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ABSTRACT 

 

BioID indicates the involvement of the TRAPP protein TrappC11 in autophagy 

 

Qingchuan Zhao 

 

The Transport protein particle (TRAPP) complexes are molecular machines that function 

in various membrane transport processes including the secretory pathway. Recently, one form of 

the TRAPP complex, TRAPPIII, has been shown to be involved in autophagy, a cellular recycling 

process that delivers cytoplasmic components to lysosomes for degradation. Mutations in 

TrappC11, one subunit in TRAPPIII, have been reported to be associated with muscular dystrophy 

and intellectual disability. To understand mutated TrappC11 could lead to the phenotypes, I 

employed BioID to identify TrappC11 interacting proteins. To perform BioID, I constructed 

TrappC11 fused to BirA*, a biotin ligase that catalyzes the biotinylation of proteins within 

proximity to the fusion protein. The biotinylated proteins were then isolated and identified by mass 

spectrometry. The BioID approach revealed the autophagy-related proteins Atg2A, Atg2B, 

WDR45, p62/SQSTM1, and NBR1 as potential TrappC11 interacting partners, suggesting the 

involvement of TrappC11 in autophagy. Consistently, transient and stable knockdown of 

TrappC11 in HeLa cells both resulted in an accumulation of autophagosomes in non-starved cells 

as well as an increase of cellular lipid droplets. The distribution of lysosomes was also effected by 

the TrappC11 knockdown. Moreover, expression of eGFP-TrappC11 resulted in the formation of 

cytoplasmic puncta that partially overlapped with p62/SQSTM1, consistent with the BioID data 

that suggested an interaction between TrappC11 and this selective autophagy receptor. Taken 

together, my data indicate that TrappC11 might have an important role in non-starvation induced 

autophagy. 
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Chapter 1: Introduction 

1.1 Membrane trafficking, tethering and TRAPP 

Eukaryotic cells are characterized by an endomembrane network system composed of 

different organelles, such as endoplasmic reticulum, Golgi, endosomes and lysosomes. The 

movement of materials between different organelles and membrane components is described as 

membrane trafficking (Bröcker et al., 2010; Chia and Gleeson, 2014). During this process, 

membrane-bound transport vesicles serve as shuttles which bud from a donor membrane and 

subsequently fuse to a particular recipient organelle. The core regulators of fusion are soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) (Jahn and Scheller, 2006). 

There are two complementary subsets of SNAREs localized on each set of membranes, with v-

SNAREs on the vesicle membrane and t-SNAREs on the target membrane. The high stability of 

the SNARE complex overcomes the energy barrier to promote the membrane fusion between 

vesicle and target membrane, which allows the cargo to enter the target organelle (Weber et al., 

1998; Dubuke and Munson, 2016). However, due to the limited functional distance caused by their 

small size, SNAREs can only regulate a very late stage of the vesicle-target membrane recognition 

process (Spang, 2016). The control of specificity of membrane fusion requires other protein 

families such as the Sec1/Munc18 proteins and the tethering factors, which are properly localized 

at each site of fusion membranes (Morgera et al., 2012).  
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1.1.1 Tethering factors 

Tethering factors are a group of extended proteins or protein complexes that function in 

membrane tethering, a process to grasp vesicles and establish the first interaction between vesicles 

and target membranes before fusion of the two lipid bilayers (Chia and Gleeson, 2014). Tethering 

factors are essential for the fidelity of membrane trafficking as well as for the efficient assembly 

of SNARE complexes between the vesicle membrane and target membrane. Lines of evidence 

showed that loss of function of tethering factors leads to a block of membrane transport and 

interrupt the organization and identity of compartments (Gillingham et al., 2004; Nakajima, 1991; 

Sztul, 2005).  

Tethering factors can be categorized into two classes: coiled-coil tethers and multisubunit 

tethering complexes (MTCs) (Barrowman et al., 2010). Both classes are highly conserved in 

eukaryotic cells and can be found throughout the secretory and endosomal pathways. Coiled-coil 

tethers are large hydrophilic proteins that are composed of homodimers with globular heads and 

long coiled-coil domains (Chia and Gleeson, 2014). Due to their elongated nature, coiled-coil 

tethers can capture the incoming vesicles over long distances (of more than 200 nm), and create a 

relatively long-distance link between vesicle and target membrane (Bröcker et al., 2010). Unlike 

coiled-coil tethers, MTCs are thought to tether a captured vesicle in a close distance (up to 30 nm) 

to its target compartment and maintain its position for fusion (Yu and Hughson, 2010). Although 

MTCs differ in membrane trafficking pathways and composition of subunits, they share 

similarities in their interacting families of proteins: Rab guanosine triphosphatase (Rab GTPases), 

SM proteins, coat proteins, and SNAREs. In addition, some MTCs also interact with the particular 

guanine nucleotide exchange factor (GEF) for their GTPases (Dubuke and Munson, 2016).  
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1.1.2 TRAPP complex 

Transport protein particle (TRAPP) complexes are one subset of MTCs, which interact 

with coat proteins and have tethering roles in both the secretory and endolysosomal pathways as 

well as functions in autophagy (Barrowman et al., 2010). However, TRAPPs are atypical tethering 

factors which share the least similarity with other MTCs in sequence and structure (Cai et al., 

2008). Additionally, TRAPPs may function differently than other MTCs since they directly act as 

GEFs and no interaction has yet been shown between them and SNAREs or Sec1/Munc18 proteins 

(Dubuke and Munson, 2016; Sacher et al., 2001).  

The identification of TRAPPs was done first in the yeast Saccharomyces cerevisiae (Sacher 

et al., 1998). Blocked early in transport 3 (Bet3) was the first identified TRAPP subunit. 

Subsequently, Bet3 co-immunoprecipitating proteins were identified and were revealed to 

compose three TRAPP complexes in yeast, namely TRAPP I, TRAPP II and TRAPP III 

(Barrowman et al., 2010). All three forms share common four core subunits, Bet3, Bet5, TRAPP 

subunit 23 (Trs23) and Trs31, which are required for activation of Ypt1, a small Rab GTPase 

required for fusion of ER-derived vesicles with the Golgi (Wang et. al, 2000; Kim et al., 2016). 

TRAPP I tethers COP II-coated vesicles during ER to Golgi traffic while TRAPP II functions 

during intra-Golgi transport (Sacher et al., 2001; Barrowman et al., 2010). Unlike the other two 

forms acting in the secretory pathway, TRAPP III has been shown to be required for membrane 

expansion during autophagy, a lysosomal degradation-based cellular recycling process (Lynch-

Day et al., 2010).  

TRAPP complexes are conserved from yeast to mammals. So far, two forms of TRAPPs 

have been isolated from mammalian cells, TRAPPII and TRAPPIII (Kim et al., 2016). Similar to 
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yeast TRAPPs, mammalian TRAPPs tether ER-derived vesicles to the Golgi and function as GEFs 

for Rab1, the mammalian homologue of Ypt1, which ultimately recruits SNAREs to mediate 

vesicle fusion with target membranes (Barrowman et al., 2010; Kim et al., 2016). Depletion of 

subunits TrappC3, TrappC8, TrappC11 and TrappC12 results in fragmentation of the Golgi 

apparatus and blocks ER-Golgi trafficking (Scrivens et al., 2011). As expected from the 

characteristics of the yeast TRAPP III, one component of mammalian TRAPP III (TRAPPC8) has 

recently, been shown to be involved in autophagy (Lamb et al., 2016). While similarities are shared 

between mammalian TRAPPs and yeast TRAPPs, significant differences cannot be ignored. 

Several mammalian TRAPP subunits have more than one isoform, and two additional subunits 

existing in mammalian TRAPP III, TrappC11 and TrappC12, are metazoan-specific (Kümmel et 

al., 2008; Scrivens et al., 2011).  

Mutations of TRAPP subunits are broadly related to human diseases. Although being in 

the same complex, the diseases caused by mutations of different TRAPP subunits are dramatically 

divergent (Kim et al., 2016). Mutations in TRAPPC2 are associated with X-linked 

spondyloepiphyseal dysplasia tarda (SEDT), a skeletal disease causing a short stature, a short trunk, 

a barrel-shaped chest and disproportionately long arms (Gedeon et al., 1999). TRAPPC4 mutation 

is related to colorectal carcinogenesis. The interaction between TrappC4 and ERK2 regulates cell 

proliferation and apoptosis in colorectal cancer cells (Zhao et al., 2011; Weng et al., 2014). 

TRAPPC6 mutation has been linked to Alzheimer’s disease, as experiments show N-terminal 

internal deletion isoform of TrappC6A leads to Tau aggregation (Hamilton et al., 2011; Chang et 

al., 2015). TRAPPC9 mutation is associated with intellectual disability and schizophrenia (Mir et 

al., 2009; Mochida et al., 2009). Mutations of TRAPPC11 can cause muscular dystrophy and 

steatosis (see below for details) (Bögershausen et al., 2013; Liang et al., 2015). The lack of 
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overlapping effects of TRAPP subunit mutations suggests that individual subunits may play roles 

in cellular processes not related to TRAPP complex functions. In fact, a recent paper showing a 

moonlighting function of TrappC12 in mitosis supports the possibility of complex-independent 

functions (Milev et al., 2015).  

 

1.1.3 Function of TrappC11 and its involvement in disease 

In human cells, TrappC11 is a subunit of the TRAPPIII complex. Although a TRAPPC11 

orthologue is not readily detected in yeast TRAPP complexes, it is highly conserved in metazoans 

(Kim et al., 2016). The human TrappC11 is a 130 kD protein with two highly conserved central 

domains; the foie gras and gryzun domains, and six tetratricopeptide repeat (TPR) domains, which 

are usually considered as protein interacting regions (Bögershausen et al., 2013; Brunet and Sacher, 

2014). Some studies show TRAPPC11 is an essential gene. Flies homozygous for an allele that 

has an insertion in gryzun at residue 447 die at the end of embryogenesis (Wendler et al., 2010). 

Recent studies of human essential genes through genome-wide CRISPR-Cas9 screens indicated 

that TRAPPC11 is required for cell viability (Blomen et al., 2015; Hart et al., 2015; Shalem et al., 

2014).  

However, little has been known about functions of TrappC11. It is likely that TrappC11 

functions at the Golgi. As a component of TRAPP III, TRAPPC11 is required for the integrity of 

the Golgi and disruption of TRAPPC11 causes Golgi fragmentation and vesiculation as shown in 

Drosophila (Wendler et al., 2010), zebrafish (DeRossi et al., 2016) and human cells (Scrivens et 

al., 2011). The scattered Golgi may be the result of an impaired ability of TrappC11 to bind other 

TRAPP subunits (Bögershausen et al., 2013). Although the localization of mammalian TRAPPC11 
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remains unknown, staining of gryzun, the Drosophila homologue of TRAPPC11, showed partial 

co-localization with the Golgi (Wendler et al., 2010). TrappC11 is also crucial for the secretory 

pathway, since trappc11-mutated zebrafish display secretory protein retention (DeRossi et al., 

2016) and depletion of the protein by siRNA from cultured cells results in a block in post-ER 

trafficking (Scrivens et al., 2011; Wendler et al., 2010).  

The importance of TRAPPC11 has also been shown in individuals and organisms carrying 

TRAPPC11 mutations. Drosophila gryzun mutants reveal defects in learning and memory (Dubnau 

et al., 2003); patients carrying TRAPPC11 mutations suffer from limb girdle muscular dystrophy, 

intellectual disability and even hyperkinetic movements (Bögershausen et al., 2013). Recently, 

another patient with compound heterozygous mutations in TRAPPC11 was reported having 

steatosis, infantile-onset cataract, and congenital muscular dystrophy (Liang et al., 2015). 

Similarly, zebrafish with foie gras (fgr) mutation developed fatty liver, defects in the visual system, 

as well as abnormal fins, smaller gut and jaw (Sadler et al., 2005). The fgr/trappc11 fatty liver 

phenotype is considered as a result of activation of the unfolded protein response (Cinaroglu et al., 

2011). A recent paper demonstrated that TRAPPC11 is required for protein N-glycosylation. 

Hypoglycosylated proteins are accumulated in trappc11 mutated zebrafish, which leads to stressed 

UPR, and further causes fatty liver (DeRossi et al., 2016).  

 

1.2 Autophagy  

Autophagy is a cellular recycling process which delivers cytoplasmic components to 

lysosomes for degradation. This process is conserved in various types of cells from different 

organisms (Yang and Klionsky, 2009). According to the different mechanisms of lysosome cargo 
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delivery, autophagy can be categorized into three types: macroautophagy, chaperone-mediated 

autophagy (CMA), and microautophagy (Badadani, 2012). Macroautophagy, an in-bulk cargo 

degradation mechanism, requires the involvement of more than 30 autophagy proteins. These 

autophagy proteins regulate the formation of double-membrane autophagosomes and cargo 

delivery to lysosomes. In contrast, CMA only selectively degrades a single protein each time. In 

the CMA pathway, cytosolic heat shock cognate protein 70 (Hsc70) recognizes proteins bearing a 

pentapeptide motif (a KFERQ-like motif) and delivers the single protein to the lysosome (Chiang 

et al., 1989; Dice, 1990). The delivery relies on binding of Hsc70 to the lysosome-associated 

membrane protein type 2A (LAMP-2A), a CMA receptor at the lysosomal membrane (Cuervo and 

Dice, 1996). Then, the substrate protein is unfolded and subsequently translocated into the 

lysosomal lumen across the membrane for degradation. Microautophagy, the least studied 

autophagic pathway, is mediated by direct lysosomal engulfment (Li et al., 2012). Despite the 

different mechanisms, all three types of autophagy help maintain the cellular homeostasis and turn 

cellular components to energy. This thesis would mainly discuss macroautophagy, hereafter refers 

to as autophagy.  

 

1.2.1 Regulation of the autophagic pathway 

Autophagy is a highly dynamic process happening all the time in cells. Under starvation, 

autophagy is dramatically induced, which is achieved through phagophore generation, phagophore 

engulfment of cargos, autophagosome maturation, and autophagosome-lysosome fusion. After the 

fusion between the outer membrane of the autophagosome and lysosome, the inner membrane of 

the autophagosome quickly gets degraded followed by exposure and degradation of the cargo 

(Rabinowitz and White, 2010).  
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The formation of the phagophore and autophagosome is a hierarchically orchestrated 

process, which requires the involvement of a series of autophagy proteins (ATGs). ATGs were 

first identified in yeast through a genetic screen for autophagy-regulating proteins and later were 

found to be highly conserved in higher eukaryotes including humans (Klionsky et al., 2003). In 

addition to the requirement of ATGs, autophagy is distinguished from proteasome-dependent 

degradation through its need for a source of the membrane to generate autophagosomes. Recent 

studies show the membrane source can be various, such as ER, mitochondria, nuclear envelope 

and ER-Golgi intermediate compartment (ERGIC) (Axe et al., 2008; Ge et al., 2013; Hayashi-

Nishino et al., 2010; Kawabata and Yoshimori, 2016). A triple coloured live-cell imaging study 

even showed isolation membrane formation at contact sites between ER and mitochondria 

(Hamasaki et al., 2013). Among all the membrane sources, ER-derived isolation membrane 

generation is the most studied autophagosome formation in mammalian cells (Figure 1.1).  

ULK1 plays a central role in the initiation of autophagy. In nutrient rich conditions, sensing 

of high amino acid levels in lysosomes by the v-ATPase activates Rag GTPase. Activated Rag 

GTPase binds to the mechanistic target of rapamycin complex 1 (mTORC1) and leads to 

phosphorylation and inactivation of ULK1 (Hosokawa et al., 2009; Sancak et al., 2008; Zoncu et 

al., 2011). Under starvation, the amino-acid level in the lysosome drops, resulting in the 

dissociation of mTORC1 from lysosomes which leads to dephosphorylation and activation of 

ULK1 and ATG13 (Hosokawa et al., 2009; Kim et al., 2011; Sancak et al., 2008; Zoncu et al., 

2011). The activated ULK1 complex, composed of ULK1, ATG13, ATG101 and FIP200, 

translocates to the ER surface, where it facilitates recruitment of other factors in a hierarchical 

fashion (Kawabata and Yoshimori, 2016). Class III PI3K complex, consisting of Beclin1, VPS34, 

ATG14 and VPS15, is first recruited to the ER surface after the translocation of the ULK1 complex 
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(Karanasios et al., 2013). Activated class III PI3K complex synthesizes PtdIns3P (PI3P), which 

induces nucleation of the so-called omegasome on the surface of the ER. The existence of PI3P 

provides a positive loop that promotes the recruitment of additional components of the ULK 

complex and stimulates the elongation of the omegasome (Burman and Ktistakis, 2010). PI3P also 

aids the recruitment of WIPIs, the mammalian orthologue of yeast Atg18, to the isolation 

membrane which has been shown to be required for the recruitment the ATG12 complex (see 

below) (Dooley et al., 2014). ATG9, the only transmembrane protein involved in autophagosome 

formation, is another key regulator of autophagy induction and is thought to provide the membrane 

or to retrieve intermediate components during autophagosome formation (Reggiori and Tooze, 

2012). 

The ubiquitin-like conjugation systems are then recruited to the isolation membrane, which 

lipidates ATG8 proteins and expands the isolation membrane. In yeast, there is only one Atg8 

protein, while there are six known ATG8 proteins in mammalian cells. These include three 

members of the microtubule-associated protein 1 light chain 3 (MAP1LC3) subfamily (LC3A, 

LC3B and LC3C) and three members of the gamma-aminobutyric receptor-associated protein 

(GABARAP) subfamily (GABARAP, GABARAP-L1 and GABARAP-L2/GATE-16) (Shpilka et 

al., 2011). Processed by two ubiquitin-like conjugation systems, LC3 becomes membrane-

associated and recruited from the cytoplasm to the autophagosome surface (Ichimura et al., 2000; 

Mizushima et al., 1998). First, LC3 is processed at its C-terminus by the ATG4B protease. The 

cleaved LC3 is then activated by ATG7 (E1 activating enzyme), followed by conjugation with 

ATG3 (E2 activating enzyme) and modification with phosphatidylethanolamine (PE) by the 

ATG12 complex (E3 activating enzyme). Since the lipidated form of LC3 migrates faster on an 

SDS-polyacrylamide gel and is distinguishable from cytosolic LC3, LC3-PE is usually referred as 
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LC3-II and is used as a marker for autophagic flux (Klionsky et al., 2016). As the isolation 

membrane expands, the ULK1 complex disassociates from the ER with the omegasome ring 

starting to enclose. When the enclosure is complete, the omegasome collapses back to the ER (Axe 

et al., 2008), and the isolation membrane seals as an autophagosome, which releases from the ER 

to fuse with a lysosome (Karanasios et al., 2013). Before fusion, the LC3-II on the outer membrane 

is cleaved by ATG4B.  

The regulation of fusion between the autophagosome and lysosome is not well understood. 

Studies show that the SNARE protein syntaxin 17 (STX17) on the surface of completed 

autophagosomes tethers the autophagosome and lysosome (Itakura et al., 2012; Jiang et al., 2014). 

STX17 is recruited to autophagosomes at the late stage of autophagosome formation and shows a 

strong degree of co-localization with LC3. During the fusion event, STX17 interacts with SNAP-

29 and VAMP-8, which mediates the fusion between the lysosome and the outer membrane of the 

autophagosome. Soon after fusion, the inner membrane is degraded followed by the exposure and 

degradation of contents as well as a portion of LC3-II (Mizushima and Komatsu, 2011). The 

degradation is followed by the recycling of breakdown components to be used in bioenergetic and 

the anabolic pathways. 

When induced by starvation, the autophagic machinery nucleates an isolation membrane 

independent of any bound cargo. However, along with LC3 recruitment to the isolation membrane, 

cargo-bound cargo receptors are also recruited. Cargo receptors selectively tether their cargo to 

the isolation membrane, but the random cytoplasmic material is also engulfed by the forming 

isolation membrane. Because the matured autophagosomes contain both selective cargos and 

random material, the starvation-induced autophagy is considered as non-selective autophagy.  
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Figure 1.1 The regulation of autophagy. 

(1) Low amino acids level in the lysosome results in the inactivation of mTORC1 and the activation 

of ULK1. (2) The recruitment and activation of PI3K by ULK1 complex leads to the generation 

of PI3P. (3) Processing of LC3 and its attachment to the isolation membrane promote the expansion 

of isolation membrane. (4) As expanded, the isolation membrane becomes phagophore and engulfs 

the cytosolic materials for degradation. (5) Phagophore seals to autophagosome and buds from ER 

membrane, with the LC3-II on the outer membrane cleaved by ATG4B. (6) The engulfed material 

is then transported to the lysosome by fusion with the autophagosome.  
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1.2.2 Selective autophagy 

Different from the starvation condition, in which autophagosome formation is thought to 

be triggered independently of any cargo, in non-starved cells, autophagosome generation depends 

on cargo recognition (Zaffagnini and Martens, 2016). In non-starved condition, cells undergo basal 

autophagy with selectivity to maintain cellular homeostasis. Selective autophagic pathways are 

usually named after the cargo to be degraded, such as ER-phagy (ER), mitophagy (mitochondria), 

aggrephagy (protein aggregates), ribophagy (ribosomes), lipophagy (lipid droplets), ferritinophagy 

(ferritin), and xenophagy (pathogens, including bacteria) (Khaminetsm et al., 2016; Kraft et al., 

2008; Mancias et al., 2014; Singh et al., 2009). The specificity depends on selective receptor 

proteins, which physically bind their cargo to a nascent autophagosome through interaction with 

ATG8-family proteins (Rogov et al., 2014). Based on the different mechanisms of cargo 

recognition, the selective autophagy receptors can be categorized into two groups: ubiquitin-

dependent and ubiquitin-independent. The known ubiquitin-dependent receptors include 

p62/SQSTM1, NBR1, OPTN, TAXIBP1, NDP52/CALCDCO2, TOLLIP, and RPN10 (Mancias 

and Kimmelman, 2016). They bind ATG8-PE proteins via their LC3-interacting regions (LIR), 

and they also have the ability to bind ubiquitin chains through ubiquitin binding domains (UBD) 

(Kraft et al., 2010). Different from ubiquitin-mediated cargo binding, ubiquitin-independent 

selective autophagy receptors activate selective autophagy through directly binding to intracellular 

cargo by recognition of specific types of signals on proteins, lipids, or sugars.  

How does ubiquitin-dependent selective autophagy work? First, autophagic substrates are 

tagged by ubiquitin chains with a high local concentration (Figure 1.2). Then, the ubiquitin-

dependent selective autophagy receptors are recruited to the cargo site via high-affinity or high-

avidity interactions with the ubiquitin chains. Notably, receptors show preferential binding to 
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certain types of ubiquitin chains. K63-linked ubiquitin chains are preferred by p62/SQSTM1 

binding, while K48-linked chains are recognized by proteasomes (Seibenhener et al., 2004). 

Additionally, selective autophagy receptors show preferential binding to multiple ubiquitin chains, 

suggesting the division of work for autophagic and proteasomal degradation (Zaffagnini and 

Martens, 2016). Through interactions with cargo receptors, autophagic machinery is hierarchically 

recruited to the cargo site after receptor binding. Once recruited to the cargo, the autophagic 

machinery is activated and drives the nucleation of an isolation membrane close to the cargo. The 

isolation membrane further elongates to form a complete autophagosome surrounding the cargo. 

High-avidity interactions between cargo receptors and membrane-associated ATG8-family 

proteins ensure the exclusion of other cytoplasmic material and achieve the selectivity.  

Autophagy is essential for cellular quality control, cell survival in a stressed situation as 

well as differentiation and development events. Therefore, failures in autophagy are broadly 

associated with diseases such as neurodegeneration, metabolic diseases, and cancer (Jiang and 

Mizushima, 2013).
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Figure 1.2 The generation of selective autophagosome. (Adapted from Zaffagnini and Martens, 

2016) See text for details. 

 

1.2.3 The roles of trafficking proteins in autophagy 

One main characteristic of autophagy is the double-membrane autophagosomes, whose 

formation requires an adequate supply of membranes and appropriate cellular membrane dynamics. 

In yeast Saccharomyces cerevisiae, autophagosomes are generated at distinct cellular locations 

called phagophore assembly sites (PAS) (Suzuki et al., 2001). Atg9 vesicles have been shown to 

move dynamically between PAS and peripheral sites after autophagy induction (Sekito et al., 2009). 

As the only known transmembrane Atg protein, Atg9 is essential for autophagosome formation, 

since nonfunctional Atg9 causes decreased autophagy activity (Feng et al., 2016). Studies indicate 

the Atg9 cycling contributes to autophagosome formation by supplying membranes to the 

autophagosome (Reggiori et al., 2005; Yen et al., 2007). Although a specific site for 
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autophagosome formation like PAS is absent in mammalian cells, ATG9 also redistributes in an 

Ulk1-dependent manner in response to autophagy induction. ATG9 displays dynamic cycling 

between the trans-Golgi network and endosomes in nutrient-rich conditions, and becomes more 

dispersed and transiently colocalizes with LC3-positive structures during starvation (Young et al., 

2006). Growing evidence supports the theory that ATG9 is required for transport between 

endocytic and autophagic compartments. However, whether this transportation is a delivery of 

factors to the isolation membrane or a retriever of factors from the isolation membrane remains 

controversial.  

RAB GTPases, RAB GTPase-Activating Proteins (GAPs) and RAB GEFs have been 

shown to be involved in ATG9 trafficking. Studies in Saccharomyces cerevisiae indicate that the 

small Rab GTPase Ypt1 and its GEF, the TRAPP III complex, play important roles in 

autophagosome formation (Lynch-Day et al., 2010). The TRAPP III unique subunit Trs85 recruits 

TRAPP III to the PAS via its adaptor protein Trs20, where the complex actives Ypt1 to regulate 

the assembly of the PAS (Lipatova et al., 2012; Lynch-Day et al., 2010; Taussig et al., 2014). Ypt1 

and Atg9 are found colocalized on the PAS and also in cytosolic puncta (Lipatova et al., 2012). 

However, whether Atg9 recruits TRAPP III or vice versa is still unclear. Similarly, TRAPP III has 

also been shown to regulate ATG9 trafficking and autophagy in human cells through interaction 

with TBC1D14, a TBC domain-containing RAB GTPases activating protein (RAB GAP) (Lamb 

et al., 2016). In addition to TBC1D14, other RAB GAPs such as TBC1D5 also mediate ATG9 

trafficking (Popovic et al., 2014).  

Autophagosome-lysosome fusion is another process requiring the function of membrane 

trafficking regulators. Besides the previously discussed SNARE protein STX17, RAB7 has been 

shown to be the main regulator. This regulatory function, which is found both under nutrient rich 
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and starvation conditions, relies on its binding and hydrolysis of GTP. Activation of Rab7 through 

the homotypic fusion and protein sorting complex (HOPS) and UV radiation resistance-associated 

gene (UVRAG) stimulates autophagosome maturation and fusion with lysosomes (Gutierrez et al., 

2004). Yeast Ypt7 (Rab7 orthologue) mutants display cytoplasmic accumulation of 

autophagosomes (Kirisako et al., 1999).  

 

1.3 Lipophagy  

Autophagy is also involved in the degradation of cellular lipid stores. In cells, fatty acids 

are stored as triglycerides in highly dynamic organelles called lipid droplets (LDs) (Beller et al., 

2010). LDs are surrounded by a phospholipid monolayer and LD coat proteins called perilipins 

(PLINs). When necessary, fatty acids can be released from LDs through a cytosolic lipase- (ATGL) 

mediated process named lipolysis or through an autophagic digestion process called lipophagy. 

The lipophagy process was first described in cultured hepatocytes, as co-localization between LDs 

and lysosomes was observed and disruption of autophagy increased both the size and number of 

cellular LDs (Singh et al., 2009). In addition, PLINs were found in the autophagosomes and 

lysosomes isolated from starved cells, and purified LDs also showed association with LC3-II. Later, 

the involvement of autophagy in lipid storage regulation was broadly shown in most cell types as 

well as in different organisms such as Saccharomyces cerevisiae (van Zutphen et al., 2014), 

Caenorhabditis elegans (Lapierre et al., 2011) and rice (Kurusu et al., 2014).  

In this process, similar to macroautophagy, portions or whole LDs become trapped inside 

the double-membrane-bound autophagosome vesicles and are transported to lysosomes to get 

degraded. Notably, the conversion of LC3-I to LC3-II happens on the surface of LDs, similar to 
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what was described above for the assembly of autophagy machinery. Moreover, CMA is also 

shown to have a significant role in LD turnover (Kaushik and Cuervo, 2015). CMA degrades 

PLIN2 and PLIN3 on LD membranes and facilitates the access of the cytosolic lipase to the lipid 

core. Concurrently, elimination of PLINs allows autophagosome formation-associated proteins to 

access the LD core, which also facilitates liphophagy (Figure 1.3). 

The suppression of lipophagy is associated with fatty liver disease, characterized by 

abnormal accumulation of lipids in the liver. Mice fed with a high-fat diet show a suppressed 

lipophagy, as a decreased level of LD-associated LC3 is found (Singh et al., 2009). Liver-specific 

ATG7 knockout mice with defective autophagy show larger livers with elevated lipid content, 

while in contrast, liver-specific overexpression of ATG7 ameliorates high fat-induced hepatic 

inflammation, ER stress and hepatic steatosis (Singh et al., 2009; Yang et al., 2010). Moreover, 

obesity is corelated with hyperactivation of mTORC1 signaling which strongly inhibits autophagy. 

On the other hand, it has been shown that a prolonged high-fat diet blocks the fusion of 

autophagosomes and lysosomes (Koga et al., 2010) as well as inhibits CMA (Rodriguez-Navarro 

et al., 2012). Given the role for CMA in the degradation of PLINs, it is conceivable that blockage 

of CMA would hinder lipophagy and eventually promote lipid accumulation. 

As mentioned above, TRAPPC11 is implicated in lipid mobilization in liver. Considering 

the fatty liver phenotype of fgr zebrafish (Sadler et al., 2005), the liver steatosis in a TRAPPC11 

patient (Liang et al., 2015) and the abundant lipid droplets in TRAPPC11 mutant fibroblasts 

(DeRossi et al., 2016), it is tempting to speculate on a role of TrappC11 in autophagy, especially 

in lipophagy. 
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Figure 1.3 CMA facilities LD turnover through lipophagy and lipolysis. 

Hsc70 recognizes PLINs and brings a single PLIN protein to LAMP2A-positive lysosomes for 

degradation via CMA. The depletion of PLINs exposes the LD core to lipase (ATGL) and 

autophagy machinery, which facilitates lipolysis and lipophagy, respectively. Through cytosolic 

lipase or lysosomes, the LD turns to free fatty acids and provides energy for cellular processes. 
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Chapter 2: Materials and Methods 

2.1 Plasmid Construction 

To obtain BirA*-FLAG-tagged TRAPPC11 plasmids for generating BioID cell lines and 

eGFP-TrappC11 plasmids for fluorescent microscopy for TrappC11, molecular cloning techniques 

using Gateway® were applied. The plasmids and primers used for cloning are listed in Tables 2.1 

and 2.2, respectively. 

 

2.1.1 BP recombination 

The BP recombination was employed to obtain a TRAPPC11 entry clone plasmid. 

Recombination mixture was set up with 1 µL 50 ng/µL pDONR 201 plasmid, 1 µL purified PCR 

product of TRAPPC11, 1 µL TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA) and 0.5 µL BP 

recombination enzyme (Invitrogen). A negative control was also set up with the same components 

but without recombination enzyme. The mixtures were incubated at 25oC overnight followed by 

bacterial transformation. Entry clone plasmids were purified using a plasmid miniprep kit (Bio 

Basic) and further confirmed by BsrGI (NEB) digestion. 

 

2.1.2 LR recombination 

The LR recombination mixture was set up with 1 µL destination plasmid (50 ng/µL), 1 µL 

TRAPPC11 entry clone plasmid prepared from a miniprep (50 ng/µL), 1 µL TE buffer and 0.5 µL 

LR recombination enzyme (Invitrogen). A negative control was also set up with the same 

components but without recombination enzyme. Mixtures were incubated at 25oC overnight 
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followed by bacterial transformation. Destination plasmids were purified using a plasmid miniprep 

kit (Bio Basic) and further confirmed using BsrGI digestion. 

 

2.1.3 Bacterial Transformation 

For bacterial transformation, 75 µL DH5α competent cells (Invitrogen) were mixed with 

the recombination reaction or control and kept on ice for 30 minutes. Cells were heat shocked in a 

42oC bath for 90 seconds and immediately cooled down on ice for 3 minutes. The cell mixture was 

then added into 1 mL LB medium (1% Tryptone, 1% NaCl, 0.5% Yeast extract) and incubated at 

37oC with shaking for 1 hour. Cells were spread on LB plates containing 20 g/ml kanamycin (BP 

cloning) or 50 g/ml ampicillin (LR cloning) and incubated at 37oC overnight. Colonies on the 

ligation plate were inoculated into 2 mL LB medium and cultured overnight for plasmid extraction 

and verification. 

 

 

Table 2.1: Plasmids used in this study 

Plasmids Bacterial selection Source 

pENTR201-TRAPPC11 Kanamycin Open Biosystems 

pDONR201 Kanamycin Sacher Lab 

pDEST_pcDNA5_BirA*-FLAG_Nterm Ampicillin Gingras lab 

pDEST_pcDNA5_BirA*-FLAG_Cterm Ampicillin Gingras lab 

pOG44 Ampicillin Gingras lab 

pcDNA-eGFP-GWY1 Ampicillin Sacher Lab 

Alt-RTM S.p. Cas9 plasmid Ampicillin IDT 
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Table 2.2: Primers used in this study 

Primers Sequence 

C11-F-GWY-kozak GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGAGCCCCACAC

AGTGGGACTTC 

C11-R-GWY-no stop GGGGACCACTTTGTACAAGAAAGCTGGGTGTGCAGCAGCAATAGAG

GTATCATC 

C11_CRISPR-newF2 GTTGGGATTGTATGCGTGAG 

C11_CRISPR-newR1 TCACAATGCCATTACCTTGG 

gryseq1F GGAGAAGATGTCATTGCTTCAG 

gryseq2F CCTGGTTTCTATTACCAGCAGGC 

gryseq3F AAGTCCTGATCCAGAACCCGAC 

gryseq4F CTTACAGGCAGCTCGGTCTTTC 

gryseq5F GATGACGGACCTCTTAAGTGC 

 

 

2.2 Electrophoresis, Western Blotting  

2.2.1 Electrophoresis 

For analysis of DNA fragments, PCR products or digested plasmids were loaded on a 1% 

agarose gel with RedSafe (FroggaBio, 1:20000). The electrophoresis was performed at 100 volts 

for 30 minutes and the gels were examined using Syngene G:BOX EF3 imager. 

 

2.2.2 Western blot 

For analysis of proteins in cell lysates, samples of 20 µg proteins were fractionated on 8% 

or 15% SDS-polyacrylamide gels. The proteins were transferred to nitrocellulose membranes for 

1 hour at 100 volts or overnight at 30 volts. Membranes were blocked with 5% skim milk powder 



22 

 

in PBS-T (PBS with 0.1% Tween 20). The primary and secondary antibodies were incubated in 

PBS-T for 1 hour each. Antibodies used and their dilutions are listed in Table 2.3. Signals were 

detected using ECL reagent (GE Healthcare) and exposed on an Amersham Imager 600 (GE 

Healthcare). 

 

Table 2.3: List of antibodies used in this study 

Antigen  Type Host 
IF 

dilution 

WB 

dilution 

Size 

(kD) 

Catalog 

number 
Source 

FLAG M m N/A 1:5,000 N/A F1804 Sigma 

Tubulin  M  m N/A  1:5,000  50  T6199  Sigma 

P115 M m 1:250 N/A N/A N/A Shields lab 

GM130 P r 1:250 N/A N/A N/A Lowe lab 

ManII P r 1:250 N/A N/A N/A Moremen lab 

p62/SQSTM1 P r 1:500 N/A N/A ab207306 Abcam 

LC3B P r 1:250 1:1000 13 ab192890 Abcam 

LAMP1 P r 1:300 N/A N/A ab24170 Abcam 

TrappC11 P r N/A 1:500 129 N/A Sacher lab 

TrappC12 P r N/A 1:2,500 78 N/A Sacher lab 

        

Secondary IgGs 

Alexa Fluor 

568 anti–

mouse  

HCA g 1:500 N/A N/A A-11031 Life Tech. 

Alexa Fluor 

647 anti–

rabbit  

HCA g 1:500 N/A N/A A-21245 Life Tech. 

HRP-labeled 

anti–mouse  
P g N/A 1:5,000 N/A KP-474-1806 KPL 

HRP-labeled 

anti–rabbit  
P g N/A 1:5,000 N/A KP-474-1506 KPL 

All protein sizes are in kilodaltons. N/A, not applicable; M, monoclonal; P, polyclonal; HCA, highly cross-adsorbed; r, 

rabbit; m, mouse; g, goat; h, human; IF, immunofluorescence; WB, Western blotting.  
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2.3 Immunofluorescent microscopy 

In order to observe cellular components, cells were grown on coverslips and fixed with 4% 

PFA for 20 minutes after washing with PBS. Following fixation, cells were permeabilized with 

0.1M glycine in PBS for 10 minutes and 0.1% Triton X-100 in PBS for 10 minutes. After 

permeabilization, cells were blocked with PBS containing 5% normal Goat serum for 45 minutes 

at room temperature. Primary antibodies (Table 2.3) and BODIPY 490/503 (Life Technologies, 

1:1000) were diluted in PBS containing 5% normal Goat serum and incubated overnight at 4℃ in 

50 µL volumes on coverslips. Before secondary antibody incubation, coverslips were washed 

twice with PBS. Secondary antibodies (Table 2.3) and DAPI (1:1000) were diluted as above and 

incubated in the dark for 1 hour at room temperature. Washes after secondary antibodies incubation 

were as above. Coverslips were mounted on slides using Antifade Gold (Invitrogen) mounting 

medium and observed using a Nikon C2 laser scanning confocal microscope fitted with a Plan Apo 

Lambda 100× oil objective (Nikon). Capture of images with 1024×1024 pixel resolution was 

controlled by NIS Elements C 4.4 software. Z stacks were acquired with a 0.2 µm increment. 

Identical intensity and exposure settings were used for control and experimental conditions. 

 

2.4 Cell culture 

The cell lines used in this study are listed in Table 2.4. For general culture, cells were 

cultured in complete medium (90% DMEM with high glucose and L-glutamine + 10% FBS) at 

37oC in cell culture incubators (5% CO2 with humidity). For starvation, cells were washed 3 

times with PBS, then incubated with EBSS medium. 
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Table 2.4: Cell lines used in this study 

Cell line Culture medium Source 

Flp-In/T-REx 293 
DMEM (high glucose, L-glutamine) with 10%FBS, 
100 µg/ml Zeocin (Invitrogen), and 15 µg/ml 
Blasticidin (Bioshop) 

Life Tech. 

HeLa DMEM (high glucose, L-glutamine) with 10%FBS Sacher lab 

HeLa LC3-GFP-RFP DMEM (high glucose, L-glutamine) with 10%FBS Sacher lab 

 

2.4.1 Cell freezing and thawing 

Cells to be frozen were trypsinized, collected and pelleted in sterile tubes (1,700 RPM, 3.5 

minutes). The cell pellets were gently resuspended with freezing medium (70% DMEM with high 

glucose and L-glutamine + 20% FBS + 10% DMSO), transferred into freezing tubes and stored at 

-80oC or in liquid nitrogen.  

To thaw frozen cells for starting a new culture, the tubes containing frozen cells were 

incubated in a 37oC bath until the cells were completely thawed. The cells with freezing medium 

were transferred into a 10-cm dish containing 10 mL fresh complete medium and incubated in a 

37oC incubator overnight. The next day, the medium was changed with fresh complete medium to 

remove the maintaining freezing medium. Notably, when thawing the Flp-In/T-REx 293 cell line, 

the medium did not contain any antibiotic within the first 24-hour culture. 

 

2.4.2 RNA interference 

To study the effect of TrappC11 knockdown, HeLa cells were transfected twice with 60 

nM siRNA against TrappC11 (5’- GGAUUUAUAAACUACAAGGATT- 3’) (Life Technologies) 

using JetPrime (Polyplus) as described in the manufacturer's protocol. One day before the first 
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transfection, cells were trypsinized and replated at a density of 50% confluency. Cells were split 

one day after transfection and treated with the second transfection 48 hours after the first 

transfection. 48 hours after the second transfection, cells were trypsinized and replated for 

experiments. Cells were analyzed by western blot analysis or by fluorescent microscopy 3 days 

after the second siRNA treatment. 

 

2.5 BioID 

To identify the interacting proteins of TrappC11, two inducible cell lines expressing BirA*-

tagged TrappC11 were generated and used for BioID purification followed by mass spectrometry 

analysis.  

 

2.5.1 Generating BioID cell line 

The Flp-In/T-REx 293 cell line from Life Technologies (R780-07) was used to generate 

BioID cell lines. Parental cells were seeded in a 10 cm dish with medium containing complete 

medium with 15 ug/ml Blasticidin one day before transfection to obtain 70% confluency on the 

day of transfection. The transfections were performed using Jetprime (Polyplus). For each 10 cm 

dish, a mixture of 500 µL buffer, 1.5 µg BirA*-FLAG construct, 13.5 µg pOG44, and 30 µl 

Jetprime transfection reagent was prepared. After 10-minute incubation, the mixture was added to 

the dish and the medium was gently mixed. The dishes were then incubated in a 37oC incubator 

for 24 hours before changing the medium with fresh antibiotic-free complete medium. 

48 hours after transfection, cells were split at 1:4 dilutions (or 25% confluence) to two 10 

cm dishes. 100 µg/ml hygromycin and 15 µg/ml blasticidin were added to start the antibiotic 
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selection. The medium was changed every 2-3 days during the 2-week selection until colonies 

were visible and ready to be picked up. Colonies were picked up by a pipet tip to obtain monoclonal 

cell lines or mixed to get a polyclonal cell line. Cell lines were maintained in complete medium 

with 100 µg/ml hygromycin and 15 µg/ml blasticidin.  

Two control cell lines were generated by transfecting Flp-In/T-REx 293 cells with 

pDEST_pcDNA5_BirA*-FLAG_Nterm or pDEST_pcDNA5_BirA*-FLAG_Cterm plasmid 

followed by selection as described above. 

 

2.5.2 Testing the expression of BioID cell lines 

The capability of expressing BirA*-FLAG-fusion protein of the cell lines was tested after 

obtaining the cell lines. Cells were plated in 6-well dishes, and a final concentration of 1 µg/ml 

tetracycline was added to induce expression. 24 hours after induction, cells were collected. 

Expression of the fusion protein was examined using a FLAG antibody through western blotting 

analysis.  

 

2.5.3 BioID Purification 

To obtain purified TrappC11-interacting proteins, BirA*-fusion TrappC11 cells and BirA* 

control cells were grown in 15 cm dishes with 15 mL complete medium. When cells reached 60% 

confluency, they were treated with 50 ng/mL tetracycline. 16 hours after induction, the medium 

was changed with 15 mL pre-warmed DMEM (high glucose, L-glutamine) supplemented with 20% 

FBS, 50 ng/mL Tetracycline in combination with 50 µM biotin. After 8 more hours, cells were 

pelleted and lysed in ice-cold RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% 
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Sodium Deoxycholate, 0.1% SDS, 1 mM EDTA) supplemented with complete-mini protease 

inhibitor cocktail (Roche), 1 mM PMSF, 62.5 Units/mL Benzonase (Invitrogen), and incubated at 

4℃ for 1 hour. Samples were sonicated in 4℃ ice bath, with 4 times of 10-second low power 

bursts. After sonication, samples were centrifuged at 4℃ for 30 minutes at 13,200 RPM in a 

refrigerated microfuge. Supernatants were incubated with 14µL streptavidin-Sepharose beads 

(Sigma) at 4℃ for 3 hours to capture the denatured biotinylated proteins. After the incubation, 

beads were washed five times with RIPA and four times with low-detergent buffer (25 mM Tris 

pH7.4, 100 mM NaCl, 0.025% SDS). Following the last wash, beads were pelleted and stored at -

80℃. Beads with purified biotinylated proteins were sent for mass spectrometry or analyzed by 

western blot. 

 

2.5.4 Mass spectrometry 

Mass spectrometry was used to identify proteins captured by the BioID purification. Mass 

spectrometry was performed by Dr. Tommy Nilsson’s laboratory. Data were analyzed in Scaffold 

4 proteomic software. Proteins with 95% confidence and more than two unique peptides identified 

in induced cell lines and negative results in control were considered as interacting proteins.  

 

2.6 CRISPR 

To generate TrappC11 knockout cell lines, the CRISPR method was used. By introducing 

Cas9 enzyme and crRNA:tracrRNA complex into cells, a double-strand break would be generated 

in the chosen region of genomic DNA. Through DNA repairing via non-homologous end joining, 
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frameshift mutations which possibly lead to nonfunctional protein could be introduced into the 

cells.  

 

2.6.1 Transfection with the Cas9 expression plasmid  

HeLa cells were trypsinized and plated in a 10 cm dish to obtain 70–80% confluency on 

the day of transfection. The transfection solution was prepared with 1000 µL transfection buffer, 

15 µg Alt-RTM S.p. Cas9 plasmid (IDT), 30 µL Jetprime transfection reagent (Polyplus), and 

incubated at room temperature for 15 minutes to form transfection complexes. Medium without 

antibiotics was replaced for the plated cells, and transfection complex was added after the 15-

minute incubation. Six hours after transfection, the medium was replaced with 20 mL of fresh 

complete medium, and the plate was incubated in a tissue culture incubator for 24 hours. 

 

2.6.2 Delivery of Alt-RTM CRISPR RNAs 

TrappC11 crRNA (IDT) and common tracrRNA (IDT) were resuspended in Nuclease-Free 

Duplex Buffer (IDT) to 100 μM final concentrations. 0.75 μL of crRNA (100 μM), 0.75 μL 

tracrRNA (100 μM), and 23.5 μL Nuclease-Free Duplex Buffer were mixed in a sterile RNase-

free PCR tube. The mixture was heated at 95°C for 5 minutes and removed from heat to cool to 

room temperature (15–25°C). 

A mixture with 50 μL transfection buffer, 7.5 μL crRNA:tracrRNA complex and 2 μL 

Jetprime transfection reagent (Polyplus) was incubated at room temperature for 15 minutes to form 

transfection complexes. During incubation, cells transfected with Cas9 plasmid were trypsinized 

and diluted using complete media to obtain 75% confluency. The transfection complexes were 
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added to a well of a 24-well dish with 500 μL of diluted cells (final concentration of Alt-RTM 

CRISPR RNAs was 30 nM) and incubated in a tissue culture incubator (37°C, 5% CO2) for 48 

hours. 

 

2.6.3 Isolation of monoclonal cell lines 

After 48-hour incubation, CRISPR RNA-transfected cells were trypsinized and collected 

in a centrifuge tube. Cell number was counted and 10 cm plates with 50, 250, 1000, and 5000 cells 

were prepared. Two weeks after plating, cell colonies were picked up and grown in 6-well dishes. 

Monoclonal cell lines were tested and frozen after reaching 90% confluency. 

 

2.6.4 Verify the knockout cell clones 

The mutants of TRAPPC11 were tested by T7E1 assay and western blotting. 

 

2.6.4.1 T7E1 assay screening 

Genomic DNAs of monoclonal cell lines were isolated for T7E1 assay. Cell pellets were 

resuspended in 350 µl Tris-EDTA buffer (50 mM Tris-HCl pH7.5, 20 mM EDTA), mixed with 40 

µl 10% SDS, and heated at 65°C for 30 minutes. 100 µl of 5 M KOAc were added, followed by a 

10 minute incubation on ice. Supernatants obtained from a 5 minute centrifugation at 13,000 rpm 

were transferred into a new tube and mixed with 2 volumes of 99% ethanol. Precipitated DNAs 

were obtained with a 5 minute centrifugation at 13,000 rpm and washed with 70% ethanol. The 

lids of the tubes were opened for 10 minutes to allow the remaining ethanol to evaporate. The 

genomic DNA pellets were dissolved in 100-200 µL TE buffer and used as templates for a PCR 

reaction as below: 
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10x Standard Taq Buffer  5 µL 

C11_CRISPR-newF2 (5 µM) 5 µL 

C11_CRISPR-newR1 (5 µM) 5 µL 

dNTP (2 µM) 5 µL 

Taq 1 µL 

Genomic DNA  1 µL 

H2O 28 µL 

Total Volume 50 µL 

 

PCR products were then fractionated on a 1% agarose gel and the target bands were cut 

and extracted from the gel. 1 µL 10x NEB Buffer 2.1 was mixed with 9 µL cleaned PCR products 

in a clean PCR tube and the annealing program was performed in a thermal cycler as below: 

 95oC for 5 minutes, decrease the temperature from 95oC to 85oC with 2oC decrease per second 

and decrease the temperature from 85oC to 25oC with 0.1oC decrease per second. 

Following annealing, 0.25 µL T7E1 (NEB) was added to each tube and digested for 20 

minutes at 37oC. The digestion mixture was examined by electrophoresis on a 2% agarose gel for 

40 minutes at 100 volts. 

 

2.6.4.2 Immunoblot analysis 

The cell lines were collected and lysed with lysis buffer (50 mM Tris pH7.2, 1 mM EDTA, 

150 mM NaCl, 1 µM DTT, 1% Triton-X100) supplemented with complete-mini protease inhibitor 

cocktail (Roche). The expression levels of TrappC11 for the cell lines were then examined by 

western blotting. 
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Chapter 3: Results 

3.1 Generation of inducible TrappC11 BirA*-fusion cell lines  

To identify the proteins that interact with TrappC11, I employed the BioID technique 

(Roux et al., 2012). In this method, BirA*-fused TrappC11 is introduced into cells by transfection. 

Upon addition of biotin, BirA*, as a biotin ligase, catalyzes the biotinylation of proteins within 

close proximity to TrappC11 (Figure 3.1 A). After collecting cell lysates and capturing biotinylated 

proteins with streptavidin agarose, interacting proteins were identified by mass spectrometry. 

To avoid unspecific biotinylation caused by overexpression of BirA*-TrappC11, an 

inducible cell line expressing TrappC11 with the BirA*-FLAG tag was generated. To identify the 

interactions without the effect of the tags to the normal function of TrappC11, two plasmids with 

different orientations of BirA*-FLAG tag were constructed and used for generating the cell lines 

(Figure 3.1 B). The expression of the tag fused to TrappC11 in these two cell lines was tested. 

These inducible cell lines can only express BirA*-FLAG-tagged TrappC11 after tetracycline 

induction (Figure 3.1 C).  

To reduce the side effect of overexpression of TrappC11 on normal cell function, I tested 

the fusion protein expression under different tetracycline concentrations (Figure 3.2 A). The data 

demonstrated that 50 ng/mL tetracycline leads to a reasonable level of expression as opposed to 

that seen at 1000 ng/mL, a concentration recommended by the manufacturer. Cell lines were also 

tested for the ability of the fusion protein to biotinylate a known interacting protein. TrappC12, 

another subunit of the TRAPPIII complex, was used as an indicator. As expected, both TrappC12 

and BirA*-FLAG-TrappC11 were found as biotinylated proteins after streptavidin affinity 

purification from lysates of tetracycline-induced cells (Figure 3.2 B). Notably, the biotinylation of 
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TrappC11 and TrappC12 was maximum when the cells were treated with both biotin and 

tetracycline. A small amount of biotinylated TrappC12 was detected in the biotin added conditions, 

which suggests some fusion protein was expressed without induction. These results showed that 

both inducible cell lines were suitable for BioID analysis. 

 

 

Figure 3.1 Generation of inducible cell lines expressing BirA*-FLAG-tagged TrappC11.  

(A) A schematic representation of the BioID method used in this study. (B) Plasmids with different 

orientations of the BirA*-FLAG tag were used for generating cell lines. (C) Lysates were prepared 

from 293T, parental Flp-In/T-Rex, BirA*-FLAG-TrappC11, and TrappC11-BirA*-FLAG cells 

incubated without or with 1000 ng/mL tetracycline overnight as indicated.  
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Figure 3.2 TrappC11 BioID cell lines biotinylate TrappC12 within the same complex.  

(A) Lysates from two BioID cell lines treated with increasing concentrations of tetracycline were 

subjected to SDS-PAGE followed by western analysis. Antibody against FLAG was used to 

analyze expression of the tagged TrappC11. (B) Lysates from BioID cell lines treated with biotin 

were subjected to streptavidin affinity purification followed by SDS-PAGE. Expression and 

biotinylation of TrappC12 and tagged TrappC11 were verified by western analysis. 
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3.2 Mass spectrometry analysis of BioID samples identify TrappC11-interacting proteins. 

To identify TrappC11 interacting proteins, biotinylated proteins from induced BirA*-

fusion TrappC11 cells and control cells were isolated using streptavidin affinity purification. The 

control cells were generated using the empty BirA*-FLAG plasmid backbones. The streptavidin 

affinity purified mixtures were then analyzed by mass spectrometry. In addition to TrappC11 itself, 

60 TrappC11-interacting proteins were identified, including 4 other TRAPP subunits: TrappC2L, 

TrappC8, TrappC12 and TrappC13 (Table 3.1). As expected, identified interacting proteins are 

involved in different biological processes, with a large portion involved in membrane transport 

(Figure 3.3). Notably, Sec23IP was identified as an interacting protein, consistent with previously 

reported immunoprecipitation results (Bassik et al., 2013).  

Interestingly, there were 5 identified interacting proteins that play roles in autophagy 

regulation: ATG2A, ATG2B, WDR45/WIPI-4, SQSTM1/p62, and NBR1. ATG2A and ATG2B 

are required for both autophagosome formation as well as regulation of lipid droplet morphology 

and dispersion. (Velikkakath et al., 2012). WDR45/WIPI-4 is a homologue of ATG18 which is 

suggested to regulate initiation of autophagosome formation (Proikas-Cezanne et al., 2004). 

SQSTM1/p62 and NBR1 are selective autophagy receptors, playing important roles in cargo 

recognition in selective autophagy (Zaffagnini and Martens, 2016). The identification of the 

autophagy-related proteins in the TrappC11 interacting pool suggests the involvement of 

TrappC11 in autophagic regulation. 
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Table 3.1: Summary of identified TrappC11 interacting proteins 

Entry Gene Gene full name 
Unique peptides* 

N-term C-term 

Q96BY7 ATG2B Autophagy-related protein 2 homolog B 58/4 2/6 

O14641 DVL2 Segment polarity protein dishevelled homolog DVL-2 11/3 5/3 

Q641Q2 FAM21A WASH complex subunit FAM21A 11/1 0/2 

Q9Y6Y8 SEC23IP SEC23-interacting protein 11/0 10/0 

Q9Y4E1 FAM21C WASH complex subunit FAM21C 10/1 0/1 

Q6ZTW0 TPGS1 Tubulin polyglutamylase complex subunit 1 10/3 1/4 

Q9Y484 WDR45 WD repeat domain phosphoinositide-interacting protein 4 10/0 1/0 

Q96JB2 COG3 Conserved oligomeric Golgi complex subunit 3 9/0 0/0 

Q8WVT3 TRAPPC12 protein particle complex subunit 12  8/0 12/0 

O60566 BUB1B Mitotic checkpoint serine/threonine-protein kinase BUB1 beta 7/2 0/1 

P27708 CAD CAD protein 7/0 8/0 

Q8TDM6 DLG5 Disks large homolog 5 7/0 1/0 

O75665.3 OFD1 Oral-facial-digital syndrome 1 protein 7/1 0/1 

Q13625 TP53BP2 Apoptosis-stimulating of p53 protein 2 7/1 0/0 

30419.2 NMT1 Glycylpeptide N-tetradecanoyltransferase 1 6/0 0/0 

Q9H6T3 RPAP3 RNA polymerase II-associated protein 3 6/1 1/0 

Q96C92 SDCCAG3 Serologically defined colon cancer antigen 3 6/1 1/2 

Q9UPQ9 TNRC6B Trinucleotide repeat-containing gene 6B protein 6/1 0/0 

Q9Y2L5 TRAPPC8 Trafficking protein particle complex subunit 8 6/0 19/0 

Q9UL33 TRAPPC2L Trafficking protein particle complex subunit 2-like protein 5/0 4/0 

Q9HB71 CACYBP Calcyclin-binding protein 4/0 0/0 

A6NKD9 CCDC85C Coiled-coil domain-containing protein 85C 4/1 0/0 

Q9UKF6 CPSF3 Cleavage and polyadenylation specificity factor subunit 3 4/1 0/0 

Q14126 DSG2 Desmoglein-2 4/1 0/0 

P07814 EPRS Bifunctional glutamate/proline--tRNA ligase 4/2 2/2 

P51114 FXR1 Fragile X mental retardation syndrome-related protein 1 4/2 0/0 

P35232 PHB Prohibitin 4/1 2/1 

P55036 PSMD4 26S proteasome non-ATPase regulatory subunit 4 4/1 0/1 

Q9H6R7 WDCP WD repeat and coiled-coil-containing protein 4/0 0/0 

Q9BRX9 WDR83 WD repeat domain-containing protein 83 4/2 0/2 

Q9Y5A9 YTHDF2 YTH domain-containing family protein 2 4/0 1/1 

Q7Z739 YTHDF3 YTH domain-containing family protein 3 4/0 1/1 

P10398 ARAF Serine/threonine-protein kinase A-Raf 3/0 3/1 

Q9NRA8 EIF4ENIF1 Eukaryotic translation initiation factor 4E transporter 3/1 0/0 

Q9NZB2 FAM120A Constitutive coactivator of PPAR-gamma-like protein 1 3/2 3/1 

Q02790 FKBP4 Peptidyl-prolyl cis-trans isomerase FKBP4 3/0 0/0 
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P51116 FXR2 Fragile X mental retardation syndrome-related protein 2 3/1 0/0 

P07195 LDHB L-lactate dehydrogenase B chain 3/1 1/2 

Q9Y5V3 MAGED1 Melanoma-associated antigen D1 3/1 1/1 

Q15555 MAPRE2 Microtubule-associated protein RP/EB family member 2 3/1 1/2 

Q13765 NACA Nascent polypeptide-associated complex subunit alpha 3/1 0/2 

Q8IVD9 NUDCD3 NudC domain-containing protein 3 3/0 0/0 

Q8N1F7 NUP93 Nuclear pore complex protein Nup93 3/2 3/3 

Q01968 OCRL Inositol polyphosphate 5-phosphatase OCRL-1 3/1 0/0 

Q13501 SQSTM1 Sequestosome-1 3/0 0/0 

Q9UHD2 TBK1 Serine/threonine-protein kinase TBK1 3/0 0/1 

P23258 TUBG1 Tubulin gamma-1 chain 3/1 4/4 

P01023 A2M Alpha-2-macroglobulin 2/1 2/0 

Q2TAZ0 ATG2A Autophagy-related protein 2 homolog A 2/0 0/0 

Q63ZY3 KANK2 KN motif and ankyrin repeat domain-containing protein 2 2/0 0/1 

Q99707 MTR Methionine synthase 2/0 0/0 

Q14596 NBR1 Next to BRCA1 gene 1 protein 2/0 0/1 

O60551 NMT2 Glycylpeptide N-tetradecanoyltransferase 2 2/0 0/0 

P11216 PYGB Glycogen phosphorylase, brain form 2/0 0/0 

O95486 SEC24A Protein transport protein Sec24A 2/0 0/0 

O94979.7 SEC31A Protein transport protein Sec31A 2/0 0/0 

P50225 SULT1A1 Sulfotransferase 1A1 2/0 0/2 

Q6UB35 MTHFD1L Monofunctional C1-tetrahydrofolate synthase, mitochondrial 1/1 5/2 

P30101 PDIA3 Protein disulfide-isomerase A3 1/0 2/0 

A5PLN9 TRAPPC13 Trafficking protein particle complex subunit 13 0/0 11/0 

*The unique peptides number of TrappC11 expression cells / control cells are presented for both 
orientations of BirA*-FLAG tags. 
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Figure 3.3 The contribution of TrappC11 interacting proteins in different cellular processes. 

The identified TrappC11 interacting proteins were categorized based on their functions listed in 

the UniProt database. 
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3.3 TrappC11 RNAi treatment leads to a block in autophagic flux  

As indicated by the identified TrappC11 interacting proteins, TrappC11 might play a role 

in autophagy through interacting with other autophagy regulatory proteins. To study the function 

of TrappC11 in autophagy, TrappC11 was depleted by siRNA treatment (Figure 3.4). Interestingly, 

the level of LC3-II, the marker protein for autophagosomes, increased in TrappC11 knockdown 

cells even in nutrient rich conditions. Compared to untreated HeLa cells in which LC3-II level 

increased at 1 hour starvation and then decreased, TrappC11 knockdown cells did not show the 

initial increase in LC3-II. Bafilomycin is a small molecule that blocks autophagosome-lysosome 

fusion which can result in an increase in LC3-II levels. When control HeLa cells and TrappC11 

knockdown cells were treated with bafilomycin, the control cells showed a larger increase in LC3-

II level compared to the knockdown cells. This suggests a role for TrappC11 in autophagosome-

lysosome fusion prior to starvation. The accumulation of autophagosomes in nutrient rich 

TrappC11 knockdown cells was also observed in a HeLa cell line expressing GFP-tagged LC3 

(Figure 3.5). The number of autophagosomes in non-starved TrappC11 knockdown cells is two-

fold higher compared to control cells, while in the other two conditions the autophagosome 

numbers did not show a noticeable difference. 
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Figure 3.4 Depletion of TrappC11 by siRNA increases LC3-II levels.  

HeLa cells were treated without or with siRNA against TrappC11 twice for 5 days before 

starvation treatments with EBSS. For bafilomycin treatment, cells were cultured in complete 

medium with 200 nM bafilomycin for 5 hours before collection.  
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Figure 3.5 Depletion of TrappC11 increases the number of autophagosomes before starvation. 

HeLa cell line expressing GFP-RFP-LC3 was treated without or with siRNA against TrappC11 

twice for 5 days. For starvation conditions, cells were washed with PBS three times following 

incubation in EBSS for 1 hour or 5 hours before fixation. Images show the GFP signal. Numbers 

of autophagosomes of each cell were counted in 6 different fields from 2 individual experiments. 

  



41 

 

3.4 TrappC11 mutated cells generated by CRISPR/Cas9 show defective autophagy 

To avoid the possible stress introduced by transfection of the siRNA when studying the 

function of TrappC11 on autophagy, I used CRISPR/Cas9 to generate a stable TrappC11 null cell 

line. Unfortunately, from 80 monoclonal cell lines I obtained after transfection with CRISPR RNA 

complex, only one (#58) showed decreased TrappC11 expression (Figure 3.6 A). This cell line 

was used as a stable TrappC11 knockdown cell line for further studies. In the starvation 

experiments performed with HeLa and stable TrappC11 knockdown cells, the knockdown cells 

showed significant accumulation of LC3-II in nutrient rich conditions (Figure 3.6 B). Compared 

to the parental HeLa cells, LC3-II levels remained elevated in the starvation conditions, although 

they showed a tendency to decrease after starvation. 

The staining of endogenous LC3 also showed accumulation of LC3 puncta in the nutrient 

rich conditions of the stable TrappC11 knockdown cells and TrappC11 siRNA treated cells 

compared to the parental HeLa cells (Figure 3.7). Consistent with the GFP-RFP-LC3 cell line, a 

difference in the number of LC3-positive puncta was not observed between starved TrappC11 

knockdown cells and the parental HeLa cells. 
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Figure 3.6 TrappC11 knockdown cell line generated through CRISPR/Cas9 shows increased 

LC-II expression.  

(A) Number 58 cell line generated through CRISPR/Cas9 expressed less TrappC11 compared to 

HeLa and other cell lines. (B) Except for non-starved cells, HeLa cells or stable TrappC11 

knockdown cells were washed with PBS three times following incubation in EBSS for 1 hour or 

4 hours before lysis. 200 nM bafilomycin was added in EBSS as indicated. The statistics were 

performed through signal intensity measurement in ImageJ. Endogenous LC3-II levels are 

normalized to tubulin and expressed as a ratio of levels in non-starved control HeLa cells. Data 

were collected from 3 individual experiments.  
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Figure 3.7 Disruption of TrappC11 results in an accumulation of LC3-positive autophagosomes.  

Stable TrappC11 knockdown HeLa cells and HeLa cells treated with or without siRNA against 

TrappC11 were replated on coverslips one day before experiments and fixation. For starvation 

conditions, cells were washed with PBS three times following incubation in EBSS for 2 hours 

before fixation. Immunofluorescent staining of endogenous LC3 was employed to show 

autophagosomes. 
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3.5 The depletion of TrappC11 changes the distribution of lysosomes 

As indicated by the western blotting results shown above (Figure 3.4), the accumulation of 

autophagosomes in nutrient rich conditions could be due to inhibition of fusion between 

autophagosomes and lysosomes. To further explore the role of TrappC11 in autophagic turnover, 

I treated HeLa cells with siRNA against TrappC11 and stained for LAMP-1 to examine the 

distribution of lysosomes. As reported previously, the TrappC11 knockdown dispersed the Golgi 

apparatus as indicated by staining for the Golgi marker protein p115. This dispersed Golgi is a 

good indicator that TrappC11 knockdown was efficient. Interestingly, the result suggests that when 

TrappC11 levels are reduced, more cells showed lysosomes in a perinuclear region compared to 

control (Figure 3.8). 
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Figure 3.8 Depletion of TrappC11 changes the localization of lysosomes.  

HeLa cells were plated on coverslips and treated with or without siRNA against TrappC11 for 3 

days. Immunofluorescent staining of p115 and LAMP1 was employed to show Golgi and 

lysosomes, respectively. 
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3.6 TrappC11 is important for lipid homeostasis  

Considering the lipid accumulation in TRAPPC11 mutant zebrafish liver and patient 

fibroblasts, I considered whether knockdown of TrappC11 could mimic this phenotype. Indeed, 

accumulated lipid droplets were found in both TrappC11 knockdown cells and TRAPPC11 mutant 

cells (Figure 3.9). Compared to normal HeLa cells, cells expressing less TrappC11 contained lipid 

droplets with a significant elevation in both their number and size.  

 

 

 

 

 

Figure 3.9 Disruption of TrappC11 leads to an accumulation of lipid droplets.  

Stable TrappC11 knockdown HeLa cells and HeLa cells treated with or without siRNA against 

TrappC11 were replated on coverslips and cultured in normal cultural medium. Cells were then 

fixed with 4% PFA and stained with BODIPY to reveal the lipid droplets.  
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3.7 Localization of TrappC11-eGFP  

To visualize the interaction between TrappC11 and autophagy regulatory proteins, I 

constructed a plasmid expressing TrappC11 tagged with eGFP (eGFP-TrappC11) and expressed 

the protein in mammalian cells. As shown in the transfected HeLa cells, eGFP-TrappC11 

expressed mostly in the cytoplasm with a concentrated region and a few puncta. The concentrated 

expression region overlapped with the staining of the Golgi marker proteins p115, mannosidase II 

(ManII) and GM130.  

Considering the interactions between TrappC11 and p62/SQSTM1 suggested by mass 

spectrometry, I examined whether the eGFP-TrappC11 puncta overlapped with p62/SQSTM. By 

staining with endogenous p62/SQSTM in eGFP-TrappC11 transfected HeLa cells, I observed 

partial overlap between p62 puncta and eGFP-TrappC11 puncta (Figure 3.11). Notably, the 

overlap was absent between eGFP-TrappC11 and LC3 puncta, which is consistent with the mass 

spectrometry results. 
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Figure 3.10 eGFP-TrappC11 shows a predominantly cytosolic expression.  

HeLa cells were plated on coverslips and transfected with the eGFP-TrappC11 plasmid for 24 

hours. Cells were fixed with 4% PFA and stained for p115, ManII or GM130 to show the Golgi. 
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Figure 3.11 eGFP-TrappC11 partially overlaps with p62 but not LC3.  

HeLa cells were plated on coverslips and transfected with the eGFP-TrappC11 plasmid for 24 

hours. Cells were then fixed with 4% PFA and stained for p62/SQSTM1 and LC3.  
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Chapter 4: Discussion 

As an important cellular quality control mechanism, defects in autophagy lead to a broad 

range of diseases. For instance, Parkinson’s disease, a neurodegenerative disease, is associated 

with impaired degradation of damaged mitochondria through selective autophagy (Kitada et al., 

1998; Matsuda et al., 2010; Valente et al., 2004; Winklhofer and Haass, 2010). Cancer is another 

disease associated with autophagy. Mutations in ATG2B, ATG5, ATG7, ATG9B, and Beclin 

which all lead to suppressed autophagy, have been shown to stimulate tumorigenesis (Aita et al., 

1999; An et al., 2011; Kang et al., 2009; Liang et al., 1999; Takamura et al., 2011), while 

autophagy improves cell survival and facilitates tumor cell growth at a later stage of tumor 

progression (Guo et al., 2013; Yang et al., 2011). 

Autophagy also plays a role in maintaining skeletal muscle health and function. Studies 

have linked reduced autophagy activity with muscle weakness and degeneration. Muscle-specific 

knockout of the ATG7 gene in mice leads to sarcomere disorganization and myofiber degeneration 

resulting from accumulated polyubiquitinated proteins, activated unfolded protein response, and 

increased damaged mitochondria (Masiero et al., 2009). In fact, autophagy dysfunction has been 

associated with Duchenne muscular dystrophy (DMD), a severe inherited muscle disorder. 

Reduced levels of LC3B and elevated accumulation of p62/SQSTM1 were found in muscle 

samples from both DMD mouse models and patients (Bibee et al., 2014; De Palma et al., 2012). It 

is likely that the impaired autophagy fails to remove the damaged proteins and organelles, which 

further leads to the muscular dystrophy.  

Notably, patients carrying TRAPPC11 mutations are reported to have limb girdle or 

congenital muscular dystrophy with intellectual disability, while autophagy has clear relations with 
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muscular dystrophy and neurodegenerative diseases. Moreover, a zebrafish TRAPPC11 mutant is 

associated with stressed unfolded protein response (UPR) (DeRossi et al., 2016; Senft and Ronai, 

2015), and UPR can be induced by inhibited autophagy. Therefore, it is possible that suppressed 

autophagy contributes to the muscular dystrophy of TRAPPC11 patients. The results in this thesis 

showed the accumulation of LC3 in non-starved TrappC11 depletion cells, which suggests that 

TrappC11 depletion might hinder the non-starvation induced autophagy. Consistent with this 

notion, BioID-mass spectrometry identified several proteins required for autophagy. ATG2A, 

ATG2B, and WDR45/WIPI-4, three proteins identified as TrappC11 interacting proteins in this 

study, were suggested to be required for autophagosome formation. Depletion of ATG2A and B 

led to the generation of unsealed autophagosomes which suppressed the fusion with lysosomes 

and caused the accumulation of autophagosomes (Velikkakath et al., 2012). WIPIs, the 

mammalian orthologues of Atg18, are required for the recruitment of the ATG12 complex, which 

stimulates membrane expansion of the isolation membrane (Dooley et al., 2014). Notably, 

TrappC11 depletion also caused the accumulation of autophagosomes before starvation, and the 

failure of an additive effect by bafilomycin treatment suggests that TrappC11 knockdown could 

influence the fusion between autophagosomes and lysosomes. Therefore, it would be interesting 

to understand if the interactions between TrappC11 and ATG2A and B and/or WDR45/WIPI-4 

contribute to autophagosome formation. 

Another direction worth exploring is the similar effects on lipid droplet accumulation after 

knockdown of TrappC11 and ATG2. The ATG2 proteins have been shown to be important for 

lipid droplet morphology and dispersion. They were found on the surface of lipid droplets, and 

depletion of ATG2s led to an accumulation of cellular lipid droplets (Velikkakath et al., 2012). As 

shown in this study and previous work (DeRossi et al., 2016; Sadler et al., 2005), TrappC11 
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depletion or mutation could result in cellular lipid droplet accumulation and fatty liver phenotype. 

Whether the accumulation of lipid droplets in TrappC11 depleted cells is related to the disruption 

of the interaction between TrappC11 and ATG2s remains unknown. It would also be interesting 

to unveil the role of the interaction between TrappC11 and ATG2s in the lipophagy pathway. 

 To further understand the role of TrappC11 in lipophagy and non-starvation induced 

autophagy, the interactions between TrappC11 and selective autophagy receptors such as 

p62/SQSTM1 and NBR1 would be important. The interactions between these two receptors and 

TrappC11 were discovered by BioID-mass spectrometry, and the colocalization of p62/SQSTM1 

and eGFP-TrappC11 was also observed through immunofluorescence microscopy. The interaction 

between TrappC11 and selective autophagy receptors might stimulate local autophagosome 

formation and achieve the clearance of specific cargos, such as lipid droplets. However, to 

understand whether the accumulation of lipid droplets in TrappC11 disrupted cells is due to a 

failure of recruitment of autophagy receptors requires further investigation. 

Studying TRAPPIII complex dependent and independent functions of TrappC11 would 

also be shed light on the role of TrappC11. TrappC8, another TRAPPIII subunit, was reported to 

mediate the interaction between TRAPPIII and TBC1D14, which further regulates ATG9 

trafficking (Lamb et al., 2016). In contrast to the phenotype after TrappC8 depletion, which has a 

reduced number of autophagosomes, the results in this thesis showed an increased number of 

autophagosomes following TrappC11 knockdown. This discrepancy suggests the possibility that 

TrappC11 could have a TRAPIII-independent role in autophagy. TrappC11 is the only known 

TRAPP subunit related to lipid homeostasis, which also indicates its possible TRAPPIII-

independent function. Future studies to clarify if other subunits in TRAPPIII have similar 
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autophagy-related phenotypes as TrappC11 should lead to a better understanding of the relation 

between TrappC11 and the TRAPPIII complex.  

As a large, multiple-domain protein, TrappC11 might have multiple functions 

corresponding to different regions. As shown by the BioID-mass spectrometry results, some 

interactions only occurred when TrappC11 was tagged at a particular terminus. Except for 

TrappC13, all the TRAPP subunits as well as some trafficking proteins found as interacting 

proteins were biotinylated by the BirA*-fused TrappC11 in both orientations, while most proteins 

only biotinylated with N-terminal tagged TrappC11, and a few only biotinylated with C-terminal 

tagged TrappC11. All autophagy-related proteins identified in this study were only found with N-

terminal tagged TrappC11. Considering the relatively large size of BirA*, there could be a 

potential disruption of the normal function of the tagged terminus of TrappC11. Therefore, the 

binding to other subunits and formation of the TRAPPIII complex might not require the function 

of either terminus, while the interaction with autophagy-related proteins might require the 

functional C-terminus of TrappC11. On the other hand, the TRAPPC11 patients have all been 

reported to have functional first 100 amino acids and the attempt to generate TrappC11 knockout 

cells by introducing a frame shift in exon 2 (aa 1-68) failed in this study. The evidence, thus, 

suggests the N-terminus of TrappC11 is required for viability. Therefore, rather than a TrappC11 

knockout, generating cells expressing various mutant forms of TrappC11 and mapping functional 

domains might be a better approach for studying the role of TrappC11 in autophagy as well as 

other processes.  

It is clear that TrappC11 has important roles in the secretory pathway (DeRossi et al., 2016; 

Scrivens et al., 2011), and the growing evidence suggests that TrappC11 is also involved in 

autophagy. However, whether the secretory function of TrappC11 relates to its autophagy function 
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remains unknown. Exploring of the functions of TrappC11 might help understand the interplay of 

the secretory pathway and autophagy. In addition, elucidation of the function of TrappC11 in 

autophagy could help explain the development of the disease phenotypes in TrappC11 mutants 

and contribute to the design of treatments.  
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