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ABSTRACT 

 

 

Development of Electro-Anaerobic Membrane Bioreactor (EAnMBR) for treatment 

of high-strength industrial wastewater 

 

Valeriy Troshin, Ph. D. 

Concordia University, 2016 

 

The main objective of this research was to develop an advanced system for industrial 

wastewater treatment which could produce an excellent quality effluent. The subsequent 

objectives were: i) to reduce the initial concentration of carbon, nutrients, and color-

forming substances compared to conventional treatment systems, ii) to investigate removal 

mechanisms in the new system under electric field, iii) to optimize the system by studying 

the relationship between various operating parameters. To achieve these objectives an 

innovative compact electro-anaerobic membrane bioreactor (EAnMBR) was designed and 

its high performance was researched in two operational configurations. In the EAnMBR, 

physicochemical, biological and electrokinetic processes interacted simultaneously 

permitting to control the effluent quality and sludge properties. The dark-color molasses-

based wastewater containing the high concentrations of chemical oxygen demand (53,000 

mgL-1), total nitrogen (2,300 mgL-1), total phosphorus (150 mgL-1), was selected for this 

research and submitted to multi-phase studies. The research allowed to define optimal 

operational conditions leading to removal of carbon, nutrients by 99% and to complete 

discoloration in the EAnMBR system. The novel system was compared with anaerobic 

membrane bioreactor showing performance superiority of EAnMBR in respect to COD, 

sludge volume reduction and filterability by 10%, 54% and 7%, respectively. A separate 

experimental phase was dedicated to optimize the energy balance in the novel system by 

the surface response method.  The EAnMBR demonstrated outstanding results which make 

it a promising advanced wastewater treatment technology for various applications, e.g. in 

food, agriculture and defence industries. 
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1. Introduction 

This chapter outlines the problem and focuses on the thesis scope, structure and emphasis. 

1.1.  Background 

Water is an essential life-sustaining element and our planet’s most precious natural resource 

[1, 2]. While 70% of the world's surface is covered by water, 97.5% of that is salt water. Of 

the remaining 2.5% that is fresh water almost 68.7% is frozen in ice caps and glaciers. Only 

one percent of the total water resources on earth is available for human use [2]. 

Water is vital for life, but also crucial for economic development [1]. Today 2.6 billion of 

people, which is one third of the world population, cannot use improved sanitation facilities 

and 884 million still do not have a basic human right to access to safe drinking water from 

improved sources [3, 4].  

As the world population tripled in the 20th century reaching 6.1 billion in 2000, the use of 

renewable water resources has grown sixfold, more than twice the rate of population growth 

[1, 3]. Projections recently issued by the United Nations suggest that world  population could 

pick 8.9 billion in 2050, but in alternative scenarios could be as high as 10.6 billion and no 

less than 7.4 billion [5].   

The increase in Gross National Product (GNP) in most countries and progressing 

industrialisation combine to create a demand for clean water in the urban and rural areas in 

many countries and will continue to expand substantially in the coming years [1].  

Climate change is also contributing to degradation of water quality and its availability [6]. 

Clean water, an essential component for many industries, is becoming a scarce resource and a 

new road map to sustainable water management needs to be focused on. An effective approach 

to the growing demand must include not only raising public awareness but also implementation 

of new and innovative technologies for industrial wastewater treatment, in order to reduce 

constantly growing pressure on fresh water supplies [7]. 

These technologies should be environmentally beneficial and based on principles of waste 

reduction, treatment localization and recovery of valuable resources from wastewater which 

can be used further.  
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Despite the abundance of available technologies for industrial wastewater treatment, there has 

been growing interest from scientific community [8-18] and industry [19] to other possible 

alternatives.  

This has been dictated by social and economic challenges resulting from urgent demand for 

energy savings, constrains of traditional treatment, increasingly stringent quality standards set 

for treated effluents and searching ways to treat wastewater, especially from industrial sources 

more environmentally friendly. Due to the nature of such wastewaters, they are significantly 

more difficult to treat. Because of these factors, currently available technologies face 

challenges to meet the demand for wastewater treatment without unacceptably increasing cost. 

Hence, there is a place for medium or small- scale treatment systems that could be used for 

treatment of wastewaters coming from industrial sources.  

Minimization of waste generation is a growing necessity as current wastewater treatment 

practices lead to the point when wastewater treatment plants are recognized as point-sources 

of contamination. Oxygen depletion, metals of environmental concern, solids formed during 

technological process, carbon dioxide and nitrous oxide emissions are the problems associated 

with wastewater treatment.  

Localized treatment solves the problem of wastewater transport to treatment plants and treated 

water back to the point of origin. Local treatment of discharges from small and medium-scale 

point sources is more flexible, can be tuned for a particular type of wastewater which 

eliminates problems associated with treatment of highly-mixed and complex wastes.    

Wastewater contains valuable chemical compounds such as metals, phosphorous, nitrogen and 

many other which otherwise lost in a landfill as a waste without any beneficial use. 

Traditional treatment of wastewater broadly divided on physical, chemical and biological 

methods in different combinations depending on the nature of wastewater and enforced by 

local authorities standards for the discharged water quality.   

Physical separation involves the processes that do not necessarily change chemical structure 

of wastewater and includes sedimentation, flotation, filtration, membrane separation, 

adsorption, ion exchange, and gas-liquid exchange. 

Treatment systems that are suitable for large-scale wastewater producers take advantage of 

physical processes like sedimentation with gravity as energy source. However, reliance on 

gravity settling is not often appropriate, especially in urban areas where free space may be in 

deficit.  
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Chemical methods include precipitation [20], ion exchange, coagulation-flocculation [21], and 

oxidation-reduction of targeted substances [22].    

The direct introduction of a chemical coagulant into the solution in order to destabilize 

established equilibrium in the system and promote phase separation is a traditional and well-

established chemical method. Typically, in the chemical coagulation process, sulphates and 

chlorides of aluminium or iron are added as inorganic coagulant reagents [23, 24]. Hydrolysis 

results in release of a series of metal hydrolyzed species carrying a charge. Synthetic 

coagulants [25, 26] and pre-hydrolyzed aluminium and iron coagulants and silica-modified 

coagulants are also applied [27-31].  

Principal disadvantages are the problems associated with large amount of sludge produced, 

corrosion, the high operating costs of chemical addition and solids handling and disposal. 

Oxidation of pollutant may be accomplished by introduction of air or strong oxidizing agents 

such as ozone [32], potassium permanganate [33, 34], Fenton reagent, hypochlorite ion, by 

ultraviolet (UV) radiation or photocatalysis [35].  

Biological wastewater treatment may involve aerobic [36], anoxic [37] or anaerobic 

microorganisms [38-48] . The biological activity of the microorganisms is of extreme 

importance to the successful treatment of wastewater [49], and activated sludge process is the 

most widely used technology for municipal and industrial wastewater treatment today [50]. 

However, wastewater may contain compounds that are inhibitory or toxic to the biological 

community [49]. Population shifts within the microbial community may result in changes in 

the plant operating conditions and cause sludge quality problems such as poor sludge settling, 

compaction, and dewatering [50].  

There is also a concern that effluent toxicity may actually be created in the biological treatment 

process itself as soluble microbial products (SMP) could be more toxic than the original 

organic compounds present in the wastewater [41]. 

Electrochemically based processes of separation can be one of possible alternatives. This 

technology is based on creation of potential difference between electrodes submerged into the 

wastewater. Resulting electrical field liberates ions from anode and cathode and causes their 

directed movement in the solution initiating the process of electrocoagulation. At the anode-

electrolyte and cathode-electrolyte interface electrons are released and captured accordingly 

which leads to electrolytic oxidation or reduction of undesirable constituent and its removal 
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from solution by sedimentation and electroflotation. The combination of these processes can 

be precisely adjusted to suit the treatment requirements. 

The electrochemical methods of separation also include photoelectrocatalysis and chemically-

assisted electrooxidation and photoelectrocatalysis [35].  

Physical, chemical and biological changes occur simultaneously when electric field applied to 

the water.  

Available alternatives need to be assessed on a multitude of cost aspects, energy requirements, 

operational experience, process reliability and environmental impact. However, the selection 

of the best alternative is generally based on cost-effectiveness [37]. 

Electrochemical technologies are not only comparable with other technologies in terms of cost 

effectiveness [51-55], but proved to be efficient in terms of contaminant removal efficiency in 

many cases [56, 57]. In some situations, electrochemical technologies may be indispensable 

in treating wastewaters containing refractory pollutants which cannot be removed by other 

methods [58]. 

1.2.  Thesis Scope 

This research focused on development of a novel compact system that combined physico-

chemical, biological and electrokinetic treatment methods, and assessment of wastewater 

effluent quality parameters as metrics of treatment effectiveness and biological activity. 

Experimental studies were conducted on synthetic and raw molasses-based industrial 

wastewater in the environmental laboratory at Concordia University.  

1.3.  Thesis Emphasis 

Because the project had an outlook towards application of a novel system for treatment of 

highly recalcitrant industrial wastewaters, the research conducted on real wastewater was 

extremely important. In-depth analysis was pursued to design a novel system suitable for real-

life application. 

1.4. Thesis Structure 

This thesis consists of six chapters. The remainder of this thesis is organized as follows: 

Chapter 2 provides information on properties of molasses-containing industrial wastewaters 

and examines the research previously conducted on treatment methods and systems for such 
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wastewaters. It also defines hypothesis and objectives of this thesis based on conclusions 

drawn from the comprehensive literature review.  

Chapter 3 describes the experimental methodology including the major considerations in 

designing the EAnMBR system and introduces a detailed description for the experimental 

work such as research strategy, experimental setup, equipment, materials and chemicals, 

sampling and analytical methods. Chapter 4 provides results and discussion for Phase I of the 

research including preliminary trials on batch systems in order to evaluate optimal 

electrokinetic parameters in terms of current density, voltage gradient and exposure mode for 

optimal biological treatment.  

The results of the experimental study in Phase II provide insight into operation of the novel 

system in AnMBR (Stage I) and EAnMBR (Stage II) configuration for the two-month period 

and impact on carbon, nutrients removal and decolourization of synthetic wastewater. 

Mechanisms of carbon and nutrients removal by anaerobic membrane and anaerobic electro-

bioreactor have also been studied on synthetic wastewater and discussed in details.  

Phase III covers application of the EAnMBR for treatment of a raw industrial wastewater in 

AnMBR (Stage I) and EAnMBR (Stage II) configuration for the six-month period. Chapter 5 

describes surface response method optimization of the EAnMBR for carbon, nutrients and 

color removal from wastewater.  Controlled experiments were carried out in the laboratory to 

examine optimal operating conditions in terms of pH, current density and concentration of 

mixed liquor for these specific pollutants removal.  

Chapter 6 covers novel findings of the research and suggestions for further work. 
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2. Literature Review 

This chapter presents a comprehensive literature review of the previous research related to 

the topics of this work. 

2.1. Molasses Wastewater Characterisation 

Wastewater resulting from molasses production technological processes is a complex mixture 

of various organic and inorganic substances.  As most of the industry utilizes beet molasses as 

a main feed component for the large-scale production, contaminants encountered in the 

wastewater come mainly as a result of usage of this source of carbon and biological activity 

during the process of fermentation, and is especially difficult to treat due to extremely high 

concentration of pollutants [59].  

Secondary treatment of this fermentation wastewater such as a combination of aerobic, anoxic 

and anaerobic processes removes the bulk of the loading; however, the wastewater still cannot 

meet regulations for discharge into the municipal sewage system [60-63]. 

Further treatment by various methods is generally effective for the color removal, however 

high concentrations of nitrogenous compounds, sulfur and COD remain a problem [64-72].  

A well-known problem of membrane filtration processes is fouling. Chemical coagulation 

removes color and COD relatively effectively, however has a number of drawbacks. 

Adsorption on activated carbon could generate large amounts of sludge, while advanced 

oxidation processes are associated with a high energy demand [61, 62, 73-76].  

Therefore, it is necessary to describe and assess the major components of concern in yeast 

wastewater in order to find an optimal solution in terms of bringing the discharge quality below 

the regulatory limits. 

Regardless of the differences in technological trains, the underlying concepts and processes 

may have some similarities.  At the same time, molasses wastewater produced by food industry 

has far more differences, making it a unique substance itself in each particular case. Despite 

this fact, several major components are similar to any molasses wastewater.  

This chapter begins by examining some of the key components that are shared by all 

wastewaters such as color-forming substances, carbon, nitrogenous compounds, sulphur-

containing agents and solids. 
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2.1.1. Color-forming Substances 

Sugar beets do not contain color-forming agents, but they contain chromogenic compounds 

[59].  The number of color-conferring materials that can be found in the wastewater is 

enormous. They include not only ketones, dicarbonyls, acrylamides, and heterocyclic amines, 

all of which contribute to flavour, but also melanoidins and advanced glycation end-products 

[77]. Some are referred in the literature under various names such as acrylamid, caramelan, 

caramelene, carameline, saccharan and fuscazinic acid [59, 78]. Besides, furfural derivatives 

are formed simultaneously with volatile compounds (aldehydes, such as acrolein).  

In addition, carbohydrates, substances such as phenol-iron complexes, melanins and caramels 

also participate in the formation of color, and are responsible for the change of the optical 

properties of the liquid phase. 

The extent of color formation is related primarily to pH, pressure, temperature and reaction 

time [77-79]. Variations in pH influence the structure of  the chromophoric compounds [77]. 

The effect of high pressure on each reaction separately will depend on the type of reaction. For 

example, reactions involving the formation of hydrogen bonds are known to be favoured by 

high pressure because bonding results in a decrease in volume of the molecules [78]. However, 

according to the literature, formation of color-forming substances increases threefold for each 

ten centigrade degree rise in the temperature and time of processing which affects molecular 

weight of the chromophores, with increasing molecular weight upon heating [77].  

Another major contributor is the reactions between bases and acids, but browning products are 

formed also, to a certain extent, from the decomposition of saccharose [59].  

The major color-forming agents that appear in the course of sugar manufacturing and passed 

along the technological train, and further to the wastewater can be divided into the following 

groups [59]: melanoidins, polyphenolic-metal complexes, melanins and caramels, and further 

described in more detail in the following sections. 

2.1.1.1.  Melanoidins 

Three theories on melanoidins formation have been proposed, all based on the Maillard 

reaction (MR).  According to the first one, high-molecular weight colored structures are 

formed by cyclizations, retroaldolizations, dehydration, rearrangement, isomerization, and 

condensation of low-molecular weight products of sugars and amino acids produced by MR, 
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and intermediates such as furans, pyrroles, pyrrolopyrroles, and their derivatives in the later 

stages of MR reaction [77, 80, 81]. 

The second theory states that high-molecular weight melanoidins are derived from cross-

linking chromophoric low-molecular weight polymers and reactive amino acid side chains 

such as lysine, arginine, or cysteine [77].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Formation of melanoidin [82, 83] 
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The third theory proposes that the melanoidin skeleton is built primarily from sugar 

degradation products branched with amino compounds, such as amino acids. It has been 

demonstrated in model systems that melanoidins are formed by aldol condensations of highly 

reactive a-dicarbonyl compounds, which are the main intermediates during the early stages of 

the MR, and partially branched by amino compounds [77, 84]. Three consecutive steps that 

lead to the formation of melanoidins in MR are illustrated in Fig. 2.1.   

In the first stage of the reaction, reducing sugars react with amino compounds to form a Schiff 

base which is then stabilized by the Amadori product [77, 85, 86]. In the second stage, the 

Amadori product degradation gives rise to a variety of highly reactive carbonyl compounds 

[82].   

During this stage, a-dicarbonyls, aldehydes, furaldehydes and furanone, are generated, which 

rapidly react with each other in an aldol-type condensation. In addition, degradation of aldose 

sugars leads to the formation of furaldehydes and furanones as well, for instance furan-2-

carboxaldehyde and furan-2-aldehyde in the late stage of the reaction [77]. 

A range of reactions takes place in the advanced stages of the MR, including cyclizations, 

dehydrations, retro-adolizations, rearrangements, isomerizations and additional    

condensations. Ultimately, these intermediate products react with amino acids to form low 

molecular weight products, leading to the production of high molecular weight products by 

polymerisation [80].   

It has been reported that in the absence of chlorogenic acids the melanoidins behave as anionic 

hydrophilic polymers, which can form stable complexes with metal cations [77, 80]. 

The type of sugar was shown to be a significant parameter for obtaining melanoidins with high 

iron affinity, and glucose led to stronger binding than lactose [87].  

Despite ubiquity of research, the structures of the resulting melanoidin polymers mainly 

remain a mystery. This can partially be attributed to the amorphous and insoluble nature of 

these polymers [88].  

Recently, the formation of microspherules without amines has been observed under conditions 

associated with the formation of humins which were called “pseudomelanoidins” [80, 88]. 

This observation under laboratory conditions suggests that humins and melanoidins are 

structurally similar.   

It has been demonstrated that the polymer can form similar gelatinous globules and can also 

contain furans and pyrroles, when formed from erythrose in the presence of ammonium acetate 
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[88]. This suggests that in some industrial processes melanoidins can be removed from the 

final products, e.g., sugar crystals, by adsorption [80].  

Research has been performed on the partial structure of melanoidins [81, 86, 88-90]. 

Melanoidins produced in model MR systems heated for more than 24 h are predominantly of 

molecular weights greater than 10 kDa, demonstrating predominance of high-molecular 

weight chromophores [77, 80, 87]. However, other studies also demonstrate formation of 

pigments associated with low-molecular weight polymers if other conditions are applied 

(glucose and fructose heated with amino acids to 100 0C for 2 h) [91].  

Blue and red pigments which subsequently undergo transformation and acquire brown 

pigmentation have been isolated from alkali aqueous xylose-glycine, glucose-glycine and 

xylose-b-alanine reactions conducted under pH 8.1 in presence of 60% ethanol at 26.5 0C for 

48 h. The blue pigments were determined to have a novel chemical structure consisting of two 

pyrrolopyrrole rings combined with a methine bridge [86]. 

The attempt to control the formation of melanoidins and its intermediates from nonenzymatic 

browning reaction by pH control using model melanoidins prepared with a strong buffer shows 

dependence of melanoidins stability on pH of the environment. The greater stability of the 

melanoidins prepared with pH control might, therefore, have been attributed to a higher 

content of pyrrole and reductone compounds as well [77, 79]. 

Assessments of model systems in laboratory conditions demonstrated the antimicrobial 

properties of melanoidins, and antimicrobial activity towards gram-positive and gram-negative 

microorganisms have recently been compared [77, 92]. Results of the studies demonstrate that 

melanoidins exhibit higher antimicrobial activity towards gram-positive microorganisms and 

high-molecular fractions of melanoidins exhibit higher antimicrobial activity against E. coli 

than low-molecular fractions. A higher microcidal activity was found in samples prepared at 

higher temperatures. Strong  antimicrobial  activity  was  observed  in  both  pure melanoidins, 

as well as the bounded melanoidin compounds linked to  these melanoidins [93]; however, the 

bound melanoidin compounds fraction contributed to the antimicrobial activity of melanoidins 

the most [77, 94, 95].  

At low concentrations of melanoidins, antimicrobial activity exhibit a bacteriostatic activity, 

mainly mediated by the formation of iron chelates from the culture medium [77]. However, 

bactericidal activity at higher concentrations was found to be predominant [92, 96].  
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If bacterial strains are able to produce siderophores for iron acquisition, the formation of the 

siderophores-Fe3+ complex by melanoidins is observed, which could decrease the virulence of 

pathogenic bacteria [77].  

Finally, melanoidins at high concentrations can both destroy the outer and inner cell 

membranes by chelating Mg2+ ions from the  outer  membrane,  leading  to  a  destabilization  

of  the inner cell membrane and eventual cell lyses [92, 96]. The higher antimicrobial activity 

shown towards gram-positive microorganisms is attributed to the absence of a protective outer 

membrane, which makes this type of microorganisms more susceptible to antibiotic activity 

of melanoidins[96]. These findings suggest that the antimicrobial activity of melanoidins may 

affect the effectiveness of biological treatment methods of molasses-based wastewater. 

2.1.1.2.  Polyphenolic-metal Complexes 

Variety of non-biodegradable and toxic pollutants such as phenolic compounds (pyrogallol, 

catechol, hydroquinone, and their derivatives bearing heterocyclic fragments) presents in the 

wastewater and may form chromogenic chelate complexes. In a series of the studied synthetic 

phenolic compounds, pyrocatechol derivatives possess the maximum antioxidant capacity 

(AOC) and leads to a yellow-green discoloration of sugar molasses. It is understood that the 

color results from the formation of a pyrocatechol-iron complex [59, 97]. 

2.1.1.3.  Enzymatic Browning 

Enzymatic browning is a chemical process which occurs in fruits and vegetables by the 

enzyme polyphenol oxidase, which results in brown pigments. 

Beet tyrosinase, for instance, which belongs to the polyphenol-oxidases. In the presence of 

oxygen, the enzyme catalyzes the first steps in the biochemical conversion of phenols to 

produce quinones, which undergo further polymerization to yield dark, insoluble polymers 

referred to as melanins. This reaction, known as melanin-formation, requires only 

enzymatically catalyzed oxidation for its initiation and then proceeds as a chain reaction 

passing through red and red-brown intermediate stages to   orthoquinone-like compounds.  The 

reaction is not only dependent on the presence of air, but also on the pH. The reaction does not 

occur at pH <5 or pH >8 [59]. 

An example of the formation of melanins from a simple polyphenol, tyrosine, is illustrated in 

Fig. 2.2. 
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Fig. 2.2. Formation of melanin [98] 
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The next step is the isomerization of aldoses to ketoses and further dehydration process. The 

last series of reactions include both fragmentation reactions (flavor compounds formation such 

as diacetyl) and polymerization reactions (color-forming polymers such as caramelans 

(C24H36O18, caramelens (C36H50O25, caramelins C125H188O80 formation). At  constant  pH the  

formation  of  caramels  is  directly  proportional  to  the effective temperature- caramelization 

starts at relatively high temperatures as compared to the other browning reactions, and depends 

on the type of carbohydrate [59].  

2.1.2. Nitrogen 

Nitrogen and its derivatives removal from wastewater are a major concern for many industries 

as many municipal wastewater treatment plants limit accepted concentrations for these 

compounds [99].  

A number of new processes based on partial nitrification, anaerobic ammonia oxidation, 

aerobic deammonification, nitrifier denitrification, and others have been recently developed 

in the domain of wastewater treatment [100]. 

Two processes deserve particular attention. Anaerobic microbial ammonium oxidation, or 

the  anammox  process  occurs  at  high  ammonium concentrations and depends on the 

availability of  nitrite as an  electron  acceptor.  In limited oxygen conditions, anammox 

consortia of microorganisms are usually accompanied by aerobic ammonium-oxidizing 

bacteria that oxidize ammonium to nitrite and, at the same time, protect anammox organisms 

from oxygen poisoning [101]. 

Recent advancements also include a new Denitrifying Ammonium Oxidation process 

(deamox). The concept of this process combines the recently discovered anammox reaction 

which takes place in autotrophic denitrifying conditions and employs sulphide as an electron 

donor for the production of nitrite from nitrate within an anaerobic biofilm [100]. To generate 

sulphide and ammonia, authors proposed an Upflow Anaerobic Sludge Bed (UASB) reactor 

as a first step of the process and evaluated it under various conditions [70]. The UASB effluent 

was split and partially fed to a nitrifying reactor in order to generate nitrate and the remaining 

part was directly supplied to the deamox reactor where this stream was mixed with the nitrified 

effluent. After a 410 day experiment at volumetric nitrogen loading rates above 1000 mg NL-

1d-1, the total nitrogen removal efficiency was established around 90% [100]. However, there 

were some limitations observed regarding mass-transfer for denitrification attributed mostly 
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to the structure of sludge aggregates which are presumably formed with the outer layers of 

sulfide-oxidizing denitrifies and the inner layers of anaerobic ammonia oxidisers [70]. 

Initially, the deamox was developed as a mainly sulphide-driven process [70, 99, 100, 102]. 

However, it was extended to the organic-driven one, as another major drawback of this 

technology would be a possible deficiency of sulphide as an electron donor. This can be 

overcome by replacement of sulphides by volatile fatty acids. However, in this case removal 

efficiency of nitrate removal is reduced [103].  

The phylogenetic analysis of the deamox microbial community reveals similarities with  

microorganisms involved in the anammox process [101]. The presence of nucleotide 

sequences of the microorganisms involved in the main reactions of the carbon, nitrogen, and 

sulfur cycles, including nitrifying, denitrifying, and anammox bacteria. In the bacterial clone 

library, 16S rRNA gene sequences of the phyla Proteobacteria, Bacteroidetes, Chloroflexi, 

Firmicutes, Verrucomicrobia, Lentisphaerae, Spirochaetales, and Planctomycetes, and other 

groups, were detected. In the archaeal clone library, nucleotide sequences of methanogens 

belonging to the orders Methanomicrobiales, Methanobacteriales, and Methanosarcinales 

were found [101]. Although cost effective, the biological process of nitrogen removal, 

especially in anaerobic conditions however, can be very long due to a slow growth of microbial 

community [99, 100]. 

Very limited research was conducted on assessment of removal efficiency of nitrogen 

associated with melanoidin [72]. Authors fractionated dissolved organic nitrogen (DON) by 

molecular weight and used chemical coagulation to study effect of dosage on various fractions. 

An alum dose of 30 mgL-1 was required to obtain maximum DON removal from the analysed 

samples. However, no significant removal of DON occurred in the <10 kDa molecular weight 

fractions using of aluminium for coagulation from wastewater effluents, highlighting that alum 

was more effective at removing compounds which had MW >10 kDa only. 

2.1.3. Phosphorus 

Phosphate can be separated by multiple physical, chemical, and biological methods. Biological 

methods are advantageous in terms of economy and produce less amount of solids compared 

to physical and chemical methods, however they have also disadvantages such as lower 

phosphorous removal efficiency and longer treatment time. Polyphosphate-accumulating 

organisms (PAOs) release phosphorous during the anaerobic phase and remove it during the 
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aerobic phase by accumulating phosphorus as polyphosphate [104]. Aluminum sulphate and 

ferric chloride are commonly used coagulants, however their usage is associated  with higher 

costs for the purchase, generation of higher volume of sludge and its disposal [105]. 

Enhanced biological phosphorous removal processes can lower the total phosphorous (TP) 

concentrations in the effluent up to 0.1–0.2 mgL-1, however, supplemental additions of 

conventional coagulants, poly-aluminum chloride (PACl) or lime are often necessary to 

maintain acceptable effluent TP concentrations [104, 106]. 

As an alternative, MBR have been gained popularity in the advanced wastewater treatment, 

including phosphorous removal [83]. This method of advanced treatment allows to achieve 

extremely high removal efficiency of phosphorous, however, it comes with a high maintenance 

cost as the membrane must be cleaned periodically or even replaced to combat membrane 

fouling [104]. Recently, various types of inorganic coagulants such as FeCl3∙6H2O, 

Fe2(SO4)3∙5H2O, FeClSO4, PFS0.3, PAC A9-M, PAC-A16, Al2(SO4)3∙18H2O, FO4350SSH, 

NaAlO2 have been studied for the fouling reduction performance in MBRs [107]. Based upon 

the obtained results, FeCl3∙6H2O, FeClSO4 and Fe2(SO4)3∙5H2O exhibited relatively better 

performance. Specifically, FeCl3∙6H2O and FeClSO4 contributed both to sludge filterability 

enhancement as well as to SMP removal, while the effect of Fe2(SO4)3∙5H2O on fouling control 

was mainly shown as a decrease of the respective TMP values. However, besides membrane 

fouling control, the effects of chemical coagulants addition on real MBR systems is associated 

with larger amount of sludge. Electrokinetic processes for phosphorous removal have also 

been attempted [104, 106]. An MBR reactor with a flat-sheet membrane and the electrokinetic 

process were studied to improve phosphorous removal efficiency and membrane permeability. 

The combination allowed to achieve PO43-P and TP removal efficiencies of 89.2% and 79.9%, 

respectively. The TP removal efficiency (79.9%) of the MBR system equipped with the 

electrokinetic unit was two times higher than that (41.0%) of other MBR systems with 

chemical coagulation process. The PO43-P removal efficiency (77.2%) of the MBR with the 

EC was also significantly higher than that (59.0%) of the MBR with conventional coagulation. 

2.1.4. Sulphur-containing Substances  

Sulfate  is a source  of considerable  operational difficulties  in  anaerobic  processes  associated  

with  generation  of sulfides,  loss of electrons, contamination of gas streams and equipment 

corrosion. Wastewater from the yeast industry contains extremely high concentrations of 
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sulfate (up to 5,900 mg L-1) [70, 99, 100, 108]. A high sulfate content can be a source of the 

destabilization of the anaerobic treatment processes due to the hydrogen sulphide formation, 

especially if the COD/(SO4)
2- ratio is below 10 [108]. 

The main source of sulfate in the wastewater originated in the fermentation industry is the use 

of sulphuric acid for pH control. In addition, sulfur dioxide is used for bleaching to prevent 

colorization in sugar manufacturing. H2SO4 is relatively inexpensive and can be transported in 

a highly concentrated form (> 96%) [109]. 

Metal sulfide precipitates are more stable than metal hydroxides that are sensitive to pH 

change. Wastewater from the yeast industry is usually deficient in electron donors and requires 

external supplies in order to achieve sulfate reduction. Commonly used electron donors include 

hydrogen, methanol, ethanol, acetate, lactate, propionate, butyrate, sugar, and molasses [110]. 

Theoretically, conversion of 1 mol of sulfate requires 0.67 mol of chemical oxygen demand or 

electron donors [110]. However, for every mole of sulfate reduced, one mole of potential 

methane gas is lost; therefore the methane yield may be considerably reduced [111]. Methods 

to manage sulfide include biological oxidation, precipitation by metals, and removal in the gas 

stream with either sulfide removal in a caustic scrubber, reaction with packed beds of iron or 

zinc. An alternative to biological reduction is to remove sulfate from the wastewater by ion 

exchange, ion selective membranes and crystallization of sulfate minerals [111].  

The calcium-aluminum-sulfate or ettringite is precipitated in the presence or with the addition 

of aluminum and calcium at high pH.  It has been shown that during the formation of this 

mineral the sulfate levels can drop to less than 200 mgL-1 with a reasonable concentration of 

aluminum and calcium [111, 112]. The mineral jarosite, which is formed by the combination 

of iron, sulfate and another cation such as ammonium, potassium or sodium is commonly 

precipitated at acidic pH (<2.8) in the metallurgical recovery of zinc, where iron (III) must 

first be removed from solution [111]. 

2.1.5. Solids 

A considerable fraction of refractory compounds remains after biodegradation even if the 

advanced methods of biological treatment implemented. The significant part of these 

compounds is represented by solids and often present in the original water or may also be 

produced as a result the biological processes [76].  
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Solids content in influent may range from 835 mgL-1 to 3,795 mgL-1 in terms of suspended 

solids (SS) and 810 mgL-1 to 1750 mgL-1 in terms of volatile suspended solids (VSS) [61, 75, 

113].  

VSS/TSS ratios are above 0.75 for all streams in the process which are an indicator of high 

organic content of the wastewater [114]. 

Concentration of total dissolved solids (TDS) may be as high as 6,300 mgL-1. Increased 

conductivity of about 10.4 µScm-1 and Cl- is 2,460 mgL-1 is a result of sodium chloride usage 

in the filtration process in order to increase the osmotic pressure of the yeast cream[114, 115]. 

Rotary drum filter, tank and equipment cleaning, evaporation process and cleaning streams are 

the major contributors to the high content of dissolved and suspended solids in the wastewater 

coming from yeast manufacturing plant [114]. 

Alkalinity is also present in significant quantities and may reach 1,980-2,349 mgL-1 CaCO3 

[75, 115].  

2.2.  Current Methods of Molasses Processing Wastewater Treatment 

Molasses-based technological processes are among the most severely-polluting industries 

generating large volumes of recalcitrant wastewater. Different processes  employing  

biological  as  well  as  physical-chemical  methods  have  been  employed  to  treat  this  type 

of wastewater.  Anaerobic treatment is the most widely used method as over 80% BOD 

removal can be achieved [64, 71, 100]. In addition, energy recovery in the form of biogas is 

another major factor which makes it attractive [116, 117]. 

Further treatment to reduce residual organic and color includes secondary biological treatment 

employing fungi and bacteria, and physical-chemical methods such as adsorption, coagulation-

flocculation, oxidation, and membrane filtration [65, 71, 74, 101, 106, 118-122]. 

This chapter examines the concepts and presents a review of the current state-of-art in 

biological and physical-chemical methods applied to the treatment of molasses-based 

wastewater. Bench-scale, pilot and industrial studies are considered in the following sections. 

Furthermore, limitations in the existing processes are summarized and potential areas for 

further research are discussed. 
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2.2.1. Physico-chemical Treatment 

This chapter separates physical-chemical treatment details into eight major sections: 

adsorption, coagulation and flocculation, ozonation, advanced oxidation, Fenton’s reagent, 

photocatalysis, membrane filtration, evaporation and combustion. 

2.2.1.1.  Adsorption 

The decolorization  study  of a yeast  wastewater  factory  by adsorption  on activated carbon  

charcoal  showed that  these  adsorbents  have great  capacity  for adsorption and the total  

organic  carbon, and color removal [65]. The COD and the DOC can be significantly reduced 

as well. The size of particles is an important parameter. Activated carbon of 150-250 μm at 30 

gL-1 of solution leads to a total color removal and to up to 50% removal of the COD and DOC. 

To obtain the same removal efficiency, 130 gL-1 of 425-850 μm of activated carbon is required. 

The study of the  kinetics of the discoloration shows  that the adsorbent  instantly  reaches a 

saturated  state  with  a saturation  rate  almost  equivalent  to the rate of its diffusion in the 

liquid phase.  It shows  also that  the adsorption  of the COD and the DOC follows the Langmuir  

adsorption  isotherm,  and that  they  are respectively  equal  to 231  and 213 mggL-1  for the 

nonactivated carbon  (150-250 μm) and 103 mgg-1  for the activated  carbon  (425-850 μm) 

regarding the COD. The Freundlich adsorption model fit well the COD and DOC adsorption 

for the nonactivated carbon as well [65]. Another study revealed that the adsorption 

mechanism of melanoidin onto activated carbon involves mainly physical adsorption by 

electrostatic interactions and is favored in acidic pH.  Breakthrough curves of melanoidin 

adsorption followed the characteristic “S” shape with good fit of the Thomas model [123].  

It was also clearly demonstrated that an activated carbon with a significant distribution 

of  both  micropores  and  mesopores  and  a  significant  amount  of  macropores  that  are 

assumed  to  act  as  conduits  providing  access  to  micro-  and  mesopores,  have  a  good 

adsorption efficiency for compounds such as tannic acid and melanoidins [74].  

Although wastewater contains a majority of low-size particles (<1 nm) that may be 

preferentially adsorbed in micropores; activated carbon with micropores alone may not be 

suitable [74].  The selection of activated carbon containing both micropores and mesopores 

can be beneficial for adsorption of tannic acid, melanoidins and similar compounds. The role 

of activated carbon surface groups and macropores for adsorption needs of compounds specific 

to yeast wastewater needs to be further investigated, however. The major drawback of 
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adsorption is a large amount of waste produced, equipment clogging and the need for adsorbent 

regeneration. 

2.2.1.2.  Coagulation and Flocculation 

Coagulation-flocculation is regarded as a simple and cost-effective means for color removal 

from molasses wastewater [124]. Besides, it is the most widely practiced process for removing 

colloidal particles in wastewater treatment [125]. 

Coagulation performance by hydrolyzing metal salts is strongly influenced by aqueous 

chemistry and raw water characteristics. Variables, such as pH, coagulant type and dose, are 

well recognized being significant factors affecting the process [71, 125, 126]. For instance, it 

has been shown that the optimum dosage of the coagulant increases with the increase in initial 

pH. In the pH range tested, the appropriate initial pH should be higher than 7 to ensure effective 

removal of coloring agents [127]. Ferric chloride and aluminum sulfate were compared in 

terms of removal efficiency [125]. It has been found that ferric chloride is the most effective 

in removing melanoidins from bio-treated molasses wastewater, achieving color and COD 

removal efficiencies of 98% and 89%, respectively at the optimal dosage, whereas aluminum 

sulfate was found the least effective among the conventional coagulants. The optimal dosage 

of ferric chloride expressed in terms of the ratio of metal to organic carbon removed was found 

in the range of 0.73-0.81g Fe3+ g-1 COD [124]. 

The ability of alum to remove the color and dissolved organic nitrogen (DON) associated with 

melanoidin has also been evaluated [72]. Study shows that alum dose of 30 mgL-1 as 

aluminium was sufficient to reach maximum removal of color (75%), DON (42%) and 

dissolved organic carbon (DOC) (30%) present in melanoidin containing effluent. Alum was 

shown to preferentially remove DON with a molecular weight >10 kDa over small molecular 

weight DON. Not all humic substances can be removed by aluminum sulfate, however.  

There is a linear relationship between color removal and COD reduction [126]. However, there 

is still a 30% COD residual after almost all the color has been removed which is a result of the 

formation of complex organic compounds known as soluble microbial products (SMP) arising 

from anaerobic/aerobic treatment. 

Besides conventional coagulants, polyelectrolytes are commonly used either as coagulant aids 

in wastewater treatment process to increase the settling rate, reduce operation costs, and 

provide better dewatering characteristics of sludge and reduce sludge volume [125]. It has 
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been demonstrated that cationic polyacrylamide (PAM) may significantly reduce the effluent 

turbidity, hence enhancing removal efficiency. Under optimal conditions, the removal 

efficiency of COD and color can be reached as high as 72% and 90% respectively [127]. 

Anaerobic biological treatment of the wastewater enhances the coagulation efficiency 

markedly, with FeCl3 achieving 94% color and 96% COD removal, while chlorohydrate 

(ACH) and a low MW polydiallyldimethylammonium chloride (polyDADMAC) show 70% 

and 56% removal efficiency, respectively [71]. The improved decolorization can be attributed 

to the decrease in low MW organics (<500 Da) and biopolymers by the biological treatment, 

leading to reduced competition with melanoidins for interaction with coagulant/flocculant 

[71].  

Molecular weight fractionation before and after coagulation experiments indicated that 

cationic polymer addition can increase the removal of all molecular weight fractions of DON 

with the highest molecular weight fraction (410,000 Da) being preferentially removed [119]. 

Rapid mixing conditions are suggested as most important parameters in the entire coagulation 

step as well. The appropriate rate was determined to be between 300 and 500 rpm [127]. 

Generated during coagulation step sludge could be a problem in full-scale operation. The iron 

sludge had much better SVI compared to alum which is an important parameter for further 

sludge handling and disposal [59]. 

2.2.1.3.  Ozonation 

Ozone is a powerful oxidant applied for wastewater treatment. Once dissolved in aqueous 

phase, ozone reacts with organic compounds in two different ways: by direct oxidation as 

molecular ozone or by indirect reaction through formation of secondary oxidants like free 

radicals, in particular the hydroxyl radicals. Both ozone and hydroxyl radicals are strong 

oxidation agents capable of oxidizing a number of compounds [128]. 

The main operating parameters affecting efficiency of ozonation process in wastewater 

treatment include pH, bicarbonate ion concentration, temperature and mixing rate.  

The elimination of bicarbonate ion, strong inhibitor of hydroxyl radical reactions, showed an 

improvement in both color and COD reduction efficiencies [62]. According to the study, 

acidification for the purpose of removing bicarbonate ion resulted in a shift of color-forming 

agents to smaller molecular weights. The highest efficiencies were achieved at an elevated 

temperature of 40 0C. Color and COD reductions in this case can be achieved about 90% and 
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37%, respectively. Stirring rate may have a positive effect during the first stage of the reaction 

showing that mass transfer plays a role only during the initial reaction phase when direct attack 

of ozone molecules to aromatic compounds of colored substances was the predominant 

pathway [62].  

Hydraulic residence time and applied ozone mass flow rate on color and organic matter 

removal were also studied [67]. Increasing the hydraulic residence time or ozone mass flow 

leads to a considerable increase in the ozone consumption, with similar color and organic 

matter reduction percentages. Operating with a hydraulic residence time of 45 minutes and 

applied ozone mass flow rate of 1.7 gh-1, color and COD removal rates were about 80% and 

14%, respectively. 

Color reduction can be mainly attributed to direct oxidation reactions between ozone and 

chromophores, whereas the indirect oxidation pathway contributes to the reduction of the COD 

content [67]. 

The moderate COD removal results by pure ozone led to evaluation of treatment efficiency of 

ozone coupled with low-cost and non-toxic iron oxide employed as a heterogeneous catalyst 

for the treatment of wastewater [120]. In the presence of the Fe2O3 catalyst, ozone becomes 

more effective in reducing both COD and color-forming substances since the catalyst is 

responsible for enhancing the formation of hydroxyl free radicals, which are very reactive 

towards organic compounds. 

When used for pretreatment, ozonation can increase anaerobic biodegradability. However the 

low concentration in the ozonised feed represents a limitation for possible recycling aimed at 

biogas production. Anoxic biodegradability can also be improved, reducing both the need for 

an external carbon source and concentration of nitrogen in the effluent.  On average, the ozone 

pretreatment resulted in an increased biodegradable fraction from zero to 33% without 

noticeable toxicity on biomass.  This ozone dose also resulted in 45% of nitrogen removal by 

biological denitrification [76]. 

Application of ozone oxidation for tertiary treatment of yeast wastewater has also been 

assessed [61]. Research shows that using ozone for posttreatment may result in the reduction 

of organic fraction by up to 49% if an ozone dose in the range of 1.2-2.5 mgmg-1 is applied. 

Unfortunately, ozone itself is unstable and can decompose rapidly to molecular oxygen in a 

gaseous phase. As a result, ozone cannot be held or transported a long distance, and must be 

produced for immediate use on place [120]. As was found, ozonation pretreatment adversely 
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affects methane production [129]. Attempt to couple ozonation and adsorption processes did 

not show a synergistic effect on color and COD removal [130]. 

2.2.1.4.  Advanced Oxidation 

The advanced oxidation technology for wastewater treatment usually involves application of 

Fenton’s reagent, ultraviolet irradiation (UV), hydrogen peroxide or their combination, often 

supported by conventional ozonation, and is based on the production of chemical radicals with 

an extremely high oxidation potential.  

2.2.1.4.1. Fenton’s Reagent 

Fenton’s reagent, which involves homogeneous reaction and is environmentally acceptable, is 

a mixture of hydrogen peroxide and iron salts (Fe2+ or Fe3+) which produces hydroxyl radicals 

ultimately leading to decolorization of the effluent and non-biodegradable organics destruction 

[128]. 

An additional argument supporting the application of these systems is the ability to generate 

inert gaseous products of degradation and to oxidize hydrogen sulphide and sulphides to 

sulphates.  It may  be particularly interesting in the case of anaerobic treatment of wastewater 

[131]. 

Recent research evaluated the removal of both COD and color by applying three different 

chemical oxidation methods namely ozonation, ozonation with hydrogen peroxide, and 

Fenton’s Oxidation [75]. It was noticed that H2O2 significantly reduced the reaction time for 

the ozone dosages; however, COD and color removal efficiency was not remarkable. In the 

Fenton’s oxidation studies, however, the removal efficiencies of COD and color for 30 min 

reaction time for three different types of effluents were found about 86 and 92%, respectively 

which is significantly higher than combination of ozone and H2O2.  

Both the dosages of H2O2 and Fe2+ are strongly dependent on the COD concentration in the 

wastewater. COD and color removal is also dependent on the initial COD level- higher initial 

COD concentrations resulted in lower removal rates [75]. 

Fenton oxidation of biologically pre-treated effluent of full-scale wastewater treatment plant 

was also investigated [113]. The 600 mgL-1 H2O2 and 600 mgL-1 Fe 2+ dose was adequate to 

achieve a removal efficiency of 97%. However, the best results have been reached if Fe2+ 

/H2O2 dosage was 1,200 mgL-1 Fe2+/800 mgL-1 H2O2 at pH 4 and the reaction time of 20 min 
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for mineralization of DOC and COD. For these conditions, the maximum color removal 

efficiency was obtained as high as 99%, and maximum DOC and COD removal efficiencies 

were obtained as 90 and 88% accordingly [113]. Higher results may be achieved (reduction of 

the total COD above 90%) if additional neutralization by application of lime as an aid is 

implemented [131]. Optimized combination of coagulation-Fenton’s process for winery 

wastewater treatment was researched [132]. At the initial pH of 3, H2O2 concentration of 

1.18 Lm−3 and reaction time 8 h, COD removal of 56.6% was achieved. Besides, a 

biodegradability enhancement of 60% was attained reaching a BOD5/COD ratio of 0.4. 

However, the final COD removal efficiency was 74%. 

2.2.1.4.2. Photocatalysis 

Photocatalysis or UV irradiation of H2O2 can also be used as the mechanism for the hydroxyl 

radical generation for organic compounds degradation. UV/H2O2 was shown to effectively 

remove the color associated with melanoidin [133]. However, the process was less effective 

in removing the DON and DOC present in the synthetic melanoidin solution.  At the optimum 

H2O2 dose (3,300 mgL-1), with an initial melanoidin concentration of 2,000 mg L-1, the 

removal of color, DOC and DON were 99%, 50% and 25%, respectively. The nitrogen cleaved 

from the large organic melanoidin compounds appeared to form low molecular weight 

compounds (<1 kDa), ammonia and nitrogen gas. No oxidation of the nitrogen to NO2 or NO3 

was observed in this study. 

Discoloration  and mineralization of  yeast wastewater were investigated by using Ce-Fe/Al2O3 

as a  heterogeneous photo-Fenton catalyst in fluidized bed reactor [121]. The results show that 

TOC can be reduced from 347.6 mgL-1 to 10.8 mgL-1 and color reduced from 500 units to 0 at 

initial pH 6.0, H2O2 and concentration of 1,000 gL-1, catalyst loading of 5 gL-1, reaction  

duration of 120 min and reaction temperature of  30 0C. 

2.2.1.5.  Membrane Filtration 

Pressure-driven membrane processes such as ultrafiltration (UF) and nanofiltration (NF) have 

been evaluated in many recent studies and found several practical applications in the field of 

wastewater treatment [134-138].  
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However, literature on membrane process application for COD removal and reduction of 

color-forming substances in industrial wastewater, especially molasses-based is extremely 

rare.    

A recent study has been conducted with the purpose of evaluating the feasibility of membrane 

treatment of yeast production wastewater [122]. The effluent from the anaerobic stage was 

treated in order to reduce coloring agents and COD concentration and reducing the load on the 

downstream aerobic stage. For this purpose microfiltration (MF), ultrafiltration and 

nanofiltration membranes with differing molecular weight cut-offs (MWCOs) were tested. To 

evaluate the effectiveness of membrane processes in treating the waste stream, researchers 

measured optical density (OD) and COD along with permeation fluxes. Effects of pretreatment 

methods (coagulation and coarse filtration) and feed composition on OD, color, COD were 

also studied. Gel filtration analysis was employed to characterize feed and permeate streams 

in terms of MW distribution of organics. Maximum rejections obtained were 94%, 89% and 

72% for OD, color and COD, respectively, when 0.8 µm microfiltration membrane and 400 

Da NF membranes were used in series. Research suggests that chemical precipitation and 

conventional filtration were not adequate for pretreatment operations; however, MF was 

demonstrated to be effective for this purpose [122]. 

2.2.1.6.  Evaporation and Combustion 

Although no indication of direct application of thermal decomposition in yeast wastewater 

treatment has been found, this method has been applied for distillery spent wash which has 

similar raw components including molasses. A novel catalytic thermal pretreatment or 

catalytic thermolysis (CT) has been proposed to recover the majority of energy content with 

subsequent COD and BOD removal [128]. The initial pH had profound effect on the COD 

removal efficiency by applying thermolysis. At 140 0C and 3 kg m− 3 catalyst loading, and 

optimum pH of 2, a maximum removal rate of 60% COD has been reached. 

The CT process resulted in the formation of settleable solid residue and the slurry obtained 

after the thermolysis demonstrated good filtration parameters. At 140 0C and pH 2, the solid 

residue had a C:H atomic ratio of 1:1.08 with a heating value of 21.77 MJ kg− 1.  

The residue can be used as a source of energy for the combustion furnaces and the product ash 

can be mixed with organic fertilizers and used in agricultural or horticultural industries [128]. 
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2.2.2. Biological Treatment 

Biological treatment plays a major role in food manufacturing wastewater treatment. In fact 

this is the primary and the most common method of plant effluent purification in yeast 

production [60, 63, 64, 68, 114, 139]. 

Biological processes are divided  into aerobic, anaerobic, or combinations of both, and are 

often combined with physical-chemical treatment for pre or post treatment in order to enhance 

the efficiency and kinetics of the process [64, 66, 71, 76, 105, 122, 140-142]. 

This section covers the details of various biological methods of molasses-based wastewater 

treatment along with focus on equipment associated with primarily anaerobic treatment.   

2.2.2.1.  Mixed Cultures Processes 

Since in many large-scale applications it is difficult to implement treatment by only pure 

microbial cultures, mixed culture studies have been carried out by several researchers for 

degradation of effluents containing color-forming substances and high concentration of COD 

in laboratory conditions [143-145]. As the metabolic processes of microorganisms in mixed 

consortia generally complement one another, the syntrophic interactions present in mixed 

communities lead to better performance in the mineralization of the organic components in the 

wastewater [128]. 

The degradation of four synthetic melanoidins, namely GGA, GAA, SGA, and SAA by three 

Bacillus isolates, Bacillus thuringiensis (MTCC 4714), Bacillus brevis (MTCC 4716) and 

Bacillus sp. (MTCC 6506) was conducted recently [144]. Results show that activity of 

consortium of these strains lead to significant reduction in the COD along with the 

decolorization of all four types of melanoidins.  The medium that contained single source of 

carbon (glucose) demonstrated higher degree of removal (by up to 15%) than that containing 

both carbon and nitrogen electron donor. The addition of 1% glucose as a supplementary 

carbon source was essential for co-metabolism of melanoidin complex [144]. 

The toxicity test on tubificid worm (Tubifex tubifex, Müller), demonstrated significant 

reduction of toxicity with melanoidins removal by the three Bacillus sp. [143]. Authors 

isolated and characterized fifteen rhizosphere bacteria of Phragmites australis found in 

distillery effluent contaminated sites. These microorganisms included Microbacterium  

hydrocarbonoxydans,  Achromobacter  xylosoxidans,  Bacillus subtilis,  B.  megaterium,  B.  
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anthracis,  B.  licheniformis,  A.  xylosoxidans, Achromobacter sp., B. thuringiensis, B. 

licheniformis, B. subtilis, Staphylococcus epidermidis, Pseudomonas migulae, Alcaligens fae- 

calis, B. cereus which collectively brought about 76% melanoidin reduction and 85–86% BOD 

and COD removal in the effluent within 30 days [128]. 

Another microbial consortium of Pseudomonas aeruginosa PAO1, Stenotrophomonas 

maltophila and Proteus mirabilis has been isolated from distillery effluent contaminated sites 

following bioaugmentation [145]. These strains exhibited rapid degradation of the effluent 

resulting in 67% decolorization and 51% COD reduction within 72 h in the presence of very 

low sources of nutrients. 

The major disadvantage of mixed-culture treatment, therefore, is that it is necessary to add 

nutrients as well as to dilute the concentrated effluent to obtain optimal microbial activity. 

Enzymatic pretreatment of wastewaters has been shown to increase the degradation efficiency 

of sub- sequent biological treatment processes [146]. The levels required by regulatory 

organisms still may not be achieved in many cases.  

2.2.2.1.1. Aerobic Processes 

After primary anaerobic treatment, the partially purified wastewater still contains high 

concentrations of organics, BOD, COD, suspended solids and remains highly colored, and, 

thus, cannot be directly discharged into the municipal sewer network.    

Therefore, most processes include aerobic degradation as a secondary step (after anaerobic 

treatment) as most aerobic systems are highly effective at COD reduction provided there is 

adequate oxygen supply [146]. 

2.2.2.1.2. Anaerobic Processes 

The anaerobic process is a complex multistage process, involving hydrolysis, acidogenesis, 

acetogenesis and methanogenesis and incorporates interaction of various symbiotic, synergetic 

and antagonistic microorganisms [116]. The anaerobic microbial communities can broadly be 

divided into three major groups of organisms, namely hydrolytic fermentative, syntrophic 

acetogenic and methanogenic bacteria. 

The conventional anaerobic process presents several advantages as compared to aerobic 

treatment. It has a higher capacity for degrading highly-concentrated organic substances, 

produces less sludge, requires less energy, and generates biogas [128].  
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Carbon dioxide, hydrogen and methane can be generated during the process and possibility to 

increase the hydrogen production yield, which has the higher calorific value, has recently 

attracted significant attention from the scientific community [147-150]. 

The anaerobic ecosystem is the result of complex interactions among microorganisms of 

several different species [151]. The major groupings of bacteria and reaction they mediate are: 

(i) fermentative bacteria, (ii) hydrogen-producing acetogenic bacteria, (iii) hydrogen-

consuming acetogenic bacteria, (iv) carbon dioxide-reducing methanogens, and (v) aceticlastic 

methanogens. The reactions they mediate are presented in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Reactive scheme for the anaerobic digestion of polymeric materials (Adapted 

from [151]) 

 

1) Hydrolysis, where enzymes excreted by fermentative bacteria convert complex material 

into less complex, dissolved compounds which can pass through the cell walls and 

membranes of the fermentative bacteria. 

2) Acidogenesis, where the dissolved compounds present in cells of fermentative bacteria are 

converted into a number of simple compounds which are then excreted. The compounds 
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produced during this phase include volatile fatty acids (VFAs), alcohols, lactic acid, CO2, H2, 

NH3 and H2S, as well as new cell material. 

3) Acetogenesis (intermediary acid production) where digestion products are converted into 

acetate, hydrogen (H2) and CO2, as well as new cell material. 

4) Methanogenesis, where acetate, hydrogen plus carbonate, formate or methanol are 

converted into methane, CO2 and new cell material. In this global scheme, the following sub-

processes can be distinguished (Figure 2.3): 

1) Hydrolysis of biopolymers: 

- hydrolysis of proteins 

- hydrolysis of polysaccharides 

- hydrolysis of fats 

2) Acidogenesis/fermentation: 

- anaerobic oxidation of amino acids and sugars 

- anaerobic oxidation of higher fatty acids and alcohols 

3) Acetogenesis: 

- formation of acetic acid and H2 from intermediary products (particularly VFAs) 

- homoacetogenesis: the formation of acetic acid from H2 and CO2 

4) Methanogenesis: 

- methane formation from acetic acid 

- methane formation from hydrogen and carbon dioxide 

Figure 2.3 provides degradation path of organic materials to the end products CH4 and CO2. 

The homoacetogenic process involves the conversion of acetate, the major CH4 precursor 

and H2/CO2. In practice, other back reactions may occur also, e.g. the formation of higher 

VFA or alcohols out of acetate and propionate. These backward reactions are very important 

in case of malfunctioning or perturbation of the anaerobic reactor or when a specific reaction 

is deliberately pursued. Under normal AnWT applications, i.e. stable reactor performance 

under mesophilic conditions, acetate is the major precursor of CH4 (about 70% of the COD 

flux). COD removal takes place owing to the fact that the end product of the reaction chain, 

CH4, is gaseous and highly insoluble in water. In the case of the presence of alternative 

electron acceptors, like NO3- and SO4
2-, other bacterial groups will be present in the 

anaerobic reactor as well, such as denitrifies and sulphate reducers [102]. 



29 
 

In a recently described approach, an electrical input to a modified microbial fuel cell (MFC) 

provided the energy necessary to convert organic acids, such as acetate, to hydrogen [148, 

149]. 

Methanogens represent a major group of microorganisms in anaerobic process and are 

commonly considered to be strictly aerophobic organisms for which oxygen being toxic and 

inhibitory. Studies and practical experience have, however, revealed increased solubilisation 

of organics and the possibility of maintaining high methane generation activity in the presence 

of  significant aerobic loads in anaerobic large-scale digestion [152, 153]. The positive impact 

of oxygenation on methane yield is more pronounced at conditions characterized by low 

hydrolysis rate coefficients (slowly degradable feed) and low biomass concentrations. The 

optimum oxygenation point moves towards zero when the hydrolysis rate coefficient and the 

biomass concentration increase [153]. 

Despite economic advantages and reliability, anaerobic treatment, however, is sensitive to 

organic shock loadings, variations in pH and demonstrates slow growth rate of anaerobic 

microorganisms resulting in longer hydraulic retention times (HRT). Therefore, precise tuning 

of the system is often necessary. 

2.2.2.2.  Pure Cultures Processes 

In order to  increase  the  efficiency  of  wastewater treatment,  research  has  focused  on  

treatment  by pure  microbial cultures [154]. However, problem of external nutrient addition, 

feed dilution and pilot-scale application still exist and should be addressed more thoroughly. 

The following sections summarize available data on application of bacterial, algal, and fungal 

cultures in wastewater treatment targeting both decolorization and COD reduction in effluent. 

2.2.2.2.1. Bacterial   

Various bacterial cultures capable of both bioremediation and decolorization of anaerobically 

treated distillery spent wash have been isolated [128].  

Decolorization of molasses wastewater by immobilized cells of Pseudomonas fluorescence on 

porous cellulose carrier achieved 76% decolorization in 24 h at 30 0C. The decolorization 

efficiency can be further increased to 94% by coating cellulose carrier with collagen [128, 

154]. 
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An acetogenic strain from vegetable and juice samples which decolorized the molasses 

pigment medium and anaerobically treated distillery effluent to 73–76% within  5  days  when  

supplemented  with  glucose  and  nitrogen sources. In replacement culture system involving 

six replacements, the strain showed constant decolorization and decrease in BOD and COD 

values of 58.5–82.2% and 35.5–71.2%, respectively. The maximum adsorption yield of this 

strain observed from the dead (autoclaved) cells. It was two times higher than that of living 

cells [155, 156] .  

Oxidation of melanoidins thus is possible by removing almost all the high molecular weight 

compounds associated with melanoidins in untreated wastewater.  

Recently, the decolorization of four synthetic melanoidins i.e., glucose-glutamic-acid (GGA), 

glucose-aspartic acid    (GAA),    sucrose-glutamic acid (SGA), and sucrose-aspartic-acid 

(SAA), were investigated using three strains: Bacillus thuringiensis, Bacillus brevis and 

Bacillus sp.  The extent of color degradation of the melanoidins separately by each isolate was 

in the 1-31% range [144, 154].  

2.2.2.2.2. Algal  

The ability of a marine filamentous, non-heterocystous strain Oscillatoria boryana BDU 

92181 to use the 5% melanoidin as nitrogen and carbon source leading to decolorization has 

recently been reported [157]. The organism generates hydrogen peroxide, hydroxyl ions and 

molecular oxygen all strong oxidizing agents during the process of photosynthesis resulting in 

60% decolorization of melanoidin.  As follows, cyanobacteria could use melanoidin as a better 

nitrogen source than carbon.  Moreover, it has been shown that Oscillatoria boryana BDU 

92181 forms natural coagulant by releasing proteins, lipopolysaccharides, 

polyhydroxybutyrate (PHB), polyhydroxy-alkanoates (PHA), etc.  COO- and ester sulphate 

(OSO3-) functional groups form complexes with cationic sites resulting in flocculation of the 

organic matter in the effluent.   

2.2.2.2.3. Fungal  

Increasing attention has been directed towards utilizing fungal activity for decolorization of 

melanoidin-containing wastewater [128]. White rot fungus secreting ligninolytic enzymes can 

be effective in degrading xenobiotics and organic pollutants [154].  
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Molasses wastewater was decolorized  and  its  COD was reduced in static  cultivation using 

the fungi  Coriolus  versicolor,  Funalia  trogii,  Phanerochaete  chrysosporium  and  Pleurotus  

pulmonarius  [118].  The effect of cotton stalk on decolorizing and COD removing capability 

of four fungi was also determined. In the concentration range from 10 to 30% wastewater was 

effectively decolorized by C. versicolor and F. trogii. The color was reduced up to 71% 

depending on waste concentration. Cotton stalk addition stimulated the decolorization activity 

of all fungi providing electron donor. Vinasse concentration had also a positive effect on 

biomass production, at its higher concentration the biomass production remarkably increased 

which can be explained by higher concentration of both organic and inorganic compounds 

added. 

2.2.2.3.  Combined Methods of Biological Treatment 

The effluent coming from fermentation yeast industry, as stated previously, is highly colored 

and carries a large amount of organics. Existing anaerobic/aerobic biological treatment 

technologies reduce the BOD, but are unable to completely remove the color-forming 

substances and associated chemical oxygen COD from the wastewaters, therefore regulatory 

limits cannot be met.  

 Many efforts have been focused on combination of biological processes with physical and 

chemical methods of treatment in order to enhance biodegradability of the effluent [60, 62, 63, 

76, 106, 120, 139, 158]. 

Combined with coagulation/flocculation process, biological treatment demonstrates better 

performance. An alum dose of 30 mg L-1 as aluminium was sufficient to reach maximum 

removal of color (75%), DON (42%) and dissolved organic carbon (DOC) (30%) present in 

melanoidin containing effluent [72]. Another study demonstrated anaerobic biotreatment of 

the wastewater was enhanced by the coagulation remarkably, with FeCl3 achieving 94% color 

and 96% COD removal [71]. It was also demonstrated that removal efficiency of Als(SO4)2 

and FeCl3 at optimum dosage concentrations dependant on effluent quality. Both removed 

almost 90% of the color and up to 80% of the COD [126].  

The use of ozone combined with biological treatment was investigated for molasses 

fermentation wastewater containing highly concentrated, biorefractory compounds [76]. 

Ozonation applied at the ozone dose of 0.5 g O3 g
−1 COD led to an increase in biodegradability. 
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On average, the pretreatment resulted in an increased biodegradable fraction from zero to 33% 

without noticeable toxicity to the biomass.  

2.2.3. Electrochemical Treatment Processes 

This chapter covers the theoretical aspects of electrochemical treatment of wastewater. After 

reviewing the history of development, this chapter examines in more detail the electrokinetic 

phenomena and introduces electrochemically-assisted membrane separation in wastewater 

treatment. 

2.2.3.1.  Historical Overview 

The application of electric potential in wastewater treatment can be traced back into the 

nineteenth century. 

In 1877 an American engineer Eugene Hermite received patents in Britain and France to treat 

wastewater by mixing it with a portion of sea water and electrolysing it for disinfection 

purpose. Based on these patents, a treatment plant was built in 1889 in London and was in 

operation until 1899. Another plant with iron electrodes for treating canal water was built the 

same year in Salford, England. Seawater was added as a chlorine source for disinfection [159].  

In the United States series of patents were issued in the beginning of twentieth century [160-

169]. In 1901 the United States Patent and Trademark Office issued a patent to Jean Marie 

Auguste Lacomme on a device for purification of water [165]. The device consisted of 

minimum a pair of electrodes shaped to form a pipe when properly combined. The edges of 

each anode and cathode were provided with flanges for assembling and insulating material 

between them. The system also consisted of series of metal rods integrated to the casing and 

extended inward into the pipe. The device could be integrated into the municipal water main 

and worked in a continuous mode. 

An insoluble anode with high surface area made of perforated lead sheets was patented in 1919 

[160].  

In the United States, electrolytic sludge treatment plants were commissioned as early as 1911 

in Santa Monica, California and Oklahoma City, Oklahoma and were operated until 1930. 

Both plants employed steel electrodes connected in series [159]. Solids removal efficiency at 

Santa Monica plant was 50% [170]. However, operation costs were high due to sludge 

handling and disposal problems [159].  
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In the Soviet Union a unit with iron electrodes for electrochemical coagulant generation was 

first used at the Shaturskaya GRES power station in 1925 [171]. Another early report from 

1938 on implementation of electrical field in wastewater treatment showed the ability to treat 

tannery effluent [172].  

Applicability of electrocoagulation as a method of treatment was trialed on industrial 

wastewater from food-production industry in 1965 and on municipal wastewater in 1969 in 

the Soviet Union [173, 174]. 

The use of gas as of a buoyant media to treat wastewater was first mentioned in a German 

patent in 1877 [175]. Based on this principle gases were generated by reaction of acids with 

suspended sulfides and carbonates. It was not until 1904 that production of gases by 

electrolysis for wastewater treatment was first referred to in a British patent [176].  

In the United States, the concept of wastewater treatment by electroflotation first appeared in 

a patent issued in 1913 [167]. The apparatus consisted of an electrode chamber with a set of 

electrodes and a flotation tank. Wastewater entered the electrode chamber from the bottom 

and was forced to move upward along baffled electrode plates. From this gas-producing 

chamber liquid was carried to the flotation tank where it entered at the bottom and was 

separated from contaminants by buoyant microbubbles formed during the process of 

electrolysis.  

In 1917 J. D. Kynaston proposed a wastewater treatment reactor with baffled aluminium 

anodes and carbon cathodes placed horizontally and connected in series [164].  

In Canada A. T. Stuart patented horizontally arranged electrodes with developed surface area 

for improved electroflotation in 1918 [168].  

Numerous patents were issued in the United States on electroflotation wastewater treatment 

in1920s and by 1930s this process became widespread in industrial applications [175]. 

Application of electrolytically generated gases in wastewater treatment has been given 

considerable attention in 1960s: research on emulsified sewage purification from oil refineries 

was reported in1962 [177].  

2.2.3.2.  Electrochemical Coagulation 

In the process of electrocoagulation, electrical current passes through sacrificial metal 

electrodes (Fe or Al often the most economically-feasible choice) submerged into the aqueous 

phase, dissolving them and generating corresponding metal ions that yield Fe (II) and/or Fe 
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(III) or Al (III), (or other metals) aqua complexes along with hydroxide ion depending on the 

pH of the environment. The metal ions generation takes place at the anode and hydrogen gas 

is released from the cathode [178-181]. 

These species act as coagulants neutralizing charge of colloids and sweeping other particles 

out of wastewater by means of gravity forces.  

The major processes that take place during the EC process may be summarized as follows 

[35]: 

(i) Electrical current initiates reactions on electrodes surface, metal ions migrate from anode 

towards cathode, and H2 gas is released at the cathode; 

(ii) Coagulants start forming in the aqueous phase during the migration of ions; 

(iii) Removal of impurities with coagulants by gravity and/or buoyancy forces; 

(iv) Other electrochemical and chemical reactions involving reduction of organic impurities 

and metal ions at the cathode and coagulation of colloidal particles. 

Other ions such as chloride are also oxidized at the anode, and are actively involved in the 

electrochemical reactions. Either the chlorine ion or its derivatives can initiate additional metal 

consumption in by-reactions. The more detailed description of factors affecting 

electrocoagulation follows later in the chapter. 

2.2.3.3.  Aluminum Anode 

Anodic and cathodic reactions for systems with aluminium anodes and cathodes have been a 

subject of extensive research [19, 182-187].  

Aluminium is frequently used as the sacrificial anode for electrocoagulation [188]. In the 

process of electrocoagulation, when the DC field is applied, Al3+ metal ions are generated due 

to the electrooxidation of the sacrificial aluminum anode and released into aqueous phase. The 

oxidation of water prodcues hydrogen (H+) and oxygen gas at the anode whereas hydrogen 

gas and hydrogen oxide (OH-), due to the water reduction, are generated at the cathode. 

The release of Al+3 results in the aggregation (flocculation) of colloidal particles through 

reducing the value of zeta potential to a level where the Van der Waal’s forces are greater than 

the repulsive forces between the charged colloids. The generated Al+3 cations also react with 

the free OH- in water to initially form monomeric species such as Al(OH)+2, Al(OH)2
+1 and 

Al(OH)4
-. These species are converted into polymeric colloids such as [189], Al13(OH)34

+5, 

which eventually transform into a long chain of Al(OH)(s). These cationic hydroxide 
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complexes can effectively remove the negatively charged organic materials through the 

electrostatic forces to neutralize the charge [189]. These complexes have large surface area up 

to 1 μm capable of adsorbing and trapping the soluble and organic colloidal particles, which 

are easily separated from the liquid medium by sedimentation or H2 flotation [190]. In addition 

to the formation of aluminum hydroxide complexes, electrokinetic system enhances the 

interactions between the solid surfaces to facilitate the flocculation process [191-194]. 

Aluminium floc formation requires a certain amount of available alkalinity to permit rapid 

hydrolysis [182, 186, 187, 195, 196]. Recycling of spent coagulant is also possible [197]. 

Researchers have also reported that the amount of electrolytically produced aluminium 

flocculent required for good results with rendering plant effluent is less than direct chemical 

addition [51, 198]. 

2.2.3.4.  Iron or Steel Anode 

When an iron or steel anode is utilized in EC, Fe 2+ is dissolved in the wastewater from Fe 

oxidation at the anode (standard potential E0 = 0.44 V) as follows: 

Fe → Fe2+ + 2e-                                                                                                                            (2.1) 

hydroxide ion and H2 gas are generated at the cathode from the reaction (E0 = 0.83 V ): 

 

2H2O + 2e- → 2OH- + H2(g)                                                                                                        (2.2) 

 

OH production from reaction (2.3) causes an increase in pH during electrolysis. Insoluble   

Fe(OH)2 precipitates at  pH > 5.5  and remains in equilibrium with Fe2+ up to pH 9.5 or with 

monomeric species such as Fe(OH)+ , Fe(OH)2 and  Fe(OH)3 at higher pH values. The 

formation of insoluble Fe(OH)2 can be written as  

 

Fe2+ + 2OH- → Fe(OH)2(s)                                                                                                          (2.3) 

 

and  the  overall  reaction  for  the  electrolytic  process  from  the sequence of reactions (2.1 

– 2.3) is: 

Fe + 2H2O → Fe(OH)2(s) + H2(g)                                                                                              (2.4) 

In the presence of O2, dissolved Fe2+ is oxidized to insoluble Fe(OH)3: 
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4Fe2+ +10H2O + O2(g) → 4Fe(OH)3(s) + 8H+                                                                             (2.5) 

and protons can be directly reduced to H2 gas at the cathode: 

8H+ + 8e- → 4H2(g)                                                                                                                            (2.6) 

The   corresponding   overall   reaction   obtained   by   combining reactions (2.1), (2.3) and 

(2.4) is: 

Fe + H2O + O2(g) →  Fe(OH)3 + H2(g)                                                                          (2.7) 

In acidic media of pH < 5.0, however, a greater quantity of Fe anode than that expected from 

Faraday law following reaction (2.7) is dissolved owing to the chemical attack of protons. 

Fe(OH)3 coagulates from pH > 1.0, i.e., it is present in much stronger acidic media than 

Fe(OH)2. Then, this precipitate can be in equilibrium with soluble monomeric  species  as  Fe3+ 

, Fe(OH)2+, Fe(OH)3+, Fe(OH)3 and Fe(OH)4
- as a function of the pH range. Among them, 

hydroxo-iron cations have a pronounced tendency to polymerize at pH 3.5–7.0 to give 

polymeric cations such as Fe2(OH)2
4+ and Fe2(OH)4

2+. 

2.2.3.5.  Factors Affecting Electrocoagulation 

Electrocoagulation is efficient in removing suspended solids as well as emulsions [199-208]. 

However, several variables may affect the efficiency of the process. Important factors 

influencing the process are presented in this section. 

2.2.3.5.1. Current Density 

The supply of current to the electrocoagulation system determines the amount of Al3+ or Fe2+, 

or any other ions released from the respective electrodes. For aluminum, the electrochemical 

equivalent mass is 335.6 mg(Ah)-1. For iron, the value is 1,041 mg(Ah)-1 [209, 210].  

However, when too large current is used, there is a high chance of wasting electrical energy in 

heating up the water. More importantly, large current density would result in a significant 

decrease in current efficiency. In order for the electrocoagulation system to operate for a long 

period of time without maintenance, its current density is suggested to be 20–25 Am-2 unless 

there are measures taken for a periodical cleaning of the surface of electrodes [206]. The 

current density selection should be made with other operating parameters such as pH, 

temperature as well as flow rate to ensure a high current efficiency. 
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The current efficiency for aluminum electrode can be 120–140% while that for iron is around 

100% [19]. 

The over 100% current efficiency for aluminum is attributed to the pitting corrosion effect 

especially when there are chlorine ions present [73]. The current efficiency depends on the 

current density as well as the types of the anions. Significantly enhanced current efficiency, 

up to 160%, was obtained when low frequency sound was applied to iron electrodes [178]. 

The quality of the treated water depends on the amount of ions produced (mg) or charge 

loading, the product of current and time (Ah) [19].  

The operating current density or charge loading can be determined experimentally if there are 

not any reported values available. There is a critical charge loading required. Once the charge 

loading reaches the critical value, the effluent quality does not show significant improvement 

for further current increase [211]. 

2.2.3.5.2. Presence of Chloride Ion 

Sodium chloride is usually employed to increase the conductivity of the water or wastewater 

to be treated. 

Besides its ionic contribution in carrying the electric charge, it was found that chloride ions 

could significantly reduce the adverse effect of other anions such as HCO3
-, SO4

2− [73, 212]. 

The existence of the carbonate or sulfate ions would lead to the precipitation of Ca2+ or Mg2+ 

ions that forms an insulating layer on the surface of the electrodes. This insulating layer would 

sharply increase the potential between electrodes and result in a significant decrease in the 

current efficiency. 

It is, therefore, recommended that among the 100% anions present, there should be 20% Cl− 

to ensure a normal operation of electrocoagulation in water treatment [73]. 

The addition of NaCl would also lead to the decrease in power consumption because of the 

increase in conductivity.  

2.2.3.5.3. Effect of pH 

The effects of pH of water or wastewater on electrocoagulation are reflected by the current 

efficiency as well as the solubility of metal hydroxides [19]. When there are chloride ions 

present, the release of chlorine also would be affected. It is generally found that the aluminum 

current efficiencies are higher at either acidic or alkaline condition than at neutral. The 
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treatment performance depends on the nature of the pollutants with the best pollutant removal 

found near pH of 7. The power consumption is, however, higher at neutral pH due to the 

variation of conductivity. When conductivity is high, pH effect is not significant. 

The effluent pH after electrocoagulation treatment would increase for acidic influent but 

decrease for alkaline influent. This is one of the advantages of this process. The increase of 

pH at acidic conditions was attributed to hydrogen evolution at the cathodes [159]. In fact, 

besides hydrogen evolution, the formation of Al(OH)3 near the anode would release H+ leading 

to decrease of pH. In addition, there is also oxygen evolution reaction leading to pH decrease. 

When there are chlorine ions, there are following chemical reactions taking place: 

 

2Cl- - 2e- → Cl2                                                                                                                    (2.8) 

Cl2 + H2O → HOCl + Cl- + H+                                                                                            (2.9) 

HOCl → OCl- + H+                                                                                                            (2.10) 

 

Hence, the increase of pH due to hydrogen evolution is more or less compensated by the H+ 

release reactions above. For the increase in pH at acidic influent, the increase of pH is believed 

to be due to CO2 release from hydrogen bubbling, due to the formation of precipitates of other 

anions with Al3+, and due to the shift of equilibrium towards left for the H+ release reactions. 

As for the pH decrease at alkaline conditions, it can be the result of formation of hydroxide 

precipitates with other cations, the formation of Al(OH)4
−. 

 

Al(OH)3 + OH- → Al(OH)4
-                                                                                              (2.12) 

 

The pollutant removal efficiencies were found to be the maximum near neutral pH using 

aluminum electrode [19, 213-215]. 

When iron electrode was used in textile printing and dying wastewater treatment, alkaline 

influent was found to give better color as well as COD removal efficiency [216-218].  

2.2.3.5.4. Temperature 

Although electrocoagulation has been around for over 100 years, the effect of temperature on 

this technology was not very much investigated. The research from the former USSR 

demonstrates that the current efficiency (CE) of aluminum increases initially with temperature 
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until about 60 0C where a maximum CE was found; further increase in temperature results in 

a decrease of CE [219-229]. The increase of CE with temperature was attributed to the 

increased activity of destruction of the aluminum oxide film on the electrode surface. When 

the temperature is too high, there is a shrink of the large pores of the Al(OH)3 gel resulting in 

more compact flocs that are more likely to deposit on the surface of the electrode. Similar to 

the current efficiency, the power consumption also gives a maximum at slightly lower value 

of temperature, 35 0C for treating oil-containing wastewater.  This was explained by the 

opposite effects of temperature on current efficiency and the conductivity of the wastewater. 

Higher temperature provides a higher conductivity, hence a lower energy consumption. 

2.2.3.6.  Electrochemical Oxidation 

Electrochemical oxidation or electro-oxidation (EO) is a conventional electrochemical 

procedure for removing recalcitrant organic pollutants from variety of wastewaters [230, 231]. 

This process consists of the following steps [35]:  

(i) Direct electron transfer to the anode, which yields very poor performance in terms of 

degradation. 

(ii) Generation electrolysis products from water discharge at the anode (such as physisorbed 

hydroxyl radical (OH)) or chemisorbed oxygen (in the lattice of a metal oxide (MO) anode). 

The action of these oxidizing species leads to a total or partial decomposition of recalcitrant 

organic species, accordingly. The existence of indirect or mediated oxidation with different 

heterogeneous species formed from water discharge allowed to propose two main approaches 

for the pollution abatement in wastewaters by EO [35]: 

(i) The electrochemical conversion method, in which refractory organics are selectively   

transformed into biodegradable compounds, usually carboxylic acids, with chemisorbed 

oxygen.  

(ii) The electrochemical combustion (or electrochemical incineration) method, where organics 

are completely mineralized, i.e., oxidized to CO2 and inorganic ions, with physisorbed OH. 

This radical is the second strongest oxidant known after fluorine, with  a  high  standard  

potential  (E0 = 2.80 V) that ensures its fast reaction with most organics giving dehydrogenated 

or hydroxylated derivatives up to conversion into CO2. 

In both cases high cell potentials are applied for the simultaneous oxidation of pollutants and 

water, thus maintaining the anode activity. The use of low cell voltages avoiding O2 evolution 
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frequently causes the loss of anode activity because some by-products formed from direct 

anodic oxidation can be adsorbed on its surface and hence, this procedure is not feasible in 

practical applications. It has also been suggested that the nature of the anode material affects 

both the selectivity and efficiency of the EO process.    

At the anode, the color removal and COD reduction proceeds only in the presence of chloride 

[232]. Therefore, the color reduction in the yeast effluent being treated is, most probably, due 

to the reaction between the generated chlorine/hypochlorite and the organic species. The 

chlorine/hypochlorite oxidizes the COD and is then reduced to chloride ion. 

The mechanisms of the oxidation of organic matter and the formation of hydroxyl radicals on 

an oxide anode are represented below [233]: 

 

2Cl- → Cl2 + 2e-                                                                                                                 (2.13) 

4OH- → O2 + 2H2O + 4e-                                                                                                  (2.14) 

Cl2 + H2 → OH+ + Cl- + HOCl                                                                                          (2.15) 

HOCl → H+ + OCl-                                                                                                            (2.16) 

Organics + 3OCl- → CO2 + H2O + 3Cl- + Product                                                           (2.17) 

 

At the cathode surface a hydrogen peroxide is formed by reduction of atmospheric oxygen. 

The color removal and COD reduction depends upon the generation of H2O2, pH, presence of 

a catalyst. Also the degradation of organics depends upon the formation of OH• radical and the 

nature of organic molecule. Therefore, the following reactions take place [233]: 

 

2H2O + 2e- → H2 + 2OH-                                                                                                  (2.18) 

O2 + 2H+ + 2e- → H2O2                                                                                                     (2.19) 

 

This demonstrates that the hydrogen peroxide is the product of the electron transfer to oxygen. 

However, if oxygen is reduced by a four-electron process, water is formed as the end product 

[232]: 

 

O2 + 4H+ + 4e- → 2H2O                                                                                                    (2.20) 

 

Hydrogen peroxide can reduce further to water: 
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H2O2 + 2H+ + 2e- → 2H2O                                                                                                 (2.21) 

 

In alkaline media, the reaction stoichiometry is given by: 

 

O2 + H2O + 2e- → OH− + HO2
-                                                                                        (2.22) 

HO2
- + H2O + 2e- → 3OH-                                                                                                (2.23) 

 

The per-hydroxyl ion (HO2
-) is formed by hydrogen peroxide dissociation in base: 

 

H2O2 → H+ + HO2
-                                                                                                            (2.24) 

 

The exact mechanisms of electrochemical oxidation are complex and not yet entirely 

understood. 

2.2.3.7.  Electroflotation 

Electroflotation is the process of electrolytic gases generation resulting from electrolysis 

processes.  

The use of gas as of a buoyant media to treat wastewater was first mentioned in a German 

patent in 1877 [175]. Based on this principle gases were generated by reaction of acids with 

suspended sulfides and carbonates. It was not until 1904 that production of gases by 

electrolysis for wastewater treatment was first referred to in a British patent [176].  

Application of electrolytically generated gases in wastewater treatment has been given 

significant attention in 1960s [177, 234].  Currently, many researchers have focused on 

implementation of this process in wastewater treatment [235-239].  

Bubble size distribution is of great importance in flotation as smaller bubbles cause an increase 

in interfacial area and, therefore, an increase in the efficiency of the separation process [240, 

241]. 

Furthermore, the zeta potential of both particles and bubbles can be of great importance in 

separation using flotation. So, if the particles are negatively charged, bubbles with a slightly 

positive charge would achieve the optimum removal efficiency [241]. 
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The particles to be removed in effluent treatment are normally less than about 20 µm and close 

to neutral buoyancy, and the concentration is also very dilute as low as 20 ppm [242]. 

Despite the long history of EF, the lack of ideal anodes with long service lives, low O2 

evolution overpotentials, and acceptable costs is still a serious problem that needs to be solved 

imminently [243]. 

2.2.3.8.  Photoassisted Electrochemical Methods 

Heterogeneous photocatalysis involves the conversion of organic pollutants to LMW species 

and even to their complete mineralization through the generation of highly reactive free radical 

oxidants. This treatment can be performed various types of lamps such as mercury lamps and 

a metal oxide as catalyst [244]. Titanium dioxide is one of the most useful catalysts showing 

several advantages compared to others, due to its high photochemical stability, low toxicity 

and reduced costs [245]. The heterogeneous photocatalysis systems are based on the 

absorption of photons with energy greater than 3.2 eV, which corresponds to wavelengths 

lower than ∼ 390 nm, to initiate the electron excitation, related to a charge separation event 

(gap band), i.e. one electron promotion at the conductive band (eCB −) and a positive hole at 

valence band (hVB
+), as represented in Equation 2.52 (bands formed by the evolvement of 

molecular orbitals of TiO2 as it is packed into a lattice). The hVB
+ can oxidize H2O molecules 

and OH− ions adsorbed at the particle surface (TiO2) producing •OH radicals (Equations 2.25 

and 2.26). The hydroxyl radical is a short-lived and extremely powerful agent in the organic 

substances oxidation, degrading and mineralizing them to CO2, H2O and inorganic ions. 

 

TiO2 + νh → eCB
- + hVB +                                                                                                                                                   (2.25) 

H2O(ads) + hVB
+ → •OH + H+                                                                                          (2.26) 

OH(ads)- + hVB
+ → •OH                                                                                                   (2.27) 

 

The presence of such dissolved oxygen is very important for heterogeneous photocatalysis 

because it can make the recombination process on TiO2 (hVB
+/eCB −) more difficult and 

maintain the electroneutrality of the TiO2 particles. This condition makes the treatment 

practicable for industrial scale application in the environment conditions. However, according 

to the literature, for the TiO2 photocatalysis process to succeed, the COD must be lower than 

800 mgL-1. 
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2.2.3.9.  Electrochemically-assisted Membrane Separation  

Commercial anaerobic membrane separation bioreactors have been used for treating municipal 

wastewater and process streams within many industries and provide a simple, reliable and 

small footprint alternative to conventional biological treatment methods, producing a high-

quality effluent at high organic loading rates. Although biological treatment is the most 

preferred option, single step biological treatment is often insufficient to deal with high strength 

wastewater such as yeast manufacturing effluent. Co-treatment processes, however, may 

increase either kinetic degradation rate or degradability; enhance gas production, reactor 

performance, and significantly improve quality of effluent [73, 115, 126, 246-251]. Improving 

the rate can also allow process intensification, with the faster kinetics allowing for the same 

performance in a smaller digester, and thus decreasing hydraulic retention time (HRT). There 

is therefore an increased need to review and analyze the different options for co-treatment in 

terms of mechanism, costs, and performance.  

Co-treatment may be implemented either before or after the anaerobic reactor. Both pre-

treatment and post-treatment can be performed simultaneously as well. 

A combined system consisted of EC pre-treatment followed by anaerobic digestion in 

anaerobic fixed-film bed reactor (AFFBR) has shown promising results for the treatment of 

high strength pharmaceutical wastewater [250]. EC as pre-treatment was successful in 

removing COD, BOD and color in the range of 22.8–24.2%, 34.50–36.70% and 69.2–70.3% 

respectively at pH 7.2 and current density between 40–120 Am-2. The ratio of total volatile 

acids to alkalinity (TVA/ALK) remained always less than 0.8 throughout the study indicating 

the reactor stability and that there was no significant accumulation of volatile acids. This 

suggests that the reactor could be conveniently operated up to a loading of 4 kgCODm-3 d and 

HRT of 2 days and achieve removal of 80% COD and 85.4% BOD. Operational problems 

such as clogging of the filter media were never observed during the entire period of reactor 

operation. The anaerobic co-digestion of glycerol together with the wastewater generated 

during biodiesel manufacturing, combined with EC pretreatment processes has also been 

investigated [251]. Following the EC pre-treatment, the mixture showed a high level of 

anaerobic biodegradability (around 100%), permitting a substantial quantity of methane to be 

obtained (310 mL CH4g
-1 CODremoved). TVA/ALK ratio values were always found to be lower 

than 0.30–0.40, thus indicating that the process operated without the risk of acidification. 
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Removal rates of COD and BOD after EC step (COD decreased by 6.25%, while soluble COD 

decreased by 13.60%) are in line with the other research [250].  

Investigation on the remediation efficacy of chemical coagulation-flocculation and EC post-

treatment of anaerobic biorefinery process water containing high concentrations of 

biorecalcitrant, colored organic melanoidins and polyphenols has shown similar removal 

efficiency [126]. Despite both methods removed up to 99% of the visible color (UV475) and 

80% of the COD, research suggests that EC has the potential to offer a simpler, more 

environmentally friendly post-treatment disposal of the coagulated sludge [73]. Energy 

consumption was also investigated for this type of wastewater by conducting batch 

experiments in the EC cells over the range of current efficiency from 2 to 100 Am-2 using 

aluminum electrodes. EC was shown to be capable of removing 90–98% of the color and 70–

80% of the COD, irrespective of current density or EC reactor design [115].  

Another study on simulated wastewater from an unbleached Kraft pulp mill suggests that the 

chemical coagulation process using ferric chloride and aluminum sulfate was a better 

alternative for treating the effluent from the upflow anaerobic sludge blanket (UASB) reactor 

than the EC process [247]. This study however lacks of economic analysis of the costs involved 

with the sludge disposal. Findings from experimental study on poultry manure wastewater 

clearly shows advantage of EC technology used as a post-treatment unit at initial pH of 5.0, a 

current density of 15 mAcm-2, and an electrolysis time of 20 min [249]. Toxicity tests also 

proved that the EC effluent complied with regulations and did not cause any acute toxicity 

symptoms and showed 100% survival of tested fish even at the end of the additional 120 h of 

exposure. 

Most of wastewater discharge guidelines are more stringent with regards to Fe than Al. 

However, despite Al current efficiency is high, thus reducing energy consumption, it is known 

to be prone to passivation [115]. 

The electrochemical treatment using dimensionally-stable Ti/Pt–IrO2 electrode without 

pretreatment was investigated for the anaerobic digestion effluent from an energy plant using 

pig excreta and kitchen garbage as the substrate [248]. It was shown that ammonia could be 

completely removed in 5 h using an electric current of 1 A; however, 620 mgL-1 of ammonia 

still remained when an electric current of 0.5 A was used. In addition, total organic carbon, 

inorganic carbon, and turbidity removals reached 51.4, 73.8, and 95.5%, respectively. Hence, 
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it was affirmed that the direct treatment of the anaerobic digestion effluent with the Ti/Pt–IrO2 

electrode not only was possible but also could achieve good treatment efficiencies. 

An integrated process involving a combination of pretreatment with electro-Fenton method, 

digestion in anaerobic filter and post-treatment stage was also investigated [246]. After electro-

Fenton, the COD of the crude wastewater dropped to approximately 68% of the initial value, 

and the COD/BOD5 ratio decreased from 5.84 before to 2.26 after. Pre-treatment resulted in 

decreasing the toxic effect of this wastewater on anaerobic digestion and in gradual increase 

in methanogenic activity. Inhibition on V. fischeri was reduced to 66.9% after pretreatment by 

electro-Fenton and to 45.2% in the anaerobic effluent. Yet, microtoxicity of Electro-Fenton 

anaerobic-treated stream remained high due to the residual VFA. For this purpose, EC post-

treatment was carried out using the same electro-Fenton reactor, in order to remove the residual 

polyphenols, COD and color. Study shows that the electrolysis process was able to remove 

70.55% of TSS, 91% of the color and 70% of the residual COD. Moreover, the analysis of 

ortho-diphenols showed a removal efficiency of 97% while polyphenolic compounds were not 

detected. The anaerobic process applied as post-treatment reached a loading rate of 10g CODl-

1d-1 without any apparent toxicity [246]. 

Based on the literature review, it can be concluded that little has been done to investigate 

electrokinetic pre- and posttreatment for membrane purification of molasses wastewater. Co-

treatment based on combination of electrokinetics and anaerobic membrane separation 

bioreactor is interesting and promising alternative as it may ensure the compliance with 

regulatory requirements otherwise unattainable in many cases, and generate energy.  

Analysis of 698 peer-reviewed articles published from 1970 to 2016 has been performed using 

Compendex and Engineering Village databases. Although, the best possible efforts have been 

made to provide consistent and reliable analysis, it should be pointed that a certain number of 

publications might not have been included in this research. Interestingly enough, this analysis 

demonstrates a constant increase of attention from scientific community towards application 

of electrokinetics in the wastewater treatment.  

2.3.  Anaerobic Treatment Systems 

Anaerobic systems can be operated as single-phase or two-phase systems [128].  Single-phase 

systems involve only one reactor for the microorganisms to decompose organics, whereas 

two-phase systems separate the acidogenic and methanogenic processes. The majority of full-
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scale applications and research effort has been concentrated on a single-stage anaerobic 

digestion (AD) within the mesophilic (25–45 0C) or thermophilic (45–65 0C) temperature 

ranges. However, some laboratory-scale experiments have also been carried out at 

psychrophilic temperature ranges, which has illustrated that low-temperature AD of effluents 

(< 20 0C) is also feasible, and can now be considered as an alternative to thermophilic or 

mesophilic AD [252-254].  

Approximately 67% of the membrane reactors currently in operation have been completely-

stirred reactors (CSTRs), 15% fixed-bed, or anaerobic filter (AF), 10% UASB or UASB 

hybrid, 7% fluidized bed (FB), and 2% septic tank (ST) [255]. 

This section begins by examining the normal operational and design considerations of 

contemporary anaerobic reactors currently employed in food wastewater treatment industry, 

followed by a thorough explanation of the reactor-specific features. 

2.3.1. Completely-stirred Reactor 

The most common reactor type used for anaerobic treatment of wastewaters is the completely-

stirred reactor CSTR. The main drawback of this type, the fact that the active biomass is 

continuously washed out from the system leading to long retention times, has been overcome 

in a number of systems based on immobilization of the active biomass [256]. For dimensioning 

the size of CSTRs both the OLR and the HRT are the parameters applied most frequently in 

practice [257]. Stable CSTR operation requires HRTs of 15 to 3–0 days. However, reduction 

of the HRT in CSTRs risks washout of the active biomass, with consequent process failure 

[256]. 

Slow growth rate of syntrophic and methanogenic bacteria is another major problem of this 

type of reactor. 80–90% COD reduction within a period of 10–15 days have been reported 

[128]. 

2.3.2. Suspended Bed Reactor 

UASB reactor and its hybrids is one of the most widely used reactors utilized for anaerobic 

treatment of various types of high-strength wastewaters [154, 258].  

Membrane use in UASB hybrid reactor can reduce the capital cost of high-rate reactor designs, 

for example, by eliminating the need for a solids/liquid/gas separator in a UASB [255, 259]. 
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In UASB reactors, the granulated bed acts as a filter for the SS, increasing residence time. 

Therefore, the UASB reactor may achieve high COD and SS removals at very short HRT 

making it perfect choice for highly-concentrated wastewaters treatment. 

The UASBs are rarely applied for low-strength wastewater treatment with COD concentration 

lower than 1,500 to 2,000 mgL-1 as the development of granules in the UASB reactors is very 

difficult in this case scenario [256]. 

2.3.3. Fixed Bed Reactor 

This type of reactor involves immobilization of microorganisms on an inert support in order 

to limit the loss of biomass from washout and enhance the microbial activity per unit of reactor 

volume.  

Different types of substrate materials have been utilized for this purpose and different flush 

out methods have been developed to reduce the possibility of plugging. Generally, with 

upward directed flow, and HRT of few hours to days, and OLR of 0.4–27 kgm-3d-1, this reactor 

may run in recycle mode to permit dilution or control pH [256].   

The AF reactor demonstrated higher efficiency compared to UASB reactor for molasses 

containing wastewater as it could be operated at higher OLR (19 kg COD m-3d-1) than UASB 

(12.5 kg COD m-3d-1) and higher COD removal efficiencies at OLR of 10 kg COD m-3d-1  can 

be achieved [128]. 

The better performance of the fixed film reactor can be attributed to its ability to retain higher 

biomass at higher OLR. 

 

2.3.4.  Fluidized Bed Reactor   

Fluidized bed reactors (FBR) contain an appropriate media such as sand, gravel or synthetic 

materials for bacterial attachment and growth. The reactors can be operated either in the 

upflow or down flow regimes. Bed expansion is managed by applying high inflow rates, 

usually by effluent or   biogas recycling, and elevated height/diameter ratios.   Studies on 

distillery effluent treatment in a down-flow fluidized bed system using ground perlite resulted 

in 75–95% reduction in COD content [154]. The utilization of a carrier material is 

advantageous in the down-flow configuration as it requires a lower fluidization velocity which 

prevents the possibility of clogging.  
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FB reactors can be operated as ultra-high-loaded anaerobic reactors (up to 30 kg COD m-3d-1) 

to treat effluents from the chemical, biochemical, and biotechnological industries [256].                 

2.3.5. Anaerobic Hybrid Reactor 

The anaerobic hybrid reactor (AHR) was developed to combine the advantages of AF and 

UASB reactors. The performance of AHRs depends on contact of the wastewater with both 

the suspended growth in the sludge layer and the attached biofilm in the material matrix. 

Hence, AHR configurations generally have better operating characteristics than fully packed 

reactors.  If an AHR has to maintain a high solid retention, a key factor to be attended to is 

having support materials to form a filter inside the reactor. The significance of the media is 

arguably comparable to granular sludge in an upflow-sludge bed-type reactor. 

2.3.6. Anaerobic Membrane Bioreactor 

Membranes provide exceptional suspended solids removal and complete biomass retention 

and can significantly improve biological treatment process, but their commercial application 

for  anaerobic treatment has been limited [255]. 

Single-stage reactors demonstrate lower COD removal efficiency if compared to multistage 

CSTR reactor configurations regardless of substrate complexity. The CSTR configuration 

exposes the membrane to the reactor bulk MLSS, whereas UASB reactors expose the 

membrane only to the residual effluent TSS [260].  For instance, the effluent from a UASB 

AnMBR was 300-550 mg TSS L-1, while the MLSS of a CSTR AnMBR reactor is commonly 

>10,000 mgL-1 [255]. Higher solids concentrations in the reactor usually lead to lower fluxes, 

however. 

Membranes can also simplify the design of high-rate reactor designs, and thus, reduce the 

capital cost as solids/liquid/gas separator in a UASB is no longer a necessity.  

Two-phase AnMBRs have also been studied. The membrane may be positioned after the first-

phase acid reactor, second-phase methane reactor, or after both reactors [261-265]. The  

location  of  the  membrane  unit  within  a  two-phase  system  can  have  a  significant  impact  

on  performance.  For a two-phase system, a  COD removal  efficiency  of  52%  observed  

when  no  membranes  were  used, compared to 78% when a membrane was used after the 

methane-phase reactor and 92% when a membrane was used after the acid-phase reactor. The 

effluent  suspended solids concentration decreased from 361 mgL-1 in a conventional 
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configuration to 4 mgL-1 with a membrane placed after the acid-phase and to 0% after the 

second stage [255].  

A two-phase AnMBR with a submerged membrane in the acidogenic reactor was tested to 

increase the sludge retention time SRT and to enhance the solid separation [266]. The pilot 

plant experiment was performed for wastewater treatment for one year. The membrane 

material consisted of mixed esters of cellulose of 0.5 μm pore size. COD removal efficiency 

was 80% and the methane production showed 0.32 m3kg-1 COD removed for the submerged 

membrane system in the anaerobic digester. Authors noticed significant cake resistance of the 

membrane, and implemented preliminary filtration with a stainless-steel filter and air 

backwash in order to minimize the cake resistance. Among the tested preliminary filters, the 

63 μm pore filter demonstrated the best performance. By cleaning with alkali first and acidic 

solutions later, the performance increased up to 89%.  

The conventional acid reactor is a CSTR with a short HRT operated at low pH.  However, this 

design is not suitable for degradation of every substrate.  For example, the degradation of long-

chain fatty acids, aromatics, and some proteins is not thermodynamically favourable in normal 

acid-phase reactors as the syntrophic relationships needed to consume reducing equivalents 

have been eliminated [255]. A membrane acid reactor, on the other hand, can separate the SRT 

from the HRT to allow the growth of hydrogenotrophic methanogens at a shorter HRT and 

low pH.  As hydrogen reacts with reducing equivalents, conditions become favourable. 

2.3.7. Two-stage Reactor 

Conventional biogas processes described previously have long been focusing on methane 

production. However, a two-stage anaerobic process producing both hydrogen and methane 

from organic wastes have also been given attention recently as hydrogen is considered to be a 

clean and environmentally friendly gas, oxidized to pure water as a combustion product, thus, 

eliminating greenhouse gases emission [267]. 

A two-stage AD system is capable of optimizing the fermentation steps of each stage in 

separate reactors or compartments under different environmental conditions. It is clear that  

the  microorganisms that work in the anaerobic digestion processes (hydrolytics, acetogenics 

and methanogenics have different physiological and nutrient requirements, levels of sensitivity 

to the environmental conditions and growing kinetics [268]. As a result, the overall efficiency 

and kinetics of the process are higher than those of conventional single-stage operations in 
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which all primary and secondary organisms and all associated biochemical reactions are 

conducted under the same identical environmental conditions in a single unit [150].  

In the primary acid fermentation stage, the end-products of the reactions are formate, acetate, 

lactate, ethanol, carbon dioxide, hydrogen and C3 and higher volatile fatty acids [128].  

The secondary stage constitutes acetotrophic methane fermentation where the end products are 

methane and carbon dioxide. 

Microbial community analysis in a two-stage process with molasses as a single source of 

carbon revealed that Clostridium butyricum was the major hydrogen-producing bacteria and 

methanogens consisted of hydrotrophic Methanobacterium beijingense and acetotrophic 

bacteria Methanothrix soehngenii [269]. Research demonstrated that in the first-stage process, 

hydrogen could be efficiently produced from diluted molasses with the highest production rate 

of 2.8 L-H2 /L-reactor×d at the optimum HRT of 6 h. In the second-stage process, methane 

could be also produced from residual sugars and VFAs with a production rate of 1.48 L-CH4 

/L-reactor×d at the optimum HRT of 6 d, at which overall COD removal efficiency of the two-

stage process was determined to be 79.8%.  

Microbial community structures were also assessed in a two-stage anaerobic digestion system 

treating food waste-recycling wastewater [270].  The reactors were operated for 390 d at 10 

different HRTs ranging from 25 to 4 d. Stable operation was achieved with the overall COD 

removal efficiency of 73.0-85.9% at organic loading rate of up to 35.6 g COD L-1d-1. The 

research also reports a shift in performance due to changes in microbial structure from 

Aeriscardovia- and Lactobacillus amylovorus-related species to one dominated by 

Lactobacillus acetotolerans- and Lactobacillus kefiri-like organisms at the first stage and from 

Methanoculleus- to Methanosarcina-like organisms in methanogenic stage.  

2.4. Summary of Critical Review  

As it was outlined throughout the literature review presented in this chapter, food industrial 

wastewater plants effluents pose environmental hazard to receiving treatment facilities mainly 

due to the contents of carbon, nitrogen and phosphorus, particularly if the receiving plant is 

not designed to perform tertiary nutrients removal. Industrial effluents also contain higher 

concentration of pollutants compared to domestic wastewater streams and often colored. 

These nutrients are the major stimulants of eutrophication and they should be eliminated from 

the effluent before discharge into the aquatic environment. The ever stringent regulations 
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require the retrofitting of the existing wastewater facilities to meet the disposal requirements 

and reduce the concentration of the pollutants as much as possible. In conventional treatment 

plants, the removal of C, N, P and color requires several physico-chemical and biological 

reactors or zones within one reactor working simultaneously at different operating conditions 

to create the optimum environment for the removal of each individual pollutant. The anaerobic 

and sequential anaerobic/aerobic reactors are by far the most widely applied methods to 

remove carbon, through the oxidation of the organic materials by the microbial biomass. 

Despite the fact that anaerobic treatment provides better results than aerobic process and 

remains primary method of treatment, research on application of MBRs for anaerobic 

industrial wastewater remains elusive.  

Nitrogen removal involves sequential aerobic and anoxic biological reactions to achieve 

complete transformation of the influent ammonium into nitrogen gas. Carbon source is added 

into the anoxic reactor to sustain the heterotrophic denitrifies responsible for conversion of 

nitrate into gas, which is associated with high cost.  

Phosphorus removal involves the recycling of biomass into anaerobic and aerobic zones in 

order to promote the accumulation of phosphate by micro-organisms in a process known as 

enhanced biological phosphorus removal (EBPR). Coagulants such as aluminum sulfate and 

ferric chloride are common phosphorus precipitants that are used as alternatives to the EBPR 

process or in cases where lower phosphorus concentrations are required.  

Color removal from industrial effluents is also a significant challenge. No common solution is 

available, however oftentimes chemical treatment methods are used. 

The elimination of all these pollutants in one single reactor is a challenging task.   

In addition, membrane fouling prevents long-term high performance of membrane units in 

biological reactors and sludge dewatering/volume reduction significantly affect the cost of 

solids management. Therefore, reduction of specific resistance to filtration (SRF) may greatly 

enhance performance of membrane units and sludge volume index (SVI) can significantly 

lower cost of solid waste management. To decrease the amount of sludge generated in AnMBR 

applications several approaches have been taken, however majority of the conducted studies, 

describe chemical coagulation as a primary method. In this case, aluminum and iron salts for 

coagulation have been introduced into aqueous phase as described in the literature. However, 

the addition of chemicals to the MBR system usually leads to side effects the most common 
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of which are increasing the amount of sludge, producing by-products, poor quality of bio 

solids. 

Therefore, a novel advanced wastewater treatment system for industrial wastewater treatment 

capable to provide an innovative hybrid wastewater treatment method by integrating anaerobic 

biological process, membrane treatment and electrochemical phenomena into a single compact 

unit is required.  

Therefore, research and development of the novel system providing the favorable interactions 

between three main processes: physico-chemical, biological and electrokinetic phenomena are 

required to address these issues.  

2.5. Hypothesis and Research Objectives 

In the previous sections, it was discussed that many food industries fail to produce effluents 

with the quality that would meet standards imposed by local and federal governments. 

Therefore, there is a need for a novel and more efficient method of the industrial wastewater 

treatment. 

In order to overcome many common problems found in present industrial wastewater 

treatment technologies, a new technology was proposed in this research. The novel system 

combines membrane reactor, anaerobic biological treatment and electrokinetic processes in a 

single compact unit suitable for treatment of recalcitrant industrial wastewaters. 

2.5.1. Hypothesis 

The application of electrokinetics in combination with aerobic membrane bioreactors has 

already demonstrated promising results for domestic wastewater treatment and could be 

considered as a feasible method of advanced treatment [134, 135]. Therefore, the central 

research hypothesis was that the electrokinetic phenomena could enhance removal of carbon, 

nutrients and color from high-strength wastewaters sourced from food industry in anaerobic 

reactor equipped with a hollow fiber membrane and metal electrodes. The detailed objectives 

of this research are presented in the following sections.  

2.5.2. Research Objectives 

As a prerequisite, a sufficient understanding of how electrochemical methods can enhance 

anaerobic membrane wastewater treatment process suitable for industrial applications was 
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required. Thus, the central research objective was to develop a novel electro-anaerobic 

membrane bioreactor (EAnMBR) and investigate removal paths and mechanisms in the new 

system under electric potential applied. 

2.5.3. Objectives with Respect to Major Pollutants  

Based on the comprehensive study of literature, the molasses-containing wastewater was 

selected for the research as it contains extremely high concentrations of carbonaceous, 

nitrogenous components and phosphorous, and is dark-brown colored. Therefore, the new 

system must be capable to significantly reduce the concentration of pollutants and produce an 

effluent of excellent quality.  

2.5.3.1.  Carbon 

Effluents arising from food industrial processes, i.e. molasses fermentation are not only highly 

colored, but also carry a large organic load. Existing anaerobic/aerobic biological treatment 

methods are relatively effective for the BOD reduction, however unable to remove the COD 

from this type of wastewater.  

The objective of this research was to study how various operating parameters such as voltage 

gradient, current density and electrical exposure mode (time-On: time-Off) can increase COD 

removal efficiency. 

2.5.3.2.  Nitrogen  

Nitrogen and its derivatives removal from wastewater are a major concern for food producing 

industries as many municipal wastewater treatment plants limit accepted concentrations for 

these compounds (e.g. TKN). Protein-containing compounds have also been implicated with 

polysaccharides as an important component of organic foulant on membranes in wastewater 

treatment. 

Therefore, the objective of the thesis was to determine how various operating parameters such 

as voltage gradient, current density and electrical exposure mode (time-On: time-Off) affect 

nitrogenous compounds removal efficiency. 
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2.5.3.3.  Phosphorous 

Phosphorous removal is important for wastewater discharge quality and maintenance of 

membrane permeability. 

The objective of the study was to analyze how various operating parameters: voltage gradient, 

current density and electrical exposure mode (time-On: time-Off) can increase phosphorous 

removal efficiency. 

2.5.3.4.  Color-forming Substances 

Highly-dispersed and colored colloidal systems containing melanoidins, lignins, waxes, and 

caramels remain challenge for conventional methods of treatment.  

The investigation was focused on electrokinetically enhanced improvement of the color 

removal to an acceptable level and to maximize discoloration in anaerobic conditions. 

2.5.4. Objectives with Respect to Operating Parameters  

Operating parameters play a major role in successful treatment. Therefore, the major 

objectives related to operation parameters were to define operation complexity with respect to 

interaction and coexistence of a number of electrochemical, biological and separation 

processes and to define the most affecting parameters where interactions take place that can 

enhance effluent characteristics.  
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3. Materials and Research Methods 

This section presents procedures applied to the experimental phase of the thesis. 

3.1. Materials 

Anaerobic inoculate from anaerobic digester in wastewater treatment plant in Saint Hyacinth 

as well as two wastewaters (synthetic and industrial) were used. The samples were stored in 

polyethylene containers and refrigerated prior being used in the study. 

3.1.1.  Anaerobic biomass 

Anaerobic sludge acquired from a local plant was stored at 4 0C for no longer than a month to 

avoid deterioration of properties due to the prolonged storage prior seeding. The biomass was 

incubated prior inoculation at the temperature of 35 0C before seeding. 

3.1.2.  Synthetic Wastewater Characterization 

The synthetic wastewater studied in this research was designed to simulate industrial 

wastewater with high content of nutrients, organic carbon and dissolved solids based on C:N:P 

ratio 110:5:1. Table 3.1 presents the values of the key characteristics of the synthetic 

wastewater. 

Table 3.1. Composition of the synthetic wastewater 

Component Chemical Formula Molecular Weight, 

gmol-1 

Concentration, 

mgL-1 

Glucose C6H12O6 180.00 3,230.00 

Peptone - - 252.00 

Yeast Extract - - 300.00 

Sodium Acetate CH3COONa 82.03 287.00 

Ammonium 

Sulphate 
(NH4)2SO4 132.10 940.00 

Potassium 

Phosphate 
KH2PO4 136.10 50.00 

Monopotassium 

Phosphate 
K2HPO4 136.09 100.00 
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Magnesium 

Sulphate 
MgSO4·7H2O 169.02 40.00 

Sodium 

Bicarbonate 
NaHCO3 83.00 25.00 

Potassium 

Chloride 
KCl 74.55 25.00 

Manganese Sulfate 

Monohydrate 
MnSO4·2H2O 169.02 4.50 

Calcium Chloride CaCl2·2H2O 147.00 4.00 

Iron (III) Chloride 

Hexahydrate 
FeCl3·6H2O 270.29 0.40 

 

3.1.3.  Industrial Wastewater Characterization 

The process wastewater was obtained from a discharge outlet of effluent prior treatment 

facility attached to a local industrial yeast processing plant. Table 3.2 presents the values of 

the key characteristics of the raw wastewater samples. 

Table 3.2. Composition of the industrial wastewater 

Parameter Value 

pH 5.2±0.2 

Volatile Acids as HOAc, mgL-1 8,740±2.0 

N Total, mgL-1  2,300±4.0 

P Total, mgL-1  150±2.0 

COD, mgL-1 53,300±1,000 

SO4-S, mgL-1 8,350±8.0 

Color Pt-Co, mgL-1 

 

20,000±10 

TDS, mgL-1 

 

7,200±5.0 

Redox Potential, mV 

 

-81±1.0 

Conductivity, µSm-1 346±1.0 
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At the time of sampling, the plant was not able to reach the allowable limits in effluent due to 

its high carbon and nitrogen contents. The wastewater had an excessive dark-brown color. 

3.2.  Research Methods 

Different physiochemical and biochemical parameters were analyzed in this research to assess 

the performance of the EAnMBR system.  

3.2.1.  Data Collection Process 

The following measurements were performed during the study: COD, VFA, N, P, changes of 

current density, monitoring pH, EC, floc zeta potential, TSS, VSS, SVI, and color. 

In batch experiments, liquid samples were withdrawn every day. In the continuous flow 

experiments, samples were taken twice per week from the treated effluent storage tank for 

analysis with a 10-ml plastic syringe (Fisher Scientific Ltd). 

All samples were filtered with 0.45 µm syringe filters before analysis to remove all non-

dissolved solids, which could affect the analytical techniques. All samples were diluted to 

concentrations within the range measured. 

3.2.2.  Analytical Techniques 

Techniques provided coverage of the experimental phase of the research and used to assess 

qualitatively and quantitatively the composition of the wastewater are presented in the 

following sections. Summary of measured parameters and analytical methods are 

summarized in Table 3.3.  

Table 3.3. Analytical Methods 

Parameter Method(s) 

COD method 8000, Hach, approved by EPA USA 

VFAs (CH3COOH) Hach Method 10240 approved by EPA USA 

Total Nitrogen Hach Method 10208 approved by EPA 

Ammonia Nitrogen (NH3-N) Hach Method 10208 approved by EPA USA 

Nitrate (NO3-N) Hach Method 8192 approved by EPA USA 

Nitrite (NO2-N) Hach Method 8039 approved by EPA USA 

Phosphorous as TP Hach Method 10210 approved by EPA USA 
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Sulfur as (SO4
2-) Hach Method 10227 approved by EPA USA 

TSS, VSS, SVI According to Standard Methods 

Specific Resistance to Filtration 

(SRF) 

Vacuum filtration apparatus (Buchner 

funnel test) 

Zeta Potential Zeta meter analyzer (Zeta meter 3.0+, USA) 

Dissolved Oxygen (DO) DO meter (YSI, Model 52, USA) 

pH, ORP, Electrical Conductivity 
Denver Instrument, pH meter model 215, 

USA 

Particles Size Distribution (PSD) 
Partica LA-950V2 laser diffraction particle 

size analysis system Horiba, USA 

Color 
Color disc/APHA Platinum method using 

Cobalt Standard Hach Color Test 

  

 

3.2.2.1. Chemical Oxygen Demand 

The COD samples were centrifuged at 4000 rpm for 20 minutes prior measurements were 

conducted using TNT plus vials (method 8000, Hach, approved by EPA USA). 

According to the method, the concentration of COD (mgL-1) is defined as the concentration of 

consumed O2 (mgL-1) to oxidize the organic matter in a sample. In this method, the samples 

were digested with potassium dichromate, a strong oxidizing agent, in the reactor for two 

hours. The organic compounds in the sample became oxidized and dichromate ion became 

reduced to green chromic ion. After samples were cooled down to the room temperature, their 

absorbance was read by a UV-VIS spectrophotometer. 

3.2.2.2. Volatile Fatty Acids 

For determination of Volatile Acids by the Esterification method, Hach Method 10240 

approved by EPA USA using TNTplus™ vials and results were provided as HOAc (acetate), 

mgL-1. 

Volatile fatty acids in the sample react with diols in acidic environment and form fatty acid 

esters. The esters then reduced by Fe3+ to form a red-colored complex. The concentration of 

VFA was measured based on photometric method and the color of the formed complex. A 
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wastewater sample of 0.05 L volume was centrifuged at 4000 rpm for 20 minutes prior 

measurements. 

3.2.2.3.  Nitrogen Fractionation 

All measurements of Nitrogen species are presented in mgL-1. For determination of Total 

Nitrogen (TN, Ntot) in this research, the Persulfate Digestion method was selected, using 

TNTplus™ vials (Hach Method 10208 approved by EPA). TN is the sum of Total Kjeldahl 

Number (TKN), NO2 and NO3. It can also be calculated as NH4
+ + NO2

- + NO3
- + organic-

Nitrogen. 

Inorganic and organic nitrogen compounds are digested with peroxodisulfate and are oxidized 

to nitrate. The nitrate ions react with 2,6-dimethylphenol in a solution of sulfuric and 

phosphoric acid to form a nitrophenol. Inorganic nitrogen is the sum of NH4
+ + NO2

- + NO3
-
.  

For determination of ammonia as NH3–N, the Salicylate Digestion method was selected, using 

TNTplus™ vials (Hach Method 10031 approved by EPA). Ammonium ions react at pH 12.6 

with hypochlorite ions and salicylate ions in the presence of sodium nitroprusside as a catalyst 

to form indophenol. The amount of color formed is directly proportional to the ammonia 

nitrogen present in the sample. The measurement wavelength is 690 µm. 

Nitrate and Nitrite were measured as NO3 –N using TNTplus™ vials (Hach Method 8192 and 

8039 respectively that was approved by EPA). In this method, Cadmium metal reduces nitrate 

in the sample to nitrite. The nitrite ion reacts in an acidic medium with sulfanilic acid to form 

an intermediate diazonium salt. The salt couples with gentisic acid to form an amber colored 

solution. The measurement wavelength is 500 µm for spectrophotometers. 

Total Kjeldahl Number (TKN) is the sum of NH4 + organic-Nitrogen. TKN was measured in 

accordance with the Hatch Method 10242 approved by EPA using TNTplus™ vials. TKN is 

the sum of organic nitrogen and ammonia. In the simplified TKN method, inorganic and 

organic nitrogen are oxidized to nitrate by digestion with peroxodisulfate. The nitrate ions 

react with 2,6-dimethylphenol in a solution of sulfuric and phosphoric acid to form a 

nitrophenol. Oxidized forms of nitrogen in the original sample (nitrite + nitrate due to sample 

preservation) are determined in the second test vial and then subtracted, which results in TKN. 

Dissolved Organic Nitrogen (DON) was calculated as the difference between filtered with 

0.45 µm Millipore express filters TKN and NH4–N nitrogen.  
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3.2.2.4.  Phosphorous 

Ortho- and Total Phosphorus (phosphate) in the research was measured by the Ascorbic Acid 

method, Hach Method 10210 (total) using TNTplus™ vials. 

Ammonium molybdate and antimony potassium tartrate react in an acid medium with dilute 

solutions of phosphorus to form an antimony-phospho-molybdate complex. This complex is 

reduced to an intensely blue-colored complex by ascorbic acid. The color is proportional to 

the phosphorus concentration and is measured at 650 or 880±5 µm. 

3.2.2.5.  Sulfur 

In this research sulfur was measured as SO4
2- in mgL-1 by the Turbidimetric method, Hach 

Method 10227 using TNTplus™ vials. In this method, sulfate ions in the sample react with 

barium chloride in aqueous solution and form a precipitate of barium sulfate. The resulting 

turbidity is measured photometrically at 880 µm. 

3.2.2.6. Total Suspended Solids and Volatile Suspended Solids 

The total suspended solids (TSS) data is critical in determining the operational behavior of the 

treatment system and its efficiency. Volatile suspended solids data (VSS) is critical in 

determining the operational behavior and biological concentration in the system. The tests 

were conducted according to the Standard Methods as described in Appendix A on a stand 

depicted on Figure A.1.  

3.2.2.7. Sludge Volume Index   

SVI was used to monitor settling characteristics of sludge according to standard method 2710D 

“The determination of sludge volume index” [271]. 

The SVI is the volume in milliliters occupied by 1 gram of a suspension after 30 minutes of 

settling. The SVI in this study was monitored by the settled volume method. Equipment 

required for this test included a one liter graduated cylinder, latex gloves and safety glasses. 

The sludge sample was homogenized before being placed in the cylinder. The volume of the 

sludge was recorded at 30 minutes as the settled volume. The SVI was calculated as per 

equation 3.1: 
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SVI, (mgg−1) =
(

mL

L
) × 1000mg

Suspended Solids (mgL−1) × g
                        (3.1) 

3.2.2.8.  Electrical conductivity, pH and Dissolved Oxygen 

Electrical conductivity (EC), pH and dissolved oxygen were measured using an HQ30d single-

input multi-parameter meter (Hach, USA). Current density was calculated as current (A) 

passing between the electrodes divided by the anode surface area (m2).  

3.2.2.9.  Particle Size Distribution 

The particle size distribution (PSD) of the aggregates were determined with Partica LA-950V2 

laser diffraction particle size analysis system (Horiba, USA). Measurements were conducted 

on volume distribution. 0.05 to 0.10 L of the activated sludge was taken by a syringe with 2 

mm opening in order to preserve particles aggregates. The sample was then stirred carefully 

in the syringe before placing into the instrument. 

A wastewater sample of 50 ml volume was centrifuged at 4000 rpm for 20 minutes. The 

supernatant was separated and mixed with a few drops of the activated sludge. The mixture 

was injected into the electrical cell of zeta meter 3.0+ (Zeta -Meter Inc., USA) for floc zeta 

potential measurement. The final value was given as the average of 10 readings. 

3.2.2.10. Current Density 

Charge carrying between the electrodes depends on the ionic conductance and surface 

conductance. Ionic conductance refers to carrying charge by the soluble free ions in the bulk 

solution, while surface conductance is carried out by the ions in the electric double layer at the 

solid liquid interface [136]. Therefore, the current passing between the two electrodes is 

proportional to the concentration of soluble ions, the concentration of suspended solids and 

the voltage gradient. These three main factors collectively determine the final value of the 

current generated. The same value of voltage gradient may generate different currents passing 

through the reactor based on the concentration of soluble salts and MLSS. However, the 

magnitude of electrical current between the electrodes is the factor affecting the major 

electrokinetic processes. Based on that, current density was used in this research as a basis to 

make comparisons with the changes of effluent quality. The batch bioreactors occasionally 
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were replenished with wastewater in order to maintain the same current density during the 

experiments.  

3.2.2.11. Zeta Potential  

Zeta potential was measured daily in the supernatant after settling 50 ml of the mixed liquor 

for 30 min. A wastewater sample of 50 ml volume was then centrifuged at 4000 rpm for 20 

minutes. The supernatant was separated and mixed with a few drops of the activated sludge. 

The mixture was injected into the electrical cell of zeta meter 3.0+ (Zeta -Meter Inc., USA) 

for floc zeta potential measurement. The final value was given as the average of 10 readings. 

3.2.2.12. Color 

The true color (after filtration, 0.45 µm) of the samples was measured by in Pt-Co units by 

Color disc/APHA Platinum method using Cobalt Standard Hach Color Test Kit. A visual 

comparison method (color matching) was employed to determine color concentration. The 

tubes were rinsed with deionized water before and after the test. A wastewater sample (diluted 

if necessary) was added to a vial and the kit was placed in front of a halogen lamp. The wheel 

then was rotated until the sample matched a reference color and concentration was displayed 

in a window. If the color match was between two segments, the value that is in the middle of 

the two segments was used. 

3.2.3.  Statistical Analysis 

Several different processes take place simultaneously in waste-water treatment process leading 

to the difficulty in understanding the whole system. Moreover, the nature of influents is 

constantly changing over time, resulting in an important variability of the system. Application 

of statistical methods allowed assessing treated effluent quality parameters with a certain 

degree of confidence. The multiple monitored parameters were subjected to analysis by the 

following methods. 

As relationships between random error, standard deviation, confidence interval and number of 

measurements exist, it was necessary to take a sufficient number of samples. Therefore, 

samples were measured in triplicate from each sampling point.  

The acquired wastewater characteristics were calculated as arithmetic mean of the values in 

the database. The arithmetic mean was preferred over the median, as it allowed to correct 
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outliers and skewed distributions.  While numerical information was presented in tabular form, 

it was far more effective to visualize the data in graphic form. For this research histogram and 

scatter charts were used for data representation.  

3.2.4. Experimental Methodology 

Field testing is indispensable for garnering information regarding the processes, however, 

understanding of the fundamental mechanisms of successful anaerobic treatment of yeast 

wastewater containing recalcitrant compounds remains elusive in the field. No studies have 

ever investigated electro-anaerobic treatment of such a wastewater; therefore laboratory 

experiments were designed to simulate the essential features of the future functional field 

systems. The experimental part of the research was performed in 4 Phases. 

The variable used for the optimization was the current density. The flowchart of the 

methodological approach is depicted on Figure 3.1. The Phase I experiments were designed 

for a batch operation to study the relationship between the electrical operating parameters and 

physical-chemical effluent properties over the operating period of 120 h. A preliminary 

experimental phase was conducted on a series of small-scale electrobioreactors (without the 

operation of the membrane module) to identify the best electrokinetic conditions so as not to 

inhibit the biological activity in the EAnMBR system in the later Phases of the research. These 

electrical operating parameters included voltage gradient, current density, and exposure time 

to electrical field (time-On: time-Off), i.e. mode of operation. The following effluent quality 

parameters were measured: Ntot, COD, Ptot, color, pH, Zeta potential (ζ-potential), oxidation-

reduction potential, TDS, and conductivity. The main objective of the Phase II was designing 

a novel system and to determine its efficiency for wastewater treatment in continuous flow 

mode based on the outcome from Phase I. The Phase II was conducted in 2 Stages. The Stage 

I extended from day 1 to day 30 without applying DC in order to simulate an AnMBR for a 

reference efficiency baseline.  
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Phase I  

(Day 1-5) 

Preliminary Design and Operation in Batch Mode  

Objective:  

To determine optimal electrical operating parameters 

for Phase II and Phase III 

Phase II 

(Day 1-60) 

Synthetic Wastewater Continuous Flow  

Objective:  

To design EAnMBR 

To determine efficiency of synthetic wastewater 

treatment 

Stage I  

(Day 1-30) 

MBR Simulation  

Stage II  

(Day 31-60) 

EAnMBR 

Simulation  
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Figure 3.1. Flow chart of the methodological approach 

Phase IV  

(Day 1-60) 

Industrial Wastewater Continuous Flow Optimization 

Objective:  

EAnMBR optimization for COD, N, P, Color removal 

Stage I  

(Day 1-30) 

CD= 20.0 Am-2  

Phase III 

(Day 1-120) 

Industrial Wastewater Continuous Flow  

Objective:  

To determine efficiency of industrial wastewater treatment 

 
Stage I  

(Day 1-60) 

MBR Simulation  

Stage II  

(Day 61-120) 

EAnMBR Simulation  

Stage II 

(Day 31-60) 

CD= 17.5 Am-2  

Stage III  

(Day 61-90) 

CD= 15.0 Am-2  
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Stage II lasted from day 31 to day 60 when operating as EAnMBR with DC applied. Both 

stages were conducted on a synthetic wastewater. For both stages, the following measurements 

were performed: COD, VFAs, and nitrogen species, namely Ntot, TKN, ammonia, nitrate-

nitrite, DON, P, S, TSS, VSS, SVI, and pH. 

The primary goal of the Phase III of this study was to evaluate the performance of the novel 

system for industrial wastewater treatment in continuous flow mode. The Phase III was 

conducted in two Stages. The Stage I of Phase III extended from day 1 to day 60 without 

applying DC in order to simulate a conventional AnMBR, and Stage II lasted from day 61 to 

day 120 when operating as EAnMBR with electrical current applied. Both stages were 

conducted on an industrial wastewater. For both stages the measurements similar to those in 

Phase II were performed.  

The research objective of the Phase IV was an optimization of operating parameters of 

EAnMBR for specific removal of COD, nitrogen, phosphorus and color from the influent 

industrial wastewater by surface response method.  

3.2.4.1.  Preliminary Design and Operation 

As it was stated in the hypothesis, the electrical operating parameters are paramount for a 

successful treatment process of molasses containing industrial wastewater. The primary aim 

of this stage was to investigate and to optimize the effects of pre-treatment and operating 

parameters such as current density, pH, and colloids stability on the performance of electro-

anaerobic reactor in terms of COD, nitrogen, phosphorous and color reduction and exposure 

time of microbial community to the electric field. Phase 1 experiments were conducted to 

study the relationship between the electrical operating parameters and physical-chemical 

effluent properties over the operating period of 120 h. 

3.2.4.1.1. Phase I: Batch Experimental Setup  

Experimental setup of Phase I consisted of a series of 1-L batch electrokinetic bioreactors, 

control reactor for reference and supporting system which included the following components 

(Fig. 3.2): 

• Electric power supply 

• Power Controller 

• Electro-Anaerobic Reactors (EA Reactors) 
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• Control Anaerobic Reactor 

• Gas Release System 

 

The power supplies were connected to the vessels by the shortest possible insulated cables 

with appropriate current ratings, terminated with bolt-on crimp-lugs.  

Electrodes were affixed to a Plexiglas frame in order to keep them in a vertical position. The 

space between the electrodes was adjusted accordingly.  

The porous (40% opening) flat aluminum anode and stainless steel mesh cathode were chosen 

based on previous research [272].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Phase I Experimental System Setup 
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The reactors design simulated the electrokinetic anaerobic membrane bioreactor without 

membrane module. Anaerobic sludge was stored at 4 0C for no longer than a month to avoid 

deterioration of sludge properties due to the prolonged storage. Two voltage gradients were 

selected based on 1.0, and 1.5 Vcm-1 to provide different current densities between the 

electrodes. The voltage gradients were selected based on the results of a previous study [136]. 

Five different electrical exposure modes (5-On: 5-Off, 5-On: 10-Off, 5- ON: 15-Off, 5-On: 

20-Off and continuous-On) were selected to run the bioreactors for a minimum of 120 h for 

testing electro-kinetic processes and to project the long term impact of DC field on the 

anaerobic microbial community. Each run consisted of five anaerobic electrobioreactors and 

one control anaerobic bioreactor operated side by side as a control. 

All the reactors were monitored during the experiments in order to maintain the anaerobic 

condition within the vessels. 

DC power supply (TES 6230) and all electrodes were connected through a central distribution 

panel. A switch-timer was connected to the circuit between the distributor and the cathode in 

order to control the sludge exposure time to DC. Current density was calculated as follows:  

Current density (Am-2) = Electrical current (A) / Effective surface area of electrode (m2) 

Three current densities were selected for this experiment, 12, 15 and 20 Am-2. The former 

value of current density was chosen based on the results of a previous research as it improved 

effluent properties of interest [136]. The summary of the parameters selected for the 

experiments in Phase I such as current densities and the exposure modes are represented in 

(Table 3.4). The range of values was selected to test the system at various working conditions 

that could be adopted in later phases of the study. A control reactor (E7) without electrical 

current applied was run side by side for comparison. The design of the system permitted to 

connect and run six reactors simultaneously. Each run was operated for a period of 120 hours. 

No synthetic water was added into the reactors, the current density was maintained constant 

by adjusting the voltage. In this stage, the effluent quality parameters in terms of N, P, COD, 

Color removal efficiency, pH, Redox Potential and Conductivity were measured and analyzed 

as indicators. 
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Table 3.4. Operating conditions of the batch electrocoagulation anaerobic reactors 

Experiment 

№ 

Duration,  

h 

Current Density,  

Am-2 

Voltage,  

Vcm-1 

Exposure Time, 

min 

E1 120 12 1.0 5’-on/5’-off 

5’-on/10’-off 

5’-on/15’-off 

5’-on/20'-off 

continuous -on 

E2 120 12 1.5 5’-on/5’-off 

5’-on/10’-off 

5’-on/15’-off 

5’-on/20'-off 

continuous -on 

E3 120 15 1.0 5’-on/5’-off 

5’-on/10’-off 

5’-on/15’-off 

5’-on/20'-off 

continuous -on 

E4 120 15 1.5 5’-on/5’-off 

5’-on/10’-off 

5’-on/15’-off 

5’-on/20'-off 

continuous -on 

E5 120 20 1.0 5’-on/5’-off 

5’-on/10’-off 

5’-on/15’-off 

5’-on/20'-off 

continuous -on 

E6 120 20 1.5 5’-on/5’-off 

5’-on/10’-off 

5’-on/15’-off 

5’-on/20'-off 

continuous -on 

E7 120 N/A N/A N/A 
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3.2.4.2. AnMBR Design and Operational Considerations 

Understanding of the fundamental mechanisms of successful anaerobic treatment of molasses 

wastewater containing recalcitrant compounds remains elusive in the field. No studies have 

ever investigated electro-anaerobic treatment of such a wastewater; therefore laboratory 

experiments were designed to simulate the essential features of the novel functional system.  

Based on the research conducted in batch experiments described in the previous chapter, the 

main focus of the next step was development a system incorporating membrane physical and 

anaerobic biological treatment methods in a compact AnMBR system in order to provide 

quality parameters of effluent containing highly-colored and recalcitrant components. 

In the following sections, the design considerations and criteria for development of the 

AnMBR system are discussed in details. 

3.2.4.2.1. AnMBR Design Considerations 

Design of the AnMBR system is important for the uniform phase distribution inside the system 

and, thus, increasing the treatment performance. The design considerations for the reactor 

included the following:  

a) Location of the membrane module in the bioreactor must not affect the uniform aqueous 

phase motion;   

b) Homogenous mixing conditions and distribution should promote flocs formation in the 

aqueous phase;  

c) Assembly in the system design should not interfere with the wastewater entering the reactor 

and directing toward the membrane module;  

d) Gases forming by microorganisms’ activity and electrokinetic processes must freely leave 

the system through water seals in order to avoid accumulation in the upper part of the AnMBR 

and- to prevent air entering the system. 

e) The system must be properly sealed in order to maintain anaerobic conditions.    
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3.2.4.2.2. AnMBR Operational Considerations 

Operation condition considerations included the following:  

a) The AnMBR design and configuration should incorporate the requirements for simultaneous 

anaerobic biodegradation and physical separation processes taking place inside the bioreactor;  

b) Design took into consideration the following fluid motions in the AnMBR: wastewater 

supply, movement of gases, formation of colloids and their settling, fluid movement toward 

the membrane module;  

To achieve the overall objectives of the designed configuration, the following major 

parameters were controlled and optimized during the AnMBR operation: hydraulic retention 

time (HRT), and sludge retention time (SRT). The strategy of this study was based on 

operating the AnMBR at constant flux and long SRT. 

3.2.4.2.3. AnMBR Design  

To meet the requirements, the MBR system was designed according to the following criteria:  

a) A cylindrical ultrafiltration Zeeweed-1 (GE, Canada) membrane module with 0.04 µm pore 

size and 0.047 m2 surface area was placed vertically in the center of a completely sealed 20 L 

polyethylene encasing and operated under flux of 12 Lm-2min. Lifetime of the membrane is 6-

8 years [273, 274]; 

b) A uniform distance between the membrane module and the reactor shell were maintained 

in order to minimize the potential detrimental effect of an acidic/oxidation zone on microbial 

organisms;  

c) Two baffles were installed inside to keep the distance and allowed upward movement of 

biologically-produced gases which facilitated removal of microbial flocs forming on the 

membrane surface and downward movement of flocs aggregates. These baffles would serve 

as electrodes at the later stages of the research;  

d) Transfer pumps were connected to the shell in order to supply the wastewater and to the 

membrane outlet to extract the aqueous phase of the sludge liquor at a constant flow rate; the 

system includes the following components (Figure 3.4): 
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• Anaerobic Reactor 

• Heated Blanket 

• Temperature Sensor 

• Temperature Control Unit 

• Membrane Module  

• Influent Transfer Pump 

• Effluent Transfer Pump 

• Water Seals 

• Wastewater Storage Tank 

• Treated Effluent Storage Tank 

• Sludge Disposal Storage Tank 

• Sampling Point (SP) 

• Transmembrane Pressure (TMP) Meter 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Simplified design configuration of the AnMBR system 
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The proposed design of the AnMBR system broadly divides the hybrid anaerobic reactor into 

two zones: External Zone is located between the external wall of the reactor to the external 

baffle, and Internal Zone is from the internal baffle to the membrane module. In the External 

Zone, processes such as coagulation and sedimentation take place as well as anaerobic 

biodegradation; whereas in the Internal Zone, further anoxic biodegradation, flotation and 

membrane filtration take place.  

The designed MBR is governed by the following major fluid motions (Figure 3.5):  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Major types of fluid motions in the AnMBR system 

 

a) Industrial wastewater supply. The wastewater is supplied across the perforated baffle and 

undergoes biological and physical-chemical treatment between the baffles on its way towards 

the membrane module;  

b) Upward movement. These gases help in the MBR system achieving uniform mixing of the 

aqueous phase in the system and reducing the fouling rate of the membrane;  
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c) Formation of flocs and sedimentation mainly due to the biological activity and physical-

chemical phenomena;  

d) Treated water moves through the membrane module due to a vacuum pump connected to 

the membrane module. Biological activity is to: temperature, pH, electron donor and 

microelements. The recommend range of pH for microorganism is 5-9 [134]. Based on the 

preliminary assessment, the pH of the system is kept within this range.  

3.2.4.3. EAnMBR Design and Operational Considerations 

Based on the research conducted in batch trials described in the previous chapter, the main 

focus of the next step is to develop a system incorporating electrokinetic, membrane physical 

and anaerobic biological treatment methods in a compact EAnMBR system in order to provide 

quality parameters of effluent containing highly-colored and recalcitrant components better 

than conventional systems. 

In the following sections, the design considerations and criteria for development of new 

EAnMBR system are discussed in details. 

3.2.4.3.1. EAnMBR Design Considerations 

Positioning of the electrodes in the EAnMBR system is important for the uniform distribution 

of the DC field inside the system. The design considerations for the reactor included the 

following:  

a) Location of the membrane module in the bioreactor must not affect the uniform electrical 

direct current distribution;  

b) Electrical field should not have an impact on the longevity of membrane material;  

c) Electrodes should maintain an adequate current density within the system;  

d) Homogenous DC field distribution should promote flocs formation in the aqueous phase;  

e) Electrode assembly in the system design should not interfere with the wastewater entering 

the reactor and directing toward the membrane module;  

f) Selection of electrode material is important to reduce membrane fouling of EAnMBR. 

Aluminum and stainless steel are readily available materials and proven to be effective for 
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electrocoagulation process [134]. The selection of electrode material is also important for 

microbial community. For instance, iron is a necessary microelement for the microbial activity. 

It is an important component of many enzymatic reactions and involved in the metabolic 

pathways of microorganisms. However, some higher concentrations of iron might create 

inhibitory conditions for microbial growth [275], [276]. Aluminum in high concentrations can 

also act as an inhibitor of biological reactions [134]. 

g) Gases forming by microorganisms’ activity and electrokinetic processes must freely leave 

the system and not accumulate in the upper part of the EAnMBR. 

h) The system must be properly sealed in order to maintain anaerobic conditions.    

3.2.4.3.2. EAnMBR Operational Considerations 

Operation condition considerations include the following:  

a) The EAnMBR design and configuration should incorporate the requirements for 

simultaneous biodegradation, electrokinetic phenomena, and physical separation processes 

taking place inside the bioreactor;  

b) Design should consider the following fluid motions in the EAnMBR: wastewater supply 

across the anode, movement of gases, formation of colloids and their settling, fluid movement 

through cathode toward the membrane module;  

c) Appropriate DC field should be applied to support electrolysis; the selected DC field cannot 

be supplied in a continuous mode due to presence of microbial culture. Preliminary tests 

demonstrated excellent results for 1 Vcm-1 and 1.5 Vcm-1, which can be applied to the cultures, 

whereas COD, N, P and color reduction can be enhanced. This result is in agreement with one 

obtained in the previous research [134, 136]. According to the study, the impact of an applied 

DC field below 0.28 Vcm-1 may be insignificant, and a DC electric field greater than 1.4 Vcm-

1 may be harmful for biological activity.  

To achieve the overall objectives of the designed configuration, the following five major 

parameters should be controlled and optimized during the EAnMBR operation: applied direct 

current (DC), exposure time of microbial community to DC, hydraulic retention time (HRT), 
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and sludge retention time (SRT). The strategy of this study was based on operating the 

EAnMBR at variable transmembrane pressure and long SRT. 

3.2.4.3.3. EAnMBR Design 

To meet the requirements, the EAnMBR system was designed according to the following 

criteria:  

a) A cylindrical ultrafiltration Zeeweed-1 (GE, Canada) membrane module with 0.04 µm pore 

size and 0.047 m2 surface area was placed vertically in the center of a completely sealed 20 L 

polyethylene encasing; 

b) Two cylindrical perforated electrodes (aluminum anode and stainless steel cathode) were 

placed around the membrane module at a distance allowing free hydraulic motion of aqueous 

phase. Perforated electrodes considered in the design in order to facilitate free feed and flow 

towards the membrane module;  

c) A uniform distance between the electrodes maintained in order to minimize the potential 

detrimental effect of an acidic/oxidation zone on microbial organisms;  

d) Such a distance should also allow free upward movement of electrolytic and bio gases, 

which will facilitate removal of microbial flocs forming on the membrane surface and 

downward movement of flocs aggregates;  

e) Transfer pumps were connected to the shell in order to supply the wastewater and to the 

membrane outlet to extract the aqueous phase of the sludge liquor at a constant flow rate; 

f) A direct current power supply connected with an electrical timer was used to provide the 

required current density and exposure mode (time-ON: time-OFF). The power supply was 

connected to the EAnMBR by the shortest possible insulated cables with appropriate current 

ratings, terminated with bolt-on crimp-lugs; 

g) In the context of this research, the electrolyte is the wastewater to be treated.  

The system includes the following components (Figure 3.7): 

• Electric power supply 

• Timer 
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• Anaerobic Reactor 

• Heated Blanket 

• Temperature Sensor 

• Temperature Control Unit 

• Membrane Module  

• System of Circular Electrodes 

• Influent Transfer Pump 

• Effluent Transfer Pump 

• Water Seal for Anode Zone Gas 

• Water Seal for Cathode Zone Gas 

• Wastewater Storage Tank 

• Treated Effluent Storage Tank 

• Sampling Point (SP) 

• Transmembrane Pressure (TMP) Meter  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Simplified design configuration of the EAnMBR system 
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The selected design of the EAnMBR system broadly divides the hybrid anaerobic reactor into 

two zones: Anode Zone is located between the external wall of the reactor to the anode, and 

Cathode Zone is from the cathode to the membrane module. In Anode Zone, electrokinetic 

processes such as electrocoagulation and electrosedimentation take place as well as anaerobic 

biodegradation; whereas in Cathode Zone, further anoxic biodegradation, electroflotation and 

membrane filtration take place. However, the reactor is design as complex mix reactor. The 

designed EAnMBR is governed by the following major fluid motions (Figure 3.8):  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Major types of fluid motions in the EAnMBR system 
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for achieving uniform mixing of the aqueous phase in the system zones and reducing the 

fouling rate of the membrane;  
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c) Formation of flocs and sedimentation mainly due to the principles of electrokinetic 

phenomena;  

d) Treated water moves through the perforated cathode toward the membrane module due to 

a vacuum pump connected to the membrane module. Biological activity is influenced by the 

environmental conditions in the bioreactor: temperature, pH, electron donor and 

microelements. Electrical DC field will affect all these parameters, i.e. when a DC field in 

terms of a voltages gradient (Vcm-1) is applied between anode and cathode, oxidation and 

reduction reactions will take place at the electrodes. Water oxidation generates hydrogen (H+) 

and oxygen gas at the anode (1/2 H2O  e- + H+ + 1/4 O2), whereas water reduction produces 

hydroxyls and hydrogen gas at the cathode (2H2O + 2e-  2OH- + H2). This will increase the 

acidity in the Anode Zone and reduce the pH; simultaneously, pH will increase in the Cathode 

Zone. The recommend range of pH for microorganism is 5-9 [134]. An interrupted supply of 

electrical field is needed to preserve the viability of microbial consortia. DC with appropriate 

voltage gradient is also required for an effective electrokinetic processes in order to create 

flocs in the bioreactor. 

3.2.4.4. Continuous Flow Experimental Setup 

Circular perforated aluminum and stainless steel baffles were affixed to a supporting Plexiglas 

frame in order to keep them in a vertical position. The porous (40% opening) circular baffles 

promoted the adequate mixing in the reactor.  

Experimental setup of Phase II, III, IV consisted of the EAnMBR and supporting system as 

described previously is depicted on Figure 3.6.  

The reactor was monitored during the experiment in order to maintain the anaerobic condition 

within the system. Synthetic and industrial water was supplied into the reactor by an influent 

transfer pump and the treated effluent was evacuated from the reactor by an effluent transfer 

pump. Excess of anaerobic sludge was wasted manually. During the start-up, the reactor was 

operated anaerobically in a batch mode for 48 h. After start-up, the operation of the AnMBR 

reactor was subsequently switched to a continuous mode. The effluent quality parameters in 

terms of N, P, COD, volatile fatty acids, color removal efficiency, pH, redox potential and 

conductivity were measured and analyzed as the performance indicators. 
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Figure 3.6. General view of experimental system setup 

 

3.2.4.4.1. Phase II: Synthetic Wastewater Continuous Flow 

This section presents experimental setup in Phase II. It highlights the operating conditions of 

the EAnMBR system when a perforated cylindrical aluminum sheet was used as the anode 

while the cathode was made of a perforated iron mesh of cylindrical shape. The operational 

period of this phase was divided into two sequential stages and extended for 60 days. The 

objectives were as follows: 

i) The AnMBR (without DC) lasted for 30 days.  

ii) The objective of the Stage II, which extended for 30 days, was to investigate the 

performance of the EAnMBR system when the DC was applied to the synthetic 

solution in conjunction with the operation of the membrane module. The mode 5 

minutes ON: 20 minutes OFF was used during the DC supply.  

The activated sludge electro-bioreactor, with working volume 10 L, was fed with the synthetic 

wastewater as described in Table 3.1. The activated sludge had been acclimated at mesophilic 
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conditions (35-37 0C) to this synthetic wastewater for approximately two months to achieve 

stable conditions prior the beginning of the experiments. Achieving the steady-state condition 

in the Stage I was not the goal of the experiment, but rather assessment of the system before 

the Stage II, where electrokinetic phenomena were applied- the primary interest of the study. 

During the Phase II the steady-state conditions were well developed (> 2SRT). 

The process was closely monitored for multiple parameters including the physical-chemical 

and biological parameters: pH, temperature, MLSS, MLVSS, specific resistance to filtration 

(SRF), zeta potential, as well as COD, nitrogen species such as ammonia (NH3-N), nitrate 

(NO3-N), nitrite (NO2-N) and orthophosphate (PO4
3--P). Phase II was divided into two stages: 

Stage I, which was considered the reference stage for comparison purposes, was extended for 

30 days without input of DC. The main objective of extending this stage for 30 days was to 

give the anaerobic bacteria a sufficient time to replicate and research performance of the 

system in AnMBR configuration.  

The impact of applying a DC field to the system operating in EAnMBR configuration was 

studied in the Stage II. The objective was to investigate the performance of the EAnMBR when 

a DC is applied to the system. The duration of Stage II was 30 days and the operating mode of 

the DC power supply was 5 minutes ON: 20 minutes OFF simultaneous with the operating 

membrane module. Table 3.5 provides detailed conditions under which the process was run 

and monitored during Phase II. After 3 weeks of operating period, the excess amount of sludge 

was removed from the reactor daily in the amount of 5% of the reactor volume. The 

conventional analysis of the samples and SRF analysis was performed on the withdrawn sludge 

samples. Therefore, on average, about 470 mLday-1 of sludge volume was removed from the 

electro-bioreactor, corresponding to average sludge retention time (SRT) of 21 days. The 

process was operated under variable transmembrane pressure. The permeate flux decreased 

with time because of the fouling phenomenon, however insignificantly because of anaerobic 

and electrolytic gases prevented excessive fouling. Due to this reason, no back washing for the 

membrane module was performed during the operation. 
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Table 3.5. Phase II operating conditions 

Parameter Stage I Stage II 

Operation Time, days 30 30 

SRT, days 21 21 

HRT, days 4 4 

Flow Rate, mLh-1 0.85±0.1 0.85±0.1 

Voltage Gradient, Vcm-1 0 1±0.1 

DC Exposure ON:OFF, min 0 5:20 

DC Application 

No 

Yes, 

simultaneously 

with membrane 

operation 

Temperature, 0C 36±1 36±1 

 

Methodologies of sampling techniques and analytical methods performed in the Phase II were 

described in details in Chapter 3. 

3.2.4.4.2. Phase III: Industrial Wastewater Continuous Flow 

This the main objective of Phase III was to assess the efficiency of the EAnMBR in terms of 

carbon, nutrients and color removal in comparison to AnMBR. The Phase consisted of two 

stages operated of 60 days each. In this Phase, the vessel was operated as an anaerobic 

membrane reactor (AnMBR) during Stage I and anaerobic electro membrane reactor 

(EAnMBR) in Stage II. 

The impact of applying a DC field in the EAnMBR performance was studies in the Stage II. 

The objective was to investigate the performance of the EAnMBR when a DC is applied to the 

system. High-strength molasses-based industrial wastewater was applied in both stages. The 

mode 5 minutes ON: 20 minutes OFF was used for the DC supply in Stage II.  

The AnMBR and EAnMBR with working volume of 10 L, was fed with an industrial 

wastewater as described in Table 3.2. The sludge from Phase II was used in the Phase III and 

acclimated to new conditions at 36 0C for 21 days to achieve stable conditions prior to the 

experiments. 
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The process was monitored for various parameters including the physico-chemical and 

biological, namely: pH, temperature, MLSS, MLVSS, specific resistance to filtration (SRF), 

zeta potential, COD, nitrogen species such as ammonia (NH3-N), nitrate (NO3-N), nitrite 

(NO2-N), orthophosphate (PO4
3--P) and color. The main objective of extending this stages for 

60 days was to give the anaerobic reactor to reach steady state conditions. 

The impact of applying a DC field in the EAnMBR performance was studied in the Stage II. 

The objective was to investigate the performance of the EAnMBR when a DC was applied to 

the system. Table 3.6 provides detailed conditions under which the process was run and 

monitored during Phase II. The excess amount of sludge was removed to maintain SRT of 21 

days. The process was operated with a constant variable pressure. The pressure slightly 

increased with time because of the fouling phenomenon, however not to extent to reduce 

membrane performance (< 15 kPa over the course of the study). Subsequently, no back 

washing for the membrane module was performed during the operation period, thus the system 

remained completely sealed. 

Table 3.6. Phase III operating conditions 

Parameter Stage I Stage II 

Operation Time, days 60 60 

SRT, days 21 21 

HRT, days 4 4 

Flow Rate, mLh-1 0.85 0.85 

Voltage Gradient, Vcm-1 0 1 

DC Exposure ON:OFF, min 0 5:20 

DC Application 

No 

Yes, 

simultaneously 

with membrane 

operation 

Temperature, 0C 36 36 

 

Methods of sampling and analytical techniques performed in the Phase III were provided in 

details in Chapter 3. 
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3.2.4.4.3. Phase IV: Modeling and Optimization 

The objective of the Phase IV was to assess impact of environmental parameters such as pH, 

sensitivity of the EAnMBR system with respect to electrical field variation and biological 

parameters in terms of MLSS on C, N, P and color removal. pH was varying from 6 to 8, the 

current density from 15 to 20 Am-2 and MLSS from 6 to 8 gL-1. The experimental setup for the 

Phase IV replicated the Phase III. The first 30 days (Stage I), the EAnMBR was run under 

current density of 20 Am-2. From day 31 to 60 (Stage II), the system was operated under 17.5 

Am-2. From day 61 to 90 (Stage III), the reactor was operated under 15 Am-2. pH and liquor 

concentration were adjusted according to the design matrix. The minimum, midpoint and 

maximum values for pH of the electrolyte were 5, 7 and 8 respectively. The concentration of 

mixed liquor was adjusted between 5 and 8 gL-1 with 6 gL-1 as midpoint. The response surface 

design was conducted using Minitab® 17.1.0 software package. All the experiments were 

carried out under constant temperature (35±1 0C). The electrolyte pH was adjusted with HCl 

and NaOH. The samples were collected at regular time intervals and analyzed for pollutants 

degradation using procedures similar to Phase III 
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4. Results and Discussion 

This chapter provides the results of the experimental part of the research. 

4.1.  Phase I: Results and Discussion 

The discussion of the results of the Phase I was built on identifying the current densities, 

voltage gradient and exposure modes that could maximize the removal efficiency of carbon 

in terms of COD, phosphorous, nitrogen, and color. 

4.1.1.  Current Density and Wastewater Conductivity 

Changes of electrical conductivity (EC) and current density (CD) over the duration of the 

experiment are presented in Figures 4.1-4.8 (operation regime 5-On: 5-Off, 5-On: 10-Off, 5-

On: 15-Off, 5-On: 20-Off, continuous electrical current supply and no electric current supply 

for control reactor). Running the batch bioreactors with replenishment of the waste water 

resulted in changes of concentration of dissolved solids over the time of the experiment. From 

the biological point of view, the concentration lowering occurred when the carbon source was 

supplied to the bioreactors. The decrease of dissolved solids was observed when the sludge 

still was able to provide an electron donor to support building new cells, whereas the increase 

of dissolved solids appeared when there was a lack of electron donor. Then, the indigenous 

phase presumably dominated, especially at 5-On: 5-Off operational regime when the microbial 

community was most affected by the electrical field. During the endogenous phase when the 

electron donor was limited (picks at 48 hours of operation on the Figures 4.1-4.8), the 

microbial community released the intra soluble ions into the bulk solution, leading presumably 

to increase of EC at a larger scale. The initial increase of EC clearly seen for all essays, 

especially at short time off operational mode can also be attributed to inability of some 

microorganisms to adapt to electric current applied to the system, thus releasing intra soluble 

ions into the solution due to the cell lysis.  
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Figure 4.1. E1: Electrical conductivity over 120h at 12 Am-2 and voltage 1.0 Vcm-1 

 

   

Figure 4.2. E2: Electrical conductivity over 120h at 12 Am-2 and voltage 1.5 Vcm-1 
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Figure 4.3. E3: Electrical conductivity over 120h at 15 Am-2 and voltage 1.0 Vcm-1 

 

 

Figure 4.4. E4: Electrical conductivity over 120h at 15 Am-2 and voltage 1.5 Vcm-1 
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Figure 4.5. E5: Electrical conductivity over 120h at 20 Am-2 and voltage 1.0 Vcm-1 

 

 

Figure 4.6. E6: Electrical conductivity over 120h at 20 Am-2 and voltage 1.5 Vcm-1 
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and low weight organic polymers and phenol-metal complexes that constitute melanoidin 

compounds.  

These mechanisms are responsible for the majority of soluble salts produced in the first hours 

of operation. After the initial phase, EC started to stabilize as the carbon sources depleted and 

indigenous phase dominated. After 72 hours of operation, the rate of ions deposition on 

electrodes exceeded the rate of ions released by cell lysis and polymers destruction. The 

constantly higher EC for 5-On: 5-Off and 5-Off: 10-On compared to the other operational 

regimes can be attributed to inability of microbial community to recover from electric current 

applied with shorter periods of relaxation. EC dropped from its peak at 24 hours (except for 5-

On: 5-Off) for up to 30% for 5-On: 10-Off, 50% for 5-On: 15-Off. The most stable EC after 

24 hours spike until the end at 120 hours was demonstrated by 5-On: 20-Off operation for 

essays E5 and E6. The 5-On: 10-Off, 5-On: 15-Off and the continuous ON mode exhibited 

regular spikes of the current density. These drops in current density can be related to the 

formation of an organic layer deposition on the anodes, thus reducing the current conductivity 

between the electrodes. Depositions on anode surface by this process were mostly observed 

under continuous-ON electrical mode under higher current densities (E2, E4, E6) and for the 

5-On: 5-Off, 5-On: 10-Off, 5-On: 15-Off electrical modes. At voltage gradient of 0.5 Vcm-1 

and 1.0 Vcm-1 and current density 12 Am-2 a gradual decrease in EC for all electrical modes 

until the end of the experiment and no extreme drops in current density were detected as the 

current density was not able to support electrophoretic migration of negatively charged 

particles towards the anode.  

It was concluded that the continuous-ON mode and other modes with shorter periods of 

relaxation (5-On: 5-Off, 5-On: 10-Off, 5-On: 15-Off) are not recommended for the next phases 

of the study.   

4.1.2.  Effect of Current Density and Operational Regime on pH 

Electrokinetic process results in decrease of pH at the anode due to release of H+ ions into the 

aqueous phase, while pH increases at the cathode zone due to the generation of hydroxide ions. 

Experimental results demonstrated that current densities ranging between 12 up to 20 Am-2 

indeed caused an increase of wastewater pH. The maximum increase that was observed under 

current density of 12 to 20 Am-2 at the continuous-On mode and 5-On: 5-Off, 5-On:10-Off for 

all essays (Figure 4.7-4.12). Therefore, direct current at current density up to 20 Am-2 may 
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cause spikes of pH to a level that might negatively affect the biological activity and the pH 

adjustment might be necessary with the addition of HCl and NaOH. However, this experiment 

was conducted on batch systems. Under continuous flow in Stage 2, the system is expected to 

be less susceptible to severe fluctuations of pH because the aqueous phase will be continuously 

replenished by the influent wastewater, which has pH around 5.23. Thus, the increase of pH 

noticed might be neutralized by the buffering capacity of the feed wastewater. 

 

 

Figure 4.7. E1: pH over 120h at 12 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.8. E2: pH over 120h at 12 Am-2 and 1.5 Vcm-1 
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Figure 4.9. E3: pH over 120h at 15 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.10. E4: pH over 120h at 15 Am-2 and 1.5 Vcm-1 
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Figure 4.11. E5: pH over 120h at 20 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.12. E6: pH over 120h at 20 Am-2 and 1.5 Vcm-1 
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Changes of COD removal efficiencies depending on current densities variations are presented 

in Figures 3.15 to 3.20. At current density 12 Am-2, the removal efficiency of the COD was in 

the range of 77 % to 86% for 1Vcm-1 (Figure 4.13) and 77% to 96% for 1.5 Vcm-1 (Figure 

4.14). The highest removal efficiency at 12 Am-2 by the end of the experiment was obtained 

at continuous-ON and 5-On: 20-Off modes.  

Higher efficiency rate was achieved at current density 15 Am-2, where the COD removal rate 

was in the range from 85% to 86% for 1Vcm-1 (Figure 4.15) and slightly lower (85% to 90%) 

for 1.5 Vcm-1 (Figure 4.16). The removal efficiency pattern was similar to all the time-On: 

time-Off regimes at 15 Am-2, however the highest 90% was obtained at 5-On: 20-Off mode. 

Higher value of current density (20 Am-2) was similarly effective for COD removal (up to 

96%), (Figures 4.17, 4.18).  

Therefore, all current densities were more effective in the removal of COD at timer regimes 

with the longer time-Off (> 85% and >95% reduction after 96 hours at 5-On: 15-Off and 5-

On: 20-Off correspondingly). Short time-Off periods provide enough time for dissolution of 

Al+3 and formation of hydrated species, while high concentration of suspended solids provides 

larger surface area to interact electrically with the organic colloids ( about 80% reduction after 

96 hours at 5-On: 5-Off and 5-On: 10-Off correspondingly). As the results demonstrated, 

longer time-On cycles were required to substantially reduce COD concentration in the 

wastewater. Therefore, less COD was represented in form of suspended colloids, and rather in 

dissolved form. The insignificant performance increase of COD removal (Fig. 4.13 - 4.15) was 

attributed to longer time required for the larger aluminum polymers species formation. Based 

on the results, operating at current densities higher than 20 Am-2 and electrical mode with short 

time-Off cycles is not recommended. 
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Figure 4.13. E1: COD removal efficiency over 120 h at 12 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.14. E2: COD removal efficiency over 120 h at 12 Am-2 and 1.5 Vcm-1 
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Figure 4.15. E3: COD removal efficiency over 120 h at 15 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.16. E4: COD removal efficiency over 120 h at 15 Am-2 and 1.5 Vcm-1 
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Figure 4.17. E5: COD removal efficiency over 120 h at 20 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.18. E6: COD removal efficiency over 120 h at 20 Am-2 and 1.5 Vcm-1 
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Figure 4.19. E1: TN removal efficiency over 120 h with 12 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.20. E2: TN removal efficiency over 120 h with 12 Am-2 and 1.5 Vcm-1 
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Figure 4.21. E3: TN removal efficiency over 120 h with 15 Am-2 and 1.0 Vcm-1 

  

 

Figure 4.22. E4: TN removal efficiency over 120 h with 15 Am-2 and 1.5 Vcm-1 
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Figure 4.23. E5: TN removal efficiency over 120 h with 20 Am-2 and 1.0 Vcm-1 

  

 

Figure 4.24. E6: TN removal efficiency over 120 h with 20 Am-2 and 1.5 Vcm-1 
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For the essays E3 and E4 with current density 15 Am-2 applied, similar pattern was observed, 

however, with slightly better performance for 1.5 Vcm-1 and shorter exposure modes (5-

On:15-Off, 5-On: 20-Off) and continuous regime.  

For the essays with 20 Am-2, the best result was achieved with 5-On: 20-Off mode for the 

essay E6 with up to 65% nitrogen removed during the initial 24 hours of operation. 

After 24 hours, the pattern was similar to all the essays: the concentration of nitrogen gradually 

decreased. However, some fluctuations were observed for 5-On: 5-10 time cycles as the 

deposits formed on the electrodes preventing release of Al3+. 

The removal N in 120 min reached 59% for 12 Am-2, 15 Am-2 and 80% respectively for 20 

Am-2.  

Based on the experimental results, all current densities were effective in the removal of TN at 

all time cycles. Short time-off periods provided enough time for dissolution of Al+3 and 

formation of hydrated species which interacted with nitrogenous compounds, while high 

concentration of suspended solids provides larger surface area to interact electrically with the 

colloids. 

However, longer time-on cycles were performing slightly better and substantially reduced the 

concentration of TN in the wastewater, especially by the end of runs. Thus, TN was represented 

both in form of suspended colloids and in dissolved form.  

It follows that the nitrogenous bonds in the waste wastewater constituents started to degrade 

after 24 hours of the experiment and appeared to be degraded, probably to amino acids and 

sugars which can be an electron donor for biological decomposition in subsequent phases of 

this study. 

Based on the results, operating at current density 20 Am-2 and electrical mode with longer 

time-off cycles are recommended. 

4.1.5.  Effect of Current Density and Operational Regime on Phosphorous in Aqueous 

Phase 

The results of this study demonstrated the ability of the process to achieve up to 76% of 

phosphorus (measured as Ptot) removal efficiency.  

The process of TP removal starts as soon as the current flows through the system resulting in 

a rapid decrease of TP concentration after 24-48 hours of operation depending on the current 

density and voltage (Figures 4.25-4.30). 
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At current density 12 Am-2, the removal efficiency of the TP was in the range from 35% to 

62% for 1Vcm-1 (Figure 4.25) and 41% to 69% for 1.5 Vcm-1 (Figure 4.26) by the end of the 

run. The highest removal efficiency at 12 Am-2 by the end of the experiment was obtained at 

shorter time cycles such as continuous-On, 5-On: 5-Off and 5-On:10-Off modes.  

Higher removal efficiency was achieved at 15 Am-2 and 1Vcm-1, where the P removal rate was 

up to 65% (Figure 4.27) and 76% for 1.5 Vcm-1 (Figure 4.28). The removal efficiency pattern 

was similar to all the regimes at 15 Am-2, however with higher removal rate at the beginning 

(0-24 hours) where the greater efficiency was demonstrated by 5-On: 5-Off and 5-On: 20-Off 

modes. 

Higher value of current density (20 Am-2) was slightly less effective if compared to 15 Am-2 

(up to 70%), which can be seen on Figures 4.29, 4.30, nonetheless demonstrating good results 

especially for 5-On: 5-Off and 5-On: 20-Off regimes after 48 hours. 

Therefore, higher current densities were more effective in the removal of Ptot for timer regimes 

with the short and longer time-off.  

As calcium chloride is used in the technological process of yeast production, the wastewater 

is characterized by high concentration of calcium [108]. Short time-off periods provide 

dissolution of Al+3 and formation of hydrated species, while high concentration of suspended 

solids provides larger surface area to interact electrically with the organic colloids. Under these 

conditions the high phosphorous removal efficiency could be attributed to precipitation of 

insoluble Ca3(PO4)2 and AlPO4. 

Based on the results, operating at current density 15-20 Am-2 and electrical mode with longer 

relaxation timing is recommended. 

The measurement of calcium concentration in the influent wastewater and effluent was not 

conducted in the present study and the problem of the formation and removal of potential 

inorganic precipitate requires future study. 
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Figure 4.25. E1: TP removal efficiency over 120 h with 12 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.26. E2: TP removal efficiency over 120 h with 12 Am-2 and 1.5 Vcm-1 
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Figure 4.27. E3: TP removal efficiency over 120 h with 15 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.28. E4: TP removal efficiency over 120 h with 15 Am-2 and 1.5 Vcm-1 
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Figure 4.29. E5: TP removal efficiency over 120 h with 20 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.30. E6: TP removal efficiency over 120 h with 20 Am-2 and 1.5 Vcm-1 
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During the experiment, there was a short lag phase observed for E1-E6 at all operational 

regimes for about 24 hours, followed by a rapid decolourisation stage that removed up to 81% 

of the colour after 24 hours, corresponding to a release of Al metal into solution from anode 

(Figures 4.31-4.36).  

Similar behaviour was observed for all runs E1-E6 for the period from 24 to 48 hours with the 

removal rate rapidly accelerated thereafter and a maximum 96% decolourisation was achieved 

after a run time of 120 min for essay E4 and E6 at 5-On:5-Off and 5-On:20-Off. The lowest 

removal efficiency (91%) was achieved for essay E1 and E2. These observations correlate with 

other study which reported a very similar profile for the removal of melanoidin [105]. The pH 

value of 8-12 reached by the end of the runs with the highest pH for essay E6. The temperature 

of the treated effluent also increased to approximately 21 0C. The maximum color removal 

effect was achieved at the pH range 8 and higher. In comparison, the control reactor E7 

demonstrated only 5% of color removal efficiency. The higher removal rates were observed 

with higher current densities and pH (essays E4 and E6). The removal mechanisms of color 

substances were attributed to the electro-coagulation of the organic materials, microbial flocs 

and aluminum hydroxides species in the solution. Based on the results of the experiment, 

higher current densities and pH are two factors that can attribute to the color removal as well.  

 

 

Figure 4.31. E1: Color removal over 120 h with 12 Am-2 and voltage 1.0 Vcm-1 
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Figure 4.32. E2: Concentration of color after exposure to EK treatment over 120 h with 12 

Am-2 and 1.5 Vcm-1 

 

 

Figure 4.33. E3: Concentration of color after exposure to EK treatment over 120h with 15 

Am-2 and 1.0 Vcm-1 
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Figure 4.34. E4: Concentration of color after exposure to EK treatment over 120h with 15 

Am-2 and 1.5 Vcm-1 

 

 

Figure 4.35. E5: Concentration of color after exposure to EK treatment over 120h with 20 

Am-2 and 1.0 Vcm-1 
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Figure 4.36. E6: Concentration of color after exposure to EK treatment over 120h with 20 

Am-2 and 1.5 Vcm-1 
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Table 4.1. Zeta potential change after EK treatment at 12 Am-2 

Time, h 5:5 5:10 5:15 5:20 Continuous Control 

0 -20-40 -20-40 -20-40 -20-40 -20-40 -15-40 

24 -5+5 -5+5 -10+15 -5+5 -5+5 -15-40 

48 -6+10 -2+6 -10+15 -3+5 -6+8 -15-40 

72 0+5 0+5 -10+15 -2+4 -5+5 -15-40 

96 -6+8 -5+5 -10+15 0+10 -5+6 -15-40 

120 0+7 0+8 0+10 0+10 0+10 -15-40 

 

Table 4.2. Zeta potential change after EK treatment at 15 Am-2 

Time, h 5:5 5:10 5:15 5:20 Continuous Control 

0 -20-40 -20-40 -20-40 -20-40 -20-40 -15-40 

24 -18-35 -15+15 -12+15 -5+5 -18+20 -15-40 

48 -7+12 -12+18 -12+20 -5+5 -8+10 -15-40 

72 0+7 -10+15 -10+12 -2+4 -5+5 -15-40 

96 -3+6 -7+10 -10+15 0+11 -5+8 -15-40 

120 0+10 -5+15 -5+10 0+9 0+18 -15-40 

 

Table 4.3. Zeta potential change after EK treatment at 20 Am-2 

Time, h 5:5 5:10 5:15 5:20 Continuous Control 

0 -20-40 -20-40 -20-40 -20-40 -20-40 -15-40 

24 -5+5 -5+5 -12+15 -5+5 -8+10 -15-40 

48 -6+10 -5+10 -10+15 -3+5 -10+10 -15-40 

72 0+5 -10+15 -10+15 -2+4 -5+5 -15-40 

96 -6+8 -7+10 -10+15 0+10 -5+6 -15-40 

120 0+8 0+12 0+14 0+6 0+10 -15-40 

 

All current densities (12, 15 and 20 Am-2) demonstrated substantial changes of zeta potential 

magnitude, whereas a current density 20 Am-2 showed the most significant destabilization of 

the system. Results demonstrate that the magnitude of zeta potential was reduced significantly 
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under different time cycles. Some essays demonstrated positive zeta potential as well. The 

mechanisms that contribute to such changes in zeta potentials under higher value of current 

density are related to the amount of the Al species in the solution generation of which leads to 

the neutralization of the negative charge on the particles surfaces until a positive zeta potential 

is reached. 

4.1.8.  Particles Size Distribution 

The volume-based frequency distribution which represents a qualitative assessment 

demonstrated that EC resulted in substantial aggregation of particles that formed dense flocks.  

The mean particle size distribution (PSD) of floc size changed over the operating period based 

on the current density. Current density 12 Am-2 resulted in a significant increase of particles 

size compared to control sample (Figures 4.36 and 4.37). The highest impact was demonstrated 

by 5-On: 20-Off time cycle. 

Current density 15 Am-2 also demonstrated a substantial increase of aggregates size for all 

time cycle modes, even with a higher outcome (Figures 4.38 and 4.39).  

At 20 Am-2 particles size increased the most (Figures 4.40 and 4.41). For instance, the mean 

PSD increased for up to 25% at 5-On: 5-Off, 15% at 5-On: 10-Off, 20% at 5-On: 15-Off, 50% 

5-On: 20-Off and 25% at continuous-On, respectively.  

The collapse of smaller particles and formation of larger aggregates was attributed to the 

reduction of the repulsive forces between the particles as the magnitude of zeta potential 

approached to zero. This pattern of was observed as soon as the current was applied and the 

density was strong enough to cause the flocculation of particles.  

The maximum PSD observed during this experiment was not necessarily the highest size 

produced in the reactor. It is probable that the aggregates were larger than represented as they 

might be broken to some extent by the mixing shear in the magnetically stirred cell of the 

particle size analyzer. 

It should be also noted that once the maximum floc size is reached, the removal of bound water 

through electroosmosis is likely to cause subsequent reduction of flocs size [189, 272]. Since 

sampling for PSD measurements was taken once per day, there is not possible to know with 

certainty the maximum size of the particles. Furthermore, longer time-off modes demonstrated 

better results, which makes drawing relationship patterns more difficult. Nonetheless, it is 
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extremely important to confirm that direct current is able to cause particles collapse and 

flocculation, and improve overall treatment performance. 

 

 

Figure 4.36. E1: PSD after 120 hours 12 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.37. E2: PSD after 120 hours 12 Am-2 and 1.5 Vcm-1 
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Figure 4.38. E3: PSD after 120 hours 15 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.39. E4: PSD after 120 hours 15 Am-2 and 1.5 Vcm-1 
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Figure 4.40. E5: PSD after 120 hours 20 Am-2 and 1.0 Vcm-1 

 

 

Figure 4.41. E6: PSD after 120 hours 20 Am-2 and 1.5 Vcm-1 
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modes and CDs demonstrated significant improvement in the waste water effluent quality. 

Continuous-On mode did not show a significantly better performance compared to the other 

electrical modes, especially with short-On: long-Off regimes. Therefore, it is possible to reach 

the same treatment efficiency with lower energy consumption.  

All current densities demonstrated significant performance in reduction of COD with up to 

90% removal efficiency at 20 Am-2 with 5-On: 20-Off regime.  

The removal efficiency of nitrogenous compounds in 120 min reached 59% for 12 Am-2, 15 

Am-2 and 80% for 20 Am-2, respectively. Based on the experimental results, higher current 

densities were more effective in the removal of TN at all time cycles. However, longer time-

on cycles were performing slightly better and substantially reduced TN concentration in the 

waste water, especially by the end of runs.  

In terms of phosphorous removal, better results were achieved at current density 15 Am-2, 

where the TP removal rate was up to 76% with the greater efficiency demonstrated by 5-On: 

5-Off and 5-On: 20-Off modes. Current density 20 Am-2 was slightly less effective (up to 

70%). 

Maximum decolourisation of 96% was achieved after a run time of 120 min for essay E4 and 

E6 at 5-On:5-Off and 5-On:20-Off with better performance at 20 Am-2. 

Therefore, operation under these lower current densities is less effective and may result in 

underperformance of the system. Thus, selecting a current density at 20 Am-2 as an electrical 

operating parameter is recommended with 5-On: 20-Off period as it performed the best in 

terms of COD, TN, TP and color removal. 

Particles size analysis suggested that at 20 Am-2 particles size increased the most forming 

dense flocks. For instance, the mean PSD increased for up to 25% at 5-On: 5-Off, 15% at 5-

On: 10-Off, 20% at 5-On: 15-Off, 50% 5-On: 20-Off and 25% at continuous-On, respectively.  

These electrical modes and current densities are expected to improve the effluent quality. Thus, 

these parameters were carried forward for subsequent phases of experiments. 

4.2. Phase II: Results and Discussion 

This chapter represents state of the findings during the experimental Phase II. The results and 

discussion are structured and provided for Stage I and II, and a comparative analysis between 

the stages summarizes the chapter.  
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4.2.1.  Stage I: Operation in the AnMBR Mode 

In the Stage I of Phase II, the reactor was operated for 30 days as AnMBR without involvement 

of electrokinetic phenomena. This stage was designed as a reference for comparison purposes. 

Research of the electrokinetics phenomena impact on the physical, chemical and biological 

properties of the MLSS solution could not be achieved without this initial operation of the 

AnMBR system. This stage was extended for 30 days after allowing microbial community to 

acclimate and reach steady-state condition.  

4.2.1.1. Impact of the AnMBR Operation on the Physico-chemical Properties 

A research was undertaken to determine the role of physical and chemical properties in the 

treatment performance of AnMBR system. Monitoring changes in these properties permitted 

also improved prediction of the treatment potential of the novel system.  

4.2.1.1.1. Changes in pH 

The optimal range of bacterial growth in terms of pH depends on archaea, however in most 

cases is within limits in minimum and maximum range near 5 and 9 respectively. In Phase II, 

the pH values were measured daily. The variations of the pH values in the influent, the MLSS 

solution in the reactor and the treated effluent are presented in Figure 4.42. 

For the first 10 days of Stage I, the pH values remained relatively stable in the AnMBR system 

(5.3-5.5), and were associated with changes of the pH in the influent from 5.5 to 5.2. These 

fluctuations were related to the changes of pH of the influent wastewater due to, a slow 

degradation process of organic materials in the feed storage tank. The same phenomenon was 

observed by other researchers, however in a greater magnitude [135]. 

 



116 
 

 

Figure 4.42. pH Changes during the Stage I of Phase II 
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concentrations, the longer the treatment time, the lower was yield stress and this yield stress 

reduction was proportional to the increase of released solubilised COD. 

 

 

Figure 4.43. Changes in temperature during Stage I of Phase II 
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in the reactor was monitored every 10 days and at the end of the Stage I as shown in Figure 

4.44. All the measurements were compared to the SRF of the MLSS solution at the beginning 

of the operation of the EAnMBR system. According to Carman-Kozeny [278], the specific 

SRF of the particles is inversely proportional to the square of particle diameter. Therefore, the 

SRF is a good indicator of the size fractions of the colloids. 

After 10 days of operation, the results of the SRF analyses provided in Figure 4.44 during 

Stage I did not show significant changes in the SRF. This fact suggests that the particle size of 

the colloids remained relatively of the same size during the first ten days of operation as the 

microbial community was still adapting to the environment. 

A small improvement was observed in the SRF on day 20 and day 30 of the Stage I which may 

be attributed to growing particle sizes and associated with an increase of the MLSS flocs size. 
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liquor plays significant role in the membrane fouling, the coagulation of colloids is a 

determining factor of a successful treatment process. 

 

 

Figure 4.44. Changes of specific resistance to filtration of the MLSS solution Stage I 

 

The relation between filterability and MLSS concentration can be explained by the 

characteristics of the activated sludge mass and the gel layer of membrane which accounts for 

pore plugging and is considered as irreversible membrane fouling due to the adsorption of 

foulants onto the membrane surface by colloids and solutes in the supernatant [281]. In sludge 

with an MLSS content below an apparent critical concentration, fouling particles are available 

in the free water of the activated sludge bulk. As opposed, in sludge with a high MLSS content, 

i.e. above a critical concentration, and moderate to good filterability, fouling particles become 

entrapped in the sludge matrix [282]. On day 30 (the end of Stage I), no significant 

improvement was observed and the SRF decreased by 4% compared to the initial phase of the 

operation. 

4.2.1.1.4. Impact of the AnMBR Operation on Sludge Volume Index 
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and therefore better sludge settleability. For domestic wastewater, an activated sludge with a 

SVI below 70 mLg-1 indicates pin flocs, whereas over 150 mLg-1 is considered bulking [271]. 

However, industrial wastewater systems operating with SVIs of 300 mLg-1 consistently 

produce excellent effluent quality and are quite common. The results of SVI measurements 

taken every 5 days are presented on Figure 4.45. 

 

Figure 4.45. Changes of SVI during the Stage I of Phase II 

 

It could be summarized that the SVI during the Stage I in AnMBR mode was within 360 - 375 

mLg-1 range with better settling characteristics towards the end of the stage. The slight change 

could be observed on the day 10 of the study. This could be explained by the microbial 

communities starting activity inside the reactor and formation of denser flocs, respectively. 

However, the maximum reduction in SVI was 2.6% compared to initial state. 

4.2.1.1.5. Role of Particles Size Distribution 

During the Phase I, the wave cycles of floc PSD noticed with distinct peaks on day 4, 11, 19 

and day 30. Each peak was followed by a decline as presented on Figure 4.46, suggesting a 

multistage-stage flocculation process was observed during this study. The peaks could be 

attributed to formation of larger flocs as a result of aggregation of bio flocs. And decline could 

be associated with soluble microbial product (SMP) release and break of aggregates. Changing 
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AnMBR mode reached its maximum value at 123.2 µm at the end of the stage on day 30 as 

biological process peaked as well. The particles PSD increase was 11% (from the mean 109.6 

µm). The cyclical increase of PSD was related to the formation of larger EPS particles as a 

result of biological activity [136]. The magnitude of zeta potential in the AnMBR at the same 

time was between 22 and -38 mV, and, as can be seen in the following section, was not related 

to PSD.  

 

 

Figure 4.46. Changes in PSD in the AnMBR over time 

 

4.2.1.1.6. Role of Zeta Potential 

Zeta potential is a measure of the magnitude of the electric potential in the electric double 

layer, and the electrostatic repulsion/attraction forces between particles. The magnitude of 

particles aggregation in the electro-bioreactor was verified by measuring the zeta potential of 

colloids in the aqueous phase. In this research, zeta potential was used to estimate the mobility 

of particles affected by combined physicochemical and biological processes in the AnMBR 

system. The magnitude of the zeta potential provides an indication of the potential stability of 

the colloidal system. If particles have a large negative or positive zeta potential, the colloidal 

system is stable and the interaction between the particles is insignificant. When particles have 

low zeta potential values, the system shifts towards instability and the formation of aggregates 
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is more likely as there is no significant force to prevent the particles collapsing. The results of 

the zeta potential measurements during the Stage I are presented in Figure 4.47.  

 

 

Figure 4.47. Changes in zeta potential in the system during the Stage I of Phase II 

 

During the first stage of operation, the zeta potential oscillated within the range between -22 

and -38 mV, with average value of -32 mV. Thus, this value was close enough to the zeta 

potential -30 mV which is required for interaction. Therefore, applying a DC potential into the 

colloidal system can reduce the Van der Waals forces that prevent the collision of colloids.   
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might be due to the long HRT and SRT, and slow activity of anaerobic process as well. At a 

relatively constant concentration of the substrate in the influent 4 days HRT, food to 

microorganism ratio (F/M) also was stable during the operating period and equal to 0.20 g 

CODg-1 MLSSday-1 on average. From day 14 until the end of the Stage I, the MLSS 

concentration in the vessel was relatively stable and remained 5,500 mgL-1. This was 

confirmed by the stable MLVSS/MLSS ratio during Stage I. MLVSS/MLSS ratio during the 

entire Stage was around 84%, indicating that little inorganic matter accumulated in the 

AnMBR.  

 

 

Figure 4.48. Changes of the biomass characteristics during the Stage I 

 

4.2.1.3. Impact of the AnMBR Operation on the Wastewater Quality Properties 

To calculate the wastewater treatment efficiency and quality parameters, the input and the 

output streams to/from the reactor and the membrane module were taken into account. The 

efficiency of membrane filtration process was measured in terms of pollutants concentrations. 

The removal efficiency (%R) is given by the following equation: 

%R =
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CF
× 100%                                          (4.1) 
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concentration of the pollutant in permeate stream (mgL-1). Because the EAnMBR consists of 

the electro-bioreactor vessel and membrane module, the removal efficiency of the bioreactor 

alone was calculated as follows: 

%Rvessel =
CF−CR

CF
× 100%                               (4.2) 

where CR the concentration of a pollutant (COD, ammonia, nitrate, nitrite etc.) in the 

supernatant in the reactor (mgL-1).  

4.2.1.3.1. COD Removal Mechanism 

Figure 4.49 illustrates the changes of the COD concentration in the influent, in the reactor and 

the treated effluent during the Stage I. The removal efficiency of the COD in the electro-

bioreactor and of the whole system is expressed by equations (4.1) and (4.2) respectively. The 

removal efficiency varied between 79.20% and 89.46% with average 85.51% during Stage I, 

which indicates that the system was able to provide consistently high removal rate throughout 

the entire Stage I. The concentration of COD in the effluent was reduced from 4,793±200 mgL-

1 to 719±100 mgL-1 (on average). 

The total COD removal efficiency of the system was maintained at a constantly high level due 

to the combination of anaerobic biological treatment with efficient membrane filtration. The 

data obtained during the investigation confirmed that the membrane module played significant 

role in the AnMBR processes. During Stage I, degradation due to microbial activity increased 

from 3% at the beginning to 75% towards the end. Microorganisms, adapted to the electron 

donor, might broke long-changed and larger organic molecules to smaller-size ones that could 

be transferred through the cell membrane and used as a source of energy for metabolic activity.  

The membrane system contributed from 15% to 50% towards the overall removal efficiency. 

The membrane contribution increase could be associated with the biological process of 

removal of particles which could block membrane pores and form cake layer on the surface. 

As the rate of biological activity increased, the interfacial shear stress induced by anaerobically-

produced gas bubbles might prevent formation of the cake layer on the membrane surface as 

well.  Contribution of the biological processes and membrane module towards the removal 

process is presented on Figure 4.50. 
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Figure 4.49. Changes in COD concentrations and percentage removal in Stage I 

 

 

Figure 4.50. Contribution of membrane module and biological activities to COD removal in 

Stage I 

 

4.2.1.3.2. Nitrogen Removal Mechanism 

In anaerobic conditions, members of the Planctomycetes phylum group of bacteria, are capable 
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[102]. This metabolism is strictly anoxic and the process is known as anaerobic ammonia 
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oxidation, or anammox. Anammox organisms are unique in many of ways; the pathway for 

oxidation of ammonium involves hydrazine, as an intermediate. Anammox organisms are strict 

autotrophs and utilize the acetyl-CoA pathway for CO2 fixation. Nitrifying bacteria convert 

ammonia nitrogen (NH3-N) to nitrate nitrogen (NO3-N) in a nitrification reaction according to 

following reactions [102]: 

NH4
+ + NO2

- 
 N2 + 2H2O                   (4.3) 

This process requires nitrite which is generated by nitrification of ammonia: 

NH4
+ + 1.5O2

- 
 NO2

- + H2O + 2H+                  (4.4) 

And by denitratation of nitrate: 

NO3
- + 2e- + 2H+  NO2

- + H2O                  (4.5) 

In carbon and sulfide rich environment, anammox process is combined autotrophic 

denitratation using sulphide and/or acetate as an electron donor and known as deamox: 

NO3
- + 0.25HS- 

 NO2
- + 0.25SO4

2- + 0.25H+                (4.6) 

NO3
- + 0.25CH3COO- 

 NO2
- + 0.5HCO3

- + 0.25H+               (4.7) 

NO3
- + 0.25CH3COO- + NH4

+ 
 N2

 + 0.5HCO3
- + 0.25H+ + H2O              (4.8) 

Consequently, the change in ammonia concentration can be used as an indirect measurement 

in the changes in the nitrification process. In Phase II of this research, the fluctuations of the 

nitrogen concentration in the influent, the supernatant of the reactor and in the treated effluent 

along with the corresponding removal performance of the AnMBR system are represented on 

Figure 4.51. The average concentration influent was 939±3 mgL-1. The concentrations in the 

effluent fluctuated in Stage I it decreased from 58 mgL-1 during the first day of operation to 

below 41 mgL-1 at the end of Stage I.  
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Figure 4.51. Changes in nitrogen concentrations in the system during the Stage I 

 

The removal rate of total nitrogen in the effluent started with 94±1 % and was around 95±1 % 

at the end of the Stage I indicating relatively stable and high removal efficiency. The 

concentration of TN in the reactor was 936 mgL-1 at the day 1 and reached 445 mgL-1 at the 

day 30. Noticeable increase of removal rate in the reactor, however, was achieved after day 20 

and reached about 53% at the end of the Stage I. The low removal efficiency of nitrogen during 

the first days of the Phase II in the vessel was attributed to the low growth rate of anaerobic 

nitrifying bacteria and, consequently, a slow anaerobic ammonium oxidation process, as these 

bacteria require more time to reach sufficient concentrations [101]. The removal efficiency 

comparison by biological process and by the membrane module is presented on Figure 4.52.  

Analysis of the data presented on Figure 4.52, suggests that gradual increase in ammonia 

oxidation performance started only after 20 days of the Stage I, however the removal 

performance of the membrane module was constant during the entire Stage I operation. 

Therefore, both the anaerobic nitrification process and the filtration through the membrane 

module were primary mechanisms responsible for major part of ammonia removal.  
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Figure 4.52. Removal efficiency comparison by biotic processes and membrane module 

 

4.2.1.3.3. Phosphorous Removal Mechanism 

Advanced biological phosphorous removal processes can lower the total phosphorous (TP) 

concentrations in the effluent to 0.1–0.2 mgL-1, however, supplemental additions of Al or 

Fe(III) salts, polymeric coagulants such as poly-aluminum chloride (PACl), and/or lime for 

coagulation purposes are often required to maintain acceptable effluent TP concentrations 

[106]. Chemical coagulation decreases filtration time due to removal of soluble and particulate 

materials that could deposit onto membrane surface and into the membrane pores. However, 

chemical coagulation inevitably increases amount of produced sludge in case of MBRs which 

is a significant problem. One of the main objectives of designing the proposed AnMBR system 

was to enhance phosphorous removal from industrial wastewater.  

The main phosphorus compounds in wastewater are generally orthophosphate (PO4-P) forms 

along with smaller amounts of organic phosphate [135].  TP which is defined as the sum of 

all phosphorus compounds that occur in various forms was measured as a performance metric 

in phosphorus removal efficiency. The variations of total phosphorus concentration in the 

influent, the supernatant in the bioreactor and the treated effluent are presented in Figure 4.52. 

Figure 4.53 presents the corresponding removal efficiency of TP of the bioreactor and for the 

overall AnMBR during the Stage I. 
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Figure 4.52. Changes in TP concentrations during the Stage I 

 

The influent concentration of phosphorus measured as TP in the feed was 151±1 mgL-1. The 

concentrations of TP in the reactor was 145-150 mgL-1 at the beginning of the Stage I and 

reduced to 55.2 mgL-1 at day 30 (last day of Stage I) which represented 63.4% efficiency 

towards the end of the experiment. However, increase of phosphorus concentration was 

observed from day 5 to day10 in the reactor (peaked at 171 mgL-1) and the effluent as well 

(34.6 mgL-1). The TP concentration in the reactor during this period exceeded the 

concentration of TP in the influent. This increase can be attributed to the release of phosphorus 

by microorganisms in the process of hydrolysis of the phosphate groups in adenosine 

triphosphate. The concentration of TP in the effluent varied between 16.8 and 77.6 mgL-1 in 

the first days and reached less than 4.5 mgL-1 during the last days with minimum value of 1.84 

mgL-1 during the Stage I. Further increase in the MLSS concentration in the bioreactor 

enhanced the phosphorus uptake in Stage I which peaked at 77% removal. Although the 

phosphorus uptake was lower during the initial period of Stage I, Figure 4.53 demonstrates 

that the AnMBR system had an excellent removal performance in terms of TP removal also 

due to the contribution of the membrane module to the overall performance. The membrane 

contributed up to 47% during the first day of operation and reached maximum 96 % at day 19. 

The overall performance of the system (combined biological and membrane module) was 

recorded as low as 49% on the first day and progressed up to 97% at the day 30 with maximum 

during the days 16-22 (98.3%). In general the lowering in TP concentrations were attributed 
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to membrane filtration during the first phase of Stage I. However, the contribution of the 

membrane module decreased over the time, and the primary removal mechanism in the second 

phase was biological activity (MLSS increased from initial 5,000 mgL-1 to 5,600-5,700 mgL-

1) and raise in pH from 5.3 initially to 6.0-6.7 at the same time.  

 

Figure 4.53. Removal efficiency of TP concentration during the Stage I 

 

4.2.2.  Stage II: Operation in the EAnMBR Mode 

The Stage II was conducted to research the performance of the EAnMBR system when the DC 

is applied to the MLSS solution in conjunction with the operation of the membrane module. 

In the Stage II of Phase II of this study, the reactor was operated for 30 days as EAnMBR with 

DC of 20 Am-2 supplied with operational mode 5-On: 20-Off. Research of the electrokinetics 

phenomena impact on the physical, chemical and biological properties of the MLSS solution 

was conducted in EAnMBR system for 30 days in order to gather sufficient data for analysis.  

4.2.2.1. Impact of the EAnMBR Operation on the Physico-chemical Properties 

A research was undertaken to determine the role of physical and chemical properties in the 

treatment performance of EAnMBR. Monitoring changes in these properties permitted 

improved prediction of the treatment potential of the novel system for future research. The 

results presented in this chapter combine outcome from both Stages I and II, i.e. both reactors 
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AnMBR (1st – 30th day) and EAnMBR (31st – 60th day). Electrical field was applied to AnMBR 

on day 31st and switched it into EAnMBR.  

4.2.2.1.1. Changes in pH 

The pH of the mixed liquor after introducing a voltage gradient in the activated sludge was an 

important parameter for the study of the impact of DC on microbial activities and overall 

behaviour of the system. 

Figure 4.54 shows changes in the pH after applying the voltage gradient. The significant 

changes began immediately after the beginning of the Stage II, when the pH increased as a 

result of the electrokinetic phenomena. The increase in the pH solution after applying DC field 

into wastewater was also observed in other studies and it was attributed to production of 

hydroxyls at the cathodes associated with hydrogen evolution [134, 140, 283]. 

 After the first days of operation, a sharp increase in the pH values was observed in the MLSS 

solutions and in the treated effluent. The pH value of the MLSS solution increased from 6.5 at 

the end of Stage I to 7.1 at beginning of Stage II and to 8.4 after 3 days of operation, while the 

effluent pH increased from 7.1 to 8.2. 

 

 

Figure 4.54. pH Changes during the Stage II of Phase II 
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During the application of the voltage gradient, the changes in the pH of the treated effluent 

were within the range of 7.0 to 8.3, with the average value of 7.8 which demonstrates that the 

effluent of the EAnMBR system does not need further adjustment for pH. The increase of pH 

can be attributed to the design of the EAnMBR system. Equations 4.9 to Equation 4.14 provide 

the insight into anodic aluminium corrosion in the electrolysis in dilute electrolytes.  

Direct electrolytic corrosion of an aluminium anode occurs according to Equation 4.9. 

Al(OH)3 is formed according to Equation 4.10 at the isoelectric point, however the equilibria 

shown in Equation 4.11 and Equation 4.12 are more general. Equation 4.12 shows hydrolysis 

at the isoelectric point [284]. 

 

Al → Al3+ + 3e-                                                                                                                          (4.9) 

3Al3+ + 3OH- → 3Al(OH)3                                                                                                              (4.10) 

xAl3+ + yH2O → Alx(OH)y
(3x-y)+                                                                                                      (4.11) 

Al + 3H2O → Al(OH)3
 +3/2H2                                                                                                       (4.12) 

 

Reaction of aluminum with electrolytically formed chlorine as shown in the sequence of 

Equation 4.13 to Equation 4.14 will result in a further hydrolysis similar to Equation 4.10. 

 

3Cl-→ 3/2Cl2+3e-                                                                                                                   (4.13) 

3/2Cl2+Al → Al3++3Cl-                                                                                                           (4.14) 

 

Electrolysis of water produces oxygen at the anode in basic conditions, according to Equation 

4.15, that could attack the aluminum (Equation 4.16) with the resulting oxide then hydrolysis, 

albeit slowly (Equation 4.17), to the usual hydroxide at the isoelectric point. 

 

3OH- → 3/2O2+3/2H2O+3e-                                                                                                        (4.15) 

3/2O2+Al → 1/2Al2O3                                                                                                                 (4.16) 

1/2Al2O3 + 3/2H2O → Al(OH)3                                                                                                   (4.17) 

 

The proportions of current (the current fractions) going into the primary reactions Equation 

4.9, Equation 4.13 and Equation 4.15 area. b and c respectively, the secondary and tertiary 

reactions go virtually to completion, and the overall anodic reaction is represented by Equation 

4.18. 
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(a+b+c)Al+3(a+b+c)OH- →   (a+b+c)Al(OH)3+3e-                                                                                               (4.18) 

 

If a+b+c=1, the above equations predict that 1 net mol of acid is added at the anode per mol 

of electrons transferred, irrespective of the individual current fractions. The cathodic reaction 

(at a non-corroding cathode) is shown in Equation 4.19 [284]. 

 

xMn+ + yH2O ↔ Mx(OH)y
n-y + yH+                                                                                      (4.19) 

  

Equation 4.19 indicates that 1 mol of acid is consumed per mol of electrons transferred.  

In EAnMBR the anodic reactants and products were kept separate from the cathodic versions 

by a plastic circular baffle as discussed in previous chapter, which was also a support for the 

electrodes, and the bulk of the flow went through the Anode Zone as anolyte. On the other 

compartment- Cathode Zone, catholyte, the separately formed and outflew with of different 

pH. Equation 4.11 suggests that if the anolyte and catholyte are mixed then the outflow will 

have the same pH as the inflow. When gaseous products of electrolysis were removed from 

the system and any neither the secondary nor tertiary reactions might not went to completion, 

then a net pH increase would be expected as it was observed in the Stage II.  

Simple chemical corrosion of aluminum by water according to Equation 4.10 and further 

dissolution in alkaline conditions according to Equation 4.13, produces 1 net mol of acid and 

1.5 mol of hydrogen per mol of aluminum consumed [285].  

At the isoelectric point of Al(OH)3 , by definition, the resulting Al(OH)3  remains uncharged 

and will precipitate, as in Equation 4.20. At a pH more alkaline than the isoelectric point net 

hydroxide is absorbed, producing a negatively charged aluminium species and lowering the 

pH, as shown in Equation 4.21. A series of Al(OH)2
+, Al(OH)3 , Al(OH)4

- is produced by 

removal or addition of either H+ or OH- at appropriate conditions. This hydrolysis series is 

represented in Equation 4.22.  

Al(OH)3 → Al(OH)3↓                                                                                                                (4.20) 

Al(OH)3 + OH- →  Al(OH)4
-                                                                                                     (4.21) 

Al(OH)4
- + H+  OH- + Al(OH)3 + H+  OH- + Al(OH)2

+ + H+  OH- +  

Al(OH)2
+ + H+  OH- - Al3

+                                         (4.22) 
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Therefore, the influent pH is an important operating parameter affecting the electrokinetic  

process in the EAnMBR system, however the most significant change of pH is dependent on 

the amount of the Al(OH)2
+, Al(OH)2

+, Al(OH)3 , Al(OH)4
- species released into the aqueous 

phase which is directly proportional to the period of electrolysis.  

4.2.2.1.2.  Temperature 

Results of temperature changes in the system are represented on Figure 4.55. The EAnMBR 

kept the temperature of 36±1 0C degree during the entire experimental period.  

Therefore, according to the results analysis of temperature changes, it can be concluded that 

effect of electrokinetic process on the temperature of aqueous phase was not observable in the 

EAnMBR during the duration of the entire Phase II. Such conditions provided ideal conditions 

for anaerobic microbial community growth. Based on the analysis, the order of change in 

temperatures in the EAnMBR system was as follows: 

Influent temperature < Effluent temperature < Temperature in the reactor 

  

 

Figure 4.55. Changes in temperature during Stage II of Phase II 
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4.2.2.1.3. Impact of the EAnMBR Operation on Specific Resistance to Filtration 

The SRF of the MLSS solution particles in the EAnMBR was monitored every 10 days and at 

the end of the Stage II during the operating time as presented in Figure 4.56. 

According to a recent study, the electroosmotic dewatering mechanism is principally based on 

the interplay between the applied electric field and the electric charge density of ions existing 

in the liquid close to the particle surface [286]. In other words, under the electric current, water 

displacement is ensured by propagation of ionized mobile liquid on a solid-liquid interface, 

which drives the neutral liquid in the central channel through viscous momentum transfer. 

Capillary forces tend also to retain the water [287]. Despite this fact, water can still be released 

from inner colloids at slow rate even after extended drainage time. The dewatering rate was 

also influenced by electrochemical reactions at the electrodes, which affect the cake 

morphology and the chemistry of sludge.  

 

Figure 4.56. Changes of specific resistance to filtration of the MLSS solution Stage II 
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on the electrolysis of water, producing notably hydronium and hydroxide electrolytic ions and 

gases [286]: 

At the anode: 2H2O(l)  4H+ + O2(g) + 4e-               (4.23)  

At the cathode: 2H2O(l)  + 2e- 
 2OH-

(aq) + H2(g)               (4.24) 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

31 40 50 60

S
R

F

Operating Time, d



135 
 

 Therefore, the flocs formed by the EC process are relatively large and contain less bound 

water. They are also more stable thus, amenable to filtration due to formation around inorganic 

polymers of aluminum hydroxides [135].  

The interaction of inorganic aluminum hydroxides with the organic solids created different 

sludge properties in the EAnMBR comparing to sludge in the MBR. It can be speculated that 

the process of organic-inorganic particles interactions was enhanced by the direct current (DC) 

field. 

Starting from Stage II, the results demonstrated that the electrokinetic processes in the 

EAnMBR system, significantly affected the floc size of the MLSS solution. After day 31 of 

the Stage II, large and dense flocs started to appear which enhanced the overall performance 

of the solid-liquid separation processes. The effect was observed visually during the 

preparation the samples for the SRF analyses. The effect of aggregation was also reflected in 

the sedimentation velocity which increased dramatically after applying the DC field to the 

system. 

A considerable improvement in the SRF was observed after day 31. The SRF decreased by 7% 

compared to initial phase by day 40 and by 32% at the end of Stage II. A reasonable 

explanation of the results of Stage II is that the EPS produced by well-developed microbial 

community and larger aggregates formed by microorganisms.  In addition, electrokinetic 

phenomena might also significantly contributed in dewatering. The results are in agreement 

with the report about the significant role of the smaller size particles in the activated sludge on 

the membrane fouling phenomenon [134]. 

4.2.2.1.4. Impact of the EAnMBR Operation on Sludge Volume Index 

Figure 4.57 represents the SVI at current density 20 Am-2 while the system was operating in 

EAnMBR configuration.  
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Figure 4.57. Changes of SVI during the Stage II of Phase II 

 

As can be seen, the SVI in EAnMBR reached 164 mLg-1 which was significantly lower than 

in the AnMBR. This could be explained by the application of current density, and, as a result- 

involvement of electrokinetics. The conductance of current through the electrical double layer 

causes water molecules to move towards the electrodes through electroosmosis phenomena. 

Since pH of the sludge liquor observed in this study was alkaline, the solid surfaces were 

negatively charged and the electrical double layer was dominated by cations. Under a DC field, 

these cations have a tendency to move towards the cathode simultaneously prompting the 

movement of bound water molecules. At a current density 20 Am-2, denser colloids were 

generated and better settleability was achieved after day 35. Similar findings were reported by 

other researchers for conventional and electro-bioreactors [273, 288]. Reported SVI were 65.8 

and 121.5 mLg-1 at 47%, and 24%, respectively. During the Stage II, 218 mLg-1 was the 

maximum achieved, which was 54.29% reduction compared to AnMBR.  

Based the visual observations and the results of the experiment, it could be concluded that the 

sludge at 54% reduction had good settleability and no bulky sludge was produced in EAnMBR 

configuration. 

4.2.2.1.5. Role of Particles Size Distribution 

The variation of colloids mean particle size diameter (PSD) over the operating time during the 

Stage II is depicted on Figure 4.58. The data analysis suggests that the increase in floc size 

0

50

100

150

200

250

300

350

400

450

31 35 40 45 50 55 60

S
V

I,
 m

L
g

-1

Operating Time, d



137 
 

was 23.8% (from the mean value 168.5 µm) at CD of 20 Am-2 during the period from day 31 

to day 49. This suggests that the forces of attraction dominated over the electroosmosis 

phenomenon during this period of the EAnMBR operation. However, after day 49, gradual 

decrease was observed until day 60. This can be explained by the formation of electric double 

layer as the negative charged particles of the sludge were surrounded by a layer of the positive 

ions. When a DC was applied to the MLSS solution, the positive counterions started migrating 

towards the cathode. As they moved, they would repel water molecules resulting in a total 

transport of water out of the sludge particles. Electroosmosis phenomenon enhanced the 

extraction of bound water from the sludge colloids, minimized their attachment to the surface 

of the membrane, and hence improved membrane fouling characteristics. This was a 

completely different behavior from conventional coagulants. A research focused on addition 

of polyacrylamides reported an increase in the flocs size while adding different coagulants 

[288]. The results of this study, however, were in line with other researches [272-274]. 

Therefore, the EAnMBR employs a different mechanism from chemical coagulation in 

enhancing the sludge filterability and thus minimizing the overall sludge management cost.  

 

 

Figure 4.58. Changes of the floc mean PSD in the EAnMBR over time 
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4.2.2.1.6. Role of Zeta Potential 

The improvement in membrane permeability within the EAnMBR system was confirmed by 

measuring the zeta potential of the sludge flocs (Figure 4.59). 

Starting from the Stage II, the zeta potential of the particles in the supernatant shifted from -

30 to -18.3 mV within first days of operation. Involvement of electrokinetics significantly 

improved the aggregation of particles and the overall treatment process. By the end of Stage 

II, zeta potential decreased from -18.3 to -10.0 mV with average -13.1 mV and maximum 

value of -8.0 mV toward the end of the Stage II. In Stage II, a gradual decrease in negative 

direction was observed in zeta potential values between the days 31 and 45 due to stable release 

of aluminum ions and formation of polymers in the aqueous phase. However, zeta potential 

stabilized after day 46 at around -8 -10 mV in the reactor until the end of the Stage II. The 

results of the study demonstrate that the colloidal particles of the mixed liquor solution 

approached close to isoelectric point. These values can explain the significant improvement of 

the treatment efficiency as explained later in the chapter. 

 

Figure 4.59. Changes in zeta potential in the system during the Stage II of Phase II 

 

4.2.2.2. Impact of the EAnMBR Operation on the Biomass Characteristics 

The impact of electrokinetic processes on the biomass characteristics in the EAnMBR system 

during Phase II was monitored by measuring the MLSS and the MLVSS concentrations in the 

-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

30 35 40 45 50 55 60

Z
et

a 
P

o
te

n
ti

al
, 

m
V

Operating Time, d



139 
 

vessel. Figure 4.60 shows the changes of the mixed liquor concentration in the EAnMBR. 

During the first two days of Stage II, the MLSS concentration remained relatively stable and 

ranged between 5,500 mgL-1 to 5,700 mgL-1. This stagnation was related to an increase in the 

pH of aqueous phase from 7.0 to 7.8 due to the release of Al3+ into the solution. The pH change 

might affect sensitive to pH changes anaerobic microorganisms and transition from 

acetogenesis to methanogenesis. Ten days after application of DC, the microorganisms began 

to adapt to the new conditions, including pH increase, and the MLSS stabilized around 5,670 

– 5,850 mgL-1. After day 41 of the Phase II (day 11 of Stage II) the mixed liquor concentration 

increased gradually and peaked 7,500 mgL-1 (average 6,721 mgL-1) at the end of Stage II.  

 

Figure 4.60. Changes of the biomass characteristics during the Stage II 
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decreased over the time which suggests that aluminum produced after the DC application 

contributed to inorganic particulates in the MLSS. In order to distinct between the amounts of 

the MLSS produced from biodegradation process and contributed by electrokinetic 

phenomena, a separate experiment was conducted as described below.  

Four 1L batch bioreactors, having 0.8L effective volume each were used in this experiment. 

Three bioreactors operated under current densities 12, 15, and 20 Am-2 along with a control 

reactor without DC application. MLSS and MLVSS were determined on a daily basis for 10 

days. The difference between MLSS and MLVSS in the control and MLSS and MLVSS in the 

EAnMBR represented the inorganic fraction due to electrokinetics. Figure. 4.61. provides 

detailed information on the increase in the suspended solids (in kgm-3 wastewater) in terms of 

the fixed suspended solids (inorganic fraction) generated in the EAnMBR due to the 

electrokinetic phenomena. From the Stage II, it could be concluded that the EAnMBR showed 

insignificant negative impact on biomass characteristics during the initial stage of operation 

compared to the AnMBR operation and ensured excellent performance in the treatment of the 

synthetic wastewater. 

 

Figure 4.61. Daily solid increase in EAnMBR due to electrokinetic phenomena 
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4.2.2.3. Impact of the EAnMBR Operation on the Wastewater Quality Properties 

This section of the study assessed EAnMBR operation influence on wastewater quality 

parameters and removal efficiency in terms of carbon and nutrients when electrokinetic 

processes became involved.  

4.2.2.3.1. COD Removal Mechanism 

The variations of the COD concentrations in the influent, the reactor and the effluent during 

the Stage II are presented on Figure 4.62. The total efficiency of COD removal in the EAnMBR 

was calculated according to equations (4.10) and (4.12) respectively. Considering difficult to 

treat nature of influent, the results generated by the EAnMBR show consistently high COD 

removal during the Stage II. The COD concentration in the reactor varied between 1,318 mgL-

1 at the beginning and 78-105 mgL-1 towards the end of the experiment (280 mgL-1 on average). 

The COD concentration in the effluent was in the range between 609 mgL-1 at the beginning 

and 45 mgL-1 towards the end of the stage achieving the removal efficiency between 96-99%. 

 

 

Figure 4.62. Changes in COD concentrations and percentage removal in Stage II 
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electrokinetic phenomena enhanced contribution to the higher percentage of COD removed as 

the maximum removal efficiency of the COD in the EAnMBR reached more than 99%. Several 

phenomena such as electrocoagulation, electrochemical oxidation and adsorption by 

electrostatic attraction, electroflotation and physical entrapment could contribute significantly 

to improvement of the COD removal in EAnMBR after applying DC. 

The data acquired during the Stage II proved that the electrokinetics acted as an important 

contributor in the enhancement of COD removal in AnMBR processes.  

The substantial reduction of organic fraction in sludge colloids from the liquid phase resulted 

through the formation of complexes with aluminum hydroxides. 

During Stage II, combined degradation due to microbial activity and electrokinetic was 

increased from 75% (at the beginning of day 31) to more than 97% (at day 60). The membrane 

system contributed from 46% to 53% maximum towards overall removal efficiency. 

Contribution of the electrokinetics, biological processes and the membrane module towards 

the overall removal process is presented on Figure 4.63. 

 

 

Figure 4.63. Contribution of membrane module and electrokinetic/biological activities to 

COD removal in Stage II 
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[290]. Molecular weight (MW) fingerprint profiles showed that a majority of fragments in 

anaerobic soluble microbial products (SMP) were retained by the membrane and some 

fragments were present in both SMP and in soluble extracellular polymeric substances (EPS), 

suggesting that the physical retention of SMP components might contribute to the AnMBR 

membrane fouling [291]. The EPS and SMP do not represent specific molecules with specific 

structure or configuration, however are operationally defined. Any molecules, colloids, or 

particles can be detected as EPS or SMP as long as they are qualified by the method used by 

reacting with the reagents used.  

Electrokinetic processes affect stability of colloidal system and, therefore, reduce the 

contribution of the dissolved organics on membrane fouling. The results demonstrated that the 

application of the DC field played a significant role in providing dramatic reduction of COD 

and improving the effluent quality.  

4.2.2.3.2. Nitrogen Removal Mechanism 

The variations of the total nitrogen concentrations in the influent, EAnMBR supernatant and 

the treated effluent are presented in Figure 4.64.  

 

 

Figure 4.64. Changes in the TN concentrations and removal in EAnMBR during the Stage II 
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The overall removal efficiency of the EAnMBR system is also provided in Figure 4.65. The 

influent TN concentration was 940±3 mgL-1. An initial concentration of nitrogen in the 

EAnMBR was 420 mgL-1 at the day 1. Slight increase of TN can be attributed most likely to 

the microbial biomass initial response to the electrical current by secreting enzymes of protein 

nature. Then, noticeable changes were observed after 3 days; the concentration gradually 

decreased in the reactor after application of the DC. During the first 5 days of the Stage I, 

removal of TN in the reactor was 59±3%, and up to day 50 oscillated around 65±1% reaching 

77±1% by the end of the Stage II. The overall removal efficiency (by the combination of 

biological, electrokinetic and membrane processes) was 95% at the beginning and increased 

up to 98% by day 60. This result could be attributed to a significant involvement of 

electrokinetic phenomena at this stage in decomposition of nitrogen in combination with the 

microbial activity as can be seen from Figure 4.65.  

 

 

Figure 4.65. Removal efficiency comparison by biological process and membrane module in 

Stage II 
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observation was also confirmed by other research [135, 136, 274]. During the operating period, 

some difference in TN concentration between the supernatant and the membrane effluent was 

observed, which suggests that the nitrogen removal was achieved by the combination of the 

membrane filtration, electrokinetic phenomena and microbial community, especially at the 

later stage of experiment when sludge well developed.  

4.2.2.3.3. Phosphorous Removal Mechanism 

Figure 4.66 provides details on the variations of the TP concentration of the influent, the 

supernatant liquors in the EAnMBR, and the treated effluent during the Stage II period of 30 

days. Figure 4.67 demonstrates the corresponding TP removal efficiency by the reactor 

(combined anaerobic biological and electrokinetic), the membrane module and the overall by 

the entire EAnMBR system. The influent TP concentration was 151±1 mgL-1. During the first 

days of Stage II, when the electrokinetic phenomena became involved in the combined 

treatment, the removal efficiency of TP by the reactor increased from about 60% to 84.5% and 

the removal efficiency in the effluent was about 98% which provided an increase 

approximately by 38% compared to day one of the Stage II. The decline in the TP removal in 

the reactor from 20 mgL-1 to 40 mgL-1 and, as a consequence, the insignificant increase of the 

TP in the effluent noticed between day 30 and 50 was attributed to the temporary reduction of  

MLSS concentration during that period as a result of the system adjustment to the DC. 

However, shortly after, the removal efficiency sharply increased due to combined effect of the 

increased MLSS concentration (as uptake increased by microorganisms) and electrokinetic 

phenomena (coagulation) in the EAnMBR. It is likely that at the newly-formed after DC 

application oxic-anoxic interface near the anode, facultative microorganisms’ started oxidation 

process which involves the regeneration of adenosine triphosphate by combining adenosine 

diphosphate with inorganic phosphates present in the wastewater. 
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Figure 4.66. Changes in TP concentrations during the Stage II 
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could be adsorbed by the sweep flocs and removed from the aqueous phase by 

electrocoagulation. 
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Figure 4.67. Removal efficiency of TP concentration during the Stage II 
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the DC operating mode, which reflects release of OH- into the solution, thus increasing the pH 

and the exposure time of the MLSS to the DC field. In Stage II, the operating mode was 5 

minutes On and 20 minutes Off which is equivalent to an effective operational time for 

electrokinetic phenomena in the system of 25%. This draws a conclusion that the application 

of DC for 25% out the total operating time, increases substantially the effects of the 

electrokinetic processes on the pH of solution and microbial community; similarly, when the 

time for electrokinetic processes is reduced, the EAnMBR system operation will be similar to 

the AnMBR bioreactor in addition to benefitting from electrokinetic phenomena.  

 

 

Figure 4.68. pH changes during the Stage I and II of Phase II 
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values of the EAnMBR system was be less dependent on the influent pH, but rather to the 

electro-coagulation process. 

4.2.3.1.2. Comparison of Changes in Temperature 

Comparative results in the variations of temperatures of the feed wastewater, the MLSS 

solutions and the treated effluent in the Stage I and Stage II are presented in Figure 4.69. The 

temperature of the influent was (21±2 0C), while temperatures of the MLSS and the effluent 

were closer to each other (36±1 0C and 30± 1 0C respectively). The temperatures in the electro-

bioreactor zones were approximately the same in the Stage I and Stage II which suggests that 

the electrokinetic phenomena have an insignificant impact on the temperature. The order of 

change in temperatures in the Stage I and Stage II was as following: 

Influent temperature < Effluent temperature < Temperature in the reactor 

It should be noted that the temperature of the effluent dropped rapidly in the effluent storage 

tank ambient, therefore its discharge should not be a concern.   

 

 

Figure 4.69. Temperature changes during the Stage I and II of Phase II 
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4.2.3.1.3. Impact of Electrokinetic Phenomena on Specific Resistance to Filtration 

Form the results obtained during the Stage I and II operation (Figure 4.70), it can be concluded 

that the involvement of electrokinetic processes significantly improved the overall 

performance of the system in terms of SRF. The conductance of charge through the electrical 

double layer transfers the momentum to water molecules to move towards the electrodes 

(electroosmosis). This study demonstrated that 20 Am-2 was adequate to provide the driving 

force to remove bound water from the inside of the flocs. Current density 20 Am-2 was found 

to cause a substantial removal of bound water, thus increasing sludge dewaterability by 

decreasing the SRF. A reduction of SRF (up to 59%) was observed during the Stage II 

(EAnMBR configuration) compared to 7% achieved in the Stage I (AnMBR configuration). 

The magnitude of reduction was due to quality of the initial properties, mostly floc size and 

SMP concentrations [189, 272]. The electroosmosis process was evident through the reduction 

of the floc size over the operating period. The impact of electrokinetic on enhancement of 

sludge dewaterability is not only limited to the extraction of bound water. The formation of 

aluminum hydroxides that reduce the concentrations of SMP in the aqueous phase is another 

factor contributing in improvement of dewaterability. Furthermore, electrokinetic phenomena 

change the structural and morphological characteristics of the flocs through changing their size 

and decreasing the ratio of the organic to the inorganic matter concentrations. In addition, the 

application of an aluminum anode seemed to give an overall better prevention of the membrane 

fouling. This results agrees with the results from research conducted on electrokinetic aerobic 

systems [135, 136]. 
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Figure 4.70. SRF changes during the Stage I and II of Phase II 

 

4.2.3.1.4. Impact of Electrokinetic Phenomena on Sludge Volume Index 

The results showed that sludge volume index (SVI), which represents the settleability of the 

sludge reached 360 mLg-1 (4% reduction) in AnMBR configuration, while 164 mLg-1 (54% 
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electrical double layer was dominated by cations. Under a DC field, these cations have a 

tendency to move towards the cathode simultaneously prompting the movement of bound 

water molecules. 

Several other factors may have contributed to the better sludge dewaterability in the EAnMBR 

over the AnMBR, namely: the reduction of SMP, the reduction of flocs' bound water, the 

reduction of MLVSS/MLSS ratio and the enhancement of bio-flocculation. 
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Figure 4.71. Changes of SVI during the Stage I and Stage II of Phase II 

 

4.2.3.1.5. Impact of Electrokinetic Phenomena on Particles Size Distribution 

The change in the PSD in the AnMBR was insignificant, indicating a comparatively slow 

coagulation rate. Therefore, the mechanism of dewatering in the AnMBR was different from 

the EAnMBR (Figure 4.72). However, towards the day 30 particles started to grow in size due 

to increased biological activity in AnMBR. In Stage II, however, PSD of colloids exhibited 

similar trend as in preliminary study in Phase I, i.e. initial wave pattern with gradual increase 

of PSD. However, the magnitude of the increase was different due to the different nature of 

the influent. Starting from the day 31, after the DC was applied to the system, the mean floc 

PSD increased from 111 µm to nearly 221 µm after by the day 41 of operation. The peak size 

was observed from day 41 to 49, and then the PSD slightly declined. The decline was caused 

by electroosmosis phenomenon and the extraction of bound water from the sludge colloids 

which led to a reduction of colloids size. These changes in particles size distribution size 

reflected the dynamics of the EAnMBR system over the period of time. The PSD increase can 

be also attributed to an electro-flocculation process during which the organic particles formed 

larger flocs mainly as a result of reducing the repulsive forces between the particles surfaces 

as the zeta potential decline. It was observed in subsequent stages some flocs size decline due 

to the removal of bounded water by the electroosmosis. This trend of increasing and decreasing 

of the flocs size was observed whenever the current density was strong enough to cause 

electro-flocculation and electro-extraction of the bound water. This observation was in line 

0

50

100

150

200

250

300

350

400

450

1 5 10 15 20 25 30 31 35 40 45 50 55 60

S
V

I,
 m

L
g

-1

Operating Time, d

Stage I Stage II



153 
 

with another study [189]. Thus, colloids size increased as the forces of attraction-repulsion and 

decreased when electroosmotic mechanism dominated and the extraction of the tightly bound 

water from the pores of the colloids reduced their size. Another important factor contributed 

in reducing the floc size over the time was the production of aluminum hydroxide polymers. 

The hydrated polymers became centers of gravitation for flocs which, in turn, combined with 

the other solids in the system. These aggregates formed suspended solids in the EAnMBR of 

smaller size compared to the microbial aggregates and reduced the measured mean PSD. 

Towards the end of the Stage II, the floc size started to stabilize at about 100 µm based on the 

average size of the aluminum hydroxide polymers produced [136]. The longer time required 

to develop larger particles can be attributed to a longer time necessary to develop long-chained 

inorganic polymers formed by aluminum hydroxide species. New particles composed of 

inorganic aluminum hydroxides or particles of organic/inorganic nature might also be formed. 

 

 

Figure 4.72. Changes of the floc mean PSD in the AnMBR and EAnMBR over time 
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(average -32 mV). However, the magnitude of zeta potential reduction (from -30.5 to -8.2 mV) 

in the Stage II indicated a significant enhancement of the aggregation of the colloids in the 

sludge flocs due to the presence of sufficient aluminum ions in the aqueous phase.  

 

 

Figure 4.73. Changes in zeta potential in the system during the Stage I and II of Phase II 

 

Decrease of zeta potential magnitude can be explained by the release of positive aluminum 

ions into aqueous phase which were absorbed by the negatively charged particles in the sludge 

suspension; creating electrostatic attraction forces and better coagulation.  

DLVO theory described the force between charged surfaces in a liquid medium, and combined 

the effects of van der Waals attraction and electrostatic repulsion. The aluminum ions 

generated from the anodic electrooxidation (eq. 4.12-4.14) destabilized the negatively charged 

colloids and according to the DLVO theory changed net energy permitting van der Waals 

attraction forces to dominate, and thus the colloids to coagulate. According to the 

Smoluchowski’s equation (eq. 4.25), the electrophoretic mobility of the particles was 

proportional to the electrophoretic velocity which was dependent on the strength of electric 

field. Therefore, particles moved relatively faster under EAnMBR operation mode when they 

carried a larger charge: 
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Where, ν is the particle velocity, εr is the media dielectric constant, εo is the permittivity of free 

space, ZP is zeta potential, E is the applied electric field, and μ is the medium viscosity. 

It was concluded that the electrooxidation of the aluminum anode in EAnMBR caused 

breaking the repulsive forces between the negatively charged sludge colloids, and permitting 

the van der Waals forces to predominate and therefore flocs to aggregate as was demonstrated 

in Phases I and II. Overall, electrokinetics in EAnMBR enhanced the coagulation process and 

similar results were expected in subsequent study of industrial wastewater treatment. 

4.2.3.2. Impact on the Biomass Characteristics 

Figure 4.74 represents the changes of the MLSS and the MLVSS concentrations during the 

entire Phase II.  

 

 

Figure 4.74. Changes of the biomass characteristics during the Phase II 
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during the operating period; therefore, the available source of carbon did not limit growth of 

the microorganisms in Phase II. From 14 day of experiment until the end of the Stage I, the 

MLSS concentration in the vessel was relatively stable- the sludge concentration remained 

5,500 mgL-1. MLVSS/MLSS ratio during Stage I was around 84%, indicating that no inorganic 

matter accumulated in the EAnMBR.  

The impact of electrokinetic processes on the biomass sludge characteristics in the EAnMBR 

system during Phase II, however, was more obvious (Figure 4.75), at the beginning of Stage 

II, the MLSS concentration remained relatively stable and comparable to Stage I, and ranged 

between 5,500 mgL-1 to 5,700 mgL-1. This stagnation was related to an increase in the pH of 

aqueous phase of the system from 7.0 to 7.8 due to the release of Al3+ cations into the solution. 

The pH change could affect microorganisms sensitive to pH change. Ten days after application 

of DC, the microorganisms began to adapt to new conditions, including pH increase. The 

MLSS measured during this period was found to be around 5,670-5850 mgL-1. After day 41 

of the Phase II the mixed liquor concentration increased gradually and reached maximum 

about 7,500 mgL-1 (average 6,721 mgL-1) at the end of Stage II.  

Increase of MLSS concentration after introducing the DC field indicated the ability of 

microbial consortia to accommodate changes relatively fast and to start the biodegradation 

processes because of the metabolic activities. The study of biomass characteristics revealed 

that the volatile fraction of total suspended solids was relatively stable throughout the Stage I 

suggesting that there was no accumulation of fixed solids inside the vessel. However, as the 

DC was applied, MLVSS/MLSS ratio decreased from 84% to approximately 65% during Stage 

II, which might suggest that inorganic solids started to build-up in the reactor. This can be 

explained by increase of aluminum ions concentration generated by the electrokinetic process 

compared to Stage I where practically no aluminum were in the aqueous phase. Electrokinetics 

resulted in an increase in the overall total suspended solids by the end of the Stage II. However, 

MLVSS/MLSS ratio decreased over the time of the Stage II, which might suggests that 

aluminum produced after the DC application contributed to inorganic particulates in the 

MLSS. To distinct between the amounts of the MLSS produced from microbial activity and 

contributed by the electrokinetic processes, a separate experiment was conducted which 

confirmed a complex interaction of physical, chemical and biological process in the EAnMBR.  
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4.2.3.3. Impact of Electrokinetic Phenomena on the Wastewater Quality Properties 

Impact of electrokinetic processes such as electrooxidation, electrocoagulation, 

electroflotation, electrosedimentation etc., on the wastewater quality was assessed in terms of 

COD, nitrogen, phosphorous removal and sludge properties.  

4.2.3.3.1. Impact of Electrokinetic Phenomena on COD Removal Performance 

Although the overall COD removal efficiency during the Stage I varied between 79% and 89% 

with average 86% and  the concentration of COD was reduced from 4,793±200 mgL-1 to 

719±100 mgL-1 (on average), the application of the DC field through the MLSS solution 

further increased the COD removal efficiency in the EAnMBR to more than 99%. When the 

electrokinetic processes started acting on the system, the COD removal rate improved quality 

of the effluent and achieved around 87% at beginning of Stage II reaching 95% in 5 days of 

the experiment. This fact can be directly attributed to the effect of the combination of 

electrokinetic phenomena (electrocoagulation, electrophoresis, electroosmosis, and 

electroflotation) with biological and physical-chemical processes (Figure 4.75).  

 

 

Figure 4.75. Changes in the COD concentrations and percentage removal in Phase II 
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Due to a complex interaction between biological, physico-chemical and electrokinetic 

processes in the EAnMBR, a combined effect of anaerobic processes and electrokinetics 

contribution to COD removal was assessed in the Stage II. Indirect evaluation was conducted 

(Figure 4.76). Without membrane contribution, the average COD removed by AnMBR during 

the last 5 days of the Stage I (74±3%) was compared to the COD percentage removal during 

the first 5 days of the Stage II (83±3%). Assuming there was no biological growth during the 

first days of the Stage II due to microbial community adjustment, the designed EAnMBR 

system contributed minimum 6 % to the COD removal performance. Some fractions of carbon 

in the mixed liquor have higher affinities to the membrane and may cause greater irreversible 

fouling [290]. Researchers found that the membrane fouling is caused not only by the 

microbial colloids but also by the organic and inorganic colloids [291].  

Membrane module contributed from 46 % to 53% COD removal during the Stage II, which 

was an increase up to 13% compared to Stage I. According to a study conducted on aerobic 

membrane system,  the removal  rate  increase was  attributed  to  the  removal  of  the 

materials  that  have  high  fouling  potential  (SMP  and  colloids) and  to  the extraction  of  

the  tightly  bound  water  from  the  suspended  solids as a result of electrophoresis [272].  

MLVSS, EPS and SMP were interrelated in their effect on membrane fouling, therefore the  

reduction  potential of  membrane  fouling and, as a result,  increase in membrane 

performance in  the  EAnMBR  was  a complex  process, i.e. larger particles forming cake 

layer had less bound water due to electrophoresis and electroosmosis phenomena. 

Electroflotation could also increase shear force and reduce EPS and inorganic cake formation 

on the surface of the membrane by washing out the particles.     

Therefore, electrokinetic coagulation had a significant impact on the mixed liquor and could 

dramatically reduce amount of carbon in the wastewater due to increase of biodegradable 

fraction.  
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Figure 4.76. Contribution of membrane module and electrokinetic/biological activities to 

COD removal in Phase II 

 

4.2.3.3.2. Impact of Electrokinetic Phenomena on Nitrogen Removal Performance 

Changes in the TN concentration during the Phase II in the feed, the supernatant of the 

EAnMBR and in the membrane effluent are represented on Figure 4.77. The average 

concentration in influent during the Phase II was 940±3 mgL-1. The concentrations in the 

effluent decreased from 58 mgL-1 of TN at the start of operation in AnMBR to below 41 mgL-

1 of TN at the end of Stage I, which corresponded to removal efficiency of total nitrogen 

95±1% by the end of the Stage I. The concentration in the effluent steadily decreased after 

electrokinetic phenomena involvement in the Stage II after 31 day of the experiment. The 

concentration of TN after application of the DC was 40 mgL-1 and the noticeable decrease was 

observed from the third day of operation, when concentration of Al3+ ions saturated the phases 

in the system - 35 mgL-1 and reached minimum 17 mgL-1 by the end of the experiment. 

Analysis of TN concentration in the reactor presented on Figure 4.77 indicated slow anaerobic 

process of biodegradation. The concentration in the reactor was 936 mgL-1 at the day 1 and 

reached 445 mgL-1 at the day 30 (Stage I). Increase in ammonia oxidation was started only 

after 20 days of the Stage I During the first 20 days of the Stage I, removal by anaerobic 

process in the reactor was in the range from 0.43% to 8.64% (day 18).  Noticeable increase of 

efficiency reactor was achieved after day 20 and reached about 53% at the end of the Stage I 

when microbial consortium well adapted to the new environment. The process of TN removal 
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started increasing gradually and reached maximum 52±1% by the end of Stage I. Significant 

performance increase in EAnMBR was observer after application of electrokinetics. 

Concentration of TN in the reactor was reduced from 420 mgL-1 to 217 mgL-1 which was 

21.75% increase in removal efficiency compared to day one of the Stage II (and 77% overall 

from day 1 to 60 during Phase II).  

The removal performance of the membrane module was constant during the entire duration of 

the Stage I operation. Therefore, a major part of TN was removed through the conversion to 

organic fraction, i.e. proteins. The overall removal efficiency (by the combination of 

biological, electrokinetic and membrane processes) was 95% at the beginning and increased 

up to 98% by day 60. This result could be attributed to a significant involvement of 

electrokinetic processes at this stage in decomposition of nitrogen at electrodes surface in 

combination with the microbial activity. The low removal efficiency of nitrogen, however, 

during the first Stage of the Phase II in the vessel was attributed to the low growth rate of 

anaerobic nitrifying bacteria and, consequently, a slow anaerobic ammonium oxidation 

process, as these bacteria require more time to reach sufficient concentrations [101]. In 

addition, conversion of ammonia on electrode surface is a reversible process. This could 

explain the slow rate of ammonia removal. The removal efficiency comparison by combination 

of biological process, electrokinetic phenomena and by the membrane module is presented on 

Figure 4.78. 

 

Figure 4.77. Changes in total nitrogen concentrations and percentage removal during the 

Phase II 
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Figure 4.78. Contribution of membrane module and electrokinetic/biological activities to 

nitrogen removal during the Phase II 

 

4.2.3.3.3. Impact of Electrokinetic Phenomena on Phosphorous Removal Performance 

Comparative results of phosphorous removal between the two stages (AnMBR and EAnMBR) 

are presented on Figure 4.79. 

 

 

Figure 4.79. Changes in TP concentrations during the Phase II 
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Figure 4.80 presents the corresponding removal efficiency of TP of the electro-bioreactor and 

for the overall EAnMBR of operation during the Phase II. The concentration of phosphorus in 

the feed measured as TP was 151±1 mgL-1. the concentrations of TP in the reactor was 145-

150 mgL-1 at the beginning of the Stage I and was reduced to 55.2 mgL-1 at day 30 which 

represented 63.4% efficiency by biological treatment alone towards the end of the Stage I. The 

concentration in the effluent was between 16.8 and 77.6 mgL-1 in the first days and reached 

less than 4.5 mgL-1 during the last days of Stage I with minimum reached 1.84 mgL-1. The 

lower removal rate of phosphorus from the stream during the initial period of operation was 

due to the low reproduction rate of the anaerobic microbial community and release of 

phosphorus into the system by the community itself. Further increase in MLSS concentration 

in the vessel enhanced the phosphorus uptake in Stage I with maximum about 77%. Although 

the phosphorus uptake was lower during the initial period of Stage I, Figure 4.80 demonstrates 

that the AnMBR had an excellent removal performance in terms of TP removal also due to the 

contribution of the electrocoagulation to the overall performance. The process contributed up 

to 47% during the first day of operation and the efficiency reached maximum 96% on day 19. 

The overall performance of the system (combined biological and membrane module) was 

between 49% on the first day and 97% on the day 30 with maximum removal performance 

during the days 16-22 (98.3%). In general the lowering in TP concentrations were attributed 

to membrane filtration during the first phase of Stage I, while anaerobic biological treatment 

did not reach its full capacity (day 1-20). The primary removal mechanism in the later period 

of the Stage I was the biological absorption by bio flocks (MLSS increased from initial 5,000 

mgL-1 to 5,600-5,700 mgL-1).  

During the first days of Stage II, when the electrokinetic phenomena became involved in the 

combined treatment, the removal efficiency of TP by the reactor increased from about 60% to 

84.5% and the removal efficiency in the effluent was about 98% which provided an increase 

approximately by 38% compared to day one of the Stage II. The decline in the TP removal in 

the reactor from 20 mgL-1 to 40 mgL-1 and, as a consequence, the insignificant increase of the 

(TP) in the effluent noticed between day 30 and 50 was attributed to the temporary reduction 

of MLSS concentration during that period as a result of the system adjustment to the DC. 

However, shortly after, the removal efficiency sharply increased due to synergetic effect of the 

increased MLSS concentration consuming inorganic phosphorus from the aqueous phase and 
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electrokinetic phenomena in the EAnMBR which likely produced complex aluminum-

phosphate minerals.  

 

 

Figure 4.80. Removal efficiency of TP concentration during the Phase II 

 

The phosphorus concentration steadily reduced after the anaerobic microorganisms’ 

readjustment and, especially, release of Al3+ into the aqueous phase and formation of 

aluminum hydroxide inorganic polymers. The phosphorous molecules interacted with 

aluminum ions to produce alumophosphate species which precipitated out of the sludge with 

some depositions on the surface of the cathode and the membrane which resulted in the 

decrease of the membrane performance after day 50 of the Stage II. In another pathway, the 

aluminum ions reacted with the hydroxyl ions OH- produced at the cathode( as a result of the 

DC application) to form centers of gravitation in general form of Al(OH)x. In this case, the 

phosphorous species could be adsorbed by the sweep flocs and removed from the aqueous 

phase by electrocoagulation.  

Similarly, as a result of the electrokinetics, phosphorus might have created bonds with other 

cations in the aqueous phase such as magnesium, ammonium and potassium to form several 

complexes such as calcium phosphate (eq. 4.26), struvite (magnesium, ammonium and 

phosphate), and K-struvite (magnesium, potassium and phosphate). Calcium and phosphate 

constituted the synthetic wastewater supplied to EAnMBR system and, therefore, might have 
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been presented in forms of calcium phosphates such as dicalcium phosphate CaHPO4∙2H2O, 

tricalcium phosphate Ca3(PO4)2, octocalcium phosphate Ca4H(PO4)3∙2.5H2O, Monetite 

CaHPO4, Brushite CaHPO4∙2H2O, and hydroxyapatite Ca5(PO4)3OH. These species could 

have been formed and deposit on the surface of the cathode and the membrane. Moreover, 

dicalcium phosphate, tricalcium phosphate, octocalcium phosphate, Monetite and Brushite 

might be the precursor phase where they would precipitate and eventually recrystallize to form 

hydroxyapatite [273]. Calcium phosphates might definitely be presented in EAnMBR system 

as it created alkaline conditions (pH > 8) because of applied electrical field (Equation 4.26).  

Ca3(PO4)2  3Ca2+ + 2PO4
3-                                  (4.26) 

Phosphate might have also reacted also with magnesium and ammonium forming magnesium-

ammonium phosphate (struvite-MgNH4PO4.6H2O) which is formed according to equation 

4.27.  

Mg2+ + NH4
+ + HPO4

2- + OH- + 6H2O  MgNH4PO4∙6H2O + H2O                    (4.27)  

Pearson’s Crystal Data software was used to model the possible complexes in the solid phase 

such as lazulite MgAl2(PO4)2(OH)2, grandallite CaAl3(PO4)2(OH)∙5H2O, scorzalite 

Fe2+
0.75Mg0.25Al2(PO4)2(OH)2, bearthite Ca2Al(PO4)2(OH), variscite AlPO4∙2H2O, 

brazilianiteNaAl3(PO4)2(OH)4,wavelliteAl3(PO4)(OH)3∙5H2O, Al4Ca4[H2O]12Mg[OH]4[PO4]6 

and Al0.18Ca2Fe4.26[H2O]2Mg0.96Mn0.6Na[PO4]6. The generated compounds could be major 

contributors to membrane fouling in AnMBR through forming a white precipitate on the 

surface. However, the negative impact was minimized by EAnMBR operating with 

electrokinetics since generated species might be removed from aqueous phase and deposited 

on the electrode surface and settled with sludge preventing the migration of colloids and 

complexes towards the membrane module. Therefore, the removal mechanism of phosphorous 

could be attributed to the biological activity, precipitation in form of the inorganic complexes, 

absorption to organic colloids and deposition on the surface of the electrodes, mainly on the 

surface of the cathode as a result of electrokinetic phenomena.  
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4.2.4.  Phase II: Conclusions and Recommendations 

In Phase II of this research, the treatment system was operated in AnMBR (Stage I) and in 

EAnMBR (Stage II) configuration for 30 days each. The conclusions of Phase II can be 

summarized as follows:  

- The AnMBR system produced effluent of superior quality in terms of carbon, TN, TP 

removal by > 99%, > 98%, and up to 100% respectively.  

- The system produced effluent of excellent quality in terms of carbon (> 99%) and nutrients 

removal (> 98% for nitrogen and up to 100% of phosphorus) in EAnMBR mode.  

- pH of the liquid phase increased from 5.5 to 8.3-8.5 as a result of electrokinetics involvement.  

- Electrokinetic process significantly affected the particle size distribution of the MLSS 

solution producing large and dense colloids, which increased the overall removal efficiency. 

-  Biological, physico-chemical and electrokinetic processes played significant positive role in 

each stage of operation.   

The conclusions for each stage are summarized as follows: 

- Stage I (1-30 days): The system was operated in AnMBR configuration without a DC field. 

The HRT was kept constant at 4 days to increase the sheer and sludge concentration. The 

average COD removal of the system was > 89%, nitrogen removal efficiency reached > 95% 

and the phosphorus removal performance was > 98%. SRF reduced by 7% and SVI reached 

360 mLg-1 (4% reduction) in AnMBR configuration. 

- Stage II (31-60 days): The system was operated in EAnMBR configuration with a DC field 

and an operational mode of 5 minutes On: 20 minutes Off. The electrokinetics in EAnMBR 

system produced a significant positive impact in terms of COD, nitrogen and phosphorus 

removal (> 99%, > 95%, > 98% respectively). COD removal mechanism was a combination 

of biological carbon removal, membrane filtration and electrokinetic formation of the 

nucleoids. A major part of nitrogen was removed by the membrane module and biological 

conversion. The phosphorous removal efficiency was attributed not only to biological 

consumption, but interaction with aluminum cations released into the aqueous phase as a result 

of electrokinetic processes. Thus, alumophosphate species were produced and precipitated out 

of the sludge with some depositions on the surface of the cathode and the membrane. SRF 
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reduced by 45% compared to reference AnMBR state and SVI reached 54% reduction in 

EAnMBR configuration. 

Although AnMBR demonstrated very good treatment of high-strength wastewater, EAnMBR 

outperformed conventional advanced anaerobic membrane system and provided superior 

effluent quality due to involvement of electrokinetic processes.  

4.3.  Phase III Results and Discussion 

This chapter represents state of the findings during Phase III, where real industrial wastewater 

was used in AnMBR and EAnMBR. The results and discussion are structured and provided 

for Stage I and II, a comparative analysis between the stages summarizes this chapter.  

4.3.1.  Stage I: Operation and Performance of the AnMBR in Treating Industrial 

Wastewater 

The continuous AnMBR operation during the Stage I was conducted under constant 

temperature of 36±1 0C for 60 days at SRT 21 days and HRT 4 days. The AnMBR was fed 

with the high-strength industrial wastewater at a food to microorganism ratio (F/M) of 0.25 g 

COD/g MLSS/day. Consequently, the feed concentration increased accordingly with MLSS 

concentration. 

4.3.1.1. Carbon Removal Efficiency in AnMBR 

The maximum COD removal efficiency in AnMBR reached 93 % after 60 days of continuous 

operation (Figure 4.81, Table 4.4). The influent concentration was 53±1.3gL-1 during the 

duration of Phase III. After 20 days of operation, a sharp spike in COD removal rate was 

observed. This suggested that the anaerobic microbial community was adapted to conditions 

in the AnMBR and entered to exponential phase of growth. That allowed to start the conversion 

of organic compounds gradually, increasing to the maximum level by the end of the operating 

cycle (the concentration in the effluent reduced from 9.78 gL-1 at day 1 to 3.5 gL-1 at day 60). 

Part of the carbonaceous content of the molasses wastewater is glucose, which may be 

attributed to the high removal rate of COD.  

The summary reactions of possible fermentative hydrogen production from glucose at pH of 

the aqueous phase 5.2±0.2 demonstrate that the acetate predominantly can be transformed to 
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hydrogen at these conditions (Figure 2.3), with a theoretical production rate of 4 mol hydrogen 

mol/L glucose [292]: 

 

C6H12O6+12H2O → 6HCO3
- 12H2+6H+; ΔG0 =241 kJ mol-1                                                     (4.28) 

C6H12O6+4H2O → 2CH3COO- +2HCO3
- +4H2 +4H+; ΔG0 =48 kJ mol-1                                   (4.29) 

C6H12O6+2H2O → 2CH3CH2CH2 COO- +2HCO3
- +2H2 +3H+; ΔG0 =-137kJ mol-1                       (4.30) 

C6H12O6+3H2O → 2CH3CH2OH +CH3COO - +2HCO3
- +2H2 +3H+; ΔG0 =-97kJ mol-1                 (4.31) 

 

Another expected carbon conversion pathway- fermentation with butyrate as the major product 

is considered to be the most effective hydrogen-producing pathway. This type of fermentation 

is carried out by Clostridium sp., with a maximum hydrogen yield, demonstrated 

experimentally, of 2.9 mol H2 mol -1glucose.  In contrast, production of propionate decreases 

the production of hydrogen. 

 

C6H12O6+3H2O → 2H2 +2CH3CH2COO- +2H2O +2H+                                                                   (4.32) 

The activity of acetogen Clostridium aceticum may increase consumption of hydrogen or 

glucose [292]. 

 

2HCO3
- +4H2 +H+ →2CH3COO-+4H2O                                                                                (4.33) 

C6H12O6→2CH3CH2 COO-+2H+                                  (4.34) 

 

 

Figure 4.81. Phase III Stage I: Dynamics of COD removal over the time in the AnMBR 
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Despite the advantages of high rate anaerobic systems discussed in Chapter 2, the presence of 

sulfate (SO4
2-) concentration in the molasses wastewater can represent a serious risk for the 

system and inhibit carbon removal [108]. COD/SO4
2- relationship is one of the major factors 

that was assessed to evaluate the efficiency of the combined treatment in AnMBR.  

 

 

Figure 4.82. Phase III Stage I: Relationship between COD in the influent and the amount of 

sulfur in the aqueous phase 

 

In conventional anaerobic reactors, for successful anaerobic treatment, the ratio COD/SO4
2- 

should be > 10, although according to some research, this ratio can be as low as 5 to 8 [293]. 

In this research, COD/SO4
2- in the influent was found to be in the range from 5.99 to 6.50 

(Figure 4.82) with the minimums at the day 5 and 45 and peaks at the day 20 and 50.  

In the treated effluent, the ratio was gradually increasing in the course of the operation ranging 

from 2.04 to 4.26 starting from the day 5 and reaching the maximum at the day 50 (Figure 

4.83). Based on the data presented in Figure 4.83, it can be concluded that the decrease of 

COD/SO4
2- ratio had no any adverse effect COD removal efficiency in the AnMBR as SO4

2-  

was, probably, reduced by sulphate-reducing bacteria in the reactor as an electron donor to 

H2S in the presence of organic carbon sources, which provided the necessary energy according 

with the following equation [108]: 
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2CH3CHOHCOO– + SO4
2- → 2CH3COO- + 2HCO3

- + H2S                        (4.35) 

 

Figure 4.83. Phase III Stage I: Relationship between COD in the effluent and the amount of 

sulfur in the aqueous phase 

 

4.3.1.2. VFAs  

The VFA (expressed as acetate in milligrams per liter) concentration in the feed was stable 

during the Stage I and equal to 8,736±1.73 mgL-1. After the start-up period, the VFA 

concentration of the AnMBR effluent decreased from 1,688 to 74.7 mgHAcL-1 on days 1 to 

60 (Figure 4.84) with stabilization at around 103–113 mgHAcL-1 starting from day 40 and 

beyond. VFA rejection was also observed throughout the stage, which caused a decrease in 

the VFA and an increase in the pH from the final permeate. 

The COD and the total VFA concentrations are presented in Figure 4.85. The results 

demonstrate that only a small part of the COD concentration comprises VFA, indicating that 

the significant part of the VFA concentration was utilised for biological nutrients and 

sulfur reduction. It can also be observed that the VFAs concentration fluctuations follow the 

pattern of the COD concentration over the time, showing that the VFA generation and 

utilisation are related to the COD production and consumption. It was observed that, initially, 

both the COD and the VFA concentrations increased but sharply decreased from day 5. This 

observation also indicated that part of the residual COD comprised propionate, oxidation of 

which might be the rate-limiting factor in the reduction of COD [294].  
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Figure 4.84. Phase III Stage I: VFAs concentration and consumption in the AnMBR 

 

 

Figure 4.85. Phase III Stage I: VFA/COD ratio in the effluent from the AnMBR 
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denitrification in which carbon was extracted from the organic materials and nitrate served as 

an electron acceptor (Equation 4.36).  

5CH3OH + 6NO3- → 3N2 + 7H2O + 5CO2 + 6OH-               (4.36) 

In single heterotrophic denitrification, as shown in Equation 4.36, the theoretical C/N ratio for 

complete denitrification was established as 0.71 according to theoretical stoichiometric 

equations when the carbon source was methanol [295]. 

The second denitrification process in EAnMBR was performed by the autotrophic hydrogen 

denitrification path (anammox) in which the hydrogen was produced as a result of acetogenesis 

and acted as an electron donor, whereas nitrate as an electron acceptor (Equation 4.3-4.8).  

As the wastewater contained high concentration of sulfur, it was reasonable to speculate that 

the third process was the sulphate reduction in which sulphate ion served as an electron 

donor and ammonia as an electron acceptor. The sulphide ion can donate two electrons, and 

thus, can be converted into elemental sulphur which was visually confirmed. Considering the 

stoichiometric ratio in the chemical reaction between ammonia and the sulphide ion 

(sulphate ion), the nitrogen can be decreased according to Equation 4.37 (overall) and 4.38-

4.40 [64]:  

SO2
4- + 2NH4

+ → S0 + N2 + 4H2O                 (4.37) 

3SO2
4- + 4NH4

+ → 3S2- + 4NO2
- + 4H2O + 8H+               (4.38) 

3S- + 2NO2
- + 8H+ → 3S2- + N2

 + 3S0 + 4H2O               (4.39) 

2NO2
- + 2NH4

+ → N2
 + 4H2O                 (4.40) 

Therefore, the COD/N ratio was one of the most important factors determining the 

denitrification efficiency during the Phase III.  

Stage I was operated at influent TN concentration of 2,342±146 mgL-1 and sulphate 

8,736±1.73 mgL-1. During the first 15 days of operation, the AnMBR reduced ammonium in 

the effluent from 1,050 mgL-1 to 118 mgL-1 (Figure 4.86). When the nitrification potential of 

the reactors increased due to the growth of the denitrifying and sulfur-reducing bacteria and 

the conditions achieved the steady state, the denitrification performance in the reactor was 

constantly higher than 95% with the rate as high as up to 98%. Sulphate reduction increased 

from 1440± mgL-1 at the beginning to 72.1± mgL-1 in the end (99.14 % removal efficiency).  



172 
 

On the other hand, nitrate and nitrite concentration in the AnMBR also declined from 9.9 mgL-

1 to 2.08 mgL-1 (97% reduction) during the entire operating period due to the high 

denitrification rate. The highest removal efficiency was achieved on days 45 and 60, when the 

effluent concentrations of ammonium (33.4 mg NH3
+L-1), nitrate and nitrite (2.08 mgL-1), TN 

(63.6 mg NL-1) and DON (28.10 mg NL-1) with the highest removal efficiency of 98.06%, 

98.27%, 97.77%, and 97.22% respectively (Figure 4.87). The EAnMBR proved again the 

possibility of achieving practically complete denitrification of ammonium and complete 

denitrification of nitrate if the loading of ammonium into the reactor was lower than the 

nitrification capacity of the system, which was the case in the Stage I.  

The COD/TN ratio increased from 5.53 to 55.03 and high denitrification rate during the course 

of the experiment supported the fact that high C/N ratios could accelerate the growth of 

heterotrophic denitrifying bacteria in the reactor and thus promote the denitrification rate. 

Despite antioxidant properties of the melanoidin, the substantial reduction of nitrate/nitrite 

concentration in the significant predominance of organic carbon (Figure 4.88) and sulfur 

sources indicates the role of the heterotrophic and sulfur-reducing denitrification, where 

electron donors were taken from organic compounds and sulphate. However, the anammox 

process using nitrite from the incomplete nitrification as electron acceptor helped in reducing 

the production of nitrate in the reactor as well (Figure 4.86, 4.87).  

 

Figure 4.86. Phase III Stage I: Nitrogen fractions concentration in the effluent from the 

AnMBR 
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Therefore, anammox with the other two denitrification processes acting simultaneously in the 

reactor ensured an effluent with a very low nitrogen species concentration compared to the 

influent, which was the case in this study.  

 

 

Figure 4.87. Phase III Stage I: Nitrogen fractions removal dynamics in the AnMBR 

 

 

 

Figure 4.88. Phase III Stage I: COD and TN relationship in the aqueous phase 
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4.3.1.4. Phosphorous Removal Performance in the AnMBR 

The effluent TP concentration decreased in the system operated as AnMBR from around 77.6 

mgL-1 at the day 1 up to 1.84-2.17 mgL-1 of TP with the maximum removal efficiency in the 

MBR achieved up to 98.79% (Figure 4.89). The COD/TP ratio was gradually increased in the 

same time from 126.03 to 1,612.90 with peak periods at day 20, 30-35, 45, and 50 (Figure 

4.90).   

 

Figure 4.89. Phase III Stage I: Phosphorous concentration in the effluent and phosphorous 

removal efficiency in the AnMBR 

 

Figure 4.90. Phase III Stage I: COD and TP relationship in the aqueous phase 
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The influent concentration of phosphorus measured as TP in the feed was 151.30±0.72 mgL-

1. The concentration in the effluent sharply decreased during the first 10 days of the study 

(from 77.6 mgL-1 to 22.3 mgL-1). On day 15, the TP concentration reached 16.8 mgL-1 whereas 

5 days later it was 4.6 mgL-1 only. Starting from day 20, it reduced relatively constantly and 

reached 1.84–2.17 mgL-1 during the last days. The lower removal rate of phosphorus during 

the initial period of operation can be attributed to the slow adjustment of the anaerobic 

microbial community to the changes in the feed stream (significantly higher concentration of 

COD and nutrients compared to Phase II). Biological phosphorus removal was performed by 

mechanism described in Section 4.2.1.3.3.   Increase in MLSS concentration in the electro-

bioreactor boosted the phosphorus uptake and therefore, contributed to the overall 

performance.  

The experimental results demonstrated that the AnMBR system developed in this research was 

highly effective over the long-term experimental operation and evidenced the stable 

performance of the AnMBR treatment process.  

4.3.1.5. Mechanism of Discoloration in the AnMBR 

Food-producing industries utilizing beet molasses as raw material generate highly recalcitrant 

wastewaters [67]. Before disposal, the wastewater undergoes biological sequential 

anaerobic/aerobic treatment in order to minimize environmental impact. The resultant effluent 

remains highly colored. As discussed in Chapter 2, color presence in the effluent is a result of 

high melanoidins concentration- acidic polymers with a complex structure, mainly built up 

from sugar degradation products formed in the early stages of the Maillard reaction, 

polymerized and linked by amino compounds. These chromophores are recalcitrant to 

biodegradation processes and remain in the biologically and chemically treated effluents [95]. 

Therefore, the color changes were assessed during the continuous 60 days experiment with the 

industrial wastewater in order to evaluate the practical application of AnMBR. Figure 4.91 

shows the color changes in influent and the membrane effluent. Figure 4.92 demonstrates color 

removal efficiency by the AnMBR during the Stage I of the Phase III. 

The concentration of color substances in the feed wastewater was 19,969±114 mgL-1 Pt-Co 

that corresponded to the dark-brown color of the liquid phase. The color in the effluent 

however was reduced to 1,200 mgL-1 in the first day of operation, which corresponded to 94% 
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of removal performance. After 5 days, the concentration was further reduced to 600 mgL-1 

(97%). 

 

 

Figure 4.91. Phase III Stage I: Color in the influent vs in the effluent over the time 

 

 

Figure 4.92. Phase III Stage I: Color removal efficiency 
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contribute to the performance at this point. After significant drop in concentration during the 

first days, the removal rate was consistently high during the course of the study and reached 

160 mgL-1 by day 60, or 99.20% of removal. Figures 4.93 and 4.94 show COD/Color and 

DON/Color ratio. 

 

Figure 4.93. Phase III Stage I: Effect of COD on the color in the AnMBR 

 

 

Figure 4.94. Phase III Stage I: Effect of DON on the color in the AnMBR 
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A fairly strong positive trend in COD/Color relationship could be observed suggesting that the 

fraction of organic chelates was reduced over the course of the experiment, especially during 

the periods from day 1 to 15 and day 40 to 55. The maximum of COD/Color ratio was observed 

on day 55 and the minimum at the beginning of the run. COD/Color ratio strongly correlated 

with carbon removal efficiency depicted on Figure 4.93. Minima and maxima in color removal 

efficiencies corresponded to minima and maxima of COD/Color ratios. Therefore, it can be 

concluded, that the significant portion of carbon-containing particles included chromophores 

as structural components, and organic fraction was represented by colored humic acids and 

phenolic compounds. 

Color-forming substances were also partially represented by DON as the correlation between 

nitrogen particles and color was observed as well. DON/Color ratio demonstrated changes in 

color with respect to changes in DON concentration in the effluent. The mass of nitrogenous 

compounds removed relative to the mass of colour removal was also obvious. Significant 

decrease of color components in the DON fraction during the first days of operation can be 

explained by the rejection of significant part of DON by the membrane module. After 10 days 

of operation, nitrogenous chromophores represented only small fraction of DON. DON/Color 

continued to decrease after day 10 to day 45 (from 1.27 to 0.05) with small spikes at day 25 

(0.13). Starting from day 45 until the end of the run, presence of organic fraction in DON 

slightly increased to 0.17 due to the membrane fouling.     

The wastewater quality parameters in the feed and in the treated effluent along with overall 

performance of the system in Stage I is summarized in Table 4.4. pH changed from 5.2±0.20 

to 6.3±0.20 from the beginning to the end of the experiment respectively. The overall removal 

efficiency of COD, total nitrogen, total phosphorus and color was 89.24, 97, 98.52, 99.20% 

respectively. These results demonstrated a significant improvement of effluent quality 

compared to other studies conducted previously in MBR [117]. They reported the overall COD 

removal efficiency of the two-stage system 87±2%.  
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Table 4.4. The influent and effluent concentrations and the performance of the AnMBR 

Parameter Influent, mgL-1 Effluent, mgL-1 Average 

Removal 

Efficiency, 

% Average 

 

Standard 

Deviation 

Average at 

the End of 

Stage I 

 

Standard 

Deviation 

pH 5.2 ±0.20 6.3 ±0.20 - 

COD 53,114 ±1380 3790 ±35.00 89.24 

Ntot 2,300 ±2.00 69 ±4.00 97.00 

Ptot 151 ±0.72 2.24 ±0.37 98.52 

Color 19,969 ±113.58 160 ±2.35 99.20 

 

4.3.2.  Stage II: Operation and Performance of the EAnMBR Treating Industrial 

Wastewater 

The EAnMBR was continuously operated during the Stage II under constant temperature of 

36±1oC for 60 days at SRT 21 days and HRT 4 days similar to Stage I. The EAnMBR was fed 

with the high-strength industrial wastewater at a food to microorganism ratio (F/M) of 0.25.  

4.3.2.1.  Carbon Removal Performance in the EAnMBR 

 Figure 4.95 illustrates the variations of the COD concentration in the influent and the 

membrane effluent throughout Stage II of Phase III; whereas Figure 4.96 illustrates the 

corresponding overall performance of the EAnMBR system. The removal efficiency of the 

COD of the whole system is expressed by Equation (4.2). While the removal efficiency varied 

between 81.87% and 93.53% during Stage I, Figure 4.96 demonstrates that the overall system 

can provide consistently higher COD removal when electrokinetic processes are involved. The 

total COD removal efficiency of the system was maintained at a high level surpassing 99% 

because of the combined effect of electrokinetic phenomena, biological processes and efficient 

filtration of the membrane module. The results obtained during the run confirmed that the 

electrokinetics played an important role in providing an excellent and stable effluent quality 
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during the EAnMBR process. The removal mechanism of organics is related to organics 

conversion to negatively charged SMP and EPS in the EAnMBR and attraction to the long 

chains of aluminum hydroxides with net positive charge [136]. These hydroxides are able to 

remove SMP and EPS by making organic/inorganic solid complexes by means of electrostatic 

forces and adsorption. Since the pH in the reactors was always between 7 and 8, the surfaces 

of microbial products carry a net negative charge due to the broken edges of hydroxyl groups 

in alkaline medium. This negative charge enables SMP to get attracted to the aluminum 

hydroxides. However, this process is likely to be facilitated under the influence of the direct 

current field. During Stage I of Phase II, most of the COD was degraded by the microbial 

activity in the bioreactor and rejected by the membrane module as some of the larger EPS 

particles migrated towards membrane did not block the pores and were washed out by 

biological gases, as it was discussed in details earlier. Similar result was obtained during Phase 

II of this research. Although the overall COD removal efficiency remained stable at around 81 

- 90% during the Stage I, from the beginning of Stage II until the end, the application of a DC 

field through the MLSS solution increased the COD removal efficiency by more than 10 % 

compared to Stage I. This observation can be attributed to the effect of the electro-coagulation 

phenomenon. That is very important conclusion because as it was reported previously, some 

fractions of organic matter in the mixed liquor have higher affinities with the membrane than 

do other fractions and consequently cause greater irreversible fouling [272, 274]. 

Consequently, applying a DC field to the mixed liquor can reduce the load contributed by the 

organic matter on membrane fouling, i.e. formation of complexes with aluminum hydroxides 

and removal from membrane surface by synergetic effect of bio and electrolytic gases 

movement. This conclusion may explain the good performance of the EAnMBR system during 

Stage II where the concentration of COD decreased dramatically despite the high 

concentration of organics in the wastewater. 

 



181 
 

 

Figure 4.95. Phase III Stage II: Dynamics of COD removal over the time in EAnMBR 

 

The presence of sulfate (SO4
2-) ions in the molasses wastewater can represent a serious risk 

for the system and inhibit biological activity for carbon removal [108]. COD/SO4
2- relationship 
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compared to Stage I. In the Stage II, COD/SO4
2- in the influent was found to be in the range 

6.41±0.05 (Figure 4.97) with the minimums at the day 70 and 105 and peaks at the day 85, 

100 and 115 (similar pattern to Stage I).  

 

Figure 4.96. Phase III Stage II: COD removal efficiency in the EAnMBR 
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In the treated effluent, however, the picture was completely different to Stage I (Figure 4.59). 

The ratio was dramatically decreased from 48.54 on the last day of Stage I (day 60) to 3.45 at 

the beginning of the Stage II (day 65). Afterwards, the ratio remained relatively constant in 

the course of the operation ranging from 2.01 to 4.26. The COD/S ratio started decreasing 

slightly on day 100 up to day 105-110 when it reached its minimum of 2.01-2.04 and then 

gradually increased once again up to the end of the experimental Stage II. Based on the data 

presented in Figure 4.98, it can be concluded that the increase of COD/SO4
2- ratio had no any 

adverse effect on COD removal efficiency in the EAnMBR as sulfur was, reduced by sulphate-

reducing bacteria in the reactor as an electron donor to H2S in the presence of organic carbon 

sources, which provided the necessary energy according to eq. 4.35. However, majority of 

sulphur was removed by electrokinetic phenomena involved in this stage of operation. 

Trivalent Al3+ ions cannot combine with H2S and sulfide ions (HS- and S2-) in aqueous phase 

to form insoluble precipitates like does iron, however, aluminium sulfate Al2(SO4)3 is formed 

as a result of interaction of Al3+ released from anode and SO4
2-  ions in aqueous phase. This 

is a chemical compound soluble in water and is a flocculating agent. The aluminum sulphate 

was formed according to reaction 4.41: 

2Al3+ + 9SO4
2- → 3Al2(SO4)3                       (4.41) 

Aluminum sulphate further reacted with alkalinity to form aluminum hydroxide, calcium 

sulphate and carbon dioxide according to the formula 4.42: 

A12(SO4)3 + 3Ca(HCO3)2 → 2Al(OH)3 + 3CaSO4 + 6 CO2                   (4.42) 

The formation of soluble aluminum sulphates and little soluble calcium sulphate in the 

EAnMBR had a positive multiplication effect on the overall removal efficiency of EAnMBR.  
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Figure 4.97. Phase III Stage II: Relationship between COD in the influent and the amount of 

sulfur in the aqueous phase 

 

 

Figure 4.98. Phase III Stage II: Relationship between COD in the effluent and the amount of 

sulfur in the aqueous phase 
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4.3.2.2. VFAs 

The molasses-containing wastewater undergoes biological sequential anaerobic/aerobic 

treatment before disposal to water bodies in order to minimize environmental impact, as a 

result, it contains a high amount of VFAs. [154].  

The VFA concentration in the feed was similar to the Stage I and equal to 8,736±1.73 mgL-1. 

After application of the DC field, the VFA concentration of the EAnMBR effluent decreased 

from 57.2 at the beginning of Stage II (day 65 of Phase III) to 38.6 mgHAcL-1 on day 80 

(Figure 4.99) which corresponded to removal efficiency increase from 99.35% to 99.56%. 

However, starting from day 85, an increase was observed up to 67.5 mgHAcL-1 which 

stabilized at around 67.5–73.7 mgHAcL-1 during the following 15 days of the experiment. 

Further increase of VFA content was observed until the end of the stage (167 mgHAcL-1 on 

day 105 to 259 mgHAcL-1 on day 120). This observation is best explained by the H2 generation 

during the process of electrolysis as a result of the current application to the system. This, in 

turn, boosted the acidogenesis of the residual components left after hydrolysis, to then produce 

a highly concentrated mixture of VFAs. 

 

 

Figure 4.99. Phase III Stage II: VFAs concentration and consumption in the EAnMBR 
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The COD/VFA relationship is presented in Figure 4.100. It can be observed that the ratio 

remained small from day 1 of the Stage II until day 100. During this period only a small part 

of the COD concentration comprised VFA, indicating that the significant part of the VFA 

concentration was utilised for biological nutrients and sulfur reduction. However, 

electrokinetic phenomena boosted generation of VFAs production and COD/VFA ratio 

increased accordingly. It can also be observed that the VFAs concentration fluctuations 

followed the pattern of the COD concentration over the time, showing that the VFA 

generation and utilisation were related to the COD production and consumption. Initially, 

both the COD and the VFA concentrations fluctuated in accordance before a sharp increase 

of VFA on day 100. Overall performance in VFA reduction was 98.73±0.95%, which was 

2.61% better compared to 96.12±0.95% obtained during the Stage I. 

 

 

Figure 4.100. Phase III Stage II: VFA/COD ratio in the effluent from the EAnMBR 
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until the end of the experiment. Initial increase of TN The nitrate and nitrite 

concentration was extremely high in the influent (119.5±1.38 mgL-1), however in the 

effluent of the EAnMBR, it was reduced to 1.3±0.18 mgL-1 on average (> 99% 

reduction). The removal efficiency of nitrate and nitrite remained constantly high 

throughout the entire run. The effluent concentrations of ammonium were 6.37-7.27 

mg NH3-NL-1), TN (32.51±7.76 mg NL-1) and DON (17.53±8.23 mg NL-1) with the 

highest removal efficiency of 99.53%, 99.98, and 99.43% respectively (Figure 4.102). 

The DC applied to the system increased removal efficiency of ammonia by 1.47%, 

nitrate and nitrite by 1.7%, TN and DON by 2.21% compared to Stage I.  

 

 

Figure 4.101. Phase III Stage II: Nitrogen fractions concentration in the effluent from the 

EAnMBR 
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Figure 4.102. Phase III Stage II: Nitrogen fractions removal dynamics in the EAnMBR 

 

 

 

Figure 4.103. Phase III Stage II: COD and TN relationship in the aqueous phase 
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EAnMBR (Figure 4.102) proved again the possibility of achieving almost complete removal 

of ammonium and other fractions compared to the influent concentration.  

In EAnMBR, the same biological processes carried out denitrification as in the Stage I- The 

anammox with the other two denitrification processes (heterotrophic and denitrification) was 

working simultaneously with electrokinetics and membrane filtration in one reactor ensuring 

an effluent with a very low nitrate concentration of nitrogenous compounds. 

The COD/TN ratio reduced from 55.03 at the end of Stage I to 6.31 at the beginning of the 

Stage II after applying the DC field and then further up to the minimum of 3.29 (Figure 4.103). 

These data suggested that the amount of nitrogen was substantially reduced in the system and 

the electrokinetic phenomena were jointly responsible for denitrification during the course of 

the experiment in Stage II compared to the growth of heterotrophic denitrifying bacteria in the 

AnMBR process. 

4.3.2.4.  Phosphorous Removal Performance in the EAnMBR 

The exposure mode 5-On:20-Off allowed to reach nearly complete removal of phosphorus at 

the current density of 20 Am-2. The application of the DC resulted in release of Al+3 into the 

aqueous phase, and the concentration was suffice to form aluminum sulphate complexes and 

bonds, and to extract phosphorous from the liquid phase of the activated sludge in the reactor. 

Removal efficiency was constantly > 99% when the EAnMBR operated at HRT of 4 and SRT 

of 21 days respectively (Figure 4.104). 

Long HRT led to less loading of dissolved salts into the EAnMBR. At this level of current 

density, the 5-On:20-Off exposure mode provided enough Al+3 ions responsible for P removal. 

The current density 20 Am-2 increased the voltage gradient to compensate for the reduction of 

the soluble ion concentration due to the HRT. These results confirm that CD and electrical 

exposure mode were critical to produce the required concentration of Al+3 in order to remove 

phosphorus from the wastewater effectively. 
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Figure 4.104. Phase III Stage II: Phosphorous concentration in the effluent and phosphorous 

removal efficiency in the EAnMBR 

 

COD/TP ratio was significantly reduced from 1613 to 60 during the first days of Stage II with 

small increase on days 70 – 75, reduction from day 80 to 85 and then drastic increase of 

COD/TP ratio starting from day 105 (Figure 4.105).   

 

 

Figure 4.105. Phase III Stage II: COD and TP relationship in the wastewater 
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This increase coincided with the removal significant efficiency increase (up to 99.99%). The 

sludge was examined in order to determine the fate of phosphorus in the EAnMBR. For this 

purpose, the supernatant from EAnMBR was extracted by centrifugation at 2700 g for 20 

minutes. The supernatant then was filtered through 0.45 µm glass paper to separate the 

insoluble and soluble fractions of phosphorous. The results demonstrated that the majority of 

phosphorous in the EAnMBR was in the soluble form, which explained why it was removed 

almost entirely from the supernatant and the effluent of EAnMBR; only an insignificant 

amount of phosphorous still existed in the particulate form.  

Since phosphorus in the EAnMBR was not a part of the liquid phase of the sludge, it became 

a part of the suspended solids of the sludge liquor. In order to confirm this hypothesis, a 1 ml 

sample of MLSS from the reactor was taken to measure the TP concentration bounded with 

the solid phase of the sludge liquor. The concentration of phosphorus embedded within the 

suspended solids was much higher after 14 days of operation. This proves that the influent 

orthophosphate precipitated in the form of aluminum phosphate complexes. In AnMBR 

operation, the biological activity was primarily responsible for the phosphorus removal.  

The experimental results demonstrated by the EAnMBR system developed in this research 

suggested that involvement electrokinetics and appearance of oxic interface in the anode zone 

was highly effective over the long-term experimental operation and evidenced the stable 

performance of the EAnMBR treatment process.  

4.3.2.5. Mechanism of Discoloration in the EAnMBR 

Melanoidins behave as anionic hydrophilic polymers, which can form stable complexes with 

metal cations. It was reported that ketone or hydroxyl groups of pyranone or pyridone residues 

act as donor groups in melanoidins and participate in the chelation with metals as melanoidins 

have net negative charge [83, 123, 129, 291]. Therefore, different heavy metals (Cu2+ , Cr3+, 

Fe3+, Zn2+, Pb2+, etc.) form large complex molecules with melanoidins, amino acids, proteins 

and sugars in acidic medium and get precipitated. 
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Figure 4.106. Phase III Stage II: Color in the influent vs in the effluent over the time in 

EAnMBR 

 

 

Figure 4.107. Phase III Stage II: Color removal efficiency in the EAnMBR  
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efficiency by the EAnMBR during the Stage II of the Phase III.  
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The concentration of color substances in the feed wastewater was 19,975±109 mgL-1 Pt-Co 

units that corresponded to the dark-brown color of the wastewater influent, similar to Stage I. 

However, the color content in the effluent was reduced to 60 mgL-1 in the first five days of 

operation, which corresponded to 99.70% of removal efficiency. The removal of color 

remained constantly high up to the end of the stage from maximum 75 mgL-1 Pt-Co during the 

first 10 days to 10 mgL-1 Pt-Co towards the end (average 99.85±0.1%). The effluent changed 

color from dark-brown to practically clear in the end of the Stage II. 

These results suggested that the primary removal mechanism in the EAnMBR process of the 

chromophores was electrokinetic mechanism in addition to the membrane filtration. 

Comparing the result obtained by EAnMBR to AnMBR during the Stage I, the improvement 

was significant and obvious. A significant drop in the concentration from 160 mgL-1 Pt-Co 

during the last day of Stage I to 60 mgL-1 Pt-Co at the beginning of Stage II and further to 10 

mgL-1 Pt-Co provided additional gain of 100 mgL-1 Pt-Co removal, or practically complete 

removal of color from the effluent from the EAnMBR.  

Figures 4.108 and 4.109 provide relationship between the COD and color and DON and color 

in terms of COD/Color and DON/Color ratios. Similar to AnMBR, a strong relationship 

between COD and color relationship was observed, suggesting that the fraction of organic 

chelates was reduced over the course of the experiment starting from day 1. However, 

magnitude of the ratio was significantly lower compared to Stage I for obvious reasons- the 

organic content in EAnMBR was also lower as a result of the DC field applied. The maximum 

of COD/Color ratio was observed towards the end of the experiment- day 115, and the 

minimum at the beginning of the run, when the concentration of organic substances in the 

reactor was the highest. COD/Color ratio strongly correlated with carbon removal efficiency 

depicted on Figure 4.107. Minima and maxima in color removal efficiency corresponded to 

minima and maxima of COD/Color ratios. Therefore, it can be concluded, that the significant 

portion of carbon-containing particles included chromophores as structural components, and 

colored humic acids and phenolic compounds represented organic fraction. Some of them 

could form colorless chelates with Al3+ ions in the aqueous phase in addition to other 

mechanisms of removal. 

Figure 4.109 provides relationship between color-forming substances and DON. The 

correlation between nitrogen particles and color was observed as for COD/Color. This 

correlation might suggest that DON also contained color-forming substances as color changed 
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with respect to DON concentration in the effluent. The higher concentration of nitrogenous 

compounds removed by EAnMBR relative to the concentration of colour removed by AnMBR 

was also observed. DON/Color of 0.1756 was observed at the end of AnMBR operation, 

whereas it dropped to 0.0767 during the first days of Stage II (Figure 4.109). Significant 

decrease of color components in the DON fraction during the first days of operation can be 

explained by the rejection of significant part of DON by the membrane module. However, 

electrokinetic processes involved at this stage significantly improved the quality of the 

effluent. Nitrogenous chromophores represented only small fraction of DON during the 

experiment and DON/Color continued to decrease after day until day 45 (from 0.0767 to 

0.3150). However, starting from day 45 until the end of the run, presence of organic fraction 

in DON slightly increased to 1.7630 – 1.9953 due to the membrane fouling which did not, 

however, affect visual quality of the effluent.     

The parameters of wastewater in the feed and in treated effluent along with overall 

performance of the system in Stage II are summarized in Table 4.5. pH changed from 5.2±0.20 

in the influent (6.3±0.20 in the effluent) from the beginning of the experiment to 8.4±0.20 

towards the end respectively due to electrolysis in the EAnMBR. The overall removal 

efficiency of COD, TN, TP and color was 99.68%, 99.04%, 99.98%, 99.94%, respectively, 

showing increase in performance over AnMBR by 10.44%, 2.04%, 1.46%, and 0.74%.  

 

Figure 4.108. Phase III Stage II: Effect of COD on the color of the EAnMBR 
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Figure 4.109. Phase III Stage II: Effect of DON on the color in the EAnMBR 

 

Table 4.5. The influent and effluent concentrations and the performance of the EAnMBR. 

Parameter Influent, mgL-1 Effluent, mgL-1 Average 

Removal 

Efficiency, 

% Average 

 

Standard 

Deviation 

Average at 

the End of 

Stage II 

 

Standard 

Deviation 

pH 5.2 ±0.20 8.4 ±0.20 - 

COD 53,574 ±432 170 ±43.64 >99 

Ntot 2,298 ±4.03 22.05 ±3.45 >99 

Ptot 151 ±0.82 0.02 ±0.02 >99 

Color 19,975 ±81 11.66 ±2.36 >99 
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Figure 4.110 present color-changing dynamic during the Phase III. 
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Figure 4.110. Color-changing dynamic during the Phase III 

 

4.3.3. Cost Analysis 

The specific energy demand of electro-anaerobic membrane bioreactor was mainly due to the 

electrical power related to the applied voltage for maintaining the exposure time. The aeration 

was not required and liquid pumping had low contribution to the energy demand. Detailed 

calculations were summarized as follows. For AnMBR calculation, it was assumed that for 

pilot and/or full-scale operation a coagulant addition and rapid mixing are required. Aluminum 

dose and power consumption are strongly dependent on conductivity; therefore, calculations 

were made based on the previous study [273].  The specific energy consumption of EAnMBR 

system could be reduced to less than 1 kWhm-3 taking into considerations the operating 

conditions were related to the exposure time to electrical field and heating.  Based on the results 

of the research, change of electrodes was required after six month of exploitation. 
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Anaerobic Membrane Bioreactor (AnMBR) 

1. Aeration of biomass: not required 

2. Aeration of Membrane: not required 

3. Coagulation Rapid Mixing/Agitation: 0.05 CADm-3 

4. Coagulation Chemicals: 

 

a. Aluminium sulphate (solid) 6.5 CADkg-1 of Al 

Dose: 0.06 Al kgm-3  

Cost (6.5 CADkg-1 x 0.06 Al kgm-3):  0.39 CADm-3  

b. Aluminium polychloride (liquid) 4.0 CADkg-1 of Al 

Dose: 0.06 Al kgm-3 

Cost (4.0 CADkg-1 x 0.06 Al kgm-3):  0.24 CADm-3 

5. Electrokinetic: N/A 

Total Cost of AnMBR Operation (Aluminium sulphate): 0.05 CADm-3 + 0.39 CADm-3 = 

0.44 CADm-3 

Total Cost of AnMBR Operation (Aluminium polychloride): 0.05 CADm-3 + 0.24 

CADm-3 = 0.29 CADm-3  

TOTAL for AnMBR:  

0.44 CADm-3 using Aluminium sulphate  

0.29 CADm-3 using Aluminium polychloride  

Electro Anaerobic Membrane Bioreactor (EAnMBR) 

1. Aeration of biomass: not required 

2. Aeration of Membrane: not required 

3. Coagulation Rapid Mixing/Agitation: not required 

4. Coagulation Chemicals: not required 

5. Electrokinetic:  

a. the price of metal sheet (used as anode):  

Aluminium (3003 H14) of size 2m × 1m with 1 mm thickness is 6.0 CAD per Piece 

Open Area 23% 

Metric Density of Al: 2.80 gcm-3 

Weight of Al sheet: 2m × 1m with x 1 mm x 2.80 gcm-3 = 5.6 kg x 0.77 = 4.3 kg 

Surface Area of Circular Anode: S=2πrh 

The present electricity cost for high power customers in Canada is 0.048CAD per kWh. 

b. aluminum dissolved: 0.06 Al kgm-3  
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c. energy costs: 0.566 CADkg-1 Al 

TOTAL for EAnMBR:  0.06 Al kgm-3 x 0.566 CADkg-1 Al = 0.03 CADm-3 

 

4.3.4. Phase III: Summary and Conclusions 

Based on this research, the electro-bioreactor has proven its capability for high removal 

efficiency of the carbon, nutrients and color in one single operation unit. The studies showed 

removal efficiency up to more than 99% for all nutrients when the electrical parameters and 

the other operating conditions (HRT, SRT and organic loading) were adjusted to that purpose. 

Carbon was removed primarily through biomass oxidation; phosphorus was removed through 

the formation of aluminum phosphate complexes, while nitrogenous compounds were 

transformed through denitrification processes in the reactor. Nitrification potential was 

enhanced up to 25% in the EAnMBR due to the activation of anammox while autotrophic 

nitrification took place in the AnMBR only. 

In Phase III of this research, the system was operated in AnMBR (Stage I) and in EAnMBR 

(Stage II) configuration for treatment of industrial wastewater containing molasses. In 

AnMBR configuration, the system was operated from day 1 to 60 as advanced anaerobic 

membrane bioreactor. In EAnMBR mode of operation from day 61 to 120, aluminum was used 

as an anode and iron as a cathode similar to Phase II. The conclusions of Phase III can be 

summarized as follows:  

- The AnMBR system produced effluents of excellent quality (> 89%) in terms of carbon, 

nitrogen, phosphorus, and color, where the removal reached more than 89, 97, 98, and 99%, 

respectively.  

- The EAnMBR system demonstrated excellent results in terms of carbon, nutrients and color 

removal (more than 99% each).  

- pH of the liquid phase increased from 6.3 to 8.3-8.5 due to electrolysis and electrokinetic 

processes involvement.  

- Combination of biological, physico-chemical and electrokinetic processes played significant 

and positive role in each stage of operation.   

The conclusions for each stage are summarized as follows: 
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- Stage I (1-60 days): The system was operated in AnMBR configuration without an electrical 

field. The HRT was kept constant at 4 days to increase sheer and reduce fouling of the 

membrane module. The average COD removal of the system was > 89%, nitrogen removal 

efficiency demonstrated > 97% and the phosphorus removal performance was > 98 %.  

- Stage II (61-120 days): The system was operated in EAnMBR configuration with a DC field 

applied and an operational mode of 5’On: 20’Off. The electrokinetic phenomena in EAnMBR 

system produced a significant positive impact in terms of COD, nitrogen, phosphorus and color 

removal (> 99%). COD removal mechanism was a combination of biological carbon removal 

and electrokinetic formation of nucleoids for negatively charged colloids which were removed 

from the aqueous phase by the forces of gravity. Due to the slow rate of the anaerobic 

nitrification process, a major part of nitrogen was removed by the biological decomposition 

and electrokinetically induced denitrification. The phosphorous removal efficiency was 

attributed not only to biological degradation, but interaction with aluminum cations released 

into the aqueous phase as a result of electrokinetic processes. Alumophosphate species were 

produced and precipitated out of the sludge with some depositions on the surface of the cathode 

and the membrane as product of Al3+ interaction with PO4
3-. 

Although AnMBR demonstrated very good treatment of high-strength industrial wastewater, 

EAnMBR outperformed conventional advanced anaerobic membrane system and provided 

superior effluent quality due to involvement of electrokinetic processes.  
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5. Phase IV: Modeling and Optimization 

 The Box–Behnken statistical experimental design was employed to determine the effects of 

environmental, electrical and biological operating variables on COD, nitrogen, phosphorus 

and color removal efficiency. Furthermore, finding of the combination of variables resulting 

in maximum removal performance was also considered. As environmental, electrical and 

biological parameters, pH, current density and MLSS were selected, respectively.  

The response surface methodology or RSM is an empirical modeling technique, used for the 

evaluation of the relationship of a set of controlled experimental factors and observed results. 

The results of RSM were statistically analyzed using one-way ANOVA to determine the major 

properties which had significant influence, and to analyze the differences among group means 

and their associated procedures.  

The RSM generates empirical model which can describe the process and analyze the influence 

of independent variables on a specific dependent variable (response). The independent 

variables denoted by x1, x2, …… xk are assumed as continuous and can be controlled with 

negligible error. The response (y) is assumed to be a random variable. The individual variables 

(x1, x2, …, xk) and the response (y) can be related as follows: 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑘) + 𝜀                       (5.1) 

where y is the response of the system, 𝑓 the unknown function of response, x1, x2, x3 …… xk 

the independent variables, k the number of independent variables, and ε the statistical error. 

RSM postulates the functional relationship between the response (y) and the independent 

variables. A first order RSM can be expressed as follows: 

𝑦 = 𝛽0 + ∑ (𝛽𝑖𝑥𝑖 +  ε)𝑘
𝑖=1                     (5.2) 

For maximization problem, experiments are conducted along the path of steepest ascent until 

no further increase in the response is observed. The set of values of independent variables 

where no further increase in response is observed is known as optimal region. In most of the 

cases a second order response surface model is used which can be given as: 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
1 + 

𝑘

𝑖=1
∑ 𝛽𝑖𝑖𝑥𝑖

2 +  
𝑘

𝑖=1
∑ .𝑘−1

𝑖=1 ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=2
+  𝜀              (5.3) 

where xi, xj - independent variables and 
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 𝛽0, 𝛽𝑖, 𝛽𝑖𝑖, 𝛽𝑖𝑗(𝑖 = 1,2, … 𝑘), 𝛽𝑖𝑗(𝑖 = 1,2 … 𝑘; 𝑗 = 1,2, … 𝑘) 

regression coefficients for intercept, linear, quadratic and interaction terms respectively; and 

ε- statistical error. In the present study, the RSM has been used to determine the relationship 

between COD, TP, TN and color removal with operating parameters such as pH and applied 

current density. The variables are converted to coded variables using the following equation: 

𝑥 =
𝑋−[𝑋𝑚𝑎𝑥+𝑋𝑚𝑖𝑛]/2

[𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛]/2
                    (5.4) 

where, X = natural variable and x = coded variable. The dimensional coded variables x1, x2, x3, 

xk vary between -1 and +1, while the variables are designated as – 1, 0 and +1. The 

mathematical representation of the response Y and the variables is given as: 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽33𝑥3
2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 +

𝛽23𝑥2𝑥3                       (5.5) 

and 

𝛽𝑖𝑗 = 0,1,2,3                       (5.6) 

where  𝛽 and x are regression coefficients and variables. In the present study, the Box–Behnken 

experimental design was selected to find the relationship between the response functions and 

variables. A 15-run Box-Behnken design with three center points was conducted using Minitab 

software and a full quadratic model was fitted to the data. Using this model, the optimal 

settings that provided the highest reduction of COD, nitrogen, phosphorous and color were 

found. The parameters and their ranges covered in the present investigation are listed in Table 

5.1. Randomized design table (Table 5.2) for 3 center points provides the design matrix. 

The electrolyte pH, applied current density and MLSS concentration are referred by variables 

as A, B, C respectively. The variables were designated as –1, 0 and +1. Experiments were 

carried out according to the experimental conditions designed by RSM and the responses are 

summarized in Table 5.3. Correlations were considered statistically significant when their p-

values were less than 0.05. 

 

 



201 
 

Table 5.1. The level and range of independent variables 

Factor Variable Unit Levels 

 -1 0 +1 

A pH - 6 7 8 

B CD  Am-2 15.0 17.5 20.0 

C MLSS gL-1 5.0 6.5 8.0 

 

Table 5.2. Randomized design table 

Run Block Factors 

A B C 

1 1 0 -1 1 

2 1 0 0 0 

3 1 -1 0 1 

4 1 0 -1 -1 

5 1 1 -1 0 

6 1 0 1 1 

7 1 -1 -1 0 

8 1 0 0 0 

9 1 1 1 0 

10 1 1 0 1 

11 1 -1 1 0 

12 1 0 0 0 

13 1 -1 0 -1 

14 1 1 0 -1 

15 1 0 1 -1 

 

Table 5.3. Observed and predicted removal efficiency 

Run 

Variable % Removal  

pH 

CD, 

Am-2
 

 

MLVSS, 

gL-1 

 

Experimental Predicted 

 

  COD TN TP Color COD TN TP Color 

1 7 15.0 8.0 97.64 93.00 99.33 99.48 97.25 93.55 99.54 99.57 

2 7 17.5 6.5 94.22 93.72 96.85 99.65 94.97 92.72 96.60 99.64 

3 6 17.5 8.0 95.99 95.03 95.19 99.27 96.26 93.90 95.72 99.21 

4 7 15.0 5.0 87.85 82.60 97.80 99.51 87.75 82.86 97.86 99.56 

5 8 15.0 6.5 89.15 83.75 98.85 99.67 89.52 82.36 99.32 99.73 

6 7 20.0 8.0 99.67 98.85 99.98 99.51 99.77 98.59 99.93 99.48 

7 6 15.0 6.5 89.87 85.25 97.61 99.67 90.00 85.83 96.88 99.57 

8 7 17.5 6.5 95.20 93.72 96.50 99.79 94.97 92.72 96.60 99.82 

9 8 20.0 6.5 96.12 94.79 98.95 99.75 95.99 94.21 99.68 99.66 

10 8 17.5 8.0 97.15 92.40 98.87 99.77 97.18 93.24 98.20 99.72 

11 6 20.0 6.5 98.50 92.18 98.88 99.57 98.13 93.57 98.41 99.57 

12 7 17.5 6.5 95.50 90.70 96.45 99.20 94.97 92.72 96.60 99.29 

13 6 17.5 5.0 93.80 89.55 94.54 99.45 93.77 88.71 95.22 99.46 

14 8 17.5 5.0 90.50 85.40 96.97 99.96 90.23 86.53 96.45 99.92 

15 7 20.0 5.0 99.45 97.95 99.56 99.90 99.84 97.40 99.36 99.90 
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The mathematical relationship between the independent variables and their responses and 

optimization for each pollutant are provided in the following sections. 

5.1.  Optimization for COD Removal 

The mathematical relationship between the independent variables and COD removal 

efficiency responses in uncoded units: 

% COD = -51.9 + 20.91 pH + 6.13 CD + 1.38 MLVSS - 1.678 pH*pH + 0.0183 CD*CD 

+ 0.473 MLVSS*MLVSS - 0.166 pH*CD + 0.743 pH*MLVSS - 0.6380 CD*MLVSS             (5.7) 

 

The predictions of percentage COD removal using the Equation 5.7 was compared with the 

experimental observations (Figure 5.1). It can be observed that the predictions using above 

equation fit with the experimental observations with the acceptable error range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Model prediction comparison to experimental data for COD removal efficiency 

 

Figure 5.2 demonstrate the response surface effect of current density and pH on the COD 

removal. The carbon removal increased with increase of applied current density. The effect of 

pH also influenced removal efficiency. In order to reach the maximum removal efficiency, the 

CD and pH must be in the range of 19.5 Am-2 and 6.0 - 7.5 accordingly.  
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Figure 5.2. Effect of current density and pH on COD removal 

 

 
 

Figure 5.3. Effect of MLVSS concentration and pH on COD removal 

 

 

Figure 5.3 represents the effect of the biomass concentration and pH on COD removal. The 

COD removal was strongly influenced by the MLVSS concentration and the pH of electrolyte. 

In order to reach the best performance in terms of carbon removal, the higher MLVSS and pH 

values in the range between 6.5 and 7.8 should be maintained. Figure 5.4 provides information 
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on response surface effects of the MLVSS concentration and the CD on percentage of COD 

removal. The graphical model showed the similar trends for COD removal efficiency- higher 

current density and MLVSS led to higher percent removal. To reach the COD removal more 

than 98%, MLVSS concentration should be maintained at 8 gL-1 and CD should be ranged 

from 19 to 20 Am-2. 

 

 
 

Figure 5.4. Effect of current density and MLVSS concentration on COD removal 

 

The actual and predicted values of the response shown in Table 5.3 as well as the model 

regression (eq. 5.7) were used to construct graphical models and statistical parameter for the 

ANOVA as shown in Table 5.4 and Table 5.5. The adequacy of the responses was evaluated 

by ANOVA and Tables 5.4 – 5.5 show statistical data for validating the precision of the model.  

 

Table 5.4. Analysis of variance for COD removal optimization 

Source DF Seq SS Contribution Adj SS Adj 

MS 

f-Value p-Value 

Model 9 198.986 99.17% 198.986 22.11 66.29 < 0.0001 

Linear 3 154.647 77.07% 154.647 51.549 154.55 < 0.0001 

pH 1 3.432 1.71% 3.432 3.432 10.29 0.024 

CD 1 106.799 53.23% 106.799 106.799 320.2 < 0.0001 

MLVSS 1 44.415 22.14% 44.415 44.415 133.16 < 0.0001 

Square 3 15.781 7.86% 15.781 5.26 15.77 0.006 

pH 7
Hold Values

CD

M
L

V
S

S
, 

g
/L

201918171615

8.0

7.5

7.0

6.5

6.0

5.5

5.0

>  

–  

–  

–  

–  

–  

<  88

88 90

90 92

92 94

94 96

96 98

98

% COD



205 
 

pH*pH 1 11.593 5.78% 10.395 10.395 31.17 0.003 

CD*CD 1 0.004 0.00% 0.048 0.048 0.15 0.719 

MLVSS*MLVSS 1 4.185 2.09% 4.185 4.185 12.55 0.017 

2-Way Interaction 3 28.558 14.23% 28.558 9.519 28.54 0.001 

pH*CD 1 0.689 0.34% 0.689 0.689 2.07 0.21 

pH*MLVSS 1 4.973 2.48% 4.973 4.973 14.91 0.012 

CD*MLVSS 1 22.896 11.41% 22.896 22.896 68.65 < 0.0001 

Error 5 1.668 0.83% 1.668 0.334   

Lack-of-Fit 3 0.771 0.38% 0.771 0.257 0.57 0.685 

Pure Error 2 0.896 0.45% 0.896 0.448   

Total 14 200.653 100.00%     

 

DF represents the total degree of freedom; Seq SS is sequential sums of squares; Contribution- is the 

% contribution of the parameter; Adj SS- adjusted sum of squares; Adj MS- adjusted mean squares. 

 

Table 5.5. Coded coefficients COD removal optimization 

Term Effect Coef 
SE 

Coef 
95% CI t-Value p-Value VIF 

Constant  94.973 0.333 (94.116, 95.83) 284.83 0  

pH -1.31 -0.655 0.204 (-1.180, -0.130) -3.21 0.024 1 

CD 7.307 3.654 0.204 ( 3.129, 4.179) 17.89 0 1 

MLVSS 4.713 2.356 0.204 ( 1.831, 2.881) 11.54 0 1 

pH*pH -3.356 -1.678 0.301 (-2.451, -0.905) -5.58 0.003 1.01 

CD*CD 0.229 0.115 0.301 (-0.658, 0.887) 0.38 0.719 1.01 

MLVSS*MLVSS 2.129 1.065 0.301 ( 0.292, 1.837) 3.54 0.017 1.01 

pH*CD -0.83 -0.415 0.289 (-1.157, 0.327) -1.44 0.21 1 

pH*MLVSS 2.23 1.115 0.289 ( 0.373, 1.857) 3.86 0.012 1 

CD*MLVSS -4.785 -2.393 0.289 (-3.135, -1.650) -8.29 0 1 

 

Coef and SE Coef are coefficients and standard error coefficients respectively;  

CI- is the confidence interval; 

t-Value is the measurement of the size of the difference relative to the variation in the sample data;   

VIF- Variance Inflation Factor. 

 

Model summary:  

S = 0.577528, R-sq = 99.17%, R-sq(adj) = 97.67%, PRESS = 14.3594, R92.84% 

The significance of the regression was determined by f-value and p-value. The f-value of COD 

removal model is indicated in Table 5.5. The large number of f-value indicates that the 

regression models well included variations of the response range. Moreover, the relation 
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between p-value and f-value was used to analyse whether f-value was large enough to include 

the model variations. The p-value less than 0.05 can indicate that the model terms are 

significant at the 95% level of significance. Furthermore, the value of model coefficient of 

determination showed that R-sq and R-sq(adj) values were 99.17% and 97.67% for COD 

removal model. The values of R-sq and R-sq(adj) more than 80% indicated good fit of COD 

removal model points. Good ness of fit test was run in order to determine the best distribution 

model for COD removal. The results are presented in Table 5.6 and 5.7 and show that the best 

suitable distribution model is 3-Parameter Weibull. The graphical results of goodness of fit 

test are also presented in Figure 5.7 and confirm the best fit for 3-Parameter Weibull 

distribution. The residual plots for COD removal model are represented in Figure 5.5 and 

optimal range of all three values (pH, CD, MLVSS) for optimal COD removal is depicted on 

Figure 5.6.  

 

 
 

Figure 5.5. Residual plots for COD removal 
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Figure 5.6. Optimum range for COD removal 

 

Table 5.6. Goodness of fit test percent COD removal  

 

 

 

Distribution AD P LRT P 

Normal 0.428 0.271  

Box-Cox 

Transformation 

0.316 0.507  

Lognormal 0.462 0.221  

3-Parameter 

Lognormal 

0.462 * 0.59 

Exponential 6.374 <0.003  

2-Parameter 

Exponential 

1.601 <0.010 0 

Weibull 0.275 >0.250  

3-Parameter Weibull 0.262 >0.500 0.919 

Smallest Extreme 

Value 

0.262 >0.250  

Largest Extreme Value 0.714 0.053  

Gamma 0.485 0.236  

3-Parameter Gamma 1.58 * 1 

Logistic 0.421 0.248  

Loglogistic 0.45 0.215  

3-Parameter 

Loglogistic 

0.421 * 0.618 
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Table 5.7. Estimates of distribution parameters for COD removal 

Distribution Location Shape Scale Threshold 

Normal* 94.71  3.79  

Box-Cox Transformation* 7.73E+09  1.48E+09  

Lognormal* 4.55  0.04  

3-Parameter Lognormal 10.72  0.01 -4.49E+04 

Exponential   94.71  

2-Parameter Exponential   7.35 87.36019 

Weibull  32.34 96.38  

3-Parameter Weibull  15298.78 44983.63 -4.49E+04 

Smallest Extreme Value 96.43  2.94  

Largest Extreme Value 92.80  3.68  

Gamma  661.44 0.14  

3-Parameter Gamma  1323.63 0.101 -40.24954 

Logistic 95.01  2.16  

Loglogistic 4.55  0.023  

3-Parameter Loglogistic 10.71  0.00005 -4.49E+04 

     

* Scale: Adjusted ML 

estimate 

    

 

AD: Anderson-Darling statistic (AD): Lower AD values indicate a better fit; 

P: p-value;  

LRT P: For 3-parameter distributions only, a low value indicates that adding the third parameter is a 

significant improvement over the 2-Parameter version. 

 

As the best-fitting distribution was identified, the best estimate graph for the model (3-

Parameter Weibull with Shape 15298.78327, Scale 44983.62826, and Threshold -4.49E+04) and 

probabilities for minimum (87.85%) and maximum (99.67%) COD removal efficiency values 

(from Table 5.3) that fall in the range were plotted and is represented in Figure 5.7. The 

distribution shown in Figure 5.8 seemed reasonable as the particles distribution in the aqueous 

phase also followed similar pattern.  
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Figure 5.7. Probability plot for COD removal 

 

 

 

Figure 5.8. Distribution plot for COD removal 
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% TN = -123.3 + 34.0 pH + 6.60 CD + 5.56 MLVSS - 3.114 pH*pH - 0.097 CD*CD 

+ 0.441 MLVSS*MLVSS + 0.411 pH*CD + 0.253 pH*MLVSS - 0.633 CD*MLVSS                 (5.8) 

 

The predicted values of percentage TN removal using the Equation 5.8 were compared with 

the experimental results (Figure 5.9). It can be observed that the predictions using above 

equation fit with the experimental observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Model prediction comparison to experimental data for TN removal efficiency 

 

Figure 5.10 provides the response surface effect of current density and pH on the TN removal 

efficiency. Similar to COD, the nitrogen removal efficiency increased with rise of applied 

current density. The pH also influenced removal efficiency with optimal range for the best 

performance within 6.5 – 7.5. In order to provide the maximum removal performance for TN, 

the CD must be in the range of 19.5 – 20.0 Am-2.  

Figure 5.11 represents the effect of MLVSS and pH on percent nitrogen removal. The TN 

removal was strongly influenced by the biomass concentration and the pH of the aqueous 

phase. To reach the best performance in terms of TN removal, the higher MLVSS and pH 

values in the range between 6.5 and 7.3 are recommended. Figure 5.12 provides information 

on the effect of the MLVSS concentration and the current density on % TN removal. The 

model presented on Figure 5.12 demonstrated the similar pattern for TN removal efficiency- 

the higher current density and MLVSS provided higher performance. To reach the nitrogen 
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removal higher than 98%, MLVSS concentration should be maintained similar to COD 

removal model for the same parameters- at 8 gL-1 and CD should be ranged from 19 to 20 Am-

2. 

 

Figure 5.10. Effect of current density and pH on TN removal 

 

 
 

Figure 5.11. Effect of MLVSS concentration and pH on TN removal 
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Figure 5.12. Effect of current denscity and MLSS concentration on TN removal 

 

The experimental and predicted values of the surface responses that presented in Table 5.3 and 

by the model regression equation 5.8 were employed to build the graphical models and 

statistical parameters for the ANOVA as presented in Table 5.8. Table 5.9 summarizes the 

coded coefficients for the total nitrogen removal optimization. The adequacy of the surface 

responses was checked by ANOVA. The results are presented in Tables 5.10 – 5.11 and show 

statistical data for validating the model for TN removal.  

 

Table 5.8. Analysis of variance nitrogen removal optimization 

Source DF Seq SS Contribution Adj SS Adj 

MS 

f-Value p-Value 

Model 9 336.119 95.63% 336.119 37.347 12.16 0.007 

Linear 3 266.532 75.83% 266.532 88.844 28.92 0.001 

pH 1 4.013 1.14% 4.013 4.013 1.31 0.305 

CD 1 191.829 54.58% 191.829 191.829 62.44 0.001 

MLVSS 1 70.69 20.11% 70.69 70.69 23.01 0.005 

Square 3 42.215 12.01% 42.215 14.072 4.58 0.067 

pH*pH 1 36.832 10.48% 35.794 35.794 11.65 0.019 

CD*CD 1 1.743 0.50% 1.368 1.368 0.45 0.534 

MLVSS*MLVSS 1 3.64 1.04% 3.64 3.64 1.18 0.326 

2-Way Interaction 3 27.372 7.79% 27.372 9.124 2.97 0.136 

pH*CD 1 4.232 1.20% 4.232 4.232 1.38 0.293 
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CD*MLVSS 1 22.563 6.42% 22.563 22.563 7.34 0.042 

Error 5 15.362 4.37% 15.362 3.072   

Lack-of-Fit 3 9.266 2.64% 9.266 3.089 1.01 0.532 

Pure Error 2 6.095 1.73% 6.095 3.048   

Total 14 351.481 100.00%     

 

DF represents the total degree of freedom; Seq SS is sequential sums of squares; Contribution- is the 

% contribution of the parameter; Adj SS- adjusted sum of squares; Adj MS- adjusted mean squares. 

 

 

Table 5.9. Coded coefficients nitrogen removal optimization 

Term Effect Coef SE Coef 95% CI t-Value p-Value VIF 

Constant  92.72 1.01 ( 90.11, 95.32) 91.62 0  

pH -1.417 -0.708 0.62 (-2.301, 0.885) -1.14 0.305 1 

CD 9.794 4.897 0.62 ( 3.304, 6.490) 7.9 0.001 1 

MLVSS 5.945 2.973 0.62 ( 1.380, 4.566) 4.8 0.005 1 

pH*pH -6.227 -3.114 0.912 (-5.458, -0.769) -3.41 0.019 1.01 

CD*CD -1.217 -0.609 0.912 (-2.954, 1.736) -0.67 0.534 1.01 

MLVSS*MLVSS 1.986 0.993 0.912 (-1.352, 3.338) 1.09 0.326 1.01 

pH*CD 2.057 1.029 0.876 (-1.224, 3.281) 1.17 0.293 1 

pH*MLVSS 0.76 0.38 0.876 (-1.873, 2.633) 0.43 0.683 1 

CD*MLVSS -4.75 -2.375 0.876 (-4.628, -0.122) -2.71 0.042 1 

 

Coef and SE Coef are coefficients and standard error coefficients respectively;  

CI- is the confidence interval; 

t-Value is the measurement of the size of the difference relative to the variation in the sample data;   

VIF- Variance Inflation Factor. 

 

Model summary:  

S = 1.75280, R-sq = 95.63%, R-sq(adj) = 87.76%, PRESS = 161.974, R53.92% 

As in the previous assessment, the significance of the regression was determined by f-value 

and p-value. The higher numbers of f-value suggested that the regression models well 

comprised ranges of the response values. The relation between p-value and f-value was used 

to analyse if f-value was adequate to include the model variations. The value of model 

coefficient of determination showed that R-sq and R-sq(adj) values were 95.63% and 87.76%, 

respectively, for TN removal model. The values of R-sq and R-sq(adj) are higher than than 

80% which indicates a good fit of TN removal model points. Goodness of fit test was used to 

determine the best distribution model for TN removal. The results are provided in Tables 5.10 
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and 5.11 and demonstrate that the suitable distribution model is 3-Parameter Weibull. The 

graphical results of goodness of fit test are presented in Figure 5.14 and confirm the best fit 

for 3-Parameter Weibull distribution. The residual plots for TN removal model are presented 

in Figure 5.12 and optimal range of all three values (pH, CD, MLVSS) for optimal TN removal 

is depicted on Figure 5.13.  

 

Figure 5.12. Residual plots for TN removal 

 

 

Figure 5.13. Optimum range for TN removal 
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Table 5.10. Goodness of fit test TN removal 

 

Distribution 

AD P LRT P 

Normal 0.433 0.263  

Box-Cox 

Transformation 

0.317 0.506  

Lognormal 0.478 0.201  

3-Parameter Lognormal 0.465 * 0.574 

Exponential 6.192 <0.003  

2-Parameter 

Exponential 

1.471 0.011 0 

Weibull 0.302 >0.250  

3-Parameter Weibull 0.346 0.392 0.73 

Smallest Extreme Value 0.294 >0.250  

Largest Extreme Value 0.719 0.05  

Gamma 0.495 0.226  

3-Parameter Gamma 1.135 * 1 

Logistic 0.438 0.228  

Loglogistic 0.477 0.185  

3-Parameter Loglogistic 0.439 * 0.59 

 

AD: Anderson-Darling statistic (AD): Lower AD values indicate a better fit; 

P: p-value;  

LRT P: For 3-parameter distributions only, a low value indicates that adding the third parameter is a 

significant improvement over the 2-Parameter version. 

 

Table 5.11. Estimates of distribution parameters for TN removal 

Distribution Location Shape Scale Threshold 

Normal* 91.26  5.01  

Box-Cox 

Transformation* 

1.04E+09  2.52E+08  

Lognormal* 4.51  0.06  

3-Parameter 

Lognormal 

10.65  0.01 -4.23E+04 

Exponential   91.26  

2-Parameter 

Exponential 

  9.28 81.98 

Weibull  22.54 93.48  

3-Parameter Weibull  7.27 31.17 62.10 

Smallest Extreme Value 93.58  4.10  

Largest Extreme Value 88.76  4.78  

Gamma  350.01 0.26  

3-Parameter Gamma  819.95 0.17 -49.29 
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Logistic 91.60  2.86  

Loglogistic 4.52  0.03  

3-Parameter Loglogistic 10.66  0.00007 -4.22E+04 

     

* Scale: Adjusted ML estimate    

 

As the best distribution was determined, the graph for the estimated model (3-Parameter 

Weibull with Shape 7.27, Scale 31.17, and Threshold 62.10) and probabilities for removal 

efficiency values (minimum and maximum from Table 5.3) that fall in the range of 88.76 – 

93.58% TN was constructed and is presented in Figure 5.15. The distribution represented in 

Figure 5.15 seems adequate as the nitrogen particles distribution in the aqueous phase also 

might follow similar pattern to those of carbon. The distribution is, however, narrower as the 

concentration of nitrogen is much less than of carbon. 

 

 

Figure 5.14. Probability plot for TN removal 
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Figure 5.15. Distribution plot for TN removal 

 

5.3. Optimization for Phosphorous Removal 

The relationship between the independent variables and TP removal efficiency responses in 

uncoded units is reflected by Equation 5.9: 

 

% TP = 171.4 + 7.24 pH - 11.80 CD - 0.91 MLVSS - 0.401 pH*pH + 0.3798 CD*CD  

+ 0.086 MLVSS*MLVSS - 0.117 pH*CD + 0.208 pH*MLVSS - 0.074 CD*MLVSS                (5.9) 

The predictions of percentage TP removal using the equation 5.9 was compared with the 

experimental results (Figure 5.16). The model described by the equation 5.9 fit with the 

experimental observations quite well. 
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Figure 5.16. Model prediction comparison to experimental data for TP removal efficiency 

 

 

The effect of current density and pH on the phosphorus removal is depicted on Figure 5.17. 

The graphical model exhibits the same trend for each fixed value as in previously discussed 

models for COD and TN. Figure 5.18 represents the effect of MLVSS concentration and pH 

on TP removal. The concentration of MLVSS affected phosphorus removal. Furthermore, pH 

increase also affected TP removal, which is reasonable as the precipitation of phosphorus 

increases at higher pH levels (optimal value according to the graph > 7.5). Figure 5.19 presents 

the effect of MLVSS and current density on phosphorus removal. The graphical model 

representation demonstrates a complex trend as the TP removal increases at lower and higher 

current density, while, the best performance could be achieved at MLVSS > 7 gL-1 and CD > 

19.2 Am-2. Figure 5.19 shows that applied current density has little impact on phosphorus 

removal between 16.2 Am-2 and 18.0 Am-2 (dark blue region). 
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Figure 5.17. Effect of current denscity and pH on TP removal 

 

 
 

 

Figure 4.18. Effect of MLVSS concentration and pH on TP removal 
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Figure 4.19. Effect of current dencity and MLVSS concentration on TP removal 

 

 

To build graphical models and statistical parameters for the ANOVA as presented in Table 

5.12, the actual and predicted values of the surface responses provided in Table 5.3 and the 

model regression equation 5.9 were employed. The Table 5.13 provides the coded coefficients 

for phosphorus removal optimization. The adequacy of the surface responses was evaluated 

by ANOVA. The results presented in Tables 5.12 – 5.13 provide statistical data for validating 

the model for total phosphorus removal.  

 

 

Table 5.12. Analysis of variance for phosphorus removal optimization 
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MS 

F-Value P-Value 
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pH*CD 1 0.3422 0.91% 0.3422 0.3422 0.54 0.495 

pH*MLVSS 1 0.3906 1.04% 0.3906 0.3906 0.62 0.467 

CD*MLVSS 1 0.308 0.82% 0.308 0.308 0.49 0.516 

Error 5 3.1552 8.42% 3.1552 0.631   

Lack-of-Fit 3 3.0602 8.17% 3.0602 1.0201 21.48 0.045 

Pure Error 2 0.095 0.25% 0.095 0.0475   

Total 14 37.477 100.00%     

 

DF represents the total degree of freedom; Seq SS is sequential sums of squares; Contribution- is the 

% contribution of the parameter; Adj SS- adjusted sum of squares; Adj MS- adjusted mean squares. 

 

 

Table 5.13. Coded coefficients for phosphorus removal optimization 

Term Effect Coef SE 

Coef 

95% CI T-Value P-Value VIF 

Constant  96.6 0.459 (95.421, 97.779) 210.62 0  

pH 1.855 0.928 0.281 ( 0.206, 1.649) 3.3 0.021 1 

CD 0.945 0.473 0.281 (-0.249, 1.194) 1.68 0.153 1 

MLVSS 1.125 0.562 0.281 (-0.159, 1.284) 2 0.102 1 

pH*pH -

0.803 

-

0.401 

0.413 (-1.464, 0.661) -0.97 0.376 1.01 

CD*CD 4.747 2.374 0.413 ( 1.311, 3.436) 5.74 0.002 1.01 

MLVSS*MLVSS 0.388 0.194 0.413 (-0.869, 1.256) 0.47 0.659 1.01 

pH*CD -

0.585 

-

0.292 

0.397 (-1.314, 0.729) -0.74 0.495 1 

pH*MLVSS 0.625 0.313 0.397 (-0.709, 1.334) 0.79 0.467 1 

CD*MLVSS -

0.555 

-

0.278 

0.397 (-1.299, 0.744) -0.7 0.516 1 

 

Coef and SE Coef are coefficients and standard error coefficients respectively;  

CI- is the confidence interval; 

t-Value is the measurement of the size of the difference relative to the variation in the sample data;   

VIF- Variance Inflation Factor. 

 

Model summary:  

S = 0.794380, R-sq = 91.58%, R-sq(adj) = 76.43%, PRESS = 49.1769, R0.00% 

Higher values of f-value suggested that the regression models included wide range of the 

surface response values. The relationship between p- and f-values was used to for f-value 

analysis and to check if it was adequate to include the model variations for TP. The value of 

model coefficient of determination demonstrated that R-sq and R-sq(adj) values were 91.58% 
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and 76.43% for TP removal model. The values of R-sq and R-sq(adj) are higher enough and 

indicate a good fit of TP removal model points. In order to determine the best distribution 

model for TP removal, the goodness of fit test was employed similarly to the COD and TN 

models. The results are provided in Tables 5.14 and 5.15 and show that the suitable distribution 

model is 3-Parameter Weibull. The graphical results of goodness of fit test are presented in 

Figure 5.20 and confirm the best fit for 3-Parameter Weibull distribution. The residual plots 

for TP removal model are represented in Figure 5.21 and optimal range of all three parameters 

(pH, CD, MLVSS) for optimal phosphorus removal is depicted in Figure 5.20.  

 

 
 

Figure 5.20. Optimum range for TP removal 
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Figure 5.21. Residual plots for TP removal 

 

Table 5.14. Goodness of fit test TP removal 

 

Distribution 

AD P LRT P 

Normal 0.413 0.295  

Box-Cox 

Transformation 

0.388 0.341  

Lognormal 0.421 0.282  

3-Parameter Lognormal 0.445 * 0.728 

Exponential 6.667 <0.003  

2-Parameter 

Exponential 

1.887 <0.010 0 

Weibull 0.376 >0.250  

3-Parameter Weibull 0.374 0.301 0.945 

Smallest Extreme Value 0.374 >0.250  

Largest Extreme Value 0.612 0.097  

Gamma 0.449 >0.250  

3-Parameter Gamma 2.603 * 1 

Logistic 0.436 0.231  

Loglogistic 0.44 0.227  

3-Parameter Loglogistic 0.436 * 0.769 

 

AD: Anderson-Darling statistic (AD): Lower AD values indicate a better fit; 

P: p-value;  

LRT P: For 3-parameter distributions only, a low value indicates that adding the third parameter is a 

significant improvement over the 2-Parameter version. 
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Table 5.15. Estimates of distribution parameters for TP removal 

Distribution Location Shape Scale Threshold 

Normal* 97.76  1.64  

Box-Cox 

Transformation* 

8.95E+09  7.36E+08  

Lognormal* 4.58  0.02  

3-Parameter Lognormal 10.79  0.00003 -4.83E+04 

Exponential   97.76  

2-Parameter Exponential   3.45 94.31033 

Weibull  77.09 98.49  

3-Parameter Weibull  38739.33 49199.46 -4.91E+04 

Smallest Extreme Value 98.50  1.27  

Largest Extreme Value 96.93  1.62  

Gamma  3803.82 0.03  

3-Parameter Gamma  2680.23 0.03 14.8567 

Logistic 97.86  0.94  

Loglogistic 4.58  0.01  

3-Parameter Loglogistic 10.79  0.00002 -4.83E+04 

     

* Scale: Adjusted ML estimate    

 

The graph was built for the best distribution model (3-Parameter Weibull with Shape 38739.33, 

Scale 49199.46, and Threshold -4.91E+04). The probabilities for removal efficiency values 

(minimum and maximum from Table 5.3) in the range of 96.93 – 98.50% TP are presented in 

Figure 5.22. The distribution depicted in Figure 5.23 follows the same pattern as for nitrogen: 

the range is narrow, as the variation in concentration of phosphorus removal lied in between 

96.93 – 98.50%. 



225 
 

 

Figure 5.22. Probability plot for TP removal 

 

 

Figure 5.23. Distribution plot for TP removal 

 

5.4. Optimization for Discoloration 

The mathematical relationship between the independent variables and color removal efficiency 

responses in uncoded units is represented by equation 5.10: 
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% Color = 93.27 + 1.020 pH - 0.297 CD + 1.367 MLVSS - 0.0604 pH*pH + 0.02113 CD*CD 

- 0.0002 MLVSS*MLVSS + 0.0020 pH*CD - 0.0250 pH*MLVSS - 0.0627 CD*MLVSS         (5.10) 

The predictions of the color removal efficiency, using the eq. 5.10, were compared with the 

experimental observations (Figure 5.24). It can be observed that the predictions using above 

equation fit with the experimental data with the acceptable error range. 

 

 
 

Figure 5.24. Model prediction comparison to experimental data for color removal efficiency 

 

The effect of current density and pH on the discoloration of wastewater is presented in Figure 

5.25. The graphical model demonstrates the same trend for each fixed value as in previously 

discussed models for COD and TN- the higher CD leads to the better performance within pH 

6.7 – 8.0. Figure 5.26 presents the effect of MLVSS concentration and pH on color removal 

performance. The MLVSS concentration of microorganisms affected color presence in pH 

range between 6.7 and 7.5. According to the model, increase of MLVSS should positively 

affect the process of discoloration (dark-green field) which is in accordance with experimental 

observations. Figure 5.27 represents the effect of MLVSS and current density on color 

removal. The graphically-represented model demonstrates a complex relationship between the 

parameters. The color removal is increased at lower and higher applied current density and 

MLVSS concentration and the best performance is observed at 15 Am-2 and 8 gL-1; 20 Am-2 
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density has little impact on color removal between 15.0 Am-2 and 16.2 Am-2 (dark blue region) 

which is in agreement with experimental observations. 

 

 
Figure 5.25. Effect of current density and pH on color removal 

 

 

 

Figure 5.26. Effect of MLVSS concentration and pH on color removal 
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Figure 5.27. Effect of current denscity and MLVSS concentration on color removal 

 

To construct graphical models and statistical parameters for the ANOVA as presented in Table 

5.16, the experimental and predicted values of the surface responses provided in Table 5.3 and 

the model regression equation 5.10 were used. The Table 5.17 provides the coded coefficients 

for color removal optimization. The adequacy of the surface responses was evaluated by 

ANOVA. The results presented in Tables 5.16 – 5.17 provide a summary of statistical data for 

validating the model for discoloration of the wastewater.  
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pH*MLVSS 1 0.005625 0.86% 0.005625 0.005625 0.54 0.495 

CD*MLVSS 1 0.2209 33.84% 0.2209 0.2209 21.26 0.006 

Error 5 0.051942 7.96% 0.051942 0.010388   

Lack-of-Fit 3 0.033875 5.19% 0.033875 0.011292 1.25 0.473 

Pure Error 2 0.018067 2.77% 0.018067 0.009033   

Total 14 0.652773 100.00%     

 

DF represents the total degree of freedom; Seq SS is sequential sums of squares; Contribution- is the 

% contribution of the parameter; Adj SS- adjusted sum of squares; Adj MS- adjusted mean squares. 

 

Table 5.17. Coded coefficients color removal optimization 

Term Effect Coef SE 

Coef 

95% CI T-Value P-Value VIF 

Constant  99.5733 0.0588 (99.4221, 99.7246) 1692.12 0  

pH 0.0925 0.0463 0.036 (-0.0464, 0.1389) 1.28 0.256 1 

CD 0.245 0.1225 0.036 ( 0.0299, 0.2151) 3.4 0.019 1 

MLVSS 0.2775 0.1388 0.036 ( 0.0461, 0.2314) 3.85 0.012 1 

pH*pH -0.1208 -0.0604 0.053 (-0.1968, 0.0759) -1.14 0.306 1.01 

CD*CD 0.2642 0.1321 0.053 (-0.0043, 0.2684) 2.49 0.055 1.01 

MLVSS*MLVSS -0.0008 -0.0004 0.053 (-0.1368, 0.1359) -0.01 0.994 1.01 

pH*CD 0.01 0.005 0.051 (-0.1260, 0.1360) 0.1 0.926 1 

pH*MLVSS -0.075 -0.0375 0.051 (-0.1685, 0.0935) -0.74 0.495 1 

CD*MLVSS -0.47 -0.235 0.051 (-0.3660, -0.1040) -4.61 0.006 1 

 

Coef and SE Coef are coefficients and standard error coefficients respectively;  

CI- is the confidence interval; 

t-Value is the measurement of the size of the difference relative to the variation in the sample data;   

VIF- Variance Inflation Factor. 

 

Model summary:  

S = 0.101923, R-sq = 92.04%, R-sq(adj) = 77.72%, PRESS = 0.58265, R= 10.74% 

f-value and p-value were assessed in details in order to evaluate the significance of the 

regression. The higher numbers of f-value implied that the regression models included 

acceptable range of the surface response values. p-value and f-value interrelationship was 

employed for f-value analysis and to evaluate if the model included required number of 

variations. The value of model coefficient of determination demonstrated that R-sq and R-

sq(adj) values were 92.04% and 77.72% for color removal model. The values of R-sq and R-
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sq(adj) are high which indicates a good fit of color removal model points. In order to establish 

the best distribution model for discoloration, the goodness of fit test was used similarly to the 

previous models for COD, TN and TP. The results are provided in Tables 5.18 and 5.19 and 

demonstrate that the suitable distribution model is 3-Parameter Weibull, similar to the 

previously designed models for carbon and nutrients. The residual plots for color removal 

model are represented in Figure 5.27. Optimal range of all three parameters (pH, CD, MLVSS) 

for optimal phosphorus removal is provided in Figure 5.27. The graphical results of goodness 

of fit evaluation are presented in Figure 5.29 and confirm the best fit for 3-Parameter Weibull 

distribution. 

 

 

Figure 5.27. Optimum range for color removal 
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Figure 5.28. Residual plots for color removal 

 

Table 5.18. Goodness of fit test color removal 

Distribution AD P LRT P 

Normal 0.19 0.88  

Box-Cox 

Transformation 

0.188 0.886  

Lognormal 0.191 0.878  

3-Parameter Lognormal 0.202 * 0.93 

Exponential 6.852 <0.003  

2-Parameter 

Exponential 

1.773 <0.010 0 

Weibull 0.239 >0.250  

3-Parameter Weibull 0.189 >0.500 0.357 

Smallest Extreme Value 0.241 >0.250  

Largest Extreme Value 0.444 >0.250  

Gamma 0.202 >0.250  

3-Parameter Gamma 1.763 * 1 

Logistic 0.193 >0.250  

Loglogistic 0.193 >0.250  

3-Parameter Loglogistic 0.193 * 0.943 

 

AD: Anderson-Darling statistic (AD): Lower AD values indicate a better fit; 

P: p-value;  

LRT P: For 3-parameter distributions only, a low value indicates that adding the third parameter is a 

significant improvement over the 2-Parameter version. 
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Table 5.19. Estimates of distribution parameters for color removal 

Distribution Location Shape Scale Threshold 

Normal* 99.61  0.22  

Box-Cox 

Transformation* 

9.81E+09  1.06E+08  

Lognormal* 4.60  0.01  

3-Parameter Lognormal 10.84  0 -5.07E+04 

Exponential   99.61  

2-Parameter Exponential   0.44 99.17 

Weibull  534.40 99.71  

3-Parameter Weibull  4.57 0.90 98.79 

Smallest Extreme Value 99.71  0.19  

Largest Extreme Value 99.50  0.21  

Gamma  2.28E+05 0.01  

3-Parameter Gamma  2159.07 0.0045 89.81 

Logistic 99.62  0.12  

Loglogistic 4.60  0.001  

3-Parameter Loglogistic 10.84  0 -5.07E+04 

     

* Scale: Adjusted ML estimate    

 

The graph was constructed for the 3-Parameter Weibull distribution model with Shape 4.57, 

Scale 0.90, and Threshold 98.79). The probabilities for the removal efficiency values (minimum 

and maximum taken from Table 5.3) that fall in the range of 95.50 – 99.71% are presented in 

Figure 5.29. The distribution represented in Figure 5.30 follows the same pattern as other 

pollutants of interest. The removal performance of color was very high, therefore the range of 

observed values is narrow as the variation in color-forming substances removal lied in between 

95.50 – 99.71%. 
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Figure 5.29. Probability plot for color removal 

 

 

Figure 5.30. Distribution plot for color removal 
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various degree of influence by technological parameters such as pH, current density and 

MLVSS concentration. The experimental data obtained during 60 days of phase IV were 

analyzed using response surface methodology to find out optimal values of pH, CD and 

MLVSS to maximize percent removal. Three-level three factorial Box–Behnken experimental 

designs were applied in the present study in order to determine optimal variations. Regression 

equations were developed for the percentage COD, TN, TP and color removal.  

 

Table 5.20. Optimal values correlations between pH, CD, MLVSS concentration and 

removal efficiencies 

Variable Unit Value Parameter Degree of Significance 

pH - 6.34 

COD 

insignificant  

CD Am-2 20.00 highly significant 

MLVSS  gL-1 5.00 insignificant 

pH - 7.11 

Nitrogen 

insignificant  

CD Am-2 20.00 highly significant  

MLVSS  gL-1 8.00 highly significant  

pH - 8.00 

Phosphorus 

highly significant 

CD Am-2 15.00 significant 

MLVSS  gL-1 8.00 highly significant 

pH - 7.03 

Color 

insignificant 

CD Am-2 15.00 significant 

MLVSS  gL-1 8.00 highly significant 

 

The degree of significance was assessed based on the developed models (P-value for linear, 

square and two-way interaction) for each regression equation and the levels of operating 

parameter required to maximize the removal performance- low, high and midpoint (Figure 

4.134, 4.142, 4.149, 4.157). Optimal values correlations between the pH, CD, MLVSS 

concentration and removal efficiencies are summarized in Table 5.20. 

The results of the study demonstrated that the removal performance of COD removal was very 

high (in the range between 87.85% and 99.67%) and the process was significantly affected by 

the current density, whereas pH and biological activity were less important for COD removal. 

The optimal operating parameters are as follows: pH= 6.34, CD= 20 Am-2, and MLVSS= 5 

gL-1. 
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With RSM it was determined that nitrogenous compounds removal performance depends 

mostly on level of current density and biological treatment (20 Am-2 and 8 gL-1 required for 

optimal performance), while pH could be maintained at 7.11. With the parameters at these 

levels, the maximum removal performance achieved could be between 88.76–93.58%.  

The research demonstrated that the removal performance of phosphorous was very high (95.50 

– 99.71%), and highly-dependant on pH of the electrolyte and biological activity in the 

EAnMBR. by combination of biological processes and the current density, whereas pH plays 

a minor role in color-forming substances removal. The optimal parameters are: pH= 7.03, CD= 

15 Am-2, and MLVSS= 8 gL-1. 

The results of the study demonstrated that the removal performance of color-forming 

substances was very high (95.50 – 99.71%), and the significant role is played by combination 

of biological processes and the current density, whereas pH plays a minor role in color-forming 

substances removal. The optimal parameters are: pH= 7.03, CD= 15 Am-2, and MLVSS= 8 

gL-1. 

Based on the results obtained during the Phase IV, it can be concluded that different operating 

parameters and their combination in the EAnMBR affect particular pollutants to a different 

extent. The operating parameters can be adjusted accordingly to maximize the desired 

pollutant removal depending on the nature of wastewater fed into the system. 
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6. Final Conclusion. Research Contributions. Future Work 

This chapter presents final conclusion, research contributions and future work. 

6.1.  Final Conclusion 

This work permitted to develop a sustainable novel advanced wastewater treatment system for 

industrial wastewater. The novel treatment system developed and studied in this research is 

unique and the first of its kind and, therefore, provides a novel hybrid wastewater treatment 

method by integrating anaerobic biological process, membrane treatment and electrochemical 

phenomena into a single compact unit called the electro-anaerobic membrane bioreactor- 

EAnMBR. Results demonstrated the removal by 99% of carbon, nitrogen and phosphorus from 

high-strength industrial wastewater. It also permitted a full complete discoloration of the 

effluent and improving sludge properties. Comparative study with anaerobic membrane 

bioreactor (AnMBR) showed superiority of a newly developed system. This work also used 

response surface design to optimize the laboratory tests outcomes. 

The significant improvement in nitrogen and phosphorus removal by the novel design of the 

EAnMBR system may be utilized in a number of environmentally-sustainable technologies, 

for example- phosphorus-reach solids can serve as an excellent fertilizer in agriculture. 

During the research, the novel system proved the favourable interactions between three main 

processes: physico-chemical, biological and electrokinetic phenomena. The electrical field, 

applied in order to introduce electrokinetics in addition to physico-chemical and biological 

processes, did not adversely affect the biological activity in the electro-bioreactor to a 

significant extent.  

 

The EAnMBR contributes to:  

a) Environmental protection by increasing quality of the effluent in terms of carbon, 

nitrogen, phosphorus and color;  

b) Sustainability, as a small footprint system that treats wastewater at a point of generation 

and produces less amount of sludge by omitting the chemicals addition for coagulation 

process in favor of electrokinetic processes. In addition, the system generates reusable 

non-greenhouse gases;  
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c) Initiating research in a novel type of anaerobic advanced systems for more efficient 

wastewater treatment.  

One of the main advantages of the novel approach was the implementation of the electrokinetic 

phenomena in anaerobic conditions instead of conventional coagulation. As a result, increased 

size of the colloids further enhanced the membrane filtration process and improved the effluent 

quality and solid phase properties. Proved to be effective for molasses-containing recalcitrant 

wastewater, the novel system could be used for the treatment of variety of industrial 

wastewaters as well. The EAnMBR may also find use for treating wastewater coming from 

agricultural, military and naval facilities, and remote locations such as resorts and hotels. 

6.2.  Research Contributions 

There are a several contributions made by this research to the current knowledge including: 

a) Designing of a novel EAnMBR system for advanced treatment of high-strength 

wastewater;  

b) Assessing relationship between combination of processes: physicochemical, anaerobic 

biological and electrokinetic in anaerobic system in presence of membranes;  

c) Determining the optimal physicochemical, biological and electrical operating conditions 

of the EAnMBR that ensure high performance in terms of carbon, nutrients removal and 

discoloration of effluent;  

d) Evaluating the performance of EAnMBR system with respect to quality of effluent, 

membrane fouling and the changes in the physical, chemical, and biological sludge 

properties by performing comparative study between EAnMBR and AnMBR operated 

under the same conditions. 

e) Improving sludge dewatering characteristics by significantly reducing the specific 

resistance to filtration. 

f)  Providing mechanisms for a superior removal of carbon, nitrogen, phosphorous and 

color under anaerobic conditions in membrane electrobioreactor. 
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6.3. Future Work 

In order to apply the system on full scale, the following future work is suggested: 

a) Pilot Scale Investigation. Despite the fact that the novel system demonstrated excellent 

performance in a laboratory scale, a pilot scale investigation is suggested before 

application of the system on full scale.  

b) Impact of Transmembrane Pressure. In this research, the flux was constant whereas the 

transmembrane pressure varied with time. The fouling mechanisms in constant flow 

applications and variable pressure applications should be investigated further to study 

impact of transmembrane pressure variation.  

c) Optimization of Sludge Retention Time. In this work, a SRT was assumed arbitrary 

and was constant throughout the experimental phases. The optimization of SRT in the 

EAnMBR is suggested to conduct in order to optimize the quality of effluent. 

d) Gas Production Intensity and Composition. Due to the complexity of the processes 

taking place in the EAnMBR system, the mixture of gases is heterogeneous, further 

work can focus on gas production and its efficient utilization. 
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Appendices 

Appendices provide supplementary information to the main thesis. Appendix A provides 

information on analytical methods of analyses. Appendix B contains supplementary 

information generated during the SRM in Phase IV.  

Appendix A: Analytical Methods 

This appendix was prepared to provide a detailed description of the approach and calculations 

for each of the analytical assessments. The appendix was separated into sections, each 

pertaining specifically to physical-chemical and biological parameters. A general description 

of analytical methods is presented below. 

Physical and Chemical Parameters 

 

Methods for pH, Oxidation-Reduction Potential (ORP), and Temperature Analyses 

The values pH, ORP and temperature were measured using a pH meter model 215 glass 

electrode (Denver Instrument, USA). Calibration of pH, and DO meters was conducted once 

a day before analyses at room temperature (20 ± 1 °C). 

Total Suspended Solids and Volatile Suspended Solids 

1.) Total Suspended Solids. 

1.1. On a clean piece of paper filter pads were laid out for numbering. 

1.2. A Sharpie permanent very fine point black marker was used to sequentially number each 

pad outside edge with a unique label. 

1.3. After pads have been labeled, they were placed in prewashed with distilled water Pyrex 

dishes and dried overnight at 105° C in an oven for 30 min. 

1.4. When ready to weigh, pads were removed from oven and placed into a desiccator to cool 

to room temperature. 

1.5. Turn on analytical balance and checked calibration. 

1.6. After pads cooled to room temperature, pads were weighted individually on a balance and 

data was entered into respective spread sheets and stored in labeled boxes for future use. 

1.7. When ready to sample, numbered pad were placed onto filtering apparatus. 

1.8. A known volume of sample was filtered through the filter pad. 

1.9. Pads were washed well with deionized water to rinse down filter tower and remove any 

residues from the pads. 
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1.10. Pads were folded in half, sample side in and placed into a labeled foil pouch and then 

placed in in a freezer to be stored at -20° C. When ready to analyze, opened pouch were 

placed with sample in 105° C drying oven overnight. 

1.11. Steps 1.4. – 1.7 were repeated for all samples. 

1.12. TSS value was calculated according to Formula A.1: 

TSS (
mg

L
) =

(Wpost(g)−Wpre(g))×1000

Sample Volume (L)
                            (A.1) 

Volatile Suspended Solids. 

2.1. Pads were placed straight from box into a crucible and were combusted at 550° C in a 

muffle furnace for 1.5 hours. 

2.2. Pads were placed to an oven at 105° C for storage until ready to use.  

2.3. Steps 1.4 – 1.7 were reproduced for all the samples.  

2.4. After pads cooled to room temperature, pads were weighted individually on a balance and 

data was entered into respective spread sheets and stored in labeled Petri dishes for future use. 

2.5. When ready to sample, numbered pad were placed onto filtering apparatus. 

2.6. Once TSS values were determined pads were placed into numbered porcelain crucibles 

and. 

2.7. Samples were combusted at 550° C in a muffle furnace for 1.5 hours. 

2.8. Steps 1.4 – 1.7 were repeated for all samples. 

2.9. Calculate VVS according to Formula A.2: 

VSS (
mg

L
) =

(Wpost(g)−Wcombust(g))×1000

Sample Volume (L)
                 (A.2) 
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Procedure for Measuring Specific Resistance to Filtration 

 

100 mL of sludge were withdrawn from the elector-bioreactor for the specific resistance to 

filtration tests. The SRF measurements were conducted every 10 days during the entire 

experiment according to a procedure described in Appendix A. 

Figure A.l depicts the Buchner funnel apparatus used for the determination of the SRF. Ashless 

filter papers (Cat. No. 1440-110, Fisher Scientific, Canada) were used to determine the SRF. 

100 mL sample of the mixed liquor suspension was withdrawn for each SRF test. The method 

of analysis was conducted as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Buchner funnel test apparatus used for the determination of the SRF 

 

The pressure drop (ΔP) across the cake in the Buchner funnel can be calculated as: 

  vRRP mc                      (A.3) 

Where: 

Rc is a resistance term for the cake 

Rm is a resistance term for the filter 

Filter Paper 

Glass Adapter 

Rubber Plug 

Graduated Cylinder 

Vacuum Gauge 

To Vacuum Pump 
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 = viscosity of the filtrate 

v = face velocity of filtrate 

Rc is a function of the sludge physical properties and the cake thickness and hence Rc can be 

calculated as: 

Rc = mc 

where: = specific cake resistance 

 mc = a measure of the thickness of the accumulated cake = wsV/A 

where: ws = mass of solids per volume of  sludge 

 V = volume of filtrate produced at time “t” 

 A = surface area of filter 

In the Buchner funnel test the face velocity at time “t” is equal to: 

Adt

dV
v

1
                                (A.4) 

Substituting for v and Rc and re-arranging, we see that: 

 

PA
R

A

Vw

dV

dt
m

s












                     (A.5) 

Integration between (0,0) and (t,V) gives: 

PA

R
 + V 

PA2

w
 = 

V

t m

2

s



                      (A.6) 

Therefore, the constant pressure filtration produces a linear plot of t/V vs V where the slope 

and intercept can be used to determine the specific cake resistance  and the resistance Rm of 

the filtering medium.   
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Procedure for Volume Measurement: 

1. Samples of digested sludge were obtained from the reactor. 

2. Concentration of total solids in the sludge was measure according to process described 

in the section MLSS/MLVSS measurement. 

3. The Buchner funnel apparatus was arranged as shown in Figure A.1.  The area of the 

funnel, the area of the filter paper and that of the woven wire drainage base was 

recorded. 

4. For each sample the filter paper and crucible to be used in drying the cake sample were 

weighted. 

5. The filter paper was sealed by moistening it before placing it in the funnel, then the 

vacuum was adjusted to 50 kPa. 

6. 100 ml of sludge was to the Buchner funnel.  

7. Vacuum was applied at zero time and the filtrate volume was recorded at preselected 

gradually increasing time intervals starting with fifteen seconds.  The manometer 

readings were recorded every five minutes.  Monitoring was continuing until the 

vacuum broke or until almost all filtrate was collected. 

8. The filter cake and paper were carefully removed from the funnel, placed in the 

crucible and weighted.  The crucible and its contents were placed in the oven to dry at 

105°C.  The dried samples will be weighed once dry and the results reported.  This 

value was used to determine the mass of solids deposited on the filter (W). 

Analysis 

1. The following values were recorded: 

 

P – the pressure drop across the filter 

A – the area of the active filter paper 

2. The weight of cake solids per unit volume of filtrate was calculated, w = W/V.  This 

value was the grams of dry sludge solids per unit of filtrate in gm/cm3. 

3. The filtration data with the calculation of t/V for the recorded t and V was calculated.  

t/V measured in seconds/millilitre. 

4. t/V versus V was plotted and determined the slope (b) of the straight line which was 

best approximated the graphical relation. 
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5. The average specific resistance for each sample was calculated according to the 

formula A5: 

 

uw

bPA22
  in sec2/gram                    (A.7) 

 
Procedure for COD Analysis 

 
To analysis COD samples, the following procedure was followed: 

1 - All the samples were filtered using 0.45 pm filter paper. 

2- COD heater block was preheated to 150° Celsius. 

3- The cap from a COD twist-cap vial was removed. 

4- A 2.5 mL sample was added carefully to COD vial such that it formed a layer on 

top of reagents. 

5- The twist cap was replaced. 

6- The contents of the sealed vial were mixed by shaking. 

7- Standards and blanks were processed exactly as the samples. 

8- The twist-cap vial was placed in a COD heater block for 2 hours. 

9- After 2 hours, the vial was removed from the heater block and allowed for cooling. 

10-The suspended precipitate was allowed to settle and the outside of the vial was clean before 

taking the measurements. 

11-As described by the manufacture, Method A was used for standard Range reagent 

(20-900 mgL-1 COD) or method B was used for low Range gent (5-150 mgL-1 

COD). 

(a) The wavelength of the spectrophotometer was set to 600 nm and using a procedural blank, 

zero the absorbance reading. 

(b) Use the highest standard (up to 150 mgL-1 COD) to set spectrophotometer to zero 

absorbance at 440 nm. 

12- The absorbance of each standard and sample on the spectrophotometer was read. 

13-A graphic calibration curve was prepared by plotting the absorbance of the standards versus 

their known concentration. 
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14-The sample absorbance was compared to the graphic calibration curve to determine COD 

concentrations. 

 

Procedure for Ammonia- Nitrogen (NH3-N) Analysis 

 

A 0.1 mL of sample was added to one AmVer™ Diluent regent test N tube for high range 

ammonia nitrogen. This presented the prepared sample. 

A 0.1 mL of ammonia-free water was added to one AmVer™ Diluent regent test N tube for 

high range ammonia nitrogen. This presented the blank sample. 

The contents of one ammonia salicylate regent powder pillow was added to each sample in 

step 1 and 2. 

The contents of one ammonia cyanurate regent powder pillow was added to each sample in 

step 1 and 2. 

The vials were caped tightly and shacked thoroughly to dissolve the powder. 

The contents in each vial in the step 5 were left for 20- minute reaction period. 

The vial of the blank sample was placed into the cell holder, and the Zero bottom was touched. 

The display showed 0.00 mgL-1 NH3-N. 

The vial of the sample was placed into the cell holder, and the Read bottom was touched. The 

display showed the concentration of NH3-N in mgL-1. 

Procedure for Nitrate- Nitrogen (NO3-N) Analysis 
 

1- A 25 mL graduated mixing cylinder was filled with 15 ml of the sample. 

2- The contents of one NitraVer 6 Reagent powder were added to the cylinder. 

3- The cylinder was shaken vigorously for three minutes. 

4- The contents in the previous step were left for a 2- minute reaction period. 

5- A 10 mL of the sample from step 4 was poured into a clean round sample cell. 

6- The contents of one NitraVer3 Reagent powder were added to the sample in step 

5. This presented the prepared sample. 

7- The sample in step 6 was shaken gently for 30 seconds. A pink color was developed when 

the nitrate was presented. 

8- The contents in the step 6 were left for 15- minute reaction period. 

9- When the reaction period finished, a second 10 mL of the original sample is filled in another 

clean sample cell. This presented the blank sample. 
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10-The blank sample was placed into the cell holder, and the Zero bottom was touched. The 

display showed 0.00 mgL-1 NO3-N. 

11-The prepared sample was placed into the cell holder, and the Read bottom was touched. 

The display showed the concentration of NO3-N in mgL-1. 

Procedure for TP Analysis  

 

1- A 25 mL graduated mixing cylinder was filled with 25 mL of the sample. 

2- A 1 mL of Molybdate reagent was added to the sample in step 1 using a 1 –mL calibrated 

dropper. 

3- A 1 mL of Amino Acid reagent solution was added to the contents in step 2 using a 1 -mL 

calibrated dropper. 

4- The contents in step 3 were mixed for several times. This presented the prepared sample. A 

blue color was developed when the phosphate was presented. 

5- The contents in step 4 were left for 10- minute reaction period. 

6- During the reaction period, a 25 mL graduated mixing cylinder was filled with another 25 

mL of the sample. This presented the blank sample. 

7- When the reaction period done, the blank sample was placed into the cell holder and the 

Zero bottom was touched. The display showed 0.00 mgL-1 PO4
3-. 

8- The prepared sample was placed into the cell holder and the Read bottom was touched. The 

display showed the PO43- concentration as in mgL-1. 
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Appendix B: Statistical Analysis SRM 

This appendix provides additional description of calculations for COD, phosphorus and 

nitrogen removal efficiency design by SRM using Minitab® 17.1.0 software. The appendix 

was separated into sections, each dedicated to specifically to particular pollutant of interest. 

An output of software is presented below. 

Prediction for COD Removal 

 
Regression Equation in Uncoded Units 

 

% COD = -51.9 + 20.91 pH + 6.13 CD + 1.38 MLVSS - 1.678 pH*pH + 0.0183 CD*CD 

        + 0.473 MLVSS*MLVSS - 0.166 pH*CD + 0.743 pH*MLVSS - 0.6380 CD*MLVSS 

 

 

Variable  Setting 

pH              7 

CD             15 

MLVSS           8 

 

 

    Fit    SE Fit        95% CI              95% PI 

97.2475  0.500154  (95.9618, 98.5332)  (95.2836, 99.2114) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

    Fit    SE Fit        95% CI              95% PI 

94.9733  0.333436  (94.1162, 95.8305)  (93.2591, 96.6876) 

 

 

Variable  Setting 

pH              6 

CD           17.5 

MLVSS           8 

 

 

    Fit    SE Fit        95% CI              95% PI 

96.2563  0.500154  (94.9706, 97.5419)  (94.2923, 98.2202) 

 

 

Variable  Setting 

pH              7 

CD             15 

MLVSS           5 

 

 

  Fit    SE Fit        95% CI              95% PI 

87.75  0.500154  (86.4643, 89.0357)  (85.7861, 89.7139) 

 

 

Variable  Setting 

pH              8 

CD             15 

MLVSS         6.5 
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    Fit    SE Fit        95% CI              95% PI 

89.5163  0.500154  (88.2306, 90.8019)  (87.5523, 91.4802) 

 

 

Variable  Setting 

pH              7 

CD             20 

MLVSS           8 

 

 

  Fit    SE Fit        95% CI              95% PI 

99.77  0.500154  (98.4843, 101.056)  (97.8061, 101.734) 

 

Variable  Setting 

pH              6 

CD             15 

MLVSS         6.5 

 

 

    Fit    SE Fit        95% CI              95% PI 

89.9963  0.500154  (88.7106, 91.2819)  (88.0323, 91.9602) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

    Fit    SE Fit        95% CI              95% PI 

94.9733  0.333436  (94.1162, 95.8305)  (93.2591, 96.6876) 

 

 

Variable  Setting 

pH              8 

CD             20 

MLVSS         6.5 

 

 

    Fit    SE Fit        95% CI              95% PI 

95.9938  0.500154  (94.7081, 97.2794)  (94.0298, 97.9577) 

 

 

Variable  Setting 

pH              8 

CD           17.5 

MLVSS           8 

 

 

    Fit    SE Fit        95% CI              95% PI 

97.1762  0.500154  (95.8906, 98.4619)  (95.2123, 99.1402) 

 

 

Variable  Setting 

pH              6 

CD             20 

MLVSS         6.5 

 

 

    Fit    SE Fit        95% CI              95% PI 

98.1338  0.500154  (96.8481, 99.4194)  (96.1698, 100.098) 

 

 

Variable  Setting 

pH              7 
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CD           17.5 

MLVSS         6.5 

 

 

    Fit    SE Fit        95% CI              95% PI 

94.9733  0.333436  (94.1162, 95.8305)  (93.2591, 96.6876) 

 

 

Variable  Setting 

pH              6 

CD           17.5 

MLVSS           5 

 

 

    Fit    SE Fit        95% CI              95% PI 

93.7737  0.500154  (92.4881, 95.0594)  (91.8098, 95.7377) 

 

 

Variable  Setting 

pH              8 

CD           17.5 

MLVSS           5 

 

 

    Fit    SE Fit        95% CI              95% PI 

90.2338  0.500154  (88.9481, 91.5194)  (88.2698, 92.1977) 

 

 

Variable  Setting 

pH              7 

CD             20 

MLVSS           5 

 

 

    Fit    SE Fit        95% CI              95% PI 

99.8425  0.500154  (98.5568, 101.128)  (97.8786, 101.806) 

 

Response Optimization: COD Removal  

 
Parameters 

 

Response  Goal     Lower  Target  Upper  Weight  Importance 

% COD     Maximum  87.85   99.99              1           1 

 

 

Variable Ranges 

 

Variable  Values 

pH        (6, 8) 

CD        (15, 20) 

MLVSS     (5, 8) 

 

 

Solution 

 

                                % COD     Composite 

Solution  pH       CD  MLVSS      Fit  Desirability 

1         6.34343  20  5      100.554             1 

 

 

Multiple Response Prediction 

 

Variable  Setting 

pH        6.34343 
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CD        20 

MLVSS     5 

 

 

Response      Fit  SE Fit        95% CI             95% PI 

% COD     100.554   0.566  (99.098, 102.010)  (98.474, 102.633) 

 

 

Prediction for TN Removal  

 
Regression Equation in Uncoded Units 

 

% TN = -123.3 + 34.0 pH + 6.60 CD + 5.56 MLVSS - 3.114 pH*pH - 0.097 CD*CD 

       + 0.441 MLVSS*MLVSS + 0.411 pH*CD + 0.253 pH*MLVSS - 0.633 CD*MLVSS 

 

 

Variable  Setting 

pH              7 

CD             15 

MLVSS           8 

 

 

    Fit   SE Fit        95% CI              95% PI 

93.5508  1.51797  (89.6487, 97.4529)  (87.5903, 99.5113) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

    Fit   SE Fit        95% CI              95% PI 

92.7158  1.01198  (90.1145, 95.3172)  (87.5131, 97.9186) 

 

 

Variable  Setting 

pH              6 

CD           17.5 

MLVSS           8 

 

 

    Fit   SE Fit        95% CI              95% PI 

93.8962  1.51797  (89.9941, 97.7982)  (87.9357, 99.8567) 

 

 

Variable  Setting 

pH              7 

CD             15 

MLVSS           5 

 

 

    Fit   SE Fit        95% CI              95% PI 

82.8556  1.51797  (78.9536, 86.7577)  (76.8951, 88.8161) 

 

 

Variable  Setting 

pH              8 

CD             15 

MLVSS         6.5 

 

 

    Fit   SE Fit        95% CI              95% PI 

82.3599  1.51797  (78.4578, 86.2620)  (76.3994, 88.3204) 
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Variable  Setting 

pH              7 

CD             20 

MLVSS           8 

 

 

    Fit   SE Fit        95% CI              95% PI 

98.5944  1.51797  (94.6923, 102.496)  (92.6339, 104.555) 

 

 

Variable  Setting 

pH              6 

CD             15 

MLVSS         6.5 

 

 

    Fit   SE Fit        95% CI              95% PI 

85.8337  1.51797  (81.9316, 89.7357)  (79.8732, 91.7942) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

    Fit   SE Fit        95% CI              95% PI 

92.7158  1.01198  (90.1145, 95.3172)  (87.5131, 97.9186) 

 

 

Variable  Setting 

pH              8 

CD             20 

MLVSS         6.5 

 

 

    Fit   SE Fit        95% CI              95% PI 

94.2107  1.51797  (90.3086, 98.1128)  (88.2502, 100.171) 

 

 

Variable  Setting 

pH              8 

CD           17.5 

MLVSS           8 

 

 

    Fit   SE Fit        95% CI              95% PI 

93.2393  1.51797  (89.3372, 97.1414)  (87.2788, 99.1998) 

 

 

Variable  Setting 

pH              6 

CD             20 

MLVSS         6.5 

 

 

    Fit   SE Fit        95% CI              95% PI 

93.5701  1.51797  (89.6680, 97.4722)  (87.6096, 99.5306) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 
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    Fit   SE Fit        95% CI              95% PI 

92.7158  1.01198  (90.1145, 95.3172)  (87.5131, 97.9186) 

 

 

Variable  Setting 

pH              6 

CD           17.5 

MLVSS           5 

 

 

    Fit   SE Fit        95% CI              95% PI 

88.7107  1.51797  (84.8086, 92.6128)  (82.7502, 94.6712) 

 

 

Variable  Setting 

pH              8 

CD           17.5 

MLVSS           5 

 

 

    Fit   SE Fit        95% CI              95% PI 

86.5345  1.51797  (82.6324, 90.4365)  (80.5739, 92.4950) 

 

 

Variable  Setting 

pH              7 

CD             20 

MLVSS           5 

 

 

    Fit   SE Fit        95% CI              95% PI 

97.3992  1.51797  (93.4971, 101.301)  (91.4387, 103.360) 

 

  

Response Optimization: TN Removal 

 
Parameters 

 

Response  Goal     Lower  Target  Upper  Weight  Importance 

% TN      Maximum   82.6   99.99              1           1 

 

 

Variable Ranges 

 

Variable  Values 

pH        (6, 8) 

CD        (15, 20) 

MLVSS     (5, 8) 

 

 

Solution 

 

                                 % TN     Composite 

Solution  pH       CD  MLVSS      Fit  Desirability 

1         7.11111  20  8      98.6337      0.922009 

 

 

Multiple Response Prediction 

 

Variable  Setting 

pH        7.11111 

CD        20 

MLVSS     8 

 



268 
 

 

Response    Fit  SE Fit       95% CI           95% PI 

% TN      98.63    1.52  (94.72, 102.55)  (92.67, 104.60) 

 

 

Prediction for TP Removal 

 
Regression Equation in Uncoded Units 

 

% TP = 171.4 + 7.24 pH - 11.80 CD - 0.91 MLVSS - 0.401 pH*pH + 0.3798 CD*CD 

       + 0.086 MLVSS*MLVSS - 0.117 pH*CD + 0.208 pH*MLVSS - 0.074 CD*MLVSS 

 

 

Variable  Setting 

pH              7 

CD             15 

MLVSS           8 

 

 

   Fit    SE Fit        95% CI              95% PI 

99.535  0.687953  (97.7666, 101.303)  (96.8337, 102.236) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

 Fit    SE Fit        95% CI              95% PI 

96.6  0.458636  (95.4210, 97.7790)  (94.2421, 98.9579) 

 

 

Variable  Setting 

pH              6 

CD           17.5 

MLVSS           8 

 

 

   Fit    SE Fit        95% CI              95% PI 

95.715  0.687953  (93.9466, 97.4834)  (93.0137, 98.4163) 

 

 

Variable  Setting 

pH              7 

CD             15 

MLVSS           5 

 

 

   Fit    SE Fit        95% CI              95% PI 

97.855  0.687953  (96.0866, 99.6234)  (95.1537, 100.556) 

 

 

Variable  Setting 

pH              8 

CD             15 

MLVSS         6.5 

 

 

  Fit    SE Fit        95% CI              95% PI 

99.32  0.687953  (97.5516, 101.088)  (96.6187, 102.021) 

 

 

Variable  Setting 

pH              7 
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CD             20 

MLVSS           8 

 

 

   Fit    SE Fit        95% CI              95% PI 

99.925  0.687953  (98.1566, 101.693)  (97.2237, 102.626) 

 

 

Variable  Setting 

pH              6 

CD             15 

MLVSS         6.5 

 

 

  Fit    SE Fit        95% CI              95% PI 

96.88  0.687953  (95.1116, 98.6484)  (94.1787, 99.5813) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

 Fit    SE Fit        95% CI              95% PI 

96.6  0.458636  (95.4210, 97.7790)  (94.2421, 98.9579) 

 

 

Variable  Setting 

pH              8 

CD             20 

MLVSS         6.5 

 

 

  Fit    SE Fit        95% CI              95% PI 

99.68  0.687953  (97.9116, 101.448)  (96.9787, 102.381) 

 

 

Variable  Setting 

pH              8 

CD           17.5 

MLVSS           8 

 

 

   Fit    SE Fit        95% CI              95% PI 

98.195  0.687953  (96.4266, 99.9634)  (95.4937, 100.896) 

 

 

Variable  Setting 

pH              6 

CD             20 

MLVSS         6.5 

 

 

  Fit    SE Fit        95% CI              95% PI 

98.41  0.687953  (96.6416, 100.178)  (95.7087, 101.111) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

 Fit    SE Fit        95% CI              95% PI 

96.6  0.458636  (95.4210, 97.7790)  (94.2421, 98.9579) 
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Variable  Setting 

pH              6 

CD           17.5 

MLVSS           5 

 

 

   Fit    SE Fit        95% CI              95% PI 

95.215  0.687953  (93.4466, 96.9834)  (92.5137, 97.9163) 

 

 

Variable  Setting 

pH              8 

CD           17.5 

MLVSS           5 

 

 

   Fit    SE Fit        95% CI              95% PI 

96.445  0.687953  (94.6766, 98.2134)  (93.7437, 99.1463) 

 

 

Variable  Setting 

pH              7 

CD             20 

MLVSS           5 

 

 

   Fit    SE Fit        95% CI              95% PI 

99.355  0.687953  (97.5866, 101.123)  (96.6537, 102.056) 

 

 

 Response Optimization: TP Removal 

 
Parameters 

 

Response  Goal     Lower  Target  Upper  Weight  Importance 

% TP      Maximum  94.54   99.99              1           1 

 

 

Variable Ranges 

 

Variable  Values 

pH        (6, 8) 

CD        (15, 20) 

MLVSS     (5, 8) 

 

 

Solution 

 

                            % TP     Composite 

Solution  pH  CD  MLVSS      Fit  Desirability 

1         8   15  8      100.666             1 

 

 

Multiple Response Prediction 

 

Variable  Setting 

pH        8 

CD        15 

MLVSS     8 

 

 

Response      Fit  SE Fit        95% CI             95% PI 

% TP      100.666   0.939  (98.254, 103.079)  (97.506, 103.827) 



271 
 

Prediction for Discoloration  

 
Regression Equation in Uncoded Units 

 

% Color = 93.27 + 1.020 pH - 0.297 CD + 1.367 MLVSS - 0.0604 pH*pH + 0.02113 CD*CD 

          - 0.0002 MLVSS*MLVSS + 0.0020 pH*CD - 0.0250 pH*MLVSS - 0.0627 CD*MLVSS 

 

 

Variable  Setting 

pH              7 

CD             15 

MLVSS           8 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.9562  0.0882681  (99.7293, 100.183)  (99.6097, 100.303) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.5733  0.0588454  (99.4221, 99.7246)  (99.2708, 99.8759) 

 

 

Variable  Setting 

pH              6 

CD           17.5 

MLVSS           8 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.6425  0.0882681  (99.4156, 99.8694)  (99.2959, 99.9891) 

 

 

Variable  Setting 

pH              7 

CD             15 

MLVSS           5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.2087  0.0882681  (98.9818, 99.4357)  (98.8622, 99.5553) 

 

 

Variable  Setting 

pH              8 

CD             15 

MLVSS         6.5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.5637  0.0882681  (99.3368, 99.7907)  (99.2172, 99.9103) 

 

 

Variable  Setting 

pH              7 

CD             20 

MLVSS           8 

 

 

    Fit     SE Fit        95% CI              95% PI 
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99.7313  0.0882681  (99.5043, 99.9582)  (99.3847, 100.078) 

 

 

Variable  Setting 

pH              6 

CD             15 

MLVSS         6.5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.4812  0.0882681  (99.2543, 99.7082)  (99.1347, 99.8278) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.5733  0.0588454  (99.4221, 99.7246)  (99.2708, 99.8759) 

 

 

Variable  Setting 

pH              8 

CD             20 

MLVSS         6.5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.8187  0.0882681  (99.5918, 100.046)  (99.4722, 100.165) 

 

 

Variable  Setting 

pH              8 

CD           17.5 

MLVSS           8 

 

 

  Fit     SE Fit        95% CI              95% PI 

99.66  0.0882681  (99.4331, 99.8869)  (99.3134, 100.007) 

 

 

Variable  Setting 

pH              6 

CD             20 

MLVSS         6.5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.7162  0.0882681  (99.4893, 99.9432)  (99.3697, 100.063) 

 

 

Variable  Setting 

pH              7 

CD           17.5 

MLVSS         6.5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.5733  0.0588454  (99.4221, 99.7246)  (99.2708, 99.8759) 

 

 

Variable  Setting 

pH              6 

CD           17.5 
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MLVSS           5 

 

 

  Fit     SE Fit        95% CI              95% PI 

99.29  0.0882681  (99.0631, 99.5169)  (98.9434, 99.6366) 

 

 

Variable  Setting 

pH              8 

CD           17.5 

MLVSS           5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.4575  0.0882681  (99.2306, 99.6844)  (99.1109, 99.8041) 

 

 

Variable  Setting 

pH              7 

CD             20 

MLVSS           5 

 

 

    Fit     SE Fit        95% CI              95% PI 

99.9237  0.0882681  (99.6968, 100.151)  (99.5772, 100.270) 

 

  

Response Optimization: Discoloration  

 
Parameters 

 

Response  Goal     Lower  Target  Upper  Weight  Importance 

% Color   Maximum   99.2   99.96              1           1 

 

 

Variable Ranges 

 

Variable  Values 

pH        (6, 8) 

CD        (15, 20) 

MLVSS     (5, 8) 

 

Solution 

 

                              % Color     Composite 

Solution  pH       CD  MLVSS      Fit  Desirability 

1         7.03030  15  8      99.9563      0.995142 

 

 

Multiple Response Prediction 

 

Variable  Setting 

pH        7.03030 

CD        15 

MLVSS     8 

 

 

Response      Fit  SE Fit         95% CI               95% PI 

% Color   99.9563  0.0883  (99.7294, 100.1833)  (99.6097, 100.3029) 

 


