerical technique.   

The GEnx Commercial Aircraft Engine is used for powering Boeing 747-8 and 

Boeing 787 Dreamliner. It is the bypass turbofan engine of 21st century consisting of 

carbon-fiber composite fan blades. GEnx-1B engine offers advantages in terms of 

weight and delivers up to 15% better specific fuel consumption than its predecessors. 

This engine has the fan diameter of 111.1 inch and the inner thickness of the blisk is 

0.39 m [45]. The later dimension was measured through its CAD drawing. The 

following Figure 3.1 shows the front view and isometric view of the same.  

 

Figure 3.1: CAD geometry of turbofan of GEnx 

The above Figure 3.1 shows one of the applications of thick circular annular 

discs of clamped-free boundary condition. To study the dynamic behaviour of such 

blisk, it can be modelled as a thick linearly-tapered disc of clamped-free boundary 

condition. To accurately predict the in-plane and out-of-plane vibration responses of 

such thick disc, the development of an efficient three-dimensional model is essential.   
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3.2    Modelling 

 

The basic idea in the finite element method is to solve a complicated problem by 

replacing it by a simpler one. More specifically, the entire domain of the problem is 

represented as an assemblage of subdivisions called finite elements. These elements are 

interconnected at the boundaries of the adjacent elements. These specified joints are 

called nodes. Generally, we assume the variation of the displacement field (or any other 

field variable of interest) inside a finite element using a simple approximation function. 

These functions can be represented as the linear combination of constant coefficients 

and algebraic displacement terms. By satisfying the boundary condition at a node, such 

approximating functions can be defined in terms of the values of field variables (here, 

displacement) at the nodes. To derive the elemental equations, the Lagrange functional 

can be minimized with respect to each nodal unknown coefficients. Again, the 

Lagrange functional can be written as the summation of each element contribution. The 

substitution of assumed displacement polynomial which is indeed a function of 

unknown nodal value matrix into the minimization of each elemental Lagrange 

functional leads to the derivation of elemental mass and elemental stiffness matrices 

[44]. Through the proper assemblage of such elemental mass and elemental stiffness 

matrices, global stiffness and global mass matrices of the structural system can be 

calculated. This way finite element method can be summarized as an element wise 

application of Rayleigh-Ritz method.   

Recall the explanation given in sub-section 1.3.1 for the Rayleigh-Ritz method. 

In this method, an approximate solution to the problem is developed over the entire 

domain.  
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In the presented numerical approach, the domain of linearly-tapered disc is 

divided into subdomains, similar to finite element method. Further, an approximate 

solution to the problem for each element is developed over the entire domain of 

linearly-tapered disc, not just over each element as in the case of finite element method. 

Hence, this approach leads to less number of terms in the approximate functions needed 

to calculate the natural frequencies that are closer to the exact solutions compared to 

finite element method. 

In the following Figure 3.2, linearly-tapered disc of clamped-free boundary 

condition is represented in cylindrical coordinate system. 𝑅𝑖 and 𝑅𝑜 represent the inner 

radius and outer radius of the disc respectively. The inner and outer thicknesses of the 

disc are indicated by ℎ𝑖 and ℎ𝑜. 

As shown in Figure 3.2, the linearly-tapered disc is divided into a number of 

divisions, let it be any positive integer number, in order to model the tapered shape of 

a non-deformed disc. Midpoint thickness of each division is calculated, and strain 

energy and kinetic energy are integrated over the respective division, keeping the 

displacement polynomials global over each division. Later, strain energies and kinetic 

energies of all divisions are added in order to derive the total strain energy and total 

kinetic energy of the linearly-tapered disc.  
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           Figure 3.2: Cross-sectional geometry and coordinate system of linearly-tapered disc 

 

3.2.1 Maximum strain energy and maximum kinetic energy 

   

For linearly-tapered disc, total strain energy is derived by adding the strain energy 

of each division (which is basically derived by integrating it with reference to midpoint 

thickness and respective radius ratio). It is important to note that thickness term and 

radius term, according to the respective division, are multiplied inside of the equations 

of energies unlike the formulation for the case of  the uniform-thickness disc. Again, 

recalling that the non-dimensional term  𝑎 =
𝑅𝑜

ℎ
 appears in Equation (2.27), which holds 

true for the uniform-thickness disc case, here it must be modified for each division.  

Maximum strain energy of linearly-tapered disc is calculated by the following 

Equation (3.1): 
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(𝜋𝑚𝑎𝑥)𝐿𝑇

= 
𝐸

4(1 + 𝑣)
(∫ ∫ ∫ ℎ𝑚𝑖𝑑1 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π1) ζ𝑑𝜃 𝑑ζ 𝑑ξ  

2𝜋

0

1

β1

1
2

−
1
2

+ ∫ ∫ ∫ ℎ𝑚𝑖𝑑2 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π2) ζ𝑑𝜃 𝑑ζ 𝑑ξ  
2𝜋

0

1

β2

1
2

−
1
2

+ ∫ ∫ ∫ ℎ𝑚𝑖𝑑3 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π3) ζ𝑑𝜃 𝑑ζ 𝑑ξ  
2𝜋

0

1

β3

1
2

−
1
2

+ ……… ∫ ∫ ∫ ℎ𝑚𝑖𝑑𝑁 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π𝑁) ζ𝑑𝜃 𝑑ζ 𝑑ξ  
2𝜋

0

1

β𝑁

1
2

−
1
2

) 

 

  (3.1) 

where, 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π𝑁 are obtained from Equation (2.26). where, 𝑎𝑁 =
𝑅𝑜𝑁

ℎ𝑁
 and 𝑁 is the 

division number. 

  

 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π𝑁 = 
2𝑣

1 − 2𝑣
((

𝜕𝑈

𝜕ζ
) sin 𝑛𝜃 −

𝑛 𝑉 sin 𝑛𝜃

ζ
+ 

𝑈 sin 𝑛𝜃

ζ

+ 𝑎𝑁 (
∂W

∂ξ
sin 𝑛𝜃)

2

) + 2(
𝜕𝑈

𝜕ζ
sin 𝑛𝜃)

2

+ 2(
𝑈 sin 𝑛𝜃

ζ
−

𝑛 𝑉 sin 𝑛𝜃

ζ
)

2

+ 2𝑎𝑁
2 (

∂W

∂ξ
sin 𝑛𝜃)

2

+ (
𝑛 𝑈 cos 𝑛𝜃

ζ
+

𝜕𝑉

𝜕ζ
cos 𝑛𝜃 −

 𝑉 cos 𝑛𝜃

ζ
)
2

+ (𝑎𝑁

∂V

∂ξ
cos 𝑛𝜃 +

 𝑛 𝑊 cos 𝑛𝜃

ζ
)

2

+ (𝑎𝑁

∂U

∂ξ
sin 𝑛𝜃 +

𝜕𝑊

𝜕ζ
sin 𝑛𝜃)

2

 

  (3.2) 
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Similarly, the maximum kinetic energy of linearly-tapered disc is expressed by 

the following equation. 

 

(𝑇𝑚𝑎𝑥)𝐿𝑇

=  
1

2
𝜔2𝜌 (∫ ∫ ∫   ℎ𝑚𝑖𝑑1𝑅𝑜1

2 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗) ζ𝑑𝜃 𝑑ζ 𝑑ξ
2𝜋

0

1

β1

1
2

−
1
2

+ ∫ ∫ ∫   ℎ𝑚𝑖𝑑2𝑅𝑜2
2 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗) ζ𝑑𝜃 𝑑ζ 𝑑ξ 

2𝜋

0

1

β2

1
2

−
1
2

+ ∫ ∫ ∫   ℎ𝑚𝑖𝑑3𝑅𝑜3
2 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗) ζ𝑑𝜃 𝑑ζ 𝑑ξ 

2𝜋

0

1

β3

1
2

−
1
2

+ ⋯……∫ ∫ ∫   ℎ𝑚𝑖𝑑𝑁𝑅𝑜𝑁
2 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗) ζ𝑑𝜃 𝑑ζ 𝑑ξ 

2𝜋

0

1

β𝑁

1
2

−
1
2

) 

Here, 

  (3.3) 

 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗ = 𝑈2 sin2 𝑛𝜃 + 𝑉2 cos2 𝑛𝜃 + 𝑊2 sin2 𝑛𝜃   (3.4) 

 

In Equations (3.1) and (3.3), ℎ𝑚𝑖𝑑1 is the midpoint thickness of division 1 and ℎ𝑚𝑖𝑑2 is 

the midpoint thickness of division 2 and so on. 𝑅𝑜1 is the outer thickness of division 1, 

𝑅𝑜2 is the outer thickenss of division 2  and so on. In Equations (3.2) and (3.4), 𝑛 is the 

nodal diameter number. β1 represents the radius ratio of division 1, β2 represents the 

radius ratio of division 2 and so on. 
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3.3    Rayleigh-Ritz solution  

  

Rayleigh’s quotient for the uniform disc is derived in sub-section 2.3.3. For the 

linearly-tapered disc, Equation (2.34) is modified as below: 

 (Ω)2
𝐿𝑇 =  2𝜔2

𝜌(1 + 𝑣)

𝐸
=   

∫ ∫ ∫ ℎ𝑚𝑖𝑑1(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π1) 𝜁𝑑𝜃 𝑑𝜁 𝑑𝜉 + ⋯ 
2𝜋

0

1

𝛽1

1
2

−
1
2

+∫ ∫ ∫ ℎ𝑚𝑖𝑑𝑁 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π𝑁) 𝜁𝑑𝜃 𝑑𝜁 𝑑𝜉  
2𝜋

0

1

𝛽𝑁
 

1
2

−
1
2

∫ ∫ ∫  ℎ𝑚𝑖𝑑1𝑅𝑜1
2  (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗) 𝜁𝑑𝜃 𝑑𝜁 𝑑𝜉 

2𝜋

0

1

𝛽1

1
2

−
1
2

+ ⋯

+∫ ∫ ∫   ℎ𝑚𝑖𝑑𝑁𝑅𝑜𝑁
2 (𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗) 𝜁𝑑𝜃 𝑑𝜁 𝑑𝜉 

2𝜋

0

1

𝛽𝑁

1
2

−
1
2

   (3.5) 

Further, 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π and 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗ for in-plane mode and out-of-plane mode 

vibrations are derived from the generalized formulation for the uniform disc, presented 

in Chapter 2. It is important to note that in Equations (3.1) and (3.3), set (B) functions 

are employed. 

3.3.1 Eigenvalue problem for in-plane vibrations 

  

To calculate the lowest in-plane mode natural frequency of linearly-tapered disc 

made of isotropic material, terms of maximum strain energy and maximum kinetic 

energy, represented by Equations (3.2) and (3.4) are modified as follows: 

 t𝑒𝑟𝑚𝑠 𝑜𝑓 Π𝑁 = (
𝜕𝑉

𝜕ζ
−

 𝑉

ζ
)
2

+ 𝑎𝑁
2  (

∂V

∂ξ
)
2

   (3.6) 

 

 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑇∗ = 𝑉2     (3.7) 

Let this circumferential amplitude 𝑉 be expressed as the combination of arbitrary 

coefficients and non-dimensional radius and non-dimensional thickness terms. 
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 𝑉 = 
ζ(ζ − β)

(1 − β)
∑ ∑ 𝐵𝑘𝑙

𝐿

𝑙=0

𝐾

𝑘=0

 ζk ξl   (3.8) 

As shown in Equation (3.8), the same shape function is assumed as in the case of the 

uniform disc case. The advantage of presented approach is that it allows to use lower 

order polynomial in Equation (3.8). To obtain the best possible approximation of 

natural frequencies, arbitrary coefficients are adjusted and non-dimensional frequency 

is made stationary. Minimizing Rayleigh's quotient with respect to arbitrary constants, 

 
𝜕(Ω)2

𝐿𝑇

𝜕𝐵𝑘𝑙
= 0   (3.9) 

The above Equation (3.9) gives the set of (𝐾 + 1)(𝐿 + 1) linear algebraic equations in 

terms of arbitrary coefficients. Upon simplifying, one gets:  

 
𝜕𝑁

𝜕𝐵𝑘𝑙
− (Ω)2

𝐿𝑇

𝜕𝐷

𝜕𝐵𝑘𝑙
= 0   (3.10) 

where, 𝑁 and 𝐷 are the numerator and the denominator of Equation (3.5).  

Equation (3.10) can be rewritten and represented as an eigenvalue problem: 

 ([𝐾] − (Ω)2
𝐿𝑇[𝑀]){𝐵𝑘𝑙} = {0}   (3.11) 

To have a non-trivial solution, let the determinant of  the augmented matrix be 

zero in Equation (3.11). MATLAB code is developed to get the non-dimensional 

frequency parameter (Ω)𝐿𝑇 = √2𝜔2 𝜌(1+𝑣)

𝐸
 and subsequently the natural frequency of 

in-plane mode vibration of the disc made of isotropic material is obtained.  

3.3.2 Eigenvalue problem for out-of-plane vibrations 

To investigate out-of-plane vibrations of the linearly-tapered disc, Equations (3.2) 

and (3.4) are recalculated again using set (A) functions expressed as Equations (2.43), 

(2.44) and (2.45), which hold true for bending mode and coupled modes. Further, these 

equations are recalculated for 𝑛 = 0 to calculate the lowest bending natural frequency. 
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For pure transverse mode, the amplitudes in 𝑟 and 𝑧 directions are expressed by 

Equations (2.23) and (2.25) respectively.  

3.4    Parametric study on isotropic disc 

It is assumed that linearly-tapered disc is made of Structural Steel material. The 

numerical values of Young’s modulus and Poisson’s ratio for this material are 200 GPa 

and 0.3 respectively. The outer radius and inner radius of the linearly-tapered disc are 

0.5 m and 0.1 m respectively. The inner thickness of linearly-tapered disc is 0.4 m and 

kept constant throughout the analysis. 

Rayleigh-Ritz solutions are compared with the results calculated using ANSYS. 

In simulation using ANSYS, SOLID 186 elements are used along with quadratic 

hexahedral mesh type in order to get accurate results compared to the tetrahedral 

elements without mid-side nodes. SOLID 186 is a higher-order three-dimensional 20- 

node element. This element has three translation degrees of freedom per node and it 

exhibits quadratic displacement behaviour.  

3.4.1 In-plane vibrations of linearly-tapered isotropic disc 

 

To study the effect of linear taper on the lowest in-plane mode frequency, consider 

that the outer thickness of the linearly-tapered disc is varied up to 0.2 m. As shown in 

the following Figure 3.3, for all of the three radius ratios namely 0.2, 0.25 and 0.3, it is 

observed that the lowest in-plane mode frequency increases with the decrease of outer 

thickness. 
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Figure 3.3: Variation of the lowest in-plane mode frequency with outer thickness 

and radius ratio 

As discussed in Section 1.1, in some of the engineering applications of circular 

tapered discs, it is advisable to study the effect of linear taper on the lowest in-plane 

mode frequency. Consider the variation of taper angle from infinitesimal taper up to 1 

degree of taper. The following Figure 3.4 shows the variation of the lowest in-plane 

mode frequency with taper angle for radius ratio of 0.3. 
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Figure 3.4: Variation of the lowest in-plane mode frequency with taper angle of 

linearly-tapered isotropic disc for beta value of 0.3 

3.4.2 Out-of-plane vibrations of linearly-tapered isotropic disc 

 

The following Figure 3.5 shows the effect of linear taper on the lowest bending 

mode non-dimensional frequency parameter. This study concludes that the non-

dimensional frequency parameter of lowest bending mode increases linearly with taper-

angle. 

 

Figure 3.5: Variation of the lowest transverse mode frequency with taper angle of 

linearly-tapered isotropic disc for beta value of 0.25 
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Comparison of lowest transverse mode non-dimensional frequency obtained using 

Rayleigh-Ritz solution and Finite Element solution is made for radius ratio values of 

0.2 and 0.25 in the following Figure 3.6.  

 

Figure 3.6: Variation of the lowest transverse mode frequency with linear taper and 

radius ratio 

It is noted from the present three-dimensional analysis that the non-dimensional 

frequency parameter for the isotropic disc, calculated using ANSYS are higher than 

that obtained using Rayleigh-Ritz method. Moreover, higher mode vibration analysis 

can be conducted with acceptable accuracy using presented formulation. 

3.5    Vibration analysis of linearly-tapered orthotropic disc  
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developed to study the effect of linear taper on the lowest in-plane mode and the lowest 

out-of-plane mode natural frequencies based on the approach discussed in Section 3.2. 

For the orthotropic disc, midpoint thickness of each division is calculated. 

Maximum strain energy and maximum kinetic energy for each division are integrated 

uniformly over respective division considering the formulation for uniform thickness 

orthotropic disc case as described in Section 2.7. Material properties of Graphite-

Polymer composite as given in Table 2.6, are considered for the present analysis.  

3.5.1 In-plane vibrations of linearly-tapered orthotropic disc  

 

To investigate three-dimensional in-plane vibration response, maximum strain 

energy and maximum kinetic energy of linearly-tapered clamped-free orthotropic disc 

are calculated as follow: 

 

(𝜋𝑚𝑎𝑥)𝐿𝑇 = 0.5𝐶66 (∫ ∫ ∫  
2𝜋
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1
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  (3.12) 
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   (3.13) 

where, 𝜌𝑜 is the density of orthotropic material.  
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From Equations (3.12) and (3.13), the frequency parameter can be obtained as follows:  

 (Ω)𝐿𝑇𝑜 = √
𝜌𝑜 𝜔2

𝐶66
   (3.14) 

Again, it is minimized with respect to the arbitrary coefficients to calculate the 

approximate natural frequency of the lowest in-plane mode. Polynomial described by 

Equation (3.8) is used here for the three-dimensional in-plane mode vibration analysis 

of orthotropic disc. MATLAB code is written to solve the eigenvalue problem of a 

linearly-tapered orthotropic disc having clamped-free boundary condition.  

3.5.2 Transverse vibrations of linearly-tapered orthotropic disc 

 

To study three-dimensional out-of-plane vibrations, maximum strain energy and 

maximum kinetic energy of linearly-tapered clamped-free orthotropic disc are 

calculated as follow: 
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  (3.15) 

 

 (𝑇𝑚𝑎𝑥)𝐿𝑇 =  
1

2
𝜔2𝜌𝑜

(

 
 
 

∫ ∫ ∫  ℎ𝑚𝑖𝑑1𝑅𝑜1
2  (𝑈2 + 𝑊2) 𝜁𝑑𝜃 𝑑𝜁 𝑑𝜉 

2𝜋

0

1

𝛽1

1
2

−
1
2

+ ⋯

+∫ ∫ ∫   ℎ𝑚𝑖𝑑𝑁𝑅𝑜𝑁
2 (𝑈2 + 𝑊2) 𝜁𝑑𝜃 𝑑𝜁 𝑑𝜉 

2𝜋

0

1

𝛽𝑁

1
2

−
1
2 )

 
 
 

   (3.16) 
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where,  

 

[𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Π𝑁]𝑜𝑟𝑡ℎ𝑜

=
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  (3.17) 

Equations (3.15) and (3.16) are equated and non-dimensional frequency parameter for 

the lowest transverse mode can be calculated as follows: 

 (Ω)𝐿𝑇𝑜 = √
𝜌𝑜 𝜔2

𝐶55
   (3.18) 

This frequency parameter is minimized with respect to the arbitrary coefficients 

of Equations (2.23) and (2.25). MATLAB code is developed to solve the eigenvalue 

problem and as a result, the lowest frequency parameter for the lowest transverse mode 

is reported. 

3.6    Parametric study on orthotropic discs  

  

The three-dimensional response of the linearly-tapered disc made of the Graphite-

Polymer composite material is studied using the presented approach. The same 

dimensions of the orthotropic disc are considered as that of the isotropic disc. The inner 

thickness and outer radius of the disc are kept constant throughout the analysis. 

Rayleigh-Ritz solutions are compared with results calculated using ANSYS. Effect of 

taper angle and radius ratio on the lowest in-plane mode and the lowest out-of-plane 

mode natural frequencies is studied. Moreover, three-dimensional higher mode 
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vibration analysis for the linearly-tapered disc of orthotropic material also can be 

conducted with good accuracy with the presented formulation.  

The following Figure 3.7 shows the bending mode and circumferential mode 

vibration of linearly tapered circular disc of beta value of 0.2 (and taper angle of 14.04) 

and made of Graphite-Polymer composite material. In ANSYS, free vibration analysis 

was conducted using SOLID 186 elements. For the mentioned disc, the fundamental 

mode of vibration is the circumferential mode. 

  

Figure 3.7: The lowest bending and the lowest circumferential mode vibrations of 

linearly-tapered disc made of Graphite-Polymer composite material having beta value 

of 0.2   

The following Figure 3.8 shows a variation of frequency parameter with outer thickness 

of the disc and radius ratio. Lower order polynomial in 𝑟 and 𝑧  is used along with 

considering 5, 3 and 2 numbers of divisions for the orthotropic disc of radius ratio 0.2, 

0.25 and 0.3 respectively to calculate the lowest in-plane mode frequency.  
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Figure 3.8: Variation of the lowest in-plane mode natural frequency of linearly-

tapered orthotropic disc with respect to linear-taper and radius ratio 

From above Figure 3.8, it is observed that for the linearly-tapered orthotropic disc, 

the increase in frequency parameter is non-linear with linear increment of radius ratio. 

For example, for linearly-tapered disc of outer radius of 0.3, frequency parameters 

calculated using Rayleigh-Ritz method with finite-element-like modification are 

1.1860, 1.538 and 1.9414 for beta values of 0.2, 0.25 and 0.3 respectively.  

The variation of the frequency parameters of the lowest in-plane mode with taper 

angle for different radius ratio values are depicted in the following Figure 3.9. It is 

observed that for the orthotropic disc, the frequency parameters increase with taper 

angle and radius ratio.     
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Figure 3.9: Behaviour of orthotropic disc in in-plane vibration mode with respect to 

taper angle and radius ratio 

The natural frequency for the lowest transverse mode of the orthotropic disc is 

calculated using Rayleigh-Ritz method for the beta value of 0.2 and the variation of 

natural frequency with outer thickness of the disc is noted in the following Table 3.1. 

For a disc of radius ratio 0.2, lower order polynomial is considered along with six 

number of divisions. 
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Outer 

thickness 

(ℎ𝑜 in m)  

Taper angle  

(in degrees) 

RR solution 

(𝑓3 in Hz) 

Finite element 

solution using 

ANSYS 

% 

Difference 

0.39 0.72 583.4589 573.84 -1.68 

0.35 3.58 595.4906 589.29 -1.05 

0.3 7.12 612.5969 611.18 -0.23 

0.25 10.62 632.5566 636.65 0.64 

0.2 14.04 656.1879 666.94 1.61 

 

Table 3.1: Variation of natural frequency of the lowest transverse mode with outer 

thickness of linearly-tapered orthotropic disc for beta value of 0.2 

In Equations (2.23) and (2.25), the upper limit of summation is set to 1 (i.e. four 

terms in the polynomial are considered) to analyse the three-dimensional out-of-plane 

vibration response of orthotropic disc having a beta value of 0.25. Here, four number 

of divisions are considered to determine approximate frequencies. 

In above Table 3.1, percentage difference is calculated using the following 

formula: 

 % Difference =
3D FEA solution − 3D RR solution

3D FEA solution
    (3.19) 

In Table 3.1, taper angle is calculated using the following formula: 

 𝑡𝑎𝑝𝑒𝑟 𝑎𝑛𝑔𝑙𝑒 =  90 − tan−1
2(𝑅𝑜 − 𝑅𝑖)

ℎ𝑖 − ℎ𝑜
   (3.20) 

where, ℎ𝑖 and ℎ𝑜 are the inner and outer thicknesses of the tapered disc and 𝑅𝑖 and 𝑅𝑜 

are the inner and outer radius values of the tapered disc. The following Table 3.2 shows 

the variation of natural frequency with the outer thickness of the disc. 
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Outer 

thickness 

(ℎ𝑜 in m)  

Taper angle  

(in degrees) 

RR solution 

(𝑓3 in Hz) 

Finite element 

solution using 

ANSYS 

% 

Difference 

0.39 0.76 666.1490 640.57 -3.99 

0.35 3.81 677.2914 658.28 -2.89 

0.3 7.59 693.1765 683.25 -1.45 

0.25 11.31 711.7809 712.13 0.05 

0.2 14.93 733.9158 746.27 1.66 

 

Table 3.2: Variation of natural frequency of lowest transverse mode with outer 

thickness of linearly-tapered orthotropic disc for beta value of 0.25 

Variation of natural frequency of the lowest transverse mode with outer thickness of 

disc is shown in Table 3.3, which is given below: 

Outer 

thickness 

(ℎ𝑜 in m)  

Taper angle  

(in degrees) 

RR solution 

(𝑓3 in Hz) 

Finite element 

solution using 

ANSYS 

% 

Difference 

0.39 0.82 739.5735 715.87 -3.31 

0.35 4.09 749.3756 736.27 -1.78 

0.3 8.13 763.3466 764.88 0.20 

0.25 12.09 779.7100 797.73 2.26 

0.2 15.95 800.0 836.31(𝑓4) 4.34 

 

Table 3.3: Variation of natural frequency of the lowest transverse mode with outer 

thickness of linearly-tapered orthotropic disc for beta value of 0.3  
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The following Table 3.4 shows the variation of the natural frequency of the lowest 

transverse mode with taper angle for beta values of 0.2, 0.25 and 0.3. 

 

3.7    Rayleigh’s damping for linearly-tapered disc 

 

        As discussed in Section 2.6, it is important to calculate the realistic values of 

Rayleigh’s damping coefficients based on the modal mass participation factor. 

Linearly-tapered disc made of Structural Steel material is considered with beta value of 

0.2. The outer thickness and inner thickness are considered as 0.1 m and 0.2 m 

respectively. Furthermore, the outer radius and inner radius of the disc are considered 

as 2 m and 0.4 m respectively. Rayleigh’s damping coefficients based on linear 

approximation, significant mode approximation, full range approximation and 

approximation based on average data are calculated. Numerical values of all four data 

sets and natural frequencies of linearly-tapered disc that are obtained using ANSYS are 

tabulated in the following Table 3.5: 

Taper  

angle 

 (in  

degrees)  

RR solution  

(𝑓3 in Hz) 

Finite element solution           

using ANSYS (𝑓3 in Hz) 

β = 0.2 β = 0.25 β = 0.3 β = 0.2 β = 0.25 β = 0.3 

0.2 581.4262 664.2134 737.8186 571.2489 637.4886 712.2384 

0.4 582.2225 664.8852 738.3909 572.2691 638.5835 713.4328 

0.6 582.9939 665.6069 738.9383 573.2645 639.6783 714.5775 

0.8 583.7902 666.2787 739.5355 574.2847 640.7732 715.7719 

1 584.6113 666.9755 740.083 575.3049 641.893 716.9414 

Table 3.4: Effect of taper angle on natural frequency of lowest transverse mode of 

linearly-tapered orthotropic disc for beta values of 0.2, 0.25 and 0.3 
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Estimation of Rayleigh's damping coefficients for linearly-tapered isotropic disc 

Mode 

number 

Natural 

frequency 

from 

ANSYS 

(Hz) 

Circular 

Natural 

frequency 

from 

ANSYS  

(rad/sec) 

Damping 

ratio based 

on linear 

interpolation  

Damping ratio 

based on 13th 

mode 

approximation  

Damping ratio 

based on full 

range  

approximation  

Damping ratio 

based on 

average data  

1 60.641 381.1720 0.0200 0.0200 0.0200 0.0200 

2 60.642 381.1783 0.0200 0.0200 0.0200 0.0200 

3 63.434 398.7280 0.0203 0.0200 0.0199 0.0199 

4 69.628 437.6617 0.0211 0.0200 0.0197 0.0199 

5 69.63 437.6743 0.0211 0.0200 0.0197 0.0199 

6 112.04 704.2514 0.0263 0.0232 0.0217 0.0225 

7 112.04 704.2514 0.0263 0.0232 0.0217 0.0225 

8 176.38 1108.6743 0.0341 0.0311 0.0283 0.0297 

9 176.38 1108.6743 0.0341 0.0311 0.0283 0.0297 

10 181.88 1143.2457 0.0347 0.0319 0.0289 0.0304 

11 254.55 1600.0286 0.0436 0.0422 0.0378 0.0400 

12 254.55 1600.0286 0.0436 0.0422 0.0378 0.0400 

13 307.32 1931.7257 0.0500 0.0500 0.0446 0.0473 

14 319.36 2007.4057 0.0515 0.0518 0.0462 0.0490 

15 319.36 2007.4057 0.0515 0.0518 0.0462 0.0490 

16 344.74 2166.9371 0.0546 0.0556 0.0495 0.0526 

17 344.74 2166.9371 0.0546 0.0556 0.0495 0.0526 

18 367.11 2307.5486 0.0573 0.0590 0.0525 0.0557 

19 367.12 2307.6114 0.0573 0.0590 0.0525 0.0557 

20 435.45 2737.1143 0.0656 0.0693 0.0616 0.0655 

21 435.45 2737.1143 0.0656 0.0693 0.0616 0.0655 

22 446.21 2804.7486 0.0669 0.0710 0.0630 0.0670 

23 446.21 2804.7486 0.0669 0.0710 0.0630 0.0670 

24 463.52 2913.5543 0.0690 0.0736 0.0653 0.0695 

25 463.52 2913.5543 0.0690 0.0736 0.0653 0.0695 

26 558.34 3509.5657 0.0805 0.0882 0.0781 0.0832 

27 558.34 3509.5657 0.0805 0.0882 0.0781 0.0832 

28 597.44 3755.3371 0.0853 0.0942 0.0834 0.0888 

29 597.44 3755.3371 0.0853 0.0942 0.0834 0.0888 

30 680.53 4277.6171 0.0954 0.1070 0.0947 0.1009 

31 680.53 4277.6171 0.0954 0.1070 0.0947 0.1009 

32 732.46 4604.0343 0.1017 0.1151 0.1018 0.1084 

 

Table 3.5: Estimation of Rayleigh’s damping coefficients for linearly-tapered isotropic disc 
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The Rayleigh’s damping coefficients based on full range approximation are 

calculated as explained in Section 2.6. The value of Alpha-lt and Beta-klt based on full 

range approximation are 8.88 and 0.0000438 respectively, which match the best with 

the datum value calculated based on linear interpolation.  

The following Figure 3.10 shows the variation of damping ratio with circular 

natural frequency of the linearly-tapered circular disc of clamped-free boundary 

condition.  

 

Figure 3.10: Variation of damping ratio with circular natural frequency of linearly-

tapered isotropic disc 
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It is observed from above Figure 3.10 that the damping ratio variation is not significant 

for the frequency range from 381.1720 rad/sec to 704.2514 rad/sec. 

3.8    Conclusion  

 

In this Chapter, free vibration analysis of linearly-tapered circular disc of 

clamped-free boundary condition has been conducted. Frequency parameters for the 

discs made of orthotropic and isotropic material have been reported using Rayleigh-

Ritz method with finite-element-like modification. For the circular tapered disc made 

of Graphite-Polymer composite material, the frequency parameters obtained from the 

presented approach are in good agreement (less than 5% difference is noted) when 

compared with 3-D finite element solutions using ANSYS. A summary of observations 

is as follows: 

 An efficient and accurate approximate solution for 3-D vibration response of 

clamped-free isotropic and orthotropic discs has been developed using Rayleigh-

Ritz method. Linear strains are considered for the analysis. The presented 

solution will be useful to check the accuracy of the approximate solutions derived 

using 2-D approach. 

 The presented approach allows one to use the lower order polynomials to 

calculate the lowest in-plane and the lowest out-of-plane natural frequencies for 

the linearly-tapered clamped-free circular disc. Moreover, the free-vibration 

analysis can be conducted using presented formulation for the clamped-clamped 

and free-clamped boundary conditions considering appropriate constraint 

functions in displacements polynomials. The clamped-clamped disc has found 

application as locking device, which locks the connecting machine components 
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to each other by hydraulic pressure. The free-clamped disc has found application 

as clamping device (or fixture), which basically holds the machining tool.   

 The frequency parameters of the in-plane vibration mode solely depends on shear 

modulus of the composite material. 

 The frequency parameter for the lowest circumferential mode and the lowest 

bending mode increase with radius ratio. 

 The variation of lowest bending mode natural frequency with taper angle is 

higher when the radius ratio increases.  

 For the considerably-thick linearly-tapered disc (with  
𝑅𝑜

ℎ𝑖
 value of 1.25), it is 

observed that the fundamental mode of vibration is the circumferential mode. 

For the thick disc case, the bending stiffness of the structure is higher compared 

to in-plane stiffness.   
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Chapter 4                                                                                              

Three-dimensional in-plane and out-of-plane vibrations of non-

linearly tapered clamped-free disc 

 

4.1    Introduction 

 

The circular discs of non-linear thickness variation have found applications in 

turbomachinery. Very specific type of non-linear taper is considered in this Chapter 

which is defined by the hyperbolic taper. Here, hyperbolic thickness variation along 

radial direction is represented by the equation 𝑡 =
𝑡1

𝑟𝑠 , where ‘s’ is the taper parameter 

of the disc. Circular disc with such a thickness variation is often known as Stodola’s 

disc and has wide range of applications as discussed in Chapter 1. It has higher 

thickness at inner radius and lower thickness at outer radius. In this Chapter, three-

dimensional free vibration of Stodola’s disc is studied based on the numerical technique 

developed in the Chapter 3. Parametric study on in-plane and out-of-plane mode natural 

frequencies of isotropic and orthotropic discs based on the taper parameter of Stodola’s 

disc is conducted. For the parametric studies on orthotropic Stodola’s disc and isotropic 

Stodola’s disc, Graphite-Polymer composite material and Structural Steel material are 

considered respectively. The material properties of Graphite-Polymer composite 

material are given in Table 2.6. Throughout this Chapter, clamped-free boundary 

condition is considered.  

4.2    Modelling  

 

As shown in the following Figure 4.1, Stodola’s disc is divided into a number of 

divisions to model the non-linear tapered shape of non-deformed Stodola’s disc. Similar 

approach as mentioned in Chapter 3 is developed to study free vibration behaviour of 
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Stodola’s disc. The methodology developed in Chapter 3 to calculate maximum strain 

energy and maximum kinetic energy for linearly-tapered disc remains the same for the 

calculation of maximum energies of Stodola’s disc.  

The clamped-free boundary condition is considered for the Stodola’s disc throughout 

this Chapter.  

 

 

             Figure 4.1: Cross-sectional geometry and coordinate system for Stodola’s disc 

 

Midpoint thickness of each division is calculated and strain energies and kinetic 

energies are integrated uniformly over the respective division. Later, strain energies of 

all divisions are added in order to derive the total strain energy of the tapered disc. The 

same approach holds true for the derivation of total kinetic energy. 

Here, from the geometry, the outer radius of any division 𝑀 can be calculated as 

follows: 
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                                     𝑅𝑜𝑁 = 𝑅𝑖 + 𝑀 𝑙𝑟  (4.1) 

where 𝑀 is the number of divisions and 𝑙𝑟 is the radial length of each (equal) division. 

𝑅𝑖 is the inner radius of the Stodola’s disc.     

Similarly, radius ratio for each division can be calculated using following formula, 

              𝛽𝑁 = 
𝑅𝑖 + (𝑀 − 1) 𝑙𝑟

𝑅𝑖 + 𝑀 𝑙𝑟
 (4.2) 

Midpoint thickness of  𝑀𝑡ℎ division can be calculated as follows:  

        ℎ𝑚𝑖𝑑𝑀 =
ℎ𝑖𝑀 + ℎ𝑜𝑀

2
  (4.3) 

Here,  

            ℎ𝑜𝑀 = 
ℎ𝑖𝑅𝑖

𝑠

(𝑅𝑖 + (𝑀 − 1)𝑙𝑟)𝑠
      (4.4) 

Equations (3.1) and (3.3) are modified in accordance with Equation (4.2) and (4.3) 

to calculate maximum strain energy and maximum kinetic energy of Stodola’s disc 

made of isotropic material and subsequently to study the in-plane and out-of-plane 

mode vibrations characteristics. 

To study the three-dimensional vibrations of Stodola’s disc made of a Graphite-

Polymer composite material, Equations (3.12) and (3.13) should be modified by 

considering Equations (4.2) and (4.3). 
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4.3    Parametric study on isotropic Stodola’s discs  

 

It is assumed that the non-linearly tapered disc is made of Structural Steel 

material. Young’s modulus and Poisson’s ratio for this material are 200 GPa and 0.3 

respectively. Non-dimensional frequency parameters are calculated using Rayleigh-

Ritz method with finite-element-like modification and compared with the three-

dimensional ANSYS solutions. Three-dimensional in-plane vibration frequencies are 

noted in following Table 4.1 for different taper parameters of Stodola’s disc and for 

radius ratio of 0.2. The inner thickness of Stodola’s disc is 0.4 m and kept constant 

throughout the analysis.  

Taper  

Parameter  

‘s’ 

Outer 

thickness 

(in m)  

RR solution 

(𝑓1) in Hz 

 ANSYS 

Solution (in Hz) 

% Difference 

from ANSYS 

(hex mesh) 

solution 

Hex 

mesh 

Tet 

mesh 

0.861353 0.1 859.7902 853.45 854.62 -0.74 

0.609423 0.15 736.8296 773.25 774.96 4.71 

0.430677 0.2 702.7748 719.43 721.48 2.31 

0.29203 0.25 677.2498 678.81 680.44 0.23 

0.178747 0.3 657.0184 645.88 647.31 -1.72 

 

Table 4.1: Variation of natural frequency of the lowest in-plane mode with taper 

parameter of Stodola’s disc for beta value of 0.2 

For non-rotating Stodola’s disc, the circumferential in-plane mode is the fundamental 

mode of vibration. For the disc of beta value of 0.2, three numbers of divisions are 

considered for the disc of taper parameter value 0.861353 and for rest of the 
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configurations of non-linear tapers, four numbers of divisions are considered. The lower 

order shape function has been considered with 𝐾 = 𝐿 = 1 in Equation (2.24). 

In the lowest bending mode, 𝑧-direction and 𝑟-direction deformations are coupled. The 

natural frequencies of the lowest bending mode are presented in the following Table 

4.2. For the bending mode vibration analysis of Stodola’s disc, two numbers of 

divisions are considered for all the taper parameter values for beta value of 0.2. In 

Equations (2.23) and (2.25), the values of 𝐼, 𝐽 and 𝑃, 𝑄 are considered as 2.  

Taper  

Parameter  

‘s’ 

Outer 

thickness 

(in m)  

RR solution 

(𝑓3) in Hz 

 ANSYS 

Solution (in Hz) 

% Difference 

from ANSYS 

(hex mesh) 

solution 

Hex 

Mesh 

Tet 

mesh 

0.861353 0.1 1143.6069 1179.9 1180.5 3.07 

0.609423 0.15 1204.9378 1223.5 1224.1 1.52 

0.430677 0.2 1180.9205 1221.6 1222.0 3.33 

0.29203 0.25 1165.945 1200.5 1200.8 2.88 

0.178747 0.3 1154.9725 1171.3 1172.3 1.39 

 

Table 4.2: Variation of natural frequency of the lowest bending mode with taper 

parameter of Stodola’s disc for beta value of 0.2 
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4.4    Parametric study on orthotropic Stodola’s discs  

It is assumed that Stodola’s disc is made of Graphite-Polymer composite material. 

Material properties as given in Table 2.6 are considered. Variation of the lowest in-

plane mode natural frequency with taper parameter and radius ratio is presented in the 

following Table 4.3.  

Outer 

thick-

ness 

(in m) 

Taper  

Parameter  

‘s’ for 

𝛽 = 0.2 

RR 

solution 

(𝑓1) in Hz 

β = 0.2 

Taper  

Parameter 

‘s’ for  

𝛽 = 0.25 

RR  

solution 

(𝑓1) in Hz 

𝛽 = 0.25 

Taper  

Parameter 

‘s’ for  

𝛽 = 0.3 

RR 

solution 

(𝑓1) in Hz 

𝛽 = 0.3 

𝐾, 𝐿,𝑀 1,1,4 or 5 1,1,3 or 4 1,1,2 

0.1 

(𝑀) 

0.861353 

 

392.9392 

(4) 

1 493.7140 

(4) 

1.151433 - 

0.15 

(𝑀) 

0.609423 368.0136 

(4) 

0.707519 - 0.814661 513.6337 

(2) 

0.2 

(𝑀) 

0.430677 315.8229 

(5) 

0.5 403.7048 

(3) 

0.575717 500.4510 

(2) 

0.25 

(𝑀) 

0.29203 303.3300 

(4) 

0.339036 391.5931 

(3) 

0.390377 490.2533 

(2) 

0.3 

(𝑀) 

0.178747 293.4572 

(4) 

0.207519 381.9056 

(3) 

0.238944 481.9750 

(2) 

 

Table 4.3: Variation of natural frequency of lowest in-plane mode with taper 

parameter of orthotropic Stodola’s disc for beta values of 0.2, 0.25 and 0.3 

In above Table 4.3, the second row indicates the numbers of divisions and the 

order of polynomial considered to conduct the free vibration analysis of the orthotropic 
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Stodola’s disc for beta values of 0.2, 0.25 and 0.3. Recall that beta is the radius ratio of 

Stodola’s disc. 𝑀 denotes the number of divisions considered for the Stodola’s disc in 

Table 4.3. The number given in parenthesis represents the number of divisions 

considered in Rayleigh-Ritz formulation with finite-element-like modification.  𝐾 and 

𝐿 represent the number of terms considered in circumferential direction polynomial.  

It is observed from above Table 4.3 that the lowest in-plane mode natural 

frequency for particular outer thickness increases with radius ratio. The lowest mode 

natural frequency increases with increases with taper parameter for beta values of 0.2, 

0.25 and 0.3.  

4.5    Rayleigh’s damping for Stodola’s disc  

Stodola’s disc made of Structural Steel material is considered with beta value 

of 0.2. For Structural Steel material, Young’s modulus and Poisson’s ratio are taken as 

200 GPa and 0.3 respectively. The outer thickness and inner thickness of the disc are 

considered as 0.1 m and 0.2 m respectively. Furthermore, the inner radius and outer 

radius of the disc are considered as 0.4 m and 2 m respectively. It is observed from 

finite element simulation using ANSYS that 90% mass participation occurs within the 

13th mode.  

Results for all data set as discussed in Section 2.6 are given in the following 

Table 4.4.  
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Estimation of Rayleigh's damping coefficients for isotropic Stodola’s disc 

Mode 

numbe

r 

Natural 

frequency 

from 

ANSYS 

(Hz) 

Circular 

natural 

frequency 

from 

ANSYS 

(rad/sec) 

Damping 

ratio based 

on linear 

interpolation 

Damping ratio 

based on 13th 

mode 

approximation  

Damping ratio 

based on full 

range  

approximation 

Damping 

ratio based 

on average 

data  

1 52.619 330.7480 0.0200 0.0200 0.0200 0.0200 

2 52.62 330.7543 0.0200 0.0200 0.0200 0.0200 

3 54.522 342.7097 0.0203 0.0200 0.0199 0.0199 

4 60.031 377.3377 0.0210 0.0200 0.0197 0.0198 

5 60.033 377.3503 0.0210 0.0200 0.0197 0.0198 

6 95.561 600.6691 0.0259 0.0227 0.0213 0.0220 

7 95.561 600.6691 0.0259 0.0227 0.0213 0.0220 

8 152.54 958.8229 0.0336 0.0305 0.0277 0.0291 

9 152.54 958.8229 0.0336 0.0305 0.0277 0.0291 

10 182.67 1148.2114 0.0378 0.0352 0.0317 0.0335 

11 223.99 1407.9371 0.0434 0.0419 0.0374 0.0397 

12 223.99 1407.9371 0.0434 0.0419 0.0374 0.0397 

13 272.29 1711.5371 0.0500 0.0500 0.0444 0.0472 

14 282.99 1778.7943 0.0515 0.0518 0.0460 0.0489 

15 283 1778.8571 0.0515 0.0518 0.0460 0.0489 

16 307.89 1935.3086 0.0549 0.0560 0.0496 0.0528 

17 307.89 1935.3086 0.0549 0.0560 0.0496 0.0528 

18 323.84 2035.5657 0.0570 0.0587 0.0520 0.0554 

19 323.85 2035.6286 0.0570 0.0587 0.0520 0.0554 

20 403.41 2535.7200 0.0679 0.0724 0.0639 0.0682 

21 403.41 2535.7200 0.0679 0.0724 0.0639 0.0682 

22 406.17 2553.0686 0.0683 0.0729 0.0643 0.0686 

23 406.17 2553.0686 0.0683 0.0729 0.0643 0.0686 

24 431.86 2714.5486 0.0718 0.0773 0.0682 0.0728 

25 431.86 2714.5486 0.0718 0.0773 0.0682 0.0728 

26 509.87 3204.8971 0.0824 0.0908 0.0801 0.0855 

27 509.87 3204.8971 0.0824 0.0908 0.0801 0.0855 

28 523.22 3288.8114 0.0843 0.0932 0.0821 0.0876 

29 523.22 3288.8114 0.0843 0.0932 0.0821 0.0876 

30 626.67 3939.0686 0.0984 0.1112 0.0979 0.1045 

31 626.67 3939.0686 0.0984 0.1112 0.0979 0.1045 

32 661.07 4155.2971 0.1031 0.1172 0.1032 0.1102 
 

Table 4.4: Estimation of Rayleigh’s damping coefficients for isotropic Stodola’s disc 
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The below Figure 4.2 describes the variation of damping ratio with circular 

natural frequency of Stodola’s disc of clamped-free boundary condition. 

 

Figure 4.2: Variation of damping ratio with circular natural frequency of isotropic 

Stodola’s disc 

The Rayleigh’s damping coefficients based on full range approximation are 

calculated as explained in Section 2.6. The value of Alpha-s and Beta-ks based on full 

range approximation are 7.85 and 0.0000492 respectively, which match the best with 

the datum value calculated based on linear interpolation. This data may be considered 

for the input for further dynamic analysis.  
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4.6    Conclusion  

In this Chapter, free vibration response of the circular Stodola’s disc of clamped-

free boundary condition is studied using the Rayleigh-Ritz method with finite-element-

like modification. This method is already tested on the linearly-tapered circular disc in 

Chapter 3. The frequency values obtained for the Stodola’s disc are in good agreement 

with the finite element solutions obtained using ANSYS. The maximum percentage 

difference noted was less than 5%. A summary of observations is as follows:  

 Natural frequencies of clamped-free Stodola’s disc for each taper parameter 

increase with the radius ratio.  

 The lowest in-plane mode natural frequency increases with the taper parameter 

of Stodola’s disc.  

 The lowest bending mode natural frequency of Stodola’s disc has parabolic 

variation with the taper parameter. 

 Lowest in-plane mode natural frequency of Stodola’s disc made of orthotropic 

material is lower than that of the linearly-tapered disc of the same outer and 

inner radius as that of Stodola’s disc.  

 The fundamental circumferential mode natural frequencies of Stodola’s discs 

made of Graphite-Polymer composite material are less than that of the Stodola’s 

disc made of Structural Steel material and of the same dimensions.  

 Vibration analysis for the modes with nodal diameter number one or higher can 

be conducted with acceptable accuracy using presented formulation.  
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Chapter 5                                                                                                     

Bending mode vibrations of rotating disc of non-linear thickness 

variation 

 

5.1    Introduction   
 

For the case of rotating structures, it is advisable to get the estimation of the 

dynamic behaviour of rotating structures in order to prevent the damage due to 

resonance.  

In the present Chapter, out-of-plane vibration responses of the rotating disc of 

hyperbolic thickness variation is investigated. The effects of non-linear taper on the 

lowest out-of-plane mode natural frequencies are studied. In the later part of this 

Chapter, the dynamic behavior of rotating hyperbolic disc made of Graphite-Polymer 

composite material is investigated using Rayleigh-Ritz method. Rayleigh-Ritz 

solutions are compared with ANSYS solutions.     

As discussed in Chapter 1, tapered rotating discs having clamped-free boundary 

condition have a wide range of industrial applications such as in automobiles, space 

structures, and turbomachines. For example, typical gas or steam turbine disc has a 

larger thickness at inner radius and a smaller thickness at outer radius with hyperbolic 

thickness variation along radial direction often known as Stodola’s disc. Again, it is 

well established that the rotating disc of hyperbolic thickness variation (i.e. Stodola’s 

disc) has the favorable stress state compared to that of the uniform thickness disc. 

Hence, this chapter aims to investigate the dynamic behavior of the rotating Stodola’s 

disc.   
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The present study is based on the consideration of linear strain-displacement 

relationship. Equations of motion for rotating Stodola’s disc are derived using 

Hamilton’s principle. As explained in Chapter 2, exact or closed form solutions for the 

partial differential equations of non-linearly tapered discs are not known. Hence, 

Rayleigh-Ritz method is used here to calculate the approximate values of the lowest 

bending mode natural frequencies.  

5.2    Modelling  

 

In the presented approach, the actual thickness variation is taken into account 

unlike the formulations developed in Chapter 3, where thickness profiles are 

approximated by considering piecewise uniform thicknesses. 

Kirchhoff hypothesis along with linear strains is considered in deriving kinetic 

energy and strain energy of rotating Stodola’s disc. Kirchhoff hypothesis assumes that 

the normal perpendicular to the middle surface of the plate remains straight and 

perpendicular and does not extend or contract. This assumption ignores the presence of 

transverse shear effects. However, the free vibration analysis conducted assuming 

Kirchhoff hypothesis is expected to give reliable results for thin to moderately thick 

disc. For higher accuracy, the analysis should be conducted with the assumption of 

thick plate theories. Displacements of an arbitrary point can be written in terms of 

displacements of the middle surface. For the cylindrical coordinate system they are 

written as follows: 

 

𝑢𝑟(𝑟, 𝜃, 𝑧, 𝑡) = 𝑢(𝑟, 𝜃, 𝑡) − 𝑧 
𝜕𝑤(𝑟, 𝜃, 𝑡)

𝜕𝑟
 

𝑢𝜃(𝑟, 𝜃, 𝑧, 𝑡) = 𝑣(𝑟, 𝜃, 𝑡) −
𝑧

𝑟
 
𝜕𝑤(𝑟, 𝜃, 𝑡)

𝜕𝜃
 

(5.1) 
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𝑢𝑧(𝑟, 𝜃, 𝑧, 𝑡) = 𝑤(𝑟, 𝜃, 𝑡) 

where, 𝑢, 𝑣 and 𝑤 are the radial, circumferential and transverse displacements 

respectively, of a point on mid-plane (i.e., 𝑧 = 0) of the disc. 𝑢𝑟 , 𝑢𝜃 and 𝑢𝑧 are the 

displacements of an arbitrary point on the disc in 𝑟, 𝜃 and 𝑧 directions respectively. 

Linear strains as function of displacements in cylindrical coordinate system can be 

expressed as follows: 

 εrr =
∂ur

∂r
 (5.2) 

 εθθ =
ur

r
+

1

r

∂uθ

∂θ
 (5.3) 

 εrθ =
1

2r
(
∂ur

∂θ
− uθ + r

∂uθ

∂r
) (5.4) 

After substituting Equation (5.1) into Equations (5.2), (5.3), and (5.4), linear strains in 

terms of displacements of the middle surface can be obtained. Further, plane stress 

assumption is made unlike Chapter 2, in order to simplify calculations for the rotating 

Stodola’s disc. In the presence of manufacturing defect or crack, the transverse shear 

strain may exist. Hence, transverse shear strain is considered in the present analysis for 

brevity.   

Writing stresses in terms of strains,  

 σrr = Q11εrr + Q12εθθ  (5.5) 

 σθθ = Q12εrr + Q22εθθ  (5.6) 

 σrθ = 2Q66εrθ  (5.7) 

where, Q𝑖𝑗 are the elements of the reduced stiffness matrix. These elements can be 

expressed in terms of the engineering properties of orthotropic or isotropic material as 

follow: 
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 Q11 = 
𝐸1

1 − 𝑣12𝑣21
 (5.8) 

 Q22 = 
𝐸2

1 − 𝑣12𝑣21
 (5.9) 

 Q12 = 
𝑣12𝐸2

1 − 𝑣12𝑣21
= 

𝑣21𝐸1

1 − 𝑣12𝑣21
 (5.10) 

 Q66 = 𝐺12 (5.11) 

 

Let the thickness variation of the rotating disc along radial direction be expressed as 

𝑡 =
𝑡1

𝑟𝑠 . Here, ‘s’ is the taper parameter of the Stodola’s disc. Total strain energy of 

rotating Stodola’s disc can be calculated as follow, by integrating the strain energy of 

infinitesimal volume element over the entire domain of the non-linearly tapered disc.  

 Π𝑟𝑜𝑡  =  
1

2
∫ ∫ ∫ [𝜎𝑟𝑟 σθθ 

𝑐1
𝑟𝑠

−
𝑐1
𝑟𝑠

𝑅𝑜

𝑅𝑖

2𝜋

0

σrθ] [

εrr

εθθ 

2εrθ 

] 𝑟𝑑𝑧 𝑑𝑟 𝑑𝜃 (5.12) 

where,  c1 is the constant defined by  
𝑡𝑖𝑅𝑖

𝑠

2
 and ‘𝑠’ is the taper parameter of Stodola’s 

disc. 𝑅𝑖 and 𝑅𝑜 are the inner radius and the outer radius of the Stodola’s disc. 

Equations (5.5), (5.6) and (5.7) are substituted in Equation (5.12) to derive the total 

strain energy of rotary disc, which is indeed a function of 𝑢, 𝑣 and 𝑤. Now, it is possible 

to integrate this expression explicitly with respect to 𝑧 coordinate. MAPLE code is 

developed to calculate total strain energy of disc under consideration, which is given as 

follows: 

 Π𝑟𝑜𝑡 = 
1

2
∫ ∫ 𝑐1

3 𝐿1𝑟
−3𝑠 + 𝑐1(𝐿2𝑟

−𝑠 + 𝐿3𝑟
−2−𝑠)

𝑅𝑜

𝑅𝑖

2𝜋

0

𝑟𝑑𝑟 𝑑𝜃 (5.13) 

where, 𝐿1, 𝐿2 and 𝐿3 are defined by the following Equations (5.14), (5.15) and (5.16). 
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𝐿1 = 
2

3
(− 

1

2
(− 𝑄11

∂2w

∂r2
+ 𝑄12 (−

1

𝑟

∂w

∂r

− 
1

𝑟2

∂2w

∂θ2
))(

∂2w

∂r2
)                

+  
1

2
(− 𝑄12

∂2w

∂r2

+ 𝑄22 (−
1

𝑟

∂w

∂r
− 

1

𝑟2

∂2w

∂θ2
))(−

1

𝑟

∂w

∂r
− 

1

𝑟2

∂2w

∂θ2
)

+ 
2𝑄66

𝑟4
 (−

∂2w

∂θ∂r 
𝑟 +

∂w

∂θ
)

2

) 

(5.14) 

 

𝐿2 = (𝑄11 (
∂u

∂r
) + 𝑄12 (

𝑢

𝑟
+

1

𝑟

∂v

∂θ
)) (

∂u

∂r
)

+ (𝑄12

∂u

∂r
+ 𝑄22 (

𝑢

𝑟
+

1

𝑟

∂v

∂θ
)) (

𝑢

𝑟
+

1

𝑟

∂v

∂θ
) 

(5.15) 

 𝐿3 = 𝑄66 (𝑟
∂v

∂r
+ 

∂u

∂θ
− 𝑣)

2

 (5.16) 

 For the derivation of kinetic energy of rotating disc, body fixed frame is 

assumed, which rotates with the rotational speed of the disc. The velocity of a particle 

in the disc is given as follows [37]:  

 
∂r

∂t
= (uṙ − Ωuθ)er + [uθ̇ + Ω(r + ur)]eθ + użez  (5.17) 

where, er, eθ and ez are the unit vectors on the body fixed frame in 𝑟, 𝜃 and 𝑧 directions 

respectively. Ω is the angular velocity of the disc rotating about 𝑧 axis.  
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The total kinetic energy of the rotating Stodola’s disc is derived by integrating the 

kinetic energy of infinitesimal volume element (which is expressed using Equation 

(5.17)) over the entire domain of the non-linearly tapered disc. Hence, one gets: 

 

T𝑟𝑜𝑡  =  
1

2
𝜌 ∫ ∫ ∫   (

∂ur

∂t
− Ωuθ)

2𝑐1
𝑟𝑠

−
𝑐1
𝑟𝑠

𝑅𝑜

𝑅𝑖

2𝜋

0

+ (
∂uθ

∂t
+ Ω(r + ur))

2

+ (
∂uz

∂t
)
2

𝑟𝑑𝑧 𝑑𝑟 𝑑θ 

(5.18) 

Again,  c1 is the constant defined by  
𝑡𝑖𝑅𝑖

𝑠

2
 and ‘𝑠’ is the taper parameter of Stodola’s 

disc. 𝑅𝑖 and 𝑅𝑜 are the inner radius and the outer radius of the Stodola’s disc. 

Equation (5.18) can be rewritten as follows: 

 T𝑟𝑜𝑡  =  
1

2
 𝜌 ∫ ∫ ∫ (𝑇1

𝑐1
2

−
𝑐1
2

𝑅𝑜

𝑅𝑖

2𝜋

0

+ 𝑇2 + 𝑇3) 𝑟𝑑𝑧 𝑑𝑟 𝑑θ (5.19) 

where,  

 𝑇1 = (
∂ur

∂t
)

2

+ (
∂uθ

∂t
)
2

+ (
∂uz

∂t
)
2

 (5.20) 

 𝑇2 = −2Ωuθ

∂ur

∂t
+ 2Ω(r + ur)

∂uθ

∂t
 (5.21) 

 
𝑇3 = Ω2uθ

2 + Ω2(𝑟 + ur)
2 

 

(5.22) 

Equation (5.20) represents the terms of the kinetic energy associated with the kinetic 

energy of stationary disc. Equation (5.21) shows the Coriolis terms, which are 

responsible for the gyroscopic effect. The final Equation (5.22) represents the terms 

that generate centrifugal forces, which are ultimately responsible for the centrifugal 

stiffening effect.  
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Again, after substituting Equation (5.1) into Equation (5.19) and integrating resultant 

equation with respect to the 𝑧-coordinate, total kinetic energy expression becomes:  

 T𝑟𝑜𝑡 = 
1

2
∫ ∫ 𝜌 (𝐷1𝑐1

3𝑟−3𝑠 + 𝐷2𝑐1𝑟
−𝑠)

𝑅𝑜

𝑅𝑖

2𝜋

0

𝑟𝑑𝑟 𝑑𝜃 (5.23) 

where, 

 𝐷1 =
2

3𝑟2
((𝑟

∂2w

∂t ∂r 
−  Ω

∂w

∂θ
)

2

+ (𝑟Ω
∂w

∂r
+

∂2w

∂θ∂t 
)

2

)   (5.24) 

and  

 𝐷2 = 2(−Ω𝑣 + 
∂u

∂t
)

2

+ 2(Ωu + Ωr +
∂𝑣

∂t
)
2

+ 2(
∂w

∂t
)
2

 (5.25) 

In Equation (5.25), terms multiplied with the square of rotating speed and contain no 

derivatives of displacements are centrifugal rotational terms. They modify the stiffness 

of the structure. The Coriolis terms are neglected in the present study. 

5.3    Equations of motion 

The presented dynamic system has three generalized coordinates and let then be 

the displacements of a point on the mid-plane surface of the disc. Hence, kinetic energy 

and strain energy derived in Section 5.2 can be described as the function of these 

generalized coordinates namely 𝑢, 𝑣 and 𝑤.  Equations (5.13) and (5.23) can be 

summarized as follows: 

 𝑇𝑟𝑜𝑡 = 𝑇𝑟𝑜𝑡(𝑢, 𝑣, 𝑤, �̇�, �̇�, �̇�) (5.26) 

 Π𝑟𝑜𝑡 = Π𝑟𝑜𝑡(𝑢, 𝑣, 𝑤) (5.27) 

Lagrangian functional for rotating Stodola’s disc is written from above Equations (5.26) 

and (5.27), which is given below: 

 𝐿 = 𝑇𝑟𝑜𝑡 − Π𝑟𝑜𝑡 (5.28) 
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It is clear from Equation (5.28) that Lagrangian functional for the considered dynamics 

problem depends on both the generalized coordinates and the generalized velocities. 

 𝐿 = 𝐿(𝑢, 𝑣, 𝑤, �̇�, �̇�, �̇�) (5.29) 

Here, it should be noted that any suitable quantities can be used for generalized 

coordinates and hence the Hamilton formulation is invariant to the coordinate system 

used to express the Lagrangian.  

Hamilton’s principle states that the variation of integral of Lagrangian functional from 

time 𝑡1to 𝑡2 is zero if the variations of the displacements are zero at time 𝑡1 and 𝑡2. 

 𝐼 = 𝛿 ∫ 𝐿(𝑢, 𝑣, 𝑤, �̇�, �̇�, �̇�)𝑑𝑡 = 0
𝑡2

𝑡1

 (5.30) 

In other words, the motion of the system in given time interval will be such that the 

action integral in Equation (5.30) gets maximized or minimized. 

Applying variational operator inside of Equation (5.30), the following equation is 

obtained. 

 

∫ [(
𝜕𝐿

𝜕𝑢
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
) 𝛿𝑢 + (

𝜕𝐿

𝜕𝑣
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
) 𝛿𝑣 + (

𝜕𝐿

𝜕𝑤
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
) 𝛿𝑤]𝑑𝑡

𝑡2

𝑡1

= 0 

(5.31) 

From Hamilton’s principle, 𝛿𝑢(𝑡1) = 𝛿𝑢(𝑡2) = 0, 𝛿𝑣(𝑡1) = 𝛿𝑣(𝑡2) = 0 

and 𝛿𝑤(𝑡1) =  𝛿𝑤(𝑡2) = 0. Integration by parts of Equation (5.31) gives the following 

three equations, known as Euler-Lagrange equations: 

 
𝜕𝐿

𝜕𝑢
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
= 0 (5.32) 

 
𝜕𝐿

𝜕𝑣
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
= 0 (5.33) 
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𝜕𝐿

𝜕𝑤
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
= 0 (5.34) 

In the present analysis, Equations of motion are derived using MAPLE by Euler-

Lagrange equations. They are given below: 

 

𝜌 (𝑟1−𝑠  
𝑑Ω

𝑑𝑡
 𝑣 + 2𝑟1−𝑠Ω

𝑑 𝑣

𝑑𝑡
− 𝑟1−𝑠

∂2u

∂t2
+ 𝑟1−𝑠Ω2𝑢 + 𝑟2−𝑠Ω2)

= −𝑟−𝑠(1 − 𝑠)𝑄11

𝜕𝑢

𝜕𝑟
− 𝑟1−𝑠𝑄11

∂2u

∂r2

+ 𝑢𝑟−𝑠−1(𝑄22 + 𝑠𝑄12) − 𝑄66𝑟
−𝑠−1

∂2u

∂θ2

+ 𝑟−𝑠−1
𝜕𝑣

𝜕θ
(𝑄22 + 𝑄66 + 𝑠𝑄12) − 𝑟−𝑠

∂2𝑣

∂θ𝜕𝑟
(𝑄66

+ 𝑄12) 

(5.35) 

 

𝜌 (− 𝑟1−𝑠  
𝑑Ω

𝑑𝑡
 (𝑢 + 𝑟) − 2𝑟1−𝑠Ω

∂𝑢

∂𝑡
− 𝑟1−𝑠

∂2𝑣

∂t2
+ 𝑟1−𝑠Ω2𝑣)         

=  −𝑄22𝑟
−𝑠−1

∂2𝑣

∂θ2
− 𝑄66𝑟

−𝑠
∂𝑣

∂𝑟
(1 − 𝑠)

− 𝑟1−𝑠𝑄66

∂2𝑣

∂r2
− 𝑄66𝑣𝑟−𝑠−1𝑠(𝑠 − 1)

− 𝑟−𝑠−1
∂𝑢

∂θ
(𝑄22 + (1 − 𝑠)𝑄66) − 𝑟−𝑠

∂2𝑢

∂θ∂r
(𝑄12

+ 𝑄66) 

 

(5.36) 
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𝜌 (
2

3
𝑟−3𝑠(1 − 3𝑠)𝑐1

3
∂3𝑤

∂t2 ∂r
+

2

3
𝑟1−3𝑠𝑐1

3
∂4𝑤

∂t2 ∂r2
+ 2𝑠𝑟−1−3𝑠𝑐1

3  
𝑑Ω

𝑑𝑡

∂𝑤

∂θ
+ 4𝑠Ω𝑐1

3𝑟−1−3𝑠
∂2𝑤

∂θ𝜕𝑡

−
2

3
𝑐1

3Ω2𝑟−1−3𝑠
∂2𝑤

∂θ2
−

2

3
𝑐1

3Ω2𝑟−3𝑠(1 − 3𝑠)
∂𝑤

∂𝑟
−

2

3
𝑐1

3Ω2𝑟1−3𝑠
∂2𝑤

∂r2

+
2

3
𝑟1−3𝑠𝑐1

3
∂4𝑤

∂t2 ∂θ2
− 2𝑐1𝑟

1−𝑠
∂2𝑤

∂t2
)

= −𝑐1𝑟
−1−𝑠(𝑄12 + 2𝑄66) (

𝜕𝑤

𝜕θ
)

2 ∂2𝑤

∂r2
− −𝑐1𝑟

−1−𝑠(𝑄12 + 𝑄66) (
𝜕𝑤

𝜕r
)

2 ∂2𝑤

∂θ2

− 2𝑄66𝑐1𝑟
−𝑠 (2

𝜕𝑤

𝜕r

∂2𝑤

∂θ𝜕𝑟
) − 2𝑄12𝑐1𝑟

−𝑠𝑢
∂2𝑤

∂r2

+ 𝑟−1−3𝑠𝑐1
3 (6𝑠2𝑄11 − 2𝑄12 −

2

3
𝑄22 − 2𝑄11)

∂2𝑤

∂r2
− 3𝑄11𝑐1𝑟

1−𝑠 (
𝜕𝑤

𝜕r
)

2 ∂2𝑤

∂r2

− 𝑠𝑐1
3𝑟−3−3𝑠 (2.67𝑄12 + 8𝑄66 +

2.67

𝑠
𝑄66)

∂3𝑤

∂θ2𝜕𝑟

+  𝑠𝑐1
3𝑟−3𝑠 (

1.33𝑄12

𝑠
− 4𝑄11) 

∂3𝑤

∂r3
+ 𝑄66(8𝑠 + 2.67))

∂2𝑤

∂θ2
+ 𝑄12(

1

3
+ 𝑠) )

𝜕𝑤

𝜕r

+ 𝑄11𝑐1𝑟
−𝑠𝑠(𝑠 − 1)    (

𝜕𝑤

𝜕r
)

3

+
2

3
𝑐1

3𝑟−3−3𝑠(𝑟4
∂4𝑤

∂r4
𝑄11 + 𝑄22

∂4𝑤

∂θ4
)

+ 𝑐1
3𝑟−1−3𝑠(2.67𝑄66 + 1.33𝑄12)

∂4𝑤

∂θ2𝜕𝑟2
 

(5.37) 

Note that the presented linear in-plane Equations of motion namely Equations (5.35) 

and (5.36) are uncoupled with transverse deformation. This coupling is observed if the 

analysis is conducted considering non-linear Von-Karman strains. These non-linear 

Equations of motion based on non-linear Von-Karman strain-displacement 

relationships are given in Appendix B. 
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5.4    Bending mode vibrations of rotating Stodola’s disc  

The lowest out-of-plane mode for the rotating Stodola’s disc is the transverse 

mode or it can be named as the bending mode. Transverse vibrations of the rotating 

Stodola’s discs rotating about its axis at constant angular speed are studied. It is clear 

from the above equations of motion of the transverse vibration that they are not coupled 

with displacements of other two directions. Hence, the lowest bending mode can be 

treated independently. Higher out-of-plane modes are coupled in terms of 

displacements and can be grouped based on the nodal diameters (i.e. n equals to 1, 2...).  

The circumferential symmetry of the circular Stodola’s disc about the circumferential 

coordinate is considered. Mid-plane transverse direction displacement of the rotating 

Stodola’s disc can be written in terms of the assumed shape functions, which is as 

follows:  

 𝑤(𝑟, θ, t) = 𝑊(𝑟) cos 𝑛θ sin𝜔𝑡 (5.38) 

where,  𝑊 represents the amplitude of vibration in transverse direction. 

For the lowest bending mode (𝑛 = 0), let the amplitude be expressed by the following 

polynomial: 

 𝑊(𝑟) =  𝑛𝑧 ∑𝐶𝑖

𝐼

𝑖=1

 𝑟𝑖−1 (5.39) 

where I is the maximum number of terms in the polynomial. The constraint function 

𝑛𝑧  for the clamped-free annular disc in Equation (5.39) is 
𝑟

𝑅0
, which is multiplied with 

each term. This constraint function is necessary to impose necessary boundary 

condition to the disc. For the free-fixed boundary condition, it takes the form of         

 
𝑟

𝑅0
− 1.   
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5.4.1 Maximum strain energy and maximum kinetic energy for bending mode 

 

Equation (5.38) is substituted in Equations (5.13) and (5.23) to derive maximum 

strain energy and maximum kinetic energy of the rotating disc. Hence, one gets: 

 

(Π𝑟𝑜𝑡)𝑚𝑎𝑥 = ∫ ∫  𝑐1
3𝑟−1−3𝑠 (

1

3
𝑟𝑄11 (

𝑑2𝑊

𝑑𝑟2
)

2𝑅𝑜

𝑅𝑖

2𝜋

0

+
2

3
𝑄12 (

𝑑2𝑊

𝑑𝑟2
) (

𝑑𝑊

𝑑𝑟
) +

1

3𝑟
𝑄22 (

𝑑𝑊

𝑑𝑟
)

2

)𝑟𝑑𝑟 𝑑𝜃 

(5.40) 

 

(T𝑟𝑜𝑡)𝑚𝑎𝑥 =  𝜌 𝑐1 ∫ ∫ (
1

3
𝑟1−3𝑠𝑐1

2Ω2 (
𝑑𝑊

𝑑𝑟
)
2

+ Ω2r3−s  
𝑅𝑜

𝑅𝑖

2𝜋

0

+ r1−s𝑊2𝜔2)𝑟𝑑𝑟 𝑑𝜃 

(5.41) 

Kinetic energy of rotating disc can be seen as the kinetic energy of stationary disc plus 

the kinetic energy due to rotational effect. Hence, they are maximized independently to 

get the maximum kinetic energy of the rotating Stodola’s disc.  

To maximize the energies, it should be noted that maximum values of  sin2 𝜔𝑡 

and cos2 𝜔𝑡 are considered while deriving Equations (5.40) and (5.41). In Equation 

(5.41), terms  
1

3
𝜌 𝑟2−3𝑠𝑐1

3Ω2 (
𝑑𝑊

𝑑𝑟
)
2

 and 𝜌 𝑐1Ω
2r3−s describe the work done in bending 

due to the centrifugal force generated due to rotational effect, hence these terms should 

be added to the maximum strain energy equation. This centrifugal effect generated due 

to rotation modifies the stiffness of structure. Based on this fact, Equations (5.40) and 

(5.41) are modified and rewritten as follows: 



107 

 

 

(Π𝑟𝑜𝑡)𝑚𝑎𝑥

= ∫ ∫ 𝑐1
3𝑟−1−3𝑠 (

1

3
𝑟𝑄11 (

𝑑2𝑊

𝑑𝑟2
)

2

+
2

3
𝑄12 (

𝑑2𝑊

𝑑𝑟2
) (

𝑑𝑊

𝑑𝑟
)

𝑅𝑜

𝑅𝑖

2𝜋

0

+
1

3𝑟
𝑄22 (

𝑑𝑊

𝑑𝑟
)
2

)+
1

3
𝜌 𝑟2−3𝑠𝑐1

3Ω2 (
𝑑𝑊

𝑑𝑟
)
2

+ 𝜌 𝑐1Ω
2r3−s 𝑟𝑑𝑟 𝑑𝜃 

(5.42) 

 (T𝑟𝑜𝑡)𝑚𝑎𝑥 =  𝜌 𝑐1 ∫ ∫ (r1−s𝑊2𝜔2)
𝑅𝑜

𝑅𝑖

2𝜋

0

𝑟𝑑𝑟 𝑑𝜃 (5.43) 

5.4.2 Solution using Rayleigh-Ritz method 

 

Equation (5.42) shows that the maximum strain energy of the rotating disc for the 

lowest bending mode is independent of the shear modulus of the composite material. 

As described in Section 2.3.3, Rayleigh’s quotient is calculated by comparing 

maximum strain energy and maximum kinetic energy of the rotating Stodola’s disc. 

From Equations (5.42) and (5.43): 

 (Π𝑟𝑜𝑡)𝑚𝑎𝑥 = 𝜔2(T𝑟𝑜𝑡
∗)𝑚𝑎𝑥 (5.44) 

 (T𝑟𝑜𝑡
∗)𝑚𝑎𝑥 = 𝜌 𝑐1 ∫ ∫ r1−s𝑊2

𝑅𝑜

𝑅𝑖

2𝜋

0

𝑟𝑑𝑟 𝑑𝜃 (5.45) 

 

𝜔2 =
(Π𝑟𝑜𝑡)𝑚𝑎𝑥

(T𝑟𝑜𝑡
∗
)
𝑚𝑎𝑥

 

 

(5.46) 

The transverse direction amplitude that appears in Equation (5.38) can be approximated 

by taking a finite number of functions, which satisfy the geometric boundary conditions 

multiplied with the arbitrary coefficients as developed in Equation (5.39). As we are 

taking a finite number of terms in Equation (5.39), we are imposing certain limitations 

on representing possible transverse deformation shape of the disc. Hence, Equation 

(5.46) yields higher frequency than that of the exact solution. To make a better 
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approximation to estimate the natural frequency of the lowest bending mode, 

Rayleigh’s quotient with respect to the arbitrary coefficients is minimized. Hence, one 

gets: 

 
𝜕𝜔2

𝜕𝐶𝑖
= 0 (5.47) 

 From Equations (5.46) and (5.47),  

 

  
𝜕(Π𝑟𝑜𝑡)𝑚𝑎𝑥

𝜕𝐶𝑖
− 𝜔2

𝜕(T𝑟𝑜𝑡
∗)𝑚𝑎𝑥

𝜕𝐶𝑖
= 0 (5.48) 

  

Equation (5.48) gives the set equations which are homogeneous and linear in 

𝐶1, 𝐶2, 𝐶3, …. The number of equation obtained from Equation (5.48) is equal to the 

number of coefficients in Equation (5.39). These equations can be rewritten in the 

matrix form as follows: 

 ([𝐾] − 𝜔2[𝑀])[{𝐶𝑖}] = 0 (5.49) 

where, {𝐶𝑖} is the column vector consisting of coefficients. To have non-zero solution, 

the determinant of augmented matrix, which consists of the coefficients 

𝐶1, 𝐶2, 𝐶3, …must be zero. MAPLE code is developed to calculate the bending mode 

natural frequency (𝜔𝑖, 𝑖 = 1,2, …) of rotating Stodola’s disc.     

5.4.3 Solution using Finite element method (using ANSYS) 

 

It is important to consider the pre-stressed effectes generated due to rotation of 

the Stodola’s disc. It is believed that this effect modifies the overall stiffness of the 

structure. Hence, the pre-stressed modal analysis is performed from a linear based 

analysis. SOLID 186 elements are considered for the pre-stressed modal analysis. 

SOLID 186 element is a higher-order 3-D, 20-node element. It has quadratic 
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displacement behaviour and is well suited to model structures with irregular meshes. 

The element has three degrees of freedom at each node that are translation one. 

Moreover, the SOLID186 element has stress stiffening and large deflection capabilities. 

Large deflection option is turned off during the simulation. The inclusion of large 

deflection effects means that ANSYS accounts for changes in the stiffness due to the 

change in the shape of the disc.  

5.4.4 Example 

 

Consider that the outer radius and the inner radius of Stodola’s disc are 0.5m and 

0.1m respectively. The inner thickness of the disc is 0.4m and taper parameter of 

Stodola’s disc is taken as 0.861353(i.e. outer thickness of the disc becomes 0.1 m). 

Modulus of elasticity and Poisson’s ratio for Structural Steel material are 200 GPa and 

0.3 respectively. The clamped-free boundary condition is considered in the analysis. 

Consider that the disc is rotating at a constant angular speed of 100 rad/sec.  

Four terms are considered in Equation (5.39). Comparison of the two solution methods 

explained in sub-sections 5.4.2 and 5.4.3 are given in Table 5.1 as follows: 

Solution  

method 

Lowest bending mode 

natural frequency 𝑓3 (Hz) 

RR solution 1195.6283 

Finite element solution 

using ANSYS 

(𝑓3) 

1194.1 

% Difference -0.128 

 

Table 5.1: Comparison of lowest transverse mode natural frequency of Stodola’s disc 

rotating at constant angular velocity of 100 rad/sec and beta value of 0.2  
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5.5    Parametric study 

The effect of rotational speed on the lowest transverse mode natural frequency is 

studied. Note that the Stodola’s disc of taper parameter value 0.861353 has an outer 

thickness of 0.1 m and hyperbolic thickness variation along the radial direction. Such a 

disc of taper parameter value 0.861353 can be considered as moderately thick disc and 

Kirchhoff hypothesis is expected to give closer results. Four number of terms are 

considered in the Rayleigh-Ritz polynomial for this disc of outer thickness value 0.1 m. 

Parametric study with respect to rotational speed is conducted and presented in Table 

5.2 as follows: 

5.5.1 Effect of rotational speed on lowest bending mode natural frequency  
 

 

Rotational speed 

         (Ω) in 

        rad/sec 

 

RR solution 

in Hz 

 

Finite element 

solution in Hz 

(using ANSYS) 

(𝑓3) 

%  

Difference 

100 1195.6283 1194.1 -0.128 

200 1195.8516 1194.3 -0.13 

300 1196.2168 1194.6 -0.135 

 400 1196.7137          1195.0 -0.143 

500 1197.3296 1195.6 -0.145 

600 1198.0489 1196.2 -0.155 

700 1198.8555 1197.0 -0.155 

800 1199.7322 1197.9 -0.153 

900 1200.6625 1198.9 -0.147 

1000 1201.6304 1200.1 -0.128 

1499 1206.5828 1207.5 0.076 

2000 1211.0613 1217.8 0.553 

2499 1214.7147 1230.7 1.3 

Table 5.2: Variation of bending mode natural frequency with rotational speed for the 

isotropic Stodola’s disc having radius ratio of 0.2 
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From above Table 5.2, it is concluded that effect of rotational speed on the natural 

frequency of the lowest transverse mode (i.e. bending mode) is not significant for the 

lower rotating speeds. As the gyroscopic couple is neglected in the present analysis, 

there are no forward-whirl and backword-whirl frequencies obtained. Hence, increase 

in the natural frequency with an increase in rotational speed is solely due to increasing 

the stiffness due to centrifugal forces.  At higher rotating speed, the gyroscopic effect 

should be considered to accurately predict the critical speeds of rotating structures.  
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For orthotropic disc, material properties presented in Table 2.6 are considered. 

Geometry of Stodola’s disc made of orthotropic material is considered to the same as 

that of isotropic Stodola’s disc analysis presented in sub-section 5.5.1.  The effect of 

rotational speed on lowest bending mode is studied. The following Table 5.3 shows the 

variation of 𝑓4 (in ANSYS) of orthotropic Stodola’s disc rotating at constant rotational 

speed for each case.  

 

Rotational speed 

         (Ω) in 

        rad/sec 

 

Rotational speed  

(Ω) in  

rpm 

 

RR solution 

in Hz 

 

Finite element 

solution in Hz 

(using ANSYS) 

(𝑓4) 

100 954.93 665.7915 638.62 

200 1909.86 666.1405 639.01 

300 2864.79 666.6692 639.65 

 400 3819.72 667.3167 640.56 

500 4774.65 668.0253 641.72 

600 5729.58 668.7432 643.13 

700 6684.51 669.4392 644.8 

800 7639.44 670.0922 646.71 

900 8594.37 670.6931 648.86 

1000 9549.30 671.2411 651.25 

1499 14314.40 673.3061 666.58 

 

Table 5.3: Variation of bending mode natural frequency with rotational speed for the 

orthotropic Stodola’s disc having radius ratio of 0.2 
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5.5.2 Effect of taper parameter on the lowest bending mode natural frequency  

 

The following Figure 5.1 shows the variation of lowest bending mode natural 

frequencies of rotating Stodola’s disc with taper parameters. Consider three values of 

taper parameters S1, S2 and S3 as 0.861353, 0.609423 and 0.430677 respectively. 

These values of taper parameters generate the Stodola’s discs of outer thicknesses 0.1, 

0.15 and 0.2 m respectively. Stodola’s disc made of Structural Steel material is 

considered here. It is observed that the lowest bending mode natural frequency is 

inversely proportional to the taper parameter value of the disc. 

 

Figure 5.1: Variation of natural frequency 𝑓3 of Stodola’s disc with taper parameter 

and rotational speed for beta value of 0.2 

 It is not advisable to study the free vibration response of the discs with lower values of 

taper parameter using presented formulation as these generate considerable thickness 
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in the transverse direction. The ignorance of transverse shear deformation makes the 

present formulation inadequate for the thick discs. It is clear from Table 5.2 that, 

Rayleigh-Ritz solutions for rotating discs are in good agreement with the three-

dimensional ANSYS solution. 

5.5.3 Effect of degree of orthotropy on natural frequency  

 

A parametric study based on the degree of orthotropy is conducted in this section. 

Degree of orthotropy (�̅�) can be defined as the ratio of Young’s Modulus of material in 

radial direction to Young’s Modulus in circumferential direction. The value of this ratio 

of taken from 0.1 to 10. Recall that the elements of material stiffness matrix consists of 

Equations (5.8) to (5.11): 

 𝑄𝑖𝑗 =

[
 
 
 
 

𝐸1

1 − 𝑣12𝑣21

𝑣21𝐸1

1 − 𝑣12𝑣21
0

𝑣21𝐸1

1 − 𝑣12𝑣21

𝐸2

1 − 𝑣12𝑣21
0

0 0 𝐺12]
 
 
 
 

   (5.50) 

Upon simplifying,  

 𝑄𝑖𝑗 =
𝐸1

1 − 𝑣12𝑣21

[
 
 
 
 
 

1            𝑣21 0

𝑣21           
𝐸2

𝐸1
0

0          0
𝐺12(1 − 𝑣12𝑣21)

𝐸1 ]
 
 
 
 
 

   (5.51) 

Substituting  
𝐸1

𝐸2
= �̅� in above Equation (5.51), one gets: 

 𝑄𝑖𝑗 =
𝐸1

1 − �̅�𝑣21
2

[
 
 
 
 

1            𝑣21 0

𝑣21           
1

�̅�
0

0          0
𝐺12(1 − �̅�𝑣21

2 )

𝐸1 ]
 
 
 
 

 (5.52) 
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The maximum energies given by Equations (5.42) and (5.43) are modified considering 

the stiffness elements of Equation (5.52). The variation of frequency factor Ω𝑟𝑜𝑡 =

𝜔 √
𝜌 (1 − �̅�𝑣21

2 )

𝐸1
  for the bending mode with the degree of orthotropy is studied. Consider 

the Stodola’s disc having radius ratio of 0.2 and taper parameter value of 0.861353. To 

study the sole effect of degree of orthotropy on the lowest bending mode natural 

frequency, the rotational speed of Stodola’s disc is kept at zero for this analysis. The 

following Figure (5.2) shows the stated behaviour of the disc.  

 

Figure 5.2: Variation of frequency parameter with the degree of orthotropy for 

Stodola’s disc of beta value of 0.2 and 𝑣21 = 0.3 

It is concluded from above Figure 5.2 that the bending mode natural frequency for each 

taper parameter of Stodola’s disc decreases due to the decrease in bending stiffness with 

the degree of orthotropy.    
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5.6 Conclusion  

In this Chapter, the effect of rotational speed on the lowest bending mode natural 

frequency is studied based on the linear analysis. Transverse shear effects have been 

neglected in the analysis to simplify the mathematical calculations. The clamped-free 

boundary condition has been considered throughout this Chapter. Rayleigh-Ritz 

method has been employed to calculate the lowest bending mode natural frequency. 

Moreover, the effect of degree of orthotropy on bending mode natural frequency is 

studied. A summary of observations is given next: 

 Rayleigh’s quotient for the rotating Stodola’s disc is calculated for the first time 

considering the work done by centrifugal forces due to rotational effect. 

Accordingly, the total strain energy of the Stodola’s disc was modified.   

 Overall stiffness of the disc increases and as a result the bending mode natural 

frequency increases with the rotational speed.  

 It is observed that at lower rotating speeds, the increase in the bending mode 

natural frequency is not significant.  

 The bending mode natural frequency of rotating Stodola’s disc decreases with 

increase of taper parameter of Stodola’s disc. 
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Chapter 6 Conclusion and future work 
 

6.1 Major Contributions  

 

The major contributions of present study are as follow:  

1) The free-vibration response of uniform thickness disc of clamped-free boundary 

condition made of orthotropic material is studied based on the three-dimensional 

elasticity theory.  

2) Effect of damping on natural frequency of the uniform-thickness disc is studied 

considering the modal mass participation factor. This procedure leads to better 

prediction of damped natural frequency as it accounts for the variable nature of 

damping ratios as mode increases. 

3) The novel numerical approach based on the classical Rayleigh-Ritz method with 

finite-element-like modification is developed to study the free vibration response of 

linearly-tapered discs and non-linearly tapered discs of clamped-free boundary 

condition and made of isotropic and orthotropic materials.  

4) Transverse mode vibrations of rotating Stodola’s disc are investigated using 

Rayleigh-Ritz method. Kirchoff hypothesis is considered to reduce the complexity 

of the problem. The Rayleigh-Ritz solution is validated with three-dimensional 

finite element solution. Moreover, the effect of rotational speed on the lowest 

bending mode natural frequency is studied for Stodola’s disc of clamped-free 

boundary condition. The effect of degree of orthotropy on lowest bending mode 

natural frequency is presented for rotating Stodola’s disc. 

5) The effects of taper angle and taper parameter of linearly-tapered disc and non-

linearly-tapered discs on lowest circumferential mode and bending mode natural 

frequencies are studied respectively. 
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6.2 Conclusions   

 

The principal conclusions of the present study are as follow:  

 

1) For the uniform-thickness disc made of Graphite-Polymer Composite material, the 

circumferential mode natural frequency only depends on the shear modulus of the 

material. Further, it is observed that circumferential mode natural frequency of 

circular disc is higher than that of the lowest bending mode natural frequency. This 

is because of the fact that the circumferential mode involves pure shearing and the 

sole component of displacement present is in the tangential direction of the disc 

middle surface. This concludes the higher stiffness of the disc in circumferential 

mode vibration compared to bending mode vibration. Furthermore, the spacing 

between these two frequencies is considerably less in the uniform thickness disc 

made of Graphite-Polymer composite material compared to the disc made of 

Structural Steel material.  

2) It is concluded from the present study that the lowest bending mode natural 

frequency increases with Poisson’s ratio. Natural frequencies of modes with one or 

higher nodal diameter number increase with Poisson’s ratio. The circumferential 

mode natural frequency decreases slightly with increase in Poisson’s ratio. This is 

because of reduction of shear modulus and subsequently due to the reduction of 

stiffness of the disc in circumferential direction. 

3) The Rayleigh-Ritz method with finite-element-like modification allows the use of 

lower order polynomial to calculate the lowest in-plane mode and the lowest out-

of-plane mode natural frequencies of linearly-tapered circular disc and Stodola’s 

disc of clamped-free boundary condition.  
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4) For linearly-tapered disc of clamped-free boundary condition, the variation of 

lowest bending mode natural frequency is higher at higher radius ratios.  

5) The lowest in-plane mode natural frequency increases with taper parameter of 

Stodola’s disc. Whereas, the lowest bending mode natural frequency has parabolic 

variation with taper parameter of Stodola’s disc of clamped-free boundary 

condition.  

6) The natural frequencies of in-plane mode and out-of-plane mode vibrations increase 

with taper angle and radius ratio in the case of linearly-tapered isotropic or 

orthotropic disc of clamped-free boundary condition.  

7) The lowest bending mode natural frequency of Stodola’s disc of clamped-free 

boundary condition increases with the rotational speed because of the fact that 

stiffness of the structure increases due to the centrifugal forces generated due to 

rotation.  

8) The effect of degree of orthotropy on the lowest bending mode natural frequency is 

significant at lower values of Young’s modulus ratio of orthotropic material.  
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6.3 Future recommendations 

 

1) The present work can be extended to study the forced vibration response of the 

stationary and rotating circular discs. 

2) The present work is based on the consideration of linear strains. Von-Karman strain 

non-linearity can be considered for non-linear analysis. 

3) Coriolis effect may be considered to predict the three-dimensional dynamic 

response of Stodola’s disc rotating at high rotational speeds. 

4) In practical applications, the thickness of rotating discs is much beyond the limits 

of thin plate theory. In such cases, FSDT (First order shear deformation theory) or 

higher order shear deformation theory can be considered to have better accuracy in 

determining free vibration response of moderately thick discs. 
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Appendix A 
 

Non-linear equations of motion for orthotropic Stodola’s disc rotating at constant speed 

are as follows: 

 

𝜌 (𝑟1−𝑠  
𝑑Ω

𝑑𝑡
 𝑣 + 2𝑟1−𝑠Ω

𝑑 𝑣

𝑑𝑡
− 𝑟1−𝑠

∂2u

∂t2
+ 𝑟1−𝑠Ω2𝑢

+ 𝑟2−𝑠Ω2)

= −𝑟−𝑠(1 − 𝑠)𝑄11

𝜕𝑢

𝜕𝑟
− 𝑟1−𝑠𝑄11

∂2u

∂r2

+ 𝑢𝑟−𝑠−1(𝑄22 + 𝑠𝑄12) − 𝑄66𝑟
−𝑠−1

∂2u

∂θ2

− 𝑟−𝑠−1
𝜕𝑤

𝜕θ

∂2w

∂θ𝜕𝑟
(𝑄66 + 𝑄12)

− 2𝑄66𝑟
−𝑠−1

𝜕𝑤

𝜕r

∂2w

∂θ2

+
1

2
𝑟−𝑠 (

𝜕𝑤

𝜕r
)
2

(𝑄12 − (1 − 𝑠)𝑄11)

− 𝑟1−𝑠𝑄11

𝜕𝑤

𝜕r

∂2w

∂𝑟2

+
1

2
𝑟−𝑠−2 (

𝜕𝑤

𝜕θ
)
2

(𝑄22 + (𝑠 + 1)𝑄12)

+ 𝑟−𝑠−1
𝜕𝑣

𝜕θ
(𝑄22 + 𝑄66 + 𝑠𝑄12)

− 𝑟−𝑠
∂2𝑣

∂θ𝜕𝑟
(𝑄66 + 𝑄12) 
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𝜌 (− 𝑟1−𝑠  
𝑑Ω

𝑑𝑡
 (𝑢 + 𝑟) − 2𝑟1−𝑠Ω

∂𝑢

∂𝑡
− 𝑟1−𝑠

∂2𝑣

∂t2
+ 𝑟1−𝑠Ω2𝑣)

=  −𝑄22𝑟
−𝑠−1

∂2𝑣

∂θ2
− 𝑄66𝑟

−𝑠
∂𝑣

∂𝑟
(1 − 𝑠) − 𝑟1−𝑠𝑄66

∂2𝑣

∂r2

− 𝑄66𝑣𝑟−𝑠−1(𝑠 − 1) − 𝑄66𝑟
−𝑠−1

∂𝑤

∂𝑟

∂𝑤

∂θ
(1 − 𝑠) − 𝑄66𝑟

−𝑠
∂𝑤

∂θ

∂2𝑤

∂r2

− 𝑟−𝑠
∂𝑤

∂𝑟

∂2𝑤

∂θ∂𝑟
(𝑄12 + 𝑄66) − 𝑟−𝑠−1

∂𝑢

∂θ
(𝑄22 + (1 − 𝑠)𝑄66)

− 𝑄22𝑟
−𝑠−2

∂𝑤

∂θ

∂2𝑤

∂θ2
− 𝑟−𝑠

∂2𝑢

∂θ∂r
(𝑄12 + 𝑄66) 
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𝜌 (
2

3
𝑟−3𝑠(1 − 3𝑠)𝑐1

3
∂3𝑤

∂t2 ∂r
+

2

3
𝑟1−3𝑠𝑐1

3
∂4𝑤

∂t2 ∂r2
+ 2𝑠𝑟−1−3𝑠𝑐1

3  
𝑑Ω

𝑑𝑡

∂𝑤

∂θ
+ 4𝑠Ω𝑐1

3𝑟−1−3𝑠
∂2𝑤

∂θ𝜕𝑡

−
2

3
𝑐1

3Ω2𝑟−1−3𝑠
∂2𝑤

∂θ2
−

2

3
𝑐1

3Ω2𝑟−3𝑠(1 − 3𝑠)
∂𝑤

∂𝑟
−

2

3
𝑐1

3Ω2𝑟1−3𝑠
∂2𝑤

∂r2

+
2

3
𝑟1−3𝑠𝑐1

3
∂4𝑤

∂t2 ∂θ2
− 2𝑐1𝑟

1−𝑠
∂2𝑤

∂t2
)

= −𝑐1𝑟
−1−𝑠(𝑄12 + 2𝑄66) (

𝜕𝑤

𝜕θ
)

2 ∂2𝑤

∂r2
− −𝑐1𝑟

−1−𝑠(𝑄12 + 𝑄66) (
𝜕𝑤

𝜕r
)

2 ∂2𝑤

∂θ2

− 2𝑐1𝑟
−𝑠(𝑄12 + 𝑄66)

𝜕𝑤

𝜕r

∂2𝑣

∂θ𝜕𝑟
− 2𝑄66𝑐1𝑟

−𝑠 (
𝜕𝑤

𝜕θ

∂2𝑣

∂r2
+ 2

𝜕𝑤

𝜕r

∂2𝑤

∂θ𝜕𝑟
)

− 2𝑄12𝑐1𝑟
−𝑠𝑢

∂2𝑤

∂r2
− 𝑟−1−3𝑠𝑐1

3 ((6𝑠2𝑄11 − 2𝑄12 −
2

3
𝑄22 − 2𝑄11)

∂2𝑤

∂r2
)

− 2𝑄12𝑐1𝑟
−𝑠

𝜕𝑣

𝜕θ

∂2𝑤

∂r2
− 2𝑄22𝑐1𝑟

−2−𝑠𝑢
∂2𝑤

∂θ2
− 2𝑄22𝑐1𝑟

−𝑠−2 (
𝜕𝑤

𝜕θ

∂2𝑣

∂θ2
+

𝜕𝑣

𝜕θ

∂2𝑤

∂θ2
)

− 2𝑄11𝑐1𝑟
1−𝑠 (

𝜕𝑤

𝜕r

∂2𝑢

∂r2
+

𝜕𝑢

𝜕r

∂2𝑤

∂r2
) − 𝑐1𝑟

−1−𝑠(𝑄12 + 𝑄66) − 2𝑄12𝑐1𝑟
−1−𝑠

𝜕𝑢

𝜕r

∂2𝑤

∂θ2

− 2𝑄66𝑐1𝑟
−1−𝑠 (

𝜕𝑤

𝜕r

∂2𝑢

∂θ2
+ 2

𝜕𝑢

𝜕θ

∂2𝑤

∂θ𝜕𝑟
− 2𝑣

∂2𝑤

∂θ𝜕𝑟
)3𝑄22𝑐1𝑟

−3−𝑠 (
𝜕𝑤

𝜕θ
)

2 ∂2𝑤

∂θ2

− 3𝑄11𝑐1𝑟
1−𝑠 (

𝜕𝑤

𝜕r
)

2 ∂2𝑤

∂r2
− 𝑠𝑐1

3𝑟−3−3𝑠 (2.67𝑄12 + 8𝑄66 +
2.67

𝑠
𝑄66)

∂3𝑤

∂θ2𝜕𝑟

+ 𝑠𝑐1
3𝑟−3𝑠 (

1.33𝑄12

𝑠
− 4𝑄11)

∂3𝑤

∂r3

+ 𝑐1
3𝑟−3−3𝑠(𝑄12(6𝑠2 + 6𝑠 + 1.33) + 𝑄22(2𝑠 + 1.33) + 𝑄66(8𝑠 + 2.67))

∂2𝑤

∂θ2

− (8𝑄66 + 4𝑄12)𝑐1𝑟
−1−𝑠

∂2𝑤

∂θ𝜕𝑟

𝜕𝑤

𝜕r

𝜕𝑤

𝜕θ
+ 𝑐1𝑟

−2−𝑠(𝑠 + 1)(𝑄12 + 2𝑄66)
𝜕𝑤

𝜕r
(
𝜕𝑤

𝜕θ
)

2

+ 2𝑄66𝑐1(1 + 𝑠)𝑟−1−𝑠
𝜕𝑤

𝜕θ

𝜕𝑣

𝜕r
+ 2𝑐1𝑟

−1−𝑠(𝑠𝑄12 + 𝑄66)
𝜕𝑣

𝜕θ

𝜕𝑤

𝜕r

+ 2𝑐1𝑟
−𝑠(𝑄11(𝑠 − 1) − 𝑄12)

𝜕𝑢

𝜕r

𝜕𝑤

𝜕r
+ 2𝑐1𝑟

−2−𝑠(𝑄66(𝑠 + 1) − 𝑄22)
𝜕𝑤

𝜕θ

𝜕𝑢

𝜕θ

−  2𝑄66𝑐1𝑟
−2−𝑠(1 + 𝑠)𝑣

𝜕𝑤

𝜕θ
+ 2𝑐1

3𝑟−2−3𝑠(𝑄12 (
𝑟2𝑠+1

𝑐1
2 𝑠𝑢 + 𝑠 + 3𝑠2) + 𝑄12(

1

3

+ 𝑠) )
𝜕𝑤

𝜕r
+ 𝑄11𝑐1𝑟

−𝑠𝑠(𝑠 − 1) (
𝜕𝑤

𝜕r
)

3

+
2

3
𝑐1

3𝑟−3−3𝑠(𝑟4
∂4𝑤

∂r4
𝑄11 + 𝑄22

∂4𝑤

∂θ4
)

+ 𝑐1
3𝑟−1−3𝑠(2.67𝑄66 +  1.33𝑄12)

∂4𝑤

∂θ2𝜕𝑟2
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Appendix B 
 

 Three-dimensional Rayleigh-Ritz solution for the uniform-thickness disc of clamped-

free boundary condition is presented in Chapter 2. Presented results are validated by 

comparing them to the Rayleigh-Ritz solution obtained using series comprising of 

orthogonally-generated polynomial functions derived by Kim and Dickinson [22] and 

the 2D exact solution [46]. 

In this example, the uniform-thickness disc of clamped-free boundary condition made 

of Structural Steel material is considered. The values for Young’s modulus and 

Poisson’s ratio are considered as 200 GPa and 0.3 respectively for this material. Density 

is considered as 7850 𝑘𝑔/𝑚3. Beta value of the disc is considered as 0.1, which is the 

ratio of inner radius to outer radius of the disc. Thickness of the disc is taken as 0.15 m. 

The inner radius and outer radius of the circular annular disc are taken as 0.2 m and 2 

m. The following Table B.1 shows the comparison of presented results with Rayleigh-

Ritz solution obtained using series comprising of orthogonally-generated polynomial 

functions derived by Kim and Dickinson. 

Solution method 
Beta 

value 

Numbers of nodal diameter and nodal circle (𝑛, 𝑠) 

(0,0) (1,0) (2,0) (3,0) (4,0) 

Present 

 

0.1 

41.2609 30.1554 48.7213 110.6195 193.5625 

polynomial 
𝐼 = 𝑄 = 3,
𝐽 = 𝑃 = 4 

𝐼 = 𝐾 = 𝑄 = 4 and 𝐽 = 𝐿 = 𝑃 = 2 

Kim & 

Dickinson [22] 
38.6330 31.7256 51.2819 113.5071 199.064 

2D Exact [46] 

 
38.5619 28.6252 51.2336 113.0421 - 

Polynomial 

0.5 

𝐼 = 𝑄 = 3,
𝐽 = 𝑃 = 3 𝐼 = 𝐽 = 𝐾 = 𝐿 = 𝑃 = 𝑄 = 3 

Present 

 
119.1250 125.5368 136.4365 168.4583 229.4701 

Kim & 

Dickinson [22] 
118.7307 121.1556 134.046 169.2168 233.3408 

2D Exact [46] 

 
118.5119 121.2468 134.0096 168.6512 - 

Table B. 1: Comparison of natural frequencies of uniform-thickness annular C-F disc 
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In above Table B.1, (𝑛, 𝑠) represents the nodal diameter number and nodal circle 

number respectively. For zero nodal diameter number and zero nodal circle value, the 

results are compared with that of literature for the lowest transverse mode vibration.  

The boundary condition taken at inner radius is clamped and at outer radius the 

boundary condition considered is free. It is shown that the presented data are in good 

agreement with the 2D exact solutions for natural frequencies of transversely vibrating 

uniform annular plates derived using Bessel’s functions by Vogel and  Skinner [46]. 

Three-dimensional Rayleigh-Ritz solution for clamped-free circular annular disc, 

presented in this thesis may be useful to validate the results obtained using 2-D plate 

theories.   

 The natural frequency results obtained using Rayleigh-Ritz method with finite-element-

like modification are presented in Chapter 3. Validation is conducted by comparing the 

natural frequencies of linearly-tapered disc of small taper angle with that of uniform-

thickness disc of comparable thickness.   

Consider the linearly-tapered disc of clamped-free boundary condition and made 

of the same material as that of the uniform-thickness disc, considered for the validation 

in above Table B.1. The linearly-tapered disc with small taper angle of 0.1592 degree 

is considered with beta value of 0.1. This way, outer thickness of the linearly-tapered 

disc becomes 0.14 m. Thicknesses of uniform-thickness disc are considered as 0.15 m 

and 0.14 m. 

The following Table B.2 shows the comparison of natural frequency results of 

linearly-tapered disc with small taper angle with the results of uniform-thickness 

circular annular disc of clamped-free boundary condition.  
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Mode type 

Linearly-

tapered disc 

with taper 

angle of  

0.1592 

degree 

(ℎ𝑖 = 0.14) 

Number 

of 

divisions  

Uniform-

thickness disc 

of ℎ = 0.15 

Uniform-

thickness disc of 

     ℎ = 0.14 

Lowest 

circumferential  

mode  natural 

frequency             

(in Hz) 

72.9074 

𝐾 = 𝐿 = 1 

5   

71.4508 

𝐾 = 𝐿 = 4 

74.3620 

𝐾 = 𝐿 = 4 

Lowest bending 

mode natural 

frequency              

(in Hz) 

39.8818 

𝐼 = 𝐽 = 2,

𝑃 = 𝑄 = 2 

61  

41.2609 

𝐼 = 𝑄 = 3,   

  𝐽 = 𝑃 = 4 

38.6090 

𝐼 = 𝑄 = 3,   

  𝐽 = 𝑃 = 4 

 

Table B. 2: Comparison of natural frequencies of linearly-tapered annular C-F disc 

 From above Table B.2, it is concluded that the natural frequencies of the lowest 

in-plane mode and the lowest out-of-plane mode vibration changes slightly with small 

taper angle. Here, for the disc with thicknesses 0.14 m and 0.15 m, it is observed that 

the circumferential mode natural frequency is higher than that of the frequency of 

vibration in lowest bending mode.  
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Appendix C 
 

 The selection of number of divisions considered in Chapter 3 to calculate natural 

frequencies of in-plane and out-of-plane vibration modes of linearly-tapered disc is 

described below: 

Results presented in Figure 3.3, Figure 3.6, Figure 3.8, Table 3.1, Table 3.2 and 

Table 3.3 are calculated considering the following number of divisions and the order of 

polynomial.  

Results Mode type  Beta value 

Number of 

divisions 

Order of 

polynomial 

Figure 3.3 

 

In-plane 

 

0.2 5 

𝐾 = 𝐿 = 1 0.25 3 

0.3 2 

Figure 3.6 Out-of-plane 

0.2 3 𝐼 = 𝑄 = 1  

and 

𝐽 = 𝑃 = 2 

0.25 2 

Figure 3.8 In-plane  

0.2 5 

𝐾 = 𝐿 = 1 0.25 3 

0.3 2 

Table 3.1 Out-of-plane 0.2 6 𝐼 = 𝑄 = 1  

and 

𝐽 = 𝑃 = 2 

Table 3.2 Out-of-plane 0.25 4 

Table 3.3 Out-of-plane 0.3 3 

 

Table C. 3: Selection of number of divisions to calculate the natural frequencies 

of linearly-tapered disc 
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 The selection of number of divisions considered in Chapter 4 to calculate natural 

frequencies of in-plane and out-of-plane vibration modes of Stodola’s disc is as follows: 

Results presented in Table 4.1 and Table 4.2 are calculated considering the 

following number of divisions and the order of polynomial. 

Results Mode type  

Beta 

value 

Taper 

parameter  

Number 

of 

divisions 

Order of 

polynomial 

Table 4.1 

 

In-plane 

 

 

0.2 

 

 

- 

 

4 𝐾 = 𝐿 = 1 

Table 4.2 

Out-of-

plane 

 

0.2 

 

0.861353 3 𝐼 = 𝑄 = 2  

and 

𝐽 = 𝑃 = 2 

0.609423 2 

0.430677 2 

0.29203 2 

0.178747 2 

 

Table C. 4: Selection of number of divisions to calculate the natural frequencies 

of Stodola’s disc 
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