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ABSTRACT

Fault Diagnosis and Estimation of Dynamical Systems with Application to Gas Tur-

bines

Esmaeil Naderi, Ph.D.

Concordia Unviersity, 2016

This thesis contributes and provides solutions to the problem of fault diagnosis and esti-

mation from three different perspectives which are i) fault diagnosis of nonlinear systems using

nonlinear multiple model approach, ii) inversion-based fault estimation in linear systems, and iii)

data-driven fault diagnosis and estimation in linear systems. The above contributions have been

demonstrated to the gas turbines as one of the most important engineering systems in the power

and aerospace industries.

The proposed multiple model approach is essentially a hierarchy of nonlinear Kalman filters

utilized as detection filters. A nonlinear mathematical model for a gas turbines is developed and

verified. The fault vector is defined using the Gas Path Analysis approach. The nonlinear Kalman

filters that correspond to the defined single or concurrent fault modes provide the conditional

probabilities associated with each fault mode using the Bayes’ law. The current fault mode is

then determined based on the maximum probability criteria. The performance of both Extended

Kalman Filters (EKF) and Unscented Kalman Filters (UKF) are investigated and compared which

demonstrates that the UKF outperforms the EKF for this particular application.

The problem of fault estimation is increasingly receiving more attention due to its practical

importance. Fault estimation is closely related to the problem of linear systems inversion. This

thesis includes two contributions for the stable inversion of non-minimum phase systems. First,

a novel methodology is proposed for direct estimation of unknown inputs by using only measure-

ments of either minimum or non-minimum phase systems as well as systems with transmission

zeros on the unit circle. A dynamic filter is then identified whose poles coincide with the transmis-

sion zeros of the system. A feedback is then introduced to stabilize the above filter dynamics as

well as provide an unbiased estimation of the unknown input. The methodology is then applied to
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the problem of fault estimation and has been shown that the proposed inversion filter is unbiased

for certain categories of faults. Second, a solution for unbiased reconstruction of general inputs is

proposed. It is based on designing an unknown input observer (UIO) that provides unbiased esti-

mation of the minimum phase states of the system. The reconstructed minimum phase states serve

then as inputs for reconstruction of the non-minimum phase states. The reconstruction error for

non-minimum phase states exponentially decrease as the estimation delay is increased. Therefore,

an almost perfect reconstruction can be achieved by selecting the delay to be sufficiently large.

The proposed inversion scheme is then applied to the output-tracking control problem.

An important practical challenge is the fact that engineers rarely have a detailed and accu-

rate mathematical model of complex engineering systems such as gas turbines. Consequently, one

can find a trend towards data-driven approaches in many disciplines, including fault diagnosis. In

this thesis, explicit state-space based fault detection, isolation and estimation filters are proposed

that are directly identified from only the system input-output (I/O) measurements and through

the system Markov parameters. The proposed procedures do not involve a reduction step and

do not require identification of the system extended observability matrix or its left null space.

Therefore, the performance of the proposed filters is directly connected to and linearly dependent

on the errors in the Markov parameters estimation process. The estimation error dynamics is then

derived in terms of the Markov parameters identification errors and directly synthesized from the

healthy system I/O data. Consequently, the estimation errors have been effectively compensated

for. The proposed data-driven scheme requires the persistently exciting condition for healthy in-

put data which is not practical for certain real life applications and in particular to gas turbine

engines. To address this issue, a robust methodology for Markov parameters estimation using fre-

quency response data is developed. Finally, the performance of the proposed data-driven approach

is comprehensively evaluated for the fault diagnosis and estimation problems in the gas turbine

engines.
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Chapter 1

Introduction

1.1 Introduction

There is an increasing demand for automation of fault diagnosis of systems since

it will promote safety and reduce maintenance costs. There are some faults which

are not identifiable manually at their commencement while their evolution may

cause serious damages to the system. An autonomous fault diagnosis scheme will

detect and isolate such faults and will trigger appropriate recovery automatic or

manual actions; which makes the whole maintenance process cheaper and more

reliable. Also, the benefits of autonomous fault diagnosis is better disclosed if it can

be successfully implemented in fleet management of a product. The current fleet

management of products imposes significant costs on customers since, in absence of

an autonomous health status monitoring, a rigid schedule for product inspection in

order to detect possible faults is used. Hence, beside costly unnecessary inspections

for some vehicles, the delayed inspection of some others in which a fault has been

maturely evolved entails additional costs which are avertable. An autonomous fault

diagnosis may fully or partially replace such time-regulated maintenance policies,

thus providing a more efficient fleet management strategy.
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The term ‘autonomous fault diagnosis’ may refer to three tasks which are i)

fault detection, ii) fault isolation, and iii) fault estimation. The task of fault de-

tection is concerned with alarming the presence of a fault (or concurrent faults) in

the system. In many cases, only detection of the fault does not suffice. One should

isolate the detected fault among possible faults which is generally known as fault

isolation problem. Typically, fault detection and fault isolation are simultaneously

addressed in the literature and is well-known as Fault Detection and Isolation (FDI).

The objective of fault estimation is to provide an estimate of the present faults in

the system. One can immediately conclude that fault estimation under some special

circumstances and scenarios can include the tasks of fault detection and isolation.

In other words, if faults are successfully estimated, then it implies faults are also suc-

cessfully detected and isolated. However, the task of fault estimation is significantly

more complex and involved. Therefore, fault detection and isolation is generally

considered in the literature.

The basic idea in autonomous fault detection and isolation- as well as in fault

estimation- is construction of a dynamical filter (or a bank of dynamic filters) that

receives the system I/O data and generates the so-called residuals. The residuals

are processed through a logic - mostly known as FDI logic - to detect and isolate

faults. The above idea is initially introduced by Beard [1].

Since the concept of autonomous FDI schemes was introduced by Beard [1],

it has received enormous attraction in the literature. Some excellent surveys have

been published that summarize the extensive literature on FDI [2–6]. The two main

categories of FDI schemes are model-based and data-driven approaches. The avail-

able model-based approaches can be roughly categorized as follows [7,8], i) full state

observer-based methods [9–12], ii) unknown input observer methods [10,13–16], iii)
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parity relation approach [17–19], iv) Kalman filter based approaches [20–22], v)

stochastic approaches [23,24], vi) system identification approaches [25], vii) nonlin-

ear system approaches [26–28], and viii) discrete event system approaches [29–32].

The term ‘data-driven’ covers a wide range of techniques in the literature. Some of

the most important categories are, i) Subspace based methods reviewed in [33, 34],

ii) neural network [35–39] reviewed in [40], iii) fuzzy logic [41, 42], and iv) hybrid

approaches [43–45] reviewed in [46]. The above overview illustrate the extensive

literature of FDI.

In this thesis, we have concentrated on three problems which are,

• Nonlinear multiple model based FDI,

• Inversion based fault estimation, and

• Subspace based data-driven FDI and estimation (FDI&E)

The objective of the above problems are to address three main practical is-

sues in FDI&E of real-life applications which are non-linearity of the system, fault

estimation for fault tolerant control and strategic planning and lack of mathemat-

ical model. We tackle each issue separately by approaches that provide promising

solutions. However, our proposed solutions are interconnected and interrelated that

could be integrated into a single module as part of our future works. This vision of

an integrated solution is the reason we do not select neural networks as a data-driven

solution. Our subspace based data-driven approach shares a common ground with

our MM-based and inversion-based solutions in terms of falling under the category

of observer based methods.

We use multiple model based approach to address the problem of nonlinear
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FDI [47–51]. The basic idea is that a bank of Kalman filters each of which is asso-

ciated with one fault is constructed. For a nonlinear system, a bank of Extended

Kalman Filters (EKF) or Unscented Kalman Filters (UKF) is constructed. Then

I/O data of the system in operation is fed to these filters and residuals are generated

which is in fact conditional probability computed using innovation vectors. These

residuals are combined through a Bayesian algorithm which finally determines which

fault mode is most probably active. If there is no fault, then the healthy mode will

have the highest probability.

We comprehensively discuss the problem of fault estimation due to the fact

that it is becoming increasingly important for fault tolerant control and strategic

planning. Numerous approaches are proposed in the literature for fault estimation.

We selected here to consider inversion based fault estimation which is not arbitrary

selection since as we will show it is closely related to our proposed data-driven

FDI&E schemes. Figure 1.1 shows a schematic of the inversion-based fault estima-

tion scheme. In inversion-based fault estimation, faults are modeled as unknown

inputs, and the fault estimation process deals with the reconstruction of the un-

known inputs through the inverse system filter which is fed by the available system

measurements and known inputs. The linearization of the nonlinear mathematical

model that is developed in this thesis yields a minimum phase system at all oper-

ating points. Therefore, the present faults in our model can be estimated using the

conventional inversion-based approaches that are available in the literature. Yet,

we propose a general framework for fault estimation in both minimum phase and

non-minimum phase systems due to the fact that it cannot be guaranteed that the

corresponding linear model to all types of gas turbines at all operating points is

minimum phase.
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f1,2,...,i

Su1,2,...,k S−1

y1,2,...,j
f̂1,2,...,i

Figure 1.1: A schematic representation of the inverse-based fault estimation scheme,
where S represents the plant, S−1 represents the fault estimation filter which is the
inverse of the system S, fi,2,..,i is the fault vector which is modeled as unknown input,

u1,2,...,k is the known input vector, y1,2,...j is the measurement vector, and f̂1,2,..,i is
the estimated fault vector using the FDI filter S−1.

Figure 1.2: Historical development of FDI schemes (taken from [52])
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Finally, we addressed the problem of data-driven FDI&E. Figure 1.2 shows a

time-line of FDI historical development. As it can be seen, state-of-art FDI research

are data-driven approaches for one obvious reason. As engineering systems evolve

to be more complex from design and operation perspectives, it is less likely to have

a well-defined and accurate mathematical model for such systems. Numerous data-

driven approaches are proposed in the literature for instance Artificial Intelligence-

based, statistical approaches, and subspace-based identification methods. In this

thesis, we utilized subspace-based FDI&E methods [34] due to its numerous advan-

tages such as non-iterative design procedure, analytic conditions of existence and

stability and low required computational power. We will demonstrate that one can

actually construct an FDI&E scheme for gas turbines only using the system I/O

data.

In this thesis, we considered gas turbines - as one of the most important engi-

neering systems in energy and aerospace - as our application. Safety of the aviation

is directly linked with the safety and reliability of the aerial engines. Restrict policies

are implemented in all phases of aerial engines life cycle in order to ensure safety

standards and requirements are met, however, these policies are imposing increas-

ing maintenance costs which are avertable if better maintenance solution, without

compromising safety, is proposed. The fleet management of aerial engines is over-

whelmingly difficult task which requires a complex coordination and management of

human resource, hardware and software. Currently time-based and condition-based

solutions are utilized for fleet management of aerial engines. As it is reported in

some researches, these methods are suffering from large number of false alarms. One

possible solution to deal with these issues is to design and implement autonomous

FDI schemes. Compared to the time-based and condition-based solutions, the cost

benefit of the autonomous FDI schemes have made them an attractive alternative
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solution for gas turbines fleet management as well as other industrial applications.

In the following, we discuss the above subjects in more details. Specifically,

we provide literature review for each subject and elaborate on our contributions in

the context of the available literature.

1.2 Multiple Model Based Fault Detection and

Isolation

The term ”multiple model” covers a wide range of approaches in which the common

goal is to propose an architecture (or hierarchy) for a bank of estimators for isolation

and identification of faults. The differences arise due to application domain, config-

urations used, fault isolation logic implemented and the estimator types invoked. A

possible choice is implementing linear and nonlinear Kalman Filters as estimators in

bank of filters which has become a popular technique in gas turbine fault diagnosis

as reported in [53]. For instance, a multiple model approach that has utilized Linear

Kalman Filters (LKF) as estimators is comprehensively investigated by Kobayashi et

al [54,55] and Meskin and his colleagues [56]. The disadvantage of the FDI schemes

based on LKF is that they are not robust to the variations of operation conditions

while this situation occurs often during a flight, i.e. during takeoff and landing,

and should be addressed. One can deal with this issue by implementing nonlinear

Kalman filters which have become popular in nowadays applications. In gas turbine

FDI applications, Simon [57] has systematically compared the performance of LKF,

Extended Kalman Filter (EKF), and Unscented Kalman Filter (UKF) from compu-

tational effort and estimation performance perspectives; however, the FDI scheme

used is not MM-based.

In this thesis, a multiple model (MM)-based scheme that employs nonlinear
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Kalman filters as state estimators (detection filters) is developed and implemented

for the first time in the literature for fault diagnosis of gas turbines. This is a natural

extension of our previous work [56] in which we have proposed a MM-based approach

that employed LKF as state estimators (detection filters). This is partially motivated

by the limitations of the MM-based approach that uses LKF in its structure that

makes it incapable of fully coping with the variations in the ambient conditions and

power settings.

Our proposed MM-based fault diagnosis approach assumes that the dynamics

of the engine is adequately represented by a nonlinear model that is parameterized

by a fault vector. It is further assumed that the fault vector can take an only

M discrete values corresponding to the normal and various failure modes in the

engine. The nonlinear model corresponding to each fault vector is obtained from

the fully nonlinear model of the system, and a bank of nonlinear Kalman filters is

then designed where each nonlinear Kalman filter corresponds to and is associated

with a specific value of the fault vector. The conditional probabilities of each discrete

parameter value being the correct one, given the measurement history, are calculated

iteratively by using the Bayes’ law. The current operating mode of the engine is

then determined based on the maximum probability criteria. This approach has an

advantage over the approaches that residuals are compared with specified thresholds

[54] that is no need to evaluate and verify thresholds in advance. A hierarchical

approach is proposed where multiple levels of the detection filters are designed that

according to the current engine status and operating mode (that is healthy or faulty),

only an appropriate set of the bank of filters becomes and is active at any given

time. This hierarchical architecture enables the detection and isolation of the engine

concurrent faults without imposing any additional computational load on the FDI

scheme as compared to the single fault detection and isolation case.

We have investigated the performance of both the Extended Kalman Filter
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(EKF) and the Unscented Kalman Filter (UKF) as state estimators (detection fil-

ters) in our proposed MM-based architecture. Simulation results presented for a sin-

gle spool gas turbine demonstrate the effectiveness and capabilities of our proposed

fault diagnosis framework and algorithm. Also, simulation results convincingly ver-

ify that indeed considerable improvements are obtained in the performance of the

UKF over that of the EKF schemes in terms of the fault detection time, robustness

to sensor noises and functionality with different sets of measurements.

1.3 Inversion-Based Fault Estimation

The problem of estimating system faults that could occur in actuators and sensors

has been recently receiving extensive attention due to advances in the field of fault

tolerant control and growth in demand for higher levels of reliability and autonomy

in safety critical systems. Numerous approaches have been proposed for fault esti-

mation of dynamical systems, such as unknown input observers (UIO) [13,14,58,59]

and sliding mode observers [60]. An important category of available solutions are

known as inversion-based approaches that are addressed in the works such as [61–65].

However, these results have one major drawback in common. Specifically, they will

fail for non-minimum phase systems. In fact, stable inversion of non-minimum phase

systems is an outstanding challenge in any given context associated with the prob-

lem of input reconstruction.

Inversion of linear systems was first systematically treated by Brocket and

Mesarovic in [66]. The classic references are structure algorithm [67], Sain & the

Massey algorithm [68], and the Moylan algorithm [69]. Gillijns [70] has also pro-

posed a general form of the Sain & Massey algorithm in which some free parameters
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are available that can be adjusted under certain circumstances for obtaining a sta-

ble inverse system provided that the original system does not have any unstable

transmission zeros (that is, minimum phase systems). The inversion problem has

been tackled by more sophisticated methods. Palanthandalam-Madapusi and his

colleagues have considered the problem of input reconstruction in several works,

however the solutions provided all apply to only minimum-phase systems [71–73].

Flouquet and his colleagues proposed a sliding mode observer for the input recon-

struction that is only valid for minimum phase systems [74]. Marro and Zattoni have

proposed a geometric approach [75] for state reconstruction of both minimum and

non-minimum phase systems given the system does not have any transmission zeros

on the unit circle. Wahls and his collegue developed an stable inversion for both

minimum and non-minimum phase systems while assuming that the throughput

matrix is full column rank [76].

We propose a novel inversion-based approach for fault estimation of linear

discrete-time dynamical systems. Faults can be modeled in various forms in the lit-

erature as either additive faults or multiplicative faults. The proper choice depends

on the actual characteristics of a fault. Typically, sensor bias, actuator bias and

actuator loss of effectiveness (LOE) are considered as additive faults. Multiplica-

tive fault models are more suitable for representing changes in the system dynamic

parameters such as gains and time constants [77]. Moreover, additive faults are

typically considered as LOE step-wise or linearly varying (ramp-wise) inputs that

are injected to the system. In this work, we consider estimation of step-wise or

ramp-wise additive faults that cover a wide range of faults in real life applications.

Our novel inversion-based unknown input reconstruction scheme has several

advantages over the available methods in the literature. The most important one

is the fact that it can handle systems with transmission zeros on the unit circle.

Moreover, we introduce a feedback control signal that not only stabilizes the unstable
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inverse dynamics, but also it provides an unbiased estimation for certain categories

of faults. We will highlight the contributions of our solution in more details in

Section 1.7.

1.4 Inversion-Based Reconstruction of System States

and General Unknown Input

We discussed the problem of inversion-based fault estimation. In order to augment

our contribution, we then consider the general problem of system state and unknown

input reconstruction. The inversion-based state and unknown input reconstruction

has several important applications in control theory such as fault estimation and

output tracking. We specifically discuss the problem of Output tracking since it can

be considered as dual problem of unknown input reconstruction.

It is well-known that unbiased inversion-based output tracking is essentially

non-causal since it requires the information on the entire trajectory in future that is

not a reasonable assumption for many applications. Zou and Devasia [78–80] have

introduced preview-based stable-inversion method for continuous-time systems. Ba-

sically, this method requires access to a finite window of future data instead of hav-

ing the entire future trajectory, although the approach results in a degraded output

tracking error performance. This technique has been significantly improved by the

recent work [81, 82], however, these works are also developed for continuous-time

LTI systems. Moreover, the method is constrained under restrictive assumptions,

such as the smoothness of the desired trajectories. Several other work using different

approaches are available in the literature that are mostly application of a particular

method known as the Q-learning [83] or by using filtered basis functions [84] to this

problem.
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In this study, we first address the inversion-based unknown state and input

reconstruction problem. A general unknown input observer is proposed that ac-

curately and independently reconstructs the minimum phase states of the system

by using only the available system measurements. The minimum phase states here

refers to n − p states of the overall system, where n denotes the order of the sys-

tem and p denotes the number of unstable transmission zeros. Next, the estimated

minimum phase states are considered as inputs to an FIR filter to reconstruct the p

non-minimum phase states of the system. The FIR filter estimates the non-minimum

phase system states with a time delay of n + nd steps. It also yields an estimation

error which is a function of the to be selected parameter nd. We have explicitly

derived subsequently the relationship between the reconstruction error and nd.

Specifically, we have shown that the estimation error is proportional to in-

verse of the smallest non-minimum phase zero to the power of nd. Hence, if the

system does not have any transmission zeros on the unit circle, the estimation error

asymptotically decays to zero as nd is increased. This can therefore ensure that

an unbiased input and states estimation can be obtained. For most cases, an nd

equal to four or five times n would yield an almost perfect estimation results for

any smooth or non-smooth unknown input. For a smooth input, an nd as small as

2 may suffice.

We comprehensively address and discuss the dynamics of the non-minimum

phase states and have derived the relationships among the system matrices. Fi-

nally, by invoking a minor modification, our proposed methodology is extended to

solve the inversion-based output tracking control problem. As opposed to a delayed

reconstruction, our method now requires data corresponding to n + nd time steps

ahead of the desired trajectory. As in the previous problem, we have quantified

the tracking error characteristics and have shown that an almost perfect tracking

is achievable by properly selecting nd that yields an unbiased state reconstruction
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that can be achieved as in the first problem.

Finally, we extend the proposed methodology of system state and unknown

input reconstruction for the case fault estimation. The difference is due to the

fact that known inputs are involved in the case of fault estimation that should be

incorporated in the solution. We will demonstrate the performance of our proposed

methodology through comprehensive simulations and comparative studies.

1.5 Data Driven Fault Detection, Isolation and

Estimation

As engineering systems evolve, it is less likely that engineers have a detailed and

accurate mathematical description of the dynamical systems they work with. On

the other hand, advances in sensing and data acquisition systems can provide a large

volume of raw data for most engineering applications. Consequently, one can find

a trend towards data-driven based approaches in many disciplines and problems,

including fault diagnosis.

The term ‘data-driven’ covers a wide range of techniques in the literature.

Some of the most important strategies are neural networks [35], fuzzy logic [41], and

hybrid approaches [43]. In addition to artificial intelligence based methods, some

efforts have been made that are aimed at extending the rich model-based fault di-

agnosis techniques to data-driven based approaches.

A trivial solution will be the one where one can first identify a mathematical

dynamical model of the system from the available data, and then by using the re-

sulting explicit model one then implements and designs conventional model-based
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schemes. However, this approach suffers from the subsequent errors that are in-

troduced in the system identification process and that may ultimately aggravate

the FDI scheme design process errors which can result in a totally unreliable fault

diagnosis scheme.

In recent years, a new paradigm has emerged in the literature that aims at

direct and explicit construction of the FDI schemes from the available system input-

output (I/O) data [85–87]. Subspace-based data-driven fault detection and isolation

methods [25, 88] represent as one of the main approaches that have been reviewed

in [25]. These methods are developed based on identifying the left null space of

the system extended observability matrix using the I/O data. An estimate of the

system order and an orthogonal basis for the system extended observability matrix

- or its left null space - are obtained via the SVD decomposition of a particular data

matrix that is constructed from the system I/O data. This process is known as the

reduction step.

Essentially, in the reduction step it is assumed that the number of the first

set of significantly nonzero singular values and the associated directions provide

an estimate of the system order and a basis for the extended observability matrix.

However, in most cases, this process leads to erroneous results due to the fact that

the truncation point for neglecting small singular values, as being insignificant, is

not obvious a trivial and is subjective and problem dependent.

Consequently, an erroneous system order and basis for the extended observ-

ability matrix - or its left null space - can be obtained. This error manifests itself in

the fault diagnosis scheme performance in a nonlinear manner. In other words, the

performance representation of the FDI scheme is not a linear function of the gap

between the estimated system order and the system extended observability matrix
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and the actual ones. Due to these drawbacks, other works that have appeared in

the literature are mainly concerned with only the fault estimation problem in which

the main objective is to eliminate and remove the above reduction step.

Dong and his colleagues [89] have developed a fault detection scheme that can

be directly synthesized from the system I/O data without involving the reduction

step. The detection filter is in fact a high order FIR filter parameterized by the

system Markov parameters. The extension of this work to the fault isolation task is

not trivial and straightforward. It can be performed by obtaining a projection vector

that is computed through the SVD decomposition of a transfer matrix parameterized

by the Markov parameters estimation errors [90]. However, the Markov parameters

estimation errors are not generally available. Therefore, the authors in [90] have

managed to synthesize this matrix from the I/O data. The order of the isolation

filters can be as large as 30. Dong and Verhaegen [91] used the same strategy for

direct construction of the fault estimation filter. The underlying assumption is that

the system should have a stable inverse. It will be asymptotically unbiased if the

FIR filter order tends to infinity.

Wan and his colleagues [92] have reasoned in their recent work that the method

of [91] cannot be applied to certain open-loop systems. Moreover, it does not com-

pensate for the estimation errors. Consequently, Wan and his colleagues have pro-

posed offline and online algorithms for compensating for the estimation errors. Yet,

it suffers from two major drawbacks. First, the estimation is asymptotically unbi-

ased if the filter order tends to infinity. Second, the computational time per sample

for the online optimization algorithm - which is the one that yields an almost un-

biased results among the others proposed - is significantly high as compared to the

offline methods in [92].
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In this work, to overcome the above drawbacks and limitations, we have pro-

posed fault detection, isolation and estimation filters that are constructed directly

in the state-space representation form from and using only the available system

I/O data. Our proposed schemes only require identification of the system Markov

parameters that are achieved by using conventional methods, such as correlation

analysis [93] or subspace methods [94–97] from the healthy I/O data.

Our method does not involve the reduction step or equivalent forms of the

extended observability matrix. Therefore, the estimation error is linearly depen-

dent on the Markov parameter estimation errors. This step is already addressed

in the literature as reviewed above. However, it turns out that our state-space

based approach can address several important difficulties that are associated with

the currently available works in the literature. First, our proposed identification and

isolation filters are conveniently configured for the isolation task of both single as

well as concurrent faults through constructing filter banks.

An important feature of our proposed state-space based method is that es-

timation will be achieved asymptotically unbiased by a filter order as low as the

maximum of the system relative degree and the system observability index. Both of

these parameters are bounded by the system order. Moreover, it does not necessar-

ily require the condition of having an entire stable inverse system. The flexibility of

our proposed scheme allows arbitrary selection of the subsystems for achieving the

fault isolation or for performing the fault estimation tasks.

In other words, one can select a different subsystem if an actuator fault es-

timation is blocked due to unstable inversion of a specific subsystem. Finally, the
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state-space based approach allows one to implement a simple and yet effective pro-

cedure for compensating for the estimation errors. Towards this end, in this work

we derive the estimation error dynamics and show that it can be directly identified

from the healthy system I/O data.

We provide several illustrative simulations to demonstrate merits of our pro-

posed data-driven approach. More importantly, we apply our proposed data-driven

FDI&E scheme to the case of gas turbine. However, it requires several adjustments

as discussed in the next Section.

1.6 Fault Diagnosis of Gas Turbines

Research on aircraft gas turbine engine fault detection and isolation (FDI) has been

and continues to be at the core of an extensive body of literature [36,98–100]. Sev-

eral excellent surveys and reviews have addressed this vast literature from different

perspectives [101–104]. The main theme of research in gas turbine FDI is based on

Gas Path Analysis (GPA) in which by measurement and estimation of lumped pa-

rameters of the system such as temperature and pressure at each stage, one attempts

to isolate and identify actuator, sensor, or component faults [101]. This approach

has mainly been developed by Urban [105] and Volponi [106].

Model-based approaches constitute a major part of the aircraft gas turbine en-

gine FDI literature [20,107–109]. The major drawback of model-based approaches is

the need for a reasonably accurate mathematical model of the system, which is rarely

available. This fact has motivated researches to consider data-driven approaches as

an alternative and a more practical solution [98,110–112]. Consequently, numerous
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data-driven solutions based on neural networks [35,36,113,114], statistical and fea-

ture extraction methods [115], and fuzzy logic [116], among others have appeared

in the literature. Certainly, neural network and fuzzy logic are powerful tools for

nonlinear fault diagnosis and estimation in complex nonlinear systems. However,

gas turbines can be accurately represented by linear systems in most phases of their

operation such as cruise in aircraft or steady state operation in power plants. On

the other hand, two challenges are outstanding in the implementation of these meth-

ods for linear phases of operation. First, these data-driven methods require a large

amount of actual data that are difficult to process and can be as challenging as

high fidelity mathematical models. Secondly, they have complicated structures with

numerous tuning parameters that have to be determined through computationally

involved procedures.

We extend and apply our proposed data-driven FDI&E scheme described above

to the application of aircraft gas turbine engine. The design procedure is as follows.

The healthy aircraft gas turbine engine is stimulated by a harmonic input contain-

ing a limited number of frequencies at a given operating point. In other words,

the identification input is the sum of simple harmonic signals each of which has a

different frequency. The frequency response of the system is then obtained by com-

puting the FFT of the input and measurement signals. Conventionally, one may

invoke the correlation analysis to estimate the system impulse response coefficients

(Markov parameters) from the frequency response data, however, our simulations

have shown that this procedure is not robust when one is dealing with a low number

of frequencies. Consequently, we utilize a method that is devised in [117] and which

is robust for estimation of the Markov parameters. Once the Markov parameters are

estimated, then we will be able to construct our proposed FDI&E filters as described

in our work.
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Our proposed approach does not require any a priori knowledge of the sys-

tem mathematical model. This is an important advantage over the model-based

techniques. Yet, it enjoys the advantages of the model-based techniques in terms

of its simplicity and the guaranteed stability. It also has several advantages over

the currently available data-driven solutions in the literature. First, our approach

does not require availability of a large amount of data. The frequency response of

the system at only a limited number of frequencies will suffice. Second, the FDI&E

filters are directly and conveniently designed and constructed from the estimated

Markov parameters. Consequently, one will avoid the complicated trade-off studies,

tuning techniques and iterative optimization procedures that are typically required

in other data-driven methods such as statistical or neural network-based approaches

that are developed in the literature.

It should also be pointed out that some studies aim to identify the system

dynamics or tune the thermodynamic model of the gas turbine engine by fitting a

transfer function to the frequency response data [118]. One may suggest to utilize

these models to first identify a model and then use model-based techniques for

constructing the FDI&E filters. This solution is not reliable due to several reasons.

First, a priori knowledge of the system number of poles and zeros is required for

these methods. Different selection of the number of poles and zeros may lead to

solutions that may not correspond to an accurate representation of the system actual

dynamics. There is no formal and rigorous methodology for a priori optimally

selecting the number of poles and zeros of the system model. Moreover, the system

identification errors will stack up and compound with other errors resulting in an

unreliable FDI&E scheme. Our approach, on the other hand, has several advantages

as follows,
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• It allows a direct design and construction of the FDI&E filters from only the

available system I/O data that indeed significantly reduces the overall resulting

errors.

• It eliminates the intermediate step of system identification which is often chal-

lenging and may not lead to a conclusive result.

• Finally, no a priori knowledge about the linearized model of the system as

well as its number of poles and zeros are required.

This completes our detailed literature review and elaboration on our contri-

butions. In the next section, we highlight the main contributions of the thesis.

1.7 Contributions of the Thesis

We consider three problems in this thesis which are i) nonlinear MM-based FDI,

ii) Inversion-based fault estimation, and iii) data-driven FDI&E. All the proposed

solutions are applied and demonstrated to the application problem of gas turbine.

In fact, our proposed solutions address three important practical issues in gas tur-

bines FDI&E which are non-linearity, estimation of present faults and lack of math-

ematical model. In the following, we specify and highlight the most important

contributions of our proposed solutions.

The objective of our proposed MM-based FDI approach is to design a nonlinear

FDI scheme such that a bank of filters covers all the operational envelop. The main

contributions of our proposed nonlinear MM-based FDI are,

1. Proposed a nonlinear MM-based FDI using bank of EKF and UKF for the

first time in the literature.

2. Comprehensively compared the performance of the EKF and UKF for detec-

tion and isolation of gas turbine faults.
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3. The robustness of the proposed scheme to noise and outlier is established

through comprehensive simulations. In fact, our proposed nonlinear MM-

based FDI has a game-theoretic nature that makes it significantly robust to

noise and parameter variations.

We earlier mentioned that the demand for fault estimation schemes is in-

creasing as the fault tolerant controllers and autonomous strategic and maintenance

planning tools are evolving. An important category of observe based methods for

fault estimation is the inversion-based approaches. We propose two independent

inversion-based fault estimation schemes. In the first proposed scheme, we intro-

duce a dynamic filter that provides an unbiased estimation for certain categories of

faults. The contribution of the first solution can be summarized as follows,

1. Our proposed scheme can handle both minimum phase and non-minimum

phases systems as well as systems having transmission zeros on the unit cir-

cle under a single framework. To the best of our knowledge, the available

solutions in the literature cannot cope with the problem of unknown input

reconstruction for systems having transmission zeros on the unit circle.

2. Our solution yields an estimate of the unknown inputs (i.e., faults) by only

using the system measurements directly (that is, in one single operation) as

it eliminates the conventional intermediary step of state estimation process.

This is a significant improvement and extension from the current practices in

the literature for linear systems inversion.

3. Finally, our scheme allows relaxation of several restrictive assumptions such

as the controllability condition or certain rank conditions that are imposed on

the system matrices. It also provides further degrees of freedom for addressing

other design challenges such as robustness if one is interested in considering

these additional requirements.
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We further investigated the problem of inversion-based approach for recon-

struction of states, inputs and faults. In contrast to the first solution, it can recon-

struct any unknown input or fault. The contributions of the thesis in this part are

as follows,

1. A methodology for estimation of unknown states and unknown inputs (or

faults) of both minimum and non-minimum phase linear discrete-time systems

is proposed and developed,

2. In our proposed methodology, the minimum phase states are decoupled and

estimated by using the system measurements that are then used as inputs to

an FIR filter for estimation of the non-minimum phase states,

3. Several important theorems and lemmas are stated that specify, determine,

and quantify the interrelations between the system matrices and the system

transmission zeros,

4. An algorithm and a simple constructive procedure for designing an inversion-

based output tracking control scheme is proposed, and finally

5. The accuracy of our proposed input and state estimation scheme as well as

the output tracking control performance as a function of the delay parameter

are quantified and investigated.

Our proposed data-driven approach constitutes a major contribution of this

thesis. Our solution renders direct construction of FDI&E filters from system I/O

data. Therefore, it resolves one of the most important issues frequently present in

real-life applications which is lack of mathematical model. Our contributions in this

part of the thesis can be summarized as follows,

1. A general fault detection and isolation filter for both actuator and sensor faults

is developed and directly constructed from only the available system I/O data
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in the state-space form in a manner that does not involve a reduction step.

Moreover, our approach does not require an a priori knowledge of the system

order. The proposed fault detection and isolation filters can be conveniently

configured for both single and concurrent fault detection and isolation tasks

by using a subset of the I/O data.

2. A fault estimation scheme for both actuator and sensor faults (single and

concurrent) is developed and directly constructed from the available system

I/O data in the state-space form in a manner that does not involve a reduction

step. The proposed estimation filter is asymptotically unbiased having an

order as small as the maximum of the observability index and the system

relative degree.

3. A new offline procedure for tuning the estimation filters are proposed to com-

pensate for errors that are caused by the Markov parameters estimation un-

certainties.

Our proposed data-driven FDI&E scheme cannot be directly applied to the

case of gas turbine since it is less likely that a gas turbine is stimulated by a wide-

band inputs. Instead, we use frequency-domain data for applying our proposed

data-driven methodology. In other words, the main contribution of this part of the

thesis can be stated as follows:

1. Development of a data-driven methodology for direct design of fault detection

filters, fault isolation filters, as well as fault estimation filters by using only

the gas turbine engine frequency response data that are collected at limited

number of frequencies.

The contributions of this thesis are established using rigorous derivation of

lemmas and theorems. Moreover, they are illustrated and demonstrated through

comprehensive simulations as well as comparative studies.
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1.8 Structure of the Thesis

The remainder of the thesis is organized as follows. The mathematical model of

the gas turbine used throughout this thesis is presented in Chapter 2. It turns

out that our model is minimum phase at all operating points. Therefore, we also

included conventional inversion-based fault estimation method for minimum phase

systems and applied it to the gas turbines. These results presented should provide

a benchmark and point of reference for the subsequent methods that are developed

in this thesis. Chapter 3 is devoted to the nonlinear multiple model based fault

diagnosis of gas turbines. The inversion-based fault estimation for both minimum

phase and non-minimum phase systems is presented in Chapter 4. A general solution

to the problem of system state and unknown input reconstruction and its dual

problem of output tracking is provided in Chapter 5. The data driven fault diagnosis

and estimation of the linear systems is proposed in Chapter 6. Chapter 7 includes

the application of the proposed data driven scheme to the application of gas turbines.

Finally, the thesis is concluded in Chapter 9.
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Chapter 2

Background

In this chapter, we present our developed mathematical model for gas turbines. This

model serve as basis for our simulations and case studies through this thesis. More-

over, we provide a description of well-established inversion methods for minimum

phase systems and its application to the gas turbine.

2.1 Physics of the Gas Turbines

Gas turbines have unique features that have made them an essential part of avia-

tion and power industries. They are light, reliable and efficient. Figure 2.1 shows

a schematic of a gas turbine structure. Typically, it has a duct, compressor, com-

bustion chamber, turbine and nozzle. Duct is designed to conduct a smooth air

flow from outside to the compressor. The pressure of the air is slightly increased

at each stage of the compressor until it reaches the final stage to be injected into

the combustion chamber. The typical pressure ratio is 10 to 20 times depending

on the number of stages. The process of air compression consumes energy which is

provided by turbine. For this reason, the compressor and turbine are installed on a

single shaft. An assembly of compressor and turbine on a single shaft is called ‘spool’.
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Figure 2.1: A schematic of gas turbine (Taken from [119]).

The high pressure air is mixed with fuel and burnt in the combustion chamber.

In contrast to the auto engines, the gas turbine combustion chamber has a constant

and stable flame. The hot pressurized air flow passes through turbine and partially

losses its energy which in fact is converted to the kinetic energy of the spool. Then,

the hot pressurized air is accelerated through nozzle which creates jet stream and

pushes the aircraft forward. In turboshafts, turbine has many stages, therefore all

the energy of hot pressurized air is converted to the kinetic energy for rotating a

generator or helicopter blades in addition to compressors.

Gas turbines are complex engineering systems. Moreover, they operate under

extremely harsh conditions of high temperature combined with the extremely high

centrifugal stresses and vibrations. Therefore, gas turbines are subjected to enor-

mous physical faults that may lead to total failures. Some faults are easily detected

and isolated such as compressor surge or fire. However, most of the faults have

smaller scales so they cannot be immediately detected, for instance, cell stall, crack

and erosion. One cannot deal with a wide range of gas turbine faults by devising

a single FDI scheme since each fault has a different nature and signature. Every

interrelated set of faults should be separately investigated.
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We used Gas Path Analysis to define the faults considered in this thesis [105,

106]. In this approach, the decreases in efficiency or deviation from normal mass flow

rate in compressor and turbine are considered as parameters that represent a wide

range of physical faults. Therefore, once a fault (or concurrent fault) is alarmed

using this approach, then it assures the presence of a physical fault that should

be investigated by more advanced inspection methods. In addition, we considered

actuator and sensor faults which point to physical malfunctions in these subsystems.

2.2 The Gas Turbine Mathematical Model

Based on the available literature on modeling a nonlinear dynamics of a gas tur-

bine [120, 121], a SIMULINK model for a single spool engine is first developed.

In order to obtain this nonlinear dynamics, rotor and volume dynamics are both

considered. Heat transfer dynamics also contributes to this nonlinear behavior par-

ticularly when there exist considerable differences between the temperatures of the

air stream and the components due to a large power excursion, e.g. during the

startup or rapid maneuvers of an agile aircraft [122]. Nevertheless, the above effect

has been neglected since in this paper we are concerned with a commercial single

spool gas turbine at normal operating conditions. We have used the commercial

software GSP 10 [123] for the purposes of conducting model validation studies. A

more detailed description of the model can be found in [37,120,121].

In the following, detailed mathematical expressions corresponding to each spe-

cific component of the gas turbine are presented. Next, these equations are combined

to construct a nonlinear Simulink model for gas turbine. Figure 2.2 shows the in-

formation flow process in our Simulink model.
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Figure 2.2: Information flow diagram in a modular modeling of the gas turbine
dynamics.

Rotor Dynamics

The Energy balance between turbine and compressor is described by,

dE

dt
= ηmechWT −WC (2.1)

where E =
J(N.2π

60
)2

2
, and WC and WT are the power consumed by compressor and

generated by turbine as given by equations (2.6) and (2.8), respectively. Basically,

the above equation implies that the rotational speed of the spool depends on the

energy generated by turbine and energy consumed by compressor.

Volume Dynamic

The volume dynamics describes the pressure dynamics inside a volume. Assume

that the gas has zero speed and has homogenous properties over the volumes, then

this dynamics is described by,

9P =
RT

V
(Σ 9min − Σ 9mout) (2.2)
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where 9min and 9mout denote incoming and exiting mass flow rate from the considered

volume.

Compressor

The compressor behavior, as a quasi-steady component, is determined by using

the compressor performance map. Given the pressure ratio (πC) and the corrected

rotational speed (N/
?
θ), one can obtain the corrected mass flow rate ( 9mC

?
θ/δ) and

efficiency (ηC) from the performance map by using a proper interpolation technique,

where θ = TC/T0 and δ = PC/P0, i.e. 9mC

?
θ/δ = f 9mC (N/

?
θ, πC) and ηC =

fηC (N/
?
θ, πC). Once these parameters are obtained, the compressor temperature

rise and the mechanical power are obtained as follows:

Po
Pamb

=

„

1 + ηd
γ − 1

2
M2



γ
γ−1

(2.3)

To
Tamb

= 1 +
γ − 1

2
M2 (2.4)

TC = To

„

1 +
1

ηC
(π

γ−1
γ

C − 1)



(2.5)

WC = 9mCcp(To − TC) (2.6)

Turbine

Similar to the compressor, the turbine behavior is also determined by using the

turbine performance map. Given the pressure ratio (πT ) and the corrected rota-

tional speed (N/
?
θ), the corrected mass flow rate ( 9mT

?
θ/δ) and the efficiency

(ηT ) are obtained from the performance map, i.e. 9mT

?
θ/δ = f 9mT (N/

?
θ, πT ) and

ηT = fηT (N/
?
θ, πT ). The temperature drop and the turbine mechanical power are
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obtained as follows:

TT = TCC

„

1− ηT (1− π
γ−1
γ

T )



(2.7)

WT = 9mT cp(TCC − TT ) (2.8)

Combustion Chamber

The pressure and temprature dynamics inside the combustion chamber is governed

by equations (2.9) and (2.10).

9PCC =
PCC
TCC

9TCC +
γRTCC
VCC

( 9mC + 9mf − 9mT ) (2.9)

9TCC =
1

cvmCC

[(cpTC 9mC + ηCCHu 9mf − cpTCC 9mT )−

cvTCC( 9mC + 9mf − 9mT )]

(2.10)

In fact, these are volume dynamics between compressor and turbine and energy

balance of combustion process.

Nozzle

If condition (2.11) holds, the nozzle mass flow rate is obtained using equation (2.12),

otherwise using equation (2.13). Note that Pn = PT and Tn = TT .

Pamb
Pn

<

„

1 +
1− γ

ηn(1 + γ)



γ
γ−1

(2.11)

9mn

?
Tn

Pn
=

u
?
Tn

An
R

Pamb
Pn

Tn
Tno

(2.12)

where u?
Tn

=
b

2cpηn(1− (Pamb
Pn

)
γ−1
γ ), Tno

Tn
= 1− ηn(1− (Pamb

Pn
)
γ−1
γ ), and

9mn

?
Tn

Pn
=

u
?
Tn

An
R

Pcrit
Pn

Tn
Tcrit

(2.13)

and where Pcrit
Pn

= (1− 1
ηn

(γ−1
γ+1

))
γ
γ−1 , u?

Tn
= 2γR

γ+1
, and Tcrit

Tn
= 2

γ+1
.
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Set of nonlinear equations

The ambient conditions (Tamb, Pamb and M) are usually measured. Therefore, the

parameters Po and To are easily computed using equations (2.3) and (2.4), respec-

tively. If we have πc and ηc, then we can calculate TC and Wc using equations (2.5)

and (2.6), respectively. The compressor pressure ratio is given by PCC/Po, and PCC

is obtained by integrating equation (2.9). In order to do this, we need compressor,

turbine and fuel mass flow rates. The fuel mass flow rate ( 9mf ) is known. Having

rotational speed (N) and (πc), we read the compressor mass flow rate ( 9mc) and

efficiency (ηc) from the ‘compressor map’. The rotational speed (N) is given by

differential equation (2.1) which needs the calculation of WT as given by equation

(2.8). The parameters TT and TCC in equation (2.8) are calculated using equations

(2.7) and (2.10), respectively. In order to calculate TT using equation (2.7), we need

turbine pressure ratio (πT ) and efficiency (ηT ). The turbine pressure ratio is given by

PT/PCC . The pressure after turbine is governed by the following volume dynamics,

9PT =
RTM
VM

( 9mT +
β

1 + β
9mC − 9mn)

Having PT and N , it is straightforward to read 9mT and ηT from ‘turbine map’.

Putting all together, the set of nonlinear equations corresponding to a single spool

gas turbine is given in equation (2.14).

9TCC =
1

cvmCC

[(cpTC 9mC + ηCCHu 9mf − cpTCC 9mT )−

cvTCC( 9mC + 9mf − 9mT )]

9N =
ηmech 9mT cp(TCC − TT )− 9mCcp(TC − To)

JN( π
30

)2

9PT =
RTM
VM

( 9mT +
β

1 + β
9mC − 9mn)

9PCC =
PCC
TCC

9TCC +
γRTCC
VCC

( 9mC + 9mf − 9mT )

(2.14)
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Figure 2.3: Steady state series at PLAs ranging from 0.4 to 1 on the compressor
performance map. The initial condition is initially set equal to PLA=30%, and then
followed by a transient to reach to the desired PLA. Each point corresponds to the
final state of the engine at the end of the transient response.

Furthermore, using [120] the following dynamics for the fuel mass flow rate are

considered

τ
d 9mf

dt
+ 9mf = Gufd (2.15)

where τ is the time constant of the governor, G is the gain associated with fuel valve

and ufd denotes the fuel demand which is computed by using a feedback from the

rotational speed as described in [120]. A modular Simulink model is developed to

simulate the above gas turbine nonlinear dynamics as described by equations (2.14)

and (2.15).

Figure 2.3 shows the series of steady states that are obtained from our non-

linear model and the commercial software GSP [123] at PLAs ranging from 0.4 to

1. At each point, the initial condition of the PLA equal is set to 0.3 followed by a

transient to reach to the steady state corresponding to the desired PLA. Since the

steady state corresponding to each PLA is independent of the path taken during the

transient (unless the compressor surges), it provides a suitable basis for comparison.

As can be observed from Figure 2.3 the responses corresponding to our model and
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the GSP match each other within an acceptable error tolerance(below 5%). The

difference between the two representations is manifested in terms of the complexity

of the mathematical model used where our form is simpler as compared to the the

more complicated representation of the GSP ( [123]).

2.3 Inversion-Based Fault Estimation for Mini-

mum Phase Systems

Consider an LTI discrete-time system as follows,

S :

 x(k + 1) = Ax(k) +Bf(k) + Ev(k)

y(k) = Cx(k) +Df(k)
(2.16)

where x ∈ Rn, the known input v ∈ Rr, the unknown fault signal f ∈ Rm, and the

measurement y ∈ Rl. All the matrices are known. Moreover, the subsystem from

unknown fault signal to outputs are minimum phase. The objective is to estimate

the unknown signal fault f(k) using the known inputs v(k) and known outputs y(k)

through system inversion.

Essentially the inversion of the system S is itself another system S−1 whose

inputs are the outputs and known inputs of the system S and its output is an

estimate of the unknown inputs f that are applied to the system S. Consider the

case when D is full column rank so that one can easily compute the instantaneous

inverse of the system as follows,

S−1 :

 η(k + 1) = (A−BD†C)η(k) + Ev(k) +BD†y(k)

f(k) = −D†Czη(k) +D†y(k).
(2.17)

where D† denotes the Moore–Penrose pseudo inverse of the matrix D. Note that in

case when the matrix D is not full column rank, then it is not possible to compute
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an instantaneous inverse. The solution in this case is to consecutively differentiate

or delay the measurement equation of the system S, and eliminate the derivatives

or the delays of the unknown inputs at each step by a proper transformation, until

the matrix D becomes full rank. This is the basics of standard approaches that

are proposed in the literature for computation of an inverse system as in the struc-

ture algorithm [67], Sain & the Massey algorithm [68] and the Moylan algorithm [69].

The major drawback of the structure algorithm [67] and the Sain & Massey

algorithm [68] is that in certain cases both yield an unstable inverse system. On the

other hand, the Moylan algorithm always produces a stable inverse system provided

that the original system is not non-minimum phase. Gillijns [70] has proposed a

general form of the Sain & Massey algorithm in which there exists some free pa-

rameters which can be adjusted under certain circumstances for obtaining a stable

inverse system. Since the structure algorithm is also a special case of this general

form, we only consider here the general form of the Sain & Massey algorithm.

2.3.1 General Form of the Sain & Massey Algorithm

We define Y(k − L), V(k − L) and F(k − L) as

Y(k−L) =

»

—

—

—

—

—

—

—

–

y(k − L)

y(k − L+ 1)

...

y(k)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,V(k−L) =

»

—

—

—

—

—

—

—

–

v(k − L)

v(k − L+ 1)

...

v(k)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,F(k−L) =

»

—

—

—

—

—

—

—

–

f(k − L)

f(k − L+ 1)

...

f(k)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.18)

so that one can easily verify from the measurement equation of the system S the

following:

Y(k − L) = Cx(k − L) + EV(k − L) + DF(k − L) (2.19)
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where,

C =

»

—

—

—

—

—

—

—

–

C

CA

...

CAL

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; C− =

»

—

—

—

—

—

—

—

–

C

CA

...

CAL−1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.20)

E =

»

—

—

—

—

—

—

—

–

0 0 . . . 0

CE 0 . . . 0

...
...

. . .
...

CAL−1E CAL−2E . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.21)

D =

»

—

—

—

—

—

—

—

–

D 0 . . . 0

CB D . . . 0

...
...

. . .
...

CAL−1B CAL−2B . . . D

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; D− =

»

—

—

—

—

—

—

—

–

D 0 . . . 0

CB D . . . 0

...
...

. . .
...

CAL−2B CAL−3B . . . D

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.22)

Let us assume that there exist a matrix ML of size m× l(L+ 1) such that

MLD =ML

»

—

—

—

—

—

—

—

–

D 0 . . . 0

CB D . . . 0

...
...

. . .
...

CAL−1B CAL−2B . . . D

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

=
”

I 0

ı

(2.23)

It is then obvious from equation (2.19) that the unknown input is given by:

f(k − L) = −MLCx(k − L)−MLEV(k − L) +MLY(k − L) (2.24)

The general condition under which the matrix ML exists is given by the following

theorem.

Theorem 2.1. Assume Y ∈ Rk×p and Z ∈ Rq×p are known. Then there exists a

matrix X ∈ Rq×k that satisfies XY = Z if and only if

rank

¨

˝

»

–

Z

Y

fi

fl

˛

‚= rank(Y ) (2.25)
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and the general solution is given by

X = ZY † + U(I− Y Y †) (2.26)

where U ∈ Rq×k is an arbitrary matrix [124].

Note that Y † is the Moore-Penrose pseudo inverse of the matrix Y i.e. it is any

matrix that satisfies Y Y †Y = Y . If one defines I =
”

I 0

ı

, given that MLD = I

it follows immediately from Theorem 2.1 that ML exists if and only if

rank

¨

˝

»

–

I

D

fi

fl

˛

‚= rank(D)

On the other hand,

D =

»

–

D 0

C−B D−

fi

fl

Therefore,

rank

¨

˝

»

–

I

D

fi

fl

˛

‚= rank(D−) +m

Thus, we have the following proposition:

Proposition 2.1. A matrix ML that satisfies equation (2.23) exists if and only if

rank(D)− rank(D−) = m. (2.27)

where rank(D−1) = 0, and the general solution is given by

ML =
”

I 0

ı

D† + gL(I −DD†) (2.28)

where gL of size m× l(L+ 1) is an arbitrary matrix [70].

In order to compute an inverse of the system S, one should increase L until

an L is found for which the condition 2.27 holds. This parameter L is known as

the inherent delay of the system [68]. The value of the inherent delay is bounded

according to the following theorem [125].
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Theorem 2.2. If system S is invertible, then the inherent delay of S can not exceed

n− q + 1, where q is the dimension of the nullspace of D [125].

It follows from equation (2.24) that one also needs to estimate the system

states x in order to reconstruct the unknown input. An estimator that estimates

both the states and the unknown inputs is called the joint input-state estimator [70].

Since the inputs of the inverse system S−1 are Y(k − L) and V(k − L), one can

assume the following state estimator of the form,

η(k + 1) = (A− BLC)η(k) + BLY(k − L)− BLEV(k − L) + Ev(k − L) (2.29)

where BL should be determined such that the state estimation error asymptotically

converges to zero. If one substitutes Y(k − L) from equation (2.19) into equation

(2.29), one obtains

η(k + 1) = (A− BLC) pη(k)− x(k − L)q

+ Ax(k − L) + BLDF(k − L)

+ Ev(k − L) (2.30)

In order to obtain equation (2.30), we have added and subtracted Ax(k − L)

from equation (2.29). On the other hand, from the state equation of system S, we

have

x(k − L+ 1) = Ax(k − L) +Bf(k − L) + Ev(k − L) (2.31)

Hence, the state estimation error dynamics is obtained by subtracting equation

(2.30) from equation (2.31) as follows,

η(k + 1)− x(k − L+ 1) = (A− BLC) pη(k)− x(k − L)q

+ BLDF(k − L)−Bf(k − L) (2.32)

If one chooses BL such that,

BLD =
”

B 0

ı

(2.33)
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and assumes ex(k) = η(k) − x(k − L), then it follows from equations (2.32) and

(2.33) that the state estimation error dynamics is given by,

ex(k + 1) = (A− BLC)ex(k) (2.34)

Once again we invoke Theorem 2.1 for solving equation (2.33). Therefore, the

following proposition is immediate.

Proposition 2.2. A matrix BL that satisfies equation (2.33) exists if and only if

rank(D) = rank(D−) + rank

¨

˝

»

–

B

D

fi

fl

˛

‚ (2.35)

and the general solution is given by

BL =
”

B 0

ı

D† + kL(I −DD†) (2.36)

where kL of size n× l(L+ 1) is an arbitrary matrix [70].

If one combines equations (2.24) and (2.29), the general form of the inverse

system S−1 is given by,

S−1 :

 η(k + 1) = (A− BLC)η(k)− BLEV(k − L) + Ev(k − L) + BLY(k − L)

f̂(k − L) = −MLCη(k)−MLEV(k − L) +MLY(k − L)

(2.37)

Provided that the parameters gL and kL are set to zero, then a special form is

obtained which is well-known as the Sain & Massey inverse system [68] as follows:

S−1
SM :

 η(k + 1) = (A−BMLC)η(k)−BMLEV(k − L) + Ev(k − L) +BMLY(k − L)

f̂(k − L) = −MLCη(k)−MLEV(k − L) +MLY(k − L)

(2.38)

The most important disadvantage of the Sain & Massey algorithm is that in

certain cases it produces an unstable inverse system although the original system

is not non-minimum phase. It can clearly be seen in equation (2.38) that there are
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no free parameters for adjusting the poles of the unstable inverse. This issue can

be resolved in the general form (2.37) by adjusting the free parameters gL and kL,

however, one derive the conditions under which this can be accomplished. It follows

from equations (2.24) and (2.37) that the estimation error of the unknown input is

given by

eu(k) = f̂(k − L)− f(k − L) = −MLCex(k)

Therefore, the state estimation error should converge asymptotically to zero

for successful recovering of the unknown input especially when the system S−1 is

initialized to an arbitrary initial conditions. If one combines equations (2.34) and

(2.36), then we have

ex(k + 1) =
´

A−
”

B 0

ı

D†C
¯

ex(k)

− kL
`

(I −DD†)C
˘

ex(k)

= (A− kLF)ex(k)

It is well-known from the control theory that kL can be chosen such that the

poles of (A−kLF) are placed at any desired locations if and only if the pair (A,F)

is observable which is in fact equivalent to the condition that system should be

minimum phase [126].

2.3.2 Application to Gas Turbine

We linearize the nonlinear dynamic model (2.14) using a sampling period of 0.01

seconds corresponding to a given operating point to obtain an LTI system of the form

(2.16). In our model the states are x = [TCC , N, PT , PCC ]T , the known inputs are

v = PLA, the measurements are y = [TC , PC , N, TT , PT ]T , and the unknown fault

inputs are [fmC , feC , fmT , feT ]T . Table 2.1 defines the faults that are considered. As

an example, the numerical values of the matrices of the system (2.16), which are

obtained from the linearization of the nonlinear system (2.14) with sampling time
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Table 2.1: The definition and description of the considered component faults.

Component Description
Fault
fmC Decrease in the compressor flow capacity
feC Decrease in the compressor efficiency
fmT Decrease in the turbine flow capacity
feT Decrease in the turbine efficiency

equal to 0.01 seconds at PLA = 80%, T = 0◦C, P = 0.9 bar and M = 0.3, are as

follows. One can easily versify the system from faults to output is minimum phase.

A =

»

—

—

—

—

—

—

—

–

0.553 0.001 0.000 −0.006

7.847 0.971 0.025 −14.860

3.746 −0.031 0.924 0.325

0.095 0.000 0.000 0.694

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

B =

»

—

—

—

—

—

—

—

–

2.028 −0.040 −2.269 0.044

−51.790 62.950 40.920 64.700

−49.300 −20.690 −7.511 −1.101

0.153 −0.004 0.741 −0.113

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

C =

»

—

—

—

—

—

—

—

—

—

—

–

28.130 −0.011 0.000 0.000

1.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000

−22.680 −0.003 0.811 70.020

0.000 0.000 0.000 1.000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;E =

»

—

—

—

—

—

—

—

–

0.856

7.208

195.100

0.064

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;D = 0

It should be noted that the main methodology in gas turbines engine fault

estimation is based on the Gas Path Analysis (GPA) in which by measurement and

estimation of lumped parameters of the system, such as temperature and pressure

at each stage, one attempts to isolate and identify actuator, sensor, or compo-

nent faults [101]. This approach has mainly been developed by Urban [105] and

Volponi [106]. More specifically, in the GPA analysis component faults are modeled
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as deficiencies in the component efficiency and/or mass flow rate. This is a reason-

able approach since although faults have roots in a physical change in the compo-

nents nevertheless their effects are manifested through deficiencies in the component

efficiency and/or mass flow rate.

In order to estimate faults, one needs to set up an architecture in which the

fault estimation filter is concatenated in a specific configuration with the original

system. The proposed fault estimation scheme is graphically illustrated in Figure

2.4. The system does not have an instantaneous inverse, which implies that delays

should be allowed in order to compute the inverse system. Simple calculations show

that the inherent delay of the gas turbine model is 1 (that is, L = 1). Consequently,

one delay is needed to construct the signals Y(k − L) and V(k − L) as defined in

equation (2.18). Finally, one should characterize the inverse system S−1. The origi-

nal Sain & Massey algorithm (equation (2.38)) gives an unstable inverse system. For

instance, for the system that is given above, the eigenvalues of the inverse system

are [1.00, 0.73, 0.00, 0.00]T , which implies that the inverse is not stable. Therefore,

we use the general form of the Sain & Massey algorithm (equation (2.37)) and adjust

the free parameter kL to place the poles at desired locations.

The numerical values for the inverse of the above system are as follows. The

poles of the system are placed at [0.5,−0.5, 0.25,−0.25]T (see equation(2.37)). Note

that A(a : b, c : d) refers to the elements in rows a to b of columns c to d of matrix

A. Also A(:, c : d) refers to elements in all rows of columns c to d of matrix A.

(A− BLC) = diag(0.5,−0.5, 0.25,−0.25)
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v(k − L)

Figure 2.4: A schematic representation of the gas turbine inverse-based fault esti-
mation scheme. The inherent delay of the gas turbine model is 1 (i.e., L = 1). For
a description of notations, refer to Figure 1.1.

BL(:, 1 : 5) =

»

—

—

—

—

—

—

—

–

0.000 0.500 0.000 0.000 0.000

0.000 0.000 −0.500 0.000 0.000

1.256 −97.910 −4.850 1.231 −29.516

0.000 0.000 0.000 0.000 −0.250

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

BL(:, 6 : 10) =

»

—

—

—

—

—

—

—

–

0.000 1.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000

0.000 97.911 4.849 0.000 21.701

0.000 0.000 0.000 0.000 1.0000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ML(:, 1 : 5) =

»

—

—

—

—

—

—

—

–

−0.0041 0 0 −0.0046 0

−0.0039 0 0 0.0000 0

0.0008 0 0 0.0003 0

0.000 0 0 −0.0039 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;ML(:, 6 : 10) =

»

—

—

—

—

—

—

—

–

0 0 −0.0166 0 0.9111

0 0 0.0000 0 0.0000

0 0 0.0034 0 1.1532

0 0 0.0000 0 0.0000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Assume that in the cruise condition where the fuel flow rate and the ambient

conditions are constant, a 5% single fault occurs in one component of the gas turbine.

Since the inverse system is driven by the noisy measurement vector in practice,
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Table 2.2: The noise standard deviation (as % of the nominal noise at cruising
condition).

N PC TC PT TT
0.051 0.164 0.230 0.164 0.097

we have also applied noise to the measurement signals in order to examine the

performance of the system to noise. The noise power that are applied are shown

in Table 2.2. These numerical values are taken from [127]. Figure 2.5 shows the

residuals that are generated by the fault estimation scheme with and without noise.

As it can be seen, the proposed fault estimation scheme successfully estimates the

faults.

Figure 2.6 shows the fault estimation scheme performance in presence of con-

current faults. Faults are consecutively injected at the time steps 1000, 1500, 2000

and 2500. It follows that the fault estimation scheme is successful in detecting and

isolating faults as they occur consequentially in this simulation scenario. Note that

as each fault occurs, the estimated fault severities of the previously occurred faults

are slightly changed. This is due to the fact that as each fault occurs, it slightly

changes the dynamics of the model, and thus it induces certain linearization errors

that result in a slightly induced errors in the estimated severities of the faults. This

explains the “ladder” shape of the signals shown in Figure 2.6. In fact, one can con-

clude that the fault estimation scheme is not reasonably robust to the linearization

errors that are induced due to the fault occurrences, specially when the number of

concurrent faults increases.
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Figure 2.5: Residuals that are generated by the fault estimation scheme under four
distinct simulation scenarios . (a) A 5% single fault is injected at the time step
k = 1000 in the compressor mass flow rate while the other components are healthy.
Blue signal represents the residual corresponding to the fault fmC The estimation
error is 7%. Other signals represent the residuals corresponding to other faults. Sim-
ilarly, we have for (b) a 5% single fault in the compressor efficiency (black signal)
(estimation error: 7%) (c) a 5% single fault in the turbine mass flow rate (brown
signal) (estimation error: 2.5%), and (d) a 5% single fault in the turbine efficiency
(red signal) (estimation error: 4%). For all cases, the PLA setting, ambient temper-
ature, pressure and Mach number are 80%, 0◦C, 0.9 bar and 0.3 respectively. The
poles of the filter are placed at [0.5,−0.5, 0.25,−0.25]T .
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Figure 2.6: Residuals generated by the fault estimation scheme in presence of con-
current faults. The PLA setting, the ambient temperature, the pressures and the
Mach number are 80%, 0◦C, 0.9 bar, and 0.3, respectively. The poles of the filter
are placed at [0.5,−0.5, 0.25,−0.25]T . First a 5% fault is injected in the compressor
mass flow rate at the time step k = 1000 (blue line). Then a 5% fault is injected in
the compressor efficiency at the time step k = 1500 (black line). Another 5% fault
is injected in the turbine mass flow rate at the time step k = 2000 (brown line).
Finally, a 5% fault is injected in the turbine efficiency at the time step k = 2500
(red line). The final estimation error for blue, black, brown and red signals are 17%,
16%, 5% and 5% respectively.
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Chapter 3

Nonlinear Multiple Model Based

FDI of Gas Turbines

In this chapter, a nonlinear fault detection and isolation (FDI) scheme that is based

on the concept of multiple model (MM) approach is proposed for gas turbines. A

modular and a hierarchical architecture is proposed which enables the detection and

isolation of both single as well as concurrent permanent faults in the engine. A set

of nonlinear models of the gas turbine in which compressor and turbine maps are

used for performance calculations corresponding to various operating modes of the

engine (namely, healthy and different fault modes) is obtained. Using the multiple

model approach the probabilities corresponding to the engine modes of operation

are first generated. The current operating mode of the system is then detected

based on evaluating the maximum probability criteria. The performance of our pro-

posed multiple model FDI scheme is evaluated by implementing both the Extended

Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). Simulation results

presented demonstrate the effectiveness of our proposed multiple model FDI algo-

rithm for both structural and actuator faults in the gas turbine.
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The remainder of this chapter is organized as follows. In Section 3.1, a brief

overview of the multiple model (MM) approach is presented. In Section 3.2, the MM-

based FDI algorithm is formally proposed and developed for a gas turbine. In Section

3.3, simulation results corresponding to different fault scenarios in the gas turbine

are presented, and comparisons between the EKF and the UKF schemes in terms

of their sensitivity to external noise levels and availability of the measurements are

conducted. Conclusions and future work are presented in Section 3.4. The materials

of this chapter has been developed in collaboration with Dr. Nader Meskin.

3.1 MM-Based FDI Algorithm

In this section, a brief overview of the multiple model (MM)-based fault detection

and isolation (FDI) scheme is presented [47]. Let a denote the vector of fault

parameters in a given dynamical system where it can take on only one of the M

representative values ai, i = 1, ...,M (ai is a vector and has the same dimension as

that of a.). The model corresponding to ai is described by the following nonlinear

discrete-time system

x(k + 1) = fi(x(k), u(k)) + ξi(k)

z(k) = hi(x(k)) + ηi(k)

(3.1)

where x(k) is the state of the system, z(k) is the measurement vector, and u(k) is

the control input vector. The fault parameter ai may correspond to the actuator,

the sensor or the structural faults in the system. For instance, in the single-spool

gas turbine model that is considered in this chapter we have the following specific

definitions, namely x = [PCC , N, TCC , PT ]T , z = [TC , PC , N, TT , PT ]T , and u is the

power level angle (PLA) (refer to the nomenclature section for the physical meaning

and definitions of these variables). The process and the measurement noise vectors ξi

and ηi are mutually independent white Gaussian noise of zero mean and covariance
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Table 3.1: The Extended Kalman Filter Algorithm

The Prediction Step
x̂−i (k) = fi(x̂i(k − 1), ui(k − 1))
P−i (k) = Ai(k)Pi(k − 1)ATi (k) +Qi

The Update Step
vi(k) = zi(k)− hi(x̂−i (k))
Si(k) = Ci(k)P−i (k)CT

i (k) +Ri

Ki(k) = P−i (k)CT
i (k)S−1

i (k)
x̂i(k) = x̂−i (k) +Ki(k)[yi(k)− hi(x̂−i (k))]
Pi(k) = (I −Ki(k)Ci(k))P−i (k)
Notation

Ai(k) = ∂fi
∂x
|x̂i(k−1),ui(k−1)

Ci(k) = ∂hi
∂x
|x̂−i (k)

Qi and Ri, respectively.

Remark 3.1. For sake of illustration and as shown subsequently in Section 3.2, for

the gas turbine considered in this work we take M = 6 , where the parameter a1

corresponds to the healthy mode of the engine, the parameters a2, ..., a5 correspond

to the common gas turbine component faults, and the parameter a6 denotes the fuel

flow valve fault.

Let the hypothesis conditional probability pi(k) be defined as the probability

that a assumes the value ai (for i = 1, ...,M), conditioned on the observed measure-

ment history up to time k, that is

pi(k) = Pr[a = ai|Z (k) = Zk] (3.2)

where the measurement history random vector Z (k) is made up of the partitions

z(1), ..., z(k) that represent the available measurements up to the kth sample time

and similarly, the realization Zk of the measurement history vector has partitions

z1, ..., zk [47]. It can be shown that pi(k) can be evaluated recursively for all i via

the iteration

pi(k) =
Fz(k)|a,Z (k−1)(zi|ai,Zk−1)pi(k − 1)∑M
j=1 Fz(k)|a,Z (k−1)(zi|aj,Zk−1)pj(k − 1)

(3.3)
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Table3.2:TheUnscentedKalmanFilterAlgorithm

ThePredictionStep
Augmentation

xai(k−1)=
“
x̂Ti(k−1) E[ξTi(k)]

‰T

Pai(k−1)=

„
Pi(k−1) 0
0 Qi



SigmaPoints
χ0i(k−1)=x

a
i(k−1)

χji(k−1)=x
a
i(k−1)+

à
(L+λ)Pai(k−1)

˘
j
j=1...L

χji(k−1)=x
a
i(k−1)−

à
(L+λ)Pai(k−1)

˘
j
j=L+1...2L

TimeUpdate

χji (k)=f(χ
j
i(k−1),ui(k−1))

x̂−i(k)=
2L

j=0

Wjmχ
j
i (k)

P−i(k)=

2L

j=0

Wjc

”
χji (k)−x̂

−
i(k)

ı”
χji (k)−x̂

−
i(k)

ıT

TheUpdateStep
Augmentation

x−
a

i (k)=
”

x̂−
T

i (k) E[ηTi(k)]

ıT

P−
a

i (k)=

„
P−i(k) 0
0 Ri



SigmaPoints

χ0i (k)=x
−a

i (k)

χji (k)=x
−a

i (k+
b̂
(L+λ)P−i(k)

˙

j

j=1...L

χii (k)=x
−a

i (k−
b̂
(L+λ)P−i(k)

˙

j

j=L+1...2L

MeasurementUpdate

Yji(k)=h(χ
j
i )j=1...2L

ŷi(k)=

2L

j=0

WjmY
j
i(k)

vi(k)=zi(k)−ŷi(k)

Si(k)≡P̂ŷyi(k)=

2L

j=0

Wjc

”
Yji(k)−ŷi(k)

ı”
Yji(k)−ŷi(k)

ıT

P̂x̂yi(k)=
2L

j=0

Wjc

”
χji (k)−x̂

−
i(k)

ı”
Yji(k)−ŷi(k)

ıT

Ki(k)=P̂x̂yi(k)P
−1
ŷ̂yi
(k)

x̂i(k)=x̂
−
i(k)+Ki(k)ryi(k)−ŷi(k)s

Pi(k)=P
−
i(k)−Ki(k)P̂ŷyi(k)K

T
i(k)

NotationandParametrization

(
?
A)jdenotesthejthrowof

?
A

Listhedimensionoftheaugmentedstate

W0m =
λ
L+λ

W0c=
λ
L+λ

+(1−α2+β)

Wjm =W
j
c=

1
2(L+λ)

λ=α2(L+κ)−L
α=0.001;κ=0;β=2
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in terms of the previous values of p1(k−1), ..., pM(k−1), and conditional probability

densities for the current measurement z(k) (denoted by Fz(k)|a,Z (k−1)(zi|ai,Zk−1)).

The MM-based FDI scheme is now composed of a bank of M individual and

separate nonlinear Kalman filters, each based on a particular value of ai, i =

1, ...,M . The innovation vector vi(k) is used to compute p1(k), ..., pM(k) via equation

(3.3) with a Gaussian density function that is given by

Fz(k)|m,Z (k−1)(zi|ai,Zk−1) = ζi(k)e−(1/2)v′i(k)S−1
i (k)vi(k) (3.4)

where ζi(k) = 1
(2π)m/2|Si(k)|1/2 and m is the measurement dimension. The innovation

vi(k) and the innovation covariance matrix Si(k) are computed by using the standard

equations of the Extended Kalman Filter (EKF) and the Unscented Kalman Filter

(UKF) as given in Tables 3.1 and 3.2 ( [57], [128]), respectively.

Let us assume that the actual value of the fault parameter a is given by ai.

Then, it is expected that a mean squared value of the residual generated by the

nonlinear Kalman filter based on ai is in consonance with the residual covariance

matrix Si(k) over time, while mismatched filters generate larger residuals than those

predicted by the their own residual covariance matrices. Hence, the MM-based

algorithm will most heavily weight the nonlinear Kalman filter that corresponds to

ai. The problem of fault detection and isolation (FDI), or equivalently the status

of the current operating mode of the system at the time instant k can therefore

be stated as and simplified to that of evaluating the quantity arg maxi pi(k) for the

desired solution. Figure 3.1 shows the schematic of the general architecture of our

proposed MM-based FDI approach.

Remark 3.2. It follows from equation (3.3) that if any pi is ever computed to be

zero at any given time k, this probability will be locked to zero for all time there

after. In order to prevent this lock out [47], an artificially small lower bound was

considered for all pi’s. Moreover, it was shown in [129] that the leading coefficient
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Figure 3.1: General architecture of our proposed MM-based FDI scheme.

ζi(k) in (3.4) does not provide any useful information for fault identification and

even may cause incorrect fault identification. Therefore, the term ζi(k) is usually

removed from the equation (3.4). It should be noted that since the denominator of

(3.3) is the summation of all the numerators, even by removing the term ζi(k), the

sum of the computed probabilities remains one.

3.2 Multiple Model-Based Fault Diagnosis Design

In this section, a fault detection and isolation (FDI) strategy for a single spool gas

turbine that is based on the MM-based approach is developed. Towards this end,

first the nonlinear Kalman filters corresponding to each operating mode (healthy

and faulty) is derived. The MM-based nonlinear filters are then designed according

to the procedure that is described in Section 3.1. As pointed out after equation (3.1),

the output measurements, z, or the available sensors are taken as the pressure and

the temperature after the compressor (PC and TC), the pressure and the temperature

after the turbine (PT and TT ), and the rotational speed (N).
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Table 3.3: The definition and description of the considered component faults.

Component Description Mode
Fault Label

∆FCC Decrease in the compressor flow capacity P2
∆ηC Decrease in the compressor efficiency P3

∆FCT Decrease in the turbine flow capacity P4
∆ηT Decrease in the turbine efficiency P5

3.2.1 Fault Modeling and Detection Filter Design

In this chapter, both component anomalies as well as an actuator anomaly are

considered as sources of gas turbine faults. Common component faults [106] are

modeled as changes in the component efficiency and flow capacity. Four component

faults are investigated in this work as shown in Table 3.3. Moreover, a fault in the

fuel valve is considered as an actuator fault. Hence, the total number of operating

modes is six (as stated in Remark 1) where mode #1 (P1) corresponds to the healthy

gas turbine, modes #2 to #5 (P2 to P5) correspond to the component faults as

specified in Table 3.3, and mode #6 (P6) corresponds to the loss of effectiveness

fault in the fuel valve actuator (equation(2.15)). Faults that are considered here are

multiplicative e.g. the fault compressor efficiency is defined as ∆ηC × ηC .

Faulty models corresponding to the component faults in Table 3.3 are obtained

by considering a 2% decrease in the efficiency or the flow capacity with respect to the

normal (healthy) mode. For instance, for obtaining the nonlinear model associated

with the operating mode #2, the compressor efficiency is decreased by 2% [127,130].

Moreover, the nonlinear model associated with the operating mode #6 (actuator

fault mode) is obtained by considering a 5% loss of effectiveness or gain fault in the

fuel actuator valve.

In our proposed hierarchical approach, it is assumed that the engine starts

from the healthy condition when the “first level” of filters are active and the pro-

posed algorithm observes the engine for occurrence of one of the five faults that are
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Table 3.4: The operating modes corresponding to various possible two concurrent
faults scenarios.

Levels Operating Modes
# 1 # 2 # 3 # 4 # 5 # 6

First Healthy P2 P3 P4 P5 P6
(2%) (2%) (2%) (2%) (2%)

Second

P2 P2 P2 P2 P2 P2
(5%) P3 P4 P5 P6

P3 P3 P3 P3 P3 P3
P2 (5%) P4 P5 P6

P4 P4 P4 P4 P4 P4
P2 P3 (5%) P5 P6

P5 P5 P5 P5 P5 P5
P2 P3 P4 (5%) P6

P6 P6 P6 P6 P6 P6
P2 P3 P4 P5 (5%)

specified above. Normally, when the engine is operating healthy, the mode proba-

bility corresponding to the first mode (#1) is maximum. Once a fault has occurred,

the mode probability corresponding to the healthy mode decreases, and the mode

probability corresponding to the occurred fault increases until it takes the maximum

value among all the modes. The maximum value of the mode probability that is

reached by the active mode is 1, and the corresponding probabilities of other modes

become 0. Therefore, the fault detection logic is simply a comparison among the

mode probabilities by which the corresponding fault is detected and isolated.

For detection and isolation of two concurrent faults in the engine, a hierarchical

approach is proposed [47] as illustrated in Table 3.4. Once the first fault is detected

and isolated according to the maximum probability criteria, the FDI algorithm

will activate the “second level” of filters (as shown in Table 3.4) for detection and

isolation of the second concurrent fault in the engine. It should be noted that

in our proposed hierarchical architecture, it is assumed that faults do not occur

simultaneously and there exists at least a non-zero time interval (dwell time) between

the occurrence of faults in the engine. In other words, we are considering and

allowing the occurrence of concurrent faults. Table 3.4 depicts details on all the

possible configurations for the second bank of filters. For example, if the first fault

is detected as a 2% change in the compressor flow capacity (P2), then the first
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filter in the second level corresponds to the detected fault scenario (P2) (that is

∆FCC = 2%), the second filter corresponds to a further decrease of (3%) in the

compressor flow capacity resulting in a total of 5% decrease in the capacity (that is

∆FCC = 5%), the third filter corresponds to the concurrent decrease of 2% in the

compressor flow capacity and a decrease of 2% in the compressor efficiency (P2 and

P3) (that is ∆FCC = 2% and ∆ηC = 2%), etc. Note that this procedure can be

similarly extended to the third and higher levels that correspond to the occurrence

of multiple (three and higher) concurrent faults.

It should be emphasized again that when the new bank of filters is activated

in the second level, there is no need to further operate the first bank of filters and

our FDI strategy basically deactivates this bank of filters to save computational

resources. In other words, the hierarchical architecture enables one to detect and

isolate the occurrence of the second fault without adding any extra computational

burden since at any given time, only 6 filters are operating on-line.

Remark 3.3. Note that in the above hierarchical fault diagnosis architecture, only

two levels of fault severities, namely 2% and 5% are considered for the sake of

illustration only. It should be emphasized that more fault severities can equally and

easily be considered by correspondingly increasing the number of models that are

considered in this architecture.

3.3 Simulation Results

In this section, simulation results and performance evaluations of our proposed di-

agnostic system corresponding to various fault scenarios are presented. We have

implemented both the EKF and the UKF in our MM-based scheme and have pro-

vided comparative results. It should be noted that all the faults are actually applied
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to and injected in the fully nonlinear model of the gas turbine as governed by equa-

tions (2.14) and (2.15). For example, the compressor efficiency (ηc) is replaced by

∆ηc × ηc in equation (2.14) for injection of fault P3. The measurement noise levels

that are considered are shown in Table 2.2, where the standard deviations are given

as percentage of the nominal values at typical cruise conditions [127]. It is also as-

sumed that the PLA=0.9 and the ambient conditions are set to standard conditions

and the Mach number is set to 0.74.

3.3.1 Single Fault Scenarios

Figures 3.2 and 3.3 depict the mode probabilities and the output measurements

corresponding to the injected 2% decrease in the compressor efficiency that is applied

at t = 5 seconds (Mode #3), respectively. In Figure 3.2 (a), for all t < 10.2 seconds

the quantity arg maxi pi(k) = p1, which corresponds to classifying and identifying the

healthy operation of the engine. However, for all t >= 10.2, we have arg maxi pi(k) =

p3, which classifies and identifies that the mode P3 is active in the engine. Therefore,

the fault in the compressor efficiency is perfectly detected and isolated at t = 10.2

seconds. As shown in Figure 3.2, the MM-scheme in which the UKF is used detects

the fault at time t = 10.2 seconds, whereas the MM-scheme with the EKF detects

the fault at time t = 13.2 seconds.

Since in real applications there is no guarantee that a fault occurs abruptly or

matches exactly the predefined fault severity level, one requires to investigate the

performance of the MM-based approach under these realistic circumstances. Figure

3.4 shows the mode probabilities corresponding to the injection of a 3% fault in

the turbine efficiency (Mode #5) corresponding to both the EKF and the UKF

detection filters in the MM-based scheme. This figure shows that the algorithm

is capable of detecting and isolating a fault whose severity lies within the already

designed severities of 2% and 5% and does not have to match the mode definition
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Figure 3.2: The mode probabilities corresponding to the injected 2% decrease in the
compressor efficiency that is applied at t = 5 seconds (Mode #3) (a) the UKF is
used in the MM-based FDI scheme, and (b) the EKF is used in the MM-based FDI
scheme.
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Figure 3.3: The output measurements corresponding to the injected 2% decrease in
the compressor efficiency that is applied at t = 5 seconds (Mode #3).
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Figure 3.4: The mode probabilities corresponding to the injected 3% decrease in the
turbine efficiency that is applied at t = 5 seconds (Mode #5) (a) the UKF is used in
the MM-based FDI scheme, and (b) the EKF is used in the MM-based FDI scheme.

exactly. The average detection times for all the fault modes (P2 to P6) that are

applied at t = 5 seconds as a function of the fault severity levels are given in Table

3.5. Figure 3.5 shows the detection time as a function of the fault severity for each

mode separately. It can be observed from the Table 3.5 that the higher the fault

severity the earlier the detection times specially for faults where the detection filters

are specifically designed for.

The superiority of UKF to EKF is well established in the literature ( [57]

and [131]), however this is not generally guaranteed in the MM-based structure.

It is apparent from the equations 3.3 and 3.4 that are used for mode probabilities

computation, the convergence of the mode probabilities not only depends on the

convergence of the filter that matches the fault mode, but also it depends on the

behavior of other filters. In other words, the behavior of UKF and EKF when

their dynamics do not match the real active dynamics is also crucial, however, this

behavior is not generally known in order to discuss the nature of the generated

residuals and their impact on the mode probabilities convergence. Intuitively, since

at each time step UKF performs multiple nonlinear simulations while EKF computes

57



Table 3.5: The average detection times for all the fault modes (P2 to P6) that are
applied at t = 5 seconds as a function of the fault severity levels.

Fault severity 2% 3% 4% 5% 6%
level

UKF Scheme 9.6 10.3 9.5 8.7 9.1
EKF Scheme 11.3 12.9 10.6 10.1 10.4
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Figure 3.5: The detection time for each mode of fault that is applied at t = 5 seconds
as a function of the fault severity (a) the UKF is used in the MM-based FDI scheme,
and (b) the EKF is used in the MM-based FDI scheme.

Jacobins, and since divergence is less probable in nonlinear simulations of a dynamic

model that slightly differs from the real active dynamics in comparison with the

computation of jacobins, one can expect that UKF performs better than EKF in

MM-based scheme.

3.3.2 Concurrent Fault Scenarios

In this section, we investigate concurrent faults scenarios where a 2% decrease in

the compressor efficiency (P3) is injected at t = 5 seconds and a 2% decrease in the

compressor mass flow rate (P2) is injected at t = 30 seconds. Based on the hierar-

chical multiple model architecture that was described in Section 3.2, our proposed
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Figure 3.6: The mode probabilities corresponding to the injected 2% decrease in the
compressor efficiency that is applied at t = 5 seconds (Mode #3) followed by an
injection of a 2% decrease in the compressor mass flow rate (Mode #2 in the second
level) that is applied at t = 30 seconds. (a) The fault detection and isolation by the
first level of filters using the UKF in the MM-based scheme, (b) The fault detection
and isolation by the first level of filters using the EKF in the MM-based scheme, (c)
The fault detection and isolation by the second level of filters using the UKF in the
MM-based scheme, and (d) The fault detection and isolation by the second level of
filters using the EKF in the MM-based scheme.
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Figure 3.7: The output measurements corresponding to the injected 2% decrease in
the compressor efficiency that is applied at t = 5 seconds (Mode #3) followed by an
injection of a 2% decrease in the compressor mass flow rate (Mode #2 in the second
level) that is applied at t = 30 seconds.
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algorithm first uses the bank of filters that corresponds to the first level (no fault

has yet been detected). Figures 3.6 (a) and (b) depict the mode probabilities that

are generated by the first level filters. As shown in the figures, the first fault in

the compressor efficiency is detected and isolated at t = 10.0 seconds corresponding

to the UKF detection filters and at t = 12.1 seconds corresponding to the EKF

detection filters.

Once this fault is detected, the second level bank of filters is initiated to operate

where these filters are designed according to Table 3.4. Specifically, the filter #1 in

this bank of filters corresponds to the detected fault P3, filter #2 corresponds to the

concurrent occurrence of the detected fault P2 and the fault P3, filter #3 corresponds

to the further degradation of the compressor efficiency P3 by 3% (resulting in the

total decrease of 5%), and similarly for all the other filters they correspond to the

concurrent occurrence of the detected fault P2 and the other faults (namely P4 to

P6). It should be emphasized again that when a new bank of filters is initiated

to run there is no need to further operate the previous level bank of filters so that

our proposed FDI algorithm deactivates the previous set of bank of filters. This

is done in order to minimize the overall computational resources of the diagnostics

system. In other words, at any given time only one set or level of bank of filters is

active and running. Figure 3.6 (c) and (d) depict the mode probabilities that are

generated by the second level bank of filters. The second fault in the compressor

mass flow rate is detected and isolated at t = 41.4 seconds corresponding to the UKF

detection filters and at t = 43.4 seconds corresponding to the EKF detection filters.

As in the previous subsection, one can again conclude that the UKF outperforms

the EKF in terms of the delay in the fault detection times. Figure 3.7 depicts

the output measurements that are observed corresponding to the above concurrent

faults scenario.
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3.3.3 Operational Condition Variations

When a linear detection filter is used in the MM-based scheme [56], one of the

major concerns that arise is due to the validity of the implemented filters subject

to the variations of the operating point such as the Mach number, the PLA setting

and the ambient conditions. In case of large variations, the diagnostic algorithm

may generate false alarms. In order to cope with this drawback, a strategy should

be devised to accurately follow the engine operating point variations, and activate

the appropriate linear detection filters. However, by implementing our proposed

nonlinear detection filters the operating condition variations are automatically taken

into account by the nonlinear detection filters. To demonstrate and substantiate

this advantage, in the next set of simulations the ambient temperature is linearly

varied from from 15◦ to 5◦ over an interval of 20 seconds while a 2% fault in the

turbine mass flow rate is injected (Mode #4) at time t = 5 seconds. Figures 3.8

and 3.9 show the results obtained. It follows that while the ambient temperature is

varying, the MM-based FDI scheme is capable of detecting and isolating the fault

and indeed the operating variations do not affect the FDI performance. In another

set of simulations, in addition to the injection of a fault (i.e. a 2% fault in the

turbine mass flow rate (Mode #4) applied at t = 5 seconds), the PLA is smoothly

varied from 0.9 to 1.1, as shown in Figure 3.11. The results of the simulations that

are shown in Figures 3.8 and 3.10 confirm and demonstrate the capability of our

proposed approach in dealing with the challenging problem of operating condition

variations.
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Figure 3.8: The mode probabilities corresponding to the injected 2% decrease in
the turbine mass flow rate that is applied at t = 5 seconds (Mode #4) while the
ambient temperature is varying (a) the UKF is used in the MM-based FDI scheme,
and (b) the EKF is used in the MM-based FDI scheme.
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Figure 3.9: The output measurements corresponding to the injected 2% decrease in
the turbine mass flow rate that is applied at t = 5 seconds (Mode #4) while the
ambient temperature is varying.
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Figure 3.10: The mode probabilities corresponding to the injected 2% decrease in
the turbine mass flow rate that is applied at t = 5 seconds (Mode #4) while the
PLA is varying (a) the UKF is used in the MM-based FDI scheme, and (b) the EKF
is used in the MM-based FDI scheme.
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Figure 3.11: The output measurements corresponding to the injected 2% decrease
in the turbine mass flow rate that is applied at t = 5 seconds (Mode #4) while the
PLA is varying.
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3.3.4 A Comparison Between the Performance of the UKF

and the EKF Detection Filters

While the comparison between single UKF and single EKF is comprehensively stud-

ied in the literature, a similar comparison between mentioned filters in a MM-based

structure has not been performed yet. However, this task is analytically difficult

since one should investigate the behavior of filters and nature of the residuals gen-

erated when the filter dynamics does not match the active mode. Typically, it is

custom to investigate the filter estimation performance by observing how residuals

converges to zero, while in order to have an overall judgment on the performance of

filters in the MM-based structure, one also should know the the nature of residuals

generated when the residuals of some filters are not supposed to converge to zero.

In this section, we investigate the performance of the the UKF and the EKF

detection filters in the MM-based scheme by simulation. An important figure of

merit that is of interest in many applications is robustness to sensor and measure-

ment noise. In the previous simulations, we have applied a noise level that is given

in Table 2.2 for the measurements. In this subsection, we have increased the noise

levels proportionally by a factor (noise power factor), and have examined if the UKF

or the EKF detection filters in the MM-based scheme are capable of detecting and

isolating all fault modes as described in Table 3.3. The detection time for each fault

mode as a function of the noise power factor is shown in Figure 3.12. The results are

summarized in Table 3.6 in which numerical values indicate the average fault detec-

tion times for all the modes (P2 to P6) when the fault is applied at t = 5 seconds. A

bullet mark (•) indicates an unsuccessful detection or isolation of at least one fault

mode. As expected, the UKF scheme demonstrates a superior performance over the

EKF scheme when a higher level of noise is applied.

In another set of simulations, we have investigated the effects of the availabil-

ity of a certain number of measurements on the performance of the detection filters.
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Table 3.6: The average detection times for all the modes of faults (P2 to P6) that
are applied at t = 5 seconds as a function of the noise power factor.

Noise 1 1.1 1.3 1.5 1.8 2
power factor
UKF Scheme 9.6 9.8 10.0 9.9 10.1 10.1
EKF Scheme 11.3 15.6 19.2 • • •

Table 3.7: The average detection times for all the fault modes (P2 to P6) that are
applied at t = 5 seconds as a function of the number of the measurements or sensors
that are employed.

Number of 5 4 3 2
measurements/sensors used

UKF Scheme 9.6 11.7 12.0 •
EKF Scheme 11.3 13.5 14.1 •

This case is different from the sensor fault scenario since in the presence of a sensor

fault the diagnostic or control module will continue to use the faulty sensor data

unless a separate strategy for sensor fault detection is employed and considered.

In this subsection, we are interested in determining the minimum number of mea-

surements that is required by the detection filters in order to perform the FDI task

properly. The detection time for each fault mode as a function of the number of the

measurements or sensors is shown in Figure 3.13. Table 3.7 summarizes the results.

In this table the average fault detection times numerical values for all the modes

(P2 to P6) are provided corresponding to a fault that is applied at t = 5 seconds. A

bullet mark (•) indicates either an unsuccessful detection or isolation of at least one

fault mode. It can be concluded that both the UKF and the EKF detection filters

have the same performance capability in terms of functionality with various sets

of measurements and sensors, however, the UKF detection filters perform superior

over the EKF detection filters in terms of the fault detection times.

Computational requirements is also an important merit of performance which

one requires to consider for comparison and evaluation purposes. The UKF scheme
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Figure 3.12: The detection time for each mode of fault that is applied at t = 5
seconds as a function of the noise power factor. The empty places indicates the
unsuccessful detection or isolation of the corresponding fault. (a) the UKF is used
in the MM-based FDI scheme, and (b) the EKF is used in the MM-based FDI
scheme.
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Figure 3.13: The detection time for each mode of fault that is applied at t =
5 seconds as a function of the number of the measurements or sensors that are
employed. (a) the UKF is used in the MM-based FDI scheme, and (b) the EKF is
used in the MM-based FDI scheme.
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in general runs slower than the EKF scheme due to the multiple nonlinear compu-

tations that are required at each time step. This factor makes the UKF scheme less

suitable for real-time applications. On the other hand, one of the advantages of the

UKF scheme over the EKF scheme is that it does not require the Jacobian matrix of

the system at each time step, which by itself is a computationally costly operation.

Especially, when one uses performance maps for modeling the nonlinear dynamics

of the gas turbine, the task of computing the Jacobian matrix at each operating

point is computationally expensive and complex and can be performed only numer-

ically. However, in our application the linearization approximation performed by

the EKF scheme at each time step takes less CPU time than the multiple nonlinear

computations that are performed by the UKF scheme.

Based on the above simulations and discussions, one can have this impression

in the final analysis that the UKF detection filters do indeed outperform the EKF

detection filters in this application.

3.4 Conclusions

In this chapter, a nonlinear multiple model (MM-based) fault detection and isolation

scheme for health monitoring of gas turbines is proposed and developed. Starting

from the nonlinear dynamics of a gas turbine, a bank of nonlinear detection filters

is designed where each filter corresponds to a specific faulty mode of the engine. As

earlier mentioned in Section 2.1, fault modes are defined using Gas Path Analysis

which covers a wide range of physical faults. A hierarchical fault detection and iso-

lation architecture is proposed corresponding to both single and concurrent faults in

the engine. By taking into account the fault occurrence history, only a minimal set

of detection and isolation filters is activated so that the same number of filters are

always operating at any given point in time. In other words, the complexity of our
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proposed fault detection and isolation (FDI) algorithm does not increase as more

novel faults are concurrently injected to the engine. We have implemented both the

EKF and the UKF detection filters in the MM-based FDI architectures. Simulation

results demonstrate that considerable improvements exist on the performance of the

UKF scheme over the EKF scheme in terms of the fault detection times and func-

tionality with respect to different number of measurements and sensors. Moreover,

the UKF scheme is significantly more robust to the large sensor noise. In this work,

we have assumed existence of a set of predefined severity fault levels for construction

of the supposed UKF and EKF detection filters from the corresponding nonlinear

model of the gas turbine. Therefore, one natural direction for future research will

be to develop a robust fault diagnosis scheme in which the fault severity levels are

estimated through parameter estimation techniques.

68



Chapter 4

Inversion-Based Fault Estimation

In the previous chapter, we developed an observer based FDI scheme by utiliz-

ing nonlinear Kalman filters. We demonstrated the performance of the proposed

MM-based approach through comprehensive simulations. However, in many real-

life cases, the system operators need to have an estimation of fault severity to decide

on the continuation or abortion of the mission or maintenance strategy. Numerous

approaches have been proposed for fault estimation in dynamical systems. An im-

portant category of observer based methods for fault estimation is inversion-based

approaches which is also closely related to our proposed data-driven FDI&E scheme.

In this chapter, we propose a framework for inversion-based estimation of cer-

tain categories of faults in discrete-time linear systems. First, we develop a novel

methodology for direct estimation of unknown inputs by using only measurements of

either minimum or non-minimum phase systems as well as systems with transmission

zeros on the unit circle. The unknown input is reconstructed from its projections

onto two subspaces. One projection is achieved through an algebraic operation,

whereas the other is given by a dynamic filter whose poles coincide with the trans-

mission zeros of the system. A feedback is then introduced to stabilize the above
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filter dynamics as well as provide an unbiased estimation of the unknown input.

Next, we have applied our proposed methodology to the problem of fault estimation

and have shown that the proposed inversion filter is unbiased for certain categories

of faults. Finally, we have illustrated the performance of our proposed method-

ologies through numerous sim! ulation studies to demonstrate the capabilities and

advantages of the developed strategies.

The remainder of the chapter is organized as follows. First, the two problems

that are considered in this chapter are formally stated and defined in Section 4.1.

The definitions and notations that are used throughout the chapter are provided

in Section 4.2. Our proposed solution for a stable inversion of linear systems is

presented in Section 4.3. The adoption of the proposed inversion method for solving

the fault estimation problem is introduced and developed in Section 4.4. Finally,

numerical simulations and case studies are included in Section 4.5.

4.1 Problem Statement

In this chapter, we consider two problems as described and formally presented below.

4.1.1 Problem 1: Inversion-Based Input Estimation of Discrete-

Time Linear Systems

Consider the dynamics of a given linear time-invariant (LTI) discrete-time system

is governed by,

S :

 x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(4.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rl, where the state x(t) and the input u(t) are

assumed to be un-measurable and unavailable. The main objective that is pursued
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here is to estimate the unknown sequence u(k) from the generated, and the only

known and available sequence y(k) under the following general assumption.

Assumption A: It is assumed that,

1. The system S is stable and observable, and

2. At least one of the matrices B or D is full rank.

In other words, one of the matrices B and D can be rank-deficient or identically

zero, but both cannot be simultaneously zero or rank deficient. The other required

conditions and assumptions will be given under each result that we will be developing

subsequently. We address a solution to this problem in Section 4.3.

4.1.2 Problem 2: Inversion-Based Fault Estimation of Discrete-

Time Linear Systems

Consider a faulty LTI discrete-time system that is given by,

Sf :

 x(k + 1) = Ax(k) +Bu(k) + Lf(k)

y(k) = Cx(k) +Du(k) + Ef(k)
(4.2)

where x ∈ Rn, u ∈ Rm, y ∈ Rl and the input f ∈ Rp denotes the fault signal. The

problem that is considered here is to provide an estimate of the fault signal, i.e.

f̂(k), by only utilizing the available information from the system, namely y(k) and

u(k), under the following assumption.

Assumption B: It is assumed that,

1. The system Sf is observable, and

2. At least one of the matrices L or E is full rank.

The solution to this problem is discussed and provided subsequently in Section 4.4.
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4.2 Notations

Let us consider the Rosenbrock System Matrix that is given by,

MR(z) =

»

–

zI − A B

−C D

fi

fl (4.3)

where if rank(MR(z)) < n + min(l,m), then z is called a transmission zero or an

invariant zero of the system S. Similarly, if the rank of the following matrix Mf (z) is

reduced at a particular value of z, the specific zero is designated as the transmission

zero of the fault-to-output dynamics, where

Mf (z) =

»

–

zI − A L

−C E

fi

fl (4.4)

The vectors U2M(k− 2M), F2M(k− 2M) and Y2M(k− 2M) that are directly

and specifically constructed from the input u(k), fault f(k) or the output y(k) signals

and will be used throughout the chapter are defined as follows

U2M(k − 2M) =

»

—

—

—

—

—

—

—

–

u(k − 2M)

u(k − 2M + 1)

...

u(k − 1)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.5)

where M ∈ N and is selected to be equal or greater than n (M ≥ n), i.e. the order of

the system S. The vectors F2M(k−2M) and Y2M(k−2M) are similarly constructed

by replacing u(k) in (4.5) with f(k) and y(k), respectively.

The above input and output vectors satisfy the following relationship,

Y2M(k − 2M) = C2Mx(k − 2M) + D2MU2M(k − 2M) (4.6)
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where,

C2M =

¨

˚

˚

˚

˚

˚

˚

˚

˝

C

CA

...

CA2M−1

˛

‹

‹

‹

‹

‹

‹

‹

‚

; D2M =

¨

˚

˚

˚

˚

˚

˚

˚

˝

D 0 . . . 0

CB D . . . 0

...
...

...
...

CA2M−1B CA2M−2B . . . D

˛

‹

‹

‹

‹

‹

‹

‹

‚

(4.7)

Give a matrix A, then A⊥, AT and N (A) denotes the orthogonal space, the

transpose, and the null space of A. We extensively use the concept of Moore Penrose

pseudo inverse. If A is full row rank, then we denote its pseudo inverse by A†, and

compute it by AT (AAT )−1. Similarly, if A is full column rank, then we also denote

the pseudo inverse by A†, and compute it by (ATA)−1AT . If A is rank deficient,

then we denote the pseudo inverse by A+, where A+ is a matrix that satisfies the

following conditions: 1) AA+A = A 2) A+AA+ = A+ 3) (AA+)T = AA+ and 4)

(A+A)T = A+A. If UΣV T denotes the SVD decomposition of A, then A+ is given

by V Σ+UT , where Σ+ is obtained by reciprocating each non-zero diagonal element

of Σ.

4.3 The Proposed Inversion-Based Input Estima-

tion of Linear Systems

Our main strategy is to construct D2MU2M(k−2M) ∈ R2Ml by using its projections

onto two linearly independent subspaces. First, we identify these subspaces. Next,

we will show that the projection of D2MU2M(k − 2M) onto one of these subspaces

is directly and simply given by multiplying Y2M(k−2M) by a gain. We denote this

projection by Uaux
2M . Next, we establish an important result that D2M(U2M−Uaux

2M ) is

zero if the system S does not have any transmission zeros. Otherwise, computation of

the other projection requires that one constructs a dynamical filter. We will identify,

specify and characterize this filter and its properties. Specifically, we will show how
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the stability condition of this filter is affected by the location of the invariant zeros

of the system S.

4.3.1 Linear Systems With No Invariant Zeros

Let us define the matrix H2M as follows,

HT
2M = (CT

2M)⊥ (4.8)

Note that since S is observable as per Assumption A(1), any vector in R2Ml can be

written as a combination of the C2M columns and the H2M rows. The dot product

of the rows of H2M with the columns of D2MU2M(k − 2M) is directly given by

H2MD2MU2M(k − 2M) = H2MY2M(k − 2M) (4.9)

Therefore, the projection of D2MU2M(k − 2M) onto the row space of H2M is given

by PhY2M , where Ph is the projection operator on the row space of H2M and is

given by,

Ph = HT
2M(H2MHT

2M)−1H2M (4.10)

The matrix H2MD2M is not a full rank matrix in general, hence one cannot

reconstruct U2M(k − 2M) from equation (4.9). To address this challenge, let us

determine another input, namely Uaux
2M (k−2M) (designated as the auxiliary input),

that satisfies equation (4.9) by solving the following optimization problem,

min
Uaux

2M

‖H2MY2M(k − 2M)−H2MD2MUaux
2M (k − 2M)‖ (4.11)

The solution to the above minimization problem is given by,

Uaux
2M (k − 2M) = K1Y2M(k − 2M) (4.12)

where,

K1 = (H2MD2M)+H2M (4.13)
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In general, it should be noted that D2MUaux
2M (k−2M) is the construction of D2MU2M(k−

2M) onto the row space of H2M . This fact is graphically illustrated in Figure 4.1 for

a SISO system with n = 1. Moreover, if the system S does not have any transmis-

sion zeros, then the first 2Ml−n rows of U2M(k−2M) and Uaux
2M (k−2M) are equal

as shown in the following theorem. However, we need to first state the following

lemma.

Lemma 4.1. Let Assumptions A(1) and A(2) hold, l ≥ m, and M ≥ n. If the

system S has no transmission zeros, then rank(D2M) ≥ 2Mm − n. The equality

holds for square systems, namely when l = m.

Proof. If D is full rank, then rank(D2M) is obviously greater than 2Mm− n. If D

is zero or rank deficient, since the system has no transmission zeros, then at least

CAn−1B is full rank. Note that CAn−1B does not appear in D2M from the column

2Mm− n+ 1 there after. Hence, it follows that rank(D2M) ≥ 2Mm− n.

For a square system, the equality also holds since one can express the mea-

surement equation in the matrix format as follows,

Y2M(k − 2M) =
”

C2M D2M

ı

»

–

x(k − 2M)

U2M(k − 2M)

fi

fl (4.14)

therefore if rank(D2M) > 2Mm−n, certain columns of C2M are linearly dependent

with the columns of D2M , which implies that there exist a nonzero initial x(k −

2M) and a nonzero input sequence that will yield a zero output. This results in a

contradiction, and therefore the rank condition should be satisfied.

Lemma 4.1 implies that for square systems, as the number of transmission

zeros increases, the rank of D2M will consequently increase. In other words, C2M

and D2M will have more linearly dependent columns which allows the injection of a

nonzero input for zeroing out the output. This fact is also reflected when the problem

of decoupling state estimation process from the unknown input is considered.
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Theorem 4.1. Let Assumptions A(1) and A(2) hold, l ≥ m, and M ≥ n. If

the system S has no transmission zeros, then at least the first 2Mm − n rows of

U2M(k − 2M) and Uaux
2M (k − 2M) are identical.

Proof. If we subtract equation (4.20) from the measurement equation of the system

Saug and rewrite it in the matrix format, we will obtain,

”

C2M D2M

ı

»

–

x(k − 2M)− z(k − 2M)

U2M(k − 2M)−Uaux
2M (k − 2M)

fi

fl = 0 (4.15)

Since the system S does not have any transmission zeros, the columns of C2M and

D2M are linearly independent. Hence,

C2M(x(k − 2M)− z(k − 2M)) = 0

and

D2M(U2M(k − 2M)−Uaux
2M (k − 2M)) = 0 (4.16)

On the other hand, from Lemma 4.1, it follows that the first 2Mm− n columns of

D2M must be linearly independent. Therefore, one can transform equation (4.16)

into the following format using basic operations on the last n columns of D2M and

the last n rows of Uaux
2M (k − 2M)−U2M(k − 2M). Specifically, we have,

”

D 0

ı

»

–

Uaux2M (k − 2M)− U2M(k − 2M)

X

fi

fl = 0 (4.17)

where D is a nonsingular matrix that has the first 2Mm − n columns of D2M and

Uaux2M (k−2M)−U2M(k−2M) is the first 2Mm−n rows of Uaux
2M (k−2M)−U2M(k−

2M). Therefore, the first 2Mm − n rows of Uaux
2M (k − 2M) and U2M(k − 2M) are

equal as stated.

Theorem 4.1 implies that the unknown input for the system S having no

transmission zeros can be algebraically reconstructed from the measurements.
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C2M

H2M

D2MU2M(k − 2M)

D2MUaux
2M (k − 2M)

Y2M(k − 2M)

C2Me(k)

Figure 4.1: A graphical illustration of the C2M and H2M spaces. Note that projec-
tions of Y2M , D2MU2M and D2MUaux

2M onto the row space of H2M are identical.

4.3.2 Minimum Phase Linear Systems

Let us define an augmented system Saug that is governed by,

Saug :

 x(k − 2M + 1) = Ax(k − 2M) +BIpU2M (k − 2M)

Y2M (k − 2M) = C2Mx(k − 2M) + D2MU2M (k − 2M)
(4.18)

where Ip is defined according to,

Ip =
”

Im×m 0m×(2Mm−m)

ı

(4.19)

The systems Saug and S have the same states, i.e. x(k) subject to 2M time delays.

Let us also define a dummy state variable z(k − 2M) that satisfies the following

relationship,

Y2M(k − 2M) = C2Mz(k − 2M) + D2MUaux
2M (k − 2M) (4.20)

The variable z(k − 2M) that satisfies the above equation exists since Y2M(k −

2M)−D2MUaux
2M (k − 2M) belongs to the column space of C2M , and Y2M(k − 2M)

and Uaug
2M (k− 2M) are known at each time step. Consequently, z(k− 2M) is known

and is given by,

z(k − 2M) = C†2M(Y2M(k − 2M)−D2MUaux
2M (k − 2M)) (4.21)
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Note that the variable z(k) is not governed by the dynamics of x(k) except when the

system S does not have any transmission zeros as shown in the proof of Theorem

4.1. In general, z(k + 1) 6= Az(k) + Bu(k). In fact the difference between the

dynamics of x(k) and z(k) represents the zero dynamics of the system as we will

show subsequently.

Let us define the difference between the two variables as a state error according

to,

e(k) = x(k − 2M)− z(k − 2M) (4.22)

We are now in position to state our next result.

Lemma 4.2. Let Assumptions A(1) and A(2) hold, l ≥ m, and M ≥ n. The

dynamics associated with the state error (4.22) is now given by,

e(k + 1) = (A−BIpD
+
2MC2M)e(k)

−
”

I −A −BIp

ı

»

—

—

—

—

–

z(k − 2M + 1)

z(k − 2M)

Uaux
2M (k − 2M)

fi

ffi

ffi

ffi

ffi

fl

. (4.23)

Proof. According to the definition of e(k) given by equation (4.22), we have,

e(k + 1) = x(k − 2M + 1)− z(k − 2M + 1)

= Ax(k − 2M) +BIPU2M(k − 2M)− z(k − 2M + 1)

= Ae(k) + Az(k − 2M) +BIP δU2M(k) +BIPUaux
2M (k − 2M)− z(k − 2M + 1)

= (A−BIpD
+
2MC2M)e(k)−

”

I −A −BIp

ı

»

—

—

—

—

–

z(k − 2M + 1)

z(k − 2M)

Uaux
2M (k − 2M)

fi

ffi

ffi

ffi

ffi

fl

.

(4.24)

This concludes the proof of the lemma.
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It should be noted that the poles associated with the dynamics that is governed

by equation (4.23) include the transmission zeros of the system S for a square system.

More specifically, we can state the following result.

Theorem 4.2. Let Assumptions A(1) and A(2) hold, l = m, and M ≥ n. Let V =

{vi|i = 1, .., p} denote the set of the system S invariant zeros. Let O = {0, . . . , 0},

that contains n− p zeros. The eigenvalues of (A−BIpD
+
2MC2M) are then given by

V ∪ O.

Proof. Note that the eigenvalues of A−BIpD
+
2MC2M are obtained by solving,

|zI− A+BIpD
+
2MC2M |= 0 (4.25)

If the system is square, then D+
2M is a nonzero square matrix. Therefore, one can

equivalently solve the equation,

ˇ

ˇD+
2M

ˇ

ˇ |zI− A+BIpD
+
2MC2M |= 0 (4.26)

On the other hand, using the Schur identity, we have,

ˇ

ˇD+
2M

ˇ

ˇ |zI− A+BIpD
+
2MC2M |=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

zI− A −BIp

C2M D2M

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(4.27)

Let us partition the terms C2M and D2M as follows,

C2M =

¨

˚

˝

C

C−

˛

‹

‚

=

¨

˚

˚

˚

˚

˚

˚

˚

˝

C

CA

...

CA2M−1

˛

‹

‹

‹

‹

‹

‹

‹

‚

(4.28)

D2M =

¨

˚

˝

D 0

D−21 D−22

˛

‹

‚

=

¨

˚

˚

˚

˚

˚

˚

˚

˝

D 0 . . . 0

CB D . . . 0

...
...

...
...

CA2M−1B CA2M−2B . . . D

˛

‹

‹

‹

‹

‹

‹

‹

‚

(4.29)
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It now follows that the right-hand side of equation (4.27) can be partitioned as,

»

–

zI− A −BIp

C2M D2M

fi

fl =

»

—

—

—

—

–

zI− A −B 0

C D 0

C− D−21 D−22

fi

ffi

ffi

ffi

ffi

fl

(4.30)

Thus, if D−22 is full row rank, according to the Schur identity, equation (4.25)

has only one set of solutions that are given by,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

zI− A −BIp

C2M D2M

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= 0 (4.31)

and these are exactly the transmission zeros of the system S. However, if D−22 is rank

deficient, then certain rows of
”

C− D−21 D−22

ı

are linearly dependent with the

rows of
”

−A −B 0

ı

. Hence, z = 0 is also a solution. On the other hand, since

equation (4.25) must have n eigenvalues, therefore if the system S has p transmission

zeros, then z = 0 is a solution of multiplicity n− p, and this concludes the proof of

the theorem.

Theorem 4.2 links the zero dynamics of the square system S to the state error

dynamics of (4.23). According to this theorem, if a square system S is minimum

phase, then the state error dynamics (4.23) will be stable. This statement is not

generally true for non-square systems, since the state error dynamics (4.23) may

have unstable pole(s) even for non-square minimum phase systems.

The state error dynamics is associated with the difference between U2M(k −

2M) and Uaux
2M (k − 2M) as follows. If we define,

δU2M(k) = U2M(k − 2M)−Uaux
2M (k − 2M)

and subtract equation (4.20) from the measurement equation of the system Saug,

one will obtain,

D2MδU2M(k) = −C2Me(k) (4.32)
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Figure 4.1 shows a graphical illustration of equation (4.32), i.e., D2MδU2M(k) (which

is equal to −C2Me(k)) that lies in the column space of C2M . The dynamics (4.23)

along with equation (4.32) can be used to construct an inverse filter for a square

minimum phase systems as follows. Towards this end, we first provide a definition

and present a lemma.

Definition 4.1. Consider a sequence u(k). We let û(k) denote an unbiased estimate

of u(k) if û(k)→ z−qu(k) as k →∞, where q ∈ N. Otherwise, it will be designated

as a biased estimate of u(k).

Lemma 4.3. Let Assumptions A(1) and A(2) hold, l ≥ m, and M ≥ n. Then it

follows that IP .N (D2M) = 0.

Proof. Note that the first m columns of D2M are linearly independent. Therefore,

rank(

»

–

Ip

D2M

fi

fl) = rank(D2M)

which implies that the subspace spanned by the rows of Ip belongs to the row space

that is spanned by the rows of D2M . Therefore, IP .N (D2M) = 0.

We are now in a position to state our next main result.

Theorem 4.3. Let Assumption A(1) and A(2) hold, l = m, and M ≥ n. If

the system S is minimum phase, then the unbiased estimate of the unknown input

u(k − 2M) is governed by the filter dynamics,

Sinv :


ê(k + 1) = (A−BIpD

+
2MC2M)ê(k)−BFU(k − 2M)

Û2M(k) = −D+
2MC2M ê(k) + Uaux

2M (k − 2M)

û(k) = IpÛ2M(k)

(4.33)

where,

BF =
”

I −A −BIp

ı

(4.34)
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U(k − 2M) =

»

—

—

—

—

–

z(k − 2M + 1)

z(k − 2M)

Uaux
2M (k − 2M)

fi

ffi

ffi

ffi

ffi

fl

. (4.35)

where the state z(k) at each time step is given by equation (4.21).

Proof. First, we show that (ê(k) − e(k)) → 0 as k → ∞. Then we show this will

yield û(k)− u(k − 2M) → 0 as k → ∞. Note that the governing dynamics of e(k)

is given by Lemma 4.2. Therefore, in view of equations (4.23) and (4.33) we have,

ê(k+1)−e(k+1) = (A−BIpD
+
2MC2M)(ê(k)−e(k)). Since the system S is minimum

phase, therefore, according to Theorem 4.2, (ê(k)− e(k))→ 0 as k →∞ (note that

Theorem 4.2 implies that A−BIpD
+
2MC2M is Hurwitz if the system S is minimum

phase). Note that the error in the unknown input reconstruction is given by,

Û2M (k)−U2M (k − 2M) = −D+
2MC2M ê(k) + Uaux

2M (k − 2M)−U2M (k − 2M)

→ −D+
2MC2Me(k)− δU2M (k)

= D+
2MD2MδU2M (k)− δU2M (k)

(4.36)

Consequently, we have,

û(k)− u(k − 2M)→ Ip(D
+
2MD2M − I)δU2M(k) (4.37)

where (D+
2MD2M−I) is the projector onto the null space of D2M . Since IP .N (D2M) =

0, according to Lemma 4.3, the right-hand side of equation (4.37) is zero. Therefore,

it follows that û(k)→ u(k − 2M) as k →∞.

4.3.3 Non-Minimum Phase Systems

It should be noted that one cannot use Theorem 4.3 for non-minimum phase and/or

non-square systems as well as systems with transmission zeros on the unit circle.
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Consequently, below we will derive the dynamics associated with δU2M(k) and

attempt to stabilize it to ensure a zero tracking error. Let us define,

η(k) = D2MδU2M(k) (4.38)

It now follows that the dynamics of η(k) is governed by,

η(k + 1) = Ãη(k) + C2MBFU(k − 2M) (4.39)

where

Ã = C2M(A−BIPD+
2MC2M)C†2M . (4.40)

This follows by multiplying both sides of equation (4.23) by C2M and then replacing

C2Me(k) by equation (4.32), to yield the result.

In order to obtain a stable filter for non-minimum phase systems that is appli-

cable to both square and non-square systems, we rotate both C2M and H2M through

a rotation matrix R ∈ R2M×2M about an arbitrary axis as follows,

Cnew
2M = RC2M (4.41)

Hnew
2M = (RHT

2M)T (4.42)

A square matrix is said to be a rotation matrix if RRT = RTR = I and ‖R‖= 1.

This operation represents a similarity transformation for the following system 1,

Sη :

 η(k + 1) = Ãη(k) + C2MBFU(k − 2M)

H(k) = H2Mη(k)
(4.43)

Note that H(k) ≡ 0 since,

H(k) = H2Mη(k) = H2MD2MδU2M(k)

= H2MD2M(U2M(k − 2M)−Uaux
2M (k − 2M))

= H2M(Y2M(k − 2M)−Y2M(k − 2M)) = 0 (4.44)

1Note that the system matrices of Sη, i.e. (Ã,C2MBF ,H2M ) after applying the similarity
transformation by the matrix R is represented by (RÃRT ,Cnew

2M BF ,H
new
2M ).
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Therefore, if the system S has any transmission zeros, then the difference

between the real input and the auxiliary input serves as the output-zeroing input of

the system (4.43). One may have suggested now to use the feedback from H(k) to

stabilize the system Sη. However, clearly the system Sη is neither controllable nor

observable.

Therefore, we now instead define η̂(k) to be governed as follows,

η̂(k + 1) = (Pnew
c Ã + Pnew

h + K2Ph)η̂(k) + Pnew
c C2MBFU(k − 2M) (4.45)

where,

Pnew
h = HnewT

2M (Hnew
2M HnewT

2M )−1Hnew
2M

Pnew
c = Cnew

2M (CnewT

2M Cnew
2M )−1CnewT

2M

with K2 chosen such that all the eigenvalues of (Pnew
c Ã + Pnew

h + K2Ph) lie inside

the unit circle.

Note that if the unknown input is a step function, then η(k) − η̂(k) → 0 as

k → 0 2.

In order to establish the above claim, first, we discuss the stabilization of the

filter (4.45) through selection of K2 and then address its tracking error behavior and

performance.

It can be easily concluded that the stabilization of the filter (4.45) by the

gain K2 is possible if and only if the pair (Pnew
c Ã+ Pnew

h ,−Ph) is observable, which

provides an explicit criterion for selection of the rotation matrix R. However, certain

care should be exercised in selection of R as pointed out in the following two remarks.

Remark 4.1. If R is selected such that the column space of Cnew
2M coincides with the

column space of C2M (or equivalently the row space of Hnew
2M coincides with the row

2If one could design a filter in the form of η̂(k + 1) = (Pnewc Ã + Pnewh Ã + K2Ph)η̂(k) +
Pnewc C2MBFU , then one would have an unbiased estimation of all types of inputs, however, this
filter and similar ones would unfortunately be neither controllable nor observable.
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space of H2M), then the pair (Pnew
c Ã + Pnew

h ,−Ph) will not be observable since (a)

Pnew
h = Ph, (b) Ph(P

new
c Ã + Pnew

h ) = Pnew
h , and (c) Ph is column rank deficient.

Hence, the observability matrix will be rank deficient.

Remark 4.2. If R is selected such that the column space of Cnew
2M coincides with the

row space of H2M , then the pair (Pnew
c Ã + Pnew

h ,−Ph) will not be observable since

Ph(P
new
c Ã+Pnew

h ) = 0, and therefore the observability matrix will be rank deficient.

Geometrically speaking, for a SISO system having a single state, Remarks 4.1

and 4.2 imply that R should not be a matrix resulting in a rotation of qπ
2

, q ∈ Z,

about the axis passing through origin and should be perpendicular to both C2M and

H2M . Otherwise, for example for a rotation angel of π
2
, the column space of Cnew

2M

will coincide with the row space of H2M . All other Rs except those excluded in

Remarks 4.1 and 4.2 will yield an observable (Pnew
c Ã + Pnew

h ,−Ph) pair. However,

the closer the rotation angel is to qπ
2

, a higher gain K2 will be required to stabilize

the system. This will be numerically illustrated in the simulation case studies in

Section 4.5.

Moreover, if a square system has one or more transmission zeros exactly equal

to 1 (with no other transmission zeros on the unit circle), then there will exist no

R such that the pair (Pnew
c Ã + Pnew

h ,−Ph) is observable. We can now state the

following result.

Lemma 4.4. If a square system S has a transmission zero exactly equal to 1 (z = 1),

then the pair (Pnew
c Ã + Pnew

h ,−Ph) will not be observable for any selection of the

rotation matrix R.

Proof. We use the Hautus test ( [132]) to show this lemma. The observability matrix

of the pair (Pnew
c Ã + Pnew

h ,−Ph) is equivalent to the controllability matrix of the

pair ((Ã+ Pnew
h )T ,−(Ph)

T ). The pair ((Pnew
c Ã+ Pnew

h )T ,−(Ph)
T ) is controllable if

rank
´”

(Pnew
c Ã+ Pnew

h )T − λI −(Ph)
T

ı¯

= 2Ml
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for all λ ∈ C. We now show that when the square system S has a transmission zero

equal to 1, then this condition is not satisfied for λ = 1. Equivalently, there exists

a nonzero w such that wΘ = 0, for λ = 1, where

Θ =
”

(Pnew
c Ã+ Pnew

h )T − λI −(Ph)
T

ı

When λ = 1, it follows that,

(Pnew
c Ã+ Pnew

h )T − λI = (Pnew
c Ã+ Pnew

h )T − I

= (Pnew
c Ã−Pnew

c )T (4.46)

Recall from Theorem 4.2 that the transmission zeros of S are the eigenvalues of

A−BIpD
+
2MC2M . Hence, if the system S has a transmission zero equal to 1, there

exists a nonzero v such that Pnew
c Ãv = Pnew

c v. Therefore, by selecting

w =
”

vT 0

ı

one can achieve wΘ = 0 independent of the choice of the rotation matrix R. This

completes the proof of the lemma.

If a square system S has transmission zeros on the unit circle except at z =

1, then every R except those stated in Remarks 4.1 and 4.2 yield an observable

(Pnew
c Ã + Pnew

h ,−Ph) pair. Non-square systems rarely have transmission zeros (

[133]), therefore it is less likely to have a transmission zero that is equal to 1, or in

general on the unit circle. If so then a matrix R may or may not exist.

Once the observability condition is satisfied, it is straightforward to determine

K2 by using the Ackerman’s method to place the system poles at desired locations.

The significance of our proposed solution can be appreciated by the fact that the de-

signed feedback not only stabilizes the system for both minimum and non-minimum

phase systems in general, but also it provides an unbiased estimate of the unknown

step input as stated in the following theorem.
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Theorem 4.4. Let the Assumptions A(1) and A(2) hold, l ≥ m, and M ≥ n. If

the unknown input is a step function, and if there exists an R such that the pair

(Pnew
c Ã+ Pnew

h ,−Ph) is observable, and K2 is chosen such that all the eigenvalues

of Pnew
c Ã+ Pnew

h + K2Ph lie inside the unit circle, then an unbiased estimate of the

unknown input u(k − 2M) is given by,

Sinvstp :


η̂(k + 1) = (Pnew

c Ã+ Pnew
h + K2Ph)η̂(k) + Pnew

c C2MBFU(k − 2M)

Û2M(k) = D+
2M η̂(k) + Uaux

2M (k − 2M)

û(k) = IpÛ2M(k)

(4.47)

Proof. First, it is shown that η̂(k) − η(k) → 0 as k → ∞. Then, we show that it

follows that û(k)−u(k−2M)→ 0 as k →∞. If one subtracts equation (4.45) from

the equation (4.39), one will have,

η̂(k + 1) − η(k + 1) = (Ã+ Pnew
h + K2Ph)(η̂(k)− η(k))

+ (Pnew
h Ã−Pnew

h )η(k) + Pnew
h C2MU(k)

= (Ã+ Pnew
h + K2Ph)(η̂(k)− η(k)) + Pnew

h (η(k + 1)− η(k))(4.48)

Let us define e(k) = η̂(k)− η(k). Also let us take the Z-transform of both sides of

equation (4.48), which after some rearrangements gives us,

e(z) = (zI − Ã−Pnew
h −K2Ph)

−1Pnew
h (z − 1)η(z) (4.49)

If the input to the system S is a step function, then according to the final value

theorem, we have

lim
k→∞

e(k) = lim
z→1

(z − 1)e(z) = 0

which implies that η̂(k)− η(k)→ 0 as k →∞.
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The estimation error in the unknown input reconstruction is given by,

Û2M(k) − U2M(k − 2M) = D+
2M η̂(k) + Uaux

2M (k − 2M)−U2M(k − 2M)

→ D+
2Mη(k)− δU2M(k)

= D+
2MD2MδU2M(k)− δU2M(k) (4.50)

Thus, we have,

û(k)− u(k − 2M)→ Ip(D
+
2MD2M − I)δU2M(k) (4.51)

where (D+
2MD2M−I) is the projector onto the null space of D2M . Since IP .N (D2M) =

0, according to Lemma 4.3, the right-hand side of equation (4.37) is zero. Therefore,

it can be concluded that û(k)→ u(k− 2M) as k →∞. This completes the proof of

the theorem.

Note that in contrast to the filter (4.33), which is limited to only square and

minimum phase systems, the filter (4.47) is a general solution for both minimum

and non-minimum phase systems of any size that satisfies l ≥ m 3. Moreover, it can

handle systems that have transmission zeros on the unit circle.

By a close inspection of the proof of Theorem 4.4 it follows that the strategy

for constructing a stable and unbiased inversion filter for an unknown ramp as well

as step input functions can be developed. The strategy for the ramp input is to

specifically construct a filter that results in increasing the type of the error dynamics

to diminish the steady state errors. Based on the above observation, the following

theorem can now be stated.

Theorem 4.5. Let Assumptions A(1) and A(2) hold, l ≥ m, and M ≥ n. If the

unknown input is a ramp function, and if there exists a rotation matrix R such that

the pair (Pnew
h Ã2 − 2Pnew

h Ã+ Ã+ Pnew
h ,−Ph) is observable, and K2 is chosen such

3One can obtain similar results with η̂(k+ 1) = (Pnewh Ã+Pnewc +K2Ph)η̂(k) +Pnewh C2MBFU
due to symmetrical properties of the rotation matrix.
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that all the eigenvalues of Pnew
h Ã2 − 2Pnew

h Ã+ Ã+ Pnew
h + K2Ph lie inside the unit

circle, then an unbiased estimate of the unknown input u(k − 2M) is given by,

Sinvrmp :


η̂(k + 1) = (Pnew

h Ã2 − 2Pnew
h Ã+ Ã+ Pnew

h + K2Ph)η̂(k) + Γ(k − 2M)

Û2M(k) = D+
2M η̂(k) + Uaux

2M (k − 2M)

û(k) = IpÛ2M(k)

(4.52)

where,

Γ(k − 2M) = Pnew
h C2MBFU(k − 2M + 1)

+
´

Pnew
h Ã− 2Pnew

h + I
¯

C2MBFU(k − 2M). (4.53)

Proof. First, it is shown that η̂(k) − η(k) → 0 as k → ∞. Then we show that it

follows that û(k)− u(k − 2M)→ 0 as k →∞. Let us define the following dummy

variables,

A1 = Pnew
h Ã2 − 2Pnew

h Ã+ Ã+ Pnew
h

A2 = Pnew
h Ã2 − 2Pnew

h Ã+ Ã+ Pnew
h + K2Ph

B1 = Pnew
h C2MBFU(k − 2M + 1) +

´

Pnew
h Ã− 2Pnew

h + I
¯

C2MBFU(k − 2M)

B2 = Pnew
h C2MBFU(k − 2M + 1) +

´

Pnew
h Ã− 2Pnew

h

¯

C2MBFU(k − 2M)

If we subtract the state equation of the filter (4.52) from that of equation (4.39), we

will have,

η̂(k + 1) − η(k + 1) = Ãη(k) + C2MBFU(k)− A2η̂(k)−B1

= A2(η̂(k)− η(k))− A1η(k)−B2

= A2(η̂(k)− η(k))−Pnew
h (η(k + 2)− 2η(k + 1) + η(k)) (4.54)

Let us define as before e(k) = η̂(k)−η(k). Also, let us take the Z-transform of both

sides of equation (4.54), which after some rearrangements gives,

e(z) = −(zI − A2)−1Pnew
h (z − 1)2η(z) (4.55)
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If the input is a step or a ramp function, then according to the final value theorem

it follows that,

lim
k→∞

e(k) = lim
z→1

(z − 1)e(z) = 0

which implies that η̂(k)− η(k)→ 0 as k →∞. The remainder of the proof follows

along similar lines as those invoked in the proof of Theorem 4.4, and therefore these

details are omitted for brevity.

It is interesting to note that the filter (4.52) cannot be obtained through stan-

dard and basic mathematical operations (such as a similarity transformation) from

the filter (4.47) or vice versa. This concludes our proposed general solution to in-

version of discrete-time linear systems.

To summarize, the unknown input was reconstructed from its projection onto

the column space of C2M and the row space of H2M . The projection on the row

space of H2M is simply given by equation (4.9), however, the projection on C2M is

indirectly obtained from the reconstruction of D2MδU. The term D2MδU has this

important property that it is orthogonal to the subspace that is spanned by the rows

of H2M .

Yet, two important issues are associated with this technique. First, the con-

struction of D2MδU is an unstable process for non-minimum phase systems. Sec-

ondly, the calculation of δU requires the inverse of D2M , which is a non-square and

rank-deficient matrix under most circumstances.

To address the first issue, we have proposed a novel technique in which the

column space of C2M and the row space of H2M are transformed through a rotation

matrix about an arbitrary axis, followed by introducing a feedback that not only

stabilizes, but also eliminates the steady state error of the inverse filter. To ad-

dress the second issue, Lemma 4.3 is introduced that is always satisfied for minimal

systems with l ≥ m, even if D2M is rank deficient.
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In the next section, we provide a solution to our Problem 2 introduced in

Section II.

4.4 The Proposed Inversion-Based Fault Estima-

tion for Non-Minimum Phase Fault to Output

Systems

One of the most important applications of the system inversion is to the problem

of fault estimation. A solution to this problem is essential for any successful fault

tolerant control scheme and reliable operation of engineering systems. In this section,

we show that our proposed system inversion approach can be easily adopted for fault

estimation purposes. The advantage of our methodology is that the unknown fault

input is directly reconstructed from only the system measurements without requiring

any a priori estimate of the system states. Moreover, it can handle transmission

zeros everywhere on the complex plan even on the unit circle.

We follow a similar procedure that was proposed in the previous section with

the difference that now in the system Sf , u(k) is assumed to be known and the

unknown input, which is the injected fault signal, is now designated as f(k).

Therefore, let us define the vector Faux
2M as follows,

Faux
2M (k − 2M) = Kf

1(Y2M(k − 2M)−D2MU2M(k − 2M)) (4.56)

where Kf
1 is given by,

Kf
1 = (H2ME2M)+H2M (4.57)
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and

E2M =

¨

˚

˚

˚

˚

˚

˚

˚

˝

E 0 . . . 0

CL E . . . 0

...
...

...
...

CA2M−1L CA2M−2L . . . L

˛

‹

‹

‹

‹

‹

‹

‹

‚

(4.58)

According to Theorem 4.1, Faux
2M (k−2M) represents a construction of F2M(k−2M)

if the fault-to-output dynamics has no transmission zeros. For the general case, we

define a dummy state variable zf (k − 2M) that satisfies the following relationship,

Y2M(k − 2M) = C2Mz
f (k − 2M) + D2MU2M(k − 2M) + E2MFaux

2M (k − 2M)

(4.59)

Moreover, we define,

ηf (k) = E2MδF2M(k) = E2M(F2M(k − 2M)− Faux
2M (k − 2M)) (4.60)

Therefore, the dynamics associated with ηf (k) is now governed by

ηf (k + 1) = Ãfηf (k) + C2MB
f
FU

f (k − 2M). (4.61)

where,

Ãf = C2M(A− LIfpE
+
2MC2M)C†2M (4.62)

Bf
F =

”

I −A −LIfp −BIp

ı

(4.63)

Uf (k − 2M) =

»

—

—

—

—

—

—

—

–

zf (k − 2M + 1)

zf (k − 2M)

Faux
2M (k − 2M)

U2M(k − 2M)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.64)

and

Ifp =
”

Ip×p 0p×(2Mp−p)

ı

(4.65)

Note that as compared to equation (4.39), the additional known information

U2M(k−2M) appears in Uf (k−2M). The dynamics of the system (4.61) is unstable
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if the fault-to-output dynamics has transmission zeros outside or on the unit circle.

On the other hand, a close examination of the dynamics (4.61) reveals that it is quite

similar to the dynamics that is described by (4.39). Therefore, the same strategy

that was described in the previous section can now be applied here. Specifically, we

can conclude the following result.

Theorem 4.6. Let Assumptions B(1) and B(2) hold, l ≥ p, and M ≥ n. If the

fault signal is a step loss of effectiveness (LOE) function, and there exists a rotation

matrix R such that the pair (Pnew
c Ãf + Pnew

h ,−Ph) is observable, and Kf
2 is chosen

such that all the eigenvalues of Pnew
c Ãf + Pnew

h + K2Ph lie inside the unit circle,

then an unbiased estimate of the fault vector f(k − 2M) is given by,

Sinv,fstp :


η̂f (k + 1) = (Pnew

c Ãf + Pnew
h + Kf

2Ph)η̂
f (k) + Pnew

c C2MB
f
FUf (k − 2M)

F̂2M(k) = E+
2M η̂

f (k) + Faux
2M (k − 2M)

f̂(k) = IpF̂2M(k)

(4.66)

Proof. Proof is not included, since it is similar to the proof of Theorem 4.4.

One can also establish a result that is similar to Theorem 4.5 for the case when

the fault signal is a ramp (drift) loss of effectiveness (LOE) function. The details

are not included here for brevity.

This now concludes our proposed methodology for estimation of the loss of

effectiveness faults for systems having transmission zeros anywhere on the complex

plan. In the next section, we provide illustrative simulations that demonstrate the

merits and capabilities of our proposed methodologies.

4.5 Four Case Studies

Consider a first order non-minimum phase SISO system that is governed by 4,

4For all simulations of this section, we set M = n.
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S :

 x(k + 1) = 0.5x(k) + u(k)

y(k) = −x(k) + u(k)
(4.67)

The transfer function of this system is given by,

G(z) =
z − 1.5

z − 0.5
(4.68)

For the above system, it follows that C2M =

»

–

−1

−0.5

fi

fl, and consequently

H2M =
”

−0.45 0.90

ı

. The rotation matrix R is given by,

R(θ) =

»

–

cos(θ) −sin(θ)

sin(θ) cos(θ)

fi

fl

According to Remarks 4.1 and 4.2, the pair (Pnew
c Ã+ Pnew

h ,−Ph) is not observable

for θ = qπ
2
, q ∈ Z, where,

Ã =

»

–

1.2 0.6

0.6 0.3

fi

fl ; Ph =

»

–

0.2 −0.4

−0.4 0.8

fi

fl

Pc =

»

–

0.8 0.4

0.4 0.2

fi

fl

Pnew
h = R(θ)Ph(R(θ))T ; Pnew

c = R(θ)Pc(R(θ))T

All the other values of θ will yield an R such that the pair (Pnew
c Ã + Pnew

h ,−Ph)

is observable. Hence, one can arbitrarily place the poles of the system. We select

the gain K2 to place the poles at z1,2 = ±0.1 for two different values of θ that are

randomly selected for comparison purposes as follows,

θ =
5π

180
or

85π

180
→

Pnew
c Ã+ Pnew

h =

»

–

1.41 0.12

0.25 1.07

fi

fl ,K2 =

»

–

20.09 −40.18

11.29 −22.58

fi

fl
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and

θ =
45π

180
→

Pnew
h Ã+ Pnew

h =

»

–

1.20 −0.15

0.60 0.55

fi

fl ,K2 =

»

–

1.95 −3.90

1.85 −3.7

fi

fl

The closer θ is to qπ
2
, q ∈ Z implies that a higher gain is required. This is

an important consideration as it may lead to robustness issues when the system

is subject to disturbances and noise. Using Theorem 4.4, the inverse filter for the

above system when θ = 45π
180

is given by,

Sinv :



η̂(k + 1) =

¨

˝

3.15 −4.05

2.45 −3.15

˛

‚η̂(k) +

»

–

−0.25 0.12 0.25 0

−0.75 0.37 0.75 0

fi

flU(k − 2M)

Û2M(k) =

¨

˝

1 0

1 1

˛

‚η̂(k) + Uaux
2M (k − 2M)

û(k) = IpÛ2M(k)

(4.69)

where M = n, U(k − 2M) is defined by equation (4.35) and Uaux
2M (k − 2M) is given

by,

Uaux
2M (k − 2M) =

»

–

0.2308 −0.4615

−0.1538 0.3077

fi

flY2M(k − 2M)

Figure 4.2 shows the performance of the input inversion estimation filter correspond-

ing to both values of K2.

For the second simulation case study, we consider a non-minimum phase MIMO
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Figure 4.2: Input estimation for the system (4.67) using two different rotation ma-
trices: (a) θ = 5π

180
, and (b) θ = 45π

180
.

system that is governed by,

S :



x(k + 1) =

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0.10

1 0 0 −0.09

0 1 0 0.28

0 0 1 0.07

˛

‹

‹

‹

‹

‹

‹

‹

‚

x(k) +

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 −0.80

0 −2.05

0 5.13

0 1.78

˛

‹

‹

‹

‹

‹

‹

‹

‚

f(k)

y(k) =

¨

˝

−0.46 −0.35 −0.1 0.14

0.59 −0.52 −0.01 0.04

˛

‚x(k)

(4.70)

The above system has two transmission zeros at z1,2 = (−1.48, 0.45). The system is

subjected to both a step and a ramp loss of effectiveness (LOE) faults in the channels

1 and 2, respectively. A random rotation matrix (R ∈ R16×16)5 is generated. The

gain matrix K2 ∈ R16×16 is chosen such that 16 poles of the filter (4.52) are placed

between −0.1 and 0.1. The fault estimation results are shown in Figure 4.3, which

demonstrates the merits and capabilities of our proposed scheme for fault estimation

of non-minimum phase systems. The most important advantage of our proposed

solution arises as a result of the fact that it can handle systems with transmission

zeros everywhere on the unit circle except at z = 1.

5R ∈ R2Ml×2Ml, M = n = 4, and l = 2.
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Figure 4.3: The LOE fault input estimation of the MIMO non-minimum phase
system (4.70).

In order to demonstrate this point, consider the following third case study of

the fault-to-output system,

Y (z)

F (z)
=

(z + 1)(z2 + 1)

z4
(4.71)

The simulation results for input estimation of this system are shown in Figure

4.4. The rotation matrix for constructing the filter (4.47) is randomly generated.

The gain matrix K2 is chosen such that the poles of the filter (4.47) are placed at

z1, . . . , z8 = ±0.5,±0.3571,±0.2143,±0.0714. As can be seen from Figure 4.4, our

proposed solution can successfully reconstructs the unknown fault even if the system

has several transmission zeros on the unit circle.

Finally, for the fourth case study and as a comparative study, consider a MIMO

system that is taken from the reference [75] with A ∈ R4×4, B ∈ R4×2 and C ∈ R2×4

as follows,
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

x(k + 1) =

»

—

—

—

—

—

—

—

–

0.6 −0.3 0 0

0.1 1 0 0

−0.4 −1.5 0.4 −0.3

0.3 1.1 0.2 0.9

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x(k) +

»

—

—

—

—

—

—

—

–

0 0.4

0 0

0 −0.1

0.1 0.1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

u(k)

y(k) =

»

–

1 2 3 4

2 1 5 6

fi

flx(k)

(4.72)

The system (4.72) has two zeros at z1 = 0.6072 and z1 = 1.9928. The authors

of [75] proposed a geometric approach and applied it to the system (4.72) to achieve

an almost perfect estimation of the states and unknown inputs with a delay of 20

time steps (nd = 20). For comparison, our simulation results for the same example

is shown in Figure 4.5, which demonstrates that by using our proposed methodology

the unknown inputs are almost perfectly reconstructed with only a delay of nd = 8.

It should be noted that the approach that is proposed in [75] can handle any type

of unknown input, whereas our approach is limited to step and ramp unknown

inputs which covers a wide range of faults that occur in physical systems. The

main advantage of our proposed methodology over the geometric approach that is
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Figure 4.5: Input estimation for system (4.72)

proposed in [75] is the fact that it can handle systems with transmission zeros on

the unit circle, whereas the approach in [75] cannot handle this situation.

4.6 Conclusion

We have developed an inversion-based fault estimation scheme for linear discrete-

time systems. It was shown that our scheme yields an unbiased estimation of certain

types of faults even if the fault-to-output dynamics has transmission zeros outside

or on the unit circle (except at z = 1). This is achieved by introducing a feedback

that not only stabilizes the inverse dynamics (except those having transmission ze-

ros at z = 1), but also it provides an unbiased tracking of the unknown input. We

have discussed the properties of the proposed inverse filter and conditions that are

required for its stabilization design. We have also provided several illustrative simu-

lation case studies that demonstrate the capabilities of our proposed methodologies.

Yet, further research are required to generalize our proposed approach to a broader

categories of faults.
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Chapter 5

Reconstruction of System States

and General Unknown Inputs and

Faults

In this chapter, we address the problem of unknown state and input reconstruc-

tion of both minimum phase (MP) and non-minimum phase (NMP) discrete-time

linear systems. An unknown input observer (UIO) is designed that accurately re-

constructs the minimum phase states of the system. The reconstructed minimum

phase states serve as inputs to an FIR filter for a delayed non-minimum phase state

reconstruction. It is shown that a quantified upper bound of the reconstruction

error exponentially decreases as the estimation delay is increased. Therefore, an al-

most perfect reconstruction can be achieved by selecting the delay to be sufficiently

large. We extend the proposed approach to the problem of fault estimation. Also,

the proposed inversion scheme is applied to the output-tracking control problem.

We have also comprehensively addressed and discussed the non-minimum phase dy-

namics and derived explicit relationships between the system matrices of the above

dynamics. Simulation case studies are also presented that demonstrate the merits
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and capabilities of our proposed methodology.

The remainder of this chapter is organized as follows. The problem statement

and preliminaries are provided in Section 5.1. Section 5.2 is devoted to the problem

of developing and designing unknown state and input reconstruction methodologies.

The problem of developing inversion-based output tracking strategies is addressed in

Section 5.3. The extension to the problem of fault estimation is presented in Section

5.4. Finally, numerical case studies are presented in Section 5.5 to demonstrate and

illustrate the capabilities of our proposed methodologies.

5.1 Problem Statement

Consider the following deterministic discrete-time linear time-invariant (LTI) system

S,

S :

 x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(5.1)

where x ∈ Rn, u ∈ Rl and y ∈ Rl. The quadruple Σ := (A,B,C,D) is assumed to

be known a priori. The output measurement y(k) is also assumed to be available,

however, both the system states x(k) and u(k) are assumed to be unmeasurable. In

this chapter, we consider the following two specific problems.

Problem 1: The system states and the unknown input reconstruction: The

objective of this problem is to estimate the system state x(k) and the unknown

input u(k) from the only available system measurement y(k). The main assumption

that is imposed to solve this problem is given by Assumption 1 below.

Assumption 1 : The system S is square, has a minimal realization and does

not have any zeros on the unit circle.

Other requirements that may be required are provided under each specific statement

and result subsequently.
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Problem 2: The output tracking: The objective of this problem is to esti-

mate the input signal u(k) such that the output y(k) follows a desired trajectory

yd(k). This problem is in fact another re-statement of the Problem 1 above with the

difference that the actual output of the system is now replaced by yd(k). The main

assumption that is also required here is Assumption 1.

We now present the notation that is used throughout the chapter. Given the

matrix A, then A⊥, AT and N (A) denote the orthogonal space, the transpose, and

the null space of A, respectively. We use the concept of pseudo inverse. If A is

full column rank, then we denote the pseudo inverse of A by A† and compute it

by (ATA)−1AT . If A is rank deficient, then we denote its pseudo inverse by A+,

where A+ is a matrix that satisfies the following four conditions: 1) AA+A = A, 2)

A+AA+ = A+, 3) (AA+)T = AA+, and 4) (A+A)T = A+A. If UΣV T denotes the

SVD decomposition of A, then A+ is given by V Σ+UT , where Σ+ is obtained by

reciprocating each non-zero diagonal element of Σ. If A denotes the system matrix,

then A(1) implies transformation of A under a standard similarity transformation

matrix T(1). If x(k) denotes a vector, then x̂(k) represent an estimate of x(k).

Also, x(1)(k) denotes the transformation of x(k) under the similarity matrix T(1),

i.e. x(1)(k) = T(1)x(k). Finally, diag(V) denotes a diagonal matrix with elements of

the vector V on its diagonal. Consider the Rosenbrock System Matrix defined by,

MR(z) =

»

–

zI − A B

C D

fi

fl (5.2)

if rank(MR(z)) < n+ l, then z is called a transmission zero (or simply the zero) of

the system S or the quadruple (A,B,C,D). The abbreviations MP and NMP stand

for minimum phase and non-minimum phase systems, respectively.
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5.2 State and Unknown Input Reconstruction

In this section, we consider and develop methodologies for solving the Problem 1.

Let us first set up an unknown input observer (UIO) that generates the state η(k) as

an estimate of Mx(k) by using only the system measurements y(k), where M ∈ Rq×n

is a full row rank matrix to be specified. If rank(M) = n, then the system states

can be fully reconstructed since x̂(k) = M−1η(k). However, such an M with rank

equal to n does not always exist. In fact, it turns out that the rank of M is closely

related to the transmission zeros of the system S.

More specifically, we will show that rank(M) = n−β, where α and β are now

representing the number of finite MP and NMP transmission zeros of the system S,

respectively. Clearly, α + β is not necessarily equal to n. Our strategy is to first

construct an M having the rank n−β by using two to be designed matrices M0 and

M# that are specified subsequently based on the system S matrices. Given M, we

then introduce a transformation to partition the system states that can be exactly

estimated from those where their estimation is obstructed by the NMP transmission

zeros of the system. The estimated states will then serve as inputs to a causal

scheme that estimates the remaining set of the system states.

5.2.1 Partial Or Full Estimation of the System States

We start by stating our first formal definition.

Definition 5.1. Assume M ∈ Rq×n, where q ≤ n, is a full row rank matrix. We

denote η(k) = Mx(k) as a partial or full estimate of the system S states if q < n or

q = n, respectively.

Our goal is to design an unknown input observer (UIO) that estimates Mx,

where M ∈ Rq×n, q ≤ n, is a full row rank matrix. We consider the governing
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dynamics of the unknown input observer (UIO) as follows,

η(k − n+ 1) = Âη(k − n) + FY(k − n) (5.3)

where,

Y(k − n) =

»

—

—

—

—

—

—

—

–

y(k − n)

y(k − n+ 1)

...

y(k)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.4)

with the matrices Â and F to be specified subsequently. Our objective is to now

select the matrices M, Â and F such that η(k)−Mx(k)→ 0 as k →∞. The output

measurement equation of the system S can be alternatively expressed as,

Y(k − n) = Cnx(k − n) + DnU(k − n) (5.5)

where,

Cn =

¨

˚

˚

˚

˚

˚

˚

˚

˝

C

CA

...

CAn−1

˛

‹

‹

‹

‹

‹

‹

‹

‚

; Dn =

¨

˚

˚

˚

˚

˚

˚

˚

˝

D 0 . . . 0

CB D . . . 0

...
...

...
...

CAn−1B CAn−2B . . . D

˛

‹

‹

‹

‹

‹

‹

‹

‚

(5.6)

and U(k−n) is constructed similar to Y(k−n) from the input sequence. The state

equation of the system S can be expressed as,

x(k − n+ 1) = Ax(k − n) +BInU(k − n) (5.7)

where In =
”

Im×m 0m×(n−m)

ı

. Using the equations (5.3), (5.5) and (5.7), the

unknown input observer error dynamics is now governed by,

(η −Mx)(k − n+ 1) = Â(η(k − n)−Mx(k − n))

+ (ÂM−MA+ FCn)Y(k − n)

+ (FDn −MBIn)U(k − n) (5.8)
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It now follows that Mx is accurately estimated if and only if (i) Â is selected to

be a Hurwitz matrix, (ii) 0 = ÂM −MA + FCn, and (iii) 0 = FDn −MBIn.

The conditions (i)-(iii) above are the well-known unknown input observer equations

that are solvable under certain conditions. We will show that these conditions have

a solution if and only if the system S is MP. However, this will be obtained under

the restrictive requirement that M should be full rank square matrix. We will show

subsequently that a solution for NMP systems exists if a lower rank matrix M is

considered.

From the condition (iii) it follows that,

F = MBInD
+
n + Kn(I−DnD

+
n ) (5.9)

where Kn ∈ Rnl×nm is an arbitrary matrix. Let us first denote by Â0 and M0 as

solution to Â and M that satisfy the conditions (i)-(iii) corresponding to Kn ≡ 0.

Subsequently, we shall return to the general case where Kn and (I − DnD
+
n ) are

nonzero to obtain another solution to M that we will denote by M#. For now for

M0, we have,

F0 = M0BInD
+
n (5.10)

If we substitute F0 from equation (5.10) into the condition (ii), we obtain,

Â0M0 = M0(A−BInD
+
nCn) (5.11)

Equation (5.11) - which is in fact the Sylvester equation - has M0 = 0 as its trivial

solution. The non-trivial solution to (5.11) is obtained if M0 is considered as the

transpose of the left eigenvectors of Γ = (A − BInD
+
nCn) and Â0 as a diagonal

matrix of Γ eigenvalues. It now follows that the full estimation of the system states

by the UIO observer (5.3) is obstructed by the NMP transmission zeros of the system

due to the fact that the eigenvalues of (A − BInD
+
nCn) contain NMP zeros of the

square system S as formally stated in the Theorem 4.2.
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Remark 5.1. It should be noted that Theorem 4.2 does not hold for non-square

systems. The eigenvalues of Γ may or may not coincide with the transmission zeros

of S. Each case needs to be then separately investigated, however, once the eigen-

values of Γ are determined, the remaining procedure for obtaining a solution to the

conditions (i)-(iii) is similar to that of a square system.

If the system S has at least one MP transmission zero, or it has less than n

NMP zeros (therefore, the set Z in Theorem 4.2 is not empty), then at least one

eigenvalue of Γ is less than 1, which is denoted by a. Let us now set Â0 = a. If MT
0

is chosen to be the left eigenvector associated with the eigenvalue a, then equation

(5.11), and consequently conditions (i)-(iii) are satisfied even if the system S has

nonzero NMP transmission zeros. In general, we can state the following result.

Lemma 5.1. Let Assumption 1 hold, and V = {vi|i = 1, .., p} denote the set of

the system S invariant zeros, Z = {0, . . . , 0} that contains n− p zeros, and Θα the

set of MP transmission zeros of S. If {Θα ∪ Z} 6= ∅, then F0 = M0BInD
+
n , Â0 =

diag(Θα ∪ Z) and MT
0 that has left eigenvectors of Γ associated with diag(Θα ∪ Z)

are solutions to the conditions (i)-(iii).

Proof. Follows by direct substitution of the solution above into the conditions (i)-

(iii) that verifies the result.

Remark 5.2. One may suggest to use the Jordan canonical form of Γ to obtain a

solution to the conditions (i)-(iii), especially when the system S has repeated MP

transmission zeros. This may yield an M having higher rank condition as compared

to the solution provided by Lemma 5.1 under certain limited cases. However, in

general this will not lead to a robust numerical procedure and in most cases the

algorithm could fail numerically due to ill-conditioning.

Lemma 5.1 implies that a solution for NMP systems exists unless the system S

has exactly n NMP transmission zeros (this is highly unusual in real applications).
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Our proposed methodology for state estimation problem that will be subsequently

discussed requires that rank(M) = n − β . However, rank of M0 that is obtained

from Lemma 5.1 is not necessarily equal to n−β, since Γ may have multiple eigenvec-

tors due to repeated eigenvalues and the generalized eigenvectors are not a solution

to the equation (5.11).

Specifically, the set Z (as defined in Theorem 4.2) may have αz elements

sharing the same eigenvectors. We now consider the term Kn(I − DnD
+
n )Cn in

order to obtain linearly independent vectors associated with the elements of Z. If

the set Z is not empty, then it implies that Dn is rank deficient, and therefore

(I−DnD
+
n ) is a nonzero matrix.

Let us now construct M# and Â# such that they satisfy the following Sylvester

equation,

Â#M# = M#(A−BInD
+
nCn) + Kn(I−DnD

+
n )Cn (5.12)

Since (I − DnD
+
n )Cn is not identically zero, a non-trivial solution exists and Â#,

M# and Kn can be selected such that the condition (i) is satisfied. Therefore, we

have the following theorem.

Theorem 5.1. Let Assumption 1 hold and all the MP transmission zeros of S have

an algebraic multiplicity of 1. Then, the complete solution to the conditions (i)-(iii)

is given by,

Â =

»

–

Â0 0

0 Â#

fi

fl ; M =

»

–

M0

M#

fi

fl (5.13)

where rank(M) = n− β.

Proof. Since the system S has α1 transmission zeros having an algebraic multiplicity

of 1, therefore Γ has α1 linearly independent eigenvectors. Therefore, M0 has at least

α1 linearly independent rows. On the other hand, the set Z (as defined in Theorem

4.2) has αz zeros, where αz = n− β−α1. Therefore, I−DnD
+
n has αz independent
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rows. This implies that M# has αz linearly independent rows. Therefore, M has

αz + α1 = n− β linearly independent rows.

Note that if the system S has MP transmission zeros with an algebraic multi-

plicity that is higher than 1, then the rank of M# is reduced proportionally by the

multiplicity of the MP transmission zeros. This is due to the fact that (I−DnD
+
n )

loses its rank. On the other hand, M0 also loses its rank by such MP transmission

zeros. Therefore, our method fails, since the rank of M will be less than n− β.

The solution given in equation (5.12) is closely related to equation (5.5). The

matrix I−DnD
+
n gives the null space of Dn. Multiplication of both sides of equation

(5.5) by this matrix yields,

(I−DnD
+
n )Y(k − n) = (I−DnD

+
n )Cnx(k − n) (5.14)

Let us now define P = (I −DnD
+
n )Cn. It follows that the rank of P depends on

the rank of N (Dn). If the system S has exactly p = n transmission zeros, then

N (Dn) = 0, and consequently P ≡ 0. On the other hand, M0 will be full row

rank and will have n − β linearly independent rows if the MP transmission zeros

are simple. As p is reduced, then the rank of P increases and the rank of M0

decreases. This relationship reveals several important characteristics of N (Dn). A

more detailed discussion of these properties is beyond the scope of this chapter.

5.2.2 Partitioning of the States

If the system S has any NMP transmission zeros, then rank(M) = q < n, and there-

fore the states cannot be fully estimated. Let us now perform an LQ decomposition

of the matrix M to decouple or partition the estimation of the q states from the

estimation of the other n− q states. Namely, let us set M = LQ.
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The unknown input observer (UIO) is described by equation (5.3), where Â and

F are selected according to Theorem 5.1 and equation (5.9), and where η(k − n) =

Mx̂(k−n). Equivalently, we have η(k−n) = LQx̂(k−n). Let us now set the similar-

ity transformation matrix T(1) = Q. Therefore, η(k−n) =
”

M
(1)
q 0

ı

x̂(1)(k−n)1,

where
”

M
(1)
q 0

ı

= L. The matrix M
(1)
q ∈ Rq×q is a non-singular matrix, hence

the first q states can be independently reconstructed from η(k − n) as follows,

x̂(1)(1 : q)(k − n) = M(1)−1

q η(k − n) (5.15)

where x(1 : q) denotes the first q elements of the vector x.

Definition 5.2. The MP and NMP states correspond to the first q and the last

n − q states of the system S(1) and are denoted by x
(1)
1 (k) and x

(1)
2 (k), respectively.

In other words, x(1)(k) =
”

(x
(1)
1 (k))T (x

(1)
2 (k))T

ıT

, where

S(1) :

 x(1)(k + 1) = A(1)x(1)(k) +B(1)u(k)

y(k) = C(1)x(1)(k) +Du(k)
(5.16)

Considering the Definition 5.2 and equation (5.15), we have,

x̂
(1)
1 (k − n) = M(1)−1

q η(k − n) (5.17)

or in the state space representation, η(k − n+ 1) = Âη(k − n) + FY(k − n)

x̂
(1)
1 (k − n) = M

(1)−1

q η(k − n)
(5.18)

Equation (5.18) shows that the MP states can be independently and accurately

estimated from the system measurements. In other words, x̂
(1)
1 (k−n)→ x

(1)
1 (k−n)

as k → ∞. This is due to the fact that according to the error dynamics (5.8) and

conditions (i)-(iii), η(k−n)−Mx(k−n)→ 0 as k →∞. Therefore, Lx̂(1)(k−n)−

Lx(1)(k−n)→ 0 as k →∞, which yields the desired result. An important property

of the MP states is now given by the following theorem.

1Recall the notation that was defined in Section 5.1, namely, x(1)(k) = T(1)x(k), x
(1)
1 (k) =

T(1)x(1)(k), A(1) = T(1)A(T(1))−1, B(1) = T(1)B, and C(1) = C(T(1))−1.
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Theorem 5.2. Let Assumption 1 hold. Then x
(1)
1 (k)→ 0 as k →∞ if and only if

y(k) = 0 for k = k0, k0 + 1, . . . ,∞, k0 > 0.

Proof. It is known from the state equation of the system (5.18) that η(k) = 0 if and

only if y(k) = 0 (⇒ Y(k) = 0) for k = k0, k0 +1, . . . ,∞, k0 > 0. On the other hand,

η(k) = M
(1)
q x̂

(1)
1 (k). Since M

(1)
q is a nonsingular matrix, it follows that x̂

(1)
1 (k) ≡ 0 if

and only if η(k) ≡ 0. Moreover, x
(1)
1 (k)→ x̂

(1)
1 (k) as k →∞. Therefore, x

(1)
1 (k)→ 0

as k →∞, if and only if y(k) = 0 for k = k0, k0 + 1, . . . ,∞, k0 > 0.

The above decoupling or partitioning is quite helpful in several ways. The

most important one is that it renders an elegant expression for the NMP states

reconstruction estimation error as discussed in the next section. Furthermore, in

certain applications such as in fault detection and isolation problems, the considered

faults may only affect the MP states of the system. Therefore, it will not be necessary

to estimate the NMP system states that can be computationally costly as well as

an error prone process.

5.2.3 Dynamics of the MP and NMP States

The unknown input estimation problem requires a successful reconstruction of both

the MP and the NMP states. Towards this end, we partition the state space model

of the system S or S(1) as follows (x
(1)
1 (k) ∈ Rq and x

(1)
2 (k) ∈ Rn−q),

S(1) :



x
(1)
1 (k − n+ 1) = A

(1)
11 x

(1)
1 (k − 1) + A

(1)
12 x

(1)
2 (k − n) +B

(1)
1 u(k − n)

x
(1)
2 (k − n+ 1) = A

(1)
21 x

(1)
1 (k − n) + A

(1)
22 x

(1)
2 (k − n) +B

(1)
2 u(k − n)

y(k − n) = C
(1)
1 x

(1)
1 (k − n) +

”

C
(1)
2 D

ı

»

–

x
(1)
2 (k − n)

u(k − n)

fi

fl

(5.19)
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where,

A(1) =

»

–

A
(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

fi

fl ;B(1) =

»

–

B
(1)
1

B
(1)
2

fi

fl ;C(1) =
”

C
(1)
1 C

(1)
2

ı

. (5.20)

It is now straightforward to conclude from Theorem 5.2 that the following lemmas

imply that the NMP states cannot be algebraically estimated from the MP states

and the system measurement outputs. Specifically, we have:

Lemma 5.2. Let Assumption 1 hold and 0 < q < n. Then the columns of
»

–

C
(1)
2 D

A
(1)
12 B

(1)
1

fi

fl are linearly dependent.

Proof. Since the system S has at least one NMP zero (q < n), then by the definition

of transmission zeros, there exists a nonzero u(k) that yields a zero output (y(k) = 0

for all k). On the other hand, according to Theorem 5.2, x
(1)
1 (k) approaches to zero

when y(k) = 0 for k = k0, k0+1, . . .. Therefore, from the first and the third equations

of (5.19), we have for k →∞,

»

–

0

0

fi

fl =

»

–

C
(1)
2 D

A
(1)
12 B

(1)
1

fi

fl

»

–

x
(1)
2 (k − n)

u(k − n)

fi

fl . (5.21)

Since

»

–

x
(1)
2 (k − n)

u(k − n)

fi

fl is nonzero, it implies that the columns of

»

–

C
(1)
2 D

A
(1)
12 B

(1)
1

fi

fl are

linearly dependent.

Lemma 5.3. Let Assumption 1 hold and 0 < q < n. Then the transmission zeros

of

»

–

A
(1)
22 B

(1)
2

A
(1)
12 B

(1)
1

fi

fl are a subset of the system S transmission zeros.

Proof. First note thatA
(1)
11 in equation (5.19) is a Hurwitz matrix, otherwise x

(1)
1 (k)→

∞ as k →∞. Next, consider the following system,

S(z1) :

 x
(1)
2 (k − n+ 1) = A

(1)
22 x

(1)
2 (k − n) +B

(1)
2 u(k − n)

ξ(k − n) = A
(1)
12 x

(1)
2 (k − n) +B

(1)
1 u(k − n)

(5.22)
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If there exists a nonzero u(k) that yields ξ(k) = 0, then this implies that from the

first equation of (5.19) we have, x
(1)
1 (k) → 0 as k → ∞. Therefore, y(k) → 0 as

k → ∞ according to Theorem 5.2. Therefore, the transmission zeros of S(z1) are

also the transmission zeros of S(1).

Lemma 5.4. Let Assumption 1 hold and 0 < q < n. Then the transmission zeros

of

»

–

A
(1)
22 B

(1)
2

C
(1)
2 D

fi

fl are a subset of the system S transmission zeros.

Proof. Consider the following system,

S(z2) :


x

(1)
2 (k − n+ 1) = A

(1)
22 x

(1)
2 (k − n) +B

(1)
2 u(k − n)

ξ(k − n) =
”

C
(1)
2 D

ı

»

–

x
(1)
2 (k − n)

u(k − n)

fi

fl

(5.23)

If there exists a nonzero u(k) that yields ξ(k) = 0, then since
”

I C1

ı

is full row

rank, it implies from the third equation of (5.19) that x
(1)
1 (k) = 0, and y(k) = 0.

Therefore, the transmission zeros of S(z2) are also the transmission zeros of S(1).

Let us now assume that B
(1)
1 is full column rank. Then, the unknown input

u(k) in terms of the system states is obtained by the first expression of equation

(5.19), according to

u(k − n) = B
(1)†

1

´

x
(1)
1 (k − n+ 1)− A(1)

11 x
(1)
1 (k − n)− A(1)

12 x
(1)
2 (k − n)

¯

(5.24)

By substituting the above equation into the second and third equations of (5.19)

yields,  x
(1)
2 (k − n+ 1) = Azx

(1)
2 (k − n) +BzX

(1)
1 (k − n)

y(k − n) = Cz2x
(1)
2 (k − n) + Cz1X

(1)
1 (k − n)

(5.25)

where,

Az = A
(1)
22 −B

(1)
2 B

(1)†

1 A
(1)
12 (5.26)
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Bz =
”

B
(1)
2 B

(1)†

1 A
(1)
21 −B

(1)
2 B

(1)†

1 A
(1)
11

ı

(5.27)

X
(1)
1 (k − n) =

»

–

x
(1)
1 (k − n+ 1)

x
(1)
1 (k − n)

fi

fl (5.28)

and where Cz2 = C
(1)
2 −DB

(1)†

1 A
(1)
12 and Cz1 =

”

DB
(1)†

1 C
(1)
1 −DB

(1)†

1 A
(1)
11

ı

. The

quadruple Σz := (Az, Bz, Cz1, Cz2) have interesting properties that are related to

the transmission zeros of the system S. We are now in a position to state our next

result.

Theorem 5.3. Let Assumption 1 hold, 0 < q < n and B
(1)
1 be a full column rank

matrix. Then, the eigenvalues of Az are the NMP zeros of the system S. Moreover,

Cz2 = 0.

Proof. Note that Cz2 = 0 is an immediate result of the Schur identity and Lemma

5.2. The eigenvalues of Az are a subset of the transmission zeros of

»

–

A
(1)
22 B

(1)
2

A
(1)
12 B

(1)
1

fi

fl

, which are a subset of the system S zeros according to Lemma 5.3. According to

Theorem 5.2 and Theorem 5.3 (Cz2 = 0), the output of the system (5.25) goes to

zero as k → ∞ if and only if x
(1)
1 (k), and consequently, X

(1)
1 (k) goes to zero as

k → ∞. The first equation of (5.25) implies that if Az is a Hurwitz matrix, then

x
(1)
2 (k) must approach to zero when X

(1)
1 (k) is zero. However, we know that there

exists nonzero x
(1)
2 (k) and u(k) that yield a zero y(k) for all k. Therefore, since

the response of an unforced linear system can approach to zero or infinity (recall

we excluded systems with transmission zeros on the unit circle in Assumption 1),

therefore x
(1)
2 (k) must approach to infinity. This implies that the eigenvalues of Az

are the NMP zeros of S.

Remark 5.3. According to Theorem 5.3 and the definition of Cz2, if D happens to

be zero, then, C
(1)
2 must be zero which implies y(k) = C

(1)
1 x

(1)
1 (k). This fact seems

to be useful for design of a robust fault detection and isolation scheme, that is left

as a topic of our future research.
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If on the other hand B
(1)
1 is not a full column rank matrix, then let us assume

that D is full column rank. In this case, the unknown input in terms of the system

states is given by the following expression,

u(k − n) = D†
´

y(k − n)− C(1)
1 x

(1)
1 (k − n)− C(1)

2 x
(1)
2 (k − n)

¯

(5.29)

By substituting equation (5.29) into the second equation of (5.19), it yields,

x
(1)
2 (k − n+ 1) = Azdx

(1)
2 (k − n) +BzdX

(1)
1d (k − n) (5.30)

where,

Azd = A
(1)
22 −B

(1)
2 D†C

(1)
2 (5.31)

Bzd =
”

A
(1)
21 −B

(1)
2 D†C

(1)
1 B

(1)
2 D†

ı

(5.32)

X
(1)
1d (k − n) =

»

–

x
(1)
1 (k − n)

y(k − n)

fi

fl (5.33)

We can now state the next result of this chapter.

Theorem 5.4. Let Assumption 1 hold, 0 < q < n, and D be a full column rank

matrix. Then, the eigenvalues of Azd are the NMP zeros of the system S.

Proof. The eigenvalues ofAzd are a subset of the transmission zeros of

»

–

A
(1)
22 B

(1)
2

C
(1)
2 D

fi

fl

, that are a subset of the system S zeros according to Lemma 5.4. According to The-

orem 5.2, y(k)→ 0 as k →∞ if and only if x
(1)
1 (k), and consequently, X

(1)
1 (k)→ 0

as k → ∞. The equation (5.30) implies that if Azd is a Hurwitz matrix, then

x
(1)
2 (k) → 0 when X

(1)
1 (k) is zero. However, we know that there exists nonzero

x
(1)
2 (k) and u(k) that yield a zero y(k) for all k. Therefore, since the response of an

unforced linear system can approach to zero or infinity (recall we excluded systems

with transmission zeros on the unit circle in Assumption 1), therefore x
(1)
2 (k) must

approach to infinity. This implies that the eigenvalues of Azd are the NMP zeros of

S.
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It should be noted that if both B
(1)
1 and D are column rank deficient matrices,

then the NMP states and the unknown input can no longer be estimated. This is

a slightly stronger assumption than the input observability that requires the matrix
»

–

B(1)

D

fi

fl to be full column rank. In our proposed approach, the matrix

»

–

B
(1)
1

D

fi

fl

should now be full column rank.

5.2.4 Estimation of the NMP States

The state equation (5.25) (or similarly the equation (5.30) depending on the rank

condition of B
(1)
1 or D) describes the dynamics of the NMP states. The eigenvalues

of Az (or Azd) coincide with the NMP transmission zeros of the system S. Therefore,

the dynamics of equation (5.25) or equation (5.30) is unstable. This unstable dy-

namics should be treated in a manner that provides a stable estimation of the NMP

states. Towards this end, let us now consider the following non-casual structure

that is obtained by re-arranging the state representation (5.25) or (5.30) as follows

x
(1)
2 (k − n) = Ãzx

(1)
2 (k − n+ 1)− B̃zΘ

(1)
1 (k − n) (5.34)

where,

Ãz = (Az)
−1 (for (5.25)) or (Azd)

−1 (for (5.30)) (5.35)

B̃z = (Az)
−1Bz (for (5.25)) or (Azd)

−1Bzd (for (5.30)) (5.36)

Θ
(1)
1 (k − n) = X

(1)
1 (k − n) (for (5.25)) or X

(1)
1d (k − n) (for (5.30)) (5.37)

Iterating equation (5.34) for nd time steps yields,

x
(1)
2 (k − n − nd) = Ãndz x

(1)
2 (k − n) −

nd−1∑
i=0

(Ãz)
iB̃zΘ

(1)
1 (k − n − i − 1) (5.38)

where Ãndz denotes Ãz raised to the power of nd. The inverse of Az (or Azd) exists

since Az (or Azd) does not have a zero eigenvalue. Also, Ãz is Hurwitz due to the fact
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that the eigenvalues of the inverse matrix is the inverse of the matrix eigenvalues.

Equation (5.38) provides the key to estimation of the NMP states.

Let us now construct the following FIR filter,

x̂
(1)
2 (k − n − nd) = Ãndz x̄

(1)
20 (k − n) −

nd−1∑
i=0

(Ãz)
iB̃zΘ̂

(1)
1 (k − n − i − 1) (5.39)

where x̄
(1)
20 (k − n) denotes the random initial condition of the FIR filter at each

time step k − n and Θ̂
(1)
1 (k − n) = X̂

(1)
1 (k − n) or Θ̂

(1)
1 (k − n) = X̂

(1)
1d (k − n),

depending on whether B(1) orD is full column rank, respectively. Moreover, X̂
(1)
1 (k−

n) =

»

–

x̂
(1)
1 (k − n+ 1)

x̂
(1)
1 (k − n)

fi

fl and X̂
(1)
1d (k − n) =

»

–

x̂
(1)
1 (k − n)

y(k − n)

fi

fl. The estimate of the

MP states (x̂
(1)
1 (k)) as previously discussed is given by (5.18). The random initial

condition x̄
(1)
20 (k − n) at each time step introduces errors in the estimation process,

but for sufficiently large nd, the effects of the initial conditions will vanish and

x̂
(1)
2 (k − n− nd)− x(1)

2 (k − n− nd)→ 0 as k →∞ (note that Ãndz → 0 for nd � 1),

as shown subsequently. Practically, nd must be as small as possible, however an

accurate estimation requires a large nd. Hence, selection of nd requires a trade-

off analysis by quantification of the estimation error versus nd at each time step.

Below, we provide an explicit expression for the reconstruction or estimation error

as a function of the delay nd and the initial condition.

Definition 5.3. The NMP state estimation error is defined according to ex2(k) =

x
(1)
2 (k)− x̂(1)

2 (k).

Theorem 5.5. Let Assumption 1 hold, 0 < q < n , and

»

–

B
(1)
1

D

fi

fl be a full column

rank matrix. Then the NMP state estimation error at the time step k − n − nd is

given by Ãndz (x
(1)
2 (k − n)− x̄(1)

20 (k − n)).
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Proof. Note that we have,

ex2(k − n− nd) = x
(1)
2 (k − n− nd)− x̂(1)

2 (k − n− nd)

= Ãndz (x
(1)
2 (k − n)− x̄(1)

20 (k − n))

−
nd−1∑
i=0

(Ãz)
iB̃z(Θ

(1)
1 (k − n− i− 1)

− Θ̂
(1)
1 (k − n− i− 1))

Since x
(1)
1 (k) − x̂

(1)
1 (k) → 0 as k → ∞, then Θ

(1)
1 (k) − Θ̂

(1)
1 (k) → 0 as k → ∞.

Therefore, the NMP state estimation error is now given by ex2(k − n − nd) =

Ãndz (x
(1)
2 (k − n)− x̄(1)

20 (k − n)) as k →∞.

Theorem 5.5 highlights a number of important trade-off analysis considerations

regarding the nature of the NMP state estimation error and the selection of the delay

nd. Specifically, the following observations can be made:

• The farther the NMP transmission zeros are from the unit circle, one can

ensure a smaller NMP state estimation error given that the term Ãndz decays

faster to zero,

• The NMP state estimation error for the MP strictly stable system is zero since

these systems have a NMP zero at infinity that results in Ãndz ≡ 0, and

• The closer the NMP transmission zeros are to the unit circle, one can ensure

a larger NMP state estimation error to the point that if the system S has any

transmission zeros on the unit circle, then the NMP state estimation results

will be certainly biased regardless of the choice of nd.

It turns out that one can obtain a conservative upper bound on the NMP state

estimation error by considering the 2-norm of ex2(k). We are now in a position to

state our next result.
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Theorem 5.6. Let Assumption 1 hold, 0 < q < n,

»

–

B
(1)
1

D

fi

fl be a full column

rank matrix and x̄
(1)
20 (k) = 0 for all k. Then sup(‖ex2(k)‖2) = σmax(Ã

nd
z )‖(zI −

A(1))−1B(1)‖∞, where σmax(.) denotes the largest singular value operator.

Proof. It follows from Theorem 5.5 that,

‖ex2(k − n− nd)‖2 = ‖Ãndz x
(1)
2 (k − n)‖2 (5.40)

≤ ‖Ãndz ‖2‖x(1)
2 (k − n)‖2

≤ σmax(Ã
nd
z )‖(zI− A(1))−1B(1)‖∞

The last inequality holds since the L2 input-output gain is bounded by the∞-norm

of the system S.

The above upper bound can be plotted as a function of nd to perform a trade-

off analysis. Note that σmax(Ã
nd
z ) is determined by the smallest NMP transmission

zero of the system S due to the fact that the eigenvalues of Ãz are inverse of the

system S NMP transmission zeros. This is in accordance with the results that are

stated in [75]. Note that σmax(Ã
nd
z ) asymptotically decays to zero as nd is increased.

Therefore, an almost perfect estimation can be achieved when nd is equal to several

times that of the system order.

Remark 5.4. If the system S is stimulated by an input such that u(k+1) 6= u(k) at

finite k’s (such as in a step function) or ‖u(k+1)−u(k)‖ is sufficiently small (such

as in a harmonic function), then one can choose x̄
(1)
20 (k − n) = x̂

(1)
2 (k − n− nd − 1)

in the filter (5.39) which may yield an almost unbiased state estimate by selecting

the smallest possible choice of nd = 2. This is due to the fact that in these cases

x̂
(1)
2 (k− n− nd− 1) is a close approximation to x

(1)
2 (k− n− nd− 1) and x

(1)
2 (k− n)

(for small nd), and therefore it may yield a sufficiently small NMP state estimation

error, i.e., ex2(k − n − nd) = Ãndz (x
(1)
2 (k − n) − x̄

(1)
20 (k − n)) = Ãndz (x

(1)
2 (k − n) −

x̂
(1)
2 (k − n− nd − 1)) ≈ 0 even if nd is selected to be sufficiently small.
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We will illustrate the above statement in our simulation case study section.

Once both the MP and NMP states are estimated, the unknown input can now

be easily estimated by using equation (5.24) (or (5.29)). Specifically, if B
(1)
1 is full

column rank, then û(k) is given by,

û(k − n) = B
(1)†

1

´

x̂
(1)
1 (k − n+ 1)− A(1)

11 x̂
(1)
1 (k − n)− A(1)

12 x̂
(1)
2 (k − n)

¯

(5.41)

and if D is full column rank, it is given by,

û(k − n) = D†
´

y(k − n)− C(1)
1 x̂

(1)
1 (k − n)− C(1)

2 x̂
(1)
2 (k − n)

¯

(5.42)

Definition 5.4. The unknown input estimation error is defined according to eu(k) =

û(k)− u(k).

Proposition 5.1. Let Assumption 1 hold, 0 < q < n, and B
(1)
1 be a full column

rank matrix. Then,

eu(k)→ −B(1)†

1 A
(1)
12 ex2(k) as k →∞. (5.43)

Proof. The result follows readily from equations (5.24) and (5.41) by noting that

u(k) − û(k) = B
(1)†

1 (x
(1)
1 (k + 1) − A

(1)
11 x

(1)
1 (k) − A

(1)
12 x

(1)
2 (k)) − B

(1)†

1 (x̂
(1)
1 (k + 1) −

A
(1)
11 x̂

(1)
1 (k) − A

(1)
12 x̂

(1)
2 (k)) → −B(1)†

1 A
(1)
12 ex2(k) as k → ∞. This follows due to the

fact that x̂
(1)
1 (k) → x

(1)
1 (k) as k → ∞ and ex2(k) = x

(1)
2 (k) − x̂

(1)
2 (k) (Definition

5.3).

The Proposition 5.1 links the unknown input estimation error to the state

estimation error. This may serve as a means for conducting a trade-off analysis.

The above implies that the state estimation error is propagated through the gain

−B(1)†

1 A
(1)
12 to the unknown input estimation error. One can interestingly conclude

that if −B(1)†

1 A
(1)
12 happens to be zero, then the unknown input estimation process

will be unbiased regardless of the NMP states estimation error. Therefore, it can

immediately be concluded that −B(1)†

1 A
(1)
12 = 0 if and only if the NMP zero of the
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system S is at infinity. In other words, the system S is strictly stable and MP. The

proposition 5.1 provides an explicit unknown input estimation error expression if

B
(1)
1 is full column rank. In case that D is a full column rank matrix, we arrive at

the following result.

Proposition 5.2. Let Assumption 1 hold, 0 < q < n , and D be a full column rank

matrix. Then,

eu(k)→ −D†C(1)
2 ex2(k) as k →∞. (5.44)

Proof. It follows readily from equations (5.29) and (5.42) that we have u(k) −

û(k) = D†(y(k)−C(1)
1 x

(1)
1 (k)−C(1)

2 x
(1)(k)
2 )−D†(y(k)−C(1)

1 x̂
(1)
1 (k)−C(1)

2 x̂
(1)
2 (k))→

−D†C(1)
2 ex2(k) as k → ∞. This follows due to the fact that x̂

(1)
1 (k) → x

(1)
1 (k) as

k →∞ and ex2(k) = x
(1)
2 (k)− x̂(1)

2 (k) (Definition 5.3).

An immediate conclusion from the Propositions 5.1 and 5.2 is that if the system

S is NMP and both B
(1)
1 and D are full column rank matrices, then B

(1)†

1 A
(1)
12 =

D†C
(1)
2 , which we have already derived through a different method in Theorem 5.3

(C
(1)
z2 = 0). This completes our solution to the Problem 1. In the next section, we

discuss a solution to the Problem 2.

5.3 Inversion-Based Output Tracking

We have shown earlier that in presence of NMP states, accurate estimation of the

MP states as well as bounded error estimation of the NMP states are possible under

certain conditions. In this section, by utilizing the previous results we will introduce

and develop an inversion-based output tracking control methodology as a solution to

Problem 2. Specifically, we will obtain relationship between the resulting tracking

error performance and the unknown input and state estimation errors. We also

demonstrate that almost perfect tracking of an arbitrary desired output trajectory

can be achieved.
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For the output tracking problem a delayed state and input estimation may

not be useful or practical given that the controller should issue the command at a

given present time. This challenge can be resolved if we assume that the desired

output trajectory from yd(k) to yd(k + n + nd) is known a priori at a given time

step k, which is known as the preview time (window) in the literature [78]. This is

actually a reasonable and acceptable assumption given that the desired trajectory

is typically planned in advance and at least it can be assumed practically to be

known for n+nd time steps ahead. Our proposed estimation scheme is now slightly

modified to incorporate this conditional change. A summary of the procedure for

implementation of our proposed scheme is presented in Table 5.1.

Let us now define Yd(k) as
”

yd(k)T . . . yd(k + n)T
ıT

, where Yd(k) is as-

sumed to be a known signal. It is now utilized to derive the unknown input observer

following equation (5.18) to yield x̂
(1)
1 (k) as follows, η(k + 1) = Âη(k) + FYd(k)

x̂
(1)
1 (k) = M

(1)−1

q η(k)
(5.45)

An estimate of x
(1)
2 (k) is now given by,

x̂
(1)
2 (k) = Ãndz x̄

(1)
20 (k + nd)−

nd−1∑
i=0

(−Ãz)iB̃zΘ̂
(1)
1 (k + nd − i− 1) (5.46)

where x̄
(1)
20 (k + nd) is a random initial condition of the FIR filter at each time step

k+nd, and Θ̂
(1)
1 (k) = X̂

(1)
1 (k) or Θ̂

(1)
1 (k) = X̂

(1)
1d (k), if B(1) or D is full column rank,

respectively. Moreover, X̂
(1)
1 (k) =

»

–

x̂
(1)
1 (k + 1)

x̂
(1)
1 (k)

fi

fl and X̂
(1)
1d (k) =

»

–

x̂
(1)
1 (k)

y(k)

fi

fl. If

B
(1)
1 is full column rank, then û(k) is given by,

û(k) = B
(1)†

1

´

x̂
(1)
1 (k + 1)− A(1)

11 x̂
(1)
1 (k)− A(1)

12 x̂
(1)
2 (k)

¯

(5.47)

and if D is full column rank, then û(k) is given by,

û(k) = D†
´

y(k)− C(1)
1 x̂

(1)
1 (k)− C(1)

2 x̂
(1)
2 (k)

¯

(5.48)
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Since the NMP state estimation scheme is subject to errors, if the computed û(k) is

fed to the system, it will then generate y(k) that is different from the desired yd(k).

In other words, y(k) is the real output of the system subjected to and stimulated

by û(k), that is (in view of the state space representation (5.16)) x̃(1)(k + 1) = A(1)x̃(1)(k) +B(1)û(k)

y(k) = C(1)x̃(1)(k) +Dû(k)
(5.49)

where x̃(1)(k) denotes the state response of the system to the input û(k). If the

exact u(k) is known, then we would have obtained, x(1)(k + 1) = A(1)x(1)(k) +B(1)u(k)

yd(k) = C(1)x(1)(k) +Du(k)
(5.50)

We are now in a position to define the output tracking error as follows.

Definition 5.5. The output tracking error is defined as ey(k) = y(k)− yd(k).

It now follows from equations (5.49) and (5.50) that, ẽx(k + 1) = A(1)ẽx(k) +B(1)eu(k)

ey(k) = C(1)ẽ
(1)
x (k) +Deu(k)

(5.51)

where ẽx(k) = x̃(1)(k) − x(1)(k). It is straightforward to conclude from equation

(5.51) that ey(k) → 0 as k → ∞ if eu(k) → 0 as k → ∞. However, eu(k) is given

by the NMP state estimation error (ex2(k)) that is multiplied by a gain as formally

stated in Propositions 5.1 or 5.2. We have shown in Theorem 5.6 that the NMP state

estimation error (ex2(k)) decays asymptotically as nd increases. Hence, an almost

perfect output tracking for any desired trajectory can be achieved by selecting nd to

be sufficiently large by as much as few times of the system order in most cases. The

following theorem formally establishes the above statement and provide an upper

bound on the output tracking error versus the delay parameter nd.
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Theorem 5.7. Let Assumption 1 hold and 0 < q < n. If B
(1)
1 is full column rank,

then ‖ey(k)‖2≤ σmax(Ã
nd
z )‖C(zI −A)−1B +D‖∞‖B(1)†

1 A
(1)
12 ‖2‖(zI−A(1))−1B(1)‖∞.

On the other hand, if D is full column rank, then ‖ey(k)‖2≤ σmax(Ã
nd
z )‖C(zI −

A)−1B +D‖∞‖D†C(1)
2 ‖2‖(zI− A(1))−1B(1)‖∞.

Proof. According to equation (5.51), ‖ey(k)‖2= ‖C(zI −A)−1B +D‖∞‖eu(k)‖2. If

B
(1)
1 is full column rank, then from Proposition 5.1, ‖eu(k)‖2= ‖B(1)†

1 A
(1)
12 ex2(k)‖2≤

‖B(1)†

1 A
(1)
12 ‖2‖ex2(k)‖2. Our desired result is now obtained if we substitute ‖ex2(k)‖2,

by using Theorem 5.6, into the above expression as σmax(Ã
nd
z )‖(zI−A(1))−1B(1)‖∞.

Following along the same procedure yields our other desired result for the case when

D is full column rank.

As expected, Theorem 5.7 implies that the upper bound of the output tracking

error has the same functionality in terms of the delay parameter nd as that of the

upper bound of the NMP states estimation error. Theorem 5.7 is quite useful for

performing a trade-off analysis between the delay parameter nd and the output

tracking error. One may also suggest to reapply the proposed methodology in this

chapter to estimate eu(k) from ey(k) of the system (5.51). However, this is not

possible due to the fact that ey(k) is not available for at least nd time steps ahead.

This completes our proposed methodology for inversion-based output tracking and

in the next section, we provide illustrative simulation case studies to substantiate

the benefits and advantages of our proposed strategies.

5.4 Extension to Fault Estimation

An important application of unknown input reconstruction is fault estimation. Faults

can be considered as unknown inputs to be reconstructed using the methodology

proposed in the previous sections of this chapter. However, faults are accompanied

by exogenous and known system inputs. Therefore, we slightly modify the proposed
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Table 5.1: Inversion-based output tracking algorithm.

1. Calculate Â, F and M from Theorem 5.1.

2. Calculate T(1) and M
(1)
q from equations given in Section 5.2.2.

3. Calculate A(1), B(1) and C(1) by applying the similarity transformation to the
system S using the matrix T(1) (x(1) = T(1)x).

4. Partition A(1), B(1) and C(1) according to equation (5.20).

5. If B
(1)
1 is full column rank, then obtain Az and Bz from equations (5.26) and

(5.27). If B
(1)
1 is not full column rank and D is full column rank, then obtain

Azd and Bzd from equations (5.31) and (5.32).

6. Calculate Ãz and B̃z from equations (5.35) and (5.36).

7. Select nd according to Theorem 5.7 to meet the desired estimation error spec-
ifications .

8. At each time step k,

(a) Reconstruct x̂
(1)
1 (k) from equation (5.45).

(b) Reconstruct x̂
(1)
2 (k) using equation (5.46).

(c) If B
(1)
1 is full column rank, then reconstruct û(k) from equation (5.47). If

B
(1)
1 is not full column rank and D is full column rank, then reconstruct

û(k) from equation (5.48).
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unknown input reconstruction scheme to incorporate the presence of known exoge-

nous input. We only provide the final results since the derivation is repetitive and

can be easily verified by the reader.

Consider the following system,

Sex :

 x(k + 1) = Ax(k) +Bu(k) +Gv(k)

y(k) = Cx(k) +Du(k) + Ev(k)
(5.52)

where x ∈ Rn, u ∈ Rl, v ∈ Rp and y ∈ Rl are system states, system unknown input,

system known input and system measurement. In the above formulation, the signal

u(k) can represents the faults that are desired to be estimated.

The solution begins by calculating Â, F and M from Theorem 5.1 and T(1)

and M
(1)
q from equations given in Section 5.2.2. Furthermore we define,

G(1) = T(1)G;G(1) =

»

–

G
(1)
1

H
(1)
2

fi

fl ;G
(1)
1 ∈ Rq×p

The counterpart dynamic filter to the filter (5.18) for estimation of the MP

states in the presence of known input v(k) is governed by, η(k − n+ 1) = Âη(k − n) + FY(k − n) +HV(k − i)

x̂
(1)
1 (k − n) = M

(1)−1

q η(k − n)
(5.53)

where G is given by FEn −MGIn +H = 0 and,

En =

¨

˚

˚

˚

˚

˚

˚

˚

˝

E 0 . . . 0

CG E . . . 0

...
...

...
...

CAn−1G CAn−2G . . . E

˛

‹

‹

‹

‹

‹

‹

‹

‚

(5.54)
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Table 5.2: Definition of parameters that are used for NMP state reconstruction using
FIR filter (5.55)

B(1) is full column rank D is full column rank

Ãz (Az)
−1, Az is given by equation (5.26) (Azd)

−1, Azd is given by equation (5.31)

B̃z (Az)
−1

”

Bz G
(1)
2 −B

(1)
2 B

(1)†

1 G
(1)
1

ı

(Azd)
−1

”

Bzd E −B(1)
2 D†E

ı

Bz is given by equation (5.27) Bzd is given by equation (5.32)

Θ̂
(1)
1 (k − n)

»

–

x̂
(1)
1 (k − n+ 1)

x̂
(1)
1 (k − n)
v(k − n)

fi

fl

»

–

x̂
(1)
1 (k − n)
y(k − n)
v(k − n)

fi

fl

x̂
(1)
1 (k) is calculated using filter (5.53) x̂

(1)
1 (k) is calculated using filter (5.53)

The NMP states are reconstructed using the following FIR filter,

x̂
(1)
2 (k − n − nd) = Ãndz x̄

(1)
20 (k − n) −

nd−1∑
i=0

(Ãz)
iB̃zΘ̂

(1)
1 (k − n − i − 1) (5.55)

where x̄
(1)
20 (k−n) denotes the random initial condition of the FIR filter at each time

step k − n, and other parameters are defined in Table 5.2. Finally, if B
(1)
1 is full

column rank, then û(k) is given by,

û(k−n) = B
(1)†

1

´

x̂
(1)
1 (k − n+ 1)− A(1)

11 x̂
(1)
1 (k − n)− A(1)

12 x̂
(1)
2 (k − n)−G(1)

1 v(k − n)
¯

(5.56)

and if D is full column rank, it is given by,

û(k−n) = D†
´

y(k − n)− C(1)
1 x̂

(1)
1 (k − n)− C(1)

2 x̂
(1)
2 (k − n)− Ev(k − n)

¯

(5.57)

This completes the extension of the work to the reconstruction of an unknown input

in the presence of known inputs. If one consider faults as unknown inputs, then the

above methodology in fact provides an estimation of faults. Note that in contrast

to the results of the previous chapter, the proposed scheme in this chapter can

reconstruct any general type of fault. Therefore, it completes our inversion-based

approach for fault estimation.
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5.5 Numerical Case Study Simulations

Consider the following discrete-time linear system,

G(z) =
(z − 1.5)(z − 0.5)

z2
(5.58)

or in its equivalent state space representation given by,
x(k + 1) =

»

–

0 0

1 0

fi

flx(k) +

»

–

0

1

fi

flu(k)

y(k) =
”

−2 0.75

ı

x(k) + u(k)

(5.59)

Using Lemma 5.1, the solution to the conditions (i)-(iii) is given by Â = 0.5, F =
”

−0.5547 0

ı

, and M =
”

−0.5574 0.8321

ı

. Therefore, the unknown input

observer is now given by equation (5.18), η(k + 1) = 0.5η(k)− 0.5574y(k)

x̂
(1)
1 (k) = η(k)

(5.60)

Moreover, we have from the LQ decomposition of M and equations (5.31) and (5.32),

the following

T(1) =

»

–

−0.5547 0.8321

0.8321 0.5547

fi

fl ;L =
”

1 0

ı

Azd = 1.5;Bzd =
”

−1.5 −1

ı

.

Therefore, by assuming x̄
(1)
20 (k−n) = 0 for k = 0, . . . ,∞, the FIR filter for estimation

of NMP states is given by equation (5.39) as follows,

x̂
(1)
2 (k − n − nd) = −

nd−1∑
i=0

(
1

1.5
)i
”

−1 − 1
1.5

ı

»

–

x̂
(1)
1 (k − n− i− 1)

y(k − n− i− 1)

fi

fl (5.61)

The upper bound for the state estimation error versus nd is shown in Figure 5.1.

We have applied a non-smooth random input to the system in order to illustrate and
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Figure 5.1: Upper bound of the NMP state estimation error versus nd.

demonstrate the effects of nd on the estimation error. A smooth input, as stated in

Remark 5.4, will be estimated in an almost unbiased manner for any nd ≥ 2. Figure

5.2 depicts that x
(1)
1 (1) is perfectly estimated by using the unknown input observer

(UIO) as expected. Figure 5.3 shows that a perfect reconstruction can be achieved

for x
(1)
2 (1) by selecting nd = 15, as expected from Figure 5.1. According to the

Proposition 5.1, the unknown input should also be almost perfectly reconstructed

with nd = 15, which is also verified in Figure 5.4.

In another simulation case study, consider that a non-smooth yd(k) is required

to be followed. The unknown input is reconstructed by using the Algorithm that

is detailed in Table 5.1, and the results are depicted in Figure 5.5. This figure

demonstrates that an almost perfect output tracking is achieved by selecting nd = 15.

Finally, consider a smooth yd(k) as given by yd(k) = k2 sin(5πk). The output

tracking result for this smooth desired trajectory is shown in Figure 5.6, which

confirms and is a demonstration of the statements that are made in Remark 5.4.

Finally, as a comparative study, consider a MIMO system that is taken from
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Figure 5.2: The estimation of the MP state by utilizing the filter (5.18).
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Figure 5.3: The estimation of the NMP state (the graphs are shifted by nd−n time
steps to the left for the purpose of comparison) by utilizing the filter (5.39).
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and (5.48) corresponding to a smooth trajectory.

the reference [75] with A ∈ R4×4, B ∈ R4×2 and C ∈ R2×4 as follows,

x(k + 1) =

»

—

—

—

—

—

—

—

–

0.6 −0.3 0 0

0.1 1 0 0

−0.4 −1.5 0.4 −0.3

0.3 1.1 0.2 0.9

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x(k) +

»

—

—

—

—

—

—

—

–

0 0.4

0 0

0 −0.1

0.1 0.1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

u(k)

y(k) =

»

–

1 2 3 4

2 1 5 6

fi

flx(k)

(5.62)

The system (5.62) has two zeros at z1 = 0.6072 and z1 = 1.9928. Therefore, it has

three MP states and one NMP state. Authors of [75] proposed a geometric approach

and applied it to the system (5.62) to achieve an almost perfect estimation of the

states and unknown inputs with a delay of 20 time steps (nd = 20). For comparison,

our simulation results for the same example is shown in Figure 5.7. The numerical

values of the estimation filters parameters for this example are as follows,

Â =

»

—

—

—

—

–

0.6072 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

fl

, Az = 1.9928
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F =

»

—

—

—

—

–

0 0 −0.662 0.0184

0 0 −0.0206 0.1365

0 0 0.1337 0.0338

fi

ffi

ffi

ffi

ffi

fl

; M =

»

—

—

—

—

–

0.0488 0.9650 0.2063 −0.1547

0.2523 0.0953 0.6205 0.7364

0.2013 0.3012 0.5700 0.7375

fi

ffi

ffi

ffi

ffi

fl

T(1) =

»

—

—

—

—

—

—

—

–

−0.0488 −0.9650 −0.2063 0.1547

0.2483 −0.0190 0.6003 0.7600

−0.4645 0.2474 −0.5833 0.6187

−0.8487 −0.0855 0.5067 −0.1252

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;L =

»

—

—

—

—

–

−1.0000 0 0 0

−0.1183 0.9930 0 0

−0.3039 0.9469 0.1048 0

fi

ffi

ffi

ffi

ffi

fl

Bz =
”

−0.2463 −2.0822 2.4171 5.3035 −0.0678 −2.3507

ı

The results demonstrate that by using our proposed methodology the unknown

states and inputs are almost perfectly reconstructed with only a delay of nd = 10,

which is half of the delay that was used in [75]. Moreover, as shown in Figure 5.7b,

by using our approach the three MP states of the system are estimated without any

delay when the transient response of the unknown initial condition dies off. This is

in contrast to the delayed results that are shown in the work [75].

Our proposed methodology for partitioning and decoupling the system states

does provide flexibility and versatility in its application to several important prob-

lems such as instantaneous estimation of MP states. Another important advantage

of our approach is the fact that the developed machinery allows an almost perfect

unknown input estimation and output tracking performance with a delay as small

as 2 (nd = 2) when the desired output trajectory is selected to be a smooth function

of time.

5.6 Conclusion

In this chapter, we have shown that one can almost perfectly estimate and recon-

struct the unknown state and inputs of a system if i) the system S is square, and
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Figure 5.7: Simulation results for the MIMO system (5.62) taken from [75], (a) The
NMP state estimation error versus nd, (b) The MP state estimates, (c) The NMP
state estimates, and (d) The unknown input estimates.
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ii) B
(1)
1 or D is full column rank. Non-square systems rarely have transmission ze-

ros [133], and therefore it is straightforward to design an unknown input observer

(UIO) to estimate all the system states. We excluded non-square systems from our

analysis since Theorem 4.2 is not guaranteed for this class of systems. In other

words, the eigenvalues of Γ = (A − BInD
+
nCn) may or may not coincide with the

transmission zeros of the system. Also, it may or may not have the same charac-

teristics, namely the MP transmission zero of S remains the stable eigenvalue of Γ.

However, if one determines the matrices Â, F and M by using a different method

for these systems, then the remainder of our procedure for unknown state and input

reconstruction, as described in this chapter, will remain applicable and unchanged.

We have also demonstrated that our proposed methods can provide an almost per-

fect tracking of any desired output trajectory by using data and information that

correspond to a small preview time. Yet, further research is required to address

issues of robustness and tracking error performance in presence of disturbances and

modeling uncertainties. These issues are left as topics of future research.
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Chapter 6

Data Driven Fault Detection,

Isolation and Estimation

In this chapter, we propose explicit state-space based fault detection, isolation and

estimation filters that are data-driven and are directly identified and constructed

from only the system input-output (I/O) measurements and through estimating the

system Markov parameters. The proposed methodology does not involve a reduction

step and does not require identification of the system extended observability matrix

or its left null space. The performance of our proposed filters is directly connected

to and linearly dependent on the errors in the Markov parameters identification

process. The estimation filters operate with a subset of the system I/O data that is

selected by the designer. It is shown that the proposed filters provide asymptotically

unbiased estimates by invoking low order filters as long as the selected subsystem

has a stable inverse. We have derived the estimation error dynamics in terms of the

Markov parameters identification errors and have shown that they can be directly

synthesized from the healthy system I/O data. Consequently, the estimation errors

can be effectively compensated for. Finally, we have provided several illustrative

case study simulations that demonstrate and confirm the merits of our proposed
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schemes as compared to methodologies that are available in the literature.

The outline of the remainder of the chapter is as follow. The preliminaries,

problem definition and assumptions are provided in Section 6.1. In Section 6.2, we

discuss the theoretical aspects of our proposed fault estimation scheme. We present

the development and design of data-driven fault detection and isolation filters in

Section 6.3. Next, we propose a data-driven fault estimation filter for both the

actuators and sensors as well as a tuning procedure is introduced and developed in

Section 6.4. Finally, we provide a number of illustrative simulation results in Section

6.5.

6.1 Preliminaries

Consider the following discrete-time linear system S,

S :

 x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) + v(k)
(6.1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rl. Moreover, w(k) ∈ Rn and v(k) ∈ Rl are white

noise having zero mean and covariance matrices:

E[

»

–

wi

vi

fi

fl

”

wTj vTj

ı

] =

»

–

Q S

ST R

fi

fl δi,j (6.2)

We model a given actuator or a sensor fault through additive terms that are injected

in the system S as follows,

Sf :

 x(k + 1) = Ax(k) +Bu(k) +Bfa(k) + w(k)

y(k) = Cx(k) + f s(k) + v(k)
(6.3)

where fa(k) ∈ Rm and f s(k) ∈ Rl represent the actuator and sensor faults, respec-

tively. These faults are commonly known as additive faults.

Remark 6.1. The actuator and sensor faults are traditionally modeled in various

manners in the literature. For instance, either as additive faults or multiplicative
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faults. The proper choice depends on the actual characteristics of the fault. Typically,

sensor bias, actuator bias and actuator loss of effectiveness are considered as additive

faults. Multiplicative fault models are more suitable for representing changes in the

system dynamic parameters such as gains and time constants [77].

Problem Statement: The problem considered in this work deals with devel-

oping and designing fault detection, isolation and estimation schemes for both sensor

and actuator faults under the following assumptions.

Assumption 1 : The system S is stable and observable.

Assumption 2 : The system matrices and the system order are not known a

priori.

Assumption 3 : A sequence of healthy measured system I/O data, namely u(k)

and y(k), for k = 1, . . . , T , are available and the input u(k) satisfies the persistently

exciting (PE) condition [93].

Assumption 4 : The faults in the system Sf are detectable and isolable, as

comprehensively discussed in Chapter 4 of [134].

The above assumptions are required in all the lemmas and theorems provided

in the chapter, however they are not explicitly stated in lemmas and theorems

statements for sake of brevity.

Identification of the Markov Parameters: We define the set {H0, H1, H2, . . .},

where Hβ = CAβB is known as the Markov parameter. If u(k) is persistently ex-

citing, then several approaches are available in the literature to directly identify the

Markov parameters from the I/O data u(k) and y(k) ( [91,93]). Specifically, we use

correlation analysis [93] for accomplishing the Markov parameters estimation task.

The estimated Markov parameters are denoted by Ĥβ in our subsequent derivations.

Notation: We will subsequently use an equivalent form of the system S as
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follows,

S :


x(k − i+ 1) = Ax(k − i) +BIml Ui(k − i) + w(k − i)

Y(k − i) = Cx(k − i) + DU(k − i)

+EW(k − i) + V(k − i)

(6.4)

where,

C =

¨

˚

˚

˚

˚

˚

˚

˚

˝

C

CA

...

CAi

˛

‹

‹

‹

‹

‹

‹

‹

‚

; D =

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 . . . 0 0

H0 0 . . . 0 0

...
...

...
...

...

Hi−1 Hi−2 . . . H0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

;D =
”

0 HT
1 . . . HT

i−1

ıT

E =

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 . . . 0 0

C 0 . . . 0 0

...
...

...
...

...

CAi−1 CAi−2 . . . C 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

(6.5)

For any given signal g(k), the following matrices are defined,

G(k − i) =

»

—

—

—

—

—

—

—

–

g(k − i)

g(k − i+ 1)

...

g(k)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; G+(k − i) =

»

—

—

—

—

—

—

—

–

g(k − i)

g(k − i+ 1)

...

g(k + 1)

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.6)

We extensively use the notation Iγα which is defined as,

Iαγ =
”

Iα×α 0α×(iγ−α)

ı

(6.7)

Moreover, we also define,

D+ =

¨

˚

˚

˚

˚

˝

H0 0 . . . 0 0

...
...

...
...

...

Hi Hi−1 . . . H0 0

˛

‹

‹

‹

‹

‚

;D+ =

¨

˚

˚

˚

˚

˝

H0

...

Hi

˛

‹

‹

‹

‹

‚

; C+ =
”

(CA)T . . . (CAi+1)T
ıT

(6.8)
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Gi,j(k − i) =

¨

˚

˚

˚

˚

˚

˚

˚

˝

g(k − i) g(k − i+ 1) . . . g(k − i+ j)

g(k − i+ 1) g(k − i+ 2) . . . g(k − i+ j + 1)

...
...

...
...

g(k) g(k + 1) . . . g(k + j)

˛

‹

‹

‹

‹

‹

‹

‹

‚

(6.9)

The matrices D̂, D̂+, D̂ and D̂+ are constructed similar to D, D+, D and D+

where the actual Markov parameters Hβ are replaced by their estimates Ĥβ.

We define two sets p and q that contain a selection of integer numbers from 1

to l and from 1 to m, respectively. The parameters np and nq denote the number of

elements in the sets p and q, respectively. Both p and q can be empty sets denoted

by p = {∅} and q = {∅}. We denote by kp (or kq), k ∈ N, as a set that contains

all the elements of p (or q) multiplied by k. The notation ∼ q (or ∼ p) denotes

the set that contains the integers from 1 to m (or 1 to l) that are not included in

q (or p). For example, for a given Markov parameter matrix H0 ∈ R5×4, a typical

p can be taken as p = {2, 4}. Moreover, np = 2, 3p = {6, 12} and ∼ p = {1, 3, 5}.

If p = {∅}, then ∼ p = {1, 2, 3, 4, 5}. The matrix Oq−
p− is obtained by deleting

the columns q, 2q, . . . , iq and rows p, 2p, . . . , ip of O, respectively. The matrix Oq+

and Op+ are defined as matrices that only contain the columns q, 2q, . . . , iq and

the rows p, 2p, . . . , ip of O, respectively. The vector Pp− is obtained by deleting

the rows p, 2p, . . . , ip of P. Finally, Pp+ only contains the rows p, 2p, . . . , ip of P.

Similar notations are defined for Pq+ and Pq−. The signs †, N and E{.} denote the

Moore-Penrose pseudo inverse, null space and the expectation operator. The matrix

O(α : β, γ : θ) denotes a matrix that is constructed from an original matrix O by

only containing the rows α to β and the columns γ to θ . If α and β (or γ and θ)

are not specified, then it implies that we are dealing with all the rows (or columns)

of O.

Remark 6.2. The parameters p and q are defined in order to specify the set of I/O

data that is to be fed to a fault isolation or estimation filter. For example, for a given
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Markov parameter matrix H0 ∈ R5×4, one may desire to design a filter that operates

with information from input channels {3, 4} and measurement channels {1, 2, 3}.

Then, one should set q = {1, 2} and p = {4, 5}. The above notation is critical for

the task of fault isolation where one requires to construct a bank of filters each of

which operates with a different set of inputs and outputs data.

6.2 Proposed Fault Estimation Scheme Using Ex-

act Markov Parameters and Observability Ma-

trix

In this section, we start by assuming availability of the exact Markov parameters

and the extended observability matrix to introduce the basic concepts we utilize

in this work. These assumptions will be relaxed and removed in the subsequent

Sections 6.3, 6.4 and 6.5.

Let us consider a signal η(k) that is governed by the following dynamics and

stimulated by the information from the sensors ∼ p and actuators ∼ q, that is

η(k + 1) = Arη(k) +BrU
q−(k − i) + LrY

p−(k − i) (6.10)

where η(k) ∈ Ril′ , Uq−(k − i) ∈ Rim′ and Yp− ∈ Ril′ , where l′ = (l − np) and

m′ = (m− nq). Our goal is to determine the unknown matrices Ar, Br and Lr such

that for the healthy system S given by (6.4), we have

E(e(k)) = E(η(k)−Tx(k − i))→ 0 as k →∞ (6.11)

where T ∈ Rl′×n denotes a full column rank matrix. The error dynamics associated
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with e(k) is therefore given by,

e(k + 1) = η(k + 1)−Tx(k − i+ 1)

= Are(k) + (ArT−TA+ LrCp−)x(k − i)

+ (Br + LrD
q−
p− −TBq−Im

′

l′ )Uq−(k − i)

+ (LrD
q+
p− −TBq+I

nq
l′ )Uq+(k − i)

+ LrE
q−
p−Wq−(k − i) + LrV

p−(k − i) (6.12)

which is obtained by substituting η(k + 1) from equation (6.10) and x(k − i + 1)

from equation (6.4). Condition (6.11) is now satisfied if and only if (a) Ar is a

Hurwitz matrix, (b) ArT − TA + LrCp− = 0, (c) Br + LrD
q−
p− − TBq−Im

′

l′ = 0,

and (d) LrD
q+
p− − TBq+I

nq
l′ = 0. The above conditions actually correspond to the

Luenberger observer equations.

The key concept that is introduced in this chapter is that we specifically set,

T = Cp− (6.13)

In other words, we select T to be equal to the extended observability matrix. Let

us now define the matrix Mp− as follows,

Mp− = Ar + Lr (6.14)

Given (6.13) and (6.14) and in view of the fact that Cp−B
q− = Dq−+,p−, Cp−B

q+ =

Dq++,p−, and Cp−A = C+,p−, the conditions (a) to (d) can be rewritten as,

Ar is Hurwitz (6.15)

Mp−Cp− = C+,p− (6.16)

LrD
q+
p− −D

q+
+,p−I

nq
l′ = 0 (6.17)

Br + LrD
q−
p− −D

q−
+ Im

′

l′ = 0 (6.18)

Remark 6.3. Recall that Cp− should be full column rank according to the assignment

(6.13). The matrix Cp− will be full column rank if i is selected to be equal to or
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greater than the observability index of the pair (Cp−, A), which is denoted by νp.

Given i ≥ νp, the matrix Mp− is given by C+,p−(Cp−)† + Θ(I−Cp−(Cp−)†), where

Θ is an arbitrary matrix introduced due to the Moore-Penrose pseudo inverse non-

unique solution.

Definition 6.1. The relative degree of the subsystem inputs to the outputs ∼ p is

defined as the smallest non-negative τp such that Hi,p− = 0 for i < τp and Dp− is

full column rank for i ≥ τp [73, 92].

Remark 6.4. It is well-known that the system of equations (6.14) and (6.15) to

(6.18) has a solution if and only if i) i ≥ τp and ii) the subsystem from the inputs q

to the outputs ∼ p is minimum phase [126]. Particularly, the above equations always

have a solution if q = {∅} since equation (6.17) vanishes. Consequently, one can

arbitrarily select a Hurwitz Ar and then calculate Lr and Br from equations (6.14)

and (6.18). The restriction that is imposed is actually on the subsystems and not

the entire system. Therefore, the designer has a freedom to select a different q if the

minimum phase condition is not satisfied for the original selection.

Let us assume that it is desired to estimate the faults in the actuators q by

using the information from the sensors ∼ p and actuators ∼ q. Then, the fault

estimator filter is given by, η(k + 1) = Arη(k) +BrU
q−(k − i) + LrY

p−(k − i)

f̂a(k − i) = −ImmD† pη(k)−Yp−(k − i) + Dp−U(k − i)q

(6.19)

where f̂a(k) denotes an estimate of fa(k). The matrices Ar, Br and Lr are obtained

by solving the equations (6.14) and (6.15) to (6.18).

Theorem 6.1. Assume that the subsystem from the inputs q to the outputs ∼ p is

minimum phase, i ≥ max{νp, τp} and the sensors ∼ p and actuators ∼ q are healthy,

then the filter dynamics governed by (6.19) is asymptotically unbiased.
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Proof. The dynamics of the residuals in presence of actuator faults is given by, η(k + 1) = Arη(k) +Bq−
r (Uq−(k − i) + Fa,q−(k − i) + Lp−r Yp−(k − i)

rq(k) = η(k)−Yp−(k − i) + Dp−(U(k − i) + Fa(k − i))
(6.20)

Since Ar, Br and Lr satisfy equations (6.14) and (6.15) to (6.18) and the actuators

∼ q are healthy, therefore E{η(k)−Cp−x(k−i)} → 0 as k →∞. The convergence is

asymptotic since Ar is Hurwitz. Therefore, E{rq(k)} → −Dp−Fa(k − i) as k →∞.

Therefore, f̂a(k− i) = −Iml′ D
†E{rq(k)}−Imm(I−D†p−Dp−)Θ, where Θ is an arbitrary

matrix. However, since i ≥ τp, the subspace spanned by rows of Imm are also spanned

by the rows of Dp−. Therefore, the projection of the row space of Imm onto the null

space of Dp− given by (I−D†p−Dp−) is zero. In other words, Imm(I−D†p−Dp−) = 0.

This completes the proof of the theorem.

The above theorem guarantees that our proposed filter will generally have

a lower order than the estimation filter that is proposed in [92] which requires

i ≥ νp + τp or i → ∞ depending on the transmission zeros of the quadruple

(A,Bq−,Cp−,Dq−p−).

The case of the sensor fault estimation is slightly different. One can estimate

the faults in the sensors p if the sensors ∼ p and all the actuators are healthy. The

fault estimator is now given by, η(k + 1) = Arη(k) +BrU(k − i) + Lp↓r Y(k − i)

f̂ s(k − i) = Ill pη(k)−Yp−(k − i) + Dp−U(k − i)q

(6.21)

where f̂ s(k) denotes an estimate of f s(k), Lp↓r denotes a matrix where its columns

p, 2p, . . . , ip are zero. The matrices Ar, Br and Lp↓r are obtained by solving the

equations (6.14) and (6.15) to (6.18) by setting p = q = {∅} and by replacing Lr

with Lp↓r .

The above proposed filter (6.21) is unbiased as established by the following

theorem.
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Theorem 6.2. Assume that i ≥ νp and the sensors ∼ p and all the actuators

are healthy, then the filter dynamics that is governed by (6.21) is asymptotically

unbiased.

Proof. The dynamics of the residuals in presence of sensor faults is given by, η(k + 1) = Arη(k) +BrU(k − i) + Lp↓r (Y(k − i) + Fs(k − i)

rp(k) = η(k)−Y(k − i)− Fs(k − i) + Dp−U(k − i)
(6.22)

Since Ar, Br and Lp↓r satisfy equations (6.14) and (6.15) to (6.18) and the actuators

and sensors p are healthy, therefore E{η(k) − Cp−x(k − i)} → 0 as k → ∞. The

convergence is asymptotic since Ar is Hurwitz. Therefore, E{rp(k)} → Fs(k − i)

as k → ∞. Therefore, f̂ s(k − i) = Iml E{rp(k)}. This completes the proof of the

theorem.

Note that the subsystem from the inputs to the outputs ∼ p is not required to

be minimum phase for solving the sensor fault estimation problem. Moreover, it can

be theoretically shown that the filter (6.21) is unbiased by using information from the

faulty actuators provided it is modified by the estimations that are provided by the

filter (6.19). However, this coupling will cause significant biases in the data-driven

solution since the actuator fault estimation scheme is itself biased.

6.3 Data-Driven Fault Detection and Isolation (FDI)

Scheme

In this section, our proposed fault detection and isolation (FDI) filters are now

directly constructed from the healthy system I/O data. First, we propose a data-

driven estimation of the matrix Mp− and then present the design procedure of the

FDI filters.
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Remark 6.5. Theorems 6.1 and 6.2 provide the guidelines for selection of i. The

parameter i is bounded by n which is not known a priori. The condition i ≥ τp can be

easily satisfied by checking the rank of Dp−. However, the parameter νp is not known.

Therefore, i should be selected sufficiently large that ensures i ≥ max{νp, τp}.

6.3.1 Data-Driven Estimation of the Filter Parameters

In order to solve equations (6.14) and (6.15) to (6.18), one requires the Markov pa-

rameters and the extended observability matrix. The extended observability matrix

is required to obtain Mp−. However, in our subsequent data-driven derivations we

will show that an estimate of the matrix Mp− can be directly obtained from the

system I/O data without applying the reduction step. Consequently, the matrix

Cp− or its equivalent forms are not actually required.

The objective of the equation (6.16) is in fact to enforce,

(ArCp− −Cp−A+ LrCp−)x(k − i) ≡ 0 (6.23)

On the other hand, from the measurement equation (6.4) it follows that,

Cp−x(k − i) = Yp−(k − i)−Dp−U(k − i)− Ep−W(k − i)−Vp−(k − i) (6.24)

By substituting equation (6.24) into equation (6.23) one obtains,

Mp−(Yp−(k − i)−Dp−U(k − i)− Ep−W(k − i)

− Vp−(k − i))− (Yp−(k − i+ 1)−D+,p−U+(k − i)

− E+,p−W+(k − i)−Vp−(k − i+ 1))

= 0 (6.25)

where,

Mp− =∆ Ar + Lr (6.26)
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Iterating the equation (6.25) from the time steps k − i to k − i + j, where j � i,

yields,

Mp−(Γp−0 −Ep−Wi,j(k−i)−Vp−
i,j (k−i))−(Γp−1 −E+,p−Wp−

(i+1),j(k−i)−Vp−
(i+1),j(k−i+1)) = 0

(6.27)

where Γp−0 = Yp−
i,j (k−i)−Dp−Ui,j(k−i) and Γp−1 = Yp−

(i+1),j(k−i+1)−D+,p−U(i+1),j(k−

i). Equation (6.27) forms the basis for our proposed data-driven solution for esti-

mating Mp−. The matrix Mp− minimizes the following cost function,

‖Γp−1 −Mp−Γp−0 ‖2

We do not have access to the actual values of the Markov parameters. Instead, we

construct the matrices Γ̂p−0 and Γ̂p−1 by using the estimated Markov parameters and

the system I/O data (healthy data) as follows,

Γ̂p−0 = Yp−
i,j (k − i)− D̂p−Ui,j(k − i) (6.28)

Γ̂p−1 = Yp−
(i+1),j(k − i+ 1)− D̂+,p−U(i+1),j(k − i) (6.29)

where D̂p− and D̂+,p− are constructed similar to Dp− and D+,p− but instead the

estimated Markov parameters are utilized. Therefore, an estimate of Mp− is given

by Γ̂p−1 (Γ̂p−0 )† + Θ(I − Γ̂p−0 (Γ̂p−0 )†), where Θ is an arbitrary matrix. However, the

solution will be unique as j →∞ as stated in the following lemma.

Lemma 6.1. If j →∞, then the matrix Γ̂p−0 is full row rank and,

M̂p− = Γ̂p−1 (Γ̂p−0 )† (6.30)

Proof. According to equation (6.28) and the measurement equation (6.4), we have

Γp−0 = Cp−X(k − i) + Ep−Wi,j(k − i) + Vp−
i,j (k − i)

where,

X(k − i) =
”

x(k − i) . . . x(k − i+ j − 1)

ı
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Assume that two block rows γ and β of Γp−0 , where β > γ, are linearly dependent

which implies,

Yp−
1,j (k − i+ γ)− (Dp−((i+ γ − 1)l′ : (i+ γ)l′, :))Ui,j(k − i)

= c(Yp−
1,j (k − i+ β)− (Dp−((i+ β − 1)l′ : (i+ β)l′, :))Ui,j(k − i)) (6.31)

where c is a constant. Equivalently, we have,

CAγ−1X(k − i) + (Ep−((i+ γ − 1)l′ : (i+ γ)l′, :))Wi,j(k − i) + Vp−
1,j (k − i+ γ)

= c(CAβ−1X(k− i) + (Ep−((i+β−1)l′ : (i+β)l′, :))Wi,j(k− i) +Vp−
1,j (k− i+β))

(6.32)

If we multiply both sides of equation (6.32) by (Vp−
1,j (k− i+β))T and take the limit

as j →∞, all the terms will be zero except for the last one since all the terms except

the last one are uncorrelated with (Vp−
1,j (k − i + β)). Therefore, we obtain 0 = c,

which is a contradiction. Therefore, Γ̂p−0 is full row rank.

The matrix M̂p− has a particular structure as shown in the following lemma.

Lemma 6.2. The matrix M̂p− has the following structure,

M̂p− =

»

–

0(i−1)l′×l′ I(i−1)l′×(i−1)l′

K1 K2

fi

fl (6.33)

where K1 ∈ Rl′×l′ and K2 ∈ Rl′×(i−1)l′ are nonzero matrices, where l′ = l − np.

Proof. One can partition Γ̂p−0 and Γ̂p−1 as follows,

Γ̂p−0 =

»

–

Γ̂01

Γ̂02

fi

fl ; Γ̂p−1 =

»

–

Γ̂11

Γ̂12

fi

fl (6.34)

where Γ̂01 ∈ Rl′×il′ , Γ̂02 ∈ R(i−1)l′×il′ , Γ̂11 ∈ Rl′×il′ and Γ̂12 ∈ R(i−1)l′×il′ . It follows

readily from definitions of Γ̂p−0 and Γ̂p−1 (equations (6.28) and (6.29)) that Γ̂11 = Γ̂02.

Since Γ̂p−0 is full row rank, therefore we have

Γ̂11 =
”

0 I

ı

»

–

Γ̂01

Γ̂02

fi

fl (6.35)
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Moreover, Γ̂12 can be written as a linear combination of the rows of Γ̂01 and Γ̂02 as

follows,

Γ̂12 =
”

K1 K2

ı

»

–

Γ̂01

Γ̂02

fi

fl (6.36)

Consequently, we obtain,

Γ̂p−1 =

»

–

0 I

K1 K2

fi

fl Γ̂p−0 (6.37)

which reveals the general structure of M̂p− as given by equation (6.33).

Lemma 6.3. The matrix M̂p− is Hurwitz.

Proof. Let us define ψ(k− i) = Yp−
i,j (k− i)− D̂p−Ui,j(k− i). Threfore, ψ(k− i+ 1)

is governed by,

ψ(k − i+ 1) = Yp−
i,j (k − i+ 1)− D̂p−Ui,j(k − i+ 1)

= Yp−
(i+1),j(k − i+ 1)− D̂+,p−U(i+1),j(k − i)− D̂+,p−Iml′ Ui,j(k − i)

= M̂p−ψ(k − i)− D̂+,p−Iml′ Ui,j(k − i) (6.38)

Due to the fact that ψ(k − i) is bounded, therefore M̂p− is a Hurwitz matrix. This

completes the proof of the lemma.

The above analysis shows that the estimation filter (6.10), which satisfies the

condition (6.11), can be directly synthesized from the system I/O data without

requiring any reduction step. The data-driven counterparts of equations (6.14) and

(6.15) to (6.18) is now given by,

Âr is Hurwitz (6.39)

Âr + L̂r = M̂p− (6.40)

L̂rD̂
q+
p− − D̂

q+
+,p−I

nq
l′ = 0 (6.41)

B̂r + L̂rD̂
q−
p− − D̂

q−
+ Im

′

l′ = 0 (6.42)

148



Theorem 6.3. Equations (6.39) to (6.42) have a solution if and only if M̂p− −

D̂q++,p−I
nq
l′ (D̂q+

p−)†−Θ1(I−D̂q+
p−(D̂q+

p−)†) is Hurwitz for an arbitrary matrix Θ1 ∈ Ril′×il′.

Proof. Solving equation (6.41) for L̂r yields,

L̂r = D̂q++,p−I
nq
l′ (D̂q+

p−)† + Θ1(I− D̂q+
p−(D̂q+

p−)†)

Substituting the above expression in equation (6.40) and comparing it with equation

(6.39) concludes the result.

The arbitrary matrix Θ1 in L̂r should be selected such that equation (6.39) is

satisfied. Note that equation (6.41) and the free parameter Θ1 vanish when q = {∅}.

Therefore, one can arbitrarily select a Hurwitz matrix Âr and then obtain L̂r and

B̂r from equations (6.41) and (6.42).

6.3.2 Fault Detection and Isolation Filters

Our proposed residual generator fault detection and isolation filter has the general

structure that is as governed by, η(k + 1) = Ârη(k) + B̂rU
q−(k − i) + L̂rY

p−(k − i)

r̂(k) = If (η(k)−Yp−
i (k − i) + D̂p−U(k − i))

(6.43)

where r̂(k) denotes the residual signal, If = Imm if q 6= {∅} and If = I, otherwise.

The filter parameters are obtained from equations (6.39) to (6.42).The above general

structure can be configured for both single or concurrent fault detection, isolation or

estimation tasks by invoking different settings for p and q. Specifically, if both p and

q are set to be empty sets, then the filter (6.43) will be in fact a fault detection filter.

Fault isolation is typically performed via structured residuals. In other words,

a bank of residual observers is constructed where each filter in the bank is insen-

sitive to a particular fault but sensitive to all the other faults. Therefore, in case
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of occurrence of a fault, all the filters generate non-zero residuals that exceed their

thresholds except for the one filter that can be used for determining the isolated

fault. This can be achieved by invoking different settings for p and q for each filter

in the bank.

For example, if a single actuator fault isolation scheme for a system with three

inputs and four measurements is desired, then a bank that consists of three filters

should be constructed. A possible configuration setting for the filters 1,2 and 3 in

the bank is q = {1, 2}, q = {1, 3} and q = {2, 3}, respectively, and p = {∅} for all.

Alternatively, one may try the setting q = {1}, p = {3, 4}, q = {2}, p = {1, 2, 4},

and q = {1, 3}, p = {1, 3} for the filters 1, 2 and 3, respectively. A particular

configuration selection depends on the context of the problem and the requirements.

Despite the above flexibility, our proposed scheme has a limitation that it cannot

handle simultaneous concurrent actuator and sensor faults. This situation differs

from the concurrent actuators or concurrent sensors faults which is well managed

within our proposed framework.

The residuals that are generated by the filter (6.43) has an important property

that is characterized in the next lemma.

Lemma 6.4. Given q = {∅} and Âr selected to be a diagonal Hurwitz matrix, then

the first (i−1)l′ rows of r̂(k) converge to zero as k →∞ independent of the presence

of the faults.

Proof. We show that the first (i − 1)l rows of the residuals generated by the filter

(6.43) approach to zero as k →∞ if q = {∅}. We begin by noting that,

r̂(k + 1) = η(k + 1)−Yp−(k − i+ 1) + D̂p−U(k − i+ 1) (6.44)

Substituting η(k + 1) from the state equation of the filter (6.43) yields,

r̂(k+1) = Ârη(k)+B̂rU(k−i)+L̂rY(k−i)−Yp−(k−i+1)+D̂p−U(k−i+1) (6.45)
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Next, we substitute B̂r and L̂r from equations (6.40), (6.41) and (6.42) and rearrange

it to obtain,

r̂(k + 1) = Ârr(k)− M̂p−

´

Yp−(k − i)− D̂p−U(k − i)
¯

−Yp−(k − i+ 1) + D̂p−U(k − i+ 1) + D̂+,p−Iml′ U(k − i) (6.46)

Note that,

D̂p−U(k − i+ 1) + D̂+,p−Iml′ U(k − i) = D̂+,p−U+(k − i)

Therefore, by considering the structure of M̂p− in Lemma 6.2, one can verify that

(E.3) becomes,

r̂(k + 1) = ˆ̂Arr̂(k) +

»

–

0(i−1)l×1

yp−(k + 1)− D̄+,p−U+(k − i)

fi

fl (6.47)

which shows that if Âr is a diagonal Hurwitz matrix, then the first (i − 1)l rows

of r̂(k) approach to zero as k → ∞. Note that we did not use the relation M̂Γ̂0(:

, 1) = Γ̂1(:, 1) that only holds for the healthy system. In that case, we would clearly

obtain r̂(k + 1) = ˆ̂Arr̂(k) + 0, which is a valid model. This completes the proof of

the lemma.

Based on the above lemma, the first (i− 1)l′ rows of r̂(k) do not contain any

useful information that would allow a model reduction. The general structure of the

residual generator filter for the actuator or sensor fault detection or the sensor fault

isolation (q = {∅}) is then given by, ηr(k + 1) = ˆ̄Arηr(k) + ˆ̄BrU(k − i) + ˆ̄LrY
p−(k − i)

ˆ̄r(k) = ηr(k)− yp−(k) + ˆ̄Dp−U(k − i)
(6.48)

where ηr(k) ∈ Rl′ , ˆ̄Ar = Ar((i− 1)l′ + 1 : il, il′ + 1 : il′, ˆ̄Br = B̂r((i− 1)l′ + 1 : il′, :),

ˆ̄Lr = L̂r((i− 1)l′ + 1 : il′, :) and ˆ̄Di,p− = D̂i,p−((i− 1)l′ + 1 : il′, :).
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The same model reduction procedure cannot be applied to the actuator fault

isolation filter (i.e. when q 6= {∅}) since Âr that is obtained from equations (6.39)

to (6.42) is not necessarily diagonal.

6.3.3 Residual Dynamics In Presence of A Fault

Let us now investigate the corresponding residual dynamics in presence of faults. If

fa(k) and/or f s(k) are nonzero, then the residual dynamics is given by, η(k + 1) = Ârη(k) + B̂r pUq−(k − i) + Fa,q−(k − i)q + L̂r pYp−(k − i) + Fs,p−(k − i)q

r̂(k) = If

´

η(k)−Yp−
i (k − i)− Fs,p−(k − i) + D̂p−(U(k − i) + Fa(k − i))

¯

(6.49)

where Fa(k − i) and Fs(k − i) are construed similar to G(k − i) using the actu-

ator fault and the sensor fault signals, respectively. The vectors Fa,q−(k − i) and

Fs,p−(k−i) are then obtained by deleting the rows q, . . . , iq and p, . . . , ip of Fa(k−i)

and Fs(k − i), respectively. The filter dynamics (6.49) shows that the residual r̂(k)

is clearly affected by the faults except those in the sensors p or the actuators q.

Conventionally, the following decision logic is utilized for performing the fault

detection task, namely If rmin ≤ E{‖r̂(k)‖} ≤ rmax ⇒ System is healthy

If E{‖r̂(k)‖} < rmin or E{‖r̂(k)‖} > rmax ⇒ System is faulty
(6.50)

where rmin and rmax denote the lower and the upper bound thresholds, respectively.

The thresholds are selected through conducting comprehensive Monte Carlo simu-

lation runs so that the missed alarms and false alarms are minimized.

A similar structure can be utilized for selecting the fault isolation decision
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logic. Specifically, a fault is detected and isolated in the actuator q0 if, E{‖r̂a(k)‖} < rmin or E{‖r̂a(k)‖} > rmax ; a 6= q0, a = 1, . . . ,m, and

rmin ≤ E{‖r̂a(k)‖} ≤ rmax ; a = q0.

(6.51)

where r̂a(k) denotes the residual that is obtained by setting q = {a}.

This completes our proposed solution to the problem of data-driven fault de-

tection and isolation. In the next section, we consider the problem of data-driven

fault estimation.

6.4 The Proposed Fault Estimation Scheme

In many practical control problems, it is crucial to estimate the faults once they are

detected and isolated. In this section, we provide a data-driven based methodology

for design of fault estimation filters. Our proposed fault estimation scheme can be

integrated with the FDI scheme. In other words, the FDI scheme introduced in the

previous section can be utilized to distinguish between the healthy actuators and

sensors from those where their data are used for fault estimation of faulty actuators

and sensors.

In this section, we first propose fault estimation filters. It turns out that these

filters are biased due to presence of estimation errors in the Markov parameters and

the matrix M̂p−. We then derive the dynamics corresponding to the fault estimation

errors and show that it can be directly identified from the healthy system I/O data.

Finally, we propose our so-called tuned fault estimation filters that are obtained for a

reliable and actuator fault estimation by integrating the proposed estimation filters

with the identified estimation error dynamics.
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6.4.1 Sensor Fault Estimation Filters

The following filter is now proposed to estimate the faults in the sensors p by using

data from the sensors ∼ p and all the actuators, η(k + 1) = Ârη(k) + B̂rU(k − i) + L̂p↓r Y(k − i)
ˆ̂f s(k − i) = Ill

´

η(k)−Y(k − i) + D̂U(k − i)
¯ (6.52)

where ˆ̂f s(k − i) denotes an estimate of f s(k − i) and the filter parameters are ob-

tained from the equations (6.39) to (6.42) by setting p = q = {∅} and by replacing

L̂r with L̂p↓r .

Clearly, the filter (6.52) is biased due to presence of estimation errors in the

Markov parameters and the matrix M̂. The matrix M̂ is defined to be the same

as M̂p− when p = {∅}. Let us define the estimation error as ∆f s(k) = f s(k − i)−
ˆ̂f s(k − i). Therefore, we have,

∆f s(k − i) = Ill pξ(k) + ∆DU(k − i) + EW(k − i) + V(k − i)q (6.53)

where ξ(k) = Cx(k − i) − η(k) and ∆D = D − D̂. The dynamics of ξ(k) is now

governed by,

ξ(k + 1) = Ârξ(k) + (Âr −M + L̂p↓r )Cx(k − i)

+ (B̂r + L̂p↓r D−CBIml )U(k − i)

+ L̂p↓r EW(k − i) + L̂p↓r V(k − i) (6.54)

The matrix M is equal to Mp− when p = {∅}. We substitute Cx(k − i) by Y(k −

i)−DU(k−i)−Fs(k−i)−EW(k−i)−V(k−i) in the above equation. Rearranging

of the right hand side of the above equation after substitution yields the governing
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dynamics of the fault estimation error as follows,
ξ(k + 1) = Ârξ(k) + ∆uU(k − i) + ∆yY(k − i)−∆yF

s(k − i)

+M1W(k − i) +M2V(k − i)

∆f s(k − i) = Ill pξ(k) + ∆DU(k − i) + EW(k − i) + V(k − i)q

(6.55)

where δA = Âr −M + L̂p↓r , δB = B̂r + L̂p↓r D−CBIml , ∆u = δB − δAD, ∆y = δA,

M1 = L̂p↓r E− δAE and M2 = L̂p↓r δA.

Equation (6.55) clearly shows that the fault estimates are biased. All the

parameters in the filter (6.55) are unknown since their computation requires the

exact Markov parameters and the matrix M. However, we will show that one can

actually obtain an estimate of ∆u, ∆y and ∆D by using the healthy I/O data.

Towards this end, we split the off-line available healthy I/O data into two

segments. The first segment is utilized to estimate the system Markov parameters

and the matrix M̂. Once the filter (6.52) is constructed, it is stimulated by the

second segment of the I/O data to obtain ˆ̂f s(k−i) using an arbitrary initial condition

for η(0) in (6.52). Theoretically, ˆ̂f s(k − i) should be zero corresponding to the

second segment of the healthy data, however, it will be biased due to presence of

the estimation errors in the Markov parameters and the matrix M̂. The bias is

governed and is given by ∆f s(k) = f s(k− i)− ˆ̂f s(k− i) ≡ − ˆ̂f s(k− i), and according

to equation (6.55) is governed by, ξ(k + 1) = Ârξ(k) + ∆uU(k − i) + ∆yY(k − i) +M1W(k − i) +M2V(k − i)

∆f s(k) = Ill pξ(k) + ∆DU(k − i) + EW(k − i) + V(k − i)q

(6.56)

One may consider the filter (6.56) as a stochastic LTI system that is described by the

quadruple pA,B, C,Gq ≡
ˆ

Âr,
”

∆T
u ∆T

y

ıT

, Ill,
”

∆DT 0

ıT
˙

. The process and

measurement noise are given byM1W(k−i)+M2V(k−i) and EW(k−i)+V(k−i),

respectively. The matrices A and C and the order of this system are already known.
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Given that ∆f s(k) = − ˆ̂f s(k− i) corresponding to the second segment of the healthy

data, and A and C, one can estimate B and G =
”

G1 0

ı

by invoking an optimiza-

tion problem that is described in detail below.

Let us define the matrices E1,j(k) and Z(λ−1),j(k) similar to Gi,j(k) by replacing

the signal g(k) with the signals − ˆ̂f s(k − i) and Z(k), respectively, where Z(k) =
»

–

U(k)

Y(k)

fi

fl, and j is selected as large as the available data of the second segment

allows. Therefore, for the system (6.56), we have,

E1,j(k) = CAλξ(k − λ) + T1,λZ(λ−1),j(k − λ) + ST (6.57)

where the term ST denotes the stochastic terms which have zero mean and are

neglected here for sake of brevity, and T1,λ is defined as,

T1,λ =
´

Hλ−1 Hλ−2 . . . H0 G
¯

(6.58)

where Hβ = CAβB. The definition (6.58) shows dependence of T1,λ on the matrices

B and G. If λ is selected such that Aλ ≈ 0, then according to equation (6.57), one

can obtain the estimates B̂ and Ĝ by invoking the following minimization problem,

minimize
B,G1

‖E1,j(k)− T1,λZ(λ−1),j(k − λ)‖2

subject to (B(:, im+ 1 : im+ il))p+ = 0.

(6.59)

The constraint above does in fact enforce the columns p, . . . , ip of ∆y to be equal

to zero. For the case of sensor fault estimation problem, Âr is selected to be an

arbitrary Hurwitz matrix, therefore Âr = Ar. On the other hand, ∆y = δA =

Âr −M + L̂p↓r = Ar −M + L̂p↓r = −Lp↓r + L̂p↓r . Therefore, the columns p, . . . , ip

corresponding to ∆y should be equal to zero.

A methodology for solving the minimization problem (6.59) is provided in Sec-

tion 6.4.3. The solution will be consistent if the matrix Z(λ−1),j(k) is full row rank
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which is not generally guaranteed. This condition on the matrix Z(λ−1),j(k) depends

on the nature of the system feedback control, the excitation signal and the available

data and the real model of the system ( [92,97,135]).

If the above condition on Z(λ−1),j(k) is not satisfied, then the solution that is

obtained by invoking the pseudo-inverse of Z(λ−1),j(k) still minimizes the cost func-

tion in (6.59), but it will be biased.

An estimate of the error dynamics in presence of the sensor faults is therefore

given by,  ξ̂(k + 1) = Ârξ̂(k) + B̂Z(k − i)− ∆̂yF
s(k − i)

∆f̂ s(k) = Ill

´

ξ̂(k) + Ĝ1U(k − i)
¯ (6.60)

where ∆f̂ s(k) is an estimate of ∆f s(k). We assumed that the sensors ∼ p are

healthy for the purpose of fault estimation of the sensors p. Moreover, the columns

p, . . . , ip of ∆̂y are enforced to be zero in the minimization problem (6.59). There-

fore, ∆̂yF
s(k − i) is practically zero.

Consequently, one can now construct a new and a so-called tuned sensor fault

estimation filter that is governed by, η(k + 1) = Ârη(k) + B̃sZ(k − i)

f̂ s(k − i) = Ill

´

η(k)−Y(k − i) + D̃sU(k − i)
¯ (6.61)

where f̂ s(k− i) denotes the tuned estimate of the sensor fault, B̃s =
”

B̂r L̂p↓
ı

+ B̂

and D̃s = D̂+ Ĝ1, where B̂ and Ĝ1 are obtained and given by the minimization prob-

lem (6.59).
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6.4.2 Actuator Fault Estimation Filters

The same procedure can now be followed for the actuator fault estimation filter.

First, the following fault filter estimation is considered for the actuators q by using

the data from the sensors ∼ p and actuators ∼ q, namely η(k + 1) = Ârη(k) + B̂rU
q−(k − i) + L̂rY

p−(k − i)
ˆ̂fa(k − i) = −ImmD̂†p−(η(k)−Yp−(k − i) + D̂p−U(k − i))

(6.62)

where ˆ̂fa(k − i) denotes an estimate of fa(k − i) and the filter parameters are ob-

tained from the solution to the equations (6.39) to (6.42).

However, following along the same lines as those used in the Subsection 6.4.1,

the so-called tuned actuator fault estimation filter is now proposed as follows, η(k + 1) = Ârη(k) + B̃aZq−,p−(k − i)

f̂a(k − i) = −ImmD̃†a(η(k)−Yp−(k − i) + D̃aU(k − i))
(6.63)

where B̃a =
”

B̂r L̂r

ı

+ B̂ and D̃a = D̂p− + Ĝ1. The parameters B̂ and Ĝ1 are

obtained by invoking the following minimization problem,

minimize
B,G1

‖E1,j(k)− T1,λZq−,p−(λ−1),j(k − λ)‖2 (6.64)

where the matrices E1,j(k) and Zq−,p−(λ−1),j(k) are constructed similar to Gi,j(k) by re-

placing the signal g(k) with the signals − ˆ̂fa(k − i) and Zq−,p−(k), respectively, and

where Zq−,p−(k) =

»

–

Uq−(k)

Yp−(k)

fi

fl, and j is selected as large as the available data

corresponding to the second segment allows. Note that the signal − ˆ̂fa(k − i) for

construction of the matrix E1,j(k) is obtained by stimulating the filter (6.62) with

the second segment of the healthy I/O data using an arbitrary initial condition for

η(0).
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The above minimization problem is solved similar to the problem (6.59) as

described in Section 6.4.3. We will demonstrate in the next section that the above

tuning procedures will significantly improve the faults estimation accuracy perfor-

mance. Similarly, the same tuning procedure can be applied to the fault detection

and isolation filters in order to improve their performance when applied to a specific

application. However, these details are left as topics of our future work.

Remark 6.6. As stated earlier in this section, one should partition the available

off-line I/O data before applying the above tuning procedure. The length of the data

in the segment that is used for solving the minimization problem (6.59) or (6.64)

must be at least greater than λ, where λ was selected such that Aλ ≈ 0.

6.4.3 A Methodology for Solving the Minimization Prob-

lems

The constraint in the optimization problem (6.59) enforces that columns that mul-

tiplied by the rows p, . . . , ip of Y(k) should be zero. Therefore, they can be simply

removed by using Z{∅},p−(k) instead of Z(k) and by invoking now the following

optimization problem,

minimize
Bφ,G1

‖E1,j(k)− T φ1,λZ
{∅},p−
(λ−1),j(k − λ)‖2 (6.65)

where

T φ1,λ =
´

CAλ−1Bφ CAλ−2Bφ . . . CBφ G
¯

(6.66)

Once B̂φ is computed, B̂ is easily constructed by inserting back zero columns at the

columns im + p, im + 2p, . . . , im + ip of the matrix B̂φ. An estimate of T̂ φ1,λ is now

given by,

T̂ φ1,λ = E1,j(k)
´

Z{∅},p−(λ−1),j(k − s)
¯†

=
”

T̂1 . . . T̂λ
ı

(6.67)
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where T̂α ∈ Rl×(im+il−inp). We reformulate the definition (6.66) in the matrix form

as follows,
»

—

—

—

—

–

T̂1

...

T̂λ

fi

ffi

ffi

ffi

ffi

fl

=

»

–

C 0

0 I

fi

fl

»

–

B̂φ

Ĝ1

fi

fl (6.68)

where,

C =

»

—

—

—

—

—

—

—

–

C

CA
...

CAλ−1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.69)

Note that we have enforced G =
”

G1 0

ı

in the right hand side of (6.68). The

solution to (6.68) is now given by,

»

–

B̂φ

Ĝ1

fi

fl =

»

–

C 0

0 I

fi

fl

†

»

—

—

—

—

–

T̂1

...

T̂λ

fi

ffi

ffi

ffi

ffi

fl

(6.70)

Note that the matrix

»

–

C 0

0 I

fi

fl is full column rank. The above solution provides the

least square solution to the minimization problem (6.65). However, if Z{∅},p−(s−1),j(k− s)

is full row rank, then the minimum value of zero will be achieved. For the problem

(6.64), it is only sufficient to replace Z{∅},p−(λ−1),j(k− λ), T φ1,λ and B̂φ in equations (6.67)

and (6.65) by Zq−,p−(λ−1),j(k), T1,λ, and B̂, respectively. This provides the details on the

methodology for solving the minimization problems (6.59) and (6.64).

6.5 Simulation Results

In this section, we provide two numerical examples and simulations to illustrate

the merits and advantages of our proposed schemes. In both cases, the healthy
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input is generated by a Pseudo Random Binary Signal (PRBS) generator. The

system healthy output is generated by simulating it subject to healthy input in

addition to state and measurement noise (N (0, 0.1)) as governed by the dynamics

S. The Markov parameters are estimated by using the MATLAB built-in function

impulseest.

Fault Detection and Isolation Results: We consider the following non-

minimum phase system which includes the fault model for the actuator bias (fak )

and sensor bias (f sk) as additive terms,

xk+1 =

»

—

—

—

—

—

—

—

–

0 0 0 −0.01

1 0 0 0.08

0 1 0 −0.27

0 0 1 −0.54

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

xk +

»

—

—

—

—

—

—

—

–

1 −0.3

0 3.82

0 1.55

0 −0.61

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(uk + fak )

yk =

»

–

1.58 0.725 −0.60 0.31

2.4 −0.08 0.42 −0.05

fi

flxk + f sk (6.71)

The poles and zeros of the above system are located at {−0.39± 53j, 0.11± 0.09j}

and {0.17, 1.49}, respectively. Figure 6.1a shows the output of the residual generator

filter (equation (6.43)) for performing the fault detection task by setting p = q = {∅}

when a bias fault is injected in the actuator 1 at the time instant k = 150. We set

i = 2. The identification data include 1000 samples. The numerical values for the

detection filter are as follows.

M̂ =

»

—

—

—

—

—

—

—

–

0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00

−0.30 0.12 −0.51 0.51

0.28 −0.11 0.31 −0.16

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ˆ̄Ar =

»

–

0.26 0

0 0.44

fi

fl ; ˆ̄Br =

»

–

0.70 −0.99 0 0

0.88 1.01 0 0

fi

fl
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Figure 6.1: A fault is injected in the actuator 1 of the system (6.71) at k = 150. (a)
The output of the residual generator filter for achieving the fault detection task, (b)
The output of the residual generator filter insensitive to the fault in the actuator 2,
and (c) The output of the residual generator filter that is insensitive to the fault in
the actuator 1.

ˆ̄Lr =

»

–

−0.30 0.12 −0.78 0.5159

0.28 −0.11 0.31 −0.61

fi

fl

Figures 6.1b and 6.1c depict the outputs of the fault isolation filters 1 and 2

having the setting q = {1}, p = {∅} and q = {2}, p = {∅}, respectively, and i = 2

for both. We have not yet applied the tuning process that was discussed in Section

6.4 to the above results, nevertheless these results demonstrate that actuator faults

are successfully detected and isolated by application of our proposed data-driven

methodology. In the next example, we will demonstrate the effects of the filter

tuning process on the performance of the fault estimation accuracy.

Fault Estimation Results: Consider now the following minimum phase
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system,

xk+1 =

»

—

—

—

—

—

—

—

–

−0.05 −0.40 0 −0.08

−0.29 −0.11 0.05 −0.03

−0.06 0.18 −0.43 0.36

0.28 0.18 −0.43 0.36

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

xk +

»

—

—

—

—

—

—

—

–

−0.15 −0.99

0 0

−0.68 0.07

−0.96 −0.20

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(uk + fak )

yk =

»

–

−2.08 0 −0.69 0

0 −0.84 0.20 0.89

fi

flxk + f sk (6.72)

The poles and zeros of the system are located at {−0.37, 0.30,−0.51 ± 0.52j} and

{0.08,−0.58}, respectively. We next present a typical simulation result for esti-

mating a fault in the system (6.72), and then provide comprehensive Monte Carlo

simulations. Assume that a fault having a severity of 2 is injected in the sensor 2 at

the time step k = 150. We selected a relatively large amplitude input signal given

below to magnify the presence of biases,

u(k) =

»

–

20 + 20 sin(5k)

30 + 30 cos(7k)

fi

fl (6.73)

We set i = 2, p = {2} and q = {∅}. We used 700 data samples for estimation of the

Markov parameters and M̂ (equation (6.30)) and 300 samples for the filter tuning

process. First, we tested the performance of our proposed sensor fault estimator

(6.52) that is shown in Figure 6.2(a). The results clearly indicate that the filter is

biased with an estimation error of 24%. The numerical values of the filter matrices

are as follows.

M̂ =

»

—

—

—

—

—

—

—

–

0 0 1 0

0 0 0 1

0.06 −0.18 −0.19 −0.17

−0.17 −0.43 −0.48 −0.81

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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B̂r =

»

—

—

—

—

—

—

—

–

0.61 1.61 0 0

−1.06 −0.34 0 0

−0.28 −0.51 0 0

−0.15 −1.71 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; L̂p↓r =

»

—

—

—

—

—

—

—

–

0.12 0 0.20 0

0.59 0 0.08 0

0.24 0 0.19 0

0.28 0 0.59 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Âr = M̂− L̂p↓r ; D̂ =

»

—

—

—

—

—

—

—

–

0 0 0 0

0 0 0 0

0.76 2.03 0 0

−0.99 −0.16 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We then tune the filter by solving the minimization problem (6.59) and con-

struct the estimation filter as described by equation (6.61).The numerical values for

the matrices of the tuned filter are as follows.

B̂(:, 1 : 4) =

»

—

—

—

—

—

—

—

–

−0.07 −0.03 0.07 0.14

0.01 −0.16 0.03 0.09

0− 0.09 0.03 0.06 0

−0.04 −0.16 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

B̂(:, 5 : 8) =

»

—

—

—

—

—

—

—

–

0.02 0 0 0

−0.01 0 0.02 0

−0.01 0 0.08 0

−0.02 0 0.17 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; Ĝ =

»

—

—

—

—

—

—

—

–

0 0 0 0

0 0 0 0

−0.05 −0.07 0 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The resulting estimation error for the tuned filter is now 1% as shown in

Figure 6.2(b) which illustrates a significantly improved and enhanced performance

as compared to those depicted in Figure 6.2(a). A better illustration of the improved

performance is now provided through Monte Carlo simulation runs as described

below.
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Figure 6.2: A fault having a severity of 2 is injected in the sensor 2 of the system
(6.72) at k = 150. (a) The output of the original sensor fault estimation filter, and
(b) The output of the tuned sensor fault estimation filter.

Table 6.1: The Monte Carlo simulation results for estimation of the faults in the
system (6.72) using different filters and under two different system inputs, where µ
and σ denote the mean and variance, respectively. The filters are specifically the
sensor fault estimator (6.52), the tuned sensor fault estimator (6.61), the actuator
fault estimator (6.62) and the tuned fault estimator (6.63) denoted by F(6.52),
F(6.61), F(6.62) and F(6.63), respectively.

u1(k) u2(k)
µ(∆f) σ(∆f) µ(∆f) σ(∆f)

F(6.52) (-0.47, -0.06) (0.30, 1.13) (-0.03, 0) (0.0, 0.02)
F(6.61) (-0.02, 0) (0.07, 0.18) (-0.04, 0) (0, 0.01)
F(6.62) (1.31, -4.02) (3.2, 11.3) (0.14, -0.4) (0.02, 0.09)
F(6.63) (-0.01, 0.01) (0.01, 0.02) (0, 0) (0, 0)
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Monte Carlo Simulation Results: We have conducted Monte Carlo simu-

lation runs for estimation of the faults in the system (6.72). We set i = 2, p = {1, 2}

and q = {∅} and i = 2, p = {∅} and q = {1, 2} for the sensor and the actuator fault

estimations, respectively. Sensors faults having severities of -1 and 1 are injected to

the sensor 1 and the sensor 2 at the time step k = 150, respectively. The same fault

scenario is considered for the actuator fault estimation problem. We performed 400

Monte Carlo simulation runs for two inputs that are selected as u1(k) = u(k) given

by equation (6.73) and u2(k) = 0.1u(k). The results are shown in Figure 6.3 and

numerically presented in Table 6.1. It can be concluded that the filters (6.52) and

(6.62) have an acceptable performance for relatively small inputs (in terms of the

norm of the signal). On the other hand, relatively large inputs clearly magnify the

biases although they are well-managed by utilizing our proposed tuning process. An

approximation to the biases for the filters (6.52) and (6.62) can be obtained by using

equation (6.55). The L2 gain of the error dynamics is then given by,

‖∆f s(k)‖2≤ ‖(zI − Âr)B̂ + Ĝ‖∞‖Z(k)‖2

The matrices B̂ and Ĝ1 are obtained by solving the minimization problems (6.59)

and (6.64). Therefore, one can obtain a prediction of the error margin corresponding

to a certain input.

Comparative Study: Finally, in order to perform a comparative study to

demonstrate the capability and advantage of our proposed methodology, we consider

the example that was provided in [92] and evaluate our corresponding results with

those in [92]. The system in [92] is a continuous-time system and represents a
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Figure 6.3: Faults having severities of 1 and -1 are injected in the actuators or
sensors of the system (6.72). The red marks represent results for the filters (6.52) or
(6.62) and the blue circles represent results for the tuned filters (6.61) or (6.63). (a)
Sensors fault estimation error when the system is stimulated by u2(k), (b) Sensors
fault estimation error when the system is stimulated by u1(k), (c) Actuator fault
estimation errors when the system is stimulated by u2(k), and (d) Actuator fault
estimation errors when the system is stimulated by u1(k).

linearized model of a vertical take-off and landing (VTOL) aircraft that is given by,

9x(t) =

»

—

—

—

—

—

—

—

–

−0.036 0.027 0.018 −0.455

0.048 −1.01 0.002 −4.020

0.100 0.368 −0.707 1.42

0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x(t) +

»

—

—

—

—

—

—

—

–

0.44 0.17

3.54 −7.59

−5.52 4.49

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(u(t) + fa(t))

y(t) =

»

—

—

—

—

—

—

—

–

1 0 0 0

0 1 0 0

0 0 1 0

0 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x(t) + fs(t) (6.74)

where f s(t) ∈ R4 and fa(t) ∈ R2 and fa(t) with f s(t) representing the actuator

and sensor bias faults, respectively. The discrete-time model associated with the

system (6.74) is obtained by using a sampling rate of 0.5 seconds. Furthermore, it

is assumed that the system is stabilized by applying the following control law which
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is experimentally obtained,

u(k) = −

»

–

0 0 −0.5 0

0 0 −0.1 −0.1

fi

fl y(k) + ξ(k)

where ξ(k) denotes the reference signal. The process and measurement noise are

white having zero mean and covariances Q = 0.16I and R = 0.64I, respectively.

The reference signal is selected to be a PRBS signal for identification of the Markov

parameters.

The identification data set includes 1000 samples. Note that the correlation

analysis cannot be directly applied to unstable systems. Therefore, response of

the stable closed-loop system is obtained by injecting the input that is computed

at each time step using the above control law. Next, the input and closed-loop

system responses are used as I/O data for identification of the closed-loop system

Markov parameters through the correlation analysis . The injected fault signals to

the actuators and sensors are given by,

fa(k) =


”

0 0

ıT

0 ≤ k ≤ 50
”

sin(0.1πk) 1

ıT

k > 50

f s(k) =


”

0 0 0 0

ıT

0 ≤ k ≤ 50
”

sin(0.1πk) 1 0 0

ıT

k > 50

We have set i = 2, p = {1, 2} and q = {∅} and i = 3, p = {∅} and q = {1, 2} for

the sensor and actuator fault estimation filters, respectively. The reference signal is

set to ξ(k) = 15 in order to duplicate the Monte Carlo simulation results that were

reported in [92].

Figures 6.4a and 6.4b show 500 and 400 Monte Carlo simulation runs for

estimation of the actuator and sensor faults, respectively. The average estimation

errors are given by µ(f̂a1 − fa1 , f̂a2 − fa2 ) = (0.018, 0.039) and µ(f̂ s1 − f s1 , f̂ s2 − f s2 ) =
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Figure 6.4: (a) The first actuator fault estimation error versus the second actua-
tor fault estimation error for the system (6.74) using 500 Monte Carlo simulation
runs, and (b) The first sensor fault estimation error versus the second sensor fault
estimation error for the system (6.74) using 400 Monte Carlo simulation runs.

(0.005, 0.139). The variances are given by σ(f̂a1 − fa1 , f̂a2 − fa2 ) = (0.008, 0.0097) and

σ(f̂ s1 − f s1 , f̂ s2 − f s2 ) = (0.0398, 0.1074).

The above results clearly show that our proposed scheme has significant ad-

vantages, benefits, and capabilities over the receding horizon fault estimator that

was proposed in [92], although it uses the same set of assumptions. This is substan-

tiated by the following observations. First, our proposed filter order is significantly

lower than that in [92] as we have theoretically shown in Theorems 6.1 and 6.2.

For this particular example, we have used i = 2 for the sensor and actuator fault

estimation filters, respectively, whereas i is set to i = 30 in [92]. Moreover, we have

achieved a better performance by invoking an offline tuning procedure as compared

to the Algorithm 3 utilized in [92] that performs an online optimization solution.

Consequently, the computational burden of [92] to the user increases to the point

where the average computational time per sample takes 2.05 seconds on a 3.4 GHz

computer having 8 GB of RAM. Whereas, the computational time associated with

our proposed methodology per sample using the same computer takes only 8.2×10−7

seconds.
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6.6 Conclusion

We have proposed fault detection, isolation and estimation schemes that are all di-

rectly constructed and designed in the state-space representation form by utilizing

only the system I/O data. We have shown that to design and develop our schemes

it is only sufficient to estimate the system Markov parameters. Consequently, the

reduction step that is commonly used in the literature, and that also introduces

nonlinear errors, and also requires an a priori knowledge of the system order is

completely eliminated in our schemes. We have shown that the performance of

the estimation scheme is linearly dependent on the Markov parameters estimation

process errors. We also proposed an offline tuning procedure that effectively com-

pensates for the estimation errors that are caused by errors in the estimation of

the Markov parameters. Comparisons of our proposed schemes with those available

in the literature have revealed that our methodology is mathematically simpler to

develop and computationally more efficient, while it maintains the same level of

performance and requires a lower set of assumptions. Further research is required

to investigate the robustness of our scheme to estimation errors and presence of

concurrent sensor and actuator faults.
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Chapter 7

Implementation and Application

of the FDI&E Methodologies to

Gas Turbines

In this chapter, we applied and demonstrated our proposed data driven fault diagno-

sis and estimation scheme in Chapter 5 to the gas turbines. The healthy gas turbine

engine is stimulated by a sinusoidal input containing a limited number of frequen-

cies. First, the associated system Markov parameters are estimated by using the

FFT of the input and output signals to obtain the frequency response of the engine.

These data are then used for direct design and realization of the fault detection,

isolation and estimation filters. Our proposed scheme therefore does not require any

a priori knowledge of the system linear model or its number of poles and zeros at

each operating point. We have investigated the effects of the size of the frequency

response data on the performance of our proposed schemes. We have shown through

comprehensive case studies simulations that desirable fault detection, isolation and

estimation performance metrics defined in terms of the confusion matrix criterion

can be achieved by having access to only frequency response of the system at only
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a limited number of frequencies.

This chapter is organized as follows. The preliminaries are presented in Section

7.1. The Markov parameters estimation methodology accomplished by using the

frequency response data is explained in Section 7.2. Finally, comprehensive case

studies simulations are presented in Section 7.3. The chapter is concluded in Section

7.4.

7.1 Preliminaries

In this work, we have used the nonlinear model of a single spool gas turbine engine

that was proposed in Chapter 2 for generating the I/O data. This model has fuel

flow rate as an input signal and five measurements that are denoted by TC , PC , N ,

PT and TT (representing the gas temperature after the compressor, the gas pressure

after the compressor, the shaft rotational speed, the pressure after the turbine, and

the temperature after the turbine, respectively).

All the measurements are noise corrupted, where the noise levels are taken

from [20]. For our analysis, we have considered one actuator fault and five sensor

faults. All the faults are additive in nature which represent the loss of effectiveness in

the actuator and biases in the sensors. Our proposed scheme is based on the results of

chapter 6 which requires that the following assumptions to hold, specifically (i) the

aircraft gas turbine engine is stable and observable (at any given operating point),

(ii) the gas turbine engine linearized model matrices and the order of the system

at an operating point are unknown, (iii) the Markov parameters are estimated by

using only the I/O data that are associated with the healthy system, and (iv) the

faults are detectable and isolable. Moreover, it is assumed that the feed-through

matrix of the linearized model is zero.

For a given Power Lever Angle (PLA), the aircraft gas turbine engine reaches
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a steady state condition which defines a corresponding operating point. Therefore,

we specify an operating point by the level of the PLA, i.e. a PLA=75% indicates an

operating point when the PLA is set to 75% of its maximum PLA. We have verified

that the above assumptions all hold corresponding to all the considered operating

points by using the nonlinear model that is described in the Chapter 2.

7.2 Identification of the Aircraft Gas Turbine En-

gine Markov Parameters

Our proposed data-driven FDI&E scheme requires estimation of the Markov pa-

rameters associated with the system I/O data. Clearly, the Markov parameters are

not defined for a given nonlinear system. Let us assume that the nonlinear model

of the gas turbine engine is linearized at a given operating point and is described

by the triple Σ(A,B,C). It is assumed that none of these matrices are known a

priori. The Markov parameters of the system at a given operating point is defined

as the set {H0, H1, H2, . . .}, where Hi = CAiB. The dimension of Hi is known since

Hi ∈ Rl×m, where m and l denote the number of inputs and outputs, respectively.

In our case for the considered gas turbine engine, m = 1 and l = 5. Moreover, we

define the Markov parameters associated with the input channel to the measure-

ment p, p = 1, 2, . . . , l by Hp
i = C(p, :)AiB, where C(p, :) denotes the pth row of C,

and where Hp
i ∈ R. In our proposed methodology, we directly identify Hp

i ’s from

the input and the measurement p data. In other words, the Markov parameters

corresponding to each channel is independently estimated. Clearly, Hi is given by
”

H1
i . . . H l

i

ıT

, where T denotes the matrix transpose.

The Markov parameters associated with a gas turbine engine at each operating

point can be estimated by using various methods such as the correlation analysis

( [93]), provided that the healthy system is stimulated by a persistently exciting
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input such as a random noise or a psudo-random binary (PRBS) signal. However,

stimulation of an aircraft gas turbine engine with a random noise or the PRBS

command is not common, advisable, and justifiable in practice. Therefore, in the

literature frequency-domain techniques have been reported to provide a “great po-

tential” for tackling the gas turbine engine parameters estimation problem [136].

Evans and his colleagues have comprehensively studied these methods for the gas

turbine engine dynamic identification and have demonstrated them to a Rolls Royce

engine ( [118,136–139]).

In the frequency-domain, the system is stimulated by harmonic signals of dif-

ferent frequencies. The frequency response of the system is then obtained by simply

taking the FFT of the collected input and output data. Mathematically speaking,

the stimulating harmonic input can be expressed as,

u(t) =

Q∑
i=0

ai cos(2πnif0t+ φi) (7.1)

where ai, ni, f0, φi and Q denote the amplitude, the harmonic number, the signal

fundamental frequency, the harmonic phase, and the number of frequencies in the

signal, respectively. We will subsequently determine proper numerical values for

these parameters. It is recommended to select odd harmonics that will reduce the

effects of the second order nonlinearities [138]. This implies that ni should be an

odd number. Moreover, the harmonic phases should be selected in order to minimize

the crest factor (CF) that is given by,

CF =
max‖u(t)‖
r.m.s(u(t))

(7.2)

where r.m.s. stands for the root mean square.

The above can be achieved through a minimization algorithm that is described

in [140]. The minimization of CF improves the signal-to-noise ratio as discussed

in [118]. The frequency response function of the system corresponding to an input
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channel U to the p − th measurement channel Y p at the given frequency ω can be

expressed as,

Gp(jω) =
Y p(jω)

U(jω)
(7.3)

where U(jω) and Y p(jω) denote complex Fourier transforms of the input and the

output signals at the frequency ω, respectively.

The common practice in parametric frequency-domain identification methods

is to consider a generic transfer function as given by,

Gp(s) =
b′0 + b′1s+ . . .+ b′ms

m

a′0 + a′1s+ . . .+ a′ns
n
e−sTd (7.4)

where the parameters a′i’s and b′i’s should be estimated by using least-square methods

and measured frequency responses. This procedure is actually equivalent to the

reduction step, and is the one that we are trying to avoid through our proposed

methodology. The most important disadvantage of the methods that involve the

reduction step is the need for an a priori knowledge of the system order. In other

words, one requires to forcefully fit a presumed model of a given order to the system

that may not be a true representative model. We address this challenging issue by

designing a data-driven FDI&E scheme that avoids the reduction step.

Although, our method requires estimation of the Markov parameters that could

have been achieved through a standard non-parametric identification method (cor-

relation analysis), however, our simulations have shown that this approach will not

be robust for our application when the harmonic input contains a limited number

of frequencies. Therefore, in this chapter, we have invoked and utilized a robust

procedure that is provided in [117].

Our selected procedure requires the frequency response of the system at Q+ 1
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uniformly spaced frequencies between 0 and π. Therefore, we choose the fun-

damental frequency as f0 = fs
2(2Q−1)

, where fs is the sampling rate and ni =

0, 1, 3, . . . , 2Q − 1 for i = 0, 1, . . . , Q. The phase φi is obtained from minimiza-

tion of the CF factor. Our comprehensive simulations in [20] have shown that each

linear model that is obtained at a given operating point is valid for a ±10% change in

the PLA. Therefore, we choose ai in equation (7.1) to be 10% of the maximum PLA.

The frequency response of the system for the given input channel to the mea-

surement channel p at each frequency ωi is given by,

G̃p(ejωi) =

∑E
α=1 Ỹ

p
α (ejωi)∑N

α=1 Ũα(ejωi)
for i = 0, 1, . . . , Q and p = 1, . . . , l (7.5)

where Ũα(ejωi) and Ỹ p
α (ejωi) are obtained by taking the FFT of the I/O data mea-

sured across E periods of the signal. The parameter E is a fixed number. For our

multiple sinusoidal input, E is determined based on the period of the lowest fre-

quency. We used the notation G̃p(ejωi) to differentiate it from Gp(ejωi), which is the

true value of the system frequency response at the frequency ωi. Note that G̃p(ejωi)

is noise corrupted due to presence of measurement noise. Similarly, the “ideal” or

“true” FFT of the I/O data are denoted by Uα(ejωi) and Y p
α (ejωi), which are clearly

assumed to be unknown.

The above procedure provides the frequency response of the system at Q + 1

uniformly spaced frequencies as the required input to be used for the methodology

that is proposed in [117]. Let G̃p
i denote G̃p(ejωi), where i = 0, 1, . . . , Q. We expand

the frequency response samples by defining G̃p
Q+k = G̃p

Q−k for k = 1, . . . , Q− 1. Let

βpi be defined by the following 2Q-point Inverse Discrete Fourier Transform (IDFT),

that is

βpi =
1

2M

2Q−1∑
z=0

G̃p
i e
j2πiz/2Q (7.6)
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It is shown in [117] that,

βpi = C(p, :)Ai−1(I − A2Q)−1B (7.7)

If the system is strictly stable, then for sufficiently large Q, we have A2Q ≈ 0. Thus,

βpi ≈ C(p, :)Ai−1B (7.8)

which is an approximation to the Markov parameter Hp
i .

Our simulations have shown that the above method is more robust and accu-

rate for application to the aircraft gas turbine engine as compared to the standard

non-parametric methods. Its disadvantage is the fact that Q should be sufficiently

large for an accurate estimation of the Markov parameters, which may be restrictive

in practice. However, we will show in the simulation Section 7.3 that our entire

proposed scheme yields reasonable performance with a Q as small as 25.

7.3 Simulation Case Studies

In this section, we provide comprehensive simulation case studies for evaluating the

performance and capabilities of our proposed data-driven FDI&E schemes. The air-

craft gas turbine engine system is nonlinear, therefore it cannot be represented by a

single linear model. Comprehensive simulations in [20] have shown that each linear

model is valid corresponding to a PLA within the range of ±10% about that oper-

ating point. It is also concluded in [118] that each linear model at a given operating

point is valid for a 10% variation in the PLA. Consequently, we have demonstrated

through a comprehensive study and through extensive simulation runs as well as by

employing the notion of the confusion matrix [141] that the estimated Markov pa-

rameters are also valid within a ±10% variations about the corresponding operating

point as discussed in the Appendix A.1.
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Therefore, we select ai in equation (7.1) for i = 0, . . . , Q to be equal to 0.1U100,

where U100 is equal to the fuel flow rate at the PLA=100%. The conducted simula-

tions are performed for Q equal to 25, 50 and 100. Evans et. al [138] have used an

input that is composed of 30 harmonics (i.e., Q = 30) for achieving a model identi-

fication of the Rolls-Royce Spey engine. We have considered Q = 25 to evaluate the

performance of our proposed FDI&E scheme given the scarcity of the available data,

and Q = 100 as a reference of the theoretical benchmark. The sampling rate in all

the simulations are set to 20 ms, which is commonly used in the engine FADEC

technology [142].

We have conducted our simulations for three PLAs that are equal to 50, 75

and 100%, as these are typical values of PLAs during the cruise, the maneuver,

and the take off modes of the flight, respectively. For example, Figure 7.1 shows

the measured frequency response of the input channel to the shaft rotational speed

(N) corresponding to three PLAs and Q = 50. We have conducted comprehensive

simulation studies for determining the suitable value of the parameter E in equation

(7.5). A summary of these studies are included in the Appendix A.4 which confirms

that the values of E = 5 and E = 6 both yield satisfactory results. However, we

have decided to set E = 6 to follow the recommendation that was made in [118].

The Markov Parameters Estimation Errors: The procedure that was

introduced in Section 7.2 is now applied to estimate the system Markov parameters

corresponding to three operating points associated with PLA=50, 75, and 100% for

three different values of Q. The gas turbine engine nonlinear model is linearized

at the same operating points in order to obtain the “actual values” of the Markov

parameters. Figure 7.2 shows the relative error between the first ten estimated

Markov parameters (obtained by using the frequency response) and those of the

actual Markov parameters (obtained by using the system linearization model) of the

input channel to the shaft rotational speed output channel at the PLA=75%. The
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same results for PLA=50 and 100% are obtained that are provided in the Appendix

A.2, which show similar trends. As expected, the estimation errors decrease as

Q increases. However, the errors for the first and second Markov parameters are

quite large as compared to the same errors for the input channel to the compressor

pressure (PC) output channel as shown in Figure 7.3. This difference will have an

impact on the resulting fault estimation scheme as discussed subsequently. Table

7.1 summarizes the average relative error results for the first ten Markov parameters

corresponding to all the channels that are obtained over 100 Monte Carlo simulation

runs at the PLA=75%.

Fault Detection Case Study Results: We have constructed the fault detec-

tion filters according to the guidelines and procedures that are provided in Chapter

6. Figures 7.4 and 7.5 show “typical” results corresponding to actuator and sensor

fault detection scenarios, respectively. In both cases, we have used measurements

from all the five sensors. In the first scenario, a 10% loss of effectiveness fault is

injected to the actuator at the time step 150. Figure 7.5 shows the fault detection

filters residuals when a 1% bias fault is injected in the shaft rotational speed sensor.

Note that the detection filter parameters are obtained from the frequency response

of the system at the PLA=75%. However, we have performed the simulations at the

PLA=80% to test the robustness and validity of the model for a different range of

PLAs. A comprehensive study corresponding to other PLAs is provided below by

using the concept of the confusion matrix [141]. Tables 7.2 to 7.4 provide the re-

sults associated with the actuator fault severities of 1%, 5%, and 10%, respectively,

and Table 7.5 provides the results associated with the sensor fault severity of 1%.

Additional results are provided in the Appendix A.3 corresponding to another PLA

of PLA=55% in Tables A.3 to A.6.

Confusion Matrix Analysis and Evaluation of Fault Detection Per-

formance: The confusion matrix [141] is a table that is commonly used in the field
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of artificial intelligence and pattern recognition to illustrate the performance of a

given algorithm. Several useful performance metrics can be defined by using the

entries from this matrix. The interested reader is referred to [141] for a detailed

description. Tables 7.2 to 7.5 represent the confusion matrix corresponding to dif-

ferent values of Q and different values of fault severities. All the values in these

tables are obtained corresponding to 100 Monte Carlo simulation runs for each row.

The filters are designed by using the Markov parameters that are estimated at the

PLA=75% but stimulated by a fault that is injected to the gas turbine engine at

the PLA=80% (again to verify the scheme robustness to uncertainties).

Several conclusions can be drawn from the results that are obtained in these

tables: i) The higher the Q is selected, the lower the false alarms will be as indicated

by smaller off-diagonal entries in these tables, ii) The actuator fault detection perfor-

mance is unreliable for faults with severities lower than 5%, iii) On the other hand,

sensor faults with severities as low as 1% can be reliably detected. The confusion

matrices for higher sensor fault severities are not shown for brevity as clearly the

performance of the schemes improves by considering higher severity faults, and iv)

Finally, the same patterns for the other PLAs are observed as shown and provided

in the Appendix A.3.

Threshold Setting: It was stated earlier that rmin and rmax are to be selected

through conducting simulations corresponding to the healthy operation of the gas

turbine engine. The confusion matrix actually can be used to provide a systematic

procedure for selecting the thresholds. Towards this end, the metric accuracy for a

scheme, that is denoted by ACC, is defined as

ACC =
TP + TN

TP + TN + FP + FN
(7.9)

where TP (True Positive), TN (True Negative), FP (False Positive) and FN (False

Negative) are defined in Table 7.6. Higher values of |rmin| and |rmax| will increase
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the missed alarm quantity FP. Conversely, lower values of these bounds will increase

the false alarm quantity FN. Therefore, there should be a trade-off analysis and

threshold setting that maximizes the ACC, and which is obtained through trial and

error. For example, the thresholds that are shown in Figure 7.4 yield an accuracy

of 83%, 92% and 97.5% for Q = 25, 50 and 100, respectively, based on the results

that are shown in Table 7.3. One may also define the notion of precision metric for

conducting the trial and error studies for threshold setting. The precision metric is

defined as,

PPV =
TP

TP + FP
(7.10)

The resulting values for ACC and PPV are provided in Tables 7.2 to 7.5 as well as

Tables A.3 to A.6 in the Appendix A.3 for a different PLA.

Fault Isolation Case Studies: The task of accomplishing fault isolation

requires a bank of filters as discussed in Chapter 6. Since our gas turbine engine

system has only one actuator, the actuator fault isolation and actuator fault esti-

mation filters are effectively the same. More specifically, an actuator isolation filter

in the filter bank is in fact an UIO which is insensitive to a particular input. On

the other hand, the actuator fault estimation filter is also an UIO which is not

fed by the input data. Consequently, the two filters for a system with one input

will be identical. We only discuss the performance of the actuator fault estimation

filter subsequently that also represents the performance of the actuator fault isola-

tion filter. Below, we provide the results corresponding to the sensor isolation case

studies.

A “typical” sensor fault isolation scenario is illustrated in Figure 7.6. In this

figure, only the compressor temperature (TC) and the shaft rotational speed (N)

measurements are used. Therefore, the filter bank contains two filters where one

works with the TC measurement and the other one with the N measurement. A 1%

fault is injected in the temperature sensor at the time step 150 which is successfully
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isolated corresponding to all values of Q. Theoretically, a large number of possi-

bilities are available for configuring the filter banks. A functional selection among

these configurations depends on the requirements and practical issues associated

with a particular gas turbine engine. For instance, certain measurements may be

considered as critical (or redundant) for a certain gas turbine engine that can im-

pose different requirements. Subsequently, we have demonstrated the performance

of a filter bank that is composed of five filters, each of which operates with four

measurements as a typical configuration.

Confusion Matrix Analysis and Evaluation of the Sensor Fault Isola-

tion: A broader picture for the sensor fault isolation performance can be obtained

by investigating the confusion matrix. In this analysis, all the measurements are

used for achieving the isolation of a single sensor fault. Therefore, the bank con-

tains five filters each of which is operating with four measurements. The definition

of the faults are provided in Table 7.7. The results are summarized in Tables 7.8, 7.9

and 7.10. As expected, the higher the value of Q, the better the obtained results.

Similar patterns are also observed corresponding to other PLAs and fault severities

as shown in the Appendix A.3 and Tables A.7 to A.9.

Concurrent Sensor Fault Isolation Case Studies: A more complicated

architecture can be considered if one requires to address the concurrent fault isolation

problem. Figure 7.7 shows the residuals corresponding to a bank of three filters

where the first, second and third filters operate with the measurements TC , N and

PC , respectively. A 1% fault in the TC and N is injected at the time steps 150 and

200, respectively. As shown in Figure 7.7, the residuals associated with the filters

except one exceed their thresholds, which indicate that concurrent faults in the

sensors TC and N are detected and isolated. Again, this is a “typical” scenario of a

hierarchy among many configurations for a particular concurrent fault isolation task.

For example, one may perform a similar task by using a filter bank that consists
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of six filters each of which operates with two measurements selected from a set of

four measurements. The best configuration for a particular application depends on

the context of the problem. One advantage of our proposed procedure is the fact

that it does not impose a particular limit on the structure of the filters banks. Our

methodology can be adapted to configure various scenarios for matching a given set

of requirements.

Fault Estimation Results: The results provided above demonstrate that

the FDI filters can be successfully constructed from the frequency response data

that are measured at only a limited number of frequencies. This is an important

advantage of our proposed methodology from a practical point of view. However, the

same property cannot be extended to the case of fault estimation problem. In other

words, the performance of the fault estimation filters are significantly more sensitive

to the accuracy of the obtained Markov parameter estimates, and consequently to

the number of selected frequencies.

Actuator Fault Estimation Case Studies: Figure 7.8 depicts the resid-

uals that are generated by an actuator fault estimation filter that is fed by two

measurements PC and PT corresponding to a scenario in which a 10% actuator fault

is injected at the time step 150. The estimation errors for Q = 25, 50 and 100

are obtained as 3%, 1% and 1% respectively. If the measurements PC and N are

used instead, then the estimation errors are larger as shown in Figure 7.9. Namely,

the estimation errors for Q = 25, 50 and 100 are obtained as 12%, 7% and 4%,

respectively. Clearly, it can be observed that the estimation errors for the first and

second Markov parameters of the input channel to the shaft rotational speed output

channel as shown in Figure 7.2 are relatively large.

Sensor Fault Estimation Case Studies: Figure 7.10 shows the perfor-

mance of the sensor fault estimation filter that is fed by two measurements PC and

PT when a 1% fault is injected in the sensors measuring PC and PT at the time steps
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100 and 200, respectively. The estimation error for the sensor PC for Q = 25, 50

and 100 are obtained as 2%, 0.5% and 0.5%, respectively. It can be shown that an

almost the same performance is obtained in the fault estimation error of the sensor

PT .

Finally, it can be concluded that in both actuator and sensor fault estimation

scenarios the results that are obtained can also be verified by the FDI schemes in

terms of the presence of the fault and its isolation as shown in Figures 7.4 and 7.5.

Fault Estimation Performance Evaluation Using Monte Carlo Sim-

ulations: Tables 7.11 and 7.12 summarize the performance of the fault estimation

errors for the actuator and the sensor faults under various sets of measurement

groupings. The information that are obtained from these tables demonstrate and

confirm the fact that by increasing Q and/or inclusion of more measurements the

fault estimation accuracy will be clearly improved. Moreover, additional simulation

results are shown in Tables A.10 and A.11 in the Appendix A.3 corresponding to a

different PLA setting.

Comparative Study Using PBRS and Noise Signals: Finally, as a com-

parative study, in a separate Monte Carlo simulation runs, we applied persistently

exciting noise and PBRS inputs to the gas turbine engine system and estimated the

Markov parameters by using correlation analysis. This method uses a time-series

data instead of the frequency response data for estimation of the Markov parame-

ters. Table 7.13 summarizes the results corresponding to the sensor fault estimation

errors under various sets of measurement groupings that show that theoretically it

would be significantly superior to the frequency domain approach. However, this

approach, as we discussed earlier, is not practically plausible. The gas turbine engine

manufacturers generally measure the frequency response of the system at different

operating points for advanced dynamics and structural analysis, but they are less

likely to stimulate and subject intentionally the gas turbine engine to noise or PRBS
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signals. Consequently, the frequency response data are more likely to be available

as compared to the test results of the gas turbine engine system that is stimulated

by other types of either high frequency or wide band input signals.

7.4 Conclusion

This chapter addresses several important practical challenges for designing a data-

driven FDI&E scheme for the aircraft gas turbine engines. These problems include

the structure of the FDI schemes, the amount and nature of the data that are re-

quired, and the a priori knowledge about the system dynamics. Statistical and

artificial intelligence-based methods have complex structures and require numer-

ous learning and tuning parameters that necessitate extensive trade-off analysis and

studies for determining the optimal selection of these schemes’ structure and param-

eters. In addition, these methods require large amount of data for proper training

of their available adjustable parameters. In contrast, in our proposed schemes, the

dynamical filters are directly designed and constructed from only the estimated sys-

tem Markov parameters. The Markov parameters are estimated by using only the

frequency response data that are quite commonly and practically available. We have

demonstrated that our proposed methodology provides a satisfactory performance

by only utilizing the frequency response of the system at a limited number of fre-

quencies. Our proposed schemes are well-suited for real applications due to the fact

that they require availability of only frequency response data. Finally, our proposed

approach eliminates the restrictive assumption on the availability of an accurate es-

timation of the number of system poles and zeros. Further research are required to

address the robustness and improve the accuracy of the proposed fault estimation

filters.
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Figure 7.1: The frequency response G̃p
i (from the input channel to the shaft rota-

tional speed (N) output channel) (i = 0, 1, .., 50 and p = 3) computed at three PLAs

equal to 50, 75 and 100%.
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Figure 7.2: The relative errors between the estimated and the actual Markov pa-

rameters of the input channel to the shaft rotational speed output channel at the

PLA=75% for three different values of Q.
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Figure 7.3: The relative errors between the estimated and the actual Markov pa-

rameters of the input channel to the compressor pressure output channel at the

PLA=75% for three different values of Q.

Table 7.1: The average estimation relative errors for the first ten Markov parameters

for all channels over 100 Monte Carlo simulation runs.

Channel Q = 25 Q = 50 Q = 100

u to TC 4.44 2.07 0.29

u to PC 5.15 2.61 0.61

u to N 2.61 1.22 0.51

u to TT 3.07 1.31 0.95

u to PT 6.15 3.58 1.67
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Figure 7.4: Fault detection filter residuals designed with the data obtained at

PLA=75% but stimulated at PLA=80% while a 10% actuator fault is injected at

the time step 150.
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Figure 7.5: Fault detection filter residuals designed with the data obtained at

PLA=75% but stimulated at PLA=80% while a 1% sensor fault in shaft rotational

speed sensor is injected at the time step 150.
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Table 7.2: Confusion matrix for the actuator fault detection performance. The fault

severity and the PLA are 1% and 80%, respectively.

Q = 25

Healthy Faulty

Q = 50

Healthy Faulty

Q = 100

Healthy Faulty

Healthy 61 39 Healthy 72 28 Healthy 81 19

Faulty 22 78 Faulty 17 83 Faulty 26 74

ACC 69.5% ACC 77.5 ACC 77.5

PPV 73.4 PPV 80.8 PPV 75.7

Table 7.3: Confusion matrix for the actuator fault detection performance. The fault

severity and the PLA are 5% and 80%, respectively.

Q = 25

Healthy Faulty

Q = 50

Healthy Faulty

Q = 100

Healthy Faulty

Healthy 82 18 Healthy 90 10 Healthy 99 1

Faulty 16 84 Faulty 6 94 Faulty 4 96

ACC 83% ACC 90.4 ACC 97.5

PPV 83.6 PPV 93.7 PPV 96.1

Table 7.4: Confusion matrix for the actuator fault detection performance. The fault

severity and the PLA are 10% and 80%, respectively.

Q = 25

Healthy Faulty

Q = 50

Healthy Faulty

Q = 100

Healthy Faulty

Healthy 88 12 Healthy 96 4 Healthy 98 2

Faulty 17 83 Faulty 9 91 Faulty 1 99

ACC 85.5% ACC 96.4 ACC 98.5

PPV 83.8 PPV 91.4 PPV 98.9

Table 7.5: Confusion matrix for the sensor fault detection performance. The fault

severity and the PLA are 1% and 80%, respectively.

Q = 25

Healthy Faulty

Q = 50

Healthy Faulty

Q = 100

Healthy Faulty

Healthy 85 15 Healthy 89 11 Healthy 94 6

Faulty 11 89 Faulty 4 96 Faulty 6 94

ACC 87% ACC 92.5 ACC 94

PPV 88.5 PPV 95.6 PPV 94
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Table 7.6: The confusion matrix and definition of the parameters in equation (7.9).

TP (true positive) denotes the number of healthy cases that are identified as healthy,

FN (false negative) denotes the number of healthy cases that are identified as faulty,

FP (false positive) denotes the number of faulty cases that are identified as healthy,

and TN (true negative) denotes the number of cases that are faulty and identified

as faulty.

Predicted

Healthy Faulty

Actual
Healthy TP FN

Faulty FP TN
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Figure 7.6: Residuals generated by a bank of two filters for the sensor fault isolation.

The filters are designed with the data obtained at PLA=75% but stimulated at

PLA=80% while a 1% fault is injected in the sensor measuring TC at the time step

150.
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Table 7.7: The fault definitions for the confusion matrix analysis.

Fault Symbol

No fault f0

Actuator bias fault f1

TC sensor bias fault f2

PC sensor bias fault f3

N sensor bias fault f4

PT sensor bias fault f5

TT sensor bias fault f6

Table 7.8: Confusion matrix of the sensor fault isolation performance for Q = 25,

PLA=80% and the fault severity of 1%. The filters are designed with the data

obtained at PLA=75%.

Predicted

f0 f2 f3 f4 f5 f6

Actual

f0 83 8 0 3 4 2

f2 4 77 2 2 5 10

f3 9 2 75 2 7 6

f4 2 4 9 78 0 7

f5 8 3 6 3 78 2

f6 2 1 7 5 5 80
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Table 7.9: Confusion matrix of the sensor fault isolation performance for Q = 50,

PLA=80% and the fault severity of 1%. The filters are designed with the data

obtained at PLA=75%.

Predicted

f0 f2 f3 f4 f5 f6

Actual

f0 94 0 0 1 3 2

f2 3 94 0 0 0 3

f3 3 0 90 3 4 0

f4 0 0 3 89 2 6

f5 1 3 0 2 91 3

f6 1 0 6 0 5 88

Table 7.10: Confusion matrix of the sensor fault isolation performance for Q = 100,

PLA=80% and the fault severity of 1%. The filters are designed with the data

obtained at PLA=75%.

Predicted

f0 f2 f3 f4 f5 f6

Actual

f0 97 0 0 0 0 3

f2 1 98 0 1 0 0

f3 0 0 98 0 2 0

f4 0 0 1 98 0 1

f5 1 1 0 0 98 0

f6 1 1 1 0 0 97
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Figure 7.7: Residuals generated by a bank of three filters for the sensor fault isola-

tion. The filters are designed with the data obtained at PLA=75% but stimulated

at PLA=80% while a 1% fault is injected in the sensor measuring TC and N at the

time steps 150 and 200, respectively.
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Figure 7.8: Actuator fault estimation filter residuals fed by measurements PC and

PT for a 10% fault in the actuator. The filter is designed with the data obtained at

PLA=75%. Note that the average of f̂(k) approach to 0.1 after the injection of the

fault at the time step 150.
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Figure 7.9: Actuator fault estimation filter residuals fed by the measurements PC

and N for a 10% fault in the actuator. The filter is designed with the data obtained

at PLA=75%. Note that the average of f̂(k) approach to 0.1 after the injection of

the fault at the time step 150.
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Figure 7.10: Sensor estimation filter residuals fed by the measurements PC and PT

for 1% and -1% concurrent sensor faults in PC and PT injected at the time steps 100

and 200, respectively. The filter is designed with the data obtained at PLA=75%.
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Table 7.11: Average actuator fault estimation errors for 100 Monte Carlo simulation

runs at PLA=80%. The filters are designed with the data obtained at PLA=75%.

Set of measurements fed to the estimation filter Q = 25 Q = 50 Q = 100

N , PC 10.75% 8.49 7.25

N , PC , PT 10.11 7.25 7.81

N ,PC ,PT ,TT 9.51 9.60 6.98

N ,PC ,PT ,TT , TC 9.73 8.50 6.14

Table 7.12: Average sensor fault estimation errors for 100 Monte Carlo simulation

runs at PLA=80%. The filters are designed with the data obtained at PLA=75%.

Set of measurements fed to estimation filter Q = 25 Q = 50 Q = 100

N ,PC 14.76% 12.83 13.75

N ,PC ,PT 13.02 11.86 9.22

N ,PC ,PT ,TT 11.64 8.76 9.64

N ,PC ,PT ,TT , TC 12.07 10.29 7.93

Table 7.13: Average sensor fault estimation errors for different methods based on

Markov parameter estimation and set of measurements (100 Monte Carlo simulation

runs at PLA=80%). The filters are designed with the data obtained at PLA=75%.

Type of Input used for Markov parameter estimation Noise PBRS Harmonic (Q = 100)

Set of measurements fed to the estimation filter

N ,PC 6.54% 5.98 13.75

N ,PC ,PT 7.30 4.96 9.22

N ,PC ,PT ,TT 5.39 4.15 9.64

N ,PC ,PT ,TT , TC 4.18 3.40 7.93
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Chapter 8

Summary

In this theses, we targeted certain important practical issues in fault diagnosis of

dynamical systems especially for the application of gas turbine. These practical

issues are nonlinear dynamics of the system in certain phases of operation, the

need for fault estimation and lack of mathematical model. Towards this end, we

considered a sequence of interconnected problems as follows,

• Nonlinear FDI

• Estimation of certain categories of fault in MP and NMP linear systems

• Estimation of an arbitrary fault signal in MP and NMP linear systems

• Direct construction of FDI&E filters using time-domain data

• Direct construction of FDI&E filters using frequency-domain data

We provided a solution for each of these problems and illustrated their merits via

comprehensive simulations.

We presented nonlinear MM-based FDI of gas turbines. The MM-based scheme

is constructed using a bank of nonlinear Kalman filters and a conditional probability
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evaluator. Each Kalman filter corresponds to a fault in the system. The probability

associated with each fault mode is calculated using innovation vector and innovation

covariance provided by each Kalman filter in the bank. The fault mode of the system

is then determined based on the maximum probability criteria. We considered both

EKF and UKF in construction of filter banks and comprehensively compared their

performance. We found that UKF is superior to EKF in terms of robustness and

detection time. Moreover, it does not require the calculation of Jacobian matrix.

However, the computational costs significantly increase for UKF compared to EKF

due to the fact that UKF requires multiple simulation of nonlinear model at each

time-step.

Next, we proposed an inversion-based scheme that provides an unbiased es-

timation for certain categories of faults. We project the unknown input onto two

subspaces. One projection is achieved through an algebraic operation, whereas the

other is given by a dynamic filter whose poles coincide with the transmission zeros of

the system. A feedback is then introduced to stabilize the above filter dynamics as

well as provide an unbiased estimation of the unknown input. We comprehensively

discussed the conditions under which the feedback control is feasible. An immediate

result is that our approach can handle systems with transmission zeros on the unit

circle. Moreover, the proposed scheme is significantly robust to the noise due to

the feedback control. Further research is required to generalize this approach for

reconstruction of arbitrary fault signals.

Our first inversion-based solution is only able to estimate certain categories of

faults. We also considered the estimation of an arbitrary fault signal which is the

subject of our next solution. Towards this end, we partitioned the system states
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as MP and NMP states. The MP states are directly estimated from system mea-

surements using an UIO filter. Later, we design an FIR filter that receives the MP

states estimates and system measurements to reconstruct the NMP states with a

delay. We derived the relation between the reconstruction error and the reconstruc-

tion delay. It is then streighforward to reconstruct the unknown input by having

system measurements and reconstructed MP and NMP states. We invoked minor

modifications to adjust the proposed solution for the problem of output tracking

and estimation of faults in the presence of known inputs. Finally, we illustrated the

merits of the proposed solution through simulation and comparative case studies.

So far, we assumed that a mathematical model of the system is available.

However, it is not a practical assumption at least for the application of gas tur-

bine. We developed two key ideas that renders direct construction of FDI&E filters

in state-space form from system I/O data without involving reduction step or a

priori knowledge of the system order. These key ideas are assignment (6.13) and

data-driven estimation of M̂. We showed that our proposed solution is superior to

available methods in the literature due to the fact that it is asymptotically unbiased

if i is selected to be greater than the maximum of system relative degree and system

observability index, whereas for other methods, i should go to infinity. We discussed

that the estimation of Markov parameters are erroneous since system I/O data are

noise corrupted. Consequently, the estimation will be biased especially for inputs

with relatively large norm which magnifies these biases. In order to address this

issue, we proposed an offline tuning procedure that compensates for errors caused

by Markov parameters estimation errors. The parameters of the tuned dynamic

filter is directly synthesized from system I/O data through invoking a least square

optimization problem. Our simulation case studies show that the tuning process has

been significantly effective in reducing the estimation errors.
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An important practical concern led us to revise our proposed FDI&E scheme

in Chapter 6 for the application of gas turbine. Our proposed data-driven FDI&E

scheme requires that the identification input should be persistently exciting. In

other words, it should be a wide band signal such as noise. However, it is less likely

one stimulates a gas turbine by wide band signal. In order to resolve this issue, we

proposed a solution that utilizes the frequency response data for robust and direct

estimation of Markov parameters from I/O data. Furthermore, we showed through

comprehensive simulations that our proposed methodology provides a satisfactory

performance by only utilizing the frequency response of the system at a limited

number of frequencies. Our proposed scheme is well-suited for real applications due

to the fact that it requires availability of only frequency response data. More im-

portantly, it does not require a priori knowledge about the mathematical model of

the system such as numbers of poles and zeros.
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Chapter 9

Conclusions and Future Work

9.1 Conclusion

Autonomous fault detection, isolation and estimation (FDI&E) is a promising ap-

proach for simultaneous promotion of safety and reduction of costs. However, nu-

merous practical and theoretical issues have constantly challenged the delivery and

implementation of a fully FDI&E scheme in real life applications. Among notable

ones are nonlinear effects, lack of accurate mathematical data and customer require-

ment for strategic planning based on fault severities. In this thesis, we addressed

the above important practical considerations as applied to gas turbine engines.

Gas turbines are nonlinear complex systems which in some cases, for instance

on airplanes, have a wide range of operation. Certain phases of operation are short

compared to the entire operation time, namely takeoff, however, those periods are

perhaps the most critical phases of the operation. On the other hand, linear ap-

proaches may not be proper for fault detection and isolation during these phases

due to the fact that operational condition rapidly varies. In order to address this

issue, we proposed the nonlinear Multiple-Model based approach and demonstrated
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its merits for our specific application.

Our proposed MM-based nonlinear FDI is composed of a bank of nonlinear

Kalman filters and conditional probability evaluator. The innovation vector and

innovation covariance generated by each Kalman filter is iteratively processed to

calculate the conditional probability corresponding to each fault mode. A maxi-

mum probability condition determines the active fault mode. The nonlinear kalman

filters can be both EKF and UKF, however, we showed that UKF is superior in

terms of robustness and detection time.

Another important practical concern is fault estimation. In many cases in-

cluding gas turbines, alarming a fault does not suffice for the purpose of strategic

planning. Pilots and ground operators should know an estimation of the fault in

order to decide on the continuation or abortion of the mission. We developed two

closely interconnected fault estimation schemes. First, we proposed a stable dy-

namic filter that provides unbiased estimation for certain types of faults even if the

system has unstable transmission zeros or transmission zeros on the unit circle. Sec-

ond, we proposed a more general solution for reconstruction of a general unknown

input. Moreover, we showed that the solution is applicable to the problem of output

tracking.

The challenge of inversion-based unknown input reconstruction is the pres-

ence of unstable transmission zeros for non-mimimum phase systems. We addressed

this challenges in our solutions by invoking novel ideas. In our first solution, the

unknown input is projected onto two subspaces. One projection is easily obtained

through algebraic calculations. The other projection is given by a dynamical filter

where its poles coincide with system transmission zeros. We introduced a feedback
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that stabilizes this unstable dynamics for non-minimum phase system by arbitrary

pole placement. Moreover, it provides unbiased estimation for certain categories of

unknown inputs.

Our second inversion-based solution, in contrast to the first one, can provide

an almost unbiased reconstruction of an unknown input of any type. The basic idea

envisaged here is the reconstruction of the system states. We partitioned system

states as MP and NMP states. The former is estimated using an UIO filter that

operates with the system measurements and serves as input to an FIR filter for de-

layed reconstruction of the latter. The application of the first solution is limited to

certain categories of the unknown inputs, yet it is superior to the second solution in

terms of robustness since it has a feedback that counteracts disturbances. Moreover,

it provides an exact unbiased estimation with significantly lower delay.

Perhaps lack of an accurate mathematical model is one of the most frequent is-

sues that arises in real life. On the other hand, the experimental facilities and data

recording equipment have significantly advanced during recent years. Naturally,

one would suggest to shift from model-based design towards data-driven design.

The field of fault diagnosis and estimation is also experiencing this shift due to

its invaluable benefits. We proposed a data driven fault diagnosis and estimation

scheme that is directly constructed in state-space form from the system I/O data.

The proposed scheme does not involve reduction step, so it does not require a priori

knowledge of the system order or its number of poles and zeros. More importantly, it

is directly realized in state space form. We showed that our data-driven state-space

based approach is significantly superior to the available FIR filter-based solutions

in terms of FDI&E filter order.

202



Our data-driven FDI&E scheme requires that the identification input should

be persistently exciting. In other words, it should be a wide band signal such as

noise. However, it is not practically plausible to stimulate a gas turbine by a wide

band signal. Instead, gas turbines are usually tested by harmonic inputs at sev-

eral low frequencies for the purpose of identification. We extended our data-driven

approach by robust and direct estimation of Markov parameters from frequency re-

sponse data of the system. We showed through comprehensive simulations that our

proposed scheme yields satisfactory performance by utilizing frequency response of

the system at a limited number of frequencies.

9.2 Future Work

As mentioned before, numerous issues should be addressed and resolved for devel-

opment and implementation of a fully operational and reliable FDI&E scheme for

gas turbines. Towards this end, this research can be continued in various directions

especially in the domain of inversion-based fault estimation and data-driven FDI&E.

Robust inversion-based fault estimation can be a research line to address the

extension of our proposed solutions for stochastic systems. Also, inversion-based

unknown input reconstruction decoupled from system disturbances needs to be in-

vestigated. Our first inversion-based solution is a promising approach for tackling

the robustness issues since it has a feedback control that counteract noise and distur-

bances. However, it needs to be extended for reconstruction of a general unknown

input. Our preliminary simulations show that it can reconstruct ‘low frequencies’

unknown inputs by an acceptable bias. The quantification of the bias and trade-off

studies between reconstruction bias and robustness to noise and disturbances is an
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interesting research topic.

Data-driven FDI&E is an active research field. Our proposed solution pro-

vides a ground for more advanced analysis to address the practical issues such as

uncertainties and disturbances. One directions is to utilize H∞ analysis for optimal

selection of free parameters such that the estimation variance is minimized. It can

also be used to remedy the effect of disturbances. A restrictive assumption in avail-

able data-driven approaches is the persistently exciting condition for identification

input. This condition blocks using tremendous amount of data recorded during sys-

tems operation. Therefore, the data-driven approaches are not yet fully applicable

to many real-life cases. A possible solution is to design FDI&E schemes that is

decoupled from those responses of the system that has not been excited so far by

inputs in operation.
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Appendix A

A.1 Validity of the Estimated Markov Parame-

ters

We have used the confusion matrix [141] to determine the validity of range of the

Markov parameters. The obtained results are shown in Tables A.1 and A.2. In

these tables, Q is set equal to 100. The estimated Markov parameters are obtained

at the PLA=75%. Next, the fault detection filters are constructed corresponding to

the confusion matrix analysis at six different PLAs, namely 60, 65, 70, 80, 85 and

90%. The resulting ACC for these PLAs are obtained as 78.5, 96, 97, 97.5, 92.5

and 82%, which show that one can consider a ±10% variation in the PLA about an

operating point as a valid range where the resulting estimated Markov parameters

are acceptable. Similar results are obtained at other operating points but are not

included and omitted here for brevity.

Table A.1: Confusion matrix of the actuator fault detection performance. The fault
severity and Q are 5% and 100, respectively.

PLA=80%
Healthy Faulty

85%
Healthy Faulty

90%
Healthy Faulty

Healthy 99 1 Healthy 92 8 Healthy 81 19
Faulty 4 96 Faulty 7 93 Faulty 17 83
ACC 99.48% ACC 92.46 ACC 82
PPV 96.11 PPV 92.9 PPV 82.6
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Table A.2: Confusion matrix of the actuator fault detection performance. The fault
severity and Q are 5% and 100, respectively.

PLA=60%
Healthy Faulty

PLA=65%
Healthy Faulty

PLA=70%
Healthy Faulty

Healthy 77 13 Healthy 95 5 Healthy 98 2
Faulty 20 80 Faulty 3 97 Faulty 4 96
ACC 78.5% ACC 96 ACC 97
PPV 79.3 PPV 96.9 PPV 96.07

A.2 Markov Parameter Estimation Error for Dif-

ferent PLA

Figures 7.2 and 7.3 show the Markov parameters estimation errors for the PLA=75%.

We provide similar results for the PLA=50% in Figures A.1 and A.2 and the PLA

=100% in Figures A.3 and A.4. These figures confirm that the Markov parameters

estimation errors follow almost the same pattern for all the PLAs. Therefore, one

can expect that the performance that have been demonstrated for the PLA=75%

will also be observed for the other PLAs. In another words, the nonlinearities of the

gas turbine engine are not that severe so that a fundamental change in the system

behavior is observed as the PLA varies [57].
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Figure A.1: The relative errors between the estimated and the actual Markov pa-

rameters of the input channel to the shaft rotational speed output channel at the

PLA=50% for three different values of Q.

224



1 2 3 4 5 6 7 8 9

The index i in CA i-1B.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
a
rk

o
v
 P

a
ra

m
e
te

r 
E

s
ti
m

a
ti
o
n
 E

rr
o
r 

(%
)

PLA=50%, Q=25

PLA=50%, Q=50

PLA=50%, Q=100

Figure A.2: The relative errors between the estimated and the actual Markov pa-

rameters of the input channel to the compressor pressure output channel at the

PLA=50% for three different values of Q.
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Figure A.3: The relative errors between the estimated and the actual Markov pa-

rameters of the input channel to the shaft rotational speed output channel at the

PLA=100% for three different values of Q.
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Figure A.4: The relative errors between the estimated and the actual Markov pa-

rameters of the input channel to the compressor pressure output channel at the

PLA=100% for three different values of Q.

A.3 Confusion Matrix Analysis for PLA= 55%

In Section 7.3, we have provided several confusion matrix analyses for the PLA=80%

using the FDI&E filters that are constructed from the data that are obtained at the

PLA=75%. In this appendix, we provide similar analysis for the PLA=55% in

order to demonstrate the performance of our proposed schemes at another PLA.

The corresponding FDI&E filters are constructed from the data that are obtained

at the PLA=50%.

Table A.3: Confusion matrix for the actuator fault detection performance. The fault

severity and PLA are 1% and 55%, respectively.

Q = 25

Healthy Faulty

Q = 50

Healthy Faulty

Q = 100

Healthy Faulty

Healthy 70 30 Healthy 80 20 Healthy 79 21

Faulty 35 65 Faulty 19 81 Faulty 16 84

ACC 67.5% ACC 80.5 ACC 81.5

PPV 66.6 PPV 80.8 PPV 83.1
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Table A.4: Confusion matrix for the actuator fault detection performance. The fault

severity and PLA are 5% and 55%, respectively.

Q = 25

Healthy Faulty

Q = 50

Healthy Faulty

Q = 100

Healthy Faulty

Healthy 76 24 Healthy 93 7 Healthy 93 7

Faulty 29 71 Faulty 5 95 Faulty 2 98

ACC 73.5% ACC 94.0 ACC 95.5

PPV 72.3 PPV 94.8 PPV 97.8

Table A.5: Confusion matrix for the actuator fault detection performance. The fault

severity and PLA are 10% and 55%, respectively.

Q = 25

Healthy Faulty

Q = 50

Healthy Faulty

Q = 100

Healthy Faulty

Healthy 93 7 Healthy 98 2 Healthy 96 4

Faulty 11 89 Faulty 5 95 Faulty 3 97

ACC 91% ACC 96.5 ACC 96.5

PPV 89.4 PPV 95.1 PPV 96.9

Table A.6: Confusion matrix for the sensor fault detection performance. The fault

severity and PLA are 1% and 55%, respectively.

Q = 25

Healthy Faulty

Q = 50

Healthy Faulty

Q = 100

Healthy Faulty

Healthy 71 29 Healthy 89 11 Healthy 90 10

Faulty 24 76 Faulty 7 93 Faulty 8 92

ACC 73.5% ACC 91.0 ACC 91.0

PPV 74.7 PPV 92.7 PPV 91.8
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Table A.7: Confusion matrix of the sensor fault isolation performance for Q = 25,

PLA=55% and the fault severity of 1%. The filters are designed with the data

obtained at PLA=50%.

Predicted

f0 f2 f3 f4 f5 f6

Actual

f0 81 1 1 9 4 4

f2 2 79 6 2 6 5

f3 8 1 74 1 12 4

f4 4 7 3 86 1 1

f5 9 3 3 6 75 4

f5 4 1 1 3 10 81

Table A.8: Confusion matrix of the sensor fault isolation performance for Q = 50,

PLA=80% and the fault severity of 1%. The filters are designed with the data

obtained at PLA=75%.

Predicted

f0 f2 f3 f4 f5 f6

Actual

f0 87 5 1 3 2 2

f2 1 86 5 2 5 1

f3 0 1 93 0 0 6

f4 0 3 3 92 1 1

f5 5 0 2 4 89 0

f6 2 0 1 7 5 85
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Table A.9: Confusion matrix of the sensor fault isolation performance for Q = 100,

PLA=55% and the fault severity of 1%. The filters are designed with the data

obtained at PLA=50%.

Predicted

f0 f2 f3 f4 f5 f6

Actual

f0 93 1 3 0 3 0

f2 0 96 0 1 2 1

f3 2 1 95 1 0 1

f4 0 2 0 95 2 1

f5 0 1 1 1 97 0

f6 0 0 0 1 1 98

Table A.10: Average actuator fault estimation error for 100 Monte Carlo simulations

at PLA=55%. The filters are designed with the data obtained at PLA=50%.

Set of measurements fed to the estimation filter Q = 25 Q = 50 Q = 100

N , PC 19.14% 14.21 9.91

N , PC , PT 17.00 11.70 9.82

N ,PC ,PT ,TT 12.15 12.80 7.35

N ,PC ,PT ,TT , TC 12.06 10.39 7.50
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Table A.11: Average sensor fault estimation error for 100 Monte Carlo simulations

at PLA=55%. The filters are designed with the data obtained at PLA=50%.

Set of measurements fed to estimation filter Q = 25 Q = 50 Q = 100

N ,PC 17.12% 13.78 8.11

N ,PC ,PT 15.30 11.32 9.43

N ,PC ,PT ,TT 12.50 12.10 7.40

N ,PC ,PT ,TT , TC 12.45 9.61 7.57

A.4 Analysis On the Selection of the Parameter

E

It was stated earlier in Section 7.2 that the I/O data are measured across E peri-

ods of the time-series signal. Moreover, in simulations conducted, we have selected

and set E = 6 in Section 7.3 according to [118]. It is straightforward to obtain

the response of the system at a given frequency by using a single period of data if

both input and output are purely harmonic. However, the measurements are always

noise-corrupted in practice. Therefore, one needs to process more data to obtain a

reliable estimation of the frequency response. On the other hand, the amount of

available data is constrained by practical issues such as time and costs of conducting

experiments. Consequently, trade-off studies is required in order to determine the

parameter E. Tables A.12 and A.13 show the confusion matrix analysis correspond-

ing to different values of E. The results obtained confirm that an E equal to 5 will

yield a satisfactory ! result. We have, nevertheless followed the recommendation

of [118] that was verified by experimental results and set E = 6. Similar results for

E = 6 have already been shown and can be found in Tables 7.3 and 7.5.
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Table A.12: Confusion matrix for the sensor fault detection performance with differ-

ent values of E. The fault severity, PLA and Q are 1%, 80% and 100, respectively.

E = 2

Healthy Faulty

E = 5

Healthy Faulty

E = 10

Healthy Faulty

Healthy 53 47 Healthy 91 9 Healthy 97 3

Faulty 34 66 Faulty 2 98 Faulty 4 96

ACC 59.5% ACC 94.5 ACC 96.5

PPV 60.9 PPV 97.8 PPV 96.03

Table A.13: Confusion matrix for the actuator fault detection performance with

different values of E. The fault severity, PLA and Q are 5%, 80% and 100, respec-

tively.

E = 2

Healthy Faulty

E = 5

Healthy Faulty

E = 10

Healthy Faulty

Healthy 65 35 Healthy 97 3 Healthy 98 2

Faulty 40 60 Faulty 6 94 Faulty 1 99

ACC 62.5% ACC 95.5 ACC 98.5

PPV 61.9 PPV 94.1 PPV 98.9
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