
Verifiable Outsourced Database Model: A Game-Theoretic
Approach

Faryed Eltayesh

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Information Systems Security) at

Concordia University

Montréal, Québec, Canada

January 2017

c© Faryed Eltayesh, 2017

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Faryed Eltayesh

Entitled: Verifiable Outsourced Database Model: A Game-Theoretic Approach

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Abdessamad Ben Hamza

External Examiner
Dr. Emad Shihab

Examiner
Dr. Roch Glitho

Supervisor
Dr. Jamal Bentahar

Co-supervisor
Dr. Rabeb Mizouni

Approved by
Chair of Department or Graduate Program Director

2017
Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Verifiable Outsourced Database Model: A Game-Theoretic Approach

Faryed Eltayesh

In the verifiable database (VDB) model, a computationally weak client (database owner) del-

egates his database management to a database service provider on the cloud, which is considered

untrusted third party, while users can query the data and verify the integrity of query results. Since

the process can be computationally costly and has a limited support for sophisticated query types

such as aggregated queries, we propose in this research a framework that helps bridge the gap be-

tween security and practicality. The proposed framework remodels the verifiable database problem

using Stackelberg security game. In the new model, the database owner creates and uploads to

the database service provider the database and its authentication structure (AS). Next, the game is

played between the defender (verifier), who is a trusted party to the database owner and runs sched-

uled randomized verifications using Stackelberg mixed strategy, and the database service provider.

The idea is to randomize the verification schedule in an optimized way that grants the optimal pay-

off for the verifier while making it extremely hard for the database service provider or any attacker

to figure out which part of the database is being verified next.

We have implemented and compared the proposed model performance with a uniform ran-

domization model. Simulation results show that the proposed model outperforms the uniform ran-

domization model. Furthermore, we have evaluated the efficiency of the proposed model against

different cost metrics.

iii

Acknowledgments

I am heartily thankful and owe my deepest gratitude to my supervisor, Dr. Jamal Bentahar,

whose encouragement, guidance and support from the initial to the final stage have enabled me to

develop a profound understanding of the subject and a passion for the scientific research field in

general. I would like also to express my sincere gratitude to my co-supervisor, Dr. Rabeb Mizouni,

for her guidance and support along the way.

I am forever grateful for the unconditional endless source of love and support, my beloved

family. I would like also to show my gratitude to my friends with whom discussions were a valuable

factor to the success of this research.

Lastly, I would like to thank my Universities, Misurata University and Concordia University, as

well as the Libyan government for funding and supporting this research.

iv

Contents

List of Figures vii

List of Tables viii

List of Acronyms ix

1 Introduction 1

1.1 Research Context . 1

1.2 Motivation . 2

1.3 Problem Definition . 3

1.4 Research Questions . 3

1.5 Contributions . 4

1.6 Thesis Organization . 5

2 Background and Related Work 6

2.1 Background . 6

2.1.1 One-Way Cryptographic Hash Functions 6

2.1.2 Public-Key Digital Signature Schemes . 7

2.1.3 Aggregated Digital Signature . 9

2.1.4 Two-Party and Three-Party Authentication Models 9

2.1.5 Merkle Hash Tree (MHT) . 11

2.1.6 Data Correctness and Data Completeness 12

2.1.7 Game Theory and Stackelberg Game Theory 13

v

2.2 Related Work . 15

2.2.1 Verifiable Database . 16

2.2.2 Stackelberg Game Theory in Security . 19

3 Game Theocratic Model Design 21

3.1 Problem Definition . 21

3.2 Model Design . 22

3.3 Game Theoretic Analysis . 24

3.4 Finding the Verifier Optimal Mixed Strategy . 26

4 Implementation and Evaluation 30

4.1 Implementation . 30

4.1.1 System Architecture . 30

4.1.2 System Interface . 33

4.1.3 Matrix Construction and Mixed Strategy Generation 34

4.1.4 From Mixed Strategy to The Verification Schedule 34

4.1.5 Authentication Structure Creation . 35

4.1.6 The Verification Process . 36

4.2 Evaluation . 38

4.2.1 Security Analysis . 38

4.2.2 Stackelberg Scheduling Evaluation . 39

4.2.3 Efficiency Analysis . 43

5 Conclusion and Future Work 46

5.1 Contributions . 46

5.2 Future Work . 47

Bibliography 48

vi

List of Figures

Figure 2.1 One-way hash function . 7

Figure 2.2 Digital signature signing process . 8

Figure 2.3 Digital signature verification process . 9

Figure 2.4 Three-party authentication model . 10

Figure 2.5 Example of MHT . 12

Figure 3.1 Proposed VDB model using Stackelberg game theory 23

Figure 3.2 Flowchart of the verifier scheduling problem 24

Figure 4.1 Dataflow and steps involved in the verifier component 32

Figure 4.2 System interface . 34

Figure 4.3 Mixed strategy to verification schedule . 35

Figure 4.4 Detailed flow chart of the verifier component 37

Figure 4.5 Averge number of verifications performed by each model 40

Figure 4.6 Average number of detections over 10 verifications 40

Figure 4.7 Average number of detections over 10 verification time slots 41

Figure 4.8 Average number of verifications required to detect multiple tables manipula-

tions . 42

Figure 4.9 Average time required to detect multiple table manipulations 43

vii

List of Tables

Table 2.1 Example of a Payoff table . 15

Table 2.2 Summery of limitations of the current VDB approaches 18

Table 3.1 Strategy profile and payoff matrix of the game 26

Table 3.2 Example of a game . 26

Table 4.1 Computation and communication cost incurred at the database owner side . . 45

Table 4.2 Computation and communication cost incurred at the verifier side 45

viii

List of Acronyms

ASAuthentication Structure

ASAPAgent Security Via Approximate Policies

DOBSS.Decomposed Optimal Bayesian Stackelberg Solver

LAXLos Angeles International Airport

MHTMerkle Hash Tree

MILPMixed-Integer Linear Program

MIQPMixed-Integer Quadratic Program

ODBOutsourced Database

VDBVerifiable Database

VO.Verification Object

ix

Chapter 1

Introduction

This chapter introduces the research context, motivation, problem definition, research questions

that we aim to answer, and summary of contributions. We conclude this chapter with an overview

of the thesis organization.

1.1 Research Context

Database outsourcing has become one of the most attractive cloud computing services (Myk-

letun, Narasimha, & Tsudik, 2003; Narasimha & Tsudik, 2006; Xie, Wang, Yin, & Meng, 2007).

In the outsourced database (ODB) model, three entities are involved: the database owner, who is

considered to be a resource constraint client, database users who use and interact with the database,

and third-party database service provider. The database owner delegates his database management

to the database service provider, who provides mechanisms to enable the database owner and users

to create, update, and query the database as needed (Li, Hadjieleftheriou, Kollios, & Reyzin, 2006;

Narasimha & Tsudik, 2006; Wang, Chen, Huang, You, & Xiang, 2015). By outsourcing database

management to the cloud, organizations take advantage of all benefits cloud computing has to offer

including unlimited on-demand computational power in a pay-as-you-go basis (Goodrich, Tamassia,

& Triandopoulos, 2008; Wang et al., 2015; Zhang & Safavi-Naini, 2014).

Despite the enormous advantages ODB offers, database outsourcing poses serious data security

concerns (Chen, Li, Huang, Ma, & Lou, 2015; Zhu et al., 2013). Since data is a highly important

1

asset to organizations and since it is stored outside the organization boundaries and control by

potentially untrusted third-party, data privacy and integrity become the most challenging issues

for organizations (Narasimha & Tsudik, 2006; Yuan & Yu, 2013). The database service provider

can be malicious or may not take sufficient security measures to protect the hosted data against

malicious insiders or outsiders (Narasimha & Tsudik, 2006; Thompson, Haber, Horne, Sander, &

Yao, 2009). Therefore, it is important to provide a mechanism to secure the outsourced data from

both a malicious database service provider or any malicious outsider (Narasimha & Tsudik, 2006).

In addition to data integrity assurance, the mechanism has to assure the completeness of data. Data

completeness ensures that the result set of any query is complete and that there was no data deleted

from the database in an unauthorized way (Wang et al., 2015).

1.2 Motivation

The integrity concerns of outsourced databases were the drive behind the emergence of the

verifiable databases (VDBs) (Goodrich et al., 2008; Narasimha & Tsudik, 2006; Yuan & Yu, 2013).

In the VDB model, the database owner creates and uploads to the database service provider on the

cloud the database and its special authentication structure (AS). Authentication structures are a type

of data structures that use cryptographic primitives such as digital signatures to sign the underlying

data and ensure its integrity. Next, when database users query the data, the database service provider

responds to users’ queries with the query results and a verification object (VO) extracted from the

AS. Finally, users can use the VO to ensure that integrity of data has not been violated. The process

of creating the AS and the verification uses cryptographic primitives such as digital signatures that

ensure the data has not been manipulated by anyone other than the authorized parties (Chen, Li,

Weng, Ma, & Lou, 2014; Narasimha & Tsudik, 2006; Wang et al., 2015).

Extensive research has been devoted in the last decades to solve the problem of VDB. However,

existing solutions are theoretical and they are impractical for real-world applications (Chen et al.,

2015; Li et al., 2006). The inefficiency originated from the costly computations required by existing

solutions making it impractical for resource-constraint clients (Li et al., 2006; Zhu et al., 2013).

Furthermore, the complex computations result in a limited support for sophisticated query types

2

such as aggregated queries (Thompson et al., 2009; Wang et al., 2015).

1.3 Problem Definition

Most of the current solutions in the literature delegate the responsibility of the verification pro-

cess to database users. In this scenario, when database users receive the result set of any query they

send to the database service provider servers, they must perform the expensive verification process,

which may include a large number of decryption and hashing operations, for each record in the

result set.

Delegation of the verification process to database users suffers from four major limitations.

First, these approaches are unpractical when it comes to sophisticated queries such as aggregated

queries. This limitation is resulted from both the delegation of the expensive verification process

to database users and the complex authentication structure used to authenticate data. Second, these

approaches cannot be used in resource-constrained devices as the verification process is (computa-

tionally) expensive. Third, since database users only verify the data that they query, this poses a

security concern where any manipulated unused data may go undetected for a long time. Finally,

due to the weak separation of concerns in the design of the verification process , maintainability and

extensibility become an issue.

1.4 Research Questions

In our research, we aim to answer the following questions:

• How can we ideally decouple database users from the verification process in order to provide a

well structured separation of concerns design that would help overcome maintainability and

extensibility limitations as well as would provide support for sophisticated query types?

• Since the computationally expensive verification process cannot be performed all the time prac-

tically, is it feasible to use periodic randomized verifications to eliminate the expensive veri-

fication process while maintaining a sufficient security levels?

• Can we incorporate game theory to effectively optimize the verification process results?

3

• Can we improve the performance further by tackling the methods of creating the authentication

structures and the performing the verification process?

1.5 Contributions

In this research, we aim to address the above-mentioned limitations associated with existing so-

lutions. Our work models the VDB security problem as a game theoretic problem using Stackelberg

game. Mainly, our Stackelberg security game is a leader-follower game played between the verifier

(leader), who is a trusted party to the database owner and the database service provider (follower).

The new model includes the following entities: the database owner, database users, the database ser-

vice provider, and the verifier. The database owner is responsible for creating the database special

authentication structure, which is stored along with the database at the database service provider

servers. The database service provider is responsible for hosting the database on the cloud and

providing access to the authorized database users. In addition, some of the processing operations

required for this model are performed at the database service provider side. Finally, the verifier is

a software component running scheduled verifications on-behalf of the database owner. Our model

provides both data integrity and completeness assurance. Furthermore, database users, who might

be resource-constraint clients, are not involved in the verification process. As a result, the proposed

model supports all query types and is easy to implement and integrate into existing systems. The

contribution this work is:

(1) Employing Stackelberg game theory to schedule periodic verifications to be run by the veri-

fier.

(2) Delegating the task of the verification process to a new entity called the verifier, who is a

trusted party to the database owner and runs scheduled verifications on-behalf of the database

owner, instead of database users.

(3) Introducing two stage verification process, namely the overall-table verification and the in-

depth table verification processes, to reduce computation and communication overhead.

4

1.6 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we introduce the background and

discuss the related work. In Chapter 3, we present a game theoretic analysis and design of the

proposed model. In Chapter 4, we cover the implementation settings and we evaluate the proposed

model. Finally, Chapter 5 concludes the work by outlining the main research outcomes and defining

future work paths.

5

Chapter 2

Background and Related Work

This chapter is composed of two main sections. The first section introduces the preliminary

concepts involved in the VDB model as well as game theory and Stackelberg game theory. The

second section covers the VDB and the use Stackelberg game in security state of the art research in

the literature.

2.1 Background

In this section, we define the preliminary building blocks of the verifiable database model in-

cluding one-way cryptographic hash functions, public-key digital signatures, aggregated digital sig-

natures, tow-party and three-party authentication model, Merkle hash tree, data correctness, and data

completeness. In addition, we present an overview of game theory and Stackelberg game theory.

2.1.1 One-Way Cryptographic Hash Functions

One-way hash function h(m) is a function that works in one direction by taking a message m

of any length and producing its unique fixed-length hash digest as shown in Figure 2.1. A secure

hash function must satisfy the following three conditions:

(1) Preimage-resistance which implies that given a hash digest h, it’s computationally infeasible

to find any message m such that h = h(m). In other words, given a hash digest, it’s compu-

tationally infeasible to find the original message that produced the hash digest (Rogaway &

6

Figure 2.1: One-way hash function

Shrimpton, 2004).

(2) Second-preimage resistance which implies that given a message m and its hash digest h(m),

it’s computationally infeasible to find a second message m′ where m 6= m′ and h(m) =

h(m′). In other words, it’s infeasible to find a second message that produces the same hash

digest as another different message (Rogaway & Shrimpton, 2004).

(3) Collision resistance which implies that it’s computationally infeasible to find two different

messages m and m′ that produce the same hash digest (Rogaway & Shrimpton, 2004).

Hash functions are an important building block of verifiable databases because they help reduce

the communication and computation overhead. For instance, instead of signing a database record

of length 200 characters (1600 bits), we can hash this database record first and then we sign the

obtained hash digest of 256 bits length. The secure hash algorithm (SHA) family is an example of

hash functions (Pang, Zhang, & Mouratidis, 2009).

2.1.2 Public-Key Digital Signature Schemes

A public-key digital signature scheme is a mathematical scheme used to sign digital content

in order to verify the authenticity, origin, and integrity of the signed message. In this context, the

signer generates two keys, a public and a private key. The private key is kept secret and used to

sign the message. On the other hand, the public key is distributed to clients who need to verify the

signed message. RSA is an example of public-key digital signatures (Li et al., 2006; Pang et al.,

2009; Pointcheval & Stern, 2000; Rivest, Shamir, & Adleman, 1978).

A secure digital signature scheme must provide the following properties:

7

Figure 2.2: Digital signature signing process

(1) Authenticity which implies that the signer, who possesses the secret key, has actually signed

the message (Pointcheval & Stern, 2000; Rivest et al., 1978).

(2) Unforgeability which implies that only the signer can generate a valid signature for the con-

cerned message (Pointcheval & Stern, 2000; Rivest et al., 1978).

(3) Non-re-usability which implies that a signature of one message can not be used to sign a

another message (Pointcheval & Stern, 2000; Rivest et al., 1978).

(4) Non-repudiation which implies that the signer can not deny the fact that a valid signed mes-

sage was in fact signed by him (Pointcheval & Stern, 2000; Rivest et al., 1978).

(5) Integrity which ensures that the content has not been modified after it was signed (Pointcheval

& Stern, 2000; Rivest et al., 1978).

Practically, digital signing is achieved using cryptographic encryption as well as cryptographic

hash functions. There are two phases involved which are the signing phase and the verification

phase. To illustrate the process, assume that we have data to be signed and then verified. To sign

the data, the first step is to hash the data using any secure cryptographic hash function such as SHA.

The result of the hashing process is the hash digest. Next, the signer uses his private key to encrypt

the obtained hash digest which produces a signature of the input data as shown in Figure 2.2.

To verify the integrity of signed data, the signer needs to distribute his public key to the party

concerned with the verification process first. In addition, the verifier party needs the signature and

the data itself to be able to complete the verification process as shown in Figure 2.3. First, the

verifier has to hash the received data. Second, the verifier decrypt the signature of the data. Finally

the verifier compares the two hash digests and detect any data integrity if they are not equal.

8

Figure 2.3: Digital signature verification process

2.1.3 Aggregated Digital Signature

The aggregated digital signature scheme aggregates multiple digital signatures into one signa-

ture to reduce communication and computation overhead. The resulted aggregated signature can

be verified once instead of multiple verifications (Ma, Deng, Pang, & Zhou, 2005). This feature

can save a great deal of bandwidth and computations overhead specially when dealing with very

large databases. For instance, instead of sending signatures of 100 records from a database table,

these 100 signatures can be aggregated into only one signature with a size equals to the size of one

signature. Similarly, instead of verifying the 100 signature separately, the aggregated signature can

be verified once and for all the 100 signatures together.

2.1.4 Two-Party and Three-Party Authentication Models

There are two parties involved in the two-party authentication model, a client and untrusted

server. The client outsources his data management to the untrusted server. The server manages

the data and provides the client with the ability to update and query the data. Considering that

the server is untrusted, a mechanism to ensure that the data has not been manipulated has to be

implemented (Goodrich et al., 2008; Narasimha & Tsudik, 2006; Papamanthou & Tamassia, 2007).

Cryptographic primitives such as hash functions and digital signatures are used in this model to

facilitate the integrity authentication process. This model provides private verifiability in which

9

Figure 2.4: Three-party authentication model

only the database owner can verify the data.

The two-party authentication model can be extended to the three-party model by adding public

verifiability, which enables a third party to verify query results (Narasimha & Tsudik, 2006). The

public verifiability is facilitated through the use of public-key digital signature in which the public

key can be distributed to third parties to be used in the verification of the signature. Figure 2.4

illustrates the three-party authentication model.

Verifiable database is an integrity authentication model which uses the two-party or the three-

party authentication models in order to provide integrity assurance of outsourced data. The entities

involved in the verifiable database model are the database owner, the database service provider, and

database users. Although in practice the database owner can be represented by one or more entities,

for simplicity we will refer to him as a singular entity. The following definitions are important to

understand the verifiable database model:

Definition 2.1.4.1. Authentication Structure: an authentication structure is a special type of data

structures which is built based on a given data and used to authenticate the underlying data integrity.

Authentication structures are created and signed by the database owner and uploaded along with

data to the database service provider servers. Authentication structures use cryptographic primitives

such as digital signatures to ensure the authenticity of data. Merkle hash tree is a well known type

10

of authentication structures which will be described in details in the next subsection.

Definition 2.1.4.2. Verification Process: the verification process is an integrity verification proce-

dure used by database users to verify the integrity of their query results. The integrity verification

process includes data correctness and data completeness verification.

Definition 2.1.4.3. Verification Object: the verification object is an object extracted from the au-

thentication structure of any given data and used to verify integrity of the queried part of that data.

The verification object helps to reconstruct the authentication structure at the side of database users

in order to verify the concerned data integrity.

2.1.5 Merkle Hash Tree (MHT)

Merkle hash tree, which was proposed by Merkle (1989), is a data structure used to authenti-

cate data. MHT data structure is a type of binary tree built based on a given set of data and used

to authenticate the underlying data. In MHT, each leaf node stores the hash of a data value of the

underlying data to be authenticated while each intermediate node stores the hash of the concatena-

tion of its two children nodes. Finally, the root node stores a digital signature of the hash of the

concatenations of its two children. To verify the authenticity of data, the tree can be recalculated

from the underlying data values recursively. The calculated root can be verified against the signed

root to detect any integrity violations (Li et al., 2006; Narasimha & Tsudik, 2005; Pang et al., 2009;

Wang et al., 2015). Figure 2.5 shows an example of MHT. In this example, given a dataset to be

authenticated which consists of data elements {d1, d2, d3, d4}, we follow the following steps to

create the MHT authentication structure:

• Use a secure cryptographic hash function such as SHA to create the leaf nodes of the tree. For

instance, the leaf node N1 concerned with data element d1 stores the hash digest h(d1).

• Recursively create intermediate nodes where each intermediate node stores a hash of concate-

nating the content of its two children nodes. For instance, the intermediate node N5 stores

the hash of concatenating its two children nodes h(N1|N2).

• When reaching the root node N7, hash the content of its two children nodes and sign it us-

ing a secure cryptographic public-key digital signature such as RSA. In the example, the

11

Figure 2.5: Example of MHT

root node N7 stores the signature of concatenating its two children nodes’ content N7 =

Sign(h(N5|N6)).

To authenticate data before consuming it, suppose a user queries the data and receives the data

element d1 as his query result set. To be able to reconstruct the tree, the user needs besides the

query result set a verification object including the nodes (N2, N6, N7). Next, the user can follow

the following steps to authenticate his query result before consuming it:

• Hash the query result d1 to create the leaf node N1 = h(d1).

• Using the obtained leaf node N1 and the leaf node N2 from the verification object, create the

intermediate node N5 = h(N1|N2).

• Using the obtained intermediate node N5 and the intermediate node N6 from the verification

object, create the root node N7′ = h(N5|N6).

• Decrypt the node N7 from the verification object and verify that Decrypt(N7) = N7′

2.1.6 Data Correctness and Data Completeness

The major security requirement of verifiable databases is to provide data correctness assurance.

Data correctness ensures the integrity and authenticity of the outsourced database. This means

12

that when interacting with the data, a query result set must be proved authentic with respect to the

database owner. This proof implies that the data has not been tampered with in any an unauthorized

way (Narasimha & Tsudik, 2005; Wang et al., 2015; Yuan & Yu, 2013).

Another security requirement of verifiable databases is to provide data completeness assurance.

Data completeness ensures that a query result set is complete and that the database service provider

has not deleted any data from that database and has not omitted any data from the result set in any

an unauthorized way (Narasimha & Tsudik, 2005; Wang et al., 2015; Yuan & Yu, 2013).

It’s worth mentioning that providing data correctness does not necessarily guarantee data com-

pleteness. This is because the verifier uses the data itself as well as data from the verification object

in order to be able to perform the verification process. As a result, when deleting data in an unau-

thorized way from the database permanently or from the result set, the verifier can only verify the

integrity of the present data in the result set. Therefore, there has to be a mechanism to detect any

an unauthorized data deletion. These two security requirements must be analyzed and addressed

independently when designing a verifiable database model.

2.1.7 Game Theory and Stackelberg Game Theory

A game is any situation where individuals (players) interact and have a set of choices to choose

from. Thus, each player has partial control over the game through their actions (M’hamdi & Ben-

tahar, 2012). According to Osborne and Rubinstein (1994), ”Game theory is a bag of analytical

tools designed to help us understand the phenomena that we observe when decision-makers inter-

act. The basic assumptions that underlie the theory are that decision-makers pursue well-defined

exogenous objectives (they are rational) and take into account their knowledge or expectations of

other decision-makers’ behavior (they reason strategically)” (p. 1).

In general, a game consists of the following three main elements (Osborne & Rubinstein, 1994):

(1) A set of P players where each player is referred to as pi.

(2) For every player pi, a set si of strategies. Thus a game consists of a set S of outcomes

where S = [s1 × s2 × s3...× sn].

13

(3) For every player pi, a utility function Ui which determines player’s pi payoff and his prefer-

ence over the set of strategies S.

The following are a general concepts pertain to game theory:

Definition 2.1.7.1. Strategy: a strategy or a Pure Strategy is a set of actions where each action is a

response for a certain situation in a given game.

Definition 2.1.7.2. Mixed Strategy: a mixed strategy is a strategy that consists of a probability

distribution over the actions of a pure strategy which make it harder for the opponent to predict.

Definition 2.1.7.3. Nash Equilibrium: nash equilibrium represents players’ strategies that are mu-

tually best responses. No player would deviate from his choice even after learning about the other

player’s strategy.

Game theory classifies types of games into a number of classes based on different aspects. For

the purpose of this research, we are concerned with a class of games called Stackelberg games.

Stackelberg model was developed by Heinrich von Stackelberg in 1934 in the book titled ”Mar-

ket Structure and Equilibrium” (Von Stackelberg, 1934). When first appeared, it was purely an

economics model to represent the market competition between firms. The basic idea behind Stack-

elberg game theory is that a competition between firms can be characterized based on the fact that

certain firms has more control over the market while other firms has less control. The former is

called a leader as a result of being dominant in certain characteristics such as the size and reputa-

tion. The latter is called a follower which means that it has a limited influence on the concerned

market. Stackelberg game model analyzes and represents this phenomena and grants to the leader

firm an optimal strategy concerned with taking certain decision related to the market with respect to

the follower firm expected responses.

In security, Stackelberg game is used to model attacker-defender security problems (Korzhyk,

Conitzer, & Parr, 2010; Wahab, Bentahar, Otrok, & Mourad, 2016). In Stackelberg game, a leader

commits to a mixed strategy first, and then a follower optimizes his strategy in order to maximize

his reward (An, Tambe, Ordonez, Shieh, & Kiekintveld, 2011; Korzhyk et al., 2010; M’hamdi &

Bentahar, 2012; Paruchuri et al., 2008b). Although the leader has to move first and the follower gets

14

to observe the leader strategy before choosing his strategy, the leader has the first mover advantage,

which guarantees a higher payoff for the leader (Wahab et al., 2016). To illustrate the benefit of

being a leader in a Stackelberg game, let us analyze a simple game with a payoff table as shown

in Table 2.1. This example game is a general example that has been used in a wide variety of

resources including (Korzhyk et al., 2010; M’hamdi & Bentahar, 2012; Paruchuri et al., 2008b;

Pita et al., 2008). The row player is the leader and the column player is the follower. There exists

only one pure-strategy Nash equilibrium when the leader plays strategy A and the follower plays

strategy C. This gives the leader a payoff of 3. Although playing strategy B is strictly dominated

for the leader, the leader can receive a payoff of 4 if he can commit to playing strategy B before

the follower chooses. This is because the follower will always play strategy D to obtain a higher

payoff. However, if the leader can commit to a mixed strategy of playing A with (0.5) probability

and playing B with (0.5) probability, then the follower will always play strategy D which gives the

leader a payoff of 4.5 (Yin, Korzhyk, Kiekintveld, Conitzer, & Tambe, 2010).

Table 2.1: Example of a Payoff table

C D

A (3 , 2) (5 , 1)

B (2 , 1) (4 , 3)

Game theory uses mathematical representations to describe and solve games precisely (Osborne

& Rubinstein, 1994). For the course of our specific research problem, we will deal with representing

our game mathematically and solving it using linear programming techniques, which is defined as

a mathematical optimization method used to maximize or minimize a given function called the

objective function with respect to specific constraints and condition (M’hamdi & Bentahar, 2012).

2.2 Related Work

In this section, we survey the state of the art research related to the verifiable database ap-

proaches and we highlight the limitations associated with each approach. We conclude this section

by reviewing the use of Stackelberg game theory in security in the literature.

15

2.2.1 Verifiable Database

There has been an ongoing substantial work on the verifiable database three-party model. In

this model, a database owner outsources his data management to an untrusted third-party service

provider on the cloud, who answers queries sent from database users on-behalf of the database

owner. Since the database is stored at an untrusted third-party, this model has to ensure detecting

any data integrity violation with outstanding probability (Goodrich et al., 2008; Papamanthou &

Tamassia, 2007; Wang et al., 2015). The current approaches to solve this research problem can be

categorized into three different classes:

Tree-based approaches: one popular tree-based approach is the Merkle hash tree (MHT) in-

troduced by Merkle (1989). In MHT, each leaf node contains a hash of the underlying data whereas

each intermediate node stores the hash of its two children nodes. Finally, the root node stores the

signed hash of its two children nodes. When verifying, the tree can be reconstructed bottom up

from the underlying data so that the reconstructed root can be verified against the stored signed

root. The first work that addressed the problem of verifiable database using MHT was proposed

by Devanbu, Gertz, Martel, and Stubblebine (2002). The MHT in this case is constructed over each

entire database table where each tuple represents a leaf node in the tree. When querying the data,

the database service provider responds to database users queries with the result set as well as a VO

containing the hash of all tuples in the table. The obvious drawback of this approach is the extremely

inefficient communications and computations overhead. Ma et al. (2005) Has developed a more ef-

ficient model called the attr-MHT by constructing MHT on individual tuples instead of the whole

table to reduce communication and processing overhead. In the attr-MHT, each attribute of a tuple

represents a leaf node in MHT and each signature corresponds to one tuple. When querying the

data, the database service provider respond to database uers’ queries with the result set along with

a VO containing the tree nodes of the attributes which is not included in the query result set. Other

remarkable work that reduced computation overhead used the sophisticated Merkle B-tree and the

Embedded Merkle B-tree (Li et al., 2006). The drawbacks of using the tree-based approaches are

the associated computation and communication overhead requirements (Wang et al., 2015). Fur-

thermore, these approaches have a limited support for sophisticated query types such as aggregated

16

queries.

Probabilistic integrity verification approach: the idea behind this approach is that the database

owner inserts fake tuples into the database in different locations. Those tuples are used to verify the

integrity of data with certain probability (Xie et al., 2007). When querying the data, the database ser-

vice provider responds to database users’ queries with the result set. Database users then can check

for the fake tuples inserted that satisfies the query. If they find the expected fake tuples, database

users then can draw a certain probability that the data integrity has or has not been manipulated.

The drawbacks of this approach is that it requires storage overhead to store the fake tuples locally

and distribute it to all database users in order to be used later on in the verification process (Wang

et al., 2015). In addition, the number of fake tuples required to guarantee a certain probability as-

surance are linear to the size of the database. This renders this approach completely inefficient for

large-scale databases. Furthermore, the process of maintaining and identifying the fake tuples can

be extremely costly process from a computational stand point. Finally, we argue that the database

service provider is rational and he might has an interest in tuples that reflect a real entity. Thus, there

is a high chance that the fake tuples might not be of any interest to the database service provider. As

a result, a sensitive data integrity breach might go undetected while relying on this approach might

still indicate a high probability of valid data integrity. Those concerns affect both the correctness

and completeness of the underlying data.

Signature-based approach: in this approach, the database owner hashes and signs the con-

catenation of each tuple’s data and stores it along with the tuple at the database service provider

servers (Wang et al., 2015; Yang, Papadias, Papadopoulos, & Kalnis, 2009). Although this ap-

proach uses a much simpler authentication structure, the VO when querying a large database can

become inefficient from bandwidth and computations prospective. The database service provider

has to send along with every query a linear number n of signatures equals to the number of tuples in

the results set. In addition, this approach does not provide data completeness assurance. Mykletun,

Narasimha, and Tsudik (2006) have proposed an improved signature-based version using signature

aggregation. When querying the database in this approach, the signatures of multiple tuples are ag-

gregated into one signature to reduce communication and computation overhead (Pang et al., 2009).

As a result, the database service provider responds to users query with the result set as well as one

17

aggregated digital signature for the whole result set. The aggregated signature has a size equals to

one single signature and can be verified only once for the whole result set instead of a verification

per each tuple. The limitation of the signature aggregation is that although it provides data cor-

rectness assurance, it lacks the assurance of data completeness. Narasimha and Tsudik (2006) have

proposed yet another improved version that uses signature aggregation and chaining to overcome

the completeness assurance limitation. The idea behind this version is that in a sorted database ta-

ble, each tuple is signed and its signature chained with the signature of its adjacent tuples. When

querying, the database service provider responds to range queries by chaining the signature of the

predecessor and successor tuples in the VO. This way, database users can verify that the result set is

complete and that the server has not omitted any results that satisfy the query. The drawback of this

approach is its complexity and inapplicability where for every tuple inserted, deleted, or updated,

the database service provider has to calculate the affected tuples signature with regard to the signa-

ture of its adjacent tuples. In addition, data completeness assurance here is provided based on the

assumption that the result set would contain some tuples in order to detect any omitted tuples. How-

ever, in practice, this might not be the case where the result set might be empty. Furthermore, since

the verification process works by authenticating individual tuples based on their signatures chaining

with the signatures of adjacent tuples, this approach is only useful when using range queries that

retrieve all tuples in that range. Otherwise, every distinct tuples’ signature must be accompanied

with its adjacent tuples’ signatures which can be an extremely expensive process specially when

dealing with large databases.

Table 2.2: Summery of limitations of the current VDB approaches

VDB Approach Computational
Cost

Aggregated
Queries

Security
Level

Data
Correctness

Data
Completeness

Tree-based High Not supported Average Supported Not supported

Probabilistic
integrity verification

. High Supported Low Supported Not supported

Signature-based High Not supported Average Supported Supported

Most of the previous verifiable database approaches require that database users have to verify

every single query in order to ensure data integrity. As a result, the verification process is highly

18

expensive for computationally weak clients. Furthermore, since database users only verify the data

that they are querying, we argue that this model presents a security concern where any integrity

violation in data that is not being queried might go undetected for a long time. Table 2.2 summarizes

the limitations of current VDB approaches. On the other hand, there is a recent work proposed

by Zhu et al. (2013) that has molded the problem of outsourced storage in a way similar to our

work. In their work, the authors have concluded that it is crucial to use periodic verifications in

order to eliminate the processing and communication overhead incurred by current VDB models.

Their model was designed to verify the integrity of memory blocks and provides general storage

verifiability not specific to the problem of outsourced database. Moreover, unlike our approach that

uses game theory to randomize verifications, their approach uses a random sampling audit, and we

will show in Chapter 4 that our approach outperforms the uniform randomization.

2.2.2 Stackelberg Game Theory in Security

Game Theory has become a popular methodology for solving sophisticated security scheduling

and patrolling problems (An et al., 2011; Wahab et al., 2016). Stackelberg game is used to model

attacker-defender security problems (Korzhyk et al., 2010; Wahab et al., 2016).

Pita et al. (2008) have used Stackelberg game theory to model the security problem police offi-

cers face at Los Angeles International Airport (LAX)(Paruchuri et al., 2008b; Wahab et al., 2016).

In these settings, the police have a number of routes (targets), which lead to different sensitive loca-

tions, and a limited number of resources (checkpoints and canine unites) to cover those routes. Tak-

ing into consideration this limitation of the number of resources available and the uncertainty about

the attacker types faced as well as the observability of the police strategy, authors have modeled the

security problem at LAX as a Bayesian Stackelberg security game to randomize the assignment of

resources to effectively cover targets.

In M’hamdi and Bentahar (2012) work, the authors have used Stackelberg game theory to sched-

ule reputation maintenance in agent-based communities. In these settings, an agent-based commu-

nity consists of rational community members who have the incentive to interact and provide services

for each other, for other communities, or for end users. In addition, for each community, there ex-

ists a controller agent, who is responsible for maintaining the community reputation to attract other

19

agents to the community. The controller agent has to perform a reputation maintenance check ran-

domly to ensure that community members are acting truthfully. After each maintenance check,

the community member reputation is updated and might receive a reward or a punishment. The

problem of this model is that it is not feasible to perform the maintenance checks at all times. In

addition, there are uncertainty about the community member faced. Authors have modeled this se-

curity scheduling problem as Stackelberg security game to effectively and efficiently schedule the

reputation maintenance.

20

Chapter 3

Game Theocratic Model Design1

This Chapter introduces problem definition and the proposed model design first, which is based

on Stackelberg game theory. Second, we will present the game theoretic analysis of the proposed

solution. Finally, we will discuss how to find the optimal mixed strategy of the verifier.

3.1 Problem Definition

As mentioned in Chapter 2, most of current verifiable database model problems are a result of

mixing the concerns between the entities involved in the model. In current models in the literature,

after the database owner creates and uploads the authentication structure of the database, database

users are responsible for carrying out the verification process themselves. This mixing of concerns

adds the following complexities to the verifiable database model:

(1) Resource-constraint database users might not be capable of performing the expensive verifi-

cation processes which may include a large number of sophisticated decryption processes.

(2) The sophisticated authentication structures associated with the verifiable database model af-

fect the practicality when used with conjunction with complex database users’ queries such

as the aggregated queries. In practice, most of the current verifiable database models do not

support such types of queries.
1the content of this chapter has been accepted for publication in the proceedings of The 32nd ACM Symposium on

Applied Computing Conference

21

(3) Form extensibility and maintainability prospectives, this mixing of concerns adds up to the

complexity of the underlying systems and makes them much harder to extend and maintain.

(4) The presence of this mixing of concerns limits the choices of the authentication structures

applicable in order to provide an adequate level of security assurance. For instance, to pro-

vide data completeness assurance, current verifiable database models has to use sophisticated

authentication structures.

(5) From a security prospective, database users only verify the data that they query. This means if

any unused data was manipulated, this manipulation can go undetected for a long time which

makes it harder to roll back to the authentic version of data.

In our design, we aim to mainly address the mixing of concerns by introducing a logical sepa-

ration of concerns. To meet this requirement, the proposed model revokes the responsibility of the

verification process from database users and assigns it to an independent entity called the verifier as

will be described in the next section. The verifier, who is a trusted party to the database owner, will

be responsible for carrying out a periodic verifications to insure the integrity of data. Furthermore,

the interaction between the verifier and the database service provider will be analyzed and modeled

using Stackelberg game theory and solved mathematically using linear programming.

3.2 Model Design

The proposed model is designed as Stackelberg security game. The decision to model the VDB

problem as Stackelberg game is based on the wide use of this type of game to model attacker-

defender security problems. For instance, it’s been proven in (Pita et al., 2008) that modeling

security problems as a Stackelberg game guarantees an optimal patrolling strategy to the defender

which translates to an optimal payoff. This attacker-defender scenario is perfectly applicable to

the VDB model where the verifier schedules periodic verifications to detect any violations from

the database service provider. Our model includes the following four entities: the database owner,

database users, the database service provider, and the verifier. The database owner is responsible

for creating the database special authentication structure, which is stored along with the database at

22

Figure 3.1: Proposed VDB model using Stackelberg game theory

the database service provider servers. The database service provider is responsible for hosting the

database and providing access to the authorized database users. In addition, some of the processing

required for this model is performed at the database service provider side. Finally, the verifier is

a software component running scheduled verifications on-behalf of the database owner as shown

in Figure 3.1. The game is mainly played between the verifier (leader) and the database service

provider (follower). First, the verifier runs Stackelberg solver algorithm to find the optimal mixed

strategy to commit to. Among the two most efficient Stackelberg solver algorithms existent to

date, we have chosen DOBSS (Paruchuri et al., 2008a) as it was proven in (Paruchuri et al., 2008a,

2008b) to be superior to its competitive ASAP. The mixed strategy in the proposed model includes

for every table in the database its probability of being verified. Experimental results showed that

DOBSS was significantly faster than ASAP in solving complex problems. Next, the verifier runs

a uniform randomization method in order to randomize n number of time slots. Finally, for every

23

Figure 3.2: Flowchart of the verifier scheduling problem

random time slot, the verifier uses the previously obtained mixed strategy to determine which table

to verify at that particular time. Figure 3.2 shows the flowchart of steps involved to solve the verifier

scheduling problem.

3.3 Game Theoretic Analysis

As mentioned previously, the game is played between the verifier (leader) and the database

service provider (follower). In order to find the optimal mixed strategy of the verifier to commit to,

the first step is to analyze the game and construct its payoff matrix. The payoff matrix determines for

24

each player in the game the reward (r) / penalty (p) resulted from players’ actions. In addition, the

proposed model ranks each table based on the tables’ data sensitivity (tds). This rank is realistic

since different tables have different data sensitivity levels. For instance, a table that stores credit

cards information has more value than a table that stores country names. Thus, sensitive data tables

should be verified more often than tables having less data sensitivity rank. We use (tds) to construct

the a logical payoff matrix of the game where every player’s reward/penalty is proportional to the

table being verified/manipulated. For instance, if the database service provider manipulates a table

with highly sensitive data, his reward/penalty will be high. It’s worth mentioning that the payoff

formulation we used to characterize the VDB model is driven by our game-theoretic analysis. The

following are the possible outcomes of the game:

• Data manipulation detected: this is the case where the verifier verifies certain table ti and

detects data integrity violation. As a result, the verifier receives a payoff of (r × tdsi), which

is a reward that is proportional to the table data sensitivity. On the other hand, the database

service provider receives a negative payoff of (−p× tdsi).

• Data manipulation undetected: this is the case where the database service provider manipulates

data in a certain table ti and the verifier either verifies another table or does not perform

verification at all. As a result, the verifier receives a penalty of (−p× tdsi) while the database

service provider receives a reward of (r × tdsi).

• Successful verification: this is the case where the verifier performs verification while there was

no data manipulation performed by the database service provider. As a result, the verifier

receives a payoff of small negative negligible value c, which is the computational power con-

sumed to perform the verification. On the other hand, the database service provider receives

a payoff of 0.

• Neutral situation: in this case, the verifier does not perform verification and there was no data

manipulation performed by the database service provider. As a result, both players of the

game receive a payoff of 0.

Table 3.1 shows the strategy profile and payoff matrix of the game for a certain table ti. The row

25

player is the verifier whereas the column player is the database service provider.

Table 3.1: Strategy profile and payoff matrix of the game

Manipulate Not

Verify ((r × tdsi), (−p× tdsi)) (−c, 0)

Not ((−p× tdsi), (r × tdsi)) (0, 0)

Table 3.2 presents an example of a game. For simplicity, we assume that only three tables

exist in the database. The row player is the verifier while the column player is the database service

provider. For every table in the database, the solution suggests the optimal mixed strategy S for the

verifier to commit to taking into account the optimal strategy Q of the database service provider.

Table 3.2: Example of a game

Table 1 Table 2 Table 3 S

Table 1 (4.5 , -4.5) − − 45%

Table 2 − (4.5, -4.5) − 45%

Table 3 − − (0.4, -0.4) 10%

Q 1 1 0

3.4 Finding the Verifier Optimal Mixed Strategy

To solve the problem mathematically, we will use the Stackelberg solver algorithm DOBSS

(Refer to Paruchuri et al. (2008b) work for more information about DOBSS solver algorithm). The

general methodology in this Chapter was inspired by the methodology used by Paruchuri et al.

(2008b) and by Pita et al. (2008). However, our work uses its independent analysis and design

special to the verifiable outsourced database model. We will start by defining the game as a mixed-

integer quadratic program (MIQP). Then, we will transform the MIQP into a Mixed-Integer Linear

Program (MILP) equivalent. Finally, we will solve the MILP problem using a linear programming

solver tool.

Given a time interval, there exists a number of discrete moments in which the verifier has to

26

play. In each individual moment, the verifier can either choose to verify (strategy 1) certain table or

not (strategy 0). Similarly, there exists a discrete number of moments where the database service

provider has to play. The database service provider can choose to either act maliciously (strategy 1)

or act truthfully (strategy 0).

We denote by T and TDS the index set of database tables’ names and its corresponding data

sensitivity respectively. Thus, ti and tdsi are the individual table tablei and its corresponding data

sensitivity rank respectively. We also denote by Q the index set of the database service provider pure

strategies. qj is the strategy chosen by the database service provider for the table j, which represents

either the database service provider manipulates table j or not. Thus, qj ∈ {0, 1}. We denote by S

the verifier policy (mixed strategy), which consists of a vector of probability distribution over the

set of tables. si is the probability of verifying table i. Thus, si ∈ (0. . . 1]. We also denote by R

and C the payoff matrices of the verifier and the database service provider respectively. Rij and C ij

are the verifier and database service provider reward respectively when the verifier plays strategy si

and the database service provider plays strategy qj.

To obtain the optimal mixed strategy, the verifier has to use the backward induction to optimize

his strategy based on the database service provider optimal strategy. Consequently, by fixing si, the

database service provider has to solve the following problem to optimize his strategy:

max
Q

∑
j∈T

∑
i∈T

Cij (1− si) qj

s.t.
∑
j∈T

qj < |T |

qj ∈ {0, 1} ∀j ∈ T

(1)

Since the Optimization Problem 1 is a maximization problem and since si is fixed, qj should be set

as follows:

∑
i∈T

Cij (1− si) ≤ 0→ qj = 0 ∀j ∈ T (2)

∑
i∈T

Cij (1− si) ≥ 0→ qj = 1 ∀j ∈ T (3)

27

Form equation 2 and equation 3, we can conclude that qj has to satisfy the following two equa-

tions:

(1− qj)
∑
i∈T

Cij (1− si) ≤ 0 ∀j ∈ T (4)

qj
∑
i∈T

Cij (1− si) ≥ 0 ∀j ∈ T (5)

By embedding Equations 4 and 5 as constraints in the verifier optimization problem, the verifier has

to solve the following problem in order to obtain the optimal mixed strategy:

max
S,Q

∑
i∈T

∑
j∈T

Rij si qj

s.t.
∑
i∈T

si = 1

∑
j∈T

qj < |T |

(1− qj)
∑
i∈T

Cij (1− si) ≤ 0 ∀j ∈ T

qj
∑
i∈T

Cij (1− si) ≥ 0 ∀j ∈ T

si ∈ (0 . . . 1] ∀i ∈ T

qj ∈ {0, 1} ∀j ∈ T

(6)

The objective function generates the optimal mixed strategy S that maximizes the verifier total

payoff. The first and sixth constraints limit the mixed strategy to be a probability distribution over

the set of tables. The second and seventh constraints ensure that the follower strategy is a pure

strategy. The third and fourth constraints are used to consider the follower optimal strategy.

The next step is to linearize the MIQP obtained in Optimization Problem 6 by replacing the

variables Z ij = si × qj which will generate the following DOBSS equivalent MILP that can be

28

solved using a linear programming solver tool:

max
S,Q

∑
i∈T

∑
j∈T

Rij Zij

s.t.
∑
i∈T

Zij = 1 ∀j ∈ T

∑
j∈T

Zij < |T | ∀i ∈ T

(1− qj)
∑
i∈T

Cij (1− Zij) ≤ 0 ∀j ∈ T

qj
∑
i∈T

Cij (1− Zij) ≥ 0 ∀j ∈ T

Zij ∈ [0 . . . 1] ∀i, j ∈ T

qj ∈ {0, 1} ∀j ∈ T

(7)

29

Chapter 4

Implementation and Evaluation

This Chapter covers the implementation settings and evaluation of the system. The first section

introduces the overall system architecture, and main interface functionalities. In addition, the first

section shows how the game matrix is constructed and solved in order to obtain the mixed strategy

and defines the transformation from a mixed strategy to verification schedule as well as covering

different aspects of the verification process. In the second section, we evaluate the security, Stack-

elberg game scheduling performance, and the efficiency of the proposed model.

4.1 Implementation

In this section, we start by introducing the implemented system architecture and design. We

conclude this section by presenting the different implementation settings of the main components

of the implemented system.

4.1.1 System Architecture

The implemented system consists of two main components, the database owner component

and the verifier component. The verifier component is of more importance in the course of this

research because it involves the Stackelberg game. There is no direct interaction between these two

components except when initially delivering the public key from the database owner to the verifier

to be used in the verification process. In addition, when the verifier component detects data integrity

30

violation, it may report the incident to the database owner automatically if required.

The database owner component is responsible for creating and uploading the authentication

structure to the database service provider which is integrated to the business logic of the actual sys-

tem. Once the initial database and its authentication structure are uploaded to the database service

provider servers, the database owner component updates the authentication structure associated with

any inserted, updated, or deleted tuples and its correspondent database tables.

The verifier component consists of a front-end, a business logic, and a back-end. The front-end

is designed to provide user interface for input and for tracking the current verification session status.

The business logic provides the required computations to construct and solve the Stackelberg game

as well as performing the verifications accordingly. The back-end is used to store the settings of the

system and the history of sessions results.

Figure 4.1 illustrates the flow chart and steps involved in the verifier scheduling problem. The

system user, who is responsible for administering the developed system, interacts with system inter-

face to set the input which consists of the target database address, the Stackelberg game input, and

the number of verification schedule time slots to be randomized by the system. Once the system

users specifies the target database address to be verified, the system reads the schema of the target

database and enables the system user to enter the Stackelberg game input which is a sensitivity value

assigned to every database table in the target database that will be used to construct the game matrix.

Next, the system calculates the optimal mixed strategy for the verifier to commit to. Fianlly, when

the system user runs the session, at every randomized time slot, the system uses the mixed strategy

to identify a random table to verify and proceeds with the verification process. The pseudo code

shown in Algorithm 1 describes the steps involved to solve the verifier scheduling problem.

31

Figure 4.1: Dataflow and steps involved in the verifier component

Algorithm 1 Pseudo code of the verifier scheduling problem
Require: The game matrix, DOBSS representation, the number of time slots n

1: Find the verifier mixed strategy S by solving the Optimization Problem 7
2: Create a vector V of n randomized time slots using uniform randomization
3: for j = 0→ (|V| − 1) do
4: For time slot j, find what table t to verify using S
5: Verify table t using the overall-table verification process (Section 4.1.6)
6: if (t integrity is violated) then
7: Identify individual affected records using the in-depth verification process (Section 4.1.6)
8: Report the incident
9: end if

10: end for

32

4.1.2 System Interface

The interface consists mainly of three columns as shown in Figure 4.2 The first column provides

controls that allow the system user to specify a verification session of any number of days and a

number of verifications time slots per day. Next, the system randomizes the verifications time slot

for each day. The obtained session days and time slots are displayed in the list box underneath. The

second column provides controls that allow the system user to specify the target database path in

order to read the database schema. After reading the target database schema, the interface provides

a pop-up window, which displays every table name in the database schema and enables the user

to set the data sensitivity for each table. Finally, the interface enables the user to automatically

construct and solve the Stackelberg game. The obtained optimal mixed strategy is displayed in the

list box underneath. The third column is used to run and track the session as previously specified.

The results of every verification is displayed in the list box underneath and stored in the back-end

database.

33

Figure 4.2: System interface

4.1.3 Matrix Construction and Mixed Strategy Generation

Given the database schema and user input of every table data sensitivity, the system constructs

the payoff matrix of the game. Next, this payoff matrix is used by DOBSS solver algorithm in

order to calculate the verifier optimal mixed strategy. The obtained mixed strategy specifies for

every table its probability of being verified by the verifier. The obtained mixed strategy grants the

maximum payoff for the verifier. After obtaining the mixed strategy from the previous step, and at

every verification time slot, the system sends the mixed strategy to a method that chooses one table

randomly according to the specified mixed strategy. It is worth mentioning that the mixed strategy

is generated only once. Then the verifier has to commit to that mixed strategy.

4.1.4 From Mixed Strategy to The Verification Schedule

The verification schedule maps every verification process to a certain table in the target database

to be verified. Verification moments are chosen randomly using uniform randomization within the

predefined period and the number of verification time slots specified by the system user. At every

34

Figure 4.3: Mixed strategy to verification schedule

verification moment, the system uses the optimal mixed strategy in order to choose a table to verify

with probability according to the mixed strategy. To illustrate the point, suppose that we have two

balls in a dark box. One ball is red and the other is blue. If we grasp a ball at random, there is

a 50% probability that we choose a ball with either color. Now what happens if we put three blue

balls and one red ball in that box. When grasping a ball at random, there is a 75% probability of

ending up with a blue ball and a 25% probability of ending up with a red ball. We have used the

same concept when transforming from the mixed strategy to the verification schedule. According

to the probability assigned to every table in the mixed strategy, we construct an array of the tables

where every table is inserted a number of times proportional to its probability in the mixed strategy.

For instance, if the obtained mixed strategy is verifying table1 with probability of 75% and table2

with probability of 25%, we insert into the array three instances of table1 while only one instance

of table2 is inserted. Finally, a random index of the array is chosen and we end up with a table to

verify chosen randomly with probability according to the mixed strategy as shown in Figure 4.3.

4.1.5 Authentication Structure Creation

Before the verification can be carried out, the database owner has to upload to the database

service provider the authentication structure along with the database. The authentication structure

in our case is signature based and it is of two types called table-based authentication structure and

tuple-based authentication.

The table-based authentication structure is implemented by signing the hash of concatenation

of each table data. The resulted table-based signature is saved in a special table dedicated to storing

35

the names of the target database tables and its correspondent signatures. The verifier then can access

this special table to fetch the signature associated with any table undergoing the verification process.

The tuple-based authentication is implemented by signing the hash of the concatenation of each

tuple data. The resulted tuple-based authentication structure is stored inside the table of the con-

cerned tuple. Every tuple signature is added to the concerned tuple in a new column dedicated for

storing its signature.

Unlike the tuple-based authentication structure, which provides only integrity assurance, table-

based authentication structure provides both integrity and completeness assurance. Moreover, using

these two different signing processes saves a great deal of communications and computations over-

head as will be illustrated in the next section.

4.1.6 The Verification Process

The verification process consists of two stages, the overall-table verification stage and the

in-depth table verification stage. The former stage uses the table-based authentication structure

whereas the latter stage uses the tuple-based authentication structure.

The overall-table verification stage is the initial verification process. Since it uses the table-

based authentication structure, it involves only one communication to the database service provider

server and one signature verification operation. Therefore, it’s very efficient to employ as the first

verification stage only to find out if any integrity violation (data correctness and data completeness)

exists in the verified table. If there was no data integrity violation detected, there is no need to

proceed to the comparably computationally expensive in-depth verification stage. This verification

stage provides data correctness and data completeness assurance.

The in-depth table verification stage is the second verification stage. It’s only activated when

there is data integrity violation detected in a certain table from the initial overall-table verification

stage. Since the in-depth table verification stage uses the tuple-based authentication structure, its

use is to identify the specific individual affected tuples by the integrity violation.

Figure 4.4 shows the detailed flow chart diagram of the verifier component including all the

processes.

36

Figure 4.4: Detailed flow chart of the verifier component

37

4.2 Evaluation

In this section, we start by performing theocratic security analysis of the implemented system.

Next, we evaluate the Stackelberg scheduling effectiveness by comparing our implemented system

performance against a uniform randomization verification model. Finally, we evaluate and summa-

rize the efficiency of our model against different cost metrics.

4.2.1 Security Analysis

The proposed model has to provide two security requirements. First, it has to ensure that data

in the target database has not been tampered with. Second, it has to ensure that no data in the target

database has been deleted in any an unauthorized way.

Remark 1. The proposed model provides data integrity assurance

Justification 1. Since the proposed model uses a digital signature to sign the two different authen-

tication structures used by the model, and assuming that the used digital signature is secure enough

and that the private key is kept secure, no one other than the authorized parties (who have the

private key) can alter the signed data without being detected. Assume that table x has the content

m. Therefore, the table based authentication structure constructed by the proposed model will be

Sign(h(m)). As a result, if table x content was altered to be m′ where m 6= m′, the verification

process will yield that Decrypt(h(m)) 6= h(m′). Thus, the verification will fail and the manipula-

tion will be detected.

Remark 2. The proposed model provides data completeness assurance

Justification 2. Since the proposed model uses the table-based authentication structure, which signs

the hash of concatenation of the whole table data, and assuming that the used digital signature

is secure enough and that the private key is kept secure, any data deletion performed by any an

unauthorized party will be detected when verifying the manipulated table. Assume that table x has

the content m. Therefore, the table based authentication structure constructed by the proposed

model will be Sign(h(m)). As a result, if some or all of table x content was deleted to be mz

38

where m 6= mz, the verification process will yield that Decrypt(h(m)) 6= h(m − z). Thus, the

verification will fail and the manipulation will be detected.

4.2.2 Stackelberg Scheduling Evaluation

In addition to the security proof, we need to evaluate the Stackelberg verification scheduling

effectiveness of the proposed model. In the literature, Stackelberg-based randomization is usually

compared to the uniform randomization regardless of the fields the randomization is applied to, and

since our proposed VDB model’s design is considerably different than any VDB model design in

the literature, we will compare the effectiveness of our model’s Stackelberg-based randomization

against a uniform randomization model. We have simulated a malicious database service provider

and we ran the proposed model against a model that uses a uniform randomization. In these settings,

we have set a database of 20 tables hosted at the simulated malicious database service provider side.

Each table contains 50, 000 tuples. The simulated malicious database service provider each time

manipulates some tables based on his optimization function. The different settings of each test and

its average results are presented next.

Figure 4.5 shows the average number of verifications required by each model to detect a ma-

nipulation of one table at a time for 10 runs. The x-axis enumerates the manipulations performed

by the malicious database service provider whereas the y-axis represents the average number of

verifications needed for each model to detect the integrity violation. The results clearly show that

our model outperforms the uniform randomization model. Average verifications performed ranged

between 2 and 9 for our model whereas the uniform randomization model required from 6 to 32

verifications before detecting the integrity violation.

Figure 4.6 shows the average number of detections achieved by each model when limiting the

number of verifications to 10. The x-axis enumerates the manipulations performed by the malicious

database service provider while the y-axis represents the average number of detections recorded by

each model. The results show that our model detected the integrity violation between 1 and 3 times

whereas the uniform randomization detections ranged between 0 (in runs 1, 2, 5, 7, 8, and 10) and

1 detection.

Figure 4.7 shows the average number of detections achieved by each model when running both

39

1 2 3 4 5 6 7 8 9 10
Manipulation Number

0

5

10

15

20

25

30

35

Av
er

ag
e

N
um

be
r o

f V
er

ifi
ca

tio
ns

 P
er

fo
rm

ed Stackelberg Randomization
Uniform Randomization

Figure 4.5: Averge number of verifications performed by each model

1 2 3 4 5 6 7 8 9 10
Manipulation Number

0

0.5

1

1.5

2

2.5

3

Av
er

ag
e

N
um

be
r o

f D
et

ec
tio

ns

Stackelberg Randomization
Uniform Randomization

Figure 4.6: Average number of detections over 10 verifications

40

1 2 3 4 5 6 7 8 9 10
Verification Time Slots

0

20

40

60

80

100

120

140

Av
er

ag
e

N
um

be
r o

f D
et

ec
tio

ns

Stackelberg Randomization
Uniform Randomization

Figure 4.7: Average number of detections over 10 verification time slots

models with unlimited number of verifications for 10 time slots each of 30 seconds. The x-axis

enumerates the time slots while the y-axis represents the average number of detections recorded by

each model. The results show that the proposed model clearly outperformed the uniform random-

ization model with average number of detections amounted to six times greater than the uniform

randomization model.

Figure 4.8 shows the average number of verifications performed by each model to detect all the

manipulations when manipulating one or more tables. The x-axis represents the number of tables

manipulated while the y-axis represents the average number of verifications performed before de-

tecting all the manipulations. The results clearly show that our model took less verification attempts

to detect the manipulations even when manipulating multiple tables at once.

Figure 4.9 shows the average time in seconds it took each model to detect all the manipulations

when manipulating one or more tables. The x-axis represents the number of tables manipulated

while the y-axis represents the average time elapsed before detecting all the manipulations by each

model. The results clearly show that our model was faster to detect the manipulations even when

41

1 2 3 4 5
Total Number of Manipulated Tables

0

10

20

30

40

50

60

Av
er

ag
e

N
um

be
r o

f V
er

ifi
ca

tio
ns

 P
er

fo
rm

ed

Stackelberg Randomization
Uniform Randomization

Figure 4.8: Average number of verifications required to detect multiple tables manipulations

manipulating multiple tables at once.

42

1 1.5 2 2.5 3 3.5 4 4.5 5
Total Number of Manipulated Tables

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

Stackelberg Randomization
Uniform Randomization

Figure 4.9: Average time required to detect multiple table manipulations

4.2.3 Efficiency Analysis

We first identify the cost of the different processes involved in the proposed model. Then we

present an analysis of the processing The three main contributions of our proposed model greatly

improve the efficiency of the VDB model. First, employing the periodic verifications saves a great

deal of computation and communication overhead. Second, delegating the verification task respon-

sibility to the verifier entity not only provides a logical separation of concerns, but also enables

the proposed model to support all query types since database users are not involved in the process

unlike most of the models in the literature. Third, the two stage verification process introduced

in our model considerably reduces the required number of hash and digital signature operations.

Thanks to the table-based authentication structure, the verifier needs not to activate the expensive

in-depth verification stage except when detecting an integrity violation in a certain table using the

overall-table verification stage.

Next, we first identify the cost of the different processes involved in the proposed model. Then

we present an analysis of the processing and communication cost required at the side of each party

43

involved for verifying both the integrity and completeness of the database.

There are two main processes in the proposed model. The first process is the creation of the

authentication structure whereas the second process is the verification process. The processing cost

of creating the table-based authentication structure is one hash operation and one signature operation

per table. On the other hand, the processing cost of creating the tuple-based authentication structure

is one hash operation and one signature operation per tuple. Similarly, the processing cost of the

overall-table verification stage is one hash and one decryption (verifying the signature) per table.

Likewise, the processing cost of the in-depth table verification stage is one hash and one decryption

per each tuple in a table. The following is the processing and communication cost analysis incurred

at each party involved in the proposed model:

• Database owner: for each data insertion process, the database owner has to perform one hash

operation and one signature operation per each inserted tuple in order to create the tuple-based

authentication structure and upload it along with the inserted tuples. In addition, the database

owner incurs one communication to the database service provider and one signature opera-

tion in order to create the table-based authentication structure. The hash of the table-based

authentication structure is performed at the database service provider side. Similarly, the up-

date process involves one communication to the database service provider and one signature

operation in order to update the affected tuples’ authentication structure. Furthermore, the

database owner incur one communication and one signature to update the table-based authen-

tication structure. Finally, for each deletion operation, the database owner has to update only

the table-based authentication structure, which involves one communication and one signa-

ture operation performed at the database owner side. Table 4.1 summarizes the costs incurred

at the database owner side.

• The database service provider: the database service provider is involved in calculating the

hash digest to be sent to the database owner for signing or to the verifier to be used in the

verification process. These operations are performed particularly by the relational database

management system using the transactional structured query language T-SQL. Furthermore,

44

Table 4.1: Computation and communication cost incurred at the database owner side

Process Operation Communication
Cost

Hashing
Cost

Signing
Cost

Insertion Tuple-based AS creation 0 1/tuple 1/tuple
Table-based AS creation 1 0 1/table

Update Tuple-based AS creation 1 0 1/tuple
Table-based AS creation 1 0 1/table

Deletion Tuple-based AS creation 0 0 0
Table-based AS creation 1 0 1/table

the database service provider processes digital signature aggregation of multiple tuples signa-

tures to reduce the communication and computation overhead when the in-depth verification

is performed.

• Database users: Database users in the proposed model have no role in the verification process.

• The verifier: the overall-table verification stage involves one communication and one decryption

operation per table. On the other hand, the in-depth verification stage involves one commu-

nication per table and one decryption operation per tuple for all tuples in a table. The hash

operations are performed at the database service provider to reduce communication and com-

putation overhead. Table 4.2 summarizes the costs incurred at the database owner side.

Table 4.2: Computation and communication cost incurred at the verifier side

Operation Communication
Cost

Decryption
Cost

The over-all table verification 1 1/table

The in-depth table verification 1 1/tuple

45

Chapter 5

Conclusion and Future Work

5.1 Contributions

In this research, we have proposed a practical verifiable outsourced database model using Stack-

elberg game theory. To our knowledge, this is the first work that employs a game theoretic approach

to address the integrity concerns of outsourced databases. The implementation of game theory in

the problem of the verifiable database significantly improved the practicality and flexibility of the

model. First, the Stackelberg game theoretic approach in our proposed model enabled effective

periodic verifications scheduling to reduce the computation and communication costs. Second, it

noticeably improved the verifiable database model design by providing a well separation of con-

cerns implementation. To illustrate, the verification is performed by an independent entity called

the verifier instead of it being performed by database users. This has improved the model’s prac-

ticality and flexibility by supporting all query types including the sophisticated ones such as the

aggregated queries. Finally, the security level provided by proposed model is improved by perform-

ing the verification process over the whole data instead of only verifying the queried data as was the

case in the previous models in the literature.

46

5.2 Future Work

For future work, the verification scheduling effectiveness can be improved further by dynami-

cally analyzing the previous verification sessions history using suitable machine learning algorithms

in order to update the game input, which could result in optimally adapting the mixed strategy ob-

tained for different unforeseen attacker types.

47

References

An, B., Tambe, M., Ordonez, F., Shieh, E. A., & Kiekintveld, C. (2011). Refinement of strong

stackelberg equilibria in security games. In Aaai.

Chen, X., Li, J., Huang, X., Ma, J., & Lou, W. (2015). New publicly verifiable databases with

efficient updates. IEEE Transactions on Dependable and Secure Computing, 12(5), 546–

556.

Chen, X., Li, J., Weng, J., Ma, J., & Lou, W. (2014). Verifiable computation over large database

with incremental updates. In European symposium on research in computer security (pp.

148–162).

Devanbu, P., Gertz, M., Martel, C., & Stubblebine, S. G. (2002). Authentic third-party data publi-

cation. In Data and application security (pp. 101–112). Springer.

Goodrich, M. T., Tamassia, R., & Triandopoulos, N. (2008). Super-efficient verification of dynamic

outsourced databases. In Topics in cryptology–ct-rsa 2008 (pp. 407–424). Springer.

Korzhyk, D., Conitzer, V., & Parr, R. (2010). Complexity of computing optimal stackelberg strate-

gies in security resource allocation games. In Aaai.

Li, F., Hadjieleftheriou, M., Kollios, G., & Reyzin, L. (2006). Dynamic authenticated index struc-

tures for outsourced databases. In Proceedings of the 2006 acm sigmod international confer-

ence on management of data (pp. 121–132).

Ma, D., Deng, R. H., Pang, H., & Zhou, J. (2005). Authenticating query results in data publishing.

In International conference on information and communications security (pp. 376–388).

Merkle, R. C. (1989). A certified digital signature. In Conference on the theory and application of

cryptology (pp. 218–238).

48

M’hamdi, M. A., & Bentahar, J. (2012). Scheduling reputation maintenance in agent-based commu-

nities using game theory. Journal of Software, 7(7), 1514–1523. Retrieved from http://

dx.doi.org/10.4304/jsw.7.7.1514-1523 doi: 10.4304/jsw.7.7.1514-1523

Mykletun, E., Narasimha, M., & Tsudik, G. (2003). Providing authentication and integrity in

outsourced databases using merkle hash trees. UCI-SCONCE Technical Report.

Mykletun, E., Narasimha, M., & Tsudik, G. (2006). Authentication and integrity in outsourced

databases. ACM Transactions on Storage (TOS), 2(2), 107–138.

Narasimha, M., & Tsudik, G. (2005). Dsac: integrity for outsourced databases with signature aggre-

gation and chaining. In Proceedings of the 14th acm international conference on information

and knowledge management (pp. 235–236).

Narasimha, M., & Tsudik, G. (2006). Authentication of outsourced databases using signature

aggregation and chaining. In International conference on database systems for advanced

applications (pp. 420–436).

Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. MIT press.

Pang, H., Zhang, J., & Mouratidis, K. (2009). Scalable verification for outsourced dynamic

databases. Proceedings of the VLDB Endowment, 2(1), 802–813.

Papamanthou, C., & Tamassia, R. (2007). Time and space efficient algorithms for two-party au-

thenticated data structures. In International conference on information and communications

security (pp. 1–15).

Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordonez, F., & Kraus, S. (2008a). Efficient

algorithms to solve bayesian stackelberg games for security applications. In Proc. of aaai (pp.

1559–1562).

Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordonez, F., & Kraus, S. (2008b). Playing

games for security: an efficient exact algorithm for solving bayesian stackelberg games. In

Proceedings of the 7th international joint conference on autonomous agents and multiagent

systems-volume 2 (pp. 895–902).

Pita, J., Jain, M., Marecki, J., Ordóñez, F., Portway, C., Tambe, M., . . . Kraus, S. (2008). Deployed

armor protection: the application of a game theoretic model for security at the los angeles

international airport. In Proceedings of the 7th international joint conference on autonomous

49

http://dx.doi.org/10.4304/jsw.7.7.1514-1523
http://dx.doi.org/10.4304/jsw.7.7.1514-1523

agents and multiagent systems: industrial track (pp. 125–132).

Pointcheval, D., & Stern, J. (2000). Security arguments for digital signatures and blind signatures.

Journal of cryptology, 13(3), 361–396.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM, 21(2), 120–126.

Rogaway, P., & Shrimpton, T. (2004). Cryptographic hash-function basics: Definitions, impli-

cations, and separations for preimage resistance, second-preimage resistance, and collision

resistance. In International workshop on fast software encryption (pp. 371–388).

Thompson, B., Haber, S., Horne, W. G., Sander, T., & Yao, D. (2009). Privacy-preserving compu-

tation and verification of aggregate queries on outsourced databases. In International sympo-

sium on privacy enhancing technologies symposium (pp. 185–201).

Von Stackelberg, H. (1934). Marktform und gleichgewicht. J. springer.

Wahab, O. A., Bentahar, J., Otrok, H., & Mourad, A. (2016). A stackelberg game for distributed

formation of business-driven services communities. Expert Systems with Applications, 45,

359–372.

Wang, J., Chen, X., Huang, X., You, I., & Xiang, Y. (2015). Verifiable auditing for outsourced

database in cloud computing. IEEE Transactions on Computers, 64(11), 3293–3303.

Xie, M., Wang, H., Yin, J., & Meng, X. (2007). Integrity auditing of outsourced data. In Proceedings

of the 33rd international conference on very large data bases (pp. 782–793).

Yang, Y., Papadias, D., Papadopoulos, S., & Kalnis, P. (2009). Authenticated join processing in

outsourced databases. In Proceedings of the 2009 acm sigmod international conference on

management of data (pp. 5–18).

Yin, Z., Korzhyk, D., Kiekintveld, C., Conitzer, V., & Tambe, M. (2010). Stackelberg vs. nash in

security games: Interchangeability, equivalence, and uniqueness. In Proceedings of the 9th

international conference on autonomous agents and multiagent systems: volume 1-volume 1

(pp. 1139–1146).

Yuan, J., & Yu, S. (2013). Flexible and publicly verifiable aggregation query for outsourced

databases in cloud. In Communications and network security (cns), 2013 ieee conference

on (pp. 520–524).

50

Zhang, L. F., & Safavi-Naini, R. (2014). Verifiable delegation of computations with storage-

verification trade-off. In European symposium on research in computer security (pp. 112–

129).

Zhu, Y., Ahn, G.-J., Hu, H., Yau, S. S., An, H. G., & Hu, C.-J. (2013). Dynamic audit services for

outsourced storages in clouds. IEEE Transactions on Services Computing, 6(2), 227–238.

51

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research Context
	Motivation
	Problem Definition
	Research Questions
	Contributions
	Thesis Organization

	Background and Related Work
	Background
	One-Way Cryptographic Hash Functions
	Public-Key Digital Signature Schemes
	Aggregated Digital Signature
	Two-Party and Three-Party Authentication Models
	Merkle Hash Tree (MHT)
	Data Correctness and Data Completeness
	Game Theory and Stackelberg Game Theory

	Related Work
	Verifiable Database
	Stackelberg Game Theory in Security

	Game Theocratic Model Design
	Problem Definition
	Model Design
	Game Theoretic Analysis
	Finding the Verifier Optimal Mixed Strategy

	Implementation and Evaluation
	Implementation
	System Architecture
	System Interface
	Matrix Construction and Mixed Strategy Generation
	From Mixed Strategy to The Verification Schedule
	Authentication Structure Creation
	The Verification Process

	Evaluation
	Security Analysis
	Stackelberg Scheduling Evaluation
	Efficiency Analysis

	Conclusion and Future Work
	Contributions
	Future Work

	Bibliography

