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ABSTRACT 

 

Prediction Modeling for Design Space Exploration in Optical Network on Chip 

Sara Karimi 

 

In at least a decade chip multiprocessors (CMP) have been dominating new commercial 

releases due to computational advantages of parallel computing cores on a single chip. Network 

on Chip (NoC) has emerged as an interconnection network of CMPs. But significant bandwidth 

that is required for multicore chips is becoming a bottleneck in the traditional (electrical) 

network on chip, due to delays caused by long wires in the electric NoC. Integration of photonic 

links with traditional electronic interconnects proposes a promising solution for this challenge. 

Since there are numerous design parameters for opto-electrical network architectures, an accurate 

evaluation is needed to study the impact of each design parameter on network performance, and 

to provide the most suitable network for a given set of applications, a power or a performance 

goal. In this thesis, we present a prediction modeling technique for design space exploration of 

an opto-electrical network on chip. Our proposed model accurately predicts delay (includes 

network packet latency and network contention delay) and energy (includes static and dynamic 

energy consumption) of the network. Specifically, this work addresses the fundamental challenge 

of accurate estimation of desired metrics without having to incur high simulation cost of 

numerous configurations of the optical network on chip architecture. We reduce the number of 

required simulations by accurately selecting the parameters that have the most impact on the 

network. Furthermore, we sparsely and randomly sample the designs build using these 

parameters from an Optical Network on Chip (ONoC) design space, and simulate only the 

sampled designs. We validate our model with three different applications executing on a large set 

of network configurations in a large optical network on chip design space. We achieve average 

error rates (root relative squared error) as low as 5.5% for the delay and 3.05% for the energy 

consumption.   
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CHAPTER 1  

1. Introduction 

 

1.1. Motivation 

By scaling down the technology node, we can have a larger number of cores on a single chip. 

If current trends continue, there will be hundreds of cores on a chip in five to ten years [1]. When 

the number of the cores grows to tens and hundreds on a chip, traditional shared medium 

network like shared bus, cannot support the required high bandwidth, performance and power. 

For addressing this challenge in modern system architecture, Network on Chip (NoC) had been 

proposed as the interconnection network for Chip Multiprocessors (CMP). Although electrical 

NoC is a good solution for replacing traditional shared medium network, it cannot scale well in 

performance and power when the number of cores grows to hundreds or thousands. Optical 

Network on Chip (ONoC) is a promising solution for solving power and performance bottleneck 

of the on-chip network. Some of the advantages of using ONoC are its high bandwidth, bit-rate 

transparency for the power consumption in switches and waveguides which means power 

consumption of these devices are not dependent on the number of transmitted bits or distance, 

scalability and low loss in the optical waveguide that cause power consumption be completely 

independent of transmission distance. In designing ONoC, there are many parameters and design 

alternatives that can be considered even for a single network architecture. These several 

alternatives create a significant design space that a designer can choose its design from it, based 

on the preferences. Evaluation by simulation of all of these design space points required a lot of 

time and effort. In this thesis, we proposed a prediction model that we derive based on sampled 

simulations. This prediction modeling technique that we present in this work can address a 

fundamental challenge in simulation cost of design space exploration. Our prediction model has 

been derived from a set of data that we obtain from simulating of numerous design alternatives. 

Although we simulated a large number of design alternatives, these simulations are still a small 

part of entire design space points (i.e. all possible design alternatives). Our derived model can be 

used for predicting the behavior (i.e. delay and energy) of these simulated design alternatives as 

well as other design alternatives from entire design space that we do not simulate. This work 
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provides a rapid design space exploration for a designer who wants to capture the tradeoffs 

between many alternative designs in an ONoC architecture.  

 

1.2. Problem statement 

A designer has many possibilities to design an optical network on the chip as an 

interconnection network for CMPs. This design variety comes from network configuration 

parameters that provide a large amount of alternatives for each aspect of designing an optical 

network on chip. For finding a design configuration that can fulfill our desired outcome in 

latency and delay of the network as well as network energy consumption, a designer needs to do 

a massive search and exploration among all the design possibilities in the entire design space. 

Exploring the full cross-product of many design parameters requires a large number of long-

running simulations. Moreover, efficient design space exploration is constrained by the 

significant computational costs of simulators. Long simulation times may cause designers to 

limit design studies and consider only small subsets of the full design space. These limitations 

and constraints will make results and conclusions that cannot generalize to the other alternatives 

in larger design space. Therefore designers need a method to explore among large design space 

without spending too much time to test and evaluate all the design alternatives.  

 

1.3. Proposed Solution (Methodology) 

In this thesis, we come up with a prediction model that can be used by the designer to find 

out about delay and energy of network without simulating all the design alternatives 

independently. In this technique, at first, we sampled different design configurations from a full 

ONoC design space and simulated these designs in our simulator to find out delay and energy 

consumption of these architectures. In this way, we obtain a dataset from some design points of 

the entire design space. Then by using statistical inference and machine learning methods, we 

find several prediction models that can predict outputs (i.e. delay and energy) of the different 

design alternatives in entire design space with very good accuracy. These prediction models have 

been built based on the dataset that we gather in the first step. We use this dataset as an input for 

a learning process that formulates a prediction model. The derived prediction model can predict 
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output’s values for the other design configurations in design space that we do not use in the first 

step to build our model. In other words, we gather a limited number of samples from entire 

design space and train a model for predicting the outputs of entire design space. After obtaining 

the prediction model, we validate it on new samples, and we measure the accuracy of the 

prediction. In chapter 3 we will go through the theory of several prediction models that we 

explore in this thesis. In chapter 4 we discuss our different design configurations that generate 

our dataset, and then we introduce the required process on the dataset for improving models. In 

chapter 5 we present the experimental results and evaluate our models to find out how well these 

models can predict other design configurations in design space.  

 

1.4. Related Work 

There has been significant work in optimizing the ONoC simulators to reduce required time 

for design space exploration, and also fundamental work for performance modeling of 

multiprocessors systems. Our work is unique in its domain Optical Network on Chip because we 

consider both architecture and application specific parameters of the design to obtain accurate 

delay and energy prediction. Therefore, to the best of our knowledge up to date, there has not 

been any work that tackled the same problem. Hence we will provide background and compare 

our work to the other works that have been done in these three categories: (i) Optical Network on 

Chip Architectures and Design (ii) Design Space Exploration of Network on Chip (iii) 

Regression Modeling for Design Space Exploration.  

1.4.1. Optical Network on Chip Architectures and Design 

Corona [2] is an optical Network on Chip (NoC) architecture that uses an optical crossbar 

with optical token ring arbitration to permit a node to send data. It uses a Multiple-Writer-Single-

Reader (MWSR)  [3] optical bus. When the number of nodes increases, both the waiting time for 

receiving a token and the network diameter increase (i.e. longest distance between every two 

nodes of the network that represents the size of the network). Corona implementation uses a lot 

of wavelengths (64) to modulate data packets to improve the latency; however, this requires an 

impractically a large number of microring resonators resulting in a large area, and moreover high 

power consumption which rapidly increases with the network size. In order to reduce the number 

of waveguide and wavelength  [4] proposes an Optical Ring Network on Chip (ORNoC) 
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architecture. The major advantage of ORNoC is that the same wavelengths can be reused to 

realize multiple communications on the same waveguide, at the same time, with no arbitration 

required. By using Wavelength Division Multiplexing (WDM) that allows multiple signals to be 

transmitted simultaneously, and wavelengths reuse method, ORNoC architecture provide a 

sufficient number of rings to support a contention free architecture. In ORNoC, (wavelength, 

waveguide) pair is statically determined based on an input matrix that determined all possible 

connections among clusters. It also has no waveguide crossing, because waveguide is forming a 

ring that only has a few bends. Its serpentine layout also causes smaller power loss and occupied 

smaller area [5]. It uses on-chip laser and can be applied to 2D and 3D designs (using a set of 

stacked electrical layers and one optical layer). CHAMELEON [6] extends the ORNoC with a 

reconfiguration layer that can open point to point communication channels at a run time. 

Therefore it causes better utilization of bandwidth according to the application traffic. The 

configuration process is managed by a control network implemented in an electrical layer on top 

of the optical network. 

In ATAC [7] cores are connected via an electrical and an optical network. The optical 

network is used for global broadcasting. It uses a ring-based architecture similar to ORNoC, and 

it is also contention free, based on WDM. However, it does not support simultaneous 

communication between the source and multiple destinations unless it is a broadcast of the same 

message. ATAC implements “distance-based” routing algorithm to decide whether to send a 

unicast over the optical network or just use the electrical network (broadcast messages always 

use the optical network). 

 ATAC+ [1] has the similar architecture of ATAC, but it uses the athermal ring resonators [8] 

to compensate the temperature shift, on-chip Germanium Lasers and an adaptive “single writer 

multiple readers” (SWMR) optical link that improves power consumption. Detail explanation of 

these components is in section 0. [1]  studied the effect of some system architectural parameters 

such as routing strategy, cache coherence protocol, etc. on delay and energy individually. 

However, there is no study to monitor the effect of a comprehensive set of design parameters of 

the network together in design. A comprehensive study of design alternative with different 

parameters needs an exhaustive simulation that has not been done for any of the mentioned 

architectures due to simulation cost. In our work we go through a massive design space points 
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and use a simulation free model for delay and energy prediction. Our proposed technique 

generates a model that can evaluate the effect of all configuration parameters together in design. 

1.4.2. Design Space Exploration and Modeling of Network on Chip 

ORION [9] simulator proposed a NoC power and area model used for design space 

exploration. It provides parametrized power and area models for routers and links. It does not 

model any optical components, and also supports only limited repeated links. ORION has 

incomplete architectural models and timing for the router (i.e. lack of delay model for router 

components) and uses a fixed set of technology parameters. All links are optimized for minimum 

delay. It also has very low accuracy for modern technologies: 3x power overestimate for 65 nm 

technology node, 400 MHz x power and 2x area overestimate for 45 nm technology node, 1 

GHz, and more than 5x power overestimates for links.  

PhoenixSim [10] is a Photonic NoC Simulator that model Optical component in NoC. 

PhoenixSim lacks electrical models and relying instead on ORION for all electrical routers and 

links. PhoenixSim uses fixed numbers for energy estimations for electrical interface circuitry, 

such as modulator drivers, receivers, and thermal tuning, losing many of the interesting dynamics 

when transistor technology, data-rate, and tuning scenarios vary. It also uses a basic Photonic 

NoC [11] that use the electrical network for control flow and optical network for data 

transmission. The electrical signal is sent first to reserve the path for optical transmission. In this 

architecture, contention delay may be high. Because the entire path between a source and a 

destination is reserved ahead of time and it may happen that no free optical path available. Thus 

the new communication needs to be delayed till the previous ones free up the required resources. 

In our work we use DSENT [12] for delay and power calculation and Graphite as our simulator 

that solves the problem of lacking electrical model, and electrical interface for optical devices. 

Moreover, our network model ATAC does not make any reservation for acquiring the path. 

Therefore there is no more contention delay from this side.  

DSENT [12] is a tool for area and power evaluation of opto-electrical on-chip interconnects. 

DSENT provides models for optical devices and the electrical backend circuitry including 

modulator driver, receiver, and ring tuning circuits. It also models the interface between 

electronic parts and photonic parts. DSENT had been used in Graphite [13], the network-on-chip 

simulator, which provides both delay and power modeling. Moreover, previous studies like 
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PhoenixSim and Corona have been used coarse, higher level models and unrealistic traffic 

patterns like synthetic workloads or captured traces, but Graphite uses real application workloads 

to evaluate the design architecture. Although this simulator has been modeled electrical and 

optical components with low errors, and therefore it can calculate power and delay with good 

accuracy, studying all the possible design needs a lot of time. For example, one simulation of a 

network with the size of 4x4 cores takes 10 minutes on Intel Core i7 host machine running 

Linux, but 256x256 cores take more than 1 hours depend on the running application. Due to long 

simulation time, exploring a large design space is nearly impossible and impractical for large 

scale industrial designs. Our work proposes a simulation free modeling by introducing a 

statistical inference into simulation framework and a machine learning technique for prediction 

of delay and power. 

1.4.3. Regression Modeling for Design Space Exploration 

The authors in [14]  propose regression modeling for predicting performance and power for 

various applications executing on any microprocessor configuration in a large microarchitectural 

design space. Although their model has less than 4.5% error rate in its prediction, their work 

requires numerically solving and evaluating linear systems to find out an efficient formulation 

for the models. Moreover, for finding the parameters that have a significant impact on 

performance and power, they use domain specific knowledge of microarchitecture to specify 

nonlinear effects and interactions between parameters. Therefore their model relies on designer 

domain knowledge instead of a stepwise procedure, and also it makes their work impractical for 

others domains.  

In [15] they propose a regression-based application specific performance model for GPU 

design space exploration. It can predict program run time for any point in the design space. 

Although in our work we applied the same approach for finding the prediction model, our 

problem is completely in a different area. Therefore the difference between GPU and ONoC 

design space and their limitations, characteristics and features make their approach unsuitable for 

ONoC. Moreover, in this thesis, we present not only a regression model but also several other 

prediction models like decision tree and neural network and compare them together. And finally, 

we proposed a Regression Model Tree that shows more accurate result compare to the other 
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models. Another advantage of using model tree is that its training speed is very fast compared to 

the other models.  

 

1.5. Contribution 

This thesis proposed a prediction model for design space exploration in the optical network 

on chip through the following main contributions: 

1- Presents the first prediction modeling methodology for design space exploration of the 

optical network on chip. This methodology results in a prediction model that can accurately 

predict delay and energy for any design configuration without simulation. We also compare 

several prediction models and study their pros and cons. Moreover, we show that by sampling 

from a big dataset we will have a smaller dataset that can be used for deriving a prediction model 

with acceptable accuracy.  

2- Performs the first comprehensive delay and energy consumption analysis for the optical 

network on chip architecture using numerous simulated designs. We simulate more than thirteen 

thousand different design configurations from three different application benchmarks and 

evaluate delay and energy consumption of them using our prediction model.  

3- By analyzing the impact of each design parameters on delay and energy consumption of 

the network, we provide a guideline for future ONoC research that can be used by designers to 

study the different tradeoffs in their network design. We identify the parameters and architectural 

decision that has the most effect on delay and energy consumption of network. In the last 

chapter, we capture the interaction between design parameters and delay and energy 

consumption that can help the designer to efficiently choose the design with the best payoff 

without going through extensive simulations and explorations among many design alternatives.  
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CHAPTER 2 

 

2. Photonic Network on Chip Architecture and Interconnects 

In this chapter, we will present an overview of NoC and ONoC architecture and also give a 

brief explanation of used nanophotonic devices. It provides a necessary background in ONoC 

and photonic devices. 

 

2.1. Network on Chip for Multicore Systems 

As Moore’s law states the number of transistors doubles in an integrated system every 18 

months. It causes that number of cores in multi-core architectures expected to double every 18 

months [16]. We need an efficient communication approach to exploit as much as we can from 

computational resources available in the system on chip. Traditionally a shared medium network, 

such as dedicated point to point signal wires, shared buses or segmented buses with bridges had 

been widely used. These shared mediums are a great choice for a system with maximum five 

cores and ten bus masters.  But when the number of cores grows, scalability becomes a big issue. 

Moreover, in such a case, the system becomes inefficient regarding energy due to congestion 

frequently happening in communication architecture. There are some attempts at addressing 

communication challenges on chip, from transistor redesigning to 3D-stacking [16], but none of 

them give a promising answer because they are a costly procedure. Therefore by increasing the 

number of on-chip cores, a scalable and high bandwidth communication fabric becomes 

critically important. As a result, network on chip rapidly replaces traditional buses. Network-on-

Chip uses the concept of routers and links, from traditional networking to replace a shared 

medium such as a bus. Network on chip has routers at every node that connected to the 

neighbor's router via electrical interconnects (wire) called links [17]. Therefore, network on chip 

improves the scalability of the multicore system on a chip with better performance compared to 

traditional shared buses.  
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2.2.  Optical Network on Chip 

As we discuss in the previous section, in modern microprocessor architectures multicore 

systems are the dominant trend.  By scaling down the technology node, we can have a larger 

number of cores on a single chip. If the current trend continues, there will be hundreds of cores 

on a chip in five to ten years [1]. When the number of cores grows to tens and hundreds on a 

chip, memory bandwidth for supporting parallel computation increase dramatically. Since the 

number of memory pins cannot increase as fast as the number of cores [18], and also pin data 

rate increases slowly [16] memory bandwidth becomes a significant bottleneck in multicore 

systems. Supplying enough bandwidth with electrical links cause a remarkable increase in 

overall power dissipation [3]. Moreover, it results in thermal issue with current chip packaging 

technology [18]. Therefore electrical interconnect cannot provide required high bandwidth, while 

keeping performance, power and area in an acceptable range. Studies in [19] indicate that almost 

50% of the power on the chip is caused by the interconnections.  [19] has been shown that more 

than half of the dynamic power is dissipated by interconnections.  

One promising solution for solving power and performance bottleneck of on-chip 

interconnection is Optical Network on Chip (ONoC) that use silicon photonics to connect ever 

increasing number of cores on a single chip. Optical components like light sources, waveguides, 

modulators, detectors are needed for creating such a network that will explain in details in next 

section. Hybrid opto-electrical NoC microarchitecture that uses optical links integrated with the 

electrical network was shown to have good scalability and performance. More details about opto-

electrical NoC will be provided in section 2.4. The current technology is mature enough to allow 

the photonic integration on a chip by using these CMOS-compatible optical components [4]. 

However, these optical components are vulnerable to fabrication non-uniformity (i.e. process 

variation) that may cause decreasing of performance or even system failure [20].  As we said 

before, electrical wire and buses scale poorly with technology shrinking. However, studies 

presented in [21] and [22] show that it is possible for optics to entirely replace electrical 

connections on chip by using an optical device that can build with standard CMOS processes. 

Low level implementation details issues have already been started to be researched, and some 

preliminary mitigation techniques have been proposed. 
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In this project, we will use an optical NoC architecture called ATAC [23]. ATAC proposed 

an optical interconnect that provide between 1.8x and 4.8x better energy-delay product than 

conventional electrical-only interconnects. This architecture will be discussed in section 0. 

One of the main advantages of using optical links is that optical medium has bit rate 

transparency. The power consumption of electrical network depends on the number of bits that 

are transmitted and also the distance between source and destination, therefore, dynamic power 

scales with bit rate. In contrast, a photonic system that is made by photonic switches and 

waveguides is bit-rate transparent, which means power consumption of these devices are not 

dependent on the number of transmitted bits or distance. [24] However overall energy cost for 

modulator driver is based on data rate [12], photonic switches on and off once per message and 

their energy consumption do not depend on the bit rate. Moreover, since waveguides are bit rate 

transparent dynamic energy consumption is independent of the receiver place [18]. 

Optical NoC can reduce power consumption while keep required high bandwidth for CMPs. 

That’s because in electrical NoC, when a packet is sent to the network, it needs to buffer, 

regenerate and then transmit in routers and links of the network for multiple times till it reaches 

its destination. These switching and regenerating the packet in CMOS technology consume 

dynamic power that grows with data rate. However in photonic NoC, due to low loss optical 

waveguide, the data is transmitted from source to destination without any need to repeat, 

regenerate or buffer the packet. Furthermore, because of bit-rate transparency no extra dynamic 

power is consumed for routing packet with the optical network [3] Although in some Photonic 

NoC architecture like Corona, it needs to reserve the optical path before any photonic transition 

by sending an electrical signal through the network and it consumes power. In some architectures 

like ATAC, there is no need for reservation of the optical path. 

There is two type of transmissions: serial and parallel. Using serial transmission has this 

advantage that it needs less number of waveguides, but it needs another component such as 

serializer and deserializer to make the data transmission possible. On the other hand in parallel 

transmission, there is no need for these extra components, but it wants more waveguides and 

therefore larger area to make data transmission possible. Wavelength Division Multiplexing 

(WDM) is a technique that uses multiple wavelengths to transmit multiple instances of optical 

data in a single optical waveguide (a unit that its responsibility is transferring light on chip.), at 
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the same time. By using WDM in the photonic system, we can achieve high bandwidth density. 

WDM uses a multiplexer at sender side and a demultiplexer at the receiver side of the 

connection. Advances in optical domain provide even denser wavelength division multiplexing 

for even higher bandwidth [2].  

 

2.3. Optical Components and Modules 

In this section, we give a quick overview of main optical components required for an optical 

NoC system. The set of components consists of single or multi-wavelength waveguides for 

routing the optical signals on-chip, the laser source, modulators for imprinting bit streams onto 

wavelengths, resonant rings for wavelength selective filtering, and photodetectors/receivers for 

converting the optical signal back into the electrical domain. These are some explanation about 

main optical components: 

Waveguides: The unit that carries and transport light on the chip is a waveguide. The main 

characteristic of the waveguide is its effective index that indicates how light propagates through 

the waveguide. Waveguides are also characterized by the optical loss that they introduce into the 

system. The loss that the waveguide introduces largely depends on its layout because every loss 

is defined for each straight line segment, bend, branch, crossing or waveguide combiner. Recent 

work has shown that waveguides can have loss down to 0.3 dB/cm [25]. There is also low-loss 

silicon nitride waveguide that has been shown loss down to 0.1 dB/cm [26]. By using Wave 

Division Multiplexing technique, a waveguide can carry multiple frequencies of light, and each 

of them has its information to travel simultaneously and in the same waveguide. 

Laser: Laser is a source that produces the optical signal that is coupled into the waveguide.  

There is two type of lasers that can be used for on-chip communication, on-chip laser, and off-

chip laser. The on-chip laser has complex integration, and it generates high heat. [27] Presents 

Germanium Laser that is on the chip and has fast throttling feature (throttled laser will be 

discussed in section 2.4). On-chip lasers have this advantage that they avoid coupling and 

distribution losses (suffered when bringing in light from an off-chip source) and are close enough 

to be shut down and restarted very quickly. In contrast, the off-chip laser has easier 

manufacturing, but it has a high loss. It is also difficult to turn on/off due to the communication 

latency from the sender to the laser as well as the energy needed to communicate off-chip. 
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Moreover, a laser source can generate a fixed wavelength or be tunable to generate multi-

wavelength based on wavelengths of operation and maximum output power of the laser [11].  

Micro-Ring Resonator: A Microring Resonator (MR) is a small ring structure, with 

typically between 1 and 10 μm in radius [28] made of the curved waveguide that is placed 

adjacent to the waveguide. The typical distance between a ring and waveguide is between 0.4 

and 0.6 μm [28] and it defines the way the ring and the waveguide are coupled. Input optical 

signal couples to MR with cross-over coupling coefficient and then couple to the adjacent 

waveguide with same coupling coefficient. Uncoupled light continuous its path with straight-

through coefficient [20]. Radius of each ring is indirectly proportional to its resonance 

wavelength (𝜆𝑀𝑅). It causes that MR be highly sensitive to fabrication and process mismatches. 

The resonant wavelength of MR can be controlled by adjusting the ring radius or the index of 

refraction [29]. Index of refraction strongly depends to temperature, as result resonance 

wavelength of MR is highly sensitive to temperature. One of the challenges of MR-based designs 

is that these MR devices are extremely sensitive to the temperature. Even 1◦C change in 

temperature causes dramatic shift in the resonant frequency. Typically the wavelength shift is 

between 0.07 nm/◦C to 0.32 nm/◦C [30]. Hence MR needs active thermal tuning [29] .  

To overcome this challenge, a technique that calls “thermal trimming” usually is used. Here a 

small electrical heater is placed below the microring to stabilize the ring resonances. For 

example, a shift of 3.6 nm could be reached at the heater power of around 180 mW [31]. Another 

challenge is highly sensitiveness to manufacturing variation of ring devices. The rings are 

particularly sensitive because of their small overall dimensions. For example, 1nm of variation in 

width and height leads to 1nm to 2nm shift in resonance wavelength of the ring [31].  

When an optical signal with a wavelength 𝜆𝑠 travels on a waveguide, upon encountering an MR 

the following scenarios are possible:  

 When wavelength of traveling optical signal is equal to resonance wavelength of MR (i.e. 

𝜆𝑠 = 𝜆𝑀𝑅) the signal will couple into the MR with the same wavelength as the signal. 

And then couple out into the perpendicular waveguide. 

 When wavelength of traveling optical signal is different from resonance wavelength of 

MR (i.e. 𝜆𝑠 ≠ 𝜆𝑀𝑅) the signal will propagate along the waveguide.  
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 When optical signal wants to transmit on the network, the signal coupled into an 

appropriate MR with the same wavelength and them couple out to the waveguide.  

Therefore, an MR can be used to select an appropriate signal on reception (filter), and to 

couple in the modulated optical signal into the network (modulator), to perform switching within 

the routing network (router or a switch) [4].  Accordingly, we define these three components that 

work based on MR, here: 

 Modulator: Modulation means encoding digital data (i.e. logic ‘0’ and logic ‘1’) to an 

optical signal with different optical power. Microring Modulator does both “modulating” 

the signal and “inserting” it into the network. (Figure 1 part a) 

 Filter: This function selects one wavelength from a WDM signal traveling on a 

waveguide. The selected signal is extracted from the incoming waveguide and coupled 

into the photodetector as shown in Figure 1.b. 

 

Figure 1: a) Modulator Model  b) Receiver Model (Filter and Photo Detector) [32] 

 Switch: Microring resonator can be used for designing routing element, i.e. switch. The 

switch consists of one, two or more number of MR. These optical switches are composed 

of optical waveguides and MR(s) and operate as a classic electrical switch. The signal 

goes into the switch from one of the input ports, and then based on its wavelength, it 

selects one of the two different output ports. If the wavelength of signal (λi and λj) is the 

same as resonance wavelength of switch (λi) the signal takes the opposite waveguide 
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(straight state, Figure 2 part a) and if they are not the same (λj ≠ λi), the signal goes 

diagonal (Figure 2 part b). 

 

Figure 2: Optical Router (Switch) [33] 

Photo Detector: Also known as a photodiode, the photodetector is used for absorbing light 

and producing electrical current. The main characteristic of the photodetector is its responsivity 

that indicate the minimum optical power necessary to detect a logic “1” reliably. The 

responsivity of a photodiode is a crucial design parameter: the received optical power needs to be 

greater than the threshold specified by the responsivity. The received optical power is given by 

the following equation: 

𝑃min _𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟
𝑑𝐵𝑚 = 𝑃min _𝑙𝑎𝑠𝑒𝑟

𝑑𝐵𝑚 − 𝐿𝑤𝑐
𝑑𝐵  

Equation 1: Minimum required power for photodetector [31] 

Where 𝑃min _𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟
𝑑𝐵𝑚  , is the minimum optical power received by the detector in dBm,  

𝑃min _𝑙𝑎𝑠𝑒𝑟
𝑑𝐵𝑚  is the minimum laser output power in dBm and 𝐿𝑤𝑐

𝑑𝐵  is the worst case losses in the 

optical path in dB. Therefore the designer has to make sure that the worst case optical losses 

(from laser source to photo detector) do not attenuate the optical power received by the detector 

beyond the threshold needed for correct identification of the transmitted value. 

 

Figure 3: Optical Network Overview 
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We will describe how a photonic network works in general. Figure 3 shows a general 

overview of photonic communication. This structure can divide to three main parts: Transmitter, 

Routing Network, and Receiver.  

Sender puts its data to the link, and in transmitter part, the serializer is responsible for up-

converting the input data from a bus data rate to the higher sterilized data rate. Serializer does 

this by combining multiple incoming data stream (i.e. wire). [18] Then a Modulator Driver 

converts electrical signal to optical signal. This high-speed conversion also can combine data on 

a single wavelength channel that can be combined with other optical signals in other wavelengths 

to form a dense wavelength-parallel optical signal (through WDM).  

 

Figure 4: Transmitter Part 

In routing network part, switches and routers direct packets to the destination using an active 

or passive router. In receiver part, appropriate wavelengths filter out and then convert to the 

electrical current by a photodetector which able to absorb light and generating electrical current. 

The wavelengths that are not filtered out and detect continue their path in the network. For the 

detected wavelength, the current that generate in photodetector will use in a receiver to convert 

to a voltage. This voltage amplifies as much as it needs to reach the certain level that digital 

circuits can work with it. Then a deserializer that has the inverse functionality of a serializer 

down-convert the high-speed optical data rate to an electronic bus data rate [18]. Figure 5 shows 

receiver part.  
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Figure 5: Receiver Part 

 

2.4. Network architecture of ATAC 

In this section, we present an overview of “ATAC” [1]: a hybrid electro-optical network 

architecture used for on-chip communication. This architecture combined the electrical 

interconnects with cutting-edge on-chip optical communication networks and can scale to 1000-

core processors at the 11 nm technology node.  We use ATAC because it provides a wide range 

of design alternatives for network architecture (e.g. several routing policies, several components 

for an optical receiver, etc.).  Moreover, ATAC fully integrates all levels of the system from 

electrical and optical device models to applications. 

ATAC consists of several networks that are different in architecture and implantation and 

also have a different use. They are ENet, ONet, BNet, and StarNet. The first network called 

“ENet, ” and it is an electrical mesh network that connects processing cores via point to point 

connections. It is like network on common multicore processors such as Intel Teraflop [33]. 

ENet is used for short range communication. Communication is considered to be a short range 

communication if the packet needs to travel among a few number of adjacent cores usually 

placed in the same cluster. The optimal value for considering a communication in a short range 

may change as the load of network increased. But a careful study in [1] shows the optimal value 

changes from 5 to 15 to 25 as network offered load increased.  5 to 15 to 25. The ENet is shown 

in green in Figure 6.  
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 In addition to this electrical network, there is an optical network called “ONet”. ONet is 

ideal for long distance communications because it provides low latency and energy efficient 

global interconnect. Processing cores in ATAC architecture are divided into clusters. Each 

cluster consists of a given number of cores that is decided in design time. A cluster has an ONet 

endpoint called “hub”. Hub is an interface between optical modules in the ONet and electrical 

modules of the ENet inside of each cluster. In the case of sending a packet, if packet wants to use 

ONet to go to the destination, it will use ENet to reach to the hub in the cluster. In the case of 

receiving a packet, it will use an electrical network that connects each core in the cluster to the 

hub of that cluster. A designer can choose one of two available networks for this purpose: a point 

to point electrical network called “StarNet,” or a small electrical broadcast network “BNet”. 

StarNet and BNet are used exclusively by cores within the given cluster for receiving packets 

from the Hub, and therefore from ONet. StarNet has a star topology and has a designated 

connection between each core and the corresponding hub. BNet is simply a fan-out tree with no 

router or crossbar that connect each core to its hub.  

 

Figure 6: Interconnect in ATAC [1] 
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The StarNet is a 1 to 16 demultiplexer that is connected to 16 point-to-point links for 

forwarding the data from the hub to the cores in the receiving cluster. For a unicast 

communication, StarNet uses only one of its link while for a broadcast it uses all 16 links. In 

contrast, BNet always forwards data to all cores in receiving cluster, and if it is a unicast 

message only a single core which is the destination of the message processes it, and other cores 

immediately drop the message without any process. Because of this different behavior in unicast 

and broadcast StarNet consumes lower dynamic energy compare to BNet (~ 1/8th ) [1]. In the rest 

of the thesis, we will use StarNet due to its better performance. 

The hub in each cluster connects to the other hubs from another cluster by low latency and 

contention free network ONet. This interconnect consists of waveguides that pass through every 

hub and loop around the chip to make a ring connection like what has been shown in Figure 6. 

ATAC supports parallel communication and therefore for each data bit there is a separate 

waveguide: e.g. for transmitting 32-bit data, there are 32 parallel waveguides. Also note that 

even though this is a ring network, its layout is serpentine rather than circular (as mentioned in 

section 1.4.1). For transmitting data via waveguides, a hub needs to have circuits for electro-

optical and opto-electrical conversion, namely optical driver and a modulator for electro-optical 

conversion; and an optical filter and a photodetector for opto-electrical. We discuss it, in details 

in section 2.3. 

As Figure 6 shows waveguides form a loop, therefore a signal sent by any hub in the network 

will be reached to all of the other hubs before it filters out by one of them. The ONet uses 

wavelength division multiplexing (WDM) to avoid contention. Each hub’s modulators are tuned 

to send on a unique wavelength. Each hub also contains receive filters tuned to all of the other 

wavelengths. These filters eliminate the need for arbitration in the optical network. Filters of 

each hub tuned to 1/Nth of the signal (where N is the number of destinations) and the rest will 

pass through the hub. It causes that the ONet functionality to be similar to a broadcast bus, but 

without any bus contention. In contrast, electrical network and non-serpentine optical topologies 

should send multiple unicast messages for supporting broadcast in the network. Therefore 

compare to the electrical network and other optical topologies, ONet transmission is faster 

(signal reaches all hubs in less than 2ns). Hence, broadcast communication takes place over the 

optical network (ONet). Moreover, it is possible to switch between broadcast and unicast modes 
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by using integrated on-chip lasers. This laser that called “throttled laser” can dynamically adjust 

laser output power and turn off when the link is idle. Therefore it saves power when the link is 

idle and on unicast. Traditional standard laser always works in full power even when it is used 

for unicast or when the link is idle.  Based on the current trend in laser technology it is estimated 

that throttled laser can turn on and off in 1 ns. For switching to unicast mode, the laser will be 

turned on and set up its power for one receiver and then a notification send to a receiver to tune 

in. For switching to broadcast mode, laser power will be adjusted all receivers supply and then a 

notification sent to all receivers to tune in.  

The dynamic energy consumption in ONet is constant for communication over ONet and it is 

independent of place of the receiver on the chip. In contrast, dynamic energy consumption is 

directly related to the number of hops between sender and receiver for communication over 

ENet. As we mentioned earlier, in the case of broadcast ONet is optimized for both energy and 

performance. However, in the case of unicast, we should choose between two different routing 

policies: “cluster_based” and “distance_based” routing.  In cluster_based routing scheme packets 

will be sent over ENet if source and destination of the packet be in the same cluster, and 

otherwise, the packet sends over ONet. In distance_based routing scheme, there is a parameter 

called distance threshold 𝑟𝑡ℎ𝑟𝑒𝑠 that set by designer in design time, and a packet that its distance 

between source and destination is less than 𝑟𝑡ℎ𝑟𝑒𝑠 will be sent over ENet and for distance at 

𝑟𝑡ℎ𝑟𝑒𝑠 and above it will be sent over ONet. Having these two different routing policies may be 

helpful to use network resources uniformly. For example if an application have low network 

demands we can send all unicast over the ONet, but in the case of application with high network 

demands we should use ONet and ENet in balance to maximize the throughput of the network. 

Fining optimal routing policy needs a careful study in both energy and performance of the 

network that we try to do in chapter 5.  

2.4.1. Studied Outputs 

In our simulations, we evaluate our network models in two aspects: delay and energy 

consumption. In delay, we consider two outputs which are contention delay and packet latency. 

Contention delay computes the queuing delay when message wants to access a shared object, 

like network links, off-chip memory and shared cache. Packet latency is network latency of 

sending a packet from one tile to another. In energy consumption, we consider two outputs which 
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are static and dynamic energy. Static energy is non-data dependent energy consumption comes 

from optical components like the laser and thermal tuning. Dynamic energy is data dependent 

energy consumption comes from components like the router, electrical link, receiver, modulator, 

serializer and deserializer. 
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CHAPTER 3 

 

3. Regression Theory 

In this chapter, we introduce basic concepts of regression theory and regression model tree. 

We apply a regression tree modeling technique to estimate delay and power on ONoC system 

efficiently. The initial idea for predicting delay and power was applying a linear regression 

model to the dataset to estimate delay and energy (we may refer to them as outputs in this thesis). 

This linear regression model is a sum of weighted variables that is used as predictors to calculate 

an output value. This basic linear regression for estimating the outputs do not perform well with 

acceptable accuracy. Therefore for improving the prediction, we considered using “Tree”. As it 

will be shown in section 3.2, this technique performs uniformly better compared to simple 

regression modeling, yet with not satisfying accuracy. Finally, we use a technique that combines 

regression and tree, which is referred to as “Regression Tree Modeling” to estimate the outputs 

with acceptable accuracy. To obtain this model, we also consider the nonlinear relationship 

between predictor variables and outputs. At the end, we employ a standard technique to evaluate 

the accuracy and effectiveness of the proposed model.  

For predicting delay and energy, we gather a large data set from different alternative 

configurations that are possible for designing an ONoC system. The approach for gathering the 

alternative configurations from all “design space” will be discussed in detail in chapter 4. A 

single configuration consists of many variables that indicate the behavior of the designed system. 

In this thesis, we are interested to know about system behavior in two aspects: delay and energy 

of the system. We consider delay and energy as our desired outputs. By delay, we mean packet 

latency and contention delay of the network, and by energy, we mean static energy and dynamic 

energy consumption of network. Details about the definition of these four outputs are available 

in section 0.  The variables that affect the outputs are used as inputs to predict the value of the 

observed outputs. In the literature, these input variables are referred to using multiple names such 

as “predictors”, “attributes” and “features”. From now on, in this thesis, we will use “features” to 

refer to these input variables. One important step for obtaining a representative model that can 
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predict outputs with high accuracy is feature selection. We should select features with significant 

impact on outputs. In section 3.7 we will discuss feature selection. 

 

3.1. Linear Regression 

In general, features can have numeric values or nominal values. In our dataset, some of the 

features have numeric values like “number of cores” (e.g. values 4, 16, 64…), and some of them 

have nominal values like “routing strategy” (e.g. “distance-based”, “cluster-based”). The outputs 

have numeric values too. Our first two outputs are “average packet latency” and “average 

contention delay” had been reported in a nanosecond, and second two outputs “static energy” 

and “dynamic energy” had been reported in joule. One of the classic ways of solving this kind of 

problems that deal with continuous prediction (i.e. predicting an output that has continuous 

value) is to write the output as a linear sum of the features values with appropriate weights. This 

is called a “regression equation” that has been explained in Equation 2 in section 3.1.1, and the 

process of determining the weights in this equation is called “regression”, and it is a well-known 

procedure in statistics [34].  

In Figure 7 we display a general dataset with “𝑛” of inputs and an output. Each configuration 

in design space includes several features that affect the value of output. By simulating thousands 

of experiments with different configurations we create a dataset. This dataset gathered “𝑚” 

numbers of different sampled configurations. Each configuration consists of “𝑛” number of 

features as inputs (i.e.  𝑓1, 𝑓2, …, 𝑓𝑛) and one output (i.e. 𝑦). A subscript in 𝑓 indicates feature 

number and a superscript indicates row number in the dataset (i.e. a sample configuration 

number). For example, 𝑓2
(3)

 indicates feature number two in sample configuration number three. 

𝑓1
(3)

 , 𝑓2
(3)

 , …, 𝑓𝑛
(3)

 are all features in sample configuration number three and 𝑦(3) is output for 

this sample.   
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Figure 7: Dataset 

3.1.1. Model representation and formulation  

Linear regression is a basic method in the statistic that is usually used when the output has a 

numeric value, and all the features have numeric values. However, some of the features in this 

work have nominal values. To convert features with nominal values into features with numeric 

values we employ “one hot encoding” technique. For example, originally “routing strategy” can 

be “cluster-based” or “distance-based”. When we employ “one hot encoding” the “routing 

strategy” is (10) for the value “cluster-based”, and (01) for “distance-based”. Generally, a 

nominal feature with k values is converted into k binary features.   

The objective of this model is to express the output as a linear combination of the features, 

with predetermined weights: 

ℎ𝑤(𝑓) =  𝑤0 + 𝑤1𝑓1 + 𝑤2𝑓2 +⋯+ 𝑤𝑘𝑓𝑘 

Equation 2: Regression Equation 

where ℎ𝑤(𝑓) is hypothesis function that will predict output value; 𝑓1, 𝑓2, …, 𝑓𝑘 are features 

values; and 𝑤0, 𝑤1, …, 𝑤𝑘 are weights. 

There are several algorithms that can be used to find the weight values. One of them is the 

gradient decent algorithm that will be discussed in section 3.1.3. After applying this algorithm, 

the result is a set that has weight values. If the data exhibits a nonlinear dependency, the best-
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fitting straight line should be found, where “best” is interpreted as the least mean-squared error 

[34]. Figure 8 shows the regression procedure. It starts with gathering a dataset from our system; 

then we indicate features that affect the output of the system. By applying a learning algorithm to 

the dataset based on selected features, we will find a hypothesis function that can estimate the 

output of the system. 

Dataset

Learning Algorithm

Features of System Estimated OutputHypothesis Function

 

Figure 8: Regression Procedure 

3.1.2. Cost function 

In Equation 2, a hypothesis function ℎ𝑤(𝑓) may have different value for different given 

weights (i.e. 𝑤𝑖 for 𝑖 =  0, 1,  , 𝑘). The objective in this step is to choose the value for 𝑤𝑖 so that 

ℎ𝑤(𝑓) is close to 𝑦, where 𝑦 is actual value of output in dataset. In order to do so, we define the 

following equation: 

𝑗(𝑤) =  ∑(ℎ𝑤(𝑓
𝑖) − 𝑦𝑖)2

𝑚

𝑖=1

 

Equation 3: Cost Function 

Where 𝑗(𝑤) is cost function and 𝑓𝑖 indicates all features in row 𝑖 in dataset and 𝑦𝑖 is actual 

value for output in row 𝑖 in the dataset. The cost function is a function of weights “𝑤”, and 

hypothesis function (ℎ𝑤(𝑓) ) is a function of features “𝑓” for fixed weight 𝑤. Different value of 

𝑤’s gives different value of ℎ𝑤(𝑓). Then we calculate difference between ℎ𝑤(𝑓)  and 𝑦 which is 

𝑗(𝑤). The objective is to minimize the value of  𝑗(𝑤). We should choose best 𝑤 that give 

minimum value for 𝑗(𝑤). It means ℎ𝑤(𝑓) is the best fit for 𝑦 in this particular value of 𝑤. 
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3.1.3. Gradient Descent  

Gradient descent is a general algorithm for minimizing a function. We will use gradient 

decent algorithm to minimize the function value for a given function 𝑗(𝑤), and therefore to find 

the best fit to the actual data value. In order to employ this algorithm, we start with a random 

value for weights (𝑤) and we keep changing weights to reduce 𝑗(𝑤) until we end up at a 

minimum point of 𝑗(𝑤). However, the Algorithm may not converge to the minimum and even 

diverge. It depends to alpha (learning rate). I explain it in next paragraph, and Figure 9 part a. 

The pseudocode of gradient descent algorithm used to change a value of each weight w is 

presented in Listing 1.  

repeat until convergence { 

𝑤𝑗 ∶=  𝑤𝑗 −  𝛼
𝜕

𝜕 𝑤𝑗
 𝑗(𝑤) 

} 
 

Listing 1: Gradient Descent Algorithm 

Where 𝛼 is learning rate and 
𝜕

𝜕 𝑤𝑗
 𝑗(𝑤) is derivative. Learning rate will be used to indicate 

the size of the step needed to be taken for changing 𝑤’s. If 𝛼 is too small, gradient decent can be 

slow to converge and if 𝛼 is too large gradient decent can overshoot the minimum. It also may 

fail to converge or even diverge with large value of 𝛼 like the case in Figure 9 part a. As we 

approach a local minimum point, gradient decent will automatically take smaller steps. 

Therefore, there is no need to decrease 𝛼 over the time. The reason is that 
𝜕

𝜕 𝑤𝑗
 𝑗(𝑤)  become 

smaller over a time and at local minimum point it is equal to zero.  

 Derivate 
𝜕

𝜕 𝑤𝑗
 𝑗(𝑤) is the slope of the line that is a tangent to the function. With positive 

slope the derivative causes the value of 𝑤 decrease like the case in Figure 9 part b, and with 

negative slope it causes the value of 𝑤 increase like in Figure 9 part c.  
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Figure 9: a) Case of divergence, b) Positive slope of tangent, c) Negative slope of tangent 

 Depending on the initial point that has been set for the gradient decent algorithm, it may 

reach to the different local minimum point. However, in linear regression and with the gradient 

decent algorithm, the cost function is a convex quadratic function. Therefore it has only one 

global optimum point. In general, for example, the regression problems that use higher order 

polynomials, it is possible that gradient decent get stuck in local minima, and never arrive at an 

absolute minimum.  

 

3.2. Trees 

3.2.1. Decision Tree 

Decision tree builds a regression or classification model in the form of a tree structure. It uses 

a “divide-and-conquer” approach to learn a model from a dataset. It breaks down the dataset into 

smaller subsets and develops a tree structure. The final result is a tree with leaf nodes. Leaf node 

represents a “decision” on data that reach to this leaf. In this thesis, the term “decision” refers to 

the predicted value for output. A decision tree can handle both nominal and numeric data. When 

the output has nominal value the decision tree called “classification tree”. In classification tree, 

each leaf decides about the class of the instance that reach to this leaf. For example, if the tree 

wants to decide about the class of a particular picture and determine if it is a picture of a car or a 

picture of a bicycle. When the output has numeric value the decision tree called “regression 

tree”. In regression tree, each leaf decides about the value of the output (predicted value of 
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output) for instances that reach to this leaf. For example, if the tree wants to determine the value 

of energy consumption for a particular configuration that feeds to it and now reach to the specific 

leaf. For classifying a new data, it is routed down the tree according to the values of the features 

tested in previous nodes, and when the data reaches to the leaf, it will be classified according to 

the class assigned to the leaf. A functional tree can have a linear model at the leaf nodes, which 

are used for predicting the output. [34] 

3.2.2. Decision Tree Algorithm 

The decision tree algorithm works with “standard deviation reduction” technique. It is based 

on the decrease in standard deviation after a dataset is split on a particular feature that nominated 

for splitting the tree. Before presenting the definition of standard deviation reduction, we want to 

define a few terms that we will use in the explanation. These terms are means, variance and 

standard deviation of 𝑛 numbers  having values xi, i=0, 1,2… n-1. 

 Mean: this is the arithmetic average of values that refer to a central tendency value of 

a numeric set. It is the sum of the values divided by the number of values:  𝜇 =  
∑𝑥

𝑛
 

 Variance: It measures how far a set of numbers are spread out from their mean. It 

subtracts the mean from each value, squares the result, adds them together, and then 

divide by the number of values: 𝜎2 = 
∑(𝑥−𝜇)2

𝑛
 

 Standard deviation: It this is the square root of the variance. It also measures the 

spread of data from mean like variance, but it has the same unit as original data 

because of square root function: 𝑆 = 𝜎 = √
∑(𝑥−𝜇)2

𝑛
 

For explaining the decision tree algorithm, we use an example to clarify the concept. In Table 

1, we have a dataset for our example. It has four features: Distance with values {4, 8, 16}, 

Cluster size with values {8, 16, 32}, Routing strategy with values {D, C} and number of cores 

with values {64, 256} and one output that is static energy. Although we come up with imagery 

numbers for static energy, the example can show the required steps for building a decision tree 

very well. This algorithm was first presented at [35].  
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Table 1: Dataset for Decision Tree Example 

Distance Cluster 

Size 

Routing 

Strategy 

#Cores Static 

Energy 

4 8 D 64 25 

4 8 D 256 30 

8 8 D 64 46 

16 16 D 64 45 

16 32 C 64 52 

16 32 C 256 23 

8 32 C 256 43 

4 16 D 64 35 

4 32 C 64 38 

16 16 C 64 46 

4 16 C 256 48 

8 16 D 256 52 

8 8 C 64 44 

16 16 C 256 30 

 

As the first step of this algorithm we should calculate the Standard deviation of the output: 

𝑆(𝑜𝑢𝑡𝑝𝑢𝑡)  =  𝑆(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦)  =  9.32 

In the second step, we should calculate the standard deviation of output for each feature 

separately. Boxes 1-1 to 1-4 show the standard deviation for each value of each feature that we 

have in our dataset (e.g. in the first following table we find standard deviation of outputs that 

have distance 8, 4 and 16 as their first feature in dataset, but different values for all other 

features) 

Box 1- 1 

 Standard deviation of static energy 

Distance 8 3.49 

4 7.78 

16 10.87 

 

Box 1- 2 

 Standard deviation of static energy 

Cluster 

size 

32 10.51 

8 8.95 

16 7.65 
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Box 1- 3 

 Standard deviation of static energy 

Routing 

Strategy 

D 9.36 

C 8.37 

 

Box 1- 4 

 Standard deviation of static energy 

#Cores 64 7.87 

256 10.59 

 

Now that we have all the standard deviation values of each value in each feature we should 

calculate the standard deviation for each feature in overall. For example, if we want to calculate 

the standard deviation for feature “distance” that has three possible values {4, 8, 16} we should 

use the following equation: 

𝑆(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) =  ∑ 𝑃(𝑖)𝑆(𝑖)

𝑖∈𝑓𝑒𝑎𝑡𝑢𝑟𝑒

 

Equation 4: Standard deviation of multiple values 

Where 𝑃(𝑖) is the probability that 𝑖 appears as the value of feature. It means we should count 

how many times a particular value of feature (here 𝑖) have been seen in entire dataset and then 

divide it by total size of dataset.  

In our example, if we want to calculate the standard deviation for feature “distance” we will 

have: 

 Standard deviation of static energy Count 

Distance 8 3.49 4 

4 7.78 5 

16 10.87 5 

 

𝑆(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 𝑃(8) ∗ 𝑆(8) +  𝑃(4) ∗ 𝑆(4) +  𝑃(16) ∗ 𝑆(16)

= (
4

14
) ∗ 3.49 + (

5

14
) ∗ 7.78 + (

5

14
) ∗ 10.87 =  7.66 
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Constructing a decision tree is all about finding a feature that returns the highest standard 

deviation reduction in output. Standard deviation reduction for a feature is obtained when we 

subtract “standard deviation of output after splitting data based on that particular feature” from 

“original standard deviation of output” (before any splitting is done):  

𝑆𝐷𝑅(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) = 𝑆(𝑜𝑢𝑡𝑝𝑢𝑡) − 𝑆(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) 

Equation 5: Standard Deviation Reduction (SDR) 

Now we should calculate standard deviation reduction (SDR) for each feature: 

𝑆𝐷𝑅(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 𝑆(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦) − 𝑠(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

= 9.32 − 7.66 = 1.66 

SDR for other features are: 

𝑆𝐷𝑅(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑐𝑙𝑠𝑢𝑡𝑒𝑟) = 0.17 

𝑆𝐷𝑅(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦) = 0.28 

𝑆𝐷𝑅(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑐𝑜𝑟𝑒𝑠) = 0.29  

 

The feature that has largest standard deviation reduction will be chosen as the decision node. 

In our example, the largest SDR is for feature “distance”. Therefore we will choose feature 

“distance” as the root node and divide dataset based on the values of this feature: 

 

 

 

 

 

 

 

Distance

16 8 4
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This is our dataset after dividing based on feature “distance”: 

Distance 
Cluster 

Size 

Routing 

Strategy 
Cores 

Static 

Energy 

4 8 D 64 25 

4 8 D 256 30 

4 16 D 64 35 

4 32 C 64 38 

4 16 C 256 48 

8 8 D 64 46 

8 32 C 256 43 

8 16 D 256 52 

8 8 C 64 44 

16 16 D 64 45 

16 32 C 64 52 

16 32 C 256 23 

16 16 C 64 46 

16 16 C 256 30 

 

Now we should apply the same procedure to the each node and all of its branches again. A 

branch that is having a higher standard deviation than a certain threshold requires further 

splitting. The process is repeated recursively on the non-leaf branches until all data is processed. 

When the number of data is more than one at a leaf node, the average value of data on that node 

is considered as the final value for the predicted output. For example, if we choose node “16” for 

“distance” feature and calculate the standard deviation for static energy again we will have: 

16 16 D 64 45 

16 32 C 64 52 

16 32 C 256 23 

16 16 C 64 46 

16 16 C 256 30 

Standard deviation 
10.8

7 
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Then we need to calculate the standard deviation of each value for all the other feature and 

finally, calculate SDR for each feature as follow: 

 Standard deviation of static energy 

Cluster 

size 

32 14.50 

8 Not appear in this portion of dataset 

16 7.32 

𝑆𝐷𝑅(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑐𝑙𝑠𝑢𝑡𝑒𝑟) = 10.87 − ((
2

5
) ∗ 14.5 + (

3

5
) ∗ 7.32) = 0.678 

 Standard deviation of static energy 

Routing 

Strategy 

Dis 7.50 

Clu 12.50 

𝑆𝐷𝑅(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦) = 10.87 − ((
2

5
) ∗ 7.5 + (

3

5
) ∗ 12.5) = 0.370 

 Standard deviation of static energy 

Cores 64 3.09 

256 3.50 

𝑆𝐷𝑅(𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑐𝑜𝑟𝑒𝑠) = 10.87 − ((
3

5
) ∗ 3.09 + (

2

5
) ∗ 3.5) = 7.62 

Based on the SDR, we will choose feature “number of cores” because it has higher standard 

deviation reduction. 

 

 

Distance

16

Core

64

47.7

256

26.5

8 4
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By repeating these steps, the final tree will be: 

 

Listing 2 displays pseudo code of decision tree algorithm explained above. 

const integer number_of_features = n 
const integer number_of_samples = m 
declare feature [number_of_features] 
declare dataset[number_of_features][number_of_samples] 
 
StDev_y = standard_deviation (y) 
while (StDev_y > threshold){ 
    for index = 0 to n { 
        max_StDev_reduction = 0 
        split(dataset,feature[index]) 
        StDev_branch = standard_deviation (y)   
        StDev_reduction = StDev_y – StDev_branch 
        if (StDev_reduction > max_StDev_reduction){ 
             max_StDev_reduction = StDev_reduction 

decision_node = feature[index] 
        } 
    } 
    split(dataset, decision_node) 
    StDev_y = standard_deviation (y) 
}  

Listing 2: Decision Tree Algorithm 

3.3. Regression Trees and Model Trees 

Regression Tree and Model tree are very similar to decision tree with a few changes. Both of 

them use for numeric output prediction. In “Regression Tree” the leaf nodes give average values 

of data that reach to the leaf as predicted value. In “Model Tree” instead of calculating the 

average of data, the leaf nodes give a linear regression model of the data that reach to the leaf. It 

means that Model Tree consists of several linear regression models that placed in each leaf of the 

Distance

16

Core

64

47.7

256

26.5

8

46.3

4

Cluster

32

38

8

27.5

16

41.5
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tree and formulate the linear models of data that reach to that specific leaf. In both cases, the 

features may have nominal or numeric value.  

Regression and model trees are initially constructed by using a same decision tree algorithm. 

The general idea is to fit a regression model to the output using each of the features. Therefore 

the dataset is split at each feature like what we explained in the previous section. These trees also 

calculate the prediction “error” before and after splitting. It means that for splitting on each 

feature the “error” between the predicted value and the actual values calculated and then they are 

added together and squared to get a “Sum of Squared Errors” (SSE). The split errors for the 

features are compared, and the feature with the lowest SSE is chosen as the root node. This 

process is recursively continued until all features process. The only difference between 

regression tree and model tree is that, for the model tree, each leaf is replaced by a regression 

model of data reach to that leaf node, instead of a constant value that is an average of data reach 

to that leaf node. [34] 

In our model, we use two types of trees. One is REPTree, and another one is M5P. REPTree 

is Reduced Error Pruning Tree which is a fast learning decision tree that builds a decision tree 

based on the variance reduction technique (very similar to decision tree). Once the basic tree has 

been formed, consideration is given to pruning the tree back from each leaf. Pruning the tree with 

this algorithm makes a better prediction because it only prunes a branch if this pruning reduces 

the prediction error. The primary pruning operation is “subtree replacement”. The idea is to 

select a subtree and replace it with a single leaf. For knowing when we should replace a subtree 

with a leaf, we consider a different dataset and then estimate the error rate that would be 

expected if we do the replacement in a tree on that dataset. Finally, by comparing the estimated 

error before and after that particular replacement we can decide whether we should do the 

pruning or not [34].  

The M5P is a reconstruction of Quinlan's M5 algorithm [36] for building a tree of the 

regression model. M5P combines a conventional decision tree with the possibility of linear 

regression functions at the nodes. In this way, it splits the dataset to many smaller sets and then 

assigns a linear regression model to each set. Therefore the overall prediction error will be 

reduced because the linear model can fit better in each subset of the original dataset. We will use 
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the implementation of these algorithms as provided by Weka [34]. In section 4.3.1 we will 

explain about Weka tools.  

 

3.4. Non Linearity 

Linear regression analysis is not always a good model for finding a relation between input 

variables and output because some problems do not have a linear relation between features and 

output and our problem is one of them as we will see in section 4.3.4.  To obtain a better model, 

we also consider the nonlinear relationship between predictor variables and outputs. Statistical 

regression analysis is the study of techniques that relate one dependent variable (i.e. output) to 

some independent variables (i.e. features). In Equation 6 𝑓𝑖 (i = 0,… n) terms are the independent 

variables. Their changing values cause the dependent variable, ℎ𝑤(𝑓), to vary as a response. 

ℎ𝑤(𝑓) =  𝑤0 + 𝑤1𝑓1 + 𝑤2𝑓2 +⋯+ 𝑤𝑘𝑓𝑘 

Equation 6: Regression Equation 

Variables in real problems often have nonlinear dependence that cannot be accurately 

captured by Equation 2. To handle these cases, transformation functions (𝐹𝑙 and 𝐹𝑛 in Equation 

7) are applied to𝑓𝑖. Equation 7 is still a linear regression model because ℎ𝑤(𝑓) is a function of 𝑓 

with weight of 𝑤𝑖 and it is still linear. As a result, techniques in linear regression theory can still 

be applied to the problem while nonlinearity in independent variables is handled.  

ℎ𝑤(𝑓) =  𝑤0 + 𝑤1𝑓1 + 𝑤2𝑓2 +⋯+ 𝑤𝑘𝑓𝑘 + 𝑤𝑙𝐹𝑙(𝑓𝑙) + ⋯𝑤𝑛𝐹𝑛(𝑓𝑛) 

Equation 7: Linear Regression for handling Nonlinearity 

 

3.5. Feature Transformation 

Plotting each of the features against the output may reveal particularly strong associations or 

identify non-linearity. In section 4.3.4 we will present some of these plots that help us to find 

transformation needed for each feature as a predictor. As an example after plotting features 

against average packet latency as an output (section 4.3.4, Figure 14, 15 and 16), these are the 

relationships between features and output extracted from plots: 
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For the feature 𝑓1 “number of receive networks per cluster” we apply an inverse 

transformation function on it and it creates a new feature  
1

𝑓1
 where 𝑓1 is an independent variable 

representing “number of receive networks per cluster”. For the feature “number of access 

points” we apply an inverse transformation function on it and it creates a new feature 
−1

𝑓2
 where 

𝑓2 is an independent variable “number of access points”. For the feature 𝑓3 “cluster size” we 

apply a square root transformation function on it and it creates new feature √𝑓3 that 𝑓3 is 

independent variable “cluster size”.   

 

3.6. Evaluation of fitting  

To have a fair evaluation of a model, we need to get a new set of data to test the formulated 

model learned from the dataset. It is because we want to avoid possible biased estimation that 

can occur if we use the same dataset for both learning process and testing. Therefore, we will 

split a full dataset to two separate sets. One is “training set” that is used as an input for 

formulating the model (i.e. for learning). Another set is “test set” that is used for evaluating the 

performance of the model. In this way, the estimation will be more reliable with fair and 

unbiased accuracy. Training set and test set (i.e. the entire dataset) are generated by simulation of 

many design alternatives; Section 4.2 will explain about dataset generation in details. And in 

section 5.1 the experiment results and validation method for testing predicted results are 

presented.  

After formulating a model, we predict values for output based on this model. Predicted 

output values may not fit the actual value of output in the test set very well. In this case, we have 

a underfitting problem (Figure 10 part a). If we have too many features the formulated model 

(i.e. corresponding hypothesis function, in case of regression modeling) may fit the training set 

too well i.e. 𝑗(𝑤) = 0. But it fails to generalize to new examples (i.e predicting delay and energy 

for new example). This problem named overfitting (Figure 10 part b). 
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Figure 10: a) Underfitting, b) Overfitting 

Overfitting usually occurs when we have so many features and few training data. For 

addressing overfitting, we can try one of the following options. One solution is reducing the 

number of features. We should decide which feature we should keep and which one should throw 

out. Another solution is Regularization. In this method we keep all the features, but reduce the 

magnitude of weight parameters 𝑤[34]. This method works well when we have a lot of features 

and each of them contributes a bit to prediction of output.  

 

3.7. Feature selection 

The feature selection is critical for obtaining a model with high accuracy levels. It is 

important because it can lead us to a successfully and meaningfully modeling of the problem or it 

can mislead the modeling. Moreover, redundant features can be misleading to modeling 

algorithms. Keeping irrelevant features in the dataset can result in overfitting. For example, 

decision tree algorithms attempt making an optimal split of the feature values. Those features 

that are more correlated with the prediction will split first (the ones that have bigger standard 

deviation) Deeper in the tree, less relevant and irrelevant feature are used to make prediction 

decisions. These less relevant or irrelevant features may only be beneficial a little or by chance in 

the training dataset. This is how we would have overfitting in the case of decision trees. This 

overfitting of the training data can negatively affect the prediction modeling and cause lower 

prediction accuracy. Therefore, it is important to remove redundant and irrelevant features from 

the dataset before evaluating algorithms. This task should be tackled in the step of preprocessing 
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data, which is one of the primary steps in the machine learning process. In this step, we can also 

define new feature by finding an appropriate transformation function (like Equation 7) or by 

combining two or more other features together. We will discuss this step in detail in section 4.3.3 

and 4.3.4. 
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CHAPTER 4 

 

4. Design Space Exploration Technique 

In this chapter, we present our methodology for exploring design alternatives and deriving a 

representative (i.e. accurate) model for delay and energy prediction. For developing a prediction 

model that can predict delay and energy for a given configuration set in our design space, first of 

all, we need to gather a dataset from simulating many experiments with different design 

configurations. This dataset will be our input to a statistical approach that is used for prediction 

modeling. For the purpose of this thesis, generating the dataset for applying learning algorithms 

took almost four months. However, in general, the time needed for gathering the dataset can be 

more or less, and it depends on a number of simulated experiments, the simulator itself and the 

machine specification that runs the simulator. Nevertheless, the simulation of all possible 

configurations for an ONoC is an extremely time-consuming process, and efficient exploration 

of the design space only by using simulation is practically impossible given a tight time to 

market constraint. Therefore we propose a design space exploration technique that enables 

efficient evaluation of design alternatives. In this chapter we explicitly cover the exploration 

technique and its required steps that we took: the procedure for gathering the dataset, processing 

the dataset, prediction modeling, introducing the simulator framework, the benchmark 

applications, and statistical analysis tool. And also we discuss configuration parameters and 

sampling from different configurations among the whole design space. We start with the 

overview of the proposed technique and follow with the detailed explanation of its steps. As 

Figure 11 shows, the first step is providing a dataset for our prediction. To do so, we run 13320 

simulations with different design configurations of ONoC. Therefore, in the first section of this 

chapter we talk about generating needed dataset. In this section, we also cover the configuration 

setting, simulation framework and benchmark applications used for generating the dataset. The 

second section will talk about data preprocessing, and it includes a statistical analysis of the 

dataset and needed modifications of the dataset before applying learning algorithm. Data 

preprocessing consists of feature selection and feature transformation. The last part of this 

methodology is about building a prediction model based on modified dataset.  
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Figure 11: Overview of Methodology 
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4.1.  Overview of Design Space Exploration Technique  

The overview of the proposed design space technique is shown in Figure 11. The oval steps 

show our contributions that are required tasks for design space exploration. They are generating 

a comprehensive dataset by simulating numerous design alternatives, sampling a smaller dataset 

from the original one, preprocessing the dataset for having several accurate prediction models, 

building and evaluating our prediction models and finally analyzing them. The square shapes are 

the steps taken by existing tools that we will introduce in this chapter. Three main steps are 

required for applying this technique: a) Generating Dataset, b) Data Preprocessing and c) 

Prediction Modeling. Part a, generating dataset consists of simulating different ONoC 

configurations to build a dataset. Part b, the data preprocessing consists of sampling from 

original dataset and then preparing the dataset to find the prediction model in next step. Part c, 

the prediction modeling consists of finding the prediction model and evaluating it. In next three 

sections, we talk about each step in details.  

  

4.2. Generating the Dataset 

As shown in Figure 11 part a, the first step in our technique is generating the dataset. 

Different design configurations of ONoC have different delay and energy consumption. For 

seeing how delay and energy change with different configurations, we vary the values of the 

selected parameters to obtain both the configurations and the corresponding delay and energy. 

For doing so, we wrote a script to go through different configurations and then we used an open 

source simulator to run these different configurations on different applications. For the purpose 

of simulation, each configuration has its own “configuration file” as an input that specifies the 

values of all the parameters needed for the simulations. So in this case, features are configuration 

parameters that we changed in the “configuration file”. The output of this step is a dataset that 

will be used for the second step which is data preprocessing. Table 2 shows one row from our 

dataset. The dataset consists of feature values: number of cores, cluster size, number of access 

points, number of receive networks, laser type, routing strategy and distance, the output values 

are: average packet latency in nanosecond, average contention delay in nanosecond, static energy 

in Joule and dynamic energy in Joule.  
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Table 2: One row of Dataset 

Features Outputs 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑦1 𝑦2 𝑦3 𝑦4 

#Cores Cluster 
size 

#Access 
points 

#Receive 
networks 

Laser 
Type 

Routing 
Strategy 

Distance Avg Packet 
Latency(ns) 

Avg Contention 
Delay(ns) 

Static 
Energy(J) 

Dynamic 
Energy (J) 

64 4 1 2 Standard Distancebase 4 14.797631 1.223670 0.068701 0.000826 

 

4.2.1. Configuration setting  

The approach to obtain a dataset from a large ONoC design space is critical to the efficient 

formulation of prediction models. Table 3 identifies seven features varied in each design 

configuration, 𝑓1 , . . ., 𝑓7. The range of values considered for each feature is specified by a set of 

values. The Cartesian Product (CP) of these sets which is = ∏ 𝑓𝑖
7
𝑖=1  , defines the entire design 

space. Although the range of each feature displays the values that it can get, not all the 

combinations of the feature values are possible. For example, if we select 8 for the value of 

“number of access points” in our configuration, the “cluster size” needs to be equal or greater 

than 8.   This is because an access point has to be within a core (to be precise a tile), and the 

cluster size specifies the number of cores per cluster. Therefore, in order to have 8 access points, 

we need at least 8 cores per cluster. So all the configurations from the design space that has 

“number of cores” equal to 8, and the “cluster size” less than 8 are not physically capable to get 8 

number of access points, and need to be excluded from the design space. This is the specific 

limitation that we should consider in the configuration: 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 ≥ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑐𝑁𝑊 ≥ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑐𝑃 

Where cluster size is the number of cores in a cluster, number of RecNW is the number of 

receiving networks that are responsible for forwarding data from hub to cores in receiving 

cluster. We use StarNet for our receiving network (see section 0 for more details). And the last 

one is 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑐𝑃 that indicates number of optical access points per cluster. Not all the 

tiles in a cluster connect directly to the optical hub of the cluster. In each cluster there is one tile 

or more that has access point to the optical hub (and so ONet). If the tile is not an access point 

itself, it should route packet to the nearest access point in its cluster to send packet over ONet. 

More details about these features are available in section 0. 
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Moreover, as we said in section 2.4, there is two type of routing strategies for delivering a 

packet: distance-based and cluster-based. We indicate the routing strategy in feature six. The 

feature “Distance” refers to distance threshold that used in distance-based routing strategy. For 

transitions over that distance threshold, packets use ONet. Otherwise, it goes through ENet. 

However, in cluster-based routing strategy, we do not need this threshold. In this case, we always 

send a packet over ONet, if source and destination of the packet are not in the same cluster. 

Otherwise, we send it through ENet. Therefore feature “Distance” is only used for configurations 

with distance-based routing strategy. 

In ATAC ONoC network model, the number of cores should always be perfect squared and 

power of two. Also, cluster size must be a power of two and number of application tiles should 

be a multiple of cluster size. This kind of limitations makes the possible design space smaller 

than what we calculated in CP. Based on the range of each feature in Table 3, the cardinality of 

CP is equal to16384. However, the feasible design points that we can have for each application 

is 4440. Since we employ three different applications, the number of design space points that we 

simulate in this thesis raise to a total of 13320.  

Table 3: Changing Features in Simulations 

 
Feature’s 

Name 
Measure Range |𝒇𝒊| Explanation 

𝑓1 Core Count 64,256 2 Number of Cores 

𝑓2 Cluster Count 1,2,4,8,16,32,64,128 8 Cluster Size 

𝑓3 AccP Count 1,2,4,8,16,32,64,128 8 Number of Optical access point per cluster 

𝑓4 RecNW Count 1,2,4,8,16,32,64,128 8 Number of Receive Network per Cluster 

𝑓5 Laser Type Throttled, Standard 2 Laser Type 

𝑓6 Routing Type 
Distance-based, 

Cluster-based 
2 Routing strategy 

𝑓7 Distance Count 2,4,8,16 4 Distance in distance-based routing strategy 
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Beside these features listed in Table 3 that varied in different configurations, there are also 

other parameters that do not change during simulation and have fixed value in all the simulated 

configurations. These parameters and their values are displayed in Table 4. These are network 

parameters that remain fixed during all simulations. Note that explanation of these parameters is 

in section 0. 

Table 4: Fixed parameters in configuration of ONoC 

Parameter Name Fix value 

Technology node 45 nanometers 

Temperature 300 Kelvin 

Tile width 1 millimeter 

Network model ATAC 

Received Network Type star 

  

There are also other parameters related to memory configurations that we keep fixed. Here is 

caches configuration for our simulations:   

L1 cache configuration:  L2 cache configuration: 

Cache line size 64 Bytes  Cache line size 64 Bytes 

Cache size 16 KB  Cache size 512 KB 

Associativity 4  Associativity 8 

Replacement policy LRU  Replacement policy LRU 

 

4.2.2. Simulation Framework 

As we explained in section 3.1, our outputs are delay (i.e. packet latency and contention 

delay) and energy (i.e. static and dynamic energy), and we evaluate delay in nanosecond or clock 

cycle (because the clock frequency is 1GHz, one clock cycle takes one nanosecond) and energy 

in Joules. For obtaining these outputs, we used a simulator called “Graphite” [13]. Although we 

used this simulator for gathering the dataset, we do not use any particular feature of the simulator 
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in our models and believe our approach may generally be applied to any other simulator 

framework.  

Graphite [13] is a distributed, parallel simulator for design space exploration of multicores 

research. It is an open-source software simulator that can be downloaded from [37]. Graphite 

models function and performance of following system components: core, on-chip network, and 

memory. Due to the modular design of Graphite, each module in Graphite can be replaced with 

an alternative design. Therefore by using a configuration file a designer can simulate different 

architectures to study its performance and accuracy under Graphite. By using Graphite, we run 

actual applications on our desire architecture and accurately capture the interplay between 

applications, multicore hardware architecture, and the underlying electronic and photonic 

devices. It performs a performance, power and area analysis for an optical multicores 

architecture like ATAC or ORNoC. Figure 12 shows Graphite architecture. Application threads 

are mapped to tiles (cores) of the target architecture. These cores are distributed among host 

processors, and these processors can be distributed to multiple host machines. Scheduling and 

execution of these threads is the responsibility of host operating system. Threads are 

automatically distributed by Pin (Intel’s dynamic binary translator [38]) that traps application 

events.  

 

Figure 12: Graphite High-level Architecture [13] 
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As Figure 13 shows, each tile of target architecture consists of three main components: 

processor core, network switch and a part of the memory subsystem. Implemented models for 

each of these components are swappable and can be replaced with an alternative model to 

explore different architectures. Our focus in this thesis is on the network model. Therefore we 

keep fixed models for core and memory and just change parameters of the network model in our 

design space exploration. The network model is responsible for routing the packet over the on-

chip network and calculate various delays and energy consumptions on the network.  

 

Figure 13: Tile Architecture [13] 

Each tile has its individual local clock. Events from core, network and memory subsystem 

update individual local clocks in each tile. Therefore it is necessary to synchronize clocks for 

managing the skew in different local clocks. Moreover, threads may run at different speeds, and 

it causes clocks to deviate.  Graphite supports three synchronization schemes that offer different 

accuracy and performance tradeoffs. They are Lax Synchronization, Lax with Point-to-point 

Synchronization and Lax with Barrier synchronization. Among these synchronization schemes 

that Graphite supports, Lax synchronization offers the best performance, and worst accuracy, 

Lax with Point-to-point Synchronization offers good performance and good accuracy and Lax 

with Barrier synchronization offers worst performance and best accuracy. In this thesis, we use 

Lax with Barrier synchronization because it has the best accuracy for timing, and we will briefly 

explain it here. However, more explanations about the other options are available in [13]. In Lax 

with Barrier synchronization, all active threads wait on a barrier after a configurable number of 

cycles (in this thesis it set to 1000 nanoseconds or cycles). If we wait on barrier frequently it can 

keep cores tightly synchronized and therefore imitates a cycle accurate simulation. Nevertheless, 

Graphite is not a complete cycle accurate simulator, by supporting several synchronization 
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strategies graphite present different timing accuracy and performance. Although cycle-accurate 

simulators provide extremely accurate results, the overhead required for such detailed modeling 

leads to very slow execution (typically between 1000x to 100,000x slowdown).  The results in 

[13] demonstrate that Graphite provides an accurate estimate of performance and achieves 

slowdowns as little as 41x over native execution for simulations of SPLASH-2 benchmarks on a 

32-tile target.  

 

4.2.3. Benchmarks 

For testing the design that we configured for ONoC architecture, we need applications that 

have significance traffic to evaluate network model. The user can use any application that is 

suitable for their work, and our methodology can generalize to their application too. We use 

three application benchmarks from Splach-2 benchmark suite [39] for this purpose. Splash-2 

benchmark suite is a set of real application programs for comparing the performance of parallel 

systems. The selected benchmarks are:  

 “Radix”: a benchmark with high rates of unicast traffic and low rate of broadcast 

 “Barnes”: a benchmark with low rate of unicast traffic and high rate of broadcast  

 “Ocean”: a benchmark with mediator unicast and broadcast traffic  

Radix: Radix implements an integer radix sort. The integer radix sort is based on the method 

described in [39]. The algorithm is iterative, performing one iteration for each radix r digit of the 

keys. This permutation step requires all-to-all communication, and it causes a lot of unicast 

traffic between each processor to the other ones. The time complexity of the Radix sort is 𝑂(𝑛) 

[40].  

Barnes: Barnes implements the Barnes-Hut hierarchical N-body method to simulate the 

interaction of a system of bodies (galaxies or particles, for example) in three dimensions over a 

number of time-steps. The time complexity of the Barnes-Hut method is 𝑂(𝑛 𝑙𝑜𝑔 𝑛) [41].  

Ocean: It simulates large-scale ocean movements based on eddy and boundary currents. [42] 
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In Table 5 we present a breakdown of instructions executed for default problem sizes of these 

three applications on a 32 processor machine. Instructions executed are broken down into total 

floating point operations (FLOPS), reads and writes. As this table shows the number of 

instructions related to the shared read and writes is the highest for Barnes that causes high 

broadcast traffic for this application and is the smallest for Radix that causes low broadcast 

traffic for this application. It can interpret that due to high broadcast traffic in Barnes it mostly 

uses ONet and due to the low request of broadcast in Radix it mostly uses ENet. Ocean shows a 

mediator usage of both ONet and ENet 

Table 5: Breakdown of instructions executed for default problem sizes [39] 

Application Problem size Total 

instruction 

(M) 

Total 

FLOPS 

(M) 

Total 

Reads 

(M) 

Total 

Writes 

(M) 

Shared 

Reads 

(M) 

Shared 

Writes 

(M) 

Radix 1M integers, radix 1024 50.99 --- 12.06 7,03 12.06 7.03 

Barnes 16K particles 2002.79 239.24 406.85 313.29 225.05 93.23 

Ocean 258 x 258 ocean 379.93 101.54 81.89 18.93 80.26 17.27 

 

4.3. Data preprocessing  

As Figure 11 part b shows data preprocessing is next step after gathering the data, and it is 

one of the most important steps in our technique. The input to this step is the original dataset that 

consists of seven features and four outputs as we discuss in section 3.1. We should carefully 

analyze and modify our original dataset to get a meaningful result. Otherwise, it will be 

misleading and caused poor prediction. This process includes dealing with missing value, 

normalization of data and transformation of data, feature selection, and feature extraction. The 

output of this step will be the final dataset that we will use for the learning process to derive a 

prediction model.   

4.3.1. Statistical Analysis Tool 

To perform data preprocessing, we need to use statistical analysis tools. At first, we 

developed several python scripts for setting design configuration of the ONoC and then 

extracting our desired data from output files of the simulator. Then we used Weka [34] for data 

preprocessing includes feature selection and feature transformation. After preparing the dataset 
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by applying preprocessing step, Weka used for building the prediction model and statistical 

analysis. The Weka workbench is a collection of state-of-the-art machine learning algorithms 

and data preprocessing tools. The system is written in Java and distributed under the terms of the 

GNU General Public License [34]. Other tools used for this purpose is MATLAB and Microsoft 

Excel to plot results. 

4.3.2. Dealing with Missing Value  

This step is about processing data to detect and correct inaccurate records from the dataset. In 

our dataset, the feature “routing strategy” has two possible values. One is “distance based 

strategy” describes that the network will route packet via different networks based on the 

distance threshold that was set for it. If the distance between the source and the destination is less 

than the specified threshold, the packet will be routed only via an electrical network (“ENet” in 

our case, see section 0). But if the distance between the source and the destination is equal or 

greater than the threshold, the packet will be routed using the hybrid opto-electrical network 

(combination of “ENet” and “ONet” described in section 0). Another routing strategy is “cluster-

based strategy” where the routing between cores within a cluster is done using an electrical 

network (“ENet”), and the routing between the cores in the different cluster is done using the 

hybrid opto-electrical network (combination of “ENet” and “ONet”). Therefore, the feature 

“distance” that describes the threshold value does not have any meaning for the “cluster-based 

strategy” and will have a missing value in all configuration instances that correspond to cluster 

based routing strategy (where feature “routing strategy” has the value “cluster-based strategy”). 

The way that we deal with missing values for this case is to fill them by the maximum distance 

between cores in a cluster.   

4.3.3. Normalization 

This step in data preprocessing is useful for adjusting measured values by using 

normalization. For example, if we have features like memory size and it has value 100 “MB” and 

another feature like cache size that has value 32 “KB”. Although they are two comparable 

features, they have a different scale (KB vs. MB) and therefore any comparison, addition or 

subtraction would be unreasonable. Then, the designer should make sure that all the features 

follow the same scale and are in same range. For doing this, usually, features are dividing by the 

maximum value encountered on a dataset for that particular feature. In our project, configuration 
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features that had numerical values count the number of modules. For example number of cores, 

number of access points, etc. Therefore by their nature, they have the same scale and range 

because they simply count as 1, 2, 3, etc. and there is no need for normalizing the values. But in 

general, normalizing the features in one of the required steps is data preprocessing. 

4.3.4. Feature Transformation 

Plotting each of the features against the delay and energy may reveal particularly strong 

association or identify the non-linear relation between them. This is useful for finding out a 

feature transformation function described in section 0. We extract relationships between features 

and each of four outputs separately based on their plots. We use curve fitting method to find the 

transformation function that relates our three numeric features (cluster size, number of access 

points, number of receive network) to each of the outputs. Here we present these plots only for 

Radix benchmark but the transformation functions for the other benchmarks are the same for 

each parameter.  

1- Features vs. Average Packet Latency 

Figure 14 plots how the value of “average packet latency” changes when we vary the number 

of cores per cluster (i.e. changing cluster size) from 1 to 32 (the range of its values specified in 

Table 3). The dotted lines represent the value of output in original data obtained from the 

simulation. Each line is for a set of experiments that have same configurations in all parameters 

except the cluster size.  For example line blue is for all the configurations that have 64 number of 

cores, 1 number of access point, 1 receiving network, using distance based routing strategy with 

threshold 4 and has a standard laser. We include other lines that represent other configurations 

because we want to show that this relation between this feature and output is not an accident.  

For the feature 𝑓1 “cluster size” based on its plot (Figure 14) we apply a square root 

transformation function on it and it creates new feature which is √𝑓1 that 𝑓1 is independent 

variable “cluster size”. 
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Figure 14: Cluster size (#cores/cluster) vs Average packet latency 

For the feature “number of access points” based on its plot (Figure 15) we apply an inverse 

transformation function on it and it creates a new feature which 
−1

𝑓2
 where 𝑓2 is an independent 

variable “number of access point”.  

 

Figure 15: # Access points vs. Average packet latency 
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Figure 16: # Receive networks vs. Average packet latency 
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Figure 17: Cluster size (#cores/cluster) vs. Average contention delay 

For the feature “number of access points” based on its plot (Figure 18) we apply an inverse 

transformation function on it and it creates a new feature which 
−1

𝑓2
 where 𝑓2 is an independent 

variable “number of access point”. 

18

18.2

18.4

18.6

18.8

19

19.2

19.4

0 5 10 15 20 25 30 35A
v
er

ag
e 

P
ac

k
et

 L
at

en
cy

 (
n
s)

# Receive netwoorks

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

A
v
er

ag
e 

C
o
n
te

n
ti

o
n
 D

el
ay

 (
n
s)

Cluster Size (#core/cluster)



53 
 

 

Figure 18:  # Access points vs. Average contention delay 

For the feature 𝑓3 “number of received networks” based on its plot (Figure 19) we apply an 
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Figure 19: # Receive networks vs. Average contention delay 
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3-  Features vs. Static Power 

For the feature 𝑓1 “cluster size” based on its plot (Figure 20) we apply an inverse 

transformation function on it and it creates new feature which is 
1

𝑓1
 that 𝑓1 is independent variable 

“cluster size”. 

 

Figure 20: Cluster size (#cores/cluster) vs Static Energy 
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For the feature “number of receive networks” based on its plot (Figure 22), there is a linear 

relation between this feature and static energy. Therefore we keep this feature as is, without 

applying any transformation function on it.  

 

Figure 22: # Receive networks vs. Static Energy 

4- Features vs. Dynamic Power 

For the feature 𝑓1 “cluster size” based on its plot (Figure 23) we apply an inverse 

transformation function on it and it creates new feature which is 
1

𝑓1
 that 𝑓1 is independent variable 

“cluster size”. 

 

Figure 23: Cluster size (#cores/cluster) vs. Dynamic Energy 
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For the feature “number of access points” based on its plot (Figure 24) there is a linear 

relation between this feature and static energy. Therefore we keep this feature as is, without 

applying any transformation function on it.  

  

Figure 24: # Access points vs. Dynamic Energy 

For the feature “number of receive networks” based on its plot (Figure 25), there is a linear 

relation between this feature and static energy. Therefore we keep this feature as is, without 

applying any transformation function on it.  

 

Figure 25: # Receive networks vs. Dynamic Energy 
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4.3.5. Feature Discretization 

One of the essential steps in data preprocessing is feature discretization especially when we 

want to use a prediction model that can only handle features with nominal values. In this case, 

we should convert all the numeric values of features to nominal values. However, the prediction 

models that can handle features with both numeric and nominal values, usually show better 

prediction accuracy when the features have nominal values. It is because feature discretization 

can compact many numeric values of features into a finite and limit discrete set of values. 

Moreover, it helps that dataset will be more understandable and also prediction model work 

faster [34]. In the case of our dataset, feature discretization can be easily done due to the nature 

of the observed numerical features that belong to the limit set of district values, not a continuous 

value range. For example feature “number of cores” can have two numeric values: “64” and 

“256”. We change these numeric values to two nominal values: type one “64 cores” and type two 

“256 cores”. In section 5.6 we will present the prediction accuracy after applying feature 

discretization and compare it to the prediction accuracy of the original dataset with numeric 

features, and we will see that discretization technique improves prediction accuracy. 

 

4.4. Prediction Modeling 

The third step in our technique is Prediction Modeling. After applying the preprocessing 

technique on the dataset, we have a dataset ready to use for learning a model to make a 

prediction. We split the dataset randomly and take a portion of it to use as a training set, and then 

after deriving the model from it, we test the learned model on the rest of dataset, that it is test set. 

Section 5.1 will explain about splitting dataset to training and test set and their size. We employ 

several models for predicting the outputs. The learned models can divide to three separate 

categories: 1- Regression model, 2- Tree model, 3-Neural network model. 

Regression models discuss in section 3.1. For deriving an accurate regression model, it is 

very important to find all the nonlinear interactions and dependencies between features and 

output. And that is why developing an accurate regression model is very difficult. Moreover, it is 

necessary to provide a dataset that all features have numeric values.  

Tree models discuss in section 3.2. Tree models are very easy to follow and understand. We 

can start from the root, and see how features impact the output in each node. Because of this 
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advantage and their visual representation they are very useful for modeling any dataset with 

numeric or nominal features. Moreover, the tree can handle nonlinear relationships and 

interactions between features and output without any need to find them in the dataset before 

modeling explicitly.   

Neural networks that also called “multilayered perceptron” simulates “neurons” that made a 

couple of layers. In the first layer of neurons, they accept features as an input and then find and 

apply weighting coefficients to them and send them to next layer. Next layer should also do the 

same task. This procedure continues until data reach to the output layer. Some layers may send 

feedback to their previous layers to optimize the resulted output. In this thesis, we do not focus 

on the neural network as a prediction model although it shows good accuracy in some cases. 

There are several disadvantages with neural networks compare to other prediction models that 

we discuss in this work. First of all neural networks are not an easy model to understand and 

explained to non-technical people. A neural network is like a black box that derives a predicted 

value without any clarification about how it comes out. The neural network is opposite to tree 

model that can interpret easily. The required time for building (i.e. training) a neural network is 

also higher compared to tree and regression models. A neural network can automatically 

determine any interactions and relationship between features and output. And because of this 

extreme detection of all possible interactions, a neural network is very prone to overfitting. 

Moreover, regression and tree models are less complicated to build therefore computational time 

for training these models are around a couple of seconds for our dataset. But due to high 

computation that needed for building a neural network, it takes more time to build the model that 

for our dataset is around a couple of minutes. Although neural networks is not an easy model for 

explaining and interpreting, it needs less domain knowledge to build, compare to the regression 

model. They are available software that can easily be used without any need for comprehension 

of the layer’s structure of neural networks.  

In section 5.3, we will compare the prediction accuracy of these three different categories of 

prediction models. There is no study so far that can show one of these mentioned prediction 

models always perform better than the others and present more accurate predictions in all the 

dataset. But in our dataset “M5P tree” and “REP tree” give more accurate predictions almost for 
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all predicted outputs in three different benchmarks. Therefore we go through these two models 

for more details in this thesis.  

In Figure 26 we can see a regression tree model called “M5P tree” for average packet 

latency. Each leaf node contains a linear model (LM) that calculate average packet latency. For 

instance, Equation 8 shows Linear Models for the magnified portion of Figure 26: 

Equation 8: Linear Model #6 and #7 for Average Packet Latency 

𝐿𝑀 𝑛𝑢𝑚: 6 

𝑎𝑣𝑔_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =  

−0.0035 ∗ 𝐶𝑜𝑟𝑒𝑠  

+ 0.0511 ∗  𝐶𝑙𝑢𝑠𝑡𝑒𝑟  

− 0.2887 ∗ 𝐴𝑐𝑐𝑃  

− 1.2876 ∗ 𝑅𝑒𝑐𝑁𝑊  

+ 0.3704 ∗  𝑅𝑜𝑢𝑡𝑖𝑛𝑔 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑏𝑎𝑠𝑒𝑑  

− 0.0664 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

+ 25.8987 

𝐿𝑀 𝑛𝑢𝑚: 7 

𝑎𝑣𝑔_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =  

−0.0075 ∗ 𝐶𝑜𝑟𝑒𝑠  

+ 0.0511 ∗  𝐶𝑙𝑢𝑠𝑡𝑒𝑟  

− 0.2912 ∗ 𝐴𝑐𝑐𝑃  

− 0.0026 ∗ 𝑅𝑒𝑐𝑁𝑊  

+ 0.3704 ∗  𝑅𝑜𝑢𝑡𝑖𝑛𝑔 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑏𝑎𝑠𝑒𝑑  

− 0.0664 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

+ 23.2418 

 

As we discuss in section 3.2, each leaf in M5P tree has an equation to calculate the output 

(here average packet latency) for the configurations that reach to that node on traversing the tree. 

In Table 6 we indicate the number of leaves (i.e. number of LM) in the tree for each output. 

Table 6: Number of Leaves with Linear Model 

Output Number of Linear Model (LM) 

Average packet latency 72 

Average contention delay 58 

Static energy 9 

Dynamic energy 10 
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Figure 26: M5P tree for Average packet latency 
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4.5. Sampling.   

In the first step that was generating the dataset, we gather more than 13 thousand simulated 

configurations to cover different architectures for ONoC. As next chapter will show, building a 

prediction model based on this amount of data provides a very accurate model. However, it is not 

always necessary to gather such enormous dataset to predict desired output with acceptable 

accuracy. In this section, we want to sample a small subset of configurations from original 

dataset and build our prediction model based on this smaller subset instead of the original large 

dataset. We test different size of dataset (i.e. different sample size) and formulate prediction 

models from them. Then we compare the accuracy of these models that build from different 

dataset sizes to see how better the model get at predicting the outputs when we increase the 

number of samples configurations that had been used for training the models.  

Figure 27 shows learning curve for our prediction problem which is plotting the prediction 

error vs. the size of the dataset used for training the model. X-Axis is in percentage, for example, 

10 in x-axis represents that 10% of original dataset now is used as a new dataset. We uniformly 

and randomly select 10, 20, 30, …, 80, 90 percent of the original dataset. As this learning curve 

shows here, by increasing the size of the dataset, prediction error decreases. Moreover only by 

having 40% of original dataset we can have a prediction model with less than 10% error.  

 

Figure 27: Learning Cure for Barnes Application with REPTree Model 
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the size of the dataset based on her acceptable accuracy for the prediction model. In this way, we 

can reduce the number of simulations, and it solves the challenge of simulating unpractically 

large number configurations in traditional design space exploration. In section 5.5, we present 

accuracy of prediction models for different size of dataset. 
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CHAPTER 5 

 

5. Model Evaluation and Experimental Results 

In this chapter we discuss and analyze the prediction results: we observe its accuracy and 

compare our prediction models on different datasets. We start by presenting our evaluation 

method for the model and then compare prediction accuracy of different models on different:  

1- application benchmarks  

2- number of sampled configurations (i.e. size of the dataset) 

3- methods for constructing the feature set  

5.1. Evaluation Method 

There are several techniques for evaluating the performance and accuracy of our model, but 

before introducing one common technique that we used for evaluation, we need to introduce a 

new dataset that is needed besides training and a test set. This set is a “cross-validation set”. As 

described in section 3.6, the error rate of the training set in not a good indicator of a model for a 

future prediction on new data. Because the model has been derived from the same training data, 

and any estimation based on this dataset will be very optimistic. Therefore, for evaluating the 

model on new data, we need to test our model and its error rate on a dataset that played no part in 

the formation of the model. This independent dataset is test set. The important point here is that 

test dataset should not use in any way for creating the model. It may be needed to try out several 

models that have been derived from the same training dataset. The question is: how do we 

evaluate those multiple models to choose the most suitable one? If we were to evaluate them 

using the test set, it would not be fair to use the test set for selecting one of the several models, 

and after that, again to use the test set for evaluation of the picked model. If we were to do this, 

our evaluation of the picked model would be biased.  The solution for this case is to split the 

dataset into three parts: the training set, cross-validation set, and test set. In this way, the training 

set is used for the learning process to create one or more models; the cross-validation set is used 

to select one of the models as a final, resulting model; and then the test set is used to calculate 
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the error rate of selected model. These three datasets must be independent, validation set has to 

be separate from the training set to select an optimum model, and test set must be different from 

both to get a reliable estimate of the error rate.  

One standard way of estimating the error rate of one formulated model is “Ten Fold Cross 

Validation”. This is a method of evaluating the model during its creation, i.e. during the training 

phase. The “Ten Fold Cross Validation” flow chart is shown in Figure 28. In this method, the 

original dataset is randomly partitioned into 10 equal size partitions. Out of those 10 subsets, a 

single subset is retained as a cross-validation set for testing the model, and the remaining 9 

subsets are used as a training set. The cross-validation process is then repeated 10 times with 

each of the 10 subsets used exactly once as the cross-validation set. The results from all 

iterations are averaged to generate a single value for estimated error rate of the model. This 

method is not limited to 10 folds; instead of 10 any number can be used, but extensive tests on 

numerous different dataset with different learning method have been shown that 10 is the good 

number to get the best result [34].  

For obtaining an accurate error prediction, we repeat the cross-validation process 10 times. 

Performing 10 times of 10-fold cross validation results in overall 100 repetitions of the learning 

process using the original dataset. We do this because different 10-fold cross-validation 

experiments with same dataset and the same learning process might produce a different result 

due to the effect of the random selection of partitions. The final result of the training process is 

the obtained prediction model itself and also error rate of the corresponding model.  
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Figure 28: Flow chart for 10-fold cross validation 
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5.2. Accuracy of prediction 

In this section, we present error formulation used for calculating error rate in each prediction 

model. There are several measures (e.g. one of the presented error formulation) that can be used 

for evaluating a prediction model.  

5.2.1. Error formulation  

For presenting the formula for each measure let’s denote predicted value on the test instances 

with 𝑝𝑖 and actual value with 𝑎𝑖.  Notice that 𝑝𝑖 and 𝑎𝑖 are referring to the numerical values of 

the prediction and actual for the 𝑖th test instance. [1] 

Mean Absolute Error (MAE):  

|𝑝1 − 𝑎1| +  |𝑝2 − 𝑎2| + ⋯+ |𝑝𝑛 − 𝑎𝑛|

𝑛
 

Equation 9: Mean Absolute Error (MAE) 

MAE measures the accuracy of prediction, and it is an average over the differences between 

prediction values and actual values. MAE measures the average of the errors for prediction 

without considering their direction (their signs).  All the individual errors are weighted equally in 

the average.   

Mean Squared Error (MSE): 

(𝑝1 − 𝑎1)
2 + (𝑝2 − 𝑎2)

2 +⋯+ (𝑝𝑛 − 𝑎𝑛)
2

𝑛
 

Equation 10: Mean Squared Error (MSE) 

MSE measures the average of the error, the difference between predicted value and actual 

value are each squared and then average over all samples. Mean squared error tends to 

exaggerate the effect of the instances that have the prediction errors larger than the others> 

However, the mean absolute error (MAE) does not have this effect.  

  



67 
 

Root Mean Squared Error (RMSE): 

√
(𝑝1 − 𝑎1)2 + (𝑝2 − 𝑎2)2 +⋯+ (𝑝𝑛 − 𝑎𝑛)2

𝑛
 

Equation 11: Root Mean Squared Error (RMSE) 

 In Equation 11RMSE measures the same thing as the mean squared error does, with this 

difference that the square root of the average will be taken at the end. Since the errors are 

squared before they are averaged, the RMSE gives a relatively high weight to large errors. This 

means the RMSE is most useful when large errors are particularly undesirable.  

The RMSE will always be larger or equal to the MAE. And that shows if we have the greater 

difference between MAE and RMSE, the greater the variance is in the individual errors in the 

sample. If the RMSE and MAE are equal, then it means all the errors are of the same magnitude. 

MAE, MSE, and RMSE can range from 0 to ∞. They are negatively-oriented scores, and it 

means that the lower values are better in accuracy. 

Relative Absolute Error (RAE): 

|𝑝1 − 𝑎1| +  |𝑝2 − 𝑎2| + ⋯+ |𝑝𝑛 − 𝑎𝑛|

|𝑎1 − �̅�| + |𝑎2 − �̅�| + ⋯+ |𝑎𝑛 − �̅�|
 

Equation 12: Relative Absolute Error (RAE) 

where �̅� is the mean value over the training set.  

This is the total absolute error with the normalization. The errors are normalized by dividing 

the absolute error to average of actual values from training set (�̅�). The term indicates that how 

much 𝑎𝑖 differs from its mean value, therefore it can tell that how much 𝑎𝑖 differs from itself 

compared to the variance. Because of that the measures are named relative because they give 

result related to the scale of 𝑎.  

Sometimes using relative error instead of an absolute error is important. For example, if we 

have a 10% error, it can be an error in case of predicting 50 instead of 500, or a case of 
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predicting 0.2 instead of 2. In this scenario, the average of absolute error is not meaningful, and 

using relative error will be useful.  

Relative Squared Error (RSE): 

(𝑝1 − 𝑎1)
2 + (𝑝1 − 𝑎1)

2 +⋯+ (𝑝1 − 𝑎1)
2

(𝑎1 − �̅�)2 + (𝑎2 − �̅�)2 +⋯+ (𝑎𝑛 − �̅�)2
 

Equation 13: Relative Squared Error (RSE) 

The RSE measures same thing as RAE, it just takes the total squared error and then 

normalizes it.  

Root Relative Squared Error (RRSE): 

  

√
(𝑝1 − 𝑎1)2 + (𝑝1 − 𝑎1)2 +⋯+ (𝑝1 − 𝑎1)2

(𝑎1 − �̅�)2 + (𝑎2 − �̅�)2 +⋯+ (𝑎𝑛 − �̅�)2
 

Equation 14: Root Relative Squared Error (RRSE) 

The root relative squared error measures the same thing as is RSE do, with this difference 

that the square root of RSE will be taken at the end. 

As it explained here, all these error formulations compare actual values to their predicted 

values but do it in a different way. They all want to show how far away the predicted values are 

from the actual values. Sometimes square root is used because using square roots instead of 

absolute values; the extreme values have more influence on the result. 

In MSE and RMSE the average difference between these two values (i.e. predicted values 

and actual values) are measured. And in RAE and RRSE those differences divided by the 

variation of actual values, therefore they have a scale from 0 to 1, and if you multiply this value 

by 100, you get similarity in 0-100 scale in percentage. That is how we report RAE and RRSE in 

percentage.   
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5.2.2. Correlation Coefficient 

A correlation coefficient shows the degree of linear dependence of 𝑎’s and 𝑝’s. In other 

words, the coefficient shows how close two variables lie along a line. For example, if Correlation 

coefficient is 0.2055 it implies that 20.55% of the variance in the data is explained by the 

model. If the coefficient is equal to 1 or -1, all the points lie along a line. If the correlation 

coefficient is equal to zero, there is no linear relation between 𝑎 and 𝑝. However, this does not 

necessarily mean that there is no relation at all between the two variables. There could be a non-

linear relation between them for example. 

𝑐𝑐 =  

∑ (𝑝𝑖 − �̅�)(𝑎𝑖 − �̅�)
𝑛
𝑖=1

𝑛 − 1

√∑ (𝑝𝑖 − �̅�)2
𝑛
𝑖=1

𝑛 − 1
∑ (𝑎𝑖 − �̅�)2
𝑛
𝑖=1

𝑛 − 1

 

Equation 15: Correlation Coefficient 

A positive correlation coefficient means that the two variables move in the same direction. 

That is: the higher value of 𝑎 corresponds to higher values of 𝑝, and vice versa. 

A negative correlation coefficient means that the two variables move in the opposite 

directions. That is: the lower value of 𝑎 corresponds to higher values of 𝑝, and vice versa. Of 

course, negative values should not occur for reasonable prediction methods. 

 

5.3. Evaluation of different Models 

Here we will present different prediction models for three different benchmarks, Radix, 

Barnes, and Ocean. For each of them, we try several learning techniques based on three different 

categories that we discussed in section 4.4. These three model categories are Regression models 

shown in orange color in following tables, Neural Network models are shown in blue color, and 

Tree models are shown in green color. Finally, we select two models that present best results 

compared to the others. As we mentioned in section4.4, the best two models are M5P Tree and 

REP Tree that belongs to Tree models category. M5P tree builds a decision tree with a linear 

regression model function in each leaf node. REP tree is Reduced Error Pruning tree that builds a 

decision tree and then prunes some of its branches if this pruning reduces the prediction error. 

Detail explanation about these two models discussed in section 3.3 and 4.4. Before presenting 
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the results, we want to remind that as we explained in section 0, CC stands for Correlation 

Coefficient, MAE stands for Mean Absolute Error, RMSE stands for Root Mean Squared Error, 

RAE stands for Relative Absolute Error and RRSE stands for Root Relative Squared Error. 

1) Radix: 

Tables 7 to 10 show prediction accuracy of average packet delay, average contention delay, 

static energy and dynamic energy consumption, respectively, for Radix benchmark. As Tables 7 

to 10 indicates, Regression models that show in orange color have not good accuracy, and 

average prediction error (RRSE) for them is 75.56%. Although we handle feature with nominal 

values with one hot encoding technique (we discussed it in section 3.1) and therefore we can use 

regression model for our prediction, they still do not perform with good accuracy.  As we 

explained in section 4.4, the most important step for having an accurate Regression Model is that 

all the interactions and relations between features and output, carefully extracted from dataset 

otherwise it does not perform well as the prediction model. In our dataset, there were a lot of 

nonlinear relationship between features and outputs that cause a poor prediction for Regression 

models.  

In Tables 7 to 10, blue color rows show Neural Network models. Average prediction error 

(RRSE) is 58.93% for them. Therefore they do not perform well as prediction models with good 

accuracy. The reason is that Neural networks are very prone to overfitting as we discussed in 

section 4.4. They obsessively detect any interactions between features and output, and it causes 

that they poorly predict in new data, although they show good accuracy in the training set.   

Green color rows in the Tables 7 to 10 indicate Tree models. Trees show best results for our 

dataset. The average prediction error for them is 4.35%. The reason is that they can handle 

interactions between features and output very well, and it is done automatically by the way that 

the algorithm builds the tree. Moreover, they do not have the overfitting problem of the neural 

network because trees do not find all the possible interactions between features and output in 

training set that make them too much specific that cannot be generalized on a new dataset. Trees 

can handle both nominal and numeric features very well.  
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Table 7: Prediction accuracy of average packet latency for different models in Radix 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.7429 10.6299 13.8193 58.74% 66.92% 

Additive Regression 0.8493 9.1956 10.898 50.82% 52.78% 

RBF Network 0.3273 16.7789 19.5085 92.73% 94.48% 

MultilayerPerceptron 0.9773 3.1819 4.4528 17.58% 21.56% 

M5P tree 0.9992 0.6168 0.859 3.41% 4.16% 

REP tree 0.9997 0.382 0.525 2.11% 2.54% 

 

Table 8: Prediction accuracy of average contention delay for different models in Radix 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.7106 11.0282 14.3517 60.62% 70.35% 

Additive Regression 0.8468 9.0939 10.8512 49.99% 53.19% 

RBF Network 0.2814 17.126 19.5736 94.13% 95.94% 

MultilayerPerceptron 0.9774 2.8861 4.3299 15.86% 21.22% 

M5P tree 0.9991 0.6839 0.8933 3.76% 4.38% 

REP tree 0.9997 0.3622 0.4948 1.99% 2.43% 

 

Table 9: Prediction accuracy of static energy for different models in Radix 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.3119 6.9724 15.4227 124.70% 94.99% 

Additive Regression 0.5445 6.8892 13.6254 123.21% 83.92% 

RBF Network 0.1573 5.4222 16.0313 96.97% 98.74% 

MultilayerPerceptron 0.9771 1.4916 3.4794 26.68% 21.43% 

M5P tree 0.9982 0.4652 1.3035 8.32% 8.03% 

REP tree 1.000 0.052 0.1121 0.93% 0.69% 

 

Table 10: Prediction accuracy of dynamic energy for different models in Radix 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.2833 0.0181 0.0446 124.13% 95.89% 

Additive Regression 0.5029 0.0183 0.0402 125.44% 86.44% 

RBF Network 0.122 0.0145 0.0462 99.41% 99.24% 

MultilayerPerceptron 0.9823 0.0049 0.0088 33.69% 18.86% 

M5P tree 0.9966 0.0018 0.0048 12.54% 10.35% 

REP tree 0.9997 0.0006 0.001 3.78% 2.24% 
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2) Barnes:  

Second application benchmark that we tested is Barnes. Barnes shows same behaviors as 

Radix. Therefore we can see in Tables 11 to 14 that Regression Models and Neural Networks 

models do not perform well because of the same reasons that we discussed in Radix. Tree 

Models still indicates the best accuracy in Barnes application too.  

We should note that although both of the MAE and RMSE have small values, they shouldn’t 

lead us to make this conclusion that prediction models work well. Because the actual values and 

predicted values for these four outputs are small and therefore the difference between them are 

also small. This is the case that RAE and RRSE are useful. These relative measures cancel the 

effect that these small values of outputs may have on our reported error and make it meaningful. 

RRSE is 3.06% in average for all the four outputs that can show the REPTree model performs 

good prediction for all three applications. 

Table 11: Prediction accuracy of average packet latency for different models in Barnes 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.87 1.6838 2.0824 45.89% 49.29% 

Additive Regression 0.897 1.5115 1.8795 41.19% 44.49% 

RBF Network 0.2872 3.4312 4.0459 93.51% 95.77% 

MultilayerPerceptron 0.9568 0.9762 1.2422 26.61% 29.40% 

M5P tree 0.9972 0.2205 0.3223 6.01% 7.63% 

REP tree 0.9986 0.123 0.2236 3.35% 5.29% 

 

Table 12: Prediction accuracy of average contention delay for different models in Barnes 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.7249 0.93 1.1973 58.45% 68.88% 

Additive Regression 0.854 0.7425 0.9055 46.67% 52.09% 

RBF Network 0.2423 1.5176 1.6863 95.39% 97.01% 

MultilayerPerceptron 0.9627 0.3283 0.4732 20.64% 27.22% 

M5P tree 0.9961 0.1046 0.1546 6.58% 8.90% 

REP tree 0.9977 0.0768 0.1189 4.83% 6.84% 
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Table 13: Prediction accuracy of static energy for different models in Barnes 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.3153 57.0995 122.3058 118.24% 94.88% 

Additive Regression 0.5813 54.3542 104.9146 112.55% 81.39% 

RBF Network 0.1697 47.4139 127.0112 98.18% 98.53% 

MultilayerPerceptron 0.9651 14.0046 34.0322 29.00% 26.40% 

M5P tree 0.9987 3.1519 8.5658 6.53% 6.64% 

REP tree 1.000 0.4221 0.8748 0.87% 0.68% 

 

Table 14: Prediction accuracy of dynamic energy for different models in Barnes 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.3067 0.0266 0.0604 124.78% 95.16% 

Additive Regression 0.5332 0.026 0.0537 122.08% 84.58% 

RBF Network 0.154 0.0208 0.0627 97.70% 98.79% 

MultilayerPerceptron 0.9915 0.0044 0.0083 20.65% 13.15% 

M5P tree 0.9978 0.0021 0.0054 10.04% 8.44% 

REP tree 0.9998 0.0007 0.0014 3.47% 2.13% 

 

3) Ocean: 

The third application that we tested is Ocean. The Ocean benchmark shows the same 

behavior as Radix and Barnes. Therefore we can see in Tables 15 to 18 that Regression and 

Neural networks models have not good accuracy in their predictions, and Tree models perform 

well. 

Table 15: Prediction accuracy of average packet latency for different models in Ocean 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.8612 1.922 2.3324 46.40% 50.82% 

Additive Regression 0.9057 1.5642 1.9495 37.76% 42.48% 

RBF Network -0.0501 4.1428 4.5903 100.02% 100.02% 

MultilayerPerceptron 0.9651 0.9467 1.2061 22.86% 26.28% 

M5P tree 0.9964 0.274 0.391 6.62% 8.52% 

REP tree 0.9971 0.2252 0.3514 5.44% 7.66% 
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Table 16: Prediction accuracy of average contention delay for different models in Ocean 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.7006 1.5048 1.915 62.35% 71.35% 

Additive Regression 0.8509 1.1513 1.4117 47.70% 52.60% 

RBF Network -0.0316 2.4139 2.6841 100.02% 100.01% 

MultilayerPerceptron 0.9573 0.5911 0.7823 24.49% 29.15% 

M5P tree 0.9941 0.1879 0.2924 7.79% 10.89% 

REP tree 0.9945 0.1655 0.2805 6.86% 10.45% 

 

Table 17: Prediction accuracy of static energy for different models in Ocean 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.3167 48.7379 104.883 118.70% 94.84% 

Additive Regression 0.5767 46.7532 90.3586 113.86% 81.71% 

RBF Network 0.1919 39.5401 108.5204 96.30% 98.13% 

MultilayerPerceptron 0.9756 12.1043 24.3782 29.48% 22.04% 

M5P tree 0.998 2.7646 8.4791 6.73% 7.67% 

REP tree 0.9993 0.6765 4.1426 1.65% 3.75% 

 

Table 18: Prediction accuracy of dynamic energy for different models in Ocean 

Algorithm CC RMAE MSE RAE RRSE 

Linear Regression 0.3045 0.0566 0.1302 125.02% 95.23% 

Additive Regression 0.5294 0.0557 0.1159 123.05% 84.82% 

RBF Network 0.1692 0.0444 0.1347 98.08% 98.53% 

MultilayerPerceptron 0.9887 0.0094 0.0204 20.77% 14.96% 

M5P tree 0.9961 0.005 0.0141 11.02% 10.34% 

REP tree 0.9978 0.0026 0.0091 5.69% 6.64% 

 

As Tables 7 to 18 indicate, Tree Models (M5P tree and REP tree) have the best prediction 

accuracy for all the four outputs among all the three different benchmarks. Therefore for the rest 

of this thesis, we only present results for these two models in all three benchmarks. In next 

section, we will compare M5P tree and REP tree together.  
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5.4. Model Evaluation for different Benchmarks 

In this section, we present the accuracy of prediction for M5P tree and REP tree models in 

Radix, Barnes, and Ocean benchmarks. As we explained in section 0, CC stands for Correlation 

Coefficient, MAE stands for Mean Absolute Error, RMSE stands for Root Mean Squared Error; 

RAE stands for Relative Absolute Error and RRSE stands for Root Relative Squared Error. In 

these tables avg_latency stands for average packet latency of the network, and avg_contention 

represents average contention delay of the network, stat_energy stands for the static energy of 

network and dynmc_energy stands for the dynamic power of the network. More details and 

explanations about these four outputs are available in section 2.4.1. 

1) Radix: 

Table 19: Accuracy of prediction with M5P tree model for Radix 

Output CC MAE RMSE RAE RRSE 

avg_latency 0.9992 0.6168 0.859 3.41% 4.16% 

avg_contention 0.9991 0.6839 0.8933 3.76% 4.38% 

stat_energy 0.9982 0.4652 1.3035 8.32% 8.03% 

dynmc_energy 0.9966 0.0018 0.0048 12.54% 10.35% 

 

Table 20: Accuracy of prediction with REP tree model for Radix 

Output CC MAE RMSE RAE RRSE 

avg_latency 0.9997 0.382 0.525 2.11% 2.54% 

avg_contention 0.9997 0.3622 0.4948 1.99% 2.43% 

stat_energy 1.000 0.052 0.1121 0.93% 0.69% 

dynmc_energy 0.9997 0.0006 0.001 3.78% 2.24% 

 

Tables 19 and 20 show the accuracy of prediction for Radix benchmark with M5P tree and 

REP tree models, respectively. M5P tree prediction error (RRSE) is 6.73% in average, and REP 

tree has RRSE of 1.97% in average. REP tree is showing better result because it has this 

advantage to use “reduce error pruning” technique. Therefore it prunes in the way that causes 

less error rate on independent data, consequently can generalize better on new data. In 

section 3.3, we discussed pruning technique in details.    
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2) Barnes: 

Table 21: Accuracy of prediction with M5P tree model for Barnes 

Output CC MAE RMSE RAE RRSE 

avg_latency 0.9972 0.2205 0.3223 6.01% 7.63% 

avg_contention 0.9961 0.1046 0.1546 6.58% 8.90% 

stat_energy 0.9987 3.1519 8.5658 6.53% 6.64% 

dynmc_energy 0.9978 0.0021 0.0054 10.04% 8.44% 

 

Table 22: Accuracy of prediction with REP tree model for Barnes 

Output CC MAE RMSE RAE RRSE 

avg_latency 0.9986 0.123 0.2236 3.35% 5.29% 

avg_contention 0.9977 0.0768 0.1189 4.83% 6.84% 

stat_energy 1 0.4221 0.8748 0.87% 0.68% 

dynmc_energy 0.9998 0.0007 0.0014 3.47% 2.13% 

 

Table 21 and 22 show the accuracy of prediction for Barnes benchmark with M5P and REP 

tree models respectively. RRSE is 7.90% in average for M5P tree, and 3.73% in average for REP 

tree. Same as Radix benchmark, REP tree is showing the better result for Barnes application due 

to reducing error pruning technique that was applied to it. 

3) Ocean: 

Table 23: Accuracy of prediction with M5P tree model for Ocean 

Output CC MAE RMSE RAE RRSE 

avg_latency 0.9964 0.274 0.391 6.62% 8.52% 

avg_contention 0.9941 0.1879 0.2924 7.79% 10.89% 

stat_energy 0.998 2.7646 8.4791 6.73% 7.67% 

dynmc_energy 0.9961 0.005 0.0141 11.02% 10.34% 
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Table 24: Accuracy of prediction with REP tree model for Ocean 

Output CC MAE RMSE RAE RRSE 

avg_latency 0.9971 0.2252 0.3514 5.44% 7.66% 

avg_contention 0.9945 0.1655 0.2805 6.86% 10.45% 

stat_energy 0.9993 0.6765 4.1426 1.65% 3.75% 

dynmc_energy 0.9978 0.0026 0.0091 5.69% 6.64% 

 

Table 23 and 24 show the accuracy of prediction for Ocean benchmark with M5P and REP 

tree models respectively. M5P has RRSE 9.35% in average and REP tree has RRSE 7.12% in 

average. Same as Radix and Barnes benchmarks, REP tree is showing the better result for Ocean 

application due to “reduce error pruning” technique that was applied to it. 

We should note that although both of the MAE and RMSE have small values, such as 0.22 

and 0.35, for predicting average packet latency with REP tree model, in Ocean benchmark they 

shouldn’t lead us to make this conclusion that prediction model works well. Because the actual 

values and predicted values for these four outputs are small and therefore the difference between 

them are also small. This is the case that RAE and RRSE are useful. These relative measures 

cancel the effect that these small values of outputs may have on our reported error and make it 

meaningful. RRSE is 4.27% in average for all the four outputs in these three benchmarks that can 

show the REP Tree model performs good prediction for all three applications. 

5.5. Evaluation of Model for different Sample size 

As we discussed in section 4.5, we can uniformly and randomly sample a small subset of 

configurations from original dataset, and build our prediction model based on this smaller subset 

instead of the original large dataset. We test different size of dataset (i.e. different sample size) 

and formulate prediction models from them. Then we compare the accuracy of these models that 

build from different dataset sizes. We only present one output (average packet latency) for all 

three benchmarks to study the effect of sample size on the prediction model accuracy. The other 

outputs, average contention delay, static energy and dynamic energy show the same behavior as 

we will discuss here. Therefore we can generalize the conclusion from this output to the other 

outputs.  
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Sampling percentage indicates what percentage of the entire dataset was used for building the 

prediction model. For example, we have 4400 samples with different configurations gathered 

from Barnes application; we can use 10 % of this dataset (i.e. 440 samples) to build our 

prediction model and test it. It is exactly like that we have only 440 samples in our dataset, and 

want to build a prediction model. Therefore this dataset with 440 samples should split to the 

training set and cross-validation set, to perform 10-fold cross validation method that explained in 

section 5.1. More details about sampling technique are in section 4.5. 

1) Radix: 

Table 25: Prediction accuracy of different sample size for Avg packet latency in Radix 

Sampling 

Percentage 
CC MAE RMSE RAE RRSE 

10 0.996 1.1233 1.8308 6.23% 8.88% 

20 0.9985 0.6529 1.1605 3.54% 5.54% 

30 0.999 0.53 0.9287 2.93% 4.48% 

40 0.9991 0.4874 0.883 2.76% 4.32% 

50 0.9993 0.4471 0.7782 2.54% 3.82% 

60 0.9995 0.4207 0.6524 2.37% 3.19% 

70 0.9995 0.4077 0.6468 2.30% 3.16% 

80 0.9996 0.3927 0.5996 2.20% 2.92% 

90 0.9997 0.3753 0.5152 2.10% 2.51% 

100 0.9997 0.3708 0.5169 2.09% 2.53% 

 

Table 25, 26, 27 and show when sample size increase the mean absolute error (MAE), root 

mean squared error (RMSE), relative absolute error (RAE) and root relative squared error 

(RRSE) are progressively reduced. It is because having more samples from design space helps 

for a better formulation of the prediction model. However based on those tables the correlation 

coefficient (CC) increase, when sample size increase. It shows that by increasing dataset size the 

linear dependency of features and outputs also increase, and it means that our model can 

formulate the outputs more accurate. 
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2) Barnes: 

Table 26: Prediction accuracy of different sample size for Avg packet latency in Barnes 

Sampling 

Percentage 
CC MAE RMSE RAE RRSE 

10 0.9541 0.7811 1.3063 20.12% 29.93% 

20 0.9911 0.327 0.5679 8.76% 13.32% 

30 0.9956 0.2304 0.3961 6.26% 9.38% 

40 0.9967 0.1956 0.346 5.31% 8.18% 

50 0.9973 0.174 0.309 4.77% 7.37% 

60 0.9979 0.1522 0.2733 4.19% 6.54% 

70 0.9981 0.1371 0.2548 3.78% 6.09% 

80 0.9984 0.126 0.2371 3.48% 5.68% 

90 0.9985 0.1195 0.2256 3.30% 5.41% 

100 0.9987 0.1126 0.2163 3.10% 5.18% 

 

3) Ocean:  

Table 27: Prediction accuracy of different sample size for Avg packet latency in Ocean 

Sampling 

Percentage 
CC MAE RMSE RAE RRSE 

10 0.9525 0.9202 1.414 21.70% 30.44% 

20 0.98 0.537 0.9157 12.88% 19.92% 

30 0.994 0.3151 0.5018 7.60% 10.97% 

40 0.9953 0.2818 0.4423 6.78% 9.64% 

50 0.9964 0.2568 0.3895 6.20% 8.51% 

60 0.9968 0.2303 0.3661 5.58% 8.01% 

70 0.9969 0.2154 0.3592 5.22% 7.86% 

80 0.9972 0.2018 0.3401 4.91% 7.47% 

90 0.9975 0.1875 0.3254 4.55% 7.13% 

100 0.9976 0.178 0.3168 4.35% 6.96% 

 

Figure 29, part a, b and c show the learning curve for MAE and RMSE, RAE and RRSE, and 

CC respectively in the ocean benchmark. The other benchmarks also show similar learning 

curves. These curves are based on the values in Table 27. By plotting learning curve and 

presenting these tables, we want to show that it is possible to formulate a prediction model with 

an acceptable error with the smaller dataset. It is up to the designer to decide about the size of the 
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dataset based on her acceptable accuracy for the prediction model. In this way, we can reduce the 

number of simulations, and it solves the challenge of simulating unpractically large number 

configurations in traditional design space exploration. In section 4.5, we discussed how we do 

the sampling for our dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Data sampling percentage vs Error rate 
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5.6. Evaluation of Models for different Feature sets 

In this section, we compare prediction accuracy of models with the original dataset and with 

the modified dataset, after applying feature transformation and feature discretization.  

5.6.1. Prediction accuracy after applying feature transformation 

We compare two different feature sets for each output, original feature set and modified 

feature set after applying transformation function on it, as we described in section 4.3.4.  

1) Radix: 

Tables 28 to 31 show prediction accuracy of M5P tree model after applying transformation 

functions on features and compare it with original dataset. There is less than 1% better accuracy 

after applying transformation function. It shows that our transformation function cannot 

generalize well to the other new data.  In some cases applying transformation function on 

features causes even poorer prediction compare to the prediction based on the original dataset. 

These cases have been shown in red boxes in tables.   

Table 28: M5P tree before and after applying transformation on dataset in Radix 

 

After Transformation Original Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9994 0.5532 0.7182 3.06% 3.48% 0.9992 0.6168 0.859 3.41% 4.16% 

avg_contention 0.9993 0.616 0.7719 3.39% 3.78% 0.9991 0.6839 0.893 3.76% 4.38% 

StatEnergy 0.9987 0.4208 1.2146 7.53% 7.48% 0.9982 0.4652 1.304 8.32% 8.03% 

DynmcEnergy 0.9969 0.0018 0.0048 12.49% 10.41% 0.9966 0.0018 0.005 12.54% 10.35% 

 

Table 29: REP tree before and after applying transformation on dataset in Radix 

 

After Transformation Original Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9997 0.3819 0.5248 2.11% 2.54% 0.9997 0.382 0.525 2.11% 2.54% 

avg_contention 0.9997 0.3621 0.4948 1.99% 2.43% 0.9997 0.3622 0.4948 1.99% 2.43% 

StatEnergy 1.000 0.052 0.1121 0.93% 0.69% 1.000 0.052 0.1121 0.93% 0.69% 

DynmcEnergy 0.9997 0.0006 0.001 3.78% 2.24% 0.9997 0.0006 0.001 3.78% 2.24% 

 



82 
 

Table 30: Linear Regression before and after applying transformation on dataset in Radix 

 

After Transformation Original Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.7437 10.6431 13.801 58.82% 66.84% 0.7429 10.63 13.819 58.74% 66.92% 

avg_contention 0.715 11.0262 14.2599 60.61% 69.90% 0.7106 11.028 14.352 60.62% 70.35% 

StatEnergy 0.3948 6.6708 14.9142 119.30% 91.86% 0.3119 6.9724 15.423 124.70% 94.99% 

DynmcEnergy 0.338 0.0181 0.0438 124.13% 94.11% 0.2833 0.0181 0.0446 124.13% 95.89% 

 

Table 31: Neural Networks before and after applying transformation on dataset in Radix 

 

After Transformation Original Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9779 3.0679 4.3514 16.95% 21.07% 0.9773 3.1819 4.4528 17.58% 21.56% 

avg_contention 0.9788 2.7901 4.2068 15.34% 20.62% 0.9774 2.8861 4.3299 15.86% 21.22% 

StatEnergy 0.9995 0.2935 0.494 5.25% 3.04% 0.9771 1.4916 3.4794 26.68% 21.43% 

DynmcEnergy 0.9995 0.0009 0.0015 6.41% 3.27% 0.9823 0.0049 0.0088 33.69% 18.86% 

 

2) Barnes: 

This is the same behavior for Barnes application too. Transformation functions are not a 

good representative of the association between features and outputs. 

Table 32: M5P tree before and after applying transformation on dataset in Barnes 

 

After Transformation Original Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9982 0.1883 0.2567 5.13% 6.08% 0.9972 0.2205 0.3223 6.01% 7.63% 

avg_contention 0.9973 0.0916 0.1288 5.76% 7.41% 0.9961 0.1046 0.1546 6.58% 8.90% 

StatEnergy 0.9991 2.9647 8.1383 6.14% 6.31% 0.9987 3.1519 8.5658 6.53% 6.64% 

DynmcEnergy 0.9979 0.0022 0.0055 10.20% 8.74% 0.9978 0.0021 0.0054 10.04% 8.44% 

 

3) Ocean: 

There is also same behavior for Ocean application too. Transformation functions are not a 

good representative of the association between features and outputs. 
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Table 33: M5P tree before and after applying transformation on dataset in Ocean 

 

After Transformation Original Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9972 0.2447 0.346 5.91% 7.54% 0.9964 0.274 0.391 6.62% 8.52% 

avg_contention 0.9947 0.1805 0.2771 7.48% 10.33% 0.9941 0.1879 0.2924 7.79% 10.89% 

StatEnergy 0.9983 2.5838 8.3885 6.29% 7.59% 0.998 2.7646 8.4791 6.73% 7.67% 

DynmcEnergy 0.9961 0.0051 0.0146 11.20% 10.66% 0.9961 0.005 0.0141 11.02% 10.34% 

 

Although Transformation functions do not perform well on M5P tree model, they have very 

good impact on the prediction accuracy of Neural Network model as it shows in Table 34. 

Table 34: Neural network before and after applying transformation functions in Ocean 

 

After Transformation Original Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9779 3.0679 4.3514 16.95% 21.07% 0.9773 3.1819 4.4528 17.58% 21.56% 

avg_contention 0.9788 2.7901 4.2068 15.34% 20.62% 0.9774 2.8861 4.3299 15.86% 21.22% 

StatEnergy 0.9995 0.2935 0.494 5.25% 3.04% 0.9771 1.4916 3.4794 26.68% 21.43% 

DynmcEnergy 0.9995 0.0009 0.0015 6.41% 3.27% 0.9823 0.0049 0.0088 33.69% 18.86% 

 

5.6.2. Prediction accuracy after applying feature discretization  

We also try two different ways of formulating the model. First, we consider all the feature 

values as nominal type, whether their original values were nominal or numeric. In section 4.3.5 

we explain this method as feature discretization. Second, we take all the features as a numeric 

type, whether the original values were numeric or nominal. We discussed this method as one hot 

encoding technique in section 3.1.1. Now we compare these two different feature sets in three 

different benchmarks: Radix, Barnes, and Ocean.  

1) Radix: 

As you can see in Table 35, the accuracy of formulated model with nominal feature set is 

better to compare to formulated model with the numeric feature set. In the best case, the accuracy 

is better by 1.88%, and in average by 1.10% in root relative squared error (RRSE) for Radix 

benchmark. 
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Table 35: Comparison between Nominal and Numeric dataset in Radix using M5P tree 

 

Nominal Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9995 0.5072 0.6479 2.80% 3.14% 0.9992 0.6168 0.859 3.41% 4.16% 

avg_contention 0.9993 0.579 0.7595 3.18% 3.72% 0.9991 0.6839 0.8933 3.76% 4.38% 

stat_energy 0.9991 0.3609 0.9992 6.45% 6.15% 0.9982 0.4652 1.3035 8.32% 8.03% 

dynmc_energy 0.997 0.0018 0.0044 12.04% 9.49% 0.9966 0.0018 0.0048 12.54% 10.35% 

 

The number of linear models in the leaves is also decreased. It means the model has a fewer 

number of leaves that have a linear model. Therefore prediction model function that is a 

piecewise function has a fewer number of sub-functions compare to the model with the numeric 

dataset, and therefore the model is simpler. The designer prefers less complex decision tree 

because they are more comprehensible. Furthermore, according to [43], the tree complexity has a 

crucial effect on its accuracy.  

Output Nominal Numeric 

avg_latency 31 72 

avg_contention 32 58 

stat_energy 6 9 

dynmc_energy 6 10 

 

2) Barnes: 

 As you can see in Table 36, the accuracy of formulated model with nominal feature set is 

better to compare to formulated model with the numeric feature set. In the best case, the accuracy 

is better by 3.25%, and in average by 1.95% in root relative squared error (RRSE) for Barnes 

benchmark. 
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Table 36: Comparison between Nominal and Numeric dataset in Barnes using M5P tree 

  Nominal Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9991 0.1435 0.185 3.91% 4.38% 0.9972 0.2205 0.3223 6.01% 7.63% 

avg_contention 0.9977 0.0825 0.1182 5.18% 6.80% 0.9961 0.1046 0.1546 6.58% 8.90% 

stat_energy 0.9993 2.4453 6.4427 5.06% 5.00% 0.9987 3.1519 8.5658 6.53% 6.64% 

dynmc_energy 0.998 0.002 0.0048 9.56% 7.61% 0.9978 0.0021 0.0054 10.04% 8.44% 

 

3) Ocean:  

As you can see in Table 37, the accuracy of formulated model with nominal feature set is 

better to compare to formulated model with the numeric feature set. In the best case, the accuracy 

is better by 1.71%, and in average by 1.18% in root relative squared error (RRSE) for Ocean 

benchmark. 

Table 37: Comparison between Nominal and Numeric dataset in Ocean using M5P tree 

  Nominal Numeric 

Output CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

avg_latency 0.9977 0.2205 0.3124 5.32% 6.81% 0.9964 0.274 0.391 6.62% 8.52% 

avg_contention 0.9952 0.1746 0.2631 7.23% 9.80% 0.9941 0.1879 0.2924 7.79% 10.89% 

stat_energy 0.9986 2.2005 6.9993 5.36% 6.33% 0.998 2.7646 8.4791 6.73% 7.67% 

dynmc_energy 0.9962 0.0049 0.0133 10.82% 9.75% 0.9961 0.005 0.0141 11.02% 10.34% 

 

Moreover, the nominal type feature set shows better results for 5 models out of 6 different 

prediction models that we tested as it has shown in Table 38. We only present one output here 

(average packet latency) to check the effect of different feature sets in the prediction model 

accuracy. The other outputs, average contention delay, static energy and dynamic energy show 

the same behavior as we discuss here. Therefore we can generalize the conclusion from this 

output to the other outputs.  
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Table 38: Nominal vs. Numeric dataset in Radix for different prediction models 

 

Nominal Numeric 

Algorithm CC MAE MSE RAE RSE CC MAE MSE RAE RSE 

Linear 

Regression 0.8909 7.9261 9.3788 43.80% 45.42% 0.7429 10.63 13.82 58.74% 66.92% 

Additive 

Regression 0.8482 9.2086 10.94 50.89% 52.98% 0.8493 9.1956 10.9 50.82% 52.78% 

RBF  

Network 0.3707 16.44 19.174 90.85% 92.86% 0.3273 16.779 19.51 92.73% 94.48% 

Multilayer 

Perceptron 0.9999 0.2077 0.2761 1.15% 1.34% 0.9773 3.1819 4.453 17.58% 21.56% 

M5P tree 0.9995 0.5072 0.6479 2.80% 3.14% 0.9992 0.6168 0.859 3.41% 4.16% 

REP tree 0.9997 0.3093 0.4936 1.71% 2.39% 0.9997 0.382 0.525 2.11% 2.54% 

 

5.7. Prediction Analysis 

In this section, we analyze the errors of prediction model “REP tree” as the most accurate 

model that we have. At first, we will visualize the errors for the model by plotting the actual 

value of outputs versus the predicted values for them, then we discuss the distribution of the 

errors by showing the most frequent error range, maximum and minimum error. 

5.7.1. Visualizing Errors  

Here we want to look at Absolute accuracy by plotting observed and predicted values of 

outputs in the dataset. We only present one output, average packet latency. The other outputs, 

average contention delay, static energy and dynamic energy show the similar result as we discuss 

here. Therefore we can generalize the conclusion from this output to the other outputs.  
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1) Radix: 

  

Figure 30: Actual value vs. Predicted value for average packet latency in Radix 

Figure 30 shows actual values vs. predicted values for average packet latency in Radix 

application when the prediction model is REPTree. Each dot indicates one configuration and its 

actual value that we got for average packet latency from simulation versus its predicted value for 

average packet latency by our predicted model REP tree. As it indicates the actual value and 

predicted values (aka dots) lie along a line, and it means the values of these two variables are 

very close (i.e. 𝑦 ≈ 𝑥).  

Figure 31 show the difference between predicted value and the actual value for each 

configuration that we had in our dataset (for average packet latency in Radix application when 

the prediction model is REPTree.). The absolute difference between them is less than one for 

most of the configurations.  
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Figure 31: Absolute Error for each configuration in Radix 

2) Barnes: 

  

Figure 32: Actual value vs. Predicted value for average packet latency in Barnes 
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Figure 33: Absolute Error for each configuration in Barnes 

Figure 32 shows actual values vs. predicted values for average packet latency in Barnes 

application when the prediction model is REPTree. As it indicates the actual value and predicted 

values almost lie along a line, and it means the values of these two variables are very close.  

Figure 33 show the difference between predicted value and the actual value for each 

configuration that we had in our dataset (for average packet latency in Barnes application when 

the prediction model is REPTree.). The absolute difference between them is less than 1.5 for 

most of the configurations.  
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3) Ocean: 

 

Figure 34: Actual value vs. Predicted value for average packet latency in Ocean 

 

Figure 35: Absolute Error for each configuration in Ocean 

Figure 34 shows actual values vs. predicted values for average packet latency in Ocean 

application when the prediction model is REPTree. As it indicates the actual value and predicted 

values almost lie along a line, and it means the values of these two variables are very close.  
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Figure 35 show the difference between predicted value and the actual value for each 

configuration that we had in our dataset (for average packet latency in Ocean application when 

the prediction model is REPTree.). The absolute difference between them is less than 3 for 

almost all the configurations. 

5.7.2. Distribution of prediction error 

Figures 36, 37, 38 show Frequency of error’s values that occur in prediction. Ranges of 

values are grouped into bins.  

1) Radix:  

As Figure 36 shows the most frequent error values for average packet latency in Radix 

benchmark are in the range [-0.05, 0.1]. 

 

Figure 36: Histogram of Absolute Error for Radix 

2) Barnes:  

As Figure 37 shows the most frequent error values for average packet latency in Barnes 

benchmark are in the range [-0.026, 0.02]. 
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Figure 37: Histogram of Absolute Error for Barnes 

3) Ocean: 

As Figure 38 shows the most frequent error values for average packet latency in Ocean 

benchmark are in the range [-0.064, 0.014]. 

 

Figure 38: Histogram of Absolute Error for Ocean 
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5.8. Architecture Comparison 

In this section, we want to discuss the impact of each design parameters to the delay and 

energy consumption of the network. The result of this discussion can be used by the designer as a 

guideline to be aware of different tradeoffs in design alternatives. We use our massive dataset 

from simulating of many design alternatives to do this analysis.  

5.8.1. Cluster size 

In this section, we evaluate the effect of cluster size in our four outputs. As Figure 39 

indicates, with having the same total number, by increasing the cluster size in network design, 

which means having a smaller number of clusters with the larger number of cores inside each, 

static energy consumption decreases. The reason is that by having bigger cluster size, we will 

have a fewer number of clusters. It means that the number of receiving networks, optical access 

points, optical hubs, modulators, photodetectors, serializer, deserializer, etc. that assigned to each 

cluster decrease, and it causes less energy consumption in overall (both optical and electrical).  

Although we show the result of total 64 for the number of cores, same behaviors can be seen 

in 256 for the number of cores. Moreover, in each experiment we kept all other parameters such 

as the number of the access point, number of receive network, laser type, etc. fixed, and only 

change the cluster size.  

 

Figure 39: Cluster size vs. Static energy (#cores 64) 
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Figure 40 shows the trend for dynamic energy consumption. It indicates that for the cluster 

size of more than 2, the dynamic energy consumption is almost the same. This is because 

decreasing in the number of mentioned modules has the most impact on the static energy 

consumption that is data independent, not in dynamic energy consumption which is data 

dependent and data traffic not change here.  

Static energy is in the range of 0.0015 J to 0.042 J, but dynamic energy is in the range of 

0.0034 J to 0.0005 J. Therefore static energy consumption is the most influential in the total 

energy consumption of the network.  

 

Figure 40: Cluster size vs. Dynamic energy (#cores 64) 

As Figure 41 indicates, by increasing the cluster size in network design, which means having 

a smaller number of clusters with more number of cores in each of them, Average Packet 

Latency increase. It is because that by increasing the cluster size, the number of cores inside each 

cluster increased and it causes that all of the cores want to use network components such as 

access point, receiving networks, an optical hub, shared memory which leads to larger waiting 

time for accessing these shared components.  Figure 42 shows the same result for Average 

Contention Delay. 
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Figure 41: Cluster size vs. average Packet Latency (#cores 256) 

 

Figure 42: Cluster size vs. average Contention Delay (#cores 64) 
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number of receiving networks, the range of this increase is smaller than static energy due to data 

dependency of dynamic energy.  In each experiment, we kept all other parameters such as the 

number of access points, the number of cores, cluster size, laser type, etc. fixed, and only change 

the number of receiving networks.  

 

Figure 43: Number of receiving network vs. static energy 

 

Figure 44: Number of receiving network vs. dynamic energy 
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Figure 45 and 46 show, by increasing the number of receiving networks, packet latency and 

contention delay of network decrease, and it was expected because the packets waiting time will 

decrease. But decreasing in latency and delay is much less compare to increasing in energy 

consumption. The relative decrease in latency is 5%, but for energy, it is 90%, both compared to 

1 receiving network per cluster. 

 

Figure 45: Number of receiving network vs. average packet latency 

 

Figure 46: Number of receiving network vs. average contention delay 
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5.8.3. Access point 

As Figure 47 indicates, by increasing the number of optical access points, static energy 

consumption increase, and it is expected because we added extra modules to each cluster.  In 

each experiment, we kept all other parameters such as the number of cores, the number of 

receiving networks, cluster size, laser type, etc. fixed, and only change the number of access 

points. 

 

Figure 47: Number of Access points vs. Static energy 
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Figure 48: Number of Access Points vs. Dynamic energy 

Figure 49 and 50 show, by increasing the number of access points, packet latency and 

contention delay of network decrease, and it was expected because the packets waiting time will 

decrease.  

 

Figure 49: Number of Access Points vs. average packet latency 
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Figure 50: Number of Access Points vs. average contention delay 
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Figure 51: Laser Type vs. Static energy 

As Figure 52 shows there is almost no difference between standard laser and throttled laser in 

dynamic energy consumption because of the laser in a non-data dependent component, therefore, 

there is no difference between these two lasers in this aspect.  

 

Figure 52: Laser type vs Dynamic energy 
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As Figure 53 indicates, average packet latency is almost the same for both types of lasers. 

Figure 54 shows the same result for contention delay too. Because the type of laser does not 

affect latency and delay on the network.  

 

Figure 53: Laser type vs. Average packet latency 

 

Figure 54: Laser type vs. Average contention Delay 

  

12

12.5

13

13.5

14

14.5

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Barnes Ocean Radix

A
v

er
ag

e 
p
ac

k
et

 l
at

en
cy

 (
n
s)

#Receiving networks

standard

throttled

0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

Barnes Ocean Radix

A
v
er

ag
e 

C
o
n
te

n
ti

o
n
 D

el
ay

 (
n
s)

#Access Points

standard

throttled



103 
 

CHAPTER 6 

 

6. Conclusion and Future Work 

In this thesis, we have presented a prediction modeling technique for design space 

exploration of the optical network on chip. Our proposed model accurately predicts delay 

(includes network packet latency and network contention delay) and energy (includes static and 

dynamic energy consumption) of the network with average error rates (root relative squared 

error) as low as 4.27%. The advantage of our prediction model is that it addresses fundamental 

challenges of accurately estimating desired metrics without having to incur high simulation cost 

of the optical network on chip architecture. We reduced the number of required simulations by 

accurately selecting the parameters that have the most impact on network and then sparsely and 

randomly sampling the designs build with these parameters from an Optical Network on Chip 

(ONoC) design space and simulate them. We validated our model with three different 

applications executing on a large set of network configurations in a large optical network on chip 

design space. We presented several prediction models include regression models, neural 

networks models, and tree models and compare their prediction accuracy together. We conclude 

that tree models have the most accurate prediction in our problem. We also applied several 

processing techniques in our dataset and demonstrated the improvement they caused in the 

prediction accuracy. Moreover, we discussed the impact of each design parameters in delay and 

energy consumption of network. The result of this discussion can be used by the designer as a 

guideline of different tradeoffs in the design process.  

Future direction to improve on prediction modeling technique will focus on providing a full 

customized regression function that extracts all the interaction among features and output 

accurately. We can extend our current architecture for the network which is ATAC to the other 

optical network on chip architectures, including ORNoC and Corona. We can also include 

memory and core parameters of the system on chip in our design space exploration to fully 

analyze the system, not only the network portion. Moreover, our next project for extending the 

current one is to present a recommendation system that can suggest a design configuration to the 

user based on constraints that user sets for the value of an output.  
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APPENDIX 

A. M5P tree model for Dynamic energy in Ocean benchmark 

Figure 55 shows M5P tree structure for Dynamic energy for Ocean benchmark, followed by 

the tree structure, with level by level representation of the tree structure in text format, as well as 

the linear model in each leaf. Each tab indicates one level of the tree. The values after “:” 

indicate the predicted value and values on bracket indicate number of instances that reach that 

node and its squared error, respectively.  

 

Figure 55: M5P tree for Dynamic energy in Ocean 
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=== Run information === 

trees.m5PTree 

Ocean Nominal dataset 

Features:    

  Cores 

  Cluster 

  AccP 

  RecNW 

  Laser 

  Routing 

  distance 

Output: 

  PowerStat 

M5P tree (using smoothed linear models) Structures: 

====================================================== 

Cluster=8,1,4 <= 0.5 : LM1 (3245/0.181%) 

Cluster=8,1,4 >  0.5 :  

|   Cluster=1,4 <= 0.5 : LM2 (639/0.863%) 

|   Cluster=1,4 >  0.5 :  

|   |   Laser=standard <= 0.5 : LM3 (276/1.247%) 

|   |   Laser=standard >  0.5 :  

|   |   |   Cores=256 <= 0.5 :  

|   |   |   |   Cluster=4 <= 0.5 : LM4 (35/2.649%) 

|   |   |   |   Cluster=4 >  0.5 : LM5 (105/0.018%) 

|   |   |   Cores=256 >  0.5 :  

|   |   |   |   distance=2,1 <= 0.5 :  

|   |   |   |   |   distance=16,2,1 <= 0.5 : LM6 (54/5.674%) 

|   |   |   |   |   distance=16,2,1 >  0.5 :  

|   |   |   |   |   |   RecNW=16,4,64,2,1,128,256 <= 0.5 : LM7 (6/9.587%) 

|   |   |   |   |   |   RecNW=16,4,64,2,1,128,256 >  0.5 : LM8 (21/37.6%) 
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|   |   |   |   distance=2,1 >  0.5 : LM9 (54/3.027%) 

 

LM num: 1 

PowerStat =  

 0.1856 * Cores=256  

 + 0.0318 * Cluster=8,1,4  

 + 0.7599 * Cluster=1,4  

 + 0.0498 * Cluster=4  

 + 0.1975 * Laser=standard  

 - 0.1006 

 

LM num: 2 

PowerStat =  

 3.5778 * Cores=256  

 + 0.086 * Cluster=8,1,4  

 + 7.0164 * Cluster=1,4  

 - 0.8306 * Cluster=4  

 + 4.1515 * Laser=standard  

 - 3.4788 

 

LM num: 3 

PowerStat =  

 19.5948 * Cores=256  

 + 0.086 * Cluster=8,1,4  

 + 7.7877 * Cluster=1,4  

 - 8.0288 * Cluster=4  

 + 21.7151 * Laser=standard  

 - 5.4426 

 

LM num: 4 
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PowerStat =  

 74.9037 * Cores=256  

 + 0.086 * Cluster=8,1,4  

 + 7.7877 * Cluster=1,4  

 - 103.8246 * Cluster=4  

 + 0.6195 * RecNW=2,1,128,256  

 + 21.7738 * Laser=standard  

 + 13.1143 * distance=8,16,2,1  

 + 3.785 * distance=16,2,1  

 - 16.2493 * distance=2,1  

 + 247.936 

 

LM num: 5 

PowerStat =  

 74.9037 * Cores=256  

 + 0.086 * Cluster=8,1,4  

 + 7.7877 * Cluster=1,4  

 - 62.6597 * Cluster=4  

 + 0.6195 * RecNW=2,1,128,256  

 + 21.7738 * Laser=standard  

 + 1.2577 * distance=8,16,2,1  

 + 3.785 * distance=16,2,1  

 - 4.9132 * distance=2,1  

 + 47.0621 

 

LM num: 6 

PowerStat =  

 76.7455 * Cores=256  

 + 0.086 * Cluster=8,1,4  

 + 7.7877 * Cluster=1,4  
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 - 34.0962 * Cluster=4  

 - 3.7366 * AccP=4,1  

 + 10.3337 * AccP=1  

 + 5.5243 * RecNW=2,1,128,256  

 + 21.7738 * Laser=standard  

 + 11.9508 * distance=8,16,2,1  

 + 27.6531 * distance=16,2,1  

 - 16.9606 * distance=2,1  

 + 511.14 

 

LM num: 7 

PowerStat =  

 76.7455 * Cores=256  

 + 0.086 * Cluster=8,1,4  

 + 7.7877 * Cluster=1,4  

 - 34.0962 * Cluster=4  

 - 6.4902 * AccP=1  

 + 12.9561 * RecNW=16,4,64,2,1,128,256  

 + 18.843 * RecNW=2,1,128,256  

 + 8.733 * RecNW=1,128,256  

 - 9.7924 * RecNW=128,256  

 + 11.8316 * RecNW=256  

 + 21.7738 * Laser=standard  

 + 5.8941 * distance=8,16,2,1  

 + 35.8949 * distance=16,2,1  

 - 16.9606 * distance=2,1  

 + 533.329 

 

LM num: 8 

PowerStat =  
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 76.7455 * Cores=256  

 + 0.086 * Cluster=8,1,4  

 + 7.7877 * Cluster=1,4  

 - 34.0962 * Cluster=4  

 - 3.3842 * AccP=1  

 + 7.5577 * RecNW=16,4,64,2,1,128,256  

 + 27.1103 * RecNW=2,1,128,256  

 + 5.0943 * RecNW=1,128,256  

 - 5.7122 * RecNW=128,256  

 + 6.9018 * RecNW=256  

 + 21.7738 * Laser=standard  

 + 5.8941 * distance=8,16,2,1  

 + 35.8949 * distance=16,2,1  

 - 16.9606 * distance=2,1  

 + 542.8745 

 

LM num: 9 

PowerStat =  

 76.7455 * Cores=256  

 + 0.086 * Cluster=8,1,4  

 + 7.7877 * Cluster=1,4  

 - 34.0962 * Cluster=4  

 - 8.5066 * AccP=4,1  

 + 16.3077 * AccP=1  

 + 2.9652 * RecNW=2,1,128,256  

 + 21.7738 * Laser=standard  

 + 3.212 * distance=8,16,2,1  

 + 19.106 * distance=16,2,1  

 - 21.8034 * distance=2,1  

 + 514.9184 
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Number of Linear Models : 9 

Time taken to build model: 0.33 seconds 

=== Cross-validation summary =============================== 

Correlation coefficient                  0.9986 

Mean absolute error                      2.2005 

Root mean squared error                  6.9993 

Relative absolute error                  5.3591 % 

Root relative squared error              6.329  % 

 

B. REP tree model for Dynamic energy in Ocean benchmark 

We cannot show REP tree structure here, because it is too big. We only show tree structure 

level by level in text format. Each tab indicate on level in tree. The values after “:” indicate the 

predicted value and values on bracket indicate number of instances reach to that node and its 

squared error, respectively.  

=== Run information === 

trees.REPTree 

Ocean Nominal dataset 

Features: 

  #Cores 

  Cluster Size 

  #AccP 

  #RecNW 

  Laser Type 

  Routing Strategy 

  distance 

Output: 

  PowerStat 

REPTree Structure: 
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============================================= 

Cluster = 1 

|   Laser = throttled : 0.44 (25/0.15)  

|   Laser = standard 

|   |   distance = 1 : 280.09 (4/0.85)  

|   |   distance = 2 : 276.92 (4/0.31)  

|   |   distance = 4 : 277.66 (5/0.08)  

|   |   distance = 6 : 285.74 (0/0)  

|   |   distance = 8 : 292.77 (5/0.39)  

|   |   distance = 10 : 285.74 (0/0)  

|   |   distance = 14 : 285.74 (0/0)  

|   |   distance = 16 : 301.26 (7/0.29)  

|   |   distance = 22 : 285.74 (0/0)  

Cluster = 2 : 0.61 (95/0.27) 

Cluster = 4 

|   Cores = 64 : 0.05 (152/0)  

|   Cores = 256 

|   |   Laser = throttled : 1.37 (76/3.31)  

|   |   Laser = standard 

|   |   |   distance = 1 : 627.49 (0/0)  

|   |   |   distance = 2 

|   |   |   |   AccP = 1 : 617.48 (12/7.14)  

|   |   |   |   AccP = 2 : 607.43 (12/9.51)  

|   |   |   |   AccP = 4 : 594.18 (11/9.11)  

|   |   |   |   AccP = 8 : 606.36 (0/0)  

|   |   |   |   AccP = 16 : 606.36 (0/0)  

|   |   |   |   AccP = 32 : 606.36 (0/0)  

|   |   |   |   AccP = 64 : 606.36 (0/0)  

|   |   |   |   AccP = 128 : 606.36 (0/0)  

|   |   |   distance = 4 



112 
 

|   |   |   |   AccP = 1 : 614.49 (6/28.03)  

|   |   |   |   AccP = 2 : 604.08 (6/32.64)  

|   |   |   |   AccP = 4 : 593.73 (4/11.77)  

|   |   |   |   AccP = 8 : 604.1 (0/0)  

|   |   |   |   AccP = 16 : 604.1 (0/0)  

|   |   |   |   AccP = 32 : 604.1 (0/0)  

|   |   |   |   AccP = 64 : 604.1 (0/0)  

|   |   |   |   AccP = 128 : 604.1 (0/0)  

|   |   |   distance = 6 : 627.49 (0/0)  

|   |   |   distance = 8 

|   |   |   |   AccP = 1 : 625.78 (4/49.37)  

|   |   |   |   AccP = 2 : 615.4 (5/30.2)  

|   |   |   |   AccP = 4 : 611.95 (3/23.34)  

|   |   |   |   AccP = 8 : 617.71 (0/0)  

|   |   |   |   AccP = 16 : 617.71 (0/0)  

|   |   |   |   AccP = 32 : 617.71 (0/0)  

|   |   |   |   AccP = 64 : 617.71 (0/0)  

|   |   |   |   AccP = 128 : 617.71 (0/0)  

|   |   |   distance = 10 : 627.49 (0/0)  

|   |   |   distance = 14 : 627.49 (0/0)  

|   |   |   distance = 16 : 702.9 (17/2539.92)  

|   |   |   distance = 22 : 627.49 (0/0) 

Cluster = 8 : 0.7 (408/0.88)  

Cluster = 16 : 0.1 (546/0.02) 

Cluster = 32 : 0.07 (639/0.01)  

Cluster = 64 : 0.11 (413/0.01)  

Cluster = 128 : 0.18 (497/0.04)  

============================================ 

Size of the tree : 57 

Time taken to build model: 0.03 seconds 
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=== Cross-validation summary =================== 

Correlation coefficient                  0.9992 

Mean absolute error                      0.6749 

Root mean squared error                  4.5521 

Relative absolute error                  1.6435 % 

Root relative squared error              4.1161 % 

 

C. Prediction accuracy for different sample sizes 

1- Radix: 

Table 39: Prediction accuracy of different sample size for avg contention delay in Radix 

% CC MAE RMSE RAE RRSE 

10 0.9955 1.1085 1.9403 6.10% 9.54% 

20 0.9986 0.5995 1.086 3.23% 5.24% 

30 0.9991 0.5037 0.8897 2.76% 4.34% 

40 0.9992 0.4565 0.7979 2.54% 3.94% 

50 0.9995 0.3987 0.66 2.23% 3.27% 

60 0.9996 0.386 0.5896 2.15% 2.91% 

70 0.9997 0.3665 0.5267 2.04% 2.60% 

80 0.9996 0.3782 0.5964 2.10% 2.94% 

90 0.9997 0.3537 0.5073 1.96% 2.50% 

100 0.9997 0.3622 0.4948 1.99% 2.43% 

 

Table 40: Prediction accuracy of different sample size for static energy in Radix 

% CC MAE MSE RAE RSE 

10 0.775 1.0562 7.3265 39.85% 63.13% 

20 0.9962 0.1276 1.2866 2.71% 8.65% 

30 1 0.0573 0.1285 0.97% 0.77% 

40 1 0.0571 0.1283 1.05% 0.80% 

50 1 0.0555 0.1151 0.95% 0.69% 

60 1 0.0533 0.1107 0.95% 0.68% 

70 1 0.0532 0.112 0.90% 0.67% 

80 1 0.0532 0.1119 0.89% 0.66% 

90 1 0.0534 0.1151 0.91% 0.69% 

100 1 0.052 0.1121 0.93% 0.69% 
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Table 41: Prediction accuracy of different sample size for dynamic energy in Radix 

% CC MAE MSE RAE RSE 

10 0.6386 0.0077 0.0346 56.12% 78.23% 

20 0.9216 0.0028 0.0167 21.09% 38.79% 

30 0.9617 0.002 0.0124 14.38% 27.90% 

40 0.988 0.0011 0.0069 8.15% 15.70% 

50 0.9808 0.0014 0.0084 10.71% 19.53% 

60 0.9933 0.0008 0.0048 6.48% 11.58% 

70 0.9977 0.0006 0.0028 5.44% 6.79% 

80 0.9965 0.0006 0.0034 5.37% 8.33% 

90 0.9971 0.0006 0.0032 5.06% 7.59% 

100 0.9986 0.0006 0.0022 4.84% 5.26% 

 

2- Barnes: 

Table 42: Prediction accuracy of different sample size for avg contention delay in Barnes 

% CC MAE MSE RAE RSE 

10 0.9815 0.1871 0.3357 11.68% 19.11% 

20 0.9938 0.1159 0.1945 7.25% 11.11% 

30 0.995 0.1045 0.1745 6.49% 9.96% 

40 0.9966 0.0899 0.1436 5.57% 8.18% 

50 0.997 0.0865 0.134 5.39% 7.68% 

60 0.9973 0.0814 0.1285 5.07% 7.35% 

70 0.9976 0.0771 0.1215 4.83% 6.98% 

80 0.9976 0.0764 0.1203 4.79% 6.91% 

90 0.9979 0.0727 0.1131 4.53% 6.48% 

100 0.9979 0.0705 0.1124 4.39% 6.43% 
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Table 43: Prediction accuracy of different sample size for static energy in Barnes 

% CC MAE MSE RAE RSE 

10 0.9999 0.497 1.3424 1.11% 1.11% 

20 1 0.4165 0.869 0.95% 0.72% 

30 1 0.4142 0.8549 0.92% 0.70% 

40 1 0.4306 0.908 0.90% 0.72% 

50 1 0.4234 0.8887 0.97% 0.73% 

60 1 0.4296 0.9116 0.89% 0.71% 

70 1 0.4459 0.9617 0.89% 0.73% 

80 1 0.4393 0.9317 0.90% 0.72% 

90 1 0.4454 0.9364 0.90% 0.72% 

100 1 0.438 0.9206 0.89% 0.71% 

 

Table 44: Prediction accuracy of different sample size for dynamic energy in Barnes 

% CC MAE MSE RAE RSE 

10 0.8776 0.0072 0.0354 25.26% 47.88% 

20 0.9923 0.0014 0.0079 6.42% 12.36% 

30 0.9883 0.0017 0.0099 7.62% 15.26% 

40 0.9959 0.001 0.0058 4.60% 9.06% 

50 0.9963 0.0009 0.0055 4.18% 8.61% 

60 0.9962 0.0009 0.0055 4.38% 8.69% 

70 0.9985 0.0008 0.0036 3.39% 5.52% 

80 0.999 0.0007 0.0029 3.16% 4.47% 

90 0.9999 0.0006 0.0009 2.50% 1.31% 

100 0.9999 0.0006 0.0008 2.55% 1.28% 
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3- Ocean: 

Table 45: Prediction accuracy of different sample size for avg contention delay in Ocean 

% CC MAE MSE RAE RSE 

10 0.9883 0.2646 0.4222 10.44% 15.20% 

20 0.9912 0.2252 0.36 9.18% 13.25% 

30 0.9925 0.1997 0.3281 8.24% 12.19% 

40 0.993 0.1919 0.3166 7.96% 11.82% 

50 0.9937 0.1812 0.2996 7.50% 11.16% 

60 0.994 0.1694 0.2938 7.04% 10.98% 

70 0.9946 0.1601 0.279 6.60% 10.36% 

80 0.9948 0.1526 0.2745 6.27% 10.17% 

90 0.9952 0.1418 0.2625 5.86% 9.77% 

100 0.9956 0.1334 0.253 5.53% 9.42% 

 

Table 46: Prediction accuracy of different sample size for static energy in Ocean 

% CC MAE MSE RAE RSE 

10 0.9893 3.4395 20.2563 5.57% 14.62% 

20 0.9949 1.6856 12.1631 3.51% 10.12% 

30 0.9989 0.968 5.5916 2.13% 4.78% 

40 0.9991 0.7441 4.8666 1.73% 4.26% 

50 0.9993 0.687 4.3508 1.58% 3.78% 

60 0.9995 0.5969 3.5875 1.39% 3.16% 

70 0.9991 0.7042 4.8892 1.62% 4.28% 

80 0.9992 0.7093 4.6595 1.66% 4.10% 

90 0.9995 0.5582 3.5543 1.30% 3.13% 

100 0.9996 0.526 3.2669 1.23% 2.88% 
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Table 47: Prediction accuracy of different sample size for dynamic energy in Ocean 

% CC MAE MSE RAE RSE 

10 0.792 0.0171 0.0847 38.95% 63.21% 

20 0.656 0.0177 0.1014 41.46% 75.80% 

30 0.9938 0.0035 0.0168 6.63% 11.13% 

40 0.9941 0.0031 0.0157 6.34% 10.83% 

50 0.9947 0.003 0.0149 5.87% 10.25% 

60 0.9972 0.0026 0.011 5.06% 7.46% 

70 0.9978 0.0024 0.0099 4.65% 6.70% 

80 0.9982 0.0022 0.0089 4.14% 5.97% 

90 0.9972 0.0024 0.0113 4.54% 7.55% 

100 0.9978 0.0024 0.0099 4.46% 6.64% 
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