
Model Driven Upgrade Campaign Specification

Generation and Evaluation

Oussama Jebbar

A Thesis in the Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of Master of

Applied Science in Software Engineering

At Concordia University

Montreal, Quebec

Canada

December, 2016

© Oussama Jebbar, 2016

iii

Abstract

Model Driven Upgrade Campaign Specification Generation

and Evaluation

Oussama Jebbar

High availability is an important non-functional requirement for carrier grade services.

The applications/systems providing and protecting such services undergo frequent up-

grades which makes meeting this requirement very challenging. A system upgrade is the

migration process from the system’s current configuration to a new one. This migration

may include configuration changes, installation and removal of software, etc.. The Ser-

vice Availability Forum (SAF) published a set of standards that describe a high availa-

bility enabling middleware for Commercial-off-the-shelf (COTS) components based sys-

tems. In such a middleware, the Software Management Framework (SMF) is the service

responsible for orchestrating the upgrades. These upgrades are performed according to a

road map called an upgrade campaign specification. The Availability Management

Framework (AMF) is another service defined in the SAF standards and which is respon-

sible of managing the availability of the services and the service providers. To take a SAF

compliant system from one configuration to another, one has first to come up with an

upgrade campaign specification for that purpose. Moreover, there are multiple upgrade

campaign specifications that can take the system from the same source configuration to

the same target configuration, but they differ in the duration they take and the service

outage they may induce. Designing an upgrade campaign specification for a SAF com-

pliant system is not a straight forward process. Indeed, this is an error prone task that

becomes more challenging when the system and the set of changes to perform get larger.

Besides, selecting which upgrade campaign specification to apply among all the valid

ones is either expensive (running the same upgrade campaign specification on a replica

of the real system), or tedious (evaluating, comparing and selecting upgrade campaign

specifications manually).

In this thesis we propose automation as a solution to ease and minimize human interven-

tion in the design and evaluation of upgrade campaign specifications. We devise a model

driven approach to automatically generate upgrade campaign specifications. Our ap-

proach consists of several activities in order to ensure the SAF compliance of the gener-

iv

ated upgrade campaign specification on one hand. On the other hand, we use the depend-

encies between system components to apply a set of rules that can improve the quality of

the upgrade campaign specification by avoiding some of the unnecessary service outage.

These rules include rules to order changes to be performed as well as a set of heuristics

that make use of the dependencies. We also address the upgrade campaign evaluation

related issues. We extend an existing discrete event systems based simulation approach

for upgrade campaign evaluation. We expose the limitations of a random simulation as

its results are unreliable for comparison. To overcome these limitations we define best

case and worst case scenarios that we use to guide upgrade campaign simulations to see

how the upgrade campaigns perform in edge cases. We also devise a method for upgrade

campaign specification selection/elimination based on applicability checks according to

two criteria: the maintenance window, and the acceptable outage during this window.

Finally, we implemented prototypes for upgrade campaign specification generation and

evaluation.

v

Acknowledgments

I would like to thank my family for their everlasting and unconditional love,

support, and encouragement.

I would like to express my gratitude to my supervisors Dr. Ferhat Khendek and

Dr. Maria Toeroe for their patience, support, and their valuable feedback that

inspired me during this thesis. Thank you very much for granting me the oppor-

tunity to benefit from this extremely enlightening and gratifying experience

within your research team.

I would like to thank my colleagues in MAGIC team for the good memories.

I would like to thank Concordia University, Ericsson Canada, and NSERC for

the funding and the facilities they put under my disposal to achieve this work.

Finally, I would like to thank the “gang”, Amine, Amine, Abdel, and Mehran

for the memorable adventures, and for …

vi

Table of Contents

List of Figures .. viii

List of Tables .. ix

Chapter 1 - Introduction ... 1

1.1. High availability & upgrade.. 1

1.2. Service Availability Forum ... 2

1.3. Motivations and Contributions ... 3

1.4. Organization of the thesis ... 5

Chapter 2 - Background ... 6

2.1. Information Model Management .. 6

2.2. Availability Management Framework .. 6

2.2.1. AMF configuration .. 7

2.2.2. State models ... 13

2.3. Software Management Framework ... 16

2.3.1. Software delivery ... 16

2.3.2. Software deployment ... 17

2.4. Model Driven Engineering ... 20

2.5. EPSILON .. 21

2.6. DEVS formalism ... 22

2.7. Related work ... 23

Chapter 3 - Upgrade campaign specification generation ... 26

3.1. Challenges ... 26

3.2. Modeling framework .. 27

3.2.1. Change meta-model ... 27

3.2.2. Dependencies meta-model ... 28

3.2.3. Upgrade campaign specification meta-model .. 29

3.3. Overall approach ... 30

3.4. Transformations .. 32

3.4.1. Change model creation .. 32

vii

3.4.2. Actions creation ... 33

3.4.3. Actions matching ... 37

3.4.4. Dependencies extraction .. 38

3.4.5. Ordering and scope optimization ... 41

3.5. Summary ... 43

Chapter 4 - Upgrade campaign specification evaluation ... 45

4.1. Previous work: simulation based approach for upgrade campaign evaluation 45

4.2. Extended simulation approach and limitations of random simulation.......................... 46

4.2.1. Extended approach for upgrade campaign specification simulation 47

4.2.2. Limitations of random simulation .. 50

4.3. Controllable scenarios ... 51

4.3.1. Best case... 52

4.3.2. Worst case .. 53

4.4. Selection/elimination of upgrade campaign specifications ... 55

4.5. Summary ... 56

Chapter 5 - Prototypes ... 58

5.1. Upgrade campaign specification generation prototype ... 58

5.2. Upgrade campaign evaluation prototype .. 61

5.3. Summary ... 68

Chapter 6 - Conclusion .. 69

References .. 70

viii

List of Figures
Figure 2-1: example of 2N redundancy model .. 10

Figure 2-2: example of N+M redundancy model .. 11

Figure 2-3: example of N-Way redundancy model ... 12

Figure 2-4: example of N-Way Active redundancy model .. 12

Figure 2-5: example of No-Redundancy redundancy model ... 13

Figure 3-1: Change meta-model .. 28

Figure 3-2: Dependencies meta-model .. 29

Figure 3-3: Upgrade campaign specification meta-model ... 30

Figure 3-4: Overall approach ... 32

Figure 3-5: Example of a deployment configuration ... 39

Figure 3-6: Figure 3-5 deployment corresponding dependencies model................................. 41

Figure 4-1: approach of the previous work on the evaluation of upgrade campaign

specifications [7] .. 46

Figure 4-2: overall approach and simulation environment .. 47

Figure 4-3: Extensions to ETF ... 48

Figure 4-4: upgrade campaign specification selection/elimination process 55

Figure 5-1: Matching SIs ... 58

Figure 5-2: Matching SGs .. 59

Figure 5-3: Change Model ... 59

Figure 5-4: The first upgrade campaign specification model .. 60

Figure 5-5: The upgrade campaign specification model after the first refinement 60

Figure 5-6: The xml file generated from the last upgrade campaign specification model 61

Figure 5-7: Enabling unknown number of input models ... 62

Figure 5-8: The GUI used to input the upgrade context .. 63

Figure 5-9: Upgrade campaign specification and the configuration rendered in the graphical

component of the DEVS-Suite simulator .. 63

Figure 5-10: SI initially fully assigned .. 64

Figure 5-11: Upgrade campaign initially in the initial state .. 64

Figure 5-12: Upgrade campaign transitions to Executing state ... 65

Figure 5-13: Upgrade procedure transitions to Executing state one time unit after the upgrade

campaign .. 66

Figure 5-14: SI going to the partially assigned state.. 67

Figure 5-15: SI going back fully assigned ... 67

file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949564
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949577
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949578
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949580
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949581
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949582
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949586
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949586
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949587
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949588
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949589
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949591
file:///C:/Users/oussama/Desktop/Thesis/Oussama_Jebbar_Thesis-revised-fk-1-oj-nc.docx%23_Toc471949592

ix

List of Tables
Table 3-1: Mapping changes to corresponding SAF compliant actions and their positions ... 34

Table 3-2: Types and AMF Associations Attributes Handling Strategies 36

Table 3-3: Ordering rules for directed dependencies ... 42

Table 4-1: Objects involved in the simulation and their associated DEVS models. 50

Table 4-2: ranked list of upgrade step points of failure ... 54

1

Chapter 1 - Introduction

This chapter explains briefly the context of the thesis. It introduces concepts such as High

Availability (HA), system upgrade, and Service Availability Forum (SAF) [1]. It also

presents the motivations behind the thesis as well as its contributions.

1.1. High availability & upgrade

Availability is defined as “the proportion of time when a system is in a condition that is

ready to perform the specified functions” [2]. The availability of a system depends on the

reliability of its components and the required time to repair them in case of failure. The

metrics that are commonly used to evaluate these two attributes are the Mean Time To

Fail (MTTF) and Mean Time To Repair (MTTR). System availability is defined as fol-

lows [2]:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
 eq 1-1

There are several levels of availability. Systems that provide carrier grade services must

to be highly available, meaning that their availability should be at least 99.999% (also

referred to as five nines). In other words, the services provided by such system cannot be

interrupted for more than 5.26 minutes per year. In order to enable such availability, one

should properly deal with the two types of downtime:

 Unplanned downtime: downtime caused by components’ failures.

 Planned downtime: downtime caused by system upgrades and maintenance.

There are several principles, if followed, can help tackling these challenges such as:

 Thoroughly choosing the components that will compose the system. The compo-

nents should be extensively tested, and should undergo enough verification, vali-

dation, and benchmarking to ensure that they are reliable enough to provide highly

available services.

 Enabling error detection. The system should be able to identify components that

are unhealthy, erroneous and not able to provide the service.

 Enabling error repair. This can be achieved by using repairable components to

build the system.

 Enabling fault tolerance. Fault tolerance is defined as “enabling a system to con-

tinue its normal operation in the presence of faults…without human intervention”

[2], this can be achieved by implementing means for error detection and service

recovery. Service recovery can be implemented either using redundancy so that

the service can still be provided even with a presence of a faulty component as

2

the system has duplicates that can provide the same service, or by using compo-

nents that can be repaired within specific deadlines and thus providing the re-

quired availability.

The aforementioned principles, when applied, can only make the system capable of han-

dling the unplanned downtime but still they do not provide any viable solution to cope

with the planned downtime. As introduced earlier, the planned downtime is the downtime

caused by system upgrades. System upgrades are performed via an upgrade campaign

which represents the process of migration from the current configuration of the system to

a new configuration called the target configuration. This process of migration includes

the configuration changes that need to be done, the software that needs to be installed,

the software that needs to be removed, as well as how every set of required changes have

to be done and their ordering. Upgrading systems that are deployed in a redundant manner

can be done in different ways. While some upgrade campaign designers might choose to

upgrade all the elements that are redundant of each other at the same time (if they aim at

saving time for example), some others prefer to upgrade them one at a time in order to

minimize the service disruption as the service can still be provided while the system is

under upgrade. This can be achieved by making sure that at any moment during the up-

grade campaign, and for a given service provided by the system, there is at least one entity

or subsystem able to provide that service and that entity is not undergoing an upgrade. To

automate this process and make it easier and more manageable, one need to dispose of an

upgrade engine which should have the capability of performing these kinds of changes

on the system’s entities as well as communicating with the deployed components either

directly or through a third party.

1.2. Service Availability Forum

Different software vendors used to implement different availability management solu-

tions for their products. These solutions use to be proprietary, and sometimes target spe-

cific domains (availability management for a DBMS, a VM, a network, etc.) which ham-

pers portability of their software products.

The Service Availability Forum (SAF) [1], is a consortium of telecommunication and

computing companies whose goal is to publish and maintain open specification standards

that define a set of middleware services enabling high availability for Commercial-Off-

The-Shelf (COTS) components based systems. Hence, software vendors are only re-

quired to implement appropriate SAF defined APIs in order to incorporate high availa-

bility into their products.

SAF specifications cover a wide spectrum of system related aspects:

 Layers-wise: SAF standards cover both lower and upper layers of a system. The

Hardware Platform Interface (HPI) defines the utilities used to monitor and con-

3

trol the hardware. The Application Interface Specification (AIS) covers the ser-

vices and interfaces used to manage upper layers of system (Platform, Software,

etc.).

 Services-wise: the AIS standard defines several services and interfaces used for

multiple purposes such as availability management (AMF), configuration man-

agement (IMM), software management (SMF), communication(Event EVT),

state synchronization(Checkpoint CKPT), etc.

This work relates mainly to the services used for availability management, the Availabil-

ity Management Framework (AMF) [3], and software management, the Software Man-

agement Framework (SMF) [4], and to some extent configuration management, the In-

formation Model Management (IMM) [5].

1.3. Motivations and Contributions

As introduced earlier, an upgrade campaign is the process of migrating a system from its

current configuration to a new configuration. In a SAF compliant environment, the sys-

tem is composed of COTS components which are managed by AMF [3]. In order to man-

age the availability of these components, AMF abstracts them into logical entities which

are described in the AMF configuration. A subset of these AMF managed components is

what basically composes the target of a SAF compliant upgrade campaign. This upgrade

campaign is carried out by SMF [4] following a roadmap called the Upgrade Campaign

Specification. The Upgrade Campaign Specification is an XML file that specifies par-

tially ordered sets of changes that compose the upgrade procedures. For a change to be

correctly performed, a set of components may be prevented from providing the service

which may cause service interruption during the execution of the upgrade campaign.

A typical process of upgrading a system would consist of, first designing one or multiple

upgrade campaign specifications that can take the system from the source configuration

to the target configuration. Before executing the upgrade campaign, the administrator

checks the applicability of the upgrade campaign specifications in order to rule out the

ones that are not applicable, and pick one for execution. The applicability check in this

thesis goes along two dimensions:

 Execution time-wise: the administrator is granted a maintenance time window. A

maintenance window is a period for which some service under-provisioning or

disruption can be tolerated. The tolerable under-provisioning/disruption is known

as the allowed outage associated with this maintenance window. Both the mainte-

nance windows and their associated allowed outages are usually agreed on in the

Service Level Agreements (SLAs) between service consumers and service pro-

viders. In order to comply with the SLA, the administrator should perform the

upgrade and bring back the system into a fully operational state within the mainte-

nance window. The expected execution time of the upgrade campaign specifica-

tion should fit within this maintenance window.

4

 Outage-wise: the upgrade campaign should not interrupt services that are not al-

lowed to be interrupted (compliance with SLAs). The induced outage should stay

within the allowed outage. The allowed outage is a set of services and the maxi-

mum duration of interruption that can be tolerated for each service in a given

maintenance window.

The design of upgrade campaign specifications and their applicability checks are manda-

tory to upgrade a SAF compliant system in order to meet the availability requirement.

While performing these tasks, one should properly consider some system aspects such as

the dependencies between service providers, the dependencies between services, and the

relationships between the services and the service providers. Handling these aspects be-

comes harder as the systems get larger and more complex, which makes manually per-

forming these tasks tedious, error prone, and time consuming.

In order to ease the design of upgrade campaign specifications and make it more efficient,

we propose in this thesis a model driven approach to automatically generate a valid up-

grade campaign specification. We define a valid upgrade campaign specification as one

that is syntactically correct, and conforms to the XSD specified in the SMF specification

[4].

In this approach we build upon the work in [6] as it allows to compare two AMF config-

urations and generate the set of changes to be performed to move from one configuration

to another. We take this set of changes, and start by building a SAF compliant upgrade

campaign specification. This is done by creating an upgrade procedure in the upgrade

campaign specification for every change that needs to be done. This upgrade campaign

specification undergoes a first refinement in which we group changes that target logically

related entities into the same procedures. We propose a set of rules to perform such a

grouping of changes. The upgrade campaign specification undergoes yet another refine-

ment that takes into consideration the dependencies between system components to: 1)

properly order the changes by applying the rules proposed in [55, 57]; and 2) apply some

heuristics that may improve the quality of the upgrade campaign specification (minimiz-

ing the outage it may induce and the time it may take).

The applicability check as previously described requires an outage-wise and time-wise

evaluation of upgrade campaign specifications. In this thesis, we build upon the work in

[7] as it proposes a simulation based framework that enables performing such evaluation

on upgrade campaign specifications. We defined the best case and worst case execution

scenarios of an upgrade campaign in a SAF environment in order to overcome some lim-

itations of the work in [7]. We also defined a method that, based on the results of the best

case and worst case evaluations, can help select some upgrade campaign specifications,

eliminate others, and identify the ones that can be further optimized to be applicable in a

given situation (a given maintenance window and acceptable outage).

5

Finally we have developed a prototype for the upgrade campaign specification generation

and we integrated it with an implementation of the work in [6]. We also implemented a

prototype for best case and worst case evaluation of upgrade campaign specifications.

1.4. Organization of the thesis

The rest of this document is organized as follows. Chapter 2 gives a background about

SAF standards, namely AMF, SMF and IMM, as well as an overview of Model Driven

Engineering (MDE), Epsilon, DEVS formalism, and a review of the related work. In

Chapter 3 we describe our model driven upgrade campaign specification generation ap-

proach. In Chapter 4 we present our contributions for upgrade campaign evaluation. Be-

fore concluding, Chapter 5 discusses briefly the prototypes.

6

Chapter 2 - Background

This chapter introduces the SAF specifications, in particular the Information Model Manage-

ment (IMM), AMF, and SMF. It also introduces Model Driven Engineering (MDE). It pre-

sents the tools used for prototypes implementation, namely DEVS formalism and Epsilon en-

vironment. Finally, it discusses the related work.

2.1. Information Model Management

The Information Model Management (IMM) is the service responsible for maintaining

the integrated information of the SAF compliant system [2]. The information model holds

both configuration and runtime information required and used by all the SAF middleware

provided services. It can also be used by other applications to store their own application-

specific information. IMM manages the access to the information in the information

model through the read, write or modify operations. Access to an object is usually done

via its Distinguished Name (DN). In the SAF context there are two types of names that

follow the following rules:

 Relative Distinguished Name (RDN): a name given to the object in the format

specified in the SAF standards for the instances of the entity to which that object

belongs.

 Distinguished Name (DN): which consists of the RDN of the object followed by

the DN of its parent. If the object has no parent the RDN and DN are identical.

IMM exposes an API for external software to use in order to access the information

model. The IMM service also interacts internally with all the services that compose the

SAF compliant middleware.

2.2. Availability Management Framework

The Availability Management Framework (AMF) [3] is a service defined by SAF. It is

responsible for the management of the resources used to provide services. This manage-

ment uses a model, the AMF configuration, which captures the following aspects of a

system:

 A static description of the system which describes the resources that the system

has, the services it provides, and a mapping that associates each service with the

resources that can provide it.

 A dynamic representation of the system that continuously represents the runtime

state of the system. This runtime state reflects the presence of enough service

providers to ensure the services’ high availability among other things. In addition,

it also keeps record of the locations where the services are being provided, as well

as the eligibility and readiness of service providers to provide the services. This

7

information is captured using either some runtime objects that AMF instantiates

to track this information, or state models that are associated with the configured

AMF entities.

During the lifetime of the system, configuration changes (by the administrator or some

third party), errors and failures can take place. For AMF to be able to properly manage

the availability of the services and the resources, the AMF service should be aware of all

of these factors that lead to changes on the dynamic description of the system. In the

following subsections we will introduce the concepts used in the AMF configuration as

well as the state models associated with them and which are relevant to this work.

2.2.1. AMF configuration

The AMF configuration is a representation of the system through a set of AMF defined

logical entities and their relations. This configuration is stored and managed by another

SAF service, the Information Model Management (IMM) [5]. AMF uses its content to

manage the resources accordingly.

In addition to AMF entities, AMF also uses AMF entity types to describe the system by

associating AMF entity types with AMF entities. AMF entity types usually hold the com-

mon attributes for the AMF entities associated with them. In the rest of this subsection

we will introduce the AMF entities that compose the AMF configuration as well as the

types associated with them if any.

2.2.1.1. Component and Component Type

The component is the smallest building block of a system and that can provide a service.

It is also considered the smallest fault zone on which AMF performs fault detection, iso-

lation and repair. This kind of control, among others, can be done either directly via the

AMF API or indirectly through the Command Line Interface (CLI) or both. We distin-

guish between many categories of components from different perspectives:

 Compliance to the standard: a component can be SA-aware if it incorporates HA

by implementing the AMF API, thus becoming directly managed by AMF. Or

Non-SA-aware when it does not implement the AMF API and it is managed by

AMF via the CLI or a third party.

 Dependency between the lifecycle and the service provisioning: a component is

said to be pre-instantiable if it can be instantiated without being assigned a work-

load to handle. Similarly, a component is said to be non-pre-instantiable if it only

gets instantiated when it is assigned a workload to handle. Note that according to

the AMF specification [3] all SA-aware components are pre-instantiable.

 AMF management: a component that is SA-aware and directly managed by AMF

is called regular SA-aware component. An SA-aware component can be managed

directly by AMF with a life-cycle management customization through a third

party. This deployment pattern was introduced by AMF as the container-con-

tained pattern. In this deployment pattern the lifecycle management of an SA-

8

aware component, the contained, is customized through a regular SA-aware com-

ponent called the container. Moreover, the container and the contained should

share the same host. Note also that since AMF specification [3] introduces some

container level repair actions it may be safe to say that a container is considered

as a fault zone as well. In addition to the container-contained pattern, AMF intro-

duces yet another deployment pattern called the proxy-proxied. In this deploy-

ment pattern, AMF uses a regular SA-aware component called the proxy to man-

age a Non-Sa-aware component called the proxied. Unlike the container and the

contained, the proxy and the proxied do not necessarily have to share the same

host. The last category from this perspective is the Non-Sa-aware Non-proxied

components that AMF manages only through the CLI. Note that according to [3],

all the components of this category are non-pre-instantiable.

The component type holds the common attributes for components running the same soft-

ware such as paths to lifecycle operations scripts and the component category. The com-

ponent type also holds default values of lifecycle and management operations timeouts

that the configuration designer can override at component level. .

2.2.1.2. Component Service Instance and Component Service type

Component Service Instance (CSI) is a named set of attributes that configure a component

for a service it is capable of providing [2], thus becoming AMF’s mechanism to control

service provisioning without being aware of what is being provided as a service. Accord-

ingly, a Component Service type defines the names of the attributes that need to be con-

figured for each of the CSIs of this Component Service type. A component can play either

the role of an active service provider (actually providing the service), or the role of a

standby or have no role depending on the HA state of the component for that CSI (section

2.2.2). When a component has a given role for a CSI we say that this component has an

assignment for that CSI. In order to enable this kind of management, a CS type should be

associated with the component types that support it (can be assigned an HA state for it).

This association defines the component capability model that applies to that component

type for this CS type. The component capability model defines the multiplicities of active

and standby assignment that a component of a given component type can provide for a

CSI of a given CS type. AMF supports the following types of capability models [3]:

 x_active_and_y_standby: components that have this capability model can be ac-

tive for up to x CSIs and standby for up to y CSIs at a time.

 x_active_or_y_standby: components that have this capability model can be either

active for up to x CSIs or standby for up to y CSIs at a time.

 1_active_or_y_standby: components that have this capability model can be either

active for one CSI or standby for up to y CSIs at a time.

 1_active_or_1_standby: components that have this capability model can be either

active for 1 CSI or standby for 1 CSI.

9

 x_active: components that have this capability model can never be standby, and

can be active for up to x CSIs at a time.

 1_active: components that have this capability model can never be standby, and

can only be active for one CSI at a time.

The x and y in the names of the capability models are configured as attributes of an asso-

ciation between a component type and a CS type. These attributes can be overridden by

the attributes of an association between a component of that type and the CS type if any.

2.2.1.3. Service Unit and Service Unit type

Components only handle units of workload as CSIs which may not necessarily coincide

with the functionalities that the system is required to provide. Therefore, AMF introduces

the Service Unit (SU), which is a logical entity that groups components able to handle

CSIs that compose one or more desired functionality. An SU is also considered a fault

zone and it is the smallest and only entity that gets duplicated in order to provide redun-

dancy and thus insure the availability of the services. It is also worth noting that from a

naming perspective, an SU is the parent entity of all the components that compose it. The

Service Unit type contains all the common attributes of the SUs that share that type.

Amongst the most relevant is the list of component types that compose the SUs of that

SU type as well as a minimum and maximum number of components of each of those

component types. In addition, the SU type also holds the Service types that the SUs of

this type can provide. The concept of Service type will be introduced in the next subsub-

section.

2.2.1.4. Service Instance and Service type

The CSIs provided by the components of the same SU when combined can make one or

more desired functionality, also called in the context of AMF Service Instance (SI). A SU

that can provide a SI can play either the role of active or standby for that SI. This role is

based on the roles the components of that SU play for the CSIs that compose that SI.

Some of the most relevant attributes of an SI are the preferred number of active assign-

ments and the preferred number of standby assignments which specify the number of

assignments both active and standby that this SI should have in order to insure its high

availability. In addition, the list of dependent SIs that depend on a given SI is also con-

sidered a valuable attribute. An SI (dependent) is said to depend on another SI (sponsor)

if the dependent cannot be assigned unless the sponsor is already assigned. AMF config-

uration enables the specification of the dependency between SIs that is marked with an

attribute called tolerance time. The tolerance time specifies the maximum amount of time

that the dependent SI can still be assigned without the sponsor SI being assigned. Simi-

larly to SUs, an SI is considered the parent entity of all the CSIs composing it.

SIs are typed using Service types. The common SI characteristic that the Service type

holds is the list of CS types that compose a SI of that type, as well as the maximum

number of CSIs of every CS type.

10

2.2.1.5. Service Group and Service Group type

A Service Group (SG) is the logical entity that groups all the SUs protecting the same set

of SIs. In order to provide redundancy, an SG should have at least two SUs so that if one

fails the other can take over the service provisioning. The configuration of an SG drives

how AMF manages the SUs that compose this SG. It specifies the preferred number of

in-service SUs (SUs that can provide the service), the preferred number of standby SUs,

the preferred number of active SUs as well as the maximum number of SIs that can be

assigned to an SU as active or standby. From a naming perspective, an SG is the parent

entity of all the SUs that compose it.

Similarly to the other entity types, the SG type holds the common attributes of several

SGs, including the types of SUs that can compose the SGs of this type. In addition, the

way AMF manages the redundancy of an SG is also configured at the SG type level. In

the AMF specification [3], the different ways of managing the redundancy are called

redundancy models. These redundancy models differ on the number of SIs that can be

assigned to an SU at time, the roles an SU can play at a time (active or standby), the

number of SUs allowed to play each role, and the preferred number of assignments (active

and standby) of each SI they can support. AMF introduces five redundancy models as

follows:

 2N redundancy model (Figure 2-1): in this redundancy model:

o At most one SU should be active for all the SIs protected by the SG.

o At most one SU should be standby for all the SIs protected by the SG.

o Each SI can have at most one active assignment and at most one standby

assignment.

Figure 2-1: example of 2N redundancy model

11

 N+M redundancy model (Figure 2-2): this redundancy model is different than the

2N in a way that it allows for multiple SUs of the same SG to have the same but

only one role (active or standby) at a time but not for the same SI. It can be defined

as follows:

o An SU can be either active for all the SIs assigned to it or standby for all

the SIs assigned to it at a time.

o At any given time, for each SI the SG should have at most one active SU

and at most one stand by SU.

 N-Way redundancy model (Figure 2-3): this redundancy model is more flexible

than the N+M, as it allows the same SU to have two different roles at a time but

not for the same SI. Moreover, in this redundancy model an SI can be configured

to have zero or many standby assignments unlike the redundancy models listed

previously. The definition of the N-Way redundancy model goes along the fol-

lowing lines:

o An SU can be active for some SIs and standby for some other SIs at the

same time.

o For each SI we should have at most on active SU and zero or many standby

SUs. The number of standby SUs is configured at SI level as the preferred

number of standby assignments.

Figure 2-2: example of N+M redundancy model

12

Figure 2-3: example of N-Way redundancy model

 N-Way Active redundancy model (Figure 2-4): in this redundancy model SUs are

only allowed to be active for all the SIs assigned to them, and there are no standby

SUs. As an SI is allowed to have one or many assignments (to different SUs), the

number of active assignment for each SI is configured at SI level as the preferred

number of active assignments.

Figure 2-4: example of N-Way Active redundancy model

 No-Redundancy redundancy model (Figure 2-5): this redundancy model allows

each SI to have at most one active assignment and no standby assignment. It also

allows every SU to be assigned at most one SI in the active role, and no SU can

be stand by at any given time.

13

Figure 2-5: example of No-Redundancy redundancy model

2.2.1.6. Application and Application type

An AMF application is composed of a set of SIs and the SGs protecting them. And as

applications are relatively independent from one another, they form fault zones on which

AMF repair actions can take place in some cases. Naming-wise, an Application is the

parent of all the SGs and SIs that compose it and does not have a parent.

As the types always hold the common attributes of entities, in the case of applications,

applications types specify the list of SG types that can compose applications of that type.

2.2.1.7. Node, Node Group, and Cluster

 For the sake of simplicity, we will restrain the definition of Node as given in [2, 3] and

we will consider a Node as a physical or a virtual host. Note that a Node is also considered

as a fault zone, and AMF has some repair actions that are taken at Node level.

Nodes can be grouped into Node Groups. A Node can be part of zero or many Node

Groups. Node Groups are usually used for:

 Specifying a set of Nodes on which SUs of the same SG will be deployed.

 Avoiding collocation between multiple SUs or SIs. This is done by configuring

the subjects of non-collocation on disjoint Node Groups.

The set of all Nodes configured in the AMF configuration compose the Cluster. The Clus-

ter is considered as the biggest fault zone as the AMF repair actions that are taken at

Cluster level interrupt all the services provided by the system. Also note that when we

talk about one AMF configuration we are necessarily talking about one and only one

Cluster. From a naming perspective, a Cluster is the parent entity for all the Nodes that

compose it and the Node Groups grouping a subset of these Nodes.

2.2.2. State models

AMF uses multiple state models in order to manage the availability of the components

through its configured logical entities. These state models are used to manage the lifecy-

cle of the components, detect failures, assign services to the right resources, etc. In this

14

thesis we were interested in four state models in particular, namely, the presence state of

AMF components, the HA state of a component for a given CSI (resp. of a SU for a given

SI), the administrative state which is the same for SUs, SGs, Nodes, and SIs, and finally

the assignment state of SIs.

The presence state of AMF components is used to manage the lifecycle of these compo-

nents. The transition from state to state is triggered through the previously mentioned

lifecycle management operations. The state set is composed of the following states:

 Uninstantiated: is the state where a component is when the software instance it

represents is not running. It can either be when the component is first deployed

or when it successfully transitions from the terminating state.

 Instantiating: the component transitions to this state from the uninstantiated state

when the instantiate lifecycle management operation is called on it. That means

that the instantiation is triggered or being retried if an instantiation attempt failed

within the allowed number of instantiation attempts.

 Instantiated: is the state to which a component transitions from the instantiating

state if the instantiation call was successful, or restarting if the restart was suc-

cessful

 Terminating: is the state to which a component transitions from the instantiated

state when the terminate lifecycle management operation is called on it. Termi-

nate can consist either of a simple terminate operation, or a terminate operation

followed by a cleanup when the terminate operation fails to terminate the com-

ponent.

 Restarting: a component transitions to this state from the instantiated state when

the restart administrative operation is called on it or in case of error recovery.

Restart operation can be carried on in one of the three following ways:

o Terminate + Instantiate.

o Terminate + Cleanup + Instantiate.

o Cleanup + Instantiate.

 Instantiation-failed: a component transitions to this state from the instantiating

state if all allowed attempts to instantiate it have failed. Note that in AMF we

distinguish between instantiation with delay and instantiation without delay. For

each type of instantiation we have a configured number of maximum allowed

attempts for each component. In addition, in the case of the instantiation with

delay, the delay between attempts of instantiation is also configured at compo-

nent level.

 Termination-failed: a component transitions to this state from the terminating

state or the restarting state when the cleanup operation fails.

Assigning a CSI (resp. SI) to a component (resp.SU) means that AMF gives that com-

ponent (resp. SU) a HA state on behalf of that CSI (resp. SU). The state set of the HA

state model is composed of the following states:

15

 Active: means that the component (resp. SU) is currently handling the CSI (resp.

SI).

 Standby: means that the component (resp. SU) acts as a standby for the CSI

(resp. SI).

 Quiescing: means that the assignment of the CSI (resp. SI) is being gracefully

removed from the component (resp. SU). This implies that new requests for that

service will have to be redirected to another component (resp. SU).

 Quiesced: means that this component (resp. SU) has no role for that CSI (resp.

SI) and that an HA state can be given to another component (resp. SU) on behalf

of that CSI (resp. SI).

The administrative state of an entity reflects the eligibility of this entity to provide a

service. An SU’s administrative state for example reflects if this SU is eligible to be

assigned a service or not. Similarly, if an SG (resp. Node) is not eligible to provide a

service that means that all the SUs grouped (resp. hosted) in this SG (resp. Node) are

not eligible to provide a service. In the case of the SI, it only means whether an SI can

be assigned or not. Transition from an administrative state to another is done via the

administrative operations. AMF translates every call to an administrative operation on

a given target into a set of AMF component life cycle and management operations that

on components that belong to that target. The state set of the administrative state model

is composed of the following states:

 Locked: an entity transitions to the locked state when it is previously on the un-

locked state and the lock administrative operation was called on it. It can also

transition to this state from the locked-instantiation state when the unlock-in-

stantiation administrative operation is called on it. A locked entity is not eligible

to provide the service. Similarly a locked service cannot be provided.

 Unlocked: an entity transitions to this state when the unlock administrative op-

eration is called on it while being in the locked administrative state. It reflects

that the entity is eligible to provide the service. Similarly an unlocked service is

a service that is allowed to be provided.

 Locked-instantiation: means the entity is terminated (note that Sis do not have

this administrative state). An entity transitions to this state when the lock-instan-

tiation operation is called on it.

 Shutting-down: means the entity is not allowed to take new assignments and is

trying to gracefully remove existing ones.

The last state model we are interested in is the SI’s assignment state. It reflects the level

of service provisioning of an SI and whether it has the minimum resources required to

provide the required availability. The transition of a SI from state to state is mainly

driven by the administrative state of the SUs that compose the SG protecting this SI as

well as the assignment state of its sponsor SIs if any. The state set of this state model is

composed of the following states:

16

 Fully assigned: means that the SI has the minimum resource to meet the required

availability and that all the SIs on which this SI depends (Sponsors) have at least

one assignment.

 Partially assigned: means that the SI has at least one assignment, all of its spon-

sors have at least one assignment, but the SI does not have enough resources to

meet the required availability.

 Unassigned: means the SI is not assigned to any SU or one of its sponsors was

unassigned for longer than the configured tolerance time.

2.3. Software Management Framework

The Software Management Framework (SMF) [4] is the service defined in the SAF spec-

ifications and which is responsible for the software management in a SAF compliant sys-

tem. This software management is defined within two aspects:

 Software delivery: which defines how a SAF compliant software bundle

should be delivered, and how it is described in the software repository.

 Software deployment: which defines the software deployment process includ-

ing how to specify a software deployment or a configuration change in general

on one hand, and how the specified instructions should be carried on and ex-

ecuted on the other hand.

2.3.1. Software delivery

A SAF compliant software is delivered as a software bundle, which is defined as set of

interdependent files (including binary files and scripts), that can be used to install, vali-

date, repair or remove the software at any time. Every software bundle is accompanied

by an Entity Types File (ETF), a software vendor provided file that describes the software

bundle as well as the entity types it delivers. This description includes the following:

 Software bundle description: which consists of the name of the software bundle,

as well as various installation and removal scripts. In addition to the scope of

impact of the installation/removal and which can be amongst the previously listed

AMF fault zones (component, SU, container, or node), the ETF also specifies the

paths to scripts of different types of installation/removals which include:

o Online installation/removal: meaning that the installation/removal takes

place while the service is being provided.

o Offline installation/removal: meaning that the installation/removal is

done while the service is not provided by the service provider under up-

grade

 The entity types the software bundle delivers: including the component types and

the component service types they can handle. Sometimes the vendor can also

specify SU types and SG types.

17

2.3.2. Software deployment

The specification of software deployment in the SMF standard is done through the fol-

lowing aspects:

 Description of an upgrade campaign specification: an upgrade campaign specifi-

cation is a road map that SMF follows to perform the changes specified in it. It

should be conform to an XSD schema that is given in the standard [4].

 Description of the execution of an upgrade campaign: the behaviors that SMF

should implement once it is given an upgrade campaign specification as input.

The upgrade campaign specification schema defines the different concepts that should be

used by the campaign designer to specify the changes to be performed. The three main

concepts of an upgrade campaign specification are:

 The upgrade campaign: as one upgrade campaign specification can only specify

the changes to be done within one upgrade campaign. The upgrade campaign

groups the set of procedures that perform the changes required to move the system

to the target configuration.

 The upgrade procedures: used to specify the body of the upgrade campaign. Each

upgrade procedure is composed of the set of upgrade steps performing the same

changes on similar sets of entities.

 The upgrade steps: an upgrade step is a set of related actions to be taken on a set

of entities. Upgrade steps are mainly resolved by the SMF service at the runtime,

but the upgrade campaign specification still has to specify the common attributes

of the upgrade steps of every upgrade procedure.

2.3.2.1. Upgrade campaign

The upgrade campaign is the root element of the upgrade campaign specification xml file,

it comes with one attribute which is the name DN of the upgrade campaign. The behavior

that SMF implements for an upgrade campaign is described in [4] using a state machine,

and the specification of an upgrade campaign is composed of the following sections:

 Campaign info: provides some information about the time the upgrade campaign

is supposed to take as well as the version of the configuration on which it should

operate. When the current deployed configuration is of a different version than

the one specified in this section, the upgrade campaign will not be started by SMF.

 Campaign initialization: a set of pre-campaign actions that need to be done before

the execution of the body of the upgrade campaign. These actions may include

IMM related actions (additions of AMF entity types and entities representing soft-

ware bundles), command line calls, callback calls, or administrative operations on

AMF entities. SMF can only execute the body of the campaign after all the actions

specified in the initialization succeed.

 Campaign body: a set of partially ordered upgrade procedures each specifies a set

of changes to be done during the campaign. The upgrade campaign can either be

18

executed in the forward mode (performing the upgrade), or the rolling back mode

(undoing the upgrade).

 Campaign wrap-up: a set of post-campaign actions that need to be taken either to

complete the changes to be done, or to validate the campaign. These actions in-

clude removals from IMM, command line calls, callback calls, or administrative

operations on AMF entities. The campaign can be committed only after the suc-

cessful execution of its wrap-up.

2.3.2.2. Upgrade procedure

The specification of the body of an upgrade campaign is done using upgrade procedures.

An upgrade procedure is the set of steps to be performed on identical entities. For each

upgrade procedure we specify the name of the upgrade procedure and its execution level.

The execution level is the attribute that specifies the partial ordering in which the upgrade

procedures should be executed. Upgrade procedures are executed in an increasing order

according to their execution level. SMF standard [4] does not specify how upgrade pro-

cedures with similar execution levels should be executed. However, it states that an SMF

implementation should be able to execute these procedures sequentially. In the rest of this

document we refer to the upgrade campaigns that are executed in an SMF implementation

that only supports sequential execution of upgrade procedures as fully ordered. Similarly,

we refer to the upgrade campaigns executed in a SMF implementation that supports par-

allel execution of upgrade procedures with similar execution levels as partially ordered.

In addition to these attributes, the upgrade procedure also specify an initialization and

wrap-up sections that can perform more actions than the upgrade campaign initialization

and wrap-up. The additional actions include additions, removals, and modifications of

AMF entities and not only AMF entity types. The specification of the body of the proce-

dure, on the other hand, covers the following aspects:

 Common attributes for upgrade steps: will be explained later in this document.

 Upgrade scope: which is the set of entities that will be impacted during the exe-

cution of this upgrade procedure. An upgrade scope is composed of a set of Nodes

(Node group), set of SUs or set of components (identified based on their parent

SG and type).

 Upgrade method: based on which the SMF implementation decides how an up-

grade procedure will be decomposed. SMF supports two different upgrade meth-

ods:

o Single step upgrade procedure: which is an upgrade procedure that per-

forms all the changes in one step. Therefore, all the entities within the

scope are impacted and taken out of service, if necessary, at the same time.

This kind of upgrade procedures is usually used for additions and remov-

als of software and new entities.

o Rolling upgrade procedure: which is used to upgrade software as the up-

grade procedure is decomposed into steps per entity in the scope (step per

19

SU, step per component, or step per Node). These steps are executed se-

quentially thus allowing to maintain the availability of the service while

performing the upgrade. Note that a rolling upgrade procedure can have a

roll base which is the number of entities within the scope to be upgraded

at the same time. An upgrade procedure that is targeting SUs, for instance,

and that has a roll base of two, will be decomposed into steps that upgrade

can be executed two at a time. This feature can have impact on the number

of SUs that will be available to provide the service during the upgrade, but

it helps perform the upgrade faster.

 The actions this upgrade procedure should perform. Mainly configuration modi-

fications, or software installations/removals. These actions can also include calls

to administrative operations, or command line calls in order to prepare for a given

a change. These actions can either be performed in one step or several steps de-

pending on the upgrade method.

The behavior that SMF implements for each upgrade procedure is described in [4] using

a finite state machine. The execution or rollback of an upgrade procedure is triggered by

the upgrade campaign, and as a result it triggers the execution of the upgrade steps that

compose this upgrade procedure. In addition, this behavior also covers the failure cases,

and proper messages to send to the upgrade campaign in order to take appropriate

measures to stop the propagation of the fault and correct it.

2.3.2.3. Upgrade step

Upgrade steps are only specified through the common attributes of the steps that compose

a given upgrade procedure. These attributes are:

 Max retry: which is the maximum number of times a step is allowed to be retried

before it triggers a campaign suspension or failure [4].

 Restart option: when the scope of a procedure is composed of components, its

steps can avoid taking the assignments away from these components by just re-

starting the components. This can only take place when this attribute is set.

Among the entities in the scope of the upgrade procedure, each step will take some of

them out of service, and put another subset in service. The set of entities a step takes out

of service is called a deactivation unit (DU), while the set of entities the step puts in

service is called activation unit (AU). When the activation and the deactivation units are

the same, we call that set a symmetric activation unit (SAU).

During its execution, an upgrade step has standard actions that it takes. These actions go

along the following lines:

 Online installation of new software.

 Lock deactivation unit.

 Terminate deactivation unit.

20

 Offline uninstallation of old software.

 Modify information model.

 Offline installation of new software.

 Instantiate activation unit.

 Unlock activation unit.

 Online uninstallation of old software.

The steps for which the restart option attribute is set are called reduced steps and they

take the following actions:

 Online installation of new software.

 Modification of information model.

 Restart symmetric activation unit.

 Online removal of old software.

These actions are taken during the execution of the step. When an action fails, SMF un-

does all the actions that were taken by this step before the failure. Once these actions are

successfully undone, SMF reattempts this step if the retry count has not yet exceeded the

specified max retry. Otherwise, this can only lead either to the failure of the upgrade

campaign, or a suspension of the upgrade campaign.

Note that the administrative operation taken on the deactivation/activation unit are the

main cause of service outage. In addition, the bigger the entity on which the administra-

tive operation is taken, the more time consuming and exposed to failure this latter is.

2.4. Model Driven Engineering

Model Driven Engineering (MDE) is a new trend in software engineering. It focuses on

models to make them more of assets than overheads, in contrary to traditional software

engineering methodologies that use models only for documentation. This transition can

be made by using appropriate tools that can help perform various validation, evolution

and extraction of software engineering artifacts on/from models. Thus, providing an en-

vironment that enables full or partial automation of most of software engineering activi-

ties as well as reuse the models as they are defined at a high level of abstraction. There is

a wide range of tools that, if combined, can enable an MDE process. Computer Aided

Software Engineering (CASE) tools were the first to be introduced, usually used for

model editing, visualization, and automatic code generation. This category includes tools

such as MagicDraw [40], RSA [41], StarUML [42], ArgoUML [43], EMF [45], Papyrus

[44], etc. The other MDE related domain that interested software engineering tools ven-

dors was model management, including transformation, validation, merging, comparison,

and every other activity that might relate or operate on models. In this category, we find

tools such as ATL [28], EPSILON [21], Kermeta [47], QVTO [46], etc. The Object Man-

agement Group (OMG) [48], one of the most influential consortiums and communities in

the software engineering domain, published a standard called Model Driven Architecture

21

(MDA) [49]. This standard can serve as a reference for MDE tools developers and pro-

mote the interoperability between the tools. It was based on existing OMG standards such

as the Unified Modeling Language (UML) [50], the Object Constraints Language (OCL)

[51], the Query View Transformation (QVT) [52], the XML Metadata Interchange (XMI)

[53], and the Meta-Object Facility (MOF) [54]. Several MDE tool vendors already

adopted this standard at least partially.

2.5. EPSILON

Epsilon is a self-contained model management environment that was created specifically

to overcome some limitations of existing tools, such as:

 No support for model modification capabilities.

 No support for multiple models navigation or inter-model constraints expression.

 No independence of the modeling technology. Once the technology used in input

or output models changes, all model transformations will have to be changed as

well.

Epsilon is built on top of the general purpose language Epsilon Object Language (EOL)

[24] as a family of task specific languages for model management. EOL solves all the

aforementioned limitations of other languages by offering:

 A family of task specific languages that we will define further in this document.

 Capabilities for multiple models navigation, multiple input models and multiple

output models.

 Capabilities for inter-model constraints checking.

 Capabilities and ease of extending this family of languages with a new language.

 Support for java code injection in the code of all the languages.

Some of the task specific languages that were built on top of EOL include:

 Epsilon Validation Language, EVL: a language for constraints checking and in-

consistencies repairing.

 Epsilon Transformation Language, ETL [22]: a language for model to model

transformation, it can take an arbitrary number of input models and generate an

arbitrary number of output models. This type of transformation is called mapping

transformation because usually the input models and output models do not use the

same modeling language.

 Epsilon Wizard Language, EWL: a language for in-place model modifications,

also called update transformations.

 Epsilon Generated Language, EGL [23]: a language for model to text transfor-

mation, the ease of use of EGL is basically due to the fact that it is template based.

 Epsilon Comparison Language, ECL: a language for rule based models compari-

son.

 Epsilon Merging Language, EML: a language for rule based model merging.

22

 Epsilon Flock for Model Migration: a language for updating a model in response

of meta-model changes, or to migrate the model from one technology to another.

 Epsilon Pattern Language, EPL: a language for pattern matching in models.

2.6. DEVS formalism

Discrete Even System Specification, DEVS, is a general purpose system modeling for-

malism invented by Bernard P. Zeigler in 1976 [31]. Even if DEVS is mainly based on

discrete events, its applicability is not restricted to discrete events based system. In fact,

it has various extensions and specializations used for a wide range of systems including

parallel systems, real time systems, cellular systems, and dynamic systems where the

coupling structure changes dynamically.

DEVS enables system modeling using elements called DEVS models. A DEVS model

has the ability to change its state independently of its environment, and it has ports

through which it receives input events and fires output events. The behavior of DEVS is

defined through a set of functions, and its structure is defined either through ports only,

or ports and other DEVS models depending on the nature of the DEVS model.

DEVS formalism introduces two types of DEVS models:

 DEVS atomic models: are models that, structurally speaking, do not contain any

other DEVS models. And they are defined using the tuple: <X, Y, S, Ta, DeltIn,

DeltExt, Lambda>

o X: is the set of input events.

o Y: is the set of output events.

o S: the set of states.

o Ta: time advance function, which defines the time spent in each state

(lifespan of a state).

o DeltIn: the function of internal transitions, in this kind of transitions the

decision is made just based on the system state without referring to exter-

nal events.

o DeltExt: the function of external transitions, in this kind of transitions the

decision is made based on the current state of the system and the recent

external events.

o Lambda: the output function, this function specifies the events that the

atomic model should fire after every state transition.

 DEVS coupled models: are complex models that contain other coupled or atomic

models within them. And they are defined using the tuple: <X, Y, D, {Mi }, Cxx ,

Cyy , Cyx , Select>

o X: is the set of input events.

o Y: is the set of output events.

o D: the set of subcomponents’ names.

23

o {Mi }: the set of subcomponents.

o Cxx : is the set of external input couplings. From coupled model input to

one or some of its subcomponents inputs.

o Cyy : is the set of external output couplings. From one or some of the sub-

components outputs to one or some of the coupled model outputs.

o Cyx : is the set of internal couplings. Couplings between subcomponents.

o Select: is the function which defines how to select the event from the set

of simultaneous events.

Many simulators use DEVS as a modeling formalism including MS4 system, DEVS-

Suite [29], PyDEVS, and many others.

2.7. Related work
Component dependencies and dynamic reconfiguration of component based systems

have been thoroughly investigated in the literature. Chen [8] proposes an approach for

dynamic dependency management for dynamic reconfiguration of component based sys-

tems. He considers the “static” (design time) known functional dependencies among com-

ponents, but defines the concept of dynamic dependency that holds temporarily when a

client component calls a method in a server component. The idea is that the dependencies

defined at design time do not hold all the time during execution but only when a compo-

nent is using another component. The proposal is to monitor the interactions of each com-

ponent using a virtual stub that registers ongoing interactions, block interactions when

needed for the reconfiguration, and resume blocked interactions after reconfiguration.

The proposed approach is not applicable in the context of service high-availability as

blocking interactions between components while they are still providing service will cer-

tainly lead to service outage.

Matevska et al. [9] tackle the problem for the same kind of dependencies as in [8], with

the goal of minimizing service outage. They define the concept of dynamic de-pendency

graph to keep track of which component is currently using which other component. Com-

ponents can be in different states, free, passive and active. Components are only changed

when they are in free and passive states; before the changes are performed they are

blocked and incoming invocations are queued. To avoid service outage, the idea is to find

the optimal point in time during the evolution of this dependency graph, and change a

component when there is no runtime dependency to it. The authors are concerned with

high-availability and service outage, but there is no guarantee there will be an optimal

point in time and there is no guarantee about the duration of the changes while incoming

invocations/requests are blocked. A similar approach, where software modules are only

upgraded in safe states and future incoming requests are buffered is described in [10].

Dependencies relevant for upgrades in the context of AMF have been studied in [11].

Two kinds of dependencies are considered: functional dependencies (directed dependen-

cies in this paper) and upgrade dependencies. Upgrade dependencies are dependencies

between two upgraded components that did not exist between the original components.

24

A directed graph is created from these dependencies and taken into account for the design

of the upgrade campaign. However, not all relevant dependencies are considered (e.g.

collocation dependencies) and the type of applications that are considered is limited.

Other works [12], [13] consider component dependencies during dynamic recon-figura-

tion of component based applications from the perspective of application consistency, not

removing a component while it is being used by another one, avoiding dangling refer-

ences, etc., but with no consideration to the service outage and high-availability. Depend-

encies are determined at runtime and taken into account before removing or updating a

component. Other approaches rely on specific operating systems [14], container environ-

ments [15] or component models [16] or use low-level approaches with wrapper-like

functions [16] or modify source code [18]. An overview of techniques used for dynamic

reconfiguration can be found in [19].

Upgrade execution time estimation is one of the main concerns of systems administrators.

This execution time is an aggregation of execution times of the actions taken during the

campaign’s execution. These actions can be either software installation or removals or

some component management action. The upgrade time of database and software has

been investigated in the recent years by both research and industry such as the work pre-

sented in [33]. For some database based software and for some specific types of upgrades,

bounded by some constraints on the type of changes to be done on the schema and the

data, Michal et al. in [33] propose an evolutionary algorithm that uses data from previous

upgrades to estimate the time required to upgrade every atomic entity in the system (in

this case business objects), and then estimate the time required for the next upgrade based

on the business objects that will be upgraded and the previously estimated respective

upgrade durations.

 Two of the major challenges of availability are the unplanned downtime due to software

glitches and the planned downtime caused by system upgrades. That makes the outage

induced by an upgrade campaign one of the main factors to consider while estimating the

availability of a system on the long term. The work in [34] presents an assessment of

reliability and availability of a Storage Area Network (SAN) after two types of exten-

sions: SONET based SAN extension, or an IP based SAN extension. In the analytical

models used to compare the solutions, the authors took into consideration system up-

grades by setting a fixed number of upgrades per year, their durations and the downtime

they induce. Using these hypothesis they were able to estimate the availability and relia-

bility of the SAN in the long term. In our work, we are not targeting the system config-

uration that will make the system most reliable and available, but we suppose the admin-

istrator already has this configuration and the upgrade campaign specification that can

take the system to that configuration, and we try to estimate the cost of this migration in

terms of execution time and service outage.

25

Unlike the work in [34], Kanso et al. in [35, 36] did not consider the effect of upgrade

campaigns on the downtime in the long term. The authors proposed an approach to esti-

mate the availability of a service provided by a SAF system based on its current config-

uration. They used Deterministic and Stochastic Petri Nets (DSPNs) [39] to model the

configuration, and they explored components’ failure modes and recovery actions

mapped to every failure mode. They extended the SAF models in a similar way as we did

in order to provide the missing time and failure data. Unlike our work, the work in [35]

was using a different formalism to model a SAF system, in addition in our work we esti-

mate the downtime during an upgrade campaign which is the planned downtime, while

[35] was focused mainly on the unplanned downtime.

Determining execution time of hard real-time system has been thoroughly investigated

during the past two decades [37, 38]. In order to guarantee the satisfaction of the deadlines

of such systems, designer need to analyze/measure the execution time of the different

tasks of the system. This can be done using static code analysis or measurement during

execution prior to deployment. Worst Case Execution Time (WCET) analysis determines

the upper bounds of the execution time of the different tasks [38]. This is usually done

by characterizing the different paths in the program and the constituent instructions (ma-

chine level) and the execution time of each instruction. This analysis is generally hard-

ware dependent. The analysis of the execution time of upgrade campaign specification is

different in a sense that it is at a higher level and takes into account failures and retrials.

Moreover, we also determine the service outage in our simulation.

26

Chapter 3 - Upgrade campaign specification generation

This chapter presents the challenging issues of upgrade campaign specification design

and the need to automate it. It also introduces our model driven approach for automatic

upgrade campaign specification generation. This chapter also includes a presentation of

the modeling framework used to express various artifacts involved in the generation pro-

cess.

3.1. Challenges

An upgrade campaign is the process of migrating the system from one configuration to

another. In SAF compliant systems, SMF is the engine responsible for the orchestration

of such a migration. To perform the changes, SMF takes an upgrade campaign specifica-

tion file as input. This file contains different actions required to perform system changes.

When designing an upgrade campaign specification, the campaign designer can face sev-

eral challenging issues. These issues arise from the complexity and the size of the system

as well as the amount of actions required to move the system from one configuration to

another.

When upgrading a highly-available system, an administrator has two main concerns:

 Correctness of the upgrade: correctness means that the instructions passed to the

upgrade engine are performing the required changes.

 The outage and service disruption the campaign can induce: in HA systems outage

can be very costly. While system upgrades are necessary for maintenance pur-

poses, they are considered one of the main causes of outage. Several system as-

pects can be managed in order to reduce the outage such as:

o Dependencies: Systems’ building blocks can depend on each other, and

upgrading one component may impact another. This effect should be con-

sidered by the campaign designer while ordering the changes.

o Upgrade methods: SAF specifications define two upgrade methods, and

using the wrong upgrade method to perform the changes might induce

some unnecessary outage.

o Upgrade scope: Choosing the right activation/deactivation unit of an up-

grade procedure can reduce significantly the service outage and disruption

induced by an upgrade campaign.

Considering all these aspects, designing an upgrade campaign is a significantly complex

and error prone task. This task becomes more difficult with more complex systems as we

see it in the cloud context. Model driven techniques have been widely used to increase

the level of abstraction and ease transformations. In the following sections, we will show

27

how we addressed these issues to devise a model driven approach for the automatic gen-

eration of upgrade campaign specifications.

3.2. Modeling framework

The upgrade campaign specification generation process includes several activities. Each activ-

ity has a set of inputs and a set of outputs according to its role. We designed a modeling frame-

work that enables us to express various artifacts generated/exchanged during the generation

process. This framework includes three meta-models which represent the three domains of in-

terest for our work. The change meta-model is used to express the changes a system can un-

dergo. The dependencies meta-model is used to capture the relationships between AMF entities

and the dependencies between the components they represent. Finally, the upgrade campaign

specification meta-model is used to express SAF compliant upgrade campaign specifications.

These meta-models are described in the following subsections.

3.2.1. Change meta-model

The change meta-model (Figure 3-1) is used to describe the changes to be performed to take

the system from the source configuration to the target configuration. These changes, can be

either IMM related changes (ModifyImm, AddToImm, RemoveFromImm) or software related

changes (SoftwareChange).

The software related changes (SoftwareChange) are the installation (SwInstallation) or remov-

als (SwRemoval) of software bundles from a set of nodes (UCGNode).

The IMM related changes can be either addition to (AddToImm), removal from (RemoveFro-

mImm) or modification made to (ModifyImm) the existing content of IMM.

A removal from IMM can be done just based on the DN of the object to be deleted, an addition,

on the other hand, needs all the attributes of the object to be added. This is why we have every

AMF object mapped to a set of attributes characterized by a name, type and value. For modi-

fications we need the source object and target object to be able to define which attributes were

modified.

28

Figure 3-1: Change meta-model

3.2.2. Dependencies meta-model

The dependencies meta-model (shown in Figure 3-2) captures the different dependencies that

may exist between entities in an AMF configuration and their relations. These dependencies

can be used for different purposes depending on their category:

 Directed dependencies are used to order the changes. The ordering of the changes

will be described in more details later on this document.

 Symmetrical dependencies are used to handle compatibility and service protection

issues. This gives significant insight on what upgrade method to choose (rolling

upgrade, or single step upgrade). These dependencies are also used to order the

upgrade procedures not only based on the relationships between their targets but

also the nature of the change to be performed on each target (addition, upgrade,

or removal) [55].

 Collocation dependencies are used both to improve the choice of the upgrade

method and to determine which procedures can be merged with each other.

Further explanations and details regarding these dependencies will be given later in this docu-

ment.

29

Figure 3-2: Dependencies meta-model

3.2.3. Upgrade campaign specification meta-model

The upgrade campaign specification meta-model (Figure 3-3) captures the concepts needed to

generate a SAF compliant upgrade campaign specification. It is described using upgrade ob-

jects (UCG_UpgradeObject). Every upgrade object is defined through the definition of its ini-

tialization, body, and wrap up sections.

The main upgrade objects (UCG_UpgradeObject) used to specify an upgrade campaign are:

 The upgrade campaign (UCG_UpgradeCampaign): It is the root element of the

upgrade campaign specification.

 The upgrade procedure (UCG_UpgradeProcedure): The upgrade objects compos-

ing the upgrade campaign’s body specifying how a set of changes should be de-

ployed.

The upgrade campaign body is composed of upgrade procedures, while the upgrade procedure

body is composed of the upgrade step description, which is an ordered list of upgrade actions

(UCG_Action), and the target entities. This set of upgrade actions may be repeated for different

subsets of the target entities.

The initialization and the wrap up sections are also composed of ordered upgrade actions.

An upgrade action can be:

 IMM related operation (UCG_ImmOp): like addition, removal or modification of

an object in IMM.

30

 Software related action (UCG_SwOp): like installation and removals, usually

called based on the software bundle DN and the node on which the installation

should be done (PlmEE).

 Administrative operation (UCG_AdminOp): administrative operations defined in

the AMF standard (Lock, Unlock, Lock-Instantiation, and Unlock-Instantiation),

these operations are called on objects based on their DNs, and for every adminis-

trative operation we should define how it should be done in the direct execution

and in rollback (doing and undoing of the administrative operation).

 Callback (UCG_Callback): called on entities deployed in the system, based on

their DNs.

 CLI Command (UCG_Cli): commands called using the CLI (command line in-

terface), they are specified using the path of the command, its arguments. For each

command we specify how it is called in the execution and in the rollback paths

(doing and undoing of the command).

While software related actions can only be part of a procedure body, the other four can be used

in the initialization and wrap-up sections as well.

Figure 3-3: Upgrade campaign specification meta-model

3.3. Overall approach

The main inputs of our approach for the upgrade campaign specification generation are:

 Source configuration: The configuration describing the system in its current state.

 Target configuration: The configuration describing the state where we want to

take the system after executing the upgrade campaign.

31

 ETFs: The Entity Types Files (ETF) of the software available in the software re-

pository describing the software bundles deployed and to be deployed in the sys-

tem and the entity types they provide.

The source configuration and the target configuration go through a first transformation, as

shown in Figure 3-4, that creates a model called a change model. The change model is an

instance of the change meta-model and describes the changes that need to be performed on the

source configuration to get to the target configuration. From this change model, and using an-

other transformation, we generate an elementary upgrade campaign specification model, in-

stance of the upgrade campaign specification meta-model, that contains an upgrade campaign

element for each change of the change model. This upgrade campaign specification model goes

then through a first refinement that matches upgrade campaign elements that can be performed

in the same upgrade procedure. For each match, all the upgrade campaign elements are merged

into an upgrade procedure and the elements not required anymore are deleted from the upgrade

campaign specification model. The three inputs should also go through a transformation where

the different dependencies between the system’s entities are extracted into a dependencies

model, instance of the dependencies meta-model, from each of the configurations and the pro-

vided ETFs. Finally, and using the dependencies in the dependencies model, the upgrade cam-

paign specification model is refined for the second time using a transformation that takes into

consideration the dependencies between the system components to create a partial order and to

determine the optimal scope for each set of matched changes.

32

Source

Configuration

Target

Configuraiton

ETFs

Change Model

Creation

Actions Creation

Actions Matching

Dependencies

Extraction

Ordering and

Scope

Optimization

Change Model

Dependencies

Model

Upgrade Campaign

Specification Model

Upgrade Campaign

Specification Model

(first refinement)

Upgrade Campaign

Specification Model

(second refinement)

Activity

Artifact

Input/Output

Legend

Flow

Figure 3-4: Overall approach

3.4. Transformations

3.4.1. Change model creation

The creation of the change model consists of comparing the source and target configura-

tions and determining the changes between them, which should imply the actions required

to take the system from the state describe by the source configuration to the desired state

of the target configuration. This comparison is not straight forward, and was handled in

the work in [6]. This section will describe briefly the challenging issues of this task and

how the work in [6] proposed to solve them.

The source and the target configurations may not use the same naming for the entities.

The assumption though is that at least the service instances, which are provided before,

33

after and throughout the upgrade have the same name in the two configurations as name

changes of entities in the runtime system is not permitted.

Starting with this assumption the work in [6] proposes to identify the configuration ob-

jects representing the provider entities of each service instance in each of the configura-

tions and map them (i.e. their names) to each other in each of the configurations to have

a consistent naming of configuration objects. Next one should compare the mapped con-

figuration objects, their attributes and their associations. If the configuration of the rep-

resented entities, their types and associations are identical in the two configurations then

they are not targeted by the upgrade and they are not considered any further. The work in

[6] did not follow a model driven approach, and it does not output a model. The change

meta-model that we designed and described earlier allows us to put the results of this

difference calculation into a model for further uses.

Mapped configuration objects representing entities whose attributes, types or associations

change between the two configurations are the AMF entities targeted for modification in

the upgrade and based on the differences between the configurations we add to the change

model the appropriate AMFEntity objects and their ModifyImm changes. If there is a

type change we check if we need to also add a new AMFEntityType objects associated

with the AddToImm and SwInstallation changes, an old AMFEntityType objects associ-

ated with the RemoveFromImm and SwRemoval changes, or a AMFEntityType objects

associated with ModifyImm change for any modified type.

For configuration objects (AMF entities, AMF types and objects of association classes)

present only in the source configuration and not handled yet we add the appropriate AM-

FEntity and/or AMFType objects and the RemoveFromImm and SwRemoval changes to

the change model. Similarly for configuration objects present only in the target configu-

ration we add to the change model the appropriate AMFEntity and/or AMFType objects

and the AddToImm and SwInstallation changes as necessary.

3.4.2. Actions creation

This transformation takes the change model as input and outputs an elementary upgrade

campaign specification model which contains an upgrade campaign element for each

change contained in the change model.

 These upgrade campaign elements are created according to the standard upgrade cam-

paign schema and they respect the logic described in the different SAF specifications.

This implies of putting the right upgrade actions in the right sections of the upgrade cam-

paign specification some parts of which require explicit specification of actions and their

targets (e.g. initialization, wrap-up), while other parts have standard actions and require

only their parametrization (e.g. upgrade step).

34

Modify SI Lock SI,

modify SI

Unlock SI

Add SI in

locked state

Table 3-1: Mapping changes to corresponding SAF compliant actions and their posi-

tions

Campaign

initialization

Procedure

initialization

Procedure

body

Procedure

wrap up

Campaign

wrap up

 Software

installation

Add software

bundle to

IMM

Software

installation

Software

removal

Software

removal

Remove

software

bundle from

IMM

 Add type

Add type

to IMM

 Remove type

Remove type

from IMM

 Add SI

Unlock SI

Remove SI

Lock SI

Remove SI

Add SU, Node,

or Comp

Add entity

in AU

 Remove SU,

Node, or Comp

Remove en-

tity in DU

 Modify SU,

Node, or Comp

Modify entity

in symmetric

AU

 Add/modify

other entities

Additions or

modification

 Remove other

entities

Removal

35

The elementary upgrade campaign specification model may not yet be fully compliant to

the model of the standard upgrade campaign specification schema as at this stage some

schema elements are only partially defined. E.g. an upgrade procedure may only have an

initialization and/or a wrap-up section, but not a body.

In the change model, we have distinguished whether the target of an IMM operation is

related to the AMF entity type or an AMF entity. This was to be able to put these opera-

tions in the right section of the upgrade campaign specification as indicated in Table 3-1.

Another aspect of respecting the logic of SAF specifications stipulates the need of pre-

paring for an upgrade action implementing a change before performing it, for example

before removing an SI it should be first locked.

This set of rules is summed up in Table 3-1. It indicates for each possible change of the

change model (rows) the corresponding upgrade actions (cells) and the section of the

upgrade campaign specification (columns) they need to be placed

The modification of types and AMF associations is not a straight forward task, and re-

quires a lot of precaution to decide how to perform and where to put such a modification

to keep the configuration consistent. A problem often faced with type modifications is

the case when during the upgrade we have peer (aka collaborating redundant) entities that

operate under different types (configurations). To be able to handle this kind of changes

we classified the relevant attributes of the types and associations into three categories,

and each category is treated differently as shown in Table 3-2.For the attributes with the

“set Max before” strategy, we start by setting the changed attribute to the maximum of

old and new values, and set it to the new value later after upgrading the entities. For the

attributes using the “set Min before” we set the value of the changed attribute to the min-

imum of new and old value. Attributes of the third category are data collections and re-

quire that we extend them before their upgrade to make the entities able to operate in both

old and new configuration, and later on we remove what has to be removed and keep only

the desired configuration.

With respect to the placement of the changes the modifications of types can be of two

kinds:

 Modification of the type of the entity being upgraded: In this case we place the

changes to prepare for the upgrade (the set Max before for example) in the initial-

ization of the procedure, and to perform the rest we put them in the wrap-up sec-

tion of the same procedure.

 Modification of the type of the sponsor or dependent entity: Modifications are put

in the initialization and the wrap-up of an independent procedure specifically or-

dered with respect to the procedure operating on the entity being upgraded based

on compatibility

36

Table 3-2: Types and AMF Associations Attributes Handling Strategies

 X

X

X

X

X

 X

 X

 X

X

 X

X

 X

 X

 X

X

 X

 X

 X

 X

Class

Attribute

Set

Max

before

Set

Min

before

Add

first,

remove

later

 SaAmfSGType

saAmfSgtValidSuTypes

 saAmfSgtDefCompRestartProb

saAmfSgtDefCompMaxRestart

 saAmfSgtDefSuRestartProb

 saAmfSgtDefSuMaxRestart

 SaAmfSUType

saAmfSutProvidesSvcTypes

 SaAmfSutCompType saAmfSutMaxNumComponents

 saAmfSutMinNumComponents

 SaAmfSvcType

saAmfSvcDefActiveWeight

 saAmfSvcDefStandbyWeight

SaAmfSIDependency

saAmfToleranceTime

 SaAmfSvcTypeCSTypes

saAmfSvctMaxNumCSIs

SaAmfCompType

saAmfCtDefClcCliTimeout

 saAmfCtDefCallbackTimeout

 saAmfCtDefInstantiationLevel

 SaAmfCtCSType

saAmfCtDefNumMaxActiveCSIs

 saAmfCtDefNumMaxStandbyCSIs

 SaAmfCompCsType

saAmfCompNumMaxActiveCSIs

 saAmfCompNumMaxStandbyCSIs

37

3.4.3. Actions matching

The actions matching transformation refines the elementary upgrade campaign specifica-

tion model generated by the previous transformation by matching the upgrade campaign

elements that should be done within the same procedure. After this matching transfor-

mation the upgrade campaign specification model should be fully compliant to the model

of the standard upgrade campaign specification schema.

To perform the matching we propose the following rules:

 Rule #1: actions on peers match. Meaning that upgrade campaign elements on

components or SUs, which are redundant of each other, should be done in the

same procedure. E.g. upgrade of SUs of the same SG match and the upgrade

campaign elements are merged into a rolling upgrade procedure

 Rule #2: actions on entities match actions on their children. That means that the

upgrade campaign elements with upgrade actions on a parent and on its child

need to be done within the same procedure. E.g. the upgrade of an SU and its

component match their upgrade campaign elements are merged together into the

same upgrade procedure.

 Rule #3: actions on entities match actions on software bundles providing their

types or the types of entities they match. That means that the upgrade campaign

elements with the modifications of entities and with the installation/removals of

software associated with these modifications should be done in the same proce-

dure. E.g. the upgrade of a component and the installation of the software bundle

delivering its type match and merged into the same upgrade step/procedure.

 Rule #4: actions on services match actions on entities protecting them. Meaning

that any modification of a service entity matches the modifications on their ser-

vice provider entities. For example, a modification of an SI matches the modifi-

cations on the SUs protecting the SI.

 Rule #5: for the matching of actions on AMF associations we distinguish four

cases:

o Type to Type associations: do not need to be matched since they will be

done in the campaign initialization or wrap-up section.

o Service to Service associations:

 for addition: they are matched to last added and put in the wrap-

up of the procedure,

 For removal: they are matched to first removed and put in the in-

itialization of the procedure.

38

o Type to Entity associations: matched to the actions performed on the en-

tity, they are added in the wrap-up of the procedure and removed in the

initialization.

o Entity to Entity associations:

 For addition: they are matched to the first added and put in the

wrap-up,

 For removal: they are matched to the last removed and they are

put in the initialization.

These rules if applied in arbitrary order might result in the wrong matching up of actions.

For instance, let assume that we have two SGs with SUs of the same type protecting two

service instances of the same service type. In this case, if these rules are applied in the

wrong order that might result in the matching of actions on SUs of the first SG with

actions on SUs on the second SG, i.e. if Rule #3 is applied first. In order to avoid such

mistaken matching, we recommend that Rules #1, #2, and #3 to be applied in this order,

while the implementer may decide of any ordering for the rest of the rules.

3.4.4. Dependencies extraction

In this transformation we extract from the ETFs, the source and the target configurations

the different dependencies between the system’s components based on their attributes

and the way they are deployed. The different dependencies that we can extract are as

follows:

 SI dependency: between two SGs one of them protecting a sponsor SI (Sponsor

SG) and the other is protecting a Dependent SI (Dependent SG).

 Proxy-Proxied dependency: between two SGs one of them protecting a Proxy SI

(Sponsor SG), and the other is protecting its Proxied SI (Dependent SG).

 Instantiation dependency: between a pre-instantiable component of a SU (Spon-

sor), and another pre-instantiable component of the same SU with a lower Instan-

tiation Level (Dependent). Lower instantiation Level means that the value of the

attribute saAmfCompInstantiationLevel is higher.

 CSI dependency: between CSIs of the same SI. Implying that the sponsor CSI

should be assigned before the dependent CSI.

 Container-Contained dependency: we characterize the sponsor and dependent in

this kind of dependency based on their SG and type, meaning that components

belonging to the SG SponsorSG and of type SponsorType, are containers of com-

ponents of the SG dependent SG and of type DependentType.

 CompCSIDependency: this kind of dependency is the instantiation dependency

version for non-pre-instantiable components. It exists between components of the

39

same SU, and means that components of the SU of type DependentType depend

on components of the same SU that are of type SponsorType. This dependency

imposes only a partial order, since we say that this dependency exists between

two types if and only if none of the CSIs handled by the SponsorType depend on

any of the CSIs handled by the DependentType and all the CSIs handled by the

DependentType depend on at least one of the CSIs handled by the SponsorType.

In this case we can deduce an ordering for the changes on the components of that

SU otherwise we upgrade them all at once taking as AU/DU at least to SU level

(no restartability option).

 SU collocation dependency: exists between components sharing the same SU.

 Node collocation dependency: exists between SUs configured for the same Node,

or SGs having a Node in common.

 NodeGroup collocation dependency: exists between SGs sharing the same Node-

Group.

 Container collocation dependency: derived from container-contained depend-

ency, and identifies the pairs (dependent type, dependent SG) that share the same

pair (sponsor type, sponsor SG).

Figure 3-5: Example of a deployment configuration

The deployment configuration shown in Figure 3-5 has one Node Group (NG1) on which

three SGs (SG1, SG2, and SG3) are deployed. Each one of these SGs has three SUs, and

40

the components of the SUs of SGs 2 and 3 are contained by the first components of the

SUs of SG1. This part of the configuration shows the following kinds of dependencies:

 Node Group collocation dependency between SGs 1, 2, and 3.

 SU collocation dependency between components of the same SU (mainly at

the SG1’s SUs level).

 Service protection dependency between SUs of the same SG.

 Container-Contained dependency components of SUs of SG1 and compo-

nents of SUs of SGs 2 and 3.

 Container collocation dependency between components of SUs of SGs 2 and

3.

 Peer dependency between components in the same SG and of the same type

(in our figure same filling).

The second part of this deployment configuration shows SGs 4, 5, 6, and 7 for which the

SUs are configured per Node. SG4 protects SI1, SI1 depends on SI2 that is protected by

SG5; and SG6 contains components that proxy other components within SG7. So, in ad-

dition to the already mentioned dependencies (Service protection and Peer), this part of

the configuration shows other types of dependencies:

 Node collocation dependency between SUs configured for the same Node (SU41,

SU52, SU61, and SU71 for example)

 SI dependency between the Sis protected by SG4 (dependent) and SG5 (sponsor).

 Proxy-Proxied dependency between components within SG6 (proxy a.k.a spon-

sor) and components within SG7 (proxied a.k.a dependent).

Figure 3-6 shows a dependencies model (instance of the dependencies meta-model) that

describes the dependencies in the already described configuration, attributes of some se-

lected dependencies instances were emphasized in order to show the attributes we use to

describe each type of dependency based on different participants.

41

Figure 3-6: Figure 3-5 deployment corresponding dependencies model

3.4.5. Ordering and scope optimization

The last transformation is takes into consideration the dependencies extracted from the

source, the target configurations and ETFs to determine the appropriate ordering of the

execution of upgrade procedures. As mentioned before two categories of dependencies

have to be considered in the ordering of upgrade procedures: symmetrical and directed

dependencies.

The changes of entities related by a symmetrical dependency are to be ordered as de-

scribed in [55]:

 Addition can happen whenever possible with respect to any directed dependencies

the entities are involved.

 Upgrade of an entity cannot happen before the addition of all the entities which need

to be added, and which are related to this entity through a symmetrical dependency.

42

 The removal of an entity cannot happen before the upgrade of all entities which need

to be upgraded, and which are related to this entity through a symmetrical depend-

ency.

The directed dependencies are mainly driven by the compatibility between the sponsor

and the dependent entities, and the rationale that the dependent entity cannot exist without

the sponsor. The ordering as given in [57] is summarized in Table 3-3.

Table 3-3: Ordering rules for directed dependencies

Change on

sponsor

Change on de-

pendent

Order

Addition Addition Sponsor first

Removal Removal Dependent first

Addition Upgrade Sponsor first

Upgrade Addition Sponsor first

Upgrade Upgrade Depends on compati-

bility

Removal Upgrade Dependent first

Upgrade Removal Dependent first

The rules described in Table 3-3 impose an order that allows for performing the changes

without violating the different dependencies. However, these rules do not cover other

factors that impact the outage the upgrade campaign may induce, such as:

 The choice of AU/DU.

 The choice of the upgrade method.

 If there is a chance for the upgrade campaign triggering a rollback it is preferred

if this happens as early as possible in the execution. Rollback is triggered by a

failure and implies that all the procedures executed successfully before the failure

are rolled back. Hence earlier this happens less impact it has on the system.

We propose some heuristics to improve the quality of an upgrade campaign specification.

This quality improvement can reduce the outage the upgrade campaign may induce and

the time it may take. In the following, we work under the assumption that the Node has

the biggest scope of impact, followed by the Container then the SU, while the Component

has the smallest scope of impact:

43

 Heuristic #1: keep the AU/DU to the minimal scope of impact. In other words,

the AU/DU will be at most of the scope of impact of the software bundle instal-

lation/removal. If the upgrade consists only of IMM modifications then the

AU/DU will be modification scope bounded. For instance, if an SU is to be mod-

ified, there is no need to lock the Node.

 Heuristic #2: put as many changes as possible into the procedures having a bigger

scope of impact. For instance, if the upgrade of a contained entity has the scope

of impact of the Container we can upgrade with it all collocated contained entities.

 Heuristic #3: procedures with bigger scope of impact should be executed as early

as possible. The rationale is that more actions a step may take more likely it will

fail. Since a step with a Node as its AU/DU, for instance, can take actions on any

and all of the hosted entities it is more likely to fail than a step that has an SU as

its AU/DU.

 Heuristic #4: an execution level should contain procedures of the same scope of

impact. In order to force Heuristic #3 to apply also in a fully ordered upgrade

campaign.

3.5. Summary

The design of an upgrade campaign specification is not a straight forward task. This de-

sign implies insuring the validity of the upgrade campaign specification as well as the

proper ordering of the changes it should perform. In order to achieve this, one should

handle several aspects of the system including the dependencies between its components.

Automation is a viable solution to minimize human intervention in this process and make

it more efficient. In this thesis we propose a model driven approach to automate upgrade

campaign specification generation. Our approach goes through different steps which ei-

ther generate new artifacts or refine already generated ones. These artifacts are models,

and we propose a modeling framework that can express them. This modeling framework

includes:

 Change meta-model: used to express the set of changes required to move the sys-

tem from the source configuration to the target configuration.

 Dependencies meta-model: used to model various dependencies between system

components.

 Upgrade campaign specification meta-model: used to model a SAF compliant up-

grade campaign specification.

Our approach takes as input the source configuration, the target configuration and the

ETFs. From the source and target configurations we derive the change set in a first step

which outputs a change model (conforms to the change meta-model). From the change

model we generate the first upgrade campaign specification model (conforms to the up-

grade campaign specification meta-model). This upgrade campaign specification model

44

undergoes a refinement to become SAF compliant. We use the aforementioned three in-

puts to extract the dependencies between system components into a dependencies model

(conforms to the dependencies meta-model). We use these dependencies to make the pre-

viously generated upgrade campaign specification model undergo yet another refinement.

This refinement applies a set of heuristics that can help reduce the outage the campaign

may induce and the time it may take.

The work in this thesis enables the generation of upgrade campaign specifications that

can be used to perform a wide spectrum of types of changes. These types of changes

include the modification, addition and removal of AMF entities from the AMF configu-

ration as well as software installations/removals. Yet, there are some types of changes

that this approach (as is) cannot handle properly. An example of these changes is the

change of redundancy models of SGs. During the change of the redundancy model of an

SG, this latter will be composed of SUs that are meant to run under different configura-

tions. A simple rolling upgrade as the ones that an implementation of [4] supports is not

a safe choice to perform such a change. Moreover the use of single step upgrades will

induce an outage which might not be tolerated. Another such case is when upgrading

components to a version of the software with no backward compatibility. As peer com-

ponents (components playing similar roles in SUs redundant of one another) need to com-

municate and synchronize states, the incompatibility between the old and the new version

of the software might not allow that. One might consider extending this approach to sup-

port such types of changes as a potential extension.

Finally, it is worth noting that the work that was presented in this section was published

in [57] in the context of this thesis.

45

Chapter 4 - Upgrade campaign specification evaluation

In order to upgrade a system, the administrator may have multiple candidate upgrade

campaign specifications of which he has to choose the one to execute. Choosing one up-

grade campaign specification over another requires insight on:

 The outage each upgrade campaign specification may induce.

 The time each upgrade campaign specification may take.

Having this kind of information will not only help the administrator compare upgrade

campaign specifications, but also check for their applicability. The applicability check in

this thesis is based on the following:

 The outage should not exceed the allowed outage.

 The execution time should fit within the maintenance window.

In order to perform such an evaluation, one should consider several parameters. These

parameters include system components, their behaviors, and dependencies, as well as the

specified behaviors that SMF and AMF implement during an upgrade campaign. There-

fore, upgrade campaign evaluation is a tedious and error prone task if done manually,

thus the need for automation. In the following subsections we will discuss a previously

proposed approach for simulation based upgrade campaign evaluation. We will expose

its limitations as well as the various extensions we proposed to overcome these limita-

tions. We will also describe the method we propose in this thesis for upgrade campaign

specification elimination/selection based on the results of their applicability checks.

 4.1. Previous work: simulation based approach for upgrade campaign evaluation

The previous work in [7] proposed an approach based on the DEVS formalism for up-

grade campaign specification evaluation.

46

Figure 4-1: approach of the previous work on the evaluation of upgrade campaign

specifications [7]

The proposed approach (Figure 4-1) takes as input an upgrade campaign specification,

system’s current configuration and an upgrade context. These three input go through a

model transformation that instantiates for each entity in the upgrade campaign specifica-

tion and the AMF configuration an associated atomic DEVS model defined in the Java

upgrade library. The generated coupled DEVS model as well as the Java upgrade library

are loaded into the DEVS-Suite simulator in order to run the simulation. During the sim-

ulation we track the assignment state of SIs to trace the outage during the upgrade cam-

paign. For each upgrade procedure and the upgrade campaign we trace the time they

spend in the executing state to get the execution time of each procedure and of the whole

campaign as well.

The upgrade context in [7] is an input that will provide the failure models of the system’s

components, and the time attributes for software operations (installation/removal) and

administrative operations. However, it did not specify how the upgrade context can be

used in a simulation. In addition, no behavior was associated with the DEVS atomic mod-

els that represent the AMF components. In other words, AMF components were repre-

sented as DEVS atomic models that remain idle during the simulation. Without a behav-

ior associated with these models, one cannot simulate a time-constrained administrative

operation. In fact, and administrative operation call usually translates into a set of AMF

component lifecycle and management operation calls. These calls are the source of the

time constraints that apply to administrative operations.

 4.2. Extended simulation approach and limitations of random simulation

In this work we extended the previously described approach in order to:

 Introduce the attributes related to the upgrade context.

47

 Extend and modify the atomic DEVS models to include the components and thus

put the upgrade context in action during the simulation.

 Expose some limitations of the simulation for the evaluation and comparison of

upgrade campaign specifications and overcome those limitations using a solution

that we will describe further in this document.

4.2.1. Extended approach for upgrade campaign specification simulation

Figure 4-2: overall approach and simulation environment

In our new approach (Figure 4-2) we kept the same set of inputs, however, in addition to

the java upgrade library, we introduced two new building blocks of the simulation envi-

ronment:

 A modified DEVS-Suite: a modified version of DEVS-Suite simulator that eases

the simulation of orchestrated collaborations. The extension to both the formalism

and the simulator will be explained further in this document.

 Advanced analysis package: which help implement some controllable scenarios

(Best case and Worst case scenarios), and use them to guide the simulation in

order to overcome the limitations of the simulation.

4.2.1.1. Upgrade context

The upgrade context provides additional attributes required for the simulation. It consists

of probability and time related data that describe the real behavior of the deployed com-

ponents.

For the components, we extended ETF model and added further attributes: As shown in

Figure 4-3, the ETF model represents the information as described by the ETF xsd of the

SMF standard. For the upgrade context we added the bounded times (upper bounds and

lower bounds) for component lifecycle and management operations and their respective

failure rates as well as the switchover duration.

48

We added similar extensions for the software bundle, i.e. probability attributes for the

success of the different software operations (online installation, online removal, offline

installation, and offline removal) and their bounded times.

In addition, the upgrade context includes data at node level: the startup and shutdown

durations to be used when a node level recovery action takes place.

The timeout attributes are provided as bounded times. Accordingly, we can use in the

simulation as necessary a randomly generated value between the upper and lower bound

following a given distribution (commonly exponential distribution), the upper or the

lower bound values to simulate the time a given operation takes.

Figure 4-3: Extensions to ETF

4.2.1.2. Extensions to DEVS formalism and DEVS-Suite

The DEVS formalism, as it is, can only model choreographically performed collabora-

tions, meaning that the logic of the collaboration is distributed among collaborating enti-

ties. In our case, some of the collaborations are orchestrated, meaning that there is a cen-

tral entity orchestrating the collaboration between a set of collaborating entities. If we

take AMF, for example, at any point in time it may have different services to switchover

to different entities with different time offsets for the next event. To make the orchestra-

tion of these events easier, the atomic DEVS model representing AMF should have a

state-independent time-awareness. To capture this kind of collaborations we extended the

DEVS time function in a way that not only the states have life spans but also the events.

Therefore, and unlike a usual DEVS model that is considered imminent (or ready for a

transition) only when it receives an incoming event or the life span of its current state

49

expires, a DEVS model simulated under this extension will also be considered imminent

when the lifespan of one of its events expires. The DEVS model responds to this transition

trigger by firing that event to its destination and going back to wait for the next transition

trigger.

We extended the DEVS-Suite simulator APIs to handle output events with lifespan as

argument. Keeping in mind backward compatibility, we defined zero (0) as the default

lifespan value for an event that should be issued right after its creation. We also extended

the simulation mechanisms (simulators and coordinators) to include the event lifespan in

the calculation of the next iteration time.

4.2.1.3. New DEVS atomic models in the JAVA upgrade library

The model transformation shown in Figure 4-2 generates a DEVS coupled model from

the given configuration, upgrade context and upgrade campaign specification files. This

DEVS coupled model is composed of DEVS atomic models obtained by mapping the

instances of configuration and upgrade objects to instances of their corresponding DEVS

atomic models. These DEVS atomic models are defined in the Java Upgrade Library and

their mapping to configuration/upgrade objects is summarized in Table 4-1. This map-

ping is established according to the communication patterns between the different objects

involved in the execution of an upgrade campaign of a given system.

The upgrade campaign object, for instance, needs to communicate with the administrator

and its procedures, which explains the I/O ports associated with its DEVS model. Simi-

larly, an upgrade procedure communicates with the campaign and the associated steps.

Upgrade steps exchange events with the procedure and with the AMF to perform actions

on the logical entities in the AMF configuration. Thus, there is a need for an atomic DEVS

model representing AMF. It was designed with an input event from and an output event

to every upgrade step and to every configuration object in the final DEVS model.

The main responsibility of the atomic DEVS model representing AMF is the interpreta-

tion of the administrative operations issued by upgrade steps on configuration objects.

This interpretation is basically a decomposition into associated time constrained AMF

component management operations as defined in [3]. The time constraints for these AMF

components management operations are given in the system configuration.

50

Table 4-1: Objects involved in the simulation and their associated DEVS models.

 DEVS Models

Upgrade campaign

Upgrade procedure

Upgrade step

AMF entity

AMF

4.2.2. Limitations of random simulation

Our goal is to use the simulation to perform upgrade campaign simulation and evaluation.

When comparing two upgrade campaign specifications, and due to the randomness of the

simulated behavior (as the times the simulated actions take and failures are randomly

decided based on distributions), one upgrade campaign specification simulation might

take a better execution path than the other. Thus, making the simulation results unreliable

for comparison. To overcome this challenge we have chosen to inject controllable sce-

narios to make all the upgrade campaign specifications that we want to compare take the

same execution path (execution time wise and failure wise). However, using any scenario

for the comparison might not be relevant for the evaluation of upgrade campaign speci-

fications. That is why we propose the use of best case and worst case scenarios as they

will enable:

 Fair comparison of upgrade campaign specifications.

51

 The estimation of the best and worst execution a time an upgrade campaign might

take and the best and the worst service outage it might induce.

In the following subsection we will describe these two controllable scenarios as we de-

fined them.

4.3. Controllable scenarios

The best and worst case scenarios are used to control the execution path that the simula-

tion will take. They are defined in a way to take the simulation to the edge cases, thus

taking into consideration the following aspects of the simulated runtime environment:

 Software operations: The execution of a software operation may succeed or fail

and does not always take the same duration. The upgrade context previously de-

scribed captures this fact by associating with every software operation a failure

rate and a bounded duration attribute specifying a lower bound and an upper

bound. However, the upgrade campaign specification may constrain these opera-

tions by a default timeout, which effectively replaces the upper bound value as

SMF engages the appropriate upgrade repair mechanism if the timer expires.

 Upgrade repair mechanisms: Upgrade actions are subject to failure, and depend-

ing on the failure stage SMF can engage different chains of actions involving both

software and component management operations (when the failed step goes to the

undoing states, and should undo all the previously performed actions before the

failure). Moreover, SMF implementation takes also into consideration the speci-

fied max retries value of each step before reporting the failure. For different stages

of failures and different failures’ count during the execution of every step in the

campaign we can have different scenarios that induce different levels of service

disruption and take different durations. We use edge combinations of the two fac-

tors in the definition of the best and worst case.

 AMF configuration object behavior: As mentioned previously, administrative op-

erations are decomposed into AMF component management operations. Since

each applicable management operations may succeed or fail taking different

amounts of time the upgrade context includes a failure rate and a bounded time

attribute for each of these management operations. In addition, a given AMF con-

figuration also constrains all these operations by timeouts, meaning that if an op-

eration is taking more time than the configured timeout, AMF assumes the oper-

ation has failed and engages in a recovery and repair actions, which map into

AMF management operations sometimes at component in other cases at node

level. Some AMF component management operations such as the instantiation,

can be reattempted several times before AMF reports them as failed. All these

aspects are used to define the best execution and worst execution of an operation

on a given component.

52

In addition to the advantage of evaluating an upgrade campaign specification in edge

cases, the use of controllable scenarios also offers the possibility of performing an eval-

uation without the use of the simulation. The administrative operations specified in AMF,

and used in the upgrade process are: lock, lock-instantiation, unlock-instantiation, unlock,

and shutdown. These operations can be called on targets of different sizes (Node, SU

hosting a container component, or just a simple SU). The time the administrative opera-

tion can take varies depending on the type of the target, its size, and other dependencies

factors (collocation within the target). So the time estimation for administrative opera-

tions is strictly based on what is provided in the configuration and the ETFs, and takes

into consideration the following aspects:

 The decomposition of the administrative operations into AMF component man-

agement operations.

 The timeouts of these operations as provided in the AMF configuration, and their

bounded times as provided in the ETFs.

 The ordering of these actions as imposed by the instantiation level and CSI de-

pendencies within a SU.

 Lifecycle dependencies between SUs of the same Node (container-contained).

 Components category (pre-instantiable Vs non-pre-instantiable).

 How AMF reacts to failure of administrative and component management opera-

tions: termination escalates to cleanup and instantiation is retried with and without

delay.

 The time a SMF implementation can wait for a callback is usually specified in the

upgrade campaign specification and there is no need to estimate it.

Based on this, in the following subsections we will define the best case and worst case

scenarios as well as the expressions that one can use to evaluate an upgrade campaign

specifications in these scenario without the use of the simulation. The details of these

formula can be found in appendix 1.

4.3.1. Best case

The best case is defined as follow:

 Time wise: in this perspective we take into consideration the execution time of

every action.

o Every action takes as much time as the lower bound of the related ETF

attribute, and succeeds the first time it is called (instantiation, termination,

lock, unlock, installation, removal, node restart).

o Every upgrade step succeeds at the first time of its execution.

53

 Outage wise: in this perspective we take into consideration the interference be-

tween steps of procedures of the same execution level.

o For fully ordered execution there are no consideration as we execute one

procedure at a time, and thereby one step at a time.

o For a partially ordered execution, as the procedures of the same execution

level are executed in parallel, interference between their respective steps

might take place. So, in the best case, the steps of procedures of the same

execution level are arranged in a way that impacts the system the least. In

other words, the steps that are executed in parallel are the ones that induce

the minimum outage when executed concurrently.

4.3.2. Worst case

The worst case is defined as follows:

 Time wise: in this perspective we take into consideration the execution time of

every action.

o Every upgrade step succeeds only on the last permitted attempt of its exe-

cution (max retry).

o The failure of the upgrade step execution takes place at specific stages

based on the configuration and the entities in the activation and deactiva-

tion unit of the step. So different actions might cause this failure, the

choice is made based on the damage and recovery time for each stage.

These stages are ranked as shown in Table 4-2.

o All AMF component management operations take as much time as their

configured timeout and succeed only the last time they are allowed to be

executed.

o Every recovery from a failure of an AMF component management opera-

tion should escalate to node level.

 Outage wise: similarly to the best case, as there is no interference between up-

grade procedures in the fully ordered execution, we only consider the partially

ordered execution.

o In a partially ordered execution, the upgrade steps of the upgrade proce-

dures of the same execution level are arranged in a way to induce the max-

imum service outage.

54

Table 4-2: ranked list of upgrade step points of failure

rank Condition Stage of

failure

1 The activation unit contains a non-pre-in-

stantiable component that will take the as-

signment after the unlocking, and saAm-

fNodeFailfastOnInstantiationFailure is set

for the node hosting it

Unlock Ac-

tivation

Unit

2 The activation unit contains a pre-instantia-

ble component, and saAmfNodeFailfastOn-

InstantiationFailure is set for the node host-

ing it

Instantia-

tion of Ac-

tivation

Unit

3 The deactivation unit contains a pre-instanti-

able component, and saAmfNodeFailfastOn-

TerminationFailure is set for the node host-

ing it

Termina-

tion of De-

activation

Unit

4 The deactivation unit contains a non-pre-in-

stantiable component that has the assign-

ment, and saAmfNodeFailfastOnTermina-

tionFailure is set for the node hosting it

Lock Deac-

tivation

Unit

5 Default Online

uninstalla-

tion of old

software

55

4.4. Selection/elimination of upgrade campaign specifications

Given a set of upgrade campaign specifications that can take a system from its current

configuration to the same target configuration, we can use our simulation approach to

evaluate them and decide which ones are applicable considering some targeted acceptable

outage and maintenance window. The applicability of the scenarios discussed in the pre-

vious section depends on the capability of the SMF engine. Accordingly, if the SMF en-

gine is not capable of parallel execution the scenarios of the partially ordered execution

do not apply. All SMF engines must be capable of fully ordered upgrade campaign exe-

cution. Since our goal is to meet some acceptable outage and maintenance window we

evaluate the upgrade campaigns from the perspective whether these goals can be achieved

Figure 4-4: upgrade campaign specification selection/elimination process

56

rather than selecting “the best upgrade campaign”. This is because it is not straightfor-

ward how service outage trades for execution time. Our evaluation (summarized in Figure

4-4) goes along the following lines:

 First all the upgrade campaign specifications are evaluated for the execution

mode applicable to the SMF engine and both the best and the worst case sce-

narios are evaluated for their execution time and induced outage.

 If the execution mode of the SMF engine is sequential all the upgrade cam-

paign specifications that induce an unacceptable outage for either the best or

the worst case scenario can be safely eliminated as there is no guarantee they

can meet the outage constraint.

 In the case of parallel execution mode, the upgrade campaign specifications

violating the outage constraint are further evaluated for the sequential execu-

tion as it typically induces less outage. Those upgrade campaign specifications

which still result in an unacceptable outage for either the best or the worst case

are eliminated. The remaining upgrade campaign specifications are marked for

potential serialization.

 Next the execution times of all the pre-selected upgrade campaign specifica-

tions are evaluated with respect to the maintenance window. The main consid-

eration is that we would like to complete the upgrade campaign within half of

the available maintenance window. This allows for a graceful rollback of the

system to its original configuration should anything go wrong unexpectedly

during campaign execution. Accordingly, we eliminate all the upgrade cam-

paigns that result in an execution time greater than the half of the targeted

maintenance window. This criterion may be relaxed if a partial or full restora-

tion of the system from a backup is an acceptable recovery and therefore can

be used to shorten the rollback time.

The selected upgrade campaign specifications are acceptable albeit some with the need

for serialization. They can be compared and further analyzed from the perspective of their

induced outages and execution times to pick the one that is the most suitable for the given

system and constraints. A system administrator may choose the campaign that takes the

least time in order to make better use of the maintenance window, while another one may

choose the one that takes the longer time because, for example, it specifies more upgrade

steps retries and thereby is more reliable. The choice can also be based on the probabilities

associated with the best case and the worst case scenarios and select the one which has

the highest probability for the best case scenario. This is also where the tradeoff execution

time for service outage and vice versa becomes important. Our selection/elimination pro-

cess ends with a set of applicable upgrade campaign specifications.

4.5. Summary

Induced outage and execution time are two important quality factors for an upgrade cam-

paign. Estimating these factors can help: analyze the impact of the upgrade campaign on

the system, decide if the upgrade campaign is applicable, and compare various valid ways

57

to upgrade the system. Manually performing this estimation is a tedious and error prone

task because of the complexity of the systems. The previous work in [7] proposed a sim-

ulation based approach for upgrade campaign evaluation. This approach uses DEVS [31]

formalism to enable the simulation. The simulation is run using the DEVS-Suite simula-

tor [29] which takes a DEVS model as input. This DEVS model is expressed as a Java

class that is automatically generated from an upgrade campaign specification, an AMF

configuration, and an upgrade context. The work in [7] described the upgrade context as

a source from which one can retrieve the failure models of system components but it did

not propose a solution for using it in the simulation. In this thesis we extended the work

in [7] by introducing an upgrade context as an extension of the vendor provided ETFs

and enabling the use of the failure models in the simulation. We have also exposed the

limitations of the random simulation. In fact, using a random simulation to compare up-

grade campaign specifications can be misleading as one upgrade campaign specification

simulation can follow a better execution path than the other. To overcome this limitation

we propose the use of best case and worst case scenarios simulation to guide the simula-

tion. Guiding the simulation in these scenarios will not only help make sure that all the

simulations follow the same execution path, it will also help evaluate the impact the var-

ious campaigns can have on the system in edge cases. We also show how the use of these

scenarios can enable for an upgrade campaign evaluation that is not based on the simula-

tion. Finally, we proposed a method that one can follow to eliminate/select applicable

upgrade campaign specifications. This method uses the results of best case and worst case

scenarios’ evaluations. It checks whether the estimated outage is within the allowed out-

age as well as whether the execution time can allow for a graceful rollback within the

maintenance window. At the end, each upgrade campaign specification can be marked as

accepted, rejected, or can be optimized.

In this thesis we proposed the best case and the worst case scenarios to evaluate upgrade

campaign specifications. These two scenarios can give an insight of what to expect from

an upgrade campaign, but one cannot disregard the fact that these scenarios are very un-

likely to happen (very small probability). An approach that might target accuracy would

suggest the use of more scenarios and more simulations for evaluation. One potential

extension of this work can be the design of a method that can give a minimum set of

scenarios (and their definitions) that can be expressive enough (with a tolerance error

margin) of the expected result of running a given upgrade campaign specification on a

given configuration. Accordingly, one can also extend the upgrade campaign specifica-

tion selection/elimination process to narrow down the number of selected upgrade cam-

paign specifications based on further criteria.

58

Chapter 5 - Prototypes

This chapter describes the prototypes implemented in this thesis. It covers the challenges

faced during the implementation (if any) as well as the tools used in the implementations.

We will first start by describing the upgrade campaign specification generation prototype.

We will introduce the tools that were used, and illustrate using a running example. Simi-

larly we will describe the simulation based evaluation prototype, and give an illustrative

example for this prototype as well.

5.1. Upgrade campaign specification generation prototype

The upgrade campaign specification generation consists of many activities. Each activity

is implemented as at least one transformation using the appropriate language from the

Epsilon family of languages:

 The change model creation consists of a comparison of two models (source con-

figuration and target configuration) that is why we chose to implement it using

Epsilon Comparison Language ECL.

 The actions creation takes an input model and generates a totally different output

model. The most appropriate language of the Epsilon family was the Epsilon

Transformation Language ETL. The same applied to the dependencies extraction

activity.

 The actions matching activity is a refinement of the input model, and running it

once on the input model might not get the desired result. In this case, we benefited

from Epsilon Pattern Language EPL feature to rerun the transformation as long

as there is a specified pattern that can be detected.

 Similarly for the optimization, the application of the heuristics and ordering was

implemented using EPL.

 The generation of the XML file from the EMF model was implemented using the

Epsilon Generation Language EGL.

 The workflow orchestration was done using ant [56].

The change model creation was a reimplementation of the work in [6] using ECL. The

work in [6] was based on some assumptions and elaborated a set of rules to overcome the

Figure 5-1: Matching SIs

59

challenge of the difference of namespaces between two configurations representing the

same system. Some of these rules were straightforward based on comparison of attributes

(such as the RDNs). Others were more complex and were based on the previously estab-

lished matches. Figure 5-1 gives an example of rule that is straightforward and based only

on RDNs comparison. Other rules, such as the one in Figure 5-2, are a bit tricky to im-

plement and rely on the already established matches.

Figure 5-2: Matching SGs

Now we will try to show the different output models our chain of transformations gener-

ates in the process. We will start with a configuration that is running an in house devel-

oped component called the Http component. The SG in this configuration has two SUs,

each one of them has one Http component. We manually added a third SU (with its com-

ponent) to a copy of this configuration within this SG. Now, the output of the change

Figure 5-3: Change Model

60

model creation activity is shown in Figure 5-3. As you can notice, the transformation

detected the added SU and component, and it instantiated appropriate model elements

(two addToImm instances, one for the SU and the other for the component) conforming

to the Change meta-model. We then make this change model go through the actions cre-

ation transformation. As shown in Figure 5-4, this transformation created two upgrade

procedures with the actions representing the addition to IMM in the body of the procedure

conforming to the rules we described in section 3.4.2. We make this output go through

the first refinement, as it shows in Figure 5-5 the second rule of the matching was applied

(matching children to parents). There was no software installation operation because we

Figure 5-4: The first upgrade campaign specification model

Figure 5-5: The upgrade campaign specification model after the first refinement

61

are working with the assumption that if an SG is deployed on a node, even if that node

does not have configured SU, it should have the software required for that SU installed

on it. Because unless the SUs are configured per node, there is no way to know whether

AMF will instantiate an SU on that node the first time the SG is instantiated or not. As

we have only one upgrade procedure, and no special pattern applies there, the second

refinement will not really have any effect. We then generate the xml file using the EGL

template as shown in Figure 5-6.

Figure 5-6: The xml file generated from the last upgrade campaign specification model

5.2. Upgrade campaign evaluation prototype

Implementing a model transformation requires a prior knowledge of the number of mod-

els/files that will be given to the transformation as input. A model transformation, for

instance, cannot take three input models in an execution if it was programed to take only

two. Moreover a transformation cannot be implemented for an unknown number of inputs

as each one of the inputs is known through an alias which is hard coded in the transfor-

mation. This was one of the main challenges of the implementation of this prototype. In

fact, we only know the number of ETF files that will be given as input to the transfor-

mation at the time we run the transformation. So far, no model transformation language

or model management environment has a solution for the case when the number of input

models is not known at the time of the implementation of the transformation. So, we

62

ended up implementing a solution that makes use of Epsilon’s capability to embed Java

code in the body of a model transformation.

Figure 5-7: Enabling unknown number of input models

As Figure 5-7 shows, we created an EGL template that takes the upgrade campaign spec-

ification, the configuration and the folder containing the ETFs as arguments. This tem-

plate generates another EGL template that is implemented specifically for a number of

inputs equals to the number of ETF files in the folder plus two (a configuration and an

upgrade campaign specification). Then we give the ETFs, the upgrade campaign specifi-

cation, and the configuration as input to this generated EGL template in order to generate

UCS.java. In fact, another file (the ant [56] build workflow orchestration file) is also

generated using this same template (the first template), we omitted it from the Figure to

keep the flow simple to follow. It is at the level of this first EGL template execution when

the upgrade context is gathered (attributes in the extension of SAF model). The GUI

shown in Figure 5-8, is launched be the first EGL template and used to collect the differ-

ent probabilities and required durations. The user can still use just the default values

(stored in a properties file) by checking “Use default for all” checkbox, or a “Use default”

checkbox for a specific node, component type or software bundle. The values inputted

through this GUI will be stored in a properties file right after the users clicks “Ok”.

63

Figure 5-8: The GUI used to input the upgrade context

The user can then run the generated EGL template using the generated workflow orches-

tration ant file to generate the DEVS model (UCS.java) which he can then load into the

simulator. Once the model loaded, if the user chooses to use the graphical component of

the simulator, this latter will render the DEVS model associated with the configuration

and the upgrade campaign specification as shown in Figure 5-9.

Figure 5-9: Upgrade campaign specification and the configuration rendered in

the graphical component of the DEVS-Suite simulator

64

Initially, all the SIs are fully assigned, in the case of this simulation, we are tracking only

one SI as shown in Figure 5-10. Similarly the upgrade campaign is in its initial state

before triggering its execution as shown in Figure 5-11. Once the execution is triggered,

Figure 5-10: SI initially fully assigned

Figure 5-11: Upgrade campaign initially in the initial state

65

the campaign transitions to the Executing state, and triggers the execution of its first up-

grade procedure as shown in Figures 5-12 and 5-13 respectively. Once the procedure

starts its steps, we start noticing the impact on the assignment state of the SI.

Figure 5-12: Upgrade campaign transitions to Executing state

66

Figure 5-13: Upgrade procedure transitions to Executing state one time unit after the

upgrade campaign

67

 Figures 5-14 and 5-15 show respectively the transitions done by the SI at the beginning

of the procedure as well as towards the end of that same procedure. At the beginning of

the procedure, when the first step locks the DU the SI goes to the partially assigned state.

Figure 5-14: SI going to the partially assigned state

Figure 5-15: SI going back fully assigned

68

Similarly, when the last step of the upgrade procedure unlocks the AU the SI goes back

to the fully assigned state. At the end of the simulation one can export the tracking logs

as excel files, which look exactly as illustrated in Figure 5-16.

Figure 5-16: Track log for the SI's assignment state

5.3. Summary

In this chapter we have shown the prototypes we implemented for the approaches de-

scribed in chapter 3 and chapter 4. The use of Epsilon environment was beneficial. On

one hand the implementation of the upgrade campaign specification generation required

a transformation engine that is able to rerun the transformation as long as some conditions

are met. EPL was the only technological solution that we found and which could offer

such a feature, as it can be configured to only stop the transformation when no more

specified patterns are detected. On the other hand, the ease of querying raw xml files

using Epsilon (compared to other transformation languages) enabled us to use input files

in the format that complies with the standard without the need to reverse engineer them

into EMF models.

69

Chapter 6 - Conclusion
In this thesis we presented a model driven approach for automated generation of upgrade

campaign specifications. We took into considerations the dependencies between the en-

tities composing the system in order to establish a proper ordering for the upgrade proce-

dures and avoid unnecessary outage. We have also proposed a set of heuristics to improve

the quality of the generated upgrade campaign specification by reducing the outage and

the execution time.

We have also extended a previous work that targeted a simulation based upgrade cam-

paign evaluation for SAF systems, and enriched it with the best case and worst case sce-

narios to make the simulation results more reliable to use in upgrade campaign compari-

son and more relevant for evaluation purposes. We have also proposed a way to perform

the same evaluation without the use of the simulation. In addition, we proposed a method

that makes use of these evaluation results to check the applicability of upgrade campaign

specifications within a maintenance window and a given acceptable outage. This method

takes as input a set of upgrade campaign specifications and marks them either as rejected,

accepted, or need further optimization according to the applicability check criteria.

We discussed the prototypes we implemented for these contributions, and which made

use of model management tools (Epsilon), and simulation environments (DEVS-Suite).

This work can be extended in many ways. One can investigate the ways we can manage

the tradeoff between time and outage, as at the end of the selection/elimination process,

we end up with multiple applicable upgrade campaign specifications but we have to pick

one. Another potential track that can be followed on this area is to check the applicability

of this approach for upgrade of other kinds of systems (such as clouds), and taking this

work to a higher level of abstractions to make it independent of the SAF standard and the

SAF compliant domains.

70

References

1. Service Availability Forum, www.saforum.org

2. M. Toeroe, F. Tam. “Service Availability: Principles and Practice”. Wiley (May

29 2012)

3. Availability Management Framework specification: SAI-AIS-AMF-B.04.01.AL.

4. Software Management Framework specification: SAI-AIS-SMF-A.01.02.AL.

5. Information Model Management specification: SAI-AIS-IMM-A.03.01.AL.

6. A. Mishra, “Automated AMF Configuration Difference Generation”, Master The-

sis, Electrical and Computer Engineering, Concordia University, 2011.

7. O. Jebbar, “Modeling and Simulation of Upgrade Campaign Specifications”,

Rapport de Projet de Fin d’Etudes, Mathematiques Reseaux et Informatiques,

INPT, Rabat, Maroc, 2014.

8. C. Xuejun, “Dependence management for dynamic reconfiguration of compo-

nent-based distributed systems”, in proceedings 17th IEEE International Confer-

ence on Automated Software Engineering, IEEE Computer Society, 2002, pp.

279–284.

9. J. Matevska and W. Hasselbring, “A Scenario-based Approach to Increasing Ser-

vice Availability at Runtime Reconfiguration of Component-based Systems”, in

proceedings of 33rd EUROMICRO Conference on Software Engineering and

Advanced Applications (EUROMICRO 2007). IEEE, Aug. 2007, pp. 137–148.

10. L. Yu, G. Shoja, H. Muller, and A. Srinivasan, “A framework for live software

upgrade”, in proceedings of 13th ISSRE, IEEE Computer Society, 2002, pp. 149–

158.

11. A. Wolski and K. Laiho, “Rolling Upgrades for Continuous Services”, in ISAS,

LNCS Vol. 3335, M. Malek, M. Reitenspieß, and J. Kaiser (Eds.) Springer, May

2005, pp. 175–189.

12. F. Kon and R. Campbell, “Dependence management in component-based distrib-

uted systems”, IEEE Concurrency, Vol. 8, No. 1, pp. 26–36, 2000.

13. B. Morin, G. Nain, O. Barais, and J. M. Jézéquel, “Leveraging Models From De-

sign-time to Runtime. A Live Demo”, in proceedings of 4th workshop of Mod-

els@runtime, MODELS 2009.

14. C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and automatic live update

for operating systems”, ACM SIGARCH Computer Architecture News, Vol. 41,

No. 1, May 2013, pp. 279-292.

15. M. Milazzo, G. Pappalardo, E. Tramontana, and G. Ursino, “Handling run-time

updates in distributed applications”, in Proceedings of the ACM SAC ’2005, New

York, USA, pp. 1375-1380.

16. J. Almeida, M. Wegdam, M. van Sinderen, and L. Nieuwenhuis, “Transparent

dynamic reconfiguration for CORBA”, in proceedings 3rd International Sympo-

sium on Distributed Objects and Applications. IEEE Computer Society, 2001, pp.

197-207.

http://www.saforum.org/

71

17. S. Ajmani, B. Liskov, and L. Shrira, “Scheduling and simulation: how to upgrade

distributed systems”, in proceedings of the 9th conference on Hot Topics in Op-

erating Systems. USENIX, May 2003, pp. 8-8.

18. H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “POLUS: A POwerful Live

Updating System”, in proceedings of ICSE’2007. IEEE, May 2007, pp. 271–281.

19. E. Miedes and F. D. Munoz-Escoi, “A Survey about Dynamic Software Updat-

ing”, Instituto Universitario Mixto Tecnologico de Informatica, Universitat

Politecnica de Valencia, Technical Report, 2012.

20. D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different models

for model matching: An analysis of approaches to support model differencing”,

in proceedings of the ICSE Workshop on Comparison and Versioning of Software

Models (CVSM '2009). IEEE Computer Society, Washington, DC, USA, 2009,

pp. 1-6.

21. Epsilon, http://www.eclipse.org/epsilon.

22. D. S. Kolovos, R. F. Paige, F. A. C. Polack, “The Epsilon Transformation Lan-

guage”, A. Vallecillo, J. Gray, A. Pierantonio (Eds.), ICMT 2008, LNCS 5063,

pp. 46–60, 2008.

23. L. M. Rose, R. F. Paige, D. S. Kolovos, Fiona A. C. Polack, “The Epsilon Gener-

ation Language”, I. Schieferdecker and A. Hartman (Eds.), ECMDA-FA, LNCS

5095, pp. 1–16, 2008.

24. D. S. Kolovos, R. F. Paige, F. A. C. Polack, “The Epsilon Object Language

(EOL)”, in proceedings of the 2nd European conference on Model Driven Archi-

tecture: foundations and Applications (ECMDA-FA'06) LNCS Springer, 2006

Vol. 4066, pp. 128-142.

25. M. Francis, D. S. Kolovos, N. Matragkas, R. F. Paige, “Adding Spreadsheets to

the MDE Toolkit”, in proceedings of MODELS’2013, LNCS Vol. 8107, pp 35-

51.

26. J. Woodcock, J. Davies, “Using Z: Specification, Refinement, and Proof”, Pren-

tice Hall, March 1996.

27. Community Z Tools, http://czt.sourceforge.net

28. ATL, https://eclipse.org/atl/

29. DEVS-Suite, http://acims.asu.edu/software/devs-suite/

30. S. Kim, H. S. Sarjoughian, V. Elamvazhuthi.” DEVS-suite: a simulator support-

ing visual experimentation design and behavior monitoring”. SpringSim '09 Pro-

ceedings of the 2009 Spring Simulation Multiconference.

31. B. P. Zeigler, H. Praehofer, T. G. Kim. ”Theory of Modeling and Simulation”,

Second Edition. Academic Press; 2 edition. 2000.

32. Cisco, https://supportforums.cisco.com/discussion/12483781/time-estimate-pcd-

upgrade-cucm

33. M. Fornadel ; Fac. Inf. & Inf. Tech., Slovak Univ. of Technol., Bratislava, Slo-

vakia ; P. Lacko ; A. Danko. “Estimation of Legacy Application Upgrade Time

using Evolutionary Approach”. Computational Intelligence and Informatics

(CINTI), 2013 IEEE 14th International Symposium on, pp. 493-498.

http://www.eclipse.org/epsil
http://czt.sourceforge.n/
http://acims.asu.edu/software/devs-suite/

72

34. X. Qiu ; Nortel Networks, Ottawa, Ont., Canada ; R. Telikepalli ; T. Drwiega ; J.

Yan. “Reliability and Availability Assessment of Storage Area Network Exten-

sion Solutions”. IEEE Communications Magazine (Volume:43 , Issue: 3), 2005,

pp. 80-85.

35. A. Kanso, M. Toeroe, F. Khendek. “Configuration-Based Service Availability

Analysis for Middleware Managed Applications”. System Analysis and Model-

ing: Theory and Practice. Volume 7744 of the series Lecture Notes in Computer

Science pp 229-248

36. A. Kanso, M. Toeroe, F. Khendek. “Automating Service Availability Analysis:

An Application to a Highly Available Media-Streaming Service”. Software Secu-

rity and Reliability-Companion (SERE-C), 2013 IEEE 7th International Confer-

ence on, pp.94-101

37. A. C. Shaw. “Real-time Systems and Software”. Wiley, 2001

38. P., P., and A. Burns. Guest editorial: ”A review of worst-case execution-time

analysis”. Real-Time Systems 18.2 (2000): 115-128.

39. A. Marsan, M., Chiola, G. “On Petri Nets with Deterministic and Exponentially

Distributed Firing Times”. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266,

pp. 132–145. Springer, Heidelberg (1987)

40. MagicDraw, http://www.nomagic.com/products/magicdraw.html

41. RSA, http://www-03.ibm.com/software/products/en/ratsadesigner

42. StarUML, http://staruml.io/

43. ArgoUML, http://argouml.tigris.org/

44. Papyrus, https://eclipse.org/papyrus/

45. EMF, https://www.eclipse.org/modeling/emf/

46. QVTO, https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

47. Kermeta, http://diverse-project.github.io/k3/

48. OMG, http://www.omg.org/

49. MDA, http://www.omg.org/mda/

50. UML, http://www.omg.org/spec/UML/

51. OCL, http://www.omg.org/spec/OCL/

52. QVT, http://www.omg.org/spec/QVT/

53. XMI, http://www.omg.org/spec/XMI/

54. MOF, http://www.omg.org/mof/

55. A. Davoudian, F. Khendek, M. Toeroe, “Ordering Upgrade Changes for Highly

Available Component Based Systems”, in proceedings of IEEE HASE 2014,

Florida, January 2014, pp. 259-260.

56. Apache ant, http://ant.apache.org/

57. O. Jebbar, M. Sackmann, F. Khendek, M. Toeroe. “Model Driven Upgrade Cam-

paign Generation for Highly Available Systems”. System Analysis and Modeling

2016, LNCS Vol. 9959, pp. 148-163.

http://www.nomagic.com/products/magicdraw.html
http://www-03.ibm.com/software/products/en/ratsadesigner
http://staruml.io/
http://argouml.tigris.org/
https://eclipse.org/papyrus/
https://www.eclipse.org/modeling/emf/
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://diverse-project.github.io/k3/
http://www.omg.org/
http://www.omg.org/mda/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/XMI/
http://www.omg.org/mof/
http://ant.apache.org/

