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Abstract 
 

Model Driven Upgrade Campaign Specification Generation 

and Evaluation 

Oussama Jebbar 

 

High availability is an important non-functional requirement for carrier grade services. 

The applications/systems providing and protecting such services undergo frequent up-

grades which makes meeting this requirement very challenging. A system upgrade is the 

migration process from the system’s current configuration to a new one. This migration 

may include configuration changes, installation and removal of software, etc.. The Ser-

vice Availability Forum (SAF) published a set of standards that describe a high availa-

bility enabling middleware for Commercial-off-the-shelf (COTS) components based sys-

tems. In such a middleware, the Software Management Framework (SMF) is the service 

responsible for orchestrating the upgrades. These upgrades are performed according to a 

road map called an upgrade campaign specification. The Availability Management 

Framework (AMF) is another service defined in the SAF standards and which is respon-

sible of managing the availability of the services and the service providers. To take a SAF 

compliant system from one configuration to another, one has first to come up with an 

upgrade campaign specification for that purpose. Moreover, there are multiple upgrade 

campaign specifications that can take the system from the same source configuration to 

the same target configuration, but they differ in the duration they take and the service 

outage they may induce. Designing an upgrade campaign specification for a SAF com-

pliant system is not a straight forward process. Indeed, this is an error prone task that 

becomes more challenging when the system and the set of changes to perform get larger. 

Besides, selecting which upgrade campaign specification to apply among all the valid 

ones is either expensive (running the same upgrade campaign specification on a replica 

of the real system), or tedious (evaluating, comparing and selecting upgrade campaign 

specifications manually). 

In this thesis we propose automation as a solution to ease and minimize human interven-

tion in the design and evaluation of upgrade campaign specifications. We devise a model 

driven approach to automatically generate upgrade campaign specifications. Our ap-

proach consists of several activities in order to ensure the SAF compliance of the gener-
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ated upgrade campaign specification on one hand. On the other hand, we use the depend-

encies between system components to apply a set of rules that can improve the quality of 

the upgrade campaign specification by avoiding some of the unnecessary service outage. 

These rules include rules to order changes to be performed as well as a set of heuristics 

that make use of the dependencies. We also address the upgrade campaign evaluation 

related issues. We extend an existing discrete event systems based simulation approach 

for upgrade campaign evaluation. We expose the limitations of a random simulation as 

its results are unreliable for comparison. To overcome these limitations we define best 

case and worst case scenarios that we use to guide upgrade campaign simulations to see 

how the upgrade campaigns perform in edge cases. We also devise a method for upgrade 

campaign specification selection/elimination based on applicability checks according to 

two criteria: the maintenance window, and the acceptable outage during this window. 

Finally, we implemented prototypes for upgrade campaign specification generation and 

evaluation. 
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Chapter 1 - Introduction 
 

This chapter explains briefly the context of the thesis. It introduces concepts such as High 

Availability (HA), system upgrade, and Service Availability Forum (SAF) [1]. It also 

presents the motivations behind the thesis as well as its contributions. 

1.1. High availability & upgrade 

Availability is defined as “the proportion of time when a system is in a condition that is 

ready to perform the specified functions” [2]. The availability of a system depends on the 

reliability of its components and the required time to repair them in case of failure. The 

metrics that are commonly used to evaluate these two attributes are the Mean Time To 

Fail (MTTF) and Mean Time To Repair (MTTR). System availability is defined as fol-

lows [2]: 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
                     eq 1-1 

There are several levels of availability. Systems that provide carrier grade services must 

to be highly available, meaning that their availability should be at least 99.999% (also 

referred to as five nines). In other words, the services provided by such system cannot be 

interrupted for more than 5.26 minutes per year. In order to enable such availability, one 

should properly deal with the two types of downtime: 

 Unplanned downtime: downtime caused by components’ failures. 

 Planned downtime: downtime caused by system upgrades and maintenance. 

There are several principles, if followed, can help tackling these challenges such as: 

 Thoroughly choosing the components that will compose the system. The compo-

nents should be extensively tested, and should undergo enough verification, vali-

dation, and benchmarking to ensure that they are reliable enough to provide highly 

available services. 

 Enabling error detection. The system should be able to identify components that 

are unhealthy, erroneous and not able to provide the service. 

 Enabling error repair. This can be achieved by using repairable components to 

build the system. 

 Enabling fault tolerance. Fault tolerance is defined as “enabling a system to con-

tinue its normal operation in the presence of faults…without human intervention” 

[2], this can be achieved by implementing means for error detection and service 

recovery. Service recovery can be implemented either using redundancy so that 

the service can still be provided even with a presence of a faulty component as 
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the system has duplicates that can provide the same service, or by using compo-

nents that can be repaired within specific deadlines and thus providing the re-

quired availability. 

The aforementioned principles, when applied, can only make the system capable of han-

dling the unplanned downtime but still they do not provide any viable solution to cope 

with the planned downtime. As introduced earlier, the planned downtime is the downtime 

caused by system upgrades. System upgrades are performed via an upgrade campaign 

which represents the process of migration from the current configuration of the system to 

a new configuration called the target configuration. This process of migration includes 

the configuration changes that need to be done, the software that needs to be installed, 

the software that needs to be removed, as well as how every set of required changes have 

to be done and their ordering. Upgrading systems that are deployed in a redundant manner 

can be done in different ways. While some upgrade campaign designers might choose to 

upgrade all the elements that are redundant of each other at the same time (if they aim at 

saving time for example), some others prefer to upgrade them one at a time in order to 

minimize the service disruption as the service can still be provided while the system is 

under upgrade. This can be achieved by making sure that at any moment during the up-

grade campaign, and for a given service provided by the system, there is at least one entity 

or subsystem able to provide that service and that entity is not undergoing an upgrade. To 

automate this process and make it easier and more manageable, one need to dispose of an 

upgrade engine which should have the capability of performing these kinds of changes 

on the system’s entities as well as communicating with the deployed components either 

directly or through a third party. 

1.2. Service Availability Forum 

Different software vendors used to implement different availability management solu-

tions for their products. These solutions use to be proprietary, and sometimes target spe-

cific domains (availability management for a DBMS, a VM, a network, etc.) which ham-

pers portability of their software products. 

The Service Availability Forum (SAF) [1], is a consortium of telecommunication and 

computing companies whose goal is to publish and maintain open specification standards 

that define a set of middleware services enabling high availability for Commercial-Off-

The-Shelf (COTS) components based systems.  Hence, software vendors are only re-

quired to implement appropriate SAF defined APIs in order to incorporate high availa-

bility into their products. 

SAF specifications cover a wide spectrum of system related aspects: 

 Layers-wise: SAF standards cover both lower and upper layers of a system. The 

Hardware Platform Interface (HPI) defines the utilities used to monitor and con-
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trol the hardware. The Application Interface Specification (AIS) covers the ser-

vices and interfaces used to manage upper layers of system (Platform, Software, 

etc.). 

 Services-wise: the AIS standard defines several services and interfaces used for 

multiple purposes such as availability management (AMF), configuration man-

agement (IMM), software management (SMF), communication(Event EVT), 

state synchronization(Checkpoint CKPT), etc. 

This work relates mainly to the services used for availability management, the Availabil-

ity Management Framework (AMF) [3], and software management, the Software Man-

agement Framework (SMF) [4], and to some extent configuration management, the In-

formation Model Management (IMM) [5].  

1.3. Motivations and Contributions  

As introduced earlier, an upgrade campaign is the process of migrating a system from its 

current configuration to a new configuration. In a SAF compliant environment, the sys-

tem is composed of COTS components which are managed by AMF [3]. In order to man-

age the availability of these components, AMF abstracts them into logical entities which 

are described in the AMF configuration. A subset of these AMF managed components is 

what basically composes the target of a SAF compliant upgrade campaign. This upgrade 

campaign is carried out by SMF [4] following a roadmap called the Upgrade Campaign 

Specification. The Upgrade Campaign Specification is an XML file that specifies par-

tially ordered sets of changes that compose the upgrade procedures. For a change to be 

correctly performed, a set of components may be prevented from providing the service 

which may cause service interruption during the execution of the upgrade campaign.  

A typical process of upgrading a system would consist of, first designing one or multiple 

upgrade campaign specifications that can take the system from the source configuration 

to the target configuration. Before executing the upgrade campaign, the administrator 

checks the applicability of the upgrade campaign specifications in order to rule out the 

ones that are not applicable, and pick one for execution. The applicability check in this 

thesis goes along two dimensions:  

 Execution time-wise: the administrator is granted a maintenance time window. A 

maintenance window is a period for which some service under-provisioning or 

disruption can be tolerated. The tolerable under-provisioning/disruption is known 

as the allowed outage associated with this maintenance window. Both the mainte-

nance windows and their associated allowed outages are usually agreed on in the 

Service Level Agreements (SLAs) between service consumers and service pro-

viders. In order to comply with the SLA, the administrator should perform the 

upgrade and bring back the system into a fully operational state within the mainte-

nance window. The expected execution time of the upgrade campaign specifica-

tion should fit within this maintenance window. 
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 Outage-wise: the upgrade campaign should not interrupt services that are not al-

lowed to be interrupted (compliance with SLAs). The induced outage should stay 

within the allowed outage. The allowed outage is a set of services and the maxi-

mum duration of interruption that can be tolerated for each service in a given 

maintenance window. 

The design of upgrade campaign specifications and their applicability checks are manda-

tory to upgrade a SAF compliant system in order to meet the availability requirement. 

While performing these tasks, one should properly consider some system aspects such as 

the dependencies between service providers, the dependencies between services, and the 

relationships between the services and the service providers. Handling these aspects be-

comes harder as the systems get larger and more complex, which makes manually per-

forming these tasks tedious, error prone, and time consuming. 

In order to ease the design of upgrade campaign specifications and make it more efficient, 

we propose in this thesis a model driven approach to automatically generate a valid up-

grade campaign specification. We define a valid upgrade campaign specification as one 

that is syntactically correct, and conforms to the XSD specified in the SMF specification 

[4]. 

In this approach we build upon the work in [6] as it allows to compare two AMF config-

urations and generate the set of changes to be performed to move from one configuration 

to another. We take this set of changes, and start by building a SAF compliant upgrade 

campaign specification. This is done by creating an upgrade procedure in the upgrade 

campaign specification for every change that needs to be done. This upgrade campaign 

specification undergoes a first refinement in which we group changes that target logically 

related entities into the same procedures. We propose a set of rules to perform such a 

grouping of changes. The upgrade campaign specification undergoes yet another refine-

ment that takes into consideration the dependencies between system components to: 1) 

properly order the changes by applying the rules proposed in [55, 57]; and 2) apply some 

heuristics that may improve the quality of the upgrade campaign specification (minimiz-

ing the outage it may induce and the time it may take). 

The applicability check as previously described requires an outage-wise and time-wise 

evaluation of upgrade campaign specifications. In this thesis, we build upon the work in 

[7] as it proposes a simulation based framework that enables performing such evaluation 

on upgrade campaign specifications. We defined the best case and worst case execution 

scenarios of an upgrade campaign in a SAF environment in order to overcome some lim-

itations of the work in [7]. We also defined a method that, based on the results of the best 

case and worst case evaluations, can help select some upgrade campaign specifications, 

eliminate others, and identify the ones that can be further optimized to be applicable in a 

given situation (a given maintenance window and acceptable outage).  
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Finally we have developed a prototype for the upgrade campaign specification generation 

and we integrated it with an implementation of the work in [6]. We also implemented a 

prototype for best case and worst case evaluation of upgrade campaign specifications. 

1.4. Organization of the thesis 

The rest of this document is organized as follows. Chapter 2 gives a background about 

SAF standards, namely AMF, SMF and IMM, as well as an overview of Model Driven 

Engineering (MDE), Epsilon, DEVS formalism, and a review of the related work. In 

Chapter 3 we describe our model driven upgrade campaign specification generation ap-

proach. In Chapter 4 we present our contributions for upgrade campaign evaluation. Be-

fore concluding, Chapter 5 discusses briefly the prototypes. 
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Chapter 2 - Background 
 

This chapter introduces the SAF specifications, in particular the Information Model Manage-

ment (IMM), AMF, and SMF. It also introduces Model Driven Engineering (MDE). It pre-

sents the tools used for prototypes implementation, namely DEVS formalism and Epsilon en-

vironment. Finally, it discusses the related work. 

2.1. Information Model Management 

The Information Model Management (IMM) is the service responsible for maintaining 

the integrated information of the SAF compliant system [2]. The information model holds 

both configuration and runtime information required and used by all the SAF middleware 

provided services. It can also be used by other applications to store their own application-

specific information. IMM manages the access to the information in the information 

model through the read, write or modify operations. Access to an object is usually done 

via its Distinguished Name (DN). In the SAF context there are two types of names that 

follow the following rules: 

 Relative Distinguished Name (RDN): a name given to the object in the format 

specified in the SAF standards for the instances of the entity to which that object 

belongs. 

 Distinguished Name (DN): which consists of the RDN of the object followed by 

the DN of its parent. If the object has no parent the RDN and DN are identical. 

IMM exposes an API for external software to use in order to access the information 

model. The IMM service also interacts internally with all the services that compose the 

SAF compliant middleware.  

2.2. Availability Management Framework 

The Availability Management Framework (AMF) [3] is a service defined by SAF. It is 

responsible for the management of the resources used to provide services. This manage-

ment uses a model, the AMF configuration, which captures the following aspects of a 

system: 

 A static description of the system which describes the resources that the system 

has, the services it provides, and a mapping that associates each service with the 

resources that can provide it. 

 A dynamic representation of the system that continuously represents the runtime 

state of the system. This runtime state reflects the presence of enough service 

providers to ensure the services’ high availability among other things. In addition, 

it also keeps record of the locations where the services are being provided, as well 

as the eligibility and readiness of service providers to provide the services. This 
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information is captured using either some runtime objects that AMF instantiates 

to track this information, or state models that are associated with the configured 

AMF entities. 

During the lifetime of the system, configuration changes (by the administrator or some 

third party), errors and failures can take place. For AMF to be able to properly manage 

the availability of the services and the resources, the AMF service should be aware of all 

of these factors that lead to changes on the dynamic description of the system. In the 

following subsections we will introduce the concepts used in the AMF configuration as 

well as the state models associated with them and which are relevant to this work. 

2.2.1. AMF configuration 

The AMF configuration is a representation of the system through a set of AMF defined 

logical entities and their relations. This configuration is stored and managed by another 

SAF service, the Information Model Management (IMM) [5]. AMF uses its content to 

manage the resources accordingly. 

In addition to AMF entities, AMF also uses AMF entity types to describe the system by 

associating AMF entity types with AMF entities. AMF entity types usually hold the com-

mon attributes for the AMF entities associated with them. In the rest of this subsection 

we will introduce the AMF entities that compose the AMF configuration as well as the 

types associated with them if any. 

2.2.1.1. Component and Component Type 

The component is the smallest building block of a system and that can provide a service. 

It is also considered the smallest fault zone on which AMF performs fault detection, iso-

lation and repair. This kind of control, among others, can be done either directly via the 

AMF API or indirectly through the Command Line Interface (CLI) or both. We distin-

guish between many categories of components from different perspectives: 

 Compliance to the standard: a component can be SA-aware if it incorporates HA 

by implementing the AMF API, thus becoming directly managed by AMF. Or 

Non-SA-aware when it does not implement the AMF API and it is managed by 

AMF via the CLI or a third party. 

  Dependency between the lifecycle and the service provisioning: a component is 

said to be pre-instantiable if it can be instantiated without being assigned a work-

load to handle. Similarly, a component is said to be non-pre-instantiable if it only 

gets instantiated when it is assigned a workload to handle. Note that according to 

the AMF specification [3] all SA-aware components are pre-instantiable. 

 AMF management: a component that is SA-aware and directly managed by AMF 

is called regular SA-aware component. An SA-aware component can be managed 

directly by AMF with a life-cycle management customization through a third 

party. This deployment pattern was introduced by AMF as the container-con-

tained pattern. In this deployment pattern the lifecycle management of an SA-
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aware component, the contained, is customized through a regular SA-aware com-

ponent called the container. Moreover, the container and the contained should 

share the same host. Note also that since AMF specification [3] introduces some 

container level repair actions it may be safe to say that a container is considered 

as a fault zone as well. In addition to the container-contained pattern, AMF intro-

duces yet another deployment pattern called the proxy-proxied. In this deploy-

ment pattern, AMF uses a regular SA-aware component called the proxy to man-

age a Non-Sa-aware component called the proxied. Unlike the container and the 

contained, the proxy and the proxied do not necessarily have to share the same 

host. The last category from this perspective is the Non-Sa-aware Non-proxied 

components that AMF manages only through the CLI. Note that according to [3], 

all the components of this category are non-pre-instantiable. 

The component type holds the common attributes for components running the same soft-

ware such as paths to lifecycle operations scripts and the component category. The com-

ponent type also holds default values of lifecycle and management operations timeouts 

that the configuration designer can override at component level. . 

2.2.1.2. Component Service Instance and Component Service type  

Component Service Instance (CSI) is a named set of attributes that configure a component 

for a service it is capable of providing [2], thus becoming AMF’s mechanism to control 

service provisioning without being aware of what is being provided as a service. Accord-

ingly, a Component Service type defines the names of the attributes that need to be con-

figured for each of the CSIs of this Component Service type. A component can play either 

the role of an active service provider (actually providing the service), or the role of a 

standby or have no role depending on the HA state of the component for that CSI (section 

2.2.2). When a component has a given role for a CSI we say that this component has an 

assignment for that CSI. In order to enable this kind of management, a CS type should be 

associated with the component types that support it (can be assigned an HA state for it). 

This association defines the component capability model that applies to that component 

type for this CS type. The component capability model defines the multiplicities of active 

and standby assignment that a component of a given component type can provide for a 

CSI of a given CS type. AMF supports the following types of capability models [3]: 

 x_active_and_y_standby: components that have this capability model can be ac-

tive for up to x CSIs and standby for up to y CSIs at a time. 

 x_active_or_y_standby: components that have this capability model can be either 

active for up to x CSIs or standby for up to y CSIs at a time. 

 1_active_or_y_standby: components that have this capability model can be either 

active for one CSI or standby for up to y CSIs at a time. 

 1_active_or_1_standby: components that have this capability model can be either 

active for 1 CSI or standby for 1 CSI. 
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 x_active: components that have this capability model can never be standby, and 

can be active for up to x CSIs at a time. 

 1_active: components that have this capability model can never be standby, and 

can only be active for one CSI at a time. 

The x and y in the names of the capability models are configured as attributes of an asso-

ciation between a component type and a CS type. These attributes can be overridden by 

the attributes of an association between a component of that type and the CS type if any. 

2.2.1.3. Service Unit and Service Unit type 

Components only handle units of workload as CSIs which may not necessarily coincide 

with the functionalities that the system is required to provide. Therefore, AMF introduces 

the Service Unit (SU), which is a logical entity that groups components able to handle 

CSIs that compose one or more desired functionality. An SU is also considered a fault 

zone and it is the smallest and only entity that gets duplicated in order to provide redun-

dancy and thus insure the availability of the services. It is also worth noting that from a 

naming perspective, an SU is the parent entity of all the components that compose it. The 

Service Unit type contains all the common attributes of the SUs that share that type. 

Amongst the most relevant is the list of component types that compose the SUs of that 

SU type as well as a minimum and maximum number of components of each of those 

component types. In addition, the SU type also holds the Service types that the SUs of 

this type can provide. The concept of Service type will be introduced in the next subsub-

section. 

2.2.1.4. Service Instance and Service type 

The CSIs provided by the components of the same SU when combined can make one or 

more desired functionality, also called in the context of AMF Service Instance (SI). A SU 

that can provide a SI can play either the role of active or standby for that SI. This role is 

based on the roles the components of that SU play for the CSIs that compose that SI. 

Some of the most relevant attributes of an SI are the preferred number of active assign-

ments and the preferred number of standby assignments which specify the number of 

assignments both active and standby that this SI should have in order to insure its high 

availability. In addition, the list of dependent SIs that depend on a given SI is also con-

sidered a valuable attribute. An SI (dependent) is said to depend on another SI (sponsor) 

if the dependent cannot be assigned unless the sponsor is already assigned. AMF config-

uration enables the specification of the dependency between SIs that is marked with an 

attribute called tolerance time. The tolerance time specifies the maximum amount of time 

that the dependent SI can still be assigned without the sponsor SI being assigned. Simi-

larly to SUs, an SI is considered the parent entity of all the CSIs composing it. 

SIs are typed using Service types. The common SI characteristic that the Service type 

holds is the list of CS types that compose a SI of that type, as well as the maximum 

number of CSIs of every CS type. 
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2.2.1.5. Service Group and Service Group type 

A Service Group (SG) is the logical entity that groups all the SUs protecting the same set 

of SIs. In order to provide redundancy, an SG should have at least two SUs so that if one 

fails the other can take over the service provisioning. The configuration of an SG drives 

how AMF manages the SUs that compose this SG. It specifies the preferred number of 

in-service SUs (SUs that can provide the service), the preferred number of standby SUs, 

the preferred number of active SUs as well as the maximum number of SIs that can be 

assigned to an SU as active or standby. From a naming perspective, an SG is the parent 

entity of all the SUs that compose it. 

Similarly to the other entity types, the SG type holds the common attributes of several 

SGs, including the types of SUs that can compose the SGs of this type. In addition, the 

way AMF manages the redundancy of an SG is also configured at the SG type level. In 

the AMF specification [3], the different ways of managing the redundancy are called 

redundancy models. These redundancy models differ on the number of SIs that can be 

assigned to an SU at time, the roles an SU can play at a time (active or standby), the 

number of SUs allowed to play each role, and the preferred number of assignments (active 

and standby) of each SI they can support. AMF introduces five redundancy models as 

follows: 

 2N redundancy model (Figure 2-1): in this redundancy model: 

o At most one SU should be active for all the SIs protected by the SG. 

o At most one SU should be standby for all the SIs protected by the SG. 

o Each SI can have at most one active assignment and at most one standby 

assignment. 

 

Figure 2-1: example of 2N redundancy model 
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 N+M redundancy model (Figure 2-2): this redundancy model is different than the 

2N in a way that it allows for multiple SUs of the same SG to have the same but 

only one role (active or standby) at a time but not for the same SI. It can be defined 

as follows: 

o An SU can be either active for all the SIs assigned to it or standby for all 

the SIs assigned to it at a time. 

o At any given time, for each SI the SG should have at most one active SU 

and at most one stand by SU. 

 

 N-Way redundancy model (Figure 2-3): this redundancy model is more flexible 

than the N+M, as it allows the same SU to have two different roles at a time but 

not for the same SI. Moreover, in this redundancy model an SI can be configured 

to have zero or many standby assignments unlike the redundancy models listed 

previously. The definition of the N-Way redundancy model goes along the fol-

lowing lines: 

o An SU can be active for some SIs and standby for some other SIs at the 

same time. 

o For each SI we should have at most on active SU and zero or many standby 

SUs. The number of standby SUs is configured at SI level as the preferred 

number of standby assignments. 

Figure 2-2: example of N+M redundancy model  
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Figure 2-3: example of N-Way redundancy model 

 N-Way Active redundancy model (Figure 2-4): in this redundancy model SUs are 

only allowed to be active for all the SIs assigned to them, and there are no standby 

SUs. As an SI is allowed to have one or many assignments (to different SUs), the 

number of active assignment for each SI is configured at SI level as the preferred 

number of active assignments. 

 

Figure 2-4: example of N-Way Active redundancy model 

 No-Redundancy redundancy model (Figure 2-5): this redundancy model allows 

each SI to have at most one active assignment and no standby assignment. It also 

allows every SU to be assigned at most one SI in the active role, and no SU can 

be stand by at any given time. 



13 

 

 

Figure 2-5: example of No-Redundancy redundancy model 

2.2.1.6. Application and Application type 

An AMF application is composed of a set of SIs and the SGs protecting them. And as 

applications are relatively independent from one another, they form fault zones on which 

AMF repair actions can take place in some cases. Naming-wise, an Application is the 

parent of all the SGs and SIs that compose it and does not have a parent. 

As the types always hold the common attributes of entities, in the case of applications, 

applications types specify the list of SG types that can compose applications of that type. 

2.2.1.7. Node, Node Group, and Cluster 

 For the sake of simplicity, we will restrain the definition of Node as given in [2, 3] and 

we will consider a Node as a physical or a virtual host. Note that a Node is also considered 

as a fault zone, and AMF has some repair actions that are taken at Node level. 

Nodes can be grouped into Node Groups. A Node can be part of zero or many Node 

Groups. Node Groups are usually used for: 

 Specifying a set of Nodes on which SUs of the same SG will be deployed. 

 Avoiding collocation between multiple SUs or SIs. This is done by configuring 

the subjects of non-collocation on disjoint Node Groups. 

The set of all Nodes configured in the AMF configuration compose the Cluster. The Clus-

ter is considered as the biggest fault zone as the AMF repair actions that are taken at 

Cluster level interrupt all the services provided by the system. Also note that when we 

talk about one AMF configuration we are necessarily talking about one and only one 

Cluster. From a naming perspective, a Cluster is the parent entity for all the Nodes that 

compose it and the Node Groups grouping a subset of these Nodes. 

2.2.2. State models 

AMF uses multiple state models in order to manage the availability of the components 

through its configured logical entities. These state models are used to manage the lifecy-

cle of the components, detect failures, assign services to the right resources, etc. In this 
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thesis we were interested in four state models in particular, namely, the presence state of 

AMF components, the HA state of a component for a given CSI (resp. of a SU for a given 

SI), the administrative state which is the same for SUs, SGs, Nodes, and SIs, and finally 

the assignment state of SIs. 

The presence state of AMF components is used to manage the lifecycle of these compo-

nents. The transition from state to state is triggered through the previously mentioned 

lifecycle management operations. The state set is composed of the following states: 

 Uninstantiated: is the state where a component is when the software instance it 

represents is not running. It can either be when the component is first deployed 

or when it successfully transitions from the terminating state.  

 Instantiating: the component transitions to this state from the uninstantiated state 

when the instantiate lifecycle management operation is called on it. That means 

that the instantiation is triggered or being retried if an instantiation attempt failed 

within the allowed number of instantiation attempts. 

 Instantiated: is the state to which a component transitions from the instantiating 

state if the instantiation call was successful, or restarting if the restart was suc-

cessful 

 Terminating: is the state to which a component transitions from the instantiated 

state when the terminate lifecycle management operation is called on it. Termi-

nate can consist either of a simple terminate operation, or a terminate operation 

followed by a cleanup when the terminate operation fails to terminate the com-

ponent. 

 Restarting: a component transitions to this state from the instantiated state when 

the restart administrative operation is called on it or in case of error recovery. 

Restart operation can be carried on in one of the three following ways: 

o Terminate + Instantiate. 

o Terminate + Cleanup + Instantiate. 

o Cleanup + Instantiate. 

 Instantiation-failed: a component transitions to this state from the instantiating 

state if all allowed attempts to instantiate it have failed. Note that in AMF we 

distinguish between instantiation with delay and instantiation without delay. For 

each type of instantiation we have a configured number of maximum allowed 

attempts for each component. In addition, in the case of the instantiation with 

delay, the delay between attempts of instantiation is also configured at compo-

nent level. 

 Termination-failed: a component transitions to this state from the terminating 

state or the restarting state when the cleanup operation fails. 

Assigning a CSI (resp. SI) to a component (resp.SU) means that AMF gives that com-

ponent (resp. SU) a HA state on behalf of that CSI (resp. SU). The state set of the HA 

state model is composed of the following states: 
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 Active: means that the component (resp. SU) is currently handling the CSI (resp. 

SI). 

 Standby: means that the component (resp. SU) acts as a standby for the CSI 

(resp. SI). 

 Quiescing: means that the assignment of the CSI (resp. SI) is being gracefully 

removed from the component (resp. SU). This implies that new requests for that 

service will have to be redirected to another component (resp. SU). 

 Quiesced:  means that this component (resp. SU) has no role for that CSI (resp. 

SI) and that an HA state can be given to another component (resp. SU) on behalf 

of that CSI (resp. SI). 

The administrative state of an entity reflects the eligibility of this entity to provide a 

service. An SU’s administrative state for example reflects if this SU is eligible to be 

assigned a service or not. Similarly, if an SG (resp. Node) is not eligible to provide a 

service that means that all the SUs grouped (resp. hosted) in this SG (resp. Node) are 

not eligible to provide a service. In the case of the SI, it only means whether an SI can 

be assigned or not. Transition from an administrative state to another is done via the 

administrative operations. AMF translates every call to an administrative operation on 

a given target into a set of AMF component life cycle and management operations that 

on components that belong to that target. The state set of the administrative state model 

is composed of the following states: 

 Locked: an entity transitions to the locked state when it is previously on the un-

locked state and the lock administrative operation was called on it. It can also 

transition to this state from the locked-instantiation state when the unlock-in-

stantiation administrative operation is called on it. A locked entity is not eligible 

to provide the service. Similarly a locked service cannot be provided. 

 Unlocked: an entity transitions to this state when the unlock administrative op-

eration is called on it while being in the locked administrative state. It reflects 

that the entity is eligible to provide the service. Similarly an unlocked service is 

a service that is allowed to be provided. 

 Locked-instantiation: means the entity is terminated (note that Sis do not have 

this administrative state). An entity transitions to this state when the lock-instan-

tiation operation is called on it. 

 Shutting-down: means the entity is not allowed to take new assignments and is 

trying to gracefully remove existing ones. 

The last state model we are interested in is the SI’s assignment state. It reflects the level 

of service provisioning of an SI and whether it has the minimum resources required to 

provide the required availability. The transition of a SI from state to state is mainly 

driven by the administrative state of the SUs that compose the SG protecting this SI as 

well as the assignment state of its sponsor SIs if any. The state set of this state model is 

composed of the following states: 
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 Fully assigned: means that the SI has the minimum resource to meet the required 

availability and that all the SIs on which this SI depends (Sponsors) have at least 

one assignment. 

 Partially assigned: means that the SI has at least one assignment, all of its spon-

sors have at least one assignment, but the SI does not have enough resources to 

meet the required availability. 

 Unassigned: means the SI is not assigned to any SU or one of its sponsors was 

unassigned for longer than the configured tolerance time. 

2.3. Software Management Framework 

The Software Management Framework (SMF) [4] is the service defined in the SAF spec-

ifications and which is responsible for the software management in a SAF compliant sys-

tem. This software management is defined within two aspects: 

 Software delivery: which defines how a SAF compliant software bundle 

should be delivered, and how it is described in the software repository. 

 Software deployment: which defines the software deployment process includ-

ing how to specify a software deployment or a configuration change in general 

on one hand, and how the specified instructions should be carried on and ex-

ecuted on the other hand. 

2.3.1. Software delivery 

A SAF compliant software is delivered as a software bundle, which is defined as set of 

interdependent files (including binary files and scripts), that can be used to install, vali-

date, repair or remove the software at any time. Every software bundle is accompanied 

by an Entity Types File (ETF), a software vendor provided file that describes the software 

bundle as well as the entity types it delivers. This description includes the following: 

 Software bundle description: which consists of the name of the software bundle, 

as well as various installation and removal scripts. In addition to the scope of 

impact of the installation/removal and which can be amongst the previously listed 

AMF fault zones (component, SU, container, or node), the ETF also specifies the 

paths to scripts of different types of installation/removals which include: 

o Online installation/removal: meaning that the installation/removal takes 

place while the service is being provided. 

o Offline installation/removal: meaning that the installation/removal is 

done while the service is not provided by the service provider under up-

grade 

 The entity types the software bundle delivers: including the component types and 

the component service types they can handle. Sometimes the vendor can also 

specify SU types and SG types. 
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2.3.2. Software deployment 

The specification of software deployment in the SMF standard is done through the fol-

lowing aspects: 

 Description of an upgrade campaign specification: an upgrade campaign specifi-

cation is a road map that SMF follows to perform the changes specified in it. It 

should be conform to an XSD schema that is given in the standard [4]. 

 Description of the execution of an upgrade campaign: the behaviors that SMF 

should implement once it is given an upgrade campaign specification as input. 

The upgrade campaign specification schema defines the different concepts that should be 

used by the campaign designer to specify the changes to be performed. The three main 

concepts of an upgrade campaign specification are: 

 The upgrade campaign: as one upgrade campaign specification can only specify 

the changes to be done within one upgrade campaign. The upgrade campaign 

groups the set of procedures that perform the changes required to move the system 

to the target configuration.  

 The upgrade procedures: used to specify the body of the upgrade campaign. Each 

upgrade procedure is composed of the set of upgrade steps performing the same 

changes on similar sets of entities. 

 The upgrade steps: an upgrade step is a set of related actions to be taken on a set 

of entities. Upgrade steps are mainly resolved by the SMF service at the runtime, 

but the upgrade campaign specification still has to specify the common attributes 

of the upgrade steps of every upgrade procedure. 

2.3.2.1. Upgrade campaign 

The upgrade campaign is the root element of the upgrade campaign specification xml file, 

it comes with one attribute which is the name DN of the upgrade campaign. The behavior 

that SMF implements for an upgrade campaign is described in [4] using a state machine, 

and the specification of an upgrade campaign is composed of the following sections: 

 Campaign info: provides some information about the time the upgrade campaign 

is supposed to take as well as the version of the configuration on which it should 

operate. When the current deployed configuration is of a different version than 

the one specified in this section, the upgrade campaign will not be started by SMF. 

 Campaign initialization: a set of pre-campaign actions that need to be done before 

the execution of the body of the upgrade campaign. These actions may include 

IMM related actions (additions of AMF entity types and entities representing soft-

ware bundles), command line calls, callback calls, or administrative operations on 

AMF entities. SMF can only execute the body of the campaign after all the actions 

specified in the initialization succeed. 

 Campaign body: a set of partially ordered upgrade procedures each specifies a set 

of changes to be done during the campaign. The upgrade campaign can either be 
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executed in the forward mode (performing the upgrade), or the rolling back mode 

(undoing the upgrade). 

 Campaign wrap-up: a set of post-campaign actions that need to be taken either to 

complete the changes to be done, or to validate the campaign. These actions in-

clude removals from IMM, command line calls, callback calls, or administrative 

operations on AMF entities. The campaign can be committed only after the suc-

cessful execution of its wrap-up. 

2.3.2.2. Upgrade procedure 

The specification of the body of an upgrade campaign is done using upgrade procedures. 

An upgrade procedure is the set of steps to be performed on identical entities. For each 

upgrade procedure we specify the name of the upgrade procedure and its execution level. 

The execution level is the attribute that specifies the partial ordering in which the upgrade 

procedures should be executed. Upgrade procedures are executed in an increasing order 

according to their execution level. SMF standard [4] does not specify how upgrade pro-

cedures with similar execution levels should be executed. However, it states that an SMF 

implementation should be able to execute these procedures sequentially. In the rest of this 

document we refer to the upgrade campaigns that are executed in an SMF implementation 

that only supports sequential execution of upgrade procedures as fully ordered. Similarly, 

we refer to the upgrade campaigns executed in a SMF implementation that supports par-

allel execution of upgrade procedures with similar execution levels as partially ordered. 

In addition to these attributes, the upgrade procedure also specify an initialization and 

wrap-up sections that can perform more actions than the upgrade campaign initialization 

and wrap-up. The additional actions include additions, removals, and modifications of 

AMF entities and not only AMF entity types. The specification of the body of the proce-

dure, on the other hand, covers the following aspects: 

 Common attributes for upgrade steps: will be explained later in this document. 

 Upgrade scope: which is the set of entities that will be impacted during the exe-

cution of this upgrade procedure. An upgrade scope is composed of a set of Nodes 

(Node group), set of SUs or set of components (identified based on their parent 

SG and type). 

 Upgrade method: based on which the SMF implementation decides how an up-

grade procedure will be decomposed. SMF supports two different upgrade meth-

ods: 

o Single step upgrade procedure: which is an upgrade procedure that per-

forms all the changes in one step. Therefore, all the entities within the 

scope are impacted and taken out of service, if necessary, at the same time. 

This kind of upgrade procedures is usually used for additions and remov-

als of software and new entities. 

o Rolling upgrade procedure: which is used to upgrade software as the up-

grade procedure is decomposed into steps per entity in the scope (step per 
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SU, step per component, or step per Node). These steps are executed se-

quentially thus allowing to maintain the availability of the service while 

performing the upgrade. Note that a rolling upgrade procedure can have a 

roll base which is the number of entities within the scope to be upgraded 

at the same time. An upgrade procedure that is targeting SUs, for instance, 

and that has a roll base of two, will be decomposed into steps that upgrade 

can be executed two at a time. This feature can have impact on the number 

of SUs that will be available to provide the service during the upgrade, but 

it helps perform the upgrade faster.  

 The actions this upgrade procedure should perform. Mainly configuration modi-

fications, or software installations/removals. These actions can also include calls 

to administrative operations, or command line calls in order to prepare for a given 

a change. These actions can either be performed in one step or several steps de-

pending on the upgrade method.  

The behavior that SMF implements for each upgrade procedure is described in [4] using 

a finite state machine. The execution or rollback of an upgrade procedure is triggered by 

the upgrade campaign, and as a result it triggers the execution of the upgrade steps that 

compose this upgrade procedure. In addition, this behavior also covers the failure cases, 

and proper messages to send to the upgrade campaign in order to take appropriate 

measures to stop the propagation of the fault and correct it. 

2.3.2.3. Upgrade step 

Upgrade steps are only specified through the common attributes of the steps that compose 

a given upgrade procedure. These attributes are: 

 Max retry: which is the maximum number of times a step is allowed to be retried 

before it triggers a campaign suspension or failure [4]. 

 Restart option: when the scope of a procedure is composed of components, its 

steps can avoid taking the assignments away from these components by just re-

starting the components. This can only take place when this attribute is set. 

Among the entities in the scope of the upgrade procedure, each step will take some of 

them out of service, and put another subset in service. The set of entities a step takes out 

of service is called a deactivation unit (DU), while the set of entities the step puts in 

service is called activation unit (AU). When the activation and the deactivation units are 

the same, we call that set a symmetric activation unit (SAU). 

During its execution, an upgrade step has standard actions that it takes. These actions go 

along the following lines: 

 Online installation of new software. 

 Lock deactivation unit. 

 Terminate deactivation unit. 
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 Offline uninstallation of old software. 

 Modify information model. 

 Offline installation of new software. 

 Instantiate activation unit. 

 Unlock activation unit. 

 Online uninstallation of old software. 

The steps for which the restart option attribute is set are called reduced steps and they 

take the following actions: 

 Online installation of new software. 

 Modification of information model. 

 Restart symmetric activation unit. 

 Online removal of old software. 

These actions are taken during the execution of the step. When an action fails, SMF un-

does all the actions that were taken by this step before the failure. Once these actions are 

successfully undone, SMF reattempts this step if the retry count has not yet exceeded the 

specified max retry. Otherwise, this can only lead either to the failure of the upgrade 

campaign, or a suspension of the upgrade campaign.   

Note that the administrative operation taken on the deactivation/activation unit are the 

main cause of service outage. In addition, the bigger the entity on which the administra-

tive operation is taken, the more time consuming and exposed to failure this latter is. 

2.4. Model Driven Engineering 

Model Driven Engineering (MDE) is a new trend in software engineering. It focuses on 

models to make them more of assets than overheads, in contrary to traditional software 

engineering methodologies that use models only for documentation. This transition can 

be made by using appropriate tools that can help perform various validation, evolution 

and extraction of software engineering artifacts on/from models. Thus, providing an en-

vironment that enables full or partial automation of most of software engineering activi-

ties as well as reuse the models as they are defined at a high level of abstraction. There is 

a wide range of tools that, if combined, can enable an MDE process. Computer Aided 

Software Engineering (CASE) tools were the first to be introduced, usually used for 

model editing, visualization, and automatic code generation. This category includes tools 

such as MagicDraw [40], RSA [41], StarUML [42], ArgoUML [43], EMF [45], Papyrus 

[44], etc. The other MDE related domain that interested software engineering tools ven-

dors was model management, including transformation, validation, merging, comparison, 

and every other activity that might relate or operate on models. In this category, we find 

tools such as ATL [28], EPSILON [21], Kermeta [47], QVTO [46], etc. The Object Man-

agement Group (OMG) [48], one of the most influential consortiums and communities in 

the software engineering domain, published a standard called Model Driven Architecture 
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(MDA) [49]. This standard can serve as a reference for MDE tools developers and pro-

mote the interoperability between the tools. It was based on existing OMG standards such 

as the Unified Modeling Language (UML) [50], the Object Constraints Language (OCL) 

[51], the Query View Transformation (QVT) [52], the XML Metadata Interchange (XMI) 

[53], and the Meta-Object Facility (MOF) [54]. Several MDE tool vendors already 

adopted this standard at least partially. 

2.5. EPSILON 

Epsilon is a self-contained model management environment that was created specifically 

to overcome some limitations of existing tools, such as: 

 No support for model modification capabilities. 

 No support for multiple models navigation or inter-model constraints expression. 

 No independence of the modeling technology. Once the technology used in input 

or output models changes, all model transformations will have to be changed as 

well. 

Epsilon is built on top of the general purpose language Epsilon Object Language (EOL) 

[24] as a family of task specific languages for model management. EOL solves all the 

aforementioned limitations of other languages by offering: 

 A family of task specific languages that we will define further in this document. 

 Capabilities for multiple models navigation, multiple input models and multiple 

output models. 

 Capabilities for inter-model constraints checking. 

  Capabilities and ease of extending this family of languages with a new language. 

 Support for java code injection in the code of all the languages. 

Some of the task specific languages that were built on top of EOL include: 

 Epsilon Validation Language, EVL: a language for constraints checking and in-

consistencies repairing. 

 Epsilon Transformation Language, ETL [22]: a language for model to model 

transformation, it can take an arbitrary number of input models and generate an 

arbitrary number of output models. This type of transformation is called mapping 

transformation because usually the input models and output models do not use the 

same modeling language. 

 Epsilon Wizard Language, EWL: a language for in-place model modifications, 

also called update transformations. 

 Epsilon Generated Language, EGL [23]: a language for model to text transfor-

mation, the ease of use of EGL is basically due to the fact that it is template based. 

 Epsilon Comparison Language, ECL: a language for rule based models compari-

son. 

 Epsilon Merging Language, EML: a language for rule based model merging. 
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 Epsilon Flock for Model Migration: a language for updating a model in response 

of meta-model changes, or to migrate the model from one technology to another. 

 Epsilon Pattern Language, EPL: a language for pattern matching in models. 

2.6. DEVS formalism 

Discrete Even System Specification, DEVS, is a general purpose system modeling for-

malism invented by Bernard P. Zeigler in 1976 [31]. Even if DEVS is mainly based on 

discrete events, its applicability is not restricted to discrete events based system. In fact, 

it has various extensions and specializations used for a wide range of systems including 

parallel systems, real time systems, cellular systems, and dynamic systems where the 

coupling structure changes dynamically. 

DEVS enables system modeling using elements called DEVS models. A DEVS model 

has the ability to change its state independently of its environment, and it has ports 

through which it receives input events and fires output events. The behavior of DEVS is 

defined through a set of functions, and its structure is defined either through ports only, 

or ports and other DEVS models depending on the nature of the DEVS model. 

DEVS formalism introduces two types of DEVS models: 

 DEVS atomic models: are models that, structurally speaking, do not contain any 

other DEVS models. And they are defined using the tuple:  <X, Y, S, Ta, DeltIn, 

DeltExt, Lambda> 

o X: is the set of input events. 

o Y: is the set of output events. 

o S: the set of states. 

o Ta: time advance function, which defines the time spent in each state 

(lifespan of a state). 

o DeltIn: the function of internal transitions, in this kind of transitions the 

decision is made just based on the system state without referring to exter-

nal events. 

o DeltExt: the function of external transitions, in this kind of transitions the 

decision is made based on the current state of the system and the recent 

external events.  

o Lambda: the output function, this function specifies the events that the 

atomic model should fire after every state transition. 

 DEVS coupled models: are complex models that contain other coupled or atomic 

models within them. And they are defined using the tuple: <X, Y, D, {Mi },  Cxx , 

Cyy , Cyx , Select> 

o X: is the set of input events. 

o Y: is the set of output events. 

o D: the set of subcomponents’ names. 
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o {Mi }: the set of subcomponents. 

o Cxx : is the set of external input couplings. From coupled model input to 

one or some of its subcomponents inputs. 

o Cyy : is the set of external output couplings. From one or some of the sub-

components outputs to one or some of the coupled model outputs. 

o Cyx : is the set of internal couplings. Couplings between subcomponents. 

o Select: is the function which defines how to select the event from the set 

of simultaneous events. 

Many simulators use DEVS as a modeling formalism including MS4 system, DEVS-

Suite [29], PyDEVS, and many others. 

2.7. Related work 
Component dependencies and dynamic reconfiguration of component based systems 

have been thoroughly investigated in the literature. Chen [8] proposes an approach for 

dynamic dependency management for dynamic reconfiguration of component based sys-

tems. He considers the “static” (design time) known functional dependencies among com-

ponents, but defines the concept of dynamic dependency that holds temporarily when a 

client component calls a method in a server component. The idea is that the dependencies 

defined at design time do not hold all the time during execution but only when a compo-

nent is using another component. The proposal is to monitor the interactions of each com-

ponent using a virtual stub that registers ongoing interactions, block interactions when 

needed for the reconfiguration, and resume blocked interactions after reconfiguration. 

The proposed approach is not applicable in the context of service high-availability as 

blocking interactions between components while they are still providing service will cer-

tainly lead to service outage.  

Matevska et al. [9] tackle the problem for the same kind of dependencies as in [8], with 

the goal of minimizing service outage. They define the concept of dynamic de-pendency 

graph to keep track of which component is currently using which other component. Com-

ponents can be in different states, free, passive and active. Components are only changed 

when they are in free and passive states; before the changes are performed they are 

blocked and incoming invocations are queued. To avoid service outage, the idea is to find 

the optimal point in time during the evolution of this dependency graph, and change a 

component when there is no runtime dependency to it. The authors are concerned with 

high-availability and service outage, but there is no guarantee there will be an optimal 

point in time and there is no guarantee about the duration of the changes while incoming 

invocations/requests are blocked. A similar approach, where software modules are only 

upgraded in safe states and future incoming requests are buffered is described in [10].  

Dependencies relevant for upgrades in the context of AMF have been studied in [11]. 

Two kinds of dependencies are considered: functional dependencies (directed dependen-

cies in this paper) and upgrade dependencies. Upgrade dependencies are dependencies 

between two upgraded components that did not exist between the original components. 
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A directed graph is created from these dependencies and taken into account for the design 

of the upgrade campaign. However, not all relevant dependencies are considered (e.g. 

collocation dependencies) and the type of applications that are considered is limited. 

Other works [12], [13] consider component dependencies during dynamic recon-figura-

tion of component based applications from the perspective of application consistency, not 

removing a component while it is being used by another one, avoiding dangling refer-

ences, etc., but with no consideration to the service outage and high-availability. Depend-

encies are determined at runtime and taken into account before removing or updating a 

component. Other approaches rely on specific operating systems [14], container environ-

ments [15] or component models [16] or use low-level approaches with wrapper-like 

functions [16] or modify source code [18]. An overview of techniques used for dynamic 

reconfiguration can be found in [19]. 

Upgrade execution time estimation is one of the main concerns of systems administrators. 

This execution time is an aggregation of execution times of the actions taken during the 

campaign’s execution. These actions can be either software installation or removals or 

some component management action. The upgrade time of database and software has 

been investigated in the recent years by both research and industry such as the work pre-

sented in [33]. For some database based software and for some specific types of upgrades, 

bounded by some constraints on the type of changes to be done on the schema and the 

data, Michal et al. in [33] propose an evolutionary algorithm that uses data from previous 

upgrades to estimate the time required to upgrade every atomic entity in the system (in 

this case business objects), and then estimate the time required for the next upgrade based 

on the business objects that will be upgraded and the previously estimated respective 

upgrade durations.  

 Two of the major challenges of availability are the unplanned downtime due to software 

glitches and the planned downtime caused by system upgrades. That makes the outage 

induced by an upgrade campaign one of the main factors to consider while estimating the 

availability of a system on the long term. The work in [34] presents an assessment of 

reliability and availability of a Storage Area Network (SAN) after two types of exten-

sions: SONET based SAN extension, or an IP based SAN extension. In the analytical 

models used to compare the solutions, the authors took into consideration system up-

grades by setting a fixed number of upgrades per year, their durations and the downtime 

they induce. Using these hypothesis they were able to estimate the availability and relia-

bility of the SAN in the long term.  In our work, we are not targeting the system config-

uration that will make the system most reliable and available, but we suppose the admin-

istrator already has this configuration and the upgrade campaign specification that can 

take the system to that configuration, and we try to estimate the cost of this migration in 

terms of execution time and service outage. 
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Unlike the work in [34], Kanso et al. in [35, 36] did not consider the effect of upgrade 

campaigns on the downtime in the long term. The authors proposed an approach to esti-

mate the availability of a service provided by a SAF system based on its current config-

uration. They used Deterministic and Stochastic Petri Nets (DSPNs) [39] to model the 

configuration, and they explored components’ failure modes and recovery actions 

mapped to every failure mode. They extended the SAF models in a similar way as we did 

in order to provide the missing time and failure data. Unlike our work, the work in [35] 

was using a different formalism to model a SAF system, in addition in our work we esti-

mate the downtime during an upgrade campaign which is the planned downtime, while 

[35] was focused mainly on the unplanned downtime. 

Determining execution time of hard real-time system has been thoroughly investigated 

during the past two decades [37, 38]. In order to guarantee the satisfaction of the deadlines 

of such systems, designer need to analyze/measure the execution time of the different 

tasks of the system. This can be done using static code analysis or measurement during 

execution prior to deployment. Worst Case Execution Time (WCET) analysis determines 

the upper bounds of the execution time of the different tasks [38]. This is usually done 

by characterizing the different paths in the program and the constituent instructions (ma-

chine level) and the execution time of each instruction. This analysis is generally hard-

ware dependent. The analysis of the execution time of upgrade campaign specification is 

different in a sense that it is at a higher level and takes into account failures and retrials. 

Moreover, we also determine the service outage in our simulation. 
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Chapter 3 - Upgrade campaign specification generation 
 

This chapter presents the challenging issues of upgrade campaign specification design 

and the need to automate it. It also introduces our model driven approach for automatic 

upgrade campaign specification generation. This chapter also includes a presentation of 

the modeling framework used to express various artifacts involved in the generation pro-

cess. 

3.1. Challenges 

An upgrade campaign is the process of migrating the system from one configuration to 

another. In SAF compliant systems, SMF is the engine responsible for the orchestration 

of such a migration. To perform the changes, SMF takes an upgrade campaign specifica-

tion file as input. This file contains different actions required to perform system changes. 

When designing an upgrade campaign specification, the campaign designer can face sev-

eral challenging issues. These issues arise from the complexity and the size of the system 

as well as the amount of actions required to move the system from one configuration to 

another. 

When upgrading a highly-available system, an administrator has two main concerns: 

 Correctness of the upgrade: correctness means that the instructions passed to the 

upgrade engine are performing the required changes.  

 The outage and service disruption the campaign can induce: in HA systems outage 

can be very costly. While system upgrades are necessary for maintenance pur-

poses, they are considered one of the main causes of outage. Several system as-

pects can be managed in order to reduce the outage such as: 

o Dependencies: Systems’ building blocks can depend on each other, and 

upgrading one component may impact another. This effect should be con-

sidered by the campaign designer while ordering the changes. 

o Upgrade methods: SAF specifications define two upgrade methods, and 

using the wrong upgrade method to perform the changes might induce 

some unnecessary outage. 

o Upgrade scope: Choosing the right activation/deactivation unit of an up-

grade procedure can reduce significantly the service outage and disruption 

induced by an upgrade campaign. 

Considering all these aspects, designing an upgrade campaign is a significantly complex 

and error prone task. This task becomes more difficult with more complex systems as we 

see it in the cloud context. Model driven techniques have been widely used to increase 

the level of abstraction and ease transformations. In the following sections, we will show 
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how we addressed these issues to devise a model driven approach for the automatic gen-

eration of upgrade campaign specifications. 

3.2. Modeling framework 

The upgrade campaign specification generation process includes several activities. Each activ-

ity has a set of inputs and a set of outputs according to its role. We designed a modeling frame-

work that enables us to express various artifacts generated/exchanged during the generation 

process. This framework includes three meta-models which represent the three domains of in-

terest for our work. The change meta-model is used to express the changes a system can un-

dergo. The dependencies meta-model is used to capture the relationships between AMF entities 

and the dependencies between the components they represent. Finally, the upgrade campaign 

specification meta-model is used to express SAF compliant upgrade campaign specifications. 

These meta-models are described in the following subsections. 

3.2.1. Change meta-model 

The change meta-model (Figure 3-1) is used to describe the changes to be performed to take 

the system from the source configuration to the target configuration. These changes, can be 

either IMM related changes (ModifyImm, AddToImm, RemoveFromImm) or software related 

changes (SoftwareChange).  

The software related changes (SoftwareChange) are the installation (SwInstallation) or remov-

als (SwRemoval) of software bundles from a set of nodes (UCGNode).  

The IMM related changes can be either addition to (AddToImm), removal from (RemoveFro-

mImm) or modification made to (ModifyImm) the existing content of IMM.  

A removal from IMM can be done just based on the DN of the object to be deleted, an addition, 

on the other hand, needs all the attributes of the object to be added. This is why we have every 

AMF object mapped to a set of attributes characterized by a name, type and value. For modi-

fications we need the source object and target object to be able to define which attributes were 

modified.  
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Figure 3-1: Change meta-model 

3.2.2. Dependencies meta-model 

The dependencies meta-model (shown in Figure 3-2) captures the different dependencies that 

may exist between entities in an AMF configuration and their relations. These dependencies 

can be used for different purposes depending on their category: 

 Directed dependencies are used to order the changes. The ordering of the changes 

will be described in more details later on this document. 

 Symmetrical dependencies are used to handle compatibility and service protection 

issues. This gives significant insight on what upgrade method to choose (rolling 

upgrade, or single step upgrade). These dependencies are also used to order the 

upgrade procedures not only based on the relationships between their targets but 

also the nature of the change to be performed on each target (addition, upgrade, 

or removal) [55]. 

 Collocation dependencies are used both to improve the choice of the upgrade 

method and to determine which procedures can be merged with each other. 

Further explanations and details regarding these dependencies will be given later in this docu-

ment. 
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Figure 3-2: Dependencies meta-model 

3.2.3. Upgrade campaign specification meta-model 

The upgrade campaign specification meta-model (Figure 3-3) captures the concepts needed to 

generate a SAF compliant upgrade campaign specification. It is described using upgrade ob-

jects (UCG_UpgradeObject). Every upgrade object is defined through the definition of its ini-

tialization, body, and wrap up sections.  

The main upgrade objects (UCG_UpgradeObject) used to specify an upgrade campaign are: 

 The upgrade campaign (UCG_UpgradeCampaign): It is the root element of the 

upgrade campaign specification. 

 The upgrade procedure (UCG_UpgradeProcedure): The upgrade objects compos-

ing the upgrade campaign’s body specifying how a set of changes should be de-

ployed. 

The upgrade campaign body is composed of upgrade procedures, while the upgrade procedure 

body is composed of the upgrade step description, which is an ordered list of upgrade actions 

(UCG_Action), and the target entities. This set of upgrade actions may be repeated for different 

subsets of the target entities. 

The initialization and the wrap up sections are also composed of ordered upgrade actions.  

An upgrade action can be: 

 IMM related operation (UCG_ImmOp): like addition, removal or modification of 

an object in IMM. 
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 Software related action (UCG_SwOp): like installation and removals, usually 

called based on the software bundle DN and the node on which the installation 

should be done (PlmEE). 

 Administrative operation (UCG_AdminOp): administrative operations defined in 

the AMF standard (Lock, Unlock, Lock-Instantiation, and Unlock-Instantiation), 

these operations are called on objects based on their DNs, and for every adminis-

trative operation we should define how it should be done in the direct execution 

and in rollback (doing and undoing of the administrative operation). 

 Callback (UCG_Callback): called on entities deployed in the system, based on 

their DNs. 

 CLI Command (UCG_Cli): commands called using the CLI (command line in-

terface), they are specified using the path of the command, its arguments. For each 

command we specify how it is called in the execution and in the rollback paths 

(doing and undoing of the command). 

While software related actions can only be part of a procedure body, the other four can be used 

in the initialization and wrap-up sections as well. 
 

 

Figure 3-3: Upgrade campaign specification meta-model 

3.3. Overall approach 

The main inputs of our approach for the upgrade campaign specification generation are: 

 Source configuration: The configuration describing the system in its current state. 

 Target configuration: The configuration describing the state where we want to 

take the system after executing the upgrade campaign.  
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 ETFs: The Entity Types Files (ETF) of the software available in the software re-

pository describing the software bundles deployed and to be deployed in the sys-

tem and the entity types they provide. 

The source configuration and the target configuration go through a first transformation, as 

shown in Figure 3-4, that creates a model called a change model. The change model is an 

instance of the change meta-model and describes the changes that need to be performed on the 

source configuration to get to the target configuration. From this change model, and using an-

other  transformation, we generate an elementary upgrade campaign specification model, in-

stance of the upgrade campaign specification meta-model, that contains an upgrade campaign 

element for each change of the change model. This upgrade campaign specification model goes 

then through a first refinement that matches upgrade campaign elements that can be performed 

in the same upgrade procedure. For each match, all the upgrade campaign elements are merged 

into an upgrade procedure and the elements not required anymore are deleted from the upgrade 

campaign specification model. The three inputs should also go through a transformation where 

the different dependencies between the system’s entities are extracted into a dependencies 

model, instance of the dependencies meta-model, from each of the configurations and the pro-

vided ETFs. Finally, and using the dependencies in the dependencies model, the upgrade cam-

paign specification model is refined for the second time using a transformation that takes into 

consideration the dependencies between the system components to create a partial order and to 

determine the optimal scope for each set of matched changes. 
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Figure 3-4: Overall approach 

3.4. Transformations 

3.4.1.   Change model creation 

The creation of the change model consists of comparing the source and target configura-

tions and determining the changes between them, which should imply the actions required 

to take the system from the state describe by the source configuration to the desired state 

of the target configuration. This comparison is not straight forward, and was handled in 

the work in [6]. This section will describe briefly the challenging issues of this task and 

how the work in [6] proposed to solve them. 

The source and the target configurations may not use the same naming for the entities. 

The assumption though is that at least the service instances, which are provided before, 
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after and throughout the upgrade have the same name in the two configurations as name 

changes of entities in the runtime system is not permitted.  

Starting with this assumption the work in [6] proposes to identify the configuration ob-

jects representing the provider entities of each service instance in each of the configura-

tions and map them (i.e. their names) to each other in each of the configurations to have 

a consistent naming of configuration objects. Next one should compare the mapped con-

figuration objects, their attributes and their associations. If the configuration of the rep-

resented entities, their types and associations are identical in the two configurations then 

they are not targeted by the upgrade and they are not considered any further. The work in 

[6] did not follow a model driven approach, and it does not output a model. The change 

meta-model that we designed and described earlier allows us to put the results of this 

difference calculation into a model for further uses.  

Mapped configuration objects representing entities whose attributes, types or associations 

change between the two configurations are the AMF entities targeted for modification in 

the upgrade and based on the differences between the configurations we add to the change 

model the appropriate AMFEntity objects and their ModifyImm changes. If there is a 

type change we check if we need to also add a new AMFEntityType objects associated 

with the AddToImm and SwInstallation changes, an old AMFEntityType objects associ-

ated with the RemoveFromImm and SwRemoval changes, or a AMFEntityType objects 

associated with ModifyImm change for any modified type.  

For configuration objects (AMF entities, AMF types and objects of association classes) 

present only in the source configuration and not handled yet we add the appropriate AM-

FEntity and/or AMFType objects and the RemoveFromImm and SwRemoval changes to 

the change model. Similarly for configuration objects present only in the target configu-

ration we add to the change model the appropriate AMFEntity and/or AMFType objects 

and the AddToImm and SwInstallation changes as necessary. 

3.4.2. Actions creation 

This transformation takes the change model as input and outputs an elementary upgrade 

campaign specification model which contains an upgrade campaign element for each 

change contained in the change model. 

 These upgrade campaign elements are created according to the standard upgrade cam-

paign schema and they respect the logic described in the different SAF specifications. 

This implies of putting the right upgrade actions in the right sections of the upgrade cam-

paign specification some parts of which require explicit specification of actions and their 

targets (e.g. initialization, wrap-up), while other parts have standard actions and require 

only their parametrization (e.g. upgrade step).  
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Table 3-1: Mapping changes to corresponding SAF compliant actions and their posi-
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The elementary upgrade campaign specification model may not yet be fully compliant to 

the model of the standard upgrade campaign specification schema as at this stage some 

schema elements are only partially defined. E.g. an upgrade procedure may only have an 

initialization and/or a wrap-up section, but not a body. 

In the change model, we have distinguished whether the target of an IMM operation is 

related to the AMF entity type or an AMF entity. This was to be able to put these opera-

tions in the right section of the upgrade campaign specification as indicated in Table 3-1. 

Another aspect of respecting the logic of SAF specifications stipulates the need of pre-

paring for an upgrade action implementing a change before performing it, for example 

before removing an SI it should be first locked.  

This set of rules is summed up in Table 3-1. It indicates for each possible change of the 

change model (rows) the corresponding upgrade actions (cells) and the section of the 

upgrade campaign specification (columns) they need to be placed 

The modification of types and AMF associations is not a straight forward task, and re-

quires a lot of precaution to decide how to perform and where to put such a modification 

to keep the configuration consistent. A problem often faced with type modifications is 

the case when during the upgrade we have peer (aka collaborating redundant) entities that 

operate under different types (configurations).  To be able to handle this kind of changes 

we classified the relevant attributes of the types and associations into three categories, 

and each category is treated differently as shown in Table 3-2.For the attributes with the 

“set Max before” strategy, we start by setting the changed attribute to the maximum of 

old and new values, and set it to the new value later after upgrading the entities. For the 

attributes using the “set Min before” we set the value of the changed attribute to the min-

imum of new and old value. Attributes of the third category are data collections and re-

quire that we extend them before their upgrade to make the entities able to operate in both 

old and new configuration, and later on we remove what has to be removed and keep only 

the desired configuration. 

With respect to the placement of the changes the modifications of types can be of two 

kinds: 

 Modification of the type of the entity being upgraded: In this case we place the 

changes to prepare for the upgrade (the set Max before for example) in the initial-

ization of the procedure, and to perform the rest we put them in the wrap-up sec-

tion of the same procedure. 

 Modification of the type of the sponsor or dependent entity: Modifications are put 

in the initialization and the wrap-up of an independent procedure specifically or-

dered with respect to the procedure operating on the entity being upgraded based 

on compatibility 
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Table 3-2: Types and AMF Associations Attributes Handling Strategies 
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3.4.3. Actions matching 

The actions matching transformation refines the elementary upgrade campaign specifica-

tion model generated by the previous transformation by matching the upgrade campaign 

elements that should be done within the same procedure. After this matching transfor-

mation the upgrade campaign specification model should be fully compliant to the model 

of the standard upgrade campaign specification schema.  

To perform the matching we propose the following rules: 

 Rule #1: actions on peers match. Meaning that upgrade campaign elements on 

components or SUs, which are redundant of each other, should be done in the 

same procedure. E.g. upgrade of SUs of the same SG match and the upgrade 

campaign elements are merged into a rolling upgrade procedure 

 Rule #2: actions on entities match actions on their children. That means that the 

upgrade campaign elements with upgrade actions on a parent and on its child 

need to be done within the same procedure. E.g. the upgrade of an SU and its 

component match their upgrade campaign elements are merged together into the 

same upgrade procedure. 

 Rule #3: actions on entities match actions on software bundles providing their 

types or the types of entities they match. That means that the upgrade campaign 

elements with the modifications of entities and with the installation/removals of 

software associated with these modifications should be done in the same proce-

dure. E.g. the upgrade of a component and the installation of the software bundle 

delivering its type match and merged into the same upgrade step/procedure. 

 Rule #4: actions on services match actions on entities protecting them. Meaning 

that any modification of a service entity matches the modifications on their ser-

vice provider entities. For example, a modification of an SI matches the modifi-

cations on the SUs protecting the SI. 

 Rule #5: for the matching of actions on AMF associations we distinguish four 

cases: 

o Type to Type associations: do not need to be matched since they will be 

done in the campaign initialization or wrap-up section. 

o Service to Service associations:  

 for addition: they are matched to last added and put in the wrap-

up of the procedure,  

 For removal: they are matched to first removed and put in the in-

itialization of the procedure. 
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o Type to Entity associations: matched to the actions performed on the en-

tity, they are added in the wrap-up of the procedure and removed in the 

initialization. 

o Entity to Entity associations:  

 For addition: they are matched to the first added and put in the 

wrap-up, 

  For removal: they are matched to the last removed and they are 

put in the initialization. 

These rules if applied in arbitrary order might result in the wrong matching up of actions. 

For instance, let assume that we have two SGs with SUs of the same type protecting two 

service instances of the same service type. In this case, if these rules are applied in the 

wrong order that might result in the matching of actions on SUs of the first SG with 

actions on SUs on the second SG, i.e. if Rule #3 is applied first. In order to avoid such 

mistaken matching, we recommend that Rules #1, #2, and #3 to be applied in this order, 

while the implementer may decide of any ordering for the rest of the rules. 

3.4.4. Dependencies extraction 

In this transformation we extract from the ETFs, the source and the target configurations 

the different dependencies between the system’s components based on their attributes 

and the way they are deployed. The different dependencies that we can extract are as 

follows: 

 SI dependency: between two SGs one of them protecting a sponsor SI (Sponsor 

SG) and the other is protecting a Dependent SI (Dependent SG). 

 Proxy-Proxied dependency: between two SGs one of them protecting a Proxy SI 

(Sponsor SG), and the other is protecting its Proxied SI (Dependent SG). 

 Instantiation dependency: between a pre-instantiable component of a SU (Spon-

sor), and another pre-instantiable component of the same SU with a lower Instan-

tiation Level (Dependent). Lower instantiation Level means that the value of the 

attribute saAmfCompInstantiationLevel is higher. 

 CSI dependency: between CSIs of the same SI. Implying that the sponsor CSI 

should be assigned before the dependent CSI. 

 Container-Contained dependency: we characterize the sponsor and dependent in 

this kind of dependency based on their SG and type, meaning that components 

belonging to the SG SponsorSG and of type SponsorType, are containers of com-

ponents of the SG dependent SG and of type DependentType. 

 CompCSIDependency: this kind of dependency is the instantiation dependency 

version for non-pre-instantiable components. It exists between components of the 
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same SU, and means that components of the SU of type DependentType depend 

on components of the same SU that are of type SponsorType. This dependency 

imposes only a partial order, since we say that this dependency exists between 

two types if and only if none of the CSIs handled by the SponsorType depend on 

any of the CSIs handled by the DependentType and all the CSIs handled by the 

DependentType depend on at least one of the CSIs handled by the SponsorType. 

In this case we can deduce an ordering for the changes on the components of that 

SU otherwise we upgrade them all at once taking as AU/DU at least to SU level 

(no restartability option). 

 SU collocation dependency: exists between components sharing the same SU. 

 Node collocation dependency: exists between SUs configured for the same Node, 

or SGs having a Node in common. 

 NodeGroup collocation dependency: exists between SGs sharing the same Node-

Group. 

 Container collocation dependency: derived from container-contained depend-

ency, and identifies the pairs (dependent type, dependent SG) that share the same 

pair (sponsor type, sponsor SG). 

 

Figure 3-5: Example of a deployment configuration 

The deployment configuration shown in Figure 3-5 has one Node Group (NG1) on which 

three SGs (SG1, SG2, and SG3) are deployed. Each one of these SGs has three SUs, and 
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the components of the SUs of SGs 2 and 3 are contained by the first components of the 

SUs of SG1. This part of the configuration shows the following kinds of dependencies: 

 Node Group collocation dependency between SGs 1, 2, and 3. 

 SU collocation dependency between components of the same SU (mainly at 

the SG1’s SUs level). 

 Service protection dependency between SUs of the same SG. 

 Container-Contained dependency components of SUs of SG1 and compo-

nents of SUs of SGs 2 and 3. 

 Container collocation dependency between components of SUs of SGs 2 and 

3. 

 Peer dependency between components in the same SG and of the same type 

(in our figure same filling). 

The second part of this deployment configuration shows SGs 4, 5, 6, and 7 for which the 

SUs are configured per Node.  SG4 protects SI1, SI1 depends on SI2 that is protected by 

SG5; and SG6 contains components that proxy other components within SG7. So, in ad-

dition to the already mentioned dependencies (Service protection and Peer), this part of 

the configuration shows other types of dependencies: 

 Node collocation dependency between SUs configured for the same Node (SU41, 

SU52, SU61, and SU71 for example) 

 SI dependency between the Sis protected by SG4 (dependent) and SG5 (sponsor). 

 Proxy-Proxied dependency between components within SG6 (proxy a.k.a spon-

sor) and components within SG7 (proxied a.k.a dependent). 

Figure 3-6 shows a dependencies model (instance of the dependencies meta-model) that 

describes the dependencies in the already described configuration, attributes of some se-

lected dependencies instances were emphasized in order to show the attributes we use to 

describe each type of dependency based on different participants. 
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Figure 3-6: Figure 3-5 deployment corresponding dependencies model 

3.4.5.   Ordering and scope optimization 

The last transformation is takes into consideration the dependencies extracted from the 

source, the target configurations and ETFs to determine the appropriate ordering of the 

execution of upgrade procedures. As mentioned before two categories of dependencies 

have to be considered in the ordering of upgrade procedures: symmetrical and directed 

dependencies. 

The changes of entities related by a symmetrical dependency are to be ordered as de-

scribed in [55]: 

 Addition can happen whenever possible with respect to any directed dependencies 

the entities are involved. 

 Upgrade of an entity cannot happen before the addition of all the entities which need 

to be added, and which are related to this entity through a symmetrical dependency. 
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 The removal of an entity cannot happen before the upgrade of all entities which need 

to be upgraded, and which are related to this entity through a symmetrical depend-

ency. 

The directed dependencies are mainly driven by the compatibility between the sponsor 

and the dependent entities, and the rationale that the dependent entity cannot exist without 

the sponsor. The ordering as given in [57] is summarized in Table 3-3.  

Table 3-3: Ordering rules for directed dependencies 

Change on 

sponsor 

Change on de-

pendent 

Order 

Addition Addition Sponsor first 

Removal Removal Dependent first 

Addition Upgrade Sponsor first 

Upgrade Addition Sponsor first 

Upgrade Upgrade Depends on compati-

bility 

Removal Upgrade Dependent first 

Upgrade Removal Dependent first 

 

The rules described in Table 3-3 impose an order that allows for performing the changes 

without violating the different dependencies. However, these rules do not cover other 

factors that impact the outage the upgrade campaign may induce, such as: 

 The choice of AU/DU. 

 The choice of the upgrade method. 

 If there is a chance for the upgrade campaign triggering a rollback it is preferred 

if this happens as early as possible in the execution. Rollback is triggered by a 

failure and implies that all the procedures executed successfully before the failure 

are rolled back. Hence earlier this happens less impact it has on the system.  

We propose some heuristics to improve the quality of an upgrade campaign specification. 

This quality improvement can reduce the outage the upgrade campaign may induce and 

the time it may take. In the following, we work under the assumption that the Node has 

the biggest scope of impact, followed by the Container then the SU, while the Component 

has the smallest scope of impact: 
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 Heuristic #1: keep the AU/DU to the minimal scope of impact. In other words, 

the AU/DU will be at most of the scope of impact of the software bundle instal-

lation/removal. If the upgrade consists only of IMM modifications then the 

AU/DU will be modification scope bounded. For instance, if an SU is to be mod-

ified, there is no need to lock the Node. 

 Heuristic #2: put as many changes as possible into the procedures having a bigger 

scope of impact. For instance, if the upgrade of a contained entity has the scope 

of impact of the Container we can upgrade with it all collocated contained entities. 

 Heuristic #3: procedures with bigger scope of impact should be executed as early 

as possible. The rationale is that more actions a step may take more likely it will 

fail. Since a step with a Node as its AU/DU, for instance, can take actions on any 

and all of the hosted entities it is more likely to fail than a step that has an SU as 

its AU/DU. 

 Heuristic #4: an execution level should contain procedures of the same scope of 

impact. In order to force Heuristic #3 to apply also in a fully ordered upgrade 

campaign. 

3.5. Summary 

The design of an upgrade campaign specification is not a straight forward task. This de-

sign implies insuring the validity of the upgrade campaign specification as well as the 

proper ordering of the changes it should perform. In order to achieve this, one should 

handle several aspects of the system including the dependencies between its components. 

Automation is a viable solution to minimize human intervention in this process and make 

it more efficient. In this thesis we propose a model driven approach to automate upgrade 

campaign specification generation. Our approach goes through different steps which ei-

ther generate new artifacts or refine already generated ones. These artifacts are models, 

and we propose a modeling framework that can express them. This modeling framework 

includes: 

 Change meta-model: used to express the set of changes required to move the sys-

tem from the source configuration to the target configuration. 

 Dependencies meta-model: used to model various dependencies between system 

components. 

 Upgrade campaign specification meta-model: used to model a SAF compliant up-

grade campaign specification. 

Our approach takes as input the source configuration, the target configuration and the 

ETFs. From the source and target configurations we derive the change set in a first step 

which outputs a change model (conforms to the change meta-model). From the change 

model we generate the first upgrade campaign specification model (conforms to the up-

grade campaign specification meta-model). This upgrade campaign specification model 
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undergoes a refinement to become SAF compliant. We use the aforementioned three in-

puts to extract the dependencies between system components into a dependencies model 

(conforms to the dependencies meta-model). We use these dependencies to make the pre-

viously generated upgrade campaign specification model undergo yet another refinement. 

This refinement applies a set of heuristics that can help reduce the outage the campaign 

may induce and the time it may take. 

The work in this thesis enables the generation of upgrade campaign specifications that 

can be used to perform a wide spectrum of types of changes. These types of changes 

include the modification, addition and removal of AMF entities from the AMF configu-

ration as well as software installations/removals. Yet, there are some types of changes 

that this approach (as is) cannot handle properly. An example of these changes is the 

change of redundancy models of SGs. During the change of the redundancy model of an 

SG, this latter will be composed of SUs that are meant to run under different configura-

tions. A simple rolling upgrade as the ones that an implementation of [4] supports is not 

a safe choice to perform such a change. Moreover the use of single step upgrades will 

induce an outage which might not be tolerated. Another such case is when upgrading 

components to a version of the software with no backward compatibility. As peer com-

ponents (components playing similar roles in SUs redundant of one another) need to com-

municate and synchronize states, the incompatibility between the old and the new version 

of the software might not allow that. One might consider extending this approach to sup-

port such types of changes as a potential extension. 

Finally, it is worth noting that the work that was presented in this section was published 

in [57] in the context of this thesis. 
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Chapter 4 - Upgrade campaign specification evaluation 
 

In order to upgrade a system, the administrator may have multiple candidate upgrade 

campaign specifications of which he has to choose the one to execute. Choosing one up-

grade campaign specification over another requires insight on: 

 The outage each upgrade campaign specification may induce. 

 The time each upgrade campaign specification may take. 

Having this kind of information will not only help the administrator compare upgrade 

campaign specifications, but also check for their applicability. The applicability check in 

this thesis is based on the following: 

 The outage should not exceed the allowed outage. 

 The execution time should fit within the maintenance window. 

In order to perform such an evaluation, one should consider several parameters. These 

parameters include system components, their behaviors, and dependencies, as well as the 

specified behaviors that SMF and AMF implement during an upgrade campaign. There-

fore, upgrade campaign evaluation is a tedious and error prone task if done manually, 

thus the need for automation. In the following subsections we will discuss a previously 

proposed approach for simulation based upgrade campaign evaluation. We will expose 

its limitations as well as the various extensions we proposed to overcome these limita-

tions. We will also describe the method we propose in this thesis for upgrade campaign 

specification elimination/selection based on the results of their applicability checks.   

 4.1. Previous work: simulation based approach for upgrade campaign evaluation 

The previous work in [7] proposed an approach based on the DEVS formalism for up-

grade campaign specification evaluation. 
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Figure 4-1: approach of the previous work on the evaluation of upgrade campaign 

specifications [7] 

The proposed approach (Figure 4-1) takes as input an upgrade campaign specification, 

system’s current configuration and an upgrade context. These three input go through a 

model transformation that instantiates for each entity in the upgrade campaign specifica-

tion and the AMF configuration an associated atomic DEVS model defined in the Java 

upgrade library. The generated coupled DEVS model as well as the Java upgrade library 

are loaded into the DEVS-Suite simulator in order to run the simulation. During the sim-

ulation we track the assignment state of SIs to trace the outage during the upgrade cam-

paign. For each upgrade procedure and the upgrade campaign we trace the time they 

spend in the executing state to get the execution time of each procedure and of the whole 

campaign as well. 

The upgrade context in [7] is an input that will provide the failure models of the system’s 

components, and the time attributes for software operations (installation/removal) and 

administrative operations. However, it did not specify how the upgrade context can be 

used in a simulation. In addition, no behavior was associated with the DEVS atomic mod-

els that represent the AMF components. In other words, AMF components were repre-

sented as DEVS atomic models that remain idle during the simulation. Without a behav-

ior associated with these models, one cannot simulate a time-constrained administrative 

operation. In fact, and administrative operation call usually translates into a set of AMF 

component lifecycle and management operation calls. These calls are the source of the 

time constraints that apply to administrative operations. 

 4.2. Extended simulation approach and limitations of random simulation 

In this work we extended the previously described approach in order to: 

 Introduce the attributes related to the upgrade context. 
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 Extend and modify the atomic DEVS models to include the components and thus 

put the upgrade context in action during the simulation. 

 Expose some limitations of the simulation for the evaluation and comparison of 

upgrade campaign specifications and overcome those limitations using a solution 

that we will describe further in this document. 

4.2.1. Extended approach for upgrade campaign specification simulation 

 

Figure 4-2: overall approach and simulation environment 

In our new approach (Figure 4-2) we kept the same set of inputs, however, in addition to 

the java upgrade library, we introduced two new building blocks of the simulation envi-

ronment: 

 A modified DEVS-Suite: a modified version of DEVS-Suite simulator that eases 

the simulation of orchestrated collaborations. The extension to both the formalism 

and the simulator will be explained further in this document. 

 Advanced analysis package: which help implement some controllable scenarios 

(Best case and Worst case scenarios), and use them to guide the simulation in 

order to overcome the limitations of the simulation. 

4.2.1.1. Upgrade context 

The upgrade context provides additional attributes required for the simulation. It consists 

of probability and time related data that describe the real behavior of the deployed com-

ponents.  

For the components, we extended ETF model and added further attributes: As shown in 

Figure 4-3, the ETF model represents the information as described by the ETF xsd of the 

SMF standard. For the upgrade context we added the bounded times (upper bounds and 

lower bounds) for component lifecycle and management operations and their respective 

failure rates as well as the switchover duration.  
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We added similar extensions for the software bundle, i.e. probability attributes for the 

success of the different software operations (online installation, online removal, offline 

installation, and offline removal) and their bounded times. 

In addition, the upgrade context includes data at node level: the startup and shutdown 

durations to be used when a node level recovery action takes place. 

The timeout attributes are provided as bounded times. Accordingly, we can use in the 

simulation as necessary a randomly generated value between the upper and lower bound 

following a given distribution (commonly exponential distribution), the upper or the 

lower bound values to simulate the time a given operation takes. 

 

Figure 4-3: Extensions to ETF 

4.2.1.2. Extensions to DEVS formalism and DEVS-Suite 

The DEVS formalism, as it is, can only model choreographically performed collabora-

tions, meaning that the logic of the collaboration is distributed among collaborating enti-

ties. In our case, some of the collaborations are orchestrated, meaning that there is a cen-

tral entity orchestrating the collaboration between a set of collaborating entities. If we 

take AMF, for example, at any point in time it may have different services to switchover 

to different entities with different time offsets for the next event. To make the orchestra-

tion of these events easier, the atomic DEVS model representing AMF should have a 

state-independent time-awareness. To capture this kind of collaborations we extended the 

DEVS time function in a way that not only the states have life spans but also the events. 

Therefore, and unlike a usual DEVS model that is considered imminent (or ready for a 

transition) only when it receives an incoming event or the life span of its current state 
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expires, a DEVS model simulated under this extension will also be considered imminent 

when the lifespan of one of its events expires. The DEVS model responds to this transition 

trigger by firing that event to its destination and going back to wait for the next transition 

trigger.  

We extended the DEVS-Suite simulator APIs to handle output events with lifespan as 

argument. Keeping in mind backward compatibility, we defined zero (0) as the default 

lifespan value for an event that should be issued right after its creation. We also extended 

the simulation mechanisms (simulators and coordinators) to include the event lifespan in 

the calculation of the next iteration time. 

4.2.1.3. New DEVS atomic models in the JAVA upgrade library 

The model transformation shown in Figure 4-2 generates a DEVS coupled model from 

the given configuration, upgrade context and upgrade campaign specification files. This 

DEVS coupled model is composed of DEVS atomic models obtained by mapping the 

instances of configuration and upgrade objects to instances of their corresponding DEVS 

atomic models. These DEVS atomic models are defined in the Java Upgrade Library and 

their mapping to configuration/upgrade objects is summarized in Table 4-1. This map-

ping is established according to the communication patterns between the different objects 

involved in the execution of an upgrade campaign of a given system. 

The upgrade campaign object, for instance, needs to communicate with the administrator 

and its procedures, which explains the I/O ports associated with its DEVS model. Simi-

larly, an upgrade procedure communicates with the campaign and the associated steps. 

Upgrade steps exchange events with the procedure and with the AMF to perform actions 

on the logical entities in the AMF configuration. Thus, there is a need for an atomic DEVS 

model representing AMF. It was designed with an input event from and an output event 

to every upgrade step and to every configuration object in the final DEVS model. 

The main responsibility of the atomic DEVS model representing AMF is the interpreta-

tion of the administrative operations issued by upgrade steps on configuration objects. 

This interpretation is basically a decomposition into associated time constrained AMF 

component management operations as defined in [3]. The time constraints for these AMF 

components management operations are given in the system configuration. 
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Table 4-1: Objects involved in the simulation and their associated DEVS models. 

 DEVS Models 

Upgrade campaign  

Upgrade procedure  

Upgrade step  

AMF entity  

AMF  

 

4.2.2. Limitations of random simulation 

Our goal is to use the simulation to perform upgrade campaign simulation and evaluation. 

When comparing two upgrade campaign specifications, and due to the randomness of the 

simulated behavior (as the times the simulated actions take and failures are randomly 

decided based on distributions), one upgrade campaign specification simulation might 

take a better execution path than the other. Thus, making the simulation results unreliable 

for comparison. To overcome this challenge we have chosen to inject controllable sce-

narios to make all the upgrade campaign specifications that we want to compare take the 

same execution path (execution time wise and failure wise). However, using any scenario 

for the comparison might not be relevant for the evaluation of upgrade campaign speci-

fications. That is why we propose the use of best case and worst case scenarios as they 

will enable: 

 Fair comparison of upgrade campaign specifications. 
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 The estimation of the best and worst execution a time an upgrade campaign might 

take and the best and the worst service outage it might induce. 

In the following subsection we will describe these two controllable scenarios as we de-

fined them. 

4.3. Controllable scenarios 

The best and worst case scenarios are used to control the execution path that the simula-

tion will take. They are defined in a way to take the simulation to the edge cases, thus 

taking into consideration the following aspects of the simulated runtime environment: 

 Software operations: The execution of a software operation may succeed or fail 

and does not always take the same duration. The upgrade context previously de-

scribed captures this fact by associating with every software operation a failure 

rate and a bounded duration attribute specifying a lower bound and an upper 

bound. However, the upgrade campaign specification may constrain these opera-

tions by a default timeout, which effectively replaces the upper bound value as 

SMF engages the appropriate upgrade repair mechanism if the timer expires. 

 Upgrade repair mechanisms: Upgrade actions are subject to failure, and depend-

ing on the failure stage SMF can engage different chains of actions involving both 

software and component management operations (when the failed step goes to the 

undoing states, and should undo all the previously performed actions before the 

failure). Moreover, SMF implementation takes also into consideration the speci-

fied max retries value of each step before reporting the failure. For different stages 

of failures and different failures’ count during the execution of every step in the 

campaign we can have different scenarios that induce different levels of service 

disruption and take different durations. We use edge combinations of the two fac-

tors in the definition of the best and worst case. 

 AMF configuration object behavior: As mentioned previously, administrative op-

erations are decomposed into AMF component management operations. Since 

each applicable management operations may succeed or fail taking different 

amounts of time the upgrade context includes a failure rate and a bounded time 

attribute for each of these management operations. In addition, a given AMF con-

figuration also constrains all these operations by timeouts, meaning that if an op-

eration is taking more time than the configured timeout, AMF assumes the oper-

ation has failed and engages in a recovery and repair actions, which map into 

AMF management operations sometimes at component in other cases at node 

level. Some AMF component management operations such as the instantiation, 

can be reattempted several times before AMF reports them as failed. All these 

aspects are used to define the best execution and worst execution of an operation 

on a given component. 
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In addition to the advantage of evaluating an upgrade campaign specification in edge 

cases, the use of controllable scenarios also offers the possibility of performing an eval-

uation without the use of the simulation. The administrative operations specified in AMF, 

and used in the upgrade process are: lock, lock-instantiation, unlock-instantiation, unlock, 

and shutdown. These operations can be called on targets of different sizes (Node, SU 

hosting a container component, or just a simple SU). The time the administrative opera-

tion can take varies depending on the type of the target, its size, and other dependencies 

factors (collocation within the target). So the time estimation for administrative opera-

tions is strictly based on what is provided in the configuration and the ETFs, and takes 

into consideration the following aspects: 

 The decomposition of the administrative operations into AMF component man-

agement operations. 

 The timeouts of these operations as provided in the AMF configuration, and their 

bounded times as provided in the ETFs. 

 The ordering of these actions as imposed by the instantiation level and CSI de-

pendencies within a SU. 

 Lifecycle dependencies between SUs of the same Node (container-contained). 

 Components category (pre-instantiable Vs non-pre-instantiable). 

 How AMF reacts to failure of administrative and component management opera-

tions: termination escalates to cleanup and instantiation is retried with and without 

delay. 

 The time a SMF implementation can wait for a callback is usually specified in the 

upgrade campaign specification and there is no need to estimate it. 

Based on this, in the following subsections we will define the best case and worst case 

scenarios as well as the expressions that one can use to evaluate an upgrade campaign 

specifications in these scenario without the use of the simulation. The details of these 

formula can be found in appendix 1. 

4.3.1. Best case 

The best case is defined as follow: 

 Time wise: in this perspective we take into consideration the execution time of 

every action. 

o Every action takes as much time as the lower bound of the related ETF 

attribute, and succeeds the first time it is called (instantiation, termination, 

lock, unlock, installation, removal, node restart). 

o Every upgrade step succeeds at the first time of its execution. 
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 Outage wise: in this perspective we take into consideration the interference be-

tween steps of procedures of the same execution level. 

o For fully ordered execution there are no consideration as we execute one 

procedure at a time, and thereby one step at a time. 

o For a partially ordered execution, as the procedures of the same execution 

level are executed in parallel, interference between their respective steps 

might take place. So, in the best case, the steps of procedures of the same 

execution level are arranged in a way that impacts the system the least. In 

other words, the steps that are executed in parallel are the ones that induce 

the minimum outage when executed concurrently. 

4.3.2. Worst case 

The worst case is defined as follows: 

 Time wise: in this perspective we take into consideration the execution time of 

every action. 

o Every upgrade step succeeds only on the last permitted attempt of its exe-

cution (max retry). 

o The failure of the upgrade step execution takes place at specific stages 

based on the configuration and the entities in the activation and deactiva-

tion unit of the step. So different actions might cause this failure, the 

choice is made based on the damage and recovery time for each stage. 

These stages are ranked as shown in Table 4-2. 

o All AMF component management operations take as much time as their 

configured timeout and succeed only the last time they are allowed to be 

executed. 

o Every recovery from a failure of an AMF component management opera-

tion should escalate to node level. 

 Outage wise: similarly to the best case, as there is no interference between up-

grade procedures in the fully ordered execution, we only consider the partially 

ordered execution. 

o In a partially ordered execution, the upgrade steps of the upgrade proce-

dures of the same execution level are arranged in a way to induce the max-

imum service outage. 
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Table 4-2: ranked list of upgrade step points of failure 

rank Condition Stage of 

failure 

1 The activation unit contains a non-pre-in-

stantiable component that will take the as-

signment after the unlocking, and saAm-

fNodeFailfastOnInstantiationFailure is set 

for the node hosting it  

Unlock Ac-

tivation 

Unit 

2 The activation unit contains a pre-instantia-

ble component, and saAmfNodeFailfastOn-

InstantiationFailure is set for the node host-

ing it 

Instantia-

tion of Ac-

tivation 

Unit 

3 The deactivation unit contains a pre-instanti-

able component, and saAmfNodeFailfastOn-

TerminationFailure is set for the node host-

ing it 

Termina-

tion of De-

activation 

Unit 

4 The deactivation unit contains a non-pre-in-

stantiable component that has the assign-

ment, and saAmfNodeFailfastOnTermina-

tionFailure is set for the node hosting it 

Lock Deac-

tivation 

Unit 

5 Default Online    

uninstalla-

tion of old 

software 
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4.4. Selection/elimination of upgrade campaign specifications 

Given a set of upgrade campaign specifications that can take a system from its current 

configuration to the same target configuration, we can use our simulation approach to 

evaluate them and decide which ones are applicable considering some targeted acceptable 

outage and maintenance window. The applicability of the scenarios discussed in the pre-

vious section depends on the capability of the SMF engine. Accordingly, if the SMF en-

gine is not capable of parallel execution the scenarios of the partially ordered execution 

do not apply. All SMF engines must be capable of fully ordered upgrade campaign exe-

cution. Since our goal is to meet some acceptable outage and maintenance window we 

evaluate the upgrade campaigns from the perspective whether these goals can be achieved 

Figure 4-4: upgrade campaign specification selection/elimination process 
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rather than selecting “the best upgrade campaign”. This is because it is not straightfor-

ward how service outage trades for execution time. Our evaluation (summarized in Figure 

4-4) goes along the following lines: 

 First all the upgrade campaign specifications are evaluated for the execution 

mode applicable to the SMF engine and both the best and the worst case sce-

narios are evaluated for their execution time and induced outage. 

 If the execution mode of the SMF engine is sequential all the upgrade cam-

paign specifications that induce an unacceptable outage for either the best or 

the worst case scenario can be safely eliminated as there is no guarantee they 

can meet the outage constraint. 

 In the case of parallel execution mode, the upgrade campaign specifications 

violating the outage constraint are further evaluated for the sequential execu-

tion as it typically induces less outage. Those upgrade campaign specifications 

which still result in an unacceptable outage for either the best or the worst case 

are eliminated. The remaining upgrade campaign specifications are marked for 

potential serialization. 

 Next the execution times of all the pre-selected upgrade campaign specifica-

tions are evaluated with respect to the maintenance window. The main consid-

eration is that we would like to complete the upgrade campaign within half of 

the available maintenance window. This allows for a graceful rollback of the 

system to its original configuration should anything go wrong unexpectedly 

during campaign execution. Accordingly, we eliminate all the upgrade cam-

paigns that result in an execution time greater than the half of the targeted 

maintenance window. This criterion may be relaxed if a partial or full restora-

tion of the system from a backup is an acceptable recovery and therefore can 

be used to shorten the rollback time. 

The selected upgrade campaign specifications are acceptable albeit some with the need 

for serialization. They can be compared and further analyzed from the perspective of their 

induced outages and execution times to pick the one that is the most suitable for the given 

system and constraints. A system administrator may choose the campaign that takes the 

least time in order to make better use of the maintenance window, while another one may 

choose the one that takes the longer time because, for example, it specifies more upgrade 

steps retries and thereby is more reliable. The choice can also be based on the probabilities 

associated with the best case and the worst case scenarios and select the one which has 

the highest probability for the best case scenario. This is also where the tradeoff execution 

time for service outage and vice versa becomes important. Our selection/elimination pro-

cess ends with a set of applicable upgrade campaign specifications. 

4.5. Summary 

Induced outage and execution time are two important quality factors for an upgrade cam-

paign. Estimating these factors can help: analyze the impact of the upgrade campaign on 

the system, decide if the upgrade campaign is applicable, and compare various valid ways 
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to upgrade the system. Manually performing this estimation is a tedious and error prone 

task because of the complexity of the systems. The previous work in [7] proposed a sim-

ulation based approach for upgrade campaign evaluation. This approach uses DEVS [31] 

formalism to enable the simulation. The simulation is run using the DEVS-Suite simula-

tor [29] which takes a DEVS model as input. This DEVS model is expressed as a Java 

class that is automatically generated from an upgrade campaign specification, an AMF 

configuration, and an upgrade context. The work in [7] described the upgrade context as 

a source from which one can retrieve the failure models of system components but it did 

not propose a solution for using it in the simulation. In this thesis we extended the work 

in [7] by introducing an upgrade context as an extension of the vendor provided ETFs 

and enabling the use of the failure models in the simulation. We have also exposed the 

limitations of the random simulation. In fact, using a random simulation to compare up-

grade campaign specifications can be misleading as one upgrade campaign specification 

simulation can follow a better execution path than the other. To overcome this limitation 

we propose the use of best case and worst case scenarios simulation to guide the simula-

tion. Guiding the simulation in these scenarios will not only help make sure that all the 

simulations follow the same execution path, it will also help evaluate the impact the var-

ious campaigns can have on the system in edge cases. We also show how the use of these 

scenarios can enable for an upgrade campaign evaluation that is not based on the simula-

tion. Finally, we proposed a method that one can follow to eliminate/select applicable 

upgrade campaign specifications. This method uses the results of best case and worst case 

scenarios’ evaluations. It checks whether the estimated outage is within the allowed out-

age as well as whether the execution time can allow for a graceful rollback within the 

maintenance window. At the end, each upgrade campaign specification can be marked as 

accepted, rejected, or can be optimized. 

In this thesis we proposed the best case and the worst case scenarios to evaluate upgrade 

campaign specifications. These two scenarios can give an insight of what to expect from 

an upgrade campaign, but one cannot disregard the fact that these scenarios are very un-

likely to happen (very small probability). An approach that might target accuracy would 

suggest the use of more scenarios and more simulations for evaluation. One potential 

extension of this work can be the design of a method that can give a minimum set of 

scenarios (and their definitions) that can be expressive enough (with a tolerance error 

margin) of the expected result of running a given upgrade campaign specification on a 

given configuration. Accordingly, one can also extend the upgrade campaign specifica-

tion selection/elimination process to narrow down the number of selected upgrade cam-

paign specifications based on further criteria. 
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Chapter 5 - Prototypes 
 

This chapter describes the prototypes implemented in this thesis. It covers the challenges 

faced during the implementation (if any) as well as the tools used in the implementations. 

We will first start by describing the upgrade campaign specification generation prototype. 

We will introduce the tools that were used, and illustrate using a running example. Simi-

larly we will describe the simulation based evaluation prototype, and give an illustrative 

example for this prototype as well.  

5.1. Upgrade campaign specification generation prototype  

The upgrade campaign specification generation consists of many activities. Each activity 

is implemented as at least one transformation using the appropriate language from the 

Epsilon family of languages: 

 The change model creation consists of a comparison of two models (source con-

figuration and target configuration) that is why we chose to implement it using 

Epsilon Comparison Language ECL. 

 The actions creation takes an input model and generates a totally different output 

model. The most appropriate language of the Epsilon family was the Epsilon 

Transformation Language ETL. The same applied to the dependencies extraction 

activity. 

 The actions matching activity is a refinement of the input model, and running it 

once on the input model might not get the desired result. In this case, we benefited 

from Epsilon Pattern Language EPL feature to rerun the transformation as long 

as there is a specified pattern that can be detected. 

 Similarly for the optimization, the application of the heuristics and ordering was 

implemented using EPL. 

 The generation of the XML file from the EMF model was implemented using the 

Epsilon Generation Language EGL. 

 The workflow orchestration was done using ant [56]. 

The change model creation was a reimplementation of the work in [6] using ECL. The 

work in [6] was based on some assumptions and elaborated a set of rules to overcome the 

Figure 5-1: Matching SIs 
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challenge of the difference of namespaces between two configurations representing the 

same system. Some of these rules were straightforward based on comparison of attributes 

(such as the RDNs). Others were more complex and were based on the previously estab-

lished matches. Figure 5-1 gives an example of rule that is straightforward and based only 

on RDNs comparison. Other rules, such as the one in Figure 5-2, are a bit tricky to im-

plement and rely on the already established matches. 

 

Figure 5-2: Matching SGs 

Now we will try to show the different output models our chain of transformations gener-

ates in the process. We will start with a configuration that is running an in house devel-

oped component called the Http component. The SG in this configuration has two SUs, 

each one of them has one Http component. We manually added a third SU (with its com-

ponent) to a copy of this configuration within this SG. Now, the output of the change 

Figure 5-3: Change Model 
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model creation activity is shown in Figure 5-3. As you can notice, the transformation 

detected the added SU and component, and it instantiated appropriate model elements 

(two addToImm instances, one for the SU and the other for the component) conforming 

to the Change meta-model. We then make this change model go through the actions cre-

ation transformation. As shown in Figure 5-4, this transformation created two upgrade 

procedures with the actions representing the addition to IMM in the body of the procedure 

conforming to the rules we described in section 3.4.2. We make this output go through 

the first refinement, as it shows in Figure 5-5 the second rule of the matching was applied 

(matching children to parents). There was no software installation operation because we 

Figure 5-4: The first upgrade campaign specification model 

Figure 5-5: The upgrade campaign specification model after the first refinement 
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are working with the assumption that if an SG is deployed on a node, even if that node 

does not have configured SU, it should have the software required for that SU installed 

on it. Because unless the SUs are configured per node, there is no way to know whether 

AMF will instantiate an SU on that node the first time the SG is instantiated or not. As 

we have only one upgrade procedure, and no special pattern applies there, the second 

refinement will not really have any effect. We then generate the xml file using the EGL 

template as shown in Figure 5-6. 

 

Figure 5-6: The xml file generated from the last upgrade campaign specification model 

5.2. Upgrade campaign evaluation prototype 

Implementing a model transformation requires a prior knowledge of the number of mod-

els/files that will be given to the transformation as input. A model transformation, for 

instance, cannot take three input models in an execution if it was programed to take only 

two. Moreover a transformation cannot be implemented for an unknown number of inputs 

as each one of the inputs is known through an alias which is hard coded in the transfor-

mation. This was one of the main challenges of the implementation of this prototype. In 

fact, we only know the number of ETF files that will be given as input to the transfor-

mation at the time we run the transformation. So far, no model transformation language 

or model management environment has a solution for the case when the number of input 

models is not known at the time of the implementation of the transformation. So, we 
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ended up implementing a solution that makes use of Epsilon’s capability to embed Java 

code in the body of a model transformation. 

 

Figure 5-7: Enabling unknown number of input models 

As Figure 5-7 shows, we created an EGL template that takes the upgrade campaign spec-

ification, the configuration and the folder containing the ETFs as arguments. This tem-

plate generates another EGL template that is implemented specifically for a number of 

inputs equals to the number of ETF files in the folder plus two (a configuration and an 

upgrade campaign specification). Then we give the ETFs, the upgrade campaign specifi-

cation, and the configuration as input to this generated EGL template in order to generate 

UCS.java. In fact, another file (the ant [56] build workflow orchestration file) is also 

generated using this same template (the first template), we omitted it from the Figure to 

keep the flow simple to follow. It is at the level of this first EGL template execution when 

the upgrade context is gathered (attributes in the extension of SAF model). The GUI 

shown in Figure 5-8, is launched be the first EGL template and used to collect the differ-

ent probabilities and required durations. The user can still use just the default  values 

(stored in a properties file) by checking “Use default for all” checkbox, or a “Use default” 

checkbox for a specific node, component type or software bundle. The values inputted 

through this GUI will be stored in a properties file right after the users clicks “Ok”. 
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Figure 5-8: The GUI used to input the upgrade context 

The user can then run the generated EGL template using the generated workflow orches-

tration ant file to generate the DEVS model (UCS.java) which he can then load into the 

simulator. Once the model loaded, if the user chooses to use the graphical component of 

the simulator, this latter will render the DEVS model associated with the configuration 

and the upgrade campaign specification as shown in Figure 5-9.  

Figure 5-9: Upgrade campaign specification and the configuration rendered in 

the graphical component of the DEVS-Suite simulator 
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Initially, all the SIs are fully assigned, in the case of this simulation, we are tracking only 

one SI as shown in Figure 5-10. Similarly the upgrade campaign is in its initial state 

before triggering its execution as shown in Figure 5-11. Once the execution is triggered, 

Figure 5-10: SI initially fully assigned 

Figure 5-11: Upgrade campaign initially in the initial state 
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the campaign transitions to the Executing state, and triggers the execution of its first up-

grade procedure as shown in Figures 5-12 and 5-13 respectively. Once the procedure 

starts its steps, we start noticing the impact on the assignment state of the SI. 

Figure 5-12: Upgrade campaign transitions to Executing state 
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Figure 5-13: Upgrade procedure transitions to Executing state one time unit after the 

upgrade campaign 
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 Figures 5-14 and 5-15 show respectively the transitions done by the SI at the beginning 

of the procedure as well as towards the end of that same procedure. At the beginning of 

the procedure, when the first step locks the DU the SI goes to the partially assigned state.  

Figure 5-14: SI going to the partially assigned state 

Figure 5-15: SI going back fully assigned 
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Similarly, when the last step of the upgrade procedure unlocks the AU the SI goes back 

to the fully assigned state. At the end of the simulation one can export the tracking logs 

as excel files, which look exactly as illustrated in Figure 5-16. 

 

Figure 5-16: Track log for the SI's assignment state 

 

5.3. Summary 

In this chapter we have shown the prototypes we implemented for the approaches de-

scribed in chapter 3 and chapter 4. The use of Epsilon environment was beneficial. On 

one hand the implementation of the upgrade campaign specification generation required 

a transformation engine that is able to rerun the transformation as long as some conditions 

are met. EPL was the only technological solution that we found and which could offer 

such a feature, as it can be configured to only stop the transformation when no more 

specified patterns are detected. On the other hand, the ease of querying raw xml files 

using Epsilon (compared to other transformation languages) enabled us to use input files 

in the format that complies with the standard without the need to reverse engineer them 

into EMF models. 
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Chapter 6 - Conclusion 
In this thesis we presented a model driven approach for automated generation of upgrade 

campaign specifications. We took into considerations the dependencies between the en-

tities composing the system in order to establish a proper ordering for the upgrade proce-

dures and avoid unnecessary outage. We have also proposed a set of heuristics to improve 

the quality of the generated upgrade campaign specification by reducing the outage and 

the execution time.  

We have also extended a previous work that targeted a simulation based upgrade cam-

paign evaluation for SAF systems, and enriched it with the best case and worst case sce-

narios to make the simulation results more reliable to use in upgrade campaign compari-

son and more relevant for evaluation purposes. We have also proposed a way to perform 

the same evaluation without the use of the simulation. In addition, we proposed a method 

that makes use of these evaluation results to check the applicability of upgrade campaign 

specifications within a maintenance window and a given acceptable outage. This method 

takes as input a set of upgrade campaign specifications and marks them either as rejected, 

accepted, or need further optimization according to the applicability check criteria. 

We discussed the prototypes we implemented for these contributions, and which made 

use of model management tools (Epsilon), and simulation environments (DEVS-Suite). 

This work can be extended in many ways. One can investigate the ways we can manage 

the tradeoff between time and outage, as at the end of the selection/elimination process, 

we end up with multiple applicable upgrade campaign specifications but we have to pick 

one. Another potential track that can be followed on this area is to check the applicability 

of this approach for upgrade of other kinds of systems (such as clouds), and taking this 

work to a higher level of abstractions to make it independent of the SAF standard and the 

SAF compliant domains.  
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