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Abstract

Mining Association Rules Events over Data Streams

Aref Faisal Mourtada

Data streams have gained considerable attention in data analysis and data mining communi-

ties because of the emergence of a new classes of applications, such as monitoring, supply chain

execution, sensor networks, oilfield and pipeline operations, financial marketing and health data

industries. Telecommunication advancements have provided us with easy access to stream data

produced by various applications. Data in streams differ from static data stored in data warehouses

or database. Data streams are continuous, arrive at high-speeds and change through time. Tradi-

tional data mining algorithms assume presence of data in conventional storage means where data

mining is performed centrally with the luxury of accessing the data multiple times, using powerful

processors, providing offline output with no time constraints. Such algorithms are not suitable for

dynamic data streams. Stream data needs to be mined promptly as it might not be feasible to store

such volume of data. In addition, streams reflect live status of the environment generating it, so

prompt analysis may provide early detection of faults, delays, performance measurements, trend

analysis and other diagnostics. This thesis focuses on developing a data stream association rule

mining algorithm among co-occurring events. The proposed algorithm mines association rules over

data streams incrementally in a centralized setting. We are interested in association rules that meet

a provided minimum confidence threshold and have a lift value greater than 1. We refer to such

association rules as strong rules. Experiments on several datasets demonstrate that the proposed

algorithms is efficient and effective in extracting association rules from data streams, thus having a

faster processing time and better memory management.
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Chapter 1

Introduction

The rapid technological advancement in the last century has changed our society life style. As

computing devices have evolved to become mobile, miniaturized, affordable and human indepen-

dent, they have become a vital part of almost every single task of our daily life. The fact that these

devices can be equipped with sensing capabilities, strong processing power and advanced communi-

cation modules, allows them to form large monitoring networks that generate a huge volume of data

continuously at high speeds and in real time. This is referred to as data streams. Such data represent

events triggered by changes in environments or live status reports, and therefore they require online

processing and analysis in a swift and prompt manner to be able to extract useful information. The

huge volume and high arrival rate of stream data makes data storage infeasible. Hence, delays in

processing of stream data could cause data and information loss.

Data mining provides several techniques that can explore hidden information within data. How-

ever, the characteristics of data streams pose constrains and challenges that traditional data mining

algorithms were not designed to take into consideration. In this thesis, we propose a data mining

algorithm to mine association rules events from multiple data streams in an incremental manner.

The scope of the proposed algorithm lies in identifying frequent associated events that can generate

interesting association rules. We investigate a generic and an efficient stream mining approach to

produce selective association rules among dependent events from a sliding window over multiple

streams. These association rules are determined incrementally in a centralized setting.
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1.1 Motivation

In the recent years, the need to analyze large volumes of data has motivated scholars in the field

of data mining to improve the mining processes in order to accommodate large static datasets, mini-

mize the resources required in the analysis and generate mining models that represent the data [28].

As the environment hosting or generating the data evolved much more, it was essential for mining

processes to address the problem of continuous and rapid data generation. In addition, the telecom-

munication technological leaps, in all domains, infrastructure, speed, bandwidth and hardware have

encouraged real-time monitoring of different venues of our lives and capturing any possible data

for further analysis. Live data is generated in a continuous manner and can be transmitted around

the globe rapidly. Some popular examples of data streams include Internet browsing traffic, social

media messages, weather information, vehicle guiding systems, road traffic updates and many more.

Several businesses and organizations are converting most of their data infrastructure in to a

streaming model because of the potential that streams hold and the increasing demand of real-time

analysis of data [67]. The challenges of stream mining are increasing as streams are evolving to have

faster arrival rates with huge data volume. Recent statistics estimate daily data generated volume to

reach 2.5 billion terabytes. This number is expected to grow to 40 billion terabytes by 2020 [16].

Data streams require the design of advanced and efficient algorithms and frameworks that would

process, analyze, aggregate different data sources and respond to any query in a real-time fashion

while eliminating any unnecessary operations. The generated mining models need to be updated

incrementally upon the presence of new data without re-initiating the whole mining process. The

mining output needs to be available upon request such that it would represent the current status

of the stream data. Consider the following example. A network of sensors deployed to monitor

Tsunami incidents and alert authorities of possible warnings or attacks. Different devices continu-

ously measure weather conditions, earthquake signs, volcanic eruptions and other parameters [3].

If the generated data was to be stored and analyzed later in an offline manner, disasters will strike

without being detected. Therefore, data streams require to be mined promptly and in an efficient

and incremental manner.

One of the important data mining techniques is association rule mining (ARM). ARM is used
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to discover interesting relations between data elements in large datasets. Strong association rules

are identified using different interestingness measures. Rules can be useful in behavior analysis,

situational awareness, event prediction or decision making.

1.2 Objective and Contribution

The concept of ARM was first introduced back in 1993 by Agrawal et al. [3]. Over time, schol-

ars presented several similar approaches. Some approaches enhanced the Agrawal et al.’s algorithm,

others proposed new approaches. The ARM process is composed of two steps: frequent itemsets

are extracted from data and then association rules are generated from these itemsets. In stream data

mining, research initiatives mainly focused on the first step. As a matter of fact when mining a data

stream with a sliding window topology, majority of the proposed algorithms, discussed in Section

3.1, only attempt to extract frequent itemsets without generating the association rules. Other algo-

rithms, Section 3.2, which state that they aim to generate the rules, actually generate the rules on

demand without taking into consideration the characteristics of data streams. The objectives of this

thesis include analyzing the existing gap in the literature for online rule generation over data streams

and proposing a new approach of ARM over data streams. In addition, we perform benchmark

association rule generation on existing common datasets and compare performance with existing

research work. To the best of our knowledge, this is the first work on incremental association rule

mining over a sliding window which extracts and maintains the generated rules. Our contributions

in this thesis are summarized as follows:

(1) We introduce a novel algorithm called Mining Association Rules from Event Data Streams

(MAREDS) to extract interesting association rules from evolving data streams over a sliding

window model in a centralized setting.

(2) We propose an in-memory efficient data structure, the partial association enumeration tree

(PAET), which maintains frequent itemsets, potential itemsets, itemsets that might become

frequent when the window slides, and the relations among the frequent itemsets.

(3) We propose a generic and scalable framework to generate interesting association rules from

3



PAET and incrementally maintain the rules as the data stream window slides.

(4) We implement the proposed algorithm and framework and evaluate the performance over sev-

eral real-life and synthetic datasets, in terms of processing time, memory footprint, respon-

siveness and scalability. Extensive experiments suggest that the proposed technique performs

better than the existing techniques in the majority of the test cases.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides background knowledge of

frequent itemset mining, association rule mining and stream data mining. Chapter 3 reviews related

work. The problem of mining association rules over data streams is defined in Chapter 4. Chapter 5

introduces the proposed incremental association rule mining algorithm over data streams. It presents

a case study demonstrating the flow of the proposed algorithm as well. Experimental results are

presented in Chapter 6. Chapter 7 draws the conclusion of the thesis and hints at future research

directions.
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Chapter 2

Background

2.1 Data Mining

The concept of data mining refers to the process of analyzing large datasets in order to extract

hidden knowledge and implicit interesting patterns. Data mining outcomes or models are used in

different operations such as decision making, status analysis and prediction of behavior outcomes.

The wide range of applications where data mining is useful made it an active researched field. Yet,

the term “Data Mining” was not introduced until the early 1990s. The roots of data mining can

be traced back to three scientific fields: statistical studies, artificial intelligence and machine learn-

ing. The vision and understanding on how to extract useful information from data evolved as these

different fields evolved. Early data analysis and pattern identification started via different statistics

concepts. In 1775, Bayes and Price introduced Bayes theorem [13, 25], which examined current

probability to prior probability. Later, in the early 1800s, regression analysis was introduced [13].

Regression was used to estimate relationships among variables. Then, the computer technologi-

cal boom arrived, which increased data collection, storage and manipulation. Data has grown in

size, complexity and availability. Data processing has expanded broadly with several advancements

in different computer science fields, such as clustering, neural networks, genetic algorithms in the

1950s, decision trees in the 1960s and support vector machines in the 1990s [29, 22]. Today, the

demand for data mining is increasing for all domains whether scientific or commercial. Data mining
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techniques have comprehensive analytics and powerful approaches that allow the tackling and anal-

ysis of more complex data. End users have access to data mining tools with user-friendly interfaces

and graphical mining outcomes.

Data mining involves several techniques, each of which provide different data analysis ap-

proaches and output. These techniques can be classified into two categories: descriptive mining

and predictive mining. Descriptive mining approach categorizes or extracts general characteristics

or relations of a mined dataset [31]. Association mining, sequential mining and clustering are some

of the main tasks involved in the descriptive mining techniques’ tasks. Predictive mining approach

analyzes historical data to extract relations or implications in order to predict future data values or

part of it [31]. Examples of such are classification, regression and outlier detection. Some of the

major data mining techniques are briefly presented below:

• Classification: Classification analysis divides a given dataset into distinguished classes or

concepts. Classification models are identified by analyzing a training dataset where the class

labels are predefined. These models predict categorical class labels over discrete or unordered

datasets with unknown class labels [22].

• Regression: Regression analysis is a statistical approach that divides datasets into classes

in a similar manner to classification. Regression uses training datasets to identify distribu-

tion trends as well. But unlike classification models, regression models perform numerical

prediction rather than discrete labeling [22].

• Clustering: Cluster analysis shares the same outcome of classification and regression where

data is organized into classes. The clustering technique, unlike classification and regression,

does not have a defined set of classes. A clustering algorithm discovers proper classes using

the principle of “maximizing the intraclass similarity and minimizing the interclass similarity”

[22].

• Outlier Analysis: Outliers do not follow the general flow or behavior of the dataset they

belong to. Mining algorithms usually label outliers as noise or exceptions. However, in

some cases identifying such rare or unusual data can be useful in many fields. For example,
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identifying data packets with unusual payloads can prevent a malware spread or a hacking

attack [22].

• Association Analysis: This type studies the frequency of distinct items occurring together

in a given dataset and the relation among them. User-defined thresholds, such as itemset

minimum support and association rule confidence, are used to limit the mining outcome to

interesting results [22, 31]. Association rule mining is described in more details in Section

2.2.

2.2 Association Rule Mining

Association rule mining is one of the descriptive mining techniques that has shown great po-

tential and captured scholars attention since it was first introduced in the early 1990s [31]. Its

importance rises from its capabilities to discover unapparent relations, interesting correlations, fre-

quent patterns, associations or casual structures among data in large datasets. These capabilities

create a wide range of applications for association rule mining such as marketing, risk management,

inventory control, network management and many more. The association rule mining problem is

decomposed into two phases.

Phase I: Mining Frequent Itemsets

Mining frequent itemsets is a major part for several data mining techniques such as association

rules, sequential patterns, and classification [61]. Its task is to explore combinations of items with

minimum frequency threshold occurring within a dataset. Such combinations are termed as frequent

itemsets.

Definition 2.1. (Itemsets). An itemset X , is a set of items, where (X ⊂ I) and I = {i1, i2, . . . , in}.

Definition 2.2. (Support). The support of an itemset X denotes the frequency of X within a dataset

or a sliding window; it may be presented as the ratio of transactions containing all items of X as

well.

sup(X) = Number of transactions containing (X)
Total number of transactions(τ)
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Definition 2.3. (Frequent Itemset). An itemset X is frequent if its support(X) ≥ smin, where

smin is a user-defined threshold for the least acceptable support value, known as minimum support.

Phase II: Association Rule Generation

Association rule generation is defined as forming relationships or correlations among frequent item-

sets, extracted in “Phase I”, known as association rules. The generated association rules may not

necessarily provide meaningful information. Actually, some of the generated rules are misleading.

Several measures are proposed by scholars to measure the interestingness of an association rule. The

task of determining the interestingness is not simple nor objective. A rule that may be considered

interesting for a particular application, may not be so for another. Two key interestingness mea-

sures used in ARM are confidence and lift. Both measures have been incorporated into MAREDS

functionality. More highlights on association rules, confidence and lift are discussed below:

Definition 2.4. (Association Rule). An association rule is a representation of a relationship between

two itemsets in the form of an if/then statement. A rule between itemsets X , antecedent (if-clause),

and Y , consequent (then-clause), has the form of (X → Y ), where (X ∩ Y ) = φ.

Definition 2.5. (Confidence). The confidence of an association rule refers to the probability of both

the antecedent and the consequent appearing in the same transaction. The confidence of association

rule, (X → Y ), refers to the percentage of transactions containing X that also contains Y .

conf (X → Y ) = sup(X∪Y )
sup(X)

For an association rule (X → Y ) to be interesting as per the confidence measure, (X ∪ Y ) has to

be a frequent itemset and conf(X → Y ) ≥ cmin, where cmin is a user-defined threshold for the

least acceptable confidence value, known as minimum confidence.

Example 2.1. Let us assume we are analyzing a data stream for road traffic. We can note that delay

events would often occur with bad weather events. Association analysis might show that 70% of

the sliding window data that include bad weather events also include delay events. This relationship

could be formulated as follows: Bad weather implies delay with 70% confidence.

Definition 2.6. (Lift). The lift of a rule indicates the strength of a rule over the random co-

occurrence of an antecedent with the consequent, given their individual support. In probability
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theory, lift refers to the joint probability of occurrences for two independent itemsets X and Y .

In data mining, lift is treated as a ratio between the confidence of the association rule over the

unconditional probability of the consequent Y .

lift(X → Y ) = sup(X∪Y )
sup(X)×sup(Y )

An association rule where the antecedent X and consequent Y are related by a probability that is

more than the product of their individual probability of occurrences, or in other words when lift > 1,

is considered to be interesting. A lift greater than 1 indicates that X and Y are dependent and are

not occurring randomly together.

Example 2.2. Referring to the previous example of the road traffic data stream for road traffic.

Let us assume that the following are support values for some of the events in the sliding window:

sup(Accident) = 70%, sup(Delay) = 88% and sup(Accident ∪ Delay) = 60%. Hence, the rule

conf (Accident → Delay) = 85.71%. Such a rule sounds interesting as it is having high confidence

and support values. However, the rule lift(Accident → Delay) = 0.97. In such cases, the over all

“Delay” events occurrences are actually less likely to happen as a result of that particular accident.

Several traditional association rule mining algorithms are proposed to mining frequent itemsets

and association rules from transactional databases. Agrawal and Srikant [4] have proposed, Apriori,

the first algorithm to mine frequent itemsets and generate association rules from a transactional

database. Apriori first extracts single-frequent items. The single frequent items are then extended to

dual frequent itemsets, itemsets with two items. The process continues until no more itemsets can

be extracted. Each round of frequent itemset mining requires a new scan of the dataset. Afterwards,

Apriori examines relations within each of the extracted itemsets. A rule is generated by splitting

itemset X into two non-empty sets, Y and (X − Y ), represented by (Y → X − Y ). A frequent

itemset X , with n items, generates (2n−2) association rules ignoring those with empty antecedents

or consequents (φ → X or X → φ). Rules that do not satisfy the minimum confidence threshold

are discarded.

Example 2.3. Let us assume that the extracted frequent itemset is X = {a, b, c}. The itemset X

contains 3 single items. Hence, the number of generated rules = 23 − 2 = 6:

a → bc, ab → c, ac → b, b → ac, ba → a, c → ab.
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Several variations were proposed to enhance performance of Apriori algorithm. Some of the com-

mon variations are bucket-hash itemsets, transaction reduction, candidate itemsets partitioning, data

subset mining and dynamic itemset counting [29, 22]. Other new algorithms were proposed as

well, such as FP-Growth, where a pre-fix tree is used to represent the database. Non-frequent items

are discarded. Each frequent item is mined to extract the frequent itemsets without the need to

re-access the database as the tree already holds the needed information [23]. Another proposed al-

gorithm mines frequent itemsets using vertical data format where the transaction identifications are

grouped by the items. All these variations or new proposals only focus on the first phase of the asso-

ciation rule mining, which is frequent itemset extraction. The second phase has not been improved

and still has the same complexity which may be acceptable while mining traditional databases. If

association rules are to be generated in a stream environment, it may be costly to perform all the

second phase operations every time the sliding window is updated.

2.3 Data Streams

A stream of data is defined as a set of consecutive items that arrive in an orderly and timely

manner. Streams are usually unbounded and continuous. They arrive at high speed and have dy-

namic data distribution. These characteristics of data streams make them distinct from traditional

static data stored in databases or data warehouses. Therefore, new data analysis tools are needed to

tackle data streams accordingly [28].

Streams consisting of distinct events in a general form are often described as moments in the

research literature [55]. Moments are useful in understanding distribution of items’ frequencies,

analyzing stream properties and storing stream related knowledge in an optimized manner [55].

Stream data is presented as a set of co-occurring events which can be seen as an itemset where each

item represents an event. Thus, a data stream denotes a temporal sequence of itemsets, also known

as a stream transaction. Figure 2.1 depicts a sequence of data stream transactions. For example,

{abcde} represents five remote events occurring at timestamp t3.
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Figure 2.1: Central coordinator monitoring data streams over a sliding window model

2.3.1 Data Stream History

Even though the interest in stream data is relatively recent, the concept of streams goes back

for more than half a century. The term “Stream” was first introduced by Landin, in 1966, to model

histories of loop variables when designing unimplemented computing languages [33]. In the next

years, the concept of stream has been mainly discussed within the literature of data flow field [64].

Today, stream data analysis and mining have become an active area of research in computer science.
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2.3.2 Applications

In this section we discuss some of the real-life data stream application domains in which data

mining plays an important role. The data mining in streams helps to flag out unwanted or unique sit-

uations from normal behavior, extract patterns, identify adversary actions or customize information

[1]. Figure 2.2 illustrates different data stream domains.

• Networks and Telecommunications: Network traffic forms one of the largest streams which

holds tons of information. Analysis and mining of such streams helps in cyber-attack preven-

tion, prevention of private data accessibility, detection of suspicious behaviors or intrusions,

analysis of networks and user online-behavior and many more [20, 58].

• Financial and Stock Markets: Financial transaction streams are used to detect possible inter-

net banking and credit card frauds. It is used in bankruptcy prediction for loan takers as well.

In stock markets it is used to prevent and detect possible insider trading [18, 20, 52].

• Roads and Transportation: Streams from monitored roads and highways provide us with

several useful information such as traffic forecast, expected travel times, suggested routes and

alternative routes for navigation systems [7, 46].

• Medical Care: Some patients are provided with sensors to monitor their health conditions and

vital signs. The data stream generated from aggregating the sensors output helps in detecting

possible medication reaction, organ failures and internal injuries [1].

• Social Media: In the era of social media, social information such as posts, tweets, followers,

followed by, likes and shares, generate one of the largest available data streams. Analysis and

mining of social streams is used to identify the users’ or entities’ interests and preferences,

predict their behaviors and habits and provide them with personalized services and products

[21].

2.3.3 Types and Models

Data streams are categorized into two types according to the nature of the data perceived in the

stream, offline and online [64].
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Definition 2.7. (Offline streams.) Offline streams are bulk data that occur at regular time intervals.

However, the flow of data is not constant. Data updates arrive at fixed times, daily, weekly, or

monthly, with periods of inactivity in between.

Definition 2.8. (Online streams). Online streams refer to real-time data that arrive in an orderly

manner.

Analysis and queries on data from offline streams are done in an offline manner and in respect of

all previously received saved data [64]. Updating tasks in data warehouses are good examples of

this type. Meanwhile, in online streams the data arrival rate and data volume are both high, causing

the data storage to be infeasible. Online data streams usually represent a live situation which may

require prompt analysis to extract useful live information. Internet-packets represent an online

stream, which is impossible to store, yet needs to be analyzed promptly to anticipate any possible

attacks.

Furthermore, when addressing data streams in a data analysis context, streams are categorized

into three models based on which part of the data stream is used in the analysis or the mining

process. Below are the description of each model:

Definition 2.9. (Landmark Model). In the landmark model the mining process includes all the

stream data starting from a defined point of time, known as the Landmark, till the present. The

outcome for such a model is practical for applications interested in historical data [54, 53].

Definition 2.10. (Damped - Time Fading Model). In the damped model a weight is assigned to

each transaction in the stream. The weight value is inversely correlated with the transaction’s age.

This impacts old transactions to have less effect on the analysis or mining process outcome. Such a

model is suitable for applications that require to consider historical data in the analysis process, yet

the emphasis should be on newly available data [54, 53].

Definition 2.11. (Sliding Window Model). The sliding window model maintains the most recent

stream transactions in a buffer, called a window. The window has a fixed size that may vary accord-

ing to the application and/or system resources. When new transactions arrive, the oldest transactions

are removed from the window. The same concept applies to any analysis or mining process. Anal-

ysis or mining is only applied on the transactions in the current window. Once new transactions

13



are available and old ones are retired, the outcome is updated accordingly. Outcome of this model

is desirable for applications seeking recent information from data streams [54, 53]. This process

is known as a forgetting process, as it limits the amount of processed data and allows the mining

process to forget old data and adapt to changes [7].

Usually the offline streams use a landmark model in the data analysis process, while online stream

use either the damped model or the sliding window model as the outcome is expected to reflect the

live information from the stream.

Figure 2.2: Miscellaneous data stream application domains

2.3.4 Challenges and Requirements

The stream data environments, unlike conventional databases and data warehouses, impose a

set of challenges that make traditional analysis and mining algorithms fail or perform properly. The

following elaborates on the major challenges and requirements of data stream analysis and mining

algorithms [28, 30, 64, 1, 20].
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• Unbounded Data Feed: Traditional data mining techniques analyze data in an offline fashion,

where the data is stored in databases which offers the mining algorithm the luxury of multiple

accesses. However, data streams are generated in an unbounded manner which makes storing

all the data infeasible. Old data needs to be discarded to free space for newly arriving data.

Hence, a stream mining algorithm is required to perform the mining task after a single data

scan only.

• Real-Time Mining: A key characteristic of a stream is that the data’s arrival is rapid. The

mining algorithm has to process the data in a real-time manner while taking into consideration

the datas arrival rate. A relaxed processing time can cause a bottleneck or even data loss as

the data arrival rate is faster than the processing rate.

• Resource Management: A traditional mining algorithm is considered to be finite. It per-

forms its assigned mining task and eventually terminates. On the contrary, a stream mining

algorithm runs continuously and does not pause or end unless manually terminated. It con-

stantly requires some of the systems resources from processing power, memory space and

sometimes power energy. A stream mining algorithm requires proper resource management

such that it would not exhaust the systems resources or block other processes from having

them. Advanced scheduling and memory management techniques are important to take into

consideration when designing a stream mining algorithm.

• Data Structure Choice: The choice of a proper data structure is an important element in any

algorithm design. It is even more important for stream mining. Data structures are used to

store the stream data and the mining outcome. In addition, data structures are accessed to

update both incoming data and the mining outcome, or to retrieve information in response to

users’ queries. Hence, a stream mining algorithm needs to choose an efficient and a compact

data structure that has a small memory footprint where data can be accessed with as mini-

mum operations as possible. Storing any data on the disk has an additional overhead of I/O

operations increasing the processing and data access time.

• Update and Aggregation of Knowledge: After mining the stream data in a timely manner, as
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mentioned in the previous point, several challenges rise regarding the extracted knowledge.

Newly discovered knowledge has to be added or merged with the previous knowledge in an

incremental manner. In addition, old knowledge has to be either degraded or retired.

• Visualization: Visualization is a powerful tool to understand and illustrate the data mining

outcome. In some data stream applications, such as monitoring applications, visualization

facilitates the analysis process. For example, a use of a graph that shows the relationship

between mined association rules makes any action taking or decision making process easier

and faster.

• Data Evolution: Stream data is generated in a rapid manner and represents real-world appli-

cations and environments. As the conditions change or differ in the environments, the under-

lying distribution of a data stream changes over time. This change may require a change in

the user defined parameters, such as the minimum support or minimum confidence. A well

designed stream mining algorithm should have some flexibility to interact with such require-

ment without the need to start the mining process all over again.

2.3.5 Challenges of Mining Data Streams

Data streams require real-time mining, which refers to mining the data as soon as it is generated

and available. Traditional data mining techniques mine data in an offline fashion, where the data is

stored and the algorithm has easy and multiple accesses to it. However, as stream data is generated in

a huge, rapid and timely manner, storing all the data is infeasible. A stream mining algorithm has to

extract information from generated data using only one data scan while taking into consideration the

data’s arrival rate. Additional mining operations, such as a second data scan, is resource consuming

and can cause a bottleneck as data may arrive faster than the processing rate [54].

2.3.6 Concept Drift

The distribution of the generated data in a stream may change over time. This concept is known

as temporal evolution, covariate shift, non-stationarity, or concept drift [7]. Concept drift occurs

from unforeseen or unpredictable changes that may affect the sources generating stream data. The
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distribution of data in traditional databases is assumed to be static. However, this is not the case

for real-time stream applications. The data in streams is being generated continuously. Hence, it

is typical that different parameters and conditions reflected by such data to change over time. The

distribution of data will change eventually as well. Traditional data mining models and algorithms

may have poor performance or may produce inaccurate information if applied on stream data. A

stream mining algorithm should be able to capture the change in data distribution and reflect it in the

mining outcome. Concept drift in data streams urged to introduce new concepts such as the sliding

window model, which was discussed earlier in Section 2.3.3.
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Chapter 3

Literature Review

The motivation of this thesis is to build a generic, fast and scalable data stream mining technique

to extract associations among events during decision making in various application areas. In this

regard, a prescriptive data mining technique like ARM has shown great potential and captured

scholars’ attention since it was introduced in the early 1990s [32]. The fist frequent itemset mining

over data streams was proposed by Manku and Motwani in 2002 [44]. The authors proposed an

algorithm to mine single frequent items from a data stream. Later, they extended their scope to

mine frequent itemsets. And since then several algorithms were introduced to tackle ARM over

streams. Data stream mining algorithms are often categorized by two dimensions:

• Centralized versus Distributed: In a centralized setting, items are collected from various

streams in a central location, known as a sink or coordinator, where the mining process takes

place. In a distributed setting, data streams are mined at distinct locations. Each individual

mining output is aggregated to form one global mining outcome.

• Frequent Itemset Mining versus Association Rule Mining: Frequent itemset mining extracts

itemsets that meet a minimum support threshold in a dataset. As mentioned earlier, this is

considered as the first phase of the two-phase ARM technique. In its second phase, association

rules are formed from the extracted frequent itemsets of the first phase. Rules are filtered

afterwards as per user or application requirements.

Most stream mining algorithms focus on the first phase. However, the second phase is equally
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important. Without the rule extraction, the information gained in the first phase may be misleading

and can not be used directly in decision making. Hereafter, we review relevant related literature in

data stream association rule mining categorized as stated above.

3.1 Centralized-Stream Frequent Itemset Mining

In the sliding window model, we focus on algorithms that mine whole and closed frequent

itemsets with exact outcome as it is more relevant to our proposed algorithm, MAREDS. Algorithms

that mine maximal itemsets or provide approximate outcome is information lossy. They may also

have marginal errors or produce some false positive or false negative results. Hence, such algorithms

are not considered.

Leung and Khan [37] propose one of the first algorithms to mine exact frequent itemsets from

a data stream. The algorithm adopts a batch processing model with non-overlapping sliding win-

dows. Incoming data is stored in a canonical ordered prefix-tree structure, DSTree. The tree nodes

store current items support values and some particulars from the previous batch. Previous batch

information is used to prevent any tree traversal during the update process. FP-growth mining tech-

nique [23] is used to extract the frequent itemsets from the DSTree. Tanbeer et al. [62] also use

FP-growth mining technique but over a transactional based sliding window. The window trans-

actions are maintained in an FP-tree-like structure, known as CPS-tree. CPS-tree is restructured

occasionally to keep the nodes in descending order based on their support values. The restructuring

process provides rapid tree accessibility and keeps its size minimal. Li and Lee [40] introduce MFI-

TransSW algorithm which uses a bit sequence data structure to store the sliding window items. Left

bit-shifting is used to add new transactions and retire the old ones while the AND operation is used

to extract the frequent itemsets. LDS algorithm by Deypir and Sadreddini [17] uses three different

forms of lists to store the sliding window items. The first list maintains items by the transactions

they are present in. The second list maintains items through the transactions they are absent from.

In the third list, item occurrences are stored as a bit string. Each item is maintained in the most

optimum list type based on its frequency. Frequent itemsets are extracted from the lists upon user

request using either Eclat[76], dEclat[77] or bEclat[6] algorithms. The choice of algorithm depends
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on the most common list type.

Chi et al. [12] propose Moment algorithm, the first algorithm to mine closed frequent itemsets

over a data stream using a sliding window. Moment stores window transactions and extracts closed

frequent itemsets in an inverse FP-Tree and a prefix tree structure, named CET, respectively. CET

maintains additional nodes, known as boundary nodes, to address state changes such as: infrequent

itemset becoming frequent and vice versa. The proposed concept of boundary nodes is so intuitive,

yet it has a major flow. The number of maintained boundary nodes is relatively high compared to the

number of closed frequent itemsets nodes especially with low minimum support value. This would

cause slow tree traversal and memory exhaustion. NewMoment by Li et al. [39] and TMoment by

Nori et al. [49] propose variations of the Moment algorithm. The sliding window transactions and

the mined closed frequent itemsets are maintained in a prefix tree in both algorithms. In addition,

a copy of the closed frequent itemsets are stored in a separate hash table to ease any update or

query task. The first level nodes in the tree are used to store all items along with their occurrence

information. This information is used to track the items’ supports and extract the frequent itemsets.

NewMoment represents the occurrences using a bit string while TMoment uses an integer array of

transaction unique IDs. The other tree nodes hold the closed frequent itemsets and their support.

Jiang and Gruenwald [27] propose CFI-Stream that stores all the sliding window transactions, fre-

quent and infrequent, in a prefix tree in a closed itemsets format. Frequent itemsets are extracted

upon user request by applying minimum support threshold. CloStream by Yen et al. [74] maintain

all the sliding window transactions as well. CloStream creates two tables to store current transac-

tions and single items separately along with a list of closed itemsets. QMINE algorithm [48] also

uses two similar tables. However, the second table in QMINE holds a set of bit victors to keep

track of each item’s presence in the first table. Both CloStream and QMINE algorithms generate

frequent itemsets upon request and by applying desired minimum support value. Keming Tang et

al. [63] propose Stream FCI which uses an FP-tree like structure, called DFP-tree, to store the

sliding window transactions. Frequent items and their support are stored in an external head table.

Each frequent item points to its first occurrence in the tree. In addition, the algorithm creates links

across matching items in different tree branches. The extracted closed frequent itemsets are saved

in a separate table to ease update and query operations.
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The landmark model analyzes all data in a stream starting from a defined point of time. Data

volume grows to infinity as time goes on. Some data needs to be discarded and hence the mining

outcome will not represent exact frequent itemsets. In this model, Li et al. [41] propose DSM-FI

algorithm to mine frequent itemsets from a data stream by batch. Batch data is stored in a prefix-tree.

Tree pruning is applied periodically to remove infrequent or irrelevant itemsets and keep the tree

size minimal. Frequent itemsets are extracted from the tree periodically or upon request. Zhi-Jun

et al. [81] propose dividing frequent itemsets into equivalent classes. Each class itemsets, support

values and border itemsets are maintained in an enumeration tree. The border itemsets are used to

filter frequent itemsets and hence keep tree size under control. Liu et al. [42] propose FP-CDS

algorithm to mine closed frequent itemsets over the same model. Potential frequent itemsets in each

batch are stored in a prefix tree. Frequent itemsets are extracted from the tree in real time upon user

request. Yu et al. [75] propose a false-negative based algorithm to extract approximate frequent

itemsets. Chernoff Bound [11] is used to prune off infrequent itemsets as more data arrive.

Over a stream damped model, Chang and Lee propose estDec algorithm [9] to mine frequent

itemsets. estDec maintains itemsets that have potential to become frequent in the near future in a

lexicographic tree. Decay element is represented by a weight value assigned to each of the nodes

in a reverse chronological order. Frequent itemsets are extracted from the tree upon user request.

Woo and Lee [71] extend estDec to estMax algorithm to mine maximal frequent itemsets. In estMax,

after adding potential itemsets to the lexicographic tree, the tree is restructured to keep only maximal

frequent itemsets. estMax uses two thresholds, Maximality Mark and Maximum Lifetime, to improve

mining performance. The Maximality Mark identifies new nodes and eliminates the need to fully

traverse the tree upon update. Maximum lifetime is used to opt out old frequent itemsets. Leung

and Jiang [36] propose DUF-streaming algorithm to mine frequent items over a damped model

by batches. DUF-streams uses UF-growth algorithm [35] to extract frequent itemsets and stores

them in an FP-like tree. An “Expected Support” value, representing the decay element, is computed

incrementally after processing each batch to eliminate older itemsets.
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3.2 Centralized-Stream Association Rule Mining

Aggarwal and Yu [2] are among the first scholars to propose a framework for online mining of

frequent itemsets and generating association rules. The proposed concept of online mining provides

end users with capabilities of directly querying a database of generated association rules. Queries

have the flexibility of using different support and confidence values without any additional com-

putational cost. An adjacency lattice is used to maintain extracted frequent itemsets. The lattice

structure allows easy association rules generation, as well as rule redundancy removal. It eliminates

the need to re-access original data for support queries. The algorithm does not take into consid-

eration any dataset update or any transaction insertion and deletion, which makes it not suitable

for data streams. Shin and Lee [57] propose an algorithm to mine association rules over a damped

stream model. Frequent itemsets are mined using estDec algorithm [9]. Afterwards, a stack traver-

sal approach is used to generate association rules. The generation process divides rules into ordered

rules and unordered rules. Ordered rules indicate that all items on the left-hand side are lexico-

graphically greater than those on the right-hand side. However, the algorithm does not keep track of

generated rules. It requires to generate rules from scratch upon each user request by traversing the

estDec tree. Thakkar et al. [65] propose a data stream management system which mines association

rules over a sliding window model. Frequent itemsets are mined using Verification algorithm [47]

and maintained in an FP-like tree. Association rules are generated after a predefined number of

elapsed transactions. Optional pruning is applied over the extracted rules to eliminate duplicate and

uninteresting rules. Association rules are saved in a database for further analysis and rule compar-

ison. However, the saved rules are not used in subsequent rounds of rule generation. Su et al.[10]

propose FFI Stream to mine association rules from stream data containing quantitative attributes.

Stream data is divided into fuzzy sets using SWEM clustering algorithm [15]. Afterwards, frequent

itemsets are acquired from the sets using modified version of UF streaming [35]. A “Membership

Function Bias”, known as MFB measure, is proposed to measure interesting frequent itemsets that

could generate interesting association rules. Yet, rules are not actually generated. Thool and Voditel

[66] propose Streaming-Rules algorithm to mine association rules over a landmark window model.

Frequent itemsets are mined using Space-Saving algorithm [45] and maintained in a list structure.
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One-to-one association rules are generated by rescanning the current window. The rule generation

process is not incremental. It is done from scratch upon every data update. Corpinar and Gundem

[14] propose PNRMXS algorithm to mine positive and negative association rules from XML streams

over a landmark model. A modified version of FP-growth [23] is used to mine frequent itemsets

from each stream batch. The rule generation process extracts one-to-one association rules from

scratch in a non-incremental way. Paik et al. [50] propose to mine maximal frequent items from

XML streams. Association rules are generated for each batch separately. Then, they are filtered

by a minimum confidence threshold. Association rules from each batch are accumulated for the

entire stream in a landmark model fashion. Yet, the rule extraction for each batch is performed from

scratch every time. Vijayarani and Prasannalakshmi [68] conduct an analysis on association rule

generation over data streams using traditional mining approaches. The objective of the experiments

was to examine the number of extracted rules and the execution time with various data arrival rates.

The experiments adopt a batch mining approach. The mining task starts from scratch for each batch.

Such behavior does not reflect stream mining environment.

3.3 Distributed-Stream Association Rule Mining and Frequent Item-

set Mining

Park and Kargupta [51], Sawant and Shah[56] and Zeng et al. [78] conduct surveys that in-

vestigate approaches for distributed data mining. Majority of surveyed algorithms assume that the

datasets are stored in distributed locations across the network. In addition, they deem to have the

luxuries of traditional data mining techniques mentioned earlier. These algorithms mainly focus on

frequent itemset mining and do not examine any mechanism for rule generation. Moreover, only

few articles can be seen on distributed ARM over stream data.

Manjhi et al. [43] propose to extract frequent items from multiple distributed streams. Distinct

monitors maintain single items support for each stream. Frequent items are communicated peri-

odically to a central monitor in a hierarchical manner. A local monitor communicates its frequent

items to an upper level monitor, which merges it with its own items and pass it to the next level.

This process goes on until the all frequent items are gathered at the central monitor. The hierarchical
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architecture minimizes communication and computation cost at the central monitor. In addition, it

allows more frequent items to be extracted minimizing the error. Sun et al. [60] propose a frame-

work to extract frequent patterns from several distributed data streams. Frequent patterns are mined

from each stream using adaptive filtering techniques. Global patterns are extracted after aggregating

local patterns. Then, they are communicated back to local streams to refine and verify the newly

extracted outcome. Huang et al. [26] propose a distributed sequential pattern mining algorithm

that uses two Map-Reduce functions over a Hadoop platform [5]. The first function extracts can-

didate patterns locally at different Hadoop nodes and generates a summary. The second function

aggregates the generated different summaries to produce a final summary. The global summary is

updated incrementally to incorporate new candidates and remove expired ones. Wang and Chen

[70] propose a frequent itemset mining framework over distributed data streams using a landmark

model. hSynopsis algorithm [69] is used to mine local frequent itemsets. A central coordinator

aggregates local streams synopsises to form a global synopsis. The framework poses communica-

tion strategies and constraints that minimize communication with the coordinator. Zhang and Mao

[79] use a combination of decision trees and naı̈ve Bayes classifier [34] to mine frequent patterns

from distributed data streams. Local streams build decision trees to generate statistical summaries.

A statistical summary approximates items’ support values of the current stream batch. Then, local

patterns are formed from both statistical summaries and key attributes in the decision tree. The naı̈ve

Bayes classifier is used to aggregate local patterns to form global patterns. Cesario and Mastroianni

[8] propose a hybrid single-pass/multiple-pass framework for mining frequent items and itemsets

from distributed data streams. The framework consists of multiple layers of mining. The mining

outcome is communicated forward and backward, locally and globally, across the different layers

to refine the mining output and minimize the error. Finally, Wu et al. [72] propose a decentralized

approach to mine event association rules over multiple streams. Frequent stream events are filtered

locally and communicated to a central location where they are merged through an Apriori-based

map-reduce function. Association rules are generated through another map-reduce function upon

user request. Generated rules are not stored nor are used in subsequent requests.

Table 3.1 presents an overview of related work discussed above. As elaborated, scholars in

centralized setting focus on frequent itemset mining. Association rule generation is not discussed
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thoroughly in data streams. Available stream rule-generating algorithms mainly extract all frequent

itemsets and then apply traditional techniques to extract the rules. They do not take into consider-

ation any stream characteristics. This leads to several unnecessary computations that are so costly

in a stream environment. In distributed setting, most of the techniques require reliable and exten-

sive communication of information to share the information. The techniques do not consider any

information that would be lost because of the lack of a global data view. In the proposed algorithm,

MAREDS maintains interesting associations incrementally from data streams without the need for

any further computations.
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Table 3.1: Survey of algorithms from the literature review
Algorithm Setting Window

Model
Itemsets Freqeunt

Itemset
Update Rules Dataset

DSTREE[37] C Sliding All FIS On req. B No Mixed
CPS[62] C Sliding All FIS On req. T No Mixed
MFI-TransSW[40],
LCS[17]

C Sliding All FIS On req. T No Synthetic

Moment[12],
Tmoment[49]

C Sliding Closed Stored T No Mixed

NewMoment[39] C Sliding Closed Stored T No Synthetic
CFI-Stream[27],
CloStream[74],
QMINE[48]

C Sliding Closed On req. T No Synthetic

Stream FCI[63] C Sliding Closed Stored T No Synthetic
DSM-FI[41] C Sliding All FIS On req. B No Synthetic
(Zhi-Jun et al.)[81] C Landmark All FIS Stored T No Mixed
FP-CDS[42] C Landmark Closed On req. B No Synthetic
(Yu et el)[75] C Landmark All FIS Stored B No Synthetic
estDec[9] C Landmark All FIS On req. T No Mixed
estMax[71] C Decay Maximal On req. T No Mixed
DUF-
streaming[36]

C Decay All FIS On req. B No Mixed

(Aggarwal and
Yu)[2]

C Decay All FIS Stored NA Yes
(On
req.)

Synthetic

(Shin and Lee)[57] C NA All FIS On req. T Yes
(On
req.)

Mixed

SWIM[65],
FFI Stream[10]

C Decay All FIS Stored T Yes Mixed

Streaming-
Rules[66]

C Sliding Top-K Stored T [1-1] Synthetic

PNRMXS[14] C Landmark All FIS Stored B [1-1] Synthetic
(Paik et al.)[50] C Landmark Maximal Stored B Yes NA
(Manjhi et al.)[43] D Landmark All FIS Stored B No Mixed
(Sun et al.)[60] D Decay All FIS NA B No Synthetic
(Huang et al.)[26] D Decay NA Stored NA No Synthetic
(Wang and
Chen)[70]

D NA Maximal On req. T No Mixed

(Zhang and
Mao)[79]

D Decay All FIS Stored B No Mixed

(Cesario and
Mastroianni)[8]

D Decay All FIS Stored B No Real

(Wu et al.)[72] D Sliding 1 & 2
Itemsets

Stored T [1-1] Synthetic

*(Setting: C:Centralized, D:Distributed) (Update: B:by Batch, T: per Transaction)
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Chapter 4

Problem Description

In this chapter, we formally define the association rule mining problem over data streams. In

Section 4.1, we review the foundations of association rule mining in a data stream environment. The

problem statement is stated in Section 4.2.

4.1 Initial Definitions

In a centralized setting, we assume the set of all possible items, also referred as the Alphabet,

generated by a data stream is represented by A = {e1, e2, . . . , en}. A coordinator would receive

co-occurring events as a set of items at each defined moment or timestamp tj . The set of items

arriving at the same time stamp tj form one itemset and is referred to as a transaction. Relations

between items with itemsets are examined to identify association rules.

Definition 4.1. (Strong Association Rule). The relationship among two mutually exclusive itemsets

X and Y (X,Y ⊂ A) is deemed to be strong if it follows two conditions. First, the support value of

(X∪Y ) should be at least smin within a predefined number of recent transactions τ up to the current

moment. Second, the ratio of (X ∪ Y )’s support compared to X’s support should be at least cmin

within the last τ transactions. Such relation between X and Y is defined as a strong association

rule and is denoted by (X → Y ). In data mining X and Y are called as antecedent and consequent

respectively.

The variables smin and cmin are two application-defined thresholds named as minimum support and
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minimum confidence, respectively. In MAREDS, we investigate an additional condition. We are

interested in association rules where antecedent X and consequent Y are related by a probability

more than the product of their individual occurrence’s probability, hence the association rule lift

should be greater than one. The notion of lift was discussed in Section 2.2. We denote association

rules that satisfy these three conditions as interesting rules.

Definition 4.2. (Interesting Association Rule). An interesting association rule is a strong association

rule that has lift value greater than 1.

As the window slides, a new transaction is added to the window while the oldest transaction is

removed. All the relationships among itemsets require to be re-investigated as some of the itemsets’

support values may change. Wu et al. [73] defines the support and confidence values of an itemset

over a timestamped data stream using a lifetime function lj .

Definition 4.3. (Lifetime function). At a moment tj , a lifetime function lj is defined over a sliding

window of size τ as lj : A → T . T is a set of timestamps expressed as: {t : j − τ < t ≤ j; t ∈ T}.

Example 4.1. In Figure 2.1, let us assume that the sliding window size τ = 10. Then, l10(a) =

{t3, t5, t7, t9} and l10(ab) = {t3, t5, t7}.

The association rules are examined in the same manner as they are dependent on support and confi-

dence values. In this context, we introduce momentary association rule.

Definition 4.4. (Momentary Association Rule Rj). The association Rj is examined among two sets

of items X and Y in the most recent τ transactions ending at timestamp tj of the sliding Window.

Rj is characterized through three functions: momentary support (supj), momentary confidence

(conf j) and momentary lift (liftj) of itemset X as follows:

supj(X) = |
⋂
e∈X

lj(e)|;X ⊆ A (1)

conf j(X → Y ) =
supj(X ∪ Y )

supj(X)
;X,Y ⊆ A (2)

liftj(X → Y ) =
τ × supj(X ∪ Y )

supj(X)× supj(Y )
;X,Y ⊆ A (3)
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From equation (1), it is observed that supj(X) ≥ supj(X ∪ Y ). This is also known as the Apriori

property [32]. Similarly, from equation (2), the confidence is also related as conf j(X → Y ) ≥

conf j(X → Y ∪ Z) and conf j(X → Y ) ≤ confj(X ∪ Z → Y \ Z) where Z ⊂ Y .

Based on the above functions, we define the following related terms:

Definition 4.5. (Stream Frequent Itemset). An itemset X with momentary support no less than

smin, i.e., supj(X) ≥ smin, is considered frequent. Otherwise, the itemset X is infrequent.

Definition 4.6. (Omnipresent Itemset). An itemset X that is present in all the window transactions,

i.e., supj(X) = τ , is considered omnipresent.

Definition 4.7. (Intermediate and Closed Itemsets). If a frequent itemset X has a superset X ∪ Y

that has the exact same support of X and there is no superset of X ∪ Y that has the same support,

then X and X ∪ Y are called intermediate itemsets and closed itemset, respectively. For simplicity,

X ∪ Y is represented as XY in the rest of this thesis.

Association rules can be categorized based on the number of items in the antecedent and the

consequent as follows:

(i) [1 − 1]: named one-to-one rule. It refers to association rules where only single items are

present in each of antecedent and the consequent.

(iii) [n − 1]: named many-to-one rule. It refers to association rules where multiple items are

present in the antecedent, while the consequent holds only single items.

(ii) [1 − n]: named one-to-many rule. It refers to association rules where only a single item is

present in the antecedent, while the consequent holds multiple items.

(iv) [n − n]: named many-to-many rule. It refers to association rules where multiple items are

present in both of antecedent and the consequent.

4.2 Problem Statement

In a centralized setting, a coordinator collects event data streams generated from various mon-

itored environments. The problem is to extract and maintain [n − n] momentary association rules
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Rj of our interest from the most recent τ transactions ending at tj from the data stream. The inter-

esting association rule Rj is incrementally generated using previously stored outcome information

during the mining of Rj−1. An interesting association rule is denoted as (X l−→ Y ) and satisfies the

following constraints:

(i) supj(X ∪ Y ) ≥ smin

(ii) conf j(X → Y ) ≥ cmin

(iii) liftj(X → Y ) > 1

* X,Y ⊂ A and X ∩ Y = φ.

Figure 2.1 is an example of a central coordinator analyzing an event data stream with alphabet

A = {a, b, c, d, e} over a sliding window of size τ = 10. We use this example throughout the thesis

with minimum support smin = 3 and minimum confidence cmin = 0.7.
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Chapter 5

Proposed Algorithm

Rajaraman and Ullman [55] point out that the core challenge of stream mining lies in handling

the rapid speed of the data stream with the complexity of the mining algorithm(s). They recom-

mend in-memory, single-pass and real-time data processing. We propose, MAREDS, an in-memory

mining algorithm of a selected set of association rules in a centralized data stream setting. The

mining procedure captures stream data using a bit matrix and a prefix tree, the partial association

enumeration tree, over a sliding window model. The proposed approach enables us to answer the

query “What are the current interesting associations rules? ” at any time.

In the next Section 5.1, we analyze different association rule generation properties that would

help in reducing the solution space.

5.1 Association Rule Property Analysis

The associations among itemsets in the sliding window may change their status from relevant

to irrelevant, and vice versa, upon the arrival of each new transaction. This happens due to changes

in the items’ support values and their co-occurrence with other events. In this regard, we examine

a set of properties that would help in reducing the solution search space and thereby improve the

efficiency of the association rule generation algorithm. We extract the following properties from the

aforementioned constraints stated in the problem statement Section 4.2:

Given a frequent itemset {abcd}, it is noticed that the confidence values for the following generated
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rules are: conf j(abc → d) ≥ confj(ab → cd) ≥ confj(a → bcd). Hence, the confidence

values of association rules generated from the same itemset have an anti-monotonic property. The

confidence function conf j is anti-monotonic with respect to the number of items in the antecedent.

If conf j(abc → d) does not hold, there exists no association rules among the items in {abcd} at the

higher order [n− 2], [n− 3], etc, where the consequent is a superset of d. This significantly reduces

the scope of the rule search. Property 1 mathematically captures our interest.

Property 1. Given frequent itemsets X , XY , XZ and XY Z are related through an anti-monotonic

relationship such that if (X → Y ) or (X → Z) or (XY → Z) or (XZ → Y ) then (X → Y Z).

Proof. In order for association rule (X → Y Z) to fulfill constraint (ii): [ supj(XY Z)
supj(X) ≥ cmin],

then using Apriori property:
suppj (XY )

suppj (X)
≥ cmin,

suppj (XZ)

suppj (X)
≥ cmin,

suppj (XY Z)

suppj (XY )
≥ cmin and

suppj (XY Z)

suppj (XZ)
≥ cmin.

Any itemset that is present in every transaction of the current sliding window cannot generate in-

teresting association rules. For example, a special weather condition may persist for a whole day.

Property 2 helps in pruning the scope of search for interesting association rules among frequent

itemsets. It signifies that omnipresent data is not relevant to be included in the interesting associa-

tions among two set of recent events.

Property 2. An interesting association rule can not have an antecedent and/or consequent itemset

that is omnipresent; otherwise, the lift value is less or equal to 1 (lift ≤ 1).

Proof. Assume (X → Y ) is an association rule where itemset X is present in all transactions.

liftj(X → Y ) =
τ×supj(XY )

supj(X)×supj(Y ) and supj(x) = τ , then liftj(X → Y ) =
supj(XY )
supj(Y ) ; and since

supj(XY ) ≤ supj(Y ), then liftj(X → Y ) ≤ 1. The same can applied if itemset Y is omnipresent.

An intermediate itemset X which is subset of a closed frequent itemset XY indicates that these

itemsets occur together. Therefore, as stated in Property 3, the relationship between such itemsets

will form an interesting association rule, unless they are omnipresent. The generated rule, (X l−→ Y ),

does not require any confidence or lift evaluation .
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Property 3. Given a frequent closed itemset XY and an intermediate itemset X , there exists an

interesting association rule (X
l−→ Y ) if itemset Y is not omnipresent.

Proof. Since, supj(X) = supj(XY ):

- X , Y and XY are all frequent (Apriori property), constraint (i) is met.

- conf j(X → Y ) =
supj(XY )
supj(Y ) = 100%, constraint (ii) is met.

- liftj(X → Y ) = τ
supj(Y ) . So, if Y is not omnipresent (supj(Y ) < τ), then liftj(X → Y ) > 1,

which meets constraint (iii).

The following properties, Property 4, Property 5 and Property 6, extend the general concept of

Property 3. They provide various conditions to mine interesting association rules. Our main in-

terest in this context is to make use of co-occurring events through these properties to improve the

performance of the incremental association rule mining algorithm by reducing the search space.

Property 4. Given a non-omnipresent frequent closed itemset XY Z and intermediate itemsets X ,

XY , then (X
l−→ Y Z), (XY

l−→ Z), (XZ
l−→ Y ), (X l−→ Y ) and (X

l−→ Z) are all valid interesting

association rules except in the case(s) where the consequent(s) are omnipresent.

Proof. Using both Property 1 and Property 3.

Property 5. Given a frequent itemset X , an intermediate itemset XY and a non-omnipresent fre-

quent closed itemset XY Z such that supj(XY ) = supj(XY Z), the following is true:

a. if (X l−→ Y ) ⇒ (X
l−→ Y Z)

b. if (X
l
−�−→ Y Z) ⇒ (X

l
−�−→ Y )

Proof. Proof as follows:

a. Given (X
l−→ Y ) is an interesting association rule, it meets constraints (i), (ii) and (iii).

- Since supj(XY ) = supj(XY Z) then implication (X → Y Z) meets constraints (i) and

(ii).

- Since supj(Y ) ≥ supj(Y Z), then τ×supj(XY )
supj(X)×supj(Y ) ≤ τ×supj(XY Z)

supj(X)×supj(Y Z) . Thus, the impli-

cation (X
l−→ Y Z) meets constraint (iii).
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b. Given (X
l
−�−→ Y Z), it does not meet constraint (i), (ii) or (iii).

- If (X
l
−�−→ Y Z) does not meet constraint (i) or (ii) and since supj(XY Z) = supj(XY ) then

(X
l
−�−→ Y ) also does not meet the same constraint.

- If (X
l
−�−→ Y Z) does not satisfy constraint (iii) and since τ×supj(XY Z)

supj(X)×supj(Y Z) ≥
τ×supj(XY )

supj(X)×supj(Y ) , then (X
l
−�−→ Y ) also does not satisfy the same.

From Eq. 1, Eq. 2 and Eq. 3, it is clear that the evaluations of different thresholds require retrieving

support values for the involved itemsets. In this context, Property 6-a. significantly reduces the load

of support evaluation for some itemsets. The other properties, Property 6-b and Property 6-c, help

is minimizing the rule evaluations during the [n− n] association rule generation.

Property 6. Given a frequent closed itemset XY and an intermediate itemset X , the following is

true for itemset XY Z:

a. supj(XZ) = supj(XY Z)

b. if (XY
l−→ Z) ⇒ (X

l−→ Y Z)

c. if (X
l
−�−→ Y Z) ⇒ (XY

l
−�−→ Z)

Proof. Proof as follows:

a. Since supj(X) = supj(XY ), Y occurs in every transaction X occurs in over the whole

sliding window j. Now, if X and Z jointly occur, it will be among a subset of the XY

transactions, hence supj(XZ) = supj(XY Z).

b. Given (XY
l−→ Z) is an interesting association rule, it meets constraints (i), (ii) and (iii).

- Since supj(X) = supj(XY ), then implication (X
l−→ Y Z) meets constraints (i) and (ii).

- Since supj(Z) ≥ supj(Y Z) , then τ×supj(XY Z)
supj(XY )×supj(Z) ≤

τ×supj(XY Z)
supj(X)×supj(Y Z) . Thus, implica-

tion (X
l−→ Y Z) meets constraint (iii) as well.
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c. Given (X
l
−�−→ Y Z), it does not meet constraint (i), (ii) or (iii).

- If (X
l
−�−→ Y Z) does not meet constraint (i) or (ii) and since supj(XY ) = supj(X), then

(X
l
−�−→ Y ) also does not meet the same constraint(s).

- If (X
l
−�−→ Y Z) does not satisfy constraints (iii) and since τ×supj(XY Z)

supj(X)×supj(Y Z) ≥
τ×supj(XY Z)

supj(XY )×supj(Z) , then (XY
l
−�−→ Z) also does not meet the same.

An itemset that has a support value less than the product of the sliding window size by the minimum

confidence can participate as a consequent in an interesting association rule. As stated in Property 7,

this can help in determining whether a rule is lifted from its consequent value without any additional

evaluation.

Property 7. Given frequent itemsets X , Y and XY , a rule (X
l−→ Y ) is valid if itemset X is not

omnipresent, conf j(X → Y ) ≥ cmin and supj(Y ) < τ × cmin.

Proof. Proof as follows:

- X , Y and XY are frequent itemsets, hence constraint (i) is met.

- conf j(X → Y ) ≥ cmin, constraint (ii) is met.

- Given supj(Y ) < τ × cmin and supj(Y ) < τ × supj(XY )
supj(X) since supj(XY )

supj(X) ≥ cmin, then,
τ×supj(XY )

supj(X)×supj(Y ) > 1 as support of supj(X) < τ . constraint (iii) is met.

Figure 5.1: Minimum requirement of supj(XY ) for supports of X and Y
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5.1.1 Interesting Association Rules Identification

At a given time slot tj , Figure 5.1 provides an example for the minimum requirements for the

joint support of itemset XY to generate an interesting association rule (X
l−→ Y ) over a sliding

window of size τ = 10, minimum support smin = 3 and minimum confidence cmin = 0.7 (or

70%). The support values are presented in four distinct regions of colors. The gray region, blocks

marked with the value ‘F’, implies that interesting rules can not be generated with the corresponding

support values of X and Y for the given setting. In the green region, constraints (ii) and (iii) are

already satisfied and only constraint (i) requires to be verified. In the yellow region, constraint (iii)

is already satisfied and both constraints (i) and (ii) need to be verified. Finally, the region marked in

blue requires to evaluate all three constraints.

Figure 5.2: Partial lattice of frequent itemsets with [n− 1] rules

The relationships between various items in an itemset are often presented using a lattice [38]. A

lattice is a fundamental and general algebraic structure used to represent a partially-ordered set that

is often drawn using Hasse diagram1. A lattice is denoted by ⟨L,∨,∧⟩ where L is a non-empty set

that supports binary OR and binary AND operations over L. From an alphabet A, a lattice can be
1https://en.wikipedia.org/wiki/Hasse_diagram
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derived using a partially-ordered set (L,≼) by considering X ∧ Y = X ∩ Y and X ∨ Y = X ∪ Y for

any X,Y ∈ L. In lattice theory, X ∧Y is called infimum, meet or greatest lower bound. The X ∨Y

is called supremum, join or least upper bound. Hence, the lattice for A contains all possible subsets

of A. For our use, a full lattice representation with all feasible itemsets is very large, memory

consuming and unnecessary. Thus, we tent to prune the lattice by removing itemsets that do not

meet the support threshold minimum requirement. The resulting structure is called a partial lattice

or meet-semilattice [38]. A partial lattice only respects the greatest lower bound constraint of a full

lattice.

The Figure 5.2 depicts a partial lattice of itemsets and their support in the first sliding window

from the example presented in Figure 2.1. The partial lattice represents itemsets with smin = 3

and reflects association with cmin = 0.7. The root is represented using ∅ (as a common practice).

The first level, level 1 (L1), represents the alphabet single items in a strict prefix order. Each of

the subsequent levels maintains itemsets of the same size of each level using the same prefix order

along with the itemsets’ support in the current sliding window. For instance, (L4) keeps itemsets

with four items, which is {abce} in Figure 5.2. Black continuous arrows show the [1 − 1] and

[n − 1] interesting association rules between two successive levels. The solid gray lines show

association rules that did not satisfy the lift constraint (iii). The dotted lines express failure to form

any association rule because constraint (ii) was not satisfied. In the Figure 5.3, we evaluate feasible

[1 − n] and [n − n] interesting rules similarly between every other levels among frequent itemsets

that satisfy constraints (i), (ii) and (iii) using green continuous arrows. Finally, we present a [1− n]

interesting rule (a
l−→ bce) between (L1) and (L4). Figure 5.2 and Figure 5.3 depict two [1 − 1]

interesting rules a
l−→ c and c

l−→ b; four [n − 1] interesting rules: ab
l−→ c, ae l−→ c, ce l−→ b and

abe
l−→ c, two [n − n] interesting rules: ab l−→ ce and ae

l−→ bc, and four [1 − n] interesting rules:

a
l−→ bc, a l−→ ce, c l−→ be and a

l−→ bce.

It is indicated that all non-frequent itemsets and their supersets cannot form association rules

(Apriori property). Therefore, if the support of an itemset is found to be lower than the minimum

support, no superset of that itemset is investigated or maintained. In addition, omnipresent itemsets,

such as item e marked with a red border, cannot directly help in generating association rules with

lift greater than 1, constraint (iii) (Property 2). However, supersets of e should be evaluated as
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Figure 5.3: Interesting [n− 1], [1− n] and [n− n] association rules with (lift > 1)
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antecedent or consequent of rules if they are not omnipresent. Furthermore, it can be noted that the

support values of a, c and d are less than 7 (τ × cmin). Association rules having consequent a, c

and d or any of their supersets will have lift > 1 (Property 7). Over a partial lattice, itemsets and

rules can be accessed and searched using breadth-first, depth-first or a hybrid search. In MAREDS,

we use a hybrid depth-first search of rules since it can take advantage of the properties during the

traversal to minimize the search time as much as possible.

5.1.2 Incremental Association Rule Update

Incremental update of the mining outcome could be the most import phase in any stream data

mining. The general requirements of incremental update of association rule mining over data

streams are stated in Table 5.1. The incremental update process examines two mutually exclusive

itemsets namely X and Y along with their joint appearance, denoted by XY , in the current sliding

window. The table states twelve update setting, U1− U12. The settings are extracted based on the

increase and/or decrease of support values of X , Y and XY . In addition, it considers whether the

itemsets already formed any interesting association rule (X
l−→ Y ) or not (X

l
−�−→ Y ). As the sliding

window progresses, support of (X), (Y ) and (XY ) will either increase by 1, decrease by 1 or re-

main the same. Assuming X , Y and XY are frequent in the current and the next sliding windows,

each column reflects the evaluation requirements to maintain the current condition. If the given

setting is true, then the rule becomes invalid in that condition. Support increment and decrement are

denoted by (↑) and (↓), respectively. The symbol c denotes the association rule confidence.

Example 5.1. Assume there exists an interesting rule (X l−→ Y ) in the current sliding window τj . If

the support of X decreases in the next sliding window τj+1 while the support of Y and XY remain

the same, the update setting U1 in Table 5.1 states that this existing interesting rule maintains its

validity in the new window and does not require any further evaluation. However, if the support

of X increases in the next sliding window while the support of Y and XY remain the same, the

existing interesting rule requires two further evaluations as per U2. If the new support of X is less

than ( cmin
c−cmin

) or if the support of Y is less or equal to (τc − τc
supj(X)+1), then in the next sliding

window τj+1 the rule (X
l−→ Y ) is no longer valid.
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Table 5.1: Updating selected rules with the change of support
Condition: X

l
−�−→ Y X

l−→ Y

Setting Update Requirement Update Requirement

U1 (X) ↓
(
c ≥ cmin or supj(X) ≤ cmin

cmin−c

)
and

(
supj(Y ) < τc+ τc

supj(X)−1

) Rule unchanged

U2 (X) ↑ Rule unfeasible
(
supj(X) < cmin

c−cmin

)
or(

τc− τc
supj(X)+1

≤ supj(Y )
)

U3 (Y ) ↓
(
c ≥ cmin

)
and

(
supj(Y ) < τc+ 1

)
Rule unchanged

U4 (Y ) ↑ Rule unfeasible
(
τc− 1 ≤ supj(Y )

)
U5 (X,XY ) ↓ Rule unfeasible

(
supj(X) < 1−cmin

c−cmin

)
or(

τc− τ(1−c)
supj(X)−1

≤ supj(Y )
)

U6 (X,XY ) ↑
(
c ≥ cmin or supj(X) ≤ 1−cmin

cmin−c

)
and

(
supj(Y ) < τc+

τ(1−c)
supj(X)+1

) Rule unchanged

U7 (Y,XY ) ↓ Rule unfeasible
(
supj(X) < 1

c−cmin

)
or(

τc+ 1− τ
supj(X)

≤ supj(Y )
)

U8 (Y,XY ) ↑
(
c ≥ cmin or supj(X) ≤ 1

cmin−c

)
and

(
supj(Y ) < τc− 1 + τ

supj(X)

) Rule unchanged

U9 (X) ↓ &
(Y ) ↑

(
c ≥ cmin or supj(X) ≤ cmin

cmin−c

)
and

(
supj(Y ) < τc− 1+ τc

supj(X)−1

)
(
(supj(X) > supj(Y ) + 1) and

(τc− 1 + τc
supj(X)−1

≤ supj(Y ))
)

U10 (X) ↑ &
(Y ) ↓

(
supj(X) ≥ cmin

c−cmin

)
and(

supj(Y ) < τc+ 1− τc
supj(X)+1

)
(
supj(X) < cmin

c−cmin

)
or

(
(supj(X) < supj(Y )− 1)

and (τc+ 1− τc
supj(X)+1

≤ supj(Y ))
)

U11 (X,Y,XY ) ↓
(
c ≥ cmin and supj(X) ≥ 1−cmin

c−cmin

)
and

(
supj(Y ) < τc+1− τ(1−c)

supj(X)−1

)
(
supj(X) < 1−cmin

c−cmin

)
or(

τc+ 1− τ(1−c)
supj(X)−1

≤ supj(Y )
)

U12 (X,Y,XY ) ↑
(
c ≥ cmin or supj(X) ≤ 1−cmin

cmin−c

)
and

(
supj(Y ) < τc− 1+

τ(1−c)
supj(X)+1

)
(
τc− 1 +

τ(1−c)
supj(X)+1

≤ supj(Y )
)
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It is noticed that τ and cmin are predefined fixed values while the support for X , support of Y

and conf are changing variables from one sliding window to another. Table 5.1 provides clear in-

structions of whether these variables require further evaluation with every progression of the sliding

window. In the upcoming sections, we use the twelve update setting to devise a single pass traversal

process over a stored partial lattice in order to reveal interesting association rules.

5.2 Transaction Representation and Itemset Scanning

Dataset transactions can be stored in horizontal or vertical layout. In a horizontal layout, each

row represents a transaction of items. Such layout is often incorporated by Apriori-like algorithms

[59]. In the vertical layout, each row represents a single item. It encloses the item’s occurrences

in every transaction over the current sliding window. The occurrences may be maintained as either

transaction IDs or as a bit string. Algorithms using vertical layout generally perform faster than

horizontal ones when the sliding window size is relatively large [59].

Figure 5.4: Transactions in a bit matrix over sliding window

In MAREDS, we use a bit matrix to store the current sliding window transactions in a vertical

layout. Figure 5.4 depicts an incremental insertion of transactions from Figure 2.1 using the bit

matrix. Occurrences of each item in the sliding window are stored as a separate bit array. Items

are placed in a strict predefined order as per the alphabet (e.g. a, b, · · · , e). Each column in

the bit matrix represents one transaction. The rows or cells of a column represent items in the
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corresponding transaction. A cell value of 1 denotes the presence of the corresponding item in that

transaction. On the contrary, a cell value of 0 denotes that the item is absent in that transaction.

A new transaction is stored in the column indicated by a sliding pointer. In Figure 5.4, the sliding

pointer is marked in dark black squares borders. Once all columns in a sliding window are filled,

a new transaction replaces the oldest one. In this case, the sliding pointer is placed at the oldest

transaction. The corresponding column’s cells are reset according to the new transaction items.

The bit matrix is used to compute momentary support of an itemset. The computation procedure

is called Scanning. To find support of an input itemset, scanning generates a new bit array of the

same size of the sliding window. Then, it uses bit-wise “AND” operation among the rows corre-

sponding to every item from the queried itemset. The support value will be the total number of 1s in

the output bit array. Scanning can either be performed sequentially for every row or hierarchically.

When the sliding window size is large, multiple bit arrays store the occurrences of an item. Thus,

serially counting support can be slower. Hierarchical counting saves execution time and reaches

time-complexity of approximately O(log(τ)) using parallel processing. The support values of all

single items are kept in a separate integer array, namely “sum”. The array is updated with the sliding

window progression.

The aforementioned scanning process is efficient but it does not keep track of any momentary

support of any itemset beyond the scanning procedure. Thus, with every window update, it requires

to apply Apriori or similar technique(s) to extract frequent itemsets and thereafter computing asso-

ciation rules. Such traditional mining techniques is extremely time consuming with respect to the

stream speed. For an alphabet A of size n, the total number of possible itemsets and association

rules is (2n − 1) and (3n − 2n+1 +1), respectively. In contrast, storing momentary support of item-

sets offers faster computation of association rules. In this regard, we propose maintaining selective

itemsets and their support values in a prefix tree variant which is discussed in the next Section 5.3.

5.3 Partial Association Enumeration Tree

In this section, we introduce the Partial Association Enumeration Tree (PAET). PAET is as a

prefix tree variant that mines and maintains relevant itemsets. It offers prompt search for momentary
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interesting association rules.

Definition 5.1. (Partial Association Enumeration Tree). Over a sliding window of size τ , given a

strictly ordered set of alphabet (A,≺) and a root node ⟨∅, τ,−⟩, PAET can be defined recursively

as a collection of nodes starting from the root. Each PAET node nX ∈ Ψ is a triplet, denoted by

⟨X, supj(X), nX\{e}⟩. It consists of a itemset X , the node label, where X ∈ P(A) \ {∅}, its

support supj(X) in the current sliding window τj and a pointer to a parent node nX\{e}. A tree

node nX satisfies one of the following:

• |X| = 1: Node holds a single item.

• |X| > 1: Node holds an itemset with two or more items and :

◦ supj(X) ≥ smin − 1: node support is greater or equal to the (minimum support−1).

◦ has a pointer nX\{e} such that ∀e, e′ ∈ A, supj(X \ {e}) ≤ min
e′∈A

supj(X \ {e′})

P(A) denotes the powerset of the alphabet A, The symbols ≺ and ≼ indicate strict and partial

ordering respectively. PAET keeps all single items in the first level immediately below the root and

thus reflects the “sum” array stated in Section 5.2). Additionally, PAET keeps itemset nodes where

current itemset support is greater or equal to (smin − 1). The node nX associated pointer links

the node to one of its parent nodes which has the lowest support value. Figure 5.9 depicts PAET

generation for the first sliding window of Figure 2.1.

5.3.1 PAET Construction

Stream association rule mining over a sliding window requires fast access to previous min-

ing outcome to avoid any possible delay. Hence, PAET is constructed in memory to provide the

MAREDS algorithm with rapid access to its nodes (itemsets) [12]. The tree design and node selec-

tion require special attention to have a smooth update process where nodes are inserted and deleted

incrementally. The core challenge lies in constructing the tree to efficiently fetch selected associ-

ation rules for every new window. To analyze a selected association rule (X
l−→ Y ), momentary

support of nodes X , Y or XY should be accessed from PAET. Otherwise, additional scanning is

required to compute the support values in order to validate the rule for every new window. This will
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make the overall rule generation and update process slower. Hence, we propose inserting additional

tree nodes representing necessary itemsets at least one transaction before they can possibly meet the

first constraint (i) of rule generation. Chi et al. term these nodes as gateway nodes [12]. Below we

describe node insertion and deletion processes into and from PAET:

• Node Insertion: Node nX corresponding to itemset X is newly created and inserted into

PAET if X is a subset of the new incoming transaction. It should have momentary support

greater or equal to smin − 1, i.e. (supj(X) ≥ smin − 1). This process is referred to as

leaf insertion. If a new itemset with two or more items, |X| > 1, is inserted into PAET, it

generates a series of consecutive leaf insertions. This is referred to as branch insertion. The

support of each new node is required to be evaluated. Property 6-a. is used to reduce the total

number of evaluations using the scanning process stated in the previous Section 5.2.

• Node Deletion: Node nX corresponding to itemset X is deleted from PAET if its momentary

support is reduced in the current sliding window and becomes lower than the threshold of

smin − 1, i.e. (supj(X) < smin − 1). If the node nX is a leaf, the process is referred to

as leaf deletion. If the node is not a leaf, the whole branch of superset nodes below nX are

deleted as all these nodes do not meet the requirement threshold as per Apriori rule. Such

deletion is referred to as branch deletion.

The proposed node insertion and deletion differ from other common approaches of stream frequent

itemset mining [12, 65, 10, 39, 49]. An itemset is stored in PAET if and only if it can possibly be an

antecedent or consequent of an association rule when the next transaction is available. Leaf insertion

or deletion deals with one gateway node while branch insertion or deletion handles multiple gateway

nodes at every transaction.

5.3.2 Maximum Confidence Analysis

The confidence of an association rule is impacted by the change of support of its antecedent

itemset and the support of the joint appearances of the antecedent and the consequent itemsets.

Therefore, we propose that for each node nX in PAET, in addition to tracking its support, we track

the itemset’s parent subset nodes. To be able to track these nodes, we use the pointer in each PAET
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Figure 5.5: Single-pass PAET update: (sliding widow, sum array, USP )

node to point to the parent node with the least minimum support value among all its parent nodes.

Thus, each of these pointers identify a [n−1] association rule with maximum confidence, if existing.

We define a Maximum Confidence Rule (MCR) as follows.

Definition 5.2. ([n−1] Maximum Confidence Rule). An association rule (X → Y ) is called [n−1]

maximum confidence rule of XY if and only if X ⊂ XY , |XY | − |X| = 1 and conf j(X → Y )

has maximum value of confidence among any subset of XY .

Example 5.2. Let us consider itemset ace of cardinality 3 in Figure 5.9. In PAET, the node’s parents

of cardinality 2 are ac, ae and ce with support values of 4, 4 and 6 respectively. Therefore, either

(ac → e) or (ae → c) can be considered as a [n− 1] MCR for itemset ace. Similarly, (c → b) is an

[n− 1] MCR for itemset bc. The concept can be extended such that (ab → ce) is a [n− 2] MCR for

abce.

The [n − 1] MCR use during the sliding window update is very important. In the following, we

highlight the conditions that reflect that importance.

(C1) If [n− 1] MCR for a PAET node nX is not a valid association rule, because it does not meet

the minimum confidence threshold, then no association rule can be formed with any of nX

other parent nodes.
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(C2) If supj(X) = supj(XY ) then (X → Y ) is nXY node’s [n − 1] MCR unless there already

exists a [n− 1] MCR, (X → Y ′), where supj(X) = supj(XY ′).

(C3) If (X → Y ) is a [n− 1] MCR, an increase in support value of any subset of XY (except for

X), (X → Y ) holds as [n− 1] MCR.

(C4) If (X → Y ) is a [n−1] MCR, a decrease in support value of X will hold (X → Y ) as [n−1]

MCR.

(C5) If (X → Y ) is a [n − 1] MCR for a PAET node nXY , then if the parent nodes either all

increase, all decrease or all have no change in the support value, then (X → Y ) will still

hold as [n− 1] MCR.

5.3.3 PAET Update

Upon arrival of a new transaction, it is inserted into the sliding window whereas the oldest

transaction is deleted from the window. PAET is updated accordingly as well. We propose the

single-pass update process where all itemsets and interesting association rules are updated all at

once. In single-pass, the itemsets’ updates are reflected in PAET with only one single tree traversal

having minimal node visits as possible. The update operation in other surveyed algorithms in the

literature review (Chapter 3) usually consists of two operations: addition and deletion. The two-

operations model requires at least two data access passes over the used data structure to perform

the update task. Moreover, an itemset addition may take place, even though the same itemset may

be removed by the later delete operation. This creates unnecessary data structure access, not to

mention unnecessary operations which are extremely costly in a stream environment.

Let us denote the oldest transaction in the sliding window as ξ− and the incoming new transac-

tion as ξ+. The powerset P(ξ−) indicates the set of all sets affected by the expiring transaction. For

example, in Figure 5.5, at sliding window τ2, ξ− represents the expiring transaction {de}. There-

fore, P(ξ−) = {∅, {d}, {e}, {de}} and similarly P(ξ+) = {∅, {c}, {e}, {ce}}. The momentary

support values for ξ− itemsets should decrease, while the momentary support values for ξ+ should

increase. With a simple analysis, we note that there is no change in the support values for all item-

sets represented by P(ξ− ∩ ξ+). In addition, only itemsets denoted by P(ξ+) \ P(ξ− ∩ ξ+) have
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Figure 5.6: States and transitions for incremental update using Hybrid Automaton

momentary support increases and itemsets denoted by P(ξ−)\P(ξ−∩ξ+) have momentary support

decreases. Moreover, there exists a big number of itemsets in the alphabet A powerset, denoted by

P(A) \ P(ξ− ∪ ξ+). These itemsets are not impacted by the sliding window update. Yet, some

of them are important to note because they might be part of the existing association rules which

may be impacted by some of the updated itemsets. PAET single pass takes place through a tree

traversal that can be captured with transitions among a set of different states triggered by the above

four cases. Let IP be a set of transition triggers which represent the update input for each item. IP

consists of the following values:
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• Increase (+): update value for items appearing only in the new incoming transaction.

• Decrease (−): update value for items appearing only in the expired transaction.

• No Change (0): update value for items appearing in both new and expired transactions.

• No impact (N): update value for items not available in new or expired transactions.

In Figure 5.6, we introduce a hybrid automaton that consists of fifteen different update states in

order to govern PAET update process. These states reflect any possible set of trigger combinations

for a given itemset. To retrieve the update state of an itemset, we start at the initial state and transit

through the states based on each of the itemset IP values. Below is an example that describes state

transition over a given input. Table 5.2 provides a description of the accepted input for each state in

the automaton.

Example 5.3. Let us consider the example in Figure 5.5 for the sliding window τ2. The oldest

transaction ξ− = {d, e} and the incoming transaction ξ+ = {c, e}. The IP values for c,d and e

are (+), (−) and (0), respectively. The update state for itemset {c, d, e} is S8 (InitialState
(+)−−→

S1
(−)−−→ S8

(0)−−→ S8). Similarly, the parent itemset {c, e} update state is S3.

Each of the states executes a series of update actions to maintain itemsets’ momentary support and

track [n− 1] MCR. The states are categorized into four groups depending on their update actions:

• Support-Update States: (Member states are S1, S2, S4, S−1, S−2 and S−4)

In these states, the support of itemset X of PAET node nX changes but a pointer update is

not required because all the parent nodes’ support either increase or decrease (Condition C5).

• Pointer-Update States: (Member states are S5, S6, S8, S−5 and S−6)

In these states, the support value of itemset X of PAET node nX does not change but the

support of one or multiple parent nodes changes. This may require a re-evaluation of node

nX pointer value. Since the evaluation is computationally and memory expensive during the

search, we further examine the requirements for incremental update to eliminate unnecessary

evaluations:
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◦ In states (S5) and (S6) only one of the parent nodes has an increase in the support value.

If the pointer of nX points to that node, it is required to investigate all other nX parent

nodes to find the parent node with the lowest support value. Otherwise no pointer update

is required.

◦ In states (S−5) and (S−6) only one of the parent nodes has a decrease in the value.

If the pointer of (nX ) does not point to that specific node, it is required to compare

the current parent node support against it to find the least support value of both parent

nodes. Otherwise no pointer update is required.

◦ In state (S8), the pointer of node nX may point to a parent node whose support value

is either increasing, decreasing or having no change. In the first case, it is required to

evaluate all parent nodes of nX to find the lowest support value. In the second case, no

evaluation is necessary and no pointer update is required. Finally, in the third case, it

is required to compare the support of currently pointer parent node with the support of

that specific parent node whose support is decreasing to find out the if a pointer update

is needed or not.

• No-Update States: (Member states are S0, S7 and S9)

In these states, the support value of itemset X of the PAET node nX does not change and the

node’s pointer does not require any update. All items in X have update values of (0) and/or

(N).

• Support-Pointer Update States: (Member states are S3 and S−3)

In these states, the support value of itemset X in the PAET node nX changes. In addition, its

node’s pointer may also require further evaluation as follows.

◦ In state (S3) only one of the parent nodes has an increase in the support value. If the

pointer of nx does not point to that specific node, it is required to compare the cur-

rent parent node support against it to find the least support value of both parent nodes.

Otherwise no pointer update is required.

◦ In state (S−3) only one of the parent nodes does not have a decrease in the support value.

If the pointer of nX points to that node, it is required to investigate all other nX parent
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nodes to find the parent node with the lowest support value. Otherwise no pointer update

is required.

Table 5.2: Hybrid automaton: state accepted input specification
State Accepted Input Description
S0 (0)0∗ At least one ‘0’ or more.
S1 (+) A single ‘+’ only.
S2 (++)+∗ At least two ‘+’s or more.
S3 (+0)0∗ At least one ‘+’, one ‘0’ and any additional ‘0’s.
S4 (+ + 0) +∗ 0∗ At least two ‘+’s, a single ‘0’ and any additional ‘+’s and ‘0’s.
S5 (+ +−) +∗ 0∗ At least two ‘+’s, a single ‘−’ and any additional ‘+’s and ‘0’s.
S6 (+N) +∗ 0∗ At least one ‘+’, one ‘N’ and any additional ‘+’s and ‘0’s.
S−1 (−) A single ‘−’ only.
S−2 (−−)−∗ At least two ‘−’s or more.
S−3 (−0)0∗ At least one ‘−’, one ‘0’ and any additional ‘0’s.
S−4 (−− 0)∗0∗ At least two ‘−’s, a single ‘0’ and any additional ‘−’s and ‘0’s.
S−5 (−−+)∗0∗ At least two ‘−’s, a single ‘+’ and any additional ‘−’s and ‘0’s.
S−6 (−N)∗0∗ At least one ‘−’, one ‘N’ and any additional ‘−’s and ‘0’s.
S7 (N)0∗ At least one ‘N’ and any additional ‘0’s.
S8 (+)0∗ At least one ‘+’, one ‘−’ and any additional ‘0’s.

The changes of the support values and update of [n − 1] MCR pointers inside PAET nodes can

be formally considered as a side-effect of the hybrid automaton described in Figure 5.6. Once the

required actions are applied, the state has to transit to end state to terminate. Hence, we add an

additional transition trigger (ε) to IP in order to describe this implicit transition from any state

to the end state. Thus, the IP set is denoted as {+,−, 0, N, ε}. Every state transition is a tuple

⟨si, γ, α, e, sj⟩ corresponding to a move from state (Si) to state (Sj) based on an transition trigger

e ∈ IP . The destination state (Sj) checks if the underlying predicate (γ = α) is true. If so, the

state side effect takes place if required as mentioned above. On the contrary, if (γ = ¬α) is true, no

side effect takes place at (Sj). In Figure 5.6, the automaton includes 15 states (described in Table

5.2) which process these transition tuples. In addition, the automaton includes one state (S9), where

no action is required. This state is denoted as CAP State. If an itemset X update request reaches

the CAP state, non of X supersets have any update nor they can form any new association rules.

Then, the state implicitly transits to end state without any predicate checking. In the following, we

provide an example that illustrates the traversal and update through PAET using this automaton.
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Example 5.4. Let us consider the example in Figure 5.5 for the sliding window τ2. We construct

the update set pairs (USP) as: {(a,N), (b,N), (c,+), (d,−), (e, 0)}. Then, in a depth-first search

manner, we start traversing the first PAET branch as described in Figure 5.9 starting at node a ⇒

ab ⇒ abc ⇒ abce. The first sequence of inputs is ⟨([γ = α], N), ([γ = α], N), ([γ = α],+), ([γ =

α], 0), ([γ = ¬α], ε)⟩. For simplicity, we abbreviate the inputs as ⟨[α]N [α]N [α]+[α]0[¬α]ε⟩. Each

of the transitions is guarded by a predicate and holds an input value from IP . The input sequence is

tailed by [¬α]ε at the end of every input sequence. However, in this example, the corresponding state

transitions finish after three steps. The fist step from initial state to (S7) accepting ([γ = α], N).

The second step from (S7) to (S9) accepting ([γ = α], N). Finally, transit implicitly from (S9) to

end state irrespective of the rest of the input sequence. In all visited states, required side effects

take place if available. The second sequence of inputs: ⟨[¬α]N [α] + [α]0[¬α]ε⟩ is derived from

the first input sequence. It corresponds to searching a ⇒ ac ⇒ ace. We note that PAET node

nA is preceded by a predicate [γ = ¬α], and hence will not have a side effect since it was already

processed by the first input sequence. The depth-first search continues until node nE is reached.

Figure 5.7: Selection of update settings for state transitions

5.3.4 [n− 1] Association Rule Tracking

The preceding hybrid automaton simplifies the actions required for PAET update and rule gen-

eration during the traversal process. Figure 5.7 presents a bipartite graph that describes the links

between the automaton states and the update settings in Table 5.1. The set of states, placed at the
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top, represent the recipient states. The set of update settings at the bottom presents interesting rule

required evaluations. The edges present a collection of transitions among the automaton states and

the corresponding update requirements. The update setting “NA” denotes that no action is required.

The exact choice of update settings for some of the transitions depends on both previous state and

the received input.

Example 5.5. State (S3) can be reached from states (S0), (S1) and (S3). If (S3) was reached from

(S0), it requires evaluation using update setting U8. While, if (S3) was reached from (S1) or (S3),

it requires evaluation using update setting U6.

Example 5.6. State transition from (S4) to same state (S4) depends on provided input. An input of

[α](0) or [α](−) leads to update setting U6 or U12, respectively.

In U12, the support values of antecedent X , consequent Y and their joint appearance XY are

all increased by 1, as identified in Table 5.1. A further analysis of U12 reveals that, if any of

the two conditions,
(
c ≥ cmin or supj(X) ≤ 1−cmin

cmin−c

)
, is true then new association rules can

be created. However, in order to identify an interesting association rule with (lift > 1), another

condition,
(
supj(Y ) < τc − 1 + τ(1−c)

supj(X)+1

)
, has to be satisfied also. If the first two conditions

are not satisfied, no association rule exists between the specific itemsets. If only the last condition

does not hold, a strong association rule exists but it is no longer interesting. As for the existing

rules, they remain valid between itemsets corresponding to the originating state (S3 or S4(+)) and

the recipient state S4. But they require further evaluation,
(
τc − 1 + τ(1−c)

supj(X)+1 ≤ supj(Y )
)

, to

check if the rules are interesting or not.

In Table 5.1, the big brackets
(
. . .

)
split the evaluation requirements for a given update setting

Ui between both conf j(. . . ) and liftj(. . . ) functions. In Table 5.3, we show at each state what is

the exact needed evaluation actions for association rule generation or maintenance. The table is

divided into two sections. The existing rules section, where a [n− 1] association rule (interesting or

only strong) exists between corresponding itemsets. Second, the non-existing rules section, where

a [n − 1] association rule does not meet the minimum confidence threshold (constraint (ii)). The

column “Current State” denotes the present state of the single pass update process. The column

“Consequent Support Update” denotes the update input, such as increase (+), decrease (−), no
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Table 5.3: Requirements for incremental evaluation of confidence and lift
Line Current Consequent Evaluation Requirements
No. State Support Update conf j(. . . ) liftj(. . . )

Existing Rules
1. S2 Any No Yes
2. S−2 Any Yes Yes
3. S3 Any No if (liftj−1(. . . ) ≤ 1)
4. S−3 Any Yes if (liftj−1(. . . ) > 1)
5. S4 (0) No if (liftj−1(. . . ) ≤ 1)
6. S−4 (-) Yes Yes
7. S−4 (0) Yes if (liftj−1(. . . ) > 1)
8. S4, S8, S−5 (+) No Yes
9. S5, S6, S9 (+) No if (liftj−1(. . . ) > 1)
10. S5, S8 (-) Yes Yes
11. S6 (N) Yes if (liftj−1(. . . ) > 1)
12. S−6 (N) No if (liftj−1(. . . ) ≤ 1)
13. S9, S−5 (-) No if (liftj−1(. . . ) ≤ 1)

Non-Existing Rules
14. S−5, S8 (+) Yes Yes
15. S−6 (N) Yes Yes
16. S2, S3, S4 Any Yes Yes

change (0) or no impact (N) for the rule consequent itemset. It should be noted that, for all [n− 1]

association rules, consequent is an itemset consisting of a single item only. Subsequently, two

columns under “Evaluation Requirements” state the required confidence and list evaluations for a

given state. We note that all actions take place only if ([γ = α]). The following example elaborates

the necessary actions.

Example 5.7. We take the same USP = {(a,N), (b,N), (c,+), (d,−), (e, 0)} in Example 5.4. In

the Figure 5.2, let us consider traversing the partial lattice starting at b ⇒ bc ⇒ bce. The hybrid

automaton input is formed as ⟨[α]N [α] + [α]0[¬α]ε⟩. Once single pass reaches node nbc in PAET,

the corresponding transition in the automaton is state (S7) to state (S6). The state (S6) in the current

example is reached with a consequent update input of (+) from state (S7) denoting the relation

from b to bc. In addition, (S6) is reached with the same input from (S1) denoting relation between

from c to bc. It is clear from the partial lattice in Figure 5.2 that (b 9 c) is not an association

rule while (c l−→ b) is a valid interesting association rule. As stated in Table 5.3 in the non-existing

rules’ section, no reevaluation of confidence or lift is required for (b 9 c). On the other hand, the

transition from state (S1) to (S6) invokes update setting U2. A reevaluation of both confidence and

lift is required for the existing rule (c l−→ b) as stated at line no.11 in the same table. As shown in

53



Figure 5.8: Partial lattice of frequent itemsets with [n− 1] rules for sliding window (τ2)

Figure 5.8, at sliding window τ2, the rule (c → b) is a valid strong association rule but its lift is less

than 1 which makes it no longer an interesting rule. Similarly, when the search reaches node nbce in

PAET, the corresponding automaton state is still (S6). The reevaluation of both confidence and lift

is required for (ce l−→ b). As found in Figure 5.8, at sliding window τ2, the rule (ce → b) is a valid

strong association rule but its lift is less than 1.

5.4 MAREDS Design

MAREDS uses two algorithms to capture all the [n − n] association rules. The first algorithm

captures incremental generation of all the [n−1] association rules in the current sliding window. The

second algorithm derives [n−n] association rules from the first one output using a modified Apriori

technique. Additional filters and acceleration techniques are deployed to eliminate unnecessary

operations and quickly capture interesting rules.

5.4.1 [n− 1] Association Rules Generation
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Algorithm 1 PAET update algorithm for incremental mining of [n− 1] association rules
Require: PAET t−1, Stack⟨Map(itemset, parent, si)⟩
1: Constant: IP : {+,−, 0, N}, S : {s−6, s−5, . . . , s0, . . . , s9}, MIN SUP , MIN CONF

2: Known: ξ−, ξ+; {//Outgoing and incoming transactions respectively}
3: Input: USP ⟨(item, ip)⟩ ←genUSP(ξ−, ξ+, IP ) {//item ∈ A (alphabet), ∅: root of PAET t−1}
4: Initialize: Push each (item, ip) of USP at Stack in reverse alphabetical order along with parent ∅ and

state sitem

5: Function singlePass(USP , Stack) { {//Recursive update of PAET tree}
6: Pop top (itemset, parent, si) from Stack

7: Search corresponding node nitemset in PAET t−1

8: bool←exists(nitemset)

9: if bool and si ∈ {s1, s2, s3, s4} then
10: Increase support of itemset at nitemset by 1

11: else if bool and si ∈ {s−1, s−2, s−3, s−4} and supt−1(itemset) >= MIN SUP then
12: Decrease support of itemset at nitemset by 1

13: else if bool and si ∈ {s−1, s−2, s−3, s−4} and supt−1(itemset) == MIN SUP − 1 then
14: Remove node nitemset and all nodes in PAET t−1 representing superset of itemset; bool← false

15: else if ¬bool and si ∈ {s1, s2, s3, s4} and supt(itemset) == MIN SUP − 1 then
16: Add new node nitemset in PAET t−1; bool← true

17: end if
18: Update pointer for nitemset using Hybrid Automaton as described in Section 5.3.2

19: if confidence(getMCR(nitemset)) ≥MIN CONF then
20: Update [n− 1] association rules incrementally using Table 5.3

21: end if
22: if bool then
23: childs← getChildNodes((itemset, ip), USP )

24: Push each child of childs at Stack in reverse alphabetical order with parent itemset corresponding state schild
25: end if
26: if ¬ empty(Stack) then
27: singlePass(USP , Stack)

28: end if
29: }

Algorithm 1 for [n − 1] association rules generation is initiated when the sliding window has

an update. The sliding window is updated upon the arrival of a new transaction ξ+. The oldest

transaction ξ− is removed from the window if it is full. This process forms a sequence of update pair

sets (USP ) using genUSP function in Step 3. The genUSP function maps every potential or frequent

item in the alphabet with a value from IP based on the incoming and the outgoing transactions. A

pair of (item, ip) in USP denotes whether a particular item’s support value is increasing, decreasing,

having no change or under no effect. Afterwards, each of the USP items are pushed into a stack
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in a reverse lexicographical order for further evaluation (Step 4). The stack structure maintains the

parent of each pushed item along with its corresponding update state in the hybrid automaton. Each

of the automaton states has a predefined set of update instructions which includes (i) node support

value updates, (ii) [n − 1] MCR pointer handling, (iii) existing association rule evaluation, (iv)

investigation of non-existing association rules and (v) further tree traversal directions. The function

singlePass, Steps (6 − 27), updates PAET through a tail-recursion to perform a selective depth-

first search using the stack structure. Inside singlePass, the traversal starts by popping the topmost

element out of the stack. The algorithm incrementally updates all feasible [n− 1] association rules.

In Step 10 and Step 12, the itemset support update takes place. In Step 14 and Step 16, PAET

nodes are added or deleted if required. Step 18 performs the node’s pointer update while Step 20

includes the reevaluation of all [n − 1] association rules. The association rule evaluation is only

performed when the confidence of the [n − 1] MRC rule of the corresponding itemset is greater

than the minimum confidence threshold (Step 19). Finally, if further traversal is required for an

itemset branch, the children nodes are generated using function getChildNodes. A subset of the

children nodes is selected based on the need for further traversal using USP. Their update states are

acquired using the hybrid automaton. Similar to Step 4, the selected children nodes are re-pushed

into the stack in a reverse lexicographical order to ensure the depth-first search. It is noticed that

the algorithm relates between the search procedure and the automaton traversal. As the depth-

first search progresses, the new input performs a state transition in the automaton as well. If the

automaton reaches the end state as described in Section 5.3.3, the search on the current branch is

terminated. The relation between tree traversal and state transition is elaborated later in Section 5.5.

5.4.2 [n− n] Association Rules Generation

The [n−n] association rules generation, Algorithm 2, reflects a modified version of the Apriori

rule generation technique with two modifications. First, interesting association rules are generated

using the [n − 1] association rules from Algorithm 1 instead of frequent itemsets. The original

Apriori algorithm [4] uses frequent itemsets to generate association rules. Second, the algorithm

uses properties of association rules stated in Section 5.1 to determine the set of possible rules. A

tail-recursion technique is used to subsequently generate all feasible [n − n] rules. The algorithm
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starts by generating [n−2] association rules from [n−1] association rules. Next, [n−3] association

rules are generated from the [n − 2] rules and so on. An additional filter is applied to extract only

interesting association rules. In order to accelerate the [n−n] rule search, we develop an additional

data structure namely boundary. It tracks useful information from PAET for efficient [n − n] rule

generation. It enables the search to perform faster, however, it requires some extra memory and

periodic update for every new sliding window. Thus, its effectiveness is highly important. We

maintain two different boundaries as follows:

• Omnipresence (B1): B1 helps in eliminating itemsets present in all transactions during the

rule search. Property 2 states that no interesting rule can be formed considering an om-

nipresent itemset as an antecedent or a consequent.

• Consequence (B2): B2 determines if the consequent itemset Y has any impact over a selected

association rule generation. Property 7 states that if supj(Y ) < τ × cmin, then the lift of the

corresponding association rule is always greater than 1 (constraint (iii)). In this case, we just

need to confirm the first two rule generation constraints.

Algorithm 2 starts by storing all [n− 1] association rules in an array of maps namely Rulelist.

Each map in the Rulelist maintains only association rules with the same antecedent itemset length.

The map at first position in the list maintains rules with antecedent of single items. The map at the

second position maintains rules with antecedent itemset of two items and so on. Rules within one

map are lexicographically ordered.

Example 5.8. The association rule (ab → c) is maintained within the second map of the RuleList

since its antecedent belongs to Level 2 (|ab| = 2). In addition, this rule is the first element of the

lexicographically ordered map given the ordering of the association rule.

After placing all the [n − 1] association rules into the Rulelist, a temporary new list is initialized

(Step 4). The new list structure is similar to RuleList. For each [n − 1] rule in RuleList, a new

candidate [ǹ−2] rules are produced by moving a single item from the antecedent and placing it into

the consequent (ǹ = n− 1, Step 11).

Example 5.9. Using the same association rule (ab → c), we may generate two candidate [1 − 2]

rules: (a → bc) and (b → ac).
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The same concept applies for later generation of [n − i] rules. New candidates are of form [ǹ − ì]

rules where ǹ = n − 1 and ì = i + 1. Subsequently, properties of the required rules including

the confidence and/or lift are evaluated for every candidate rule using the verify function in Step 14.

Rules that pass the verification process are considered as new [n−n] rules. The new rules are stored

and then sorted in a lexicographical order (Step 25) as they are subjected for the next level of rule

evaluation. Step 26 recursively calls the [n− n] rule generation function over the newly discovered

rules.

It is important to mention that Algorithm 2 is not incremental. It is called with every update of

the sliding window after incrementally generating the [n − 1] association rules. The procedure is

performed from scratch. It is possible to fully generate [n − n] rules in an incremental manner by

storing new association rules and removing invalid association rules. However, the process would

require great memory and computing resources to track the rules. Moreover, the number of valid

[n − n] rules is much less than that number of [n − 1] association rules. Therefore, we consider a

design decision to maintain the [n − 1] association rules incrementally followed by generating the

small proportion of the [n− n] association rules upon the sliding window update.

5.5 Case Study

MAREDS consists of several modules that work together to achieve the objective of mining

association rules over data streams. In order to show how each module integrates with the other

modules, we provide a case study. In this study, the first four sliding windows are analyzed with

emphasis on the incremental association rule generation.

The stream alphabet used in the case study is A = {a, b, c, d, e}. The sliding window size is

τ = 10. The application specified thresholds are smin = 3 and cmin = 0.7. Figure 5.9 depicts

PAET at the end of the first sliding window (τ1). Table 5.4 provides a step by step explanation of

PAET traversal over the sliding window from τ1 to τ2 as shown in Figure 5.5. The traversal stack is

considered to already hold the USP items in a reverse lexicographical order. In every step, the top

entry is popped out of the stack and examined further for the proper update actions. The columns

Prev. Ptr. and Curr. Ptr. present the update for the [n − 1] MCR pointers for corresponding PAET
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Algorithm 2 [n− n] association rule mining from [n− 1] association rules
Require: N21Map(⟨id, rule⟩) {//All [n-1] association rules}
1: Constant: WINDOW SZ, MIN CONF , MIN LIFT ;

2: Initially: RuleList⟨Mapord(⟨id, rule⟩)⟩ ← sort(N21Map), N2NMap(⟨id, rule⟩)← ∅;
3: Function N2NRuleGen(RuleList) { {//Modified Apriori-based rule generation}
4: newRuleList⟨Map(⟨id, rule⟩)⟩ ← ∅ ,

5: if sizeof(RuleList) ¿1 then
6: for level=1 to sizeof(RuleList) do
7: entrymap(⟨id, rule⟩)← elementof(RuleList, level)

8: if ¬ empty(entrymap(⟨id, rule⟩)) then
9: visitList⟨id⟩ ← {}

10: for all antecedent ∈ parentsof(antecedentof(rule)) do
11: proposedRule← ⟨antecedent, consequentof(rule)⟩
12: if ¬ contains(visitList, proposedRule) then
13: Add getId(proposedRule) to visitList

14: bool←verify(proposedRule) {//Use Properties 4a., 5a., 6b. and 1 to check rule}
15: if bool then
16: Add to N2NMap using add(proposedRule, bool) {//new [n-n] assoc. rule found}
17: lvl← getLevel(proposedRule)

18: Add proposedRule at level lvl of newRuleList⟨Mapord(⟨id, rule⟩)⟩
19: end if
20: end if
21: end for
22: end if
23: end for
24: end if
25: sort (newRuleList)

26: N2NRuleGen(newRuleList) {//Perform a tail-recursion}
27: }

nodes. The star sign (*) denotes that a pointer evaluation is required as discussed in Section 5.3.2. In

the next column, Rule Update Tasks, evaluation of association rules is indicated. These evaluations

include creating new rules or deleting or updating the existing rules. Using the B1 boundary, the

rule evaluation task in Steps 13 and 15 is skipped as item e is omnipresent. Similarly, using the

B2 boundary, all the lift evaluations are avoided except for lift(ce l−→ b) as sup1(c) is less than

(τ × cmin = 7). Finally, the column Push (Stack) presents the itemsets that will be pushed into the

stack for further traversal. In the first PAET traversal, no new nodes are created nor any existing

node is removed from the tree.

Table 5.5 provides analytical details of PAET structure over the first four sliding windows in
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Figure 5.9: PAET generated from 1st sliding window (τ1) of Figure 2.1

Table 5.4: [n− 1] Association rule generation for USP {(a,N), (b,N), (c,+), (d,−), (e, 0)}
Step Pop (Stack) Prev.

Ptr.
Curr.
Ptr.

Rule Update Tasks Push (Stack)

1 (a, ∅, S7) ∅ ∅ - (ae, a, S7), (ac, a, S6), (ab, a, S9)

2 (ab, a, S9) na na eval. lift(ab l−→ c) -

3 (ac, a, S6) na na eval. lift(a l−→ c) (ace, ac, S6)

4 (ace, ac, S6) nac nac eval. lift(ae l−→ c) -
5 (ae, a, S7) na na - -
6 (b, ∅, S7) ∅ ∅ - (be, b, S7), (bd, b, S−6), (bc, b, S6)

7 (bc, b, S6) nc nc* eval. lift(b l−→ c) (bce, bc, S6)

8 (bce, bc, S6) nbc nbc eval. lift(be l−→ c),
eval. lift(ce l−→ b)

-

9 (bd, b, S−6) nd nd - (bde, bd, S−6)
10 (bde, bd, S−6) nbd nbd - -
11 (be, b, S7) nb nb - -
12 (c, ∅, S1) ∅ ∅ - (ce, c, S3)
13 (ce, c, S3) nc nc* - (e Omnipresent) -
14 (d, ∅, S−1) ∅ ∅ - (de, d, S−3)
15 (de, d, S−3) nd nd - (e Omnipresent) -
16 (e, ∅, S0) ∅ ∅ - -

Figure 5.5. It presents the total number of PAET nodes, the number of [n − n] strong association

rules and the number of [n − n] interesting association rules. The analysis is done over different

minimum support and minimum confidence threshold values.

Figure 5.10 shows a comparison between MAREDS proposed data structure, PAET, and other
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Table 5.5: PAET analysis for various minimum support and minimum confidence values
Supp. Conf. τ1 τ2 τ3 τ4

Nodes Rules Lifted Nodes Rules Lifted Nodes Rules Lifted Nodes Rules Lifted

30%
60% 19 37 21 19 33 12 19 33 19 15 33 19
70% 19 27 12 19 26 9 19 23 13 15 23 13
80% 13 18 9 19 14 6 19 14 6 15 14 6

40%
60% 17 19 12 15 16 3 15 16 7 15 16 7
70% 17 12 6 15 12 3 15 15 7 15 15 7
80% 17 12 6 15 9 3 15 9 3 15 9 3

50%
60% 11 11 6 11 11 0 11 11 4 11 11 4
70% 11 7 3 11 7 0 11 10 4 11 10 4
80% 11 7 3 11 4 0 11 4 0 11 4 0

similar data structures from existing research solutions. The Closed Enumeration Tree (CET) from

Chi et al. [12] and Frequent Pattern Tree (FP-tree) from Han et al. [24] are constructed for the 1st

sliding window τ1. The FP-tree is constructed with only 9 nodes whereas PAET has 19 nodes and

CET has 20 nodes. Even though FP-tree hosts a small number of nodes, the nodes’ structure in the

tree is dependent on the itemsets’ support within the sliding window. Thus, when the window is

updated, the whole tree structure may change. Hence, it would not be possible to incrementally gen-

erate or track association rules. As for PAET, it contains comparatively less number of nodes than

CET since CET starts accumulating infrequent gateway nodes as the sliding window progresses.

Figure 5.10: Comparison of three tree structures: PAET, CET (Moment) and FP-Tree
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Chapter 6

Results and Analysis

The objective of the experiments presented in this chapter is to evaluate the performance and scal-

ability of our proposed stream association rule mining algorithm, MAREDS. The performance is

evaluated by the average runtime of the tests and number of nodes required to maintain the asso-

ciation rules. The scalability is evaluated by the average runtime over different large size sliding

windows. The performed tests aim to explore small to medium number of association rules which

can be transformed into meaningful information in different applications. All experiments are con-

ducted using a 3.40 GHz Intel Core i7-2600 PC with 8 GB main memory and running a 64-bit

Windows 7 operating system.

6.1 Implementation and Design

MAREDS is implemented using Java programming language. Figure 6.1 shows the UML class

diagram. There are three main classes that cover the major functionalities in the proposed algo-

rithm: StreamScanner, PAET and N2NRuleGenerator. The other stated classes: USP, PAET Node,

traversalStack, AssociationRule, MAREDSLogger and TimeLogger have supporting functionalities

only. The main classes functionalities are described below:

• StreamScanner: This class receives the data steam transactions and stores them in the sliding

window. It keeps the sliding window updated as stated in Section 5.2. StreamScanner uses

the USP class to pass updates to PAET.
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• PAET: This class represents the partial association enumeration tree stated in Section 5.3. It

maintains the selected itemsets and relations among them. It uses the traversalStack class to

traverse and update PAET. In addition, the class tracks all [n − 1] association rules as per

Section 5.4.1 and stores them using the AssociationRule class.

• N2NRuleGenerator: This class is responsible for generating all [n − n] rules as described in

Section 5.4.2.

Since there is no suitable algorithm to incrementally mine association rules over a sliding window

data stream, we choose to compare our proposed algorithm against two closely related existing

algorithms. First, we consider Moment, an incremental stream frequent itemset mining algorithm

[12]. Moment uses CET, a prefix tree structure, to maintain the mining outcome. Second, we

consider FP-Growth, a non-incremental frequent itemset mining algorithm [24]. FP-Growth mines

frequent itemsets from scratch every time the sliding window is updated. It uses FP-tree, a tree

structure consisting of a set of item-prefix subtrees [24]. Apriori association rule learning [4] is

used afterwards on both algorithm outcomes to generate desired association rules. To have a fare

base of comparison, Moment, FP-Growth and Apriori implementations are all acquired in Java

programming language.

6.2 Datasets

MAREDS is tested extensively over seven datasets, four of which are real-life datasets and

the other three are synthetic. The datasets are carefully chosen in similarity to previous research

efforts. Table 6.1 presents the characteristics of all the datasets used in our experiments. The first

four datasets, namely BMS-WebView-1, BMS-WebView-2, Kosarak and Accident were generated

by capturing actual events from a real-life environment. BMS-WebView-1 and BMS-WebView-2

represent two click streams of size 59,601 and 77,512 transactions, respectively. These two real-

world datasets were used for KDDCUP 2000 [80]. Kosarak1 is a large dataset that consists of

990,000 anonymized click stream transactions from a large on-line news portal. The Accidents

dataset, published by Geurts et al. [19], contains information of traffic accidents from 1991 to 2000
1http://fimi.ua.ac.be/data/

64

http://fimi.ua.ac.be/data/


in the region of Flanders (Belgium) as obtained from the National Institute of Statistics, Belgium.

This dataset consists of highly correlated itemsets. The three synthetic datasets namely T5I4D100K,

T10I4D100K and T20I5D100K were generated using the IBM Quest Synthetic Data Generator 2.

The symbols T , I and D in the datasets’ naming denote the average number of items per transaction,

the average size of itemsets in potential frequent sequences and the number of transactions in the

dataset, respectively.

6.3 Experimental Results

In this section, we evaluate the performance of our stream association rule mining algorithm in

terms of efficiency and scalability. The data stream environment was simulated in all experiments

using the above mentions datasets. In all experimental results, for all the algorithms, we report the

average running time over 100 consecutive updates of the sliding window. Figure 6.2 evaluates the

performance of MAREDS approach over a sliding window of size 50,000 (50K). All the datasets

are tested over the same range of minimum confidence values. However, each dataset uses a dif-

ferent minimum support value that would generate a reasonable number of association rules. The

used support values are marked in the brackets next to each dataset within the legend. Each data

point in this chart represents the minimum and maximum number of rules as found during the slid-

ing window updates (presented in the square brackets). In all these experiments, MAREDS finds

association rules in less than 10 milliseconds. It should be noted that, while the minimum confi-

dence values decrease, the number of association rules increase, yet the performance of MAREDS
2https://sourceforge.net/projects/ibmquestdatagen/

Table 6.1: Experimental datasets characteristics

Dataset Data Type Number
of items

Transactions Window
SizeCount Avg. length Max. length

BMS-WebView-1 Real 497 59602 2.51 267 2K, 50K
BMS-WebView-2 Real 3340 77512 4.62 161 2K, 50K
Kosarak Real 41270 990002 8.10 2498 5K - 120K
Accidents Real 468 340183 33.81 51 10K
T5I4D100K Synthetic 500 100K 4.87 17 10K - 80K
T10I4D100K Synthetic 500 100K 9.80 29 10K - 80K
T20I5D100K Synthetic 500 100K 19.85 47 10K - 80K
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Figure 6.2: Association rules and performance evaluation for different datasets

remains stable for a fixed minimum support and a fixed sliding window size.

6.3.1 Experiments on Synthetic Datasets

Figures 6.3, 6.4 and 6.5 provide a performance comparison of the MAREDS, Moment and FP-

Growth for the three synthetic datasets T5I4D100K, T10I4D100K and T20I5D100K, respectively.

In these test cases, we examine the average run time while having a fixed minimum support and

fixed minimum confidence values over a range of different sliding window sizes. For each dataset,

we perform the test with two fixed minimum support values, one low and one high. The shown

average run time is evaluated over a logarithmic scale. In addition, we compare the number of

created nodes by the tree data structures used by each of the approaches. As the sliding window

size increases, the absolute value of the minimum support linearly increases. However, we can

notice that the affect on MAREDS’s performance is minor whereas the run time of FP-Growth

continuously increases. This stems from the fact that FP-Growth needs to reload all the sliding

window transactions and build the FP-tree from scratch with each window update. In addition, every

time the sliding window size becomes larger, FP-Growth needs more time to build the FP-Tree and

generate the association rules. On the other hand, Moment and MAREDS algorithms incrementally

update their tree data structures. Hence, their performance is relatively stable as the changes in the

data stream are minimal after the first window is being loaded. Moreover, it can be observed that the
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Moment algorithm performance degrades with lower minimum support values since it starts to have

a large number of infrequent CET nodes. This impacts negatively on its performance and memory

use. Finally, we can notice that among all three approaches, MAREDS stores the least number of

tree nodes as marked on the labels in the figure.

Figure 6.3: Performance comparison for T5I4D100K dataset

Figure 6.4: Performance comparison for T10I4D100K dataset

6.3.2 Experiments on Real-Life Datasets

BMS-WebView-1 and BMS-WebView-2 Datasets

The experimental tests over BMS-WebView-1 and BMS-WebView-2 datasets are performed us-

ing two sliding window sizes, 2K and 50K and over a range of different minimum support values
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Figure 6.5: Performance comparison for T20I5D100K dataset

while having the minimum confidence fixed at 70%. The tests were chosen similar to previous

research efforts by Moment [12]. Figures 6.6 and 6.7 provide a comparison among the three ap-

proaches in terms of run time and memory usage. The performance is evaluated over a logarithmic

scale. Each data point label represents the number of created nodes in the corresponding trees. It is

clear that MAREDS performs faster than the other two approaches in this set of test cases. In addi-

tion, it creates less number of PAET nodes in comparison with Moment CET nodes and FP-Growth

FP-tree nodes. Hence, it handles memory efficiently. The column graph in the background of each

sub-figure projects the average number of association rules over the same logarithmic scale. The

average number of rules is calculated from 100 consecutive sliding window updates as well. We

can see that the average number of association rules exceeds 20,000 at the end of each sub-figure.

Therefore, for the purpose of having useful and beneficial information, we do not intend to stretch

the experiments further on lower minimum support values.

Kosarak Dataset

Figure 6.8 compares all three approaches over the real dataset of click stream Kosarak. The

number of distinct items in Kosarak is 41270 . The maximum transaction length is 2498 items.

Both values are the highest among all used datasets. Such characteristics generate a large number

of infrequent itemsets. This makes CET handling difficult for Moment algorithm even though the
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Figure 6.6: Run time and memory usage comparison for BMS-WebView-1 dataset

Figure 6.7: Run time and memory usage comparison for BMS-WebView-2 dataset
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infrequent itemsets cannot be the part of any association rule. We can see in Figure 6.8 that Mo-

ment algorithm fails to produce results when the sliding window size grows larger than 10k. As

for FP-Growth, association rule generation takes a longer time and creates far more tree nodes in

comparison to MAREDS.

Figure 6.8: Performance comparison over Kosarak dataset

Accidents Dataset

Figure 6.9 shows the performance evaluation for the Accidents dataset. In this dataset, the av-

erage transaction length is 33.81 with an alphabet size of 468 items. Having such characteristics

generates frequent itemsets with high support values. Over a fixed sliding window of size 10k and

a minimum confidence value of 70%, as the minimum support decreases from 90% to 65%, the

number of generated association rules increase from 218 to 27020 rules. Similarly, the number of

lifted association rules increase from 172 to 24144 rules. The column graphs in the background

present the average number of strong association rules and interesting association rules on the sec-

ondary axis. Even with such a large number of association rules, MAREDS manages to generate

rules faster than the other two approaches. It creates less number of tree nodes as well.
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Figure 6.9: Finding lifted association rules from Accidents dataset

6.4 Summary

The aforementioned results and figures clearly demonstrate the efficiency, scalability and suit-

ability of MAREDS algorithm. They manifest the benefits of incremental association rule mining

over other existing approaches. The loading of the first sliding window for MAREDS is a bit time

consuming in comparison to FP-Growth. However, once the first window is fully loaded, the node

creation and deletion within PAET is found to be minimal as the sliding window progresses. Hence,

MAREDS updates the support of tree nodes rapidly and maintains association rules efficiently.
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Chapter 7

Conclusion and Future Work

In this thesis, we implemented an association rule mining algorithm that can incrementally generate

association rules from data streams. Our proposed solution differs from other stream rule mining

algorithms due to fact that association rules are always updated and available upon any user query.

Other solutions require further calculations to generate the association rules when requested. Prompt

information availability is of high value for critical and decisive applications.

In this chapter, we conclude the thesis by firstly providing a summary of the contribution and

secondly describing the research directions that can be conducted as a future work.

7.1 Summary of Contributions

First, we conducted a survey over the major and most recent work on stream frequent item-

set mining and association rule mining algorithms. The assessment of the algorithms showed that

majority of the solutions focus on frequent itemset mining. Association rule generation was not dis-

cussed thoroughly in data streams. Moreover, algorithms which claim to generate association rules

from data streams actually extracted all frequent itemsets and then applied traditional techniques to

generate the rules.

Second, we proposed a novel algorithm, MAREDS, to incrementally mine association rules

from evolving data streams over a sliding window model in a centralized setting. MAREDS used

PAET, an in-memory efficient enumeration tree structure, to maintain frequent itemsets, potential

72



itemsets and the relations among the frequent itemsets. We provided a generic, yet scalable, frame-

work to maintain the itemsets in PAET and incrementally maintains [n − 1] interesting association

rules with the least number of possible operations. The framework used the [n − 1] rules and a set

of rule analysis properties to generate all valid [n− n] interesting association rules.

Finally, we conducted an extensive experimental study over four real-life datasets and three

synthetic datasets, where the effectiveness of the algorithm in terms of run time and memory effi-

ciency was demonstrated. We also established that our approach is highly scalable over large sizes

of sliding windows with different minimum support and minimum confidence threshold values.

7.2 Future Work

For future work, we identify the following potential research directions:

• The proposed algorithm in this thesis mines association rules from data streams in a central-

ized setting. This implies that different stream data has to be collected in a central location.

In the future, we can consider a distributed solution where association rules are mined incre-

mentally at different locations.

• In this thesis, we assume that all participating streams share their data without having any

privacy concerns. In the future, a privacy-preserving model can be introduced where the

stream owners do not have to expose all their data, yet the associations among the data can be

generated incrementally.

• The generated association rules within a sliding window are stored as long as they meet the

three rule generation constraints. If any of the constraints becomes invalid, the association

rule is discarded. It would be interesting in the future to examine which association rules are

always frequent and which association rules keep on changing statuses as the sliding window

progresses.

73



Bibliography

[1] Charu C Aggarwal. Managing and mining sensor data. Springer Science & Business Media,

2013.

[2] Charu C Aggarwal and Philip S Yu. Online generation of association rules. In Data Engineer-

ing, 1998. Proceedings., 14th International Conference on, pages 402–411. IEEE, 1998.
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