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Abstract

Development ofDual Crosslinked Polymeric Materials for Selthealing

Soyoung An

Daily damagesuchas scratches or fractures mostpolymeric materia are inevitable,
which shorten thdifespan change/weaken the originategrity, andsometimedead to the
catastrophic failure of the matesabelf-healing or selfrepairing is alesired propertin the
design and development loigh-performancematerialswith their builtin ability to repair
physical damage for varioapplications such asirface coatings, tissue engineering, and

SEensos.

Intrinsic selthealing utilizing dynamic chemistry is a promising method that allows for
the development of effective sepairing polymec mateials. This method involves the
incomporationofmonc oval ent bonds through-"pysic&alnginti en
interaction, metal binding, and hydrogen bonding. However, the use of physical bonding has
majordrawbaclkd small mechanical properties of prepared compounds due to the natuee of
weak physical interaction. Another method utilizes reversible covalent bonds sucladshe
Alder/retroDiels-Alder reaction, alkoxyamine recombination, uocb&mistry,and disulfides.
Although these dynamic covalent bonds can provide higher mieaharoperties compared to
the physical interactions, the sékaling behaviooften can bdéimited and require severe
external stimuli to achieve a complete gelpairing procedure.

My Master so6 mewleretheradvhntages and disadvantafjesvalent and
supramoleculafphysica) networks. o novelself-healable networkaere developedne
networkdesigred withdynamicdisulfidelinkages and the otherith both disulfideand
supramolecular metdigand association®©ynamic disulfide linlkages are excellent candidates to
explore indevelopingselthealable polymerimaterialssince they can beeadily
cleaved/disturbed to thiols @iyl radicals in response to external stimuli, @mehsubsequently

rebounded tanduce seHlrepair of the dmaged parts. In a similar way, tmetallo



complexionic linksare widely incorporateoh forming selfhealable polymeric networks

because of the dynamic linkages between the ionic crosslinkers and their-consiter

For the firstnetwork we explored hvingpoly(methacrylatebased crosslinked materials
for which selfhealingis basednly on dynamic disulfide¢hiol chemistry. Such materialgere
preparedy theextentoxidation of excess thiols in thightly crosslinkednetworksthrough
sulfide linkages The secondystemconsists ofh multiblock copolymer with seliealable blocks
and a middle block. The sdikalable blocks are pdiypethacrylatgbased units with pendant
disulfides linkagesnd/oranother pendant carboxylic acids groups. The pres#rtos
different pendant dynamic linkages enables the formation of polymeric crosslinked ntaterials
with dual selfrepairing unit® through disulfidethiol exchange anthetallccomplexation with
metal ions. lis believedhat thesainiquedesigns along wht their tunable selfiealing kinetics
demonstrate well the versatility of our methods to preparéhsalfible polymeric crosslinked
networks that have a promising potent@lthe development of multifunctional industrial

applications.
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Chapter 1

Introduction

1.1 Brief overview of my researchand goals

My Ma st er fbdises an she explocation of reversible (dynamic) disulfide
chemigry for the development d@fficient methods to synthesize advanced crosslinked
polymeric materials exhibiting seltfealabilityat ambient temperature with no external aids.
Well-knownsynthetic techniques in organic and polymer chemistigluding freeradical
polymerization (FRP), controlled radical polymerizattbroughatom transfer radical
polymerization (ATRP), and pestodificationmethods were combined to synthesize two new
disulfide-crosslinked sethealable networks: 1) dual disulfidelfide covalentlycrosslinked
networks by FRRndphotcinduced thiolene addition and oxidatiaeactionsand 2) dual
covalent disulfideand physical metalldgomplexcrosslinked networks based amovel
pentablock copolymer by ATRP and hydrolytic cleavagetien.Utilizing the unique
reversible/dynamic nature of covalent disulfide and physical fligtaid interactionsthe
developed materiakxhibitlow-temperatureelf-healing behavior anpreferableviscoelastic

properties.

1.2 Self-healing in crosslinkednetworks

Numerous strategies halseen proposefbr developing selfepairing polymeric
materials which cabe categorizethto extrinsicselthealing and intrinsic seliealing materials
(Figure 1.1) Extrinsicself-healingapproach requires the encapsola of additional healing
agents such as catalysts and crosslinkers in caliselleontainergmicrocapsules) téorm
porous composites. Upon physical dansaglee cracks break microcapsulédditionalhealing
agentsare released from the microcapsuleéll damagedracks. Then, the desired
polymerization takes place insitiee crack toinitiate selfrepairing. This approach can heal
relativelylargeareas otlamagegarts however, sethealing is limited to a single event, since
healing agents microcapsulesredeplete in the matrix.In contrast, mtrinsic selfhealing is
the advancedethodbecause it utilizes dynamic (reversible) linkaties areembeddedo form

dynamiccrosslinked networks, allowing repeatable seffairing. A variety of cealent dynamic
1



linkageshas been incorporateith selfhealable materials, including disulfide? ® hindered urea,
456 alkoxyamine 8 diarylbibenzofuranonéa dimer ofarylbenzofuranone® boronic estert*
12and etc Not only dynamic covalent linkages, but also various physical interactions such as
hydrogen bonding!*1® hostguest interaction’, -~ i n t e!¥'%aedmetadlacomplex
interaction?>> havebeen exploredor the development of seffealable materialetails in
recentstrategies that allow for traevelopmenof a variety ofintrinsic and extrinsiself

healable materials (@ystens) are summarizeth Chapter 2.

Most selthealing matrials based on covalent linkages often suffer from stiffness which
limits the dynamic behaviomf the system. Selfiealing ofsuch systeisimay require external
stimuli such as heating, tlaed of solvent or catalyst. Meanwhile, many sedfaling materials
based on physical interactions tend to Hawemechanicabktrengthbut have dendencyto self
repair at ambient conditions. To overcome this dilemma, a multiphase design-feeadeif
materials habeen proposenh which consists of hard phase forchanical strength and soft
phase for autonomous séi¢aling.?® Also, a dual crosslinked sefiealing system using both
supramolecular and covalent networks hiagen studied’

| Extrinsic system | | Intrinsic system |
® Consists of reversible/dynamic
chemical bonding

®* Contains encapsulation of extra
healing agents

* Single event only [ S :"“Needs external trlgger IferrE‘n bonding

Dicyclopent adlene o -,

ey W )
. '.\_ i: fu—u-—-
“’5-\@['-- — AR

Met aI ligand

Epoxy-amine // !--“ : """""----...___ G lllll ,V!:i}

_<’“ L'}
~ / . o Diels-Alder 4.
Tt p—g U|sulf|dek ------
Palydimet h,!lsﬂc:xane e . /5\_‘ ¥ %
(PDMS) Th y ¢ | . J

Figure 1.1 Schematic illustration aéxtrinsicand intrinsic sekhealing methods.



1.3 Scope of my thesis

The purpose of mthess is to provide detailed stie$on the synthesis and
characterization of dynamicatiyrosslinked polymeric materia¢éxhibiting selfhealability
through mainlhydisulfide chemistry andlualmetatliigandinteractiors. Chapter 2 presents a
literature review focusing orecentstrategies and chemitgs that hae explored for the

development o& variety of novetelf-healable materials.

Chapter Jresents thdually crosslinkedseli-healable composites wiulfide and
disulfide Iinkages. The sulfide linkage as permanent crosgliokides mechanical strength,
whereas the disulfide linkage as a reversible crosstidkces sethealing in the networks.
These crosslinked matals can rapidly selhealmicro-scale cracks (40 70 um) within 0.5 to
30 min at room temperature with no aid of external stimuli. Traglreversible viscoelastic
properties that shoa uniqueselt-healing elasticity.

Chapter 4lescribeshe synthesis of a multiblock copolymer composed adreral
poly(ethylene glycolplock andvarious functionasymmetricblockslabeledwith two distinct
selfhealableunits: pendandisulfide linkages andcarboxylic acid groups. The copolymeas
crosslinkedwith dual disulfide linkages through disulfidieiol exchange reaction amdetallo
complexation througphysicalmetatligand interactionsTheresultingdually-dynamic networks
exhibit rapid glf-healing at ambient condition

Lasty, the concluding remarks and future perspectaresdiscussenh Chapters.



Chapter 2
Review of recent strategies to develop séiiealable crosslinked

networks

(This chapteis reproducedhe articlepublished inChemical Communication2015, 51,
1305813070with permission from theublisher)

2.1 Introduction

Threedimensionally crosslinked polymeaseeffective building block$o developa variety
of novelmultifunctional naterialsfor various applications nhanoscience, biotechnology, and
industrial fields?®2® The effectiveness dfigh-performance crosslinkedaterialsis dueto their
dimensional stability, mechanical strength, thermal stability, and solvent resistaraducing
thebuilt-in ability to repair physical damage and cracks eid@ctively prevent catastrophic
failure, thusextending the lifetime of material€onsequentlythe development of selfealing
materia defined asrhateriab where damage automates a healing response” has currently

attracted significant attentiot§3®

A number ofstrategies have been reported to develophsifing polymersBased on the
nature of sethealing and external triggeappliedthey canbe classifiedinto non-autonomous
andautonomousystems. n-autonomous seliealingpolymersrequireexternal trigges such
aslight, temperature, and pkihereasautonomouseli-healing materialslo notneedany
triggers to initiate the self-healing processAlternatively,numerousstrategiesanbe classifiedhs
intrinsic and extrinsié**° Extrinsicself-healing involveghe encapsulation ofxternéhealing
agens, in the form of microcapsules or fibeisipregnated deliberately the polymer matrix*:
42\When crack or damagsoccur, the contents encagpigitedin thesecontainers are releaseml
fill the disrupted partsvhichthenbeginselfrepairing either by polymerization ohemical
reactionsln contrast to extrinsic seliealingoccurringin a single evenintrinsicsel-healing is

repeatable andccursin multiple events Intrinsic self-healingmaterialsare designewith
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reversible crosslinkand sekhealingis accomplishetty bonding upon mechanical damage to
the systent>*4 When the damage is below the critical lintite damagedaation canbe rejoined
with the aid of either chemical crossling throughdynamiccovalent bond formatidaor
physical crosslinking througsupramoleculamn-covalen} interactionst® This article reviews
the recent advanseén thedesign analevelopnent ofcrosslinked materialexhibiting self
healability with a focus orthe synthesis anahethodologyof intrinsic andextrinsicselfhealing

polymers reporteth recent years

2.2 Intrinsic self-healing methods utilizing reversible chemical crosslinking methods

Thedesign of these materidtsvolves the incorporation of ghamic covalenbonds as
crosslinkage# selthealable networks. These reversible linkages areuétized through the
reformation of covalent bonds to reattach the fractured materials caused by mechanical forces
(i.e. cracks or cutsVnlike physicalcrosslinking methods based sapramogcularinteractions,
the chemical crosslinking methodslizing reversible covalent bond formatioropide higher
mechanicabtrength and dimensional stabilityhese featuresan be advantageousthre
development of tough selfealable material§igure2.lillustrates sveral reversible dynamic
linkages and chemistrig¢lsat havebeen exploredor thedevelopment of novel reversible self

healable materials.
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Figure 2.1 Reversibledynamic linkages andhanmistriesthat have been explored for the development of

novel reversible seliealable materials.

2.2.1Redox disulfide chemistry

Disulfide linkages (SS) are cleaved to the corresponding thiols either under a reducing

condition in the presence of reducing agesuch as phosphines or through tuiislulfide

exchange reactions in the presence of tfi6Theycanalsobecleaved to the corresponding

thiyl radicals undeconditions such as thermal scisst®mechanicabtress'® or

photoiradiation®® Reversibly, the formed thiols or thiyl radicals are utilized to reform disulfide

bonds by several reactions: oxidation of thiols, thisulfide exchangeeaction, and

recombination of thiyl radicals. Further, disulfide linkages can be exchanged tlisufjide

metathesigor disulfiderearrangement) catalyzed by phosplitertiary amine?>3 or photo

irradiation®* These unique redox chemistries eiapthe reformation of yhamic disulfide

bondshave beentilized in thedesign and construction of disulfidentaining sekhealable

materialst3 5558



Polysulfide-crosslinked epoxpased thermoset materialgh a glass transition
temperature (J) of -35 C were synthesized by polycondensatigna click-type epoxythiol
reaction of an epoxy reshearingdisulfide linkages and a polythiol. These materials are
designed to have multiple disulfide linkages positioned in long side chains tethered from
crosslinked networks; this enabbhe enhanced mobility of disulfide linkages in damaged areas
(i.e. cracks oscratchep Initial cuts disappeared and mechangtangthwas fully restored
within 1 hr at 60 C.'°® In addition, mt only the number (or density) but akke mobility of
disulfidelinkages availablevithin polymeric networlare important parameters that significantly

influenceself-healability through disulfide redox chemisbfy.

Methacrylatebased disulfiderosslinked materials were synthesized by atom transfer
radical polymerization (ATRP) fahechain extension of a disulfiefeinctionalized
dimethacrylate from stashaped corerosslinked copolymers as macroirtitiess. The materials
are composed of coi@osslinked starbeaing poly(butyl acrylate) armsvith the average
number of arms per stahaped core 23, which are crosslinked with dynamic disulfide linkages
at their branched peripheries. Sl transitiorthrough a reducticxidation process allows for
the preparation of reversibly disulfideosslinked stapolymer networks. As seen kigure 22,
atomic force microscopfAFM) analysis shows a decrease in the depth of cuts over the time,

suggesting theazurrence of selhealing at room temperatute.
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Figure 2.2 Chemicalstructure of disulfiderosslinked stashaped apolymer (left)and time dependent
changeof height mode AFM image for cut on the surface of reversibly disutfidsslinked stapolymer
network (right): 3D images (a), 2D height mode images (b), and evolution of damage depth for 12 min at
two positiong(c).2 Copyright 202 American Chemical Society.

More recently, novelluatsulfide-disulfide crosslinked materials-§sPxNs) based on

linearmethacrylate copolymergere developed bytilizing a combination of photenduced



thiol-ene radical additioand oxidation. As illustrated iRigure 23, permanent sulfide

crosslinkagesretaintheintegrity of selfhealable sssPxN materials with high mechanical

strengthupon plysical damagewhile dynamic disulfide crosslinkages ensure rapid and room

temperature seliealing in cracks. Mthacylate copolymers having pendant vinyl groupse

synthesized by free radical polymerizati®®RP)followed by postmodification. They weré¢hen

mixedwith a polythiol in a norstoichiometric balanct® formlightly crosslinked networks

having excess thiols (sPxNs) upon UV irradiati®nobsequent oxidation on sPxNs yesddiual

s-ssPxNs with sefhealable disulfide linkage3he resulting-ssPxN networks exhibit the

occurrence of rapid selfealing within 30 seandsto 30 mirutes,as well as selhealing

elasticity with reversible viscoelastic propertés.
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Figure 2.3 lllustrationof a novel method utilizing clickype photeinduced thiolene radical addition and
oxidation to synthesize dual sulfidiésulfide crosslinkednetworls (sssPxNs) (a), elution of
microscope imageg) and kinetics of selhealing €) over time at room temperature for dusds$xN



with different cut stes of 43 pnwide (upper)and 73 pmwide (middle),compared with a control of
sPxN with no disulfidel{ottom). Copyright 2A.5 Wiley Interfaces.

2.2.2Diels-Alder (DA)/retro -DA chemistry

DA reaction is a thermallinduced[4+2] cycloadditionof a diene and a diephile.
Furan group and maleimide groups are generally used as typical diene and dienophile,
respectively. The resultingA adduct undergesa cleavageaeaction ¢alledretro-DA reaction)
at high temperaturese-generatinghe correspondindiene and diemphile They then reform
DA linkages Thisreversilbe DA/retro-DA reaction has been utilized for the development of
thermallyinduced selfheabhblematerials Various approaches that have been explored can be
classified based on tlehemicalstructures opolydienes and polydienophiles for stgmwth

polymerization through polyaddition.

Approach | utilizes the direct polyaddition &hallmolecules of polydienes and
polydienophiles at a moderate temperat@ré0-80 C).6%%! As illustrated inFigure2.4,
thermally remendable crosslinked materials were synthesized by polyaddition ofearfour
furanlabeled monome@F) and a threarm maleimiddabeled monomer (3M). The rate of
polymerization increased with an increasing DA reaction temperature. For the resulting DA
crosslinked materials, the healing efficiency of cracks through-BeAreeactions was 50% at
150"C and 41% at 120C.°° Singlecomponent DAcrosslinked polymeric materials were
synthesized by polyaddition of a bifunctional monomer functionalized with cyclopentadiene
acting as both diene and dienophile. The monomer was generatezlfeyréDA reaction of the
corresponding dicyclopentadiebased monomer. The mending efficiency of the network was
40-60%°%2 These materials were further useethance interlaminar properties in epdased
composites. An introduction of a plasticizer into 13fosslinked materials can enhance the
reformation efficiency of DAadducs followed by retreDA reaction For example, the use of
benzyl alcohol as a plasizer allowsfor theimprovement ofself-healing recoveryn DA-
crosslinked materials composed of a pahgctionalfuran and 1,t(methylened#,1-
phenylene)bismaleimide (BM). Such enhancement is attributeditci@asen free volume and
molecular mobity of the polymeric network® Details on the synthesis and setfaling of DA

based crosslinked materials have been summarized in a 8view.
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Figure 2.4 lllustration of Polycondensation through DA reaction of a faum furanlabeled monomer
(4F) and a threarm maleimiddabeled monomer (3M) to form DArosslinked materials.

Approach llinvolvesthe synthesis of polymethacrylatesaing pendant furan groups by
chaingrowth polymerization of a methacrylate functionalized with a furan group. Random
copolymers having pendant furan groups were synthesized by controlleal podymerization
methods including ATR®®’ or reversible addition fragmentation ché&iansfer(RAFT)
polymerizatiorf® The resulting copolymers were crosslinkeith BM through DA reactions.
FT-IR technique was used to investigdtermal reversibilityof the resulting DAcrosslinked
networksby monitoring adecrease im peak fofuran rings(1010 cm?) for DA reaction anch
disappearance @fpeakfor C=C vibration (1630 cm?) for retroDA reaction.The DA linkages
were disrupted to theorrespondingliene and dienophilat 100 C, and therrestored upon
cooling down to room temperatur@canning electron microscof§EM)images show thahé
distinctive crack made orthe surface ohetworkswerecompletely healed upon heating at 120
“C for 4 hrs¥” Further, ABAtypetriblock copolymes consising of a soft poly(2-ethytheyxyl
acrylatg in the middle(B block) anda glassy and hargoly(furfuryl methacrylate) at thends (A
blocks) were synthesized by ATRFhe resulting polymers formed Dérosslinked networks in
the presence of BM crosslinker. Similar results of thelgvdidivenself-healing behavior on

damaged filrs wereobservedFigure2.5).%°
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Figure 2.5 Schematic illustratio of DA and retreDA reactionoccurredn reactive mixtures consisting of
a ABA triblock copolymer having pendant furfuryl groups with jArhethylened#,1-
phenylene)bismaleimide for thermatlyiven selfhealing®® Copyright 2.0 American Chemical Society.

Approach lll involveghe synthesis of liner polymers having pendant furan groups by
postmaodification ofpolybutadieng®’! polyamides’? or polyketone& with furfuryl amine.For
examplefuranfunctionalzed polyketonewere synthesizedy PaalKnorr reaction of the
polyketones with furfuryamine.The resulting polyketones were then mixed with BM to form
DA-crosslinked materialat 50 C. Repeatable seliealingof the materials througietro-DA

reactionwas observed at 1IC within <30 min’3

Other approaches have also besportedto synthesize seliealable materials; including
DA-crosslinked networks based on epoxy resin by polyconden&4fi@md DAlabeled block

copolymer at the blockinctionby ATRP#°
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2.2.3Hindered urea chemistry

Urea bonds bearing a bulky group on the nitrogen atom can dissociate into the
corresponding iso@nate and amine; they then reversibly form the urea bbfitis dynamic
hindered urea chemistry has been explored in the development of eledysbwiemperatre
crosslinked sethealing of poly(urethanarea) containing hindered urea bonds (HUBS). As
illustrated inFigure2.6, the HUBSs in cuts were involved in the reverse process of typical urea
bond formation, leading to the occurrence of autonomous repénini@ hrs at 37C.° This

chemistry has been further explored to synthasyrieolyzablepolyureas bearing HUBES.
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Figure 2.6 Schemat illustration of selfhealing process (a), chemical structures and ratios of
components used for the synthesis (b), and selected snapshots during the courséeaflirsglf
experiments of HUBbased crosslinked poly(urethaneea) materials (c). TMPCA: 2@6;
tetramethylpiperidinylcarboxyamide, TBEU: -(ttbutyl)-1-ethylurea, and DEU: 1;diethylure&
Copyright 24 NaturePublishing Group.

2.2.4 Other reversible chemistry

Thiuram disulfide (TDS) moietiesere introduced intpolyurethanebasedcrosslinked
materials Whenexpogdto visible light, TDS units undarentradical reshuffling with
neighboring TDS units to reform disulfide bonds through radical transfer reaction or radical
crossover reactiormhisdisulfidereshuffling hdued selthealingon damaged arearheir <lf-
healirg behavior was followed by cutting a cylindrical sample into two piegbikh were

contactedunder visible light at room temperature. After 24 hrs, the rugtieceswere re
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annealed togetheexhibitingsimilar mechanical propertiesbefore the physal damagé® In
addition, d&koxyamine!®diarylbibenzofuranone (a dien of arylbenzofuranoné),
trithiocarbonaté; acyhydrazone€®®° and imine®! as well alefin metathesi§? boronic estet®
12and coumarin dimé&t have also been explored for the development of intrinsichealiing

materials.

2.3 Intrinsic self-healing methods utilizing reversible physical crosslinking

The methods utilize neoovalent interetions typically hydrogen bonding -~ metal
complexationjonic, and hosguestinteractionsTheformedphysical crosslinks are easily
disrupted in response to external stimuli such as pH, temperature, heat, and mechanical stress.
Suchphysicaldisruptons are restored to their original interactici® to theunique reversibility

of thephysicalcrosslinks.

2.3.1Hydrogen bonding interactions

Hydrogen bonding strategy for tdevelopment of selfiealablesupramolecular
materiak requirestheintroductionof hydrogenbonding motifs aslonois and acceptainto
polymess as in pendardhairs, in arms, or atchain endsWidely-exploredhydrogen bonding
motifs include2-ureido-4-pyrimidinone (Upy}* and secondary amidgoups Thymine/2,6
diaminotriazineé®® urea moietie§® and carboxylic acidé® have also been usedhdse groups
enable the formatioaf reversible supramolecular crosslinking netwdtkeugh their
intemolecularhydrogen bondingJpon physical damages, teapramoleculacrosslinks are
disrupted; howeverheycan be reformed because of theique reversibilityMonofunctional
and dfunctional Upyconjugated poly(ethylene glycol) (UMBEG) was synthesized by a facile
conjugationof UPy and PEGThemixture of these€onjugates seldssembled in water to form
fibril-embedded hydrogels. Thaitructural and mechanical propertias wellas sekhealability,

were regulated byarying theratios of monofunctional to crosslinking difunctional UPEG®®

A concernfor most selfhealable materials utilizing hydrogen bonding interactions is
their weakmechanicaktrengthdue to the use of soft polymeas selfhealable matrixA
promising strategy that has been proposed to overdusehallenges the inorporation of hard
domains intcsoft supramolecular polymerimatrix containing hydrogen bondingotifs. The

presence of hard domains providesghness anohechanical strength, while soft matrix
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promoteghe mobility of hydrogen bonding groups for sketaling. For example, weltontrolled
bottlebrush polymeswere synthesized by a combinationFéitPand ATRP. They consist of
polystyrene (PS) backbonkigh Tg) as a hard phase and polyacrylate amide&R¥de) brushes
(low Tgy) asasoft phase. The bruslolymers collapsed into cohell nanostructures, which
further assembled to twjghase nanostructures. They consist of hard polystyrene domains
microphaseseparated i soft matrix whichcontairs secondary amide groups that are capable
of forming dynamicsupramolecular networks, having both hydrogen bond donor and acceptor
functionalities. The resulting supramolecular assemialgreversibly broken and reformed,
affording spontaneous séitaling behaviorRigure2.7).%° Diblock copolymers synthesized by
RAFT polymerization consist of a hard PS block asofa poly(rbutyl acrylate) (PBA) block,
functionalized with an UPy motif at one end, tfiosning PSPBA-UPy. Dimerization of two
UPy units allowed for the synthesis of wetintrolled ABA triblock copolymers, thderming
PSb-PBA-(UPy-UPY)-PBA-b-PS. Thesecopolymers formed a microphaseparated
thermoplastic elastomers of hard PSt domains in PBA soft matrix with reversible hydrogen
bonding interactions to afford dynansielf-healing propertied! Similar approaches hawaso
been reported includingABA triblock copolymers with pendant amide groups in the A blG€ks,

coreshell particles having amide groups in affhand polyuretharsshaving UPy group$.
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Figure 2.7 Schematic illustration of hydrogeésonding brush polymer consisting of polystyrene backbone
(high Tg) as a hard phase and polyacrylate amide brushes @oasTa soft phase aiitd supramolecular
assembly to form twqhase microstructures, consisting hard polystyrene domains microphase
separated in soft matrix containing secondary amide groups that are capable of forming dynamic
supramolecular network8 Copyright 204 NaturePublishing Group

232 i nteractions

Self-healingtlh o u g h d-y n a miaudlixe$ arognatic units, mostlyyrene
moi et i-eestrora $ ch r esi dues aaledtrodeficiemtiresi@uesthetvat s, as
residuesorm complexesadopting chairffoldedconformationt hr od gkt acki ng i nter
These supramolecular interactions can be disrupted and reoriented upon thermal.réspmnse
consequencghysical damagearesubsequently healeds a typicalexample Figure2.8
illustrates a polymer blend consisting of a chiailding polydiimide (1) and a telechelic
polyurethane witlpyrenylend groups (2). fie reactiveblendyieldedsupramolecular crosslinked
material -indutee#di bg Wit h t-healingiahaviowas gbservedi b i | i t
at temperature>50"C.%2%3 Further, the design of new monomers with multiple aromatic¥nits
or the introduction of cellulose nanocrystals (CN€ahd gold nanoparticles (AuNP$)

enhancednechanicabtrengthof the selfhealable networks.

15



(o) o] O, o] O, O
(2 et Waltad
N N N N N N

m m
1
s S IETUIE I W e
S Sl SRl e a vl
Ssascaacsscapee
n
2

Figure 2.8 lllustration of " -’ i nt er ac @ potydiimide and av@renyl endcapped polymet®
Copyright 2.3 Royal Society of Chemistry.

2.3.3Metallo-supramolecular interactions

This method utilizes metdigand interactions where polymeric ligands are designed to
haveligand motifsthat bind to metal ionatthe chairends or in the side chainslponthe
incorporatian of metal ionssuch as Zn, Fe, Cand Ni,linear supramolecular polymer or
supramolecular crosslinked network can be forthedughspecific metaligand interaction.
These interactions can be disrupted physically, thergr@llyponUV irradiation.Subsequent

restoration of such interaction can induce-seléling behavior of the material.

2,6-Bis(1j-methylbenzimidazolyl)pyridine (Mebignd its oxyderivative$’ have been
used g aligand motik that bind to zinc ions. For examplaly(ethyleneco-butylene)
copolymers havind/lebip ligands atheirterminiwere synthesized and interacted wAthions
through metaligand interactionso form meallo-supramolecular polymeré-igure2.9). The
resulting network hacelatively high mechanicatrengthwith storage moduis (G) °© 10’ Pa
After exposurdo UV, theMebip-Zn interactionswvereelectronically excitedThe absorbed
energiesvereconverted into hedb induce thedissociation of network. When UNght wasoff,
the metalligand interactionsverereassemblgdeading to the occurrence sél-healing®® An
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introduction ofCNCs into the supramolegdar mixture reinforcednechanical propertie$(
°10° Paat higher concentration of 21.%° In addition,poly(butyl acrylateco-methyl
methacrylatgbearing penaht Mebip unitswere synthesized\n addition ofZn metal ions
resulted in the formation @hetallosupramolecular crosslinked netwardntaining haranetat
ligand richdomainsphaseseparated isoft polyacrylate phaseThe healing process was
observed both optically and thermalRurtherunique triple shape memory transitions were

studied at different temperaturés.

Otherligandmotifs have also been explored for the developmentetalio-
supramoleculaself-healable materia)sncluding2,6-bis(1,2,3triazole4-yl)pyridine (BTP)0*

103imidazolg'®*tyrosing!® polyethyleneiminé®triazole!°’ and terpyriding%%1%°

Figure 2.9 Schematicillustration of metatligand interaction between Mebip units and Zn tns
Copyright2011 Nature Bblishing Group.

2.3.4lonic interactions

This methodowardreversiblephysical seHhealingutilizes ionic crosslinkingoetween

anionic polymers and cationic species as metal ions, small molecules, or macromolecules. The
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