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ABSTRACT

Fault Detection and Isolation of Wind Turbines using Immune System

Inspired Algorithms

Esmaeil AliZadeh

Recently, the research focus on renewable sources of energy has been growing

intensively. This is mainly due to potential depletion of fossil fuels and its associated

environmental concerns, such as pollution and greenhouse gas emissions. Wind energy

is one of the fastest growing sources of renewable energy, and policy makers in both

developing and developed countries have built their vision on future energy supply based

on and by emphasizing the wind power. The increase in the number of wind turbines,

as well as their size, have led to undeniable care and attention to health and condition

monitoring as well as fault diagnosis of wind turbine systems and their components.

In this thesis, two main immune inspired algorithms are used to perform Fault

Detection and Isolation (FDI) of a Wind Turbine (WT), namely the Negative Selection

Algorithm (NSA) as well as the Dendritic Cell Algorithm (DCA).

First, an NSA-based fault diagnosis methodology is proposed in which a hierarchi-

cal bank of NSAs is used to detect and isolate both individual as well as simultaneously

occurring faults common to the wind turbines. A smoothing moving window filter is then

utilized to further improve the reliability and performance of the proposed FDI scheme.

Moreover, the performance of the proposed scheme is compared with the state-of-the-art
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data-driven technique, namely Support Vector Machine (SVM) to demonstrate and illus-

trate the superiority and advantages of the proposed NSA-based FDI scheme. Finally,

a nonparametric statistical comparison test is implemented to evaluate the proposed

methodology with that of the SVM under various fault severities.

In the second part, another immune inspired methodology, namely the Dendritic

Cell Algorithm (DCA) is used to perform online sensor fault FDI. A noise filter is

also designed to attenuate the measurement noise, resulting in better FDI results. The

proposed DCA-based FDI scheme is then compared with the previously developed NSA-

based FDI scheme, and a nonparametric statistical comparison test is also performed.

Both of the proposed immune inspired frameworks are applied to a well-known

wind turbine benchmark model in order to validate the effectiveness of the proposed

methodologies.
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Chapter 1

Introduction

1.1 Motivation

The need for renewable energy sources has been growing significantly, especially due to

the energy crisis and its associated environmental concerns. Wind energy is one of the

fastest growing source of renewable energy for power generation in past years. Conse-

quently, the Wind Turbine (WT) industry is getting bigger as more large-scale WTs are

being used. On the other hand, high operational and maintenance costs are the major

economic constraints in the WT industry. These concerns have made the investigation

into fault diagnosis of WT systems an imperative and active area of research. Therefore,

this thesis explores the Fault Detection and Isolation (FDI) of various fault scenarios in

WT systems.
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To address the task of FDI, Computational Intelligence (CI) methods are consid-

ered. The use of CI to address complex real-world problems has been increasing mainly

due to the limited use of model-based methods, particularly when a process is too com-

plicated for mathematical reasoning, or the process has a stochastic nature. Among

various CI techniques, Artificial Immune System (AIS) is rapidly emerging in many

fields such as classification, pattern recognition, computer security problems, anomaly

detection, and etc. The main reason for the growing research interest in AIS is due to

its significant information processing capabilities such as classification, pattern recogni-

tion, optimization, learning, memory, and distributed parallel processing. In this thesis,

two AIS algorithms, namely the Negative Selection Algorithm (NSA) and Dendritic Cell

Algorithm (DCA)) are employed to perform the FDI task within the WT system.

1.2 Fault Detection and Isolation (FDI)

Fault Detection and Isolation (FDI) problem has been the subject of many research

activities due to its importance in industry. According to Isermann [1], a fault is defined

as follows:

“A fault is an unpermitted deviation of at least one characteristics property (feature) of

the system from the acceptable, usual, standard condition.”

It should be noted that there is a difference between a fault and a failure. Unlike a fault

that causes a deviation in a system characteristic from its nominal situation, a failure is

2



“a permanent interruptions of a system’s ability to perform a required function under

specified operating condition [2].”

In general, three fault types can occur in a plant (shown in Figure 1.1) as follows [3]:

1. Sensor faults,

2. Actuator faults,

3. Component (also known as system, plant, or process) faults.

Plant

Dynamics
SensorsActuators

Control

inputs

Outputs Measurements

Sensor faultSystem faultActuator fault

Figure 1.1: Different types of fault.

The task of fault detection as well as fault isolation can be defined as below:

� Fault detection: indicates if there is a fault in the actuator, sensor, or component.

� Fault isolation: determines which actuator, sensor, or component is faulty.

In other words, fault detection basically determines when a fault occurs (the time of

fault occurrence), while the fault isolation determines where the fault is (the location of

the fault).
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1.3 FDI Methodologies

Fault Detection and Isolation (FDI) approaches can be divided into two categories:

hardware/physical redundancy and analytical redundancy as shown in Figure 1.2.

Plant
1 Set of

Sensors

Extra Set of

Sensors

Diagnostic

Logic

Diagnostic

Logic

FDI using

Mathematical

Model

Analytical Redundancy

Physical Redundancy

OutputInput Fault Alarm

Fault Alarm

Figure 1.2: Physical redundancy versus analytical redundancy (adapted from [4]).

1.3.1 Hardware/Physical Redundancy

Physical redundancy is a popular option for applications that require high reliability and

safety such as in large-scale WTs, flight-critical systems, and nuclear plants. In physical

redundancy approaches, multiple sensors, actuators, or components are exploited at

critical locations. In terms of sensor redundancy, multiple sensors measuring the same

quantity are available, and any discrepancies between sensor measurements may indicate

a fault within the monitored system.
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A conventional fault diagnosis technique that is broadly used in industry is N -

Modular Redundancy (NMR) approaches, where N is the number of modules available

to perform a similar task. Dual Modular Redundancy (DMR) uses an extra set of

equivalent modules, and in case of any discrepancy between the two outputs, it would

be difficult to tell which one is faulty. When a DMR is available, a common FDI

approach is first to detect the fault (or failure) by a direct comparison of the dual

sensors, and then to perform isolation or identification tasks using one of analytical

redundancy approaches (explained in Section 1.3.2) [5]. However, the proposed FDI

scheme in Chapter 5 performs both fault detection as well as fault isolation tasks.

The most common form of NMR is the Triple Modular Redundancy (TMR)

(N D 3) that is usually integrated with a majority voting mechanism [6]. In case

of hardware redundancy, a Failure Mode and Effect Analysis (FMEA) is usually con-

ducted to verify any defective element. However, the literature based on FDI from

control system perspective do not usually include methodologies based on FMEA [7].

1.3.2 Analytical Redundancy

The analytical redundancy FDI methodologies can generally be categorized as follows

[8–10]:

1. Knowledge-Based Approaches: These methods usually require an advance

knowledge of the observed system such as training and learning data. Initially,
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these methods employ a large amount of historic data to extract the underlying

knowledge of the system variables. From this perspective, knowledge-based fault

diagnosis is also known as data-driven fault diagnosis. Based on the extraction

process, the knowledge-based approaches can be divided into the following cate-

gories [10]:

a. Qualitative Knowledge-Based Methods: Expert reasoning such as IF-

THEN logic, or in general, rule-based fault diagnosis methods are among the

most popular techniques in this category.

b. Quantitative Knowledge-Based Methods: These methods can be di-

vided into the statistical-analysis based methods such as Principal Component

Analysis (PCA), Support Vector Machine (SVM), or non-statistical-analysis

based methods in which Neural Networks (NNs) have been the most known

approach. In addition to the statistic and non-statistic fault diagnosis, a joint

data-driven approach can also be used.

Moreover, most Artificial Immune System (AIS) algorithms (including the

ones used in this thesis) are considered to be in this category. It should

be mentioned that the proposed FDI scheme in Chapter 4 is a quantitative

knowledge-based approach.

2. Signal-Based Approaches: These methods are based on the measured signals
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and symptom (pattern) analysis rather than the explicit input-output models.

Signal-based approaches can be divided into three categories as follows: a) Time–

Domain Methods, b) Frequency-Domain Methods, and c) Time-Frequency Meth-

ods [9].

3. Model-Based Approaches: These methods are usually divided into three cate-

gories as follows:

a. Observer-Based Approach: This approach is the most common model-

based FDI method. In observer-based FDI approach, system outputs are

estimated from the measurements (or a subset of measurements) using either

Luenberger observer in deterministic settings or Kalman filter in stochastic

setting, and output estimation errors are then taken as residuals [11].

b. Parameter-Estimation (System Identification) Approach: In this me-

thod, physical parameters of the system (such as mass, viscosity, or resistance)

are estimated and then compared with the actual value of the parameter in

faultless condition. Consequently, a fault can be detected if there is any

discrepancy between the estimated and actual values.

c. Parity Relation Approach: In this approach, a consistency check based

on parity relations using inputs and output measurements are made. Con-

sequently, faults can be detected if there is any inconsistency in the parity
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relations.

4. Hybrid Approaches: These methods fuse different approaches mentioned above

to improve the FDI performance.

1.4 Literature Review

1.4.1 Literature Review on Fault Diagnosis of Wind Turbines

Recent years have witnessed immense interest on fault diagnosis of WT systems. Odgaard

et al. [12, 13] introduced a benchmark model of a WT at the system level for FDI and

Fault Tolerant Control (FTC) applications, subject to sensor, actuator, and system

faults. A review of the works that use mostly this benchmark model is provided next.

In [14], a model-based fault diagnosis approach is proposed by using interval-based

Analytical Redundancy Relations (ARRs) and interval observers. An FDI and FTC

approach based on Set-Valued Observers (SVOs) theory is developed in [15]. Chen et

al. [16] have proposed a combined observer and Kalman filter approach in which the

generalized likelihood ratio test and the cumulative variance index are used for residual

evaluation. A diagnostic approach is proposed in [17] that uses a secondary H1 filtering

scheme for FDI of a horizontal axis WT.

The work [18] addressed both the FDI as well as the FTC problem of the WT

benchmark model through designing virtual actuators/sensors by using an input-output
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model. In [18], the problem of the FDI was addressed in which interval observers are

employed for fault detection and a row-reasoning technique is employed for the fault

isolation stage. Moreover, a batch least square approach was used for fault estimation

purposes.

The paper [19] proposed an estimation-based approach to perform the FDI of the

WT benchmark model. In [19], fault detection task is achieved by a fault detection esti-

mator, and a bank of fault isolation estimators are utilized to perform the isolation task.

The work [20, 21] employed a set-membership FDI mechanism for the WT benchmark

model.

In [22], a robust data-driven fault detection strategy that uses parity-space method

is introduced, in which robust residual generators are constructed directly from the pro-

cess measurements. The work [23] proposed a novel data-driven FDI scheme for a WT

benchmark based on time-series and data analysis. In [23], the fault detection task

is achieved by using the Gibbs Sampling algorithm, and the fault isolation task was

performed by a Fuzzy/Bayesian network. The paper [24] utilized a mixed Bayesian/Set-

membership approach for the fault detection and isolation of the WT. In [24], the fault

detection task is formulated using the set-membership context; however, the fault iso-

lation task is achieved based on the theoretical fault signature matrix, in which a novel

Bayesian fault isolation methodology is proposed.

An FDI scheme based on the Takagi-Sugeno fuzzy models that are identified from
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input-output measurements is proposed in [25–27]. Another data-driven approach that

is successfully applied to FDI of WTs is the SVM in [28–30]. In [29], while most faults

were detected and isolated through SVM, however, Kalman-like observers were designed

to detect and isolate faults in the pitch actuator system. The work [30] also used a hybrid

method for the FDI of WTs. Besides the SVM, a residual-based technique is used for

the FDI of certain faults. More precisely, a three-layer Artificial Neural Network (ANN)

was used to estimate the pitch angle for residual generation purposes.

A frequency-based fault detection technique is suggested in [31] for detecting

changes in WT gearbox resonance frequencies. In [32], a fault diagnosis and FTC scheme

is developed for the Individual Pitch Control (IPC) of WTs. The developed methodol-

ogy in [32], activates and deactivates the IPC component of the WT blades based on

the fault detection results.

Several FDI schemes applied to the wind turbine benchmark model are evaluated

and compared in [13,33,34].

1.4.2 Literature Review on FDI using AIS Methodologies

The vertebrate Immune System (IS) (such as human IS) is an effective defensive mech-

anism that protects the body against any foreign invader. AISs model the natural IS

by replicating and developing interesting paradigms that can be used in real-world ap-

plications. AIS is a sub-field of bio-inspired computing technologies that belongs to the
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broader field of CI as shown in Figure 1.3.
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Figure 1.3: Branches of computational intelligence (CI).

1.4.2.1 Literature Review on Negative Selection Algorithm (NSA)

Negative Selection Algorithm (NSA) is used in various applications like: change de-

tection, fault detection, pattern recognition, and particularly in computer security and

network intrusion detection. Few works that utilized the NSA are mentioned below.

The Negative Selection Algorithm (NSA) was first introduced in 1994 by Forrest et

al., [35], as a change detection method in the field of computer security problem. In [35],

the computer security problem was transformed to the problem of distinguishing self

from non-self.

After the original work [35], there have been numerous attempts to utilize the

NSA for computer security problems. In [36], both real-valued negative selection with

fixed-sized detectors (RNSA) and variable-sized detectors (V-detector) are compared
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with SVM and K-Nearest Neighbor (KNN), in which V-detector showed superior per-

formances compared to the other ones. In [37], an intrusion detection mechanism is

introduced based on the real-valued dual Negative Selection (NS), in which each newly

generated detector has to go through three steps that are: 1) the detector should not

be detected by the existing ones, 2) the detector should be discarded if it detects the

self space, and 3) the distribution of detectors should be optimized with the goal of the

detection efficiency. It should be noted that the first two steps of detector generation

is similar to the original NSA. The papers [38, 39] also employed the NSA for network

intrusion detection systems (IDS).

The work [40] integrated a hardware implementation of NSA with an embedded

system for malware detection tasks. An adaptive NSA, in which the detector set is

updated regularly, was proposed in [41] with the task of detecting any DoS (Denial of

Service) attack, that is very important in cloud environments. The work [42] applied an

improved version of the NSA to Wireless Sensor Networks (WSNs) in order to detect

any anomaly. In [43], the NSA is utilized along with the artificial bee colony algorithm

for intrusion detection in mobile ad hoc networks (MANETs).

The paper [44] worked on developing an intrusion detection model based on the NS

mechanism. In [44], the problem of “black hole” in the original NSA was investigated.

Consequently, the Minkowski distance is utilized as the matching rule in order to enhance

the performance of the NSA by reducing the number of black holes resulting in a better
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detection rate.

In [45,46], a motor bearing fault detection and diagnosis based on NSA is proposed.

The work [47] investigated the use of real-valued NSA for aircraft fault detection, in

which datasets from the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator

were employed in order to diagnose the behavior pattern of the aircraft flight. In [48], a

bank of NSAs was developed to detect and isolate faults in a wind turbine system.

There were also few attempts to use NSA in function optimization problems. For

instance, the paper [49] proposed a parallel implementation of the NSA to handle con-

straints in genetic algorithms. There have also been many attempts to address drawbacks

of the original NSA as well as to improve the performance of the NSA. Consequently,

various NSA versions have been developed, some of which are mentioned below:

A Distribution Estimation based NSA (DENSA) is proposed in [50] in which a

Gaussian Mixture model is employed to fit the normal space (or self-space). The paper

[51] proposed an Immune Optimization based Real-valued NSA (IO-RNSA) that has

better time efficiency as well as less number of generated detector compared to traditional

real-valued NSA. A boundary-aware NSA is developed in [52], in which the proposed

algorithm interprets the training data as a group, unlike the original NSA that is an

instance-based algorithm.

In [53] and [54], two novel NSAs with constant detectors were proposed to perform

anomaly detection tasks. These novel versions of NSA are as follows: a Boundary-Fixed
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NSA (FB-NSA) and a Fine Boundary-Fixed NSA (FFB-NSA). In both FB-NSA and

FFB-NSA, a layer of detectors is generated to enclose the self-space.

The work [55, 56] applied the NSA along with the particle swarm optimization

(PSO), called NSA-PSO, to an email detection system, in order to distinguish spam

emails from non-spam ones. In [57], a modified NSA was developed by integrating a

local selection differential evolution (DE) (hence, referred to as NSA-DE ) for detector

generation.

In [58], an intelligent fault diagnosis based on NSA was developed and successfully

applied to fault diagnosis of large machine units in petrochemical industries. The paper

[59] investigated the application of NSA in detecting faults in refrigeration systems.

In [59], a differential encoding mechanism is utilized to reduce the size of the shape

space. In addition, two matching rules, namely r-contiguous bits as well as Euclidean

distance, are compared.

Tao et al. [60] proposed a Novel NSA (NNSA) in which a co-stimulation signal

is required to start the detectors. NNSA utilizes the entropy information to estimate

the detector coverage by evaluating the density of detectors. The paper [61] proposed

a Modified NSA (MNSA) for diagnosis of voltage disturbances in distribution electrical

systems. In [61], the affinity of the detector candidates are evaluated by calculating

the value of population combination (VPC), which is used as a metric to eliminate the

unnecessary detectors in the censoring phase. The work [62] used a popular version
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of the NSA named V-detector for medical diagnosis purposes such as BUPSA Liver

Disorder, Biomedical, and Breast Canver Wisconsin experimental results.

The paper [63] proposed a Bidirectional Inhibition Optimization R-variable NSA

(referred to as BIORV-NSA or BIOR-NSA) to overcome one of the biggest problem

of the original real-valued NSA that is the “black holes” issue, resulting in excessive,

unnecessary detector generation to cover a small portion of the self-space.

A brief description of various NSA versions is available in Table 1.1.

Table 1.1: A summary of various NSA versions

Algorithm name Purpose of Development Experimental Setup

NSA-PSO [55,56]

(PSO: Particle Swarm Optimization)

� Improving the random detector generation using PSO

� Use of the Local Outlier Factor (LOF) as a fitness function
Email spam detection system

DENSA [50]

D istribution Estimation based NSA

Efficient detector generation & more flexible boundary

for self-space by using a Gaussian mixture model
Tested on NSL-KDD dataset

IO-RNSA [51]

Immune-Optimization Real-valued NSA

� Addressing the high time-complexity & redundant detector

coverage by introducing an immune optimization mechanism

Tested on Breast Cancer Wisconsin,

Iris, and Abalone UCI datasets

ENSA [64]

Extension NSA

� Efficient detector generation & better detector coverage

� Improving the algorithm robustness
Tested on Iris dataset

FB-NSA & FFB-NSA [53,54]

(Boundary-F ixed NSA) (F ine Boundary-F ixed NSA)

� Non-random detector generation to reduce the training time

� Generating a layer of detectors around the self-space

� Tested on the Fisher’s Iris Data

� Tested on ball bearing fault data

NSA-DE [57]

(DE: D ifferential Evolution)

� Use of DE for the detector generation phase

� Overcoming the problem of overlapping detectors
Email spam detection system

NNSA (Novel NSA) [60]

� Use of co-stimulation signal for activating the detector

� Use of information entropy for a better detector coverage

� New matching rule function for antigen recognition

� Used for recognition problems

� Tested on Breast Cancer, Iris,

and KDD CUP 99 UCI datasets

MNSA (Modified NSA) [61]

Changes in the censoring/learning process by using the

Value of Population Combination (VPC) to evaluate the

similarity of detector candidates

Diagnosis of voltage disturbances &

high-impedance faults in distribution

electrical systems

BIORV-NSA / BIOR-NSA [63]

(B idirectional Inhibition Optimization

R-V ariable NSA)

� Overcoming the “black hole” issue

� Removing unnecessary detectors
Tested on UCI datasets
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1.4.2.2 Literature Review on Dendritic Cell Algorithm (DCA)

The Dendritic Cell Algorithm (DCA) was first proposed by Greensmith [65] as a part

of the Danger project [66] with the task of applying a paradigm of state-of-the-art

immunology to the computer network intrusion detection problems. The proposed DCA

in [65] (referred to as the standard/classical/original version of DCA) includes many

stochastic elements and has over ten parameters . Consequently, a deterministic version

of the Dendritic Cell Algorithm (referred to as deterministic DCA (dDCA)) was proposed

in [67] with fewer parameters, making it easier to analyze as well as apply.

Although the DCA has been mostly applied to computer security and intrusion

detection problems, however, DCA has been successfully applied to other fields such as

anomaly detection, fault detection, classification problems, pattern recognition, and etc.

Next, few applications of DCA in different fields are provided.

The paper [68] proposed an effective spam filtering model in which the decisions

of Näıve Bayes (NB) and SVM were fused and integrated with the DCA. Then, the

proposed model was tested on two SMS spam datasets and showed promising results.

In [69], the DCA was utilized for malware detection in Android smartphones.

The paper [70] proposed a rotating machinery fault diagnosis scheme based on the

DCA, and also applied the developed methodology experimentally on a “Multi-Fault

diagnosis rotating machinery test bed” showing its effectiveness.

In [71], a novel Fuzzy deterministic DCA (FdDCA) is proposed by combining
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dDCA, K-means clustering, and fuzzy sets; and experimental results based on real-

world datasets showed its applicability. In [72], a fault detection system was proposed

to detect parametric faults in analog circuits using a fuzzy DCA.

The DCA has been also utilized in pattern recognition problems. For instance, the

work [73] developed a plant classification method based on recognition of leaves. In [73],

a wavelet transform was used to generate the texture features (features space) required

by the classifier, in this case the DCA.

A modified DCA (mDCA) was introduced in [74] with the aim of an online error

detection in robotic systems. The proposed mDCA was implemented successfully in

both simulated robotic units as well as on a resource constrained micro-controller. The

paper [75] presented the Diagnostic DCA (D-DCA) to perform online fault diagnosis in

a robotic system, in case of stuck-at-faults conditions. In [76], dDCA was utilized for

multi-path detection in a GPS time-series. The work [76] was implemented successfully

on a static antenna, showing its capability to be used in more complicated GPS mul-

tipath detection problems. The paper [77] employed the DCA as a robot classifier and

successfully implemented the DCA on a real robot.

Due to importance of data preprocessing phase in the DCA, many works were

conducted to investigate the DCA data preprocessing phase that includes feature ex-

traction as well as signal categorization steps. In [78], a statistical method, namely
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principal component analysis (PCA), was utilized to automatically generate new fea-

tures (by performing data dimension reduction) and then feeding them to the DCA.

Chelly and Elouedi [79] have investigated the use of Rough Set Theory (RST) and

fuzzy rough set as a preprocessing step in the DCA, resulting in many versions of the

DCA as follows:

� RST-DCA [80] that is based on the RST,

� RC-DCA [81] that is based on two main concepts of the RST, namely the REDUCT

and the CORE.

� QR-DCA [82] that is based on a framework of the RST, namely the QuickReduct

algorithm.

� FBR-DCA [83] that is based on the fuzzy RST and utilizes the Fuzzy Boundary

Region (FBR) to ensure a better data preprocessing phase.

� FRST-DCA [84] that is also based on the Fuzzy RST.

� RST-MFDCM [85] that is based on a two-level hybrid model, in which the RST

was utilized to perform the data pre-processing, and a Modified Fuzzy Dendritic

Cell Method (MFDCM) (proposed in an earlier work [86]) was utilized to smooth

the crisp separation among the DCs’ context.

� FLA-DCA [87] that is an improved version of the FRST-DCA. Unlike FRST-DCA

that uses fuzzy sets and membership functions, FLA-DCA uses a fuzzy lower

approximation and similarity relations resulting in less calculations compared to
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FRST-DCA.

Recently, researchers are working on FDI of aircraft by using an information

processing algorithm that mimics the way dendritic cells operate in the IS. In their

work [88,89], no DCA-based algorithm (or any of its variants) is utilized. Instead, their

work is based on generation of a self/non-self space (or equivalently, generation of non-self

detectors) that requires a training phase. Therefore, the inputs to their FDI framework

are sets of non-self detectors that are generated through NS mechanism. Their pro-

posed framework would also not benefit from the main aspect of the DCA, that is the

unsupervised learning perspective as well as the need for a training phase.

Table 1.2 lists few other popular variants of the DCA that had been successfully

applied in real-world applications.

Table 1.2: Survey of various DCA versions

Algorithm name Purpose of Development Experimental Setup

dDCA [67]

(deterministic DCA

� Deterministic version of the original DCA

� Fewer algorithm parameters

� Simpler algorithm analysis

Tested on an Intrusion Detection System

dataset, namely the ping scan data

mDCA [74]

(modified DCA)

Online implementation on a resource-constraint

microcontroller
Error detection in robotic systems

D-DCA [75]

(D iagnostic DCA)
Online fault diagnosis

Online fault (stuck-at-fault condition)

diagnosis in a robot

FdDCA [71]

(Fuzzy deterministic DCA)

Smoothen the sharp boundaries between signals

by using fuzzy sets and K-means clustering

Tested on several UCI datasets like

Wisconsin Breast Cancer

Integrating SVM & NB with DCA [90]

(SVM: Support Vector Machine)

(NB: Näıve Bayes)

� Generating input signals for the DCA by using

the SVM and the NB

� Improving the classification performance

Mobile SMS spam datasets
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1.5 Thesis Contributions

� In Chapter 4, multiple NSAs are employed to detect and isolate faults in the

WT system. For the detection task, an NSA that is trained under normal or

healthy operation of the WT is used to detect any abnormality in the system.

For the isolation task, several NSAs are trained within a hierarchical architecture

to isolate various faulty scenarios, including presence of simultaneous faults. A

moving window filter is also utilized to improve the overall performance of the

NSAs and to remove the outliers for enhancing the reliability of the proposed

NSA-based FDI scheme. Moreover, the proposed scheme is compared with another

data-driven methodology, namely the Support Vector Machine (SVM) method

to demonstrate the advantages and capabilities of the proposed NSA approach.

Finally, a nonparametric statistical comparison test is conducted to compare the

proposed NSA scheme with the SVM.

� In Chapter 5, a framework based on the DCA is proposed to detect and isolate

sensor faults in a system. In order to perform the goal of FDI for complex systems,

a bank of DCA filters is applied in a distributed manner. The proposed DCA-

based FDI methodology is then compared with the proposed NSA-based scheme

developed in Chapter 4 in order to demonstrate its effectiveness and advantages.

Like in Chapter 4, a nonparametric statistical comparison test is conducted to

compare both the DCA-based as well as NSA-based FDI schemes.
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1.6 Thesis Layout

The structure of the thesis is as follows:

� Chapter 1 includes the literature review on two main topics. First, recent works

on the fault diagnosis of the wind turbines are introduced in Section 1.4.1. Then,

a literature review on fault diagnosis using Artificial Immune System (AIS) with

the focus on Negative Selection Algorithm (NSA) (Section 1.4.2.1) and Dendritic

Cell Algorithm (DCA) (Section 1.4.2.2) are presented.

� Chapter 2 provides the background information and the detailed model of the

wind turbine that is used in this thesis. The description as well as the model of

common fault scenarios in the WT system are also presented.

� Chapter 3 provides the necessary information about the nature of the AIS and

biological paradigms that can be concluded from vertebrate immune systems. The

main focus would be on background information of the two AIS algorithms con-

sidered in this thesis that are NSA (Section 3.1) and DCA (Section 3.2).

� Chapter 4 introduces the proposed Fault Detection and Isolation methodology by

using the Negative Selection Algorithm. The simulation results of implementing

the proposed FDI methodology on the WT is also presented and compared with

another data-driven technique, namely Support Vector Machine (SVM).
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� Chapter 5 presents the proposed Fault Detection and Isolation methodology by

using the Dendritic Cell Algorithm. The simulation results of implementing the

proposed FDI methodology on the WT is also presented and compared with the

NSA-based methodology proposed in Chapter 4.

� Chapter 6 presents the conclusion as well as some possible extensions for future

work.
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Chapter 2

Overview of Wind Turbine System

In this chapter, a wind model as well as the Wind Turbine (WT) component models,

including mathematical formulation of the WT subsystems, and the complete nonlinear

state-space representation of the WT are presented. The operational regions of the WT

and the corresponding control system strategies are also provided. Finally, a number of

most commonly occurring fault scenarios in the WT system are introduced, and details

corresponding to the considered faults and their models are presented.

2.1 Wind Model

In this section, a wind model including all its components that affect the wind speed is

presented. The wind model is composed of four main parts, namely [13]:

a) the mean wind speed vm.t/,
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b) a stochastic behavior of the wind vs.t/,

c) the wind shear (difference in wind speed by height) effect vws.t/,

d) the tower shadow effect vts.t/.

vw.t/ D vm.t/C vs.t/C vws.t/C vts.t/; (2.1)

where vw.t/ denotes the overall wind speed. The mean wind speed captures the slow

variations of the wind and is obtained by low pass filtering the wind data measurements.

The fast wind speed variations, also known as wind turbulence, determine the stochastic

behavior of the wind. Modeling the dynamical properties of the turbulence can be

obtained based on two types of spectra, namely: von Karman and Kaimal, although

Kaimal’s spectrum has been shown to be a better fit to experimental data [91]. More

detail on the Kaimal model as well as other models describing the stochastic behavior

of the wind is available in [91]. Both wind shear and the tower shadow effects (namely,

vws.t/ and vts.t/, respectively) depend on the angular position of each rotor blade, and

correspondingly, they are different from one blade to another. The equation describing

the overall influence of the wind shear is given by [92]
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(2.2)

where R denotes the radius of the rotor, H denotes the tower height, ˛ denotes the

empirical wind shear component, and �b.t/, b D 1; 2; 3 denotes the angular position of
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each blade (also known as the azimuthal angle) with respect to an arbitrary position,

�r.t/. Correspondingly, one has �1.t/ D �r.t/, �2.t/ D �r.t/ C .2=3/� , and �3.t/ D

�r.t/C .4=3/� .

The total tower shadow effect is modeled according to [92]

vts.t/ D
2m

3r2

3X
bD1

N�b.t/ . .t/C �.t// ; (2.3)

where
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a denotes the radius of the tower, r0 denotes the radius of the blade hub, and k denotes

the distance between the tower midline and the blade. Figure 2.1 illustrates the wind

model parameters used in equation (2.3). The floor function, floor.x/ D bxc, yields the

largest integer less than or equal to x.

Figure 2.2 illustrates the wind speed sequence that is collected from actual mea-

sured wind data. This predefined wind speed sequence is used in the WT benchmark

model [13].
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Figure 2.1: Overview of the wind turbine subsystems (adapted from [93]).

2.2 Wind Turbine Model

In the WT model selected, the turbine has a given power capacity that is equipped with

three-bladed horizontal axis turbine, a full converter coupling and a generator that is

both variable speed and pitch-controlled. An insight to a typical modern high-power

WT showing its main components is illustrated in Figure 2.3.

The WT model consists of three main subsystems, namely: blade and pitch subsys-

tem (combining the aerodynamic and the pitch actuator model), drive-train subsystem,

and the generator and converter subsystem. The interconnections among the wind tur-

bine components and modules are depicted in Figure 2.4. The rotor and generator

variables are designated by the subscripts r and g, respectively.
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Figure 2.2: Illustration of the wind speed, vw.t/, used in the WT benchmark model.

2.2.1 Aerodynamics Model

In this section, the basic mechanism of WT and how the wind energy is converted to

the rotational motion of the WT rotor blades are provided. A significant parameter in

the aerodynamics performance of the WT is the power coefficient, Cp, which is defined

as the ratio between the captured power by the rotor Pr.t/ and the total wind power

Pwind.t/ D
1
2
�Av3

w.t/, where � denotes the air density and A denotes the rotor swept

area. Therefore, the power delivered to the rotor is given by

Pr.t/ D Pwind.t/Cp.�.t/; ˇ.t//: (2.4)

As noted in equation (2.4), Cp is a function of the pitch angle ˇ.t/ and the tip-speed

ratio �.t/. The tip-speed ratio is the ratio between the tip speed of the blade (vtip.t/)
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Figure 2.3: Main Components of a typical modern high-power WT (reprinted from [94]).

and the wind velocity (vw.t/), that is �.t/ D
vtip.t/

vw.t/
D

!r .t/R

vw.t/
, where !r.t/ denotes the

rotor rotational speed and R denotes the rotor radius (length of one blade). Typical

variations of the power coefficient, Cp-coefficient, which is plotted based on the look-up

table available in the WT benchmark model, is illustrated in Figure 2.5. Cp;max denotes

the maximum power coefficient at point .�o; ˇo/. The angle ˇo is usually very small

(ˇ � 0) meaning that the maximum power capture occurs at ˇ D 0. On the other

hand, maximum energy conversion efficiency occurs at �o. Due to this fact, fixed-speed

28



Drive-TrainAerodynamics

Pitch System

Wind model

Generator
and

Converter

vw(t)

βref(t)

τg,ref(t)

Pg(t)

β(t)

τr(t)

ωr(t)

τg(t) ωg(t)

Wind Turbine

BPS

Figure 2.4: Overview of the wind turbine subsystems.

WTs (ˇ D 0) operate with maximum efficiency only at a unique vw [95].

The aerodynamics of the WT is expressed as the torque acting on the rotor blades.

This rotor torque, �r , (also known as the aerodynamic torque) can now be expressed as

follows:

�r.t/ D
Pr.t/

!r.t/
D

1

2!r.t/
�Av3w.t/Cp.�.t/; ˇ.t//: (2.5)

2.2.2 Pitch Actuator System

The WT hydraulic pitch system consists of actuators that adjust the pitch angle, ˇ.t/,

of the rotor blade by rotating it. The pitch actuator dynamics can be modeled as a
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Figure 2.5: Typical variations of the power coefficient, Cp, for a variable-pitch WT. Note that
negative values are set to zero.

second-order system as follows:2
666664

P̌
i.t/

Ř
i.t/

3
777775

D

2
666664

0 1

�!2
n �2�!n

3
777775

2
666664

ˇi.t/

P̌
i.t/

3
777775

C

2
666664

0

!2
n

3
777775

ˇi; ref.t/; (2.6)

where i D 1; 2; 3 corresponds to the i -th blade, � and !n denote the damping ratio and

the natural frequency of the pitch actuator model, and ˇi; ref.t/ denotes the reference

pitch angle that is provided by the WT controller based on the operational region of

the turbine. Figure 2.6 illustrates the pitch actuator model. As can be seen in Figure

2.6, there are constraints on both the pitch slew rate as well as the pitch angle that are
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embedded within the WT benchmark model. However, according to [95], a typical range

for the slew rate is ˙10ı=s, and a typical range of pitch angle is ˇ 2 Œ�2; 30�ı.

∫
∑

∫

2ζωn
∑

ω2
n

ω2
n

βi, ref + β̈i β̇i βi

+

+

−

Slew Rate

Figure 2.6: A schematic of the pitch actuator system for the i -th blade.

The pitch actuator system together with the aerodynamic model make up the

Blade and Pitch System (BPS). Table 2.1 lists the parameters of the pitch actuator

system and the aerodynamic model.

Table 2.1: Parameters of the pitch actuator and aerodynamic model (BPS).

� !n � R

0:6 11:11 rad
s

1:225 kg
m3

57:5m

2.2.3 Drive-Train Model

The Drive-Train (DT) is a mechanical linkage connecting the low-speed shaft (rotor) to

the high-speed shaft (generator). The DT includes a gearbox that transfers the rotor

torque to the generator, and results in an increase of the rotor rotational speed to a
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higher speed that is required by the generator. This process is illustrated in Figure 2.7.

Generator
Side

Rotor
Side

BDT

KDT
τLSS

wind
Jr

Br

θ̇r
τr Ng

τHSS

Jg

θ̇g
Bg

τg

Figure 2.7: A schematic of the WT drive-train.

Applying the Newton’s second law for rotation for both rotor as well as generator

results in the following equations, namely

Jr R�r.t/ D �r.t/ � �LSS.t/ � Br!r.t/; (2.7)

Jg R�g.t/ D �HSS.t/ � �g.t/ � Bg!g.t/; (2.8)

where �r.t/ and �g.t/ denote the rotational angles of the low-speed shaft (LSS) and

high-speed shaft (HSS) respectively, !r.t/ denotes the LSS (rotor) speed (!r.t/ D P�r.t/),

!g.t/ denotes the HSS (generator) speed (!g.t/ D P�g.t/), Jr and Jg denote the moments
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of inertia of the low-speed and high-speed shafts, respectively, Br and Bg denote the

viscous frictions of the low-speed and high-speed shafts, respectively, and �g.t/ denotes

the generator torque (explained in Section 2.2.4). �LSS.t/ and �HSS.t/ denote the torques

acting on the LSS and HSS, which can be obtained as follows

�LSS.t/ D KDT��.t/C BDT
P��.t/; (2.9)

�HSS.t/ D
�DT �LSS.t/

Ng
; (2.10)

where KDT and BDT denote the torsional stiffness and the torsional damping coefficient

of the drive-train, respectively, �DT denotes the efficiency of the drive-train, and ��.t/

denotes the torsional angle of the drive-train (describing the twist of the flexible shaft)

that can be obtained using equation (2.11) as follows

��.t/ D

Z t

0

�
!r.˛/ �

!g.˛/

Ng

�
d˛; (2.11)

Note that the shaft angles �r.t/ and �g.t/ (except for ��.t/) are not of interest in

modeling of the DT dynamics [93].

The differential equations describing the complete dynamics of the drive-train

model can be obtained by differentiating equation (2.11) and also by combining equa-

tions (2.9) and (2.10) into equations (2.7) and (2.8) as follows

Jr P!r.t/ D �r.t/ �KDT ��.t/ � .BDT C Br/ !r.t/C
BDT

Ng
!g.t/; (2.12)
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Jg P!g.t/ D
�DTKDT

Ng
��.t/C

�DTBDT

Ng
!r.t/ �

 
�DTBDT

N 2
g

C Bg

!
!g.t/ � �g.t/; (2.13)

P��.t/ D !r.t/ �
1

Ng
!g.t/: (2.14)

The parameters of the DT model is available in Table 2.2. The differential equations

(2.12) – (2.14) are rewritten in state-space format as follows266666666664

P!r.t/

P!g.t/

P��.t/

377777777775
D ADT

266666666664

!r.t/

!g.t/

��.t/

377777777775
C BDT

2666664
�r.t/

�g.t/

3777775 ; (2.15)

with ADT and BDT are given by

ADT D

266666666664

�
BDTCBr

Jr

BDT

NgJr
�
KDT

Jr

�DTBDT

NgJg
�

�
�DTBDT

N 2gJg
C

Bg
Jg

�
�DTKDT

NgJg

1 �
1
Ng

0

377777777775
; BDT D

266666666664

1
Jr

0

0 1
Jg

0 0

377777777775
:

Table 2.2: Drive-train parameters.

KDT Jr Jg Ng

2:7 � 109 Nm
rad

55 � 106 kg �m2 390 kg �m2 95

BDT Br Bg �DT

775:49 Nm�s
rad

7:11 Nm�s
rad

45:6 Nm�s
rad

0:97
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2.2.4 Generator and Converter Model

The most common generator that is used in the variable-speed WT is the doubly-fed

induction generator [96]. Since the generator torque, �g cannot be changed instanta-

neously, the WT generator and converter dynamics at the system level, can be approx-

imated by a first order dynamics as in [13] and [15], namely

�g.s/

�g; ref.s/
D

1

Tgc s C 1
; (2.16)

where Tgc denotes the time constant of the first order system, and �g; ref denotes the

generator reference torque that is provided by the wind turbine controller according

to the operational region of the WT as described subsequently in Section 2.3. The

time-domain version of equation (2.16) is given as follows:

P�g.t/ D �
1

Tgc
�g.t/C

1

Tgc
�g; ref.t/: (2.17)

Figure 2.8 shows the converter dynamics. Similar to the pitch system, there are

bounds on both the slew rate, P�g , as well as the generator torque, �g that are embedded

in the WT benchmark model.

∫

1
Tgc

∑1
Tgc

τg, ref + τ̇g
Slew Rate

τg

−

Figure 2.8: A schematic of the converter.
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The power that is produced by the generator, Pg , is given by

Pg.t/ D �g !g.t/ �g.t/; (2.18)

where �g denotes the generator efficiency. The parameters of generator and converter

subsystem used in this benchmark model is available in Table 2.3. More details on the

generator and the converter model are available in [97].

Table 2.3: Parameters of the generator and converter subsystem.

Power Capacity �g Tgc

4:8MW 0:98 0:02 s

2.2.5 Combined Model

The complete model of the wind turbine can be obtained by combining the models

developed in Sections 2.2.1 – 2.2.4. Figure 2.9 illustrates the interactions among all WT

subsystems and provides the available sensor measurements in the benchmark model. A

snapshot of the WT Simulink model (see Figure B.1) is included in Appendix B.

The following nonlinear state-space representation of the wind turbine system,

which is affine in the control input, can be obtained by combining the equations (2.5),
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Figure 2.9: Schematic of WT subsystems.

(2.6), (2.15), and (2.17) as follows:

Px.t/ Df .x.t/; vw.t//CGu.t/2666666666666666666666666664
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(2.19)
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where the wind speed, vw.t/, represents the exogenous input, the state vector x.t/ 2 IR10

and the controlled input u.t/ 2 IR4 are given by

x.t/ D Œ!r.t/ !g.t/ ��.t/ �g.t/ ˇ1.t/ P̌
1.t/ ˇ2.t/ P̌

2.t/ ˇ3.t/ P̌
3.t/�

T;

u.t/ D Œ�g; ref.t/ ˇ1; ref.t/ ˇ2; ref.t/ ˇ3; ref.t/�
T:

It should be noted that all three pitch actuators receive the same pitch reference angles in

this benchmark model. The output equation based on the available sensor measurements

(refer to Figure 2.9) is expressed as follows:

ym.t/ D Œ!r;mj .t/ !g;mj .t/ �g;m.t/ Pg;m.t/ ˇi;mj .t/ vw;m.t/�
T
C �.t/;

where i 2 f1; 2; 3g refers to the i -th blade, and j 2 f1; 2g corresponds to the redundant

sensor measurements available for the particular WT parameter. In the WT benchmark

model [13], it is assumed that redundant sensors cannot be faulty simultaneously, al-

lowing the control system to reconfigure itself in case of occurrence of a sensor fault.

The WT sensor measurements are perturbed with an additive noise, �.t/, to repre-

sent and capture the non-ideality of the sensor readings. The added noise signals are

modeled as Gaussian random processes with means and variances (based on practical

experiences [13]) as presented in Table 2.4. It should be noted that the sampling period

selected for discretizing the continuous-time model (2.19) is set to 0.1 seconds.

38



Table 2.4: Measurement noise parameters.

ˇi !r !g Pg �g vw

Mean 0 0 0 0 0 1:5 m
s

Variance 0:2 ı 0:025 rad
s

0:05 rad
s

1 � 103 W 90Nm 0:5 m
s

2.3 Operational Regions of the Wind Turbine

Variable-speed wind turbines have four main operational zones depending on the mean

wind speed. These control zones are depicted in Figure 2.10 and are defined as follows:

� Zone 1: In zone 1, the WT is not operational and is waiting for higher wind

speeds (0 � 3m/s). The WT enters zone 2 when wind speed reaches the cut-in

speed (the minimum speed at which the WT delivers useful power).

� Zone 2: This zone starts once the mean wind speed reaches the cut-in speed.

Zone 2 is referred to as the partial-load region (or the power optimization region).

The wind turbine is operating in zone 2 (3� 12:5m/s) with the goal of optimizing

the generated power by maximizing the wind energy capture. This task can be

achieved at the maximum power coefficient point Cp;max at which ˇ D 0ı (see

Figure 2.5). Consequently, the controller sets ˇi; ref D 0 for an optimal power

capture.

� Zone 3: In zone 3 (12:5 � 25m/s), the WT is operating at its rated speed (the

speed at which the rated power of the WT is produced), and the controller should

maintain the power reference Pref by limiting the captured wind energy so that
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the mechanical load is not exceeded. Pref can be obtained by maintaining the �g;ref

in equation (2.18), so that �g; ref D
Pref

�g!g
. Commonly, a Proportional-Integral (PI)

controller is used to maintain !g.t/ at its nominal value by controlling ˇi; ref. This

zone is referred to as the full-load region.

� Zone 4: In zone 4, the wind turbine is shut down at cut-out speed (the maximum

speed at which the WT is allowed to operate) due to high wind speeds (> 25m/s)

to avoid any damage to the turbine [13].

Zones 1 and 4 are not considered in the benchmark model since the focus is on

WT faults under normal operations, and consequently, only the control modes of zones

2 and 3 are taken into account in this work. The controller outputs under both modes

are the reference pitch angle ˇi; ref and the generator reference torque �g; ref. In the power

optimization region (zone 2), the pitch reference is set to zero for optimal power capture

from the wind. However, in the constant power generation region (zone 3), the controller

outputs are produced in such a manner to maintain the nominal generator speed [13,98].

2.4 Common Faults in the Wind Turbine Systems

In this section, the commonly occurring faults on the WT components and their effects

on the system behavior are presented. The details corresponding to the considered faults
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Figure 2.10: Reference power curve of the WT based on the wind speed.

in this thesis are also provided below.

Table 2.5 provides a list of the most significant faults in the WT (at the system

level), including faults that are considered in the benchmark models [12,13,99].
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Table 2.5: Critical faults that are considered in the WT benchmark model [13,99].

Fault Category Fault Type

Sensor

Faults

Pitch position measurement

Fixed value /

Scaling /

Bias

Rotor speed measurement Fixed value /

ScalingGenerator speed measurement

Generated electrical power Scaling

Tower top accelerometer Offset

Blade root bending moment sensor Scaling

Low speed shaft position encoder (Azimuth angle) Bit error

Actuator

Faults

Pitch actuator

High air content in the oil

Changed dynamics
Hydraulic leakage

Pump wear

Generator torque
Offset /

Changed dynamics

Yaw drive Stuck

System

Faults

Drive-train Wear and tear
Change in the

drive-train damping

Change in the

WT aerodynamics

Accumulation of the debris

on the blade
Scaling
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2.4.1 Selected Fault Scenarios

The details corresponding to the considered faults in this work are also provided below.

First, three specific and commonly occurring faults that are affecting the WT measured

variables are considered as described below.

1. Fault 1 (System Fault): This fault occurs due to accumulation of debris on

the blade (such as dirt, etc.) and results in a change in the aerodynamics of the

WT. Its occurrence directly affects the generated electrical power Pg (by usually

lowering the obtained power). The corresponding fault model is given by

QPg;m.t/ D QPg.t/C�fPg.t/C �Pg.t/; (2.20)

where �fPg.t/ D .ıfPg � 1/
QPg.t/ represents the fault term with its loss of effec-

tiveness represented by ıfPg , where 0 < ıfPg � 1, and �Pg denotes the external

measurement noise. QPg.t/ represents the added effects of DT oscillations to equa-

tion (2.18) as follows:

QPg.t/ D Pg.t/C 
P sin.2��P t /;

where 
P and �P denote the amplitude and the frequency of the oscillation, re-

spectively.

2. Fault 2 (Sensor Fault): Pitch misalignment may occur due to a faulty sensor

that would appear as an incipient fault or due to an incorrect assembly of blades
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during installation of the WT, in which this issue would be existed from the be-

ginning of the WT operation. Here, the former scenario (pitch misalignment due

to a faulty sensor) is considered. This fault may cause extra fatigue loading on

the tower and the blades, resulting in a lower machine life-time [99], [100]. This

additive fault is modeled as

ˇm.t/ D ˇ.t/C�fˇ C �ˇ .t/; (2.21)

where �fˇ represents the fault bias term (�fˇ D 0 in case of no fault), and �ˇ

denotes the external measurement noise.

3. Fault 3 (System Fault): This fault occurs when there is a variation in the

drive-train damping (equation (2.22)). The drive-train oscillations could be due to

wear and tear and give rise to additional fatigue loading on the DT components,

particularly at high wind speeds. This fault model is given by

Q!g;m.t/ D !g.t/

�
1C

sin.2��P t /

!g;max

Œ
! C�
!�

�
C �!g.t/; (2.22)

where �
! D .ıf!g � 1/
! represents the fault term (ıf!g D 1 in case of no

fault), �!g denotes the external measurement noise, !g;max denotes the maximal

generator speed, and 
! denotes the oscillation amplitude coefficient.

Chapter 4 studies the detection and isolation of the above faults, in which an

NSA-based FDI scheme is developed for this purpose.
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2.4.1.1 Sensor Measurement Faults

The two main types of sensor faults considered are either a fixed value or a gain factor

on the measurements and can be due electrical or mechanical faults in the sensors. The

FDI of faults in the pitch angle measurements, �ˇi;m , is very important due to their

use in the internal controller of the pitch system [13].

Rotor and generator speeds are measured using encoders, which can also become

faulty. The encoder may be stuck at a certain value (fixed value fault), and hence will

not be updated. In case of a gain factor fault, the encoder counts more marks on the

rotating part than the actual value [13]. Faulty rotor and generator speed measurements

are denoted by �!r;m and �!g;m , respectively.

The two sensor fault types are modeled as follows:

a. Fixed value fault: Equations (2.23) and (2.24) model the fixed value fault in

both pitch angle as well as in rotational speed sensor measurements, respectively,

ˇi;mj .t/ D ˇi.t/C�ˇi;mj C �ˇ .t/; (2.23)

where ˇi.t/ is given by equation (2.6), and �ˇi;mj represents the fault fixed value

term (�ˇi;mj D 0 in case of no fault), and

!p;mj .t/ D !p.t/C�!p;mj C �!p.t/; (2.24)

where !p.t/ (p D g; r in case of generator and rotor, respectively) is given by

equation (2.15), and �!p;mj represents the fault fixed value term (�!p;mj D 0 in
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case of no fault).

b. Gain factor fault: Equations (2.25) and (2.26) model the gain factor fault in

both pitch angle as well as in rotational speed sensor measurements, respectively,

ˇi;mj .t/ D ˇi.t/C�fˇi;mj .t/C �ˇ .t/; (2.25)

where �fˇi;mj .t/ D .�ˇi;mj � 1/ ˇi.t/ represents the fault term, and �ˇi;mj

denotes the gain factor (�ˇi;mj D 1 in case of no fault), and

!p;mj .t/ D !p.t/C�f!p;mj .t/C �!p.t/; (2.26)

where �f!p;mj .t/ D .�!p;mj � 1/ !p.t/ represents the fault term, and �!p;mj

denotes the gain factor (�!p;mj D 1 in case of no fault).

Chapter 5 studies the detection and isolation of the sensor measurement faults

mentioned above, in which a DCA-based FDI methodology is proposed to perform FDI

of the sensor faults that are included in the WT benchmark model [13].

2.5 Conclusions

In this chapter, the detailed model of the WT subsystems as well as the wind model are

presented. Moreover, the main operational regions of the variable-speed WTs and the

corresponding control strategies are explained. Finally, the commonly occurring faults

in WTs are presented and the considered faults in this work are modeled.
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Chapter 3

Overview of Artificial Immune

System

Inspired by the vertebrate Immune System (IS), the field of Artificial Immune System

(AIS) has emerged as a promising biologically inspired Computational Intelligence (CI)

technique. Important immunological mechanisms that are currently used in the AIS

are immune networks, clonal selection theory, Negative Selection (NS) process, and

the DAnger Theory (DAT) models, particularly the Dendritic Cell Algorithm (DCA).

Immune networks theory is commonly applied in learning and memory, as in the work

of [101]. Clonal selection principle has many applications in search and optimization

problems [102], as well as in other engineering applications like in [103], and the Negative

Selection Algorithm (NSA) as well as the DAT model have gained immense interest
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amongst researchers in anomaly and change detection topics [35].

Both the NSA and DCA were developed based on different complex defense mech-

anisms of the IS in protecting body against any infection. Based on the functionality and

type of defense, the IS can be divided into two types that are: innate immune system

and adaptive immune system. Both innate and adaptive immunity work together to get

rid of the disease-causing agents, known as pathogens, like parasites, viruses, bacteria,

and etc [104].

1) Innate immune system (nonspecific immunity): The innate IS is the first

line of defense against diseases and consists of important immune cells such as DCs,

macrophages, and natural killer cells. The innate IS cells respond to pathogens

in a generic (non-specific) way by performing an inflammatory response once a

Pathogen-Associated Molecular Pattern (PAMP) is recognized. The DCA was

developed based on the way DCs operate in the innate IS.

2) Adaptive immune system (specific immunity): Adaptive IS consists of lym-

phocytes (a type of white blood cell), particularly T-lymphocytes (T-cells) and

B-lymphocytes (B-cells). These cells of the adaptive IS can distinguish different

types of pathogen, and consequently trigger different immune responses against a

specific type of pathogen (and hence, the name specific immunity). An important

attribute of the adaptive immunity is the self/nonself recognition property that

allows the IS to distinguish the self (body’s own cells) from the nonself (foreign
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invaders). Unlike the innate IS’s rapid response (usually in hours), the adaptive IS

has a slower immune response (typically in days), particularly in the first encounter

of a pathogen. However, the adaptive IS also possess immunologic memory, mean-

ing that in case of the second encounter with the same disease-causing agent, a

faster and more effective immune response (referred to as the secondary response)

will be induced [105]. The NSA was developed based on the maturation of T-cells

in the adaptive IS.

3.1 Negative Selection Algorithm (NSA)

The Artificial Immune System (AIS) is an abstract of the complex vertebrate Immune

System (IS), which borrows important mechanisms in the natural IS to computational

systems with the main goal of problem solving. An important element of the IS is the

T-cells (or T-lymphocytes) that play a key role in the IS.

T-cell is a type of white blood cells that performs important immune functions,

such as circulating throughout the body looking for abnormalities. A unique feature

of T-cells is their ability to differentiate between normal and abnormal (infected or

cancerous) cells in the body.

The surface of T-cells is covered by a number of receptors (detector) known as the

T-cell Receptor (TCR) that are generated through a pseudo-random genetic rearrange-

ment process [106]. They have the capability of detecting antigens (foreign proteins).
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Any protein that can be matched with these TCRs is considered as a malicious object.

The T-cells that bind to self-molecules are destroyed, while the ones that do not bind are

permitted to leave the thymus [106]. This censoring process of the T-cells in the thymus

is known as negative selection. This complex mechanism by which the IS differentiates

the body’s own cells (self) from the foreign cells such as viruses and bacteria (non-self)

is known as the Self-Non-Self (SNS) discrimination mechanism.

NSA is inspired by SNS discrimination theory and was first introduced in [35].

The body’s own molecules are considered to be normal or healthy data (self), while

any pathogens such as viruses, fungi, or bacteria are regarded as the faulty data. The

main engineering consideration in the NSAs is to cover as much as the non-self region as

possible with a minimum number of detectors [107]. The basic mechanism of the NSA

can be described as follows [106]:

1. Define the Self set (S) that describes the normal behavior of a system that needs

to be monitored.

2. Generate a set of detectors (denoted by D), each of which fails to match any

element in S .

3. Monitor new observations for any change by matching the detectors in D against

the new observations.

The negative selection algorithm involves two stages that are shown in Figure 3.1.
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Define:
Healthy Samples (set S)

Match?
Eliminate the

candidate detector
Generate a

candidate detector

Add to Detector set (D)

Enough
Coverage/Detector?

End of detector generation
stage (Final set D)

no

yes

yes

no

(a) Detector generation (training) phase.

New sample ob-
servations s(t)

Match any
detector in D?

Healthy
r(t) = 0

Anomaly
r(t) = 1

no

yes

(b) Monitoring phase.

Figure 3.1: The basic NSA methodology and its phases.

First, in the training stage (the first two enumerations), a set of detectors D is

generated in which the candidate detectors are trained to be tolerant to the healthy
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data samples S (Figure 3.1(a)). In most negative selection algorithms, the candidate

detectors are generated randomly and are checked with all the system healthy data in

a point-wise manner so that not to match any normal data at the training phase. In

the detection (monitoring) phase (Figure 3.1(b)), the new data will be checked with the

matured detectors in set D so that any anomaly can be detected [107].

Some of the most important characteristics of NSAs deal with representation

schemes, matching rules, and detector generation/censoring processes. Data could be

binary (or string), real-valued or hybrid representation of both binary and real-valued.

Detectors can be represented by various shapes such as hyper-rectangles [108], hyper-

spheres [107], and hyper-ellipsoid [109], and the most common detector representation

is the hyper-spheres. One reason for the popularity of hyper-spheres is due to their

easier implementation, since they can be represented by a center (a multi-dimensional

point) and a radius. Whereas a hyper-rectangular detector is represented by two multi-

dimensional data points specifying the lower and upper corners of the hyper-rectangle.

It is also difficult to work with hyper-ellipsoidal detectors due to the way they are gen-

erally represented, which is based on the orientation of their semi-axes. Moreover, in

many engineering applications, data samples (self-set) are represented as hyper-spheres,

hence the use of hyper-sphere representation for detectors would be more convenient.

In [110], a framework for generating detectors is presented.

The matching rule defines the affinity measure (distance) on the shape space.
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Various matching rules have been defined according to the data type. Hamming distance

[111], r-contiguous bits [35], and r-chunk matching [112] represent as some of the binary

matching rules that are used with binary data [113]. The most commonly used matching

rule associated with the binary data is the r-contiguous matching [63].

In case of real-valued data, Manhattan distance, infinity norm distance, and most

commonly the Euclidean metric are utilized to represent the data and detectors [107].

The detector generation/elimination procedure represents as another important charac-

teristic of the NSA and can be implemented by using one of the following approaches

[113]:

� Random generation of candidate detectors followed by the censoring mechanism,

� Genetic algorithm,

� Greedy algorithm or other deterministic algorithms.

In this work, due to the real-valued nature of data samples that are collected from

the WT measured variables, and the associated real shape-space, a real-valued NSA is

employed. Data points are represented as hyper-spheres with fixed self-radius (Rself)

that determine their thresholds. However, there is no universal mean to decide on the

particular value of the self-radius, and this is commonly determined empirically [114].

The main objective of the NSAs is to cover the entire non-self region with detectors

that are represented as spheres with either fixed-radius or variable-radius. As an illustra-

tion, and without loss of generality, a 2-dimensional representation of shape space with
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constant-sized (fixed-radius) and variable-sized (variable-radius) detectors are shown in

Figures 3.2(a) and 3.2(b), respectively. It follows readily that variable-sized detectors

have better performance in covering the non-self region, particularly on the boundary

between the self and the non-self regions. By utilizing variable-radius detectors, fewer

detectors are needed to cover the non-self region, in comparison with the fixed-radius

detectors.

(a) Constant-sized detectors. (b) Variable-sized detectors.

Figure 3.2: The main NSA concept having different detector radii (motivated from [107]).

In this thesis, a real-valued NSA known as the V-detector [107, 115] (originally

developed in [116]) is selected and implemented. In this algorithm, the size of the

detectors covering the non-self region is variable (and hence the label variable-detector

or V-detector). The distance measure used is the Euclidean distance and data samples

are considered to be spheres. The objective, as stated above, is to cover as much of
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the non-self region as possible. The flowchart describing the details on the V-detector

algorithm is depicted in Figure 3.3.

In the V-detector algorithm, first a candidate detector x (represented by the pair

.dc; Rd /) centered at point dc with a radius Rd is randomly generated. Then, the

Euclidean distance, �d , between x and every detector .dj ; Rj / in the detector set D is

calculated. If x is detected by another detector in D (�d < Rd ), then the detector x is

eliminated. If not, the Euclidean distance, �s , between x and every sample si in the

self set S is evaluated. It should be noted that all samples have a fix self-radius denoted

by Rself . If �s > Rd C Rself , meaning that there is no interference between the sample

si and the candidate detector x, then x is added to the detector set D. However, if

�s < Rd CRself , meaning that the sample is interfered with x, then the detector radius

Rd is shortened to Rd D �s � Rself . If the shortened detector radius is negative, the

candidate detector x is eliminated and the whole process starts all over again. If not,

the candidate detector x with the shortened radius is added to set D. Next step is to

check whether the number of detectors in D is greater than preset maximum number

of detectors Tmax . If so, the detector set D is finalized. However, if the number of

detectors in D is less than Tmax, then another criteria is checked and that is whether

the minimum coverage is achieved or not. If the minimum coverage of the non-self space

is achieved, then the detector set D is finalized and will be ready for the monitoring

phase. If not, then a new candidate detector is generated and the whole process repeats.
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Define:
Self set (S)

Detector set (D)
j-th detector (dj , Rj)

Self radius Rself

Stopping Criteria:
Minimum coverage

Tmax : Maximum # of detectors

Generate a candidate
Detector x with (dc, Rd)

Calculate Euclidean dis-
tance between x and every

detector (dj, Rj) in D
Γd = ‖dc − dj‖

x is detected by any
detector in D (Γd < Rd)?

Calculate Euclidean
distance between x and

every sample si in S
Γs = ‖dc − si‖

Γs < Rd + RselfRd = Γs − Rself

Rd > 0 Save the candidate x in D

# of detectors < Tmax
minimum
coverage?

Final D

no

no

yes

yes

no

yes

yes

no

no

yes

Figure 3.3: The flowchart of V-detector generation algorithm (the candidate detector x (dc ; Rc)
is centered at dc with the radius Rd ).
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3.2 Dendritic Cell Algorithm (DCA)

For decades, immunologist thought that the IS differentiates between self molecules and

non-self molecules coming from outside of the body. This was based on the idea of SNS

discrimination theory stating that the vertebrate IS has the capability of distinguishing

the body’s own cell (self) from any foreign cells (non-self). Therefore, based on the

SNS models, foreignness of a particular cell is the reason that leads to stimulating the

immune response. However, IS as described by SNS theory offers no explanation for

the phenomena such as transplantation and autoimmunity (immune system response

against its own body cells) [117].

An immunologist Polly Matzinger proposed DAT [117] and offered an alternative

explanation for how immune systems work. Based on the DAT, any damage to the body

triggers the IS by sending danger signals, and in the case of absence of a danger in a

tissue, the innate IS can suppress the immune response [65].

3.2.1 Overview on Dendritic Cell Biology

Dendritic Cells (DCs) are considered as professional phagocytes that play an important

role in the IS. Phagocytes are white blood cells that protect the body by engulfing foreign

particles such as bacteria, dirt, etc, and then digesting them as illustrated in Figure 3.4.

In DAT, the task of DCs is to collect, process, as well as present the antigen

to the T-cells. Figure 3.4 shows the overall process of the maturation of a DC and
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how a pathogen triggers the innate IS. Under healthy conditions, if body cells are no

longer needed, they may commit suicide during a controlled process called apoptosis

or programmed cell death to regulate the growth and development of the cells. Due

to apoptosis, immuno-suppressive molecules (referred to as Safe Signals) are released

indicating that all is normal in the tissue, and consequently promoting immune tolerance

[118]. The phenomenon of apoptosis is shown in the top part of Figure 3.4. In contrast,

when cells are under stress due to an injury or a damage in the tissue, they die during

a process called necrosis, which is usually caused by external factors such as trauma,

infection, etc. If a cell undergoes through necrosis, it will burst and release Danger

Signals [118]. This phenomenon is shown in the bottom part of Figure 3.4.

Figure 3.4: Apoptosis and necrosis and DCs (reprinted from [118]).

Moreover, DCs have the capability to sense the danger signals (released as a result

of necrosis), safe signals (released as a result of apoptosis), and PAMPs are molecules

associated with pathogens such as virus, fungi, bacteria, etc). DCs are also sensitive
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to inflammatory signals originating from the tissues in case of inflammation due to an

infection or tissue injury. However, inflammatory signals only amplify the effects of other

three signals and will not have an effect on DCs behavior if they are used alone. The

four main immunological signals are briefly summarized below [79]:

� PAMP Signal (PS): Released in case of presence of any pathogen (such as

bacteria).

� Danger Signal (DS): Released in case of an unplanned cell death (necrosis).

� Safe Signal (SS): Released in case of a planned cell death (apoptosis).

� Inflammatory Cytokine (Inflammatory Signal)s (ICs): ICs (also called in-

flammatory signals) are released when there is an inflammation in a tissue.

The behavior of DCs and their maturation level depends on the concentration

of the immunological signals mentioned above. DCs always exist in one of the three

maturation states at any given time [104]:

� Immature DC (iDC): iDCs are the initial maturation state of DCs, in which they

collect the transmitted immunological signals, and based on their concentration,

iDCs change their maturation level to either a partially maturated state (and hence

called semi-mature DC) or to a fully maturated state (and hence called mature

DC).

� Semi-mature DC (smDC): iDCs become partially mature (or semi-mature) if

they are exposed to higher amount of SSs than PSs and DSs.
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� Mature DC (mDC): iDCs become mature DCs (mDCs) if they are exposed to

a higher amount of PSs and DSs compared to SSs.

Figure 3.5 illustrates the DC’s mechanism in the IS. The sampled input signal

and antigen are fed into the selected iDC from the DC pool. Interleukin-10 (IL-10) and

interleukin-12 (IL-12) are also referred to as the semi-mature and the mature output

signals, respectively. Upon exposure to high concentrations of the IL-10 and IL-12 , an

iDC matures into the smDC and the mDC, respectively. The other DC output is the

Co-Stimulatory Molecule (CSM), which is responsible for the DC migration when the

DC reaches its migration threshold M. A graphical illustration of the signal processing

within a DC is shown in Figure 3.6, in which the DC outputs are updated based on the

concentration of the input signals. It should be noted that each DC in the DC pool has

an assigned lifespan L, such that when the L D 0, the DC will be reset and joins the DC

pool. If the amount of the IL-12 (the mature output signal) is greater than the amount

that IL-10 is produced (so that IL-12 � IL-10), then the migrated DC (referred to as

the stimulatory DC) provides the reactive Cytokines by stimulating the killer T-cells

(Cytotoxic T-cells) in the adaptive IS. Otherwise, the migrated DC will regulate the

T-cells (referred to as the suppressor/regulatory T-cells) in adaptive IS by suppressing

the T-killer cell. If at the end, there are killer T-cells, an immune response would be

initiated, otherwise, an immune tolerance will be invoked.
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Figure 3.5: Flowchart of how a DC works in the immune system.
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Figure 3.6: The signal processing of a DC model (adapted from [65]). The IC signal is not
shown in the model.

3.2.2 The Dendritic Cell Algorithm (DCA)

The Dendritic Cell Algorithm (DCA) is developed based on an abstract model of the DC

biology (explained in Section 3.2.1). The DCA is first introduced by Greensmith [65] as

part of the Danger Project [66] with the goal of applying a paradigm of state-of-the-art

immunology to the problem of the computer network Intrusion Detection System (IDS).

The DCA is based on a pool of DCs, making it a population-based algorithm with

each artificial cell acting as an agent within the system (unlike most negative selection-

based algorithms that are instance-based). In [119], a frequency analysis of a single DC

was performed in order to analyze the flow of information through the DCA. According

to [119], a single DC can be modeled as a low-pass filter.
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The most important step of any DCA version is the choice of the input signals to

the algorithm. The DCA usually does not require any training phase. Hence, if expert

knowledge is not available or the selection of input signals for the DCA is not trivial,

feature extraction or statistical inference methodologies can be utilized to obtain the

most suitable features for DCA input signals.

There are two types of DCA input data: signals and antigens. Signals (explained

in Section 3.2.1) are vectors of real-valued numbers indicating the status of the observed

system. There are three time-varying signals, namely PS, DS, and SS, in addition to

the IC signal. The semantic of these biologically inspired signals is as follows:

� PAMP Signal (PS): A signal that indicates the occurrence of an abnormal

behavior. An increase in PS is linked to a high confidence of abnormality.

� Danger Signal (DS): A signal that increases in case of an anomalous situation

with a less confidence level of abnormality as compared to the PS.

� Safe Signal (SS): A signal that indicates a normal behavior, and its value in-

creases in conjunction with the predictable normal behavior of the system.

� Inflammatory Signal (IC): A signal that amplifies the effects of other immuno-

logical signals and has no effect if it is used in isolation.

More details on the background of different signals are explained in Section 3.2.1.

Another type of input data is antigen without which the DCA will not be able

to function. Antigens are categorical values corresponding to entities of a monitored
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system that need to be classified [120].

Each DC within the DC pool has a limited lifespan (related to CSM value) upon

its creation. Following that, the DC migrates to a processing center known as the lymph

node, where the DC presents the antigens coupled with the output signals that has

already been collected during its lifespan [65]. Based on the context of the signals, the

DC differentiates into either: smDC which suppresses the immune response, or mDC

that stimulates the immune response.

The signal processing in each DC is expressed as follows

DCoutj D
1C IC

2
�

2X
iD0

.WijSi/; j D 0; 1; 2 (3.1)

where

� Wij denotes the signal weights connecting the i th input to the j th output,

� i is the input signal category (PS when i D 0, DS when i D 1, and SS when i D 2)

� j is the output signal value where

– j D 0 is a Co-Stimulatory Molecule (CSM),

– j D 1 is a smDC output signal,

– j D 2 is a mDC output signal.

In most DCA versions, the effects of the IC signal are ignored (i.e., IC D 1).

The overall procedure of the DCA is given in the Pseudocode 1. First, a signal

database is created through fusing the input signals with antigens, and this task is
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achieved through the functions get antigen(), store antigen(), and get signal(). Then,

the function calculate output signals() evaluates the output signals for each DC using the

input signals (PS, DS, and SS) and a set of pre-defined weights based on equation (3.1).

The objective is to classify the antigens based on output of a population of DCs. As a

given DC receives more input signals, its level of co-stimulatory signal (known as Co-

Stimulatory Molecule (CSM) that is related to the DC’s lifespan) is increased. Once the

CSM reaches the Migration Threshold, the DC stops collecting (sampling) input signals

as well as antigens, and migrates to the lymph nodes where the collected antigens are

presented. Based on the antigens presentations, each DC forms a cell context that is later

used to calculate the anomaly metric for each antigen type (or equivalently, to classify

the antigens). After presenting the antigen, the DC is removed from the population and

is replaced by a new cell. More detail on the mechanism of the DCA is available in [79].

The original DCA that was introduced in [65] has many parameters and stochastic

elements that made it difficult to be implemented. The same authors proposed a deter-

ministic version of the DCA known as deterministic DCA (dDCA) in [67] and tested the

algorithm to validate its performance. In [74], a modified DCA (mDCA) was introduced

with the aim of an online error detection in robotic systems. The proposed DCA-based

framework is based on modifications of and extensions to the mDCA.
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Pseudocode 1: DCA algorithm [121].

Input: Antigen and Signals

Output: Anomaly Metric

Initialization

while CSM < Migration Threshold do

get antigen();

store antigen();

get signal();

calculate output signals();

update CSM();

end

if smDC > mDC then

cell context = 0 ;

else

cell context = 1 ;

end

kill the cell;

replace the cell in the population;

for each Antigen type do
Calculate the anomaly metric

end
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3.3 Conclusions

In this chapter, an overview on the way human Immune System (IS) operates and its dif-

ferent defense techniques are provided. In addition, two important mechanisms inspired

from the Artificial Immune System (AIS), namely the Negative Selection Algorithm

(NSA) and Dendritic Cell Algorithm (DCA) are presented, and the background as well

as the mechanism of both algorithms are explained in details.
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Chapter 4

NSA-based FDI Scheme

In this chapter, an FDI methodology based on the Negative Selection Algorithm (NSA)

is proposed. The proposed methodology is then applied to the wind turbine benchmark

model in order to illustrate the capabilities of the proposed scheme. A comparison

between the NSA-based FDI scheme and a well-known data-driven technique, namely

the Support Vector Machine (SVM) is made. Moreover, a non-parametric statistical

comparison test is conducted to compare the performance of the developed NSA-based

FDI methodology with the SVM.

4.1 Proposed NSA-based FDI Scheme

The block diagram depicting the main steps of the proposed NSA-based FDI scheme is

shown in Figure 4.1. The aim of the Preprocessing Data block is to process the input
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data through feature selection, sampling, and normalization to be used for the NSAs.

Important features of the system should be carefully chosen to ensure crucial system

characteristics are observed, so that when a fault occurs in the system, the selected

features do capture the system abnormal behavior from which the FDI task can be

accomplished. All the candidate detectors (that are spheres in this chapter) should be

checked with every data sample in the self set S to ensure that the candidate detector

does not cover any data sample. Therefore, data sampling is implemented to obtain

a subset of the original data for reducing the runtime complexity of the NSA training

stage. Data normalization is a crucial step in data preprocessing for implementation of

real-valued NSAs. The data is generally normalized within the range of Œ0; 1� or Œ�1; 1�.

In this work, the WT measurement outputs are normalized within the range of Œ�1; 1�

before feeding them to the NSAs.

Preprocessing
Data

Bank of
NSAs

Moving
Window
Filter

Decision
WT outputs Fault #

Figure 4.1: The main steps for implementation of the proposed NSA-based FDI scheme.

A summary of the most commonly developed fault diagnosis techniques in the

literature versus the proposed NSA-based FDI scheme is given in Table 4.1.
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Table 4.1: A comparison of the proposed NSA-based FDI methodology against other FDI
techniques that are applied to the benchmark WT model [13].

Methodology

Detection

&

Isolation

Linear /

nonlinear

Approach

Simultaneous

faults

Isolation of system faults

(due to drive-train vibrations)

Estimation-based approach ([16,19,34]) X Linear � � (except [34])

Set-Membership method ([20,21]) X Nonlinear X � (except [20])

Robust FDI filter [122] X Linear � �

Support Vector Machine ([28,30]) X Nonlinear � �

Fuzzy method ([25,27]) X Nonlinear � X

Proposed NSA-based FDI method X Nonlinear X X

In the proposed FDI scheme, a number of NSAs are configured in multiple layers

to implement the FDI tasks as shown in Figure 4.2.

NSA2

(Fault Isolation 2)

NSA1

(Fault Isolation 1)

NSA3

(Fault Isolation 3)

NSA2,3

(Fault Isolation 2 & 3)

NSA1,2

(Fault Isolation 1 & 2)

NSA1,3

(Fault Isolation 1 & 3)

NSA0

(Fault Detection)

Wind
Turbine

r0

r1

r2

r3

r1,2

r2,3

r1,3

β, ωg, P

r1, r2

r2, r3

r1, r3

Figure 4.2: The bank of NSAs for the proposed NSA-based FDI scheme.
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Each NSA consists of center and radius of the spheres (detectors) that cover the

non-self region of the shape space. For example, NSA0 contains details on all detectors

(the radius and center of all the spheres) covering the shape space of the non-self region

associated with the healthy condition. Each NSA is generated and trained based on the

flowchart that is shown in Figure 3.3. For each data sample s.t/, the residual signal r.t/

that is generated by an NSA is given by

�j .t/ D


s.t/ � dj

 ; (4.1a)

r.t/ D f .s.t// D

†
1 9 dj 2 D s.t. �j .t/ �Rj < Rself ;

0 otherwise,

(4.1b)

where dj denotes the j -th detector in the detector set D, Rj denotes the radius of the

j -th detector, and �j .t/ denotes the Euclidean distance between the j -th detector and

the data sample s.t/. Figure 4.3 depicts the Euclidean distance between the detector and

the sample under both healthy as well as faulty scenarios. For simplicity, and without

loss of generality, the Euclidean norm is illustrated in the two-dimensional space.

For performing the fault detection task, the first NSA, namely the NSA0 is trained

to detect any abnormality in the WT system and to remain insensitive to only normal

and healthy samples that are generated by the WT model. However, given that the

other goal is to isolate a fault, therefore for performing this task a parallel bank of

NSAs is constructed where each NSA is trained to be insensitive to a specific and a
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Γj

Rj
Rself

(a) Healthy condition (r.t/ D 0).

dj s

Γj

Rj
Rself

(b) Faulty condition (r.t/ D 1).

Figure 4.3: The sample-detector distance (monitoring phase).

particular fault only. The first layer in the bank of NSAs (namely, NSA1, NSA2, and

NSA3) isolates the faults that do not occur simultaneously. This layer is activated only

when a given fault is detected by NSA0. Given this scenario, the fault residual in this

case is denoted by r0.t/ D 1. The second layer of NSAs (namely, NSA1;2, NSA2;3, and

NSA1;3) is responsible for isolating concurrent faults, and is trained to be insensitive to

multiple faults. For example, NSA1;2 is trained to isolate the simultaneous occurrence

of Faults 1 and 2. It should be noted that for training the bank of NSAs, various fault

severities are considered in generating the detector set for each NSA.

For eliminating outliers as well as for improving the performance of the binary

residuals that are generated by the NSAs, a moving window filter is applied to the fault

residual signals. This filter will move and slide (with a particular given window size)

over the fault residuals that are generated by the NSAs. Depending on the number of

faulty samples within each window, a decision is rendered to as if all samples in the
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window should be categorized as faulty or not. Depending on the type of fault, different

window filter parameters will be utilized. For the Faults 1 and 2, a moving window with

a length of 0.2 seconds is used, and if more than 75% of samples in the window are at

the high state (that is, when r1.t/ D 1 or r2.t/ D 1), the entire window will be set to 1.

However, for the Fault 3, the same window length is chosen but with a lower threshold.

If at least 50% of the residuals in the window is faulty, the entire window will be set

to 1. The reason for this change has to do with the nature of the fault type, which is

shown as a change in the amplitude oscillation of !g . The parameters of the window

filter (namely, the window length and the threshold) are tuned empirically according to

the fault detection and false alarms performance results.

Depending on the characteristics of the residuals generated by NSAs, a decision is

made as to whether a fault has occurred or not; and in case of a fault declaration, its

type is also determined. The fault detection and isolation logic can therefore be stated

as follows.

Fault Detection and Isolation Logic

Assuming that a fault is detected by NSA0 (that is, r0.t/ D 1), the decision for isolating

the faults based on the first layer of NSAs is made as follows: If the i -th residual signal

is zero, i.e., ri.t/ D 0, while the other residuals are active, that is rj .t/ D 1, j ¤ i , it is

then concluded that the fault i has occurred. The same logic and reasoning can also be
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extended for isolation of simultaneous faults by utilizing the second layer of NSAs. In

this case if rj .t/ D 1 and rk.t/ D 1, and only rj;k.t/ D 0, then the faults j and k are

simultaneously detected and isolated.

4.2 Simulation Results

In this section, the results for implementing the proposed NSA-based FDI scheme corre-

sponding to both non-simultaneous and simultaneous fault scenarios are presented. The

results are then compared with another data-driven approach known as the SVM [123].

Moreover, a non-parametric statistical test, known as the sign test, is implemented in a

pairwise manner (pairwise comparison) for comparing the performance of the proposed

NSA-based methodology with the SVM under various fault cases that range from low

fault severities to high fault severities. 25 Monte Carlo simulation runs are conducted

for each fault scenario corresponding to randomly selected fault severities. However, for

illustration purposes, only results for certain fault severities are provided for each fault

scenario.

Before demonstrating the capabilities of the proposed NSA-based methodology, it

is necessary to provide details on the properties of the NSAs that are used in the FDIs

scheme. The features specifying the shape space are chosen to be outputs of the WT sys-

tem (namely, !g , ˇ, and Pg). This represents a 3-dimensional space. Correspondingly,
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the data points are represented as spheres with self-radius (threshold) of 0.1 that is se-

lected experimentally. Detectors are also chosen to be sphere shaped and are generated

via the V-detector algorithm in which the candidate detector centers are generated ran-

domly. The data samples from the outputs of the WT system along with the generated

detectors in the shape space are shown in Figure 4.4, where the red spheres represent

the normal WT system data that construct the self region and the blue spheres are the

NSA detectors covering whatever is outside the self region (that is the non-self region).

Before implementing the real-valued NSA, as stated earlier it is necessary to nor-

malize the data. For generating the detectors for each NSA, 80% of the data set (the

WT outputs) is used for training and the other 20% is allocated to the testing phase.

In this work, the maximum number of detectors chosen is set sufficiently large to not

terminate the detector generation process too early. Also the termination condition pro-

vided in Figure 3.1(a) is set to 99% coverage of the non-self space for the maximum of

10000 detectors. Therefore, the training phase is completed only when the desired cov-

erage of the non-self region is attained. The justification behind selecting the particular

coverage percentage above is that choosing a higher coverage results in a much higher

processing time as well as a dramatic increase in the number of the detectors that have

to be utilized albeit for a marginally and not too significant higher coverage yield.
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Figure 4.4: The WT outputs and the detectors in the shape space (NSA0). Red spheres: WT
healthy data and blue spheres: detectors generated to cover the non-self region.

4.2.1 Fault Scenario 1: Non-Simultaneous Faults

For illustrating and evaluating the performance of the fault detection scheme (NSA0) as

well as the fault isolation of non-simultaneous faults (through the use of NSA1, NSA2,

and NSA3), three scenarios are considered as described below.

The faults are injected at different time instances as follows:
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� Fault 1 has a loss of effectiveness factor of ıfPg D 0:85 (refer to equation (2.20))

during the time interval 2200s to 2300s.

� Fault 2 has an offset of �fˇ D 1:0ı (refer to equation (2.21)) during the time

interval 1200s to 1300s.

� Fault 3 has a damping factor of �
! D 15 (refer to equation 2.22)) during the

time interval 3000s to 3100s.

The measured WT outputs corresponding to the healthy situation as well as when the

WT is subjected to presence of all faults (non-simultaneous) are shown in Figure 4.5.

The objective of the first layer of NSAs, as shown in Figure 4.2, is to isolate non-

simultaneous faults and this task is clearly accomplished as shown in Figure 4.6. For

example, the NSA1 considers Fault 1 to be its normal data since NSA1 is trained to be

insensitive to this particular fault while sensitive to all the other faults. By comparing

the fault signatures that are corresponding to NSA0 and NSA1 in Figure 4.6(a), it follows

that Fault 1 is isolated since NSA1 is exposed to faulty samples during the period 2200s-

2300s as healthy, while the NSA0 has already reported that the WT is faulty. Figure

4.6(a) also shows that the NSA3 did not detect any faulty samples (missed detections)

during the period 2255s-2260s. A similar conclusion can be drawn for the isolation of

Fault 2 and Fault 3 based on the results that are shown in Figures 4.6(b) and 4.6(c),

respectively. By comparing the fault residuals corresponding to NSA0 and NSA2 in

Figure 4.6(b), it follows that the Fault 2 is isolated. In case of isolating the Fault 3
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Figure 4.5: The WT measured variables under the healthy and faulty scenarios.

(Figure 4.6(c)), NSA0, NSA1, and NSA2 have missed to detect few faulty data samples,

and NSA3 has few false alarms.

4.2.1.1 Comparison with the Support Vector Machine (SVM)

The proposed NSA-based scheme is now compared with another data-driven method,

namely the Support Vector Machine (SVM) [123], that is based on structural risk mini-

mization, and hence has improved generalization properties. More detail is available in
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Figure 4.6: The FDI results for non-simultaneous faults by using the NSA.
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Appendix A. SVMs are widely used in classification problems, however it has also been

applied to FDI of wind turbines in [28] and [30], producing good results.

In order to compare the performance of the proposed NSA-based FDI scheme with

the SVM, first the FDI problem is reformulated as a classification problem [124]. For

performing the FDI task, three SVMs are utilized where they are binary coded. Since

all WT measurements are used in developing the bank of NSAs, the same measurements

(!g , ˇ, and Pg) are also utilized in developing the SVM models. A polynomial kernel

function (4.2) is used in these models. Specifically, the kernel function is defined as

Kd .u; v/ D .r C au
Tv/d ; a > 0; r > 0 (4.2)

where d denotes the degree and .a; r/ are the parameters of the polynomial kernel

function.

The denoted SVM1, SVM2, and SVM3 are trained to detect the Faults 1, 2, and

3, respectively. A polynomial kernel function of degree 3 is utilized to build the SVM1

and SVM2 models, whereas a polynomial function of degree 5 is used for training the

SVM3. The reason for choosing a higher degree polynomial kernel for SVM3 is due to

the more difficult task of performing the FDI of the Fault 3 when compared with Faults

1 and 2. Consequently, a higher degree polynomial kernel is utilized in order to have a

more flexible decision boundary, and hence, a better FDI of the Fault 3.

For each SVM, 80% of the data set is allocated for training (out of which 20% is

dedicated for cross-validation) and the other 20% is allocated for the testing sets. In

80



case of presence of a fault, the SVM produces an output of +1, whereas if the WT

operates normally (that is, healthy), the SVM produces an output of -1. The SVM

outputs corresponding to the three fault cases, indicating the actual WT state as being

either healthy (-1) or faulty (1) are shown in Figure 4.7.

Comparative results between the NSA and SVM methodologies in terms of the

classification accuracy is evaluated under various fault severities where the mean results

are provided in Table 4.3. Specifically, 25 randomly selected fault cases ranging from

low fault severity to high fault severity are considered and tested. In case of Fault 1,

the fault severity ıfPg is randomly varied within 0:25 � ıfPg � 0:95. In case of Fault

2, the fault bias term �fˇ is randomly varied within 0:5ı � �fˇ � 10
ı, and in case of

Fault 3, �
! is randomly varied within 2 � �
! � 25.

4.2.1.2 Performance Measure

In order to evaluate the performance of the developed FDI scheme, a confusion matrix

(also known as the binary contingency table) approach is used as illustrated in Table 4.2.

Given a classifier and a data instance, there are four possible outcomes that are [125]:

i) a True Positive (TP) if the instance has been correctly identified,

ii) a True Negative (TN) if the instance has been correctly rejected,

iii) a False Positive (FP) if the instance has been incorrectly identified,
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Figure 4.7: The FDI results for non-simultaneous faults by using the SVM (dotted line: the
output of the SVM, red line: the nominal fault vector).
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Table 4.2: Confusion matrix. (Color coding: Green indicates correct counts, whereas red
indicates incorrect counts.)

Predicted

Faulty Healthy

Actual
Faulty TP FN

Healthy FP TN

iv) a False Negative (FN) if the instance has been incorrectly rejected.

In this thesis, three performance measures based on above possible outcomes are

used and they are the Detection Rate (DR), the False Alarm rate (FA), and the F -score

(F). These metrics are formally defined as follows:

Detection Rate (DR) D
TP

TPC FN
(4.3a)

False Alarm Rate (FA) D
FP

TNC FP
(4.3b)

F -score .F/ D 2TP

2TPC FNC FP
(4.3c)

Table 4.3: Average performance measures for the FDI of the non-simultaneous fault scenarios.

Faults Methodology DR% FA% F -score .F/

Fault 1
SVM1 93.05% 0.398% 0.8846

NSA0 & NSA1 95.69% 0.624% 0.8595

Fault 2
SVM2 97.07% 0.383% 0.9081

NSA0 & NSA2 99.06% 0.396% 0.9162

Fault 3
SVM3 90.46% 0.514% 0.8495

NSA0 & NSA3 88.96% 0.713% 0.8078
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4.2.2 Fault Scenario 2: Simultaneous Faults

In this scenario, simultaneous faults (also known as concurrent faults) are considered

and injected into the WT in order to evaluate the performance of the second layer of

the NSAs. The following three simultaneous fault scenarios are considered:

4.2.2.1 Case 1: Simultaneous Faults 1 and 2

� Fault 1 having a loss of effectiveness of ıfPg D 0:80 during the time interval 1200s

to 1300s.

� Fault 2 having an offset of �fˇ D 1:0 degree during the time interval 1250s to

1350s.

The corresponding WT output measured variables are now plotted in Figure 4.8. The

fault detection objective is achieved by utilizing the NSA0, where the corresponding

fault residual r0.t/ is shown in Figure 4.9(a). It follows that the anomaly is detected

during the time period of 1200s – 1350s. By comparing the NSA0 with the NSA1, it

can be concluded that during the time period 1200s – 1250s, only Fault 1 has occurred.

Since the NSA1 is sensitive to all faults, but Fault 1, it considers Fault 2 that starts at

1250s as making the WT faulty.

Similar reasoning can be made for Fault 2 by comparing the NSA0 and NSA2

(as shown in Figure 4.9(a)). The fault residual r1;2.t/ corresponding to the NSA1;2 is

shown in the bottom graph of Figure 4.9(a). The NSA1;2 filter is activated only when
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Figure 4.8: The WT measured variables under the healthy and simultaneous Faults 1 and 2
cases.

r0.t/ D 1, that is between 1200s – 1350s. Since the NSA1;2 is trained to be insensitive

to simultaneous Faults 1 and 2, it will recognize this faulty scenario as healthy during

the time period 1250s – 1300s. Note that the faulty samples during the time periods

1200s – 1250s and 1300s – 1350s in NSA1;2 correspond to any fault scenario rather than

the presence of concurrent Faults 1 and 2.
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Figure 4.10(a) depicts the FDI results for simultaneous Faults 1 and 2 by using

both the SVM1 and SVM2. The time duration when the output of both SVMs predict

the faulty samples corresponds to the case when both Faults 1 and 2 occur simultane-

ously. As shown in Figure 4.10(a), the SVM1 and SVM2 both produce an output of +1

(implying a faulty sample) during 1250s - 1300s. Consequently, one can conclude that

the concurrent Faults 1 and 2 have occurred during that time period.

4.2.2.2 Case 2: Simultaneous Faults 1 and 3

� Fault 1 having a loss of effectiveness of ıfPg D 0:85 during the time interval 3200s

to 3300s.

� Fault 3 having a damping factor of �
! D 15 during the time interval 3250s to

3350s.

A similar conclusion for the FDI as in Case 1 can be drawn for simultaneous isolation

of Faults 1 and 3. The corresponding FDI results for the NSA and SVM schemes are

shown in Figures 4.9(b) and 4.10(b), respectively. The NSA1;3 which is responsible for

isolating the concurrent Faults 1 and 3, is activated only when r0.t/ D 1. Therefore,

during 3200s – 3350s by comparing the NSA1;3 with NSA0, it can be concluded that

during the time period 3250s – 3000s, Faults 1 and 3 have occurred simultaneously. It

should be noted that there are few missed detections for NSA0, NSA1, NSA3 as well as

few false alarms for the NSA1;3.
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4.2.2.3 Case 3: Simultaneous Faults 2 and 3

� Fault 2 having an offset of �fˇ D 1:0 degree during the time interval 1200s to

1300s.

� Fault 3 having a damping factor of �
! D 15 during the time interval 1250s to

1350s.

A similar conclusion for the FDI as in Case 1 can be drawn for the simultaneous isolation

of Faults 2 and 3. The corresponding FDI results for the NSA and SVM schemes are

shown in Figures 4.9(c) and 4.10(c), respectively. In this fault scenario, NSA2;3 (which is

responsible for isolating the concurrent Faults 2 and 3) is activated only when r0.t/ D 1.

Therefore, during 1200s – 1350s by comparing the NSA2;3 with NSA0, it follows that

simultaneous Faults 2 and 3 have occurred during the time period 1250s – 1300s. Note

that in this case there are also few missed detections for NSA0, NSA2, NSA3 as well as

few false alarms for the NSA2;3.

Table 4.4: Average performance measures for the FDI of the simultaneous faults.

Faults Methodology DR% FA% F -score .F/

Faults 1 & 2
SVM1 & SVM2 93.24% 0.382% 0.8883

NSA0 & NSA12 93.70% 0.512% 0.8677

Faults 1 & 3
SVM1 & SVM3 92.61% 0.737% 0.8255

NSA0 & NSA13 89.73% 1.022% 0.7657

Faults 2 & 3
SVM2 & SVM3 94.41% 0.664% 0.8460

NSA0 & NSA23 90.98% 0.830% 0.8011
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(b) The FDI results for simultaneous Faults 1
and 3 by using the NSA.
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and 3 by using the NSA.

Figure 4.9: The FDI results for simultaneous faults by using the NSA.
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and 3 by using the SVM.

Figure 4.10: The FDI results for simultaneous faults by using the SVM (red line: nominal
fault vector, dotted line: the output of the SVM).
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4.2.3 Non-Parametric Statistical Comparison

In order to compare the NSA-based methodology with the SVM, a non-parametric sta-

tistical comparison test is implemented. Non-parametric tests can be implemented for

two types of analysis, namely: pairwise comparisons and multiple comparisons [126]. A

hypothesis testing is employed to draw inferences on the comparison results between the

proposed NSA-based methodology and the SVM. In this chapter, the null hypothesis

(H0) is the statement that there is no difference between the proposed methodology

and the SVM, whereas the alternative hypothesis (H1) shows that there is a significant

difference between the proposed methodology and the SVM. In order to reject a hypoth-

esis, a significance level ˛ is introduced that is the probability below which H0 may be

rejected [126].

In this thesis, a pairwise statistical procedure is chosen due to its feature of per-

forming an individual comparison between two algorithms. The number of times that

an algorithm wins or loses are counted based on the F -score .F/. F -score is used as

a single performance metric to determine which algorithm outperforms (the NSA-based

methodology or the SVM). The reason for choosing the F is due to the fact that in ad-

dition to considering truly identified samples (TP), it also takes both the falsely rejected

(FN) as well as the falsely identified (FP) samples into account.

The number of wins or losses are compared based on the sign test (a form of a two-

tailed binomial test) [126]. Therefore, in the sign test, the number of wins is distributed
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according to a binomial distribution. The metrics Wins(+) and Loses(-) can be formally

defined as follows:

Wins(+) D

NumSimX
kD1

U .NSAF.k/ � SVMF.k// ; (4.4)

Loses(-) D NumSim �Wins(+) ; (4.5)

where NumSim denotes the total number of simulation runs, NSAF and SVMF denote

the F -scores of the proposed NSA-based FDI scheme and the SVM, respectively. U./

represents the step function that is defined as follows:

U.x/ D

†
1 x > 0;

0 otherwise:

Since, the proposed NSA-based methodology is tested for 25 different fault sever-

ities for each fault scenario (i.e., NumSim D 25), the critical number of wins that is

needed to achieve the significance levels of ˛ D 0:05 or ˛ D 0:1 are 18 and 17 wins

out of 25, respectively (refer to Table B.1 in Appendix B). More details on the sign

test and other non-parametric statistical procedures in both pairwise as well as multiple

comparisons are available in [126]. The metrics Wins(+) and Loses(-) are evaluated

for each fault scenario considered in Sections 4.2.1 and 4.2.2 and the corresponding

non-parametric test results are listed in Table 4.5.
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Table 4.5: Sign test for comparing the performance of NSA against SVM (only the number of
wins/loses of NSA is indicated).

Wins (C) Loses (�) Difference

Non–

Simultaneous

Faults

Fault 1 14 11 –

Fault 2 20 5 ˛ D 0:05

Fault 3 6 19 –

Simultaneous

Faults

Faults 1&2 12 13 –

Faults 1&3 6 19 –

Faults 2&3 8 17 –

4.3 Discussion

As mentioned earlier, for comparing the performance of the proposed NSA scheme with

that of the SVM, three quantitative metrics or measures are used, namely: the Detection

Rate, DR%, False Alarm rate, FA%, and the F -score. The average performance results

for both non-simultaneous and simultaneous fault scenarios are shown in Tables 4.3 and

4.4, respectively. The non-parametric statistical comparison results based on the sign

test are provided in Table 4.5.

In case of the SVM scheme, it follows that the false alarm rates are lower than

that of the proposed NSA scheme. This is due to the better generalization performance

(error rates on the test data set) of the SVM. As far as the F -score, the SVM algorithm

shows better performance in all cases except in case of Fault 2. This is due to the fact

that the SVM has lower false alarm rates as compared to the NSA. For example, in case

of Fault 1, the average detection rate of NSA is higher and even it outperforms the SVM
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(14 wins against 11 wins for the SVM). However, the mean F -score is in favor of the

SVM due to the higher false alarm rates of the NSA. Simulation results corresponding

to the proposed NSA-based methodology and the SVM show similar results based on

the pairwise comparison test (Table 4.5). In some cases, the NSA outperforms the SVM.

For instance, in case of Fault 2, the NSA shows a significantly better performance as

compared to the SVM with a level of significance ˛ D 0:05. However, in case of non-

simultaneous Fault 3, the SVM has a better performance as compared to the NSA in

isolating the Fault 3.

The most significant limitation of the SVM is in the choice of a proper kernel

function. This issue has also been raised in previous works such as [127]. For the SVM

scheme, the input data is transformed into a higher dimensional space where they can

be separated linearly. The kernel function has a significant role in this mapping process

and the selection of the best choice for a given problem is still an open area of research.

In this work, a polynomial kernel function is used (equation (4.2)). The use of the

polynomial kernel requires tuning several parameters simultaneously. The problem of

fine tuning the kernel parameters exists in other kernel functions such as the Gaussian

Radial Basis Function (RBF). On the other hand, the main parameter in implementing

the V-detector that needs to be tuned is the threshold of data instances (the self-radius of

the spheres), which is not a challenging task. Note that the two parameters, namely the

maximum number of detectors and the coverage of non-self region are often initialized
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at the start of the process and do not require to be fine tuned thereafter. In this work,

polynomial kernels of degrees 3 and 5 are used for developing the SVM models, whereas

all the NSAs have the same properties as mentioned in Section 4.2.

Another advantage of the V-detector is its less computational complexity during

the training phase as compared with the SVM. The complexity of the V-detector algo-

rithm is O.mjStr j/, where m denotes the preset number of detectors and jStr j denotes

the size of the training set [116]. On the other hand, the computational complexity

for solving the nonlinear SVM regardless of the particular solver algorithm lies between

O.jStr j
2/ and O.jStr j

3/ [128], [129]. In this work, the preset number of detectors was

chosen to be 10000 (hence, m D 10000), and the size of the training set, jStr j, is selected

as 35,200 samples.

4.4 Conclusions

In this chapter, an FDI scheme based on the NSA is developed. The proposed NSA-

based FDI scheme is applied to the WT benchmark in order to detect and isolate certain

fault scenarios (both simultaneous as well as non-simultaneous faults). The proposed

scheme includes a bank of NSAs that are configured into a hierarchical structure for

the fault isolation task. Moreover, a moving window filter is utilized to improve the

FDI performance. Finally, a non-parametric statistical comparison test is implemented
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to compare the performance of the proposed NSA-based FDI methodology with a well-

known data-driven technique, namely the Support Vector Machine (SVM).
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Chapter 5

DCA-based FDI Scheme

In this chapter, a sensor FDI framework is developed based on Dendritic Cell Algorithm

(DCA) to detect and isolate sensor faults within a system. The proposed DCA-based

FDI scheme is then compared with the previously developed NSA-based FDI scheme,

and a non-parametric statistical comparison test is conducted.

5.1 Proposed DCA-based FDI Scheme

In the proposed DCA-based FDI methodology, it is assumed that sensors are physically

redundant in order to be able to detect and isolate the corresponding sensor faults. The

justification behind this assumption is that modern industrial WTs employ conservative

hardware redundant FDI and health monitoring systems [33,130,131]. For instance, the

work [132] developed an observer-based fuzzy FTC method for the FTC of Wind Energy

96



Conversion Systems (WECSs), in which a multi-sensor scheme using hardware redundant

sensors is employed. Likewise, the work [133] exploits the physically redundant sensor

measurements to generate the necessary fault residuals for the fault detection of the WT

benchmark model.

The main steps for implementation of the proposed DCA-based FDI scheme is

shown in Figure 5.1.

Signal
Categorization DCA filter

Noise
Filter

Noise
Filter

Sensor 1

Sensor 2

Sm1(t)

Sm2(t)

Ŝm1(t)

Ŝm2(t)

PSSm1,2

DSSm1,2

SSSm1,2

rSDCA,m1

rSDCA,m2

Figure 5.1: The proposed DCA-based sensor FDI scheme.

5.1.1 Noise Filter Design

A design of the noise filter is recommended in order to remove measurement noise. A

noise filter processes highly noisy data providing a more suitable data for FDI purposes.

A first-order low-pass filter is employed for this purpose. The transfer function of the

filter is given as follows:

OSmj .s/

Smj .s/
D

1

T s C 1
(5.1)
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where OSmj .s/ D LfOsmj .t/g and Smj .s/ D Lfsmj .t/g denote the Laplace transforms of the

filtered and the raw data, respectively, and T denotes the time constant of the transfer

function. A discrete-time realization of equation (5.1) by using backward Euler method

is provided below

Osmj Œk� D ˛ smj Œk�C .1 � ˛/ Osmj Œk � 1�; (5.2)

where Osmj Œk� and smj Œk� denote the filtered and the raw data at time k, respectively,

and ˛ 2 .0; 1� denotes the filter smoothing factor that can be calculated as follows:

˛ D
�t

T C�t

where �t denotes the time step.

The time constant of the filter, T , is chosen such that the following condition,

namely the Nyquist criterion, is met [134].

B <
fs

2
; (5.3)

where fs D 1=�t denotes the sampling frequency and B D 1=.2�T / denotes the band-

width of the filter (in Hz).

5.1.2 Signal Categorization

The objective of the Signal Categorization block is to prepare the input signals for each

sensor (PS, DS, SS) that are applied to the DCA as follows:
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� PAMP Signal (PS): PS signal is chosen to be the difference between two sensor

readings that measure the same output as shown below. The reason behind this

selection is due to the big difference between the two sensor readings that measure

the same quantity indicates a strong possibility of an abnormality in the system.

The PS signal can be expressed as:

PSSmj .t/ D .�1/
jC1

�
OSm1.t/ �

OSm2.t/
�
;

� Danger Signal (DS): DS signal is chosen to be the difference between two con-

secutive time samples of a measurement. The DS signal can be expressed as:

DSSmj .t/ D
OSmj .t/ �

OSmj .t � 1/:

� Safe Signal (SS): Similar to the DS, the SS signal is chosen to be the difference

between the current time and the previous time samples, namely

SSSmj .t/ D
OSmj .t/ �

OSmj .t � 1/:

In addition to above three input signals, a non-time varying signal (IC) is used to amplify

the effects of the other three signals. Moreover, in this work a binary variable DC is

defined for each sensor, which is either 1 or 0 depending on the concentration of above

three signals.
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5.1.3 DCA Filter

For each sensor, a DCA filter is assigned that generates a binary residual vectors (fault

indicator) showing the behavior of the corresponding sensor. If the j -th sensor is faulty

at time t , then rSDCA;mj
.t/ D 1. Similarly, rSDCA;mj

.t/ D 0 corresponds to a normal

behavior of the sensor at time t . For instance, in case of the sensor ˇi;mj , the fault

residual is as follows:

r
ˇi
DCA;mj

.t/ D

†
1 the j -th sensor measuring ˇi is faulty at time t

0 the j -th sensor measuring ˇi is healthy at time t

(5.4)

In order to generate the DCA residual signals (rSDCA;mj
), the output of each DC, which

determines the maturity level of the DC, is evaluated based on the concentration of the

input signals (PS, DS, and SS) as follows:

DCSout;mj
.t/ D

WPS PSSmj .t/CWDS DSSmj .t/CWSS SSSmj .t/

WPS CWDS CWSS

�
1C IC

2
(5.5)

where WPS, WDS, and WSS denote the signal weights that are predefined by users and can

be either positive or negative, depending on the values of PS, DS, and SS in the immune

system. In the original DCA developed by Greensmith [65], the signal weights are chosen

based on empirical biological data. If DCSout;mj
.t/ is less than the Migration Threshold

(DCSout;mj
.t/ < Migration Threshold ), the corresponding DC matures to a smDC (refer

to Section 3.2.1), and hence DC = 0. However, if DCSout;mj
.t/ > Migration Threshold ,

then the DC matures to a mDC and consequently DC = 1. A new variable DCstore
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is defined that stocks previous status of DC for the last TimeWindow time samples.

The variable TimeWindow is crucial for constructing an online FDI decision criterion

or logic. The procedure of temporarily storing the status of DC is known as the Time-

Based Segmentation (TBS), in which a fixed segment size (TimeWindow) is adapted

within the DCA filter as suggested in [120]. Then, if the number of mDC ( Num mDC )

is greater than a given Threshold, all content of that TimeWindow will be set to 1.

Pseudocode 2 illustrates the step by step implementation of the proposed DCA filter.

In order to have a fault indicating signal for a sensor at each time sample t , the variable

rSDCA;mj
.t/, which is a global count, is introduced that returns a binary value at time t .

5.2 Simulation Results

In this section, the sensor faults considered in the WT benchmark model [13] are pre-

sented and the corresponding details are provided. Then, the simulation results of the

proposed DCA-based FDI scheme and comparison with the proposed NSA-based FDI

scheme in Chapter 4 are provided.

5.2.1 Fault Scenarios

Overall, there are five sensor faults that are considered in the WT benchmark model [13]

as modeled and described in Section 2.4.1.1. Table 5.1 lists all injected fault scenarios
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Pseudocode 2: Pseudocode of the proposed DCA filter.

Input: Antigen D Œ OSm1.t/; OSm2.t/� // Filtered Sensor Measurements

Output: rSDCA;mj
.t/ .j 2 f1; 2g/ // Residual Signals

Initialization

Number of Antigen = Number of Sensors;

Migration Threshold ; // DC lifespan

IC; // inflammatory signal

T imeW indow;

T hreshold ; // Fault threshold

foreach DC do

Calculate PSSmj .t/, DSSmj .t/, SSSmj .t/ ;

Calculate DC Sout;mj
from equation (5.5);

if DC Sout;mj < Migration Threshold then

DC D 0; // iDC ! smDC

else

DC D 1; // iDC ! mDC

end

DCstore.t � T imeW indow/ D DC ;

Num mDC D 0; // # of mDC in DCstore

for all members of DCstore do

if DCstore DD 1 then

Num mDC++;

end

end

if Num mDC > Threshold then Set all members

DCstore D 1;

end

for each Antigen type do

rSDCA;mj
.t/ D DCstore.t/;

end

end
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Table 5.1: All sensor faults considered in the benchmark model [13].

Fault # Faulty Sensor Fault Type Fault Severity Injected Time

S1 Blade 1 pitch position (ˇ1;m1) Fixed value �ˇ1;m1 D 5
ı 2000s to 2100s

S2 Blade 2 pitch position (ˇ2;m2) Gain factor �ˇ2;m2 D 1:2 3200s to 3300s

S3 Blade 3 pitch position (ˇ3;m1) Fixed value �ˇ3;m1 D 10
ı 2600s to 2700s

S4 Rotor speed sensor (!r;m1) Fixed value �!r;m1 D 1:4 rad/s 1500s to 1600s

S5
Generator and rotor speed

Gain factor
�!r;m2 D 1:1 1000s to 1100s

sensors (!r;m2 & !g;m2) �!g;m2 D 0:9

that are considered in the WT model. More detail about each fault type is available in

Subsection 2.4.1.1.

5.2.2 Simulation Results of Proposed DCA-based FDI

A distributed version of the proposed DCA-based FDI scheme for sensor faults (Figure

5.1) is applied to the WT system and is illustrated in Figure 5.2, where the sensor FDI of

each WT subsystem is performed apart from the other subsystems. The corresponding

DCA fault residuals for each sensor are shown in Figures 5.4 – 5.9.

5.2.2.1 Noise Filter Parameters

A low-pass filter is employed to reduce the noisy pitch position as well as the rotational

speed measurements (refer to Section 5.1.1 for the design procedure). The time con-

stants of the filters (T in equation (5.1)) are selected as follows: Tˇ D 0:06s for the noise

filter designed for the pitch position sensor measurement, T!r D 0:75s and T!g D 0:02s
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Figure 5.2: The proposed DCA-based sensor FDI scheme for the benchmark WT model.

for the rotor and generator speed measurements. It should be noted that the time con-

stants meet the Nyquist criterion (equation (5.3)). However, they are tuned empirically

based on the filtering performance. Figure 5.3 illustrates the raw and the filtered sen-

sor measurements using the above selected time constants. Note that the gain factor

fault in rotor speed measurements, !r;mj , cannot be observed if the noise filter is not

implemented.

5.2.2.2 DCA Filter Parameters

The parameters of the DCA filter are user-specified and are selected based on empirical

results obtained from implementations. Given the dual sensor redundancy, the number of
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(a) Low-pass filter applied to the ˇm.t/ with
Tˇ D 0:06s.

(b) Low-pass filter applied to the !g.t/ with
T!g

D 0:02s.

(c) Low-pass filter applied to the !r .t/ with
T!r

D 0:75s.

Figure 5.3: Raw and filtered sensor measurements for ˇi; mj
.t/, !g.t/, and !r.t/.

Antigens is chosen to be two. The constant signal IC in equation (5.5) that amplifies the

other input signals is trivial in most cases (i.e., IC D 1) except in case of the FDI of !r; mj

sensor that is selected as IC D 27. The reason behind this selection is due to the difficulty

in FDI of the gain factor fault in rotor speed measurements, !r; mj
, and the need for

amplification of the other input signals .PS!r

mj
; DS!r

mj
; and SS!r

mj
/. The signals weights

in equation (5.5) are chosen based on the number of sensors (in our case two sensors
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for each subsystem) as follows: WPS D �2, WDS D 2, and WSS D �2. Moreover, the

other DCA filter parameters are empirically chosen as follows: Migration Threshold D

1 ; T imeW indow D 10 ; and T hreshold D 8.

The DCA filters are capable of detecting and isolating all the injected sensor faults

with few false alarms. Figures 5.4 – 5.9 show the residuals generated by implementing the

DCA-based FDI scheme (Figure 5.2). As can be seen in Figure 5.4(a), the residual signal

r
ˇ1
DCA;m1

D 1 during 2000 – 2100s meaning that the blade 1 pitch position sensor ˇ1;m1

is faulty during that time period. Similarly, faults in sensors !r;m1 (1500 – 1600s) and

!g;m2 (1000 - 1100s) are detected and isolated since the residual signals r!rDCA;m2
D 1 and

r
!g
DCA;m2

D 1 in Figures 5.7(a) and 5.9(b), respectively. There are few false alarms in case

of sensors ˇ2;m1 and ˇ3;m2 in which DCAˇ2 and DCAˇ3 incorrectly output rˇ2DCA;m1
D 1

and rˇ3DCA;m2
D 1 as indicated in Figures 5.5(a) and 5.6(b), respectively. In case of Fault

S2 in the sensor ˇ2;m2 that is of the type gain factor (refer to Table 5.1), not all the

samples during 3200 - 3300s are considered to be faulty as illustrated in Figure 5.5(b).

This is due to the fact that whenever the pitch position is at zero angle (ˇ2;m2 D 0ı),

the faulty sensor shows �ˇ2;m2 D 1:2 � 0ı D 0ı, and hence no fault can be detected.

Similarly, in case of Fault S5 in the sensor !r;m2 , the DCA!r
m2

has missed detecting and

isolating few faulty samples during 1000 - 1100s as shown in Figure 5.8(b).
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(a) r
ˇ1

DCA;m1
residual signal. (b) r

ˇ1

DCA;m2
residual signal.

Figure 5.4: The residual signal due to the Fault S1. The DCAˇ1 residual signals for the pitch
sensors of the blade 1.

(a) r
ˇ2

DCA;m1
residual signal. (b) r

ˇ2

DCA;m2
residual signal.

Figure 5.5: The residual signal due to the Fault S2. The DCAˇ2 residual signals for the pitch
sensors of the blade 2.
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(a) r
ˇ3

DCA;m1
residual signal. (b) r

ˇ3

DCA;m2
residual signal.

Figure 5.6: The residual signal due to the Fault S3. The DCAˇ3 residual signals for the pitch
sensors of the blade 3.

(a) r
!r

DCA;m1
residual signal. (b) r

!r

DCA;m2
residual signal.

Figure 5.7: The residual signal due to the Faults S4. The DCA!r residual signals for the rotor
speed sensors.
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(a) r
!r

DCA;m1
residual signal. (b) r

!r

DCA;m2
residual signal.

Figure 5.8: The residual signal due to the Faults S5. The DCA!r residual signals for the rotor
speed sensors.

(a) r
!g

DCA;m1
residual signal. (b) r

!g

DCA;m2
residual signal.

Figure 5.9: The residual signal due to the Fault S5. The DCA!g residual signals for the
generator speed sensors.
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5.2.3 Comparison with the Proposed NSA-based FDI

In this section, simulation results from previous section are compared with the proposed

NSA-based methodology developed in Chapter 4.

Figure 5.10 shows the bank of NSAs used that is used for the task of FDI. As noted

in Figure 5.10, the features determining the shape space are chosen to be the filtered

sensor measurements of each subsystem, as in Figure 5.2. By choosing similar inputs to

the proposed DCA-based methodology, a fair comparison can be made in evaluating the

performance of each framework.
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Figure 5.10: The NSA-based sensor FDI scheme for the benchmark WT model.

A similar procedure explained in Chapter 4 is applied here to perform the sensor
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FDI in the WT system. For performing the fault detection task, the first NSA, namely

NSAˇi is trained to detect any change in the behavior of the pitch actuator i and to

remain insensitive to only the healthy data samples generated by the pitch actuator

system. The residual signal generated by NSAˇi is designated by rˇiNSA. However, for

isolating the fault, two NSAs are constructed where each NSA is trained to be insensitive

to a particular actuator. For instance, NSAˇi
mj

is trained to be insensitive to the blade i

pitch sensor j . A similar fault detection as well as fault isolation procedure are applied

to the rotational speed sensors. It should be noted that 80% of the data is allocated for

the training stage while the remaining 20% is allocated for the test stage.

In order to compare DCA and NSA frameworks (Figures 5.2 and 5.10, respectively),

25 Monte Carlo simulation runs are conducted for each fault type corresponding to

randomly selected fault severities. Table 5.2 lists the average performance for the FDI

of the sensor faults. Moreover, a nonparametric statistical comparison test is conducted

based on the results of the Monte Carlo simulation runs, in which the null hypothesis

(H0) is the statement that there is no difference between the DCA-based FDI scheme

and the NSA-based FDI scheme, whereas the alternative hypothesis (H1) shows that

there is a significant difference between both schemes.

The result of the nonparametric statistical test is listed in Table 5.3, in which the

number of wins refer to the number of simulation cases (out of 25) that the DCA-based

FDI scheme outperforms the NSA-based FDI one. Similar to equation (4.4), the metric
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Wins(+) can be formally defined as follows:

Wins(+) D

NumSimX
kD1

U
�
DCAS

F.k/ � NSAS
F.k/

�
; (5.6)

where DCAS
F and NSAS

F denote the F -scores of the DCA-based and the NSA-based

FDI schemes for the sensor S.t/, respectively. Like in previous chapter, NumSim D 25

and Loses(-) can be evaluated according to equation (4.5).

Table 5.2: Average performance measures for the FDI of the sensor faults.

Faults Methodology DR% FA% F -score .F/

Fault S1
DCAˇ1 98.06% 0.061% 0.9769

NSAˇ1 & NSAˇ1
m1

97.49% 0.220% 0.9417

Fault S2
DCAˇ2 � � �

NSAˇ2 & NSAˇ2
m2

� � �

Fault S3
DCAˇ3 97.42% 0.139% 0.9575

NSAˇ3 & NSAˇ3
m1

97.96% 0.157% 0.9565

Fault S4
DCA!r 97.88% 0.135% 0.9607

NSA!r & NSA!r
m1

98.15% 0.204% 0.9481

Fault S5

DCA!g 98.57% 0.073% 0.9771

NSA!g & NSA!g
m2

98.42% 0.119% 0.9705

DCA!r 79.19% 0.355% 0.8115

NSA!r & NSA!r
m2

� � �
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(a) NSA residual signals generated for the pitch
sensors of balde 1.

(b) NSA residual signals generated for the pitch
sensors of balde 2.

(c) NSA residual signals generated for the pitch
sensors of balde 3.

Figure 5.11: The NSA residual signals for the WT pitch sensors.
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(a) NSA residual signals generated for the rotor
speed sensors.

(b) NSA residual signals generated for the genera-
tor speed sensors.

Figure 5.12: The NSA residual signals for rotor and generator speed sensors.

5.3 Discussion

As shown in Table 5.2, the DCA has a higher F -score in all cases. This is due to

the higher false alarm rates of the NSA-based FDI scheme as compared to the DCA-

based FDI scheme. Even in the case that NSA-based FDI scheme has shown to have,

on average, better detection rates (namely in Faults S3 and S4), the DCA-based FDI

scheme has a higher F -score.

In case of Fault S2, the performance cannot be fairly measured due to the fact

that the pitch position can be at zero angle, ˇi.t/ D 0, (see Section 2.3), and hence

�fˇi; mj
D 0 no matter what the value of �ˇi; mj

is (refer to equation (2.25)). In case

of Fault S5 that affects both the rotor as well as generator speed sensors simultaneously,
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NSA-based FDI scheme could not detect and isolate the sensor fault in !r;m2 during

1000s � 1100s.

Table 5.3 illustrates results of the nonparametric comparison analysis between

the DCA-based and NSA-based FDI schemes. The number of Wins(+) and Loses(-)

of the DCA-based FDI scheme is considered here (refer to equations (5.6) and (4.5),

respectively). As can be seen, the DCA-based FDI scheme outperforms the NSA-based

FDI scheme with the significance level of ˛ D 0:1 in FDI of all sensor faults except Fault

S3. The main reason for better results in case of the DCA-based FDI scheme is due to

high false alarm rates of the NSA. The issue of high false alarm has also been raised in

Chapter 4. Since no performance measure is obtained in case of Fault S2, hence the sign

test cannot be conducted for this fault.

Table 5.3: Sign test for comparing the performance of DCA against NSA (only the number of
wins/loses of DCA is indicated).

Wins (C) Loses (�) Difference

Fault S1 22 3 ˛ D 0:1

Fault S2 � � �

Fault S3 10 15 �

Fault S4 19 6 ˛ D 0:1

Fault S5
20 5 ˛ D 0:1

25 0 ˛ D 0:1

According to [120], the runtime complexity of the standard DCA is bounded by

O.n2/, where n denotes the data size, and the runtime complexity of the DCA with
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segmentation is bounded by O.max.nN; nz//, where N denotes the DC population size,

and z denotes the segment size (T imeW indow). On the other hand, the complexity

of V-detector is O.mn/ (Section 4.3), where m denotes the preset number of detectors.

Hence, both the V-detector as well as the DCA version (integrated with Time-Based

Segmentation (TBS)) used in this thesis have linear runtime complexities. However,

DCA is slightly faster than V-detector and that is due to the fact that in this work, the

DC population size is N D 2 and the segment size z D 10, whereas the preset number

of detectors in the V-detector algorithm is chosen to be 1000, and hence m D 1000.

Moreover, the developed DCA-based FDI scheme does not require a training phase while

the NSA-based FDI scheme requires a detector generation (training) phase.

A common FDI approach in the literature in case of dual sensor redundancy is to

first detect the fault by a direct comparison of the dual sensors, and then to perform the

isolation task using one of analytical redundancy approaches. However, the proposed

DCA-based FDI scheme performs both fault detection as well as fault isolation tasks,

simultaneously.

5.4 Conclusions

In this chapter, an FDI scheme based on the DCA is developed. The proposed DCA-

based FDI scheme is applied to the WT benchmark in order to detect and isolate all

sensor faults considered in the benchmark model. A time-segmentation is integrated
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within the DCA filter in order to perform the FDI task in an online manner and also to

reduce the runtime complexity. Finally, a non-parametric statistical comparison test is

implemented to compare the performance of the proposed DCA-based FDI scheme with

the previously developed NSA-based FDI scheme in Chapter 4.
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Chapter 6

Conclusions and Future Work

In this thesis, the problem of Fault Detection and Isolation (FDI) of the wind turbine

system is addressed by using two different immune inspired algorithm, namely the Neg-

ative Selection Algorithm (NSA) and the Dendritic Cell Algorithm (DCA).

First, a bank of NSAs is proposed and implemented for detecting and isolating

faults in the WT. The fault detection objective is achieved by training an NSA with

only normal or healthy data. However, both healthy and faulty data are used for ac-

complishing the fault isolation task and various NSAs are configured into a hierarchical

structure that are trained to isolate different fault scenarios, including concurrent fault

cases. To improve the FDI performance, as well as to remove the outliers, a mov-

ing window NSAs is applied to the residual signals that are generated by the NSAs.

Multiple fault scenarios are presented to highlight the performance capabilities of the
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proposed FDI scheme. The results are also compared with the Support Vector Machine

(SVM) scheme, where the detection and isolation performance versus the computational

complexity and simplicity in training are all taken into account and evaluated. A non-

parametric statistical comparison test is also implemented to compare the proposed

NSA-based FDI methodology with the SVM corresponding to various fault severities.

The SVM and NSA simulation results show a similar performance, and under certain

fault scenarios, the NSA outperforms the SVM.

The second scheme that is developed in this thesis is an DCA-based online sensor

FDI methodology. The time segmentation (time window) is integrated within the DCA

filters to develop an online FDI methodology as well as to reduce the runtime complex-

ity. The main utility and advantage of the proposed DCA-based methodology is that no

training data is needed, which is an important feature of DCA. The proposed framework

is tested on the WT benchmark model in which the proposed scheme is successful in

detecting and isolating all sensor fault scenarios that are introduced in the benchmark.

Moreover, the proposed DCA-based FDI methodology is compared with the NSA-based

FDI scheme. Monte Carlo simulation runs as well as non-parametric statistical compar-

ison test are conducted to illustrate the effectiveness and capabilities of the DCA-based

proposed scheme.

The NSAs as well as DCA, and in general immune system inspired schemes are

still a young research field. More studies should be conducted to further develop these
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techniques in the field of FDI of complex industrial systems.

6.1 Future Work

Some suggestions for future work on both NSA and the DCA are provided below:

6.1.1 Future Work on the NSA

� Optimizing the detector generation mechanism of the NSA with the objective of

covering as much of the non-self space as possible with a minimum number of

detectors (and hence reducing detectors’ overlap).

� Investigating the issue of high false alarm rates (due to the high False Positive

(FP)) of the NSA, and consequently improving its performance.

� Conducting studies on the relationship between data instances, and consequently

developing a population-based version of the NSA (rather than an instance-based

algorithm).

� Conducting more research on the use of new metrics and distances to be used in

the detector generation as well as the monitoring phase of the NSA algorithm,

especially in the case of high-dimensional data.

� Addressing the issue of the input scaling as a necessary preprocessing step of the

NSA, particularly in case of real-valued NSA.
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� Conducting studies on the use of different detector shapes (in addition to the

hypersphere) in case of real-valued NSA, or even to use various detector shapes.

� Integrating an online learning mechanism in to the NSA for updating detectors in

the detector set.

� Automatic tuning of NSA parameters such as the self-radius of data instances in

case of real-valued NSA.

6.1.2 Future Work on the DCA

� Automating the data pre-processing phase and exploring the use of feature selec-

tion techniques to choose suitable input signals for the DCA.

� Developing a framework for the FDI of actuator faults as well as system faults in

theWT benchmark model. A pre-processing mechanism to choose input signals of

the DCA may be necessary for this task.

� Developing a systematic way of choosing weights for signal transformation with

the goal of maximizing the detection accuracy.

� Integrating a dynamic segmentation into the DCA.

� Automatic tuning of DCA parameter, particularly in case of the original DCA that

includes many stochastic parameters.
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Appendix A

Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a relatively new supervised learning technique

that is based on statistical learning theory that is introduced in 90’s [123]. The SVMs are

applied in classification and regression areas and have been widely used in data mining

applications.

In the SVM, the basic idea is to map the data from the input space into a higher

dimensional feature space, and then find an optimal hyperplane that maximizes the

margin between the classes. SVMs are an example of two-class linear classifier, and the

goal is to find a hyperplane that divides the two classes with the largest margin (Figure

A.1). The decision function of the classifier is given by

fw;b D sgnŒwTxC b� (A.1)
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Figure A.1: Maximum margin hyperplane (reprinted from [135]).

In a training set where the data is linearly separable, and a hard margin (no

slack allowed) is used, the support vectors are the points which lie along the supporting

hyperplanes (the hyperplanes parallel to the dividing hyperplane at the edges of the

margin). All of the support vectors lie exactly on the margin. Regardless of the number

of dimensions or size of data set, the number of support vectors could be as little as 2.

In general, the the classification problem would be to find a hyperplane in a high
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dimensional feature space Z, which divides the training instances (in the feature space)

in a way that all the points within the same category on the same side of the hyperplane

(Figure A.2). In this case, a map z D ˆ.x/ is constructed from the input space IRn

to a higher dimensional space Z and find the optimal hyperplane in Z such that the

separation margin between positive and negative instances is maximized. As a result,

the decision function of the classifier would be as follows

fw;b D sgnŒwTzC b�; (A.2)

Figure A.2: Mapping data into higher dimensions (Image by MIT OpenCourseWare).
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A.1 Formulation of SVMs

Given a training set of instance-label pairs .xi ; yi/, i D 1; : : : ; N where xi 2 IRn (n is

the dimension of the input space), and y 2 f�1; 1gN , the SVM require the solution of

the following optimization problem [136]:

min
1

2
wTwC C

NX
iD1

�i

subject to yi.w
Tˆ.xi/C b/ � 1 � �i ; i D 1; :::; N

�i � 0; i D 1; : : : ; N

(A.3)

where C > 0 is a regularization parameter for the trade-off between model complexity

and training error, and the slack variable �i measures the difference between wTz C b

and yi . Due to the presence of the slack variable �i , the above formulation is referred to

as soft margin SVM.

Using the method of Lagrange multipliers for nonlinear constrained optimizations,

we define the Lagrangian L as the objective function plus a linear combination of the

constraints:

L D
1

2
wTwC C

NX
iD1

�i C

NX
iD1

˛i.1 � �i � yi.w
Tˆ.xi/C b// �

NX
iD1

�i�i (A.4)
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The Lagrangian dual problem for support vector learning is then given by

max �
1

2

NX
iD1

NX
jD1

yiyj .ˆ.xi/
Tˆ.xj //˛i˛j C

NX
iD1

˛i

subject to

NX
iD1

˛iyi D 0

0 � ˛i � c; i D 1; : : : ; N:

(A.5)

The dual formulation of the SVM optimization problem depends on the data only

through dot products. The dot product can therefore be replaced with a nonlinear kernel

function, thereby performing large-margin separation in the feature space of the kernel.

In other words, the kernel trick simplifies the quadratic optimizations used in support

vector machines by replacing a dot product of feature vectors in the feature space with

a kernel evaluation over the input space.

By introducing a kernel function K.x; y/ satisfying K.xi ; xj / D ˆ.xi/
Tˆ.xj /, the

dual problem (A.5) becomes

min
1

2

NX
iD1

NX
jD1

aiajK.xi ; xj / �

NX
iD1

aiyi

subject to

NX
iD1

ai D 0

� c1i � ai � c
2
i ; i D 1; : : : ; N

(A.6)

where ai D ˛iyi ; c
1
i D �c.sgn.1 � yi// ; c

2
i D c.sgn.1C yi//.

Note that the decision function given in (A.2) can be replaced by the following
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function

f .x/ D sgn

"
NX
iD1

ai �K.xi ; x/C b

#
: (A.7)

Some of popular kernels are given below

� Polynomial kernel K.x; y/ D .xTyC 1/p,

� Gaussian kernel K.x; y/ D e�
kx�yk2

2�2 ,

� Multilayer Perceptron kernel K.x; y/ D tanh.x � yC �/.

Consider a training set of pairs .xi ; yi/; i D 1; :::; l where xi 2 IRn and the class

labels yi 2 f�1; 1g
l . The SVM requires the solution to the following quadratic program-

ming optimization problem [123]:

min
w;b;�

1

2
wTwC C

lX
iD1

�i

subject to yi.w
T�.xi/C b/ � 1 � �i ;

�i � 0:

(A.8)

where � is the function that maps the training vectors xi into a higher dimensional space.

The regularization parameter C > 0 is a penalty factor applied to the error term. The

direct solution to the optimization problem (A.8) is challenging due to the number of

variables that are involved and the evaluation of the mapping function �.x/. Therefore,

obtaining a solution to (A.8) is converted into solving a Lagrangian dual problem as
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given by (A.9)

min
1

2

NX
iD1

NX
jD1

˛i˛jyiyj .�.xi/
T�.xj // �

NX
iD1

˛i

subject to

NX
iD1

˛i D 0;

0 � ˛i � c; i D 1; : : : ; N;

(A.9)

where a kernel function K.x; y/ satisfying K.xi ; xj / � �.xi/
T�.xj / is introduced. The

kernel function that is used here is the Radial Basis Function (RBF), and has the fol-

lowing description

K.xi ; xj / D e
�
kxi�xj k

2

; 
 > 0; (A.10)

Note that this is the same as the Gaussian kernel, except the term 
 is used instead of

1
2�2

in the Gaussian kernel.
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Appendix B

Supplementary Materials

Table B.1: Critical values for the two-tailed sign test for ˛ D 0:05 and ˛ D 0:1 levels of
significance [126].

# Cases 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

˛ D 0:05 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18

˛ D 0:1 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17
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Figure B.1: A snapshot of the WT Simulink model.
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