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ABSTRACT 

 

Characterization of TRAPPC11 and GOSR2 mutations in human fibroblasts 

 

Keshika Prematilake 

 

Eukaryotic cells consist of membrane-bounded organelles which communicate with each 

other through vesicles for the movement of proteins and lipids between them in a process called 

membrane traffic. It requires different types of proteins to facilitate docking and fusion of the 

cargo-containing vesicles to the correct compartment. Among them are a diverse group of 

membrane proteins called tethering factors including multi-subunit tethering complexes (MTCs). 

The transport protein particle (TRAPP) complexes are a family of related MTCs that are conserved 

from yeast to humans. Subunits of the mammalian TRAPP complexes are known to be involved 

in ER-to-Golgi and intra-Golgi trafficking while playing a fundamental role in Golgi morphology. 

The TRAPPC11 subunit of the mammalian TRAPP III complex has been implicated in ER-to-

ERGIC trafficking as well as autophagy. The mammalian TRAPP subunits are linked to a broad 

range of diseases of which the mechanism and the cause are not fully understood.  

 

In this study, homozygous and compound heterozygous mutations in the TRAPPC11 gene 

in human fibroblasts from five individuals were characterized using several biochemical, 

immunofluorescence and live cell microscopy techniques to identify the defective pathways and 

the effect of the mutations at the cellular level. Included in this study were two individuals with 

GOSR2 mutations displaying similar clinical features to patients with TRAPPC11 mutations. We 

hypothesized that the TRAPPC11 mutations would result in a number of different defects at the 

cellular level given the number of pathways TRAPPC11 has been suggested to function within. 

The current study suggests that some of the TRAPPC11 mutations are linked to a variety of cellular 

phenotypes including hypoglycosylation of proteins, ER-to-Golgi trafficking defects, delay in the 

exit of proteins from the Golgi, Golgi fragmentation, defects in the autophagy pathway as well as 

partial disassembly of the complex. Golgi soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor complex 2 (GOSR2) is a protein located in the cis-Golgi to facilitate docking and 

fusion of COPII vesicles from the ER. The current study also suggests that some of the GOSR2 
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mutations are linked to hypoglycosylation of proteins, ER-to-Golgi trafficking defects as well as 

a delay in the exit of proteins from the Golgi.  

 

The affected individuals showed novel mutations in TRAPPC11 and GOSR2 as well as 

mutations seen in previous studies. Some of the earlier TRAPPC11 mutations were in or near the 

foie gras domain, and these new TRAPPC11 mutations cluster near that region. This suggests that 

the foie gras domain plays a critical role in the function of the TRAPPC11 protein. Since, 

TRAPPC11 mutations affect the brain, eyes, liver, muscle, and bone, this suggests that the 

TRAPPC11 protein has a function in multiple tissue types and organs as well as homeostasis of 

the organism. This study and previous studies of TRAPPC11 lead to the conclusion that 

TRAPPC11 mutations, in general, result in neuromuscular phenotypes. In conclusion, these 

mutations can be added to the growing group of mutations in TRAPPC11 and GOSR2 causing 

neuromuscular and myopathy phenotypes. A better understanding of these mutations which result 

in neuromuscular phenotypes will allow for the screening of individuals who carry these mutations 

and further investigate the mechanism and treatment for these diseases.  
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1 INTRODUCTION  

 

1.1 Membrane trafficking 

 

Eukaryotic cells consist of membrane-bound organelles which communicate with each 

other and the immediate environment surrounding the cells (Tokarev et al., 2009). The movement 

of proteins and lipids between these membrane-bounded compartments is mediated by transport 

of vesicles in a process called membrane traffic. The membrane traffic process includes the 

exocytic pathway which carries cargoes from the endoplasmic reticulum (ER) to the cell 

membrane and outside of the cell and the endocytic pathway which imports cargoes from the 

immediate environment bringing them into the cell. The membrane traffic pathways combined 

control the flow of cargo inside the cell by regulating the budding of cargo-containing vesicles, 

their transport along the cytoskeleton, and fusion with the acceptor membrane. Membrane 

trafficking is crucial for the viability and proper function of the cell as it allows the cell to 

communicate among its organelles and with its immediate environment to obtain nutrition and 

cellular signals (Tokarev et al., 2009). 

 

During membrane trafficking, the cargo-containing vesicles bud from the donor 

compartments using specific coat and adaptor proteins such as coat protein complex I, II (COPI, 

II) and clathrin adaptor complexes which mediate endosomal trafficking. The COPII complex 

mediates anterograde transport from the ER to the Golgi apparatus (Golgi) while COPI mediates 

retrograde transport from the Golgi to the ER and intra-Golgi trafficking. The fusion of the vesicles 

at the correct acceptor compartment(s) involves vesicle capturing (or tethering) by a correct 

combination of vesicle-capturing equipment and membrane anchors such as soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) present at the vesicle (v-

SNAREs) and the acceptor compartment(s) (t-SNAREs) (Sato and Nakano, 2005). The budding 

and fusion events are both governed by small GTPases which in turn are regulated by guanine 

nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In combination, 

these proteins tightly regulate the directionality and reliability of the intracellular membrane 

trafficking. 
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In eukaryotic cells, newly synthesized proteins containing a signal sequence enter the ER 

during translation through a translocon pore via a signal recognition machinery. The proteins 

inside the ER or residing on the ER membrane are controlled for proper folding and assembly 

before exiting the ER at ER exit sites (Fewell and Brodsky, 2009). The newly formed vesicles 

travel from the ER to the Golgi via diffusion or by the help of microtubules and associated motor 

proteins (Presley et al., 1997). The ER-derived cargo-containing vesicles travel towards the 

microtubule-organizing center (MTOC) and fuse with the Golgi at the cis-Golgi cisterna and the 

cargo is subsequently processed in the medial- and trans-Golgi network (TGN). The TGN acts as 

a major sorting station for proteins and lipids. The proteins are directed to different organelles such 

as endosomes and lysosomes, embedded in the plasma membrane (PM) to facilitate membrane 

expansion during cell growth or secreted to the extracellular environment upon modifications by 

both ER and Golgi enzymes to include sugars and lipids in a highly ordered manner (Tokarev et 

al., 2009). 

 

Early vesicle-mediated transport occurs between the ER and the Golgi via vesicles formed 

through the COPII and COPI machinery (Barlowe et al, 1994). The COPII vesicles contain a 

membrane bilayer with many proteins which allows it to be highly flexible to form positive 

membrane curvature to bud from the ER and to disassemble immediately after transport via GTP 

hydrolysis. (Barlowe et al, 1994; Sato and Nakano, 2005; Lord et al, 2011; Zanetti et al., 2013; 

Koreishi et al, 2013). The early intracellular membrane trafficking in mammalian cells differs from 

that in yeast as it involves fusion of COPII vesicles from the ER to form the ER-Golgi intermediate 

compartment (ERGIC) for further sorting of the cargoes before microtubule-dependent vesicle 

trafficking to the Golgi (Presley et al, 1997; Klumperman et al., 1998; Martinez-Menarguez et al, 

1999; Breuza et al, 2004). During membrane trafficking, the organelle identity and size has to be 

maintained. This is accomplished by retrograde transport where molecules used for anterograde 

transport are recycled back to the original organelle. The retrograde transport from the Golgi to 

the ER occurs via Golgi-derived COPI vesicles involving the Dsl1 tethering complex and syntaxin 

18 with the aid of the SNAREs at the ER.  

 

The SNARE complexes play a major role in facilitating fusion at the acceptor 

compartment(s) by selectively locating at different compartments. However, SNAREs cannot 
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confirm all the selectivity as SNAREs form multiple complexes during multiple stages of 

membrane trafficking and have been shown to be promiscuous (Banfield, 2001). Therefore, other 

proteins have to partake in vesicle recognition to ensure selectivity.  

 

 

1.2 Tethering factors 

 

In order to facilitate SNAREs in docking and fusion of the cargo-containing vesicles to the 

correct compartment, a peripherally-associated diverse group of membrane protein complexes 

called tethering factors are required (Lupashin and Sztul, 2009). The tethering factors function 

either at a single step of the membrane trafficking pathway or at multiple steps such as the 

formation of SNAREs, cargo selection, and linking the vesicle to the neighboring membranes 

before fusion (Lupashin and Sztul, 2009). They acquire these functions by binding to coat proteins, 

activating specific Rab and Arl GTPases, and/or associating with different SNAREs (Bacon et al., 

1989; Andag and Schmitt, 2003; Behnia et al., 2007; Cai et al., 2007; Zink et al., 2009). Tethering 

factors differ from tethers in a sense that tethers directly tether vesicles while tethering factors 

organize other factors needed for tethering (Brunet and Sacher, 2014). They act in homotypic 

fusion where two identical compartments fuse such as fusion of early endosomes, and/or in 

heterotypic fusion where two different compartments fuse such as fusion of COPI vesicles with 

the ER (Lupashin and Sztul, 2009).  

 

Tethering factors are grouped into two general classes based on their structure called 

multisubunit tethering complexes (MTCs) and coiled-coil proteins. Recently, they have also been 

classified into three functional classes based on phylogeny and structure. The first are complexes 

which bind to SNAREs and function as the Rab effectors such as Dsl1 complex, conserved 

oligomeric Golgi (COG) complex, Golgi-associated retrograde protein (GARP) complex, 

homotypic fusion and vacuole protein sorting (HOPS), and Exocyst. The next group are complexes 

which act as GEFs for Rab proteins and consist of transport protein particle (TRAPP) complexes 

(I-III) and HOPS which may initiate tethering of coiled-coil tethers for fusion (Lupashin and Sztul, 

2009). The last group is categorized into the coiled-coil tethers which include mammalian proteins 

p115, GM130, Giantin, Golgins, and early endosome antigen 1 (EEA1).  
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The MTCs were first characterized in budding yeast, Saccharomyces cerevisiae, and 

consist of eight different MTCs with homologs in higher eukaryotes. The MTCs include the above-

mentioned complexes (Dsl1, COG, GARP, HOPS, TRAPP, and exocyst) as well as Class C core 

vacuole/endosome tethering (CORVET) complex and two vacuole protein sorting (VPS)-C 

complexes. Only CORVET, VPS-C, and HOPS are a heterogeneous family of proteins with 

interconvertible subunits, analogous to TRAPP complexes which have interconvertible subunits 

(Peplowska et al., 2007). MTCs contain 3 to 10 subunits which interact with vesicles over a short 

distance (up to 30 nm) to perform tethering of vesicles that are in close proximity. The ER-to-

Golgi traffic requires MTCs such as Dsl1, COG, and TRAPPI and coiled-coil tethers, p115 and 

GM130. The COG and TRAPPII complexes play a role in intra-Golgi traffic as well as ER-to-

Golgi traffic (Lupashin and Sztul, 2009). The TGN-endosomal-lysosomal pathway is regulated by 

TRAPPIII, HOPS, and GARP complexes.  

 

In order to maintain the proper size and function of each cellular compartment, the budding 

and fusion events are coordinated to integrate anterograde and retrograde traffic, a process that 

involves tethering factors. The tethering factors proofread and aid assembly of SNAREs and act 

as effectors or activators for the Rab GTPases (Shestakova et al., 2007; Starai et al., 2008; Pérez-

Victoria and Bonifacino, 2009; Ren et al., 2009). The GEF activity is the most upstream event in 

the tethering process. GEFs are recruited to membranes to generate guanosine triphosphate (GTP)-

Rabs. The GTP-activated Rab then recruits oligomeric Rab effectors or long coiled-coil tethers 

and other membrane receptors to tether a vesicle while increasing selectivity (Lupashin and Sztul, 

2009). For example, the fusion of COPII vesicles at the ERGIC is regulated by the mammalian 

TRAPP complexes which activate RAB1 to recruit p115 to the membrane (Nelson et al., 1998; 

Grabski et al., 2012). The subunits of the mammalian homolog of yeast Dsl1, ZW10, associate 

with the TGN SNAREs, the ER SNAREs such as syntaxin 18 (Ufe1), and the COG complex 

(Hirose et al., 2004; Aoki et al., 2009; Arasaki et al., 2013). Interestingly,  depletion of ZW10  has 

been implicated not only in defects in membrane trafficking events but also in chromosome 

segregation in dividing cells due to its interaction with  Beclin 1 (Williams et al., 1992; Chan et 

al., 2000; Xiao et al., 2001).  
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Mutations in many of the MTCs affect cellular functions as well as cause disease 

phenotypes. COG subunits affect the localization and function of Golgi glycosylation machinery 

resulting in congenital disorders of glycosylation (CDG) leading to many neurological and 

developmental diseases (Kingsley et al., 1986; Wu et al., 2004; Spaapen et al., 2005; Foulquier et 

al., 2006, 2007; Kubota et al., 2006; Shestakova et al., 2006; Kranz et al., 2007; Ng et al., 2007; 

Zeevaert et al., 2008; Paesold-Burda et al., 2009; Richardson et al., 2009; Reynders et al., 2009). 

Mutations in Vps54 and Vps53 subunits of the GARP complex affect motor neurons: the former 

destabilizes the complex and leads to neurodegenerative diseases and the latter cause progressive 

cerebello-cerebral atrophy type 2 (Pérez-Victoria et al., 2010; Feinstein et al., 2014). Loss-of-

function mutations in HOPS or CORVET in mammalian cells have been linked to cancer and cause 

embryonic lethality or severe developmental defects (Gissen et al., 2004; Schonthaler et al., 2008; 

Messler et al., 2011; Roy et al., 2011; Aoyama et al., 2012; Kawamura et al., 2012). Like HOPS 

and CORVET, loss-of-function mutations in exocyst cause developmental delays in mammalian 

cells and Drosophila melanogaster (Drosophila) tracheal cells and affect synapse formation, cilia 

development, and axon growth (Jones et al., 2014). 

 

 

1.2.1 TRAPP complexes of yeast 

 

Similar to other MTCs discussed above, the TRAPP complexes were also first identified 

and studied using yeast genetics and protein biochemistry. The TRAPP complexes represent a 

family of related complexes that are conserved from yeast to humans (Sacher et al., 1998). 

Although initially proposed to form two related complexes (Sacher et al, 2001), in yeast the 

TRAPPs are organized into three complexes (Lipatova et al., 2016). TRAPPI, consisting of the 

core subunits Bet5, Trs20, Bet3, Trs23, Trs31, and Trs33 is involved in ER-to-Golgi traffic along 

with the long coiled-coil tether, Uso1 (Sacher et al., 1998, 2000, 2001; Jiang et al., 1998; Kim et 

al., 2006). TRAPPII with the additional subunits Trs120, Trs130 and Trs65, functions in 

endosome-to-Golgi and intra-Golgi traffic (Sacher et al, 2001). TRAPPIII with the additional 

subunit Trs85 mediates autophagosome (AP) formation during autophagy and the CVT pathway 

(Lynch-Day et al., 2010). All three complexes are GEFs and the structure of the core subunits 

bound to the Rab Ypt1 revealed their mechanism of action in performing the nucleotide exchange 
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reaction which is essential for their membrane trafficking functions (Jones et al., 2000; Wang et 

al., 2000; Cai et al., 2008). 

 

The well-studied TRAPPI complex is 300kDa and its structure resembles a dumbbell 

shape. One of the lobes of the dumbbell has Trs20-Trs31-Bet3 subunits while the other lobe 

contains Bet3-Trs33-Bet5 subunits. The two lobes are bridged by Trs23 (Kim et al., 2006). The 

TRAPPI complex, containing subunits with mixed α/β topology, differs from long rod-like MTCs 

such as exocyst, COG, Dsl1 and GARP that are largely α-helical bundles, indicating a possible 

variation of the tethering function. The higher molecular weight of TRAPPII compared to TRAPPI 

is due to dimerization of the former as well as the addition of three high molecular size subunits. 

The yeast and mammalian TRAPPs are anchored to a Triton X-100 resistant fraction, indicating 

their stable association with membranes (Sacher et al., 2000, 2001). The TRAPPIII complex 

appears at a higher apparent molecular size compared to TRAPPII, suggesting that TRAPPIII more 

tightly associates with membranes (Brunet et al., 2013; Tan et al., 2013). Trs20p acts as an adaptor 

protein for Trs85 on one end of the TRAPPIII complex (Zong et al., 2011; Brunet et al., 2013; 

Taussig et al., 2013, 2014). 

 

In vitro yeast transport assays have shown that TRAPPI is the initial interactor for the ER-

derived COPII vesicle at the Golgi through the interaction between Bet3 present at both lobes of 

the TRAPPI complex and Sec23p, a component of the COPII vesicles (Lord et al., 2011). The 

interaction between TRAPPI and the COPII vesicles is followed by TRAPPI GEF activity towards 

Ypt1p to recruit its Rab effectors Uso1p, p115 and COG (in mammalian cells) (Wang et al., 2000; 

Morozova et al., 2006; Cai et al., 2008; Yamasaki et al., 2009).  

 

The TRAPPII complex facilitates intra-Golgi trafficking as well as COPI-dependant 

endosome-to-Golgi retrograde trafficking in yeast (Sacher et al., 2001; Cai et al., 2005). Mutations 

of the Trs120 subunit disrupt retrograde trafficking from early endosomes in a COPI protein 

mislocalization manner (Sacher and Ferro-Novick, 2001; Cai et al., 2005; Yamasaki et al., 2009). 

The Bet3 subunit in the core of TRAPP is masked in TRAPPII by TRAPPII-specific subunits 

allowing TRAPPII to bind to the COPI vesicle coat, but not to COPII vesicles (Sacher et al., 2001; 

Cai et al., 2005; Yamasaki et al., 2009). It has been proposed that TRAPPI converts to TRAPPII 
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to assure a balance between the flow of materials in and out of the Golgi membranes (Morozova 

et al., 2006). Recently, a novel function of the TRAPPII complex in fission yeast, 

Schizosaccharomyces pombe (S. pombe), has been reported where it is proposed to function during 

cytokinesis through the interaction of the Trs120 subunit with the Rab11 GTPase, Ypt3 (Wang et 

al., 2016).   

 

The TRAPPIII complex is involved in a process called autophagy (see section 1.4). The 

complex is located at the site of assembly of the phagophores to assemble the membranes needed 

for autophagy as well as at the site of pre-autophagosomal structure (PAS) formation (Lynch-Day 

et al., 2010; Tan et al., 2013). Similar to TRAPPII, TRAPPIII functions in endosome to Golgi 

retrograde traffic to recruit Atg9, a transmembrane protein required for AP formation, and the 

SNARE, Snc1, by activating Ypt1 in a Trs85 dependent manner (Meiling-Wesse et al., 2005; 

Nazarko et al., 2005; Lipatova et al., 2012; Shirahama-Noda et al., 2013). Ypt1 effectors such as 

the COG complex have also been shown to be required for AP formation (Yen et al., 2010). 

However, the exact mechanism of action of TRAPPIII, Ypt1, and COG in autophagy is still 

unknown.  

 

 

1.2.2 Mammalian TRAPP complexes 

 

In mammalian cells, two of the three TRAPP complexes were conserved from yeast; 

TRAPPII and TRAPPIII (Sacher et al., 2000; Loh et al., 2005; Yamasaki et al., 2009; Bassik et 

al., 2013). Despite the fact that yeast subunits share 29 to 54% of sequence identity at the protein 

level with the mammalian subunits (Table 1.1), there is less known concerning the mammalian 

TRAPP (mTRAPP) complexes. Crystal structures have been solved for the TRAPPC1-TRAPPC3-

TRAPPC4-TRAPPC6 and TRAPPC3-TRAPPC2-TRAPPC5 sub-complexes (Kim et al., 2006). 

All the mTRAPP complexes are ~670kDa in size (Meiling-Wesse et al., 2005; Nazarko et al., 

2005).  The mTRAPPII complex consists of six core subunits (TRAPPC1-6a/b) (Aridon et al., 

2016) as well as TRAPPC13, TRAPPC9, and TRAPPC10 (Bassik et al., 2013). In addition to the 

core subunits, the TRAPPIII complex contains TRAPPC8, TRAPPC11, TRAPPC12 and 

TRAPPC13 (Table 1.1; Bassik et al., 2013). 
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Like yeast TRAPP, the mTRAPP complexes consist of a conserved core upon which 

additional, and in some cases, metazoan-specific (see section 1.3), subunits bind (Bassik et al., 

2013). Subunits of the mTRAPP complexes are present mainly in the cytosol or at the Golgi 

membranes and the ER/ERGIC interface and thus are involved in ER-to-Golgi and intra-Golgi 

trafficking, while playing a fundamental role in Golgi morphology (Yu et al., 2006; Scrivens et 

al., 2009; Choi et al., 2011; Zong et al., 2012). mTRAPPII interacts with COPII vesicles by 

associating with the p150 motor protein,,  a subunit of dynactin that moves COPII vesicles along 

the microtubules as they mature into cis-Golgi (Zong et al., 2012). It also functions in intra-Golgi 

trafficking and acts as a GEF for the mammalian Ypt1 homolog, RAB1, while partially associating 

with COPI-coated vesicles at the cis-Golgi (Sacher and Ferro-Novick, 2001; Gwynn et al., 2006; 

Yamasaki et al., 2009). The activation of RAB1 is required to recruit other factors such as p115 

and COG for the final fusion of the COPI vesicles with the early Golgi (Yamasaki et al., 2009).  

 

The exact mechanism of action of mTRAPPIII is still unknown (Bassik et al., 2013). 

mTRAPPIII has been suggested to interact with COPII vesicles. However, the role of each subunit 

has been suggested to be more diverse with functions both within and outside of the complex 

(Ethell et al., 2000; Ghosh et al., 2001, 2003; Milev et al, 2015). For example, the role of TRAPPC4 

has not yet been mapped to its association with the mTRAPP complex. TRAPPC4 recruits MAP 

kinase kinase (MEK1) for the phosphorylation of ERK1/2 and translocation of the phosphorylated 

ERK1/2 into the nucleus.  Since TRAPPC4 expression is increased in the nuclei where the TRAPP 

complex is not located, its role in the ERK signaling pathway is independent of its role in the 

TRAPP complex. Since ERK2 interacts with Sec16, a COPII coat assembly protein, it is tempting 

to speculate that the role of TRAPPC4 in the ERK pathway may have an impact on membrane 

traffic (Farhan et al., 2010).  

 

Since the subunits of mTRAPPs are ubiquitously expressed in every cell, mutations in 

TRAPP subunits which disable the complexes would be expected to be embryonic lethal. 

Nevertheless, the mammalian TRAPP subunits are linked to a broad range of diseases of which 

the mechanism and the cause are not fully understood (Table 1.1). Mutation in one of the subunits, 

TRAPPC2, common to both mTRAPPs, causes an X-linked disease called spondyloepiphyseal 
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dysplasia tarda (SEDT or SEDL) which results in short stature, barrel chest, and degenerative joint 

disease. It is due to bone growth defects caused by defects in trafficking of type II collagen in the 

Golgi and Golgi fragmentation in skeletal tissue (MacKenzie et al., 1996; Gedeon et al., 1999, 

2001; Scrivens et al., 2009; Venditti et al., 2012). Recently, TRAPPC2 mutations were also linked 

to miscarriage (Wen et al., 2015). TRAPPC4 which is another core TRAPP subunit has been 

implicated in colorectal cancer and the mechanism is thought to involve its interaction with the 

mitogen-activated protein kinase, ERK2 (Zhao et al., 2011; Kong et al., 2013; Weng et al., 2014).  

 

Additionally, mutations in TRAPPC9 which give rise to a truncated protein cause mental 

retardation and, in some individuals, microcephaly due to defects in the NF-ĸB pathway and 

neuronal differentiation (Khattak and Mir, 2014). TRAPPC9 has been associated with cancer 

(Zhang et al., 2015) and schizophrenia (McCarthy et al., 2014). Mutation in TRAPPC6A causes 

mosaic loss of coat pigmentation in mice possibly due to impaired trans-Golgi trafficking and 

endocytosis (Gwynn et al., 2006). It is also involved in nonverbal reasoning and proposed to play 

a role in Alzheimer’s disease (Hamilton et al., 2011; Chang et al., 2015). TRAPPC6B splicing 

variant has recently been associated with restless leg syndrome (Aridon et al., 2016). TRAPPC8 

has been shown to be significant for cell entry of the human papillomavirus (HPV) due to its 

possible role in endocytosis and ciliogenesis (Ishii et al., 2013; Schou et al., 2014). To date, there 

are a few TRAPP subunits which are involved in cancer: TRAPPC1, TRAPPC4, TRAPPC9, and 

TRAPPC10 (Pongor et al., 2015; Zhang et al., 2015; Weng et al., 2014). Mutations in TRAPPC11 

will be discussed in detail below. Mutations in these proteins may lead to diseases by any number 

of mechanisms including interference with proper protein folding, protein-protein interactions and 

TRAPP complex integrity (Choi et al., 2009; Jeyabalan et al., 2010; Zong et al., 2011; Brunet et 

al., 2013; Taussig et al., 2014).  
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Table 1.1 Yeast and mammalian TRAPP subunits and diseases associated with subunits. 

Yeast 

subunits  

Mammalian 

subunits (size in 

kDa) 

mTRAPP 

complex  

Diseases associated with mTRAPP 

subunits 

Bet5 TRAPPC1 (17) II, III Cancer  

Trs20 TRAPPC2 (16) II, III SEDT (MacKenzie et al., 1996; Gedeon et 

al., 1999, 2001; Scrivens et al., 2009; 

Venditti et al., 2012); Miscarriage (Wen et 

al., 2015) 

Tca17 TRAPPC2L (16) II, III Not found  

Bet3 TRAPPC3 (20) II, III Not found  

Trs23 TRAPPC4 (24) II, III Carcinogenesis (Weng et al., 2014) 

Trs31 TRAPPC5 (21) II, III Not found  

Trs33 TRAPPC6 a, b 

(19, 15) 

II, III (6a) Mosaic loss of coat pigmentation 

(Gwynn et al., 2006); Alzheimer’s disease 

(Hamilton et al., 2011; Chang et al., 2015) 

(6b) Restless leg syndrome (Aridon et al., 

2016) 

Trs85 TRAPPC8 (161) III Needed for HPV entry (Ishii et al., 2013) 

Trs120 TRAPPC9 (140) II Cancer (Zhang et al., 2015); Intellectual 

disability (Khattak and Mir, 2014); 

Schizophrenia (McCarthy et al., 2014) 

Trs130 TRAPPC10 (142) II Cancer (Pongor et al., 2015) 

N/A TRAPPC11 (129) III Muscular dystrophy (Bögershausen et al., 

2013); Fatty liver disease, steatosis, early 

onset of cataracts (Liang et al., 2015) 

N/A TRAPPC12 (79) III Not found  

Trs65 TRAPPC13 (46) III Not found  

kDa, kilodaltons; mTRAPP, mammalian TRAPP; N/A, not applicable. 

 

 



11 

 

1.3 TRAPPC11 and TRAPPC12 

 

Mammalian TRAPPC11 and TRAPPC12 are the only subunits that have no apparent 

homologs in yeast. They are found mainly in the cytosol or in the Golgi membranes and the 

ER/ERGIC interface. They are present in all eukaryotic cells, including fungi (Scrivens et al., 

2011; Bassik et al., 2013). They serve as components of the mTRAPPIII complex while also 

playing a pivotal role in Golgi morphology (Yu et al., 2006; Scrivens et al., 2009; Yamasaki et al., 

2009; Choi et al., 2011; Zong et al., 2012). The TRAPPC11 subunit was co-precipitated with two 

different epitope-tagged TRAPP subunits; TRAPPC8 and TRAPPC12 (Scrivens et al., 2011).  

TRAPPC11 codes for a 1,133 amino acid protein with a foie gras domain which is a central, highly 

conserved structural motif containing as many as six tetratricopeptide repeats (TPR) for protein-

protein interactions, a gryzun domain, and non-overlapping regions of homology to human and 

yeast TRAPPC10 (Figure 1.1; Wendler et al., 2010). The functions of TRAPPC11 are not well 

characterized in mammalian cells but it has been implicated in ER-to-ERGIC trafficking as well 

as autophagy due to a decrease in AP formation upon TRAPPC11 knockdown (Behrends et al., 

2010; Scrivens et al., 2011). 

 

Studies by Wendler et al. (2010) and Sadler et al. (2005) showed that TRAPPC11 is crucial 

for development since depletion of TRAPPC11 is lethal in both Drosophila and zebrafish. In the 

Drosophila studies, the depletion of trappc11 by small interfering RNA (siRNA) caused Golgi 

fragmentation and rerouting of the marker protein CD8-green fluorescence protein (GFP) from 

apical to basal membranes of larval salivary glands as well as learning and memory defects 

(Wendler et al., 2010; Dubnau et al., 2003). In the study by Sadler et al. (2005), trappc11 loss of 

function mutation, called fgr, caused enlarged livers, steatosis, developmental defects of the eye, 

gut, lower jaw and fin, and hepatocyte death, indicating a major role in the liver as well as other 

organs. In the study by DeRossi et al. (2016), a trappc11 mutation in zebrafish caused Golgi 

fragmentation and blockage of protein secretion from hepatocytes. However, depletion of 

TRAPPC11 by siRNA in HeLa cells resulted in membrane trafficking defects in post-ER 

compartments and partial disassembly of the TRAPP complex, indicating a potential role in 

stabilizing the TRAPP complex (Wendler et al., 2010; Scrivens et al., 2011). Interestingly, 

TRAPPC11 has been associated with protein glycosylation since siRNA knockdown of 
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TRAPPC11 in HeLa cells caused hypoglycosylation of translocon-associated protein (TRAPα) 

(DeRossi et al., 2016). Additionally, TRAPPC11 knockdown caused an apparent decrease in levels 

of TRAPPC12 but not the levels of TRAPPC2, TRAPPC2L, or TRAPPC3, indicating a possible 

physical association of the TRAPPC11 and TRAPPC12 subunits (Scrivens et al., 2011). 

 

TRAPPC12 has been identified to play a dual role in membrane trafficking and mitosis 

(Milev et al., 2015). Such so-called moonlighting proteins are known to acquire two or more 

unrelated functions at different times or at different cellular locations to increase the complexity 

of the cellular processes (Jeffery, 1999; Copley, 2012). There are many possible mechanisms for 

proteins to switch between various functions, including a change in cellular localization, ligand 

binding, variation in oligomerization, and post-translational modifications (Jeffery, 2003). Like 

TRAPPC11, TRAPPC12 contains a TPR domain which facilitates protein-protein interactions 

(Scrivens et al., 2011). The protein is mainly located in the Golgi (Scrivens et al., 2011) with a 

small amount present in the nucleus (Milev et al., 2015). TRAPPC12 associates with the 

kinetochore and plays a role in kinetochore assembly and stability by regulating recruitment of 

centromere-associated protein E (CENP-E) to the kinetochores (Milev et al., 2015). Depletion of 

TRAPPC12 activates the spindle assembly checkpoint.  

 

During interphase, TRAPPC12 is localized to the Golgi where it can function in membrane 

traffic due to its interaction with the mTRAPP complex. The autophagy activity of TRAPPC12 

has also been suggested by Behrends et al. (2010) who showed that depletion of TRAPPC12 

caused an increase in APs and defects in autophagic flux (see section 1.4). During mitosis, 

TRAPPC12 disassociates from the mTRAPP complex and is phosphorylated outside of the TPR 

domain, a modification that is necessary for its interaction with CENP-E (Milev et al, 2015). These 

phosphates are removed before the onset of anaphase (Milev et al., 2015). The role of TRAPPC12 

in membrane traffic and the exact mechanism of TRAPPC12 function in mitosis is yet to be 

determined.  

 

 

 

 



13 

 

      1.3.1 TRAPPC11 mutations reported to date 

 

Currently, there are several documented TRAPPC11 mutations causing disease in humans 

(Table 1.2; Figure 1.1). The study by Bögershausen et al. (2013) reported two different 

homozygous mutations, one in a Syrian pedigree and a second in two different Hutterite 

communities. The Hutterite mutation causes a deletion of exons 11 and 12 to produce an in-frame 

deletion of a portion of the foie gras domain (p.A372_S429del) while the Syrian mutation causes 

a missense mutation (p.G980R) within the N-terminal Gryzun domain. The affected individuals 

showed decreased levels of TRAPPC11 protein. The Golgi of fibroblasts taken from affected 

individuals had a fragmented phenotype while the trafficking of the marker protein, temperature-

sensitive vesicular stomatitis virus glycoprotein fused to GFP (ts045-VSV-G-GFP), between ER 

and Golgi appeared normal in individuals with the p.A372_S429del mutation. However, post-

Golgi trafficking was significantly delayed in these individuals, with the marker protein 

accumulating in the Golgi over time. This contrasts with the observations for the siRNA 

knockdown of TRAPPC11 which included an ER-to-ERGIC trafficking defect, suggesting a 

possible function of the foie gras domain in intra- or post-Golgi trafficking.   

 

In the Bögershausen et al. (2013) study, a significant decrease in the late 

endosomal/lysosomal protein called lysosome-associated membrane protein 1 (LAMP1) in the 

individuals carrying the mutations was observed along with the remaining LAMP1 focused on a 

perinuclear region similar to the MTOC. This indicates a possible interaction of TRAPPC11 with 

motor proteins, similar to that seen for TRAPPC9 in the early secretory pathway (Zong et al., 

2012). The individual with the mutation p.G980R showed a more prominent muscular phenotype 

similar to limb-girdle muscular dystrophy (LGMD). The patient also had increased creatine kinase 

(CK) levels due to the destruction of muscle fibers. Individuals affected with the p.A372_S429del 

mutation also showed muscle abnormalities with mild muscle weakness, ataxia and elevated levels 

of CK, as well as neurological abnormalities and intellectual disabilities. These phenotypes, mainly 

affecting the muscle and brain, have contrasted with the loss of function mutation in zebrafish 

which predominantly affected the liver. Recently, another study by DeRossi et al. (2016) has 

shown that the homozygous TRAPPC11 mutation p.G980R in fibroblasts from affected individuals 

caused accumulation of lipid droplets.  
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Compound heterozygous mutations in TRAPPC11 in one Asian individual have also been 

reported to cause congenital muscular dystrophy (CMD), fatty liver disease and early onset of 

cataracts (Liang et al., 2015). One mutation has been reported in the Syrian individual in the 

previous study (p.G980R), and the second mutation is a splice-site mutation which produced two 

different spliced transcripts, both possibly causing a frameshift and truncated protein 

(p.L240Afs*10 and p.L240Vfs*7). The 8-year old Han Chinese girl showed developmental delays 

and elevated levels of CK similar to the study by Bögershausen et al. (2013) and fatty liver disease, 

steatosis and impaired visual system similar to the zebrafish study by Sadler et al. (2005). The 

affected individual also showed altered forms of the lysosomal membrane glycoproteins such as 

LAMP1 and LAMP2 which indicates that the transport of proteins is affected by mutations in 

TRAPPC11 which destabilize the protein, similar to that observed in the study by Bögershausen 

et al. (2013). The truncated protein appears as a loss of function mutation to cause severe 

phenotypes while recapitulating the zebrafish study. The diversified phenotypes of individuals 

with TRAPPC11 mutations (i.e. brain, muscle, eye, liver, and bone) affirms the role of TRAPPC11 

in multiple tissues in humans (Liang et al., 2015).  

 

Table 1.2 Mutations of TRAPPC11 reported to date. 

Number 

of cases 

(families)  

Family 

origin  

TRAPPC11 

Genetic 

mutation  

Mutation at 

protein level  

Consanguinity 

(Yes/No) 

Reference  

3 

(1 family) 

Syrian c.2938G>A/ 

c.2938G>A 

p.G980R Yes Bögershausen 

et al., 2013 

5 

(2 

families)  

Hutterite c.1287+5G>A/ 

c.1287+5G>A 

p.A372_S429del Yes Bögershausen 

et al., 2013 

1 

 

Asian c.2938G>A/ 

   c.661-1G>T 

p.L240Afs*10 

and 

p.L240Vfs*7 

No Liang et al., 

2015 
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Figure 1.1: Cartoon representation of the TRAPPC11 protein with mutations reported to 

date. The protein sequence for TRAPPC11 is shown along with the location of the conserved foie 

gras (263-522) and gryzun (597-1097) domains. Currently reported TRAPPC11 mutations causing 

disease in humans are shown based on their location along the protein sequence for TRAPPC11. 

The numbers represent the amino acid number in the protein sequence.  

 

 

1.4 Autophagy  

 

The mTRAPPIII complex is suggested to function in multiple tissues in humans as well as 

in multiple pathways, including autophagy (Lynch-Day et al., 2010; Tan et al., 2013). Similar to 

typical membrane trafficking pathways, autophagy also transports cargo and lipids to one 

compartment. It recycles proteins during cellular stresses such as nitrogen starvation or cell 

damage. The two forms of autophagy, macro- and microautophagy, are further subdivided into 

selective and non-selective autophagy. In microautophagy, cargo in the cytoplasm is directly 

internalized into the vacuoles or lysosomes without the need for pre-lysosomal compartments. 

During macroautophagy (hereafter autophagy), cargo in the cytoplasm is packaged into APs and 

is delivered to the lysosomes (Baba et al., 1994). Only macroautophagy is conserved from yeast 

to higher eukaryotes (Meijer et al., 2007).  

 

Unfolded/ improperly folded/excess proteins in the ER are also delivered to lysosomes by 

APs for degradation and generation of energy by selective macroautophagy or ER-phagy (Lipatova 

et al., 2013; Bernales et al., 2007). The AP formation includes membrane formation around 

cytosolic cargo proteins at the PAS site by autophagy-specific proteins (Atgs) in yeast and at the 

ER and mitochondrial contact site in mammalian cells (Suzuki, 2001; Kim et al., 2002; Hamasaki 



16 

 

et al., 2013). The APs fuse with the vacuole or lysosome releasing material into the acidic lumen 

of the lysosomes for degradation by the lysosomal hydrolase enzymes. During nutrient starvation, 

the nonselective macroautophagy allows the “self-eating” process where cytosolic components are 

delivered to lysosomes for degradation and recycled for anabolic processes.  

 

The cellular mechanism and components of the autophagy pathway were identified first in 

yeast. The autophagy pathway is regulated by the target-of-rapamycin (TOR) kinase that is active 

during normal cell growth conditions. Inactivation of TOR activity during starvation generates a 

novel AP for the activation of the autophagy pathway. The stages of the autophagy pathway and 

its players are well known. Nonetheless, less is known about the initial steps of the autophagy 

pathway, at the site of AP formation. An increase in APs does not signal an increase in autophagy, 

but a block in trafficking to lysosomes. An increase in autolysosomes (AP fused with lysosomes) 

indicates a decrease in protein degradation (autophagic flux). The autophagic flux is observed by 

monitoring synthesis and lipidation of autophagy markers such as LC3-II (microtubule-associated 

protein 1 light chain 3; protein from the cytosol [LC3-I] and lipidated form at the autophagosomal/ 

autolysosomal membrane [LC3-II]) (Germain et al., 2011; Klionsky et al., 2016). During 

formation of mammalian APs, LC3 is modified and incorporated into the membrane of APs and 

is later degraded by lysosomal hydrolytic enzymes (Kabeya et al., 2000).  

 

Autophagy is critical in many instances such as programmed cell death (apoptosis), amino 

acid starvation, hypoxia, removal of growth factors, defense against pathogens as well as 

development and cell differentiation. Starvation-induced autophagy activity is clearer in skeletal 

and heart muscles, eye, and thymus tissue, and hepatocytes, but not as much in the brain cells 

(Schworer et al., 1981; Mizushima et al., 2004; Lünemann et al., 2007). When autophagy is 

disrupted, proteins build up in the ER causing ER stress and ER vesicle budding defects (Higashio 

and Kohno, 2002). Defects in autophagy lead to diseases such as SEDT, cancer, aging, bacterial 

infection and muscle and neurodegenerative disorders such as Parkinson’s disease and LGMD 

(Bursch et al., 1996; Anglade et al., 1997; Kegel et al., 2000; Brunet and Sacher, 2014).  
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1.5 Neuromuscular diseases  

 

The accumulation of autophagic vacuoles (APs and autolysosomes) and cytoplasmic 

protein aggregates is a common feature in many neuromuscular diseases (Jongen et al., 1995; 

Kaneda et al., 2003; Nishino et al., 2005; Fujita et al., 2007; Lünemann et al., 2007; Raben et al., 

2007; Nascimbeni et al., 2008). The accumulation of cytoplasmic protein aggregates indicates a 

defect in protein degradation. Hereditary neuromuscular diseases are primarily due to 

conformational changes in specific proteins due to mutations. The mutant proteins have a strong 

affinity to form insoluble aggregates which become sequestered inside autophagic vacuoles, but 

unable to be degraded by lysosomal enzymes. The insoluble proteins also aggregate in the 

cytoplasm and severely inhibit the ubiquitin-proteasome system. Inactivation of the protein 

degradative machinery, autophagy and ubiquitin-proteasome system, greatly affects the 

homeostasis to impair many cellular activities to eventually cause cell death. Impaired motor-nerve 

and/or skeletal muscle function due to cell death by apoptosis, necrosis and/or unregulated 

autophagy is the main characteristic of hereditary neuromuscular diseases (Pattingre et al., 2005). 

 

In many neuromuscular diseases, genetic mutations and defects in the autophagy pathway 

are well characterized. For example, Danon disease is an X-linked myopathy and cardiomyopathy 

due to mutations of LAMP2 which encodes for a highly glycosylated and expressed lysosomal 

membrane protein in the skeletal muscles and the heart (Nishino et al., 2000). Hereditary 

neuromuscular diseases caused by defects in autophagy are categorized into two groups; rimmed 

vacuolar myopathies and autophagic vacuolar myopathies (Nishino et al., 2005). The rimmed 

vacuolar myopathies are secondary lysosomal myopathies since autophagy is activated as a 

secondary effect of protein misfolding or aggregation. This group includes disorders such as distal 

myopathy with rimmed vacuoles (DMRV) and oculopharyngeal muscular dystrophy (OPMD). 

The autophagic vacuolar myopathies are due to the buildup of APs due to blockage or inhibition 

of the autophagy pathway. This group includes disorders such as Pompe disease and X-linked 

myopathy with excessive autophagy (XMEA) (Nishino et al., 2005).  

 

Neuromuscular diseases affect both men and women of all ages and are characterized by 

mild functional impairment with progressive loss of muscle function that can extend to severe 
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disability and early death. Though genetic mutations responsible for inherited neuromuscular 

diseases have been identified, the molecular and cellular mechanisms that cause the muscle and 

nerve defects are not well known. Thus, it is critical to better understand the nature of these rare 

diseases to target therapies which are common to more than one neuromuscular disease (Darin and 

Tulinius, 2000). Since neuromuscular diseases are related to defects in autophagy, this study will 

also address the role of TRAPPC11 in autophagy.  

 

 

1.6 Introduction to project: Characterization of TRAPPC11 and GOSR2 mutations in 

human fibroblasts  

 

In this study, homozygous and compound heterozygous mutations in the TRAPPC11 gene 

in human fibroblasts from five affected individuals will be characterized using several 

biochemical, immunofluorescence and live cell microscopy techniques to identify the defective 

pathway(s). A similar type of analysis was performed for two individuals with mutations in GOSR2 

gene to identify their defective pathway(s). The affected individuals showed novel mutations in 

TRAPPC11 and GOSR2 as well as one of the previously mentioned mutations in the Bögershausen 

et al. (2013) study (Table 1.2; Figure 1.2). We hypothesized that the TRAPPC11 mutant phenotype 

would be similar to the cellular phenotypes of mutants observed in previous studies (see section 

1.3 and 1.3.1), resulting in Golgi fragmentation, defects in protein glycosylation, delay in protein 

secretion and partial disassembly of the mTRAPP complex (Wendler et al., 2010; Scrivens et al., 

2011; Bögershausen et al., 2013; DeRossi et al., 2016). The current study suggests that some of 

the TRAPPC11 mutations are linked to a variety of cellular phenotypes including ER-to-Golgi 

trafficking defects, delay in the exit of proteins from the Golgi, Golgi fragmentation, defects in the 

autophagy pathway as well as partial disassembly of the mTRAPP complex. The current study 

also suggests that some of the GOSR2 mutations are linked to ER-to-Golgi trafficking defects as 

well as a delay in the exit of proteins from the Golgi. This study and previous studies of TRAPPC11 

led to the conclusion that TRAPPC11 mutations, in general, result in neuromuscular phenotypes.  
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Table 1.3 Novel mutations of TRAPPC11 in this study. 

Number of 

cases 

(families)  

Family 

origin  

TRAPPC11 

Genetic mutation  

Mutation at protein 

level  

Consanguinity 

(Y/N) 

4 

(2 families) 

Turkish  c.1893+3A>G/ 

c.1893+3A>G 

p.V588Gfs*16 Yes 

1 

 

Mixed 

European 

c.851A>C/ 

c.965+5G>T 

p.Q284P  

(c.851 A>C) 

No 

2 

(2 families) 

Subject 6: 

Pakistan 

 

Subject 7: 

Asian 

Subject 6: 

Unavailable 

 

Subject 7:  

c.1287 +5G>A and 

c3379_3380insT 

Subject 6: p.Q933H 

and p.F866I 

 

Subject 7: 

p.A372_S429del and 

p.N1127Vfs*45 

Unknown  

 

 

 

 

Figure 1.2: Cartoon representation of the novel TRAPPC11 mutations in this study. Novel 

TRAPPC11 mutations discussed in this study are shown based on their location along the protein 

sequence for TRAPPC11. The numbers represent the amino acid number in the protein sequence. 
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2 MATERIAL AND METHODS 

 

2.1 Buffers and solutions 

All buffers and solutions used in the study are listed in Table 2.1 below. 

Table 2.1 Buffers and solutions used in the study. 

Reagent  Components  

Growth medium  Dulbecco’s modified Eagle’s medium (DMEM, 

Wisent) supplemented with 2 mM L-glutamine and 

10% (vol/vol) fetal bovine serum (FBS, Wisent) 

Gel filtration buffer 50 mM Tris-HCl pH 7.2, 150 mM NaCl, 0.5 mM 

Ethylenediaminetetraacetic acid (EDTA), 1 mM 

Dithiothreitol (DTT) 

Freezing medium  DMEM containing 10% FBS with 10% dimethyl-

sulphoxide (DMSO) (v/v) 

Mammalian cell lysis buffer (1) 50 mM Tris-HCl pH 7.2, 150 mM NaCl, 0.5 mM 

EDTA, 1 mM DTT, 1% Triton X-100 (v/v), one tablet 

of protease inhibitor cocktail (Roche), and two tablets 

of Phospho-Stop (Roche) per 10 ml 

Mammalian cell lysis buffer (2) 20mM HEPES pH 7.4, 0.1M KCl, 0.5% Triton X-100 

(v/v), 5mM MgCl2 with one tablet of protease inhibitor 

cocktail (Roche) per 10 ml 

Phosphate-buffered saline (PBS) 0.8% NaCl (w/v), 0.02% KCl (w/v), 0.061% Na2HPO4 

(w/v), 0.02% KH2PO4 (w/v), pH 7.3 

PBS-T PBS containing 0.1% Tween-20 (v/v) 

Sodium dodecyl sulfate-

polyacrylamide gel electrophoresis 

(SDS-PAGE) running buffer 

25 mM Tris-base, 200 mM glycine, 0.1% SDS 

SDS sample buffer (4x) 80 mM Tris-HCl pH 6.8, 2% SDS (w/v), 10% glycerol 

(v/v), 0.1% bromophenol blue, 5% β-mercaptoethanol 

(v/v) 
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Western blotting transfer buffer  25 mM Tris-base, 200 mM glycine, 20% methanol  

2.2 Cell culture conditions 

 

Human fibroblasts were cultured and grown in growth medium at 37oC in a humidified 

incubator with 5% CO2. The growth medium was pre-sterilised and stored at 4oC and pre-warmed 

to 37oC in a water bath unless mentioned otherwise. The passage numbers of fibroblasts were kept 

less than 15 passages and the medium was changed every two days to ensure freshness of the cell 

cultures while eliminating the formation of endogenous growth inhibitory proteins (Epifanova et 

al., 1982; Miyazaki and Horio, 1989). All the subjects from whom the fibroblasts were obtained 

or their legal representatives provided written informed consent to perform the study.  

 

In order to subculture confluent cells, the medium was removed and 3 ml of 0.05% trypsin 

solution (Wisent) was added to the cells followed by careful removal of 2 ml of trypsin after 1 

minute. The cells were then returned to the 37oC incubator for an additional 2 minutes. 

Immediately following the incubation, the cells were detached using growth medium to re-plate. 

The cells were plated on either 6-well dishes for western blotting or in 12-well dishes with sterile 

18 mm glass coverslips pre-coated with poly-l-lysine (Thermo Fisher Scientific) for 

immunofluorescence or on 35 mm glass-bottom dishes (14 mm glass diameter, glass thickness of 

1.5; MatTek) for live-cell microscopy.  

 

The cryopreservation of the cells in liquid nitrogen was done by trypsinizing a confluent 

dish of cells as above and resuspending cells in an appropriate amount of cold freezing medium. 

Depending on the size of the dish, 4 to 6 aliquots of 1 ml of cells in the freezing medium were 

frozen in sterile ampules from each dish. The ampules were immediately stored overnight in a 

freezing box at -80oC to allow gradual cooling at a controlled rate of ~1oC/minute. The ampules 

were then transferred to a liquid nitrogen storage tank for prolonged storage.  

 

The cells were thawed from the liquid nitrogen storage tank by thawing quickly in a 37oC 

water bath for 1 to 2 minutes and immediately transferring in a drop-wise manner to a dish 

containing growth medium and grown in a 37oC incubator overnight. The medium was changed 

with fresh growth medium the next day. 
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2.3 Amino acid starvation  

 

Starvation of the cells was performed in Earle’s balanced salt solution (EBSS; Wisent). 

The procedure for serum starvation included washing the cells three times with pre-warmed EBSS 

medium and then incubating them in EBSS medium for 1 hour or 4 hours. In some cases, 

Bafilomycin A1 at a final concentration of 100nM was used. After starvation in EBSS, cells were 

harvested at various time points in mammalian lysis buffer (1) and pelleted at 13,000 rpm for 10 

minutes before freezing the supernatant or measuring the protein concentration. 

 

 

2.4 Transfection of mammalian cells 

 

Transfection of plasmid constructs and/or siRNA listed in Table 2.2 was performed using 

a polymer-based transfection reagent, JetPrime (Polyplus), following the manufacturer’s protocol. 

The amount of DNA used per one well of 12- or 6-well plate was 0.5 µg and 1 µg of the purified 

plasmid, respectively, and the amount of siRNAs used per one well on a 6-well plate are listed in 

Table 2.2. The cells of passage number 2 or 3 were trypsinized and plated on 12- or 6-well plates 

to reach a density of 60-70% confluency 24 to 48 hours prior to the transfection. Cells were left 

with DNA or siRNA for 24 to 48 hours for the transient transfection to occur. Subsequently, the 

cells were used for the ts045-VSV-G-GFP trafficking assay (see section 2.5) or harvested and 

analyzed for transfection efficiency using western blotting (see section 2.5.1) or fixed for 

immunofluorescence (see section 2.5.2). 
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Table 2.2 siRNAs used in the study. 

Target gene Final 

concentration  

Code Sequence (5’ to 3’) Source  

TRAPPC2 20 nM s12673 

(Ambion) 

CAAUUCUCCUAUUC

GAUCAtt 

Life Technologies 

TRAPPC11 20nM s226950 

(Ambion) 

GGAUUUAUAAACUA

CAAGAtt 

Life Technologies 

TRAPPC12 10 nM s27465 

(Ambion) 

CGGACAAGCUGAAC

GAACAtt 

Life Technologies  

SYNTAXIN5 20 nM N/A UAGCCUCAACAAAC

AAAUUtt 

Life Technologies 

 

 

2.5 ts045-VSV-G-GFP membrane trafficking assay  

 

HeLa cells or human fibroblasts were incubated with 50 µL of the diluted virus encoding 

the ts045-VSV-G-GFP protein (1:5 in sterile 1xPBS) per well in a 6-well dish for 1 hour at 37oC 

with occasional tilting. Upon completion of 1 hour of infection, 2 mL of growth medium pre-

warmed to 40oC was added to each well on a 6-well dish and shifted to 40oC for 16 to 18 hours to 

ensure retention of the ts045-VSV-G-GFP protein in the ER (Knipe et al., 1977; Lodish and Weiss, 

1979; Bergmann et al., 1981; Lodish and Kong, 1983; Kreis and Lodish, 1986; Beckers et al., 

1987). In order to release the ts045-VSV-G-GFP protein from the ER, the cells were shifted to 

32oC 45 minutes after the addition of cycloheximide (CXM) to a final concentration of 10µg/ml. 

The temperature downshift was done by changing the medium with fresh growth medium pre-

warmed to 32oC containing CXM. At different time points, the cells were either fixed (see section 

2.5.2) or quickly harvested in ice-cold lysis buffer (2) using a cell scraper to lift the cells off the 

plate. The protein concentrations were measured as in section 2.5.1. Endoglycosidase H (EndoH) 

treatment was performed on a portion of the total cell lysate (TCL; 5-20 µg/µl) according to the 

manufacturer’s protocol (New England Biolabs, Cat. # P0702L and Cat. # P0703L) except only 

10 Units of the EndoH or EndoHf enzyme was used per reaction. Western blotting was performed 
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on EndoH-treated and -untreated lysates to detect the ts045-VSV-G-GFP protein using mouse-

anti-GFP (1:3000; Table 2.3). Quantification of the intensity of western blot bands was done using 

ImageJ 1.48v software (National Institute of Health (NIH)) after background subtraction and 

expressed as a ratio of pixels from the EndoH resistant band/ (pixels from the EndoH resistant 

band+ pixels from the EndoH sensitive band). For immunofluorescence microscopy, mouse-anti-

GFP (1:200; Table 2.3) and rabbit-anti-mannosidase II (ManII) (1:200; Table 2.3) was used.  

 

 

2.5.1 Cell harvest and Western blotting  

 

HeLa lysates from control or treated/knockdown HeLa cells and fibroblast lysates from 

cultured control or affected individuals were harvested in mammalian cell lysis buffer (1) for TCL 

preparation and in mammalian cell lysis buffer (2) for the ts045-VSV-G-GFP trafficking assay 

(see section 2.5). The lysates were cleared at 13,000 rpm for 10 minutes and the supernatant was 

frozen or protein concentration was measured. The protein concentrations of TCLs were measured 

using a Coomassie Brilliant Blue G-250 dye-based Bradford assay (Bradford, 1976). 1 µl of the 

TCL was carefully diluted in dH2O (1:100) and mixed with 1 ml of 1x Bradford reagent (BioRad). 

The absorbance of prepared samples was measured using an Ultrospec 2100pro spectrophotometer 

at 595 nm along with a blank containing 1 ml of Bradford reagent and 1 µl of the mammalian cell 

lysis buffer (1 or 2) diluted in dH2O (1:100). The absorbance was used to obtain protein 

concentrations in µg/µl by deriving a standard calibration curve prepared using known amounts of 

BSA (0-10 µg). 

 

Total protein from each TCL (5-30 µg) was loaded on an 8% and/or 15% SDS-PAGE gel 

after boiling the samples in 4x SDS sample buffer at ~95oC for 5 minutes and separated using 

electrophoresis at 120V in SDS-PAGE running buffer. For the ts045-VSV-G-GFP trafficking 

assay, 10-20µg of protein was loaded onto an 8% SDS-PAGE gel containing 30% acrylamide/bis-

acrylamide, 29:1 (3.3% crosslinker) solution (BioShop) in order to better separate EndoH sensitive 

and EndoH resistant bands in EndoH/EndoHf treated samples. The proteins in the SDS-PAGE gel 

were transferred to nitrocellulose membrane using standard procedures (Sambrook and Russel, 

2001) for 1 hour at 100V or overnight at 30V using western blotting transfer buffer. The 
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membranes were blocked for 1 hour with tilting using 5% skim milk powder (w/v) in 1xPBS-T 

and incubated for 1 hour with primary antibodies in 1xPBS-T followed by secondary antibodies 

in 1xPBS-T for 45 minutes with tilting. The membrane was washed 3 times with 1xPBS-T, with a 

final wash being 5 minutes, before secondary antibody incubation. The primary and secondary 

antibodies are listed in Table 2.3 and Table 2.4, respectively, along with their dilutions. Upon 

completion of antibody incubation, the membrane was washed three times with 1xPBS-T, 10 

minutes each, and the signal was detected by applying enhanced chemiluminescence (ECL) 

Western Blotting Detection reagents (GE Healthcare) on the membrane for 1 minute and detecting 

the signal on a GE Amersham Imager 600. 

 

 

2.5.2 Immunofluorescence microscopy 

 

HeLa or fibroblasts were fixed in 3-4% paraformaldehyde (PFA) in 1xPBS, pH 7.2, for 20 

minutes after removing the medium and washing the coverslips gently twice with 1xPBS pre-

warmed to 370C. For endogenous LAMP1 and tubulin staining, coverslips were fixed in cold 

methanol at -20oC for 3 minutes. After removal of PFA (or methanol), the coverslips were gently 

washed once with 1xPBS and the excess PFA (or methanol) was quenched with 0.1 M glycine for 

10 minutes. The coverslips were washed once with 1xPBS and then the cells were permeabilized 

with 0.1% Triton X-100 (in 1xPBS) for 10 minutes. The cells were rinsed with 1xPBS to remove 

residual Triton X-100 and washed in 1xPBS for 10 minutes.  Subsequently, the cells were blocked 

with 5% normal goat serum (NGS, Cell Signaling Technology) in 1xPBS for 45 minutes at room 

temperature. Upon completion, the cells were incubated with primary antibodies (Table 2.3) 

diluted in 5% NGS in 1xPBS overnight at 4oC for anti-LAMP1 and anti-tubulin or for 1 hour at 

room temperature for anti-GFP and anti-ManII. The cells were gently washed three times with 

1xPBS for 5 minutes each. The cells were then incubated with secondary antibodies (Table 2.4) 

and DAPI (1:500) diluted in 5% NGS in 1xPBS for 1 hour at room temperature while reducing 

exposure to light. The coverslips were gently washed three times with 1xPBS, mounted with 

Prolong Gold AntiFade reagent (Life Technologies) and sealed with nail polish. The 

immunofluorescence signal was detected under 1024 x 1024-pixel resolution on a Nikon C2 laser 
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scanning confocal microscope equipped with a 63x Plan Apo I, NA1.4 objective (Nikon) and 

controlled by NIS Element C4.4 software. Z-stacks were acquired with 0.2 µm increments.  

Table 2.3 Primary antibodies used in the study. 

Antigen  Type  Host Dilution 

(IF) 

Dilution 

(WB) 

Size  

(kDa)  

Cat. # Source 

GFP M m 1:200 1:3000 27 11814460001 Sigma-Aldrich 

LAMP1 M r 1:200 1:3000 120 H4A3 Santa Cruz, 

Biotechnology 

LC3B P r 1:250 1:3000 15 ab48394 Abcam 

ManII P r 1:200 N/A N/A N/A Kelley 

Moreman, 

University of 

Georgia 

p115 M m 1:250 N/A 115 7D1 Dr. Dennis 

Shields 

TUBULIN M m 1:500 1:8000 50 61603 Abcam 

TGN46 P r 1:200 N/A 51 16052 Abcam 

TRAPPC12 P m 1:50 1:2000 78 H00051112-

B01P 

Abnova 

TRAPPC12 P r 1:200 1:2500 78 N/A Sacher 

laboratory 

TRAPPC11 P r N/A 1:500 129 N/A Sacher 

laboratory 

kDa, kilodaltons; N/A, not applicable; M, monoclonal; P, polyclonal; r, rabbit; m, mouse; g, goat; 

h, human; IF, immunofluorescence; WB, Western blotting. 
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Table 2.4 Secondary antibodies used in the study. 

Secondary IgGs  Host Dilution (IF) Dilution (WB) Cat. # Source 

Alexa Fluor 488 

(α-m) 

g 1:500 N/A A.11013 Life Technologies 

Alexa Fluor 647 

(α-m) 

g 1:500 N/A A.21236 Life Technologies 

Alexa Fluor 647 

(α-r) 

g 1:500 N/A A.21245 Life Technologies 

HRP-labeled 

(α-m) 

g N/A 1:5000 KP-474-1806 KPL 

HRP-labeled 

(α-r) 

g N/A 1:5000 KP-474-1506 KPL 

kDa, kilodaltons; N/A, not applicable; r, rabbit; m, mouse; g, goat; HRP, horseradish peroxidase; 

IF, immunofluorescence; WB, Western blotting. 

 

 

2.5.3 Live-cell microscopy 

 

Fibroblasts from control and affected individuals were placed on 35 mm glass-bottom 

dishes (14 mm glass diameter, glass thickness of 1.5; MatTek) and treated as for the ts045-VSV-

G-GFP trafficking assay (see section 2.5) except the infection of fibroblasts from control and 

affected individuals was performed with a 2-hour interval to ensure equal incubation time at 40oC. 

CXM was added for 45 minutes at 40oC and the dishes for fibroblasts from affected individuals 

followed by the dishes for control fibroblasts were placed in a temperature controlled chamber 

heated to 32oC with 5% CO2. Time-lapse microscopy was performed 3 minutes after the 

temperature downshift (the time required to appoint cells for imaging) using a 40x or 60x oil 

objective (NA 1.3), no binning, on an inverted confocal microscope (LiveScan Swept Field; 

Nikon), Piezo Z stage (Nano-Z100N; Mad City Labs, Inc.), and an electron-multiplying charge-

coupled device camera (512 x 512; iXon X3; Andor Technology). Images were acquired with NIS-
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Elements Version 4.0 acquisition software every 1 minute with 20% laser power using a 500msec 

exposure time at 0.2-µm increments with a slit size of 50 µm for the duration of 2.5 hours. Note 

that these settings were first determined using control samples and kept constant for experimental 

conditions. The original images were viewed and analyzed on ImageJ 1.48v software (NIH). 

Cropped images from the videos at different time points were assembled in Illustrator CS6 (Adobe) 

for representation.  

 

 

2.6 Size exclusion chromatography  

 

 Fibroblasts from control or affected individuals were grown to full confluency in two 15cm 

dishes and lysed in mammalian cell lysis buffer (1). Cell lysates were cleared at 13,000 rpm for 

~15 minutes and protein concentrations were measured as above. An ÄKTA FPLC 

chromatography system (GE) was used to fractionate ~5 mg of the TCL on a Superose 6 

preparation grade column (GE Healthcare) at a flow rate of 0.5 ml/min. The Superose 6 column 

was pre-equilibrated with 2 volumes of gel filtration buffer prior to loading the lysates. Fractions 

of 0.5 ml were collected and fractionated by SDS-PAGE for Western blotting for different subunits 

of the mTRAPPIII complex using antibodies mentioned in Table 2.3.  

 

 

2.7 Statistical analysis  

 

All data were expressed as means ± S.E.M. To establish significance, data were subjected 

to unpaired two-tailed student’s t-tests with Welch’s correction while assuming unequal variance, 

or one-way ANOVA using the GraphPad Prism software statistical package 6.0 (GraphPad 

Software). For one-way ANOVA, post-hoc differences were made using Fisher’s probability of 

least squared differences. The criterion for significance was set at P ≤ 0.05. For live-cell 

microscopy, the GFP fluorescence in the Golgi region was measured using ImageJ 1.48v software 

(NIH) in the original movies after combining stacks. The GFP fluorescence from the Golgi region 

was marked at the time point where the maximum intensity of the GFP fluorescence in the Golgi 

region (~30 minutes for control) was observed and the GFP fluorescence in the marked Golgi 
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region at each time point was measured. The percentage of the GFP fluorescence in the Golgi 

region at each time point over the maximum intensity of the GFP fluorescence in the Golgi region 

was calculated for fibroblasts from control or affected individuals.  

 

 

3 RESULTS 

 

Note: The clinical characterization and DNA sequencing for individuals described in sections 3.1, 

3.2 and 3.3 were performed by our collaborators. 

      3.1 A TRAPPC11 mutation results in a Triple A-like syndrome 

 

Recently, four affected individuals from two unrelated and consanguineous Turkish 

families presented with a triple A-like syndrome. The affected individuals displayed a combination 

of neurological defects such as cerebral atrophy, therapy-refractory epilepsy, global retardation 

(developmental delays and intellectual disability) as well as scoliosis, achalasia, and alacrima. 

Mild muscle dystrophic changes were seen in the muscle histology data. Triple A syndrome (also 

known as Allgrove syndrome) is a rare, autosomal recessive disease which mainly consists of three 

symptoms; achalasia, alacrima and adrenal insufficiency (Allgrove et al., 1978). It is associated 

with homozygous or compound heterozygous mutations in a gene called AAAS located on 

chromosome 12q13. There have been less than 100 cases of triple A disease that have been 

reported since 1978 (Misgar et al., 2015). Due to genetic heterogeneity, mutations in genes other 

than AAAS have been reported for ~30% of the cases. The disease has an early onset in childhood 

with a broad spectrum of phenotypes ranging from severe neurological abnormalities, ataxia and 

muscle weakness (Grant et al., 1993; Houlden et al., 2002).  

 

Genome-wide linkage analysis and whole-exome sequencing were used by our 

collaborators to discover a homozygous splice mutation in TRAPPC11 (c.1893+3A>G, 

[NM_021942.5]) in two affected individuals (Subject 1 and Subject 2; Table 3.1). This splice 

mutation leads to a loss of exon 18 (131bp) resulting in a frameshift mutation (p.V588Gfs*16). 

The predicted shorter protein of 70 kDa is expressed to a level only 12% that of control in 

fibroblasts from affected individuals. The fibroblasts from affected individuals also contain 20% 
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of the normal WT transcript of TRAPPC11 (loss of 80% of WT transcript of TRAPPC11) 

compared to control fibroblasts indicating an incomplete penetrance in the affected individuals due 

to partial loss of function. 

 

 

      3.2 TRAPPC11 and GOSR2 mutations cause α – dystroglycanopathy 

 

Consequently, another set of collaborators identified three individuals with CMD of 

different severity in individuals aged 11 to 24 months from two different families. These 

individuals have α - dystroglycanopathy based on dystrophic muscle biopsies and abnormal 

hypoglycosylation of α-dystroglycan (α-DG). α - dystroglycanopathy is caused by mutations 

occurring in more than 15 genes that lead to various muscular dystrophies and hypoglycosylation 

of α-DG resulting in decreased binding to laminin, a fibrous protein in the basal lamina, by the 

extracellular matrix-binding glycan of α-DG. This is likely due to defects in glycosyltransferase 

protein activity in the ER or the Golgi that attach extracellular matrix-binding glycan to α-DG 

(Michele et al., 2002). Clinically, the phenotypes of α - dystroglycanopathy consist of CMD, brain 

and eye dysfunction and adult-onset of LGMD (Bönnemann et al., 2014). 

 

Whole exome sequencing and sequencing of a dystroglycanopathy gene panel were 

conducted and identified compound heterozygous mutations in the three affected individuals. The 

first individual (Subject 3; Table 3.1) was diagnosed with congenital hypotonia, hyporeflexia, 

elevated CK levels, seizures, and hepatopathy (liver dysfunction due to heart failure). Subject 3 

also displayed symptoms of severe developmental delay and microvesicular steatosis as well as 

cerebral atrophy and retinopathy. This affected individual is from a non-consanguineous mixed 

European family and carries compound heterozygous splice mutations in TRAPPC11 (c.851A>C 

and c.965+5G>T, [NM_021942.5]) of which the first leads to a point mutation (p.Q284P) and the 

second genetic mutation has not been mapped to the protein sequence but is presumed to result in 

a splicing defect.  

 

The second and third affected individuals (Subject 4 and Subject 5; Table 3.1) have 

mutations in the GOSR2 gene, which plays a role in Golgi vesicle transport, and has been 
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associated with progressive myoclonus epilepsy (PME), hypotonia, weakness, developmental 

delay, and seizures. Clinically, they were diagnosed with CMD and epilepsy. Subject 4 has 

ventriculomegaly (dilation of the lateral ventricles of the brain), periventricular white matter 

changes, and thin corpus callosum, whereas Subject 5 showed mild dystroglycanopathy with 

thinning of the corpus callosum and optic nerve hypoplasia or underdevelopment of the optic 

nerve. Both affected individuals (Subjects 4 and 5) conserve the founder mutation in North Sea 

PME (c.430G>T; [NM_001012511]) which leads to a loss of function point mutation at the protein 

level (p.G144W) resulting in mislocalization of Golgi soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor complex 2 (GOSR2) protein from the cis-Golgi where it functions in 

ER-to-Golgi trafficking (Corbett et al., 2011). The other mutations present in each affected 

individual are c.2T>G (Subject 4) and c.336+1G>A (Subject 5) of which the first has been mapped 

to a point mutation (p.M1R) resulting in the use of an alternative start codon eliminating 18 amino 

acids from the amino-terminus of the protein. The second genetic mutation in Subject 5 has not 

been mapped to the protein sequence yet. There was a deceased fourth affected individual who 

was a sibling of Subject 4 and thus preserved the same mutations as Subject 4. In this study, the 

characterization of fibroblasts from patients with GOSR2 mutations was also performed since they 

possess similar clinical features to TRAPPC11-mutated individuals such as CMD, epilepsy, 

dystroglycanopathy and underdevelopment of the eye.  

 

 

3.3 Other cases with TRAPPC11 mutations 

 

As mentioned in Table 3.1, other cases with TRAPPC11 mutations analyzed in this study 

include two compound heterozygous mutations (Subject 6 and Subject 7). Subject 6 is a 15-year-

old boy from Pakistan with CMD, microcephaly, and cataracts. At the protein level, the mutation 

has been mapped to p.Q933H and p.F866I with a frequency of 0.2 and 0.006, respectively (Figure 

1.2, section 1.6). The frequency of the former mutation suggests it would not likely affect protein 

function. In addition, subject 6 has an unaffected sibling with identical TRAPPC11 mutations and 

thus, the phenotype of this subject is likely not due to TRAPPC11 mutations. This patient can be 

considered as another type of control. Subject 7 is a 7-year-old Asian boy with an intellectual 

disability, muscular weakness, microcephaly, epilepsy, and elevated CK. Subject 7 harbours a 
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previously described TRAPPC11 mutation by Bögershausen et al. (2013) in the intron region 

(c.1287 +5G>A [NM_021942.5]) giving rise to p.A372_S429del in the protein level (Figure 1.2, 

section 1.6). The second mutation (c3379_3380insT) causes a frameshift and a C-terminal 

extension in the protein level (p.N1127Vfs*45). 

 

Table 3.1 Nomenclature of the subjects studied in the study.  

Subject Gene and genetic mutation  Mutation at protein level  

1 and 2 TRAPPC11 c.1893+3A>G and c.1893+3A>G p.V588Gfs*16 

3 TRAPPC11 c.851A>C and c.965+5G>T p.Q284P (c.851 A>C) 

4 GOSR2 c.430G>T and c.2T>G p.G144W and p.M1R 

5 GOSR2 c.430G>T and c.336+1G>A p.G144W (c.430G>T) 

6 TRAPPC11 Unavailable  p.Q933H and p.F866I 

7 TRAPPC11 c.1287 +5G>A and 

c3379_3380insT 

p.A372_S429del and 

p.N1127Vfs*45 

 

 

3.4 TRAPPC11 protein levels are reduced in patients with certain TRAPPC11 mutations  

 

We determined the effect of mutations on the cellular levels of TRAPPC11 protein in 

fibroblasts from affected individuals compared to that in control fibroblasts. Lysates prepared from 

fibroblasts from control and affected individuals were subjected to western blotting using rabbit 

antiserum raised against the human TRAPPC11 protein (Scrivens et al, 2011). For Subjects 1, 2, 

3, 6 and 7, the truncated protein was not detected using the TRAPPC11 antiserum which was raised 

against an epitope in the extreme carboxyl terminus of the protein.  As a result, a truncated product 

was not detected. Instead, a decrease in the level of basal TRAPPC11 protein in fibroblasts from 

affected individuals with TRAPPC11 mutations was observed (Figure 3.1A, B, and D). A small 

trace of full-length TRAPPC11 is visible on the western blot for Subject 1 and 2 due to the reduced 

mRNA levels of the regular splice product and incomplete splicing defect (Figure 3.1A; see section 

3.1). Subjects 4 and 5 had similar levels of basal TRAPPC11 compared to control due to lack of 

mutation in TRAPPC11 that would reduce the TRAPPC11 protein expression (Figure 3.1C; see 

section 3.2).  
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As suggested by Bogershausen et al. (2013), the TRAPPC11 mutations p.G980R and 

p.A372_S429del are associated with hyperglycosylated LAMP1. In this study, we showed that 

LAMP1 was hypoglycosylated in fibroblast from Subjects 1-7 (Figure 3.1E-H). The 

hypoglycosylation of LAMP1 in fibroblasts from affected individuals indicated a possible defect 

in membrane trafficking or a possible TRAPPC11 function in glycosylation as recently shown in 

the study by DeRossi et al. (2016). The GOSR2 affected individuals (Subjects 4 and 5) also showed 

similar results as TRAPPC11 affected individuals. The expression levels of GOSR2 protein is not 

shown in these individuals due to lack of antibody to GOSR2.  

 

 

 

 

Figure 3.1: Western blot analysis of the lysates for TRAPPC11 and LAMP1. Lysates prepared 

from control (CTRL) and Subjects 1-7 (S1-7) fibroblasts were probed for TRAPPC11 (A-D), 

LAMP1 (E-H) and tubulin as a loading control. The predicted truncated TRAPPC11 in fibroblasts 

from affected individuals cannot be detected since the antibody was raised against an epitope in 

the extreme carboxyl-terminus of the protein. The molecular mass is indicated in kilodaltons (kDa) 

next to the blots. The description of Subjects 1-7 is shown. 

 

 

 

 

 

 

Subject Mutated Gene   Subject Mutated Gene   

1 and 2 TRAPPC11  5 GOSR2 

3 TRAPPC11 6 TRAPPC11 

4 GOSR2 7 TRAPPC11 
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3.5 The effects of TRAPPC11 and GOSR2 mutations on the trafficking of VSV-G-GFP as 

assessed biochemically 

 

Previously, TRAPPC11 has been implicated in ER-to-Golgi transport (Scrivens et al, 2011; 

Wendler et al, 2010). Thus, we utilized a well-established membrane trafficking assay to monitor 

the movement of the ts045-VSV-G-GFP protein from the ER through the Golgi and on to the PM 

(Etchison et al, 1977; Katz et al, 1977; Rothman and Lenard, 1977; Scales et al., 1997). The ts045-

VSV-G-GFP protein is retained in the ER at the restrictive temperature (40°C) and as the 

temperature decreases (32°C), in the presence of the protein synthesis inhibitor CXM, the protein 

is synchronously released from the ER. Once the protein is in the Golgi, it is processed by Golgi 

enzymes to be resistant to EndoH. Samples were collected prior to the downshift of temperature 

(0 min) and at time points shown in figures 4 and 5. The sensitivity of the protein to EndoH can 

be utilized to assess whether the protein has been modified in the Golgi. 

 

The trafficking assay was first applied to HeLa cells following knockdown of TRAPPC11, 

TRAPPC12, or SYNTAXIN5, a t-SNARE involved in the fusion of transport vesicles with the cis-

Golgi (Dascher et al., 1994), or addition of an alkylating agent, N-Ethylmaleimide (NEM), to 

inhibit membrane traffic (Balch et al., 1984; Glick and Rothman, 1987; Malhotra et al., 1988). 

TRAPPC11 and TRAPPC12 knockdown showed a delay in acquisition of EndoH resistance, 

though not as severe as either the SYNTAXIN5 knockdown or the NEM treatment (Figure 3.2). 

Thus, the ts045-VSV-G-GFP trafficking assay is sensitive to identify delays in the processing of 

the ts045-VSV-G-GFP protein.  

 

I next applied this assay to fibroblasts from control or affected individuals. Quantification 

of upper (EndoH resistant) and lower (EndoH sensitive) bands for the EndoH assay for affected 

individuals showed a slight difference between the affected individuals (Subjects 1, 3 and 5) and 

control. The delay in the appearance of the EndoH resistant band was significant at 40 minutes for 

Subject 2 and at 40 minutes and 90 minutes for Subjects 3 and 7. Note that the quantification for 

the EndoH assay for Subject 2 was omitted. Subjects 4 and 6 showed no apparent difference in 

phenotype compared to control at the cellular level. For Subject 5, the EndoH resistance was 

acquired earlier than control and appeared to be significantly higher at 20 minutes. The slight 
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difference in the appearance of the EndoH resistant form in affected individuals suggests a defect 

in the trafficking of the ts045-VSV-G-GFP protein out of the ER or delay in traffic through the 

Golgi complex (Figure 3.3B-E).  

 

 

Figure 3.2: The ts045-vesicular stomatitis virus glycoprotein-GFP trafficking assay applied 

to HeLa cells. HeLa cells transfected with siRNA specific for SYNTAXIN5, TRAPPC11, or 

TRAPPC12, or treated with N-Ethylmaleimide (NEM), were subjected to the temperature-

sensitive vesicular stomatitis virus glycoprotein fused to GFP (ts045-VSV-G-GFP) trafficking 

assay by infecting the cells with the virus. The ts045-VSV-G-GFP protein was retained in the ER 

by shifting the cells to non-permissive temperature overnight. Samples were collected at various 

time points. A portion of each sample was treated with Endoglycosidase H (EndoH) and analyzed 

by Western blotting for the ts045-VSV-G-GFP protein using anti-GFP. The sensitivity of the 

ts045-VSV-G-GFP protein to EndoH indicates whether ts045-VSV-G-GFP protein has reached 

the Golgi. Arrows indicate the EndoH resistant form (r) and the EndoH sensitive form (s) of ts045-

VSV-G-GFP. The molecular mass is indicated in kilodaltons (kDa) next to the blots. KD, 

Knockdown; CTRL, Control. 
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Figure 3.3: Affected individuals show a delay in endoglycosidase H resistance. (A) Fibroblasts from control (CTRL) and affected 

individuals were subjected to the ts045-VSV-G-GFP trafficking assay as described for Figure 3.2. A representative blot for each is 

shown. Arrows indicate the EndoH resistant form (r) and the EndoH sensitive form (s) of ts045-VSV-G-GFP. The molecular mass is 

indicated in kilodaltons (kDa) next to the blots. (B) Data from three or more independent experiments described in (A) were quantified 

and are displayed as mean± SEM. Statistical significance between control and affected individuals was assessed using a Student’s t-test 

or one-way ANOVA. Post-hoc differences were made using Fisher’s probability of least squared differences. The description of Subjects 

1-7 is shown.

Subject Mutated Gene   Subject Mutated Gene   

1 and 2 TRAPPC11  5 GOSR2 

3 TRAPPC11 6 TRAPPC11 

4 GOSR2 7 TRAPPC11 
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3.6 Accumulation of VSV-G-GFP in the Golgi in individuals with different TRAPPC11 

mutations  

 

In order to distinguish between the above two possibilities (i.e. a delay in ER exit or a delay 

in Golgi trafficking since EndoH resistance occurs in a medial-Golgi compartment), we used 

confocal microscopy on fixed cells at various time points (Figure 3.4) to determine the location of 

the ts045-VSV-G-GFP protein and the point of delay in trafficking. As seen in Figure 3.4, the 

control fibroblasts showed the ts045-VSV-G-GFP protein in the ER by staining the cytoplasm at 

the zero-minute time point. At the 30-minute time point, the GFP fluorescence shifted to a singular 

point giving rise to colocalization with the Golgi marker ManII. The overlap of the GFP and ManII 

signal gradually decreased as the ts045-VSV-G-GFP protein traveled to the PM by 90 minutes. 

The fibroblasts from Subject 1 showed ManII and GFP signal overlap at a later time (60 minutes) 

and the overlap was persistent even after 120 minutes. Some of the cells of Subject 1 lacked this 

delayed trafficking phenotype and thus showed the overlap of the ts045-VSV-G-GFP protein with 

the Golgi marker protein at 30 minutes and the gradual disappearance of it afterward, similar to 

the control fibroblasts. Thus, there are two different populations of fibroblasts with different 

kinetics of transport in Subject 1 due to the incomplete splicing defect (see section 3.1).  

 

For Subjects 3 and 7, the overlap of the GFP and ManII signal occurred as early as 20 

minutes but was kept consistent over the time frame up to 120 minutes. Subjects 4 and 6 showed 

no apparent difference in phenotype to control at the cellular level during the biochemical assay 

(see section 3.5) and thus were omitted from the immunostaining study. Note that Subjects 2 and 

5 were also omitted from this assay. It is important to note that fibroblasts from affected individuals 

(Subjects 1, 3 and 7) showed Golgi fragmentation compared to control (Figure 3.4). The ts045-

VSV-G-GFP trafficking assay applied to fixed fibroblasts with TRAPPC11 mutations (Figure 3.4) 

indicates that there is a defect in protein trafficking out of the Golgi and a delay in the arrival of 

the protein to the Golgi, similar to that observed in the biochemical assay (Figure 3.3).  
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Figure 3.4: The ts045-vesicular stomatitis virus glycoprotein-GFP in fibroblasts from 

affected individuals showed delayed kinetics of transport and accumulation in the Golgi. 

Fibroblasts from control (CTRL) and affected individuals (Subject 1 (S1), S3 and S7) were 

subjected to the ts045-VSV-G-GFP trafficking assay as described in Figure 3.2. Samples were 

removed at various time points and fixed before staining for mannosidase II (ManII), GFP and 

DAPI. Immunostaining showed a delay in transport of ts045-VSV-G-GFP to the PM in fibroblasts 

from affected individuals, with the protein accumulating in the Golgi. Note the disrupted Golgi 

morphology in affected individuals. The scale bars represent 50 µm. The description of Subjects 

1, 3 and 7 is shown. 

 

 

Subject Mutated Gene   

1  TRAPPC11  

3 TRAPPC11 

7 TRAPPC11 
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3.7 VSV-G-GFP shows a significant delay in trafficking to and through the Golgi in 

individuals with TRAPPC11 and GOSR2 mutations 

 

Since microscopy of fixed cells was performed on groups of different cells for a given time 

point, live-cell microscopy was performed to visualize the movement of the ts045-VSV-G-GFP 

protein during trafficking inside a particular cell as shown in Figure 3.5A-H. Similar to 

observations for the fixed cells, an apparent delay in the release of the ts045-VSV-G-GFP protein 

from the Golgi was observed for Subjects 1, 3 and 7. Quantification of the live cells (Figure 3.5I-

K) suggested a slight delay in the arrival of the ts045-VSV-G-GFP protein to the Golgi (20-25 

minutes) in Subjects 1, 3 and 7 compared to control cells (30 minutes), and further retention of the 

ts045-VSV-G-GFP protein in the Golgi for these subjects, consistent with the biochemical assay 

(Figure 3.3). For Subject 1, quantification of the two different populations with different kinetics 

in the movies showed ~70% of cells with a delay in trafficking and ~30% with trafficking kinetics 

similar to the control fibroblasts (Figure 3.5C and I). The ratio of the two different populations 

agrees with the incomplete penetrance due to splicing defect which produced a small quantity of 

full-length TRAPPC11 in affected individuals sufficient to induce kinetics similar to that in control 

(see section 3.1). Note that the trafficking assay for Subject 2 was omitted.  

 

Subjects 4 and 6 showed no apparent difference in phenotype to control during the 

biochemical assay (see section 3.5) and during the time-lapse microscopy (Figure 3.5E and G). In 

contrast to the data from the biochemical assay for Subject 5, the kinetics of transport of the marker 

protein from the ER to the Golgi was delayed (10-15 minute delay), possibly due to analysis of the 

entire cell population in the biochemical assay (Figure 3.3) compared to analysis of a single cell 

during live-cell imaging (Figure 3.5F and J). The data for all the subjects were not pooled to 

perform one-way ANOVA since different controls were used for subjects 3, 4 and 5 versus subjects 

6 and 7. Live-cell analysis suggested a possibility that either two steps in membrane traffic are 

affected simultaneously (i.e. ER-to-Golgi and intra-Golgi) or the delay in arrival at the Golgi is a 

secondary consequence of the reduced transport through the Golgi.  
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Figure 3.5: Live-cell imaging of fibroblasts from affected individuals confirmed delayed kinetics of transport and accumulation of the 

ts045-vesicular stomatitis virus glycoprotein-GFP in the Golgi. Fibroblasts from control (CTRL) and affected individuals (Subjects 1-7) 

were subjected to the ts045-VSV-G-GFP trafficking assay as described in Figure 3.2 except during the temperature shift to 32oC, the fibroblasts 

were imaged every 30 sec over a period of 120 min. Still images of the time-lapse microscope images at the indicated time points are shown 

for CTRL (A) and Subjects 1-7 (B-H). (C) For Subject 1, live-cell imaging displayed two populations of fibroblasts (slower and faster 

populations in red and blue arrows, respectively) from affected individuals. The scale bars are 50 µm. (I-K) The data from the live-cell 

microscopy were quantified (n= 6-20). The GFP fluorescence in the Golgi region was quantified for 120 min after the temperature downshift. 

Data are shown as mean± SEM. The mutated genes in Subjects 1-7 are shown.

Subject Mutated Gene   

1  TRAPPC11  

3 TRAPPC11 

4 GOSR2 

5 GOSR2 

6 TRAPPC11 

7 TRAPPC11 
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3.8 Altered LAMP1 and TGN46 localization in fibroblasts from an individual with 

TRAPPC11 mutations 

 

In an attempt to understand the consequences of an intra-Golgi trafficking delay, fibroblasts 

from control and Subject 7 with TRAPPC11 mutations were stained for p115 (cis-Golgi), ManII 

(medial-Golgi), TGN46 (trans-Golgi), LAMP1 (lysosomes), and tubulin (microtubules). Subject 

7 was chosen since it displayed the most severe cellular phenotype in terms of Golgi morphology. 

Any aberration in the location and/or structure of these marker proteins can possibly give away 

the defective mechanism along the secretory pathway of the ts045-VSV-G-GFP protein. As seen 

in Figure 3.6, immunostaining of fibroblasts from Subject 7 indicated an apparent difference in the 

localization pattern of TGN46 and LAMP1 marker proteins compared to control. TGN46 was 

observed as organized stacks in the Golgi while LAMP1 was observed as puncta ubiquitously in 

the cell for the control (red arrows in Figure 3.6), similar to previous studies (Prescott et al., 1997; 

Humphries et al., 2011). In contrast, fibroblasts from Subject 7 showed a noticeable perinuclear 

staining for TGN46 and LAMP1 in a large population of cells (red arrows in Figure 3.6; 

quantifications not shown). Also, the Golgi morphology was disrupted in the affected individual 

compared to control, as shown by the p115 and ManII staining. Note that the microtubules are not 

altered in Subject 7 (red arrow pointing to MTOC in Figure 3.6). These observations indicate a 

possible role for TRAPPC11 in the structure and formation of the Golgi complex and late 

endosomal/lysosomal compartments. A possible explanation is that TRAPPC11 interacts with a 

motor protein to regulate the formation of these altered structures by affecting the transport of the 

vesicles along the microtubules.  
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Figure 3.6: Altered LAMP1 and TGN46 localization in fibroblasts from Subject 7. 

Immunostaining with a trans-Golgi marker, TGN46, and lysosome marker, LAMP1, displayed a 

typical diffuse pattern for both proteins in control fibroblasts. An apparent perinuclear 

accumulation of TGN46 and LAMP1 was observed in fibroblasts from an affected individual, 

Subject 7 (S7), with TRAPPC11 mutations. Note the disrupted Golgi morphology in the affected 

individual as shown by p115 (cis-Golgi) and ManII (medial-Golgi) staining. Tubulin 

immunostaining showed unaffected microtubules in both control and Subject 7. The red arrows 

point to the trans-Golgi or lysosomes or microtubule-organizing center (MTOC). The mutated 

gene in Subjects 7 is shown. The scale bars are 50 µm.  

 

 

3.9 TRAPPC11 mutations show reduced autophagy activity  

 

Since the structure and formation of the late endosomal/lysosomal compartments are 

affected by TRAPPC11 mutations, I was interested in observing whether TRAPPC11 mutations in 

the affected individuals had any effect on the autophagy pathway, as reported by a previous study 

(Behrends et al., 2010). In contrast to suggestions by the Behrends et al. (2010) study, the lipidated 

form of LC3 (LC3-II) accumulated in affected individuals (Subjects 1, 2 and 3) during nutrient 

deprivation whereas, in the control fibroblasts, the levels of LC3-II decreased over time (Figure 

3.7A). The accumulation of LC3-II in affected individuals indicates an increase in 

autophagosomes and/or autolysosomes due to a defect in the degradation of LC3-II by lysosomal 

enzymes. This dysfunction could be due to an inability of autophagosomes to fuse with lysosomes 

Subject Mutated gene  

7 TRAPPC11 
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or the defects in structure and formation of late endosomal/lysosomal compartments (see section 

3.8). Quantification of the levels of LC3-II normalized to the tubulin control further supported this 

observation since at 4 hours, the fibroblasts from affected individuals contained significantly more 

LC3-II levels compared to control. The levels were close to the levels of LC3-II that accumulate 

in Bafilomycin A1 (Baf. A1)-treated cells, a molecule that inhibits autophagic flux (Figure 3.7B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Reduced autophagy activity in the fibroblasts from affected individuals. (A) 

Fibroblasts from control or affected individuals (Subjects 1, 2, and 3) were non-treated or treated 

with the autophagy inhibitor Bafilomycin A1 (Baf.A1) for 4 hours and/or EBSS for 1 hour (1h) or 

4 hours (4h) to induce autophagy. The fibroblasts were harvested in lysis buffer and subjected to 

western blotting for microtubule-associated protein 1 light chain 3 (LC3; isoforms I and II). 

Tubulin was used as a loading control. The molecular mass is indicated in kilodaltons (kDa) next 

Subject Mutated Gene   

1 and 2 TRAPPC11  

3 TRAPPC11 
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to the blots. (B) Data from three or more independent experiments described in (A) were quantified 

and are displayed as mean± SEM. Statistical significance between control and affected individuals 

and +/- Baf. A1 conditions were assessed using a Student’s t-test. The mutated genes in Subjects 

are shown. 

 

 

3.10 Individuals with TRAPPC11 mutations display altered TRAPP complex assembly 

 

In order to determine whether the effect of TRAPPC11 mutations on different pathways is 

due to its ability to disrupt the mTRAPP complex, size exclusion chromatography was performed 

on cells from subject 7, the subject with the most dramatically affected Golgi. As seen in Figure 

3.8, when immunoblotted for the mTRAPP subunit TRAPPC12, the control fibroblasts displayed 

a broad size distribution (fractions 19-25) with the larger molecular size fractions contributing to 

the mTRAPP complex (Bassik et al., 2013). Subject 7 displayed a slight shift to a lower molecular 

weight with peaks appearing in fractions 24/25 possibly due to disassociation from the complex. 

This suggests a possible disruption of the mTRAPP complex (or disassociation of one of the 

subunits, TRAPPC12, from the complex) due to mutations in TRAPPC11. These results shed light 

on the role of TRAPPC11 in stabilizing the mTRAPP complex since mutations in TRAPPC11 

cause disassociation of at least one of the TRAPP subunits, TRAPPC12, as it shifts to a lower 

molecular size fraction (Figure 3.8). Effects on the entire complex require assessment of the 

fractionation of other TRAPP subunits.  

 

 

 

Figure 3.8: Subject 7 displays a shift in the TRAPPC12 subunit to a smaller molecular size. 

Fibroblasts from control or Subject 7 were lysed and the lysates were fractionated on a Superose 

6 size exclusion column and fractions (16-37) were subjected to western blotting using antibodies 

against TRAPPC12. The migration of standards is indicated above the top panel along with the 

molecular sizes indicated in kilodaltons (kDa). The mutated gene in Subject 7 is shown. 

 

 

Subject Mutated gene   

7 TRAPPC11  
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4 DISCUSSION  

 

In this study, homozygous and compound heterozygous mutations in the TRAPPC11 and 

GOSR2 genes in human fibroblasts from seven individuals were characterized and have been 

added to the growing group of mutations in TRAPPC11 and GOSR2 causing neuromuscular and 

myopathy phenotypes. The affected individuals showed novel mutations in TRAPPC11 as well as 

mutations seen in previous studies (Table 4.1 and Figure 4.1). Previous studies on the TRAPPC11 

mutations in human fibroblasts have shown fragmented Golgi, protein accumulation in the Golgi, 

decreased LAMP1 levels, accumulation of LAMP1 at the MTOC and accumulation of lipid 

droplets. In this study, I have shown that TRAPPC11 mutations in human fibroblasts cause 

hypoglycosylation of LAMP1, ER-to-Golgi trafficking defects, delay in the exit of proteins from 

the Golgi, Golgi fragmentation, defects in the autophagy pathway as well as partial disassembly 

of the mTRAPP complex. This study greatly contributes to the characterization of the growing 

group of TRAPPC11 mutations to identify the defective pathways which cause a neuromuscular 

phenotype. This study is the first study to show reduced autophagy activity in TRAPPC11-mutated 

individuals, which is a characteristic of many neuromuscular diseases. Thus, this study will greatly 

shed light on the future work which identifies the mechanism of action of TRAPPC11 with relation 

to neuromuscular diseases that affect multiple organs and the homeostasis of the organism.     

 

Five out of seven individuals studied in this study with TRAPPC11 or GOSR2 mutations 

showed defects at the cellular level (Figure 3.1). Two of these five affected individuals (Subjects 

1 and 2) are from a Turkish background and have a homozygous mutation in TRAPPC11 leading 

to a Triple-A-like disorder with scoliosis, alacrima, achalasia, muscle dystrophic changes and 

cerebral atrophy. The third individual (Subject 3) is from a European background and has CMD, 

α-dystroglycanopathy, brain, eye, and liver involvement, due to a mutation in TRAPPC11. The 

fourth individual (Subject 5) with the GOSR2 mutation was clinically diagnosed with CMD, 

epilepsy, mild dystroglycanopathy and defect in eye development. The fifth individual with 

TRAPPC11 mutation (Subject 7) is Asian and showed cognitive impairment, muscular weakness, 

and microcephaly. Combined with previous studies (Bögershausen et al., 2013; Liang et al., 2015), 

TRAPPC11 mutations affect the brain, eyes, liver, muscle, and bone, indicating its role in multiple 

tissue types and organs (Liang et al., 2015). Moreover, the TRAPPC11 mutations mentioned in 
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this study which displayed changes at the cellular level include frameshifts, point mutations or 

deletions at or near the foie gras domain (Figure 4.1). Thus, we can conclude that the foie gras 

domain is a common site for TRAPPC11 mutations that lead to the cellular phenotypes mentioned 

in this study.  

 

LAMP1 and LAMP2 make up ~50% of the lysosomal membrane proteins (Eskelinen, 

2006). They are critical for the maintenance of lysosomal structure, pH, and function. They are 

also involved in lysosomal exocytosis, movement of the lysosomes along the microtubules and the 

fusion of APs with lysosomes (Schwake et al., 2013). Based on our findings, LAMP1 was 

hypoglycosylated in all the affected individuals. Immunostaining of fibroblasts from Subject 7 

indicated a noticeable perinuclear staining for LAMP1 possibly due to the inability of lysosomes 

to move along the microtubules. This study is consistent with the Bögershausen et al. (2013) study 

where LAMP1 focused on a perinuclear region similar to the MTOC. In contrast to the Behrends 

et al. (2010) study, the lipidated form of LC3 (LC3-II) accumulated in affected individuals (Subject 

1, 2 and 3; Figure 3.7) during nutrient deprivation possibly due to the hypoglycosylation of 

LAMP1, which may inhibit fusion of APs with lysosomes. This study also contrasts with the 

Bögershausen et al. (2013) study which showed hyperglycosylation of LAMP1 and LAMP2 in 

affected individuals. In the study by DeRossi et al. (2016), glycosylation in a zebrafish model of 

TRAPPC11-related diseases showed defects in synthesizing lipid-linked oligosaccharides (LLOs) 

as the mechanism of defective protein glycosylation. Thus, we can conclude that TRAPPC11 

mutations affect the autophagy pathway possibly due to defective LAMP1 glycosylation that might 

interfere with the fusion of APs with lysosomes, leading to neuromuscular diseases.   

 

α-DG is hypoglycosylated in skeletal muscle cells of the individuals with TRAPPC11 or 

GOSR2 mutations (Subjects 3-5). It is tempting to speculate that TRAPPC11 causes α-

dystroglycanopathy by inhibiting glycosyltransferase function(s) important for the synthesis of the 

extracellular matrix-binding glycan of the α-DG, consistent with the roles of TRAPPC11 in LLO 

synthesis (DeRossi et al., 2016). GOSR2 is located in the cis-Golgi to facilitate docking and fusion 

of COPII vesicles from the ER. SNARE complexes with GOSR2 are known to interact with the 

COG complex (Kudlyk et al., 2013). Since CDGs and neurological diseases are caused by 

mutations in COG genes which affect protein glycosylation, GOSR2 mutations can also be linked 
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to defects in protein glycosylation. Alternatively, since GOSR2 is a SNARE protein that functions 

in ER-to-Golgi transport (Fusella et al., 2013), -DG hypoglycosylation in those patients may 

result from membrane trafficking defects. 

 

The defect in glycosylation of LAMP1 and/or α-DG in TRAPPC11 patients can also be 

due to defects in membrane trafficking pathways as suggested by Figures 3.3-3.5. In Figures 3.3-

3.5, the delayed arrival of the ts045-VSV-G-GFP protein to the Golgi could be a secondary effect 

due to the defect in transport through the Golgi. It is also possible that the delay in the arrival of 

the ts045-VSV-G-GFP protein to the Golgi is independent of the delay in transport through the 

Golgi. In order to distinguish between these two possibilities, fibroblasts from Subject 7 was 

stained with an ER marker (data not shown) as well as cis-, medial-, and trans-Golgi markers. 

While the ER structure was intact in this individual (not shown), the cis-, medial-, and trans-Golgi 

were affected by the TRAPPC11 mutations. Our observations are consistent with those of the 

Bögershausen et al. (2013) study which showed abnormally fragmented and diffused Golgi in 

fibroblasts from affected individuals.  

 

Many cellular stresses such as autophagy can affect Golgi structure. Golgi morphology 

disruption is related to many neurodegenerative diseases such as amyotrophic lateral sclerosis 

(ALS), Alzheimer’s disease, and Parkinson’s disease (Haase and Rabouille, 2015; Joshi et al., 

2015; Machamer, 2015). Since ER and Golgi are the major compartments for protein 

glycosylation, atypical Golgi morphology and/or dynamics in affected individuals could be 

responsible for the hypoglycosylation of LAMP1 in all the individuals and α-DG in Subject 3-5. 

In individuals with TRAPPC11 mutations, the mTRAPP complex integrity appears to be 

compromised since the size exclusion chromatography experiments showed a shift of the 

TRAPPC12 protein to lower molecular size fractions, possibly due to disassembly of the TRAPP 

complex. These findings are inconclusive as further investigations are required to observe the 

effect on other TRAPP subunits and the integrity of the mTRAPP complex function.  

 

Since altered Golgi morphology was not observed in individuals with GOSR2 mutations, a 

possible explanation for the defects in protein secretion would be the inhibition of intra-Golgi 

transport by blockage of the inter-cisternal connections (Fusella et al., 2013). The study by Fusella 
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et al. (2013) also suggests inhibition of COPI vesicle formation due to a deficit of GOSR2 and 

acceleration of cis-to-trans-Golgi transport of the ts045-VSV-G-GFP protein. It is possible that the 

increased rate of acquisition of EndoH resistance in an individual with a GOSR2 mutation (Subject 

5) was observed due to incomplete protein glycosylation in the Golgi (Xiang et al., 2013). The 

delay in protein secretion from the Golgi in these individuals can be due to improper sorting at the 

TGN, similar to that for GRASP55/65 depletion (Xiang et al., 2013). Thus, we can conclude that 

mutations in TRAPPC11 and GOSR2 may cause muscular dystrophy due to hypoglycosylation of 

LAMP1 and α-DG due to abnormal Golgi morphology and/or protein secretion out of the Golgi.  

 

Protein trafficking out of the Golgi was also significantly delayed in individuals with 

TRAPPC11 mutations that also had abnormal Golgi morphology and hypoglycosylation of 

LAMP1 and/or α-DG. The study by Bögershausen et al. (2013) also reported defects in protein 

trafficking out of the Golgi and abnormal glycosylation of both LAMP1 and LAMP2. Thus, this 

study underscores the role of TRAPPC11 in membrane trafficking and glycosylation since the 

newly-discovered mutations show multiple defects including ER-to-Golgi and intra-Golgi 

trafficking delays. In conclusion, TRAPPC11 and GOSR2 are membrane trafficking proteins that 

are associated with ER-to-Golgi trafficking as well as intra-Golgi trafficking. TRAPPC11 plays a 

role in multiple trafficking pathways including ER-to-Golgi trafficking, protein secretion out of 

the Golgi, Golgi morphology, protein glycosylation, autophagy, and integrity of the mTRAPP 

complex. These genes should be considered in the diagnostic evaluation of patients with 

neuromuscular diseases with unknown genetic mutations.  

 

The relationship between TRAPPC11 mutations and neuromuscular phenotypes is very 

complex and needs further investigation for a better understanding of the mechanism of action of 

TRAPPC11. Identifying the mechanism by which TRAPPC11 affects protein secretion, 

glycosylation and Golgi morphology should be the focus of future studies. In order to accomplish 

this, one can look into interacting partners of TRAPPC11, specifically in or around the foie gras 

domain where most of the mutations that lead to cellular phenotypes are located. The deficit of 

another Golgi-associated protein, dymeclin, was recently reported to be associated with similar 

clinical phenotypes to TRAPPC11 mutations. These individuals displayed postnatal microcephaly, 

defects in the nervous system and eye, and ER-to-Golgi trafficking defects in mice and humans 
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(Dupuis et al., 2015). Thus, dymeclin could be a possible candidate to examine its interaction and 

pathomechanism with relation to TRAPPC11, though it is not known as an interacting partner of 

the TRAPP complex (Liang et al., 2015). The carriers and the target membranes of the exact stage 

of trafficking which TRAPPC11 is involved have to be investigated. Generation of a global 

interacting map of all the tethers and tethering factors will allow us to identify possible interacting 

partners of TRAPPC11 and additional functions of TRAPPC11 and other tethering factors.  

 

 

 

 

Figure 4.1: Cartoon representation of the current TRAPPC11 mutations reported to date. 

Novel TRAPPC11 mutations discussed in this study and previously mentioned TRAPPC11 

mutations are shown based on their location along the protein sequence for TRAPPC11. The 

numbers represent the amino acid number in the protein sequence.
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Table 4.1 Current mutations of TRAPPC11 reported to date and mentioned in this study. 

Number of cases 

(families)  

Family 

origin  

TRAPPC11 

Genetic mutation  

Mutation at  

protein level  

Consanguinity 

(Yes/No) 

Reference  

3 

(1 family) 

Syrian c.2938G>A/ 

c.2938G>A 

p.G980R Yes Bögershausen et al., 2013 

5 

(2 families) 

Hutterite c.1287+5G>A/ 

c.1287+5G>A 

p.A372_S429del Yes Bögershausen et al., 2013 

1 

 

Asian c.2938G>A/ 

c.661-1G>T 

p.L240Afs*10 and 

p.L240Vfs*7 

No Liang et al., 2015 

4 

(2 families) 

Turkish c.1893+3A>G/ 

c.1893+3A>G 

p.V588Gfs*16 Yes Koehler et al., 2016 

1 

 

Mixed 

European 

c.851A>C/ 

c.965+5G>T 

p.Q284P  

(c.851 A>C) 

No Larson et al., Unpublished 

work 

2 

(2 families) 

Subject 6: 

Pakistan 

 

Subject 7: 

Asian 

Subject 6: 

Unavailable  

 

Subject 7: 

c.1287 +5G>A/ 

c3379_3380insT 

Subject 6: p.Q933H 

and p.F866I 

 

Subject 7: 

p.A372_S429del and 

p.N1127Vfs*45 

Unknown Jimenez-Mallebrera et al., 

Unpublished work  

 

http://jmg.bmj.com/search?author1=Katrin+Koehler&sortspec=date&submit=Submit
https://www.researchgate.net/profile/Cecilia_Jimenez-Mallebrera
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