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ABSTRACT 

3D Thermal Modeling of Built Environments Using Visual and Infrared Sensing 

Ghassan Al Lafi  

Infrared thermography (IR) is a modern, non-destructive evaluation technology for 

monitoring and assessing built environments. It mainly relies on measuring surface temperature to 

identify any potential defects or damages. Currently, IR has been introduced widely in applications 

such as facility condition assessment and energy performance analysis of existing buildings. 

However, most of the current practices in IR rely only on 2D thermal images which are time-

consuming and labor-intensive. On the other hand, the rapid improvement of high-defined IR 

cameras has become a powerful tool in infrared sensing. Accordingly, this has facilitated its 

implementation in 3D thermal modeling techniques to replace the current 2D approach in thermal 

inspection and building energy efficiency. Yet, further studies need to be performed to overcome 

3D thermal modeling limitations such as the high cost, slow process, and the need of highly trained 

professionals.  

The main objectives of this research are to (a) test the potentiality of using 2D visible and 

thermal images which were collected separately through digital and infrared cameras respectively, 

for the 3D thermal modeling of built environments, and (b) investigate the efficiency of the 

proposed methodology by comparing it to a developed experimental design in terms of evaluating 

density, time, and cost. In specific, the visible images were used in modeling 3D point clouds by 

applying the structure from motion (sfm) approach. In parallel, the overlapping thermal images 

were stitched to form a thermal panoramic image that covers a large surface area with an accurate 

temperature representation. The stitched thermal images were then mapped to the reconstructed 

3D point cloud in order to generate both thermal and metric measurements of built environments. 

Correspondingly, the output was compared to another 3D thermal point clouds which were 

developed by a laser scanner and an infrared camera. The comparison was conducted by means of 

evaluating density, time, and cost. Finally, the comparison results of three different built 

environments in the city of Montreal, Canada; demonstrate that 3D thermal modeling using 

separate 2D thermal and visible images was able to generate a dense geometric and thermal 

information of built environments. Also, this approach is affordable in terms of cost and time. 
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CHAPTER 1:  INTRODUCTION 

1.1. Background and Motivation 

Infrared Thermography (IR) is a modern remote sensing, non-destructive technology that 

is used for monitoring and evaluating built environments. The main concept of infrared 

thermography is the ability to measure, record and show temperature scale patterns of an object 

exterior surface (Cho, Ham, & Golpavar-Fard, 2015; Farrag, Yehia, & Qaddoumi, 2015; Gamidi, 

2009; Chao Wang, 2014). Infrared are heat radiations emitted from objects with a temperature 

above than zero absolute. In other words, even cold objects such as ice cubes can emit IR 

radiations. Heat radiations are different than visible light, which means that IR radiations are non-

visible by the human eye (Figure 1-1-a). Accordingly, infrared sensing can detect the non-visible 

long-infrared ranges of the electromagnetic spectrum and then generate images with several color 

pallets known as thermal images (Figure 1-1-b). Thermal images give a 2D thermal visualization 

in the form of a clear color difference, representing an interval of the relative surface temperature 

of each pixel (FLIR, 2014b, 2014a, 2016c; Teachers Guide to the Infrared, 2016; Chao Wang, 

Cho, & Gai, 2012).  

Recently, 2D thermal images were introduced in the condition assessment of architecture, 

construction, and engineering (AEC) industries and applications related to the energy efficiency 

of the existing facilities (Lagüela, Armesto, Arias, & Herráez, 2012; Plesu, Teodoriu, & Taranu, 

2012). In specific, 2D thermal images were used in the 2D thermal inspection of facility models. 

Which facilitate the collection of the unseen information for condition assessment and repair 

management such as the structural crack detection. In addition, 2D thermal images were also 

applied in applications related to energy performance analysis of existing built environments. 

Several studies have already shown that AEC industries in North America are considered as the 

highest energy consumers (Enerdata, 2016; NRC, 2012; U.S. Department of Energy, 2012). Thus, 

the need for a more efficient approach to the energy efficiency of the existing facilities has become 

a target that would be achieved greatly by implementing infrared thermography. For example, 2D 

thermal images were used in studying the condition of building envelopes, and the justification of 

thermal transfer in buildings (Farrag et al., 2015; Chao Wang, 2014; Chao Wang et al., 2012). 



2 

 

 

Figure 1-1: (a) Infrared in the Electromagnetic Spectrum, (b) Infrared Color Palettes (FLIR, 

2016c) 

However, relying on 2D thermal images for the thermal inspection is considered time-

consuming, labor-intensive and insufficient  (Chao Wang & Cho, 2011). First, applying only 2D 

thermal images for analyzing and reporting require more effort for searching and authorization. 

All of this would end in adding more time and effort to a project. Also, using selective 2D thermal 

images in thermal inspection and energy performance analysis does not include the entire 

geometry, materials, and the whole 3D as-is built environment condition. Therefore, 2D thermal 

images alone are considered as not sufficient to represent whole 3D as-is surrounding. Thus, the 

need for more reliable methods and techniques intended for AEC/OM facility models, as-is 

condition documentation, and energy efficiency analysis have become a necessary (Azhar & 

Brown, 2009; Chao Wang, 2014).   

As a result, recent studies have proposed the use of infrared sensing in the generation of 

3D thermal models to replace the current 2D thermal inspection (Chao Wang, 2014; Chao Wang 

& Cho, 2011). Using 3D thermo-graphic models to measure thermal information of buildings can 

be used widely by homeowners/users, contractors, consultants, and energy audits to help in the 

decision making of retrofit assessment (Chao Wang et al., 2012). 3D thermal models are 

reconstructed from thermal images and used widely in the sectors of building inspection, defect 

detection and energy efficiency analysis (Lagüela et al., 2012). Relatively, AEC industry has 

witnessed a huge development in remote and infrared sensing that could be implemented in 3D 

thermal modeling (González-Aguilera, Rodriguez-Gonzalvez, Armesto, & Lagüela, 2012). For 

example, modern high defined infrared- cameras have been improved in terms of performance, 

size, portability and cost (FLIR, 2013).  
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The implementation of the recent high defined IR cameras will surely have several 

advantages in 3D thermal modeling for defect detection and energy performance analysis (Ham, 

2015; Lagüela, Martínez, Armesto, & Arias, 2011; Chao Wang, 2014). The list of advantages that 

could include but not limited to: (1) Fast image acquisition that covers large areas in a small 

duration; data collection using modern IR cameras can be achieved using the interval time 

collection feature. Thus, capturing multiple high still 2D thermal images can be achieved within 

seconds automatically. Unlikely, the old IR sensors require several seconds in order to process 

only one thermal image (FLIR, 2016a). Thus, old IR cameras were used mainly to capture only 

selective sections of an environment. (2) Enhanced spatial resolution; modern IR cameras can 

create thermal images with high spatial frequencies due to the integration of digital detail 

enhancement techniques. And, (3) Easiness in control and monitoring, in which modern IR 

cameras doesn’t need any previous professional experience.  

Related studies in reconstructing 3D thermal models have suggested several methods. For 

example, (Lagüela et al., 2012) proposed the image fusion of the textured surface of an exterior 

façade of a building with its thermal information using both digital and visible images. Next, the 

new fused images were applied under matching, 3D reconstruction algorithm to generate a 3D 

thermal building facade. Other researchers have tested the reconstruction of 3D thermal models 

through the as-is 3D point clouds represented by discrete point coordinates (x, y, and Z). 

Nowadays, photogrammetry and laser scanning are the most popular techniques in generating as-

is 3D point clouds (Chao Wang, 2014; Chao Wang & Cho, 2011). Technically, reconstructing 3D 

thermal models through as-is point clouds require the mapping of infrared data with its relative 

spatial data. This could be achieved by superimposing infrared information, represented by thermal 

images collected using IR cameras, into a laser scanner-based point cloud. Mapping both thermal 

images and laser-based point clouds can solve problems related to image distortion and data 

acquisition. However, laser-based models are time-consuming when being tested within an 

environment of multiple confined spaces (Cho et al., 2015). Furthermore, infrared sensing was 

proved of being sensitive to neighboring bodies and the collection at different positions. Thus, 

mapping thermal images to a dense point cloud are still inaccurate due to the color variation of 

various thermal images. False thermal color variation can impress a wrong indication which in 

turn can lead to incorrect decisions.  
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An example of the color variation in the collected thermal images is shown in Figure 1-2. 

Where the IR camera was affected by the surrounding environmental factors such as shadows. 

Therefore, two thermal images being collected for two adjacent facades of an educational building 

(facades A and B, see Figure 1-2-a). Thermal image acquisition occurred at daytime in presence 

of sun heat and shadows. The output thermal images have shown different temperature 

visualization which was represented in a false thermal representation as shown in (Figure 1-2-b). 

Where “façade A”, being imposed to the sun heat has reflected a high temperature represented by 

the red hot color. While the adjacent “façade B”, covered by a shadow was represented as a colder 

area of green color. This can clarify that superimposing multiple thermal images of different 

thermal representation can lead to a false measurement (C Wang & Cho, 2014).  

 

Figure 1-2: 3D Thermal Point Cloud model example of a building, (Chao Wang, 2014) 

In addition, other researchers preferred the creation of as-is 3D thermal point clouds using 

photogrammetry. This process requires the collection of both visible and thermal images to 

generate 3D thermal point cloud models (Lagüela et al., 2012; Chao Wang, 2014; Chao Wang & 

Cho, 2011). Generating 3D thermal point clouds through photogrammetry is set to be more 

friendly, faster and cheaper (Colomina & Molina, 2014). The reconstruction of point clouds is 

done through both image overlapping and matching. Where applied algorithms in image matching 

are based on linking corresponding feature points of an object being collected from different 

positions. Consequently, the process of matching feature points in a 3D space based on their given 

projections onto two or more 2D images is called triangulation (Klein, Li, & Becerik-Gerber, 2012; 

Chao Wang, 2014).  
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Photogrammetry has become an affordable approach in representing the spatial 

information of as-built facilities due to the dramatic enhancements in visual sensing. Old practices 

of photogrammetry, known as softcopy photogrammetry, are dependent on the camera position 

coordinates at the time of collecting images. The collection is done mainly by a camera that is 

equipped with a Global Positioning System (GPS) and electric compass (Elhassan, Nejad, Daliri, 

& Zhu, 2015). However, (Klein et al., 2012) stated that current practices of photogrammetry can 

detect the coordinates and position of each image automatically, in an algorithm usually referred 

to as Structure from Motion (sfm). Advantages of using image-based 3D thermal modeling include 

but not limited to the reduction of relevant time and cost in reconstructing as-built facility models 

(Lagüela et al., 2012). Also, the introduction of commercial software related to sfm and mapping 

(e.g, Autodesk Recap360, Pix4dmapper, Postflight Terra 3D, etc…) made it more user-friendly 

for users to process the collected data.  

1.2. Problem Statement  

Infrared thermography has been introduced widely in areas such as facility condition 

assessment, energy performance analysis, and defect detection, etc. However, current practices in 

thermal thermography are heavily dependent on 2D thermal images which are considered as time-

consuming, labor-intensive, and insufficient in representing 3D as-is built environment conditions. 

As a result, the need for a more effective approach in replacing the current practices in the thermal 

inspection of built environments using 2D thermal images has become a necessary.  

Consequently, several researchers have suggested 3D thermal modeling as a replacement 

for the current 2D thermal inspection technique in defect detection and energy performance 

analysis. Relatively, infrared sensing has witnessed a remarkable development by means of 

efficiency, accuracy, size, and cost; in addition to the presence of efficient software related to 

photogrammetry and mapping. This has encouraged several researchers to implement these 

technologies in 3D thermal modeling as an approach. Yet, the existing studies in 3D thermal 

modeling are limited to different factors such as the highly cost of used laser scanners, slow data 

processing, and the need for highly trained professionals and experts. Therefore, there is still a gap 

in the literature regarding an affordable method in the 3D thermal modeling of built environments 

that can be accurate, reliable and easy to accomplish.  
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Correspondingly, the innovative improvements in generating as-is 3D image-based point 

clouds using 2D visible images have become a feasible way in generating the spatial information 

of the as-built environments. Consequently, the integration of infrared thermal imagery with the 

spatial information generated using photogrammetry has been a preferable solution for modeling 

3D thermal point clouds of built environments. However, until the time of conducting this research, 

it is still not clear in the literature whether 2D thermal and visible images collected separately, by 

both infrared and digital cameras respectively, can be used to generate dense and accurate 3D 

thermal models of the built environments.  

1.3. Research Hypothesis 

With respect to the research hypothesis, several questions are suggested and need to be 

answered within this research, questions are as follow: 

[1] Can 2D visible, and infrared images collected separately be used in the generation 

of as-is 3D thermal models of built environments? 

[2] If yes, are these models feasible enough to be implemented in the field? And, Why?  

[3] Can this method facilitate the replacement of 2D thermal inspection by 3D thermal 

models? And, How? 

1.4. Objectives and Scopes 

The main objectives of this research are to; (a) test the possibility of using 2D visible and 

thermal images which were collected separately through digital and infrared cameras respectively, 

for 3D thermal modeling of built environments. And (b), investigate the efficiency of the proposed 

methodology by comparing it to a developed experimental design in terms of evaluating density, 

time, and cost. To accomplish these objectives, a novel method was developed that consist of two 

main stages as follows: 

 (1) In order to reconstruct 3D thermal models of built environments, a digital imagery 

sensor and an infrared thermal imagery sensor were deployed to capture 2D visible and IR images 

respectively. Next, the visible images were used in modeling image-based 3D point cloud model 

by applying the structure from motion (sfm) approach, which represent the spatial information of 
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the built environment. In parallel, the overlapping thermal images were stitched to form a thermal 

panoramic image that covers a large surface area with an accurate temperature representation. The 

stitched thermal images were then mapped to the reconstructed image-based 3D point cloud model 

in order to generate both thermal and metric measurements of the built environments. 

 (2) Respectively, the output model representing both metric and thermal measurements of 

built environments was compared to another 3D thermal point clouds which were developed by a 

laser scanner and an infrared camera. The comparison was conducted by means of evaluating 

density, time, and cost. Thereafter, investigating the density of the output model was done through 

the study of the total number of 3D points in a point cloud model.  While time and cost evaluation 

were fulfilled by recording the time required for generating each model and the relative cost of 

equipment and software needed.  To achieve research objectives, three different case studies were 

conducted in the city of Montreal, Canada: (1) Subway tunnel-Green Line; connecting station 

Frontenac and station Papineau, (2) Gymnasium of Loyola Campus at Concordia University, and 

(3) A lab office at the second basement floor level of the EV building at Concordia University. 

The purpose behind selecting such unlike environments was to test the proposed method within 

different variables such as the geometry of environments, materials, and lighting conditions. At 

the end of this research, a set of recommendations will be defined for further development and 

future work. In addition, limitations of this research will be presented and argued.  

1.5. Expected Contributions 

The findings of this research showed that both 2D visible and thermal images collected by 

a separate digital and infrared camera respectively; can be used effectively in the 3D thermal 

modeling of built environments. Moreover, the output models indicated that the generated 3D 

thermal point clouds were successful in the complete surface reconstruction of a surrounding. Also, 

the density of the generated point clouds was acceptable. In addition, the results of the proposed 

methodology designated that this approach is feasible in terms of time and cost. Furthermore, the 

research findings can encourage other researchers to develop new applications using both digital 

and infrared imagery. For example, a UAS or a robot can be implemented in this method for post-

disaster modeling without the need of sending a human team for control and operating. Where, 

affected facilities by a disaster can be examined easily and remotely in cases like (earthquake, war, 

flood, etc.).  
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In addition, a remote control system could facilitate the study of dangerous facilities with 

high-security precautions such as (nuclear plants, military bases, prisons, etc. Besides, such 

remote-based system could be useful for rapid inspection assessment of long and large areas such 

as tunnels and large structures. For example, unseen defects and/or cracks can be detected easily 

for critical areas. This can help engineers and inspectors to identify serious building and 

infrastructure components for retrofits. Moreover, this method can also facilitate the boost of 

energy performance in a facility. In other words, this method could be implemented in several 

applications related to energy efficiency such as; the justification of thermal transfer, air leakage 

source inspection, Moisture detection and sick- building syndrome diagnosis, and HVAC systems 

performance evaluation. All of this could minimize the total energy cost and a waste of facility.  

1.6. Thesis Organization 

Table 1-1: Title and Summary of each chapter of this Thesis 

Chapter Summary 

1) Introduction The introduction summarizes the main idea of this thesis, 

highlight the gaps and shows the goals and targets. Also, it 

states the proposed objectives and the expected contributions 

of this thesis. In the end of this chapter, a thesis organization 

part is present. 

2) Literature Review This chapter reviews the main ideas in 3D thermal modeling 

and provides the closely related work to this research  

3) Methodology  This chapter explains the framework of the proposed 

methodology that will be followed to achieve the objectives of 

this thesis. 

4) Implementation and 

results 

In this chapter, three case studies are described in details. 

Starting from setup environment to the execution of 

experiments, and finally providing results and findings for 

discussion. 

5) Conclusion  This chapter summarizes the outcomes of this research and its 

findings. Define the outlines for further future works. 
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CHAPTER 2:  LITERATURE REVIEW  

This chapter will conduct a review of the recent studies and technologies related to facility 

condition assessment for the AEC and/or O&M. Followed, by studying the implementation of 

infrared thermography techniques. Besides, there will be a detailed evaluation of the related 

methods in the reconstruction of 3D thermal models. In the end, a summary of all will highlight 

the research gaps and needs. As a part of this task, three main classifications of literature reviews 

will be presented that includes but not limited to: 

1. Condition assessment in AEC/O&M 

2. Infrared sensing and 3D thermal modeling 

3. Point cloud collection methods 

2.1. Facility Condition Assessment 

Improving facility condition assessment (FCA) and conducting effective retrofits to the 

existing buildings and infrastructures are considered among the biggest challenges to the 

AEC/O&M industries. Governments, engineers, and audits are trying to develop modern and 

efficient techniques to control and asses of existing built facilities. Currently, 2D spatial-based 

condition assessment is considered as the basis of any decision making in maintaining and 

renovating buildings and infrastructures (National Centre for Education Statistics, 2013). In other 

words, 2D inspection is the tool for the physical inspection system of built environments. However, 

there are no well-known based standards in such practice that can satisfy the desired objectives of 

owners and landlords (Chouinard & Andersen, 1996; Kaiser & Davis, 1996; Sadek, Kvasnak, & 

Segale, 2003). In North America, the public infrastructure is aging and overused; hence, the 

building sector requires a rapid intervention in maintenance and renovation (Ahluwalia, 2008; 

Grussing & Liu, 2013). In Canada, (Mackenzie, 2013) indicates that most of the public 

infrastructure buildings are currently showing an increasing rate of deteriorating, especially 

buildings of education and healthcare facilities, this raised the alarm to Canadians that their safety 

standards of daily living are in risk and danger. This can be illustrated by factors such as age, over 

capacity, and harsh environmental factors (Grussing & Liu, 2013). As a result, a serious challenge 

of conducting a proper inspection and appropriate condition assessment arose.  



10 

 

Currently, condition assessment methods are considered labor intensive, time-consuming, 

cost inefficient and subjective (Ahluwalia, 2008). On the other hand, 2D-based condition 

assessment is considered inaccurate, slow and old fashioned. Therefore, researchers and audits 

started to test new methods to satisfy the need of more reliable and efficient condition assessment 

practices. Here is a comprehensive overview of the related building and infrastructure condition 

assessment practices, process, and their different applications. 

2.1.1. Condition Assessment  

Building and infrastructure condition assessment can be handled through different parties 

as contractors, home-owners, audits, and mainly specialized inspectors. The performance of 

building and infrastructure inspection are measured and characterized in a relation of many 

standards and factors. However, the cost is considered as the major factor in the assessment 

process. Also, inspection requires a trained condition assessment team that seize a good knowledge 

about their tasks (Ahluwalia, 2008). Generally, condition assessment data includes inspection data, 

prediction, the short and long range of repairs and maintenance, work packages and budgeting. 

These data are transformed into meaningful condition metrics that can help in the decision making 

and retrofits (Amekudzi & McNeil, 2008). Currently, inspection surveys mainly deal with the 

recorded deficiencies, which makes the assessment only a response practice that only minimizes 

the damaging effect on civil infrastructure. As a result, a more advanced practice is required to 

allow inspection not only detect current defects but also to predict any expected deficiencies in the 

future. Where, maintaining weak points and any expected defects before taking place are much 

easier, faster and cost effective  (Ahluwalia, 2008; Amekudzi & McNeil, 2008). Since current 

practices in condition assessment rely mainly on visible inspection, it is nearly impossible to 

predict for any expected deficiencies.  

Technically, the traditional practice of inspecting building structures is heavily dependent 

on the manual and visual investigation of civil and engineering structures; that uses old fashioned 

techniques such as large access units, scaffoldings, truck cranes, and other related tools. These 

practices are considered time-consuming, expensive, and hard to handle especially for inaccessible 

and dangerous environments. In addition, these practices are inaccurate since the recognition and 

analysis process are highly dependent on the knowledge of inspectors which is error prone 

(Morgenthal & Hallermann, 2014).     
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Some of the approaches that can be applied in the building retrofit assessment and decision-

making efficiency are the deficiency-based assessment; in which, the inspector will investigate 

visually and manually to recommend the weak points and work deficiencies. Another possible 

approach is the interval rating assessment; where an inspector appoint a numerical scale for 

measuring and assigning the condition state after an inspection (Grussing & Liu, 2013). 

Subsequently, the main function of condition assessment and repair for buildings and 

infrastructures can be categorized into main four levels. First, a current condition assessment of an 

asset; second, prediction of any expected defects in the future; third, choosing the best strategies 

and criteria’s for maintenance, and finally applying the retrofits (Eweda, Zayed, & Alkass, 2013). 

In Figure 2-1, a summary of a facility condition assessment and repair is shown. The first step is 

the evaluation technique, which is considered as the most important stage, in which it will be used 

as the base for any later analysis, prediction, and decision-making. Finally, retrofits are applied in 

response to the final decisions. In summary, and based on the outcomes of both (Ahluwalia, 2008; 

Eweda et al., 2013), Current 2D-based inspection practices are considered inconvenient.  

 

Figure 2-1: Building Condition Assessment Main Process (Ahluwalia, 2008) 

On the other hand, AEC industries are considered as the main consumer of the primary 

energy consumption in North America (Maldague, 2001). The United States of America ranked as 

the second country, right after china, in energy consumption for the year 2014. While it was ranked 

first in North America with 90% of the total energy consumption. Canada, ranked ninth in the 

world and second in North America with 10% out of its total energy consumption. Still, Canada is 

considered among the highest in the world with some stability since 2009. North America alone 

including USA and Canada has a total energy consumption that is equal to 18 % of the total 

consumption of the world (Goswami & Kreith, 2015). 

Condition Assessment and Repair

Evaluation 
Technique

Prediction of 
expected defects

Decision Making Applying Retrofits
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Due to the fact that north America is one of the biggest energy consumers in the world,   

Canada decided to enact and update laws related to energy saving and implement new codes in its 

building sector. This would be reflected in a more energy efficient environment. For example, 

some programs like “eco-energy efficiency for buildings”, for new and existing buildings in the 

commercial and institutional sector, is founded to preserve the implementation of energy standards 

in the building code. While “eco-energy efficiency for housing program”, especially for low-rise 

residential housing, aims to support the retrofit in the housing to be more energy efficient (NRC, 

2012). On the other side, USA has decided to lower its energy consumption in the building sector 

by a range of (40%-70%). The building sector in the USA including both residential and 

commercial buildings consumes about 41% of the total energy consumption of the country (U.S. 

Department of Energy, 2012). Meanwhile, in Canada, housing sector consumes about 17% of 

energy consumption and “institutional and commercial” buildings consumes about 12% of the total 

energy consumption. Thus, the building sector in Canada consumes about 29% of the total energy 

consumption (NRC, 2012). This arises the need of quick and rapid actions toward energy efficient 

buildings implied ineffective solutions and corrective measures. Accordingly, the improvement of 

building energy efficiency and reducing environmental impacts relies mostly on the improvement 

of existing residential and commercial buildings (Chao Wang, 2014). 

As a result, researchers and inspectors have suggested infrared thermography as a modern 

and reliable approach in building condition assessment and energy analysis. Infrared thermography 

is a promising non-destructive evaluation technique in monitoring and assessing building and 

infrastructure environments. The main concept of applying IR thermography in condition 

assessment is to detect defects using information being collected by infrared camera sensing. 

Where, thermal images collected by infrared sensing can read, show and record the temperature 

measurements of a surface. These temperature measurements are represented by a color scale 

scheme known as color pallets (FLIR, 2014b; Teachers Guide to the Infrared, 2016). Many 

advantages could be achieved by using the IR thermography in building and infrastructure 

inspection; firstly, it is considered as a rapid assessment model. Second, it is very easy in collecting 

preliminary data about defects and deficiency points in the built environments. Third, it can be 

very efficient in predicting defects that are non-obvious through the visible inspection. On the 

contrary, there are many challenges that could limit the performance of IR practice related to 

environmental conditions and material properties (Farrag et al., 2015; Plesu et al., 2012).  
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In summary, IR thermography is very efficient to facility’s energy analysis, since it allows 

the detection of thermal bridges (Chao Wang & Cho, 2011). Thermal bridges, also known as heat 

or cold bridges, are the areas in which demonstrates a higher heat transfer with respect to its 

surrounding materials which results in a decrease in the performance of thermal insulation of that 

area. The presence of thermal bridges can be related to three main causes: (1) the big difference in 

heat conductivity between materials, (2) weak points in the thermal envelopes that permit for heat 

losses, and (3) absence or gaps in the insulation layers. Figure 2-2, shows two examples on how 

thermal images can detect thermal bridging of indoor environments. First, a structural thermal 

bridging in (Figure 2-2-a) demonstrates a decrease in surface temperature while heating. While in 

(Figure 2-2-b), a decrease in temperature is obvious at the level of coupling a door of glass and a 

frame (Asdrubali, Baldinelli, & Bianchi, 2012). 

Consequently, many researchers have presented related studies in using infrared 

thermography technology in the building, infrastructure condition assessment, and energy 

analysis.  (Plesu et al., 2012) Introduced infrared technology as a non-destructive application for 

building investigation in fields as structural systems and energy performance analysis. On the other 

hand, (Farrag et al., 2015) investigated the effect of mix variation of several concrete mixtures on 

the defect detection ability using the infrared thermography. Moreover, (Chao Wang & Cho, 2011) 

presented infrared sensing as a non-invasive thermal application that can show accurate thermal 

images.  

 
(a)                                                                          (b) 

Figure 2-2: Two indoor examples; (a) a structural thermal bridge, and (b) opening thermal bridge 

(Asdrubali et al., 2012) 
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2.1.2. Infrared Sensing in AEC/O&M  

 Generally, any object with a temperature above than zero absolute is applicable of emitting 

heat in the form of electromagnetic radiations that represents its surface temperature. 

Consequently, infrared thermography technologies can be used for building and infrastructure 

investigation, by viewing the temperature distribution of the heated surface of an object (FLIR, 

2014b; Gamidi, 2009; Teachers Guide to the Infrared, 2016). Technically, there are two methods 

for measuring the temperature difference of object surfaces; the passive (static) method and the 

active method. In summary, IR thermography can be used in applications related to facility 

condition assessment of existing built environments such as the investigation of structural systems 

and the justification of thermal transfer (Plesu et al., 2012). In the following section, a brief 

description of the different methods and applications of IR thermography in facility’s condition 

assessment are explained.  

IR Thermography Methods in Facility Condition Assessment 

Passive (static) method:  This technique is applied by using solar radiations at the stage of 

collecting thermal images without the need of applying any external system heating or cooling. 

The efficacy of this technique is based on three main factors; (1) Surface configuration: it detects 

the thermal conductivity by measuring the density areas. Where low density or sparse areas mean 

a lower thermal conductivity. (2) Surface conditions: defines the surface as rough or smooth; where 

rough surfaces have high emission values while smooth surfaces have low emission values. Thus, 

rough surfaces are more favor to be detected and collected. (3) Environment systems: environment 

factors which affect the accuracy and efficacy of infrared sensing. Factors are known as: “cloudy 

and windy weathers, high moisture levels, extreme cold and hot temperatures, and solar 

radiations”. As a result, the recommended condition of collecting thermal images could be at a 

clear night time, avoiding the harmful influence of environmental factors. Also, results from 

thermal images collected at a daytime and a nighttime are reversed. This can be justified by the 

fact, at night a defect detection area in thermal images will be reflected as the cooler temperature 

in comparison to its surrounding. While at a daytime defect detection areas are represented as the 

hottest (having higher temperature values) areas in comparison to its surrounding. This method is 

generally used since it is more consistent and even with the surfaces assessment results (Farrag et 

al., 2015; Plesu et al., 2012; Chao Wang, 2014). 
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Active method: Active IR thermography method usually requires an external source of IR 

radiations to heat-cool the object surfaces under study. The heated-cooled surfaces emit back an 

IR radiations that could be collected and recorded to view their temperature values, where a 

difference in temperature values could be identified representing a defect area detection. Also, 

heating and cooling process of object surfaces differ with respect to their materials. However, this 

technique is limited to the type of IR radiation used for the cooling and heating process. 

Additionally, active IR thermography method can be performed only in controlled spaces which 

mean it is limited only to the confined interior spaces. This technique requires more time for 

heating-cooling process thus it is considered as time-consuming. As a result, a passive (static) 

method is more reliable and preferable over the active method which is considered limited to the 

geometry and material of the testing surrounding (Plesu et al., 2012). 

IR Thermography Applications in Facility Condition Assessment 

Investigation of building structural systems 

 Recently, the use of IR thermography as a non-destructive evaluation technique in the 

inspection of building structures has been improved in a tremendous way (Plesu et al., 2012). In 

Figure 2-3, a masonry texture detection of a historical building is performed using both visible and 

IR thermal images. Where a comparison between the two collected visible and thermal images 

taken for the same building shows how a thermal image can show and visualize a hidden layer of 

hollow bricks. On the other hand, the visible image can only view the end layer texture of the paint. 

Where the shadow areas in the visible image are defined as the coolest areas in the thermal image, 

the coolest areas are represented by the blue color from the color scheme (Binda, Cantini, & Cucci, 

2011; Plesu et al., 2012). 

 
Figure 2-3: Masonry texture detection of a historical building; (a) Visible image; (b) Thermal 

image (Binda et al., 2011)  
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Justification of thermal transfer  

Another important application of IR thermography in a facility condition assessment is 

energy analysis. Usually, the ideal energy performance of a facility is to maintain a temperature 

difference between interior and exterior environments with a range of (10o to 20o C). Relatively, 

the best condition of using thermography is when temperature fluctuating at zero degrees. At this 

point, the detected thermal bridges from outside represent heat bridges, while those recorded from 

the inside represents cold bridges. Cold bridges can be detected on walls, roofs, ceilings, frames 

of openings, and levels separating areas (Asdrubali et al., 2012; Wild, 2007).  In summary, 

applying IR thermography to justify the thermal transfer in the facility can be categorized into five 

main applications described as follow: 

1. Calculating heat losses for buildings envelopes 

With the assumption that heat transfer is stable over space elements as (Walls, roofs, 

ceilings, and floors), it is possible to calculate the temperature distribution over the enclosed 

surfaces of a space. As a result, a set of mathematical algorithms is applied to measure the thermal 

losses over the air temperature from inside to outside. This process allows the categorization of 

buildings with respect to their energy efficiency (Plesu et al., 2012; Vavilov, 2010; Chao Wang et 

al., 2012). 

2. Insulation inspection 

Insulation in buildings is very sensitive to damages (i.e, cracks and shrinkage) as a result 

of aging, deterioration, and poor installations. This may lead to harmful problems like heat leaks 

accompanied with an increase in energy consumption, or the presence of molds and water leaks 

affecting the structure of a building. Consequently, IR thermography is used as a non-destructive 

approach to investigate the building insulation layers. Investigation process in the exterior 

environment must be done at a clear, non-windy day at day-time. Also, to take the advantage of 

solar heat that helps in displaying and detecting anomalies in insulation layers. In addition, this 

method is also used in moisture detection of Exterior Insulations and Finish Systems (EIFS) and 

External Thermal Insulation Composite Systems (ETIC). Furthermore, this method is applicable 

for indoor inspection; for example, the detection of the expanded foam insulation boards that have 

high risks of absorbing water by time (Barreira & Freitas, 2005, 2007; Plesu et al., 2012). 
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3. Air leakage source inspection 

Relative problems with air leakage are mainly related to a failed window seal, other 

complex air pathways in walls, ceilings and floors, pipes and sanitary open holes, HVAC wires 

fixation holes, etc. These anomalies could be a deficiency in preserving air inside closed 

enclosures. The resulted air leakage are accompanied with a high energy consumption that means 

an increase in cost. Detecting the air leakage sources by manual visual inspection is considered 

very difficult since they are very small, hidden and hard to reach. As a result, thermal imaging is 

a reliable non-destructive inspection technique that can record air leakage sources easily. This 

method can be applied through different seasons if the temperature difference between 

inside/outside is more than few degrees (Asdrubali et al., 2012; Plesu et al., 2012). 

4. Moisture detection and sick- building syndrome diagnosis 

Improper insulation installation and other water leak problems can result in a mold growth 

and the presence of moisture in walls and roofs. IR thermography is very efficient in investigating 

and detecting the sick components of a facility with moisture and mold. The detection technique 

is easy since water has high thermal conductivity and high heat capacity; thus, can be easily 

detected using infrared sensing. But the challenge relies on the detection of moisture sources that 

have mostly the same sources of air leakage and water pipes installation anomalies (Asdrubali et 

al., 2012; Plesu et al., 2012). 

5. HVAC systems performance evaluation 

IR thermography can be a helpful tool for verifying the correct position and performance of 

devices that are required to afford heating and ventilation. Usually, this is accomplished using hot 

water and electric cables. Thus, pipe leaks can be easily detected in walls, ceilings, roofs, and 

floors (Plesu et al., 2012). 

In conclusion, IR thermography is considered as a reliable non-destructive evaluation method 

in the inspection, investigation, and justification of the thermal transfer in existing buildings and 

infrastructures. As temperature index varies, this indicates the presence of anomalies and defects 

like (cracks, voids, hollows, etc.), poor insulation, air leakage sources, heat loss, and moisture. As 

a result, IR sensing can be a powerful tool over the visible inspection technique in facility condition 

assessment and energy efficiency (Barreira & Freitas, 2005, 2007; Plesu et al., 2012; Wild, 2007).  
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2.1.3. Recent Technological Development  

Recently, technology has witnessed a remarkable high-tech development by means of 

equipment and its applications; especially in the last decade. Among these improvements, UAS 

technology market is growing rapidly and effectively. Technically, the US Department of Defense 

(DOD) has defined Unmanned Aerial systems (UAS) as generic unmanned aircraft that needs no 

human pilot on board. UAS exists in different types, models, sizes and system configurations 

(Siebert & Teizer, 2014). Unmanned aircraft are also known under many names and acronyms, 

such as Unmanned Aerial Vehicle (UAV), aerial robots or drones. Recently, the manufacturing of 

UAS has improved rapidly and spread intensively in the worldwide marketplace (Colomina & 

Molina, 2014). Latest studies show that UAS market will expand and escalate heavily in the 

upcoming few years, it will expand from 6,762$ million in 2014 to 10,573$ million by 2020 

(Markets & Markets, 2014). Moreover, academic researchers and agencies started to invest in 

unmanned aircraft within many aspects and fields including construction process, building sector 

quality control and condition retrofits. Academically, UAS influenced researchers and projects. 

For example, the International Society for Photogrammetry and Remote Sensing (ISPRS) congress 

showed an increase in the submitted papers that reached the double between 2008 and 2012  

(Colomina & Molina, 2014; Eisenbeiß, 2009).  

On the other hand, another notable advancement is taking place in Remote Sensing. Spatial 

and infrared sensing pose an extraordinary technological enhancement by means of efficiency, 

accuracy, size, mobility, fast processing and cost. Consequently, and due to the high-tech 

development, recent UAS are equipped with a high-definition infrared camera. The modern trend 

has been successfully implemented in many applications including the AEC/O&M industries. 

However, UAS thermal imaging system has to overcome some of the challenges related to the 

environmental factors when navigation, and the oblique view angle of the UAS. Also, these 

prototypes were all designed for outdoor purposes and don’t have the ability to capture both visible 

and thermal images simultaneously. As a result, UAS-based spatial and thermal sensing has multi-

abilities; thus, it is predicted to be the next revolutionary technology in AEC/O&M industries. 

Below is a common background for UAS technology and its integration with the recent 

development in remote sensing. Followed by a description of its advantages and applications 

especially in the condition assessment of existing facilities (FLIR, 2013, 2014a, 2014b).    
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UAS-based Infrared Sensing  

 Recently, a notable collaboration between drone manufacturing and thermal imaging 

system was successfully established in developing a UAS-based thermal imaging system which is 

also known as UAS-based infrared sensing. The new high defined infrared sensing can be mounted 

on drones and are considered as the most current powerful thermal cameras. The main concept of 

remote infrared sensing is the ability to detect and record surface temperature taking into 

consideration the characteristics of surfaces, atmospheric interference, and the imaging system. 

Where the main surface characteristics that can alter the process of thermal measuring are surface 

emissivity and reflectivity. While the atmospheric interference is represented by the distance 

between the camera and surface and any composition in between. Finally, the imaging system 

which is represented by main factors like image focus, image blurry, and the pixel of the resolution 

(FLIR, 2016c). Figure 2-4, Show the effect of these factors on the process of UAS-based thermal 

imaging and the accuracy of temperature measurements of surfaces.    

 

Figure 2-4: Factors that affect UAS-based thermal imaging process (FLIR, 2016c) 
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2.2. 3D Thermal Modeling Techniques  

The discovery of infrared radiation and its thermoelectric effect goes back to the period 

between 1800 and 1821 by William Herschel and Thomas Johann Seebeck. Since that time and 

until now, scientists started to study and develop this technique implementation in various fields 

and applications (Plesu et al., 2012). The main concept of IR thermography is the ability to 

calculate and measure the surface temperature index of an object. The accuracy of this technique 

is too high, in which it can record and view the small differences in temperature as a few 

hundredths of a degree Celsius (Gamidi, 2009). Mainly, the implementation of IR thermography 

technique in the construction field is applied for building condition assessment of its structural 

systems, in addition to the justification of its thermal transfer such as the inspection of insulation 

layers, air leakage sources, and the calculation of heat loss for building envelopes (Plesu et al., 

2012). The efficiency of this technique has been proven by means of efficacy, performance, 

feasibility, and easiness. IR thermography is a nondestructive evaluation technology that can be 

applied at daytime or nighttime taking in consideration some environmental conditions that can 

affect the results of this method (Ahluwalia, 2008; Amekudzi & McNeil, 2008). Thermal testing 

techniques are considered accurate, repeatable, feasible, and user-friendly (Gamidi, 2009). Recent 

technological developments facilitate the collection methods and techniques in implementing the 

infrared thermography for several applications (Cho et al., 2015). 

 

Figure 2-5: The Electromagnetic Spectrum (Teachers Guide to the Infrared, 2016) 
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Scientists have proved that human eyes can see a very small range of light waves known 

as the visible radiations, while other light waves do exist but are not visible to human eye. In 

Figure 2-5, the electromagnetic spectrum shows all the discovered light waves up to date, these 

various types of radiations differ in their wavelength and frequency. Infrared radiations refer to the 

heat energy or in other words the temperature of an object. Infrared sensing can record the surface 

temperature of an object. IR radiations have longer wavelengths and lower frequencies than visible 

radiations.  In general, IR wavelengths ranges from 0.78 μm (IR shortest wavelength) to 1000 μm 

(IR longest wavelength). Consequently, infrared sensing has a combination of both IR imagery 

and lens detectors that give a visual illustration of the surface temperature of an object. Most of 

the infrared sensing operate in two common wave intervals of 3 to 5 μm or 8 to 12 μm. Moreover, 

the most efficient condition for building inspection is to use long wavelengths of wave intervals 

between 8 to 12 μm. In specific, infrared sensing is able to detect IR energy and then convert them 

into electric signals that can be produced as thermal images or in another word “a false-color 

image” (Lo & Choi, 2004; Plesu et al., 2012; Teachers Guide to the Infrared, 2016). 

 

Figure 2-6: Main Color Palettes in Infrared Sensing (Teax T., 2014) 
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Since IR radiations are invisible and cannot be detected by our human naked eye, a 

technique was developed to convert temperature indications with a relatively visible color scale. 

These representations known as thermal images are in reality a false-color image representation. 

In which the variation of colors are transferred into a detectable color palette that represents the 

brightness difference variation of the detected object wavelengths (Teachers Guide to the Infrared, 

2016). Many color palettes can be found in thermal cameras as a representation of false-colors, 

usually red and yellow colors are used as an indication of hot temperatures and blue is used for 

cold temperature representation.  Eventually, colored images without its related color bar at the 

side are useless; there are four main color palettes that can be inverted creating eight possible color 

palettes ranges from iron, contrast, arctic, grayscale, hottest, coldest and rainbow (Vollmer & 

Möllmann, 2010). Figure 2-6 show the main four color palettes available in infrared sensing (Teax 

T., 2014) 

Recently, infrared sensing was improved in an impressive way in terms of effectiveness, 

accuracy, size, and cost. In parallel, many software has taken place which is related to 

photogrammetry and mapping. As a result, researchers and audits started to develop as-is 3D 

thermal modeling techniques as an approach that can replace the existing 2D practices of thermal 

inspection and condition assessment. Adding to this, the innovative technological improvements 

in many fields have made as-is 3D thermal modeling an effective approach for energy efficiency. 

Consequently, the integration of thermal images captured using infrared sensing in the generation 

of as-is 3D thermo-graphic models have become a preferable solution for inspection and energy 

analysis, especially for built environments. However, existing techniques in 3D thermal modeling 

are much harder than 3D spatial modeling. Current methods in 3D thermal modeling have huge 

gaps for many reasons. For example, there are only a few tests have been accomplished in the area 

of as-is 3D thermal modeling, especially for the indoor built environments. Also, previous 

researchers didn’t achieve encouraging results comparing to the promising capabilities of IR 

thermography. In summary, there are three categories in generating 3D thermal models using 

thermal images collected by infrared sensing. (1) Thermal imaging mapping to 3D models; (2) 

image fusion and matching between thermal and visible imaging captured by infrared and spatial 

sensing respectively; and (3) thermal imaging mapping to 3D point cloud models (C Wang & Cho, 

2014; Chao Wang, 2014; Chao Wang et al., 2012) 
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2.2.1. Mapping Infrared Image with 3D Models 

Current practices in 2D IR thermography are considered old fashioned since most of the 

2D thermal images are low in resolution and can be confusing for audits and clients. Also, the 

representation of a fully 3D environment with 2D images is considered useless and ineffective. 

One way to visually represent thermal information on a 3D model is to map Infrared images 

collected by an infrared camera into a 3D modeled environment. Modeling 3D environments can 

be done using a variety of commercial software available such as: (Autodesk’s 3ds max, 

AutoCAD, Revit, Maya, Blender, Google Sketch up and others). Next, thermal images can be 

mapped to the model as a thermal texture. To do so, multiple images are used to construct the full 

model. (Schreyer & Hoque, 2009; Chao Wang, 2014).  

In Figure 2-7, an example of 3D thermal modeling is shown by mapping collected thermal 

images to a 3D model. First, (Schreyer & Hoque, 2009) used google sketch up software to remodel 

a single-family house using its footprint. Next, collected thermal images were mapped to the 

modeled geometry by assigning texture from images. This method shows successfully the 

visualization of thermal color variation on a 3D modeled geometry. However, many limitations 

can be addressed from this approach such as; (1) remodeling a building can’t be used to represent 

an as-built model, thus the resulted 3D thermal visualization can’t be used in the representation of 

as-is 3D thermal models. (2) Using multiple images in mapping one surface can be challenging. 

Where results show a lower-quality surface texture which in turn can reflect a false indication. 

 

Figure 2-7: Infrared mapping to a 3D modeled family house (Schreyer & Hoque, 2009)  
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2.2.2. Image Fusion and Matching of Infrared Image with Photogrammetry 

Another 3D thermal modeling approach was introduced by (Lagüela et al., 2012), which 

can be applicable for as-is facility environments. This research can be summarized into three main 

steps; (1) both a digital and thermal cameras were used to capture highly overlapped visible and 

thermal images respectively for an exterior façade of a building. (2) As shown in Figure 2-8, 

thermal images were registered together to form a large mosaic (Figure 2-8-a). Next, the registered 

mosaic was successfully fused to the multiple overlapping visible images using developed 

algorithms (Figure 2-8-b). (3) Finally, 3D surface reconstruction was applied using image 

matching techniques for a pair of overlapping fused images. Figure 2-8-c shows the resulted dense 

3D thermal point cloud model.   

 

Figure 2-8: (a) mosaic from thermal images, (b) fusing mosaic into a pair of visible images, and 

(c) 3D thermal point cloud model (Lagüela et al., 2012) 
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Although (Lagüela et al., 2012) was successful in creating as-is 3D thermal point cloud 

model from fused thermal and visible images. Still, the output point clouds are not dense enough 

in case of using it later by engineers and audits for the purpose of inspection and retrofit 

assessment. Moreover, when collecting thermal images, IR camera was affected by the 

surrounding environment which caused a difference in the temperature scale of the same wall 

surface. This can be clear shown in the color variation of the represented mosaic and cloud model 

respectively (Figure 2-8-a, and c). To avoid or lessen the surrounding effects on the radiometric 

acquisition, (Ham & Golparvar-Fard, 2012; Lagüela et al., 2011; Schreyer & Hoque, 2009) and 

many others have proposed several suggestions. For example, one suggestion was to collect the 

thermal images in parallel of the studied surface and try to stabilize the height from the ground. 

Others suggested switching to normal mode when capturing images. Another suggestion is to unify 

the maximum and minimum temperature within a selected thermal scale. Even though the 

proposed suggestions were clearly useful in minimizing the effect of distortion and color range 

variation among multiple overlapped thermal images. Yet, most of the thermal cameras have at 

least (+1/-1 co) temperature error which can affect the representation of thermal information.  

Another study in generating as-is 3D thermal point cloud models, Energy Performance 

Augmented Reality (EPAR), was presented by (Ham, 2015; Ham & Golparvar-Fard, 2012) Where 

one infrared sensing camera was used to collect both thermal and visible images simultaneously. 

This means that each captured image consists of one pair of visible and thermal images that have 

the same corresponding camera location and orientation. Next, each pair of images including 

spatial and thermal information were fused together to form one image containing spatial and 

thermal information. After that, a set of fused images were processed together using sfm approach 

to generate a 3D thermal point cloud model. (Ham, 2015) Presented about eight case studies 

including exterior facades and indoor environments of an instructional facility and a residential 

building. Unlike (Lagüela et al., 2011), this method was useful in creating indoor and confined 

environments. However, the resulted models failed to compute the complete surfaces of an 

environment creating some hollow areas in the generated models. Also, digital images are 

imperfect at night and within dark conditions, while thermal images are encouraged to be collected 

at nighttime to avoid lighting conditions. This has made this method limited to the surrounding 

lighting environments. On the other hand, indoor environments were affected by the reflective 

materials and neighboring objects (Chao Wang, 2014). 
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In Figure 2-9, (Ham, 2015) has tested an indoor environment of a kitchen in a residential 

building and the exterior façade of an instructional facility. In the first experiment, 165 pairs of 

images were collected for the indoor kitchen. After image fusion, sfm approach was applied to run 

the 165 visible images alone in (Figure 2-9-a) and the 165 fused images in (Figure 2-9-b). Only 

93 visible images were successfully registered in creating the 3D point cloud, this corresponds to 

0.56 success ratio in registering visible images.  On the other hand, 678 pairs of images were 

collected to the exteriors facades of an instructional facility. Next, image fusion was applied to run 

the 678 visible images alone in (Figure 2-9-c) and the 678 fused images in (Figure 2-9-d). The 

corresponding 3D point cloud was successful in registering 672 images with a relative 0.99 success 

ratio in the registration of visible images. These experiments reflect the high success of this method 

within outdoor environments, while it is very limited for indoor environments. In summary, this 

method failed in reconstructing the reflective and uniform materials such as tiles and walls. Also, 

3D thermal point clouds are considered sparse when compared to its relative 3D spatial point 

clouds. For example, in (Figure 2-9-a) the number of spatial point clouds is 2,262,349 points while 

it is only 220,428 thermal points in (Figure 2-9-b). Similarly, (Figure 2-9-c) has 28,552,261 points 

while it is only 2,489,117 thermal points in (Figure 2-9-d) 

 

Figure 2-9: As-is 3D spatial and thermal point cloud models using image fusion (Ham, 2015)  
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Furthermore, other researchers have developed new techniques within image fusion. For 

example, In Figure 2-10-a, (González-Aguilera et al., 2012) used a laser scanner and a thermal 

camera to create a thermal orthophoto for building exteriors. First, a range image of the scanned 

point cloud was obtained using a laser scanner. Next, visible and thermal images were fused 

together and registered on the range image using feature extraction technique. In the end, a thermal 

orthophoto of the building exterior was created. On the other hand, recent commercial companies 

have developed UAS-based thermal camera sensors that can be used in generating semi-automatic 

3D thermal aerial mosaic for agriculture and geothermal environment applications. (Hsieh & Chio, 

2015) Conducted a study to create a thermal mosaic for an outdoor gym using a quadcopter UAS 

equipped with an FLIR tau thermal sensor as shown in Figure 2-10-b. Another study in UAS-

thermal based imaging was done for a geothermal environment at Wairakei - Tauhara field, New 

Zealand by (Nishar, Richards, Breen, Robertson, & Breen, 2016). The resulted thermal mosaic is 

shown in Figure 2-10-c. However, UAS-thermal imaging for 3D modeling of building and 

infrastructure facility’s is still very limited within outdoor environments and does not exist for 

indoor environments. Nevertheless, recent modern thermal cameras are more advanced in a way 

that can provide automatically fused images that contain both spatial and thermal information. This 

technology of thermal image enhancement is known as the multi-spectral dynamic imaging 

(MSX). The main concept of this technology is to add key details from the visible sensor to thermal 

images (FLIR, 2014b). Still, applying previous methods for indoor environments have failed or at 

best can give very sparse results that are ineffectual in any further assessment.    

 

Figure 2-10: Other techniques; (a) laser scanner and IR camera (González-Aguilera et al., 2012), 

(b) UAS-based thermal modeling (Hsieh & Chio, 2015), and (c) Aerial geothermal image 

(Nishar et al., 2016)   



28 

 

2.2.3. Mapping Infrared Image with 3D Point Clouds  

Another technique in creating as-is 3D thermal models for existing buildings and 

infrastructures is by mapping 2D thermal images to 3D point cloud models. Thus, fusing captured 

thermal information to the generated spatial information models. Previous studies using this 

approach have shown more advanced results over the above-mentioned techniques (Chao Wang, 

2014). Following, a detailed review of the recent promising studies in using this approach is 

presented. To begin, a “Bi-camera” system was introduced by (Alba, Barazzetti, Scaioni, Rosina, 

& Previtali, 2011), a system which consists of IR camera sensor, digital camera, and a laser 

scanner. First, thermal information of a facility was collected by the IR camera sensor while 3D 

point cloud scans were generated using a laser scanner. Then, both a digital camera and laser 

scanner were used to detect and measure control points manually. Finally, thermal information 

was fused to point clouds using control points. The output 3D point cloud model successfully 

showed a thermal color range variation. However, the bulkiness of this system at data acquisition 

have resulted in a very time-consuming process. Also, with the fact that digital sensors are sensitive 

to lighting conditions, this system is limited in darkness and advised to take place only at daytime.  

Another approach was presented by (Lagüela et al., 2011) using a calibrated IR camera 

sensor. First, the infrared sensor was calibrated to minimize image distortions while a laser scanner 

was used to scan and generate 3D point clouds. Next, processed thermal images were entered into 

a commercial software. Later, images were mapped and textured the laser-based point cloud. 

Mapping process was done manually for each image using at least six different control points. The 

resulted model positively displayed a visualized thermal color range difference for an exterior 

façade of a building. Yet, several limitations can be deduced, in order to avoid image distortion 

and minimize thermal color variation from one thermal image to another; (1) the infrared camera 

sensor must be in a perpendicular shooting direction with the facing façade. And, (2) the distance 

between an IR shooting camera sensor and a façade is fixed with high overlapping manner more 

than 50%. (3) Data collection is advised to take place at nighttime in order to reduce surface heating 

by the sun heat. In summary, (Lagüela et al., 2011) has proposed a more efficient and user-friendly 

approach, it is still unclear how this approach can perform in confined indoor environments. Also, 

mapping images manually are both time-consuming and labor intensive especially for large-scale 

projects and multiple closed spaces.      
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 Additional approach was provided via (Borrmann et al., 2012; Borrmann, Elseberg, & 

Nüchter, 2013) by developing a mobile robot (Irma3D), Figure 2-11-a, that consists of a Light 

Detection and Ranging (LIDAR), a digital webcam sensor and a low-resolution thermal camera 

sensor (160 x 120 pixels) mounted on the top of the robot. Data collection process using Irma3D 

robot was conducted by taking multiple scans at different locations. First, a laser scanner was used 

to scan a surrounding environment while the mounted thermal camera sensor rotated over the 

vertical axis of the laser scanner and captured nine images that covered the whole 360o scene. 

After, thermal information was automatically mapped to the scanned models using the 6D 

simultaneous localization and mapping technique (SLAM). The corresponding approach was 

applied on the town hall façade in the city of Bremen, Germany (Borrmann et al., 2013). The result 

is shown in (Figure 2-11-b). However, this system is inadequate when collecting information over 

100 vertical degrees due to the limited camera field of view. Consequently, tall buildings need to 

be scanned from a faraway distance which would affect the resolution and accuracy of the collected 

thermal information (Cho et al., 2015). 

 

Figure 2-11: (a) Mobile robot Irma3D and (b) 3D thermal model of a façade (Borrmann et al., 

2013); (c) e-pack system and (d) human operator carrying e-pack system (Oreifej, Cramer, & 

Zakhor, 2014) 
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  While most of the studies focused on 3D thermal visualization of exterior environments 

and building facades, (Oreifej et al., 2014) presented a study for 3D thermal mapping of building 

interiors. To do so, a new system called “e-pack”, (Figure 2-11-c) was developed. The system 

consisted of five 2D laser sensors, two infrared camera sensors, two optical camera sensor with 

fisheye lenses, an orientation sensor, and a laptop. Figure 2-11-d shows the massive system that 

can be carried by a human operator. For data acquisition, an operator carried the system and walked 

through an interior environment to collect information. Next, the collected data were processed 

offline and the traversed environment was generated as a 3D point cloud model. Then, co-

registration was applied to texture both the visible and thermal information to the point cloud 

model. Output models showed aligned spatial and thermal point cloud models. The advantages of 

interior thermal mapping can be summarized in the applications of inspection and energy 

efficiency analysis. However, this method is limited to the inaccessible places that are hard for a 

human to reach. Also, the “e-pack” system is extremely expensive and require the integration of 

several sensors. Furthermore, a hybrid LIDAR system was developed and introduced by (Chao 

Wang et al., 2012), this system consists of two robotic Infrared camera sensors (320x240 pixels) 

integrated with a laser scanner. Similar to previous studies, thermal information were fused to 

laser-based point clouds representing a 3D thermal point cloud models. In addition, window 

detection algorithms were applied to generate thermal points on the transparent glass surfaces.    

Methods that facilitate the collection of thermal images:  

 While most of the studies focused on the developing techniques related to data processing, 

only few who tried to enhance and improve data collection process. (Essess, 2016) Introduced a 

technique that enhances the process of collecting the very large amount of overlapping thermal 

images for building facades at night. To do so, several arrayed thermal camera sensors were 

mounted on a car to capture multiple overlapping thermal images at the same, Figure 2-12-a. Next, 

overlapping images were stitched together to create a large panoramic thermal image of a building 

façade represented in Figure 2-12-b (Cho et al., 2015).  Moreover, FLIR systems have developed 

a platform tool that can stitch radiometric images into large thermal panoramas. Stitching requires 

minimum 30% overlapping thermal images, then using the feature extraction method that can 

identify the exact overlapping areas ready to stitch (FLIR, 2013). However, this technique is only 

available for the modern thermal camera sensors with high resolution as shown in Figure 2-13.  
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This practice was also available in other commercial software like IRT stitch developed by 

GRAYESS Inc (GRAYESS Inc, 2016). Hence, the advantage of such technique is the possibility 

of creating wide thermal images at the collection stage without losing any of the thermal 

information. Also, with the fact that recent modern thermal cameras are integrated with digital 

detail enhancement techniques, modern thermal images were enhanced dramatically as high spatial 

frequencies are boosted. This improved feature detailing and made it more precise. So, radiometric 

stitching has become more efficient and promising as a tool that can be invested in thermal 

mapping and 3D thermal reconstruction. Correspondingly, other recent studies also suggested the 

implementation of UAS in collecting thermal images for the purpose of 3D thermal modeling. 

(Roca, Martínez-Sánchez, Lagüela, & Arias, 2016) Used UAS-based thermal imagery to 

automatically extract building geometries that will be later used in the modeling of 3D buildings.     

 

Figure 2-12: (a) Arrayed thermal camera sensors mounted on a vehicle, and (b) panoramic 

thermal image of a facade (Essess, 2016) 

 
Figure 2-13: Sample file for a radiometric panorama stitching (FLIR, 2016b) 
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2.3. 3D Spatial Modeling  

Point cloud consists of a group of points that resembles the outer surface of an object, in 

which each of these points has its coordinates (x,y,z) confined in one discrete coordinate system. 

The most common and popular techniques for generating point cloud is known for remote sensing 

solutions that include but not limited to photogrammetry and laser scanning. The main concept of 

point cloud generation is known as registration; where multiple sets of images (photogrammetry) 

or scans (laser scanning) are grouped and combined into one common coordinate system. Recently, 

point clouds were implemented in the construction sector for reconstructing as-is models of the 

existing buildings and infrastructures (Eisenbeiß, 2009). 

2.3.1. Photogrammetry 

The main concept of photogrammetry relies on measuring the spatial features distances 

and localizing its positions, for any visible surface using collected overlapping images. This 

approach consists of four steps, the first is to identify and extract common feature points among 

images, the second is to match the extracted feature points that are known as stitching, the third is 

to identify the camera location with respect to each image, the fourth is to intersect these feature 

points and reconstruct a 3D data model in one coordinate system which is known as triangulation 

(Klein et al., 2012). Photogrammetry is also known as Stereo vision or stereo-photogrammetry, in 

which softcopy triangulation algorithms are applied on the overlapping stereo-pairs (Westoby, 

Brasington, Glasser, & Hambrey, 2012). The term stereo-photogrammetry is referred to the 

method of identifying the 3D coordinates of common points found in different images being 

collected from different positions (Chao Wang, 2014; Westoby et al., 2012). 

 

Figure 2-14: Stereo-Photogrammetry  



33 

 

In Figure 2-14, a cube appears in two different images (Images 1 and 2) taken from two 

different positions (camera position 1 and 2), the same common point (the red point) appears in 

the two different images of different locations and orientations. Triangulation is the method of 

using the two overlapping images 1 and 2 to identify the position (3D coordinates) of the common 

point (the red point). To simplify a basic calculation case example, two images (I and II) were 

taken at the same focal length f, same height, and orientation method. Thus, the two images share 

the same Y and Z coordinate but different X coordinate. Thus, translating the calculation into a 

simplified 2D problem can be done by ignoring the Y-axis. In Figure 2-15, I and II are two images 

were taken respectively with the same focal length f. P is a real feature point that is projected into 

P’ in the image I and P’’ in image II. O’ and O” are the focal points for the two images respectively. 

Thus, B is the distance between O’ and O”. While the X-coordinates of P’ and P” are x’ and x” 

respectively. First, Z-coordinate must be calculated. Thus, O’P can be projected to O” (represented 

as the red line). Using the intercept theorem in Equation 1, Px is the difference in the x-coordinate 

of P’ (x’) and P” (x”). By substituting this into Equation 2, the Z-coordinate of point P can be 

deduced. While Equation 3 is the corresponding theorem to calculate the X-coordinate of point P. 

Thus, by substituting the z from Equation 2 into Equation 3, the X-coordinate can be deduced in 

Equation 4 (Stachniss, 2015).   

Z

𝑓
=

𝐵

𝑃𝑥
 Equation 1 Z = 𝑓

𝐵

𝑥′ − 𝑥′′
 Equation 2 

Z = 𝑓
𝐵

𝑥′ − 𝑥′′
 Equation 3 X = 𝑥′

𝐵

𝑥′ − 𝑥′′
 Equation 4 

 

 
Figure 2-15: Case example on calculating coordinates (Stachniss, 2015) 
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Consequently, photogrammetry relies on the calculation of 3D coordinates of common 

feature points, using the identification of location and orientation for each of the collected images 

(Klein et al., 2012). Thus, photogrammetry was applied to transform images rich with spatial 

information into as-built 3D models (Chao Wang, 2014). Old practices achieved this manually 

using a GPS (for location) and electric compass (for orientation), but it’s said to be ineffective by 

means of effort and time (Klein et al., 2012). Recently, a modern photogrammetric survey method 

was introduced to identify and extract feature points automatically. This method is known as 

structure from motion (sfm), in which related algorithms can automatically identify the location 

and position of each captured image. Then, feature points can be detected and extracted semi-

automatically for matching and the reconstruction of 3d models. Sfm commercial software was 

developed to generate image-based point cloud models. Steps of generating point clouds via sfm 

are shown in Figure 2-16 and are summarized as follow (Klein et al., 2012; Westoby et al., 2012):  

A. Data collection: overlapping images are collected from different positions and orientations 

{camera1... camera8) preserving an overlap of 80% or more. The collection process is 

preferred to finish at the starting location (closed loop). 

B. Feature points detection: Detection of key features such as vertices and edges. 

C. Feature points extraction and matching: similar feature points are matched using the Scale 

Invariant Feature Transform (SIFT) recognition system.  

D. Identifying camera position and orientation for each image: Linking a bundle of light from 

feature points to the center of the camera, this process is known as the “bundle adjustment”.  

E. Generating a 3d point model: through triangulation method. 

Automatic registration of image-based point clouds requires a lot of close overlapping 

images to identify and extract feature points for later stitching. This automated process will result 

in a denser and accurate point cloud (thousands of points). However, automatic identification and 

extraction of feature points will cover unwanted areas in the background, this will increase the 

error and noise in the generated point cloud model. To solve this issue, manual filtering is required 

to remove the unwanted points of the model. Manual registration needs fewer images to apply 

manual identification of feature points between images, but it results in a sparse and inaccurate 

point clouds (hundreds of points) (Klein et al., 2012). 
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Figure 2-16: point cloud generation through sfm  

Due to the fact that even commercial software allows an automatic generation of point 

clouds, manual registration and filtering are still required to enhance the quality of the resulted 

point clouds. Moreover, some environmental factors can affect the quality of the generated point 

cloud models such as lighting, occlusions (moving objects, equipment’s), and other factors (e.g., 

smoothness, reflective materials, and featureless surfaces) (Klein et al., 2012). Some researchers 

have suggested relative solutions that could enhance the quality of a point cloud; for example, 

collecting images at night can exclude the sunlight effect and avoid some of the moving objects 

(e.g., people, mobile furniture, and equipment at the site through the construction phase). Also, 

some visual markers can be added to the featureless surfaces to improve feature points (Snavely, 

Simon, & Goesele, 2010). Photogrammetry was improved in a tremendous way in the past few 

years. Therefore, the enhancements developed the ability of fast data collection of colorful and 

textural images. Also, improvements showed an advanced processing of a large amount of data for 

object recognition. This progress allowed the implementation of image-based 3D clouds in the 

reconstruction of existing built environments. Developed as-is 3D image-based point cloud models 

have the ability to identify the as-is condition of a built environment. Consequently, this method 

can be used effectively in facility monitoring and quality control (Bhatla, Choe, Fierro, & Leite, 

2012; Chao Wang, 2014).  
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2.3.2. Laser Scanning 

Laser scanning is also known as Light Detection and Ranging (LIDAR), it is an optical 

sensor dependent technique that uses laser scanners to scan the exterior surfaces of objects. The 

main concept of laser scanning relies on transforming the spatial data of object surfaces into a 3D 

point cloud (Bhatla et al., 2012). Technically, laser scanners emit a laser beam that reflects with 

objects surfaces and returns back to calculate the distance between the scanner center and the 

object. By measuring the distance between the center of the scanner and the object, it is possible 

to detect the accurate position (coordinates X, Y, and Z) of objects with respect to the scanner 

position (Klein et al., 2012).  Laser scanners are very expensive, efficient and high accurate 

machines. They can scan hundreds of meters away, and measures in millimeters accuracy 

generating very dense point clouds (millions of points). It’s very efficient for complicated and 

complex projects that require the visualization of small details of the high resolution. Recently, 

laser scanners are used to reconstruct the Point clouds of the as-is conditions in Architecture, 

Engineering and Construction (AEC) fields (Bhatla et al., 2012). 

However, the huge price and the need for some operating skills are considered as the main 

limitations of using this technique. Additionally, laser scanners are bulky, not portable, requires 

some professional experience and also considered as time-consuming in means of data collection 

and data processing. Also, other factors can affect the whole process within the area of coverage, 

required a number of scans, and the needed software for registering, editing, and texturing the 

scans. As other remote sensing techniques, laser scanning is affected by weather conditions, 

lighting, reflective materials, featureless surfaces and mobile objects. Laser scanning based point 

clouds can be also implemented in various applications such as rapid modeling, real-time safety 

management on site, construction progress monitoring and defect detection (Bhatla et al., 2012). 

Laser scanners systems have photon source that emits either continuous laser signals or a series of 

laser pulses that can scan and detect objects in its environment, or objects that rely on its line-of-

sight. After that, a rotating photon source can collect 3D points of a surrounding environment and 

generates 3d columns. After, a panoramic image range of a surrounding is created. This image is 

used in registration and generation of 3D point cloud model. In summary, the two common types 

of laser scanners that are present in the market nowadays are either a time of flight (TOF) laser 

scanners or the phased-shift (PS) laser scanners (Chao Wang, 2014).  
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Time of Flight (TOF) laser scanners: 

The main principle of time of flight laser scanners is based on laser beam emitting and 

receiving. First, the scanner (emitter) emits continuous laser pulses that will be reflected by a built-

in mirror. Next, these pulses will bounce off of an object (receiver) and return back to the mirror 

once again which will reflect it back to the scanner, as shown in Figure 2-17. The pulses are then 

collected and the time difference between the emission phase and the reception phase will be 

calculated. Equation 5, shows that the difference in distance can be measured depending on the 

time of the beam has traveled and the speed of light in air. Moreover, scanners can emit hundreds 

of laser pulses per second which can be collected and used to reconstruct a 3D point cloud model 

for a surrounding environment. Tof scanners are a fast data collection systems with a high rate of 

data collection. Tof laser scanners can detect several thousands of points per second (up to 50,000). 

Thus, it’s mainly used for real-time applications and other uses that require a very high resolution 

and can be collected in a small time-frame. Some factors as data resolution and photon source 

frequency can control the time required for one station scan to another and that may vary from few 

minutes to several hours. An example for the tof is leica scan-station c10 laser scanners (Faro 

Technologies Inc., 2014; Klein et al., 2012; Chao Wang, 2014; Westoby et al., 2012). 

d =
(𝐸𝑡 ∗ 𝑣)

2
 Equation 5 

Where:   d: distance between the scanner and the object target. 

  V: is the speed of light in air 

  Et: is the required time needed to emit and receive a light beam 

 

Figure 2-17: ToF laser scanner principle 
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Phased-shift (PS) laser scanners: 

The main principle of the phased-shift laser scanner is that the scanner (emitter) emits 

outward laser pulses by means of light waves and records the phase wavelengths emitted. Then 

upon the contact of the pulses with an object ( the receiver), it returns back to the scanner to be 

collected by the sensor. The phase shift between the returning pulses and the stored pulses are 

compared, then it is possible to calculate the distance of the beam that represents the distance 

between the scanner and the object. By calculating the light traveling time and the corresponding 

distance, the spatial information of the surrounding environment can be collected. The phased-

shift system is considered as ten times faster than tof systems. However, phased-shift scanners are 

less accurate with low reflective materials like glass, aluminum, steel and other materials that 

reflect noise points. Also, phased-shift scanners are inaccurate and can collect a lot of noise points 

for long ranging scans greater than 100 m (Klein et al., 2012; Chao Wang, 2014; Westoby et al., 

2012). Figure 2-18, Shows the angle measurement of the emitted laser pulses in PS system, where 

the vertical rotation angle is 305o and the horizontal rotation angle is 360o. Emitted laser pulses 

from the scanner (emitter), represented by black dots, bounces off the object (the cube as a 

receiver) and returns back to the scanner, represented by red dots. 

T(𝑇𝑖𝑚𝑒 𝑜𝑓 𝐹𝑙𝑖𝑔ℎ𝑡) =
(𝑃ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡)

2𝜋 ∗ 𝑚𝑜𝑑𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 Equation 6 

 

 

Figure 2-18: Phased-shift laser scanner principle in Faro 3D 
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Other types of the unfamiliar laser scanning remote sensing techniques in the industry of 

construction are (the Flash Ladar system or 3D range cameras) and (the self-positioning handheld 

laser scanner) shown in Figure 2-19 respectively (Chao Wang, 2014). Flash Ladar systems 

function using Tof principle, but the main difference is that they use flash frame method instead 

of collecting 3D points while scanning. Where it emits non-continuous laser flashes which capture 

a sort of images for each flash, this process is known as flash frames (Hegde & Ye, 2008). On the 

other hand, the self-positioning handheld laser scanners are an easy way to obtain 3D spatial data. 

It is present in fields as manufacturing, aerospace, and medicine. Self-positioning handheld laser 

scanners are mobile scanners that support automatic calibration, registration and automatic 

localization for self-positioning (BIBUS, 2016). 

   

        (a)                                                  (b) 

Figure 2-19: (a) Flash LADAR SR-3000 (Hegde & Ye, 2008); (b) Self-positioning 

handheld laser ZScanner® 700 (BIBUS, 2016) 

Comparing between Photogrammetry and Laser Scanning  

Remote sensing techniques include both photogrammetry and (tof and ps) laser scanning 

that are different in concept, this encouraged some researchers to compare the two techniques. To 

determine their efficiency in generating as-is 3D point cloud models for built environments, (Giel 

& Issa, 2011) proposed different variables for comparison. For example, using laser scanning in 

measuring the accuracy in as-built building information modeling (BIM’s), is considered more 

efficient than photogrammetry by means of accuracy and resolution. Firstly, the accuracy of 

photogrammetry is measured in centimeters, while the error range in laser scanning is limited 

within millimeters. Secondly, photogrammetry generates a sparse point cloud model that contains 

hundreds to thousands of points, while laser scanning generates a dense point cloud model that 

contains millions of points (Giel & Issa, 2011; Klein et al., 2012). Moreover, laser scanning 

registration software can automatically mesh and extract shapes, while registration software of 
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photogrammetry requires a manual modeling in the generation 3D point cloud models. However, 

other researchers considered photogrammetry is preferable by means of equipment cost, required 

skills, and portability. Firstly, laser scanners are very expensive machines that their cost ranges 

within tens of thousands American dollars (USD), while cameras used in photogrammetry are 

priced in hundreds USD. Secondly, laser scanners require a medium to high level of operation 

skills while cameras are very easy equipment that requires a minimal level of skills. Thirdly, laser 

scanners are bulk, large in size and immobile, while cameras are considered very handy, portable 

and are user-friendly (Bhatla et al., 2012; Eisenbeiß, 2009; Snavely et al., 2010; Westoby et al., 

2012). Finally, both photogrammetry and laser scanning have some limitations that affect their 

quality such as surface reflectivity and smoothness, featureless surfaces, occlusions, line-of-sight, 

edges, weather conditions, etc. (Klein et al., 2012; Chao Wang, 2014).  

Laser scanning techniques other than (tof and ps) laser scanners, such as flash ladar systems 

and self-positioning handheld scanners, are very limited and rarely used in construction; still, some 

researchers discussed their advantages and disadvantages in construction. Flash ladar systems are 

small in size and less expensive than the traditional laser scanners, but it is inaccurate enough, very 

sensitive to the line-of-sight and outdoor conditions such as lighting and weather. On the other 

hand, self-positioning handheld laser scanners are more accurate in location detection and portable, 

but it is very limited for short ranges of data collection (Hegde & Ye, 2008; Chao Wang, 2014). 

Consequently, researchers used mainly photogrammetry and laser scanners for the generation of 

as-is 3D point clouds of buildings and infrastructures. In summary, a comparison between both 

photogrammetry and laser scanners is presented in Table 2-1 below.  

Table 2-1: Comparison between remote sensing techniques 

Remote Sensing Technique Laser scanning Photogrammetry 

Error Measurement millimeter Centimeters 

Density Dense Sparse 

Resolution Millions of Points Hundreds to thousands of Points 

Cost (USD) Tens of Thousands Hundreds 

Weight and Portability 
Heavy and not 

portable 
Light and Portable 

Operation Skills Medium to High Low 
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2.3.3. Overview of Point Cloud Data  

Point cloud models can be generated and reconstructed using different remote sensing 

techniques. Generated point cloud models consist of a group of points that resembles the spatial 

information of an environment which relies on the line-of-sight of the scanner. The processes of 

reconstructing a point cloud model depend heavily on the data structure of the collected points. 

Mainly, the data structure of collected point cloud can be classified into two types known as 

organized and unorganized point cloud. Organized point clouds are a simplified ordered 2D grids 

converted into an ordered 3D points that have a similar data structure of an image.  This means 

that each point has its index of columns and rows. Thus, each point has a recognized reference and 

a known relationship to its neighbor points which is defined as the nearest points (Holzer, Rusu, 

Dixon, & Gedikli, 2012). As a result, the data processing of point cloud models using organized 

points is much easier, efficient and needs less time. Consequently, organized point clouds are very 

useful in applications related to 3D registration and object recognition. An example is the 

application of organized points in the data collection method used in stereo cameras or other tof 

cameras and laser scanners (Chao Wang, 2014). On the other hand, unorganized points are points 

that have no reference and no data structure because of the variation in their size, resolution, 

density and points order. Thus, the relationship between a certain point and its adjacent points is 

unfamiliar and unknown. As a result, the data processing of unorganized point clouds is much 

harder, inaccurate, requires manual enhancement and need more time (Chao Wang, 2014) 

Data processing of point clouds is also known as registration, it defines the spatial 

information of each point of the collected data then combines them in one discrete system. After 

registering and generating a 3D point cloud of the scanned environment, a second consecutive 

process called triangulation takes place, in which the 3D point cloud model is converted into a 

solid 3D model. Triangulation concept relies on connecting relative points with their nearest in 

order to generate geometric primitives such as planes, cylinders, and spheres. Consequently, a 

solid 3D model representing the as-is condition is reconstructed. Recently, 3D Point cloud become 

a powerful technology that has improved in a tremendous way and has been applied in the building 

sector. Some researchers used point cloud for building condition assessment, others implement it 

along with thermal imaging techniques in aspects such as facility condition assessment and energy 

performance analysis (Klein et al., 2012; Chao Wang, 2014). 
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2.4. Research Gap 

The implementation of infrared thermography in 3D thermal modeling has been studied by 

many researchers. Such as, (Ham & Golparvar-Fard, 2012; Lagüela et al., 2012; Chao Wang & 

Cho, 2011). However, most of these studies focused only on the exterior facades of buildings and 

outdoor environments. Only few who tried to test infrared thermography in the reconstruction of 

as-is 3D thermal models of indoor built environments such as, (Borrmann et al., 2012; Oreifej et 

al., 2014). Yet, these studies were dedicated to building indoor environments only. However, this 

is insufficient since AEC sectors require the method to be tested within different environments, 

and under different variables. Also, these researchers used developed systems that integrate 

multiple methodologies and requires sophisticated knowledge for the execution of their methods. 

 Thus, until the date of conducting this research, separate data collection and data 

processing of infrared thermography is considered not enough and not convenient in generating 

3D thermal models. Unlikely, a more user-friendly technique is needed that involve a minimum 

effort by means of least number of technologies, fewer tools, separate image acquisition and 

separate data processing. In addition, some of the proposed systems as (Irma3D and e-pack) are 

bulk, large in size, heavy, expensive, and unaffordable. And some requires direct operation of a 

human by wearing the system on the back of the operator. Consequently 

As a result, and to the best knowledge of the author, (a) no one has tested the 

implementation of 2D IR and visible images, collected separately by an infrared and a digital 

camera sensing respectively, in the generation of as-is 3D thermal models of built environments. 

On the other hand, built environments are considered different by means of geometric shape, 

lighting conditions, and material textures. (b) Accordingly, and until the date of this research, no 

existing researchers have studied the generation of 3D thermal models of indoor infrastructure 

environments. Both gaps (a, and b) are to be expressed and reviewed in this research. Finally, and 

in order to evaluate the efficiency of the proposed method; different output models will be 

compared with respect to an experimental design by means of density, time and cost. 
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CHAPTER 3:  METHODOLOGY 

The main objective of this research is to reconstruct as-is 3D thermal models of built 

environments using 2D IR and visible images. Several researchers have studied the reconstruction 

of 3D thermal models Such as, (Ham & Golparvar-Fard, 2012; Lagüela et al., 2012; Chao Wang 

& Cho, 2011). However, most of these researchers have applied the 3D reconstruction of outdoor 

environments and exterior building facades. Only a few researchers who tried to focus their studies 

in the reconstruction of 3D models for indoor built environments such as (Borrmann et al., 2012; 

Oreifej et al., 2014). Still, their studies were dedicated only for indoor buildings. This provoked 

the need for more studies within different environments of different variables like the geometry, 

lighting condition and the materials of built environments. Also, most of the suggested methods 

were dependent on equipment as laser scanners that are bulky, heavy, cost-intensive, and time-

consuming. Consequently, this arouses the need for more affordable methods in terms of mobility, 

cost, time and accuracy. As a result, this chapter will present a novel method to overcome the 

above-mentioned gap. Therefore, the following part will be categorized into three main sections.  

The starting section will highlight and review the proposed methodology to achieve the 

main objective of this research. Also, the proposed methodology will be presented in a flowchart 

diagram that can summarize the whole method visually. Moreover, a detailed explanation of each 

stage of the proposed method will be present.  

Second, the output model of the proposed method will be compared with respect to an 

experimental design. The aim of the experimental design is to compare its output with that of the 

suggested methodology in order to estimate the efficacy of the last-mentioned. The experimental 

design will also be shown in a flowchart diagram that can summarize the whole process. Besides, 

a complete review of each stage will be present.  

Finally, the comparison between the two output models will be modeled in terms of 

evaluating density, time, and cost. In conclusion, the comparison of the output model can validate 

the hypothesis of the suggested method. Finally, output models comparison will be also presented 

in a flowchart diagram that will review the several variables under study.  
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3.1. Overview of the Proposed Methodology  

 
Figure 3-1: Flowchart of the proposed methodology 
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To begin, an overview of the suggested method is presented in the above flowchart (see 

Figure 3-1). Also, in this section, the proposed methodology will be described and discussed in 

details. The main concept of the suggested method is to create 3D thermal point clouds using 2D 

IR and visible images which are collected and processed separately. To do so, first, all the required 

equipment and tools will be prepared and deployed for separate data collection. In which, a digital 

camera will be used to capture a set of overlapping visible images preserving an overlap of 80% 

or more. Next, an infrared camera will be used separately in collecting a set of overlapping thermal 

images with an overlap of 50% or more. The second stage will be data processing, where a set of 

visible images will be processed using sfm approach to generate an image-based point cloud 

representing the spatial information of an environment. Finally, a set of overlapping thermal 

images will be filtered and stitched together to form large panoramic images. After, stitched 

radiometric panoramic images will be mapped to the generated image-based point cloud model 

using reference points. As a result, as-is 3D spatial and thermal point clouds will be generated 

which reflect both metric and thermal measurements of a built environment.  

In the next section, a detailed discussion of 3D spatial modeling using photogrammetry 

and image processing is present. In which, all the related stages of data collection and data 

processing will be reviewed. Following is a detailed explanation for infrared thermography. 

Which, includes both thermal data collection and later thermal data processing stages. 

3.1.1. Digital Imagery   

Digital imagery has been used by several researchers in the modeling of 3D thermal point 

cloud models such as (Lagüela et al., 2012; Oreifej et al., 2014; Westoby et al., 2012). However, 

none of the studies have studied the implementation of digital imagery separately in the generation 

of 3D thermal models. The research methodology of this research propose the implementation of 

digital imagery as a separate technique in both data collection and processing stages; then, the 

output model from this technique will be used in reconstructing 3D thermal models of built 

environments. To accomplish this objective, both hardware and software need to be selected 

carefully. Relatively, advanced commercial software and improved digital cameras were enhanced 

dramatically. Thus, selecting the proper tools for applying photogrammetry in the reconstruction 

of as-is 3D point cloud models is an important stage that will affect the outputs of the proposed 

methodology.  
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In specific, a mobile digital camera will be used to capture overlapping visible images of 

the built environments. Technically, a setup process will take place before collecting any data. In 

which, control points and reference targets will be added at different locations of the built 

environment. This can be referred for several reasons. (1) Environments that are rich in details and 

features are preferable to give better results in any 3D reconstruction. Consequently, and in order 

to enhance the results of the studied environments; random visual markers will be added to 

featureless surfaces or to the surfaces that have a low number of features. For example, surfaces 

with one unvarying color, a reflective material such as glass, aluminum surfaces, and stucco walls. 

(2) In order to control the scale accuracy of the reconstructed models, a reference target or a built-

in tag need to be assigned in the model with an accurate realistic dimension.  

Therefore, control points or checkboard references will be added for the proper scaling of 

the model, and visual markers will be added to the featureless surfaces. Next, and after setting up 

the environments, data collection will begin starting by image acquisition. Thus, images will be 

captured at different locations and orientations. Also, an overlap of 80% or more is needed between 

consecutive images. After, a set of overlapped visible images will be filtered, where all blurry 

images and images that contain moving objects will be removed. Next, the filtered set of 

overlapping visible images will be used for later processing. Images will undergo sfm approach, 

where key features are extracted from images and linked with its corresponding match among the 

different images. After, the location of camera and orientation will be figured out corresponding 

to each image in a process known as bundle adjustment. Therefore, multiple 2D images will be 

used to generate 3D points of the same coordinate system. Lastly, the extracted feature points of 

known location and orientation will be matched together in a process known as triangulation. The 

result will be the reconstruction of a dense “as-is 3D spatial image-based point cloud model”. The 

final output will be filtered by removing any unwanted points and scaled using previously 

deployed reference target and/or built-in tags of known dimensions. In summary, a set of 

overlapping visible images will be both collected using a digital camera sensing and processed 

separately. The end result of this step is the generation of a dense image-based point cloud model 

as shown in Figure 3-1. Finally, the visible point clouds will be orthogonally projected to form an 

orthogonal image. In which, it represents an adequate layout with direct metric measurements 

using a graphic scale to measure distances and areas. 
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3.1.2. Infrared Thermography  

Recent studies of using infrared thermography for the 3D reconstruction of thermal models, 

have shown the integration of infrared sensing and other data collection sensing techniques, such 

as laser scanners and digital camera sensing simultaneously (Borrmann et al., 2012; Ham & 

Golparvar-Fard, 2012; Lagüela et al., 2012; Oreifej et al., 2014; Chao Wang & Cho, 2011). 

However, none of the researchers have studied a separate collection and self-processing of the 

collected thermal information. To achieve this objective, a novel method is proposed in thermal 

imagery collection and thermal data processing. First, thermal data collection will be performed 

using a modern thermal imagery system for built environments. Nowadays, standalone high 

defined thermal cameras are a recent modern technology that has a limited number of prototypes 

in the world market. Yet, none has used these high defined infrared cameras separately in the 3D 

thermal modeling of built environments. To achieve this objective, an appropriate hardware should 

be selected. First, the chosen infrared camera sensing should be adequate to small and confined 

spaces of an indoor environment. Thus, it should have an advanced image stabilization 

characteristics that will lessen image distortions. Besides, the camera must have the ability to 

capture and show images in site for fast revision. Finally, time is considered as a vital factor in 

data collection, so the system has to operate effectively and execute the work needed within the 

required time and without any disturbances. Hence, old thermal cameras are considered very slow 

and time intensive especially when covering large areas. Thus, the needed infrared camera must 

have the ability to automatically capture multiple thermal images within an interval time of 

seconds.  

After choosing the suitable hardware for accomplishing the proposed task, the selected 

thermal imagery system will be installed and deployed for data collection. To do so, an 

environment will be set by adding light control points such as light torches. Next, the settings of 

the selected infrared camera will be adjusted to the appropriate features corresponding to the 

surrounding environment. Following, thermal camera is ready for image acquisition and images 

will be captured in a modular manner with a consistent distance from the facing plane surfaces. 

This process will be repeated back and forth for several times until the collection of the whole 

scene of an environment is complete. The modular capturing manner of thermal images is very 

important in minimizing the temperature variation between images.  
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Also, the infrared camera will be switched within a maximum and a minimum temperature 

to preserve a consistent temperature scale range. During image acquisition, captured images can 

be viewed and altered automatically. Blurry images can be removed directly in site and more 

images can be captured if needed. Also, an overlap of 50% or more must be preserved between 

consecutive images. This can be achieved by collecting overlapping images in a regular grid 

pattern or a planned modular manner as a guideline. At the end of this stage, a set of overlapping 

thermal images will be ready for processing.  

Consequently, each set of overlapping thermal images will be processed together for image 

stitching, to create a big radiometric panoramic image. These panorama images cover a large 

surface area with an accurate temperature representation. Technically, key features of each image 

will be identified and extracted using features from accelerated segment test (FAST) algorithm. 

Detectable key features can be a point of interests which are different than its neighboring points 

such as corners and edges. Next, a feature matching will take place which can identify the exact 

corresponding points between the overlapping areas of consecutive images. After, a visual 

correction will validate the previous matches before transforming the images for image 

registration. To acquire multiple images a unified coordinate system and image characteristics, it 

will be adjusted with relative to its parameters of calculating the exact position and orientation of 

each image with respect to the other.  

Finally, the radiometric correction will take place to overlay the color variation between 

the overlapping regions using the linear transition method. For example, two consecutive images 

overlapping at the same row, then Xmax is the highest value of X of the overlapping area while Xmin 

is the minimum value of X of the same overlapping area. While a pixel value is Ai in the first image 

A, the same pixel will have a value of Bi in the second image B. Correspondingly, the new pixel 

value Si for the stitched image. For an X coordinate of Xi the values are calculated as shown in 

equation 7 and Figure 3-2. On the other hand, if two images are overlapping vertically at the same 

column, then the equation will be used in the Y coordinates and values (Ymax, Ymin, and Yi) are used 

(Lagüela et al., 2012; Liu, Shen, & Chen, 2009). 

Si = (Xmax - Xi) / (Xmax – Xmin) * Ai + (1-(Xmax – Xi) / (Xmax – Xmin)) *Bi        (Equation 7) 
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Figure 3-2: Two consecutive overlapping images 

Later on, the processed panoramic thermal image will be mapped to the generated image-

based 3D point cloud model using reference points that are common feature points between both 

the panoramic image and a 3D model surface. These reference points can be vertices, corners, and 

edges. Next, the external parameters (position and orientation) of the image will be computed. To 

do so, (3DReshaper, 2016) recommends at least four common reference points that could be for 

example the four corners of an image and its relative surface corners. This justifies the importance 

of collecting images in a modular manner that is parallel to the testing surface. After, 

superimposing the temperature color visualization using texture colorizing and model sampling 

will take place in order to produce a 3D thermal point cloud model using both spatial and infrared 

information. In summary, thermal visualization will be based on the collected 2D thermal images, 

while the density of the output model will be based on the dense point cloud model reconstructed 

from 2D visible images. At the end, all surface planes are projected orthogonally to create an ortho-

thermogram image that generates both thermal and metric measurements using a temperature scale 

and a metric graphic scale respectively. 

In order to test the feasibility of this method, three different environments will be tested 

that resembles different variables; (1) Different geometric volumes such as (long tunnels, 

rectangular volume, and rectangular volumes of high ceilings. (2) Different lighting conditions 

such as (dark and artificial lighting). And (3) different materials like (rough concrete, reflective 

metal, and uniform stucco). 
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3.2. Overview of the Experimental Design 

 

Figure 3-3: Flowchart of the experimental design 
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In order to test the efficacy of the proposed methodology, the output models will be 

compared with an experimental design as the ground truth. The main concept of an experimental 

design that it uses a proven technique which can be compared with; when evaluating the outputs 

of a proposed methodology (Key, 2016). Figure 3-3, shows the flowchart diagram that can 

summarize the whole process of the used experimental design.  

Laser scanning is considered as an accurate practice in reconstructing as-is 3D point clouds 

of buildings and infrastructures (Bhatla et al., 2012; Klein et al., 2012). Mainly, most of the studies 

in 3D thermal modeling rely on mapping thermal information to the spatial information being 

collected using laser scanners (Lagüela et al., 2011; Chao Wang et al., 2012). Therefore, in order 

to test the feasibility of the proposed methodology, a laser scanner will be used as an experimental 

design to generate 3D laser-based point clouds for the built environments. To do so, a laser scanner 

will be positioned at different locations in the built environments. Also, control points will be 

placed in the same built environment before performing data collection. Some of the examples for 

control points and targets are the spherical references or the plain checkboard targets. After, 

multiple scans will collect the spatial information at each position and generate a panoramic range 

image for each scan. Next, an offline process will take place by grouping the different sets of point 

cloud models into one complete model of the same coordinate system. This process is known as 

registration, in which multiple scans can be aligned together using previously deployed control 

points. This post-processing step can assure the fusion of multiple point cloud models by matching 

relative control targets and feature points. Modern automated technologies can automatically 

detect the deployed targets and align the different scans together. Also, a deviation analysis report 

will be present to show the error percentage which ranges in less than few millimeters. Thus, laser-

based point cloud models are considered very accurate. Finally, the registered 3D laser-based point 

cloud will be filtered by removing any unwanted points. At the end, all surface planes are projected 

orthogonally to create ortho-gram images that generate an adequate layout with direct metric 

measurements using a graphic scale to measure distances and areas. 

Finally, infrared thermography will be used similarly as in the proposed methodology. The 

only difference is the last stage of superimposing thermal information. In another word, mapping 

of the stitched radiometric images will be applied to a laser-based point cloud model. Thus, the 

output of this experimental design is a 3D thermal laser-based point cloud model.  



52 

 

3.3. Output models Comparison 

In order to evaluate the outputs of the proposed methodology, it will be compared with the 

output model of the experimental design. Evaluation will be developed in terms of density, time 

and cost for both laser-based and image-based thermal point cloud models as shown in Figure 3-4.  

 

Figure 3-4: Flowchart for output models comparison and evaluation  

3.3.1. Density-Based Evaluation 

The Dense point cloud can be referred to the high number of 3D points in a given region 

of the point cloud model. Thus, dense point clouds have a larger total number of 3D points when 

compared to another sparse model. Dense point cloud models can show a high level of details 

which in turn will lead to a more accurate analysis and more precise decisions. Previous researchers 

used only laser-based point cloud models to guarantee a dense output model. In this research, the 

total number of 3D points will be evaluated and compared using both techniques of remote sensing, 

laser scanning (laser-based thermal model as the experimental design) and photogrammetry 

(image-based thermal model as the proposed methodology).   
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3.3.2. Time-Based Evaluation 

Time is a vital factor for any proposed approach. Thus, time will be recorded for each stage 

using both techniques of spatial modeling. Including, time needed for data collection and later data 

processing. After, time comparison will be held to evaluate the results. 

3.3.3. Cost-Based Evaluation 

On the other hand, the cost is another crucial factor in evaluating the efficacy of any 

proposed technique. Thus, the cost of using different equipment and software will be recorded 

based on official statements and web pages of the responsible companies. Also, related operator 

cost of data collection and processing will be included. At, the end, a cost-based comparison for 

each technique will be performed.  
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CHAPTER 4:  IMPLEMENTATION AND RESULTS 

This chapter is an application of the proposed methodology in chapter 3. To do so, three 

different environments will be studied. As a part of this task, methodology implementation and 

results of the three case studies will be presented below. 

4.1. Implementation  

In order to accomplish the main objective of this research, the experimental setup is 

required in terms of localizing case study environments, identifying the needed equipment for data 

collection and required software for data processing. 

4.1.1. Environments 

Three different case studies were defined to test the suggested approach. Case study I 

(Figure 4-1), is a Green line-subway tunnel segment located in the city of Montreal, Canada. While 

case study II is a gymnasium located at the athlete complex building of Concordia University’s 

Loyola campus, Montreal, Canada (see Figure 4-2). Finally, case study III is a confined lab office 

located in the second basement-S2 floor of Concordia University’s EV building (see Figure 4-3). 

 
Figure 4-1: (a) Map for Montreal Subway(stm, 2016),(b) Schematic Plan for the tunnel testing 

environment 
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Figure 4-2: (a) Gymnasium building located in Loyola Campus (Concordia University, 2016), 

(b) Gymnasium schematic plan 

 

 
Figure 4-3: (a) EV building located in SGW Campus (Concordia University, 2012), (b) Lab 

office schematic plan 

Reconstructing 3D thermal models can be affected by the surrounding environment 

characteristics. Thus, the three selected environments are referred to different and several 

variables. First, the subway tunnel segment environment is a challenging task with its cylindrical 

geometry, dark lighting conditions, and the rough material textures such as concrete (Figure 4-4). 
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On the other hand, the gymnasium environment is a rectangular-based geometry with a high 

ceiling, artificial lighting conditions and a reflective texturing such as metal and wood flooring 

(see Figure 4-5). Finally, a small confined lab office has a rectangular box geometry with a low 

ceiling of 3m height. Thus, the place is so narrow for data collection. Also, the test occurred with 

dark conditions. Lastly, the walls painted in stucco are uniform in color and reflective in texture. 

Consequently, this environment has a low number of features when compared to environments of 

case studies I and II (see Figure 4-6). As a result, the proposed methodology will be tested within 

unlike environments of different variables such as the geometry of surroundings, materials, and 

lighting conditions.  

 

Figure 4-4: Images showing subway tunnel testing environment  

 

Figure 4-5: Images showing gymnasium testing environment 

 
Figure 4-6: Images showing lab office testing environment 
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4.1.2. Hardware 

This section will review the different equipment being used in executing different case 

studies and data collection. To do so, used equipment can be grouped into several categories as 

follow:    

Equipment used for spatial modeling: 

The proposed method suggested modeling spatial information through Digital Imagery 

system, while the experiment design relies on laser scanners on collecting accurate spatial 

information for later comparison. Thus, the proposed technique in generating an image-based point 

cloud was achieved using a visible camera “Nikon Digital SLR Camera D600” (see Figure 4-7). 

Following is a review of the technical specifications (see Table 4-1)  

 

Figure 4-7: Nikon Digital SLR Camera D600 (Nikon, 2016) 

Table 4-1: Technical data of the visible camera (Nikon, 2016) 

Camera Nikon Digital SLR Camera D600, with a 35mm lens 

Image Sensor 35.9 x 24.0 mm CMOS sensor (Nikon FX format) 

Image Size (pixels) FX format (36x24): (6,016 x 4,016 pixels) 

Weight 850 g 

Storage Micro SD card 

LCD monitor 3.2 in. 

View angle 170o 
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On the other hand, in the experimental design, a laser scanner “Faro Focus 3D x 130” was 

used to generate laser-based point clouds for all built environments under study (see Figure 4-8). 

The laser scanner was used to scan and collect 3D point clouds of an environment by applying 

different scans of multiple positions which cover a whole scene. To do so, reference targets 

including spherical and checkerboard (see Figure 4-9) were deployed in all testing environments 

before collecting data. This could help effectively in scans registration and alignment.  

 

Figure 4-8: Faro Focus 3D x 130 (Faro Technologies Inc., 2011) 

 
Figure 4-9: Deploying laser scanner and reference targets 
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Table 4-2: Technical data of the laser scanner (Faro Technologies Inc., 2014) 

Laser Scanner Faro Focus 3D x 130 

Range (m)  0.6 - 130  

Measurement speed (pts/sec)  122,000 - 976,000  

Ranging error 2 (mm)  ±2mm  

Field of view (vertical/horizontal)  300° / 360°  

Laser class  Laser class 1  

Data storage  SD, SDHC™, SDXC™  

Scanner control   Touchscreen display  

 WLAN with a laptop/smartphone  

Battery life  4.5 hours  

Weight  5.2 kg  

Size (mm)  240 x 200 x 100  

 

According to the technical specification mentioned in (Table 4-2), the concept behind the 

name of this laser scanner is its maximum range which can scan up to (130 m). While a range of 

measurement speed is dependent on the settings being used. The accuracy of the laser scanner is 

measured in few millimeters with a ranging error that is defined as a systematic measurement error 

at around 10m and 25m (Faro Technologies Inc., 2014). The field of view FOV can nearly cover 

a whole horizontal scene angle, while it covers only 300° vertically leaving a circle hole directly 

below the position of a laser scanner. To avoid this, multiple scans of different positions can fill 

the missing parts of 3D point clouds. Also, this laser scanner is classified as a first class safe laser 

when using normally within any condition (Faro Technologies Inc., 2014). The different 

characteristics of storage and control are relatively considered flexible and user-friendly. Finally, 

a battery life is very efficient for multiple tasks which require long periods of time for scanning 

and surveying. Adding to this, it is a smaller equipment in size and much light in weight when 

compared to the old laser scanners. All of this have made this laser scanner an ultra-portable 

equipment that allows much faster scans with a more precise measurement. 
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Equipment used for Infrared thermography: 

To accomplish the objective of Infrared thermography, a UAS-based thermal imagery 

system was used. Thus, a Dji Matrice100 equipped with a Zenmuse XT infrared camera was 

deployed in each of the case studies for thermal data collection. Following is a review of the 

technical specification of the different parts forming the UAS-based thermal imagery system. Main 

components defining this system are shown in (Figure 4-10) and include:  

[1] DJI Matrice100 aircraft. Its diagonal wheelbase measures 650 mm with a total 

weight (including battery) of 2431 g and can reach a maximum takeoff weight of 

3600 g. While the maximum speed ranges from 17 m/s to 22 m/s and can stay in 

the air up to 28 minutes (DJI, 2016). 

[2] 3-axis gimbal that connects the infrared camera to the aircraft body and is 

responsible for orienting the camera direction. 

[3] FLIR Zenmuse XT infrared camera. 

[4] Ground control station used to control both the aircraft and the camera sensing. It 

consists of both parts: a remote controller (RC) and a smartphone device. Both RC 

and a smartphone are connected together via a Micro USB port. 

 
Figure 4-10: UAS-based Thermal Imagery System: DJI Matrice100 equipped with Zenmuse XT 

Camera (DJI and FLIR, 2016) 
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[1] DJI Matrice100 aircraft  

 

Figure 4-11: Components of the DJI Matrice100 (DJI, 2016) 
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Following is a detailed review for each of the mentioned parts shaping this system. To start 

with the DJI Matrice100 aircraft technical specifications as shown in Table 4-3. The aircraft is 

composed of several components as shown in Figure 4-11. Main components include (DJI, 2016): 

[1] Propellers: Four propellers with their motors are used for take-off. Adjacent propellers have 

different rotation directions. In which, the upper right and the lower left propellers rotate 

anticlockwise while the other two propellers rotate clockwise (see Figure 4-12-a). 

[2] Frame arms: Four frame arms that connect the motors/ propellers with the center frame 

using connecting cables (see Figure 4-12-b). 

[3] Center Frame: The main body of the aircraft that contains the flight controller, ESCs, and 

a battery compartment (see Figure 4-12-c).   

[4] LED indicators: Which can alert the operator about the aircraft’s status.  

[5] Antennas: These antennas are the responsible for linking the aircraft body with the ground 

control station. 

[6] Expansion Bay: Used to extend the center frame by positioning it either at the top or at the 

bottom of a center frame (see Figure 4-12-d). 

[7] GPS module: Used to pinpoint a location of the aircraft, while an extension rod can be used 

to separate the GPS module from interfering with the center frame power board (see 

Figure 4-12-e).  

[8] TB48D Intelligent flight battery fixed into a battery compartment. Each battery has a 

capacity of 5700 mAh and a voltage of 22.8 which can hold up to 28 minutes of airtime. 

Also, four LED indicators are found on each battery that can detect the battery status. 

[9] Damper: Four dampers that connect the gimbal mounting plate with the center frame. 

These dampers can absorb the vibrations and assure high stability for a gimbal (see 

Figure 4-12-f).  

[10] Gimbal mounting plate: which is connected to the center frame using dampers. It has 10-

pin and 8-pin ports that will connect the gimbal lock on its bottom using gimbal cables (see 

Figure 4-12-g). 
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Table 4-3: Technical specifications of the DJI Matrice100 aircraft (DJI, 2016) 

Air Craft DJI Matrice100 

Weight (Battery and Propellers included) 2431 g 

Dimensions (Wheelbase) 650 x 650 mm 

Maximum Speed 22 m/s 

Maximum Flight Time 28 m 

Battery (TB48D) 5700 mAh – 22.8 V 

 

 

Figure 4-12: Detailed DJI Matrice100 components (DJI, 2016); (a) Propellers, (b) Frame Arm, 

(c) Center Frame, (d) Expansion Bay, (e) GPS module, (f) Damper, and (g) Gimbal mounting 

plate 
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[2] 3-Axis gimbal 

While the gimbal profile offers a stable platform for the camera due to the 3-axis 

stabilization (pitch, roll, and yaw). Also, the gimbal can tilt the camera vertically by 120o and rotate 

horizontally by +320 o to -320o (see Figure 4-13). 

 

Figure 4-13: Gimbal profile (DJI, 2016) 

[3] FLIR Zenmuse XT infrared camera  

The UAS-based thermal imagery system has a high defined infrared camera mounted to 

the aircraft (Table 4-4). Thus, the matrice100 is equipped with an FLIR Zenmuse XT infrared 

camera sensing that shows a live streaming to the DJI GO smartphone application. 

Table 4-4: Technical data of the infrared camera (DJI and FLIR, 2016) 

Camera FLIR Zenmuse XT@MATRICE 100 

Dimensions 103 x 74 x 102 mm 

Weight  270 g 

Temperature range -40o to +550o C 

Detector 640 x 512 UFPA 

Spectral range 7.5-13.5 μm 

Storage  Micro SD card: 32 GB 

Image frequency 30 Hz 
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Infrared camera precision test 

Flir Zenmuse XT infrared camera is a high-defined camera that can spot pixel temperature 

precisely. Thus, this infrared sensor has the ability to provide high-sensitivity infrared scans at 

640/30fps with accurate temperature readings that can reach 0.08o C (Heliguy, 2017). Also, the 

used infrared sensor in this research is a brand new camera with a factory calibration using the 12-

point inspection and calibration program. Technically, temperature references are used for 

calibration annually (FLIR Systems, 2017). In addition, the thermal precision test was acquired for 

the infrared camera to validate thermal readings. To do so, a simple test using thermometer was 

conducted. Specifically, an accurate temperature metal thermometer with dimensions of 29.2 cm 

was used to read the temperature at two conditions (Boiling water at 100o C and frozen ice at 0o 

C). In parallel, the Flir Zenmuse XT camera was used to capture thermal images at both conditions 

and spot the exact pixel temperature at each condition. In Figure 4-14, the captured thermal images 

showed an accurate temperature reading reflecting an accurate infrared sensor with correct thermal 

readings.     

 

Figure 4-14: Thermal precision test at 100o and 0o C 
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[4] Ground control station 

The ground control station consists of two parts; the remote controller (Figure 4-15) and 

the smartphone device. The remote controller can control both the aircraft and camera at the same 

time. For example, shutter buttons are used for capturing images and recording videos. Also, 

gimbal dials are used to control the orientation of a camera. On the other hand, a smartphone device 

is connected to the remote controller by a micro USB port (see Figure 4-16). A smartphone device 

can operate the DJI Go application for live video streaming, adjusting camera settings (resolution, 

color pallets, shutter speed, etc.), playback the captured images and videos, and show the status of 

the whole system (aircraft, camera, and the remote controller).  

 

Figure 4-15: Components of remote controller  (DJI, 2016) 
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Figure 4-16: Ground control station in the case studies 

Equipment used for data processing:  

In order to process the collected data and reconstruct the proposed models, Dell Precision 

Tower T5810 was used. This machine was used in modeling and generating both the image-based 

and laser-based point cloud models. Also, it was used in thermal data processing and mapping. 

Finally, it was used to generate, filter, and evaluate the output models of thermal-based point cloud 

models. Technically, (Table 4-5) shows the detailed specifications of this tower machine being 

used in this thesis.   

Table 4-5: Technical specifications of the used tower machine 

Machine Dell Precision Tower T5810 

Processor Intel Xeon E5162 v3 (4C, 3.5GHz, 10M, 140W) 

Memory (RAM) 16GB (4x4GB) 2133MHz DDR4 

Storage  360 GB SATA Class 20 Solid State Drive (SSD) 

Graphics AMD FirePro W2100 2GB 

Operating system Windows 7 Professional (64-bit) 

4.1.3. Software 

This section will review the different software being used in different data processing tasks 

and 3D modeling. To do so, used software can be grouped into two main categories that are as 

follow:    
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Software used for spatial modeling: 

To start with generating an image-based point cloud, the used software was Autodesk 

Recap 360. As shown in (Figure 4-17) Autodesk Recap 360 is a free image processing software 

which relies on running sfm algorithm in the generation of image-based point cloud models. To 

do so, a set of multiple overlapping images are needed to be imported into a cloud-based software. 

After, an automated process of feature extraction, detection and matching will take place leading 

to the reconstruction of the 3D point cloud model. However, manual registration and scaling can 

be applied to enhance the results and speed up the process. On the other hand, laser scans require 

multiple scans at different positions. To combine all scans into one model of one common 

coordinate systems, Trimble Realworks software (Figure 4-18) was used for registration and 

aligning multiple scans together. This could be accomplished by matching same reference targets 

and tags in different scans. Finally, output models were filtered from all unwanted points. 

 

Figure 4-17: Image-based point cloud generation using Autodesk Recap 360 software 

 

Figure 4-18: Laser-based point cloud generation using Trimble RealWorks software 
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Software used for infrared thermography: 

In parallel, each set of overlapping thermal images were grouped together for image 

stitching. In this step, a commercial software FLIR Tools Plus (Figure 4-19) was used to create 

large radiometric panoramic images that cover a large surface area with an accurate temperature 

representation. Technically, the main concept behind this technique can be referred to feature 

extraction and matching. Detectable key features can be a point of interest which is different than 

its neighboring points such as corners and edges. So, exactly overlapped regions can be identified 

and matched. After, a visual correction validates the previous matches and acquire multiple images 

a unified coordinate system and image characteristics. Lastly, a radiometric correction takes place 

that overlay the color variation between the overlapping regions using linear transition method. 

Finally, accurate radiometric panoramic images were mapped to the dense 3D point cloud model 

using the free trial version of 3dreshaper 2016 MR1 software. (Figure 4-20).  

 

Figure 4-19: Radiometric panorama and image stitching using FLIR Tools Plus software 

 

Figure 4-20: Thermal mapping using 3dreshaper software 
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4.2. Case Studies  

In order to test the approach which was proposed in the methodology chapter. Figure 4-21, 

shows the flowchart and the task sequence in performing the different experiments. This flowchart 

will summarize all stages in order, the number of cases studies, used hardware, software, and 

finally the final outputs of each approach. 

 

Figure 4-21: Flowchart of the followed research work in all case studies 
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4.2.1. Case Study I – Subway Tunnel Segment  

Spatial Modeling 

[1] Point Cloud Generation Using Digital Imagery: 

Data Collection 

In order to reconstruct an image-based 3D point cloud model for the subway tunnel 

segment environment, a set of overlapping images of the indoor environment were collected. To 

do so, a visible camera Nikon Digital SLR Camera D600 was used for image acquisition with an 

overlap of 80% or more between consecutive images. Data acquisition started at night (2:00 am), 

and images were taken from different angles and positions at a maximum resolution of 6016 x 

4016 pixels. Collecting images at high resolution can assure the generated model to be a high dense 

point cloud. Also, images were taken with a camera lens of focal length equal to 35 mm. This 

helped of capturing a full horizontal scene of an environment. With the fact of dark lighting 

conditions within the tunnel environment; the camera flash light was used while capturing photos. 

Images were collected back and forth and at high details. Finally, 157 photos were collected for 

the 30 m tunnel segment case study. Figure 4-22, shows a sample of the visible images collected 

from the subway tunnel segment in the city of Montreal, Canada. Data collection took place at the 

night of September ninth just after the closing of the subway service.  

 

Figure 4-22: Sample of the images collected from the subway tunnel testing environment 
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Data Processing 

After data collection, captured images were subjected to a manual filtration process. Where 

all blurry and unwanted images that include moving objects were removed from the collected set. 

For example in Figure 4-23, a sample of the blurry images that were removed in the filtration 

process. Accordingly, (Table 4-6) summarizes the output of the data collection stage. After 

completing the filtration of the total 157 collected images, the lasting set of overlapping images 

(148 images) were ready for processing and registration. Thus, the filtered images were uploaded 

into a cloud-based software for image processing (Autodesk ReCap 360) for an automated 

reconstruction process of 3D point clouds. To achieve the designated output, the software 

undergoes three main steps. First, the software identifies, extract and match common feature points 

in images. While this step can be done automatically, it was advised to correct and suggest some 

common feature points manually to assure a more accurate model and speed up the registration 

process (see Figure 4-24). Consequently, 13 feature points were assigned manually over 28 

different images. Second, images were listed in order then the position and orientation of each 

image were calculated. Lastly, extracted feature points of known location and orientation were 

matched together in a process known as triangulation. As a result of these steps, a 3D point cloud 

model of the studied case study was reconstructed. But, a filtration process was needed to remove 

any unwanted points. These unwanted points could be far points out of the model. Also, the scale 

of the model was revised by using a known dimension from the environment. A built-in tag of the 

subway tunnel was previously measured manually using a measuring tape. Then, this measurement 

was used in scaling the reconstructed output as shown in (Figure 4-25-b). While (Figure 4-25-a) 

shows the exact distance in the resulted point cloud model. Finally, an image-based point cloud 

model of the subway tunnel segment was reconstructed (see Figure 4-26). In summary, the visible 

point clouds were orthogonally projected to form an orthogonal image (Figure 4-27). In which, it 

represents an adequate layout with direct metric measurements using a graphic scale to measure 

distances and areas. 

Table 4-6: summary of data collection for the subway tunnel segment image-based point cloud 

No. of images 

before filtration 

No. of images 

after filtration 

No. of images 

registered 

Image resolution 

(pixels) 

Focal length 

(mm) 

157 148 146 6016 x 4016 35 
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Figure 4-23: Examples of the removed blurry images 

 
Figure 4-24: Manual registration of images in Autodesk Recap 360 

 
Figure 4-25: Scaling: (a) a measurement from the generated point cloud model, and (b) a known 

real measurement while data processing 
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Figure 4-26: 3D image-based point cloud Model of the Subway tunnel segment 

 
Figure 4-27: As-is image-based ortho-photo for the subway tunnel segment environment 
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[2] Point Cloud Generation Using Laser Scanning: 

Data Collection 

For the generation of a laser-based point cloud model of the subway tunnel segment, a Faro 

Focus3D X 130 laser scanner was deployed in site for scanning. However, multiple scans of 

different positions were required in order to cover the whole scene of the environment. Multiple 

scans at different positions are considered vital in the generation of a complete point cloud model. 

Thus, reference spherical targets were placed for later registration. Registering different scans 

includes the alignment of multiple scans into one model of a common coordinate system. Usually, 

three reference targets of different elevations are considered enough for scan registration. But for 

the subway tunnel segment, the curved cylindrical geometry of the environment requires five 

spherical targets to be deployed at different intended locations and elevations (see Figure 4-28). 

After, the laser scanner was fixed to a tripod at the first position for scanning (Figure 4-29). Next, 

the settings were adjusted corresponding to the appropriate condition of an indoor surrounding, 

dark lighting conditions, and with high resolution (see Figure 4-30). After the scanning of the first 

position was complete, collected data were saved on the SD card and checked manually before 

moving to the second location. Then, both laser scanner and tripod were moved to the second 

position which was planned previously. Similarly, a second scan was completed and checked 

manually. Finally, the two successful scans were considered enough to cover the whole scene of 

the surrounding as shown in Figure 4-31.     

 

Figure 4-28: Five spherical targets deployed in the subway tunnel environment 
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Figure 4-29: Images while laser scanning the subway tunnel testing environment 

 
Figure 4-30: Adjusting settings for scanning (similar in all case studies) 

 

Figure 4-31: Scanning positions in the subway tunnel environment 
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Data Processing 

In order to process the scanned data, multiple scans of the subway tunnel were imported 

from the SD card into (Trimble Realworks 10) software then exported into a compatible extension 

(.pts). Next, all exported scans were imported into (Autodesk ReCap 360) for automatic registration 

(Figure 4-32). Registration is the alignment of multiple scans together into one model of common 

coordinates using previously deployed reference targets. Figure 4-33 shows the report of 

registering the two scans of the subway tunnel. Registration was successful with a 100% accuracy 

which was measured in mm. Finally, the laser-based point cloud model of the subway tunnel 

segment was reconstructed (Figure 4-34). In summary, laser-based point clouds were orthogonally 

projected to form an orthogonal image (see Figure 4-35). In which, it represents an adequate layout 

with direct metric measurements using a graphic scale to measure distances and areas.     

 

Figure 4-32: Automatic registration of scans using Autodesk Recap 360 

 

Figure 4-33: Scan registration report 
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Figure 4-34: 3D Laser-based point cloud Model of the Subway tunnel segment 

 

Figure 4-35: As-is laser-based ortho-photo for the subway tunnel segment environment 
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Infrared Thermography 

Data Collection 

In order to generate a 3D thermal point cloud model for the subway tunnel segment 

environment, a set of overlapping thermal images of the indoor environment were collected. To 

do so, a UAS-based thermal imagery system was deployed in the site at night after (2:00 am). Data 

collection took place at the night of September ninth, just after the closing of the subway service. 

To start, light torches were added at the site to work as thermal reference targets (see Figure 4-36). 

Consequently, an infrared camera Flir Zenmuse XT mounted on Matrice100 drone was used for 

thermal image acquisition. First, the UAS was launched, the infrared camera was linked to the 

remote controller. Then both the aircraft and the thermal camera were calibrated, and the settings 

were adjusted. The IR resolution was set to its maximum of 640 x 512 pixels. Following, the UAS 

was directed through a straight pathway and images were captured in a modular manner with a 

consistent distance from the facing plane surfaces. This process was repeated back and forth for 

several times until the collection of the whole scene of an environment was completed. The aim 

of modular capturing manner is to minimize the temperature variation between images. Captured 

images were viewed and altered automatically using the live-streaming feature and the DJI Go 

application. Collected images were directly checked in site and more images were captured when 

needed. Also, an overlap of 50% or more was preserved between consecutive images as shown in 

Figure 4-37. 

 

Figure 4-36: Sample of the light torches used as thermal targets 
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Figure 4-37: Sample of overlapping thermal images collected from the subway tunnel 

environment 

Data Processing 

Starting with data processing, a set of overlapping thermal images were chosen which were 

the best fit to this experiment. Table 4-7 summarizes the data collection stage, where 19 images 

were grouped together for image stitching. In this step, two commercial software (FLIR Tools Plus 

and IRT stitch) were used to create large radiometric panoramic images that cover a large surface 

area with an accurate temperature representation. Technically, the main concept behind this 

technique can be referred to feature extraction and matching. Detectable key features can be a 

point of interest which is different than its neighboring points such as corners and edges (see 

Figure 4-38). So, exactly overlapped regions can be identified and matched. After, a visual 

correction validates the previous matches and acquire multiple images a unified coordinate system 

and image characteristics. Lastly, a radiometric correction takes place that overlay the color 

variation between the overlapping regions using linear transition method. In summary, accurate 

radiometric panoramic images were created which solved the thermal variation problem 

encountered by previous researchers (see Figure 4-39). Finally, panoramic images were mapped 

to both image-based and laser-based 3D point clouds via control points such as vertices and corners 

using 3dreshaper software. (Figure 4-40) shows the final filtered as-is 3D thermal point cloud 

models that represent both spatial and infrared information of the tunnel segment. In summary, 

thermal point clouds were orthogonally projected to form an image-based ortho-thermal image 

(Figure 4-41) and a laser-based ortho-thermal image (Figure 4-42). Both ortho-thermal photos 

represent an adequate layout with direct thermal and metric measurements. First, a temperature 

scale can identify the hot and cold areas depending on the color visualization and a graphic scale 

can be used to measure distances and areas. 
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Table 4-7: summary of thermal data collection for subway tunnel segment  

Number of thermal 

images processed 

Number of images 

registered 

Image resolution 

(pixels) 

Focal length (mm) 

19 14 640 x 512 13 

 

 
Figure 4-38: A sample for feature extraction and matching 

 
Figure 4-39: A sample for thermal image stitching 

 
Figure 4-40: As-is 3D Thermal Model of the Subway tunnel segment; a) Image-based 3D 

thermal model, and b) Laser-based thermal model 
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Figure 4-41: As-is image-based thermal ortho-photo for the subway tunnel segment environment 

 

 

Figure 4-42: As-is laser-based thermal ortho-photo for the subway tunnel segment environment 
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Evaluation 

Density evaluation 

First, dense point cloud models are referred to the high number of 3D points in a given 

region of a reconstructed model. Thus, dense point cloud models have a large total number of 3D 

points that can reach millions of points. Dense point cloud models can show a high level of details 

which in turn will result in a more accurate analysis and precise decision making. Following is the 

recorded total number of points in all 3D point cloud models (Table 4-8). 

Table 4-8: Density evaluation of the subway tunnel environment 

 Total Number of 3D points  

3D image-based point cloud 1,497,606 

Image-based 3D thermal point cloud 
(Before filtration): 1,497,606 

(After filtration): 1,272,326 

3D laser-based point cloud 37,386,416 

Laser-based 3D thermal point cloud 37,386,416 

 

Time-based evaluation 

Moreover, the time of each stage was recorded including the time needed for data collection 

and data processing for both image-based modelings (Table 4-9) and laser-based modeling 

(Table 4-10). Technically, the duration of setting up an environment include the needed time for 

deploying an equipment, adjusting the required settings and setting up targets such as; light torches 

for thermal thermography, spherical targets for laser scanning, and measuring a built-in tag for 

later image-based model scaling. While time needed for capturing images and scanning were also 

documented. Next, the filtration process for both visible and thermal images included the removal 

of any unwanted data. Generating point clouds using a cloud-based software and scans registration 

were also recorded. On the other hand, the duration of thermal images stitching and mapping was 

noted. In summary, the total time required for image-based modeling is much greater with respect 

to that of laser-based modeling. However, image-based modeling can still be considered as 

efficient since more than 20 hr were processed on a cloud-based software. So, the net total average 

time for image-based modeling excluding the cloud-based processing is only 2 hr and 27 min. 
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Table 4-9: Time-based evaluation for image-based 3D thermal point clouds generation 

 Digital Imagery Thermal Imagery 

Data 

Collection 

Setting Up environment 7 min 16 min 

Image acquisition 20 min 49 min 

Average total duration for Data Collection  27 min 1 hr. and 5 min 

Data 

Processing 

Filtration 15 min 15 min 

Point cloud 

generation 

Manual registration 35 min - 

Cloud processing 20 hr. and 51 min - 

Image stitching - 25 min 

Mapping and filtration - 35 min 

Average total duration for Data Processing 21 hr. and 40 min 1 hr. and 15 min 

Average total duration for 3D image-based point 

cloud generation  

22 hr. and 07 min 2 hr. and 20 min 

Average total duration for image-based 3D thermal 

point cloud generation 

 
 

 

Table 4-10: Time-based evaluation for laser-based and 3D thermal point clouds generation 

 Laser Scanning Thermal Imagery 

Data 

Collection 

Setting Up environment 15 min 16 min 

Two laser Scans /Image acquisition 50 min 49 min 

Average total duration for Data Collection  1 hr. and 5 min 1 hr. and 5 min 

Data 

Processing 

Filtration - 15 min 

registration 2 hr. - 

Image stitching - 25 min 

Mapping and filtration - 35 min 

Average total duration for Data Processing 2 hr. 1 hr. and 15 min 

Average total duration for 3D image-based point 

cloud generation  

3 hr. and 05 min 2 hr. and 20 min 

Average total duration for image-based 3D thermal 

point cloud generation 

 
 

24 hr. and 27 min 

5 hr. and 25 min 
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Cost-based evaluation 

On the other hand, the cost of using different equipment and software was recorded based 

on official statements and companies web pages. Also, the operator cost related to data collection 

and processing was estimated at (20$/hour). Taking on the consideration that the cloud-based 

processing require no manpower, the operator cost was calculated by multiplying the hourly rate 

and the needed time of data collection and processing excluding the cloud-based processing 

duration. Therefore, Table 4-11 shows the cost needed to generate image-based thermal models 

while Table 4-12, reflects the cost of laser-based thermal modeling. 

Table 4-11: Cost-based evaluation for image-based 3D thermal point cloud generation 

 Digital Imagery Thermal imagery system 

Equipment cost ($) 1,9001  19,0003 

Software cost ($) 300 2 2954; 3,8005 

Operator cost ($) 20$ x 2.25 = 45 20$ x 2.25 = 45 

Total Cost 
2,245 23,140 

  
 

Table 4-12: Cost-based evaluation for Laser-based and 3D thermal point clouds generation 

 Laser Scanning Thermal imagery system 

Equipment cost ($) 54,7756 19,000 

Software cost ($) 9,6257 295; 3,800 

Operator cost ($) 20$ x 3.17 = 64 20$ x 2.25 = 45 

Total Cost 
64,464 23,140 

  
 

1 A digital camera Nikon Digital SLR Camera D600 (Nikon, 2016). 2 Autodesk Recap 360 software 

with a 300 $/ year, (Autodesk, 2016). 3 Matrice100@zenmuse XT with iPad, Acquired from an 

official invoice from (Safety express Ltd, 2016). 4 FLIR Tools Plus, Acquired from an official 

invoice from (Safety express Ltd, 2016). 5 3dReshaper software. Retrieved from  (RPLS.Network, 

2016). 6 Faro Focus 3D X130 laser scanner with a package including targets and a tripod. Acquired 

from an official invoice from (Cansel Survey Equipment Ltd., 2015). 7 Trimble RealWorks 10. 

Acquired from (Cansel Survey Equipment Ltd., 2015).  

87,604 $ 

25,385 $ 
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4.2.2. Case Study II – Gymnasium at Loyola Campus 

Spatial Modeling 

[1] Point Cloud Generation Using Digital Imagery: 

Data Collection 

Similarly as in case study I, visible images was collected for an indoor Gymnasium 

environment at Loyola Campus in the city of Montreal, Canada. With the fact that this environment 

is different than that of case study I by means of a) a rectangular symmetric geometry, b) artificial 

lighting conditions, and c) reflective textures like hardwood. Thus, two checkerboards of known 

dimensions were positioned in the environment prior to image acquisition for later registration and 

scaling (see Figure 4-43 ). Accordingly, images were collected from different angles and locations 

preserving an overlapping of 80% between consecutive images as shown in (Figure 4-44).  

 

Figure 4-43: Checkerboards as reference targets in the Gymnasium environment 

 

Figure 4-44: Sample of overlapping images collected from the gymnasium testing environment 
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Data Processing 

Next, the collected data were filtered and all blurry images, unwanted images that contain 

moving objects were removed. The summary of data collection is reviewed in (Table 4-13), in 

which the 120 filtered images were uploaded into (Autodesk ReCap 360) software. First, some 

images were registered manually and the model was scaled using known dimensions of 

checkerboards. Consequently, an automated process resulted in the reconstruction of a 3D point 

cloud model for the gymnasium testing environment. After, the generated model was filtered from 

any unwanted points. Finally, an image-based point cloud model of the gymnasium testing 

environment was reconstructed (see Figure 4-45). In summary, the visible point clouds were 

orthogonally projected to form an orthogonal image (Figure 4-46). In which, it represents an 

adequate layout with direct metric measurements using a graphic scale to measure distances.      

Table 4-13: summary of data collection for Gymnasium environment  

No. of images 

before filtration 

No. of images 

after filtration 

No. of images 

registered 

Image resolution 

(pixels) 

Focal length 

(mm) 

146 120 120 6016 x 4016 35 

 

 

Figure 4-45: 3D image-based point cloud model of the gymnasium testing environment  
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Figure 4-46: As-is image-based ortho-photo of the gymnasium testing environment 
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[2] Point Cloud Generation Using Laser Scanning: 

Data Collection 

Similar as case study I, a Faro Focus3D X 130 laser scanner was deployed in the testing 

environment for scanning. First, five spherical targets and two checkerboards were added to the 

testing environment at different locations. Next, three scans were applied to cover the wide inner 

surrounding of the gymnasium. The respective positions of the three scans are presented in 

Figure 4-47, these scans were enough to capture the whole environment.  

 

Figure 4-47: The scanning positions used in gymnasium testing environment. 

Data Processing 

In the processing stage, multiple scanned data of the gymnasium testing environment were 

imported from the SD card into (Trimble Realworks 10) software then exported into a compatible 

extension (.pts). Then, all exported scans were imported into (Autodesk ReCap 360) for later 

alignment into one model of a common coordinate system. This process is known as scans 

registration. Next, registration was successful with a 100% accuracy with a mm unit of 

measurement. Finally, the laser-based point cloud model of the gymnasium testing environment 

was reconstructed (Figure 4-48). In summary, laser-based point clouds were orthogonally 

projected to form an orthogonal image (Figure 4-49). In which, it represents an adequate layout 

with direct metric measurements using a graphic scale to measure distances and areas.     
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Table 4-14: Laser scanning summary for the gymnasium testing environment 

Number of scans Number of spherical spheres used Number of checkboard targets 

3 5 2 

 

 
Figure 4-48: 3D Laser-based point cloud Model of the gymnasium testing environment  
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Figure 4-49: As-is laser-based ortho-photo of the gymnasium testing environment 
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Infrared Thermography 

Data Collection 

Similar to the case study I, the UAS-based thermal imagery system was used for infrared 

thermography task. Accordingly, an infrared sensing camera Flir Zenmuse XT mounted on 

Matrice100 drone was used for thermal image acquisition. To start, the UAS was launched and 

the infrared camera sensing was connected remotely to the remote controller. Then both the aircraft 

and the camera were calibrated, and the settings were adjusted. With the highest resolution of 640 

x 512 pixels, images were captured in a modular manner with a consistent distance from the facing 

plane surfaces. This process was repeated for several times until the collection of the whole scene 

of an environment was completed. Collecting thermal images with a consistent distance from the 

facing plane would minimize the temperature variation between images. Using the live streaming 

feature via DJI Go application, images were viewed and revised directly in site and more images 

were captured when needed. Also, an overlap of 50% or more was preserved between consecutive 

images as shown in Figure 4-50. 

 

Figure 4-50: Sample of overlapping thermal images collected from the gymnasium environment 

Data Processing 

Starting with the filtration of the collected thermal images, only – were chosen for stitching. 

The filtered images were uploaded to FLIR Tools Plus software for image stitching. Then, features 

were extracted and matched between images similar to the process in the case study I (see 

Figure 4-38). Accordingly, final output was the generation of large radiometric panoramic images 

as explained before in case study I, (see Figure 4-39). Finally, panoramic images were mapped to 

both image-based and laser-based 3D point clouds via control points such as vertices and corners 

using 3dreshaper software.  
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As a result, (Figure 4-51-a) represents the final filtered as-is image-based 3D thermal point 

cloud model. While (Figure 4-51-b), shows the final as-is laser-based 3D thermal point cloud 

model. These as-is 3D thermal point cloud models represent both spatial and infrared information 

of the gymnasium testing environment. In summary, thermal point clouds were orthogonally 

projected to form an image-based ortho-thermal image (Figure 4-52) and a laser-based ortho-thermal 

image (Figure 4-53). Both ortho-thermal photos represent an adequate layout with direct thermal and 

metric measurements. First, a temperature scale can identify the hot and cold areas depending on the 

color visualization and a graphic scale can be used to measure distances and areas.   

Table 4-15: summary of thermal data collection for gymnasium testing segment 

Number of thermal 

images processed 

Number of images 

registered 

Image resolution 

(pixels) 

Focal length (mm) 

23 20 640 x 512 13 

 

 
Figure 4-51: As-is 3D Thermal Model of the gymnasium testing environment; a) Image-based 

3D thermal model, and b) Laser-based thermal model 
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Figure 4-52: As-is image-based thermal ortho-photo for the gymnasium testing environment 
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Figure 4-53: As-is laser-based thermal ortho-photo for the gymnasium testing environment 
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Evaluation 

Density evaluation 

Similarly, as in case study I, the density of all point cloud models were recorded as shown 

in the following Table 4-16. 

Table 4-16: Density evaluation of the gymnasium testing environment 

 Total Number of 3D points  

3D image-based point cloud 1,519,514 

Image-based 3D thermal point cloud 
(Before filtration): 1,519,514 

(After filtration): 1,349,977 

3D laser-based point cloud 46,456,181 

Laser-based 3D thermal point cloud 46,456,181 

 

Time-based evaluation 

Table 4-17: Time-based evaluation for image-based 3D thermal point clouds generation 

 Digital Imagery Thermal Imagery 

Data 

Collection 

Setting Up environment 5 min 10 min 

Image acquisition 10 min 30 min 

Average total duration for Data Collection  15 min 40 min 

Data 

Processing 

Filtration 15 min 15 min 

Point cloud 

generation 

Manual registration 40 min - 

Cloud processing 16 hr. and 10 min - 

Image stitching - 30 min 

Mapping and filtration - 55 min 

Average total duration for Data Processing 17 hr. and 05 min 1 hr. and 40 min 

Average total duration for 3D image-based point 

cloud generation  

17 hr. and 20 min 2 hr. and 20 min 

Average total duration for image-based 3D thermal 

point cloud generation 

 
 19 hr. and 40 min 
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Table 4-18: Time-based evaluation for laser-based and 3D thermal point clouds generation 

 Laser Scanning Thermal Imagery 

Data 

Collection 

Setting Up environment 15 min 10 min 

Three laser Scans /Image acquisition 1 hr 30 min 

Average total duration for Data Collection  1 hr. and 15 min 40 min 

Data 

Processing 

Filtration - 15 min 

registration 2 hr. - 

Image stitching - 30 min 

Mapping and filtration - 55 min 

Average total duration for Data Processing 2 hr. 1 hr. and 40 min 

Average total duration for 3D image-based point 

cloud generation  

3 hr. and 15 min 2 hr. and 20 min 

Average total duration for image-based 3D thermal 

point cloud generation 

 
 

 

Moreover, the required duration to accomplish each stage was recorded as shown in 

Table 4-17 and Table 4-18 respectively.  

Cost-based evaluation 

Finally, the cost was evaluated and reviewed in case study I. Thus, (Table 4-19) shows the 

summary of the required cost for each technique. 

Table 4-19: Cost-based evaluation 

 Cost ($) 

image-based visible and 

thermal 3D point clouds 

generation 

Digital Imagery 2,225 

Thermal imagery system 23,140 

Total Cost ($)   

Laser-based visible and 

thermal 3D point clouds 

generation 

Laser scanning 64,467 

Thermal imagery system 23,140 

Total Cost ($)   

 

5 hr. and 35 min 

25,365 $ 

87,607 $ 
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4.2.3. Case Study III – Lab Office in EV Building 

Spatial Modeling 

[1] Point Cloud Generation Using Digital Imagery: 

Data Collection 

Similarly, as previous case studies I and II, visible images were collected for the lab office 

testing environment at EV building of Concordia University. Technically, a small confined office 

room with small geometrical dimensions of (4m x 10.2 m) was studied in dark conditions. Also, 

the stucco walls of this room is a reflective texture material with a uniform white color. This could 

lower the efficiency of image-base modeling, so visual markers and reference targets were attached 

to the walls in order to increase the number of features and improve the quality of the reconstructed 

3D point cloud model. As shown in (Figure 4-54), several visual markers were added to the walls 

randomly. Also, reference targets of known dimensions were added for later manual registration 

and scaling. Accordingly, images were collected using the camera flashlight at different locations 

and angles preserving a minimum overlapping of 80% between consecutive images as shown in 

(Figure 4-55).  

 

Figure 4-54: Visual markers attached to the walls of the lab office testing environment 

 
Figure 4-55: Sample of overlapping images collected from the lab office testing environment 
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Data Processing 

After unwanted images were filtered and removed so 136 images were uploaded into 

(Autodesk ReCap 360) software. First, some images were registered manually and the model was 

scaled using known dimensions of reference targets. Consequently, an automated process resulted 

in the reconstruction of a 3D point cloud model for the lab office testing environment. Finally, an 

image-based point cloud model of the lab office testing environment was reconstructed and the 

visible point clouds were orthogonally projected to form an orthogonal image (Figure 4-56). Also, 

the summary of data collection is reviewed in the following (Table 4-20).   

Table 4-20: summary of data collection for the lab office testing environment 

No. of visual 

markers and 

reference targets 

No. of images 

before 

filtration 

No. of 

images after 

filtration 

No. of 

images 

registered 

Image 

resolution 

(pixels) 

Focal 

length 

(mm) 

57 138 136 136 6016 x 4016 35 

 

 
Figure 4-56: 3D image-based point cloud model of the lab office testing environment 
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[2] Point Cloud Generation Using Laser Scanning: 

Data Collection 

Likewise, previous case studies I and II, a Faro Focus3D X 130 laser scanner was deployed 

in the lab office testing environment for scanning and five spherical targets were localized at 

different locations. Next, two scans were conducted in gray color settings most compatible to dark 

conditions. The corresponding two scan positions were enough to capture the whole environment 

(see Figure 4-57), while (Table 4-21) summarizes data collection stage for laser scanning.  

Table 4-21: Laser scanning summary for the lab office testing environment 

Number of scans Number of spherical spheres used Number of reference targets 

2 5 8 

 

Data Processing 

 

Figure 4-57: 3D laser-based point cloud model of the lab office testing environment 



101 

 

In data processing stage, two scans of the lab office testing environment were uploaded 

from the SD card into (Trimble Realworks 10) software then exported into a compatible extension 

(.pts) and then registered using (Autodesk ReCap 360). Finally, a laser-based point cloud model of 

the lab office testing environment was reconstructed and the visible point clouds were orthogonally 

projected to form an orthogonal image (Figure 4-57). 

Infrared Thermography 

Data Collection 

Similar to case studies I and II, an infrared sensing camera Flir Zenmuse XT mounted on 

Matrice100 drone was used for thermal image acquisition. To start, both the aircraft and the 

infrared camera sensing was launched, calibrated and connected to the remote controller. Then, 

settings were adjusted and the black and white color palate were chosen for this experiment. Image 

acquisition was performed remotely and in a modular manner with a consistent distance from the 

facing plane surfaces as discussed before. This process was repeated for several times until the 

collection of the whole scene of an environment was completed. Also, an overlap of 50% or more 

was preserved between consecutive images. (Figure 4-58) is a sample of thermal data collection 

stage. And data processing was similar to previous discussions, results are shown in (Figure 4-59).  

Table 4-22: summary of thermal data collection for the lab office testing segment 

Number of thermal 

images processed 

Number of images 

registered 

Image resolution 

(pixels) 

Focal length (mm) 

20 18 640 x 512 13 

 

 
Figure 4-58: Thermal data collection in lab office testing environment; a) capturing images 

remotely, and b) sample of the collected thermal images 
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Data Processing

 
Figure 4-59: (a) Image-based 3D thermal point cloud model of the lab office testing 

environment, and (b) laser-based 3D thermal point cloud model of the lab office testing 

environment 
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Evaluation 

Density evaluation 

Similarly, as in case studies I and II, the density of all point cloud models for case study 

III was recorded as shown in the following (Table 4-23). 

Table 4-23: Density evaluation of the lab office testing environment 

 Total Number of 3D points  

3D image-based point cloud 7,000,342 

Image-based 3D thermal point cloud 
(Before filtration): 7,000,342 

(After filtration): 6,938,941 

3D laser-based point cloud 11,742,896 

Laser-based 3D thermal point cloud 11,742,896 

 

Time-based evaluation 

Table 4-24: Time-based evaluation for image-based 3D thermal point clouds generation 

 Digital Imagery Thermal Imagery 

Data 

Collection 

Setting Up environment 30 min (visual markers) 10 min 

Image acquisition 10 min 15 min 

Average total duration for Data Collection  40 min 25 min 

Data 

Processing 

Filtration 15 min 15 min 

Point cloud 

generation 

Manual registration 30 min - 

Cloud processing 21 hr and 30 min - 

Image stitching - 30 min 

Mapping and filtration - 45 min 

Average total duration for Data Processing 22 hr and 15 min 1 hr and 30 min 

Average total duration for 3D image-based point 

cloud generation  

22 hr and 55 min 1 hr and 55 min 

Average total duration for image-based 3D 

thermal point cloud generation 

  
24 hr and 50 min 
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Table 4-25: Time-based evaluation for laser-based and 3D thermal point clouds generation 

 Laser Scanning Thermal Imagery 

Data 

Collection 

Setting Up environment 15 min 10 min 

Two laser Scans /Image acquisition 30 min 15 min 

Average total duration for Data Collection  45 min 25 min 

Data 

Processing 

Filtration - 15 min 

registration 1 hr. - 

Image stitching - 30 min 

Mapping and filtration - 45 min 

Average total duration for Data Processing 1 hr. 1 hr. and 30 min 

Average total duration for 3D image-based point 

cloud generation  

1 hr. and 45 min 1 hr. and 55 min 

Average total duration for image-based 3D thermal 

point cloud generation 

 
 

 

Moreover, the required durations to accomplish each stage for the lab office testing 

environment were recorded as shown in (Table 4-24) and (Table 4-25) respectively.  

Cost-based evaluation 

Finally, the cost was evaluated and reviewed in both case studies I and II. Thus, 

(Table 4-26) shows the summary of the required cost for each technique. 

Table 4-26: Cost-based evaluation 

 Cost ($) 

image-based visible and 

thermal 3D point clouds 

generation 

Digital Imagery 2,229 

Thermal imagery system 23,134 

Total Cost ($)   

Laser-based visible and 

thermal 3D point clouds 

generation 

Laser scanning 64,422 

Thermal imagery system 23,134 

Total Cost ($)   

 

3 hr. and 40 min 

25,363 $ 

87,556 $ 
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4.3. Discussion and Remarks  

4.3.1. Output models Comparison 

Density-based evaluation: 

Starting with the term “density” within 3D point cloud modeling, it is directly related to 

the number of reconstructed spatial 3D points. Thus, the density of 3D thermal points is heavily 

dependent on the generated 3D visible spatial points. Theoretically, a total number of 3D thermal 

points must be similar to its respective spatial model. Technically, this is the case for laser-based 

point clouds and laser-based thermal point clouds. However, it is different for image-based thermal 

point clouds since the generated models are filtered after mapping. The filtration process is a must 

for image-based point clouds since edges and far corners are not consistent and need to be cleaned 

which is not the case for laser-based models that have a very accurate 3D point clouds. As a result, 

a filtered image-based thermal point cloud model will have a lower number of 3D points than its 

corresponding visible image-based point cloud model. This is presented clearly in the density-

based summary of all models shown in Table 4-27.  

In summary, Figure 4-60 can reflect that laser-based thermal point clouds are much higher 

in density when compared to those of image-based point clouds. Still, these values vary from one 

case study to another. Starting with case study I, the total number of laser-based 3D points is 

approximately (x 25) higher than that of image-based 3D points. However, both models showed 

the complete and accurate generation of planes and surfaces even when applied in dark conditions 

and different (tunnel geometry) geometric shapes. On the other hand, case study II shows a higher 

number of laser-based thermal 3D points approximately to (x30) when compared to that of image-

based thermal 3D points. However, the image-based 3D thermal model was able to generate more 

areas and show complete surfaces than that of a laser-based thermal model (see Figure 4-61). The 

reason behind this is that far distances from a laser scanner location are less chance to be scanned 

or have less dense points than areas which are closer to the laser scanner position. On the other 

hand, the image-based thermal model showed complete areas with sparse 3D point’s generation. 

Lastly, the lab office testing environment is considered as the smallest case study among all. 

Although, the laser-based 3D points are only (x1.67) more than that of image-based 3D points. 

But, image-based point cloud model showed incomplete areas and surfaces due to the reflective 

and uniform textures of stucco walls.    
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Table 4-27: Density evaluation summary of all case studies 

Number of 3D 

points 

Proposed methodology Experimental Design 

Image-based point cloud models Laser-based point cloud models 

Visible models Thermal models Visible models Thermal models 

Case study I 1,497,606 1,272,326 37,386,416 37,386,416 

Case study II 1,519,514 1,349,977 46,456,181 46,456,181 

Case study III 7,000,342 6,938,941 11,742,896 11,742,896 

 

 
Figure 4-60: Density-based evaluation for all generated thermal models 

 
Figure 4-61: Sample for complete and incomplete surface generation of point clouds   
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Time-based evaluation: 

While the needed duration of time for each stage was mentioned in the previous section, 

Table 4-28, summarizes the final duration of time for both the proposed methodology and the 

experimental design model. Theoretically, laser-based thermal molding shows faster process when 

compared to the overall time needed for image-based thermal modeling. But, this is not the case 

since the time needed must be related to the overall duration period spent by the operator to execute 

all processes. Thus, a realistic comparison would exclude the time needed for cloud processing 

since the process is not consuming the time of the operator who can continue his work normally. 

As a result, the proposed methodology of image-based thermal modeling shows faster process 

when compared to that of laser-based thermal modeling (see Figure 4-62). 

Table 4-28: Time evaluation summary in all case studies 

Time Needed 

 

Proposed methodology Experimental Design 

Image-based thermal point cloud models Laser-based thermal point 

cloud models Including cloud 

processing 

Excluding cloud 

processing 

Case study I 24 hr, 27 min 4 hr, 50 min 5 hr, 25 min 

Case study II 19 hr, 40 min 3 hr, 20 min 5 hr, 35 min 

Case study III 24 hr, 50 min 3 hr, 20 min 3 hr, 40 min 

 

 

Figure 4-62: Time-Based evaluation for all generated thermal models 
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Cost-based evaluation: 

Furthermore, the cost is considered as a crucial factor for the evaluation of any approach. 

Thus, the cost of all used equipment and software in this research were recorded and presented for 

all case studies. Also, the needed operator cost for data collection and processing was estimated. 

Although the proposed methodology can work with a standalone infrared camera sensing, this 

research used a modern thermal imagery method that included a UAS-based thermal imagery 

system. Consequently, Figure 4-63 shows that the cost of the proposed methodology is considered 

much affordable when compared to that of laser-based thermal modeling. Both, the standalone 

infrared camera sensing and the used UAS-based thermal imagery system are up to four times 

cheaper than laser-based thermal modeling system.  

 
Figure 4-63: Average cost-based evaluation for generated thermal models 

4.3.2. Remarks 

Furthermore, the proposed methodology was also compared with respect to other 

existing methods in the 3D thermal modeling of indoor environments. Thus, all related 

studies including used systems, methods, and their results are shown below as follow (see 

Table 4-29): 
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Table 4-29: Differences between related existing studies and the proposed methodology 

 (Ham & 

Golparvar-Fard, 

2012) 

(Borrmann et 

al., 2012) 

(Oreifej et al., 

2014) 

Proposed 

Methodology 

System used EPAR 

(Figure 4-64-a) 

Irma3D 

(Figure 4-64-

b) 

e-pack 

(see Figure 4-64-c) 

Separate digital and 

IR imagery system 

(see Figure 4-64-d) 

equipment 

used in Data 

collection 

Handheld IR 

camera sensing 

with built-in 

digital camera 

An IR camera 

sensing fixed 

on a 3D laser 

scanner 

Five 2D laser 

scanners, two IR 

cameras, two 

optical camera 

sensors, orientation 

sensor, and a laptop 

IR camera sensing 

and a digital camera 

sensing 

Data 

processing 

methodology 

Image fusion;  

3D 

reconstruction 

using sfm 

 

IR fusion to 3D 

laser-based 

point clouds 

Reconstruction of 

3D laser-based 

geometry; texturing 

point clouds using 

visible and IR 

images 

3D visible 

reconstruction 

using sfm; Thermal 

image stitching; 

Thermal mapping 

Testing 

environments 

Buildings Buildings Buildings Buildings and 

infrastructures 

Advantages Low cost of used 

equipment, low 

manpower; 

mobile,  

Real-time data 

fusion, robotic 

mobile system, 

time-effective 

Complete 

generation of both 

visible and thermal 

models; mobile 

Complete visible 

and thermal 

models; cost and 

time effective, low 

manpower; very 

mobile (could be 

attached to UAS), 

camera sensors can 

be upgraded easily 
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Limitations Very low  model 

resolution, low 

model accuracy, 

and incomplete 

model 

generation, 

limited camera 

sensing upgrade 

(built-in system)    

Cost-intensive 

system, and 

limited field of 

view (fov) 

related to fixed 

position of IR 

camera. Thus, 

reconstructed 

model is 

incomplete 

Cost-intensive 

system,  heavy and 

bulk system, system 

is carried on the 

back of the operator 

Heavily dependent 

on the 

reconstructed 3D 

image-based point 

clouds 

Models 

output 

Figure 4-65-a Figure 4-65-b Figure 4-65-c Figure 4-66 

 

 

Figure 4-64: Used systems in existing studies and the proposed methodology 
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Figure 4-65: Output models of related existing studies  
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Figure 4-66: Output models of the proposed methodology 

Finally, the output models were generated successfully even when using affordable 

equipment such as thermal and digital cameras only. Also, the resulted 3D thermal models were 

useful in detecting defects based on the thermal color variation. For example, the blue color in the 

projected thermal ortho-gram of the subway tunnel presented in Figure 4-66 reflects a water source 

leak. The respective blue color reflects the presence of colder area when compared to the 

neighboring areas. Thus, using thermal model was successful in identifying the water leakage. 
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Temperature color variation analysis  

In order to verify the temperature reading accuracy, a temperature color variation analysis 

was conducted to compare color variation between input thermal images and 3D thermal output 

models. To do so, common sections between an input 2D thermal image and its respective thermal 

representation of the 3D thermal model were selected. Next, color variation analysis representing 

the temperature differences were recorded and compared. In Figure 4-67, an example for a random 

section selection between input 2D thermal images and output 3D thermal models. Next, color 

variation between two sections will be recorded and compared. Respectively, this process was 

performed at different sections randomly for the three case studies.  

 

Figure 4-67: Section selection between 2D thermal input and 3D thermal output 

In order to conduct a color variation comparison, the color value of each pixel must be 

recorded. Where, each pixel has a color value represented by a system known as RGB (Red, Green, 

and Blue). The level values for each of the R, G, and B colors can vary from 0 to 100 percent 

intensity. While each level is signified by a range of decimal numbers from 0 to 255 (different 

levels of each color). In Figure 4-68, two exact sections were recorded from a 2D thermal image 

input and its respective section in the output. The value distribution was recorded for each color 

and to the whole section. Respectively, the same number of pixels in both the input and the output 

showed a slight difference in color representation. The small difference in standard deviation 

between the input and the output can indicate a minimal variation in color visualization. Where 

the standard deviation reflects the value distribution around the average. Therefore, the output 

models have an accurate color visualization with respect to the input thermal images. Thus, the 

temperature representation using color differences in the 3D thermal models are also accurate.  
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Figure 4-68: An example of color variation analysis 

A set of different section comparison at different locations were applied and recorded in 

the below Table 4-30. Results in all case studies showed an accurate color visualization in the 3D 

thermal models when compared to the 2D thermal image inputs. Therefore, the temperature 

representation using color difference visualization is also accurate.   

Table 4-30: Color variation analysis 

 Section 

Comparison 

Number 

of pixels 

Mean Median Std. 

Deviation 

Std. deviation 

difference 

Case 

Study I 

input 3478 95.39 127 64.91 
0.13 

output 3478 94.63 128 64.78 

Case 

Study II 

input 39368 37.21 17 39.59 
0.89 

output 39368 36.66 14 40.48 

Case 

Study III 

input 32480 94.96 97 21.22 
0.83 

output 32480 91.41 93 20.39 



115 

 

4.3.3. Limitations of the Proposed Methodology 

In this section, all problems encountered while performing different experiments will be 

reviewed and discussed. Thus, all limitations concerning image-based 3D thermal modeling of 

indoor environments of buildings and infrastructures will be outlined. Technically, two main 

limitations were examined related to image-based spatial modeling and thermal images stitching.  

Problems related to image-based spatial modeling: 

Data collection within narrow spaces 

Collecting both visual and thermal images for the confined lab office environment with 

very narrow and restricted space showed some difficulties. To start, the width of the lab office 

environment of 4 meters as shown in (Figure 4-69). Thus, covering a large area of the facing 

surface in just one image is almost impossible. In order to solve this problem and cover the whole 

facing surface, more images were required to be captured. This could add more processing time of 

the reconstructed 3D spatial model and more time in thermal stitching.  

 

Figure 4-69: Narrow space dimension of the lab office testing environment 

Modeling surfaces with a uniform texture 

While modeling image-based 3D point clouds, only case study III (lab office) has shown 

incomplete modeling of surfaces with uniform texture as white stucco walls. On the other hand, 

visual markers were added to these walls in order to increase the number of features of a model as 

suggested by (Snavely et al., 2010). Still, results showed a deficiency in generating a complete and 

accurate model as shown in Figure 4-70. 
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Figure 4-70: Incomplete surface modeling of walls with uniform textures 

Problems related to thermal mapping into incomplete surfaces:  

 Based on the abovementioned problem of incomplete surface modeling, thermal modeling 

as well should have the same limitation of missing parts of thermal information. But, this, in turn, 

would reflect a wrong indication of the collected data. As a result, a solution was by filling the big 

holes by a modeled wall in the same location of the as-is point cloud surface. Next, thermal 

information will be mapped to both generated spatial point clouds and a modeled wall. 

Accordingly, this would preserve a correct visualization of thermal information (see Figure 4-71). 

However, filled-based thermal surfaces were not considered as a generated 3D point clouds. 

 

Figure 4-71: thermal modeling of incomplete surfaces  
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CHAPTER 5:  CONCLUSION  

Infrared thermography (IR) is a modern non-destructive technique that was implemented 

lately in applications related to several areas of the architecture, engineering, and construction 

(AEC) industries such as facility condition assessment, energy performance analysis, defect 

detection, etc.… However, current practices related to thermal inspection in the existing built 

environments are heavily dependent on the captured 2D IR images. However, researchers, 

engineers, and audits believe that relying on 2D IR images alone is an obsolete practice which is 

considered as error-prone, time-consuming, and cost-intensive (Giel & Issa, 2011; Qu, Coco, 

Rönnäng, & Sun, 2014). Moreover, depending on selective 2D IR images for analyzing and 

reporting require more effort for searching and authorization. All of this would end in adding more 

time and money to a project. On the other hand, industries related to AEC in North America are 

considered as the highest energy consumers. Yet, current energy performance analysis using IR 

relies mainly on analyzing and reporting 2D IR images. Which in turn will reflect a limited 

representation of the studied geometry. Therefore, these practices are considered as inaccurate and 

misleading since the collected data are missing most of the 3D as-built environment conditions. 

Although infrared thermography is a promising technology in AEC, related 2D IR practices were 

considered as time-consuming, and labor intensive (Azhar & Brown, 2009; Lagüela et al., 2012; 

Chao Wang, 2014).  

Nowadays, infrared sensing and software related to thermal imaging were improved in a 

tremendous way. Consequently, modern researchers have suggested 3D thermal modeling 

techniques as a replacement for the still 2D IR images in documenting, analyzing, and reporting. 

However, existing studies in 3D thermal modeling have been mainly used in the reconstruction of 

exterior facades of buildings and generation of outdoor environments (Cho et al., 2015; Ham & 

Golparvar-Fard, 2012). Where, only a few researchers who tried to test 3D thermal modeling 

approach for indoor built environments (Borrmann et al., 2012; Oreifej et al., 2014). Yet, further 

studies need to be acquired to overcome 3D thermal modeling limitations such as the high cost, 

slow process, and the need of highly trained professionals. In summary, till the date of conducting 

this research, no one has tried to develop a 3D thermal modeling method for indoor built 

environments; which is affordable in terms of accuracy, cost, time and effort. 
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This chapter is a summary of the strategies, findings, and remarks that have been used in 

developing a 3D thermal modeling method. Where the first section will summarize the research 

objectives, proposed method, and results. Next, answers of the proposed questions in chapter one 

will be discussed and examined. Moreover, research contributions and possible implantation of 

the proposed methodology in field applications will be present. Finally, a conclusion section will 

provide a future research work suggestions and recommendations.   

5.1. Summary  

Based on the existing gap in the literature, the need for a new approach in the reconstructing 

of 3D thermal models of built environments was discussed and examined in this research. In 

specific, the proposed methodology suggested the use of 2D IR and visible images collected 

separately using both infrared and digital cameras respectively. To test this method, it was applied 

in three different case studies of different variables which are; the geometric shape of an 

environment, lighting conditions, and material textures. Thus, the first case study was conducted 

in a subway tunnel segment in the city of Montreal, Canada. While the second case study was 

applied in a gymnasium located at the athlete complex building of Concordia University’s Loyola 

campus, Montreal, Canada. Finally, case study III was a confined lab office located in the second 

basement-S2 floor of Concordia University’s EV building. Moreover, in order to evaluate the 

efficacy of the output models of the proposed methodology, they were compared to another 3D 

thermal point clouds which were developed by a laser scanner and an infrared camera. Finally, 

both the proposed model of image-based 3D thermal point clouds and the laser-based 3D thermal 

point clouds were evaluated in terms of density, time, and cost. After comparing the outputs of the 

proposed methodology, results have shown that;  

(1) Even with less-dense point clouds, the proposed methodology can guarantee a high 

chance of complete surface generation in the point cloud models.  

(2) The proposed methodology showed that it is more feasible in terms of time and cost 

over the results of the experimental design model.   

(3) The proposed methodology can be a reliable method in replacing the 2D thermal 

inspection of facilities and performing energy performance analysis, especially for environments 

with large surfaces. Thus, helping engineers, audits, and inspectors in improving final decisions.  
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5.2. Concluding Remarks 

This research has proposed the use of 2D IR and visible images collected separately by an 

infrared and digital camera respectively, to reconstruct image-based 3D spatial and thermal point 

cloud models of built environments. In the beginning of this research, three questions were asked 

as the hypothesis of this study. Following is the contributions examined from the whole study that 

can guide and answer the proposed questions. 

[1] Can 2D visible, and infrared images collected separately be used in the generation 

of as-is 3D thermal models of the built environments? 

2D visible images collected by a digital camera were filtered and processed using sfm 

approach to generate 3D image-based point cloud models. On the other hand, 2D IR images 

collected separately using an infrared camera were filtered and stitched together to form large 

radiometric panorama image that covers a large surface area with an accurate temperature 

representation. Next, radiometric panorama images were mapped into the image-based point 

clouds to form an accurate image-based 3D thermal point cloud models. This can guarantee that 

2D visible and infrared images that are collected separately can be used in the generation of as-is 

3D thermal models of built environments. 

[2] If yes, are these models feasible enough to be implemented in the field? And, Why?  

In order to test the efficiency of the generated models, they were compared to another 3D 

thermal point clouds which were developed by a laser scanner and an infrared camera. Results 

have shown that the output models of the proposed methodology have less-dense point clouds; yet, 

they succeeded in generating almost complete surface planes. Furthermore, results from the 

proposed methodology have shown that this method is more affordable by means of time and cost 

over the experimental design.     

[3] Can this method facilitate the replacement of 2D thermal inspection with 3D 

thermal models? And, How? 

Several advantages can be achieved by reconstructing the proposed 3D thermal model of 

built environments. For example, complete 3D as-built documentation can be achieved within 

short durations compared to the missing data with a 2D thermal inspection that requires long 
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durations. Also, having 3D models will lead in turn to complete 2D documents and drawings that 

can be shared easily for the collaboration with other domains of the same interest. Finally, 3D 

models can be constructed easily and can be executed within reasonable durations for evaluating, 

monitoring, and controlling the condition of a facility.   

 This methodology can be applicable for all indoor built environments. For example, it can 

be used in (O&M) for defect detection and facility control and monitoring. It is also beneficial in 

energy performance analysis that can help in turn to simulate the energy efficiency of a facility. 

Therefore, it can help engineers, audits, and inspectors in improving final decisions and related 

retrofits.  

5.3. Future Work 

In the future, the proposed methodology could be tested in more environments with 

featureless surfaces in order to overcome problems related to thermal mapping to incomplete point 

cloud surfaces. Moreover, more studies could be applied to enhance data collection within narrow 

and restricted environments. For example, a modular grid system could be developed for image 

acquis ion. Furthermore, UAS-based thermal imagery system was used in this research. Still, more 

studies are needed to test the feasibility of this system for 3D thermal modeling of built 

environments. For example, a digital camera can be mounted on a UAS along with the infrared 

camera. And both can collect images at the same time but separately. More case studies of different 

variables are in need to be tested. Consequently, multiple advantages could be achieved using this 

system that includes but not limited to; post-disaster modeling without endangering human life. 

Or in the modeling of dangerous and top secret places that require no staff to enter; for example, 

military bases and nuclear plants. 
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APPENDIX  

Table 6-1: Total energy consumption (Mtoe) (Enerdata, 2016) 

 

 

2010 2011 2012 2013 2014 2015
2014 - 2015 

(%/year)

2000 - 2015 

(%/year)

World 12900 13125 13321 13540 13678 13778 0.7 2.1

OECD 5410 5312 5260 5313 5262 5260 0.0 0.0

G7 3927 3828 3763 3816 3786 3764 -0.6 -0.4

BRICS 4378 4654 4824 4952 5081 5139 1.1 4.8

Europe 1924 1862 1854 1838 1769 1800 1.8 -0.2

European Union 1721 1658 1646 1625 1557 1578 1.3 -0.5

Belgium 61 58 54 56 54 54 0.4 -0.5

Czech Rep. 44 43 43 42 41 40 -2.1 -0.3

France 262 252 252 253 244 246 1.1 -0.2

Germany 327 311 312 318 302 305 1.1 -0.7

Italy 170 167 162 156 146 152 3.9 -0.8

Netherlands 83 77 79 77 73 72 -1.5 -0.2

Poland 101 101 98 98 94 96 1.4 0.5

Portugal 23 23 22 22 21 22 3.4 -0.7

Romania 35 36 35 32 32 33 1.2 -0.7

Spain 128 125 124 115 113 116 3.0 -0.3

Sweden 51 50 50 49 48 47 -2.8 0.0

United Kingdom 202 188 193 191 178 179 0.6 -1.5

Norway 34 28 30 33 31 32 4.7 1.4

Turkey 105 112 117 117 121 127 5.3 3.4

CIS 1010 1056 1072 1055 1051 1028 -2.2 0.9

Kazakhstan 69 77 74 82 82 78 -5.0 5.4

Russia 689 723 741 730 731 718 -1.7 1.0

Ukraine 133 127 123 117 106 92 -13.1 -2.2

Uzbekistan 43 47 48 43 45 45 1.0 -0.8

America 3254 3250 3224 3291 3328 3293 -1.0 0.4

North America 2467 2449 2393 2443 2473 2446 -1.1 -0.2

Canada 251 257 252 253 256 251 -2.2 0.0

United States 2216 2192 2140 2190 2217 2196 -0.9 -0.2

Latin America 787 801 831 848 855 847 -0.9 2.4

Argentina 79 80 80 81 80 83 2.5 2.0

Brazil 266 271 282 294 304 299 -1.6 3.2

Chile 31 34 37 39 39 38 -0.9 2.9

Colombia 31 31 32 32 33 34 4.3 1.9

Mexico 176 184 189 193 189 187 -1.1 1.7

Venezuela 72 67 73 69 65 59 -8.5 1.0

Asia 4874 5085 5247 5403 5543 5625 1.5 4.4

China 2588 2802 2908 3010 3073 3101 0.9 6.6

India 693 716 752 776 832 882 6.0 4.7

Indonesia 210 206 212 214 224 227 1.3 2.5

Japan 499 462 452 455 443 435 -1.8 -1.2

Malaysia 75 78 80 90 92 91 -1.4 4.1

South Korea 253 265 271 273 277 280 1.0 2.6

Taiwan 111 109 107 109 111 109 -1.3 1.7

Thailand 118 118 126 134 138 139 1.3 4.5

Pacific 147 149 150 153 153 152 -0.7 1.1

Australia 124 126 126 129 127 126 -0.6 1.0

New Zealand 19 19 20 20 21 21 0.7 1.3

Africa 678 696 718 729 746 757 1.4 3.1

Algeria 39 41 45 47 51 53 5.1 4.7

Egypt 73 76 78 78 78 80 1.6 4.6

Nigeria 120 127 134 134 133 134 0.7 3.0

South Africa 142 143 140 141 142 138 -2.3 1.6

Middle-East 653 660 707 720 741 768 3.6 4.9

Iran 208 212 220 228 239 244 2.3 4.7

Kuwait 32 33 35 35 36 38 5.7 4.9

Saudi Arabia 186 178 200 192 205 215 4.8 5.4

United Arab Emirates 62 65 68 70 74 81 9.3 5.8

Total energy consumption (Mtoe)
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Background on the evolution of UAS 

The evolution of unmanned aerial systems (UAS) started for more than a century. In the 

late nineteenth century and beginning of the twentieth century, the technology of flying airships 

and unmanned balloons was improved and updated. Later, the concept of an unmanned aircraft 

was developed and took place in 1917 of World War 1 by the US army (Colomina & Molina, 

2014). For many decades, the main purpose of aerial aircraft was observed in the military actions 

and war contexts. For example, UAS were used during the Vietnamese war that took place between 

1963 and 1973, also, Israel used UAS in its war against Egypt during the 1973 October war 

(Gertler, 2012). In the late nineteen-seventies, researchers started to understand the power of UAS 

in surveillance, control, monitoring, and other related applications that serve the civilian sector. 

As a result, some initial experiments and trials were occurred, for the first time, in places like 

Australia, UK, and Japan for applications other than military purposes. Finally, the past decade 

showed a remarkable enhancement in the manufacturing and improving UAS technology 

worldwide (Colomina & Molina, 2014). Currently, UAS have invaded the world market in fields 

related to business, construction, agriculture, safety etc. The future of UAS is promising in all 

fields, especially in the field of Photogrammetry and Remote Sensing (PARS) and mapping 

(Eisenbeiß, 2009). 

Consequently, UAS have shown a remarkable utilization in PARS and has become a 

notable practice in aerial imaging.  In the beginning, the idea of collecting aerial images has started 

in the late of the nineteenth century were balloons, kites, and rockets were used for aerial 

photography. For example, aerial photographs of Paris were captured in 1858 by unmanned 

balloon (Colomina & Molina, 2014). However, the first experiment in unmanned aerial 

photographs was held by J. Neubronner in 1903 when he mounted a small camera on the breasts 

of a pigeon. Later on, manned aerial photographs took place in 1909 by W. Wright when he shot 

a motion pictures using his home-made airplane (Colomina & Molina, 2014). After that, 

researchers suggested to evolve the aerial remote sensing using a remotely-piloted aircraft or as 

later named unmanned aerial remote sensing.  In the late of the twentieth century, tests and 

experiments were established using different types of aircraft (eg. Rotary and fixed-wing, single 

and multi-rotor, remotely- and auto-piloted platforms) as the key development of UAS and their 

implementation in PARS (Eisenbeiß, 2009). 
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In general, UAS efficiency in civilian sectors has been proven in many applications and 

aspects, which can be illustrated in the following advantages stated by (Eisenbeiß, 2009; Elhassan 

et al., 2015):  

1. UAS is very efficient when used in risky situations and dangerous circumstances, 

without risking the human-life of staff. For example, it can be after natural catastrophes, 

war conflict zones and dangerous places in terms of geography, weather, and safety. 

2. UAS are small in size and light in weight, thus, can be used in small, unapproachable, 

and isolated locations such as caves, tunnels, and mining structures. 

3. UAS are cost and physical effective when compared to traditional manned aircraft.   

4. UAS supports the technology of real-time data collection and live-video record which 

is connected with the ground station. 

5. UAS are time-efficient and user-friendly equipment that needs no previous knowledge 

and requires no training courses or any special skills for operation.   

Types of Unmanned Aerial Systems (UAS): 

UAS can be classified into many types by means of different elements, they can be 

characterized and classified according to several criteria’s such as (size, weight, endurance, 

aerodynamics, range coverage, wind dependency, maneuverability, price, localization and 

positioning, real-time capabilities, and application accuracy requirements, Etc.). However, there is 

no unified or standard classification for the types of UAS (Eisenbeiß, 2009). AS a result, 

researchers started to classify UAS into different types according to different variables, for 

example (Colomina & Molina, 2014)defined three types of UAS with respect to various 

characteristics of the aerial platform. Categorization and characteristics are shown respectively in 

Table 6-2; (1) nano-micro-mini UAS, (2) close-short-medium range UAS, and (3) the remaining 

UAS. In which, the nano-micro-mini UAS have the shortest operation range and the lowest 

maximum takeoff weight. Thus, it is considered as the most suitable and appropriate type with the 

PARS needs. From Table 6-2Error! Reference source not found., (Colomina & Molina, 2014) 

lassified the weight-based range for the maximum take-off weight (MTOW) as follow: micro less 

than 5 Kg, mini less than 30 Kg, tactile-less than 150 Kg, and high more than 150 Kg.  
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Table 6-2: Types and characteristics of UAS (Colomina & Molina, 2014) 

Types of UAS Characteristics 

1- Nano-micro-mini UAS  Low weight 

 Low flying altitude 

 Low payload sizes 

 Rapid operational categorization 

 Operating range less than 10 km 

 Low range endurance  

 Mini maximum take-off weight (MTOW), 

less than 30 Kg 

2- Close-short-medium-range 

UAS 

 Operating range between 10 and 70 km  

 Fixed and rotary wing developments  

 High maximum take-off weight (MTOW), 

between 150 and 1250 kg  

3- Rest of UAS   Medium ranges endurance  

 Highest operating altitude 

 

Table 6-2: comparison between fixed-wing UAS and rotary-wing UAS (Siebert & Teizer, 2014) 

Types  Fixed-wing UAS Rotary-Wing UAS 

Airtime More Less 

Noise Less More  

Take-off and Landing  Need airstrip  Don’t need airstrip 

 

Other classifications of UAS are determined with respect to factors related to the type of 

UAS-wing. For example, (Siebert & Teizer, 2014) classified UAS into two main types as fixed-

wing UAS and rotary-wing UAS. Table 6-2, shows a comparison between the two UAS-wing 

types by means of airtime, noise, take-off and landing. As a result, fixed-wing UAS have more 

airtime and less noise when compared with the rotary-wing UAS while fixed-wing UAS requires 

an airstrip for take-off and landing which is not the case for rotary-wing UAS. Consequently, fixed-

wing UAS are considered more suitable for applications related to control and investigation, while 

the rotary-wing UAS are preferable for applications applied in bounded and restricted spaces since 

they are more stable, steady, user-friendly and easy to operate by means of take-off and landing. 
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Figure 6-1: Fixed-wing UAS; a) Insitu Inc., USA-Integrator; b) General Atomics Aeronautical 

Systems, USA-Predator A; c) QinetiQ, UK-Zephyr; d) Lockheed Martin, USA-Morphing UAS. 

(Colomina & Molina, 2014) 

 

Figure 6-2: Rotary wing UAS; a) Cheerson CX10 nano UAS (Andi, 2015), b) Phoenix 15 micro 

UAS (Stevenson, 2013), c) Phantom 3 professional mini UAS (dji, 2016), d) Skeldar 150 VTOL 

and  e) Tricopter UAS (SAAB Aerosystems., 2006), f) Matrice 100 (DJI, 2016), g) s1000 

octocopter UAS (Dji, 2014), h) MQ-8B Fire Scout by USnavy (Ben, 2015) 
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In (Figure 6-1), different types of fixed-wing UAS are shown with respect to their sizes 

and their applications. For example, in (a) the “USA-Integrator” developed by Institute Inc. are 

mainly used as a weather tracking system for commercial, civil, and military actions. Second, in 

(b) “the USA-Predator A” designed by General Atomics Aeronautical Systems are manufactured 

as unmanned combat air vehicle. Third, in (c) the “QinetiQ Zephyr” developed by the UK 

Company are designed for high altitude long endurance unmanned aircraft. Finally, in (d) the 

“USA-Morphing UAS” designed by Lockheed Martin are considered as a revolutionary prototype 

for the next generation of UAS (Colomina & Molina, 2014). While in Figure 6-2, different types 

of rotary-wing UAS are shown with respect to their sizes and number of copters. The first three 

figures (a, b and c) represents the different sizes of a rotary-wing UAS mentioned as nano, micro, 

and mini UAS respectively. While, the other figures (d, e, f, and g) are related to the number of 

copters mentioned as helicopter, tri-copter, quad-copter and octa-copter respectively. Finally, 

figure (h) is an example of a rotary-wing UAS that is used in military context applications. 

The system configuration of Unmanned Aerial Systems (UAS): 

UAS technology is a combination of different systems that are collected together to achieve 

a specific objective. Technically, UAS composition includes three main components that are (1) 

ground control station, (2) communication data link and (3) Unmanned Aerial Vehicle (UAV) 

(Eisenbeiß, 2009). First, the ground control station can be a mobile or immobile device that is used 

for aircraft remote control monitoring.  Second, communication data link is responsible for 

controlling and monitoring of an aircraft with its ground station device through a connection that 

links them together. Finally, the UAV is the aircraft itself where it receives the commands sent 

from the ground central station using sensors that calculate the corresponding flight information 

related to (Sensing, navigation, and orientation). Then, UAV sends them back to the Flight Control 

Unit (FCU) that uses them for flight navigation through motors and propellers (Colomina & 

Molina, 2014). However, other researchers have categorized UAS based on their components. 

Mainly, UAS can be classified into seven main key components (McDougal, 2016).  

Accordingly, the transmitter works as a ground control station which connects the aircraft’s 

receiver by means of communication data link. In Figure 06-3, (McDougal, 2016) has analyzed 

and illustrated these components as follow: 
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1. Main Controller (MC): It is considered as the brain of the UAS, it has a software 

for control and monitoring. 

2. Sensors: The main objective of sensors is to detect the acceleration changes of the 

UAS, its level, and orientation.  

3. Electronic Speed Controllers (ESCs): They are responsible for arranging the power 

going to motors. 

4. Receiver: links the unmanned air vehicle with the radio control system known as 

the transmitter 

5. Motors: brushless motors, in which its parts rotates either clockwise or counter-

clockwise with respect to their position and orientation.  

6. Propellers: plastic props that are safer and more flexible. 

7. Transmitter: A radio control system is a combination of a mobile app and Wi-fi 

compatible with tablets and smartphones.  

 

Figure 06-3: UAS composition (McDougal, 2016) 

 



139 

 

Safety and Regulations of Unmanned Aerial Systems (UAS): 

UAS have some limitations and special regulations related to civilian applications. First of 

all, UAS need to be flown with the presence of a backup pilot or a controller in its line of sight. 

The controller should be aware and have the knowledge of a remote control and monitoring of 

unmanned aircraft (Eisenbeiß, 2009). Regulations related to UAS differs from one country to 

another and have different hierarchical classes of local, national and continental authorities. Some 

regulatory bodies consist of a group of countries, others are related to a specific continent. For 

example, in North America, the US Federal Aviation Admiration (FAA) developed a plan for 

integrating the civilian use of UAS in the national airspace system without altering its capacity, 

affecting its safety or increasing the risk (Colomina & Molina, 2014). While in Europe, the 

European Aviation Safety Agency (EASA) requires all UAS that has a maximum take-off bigger 

than 150 Kg to be certified by EASA, where all other UAS with a maximum take-off less than 150 

Kg are required to be certified only by the national authorities (Eisenbeiß, 2009). Also, other rules 

and regulations that were developed are related to environmental protection. On the other hand, 

the European organization for the safety of air navigation, known as Euro-Control, had developed 

and applied an air traffic management system for both civilian and military users (Colomina & 

Molina, 2014; Eisenbeiß, 2009) 

In Canada, Transport Canada is considered the direct authority that is responsible for the 

regulations for the control and use of UAS. According to (Transport Canada, 2016), it is prohibited 

for UAS users to fly close to airports, heliports, aerodromes, forest fires and built-up areas in a 

radius of 9 km. Also, it is prohibited to fly over military basis, governmental buildings or any 

restricted areas. Similarly, it is prohibited to carry dangerous goods or to fly over crowds or to be 

higher than 90 m. However, (Transport Canada, 2016) do not require any permission of aviation 

if the UAS is used for research work and it weighs less than 2 Kg; but in case it weighs more than 

2 Kg and less than 25 Kg, a set of exemption requirements are required that ensures safety 

precautions and privacy rights.  Therefore, Transport Canada must have the contact information 

for the UAS owner and controller, UAS model, UAS description of the model, and the 

geographical boundaries of operation before any UAS aviation. Finally, some tips for a safe 

aviation recommends to fly during daylight and in good weather, the controller must be present in 

the aircraft line of sight, and to respect the privacy and safety of others (Transport Canada, 2016). 
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The main objective of the different levels and types of UAS regulatory bodies is to ensure 

the public safety and to preserve their security and rights. Consequently, associated agencies and 

authorities enact regulations taking in considerations many safety measurements related to the size, 

weight and flight technology of UAS. From Table 6-3, some different regulations for UAS civil 

use in several countries of different continents are mentioned (Nex & Remondino, 2014). 

Table 6-3: Regulations for UAS use in several countries (Nex & Remondino, 2014) 

Continent Country Regulatory bodies for UAS Civil Use 

(laws and regulations) 

 

North America 

Canada Approach to the Classification of Unmanned 

Aircraft, 19.10.10 

USA UAS Certification Status, 18.08.08; Fact Sheet-

Unmanned Aircraft Systems, 15.7.10 und NJO7210.766, 

28.3.11, 8.2.12 und FAA Bill 

Oceania Australia CASA Circular, July 2002 

 

Europe 

Great Britain CAP 722, 06.04.10 u. Joint Doctrine 2/11, 30.3.11 

France Decree concerning the design of civil aircraft flies 

without anyone on board, August 2010 

 

Applications 

Based on the all above mentioned, UAS have invaded the worldwide market and started to 

be invested in a variety of applications that includes but not limited to construction and engineering 

(e.g., wind turbines, power lines, bridges, solar panels, and tunnels). Other researchers, used UAS-

based thermo-graphic 3D modeling for inspection and condition assessments of building 

envelopes, building roofs, infrastructures and other structures such as bridges (Colomina & 

Molina, 2014; Eisenbeiß, 2009). In summary, some of the applications of UAS are as follow: 

1. Construction Industry: Using UAS in construction sites allows the collection and 

documentation of the site aerially, this will enable the site’s control and monitoring through 

the construction process. Also, it will provide and view the as-built situation of construction 

sites that can be used for up-to-date assessments, volumetric measurements, earth-work 

monitoring, soil excavation management and any further analysis (Eisenbeiß, 2009).  
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2. Surveying: The implementation of UAS-based photogrammetry and 3D mapping 

techniques as a replacement for the old manual and traditional practices in surveying is 

considered more beneficial by means of cost, time, effort, and safety. Similarly, many 

researchers have conducted studies to prove the efficiency of replacing the old surveying 

techniques using UAS-based photogrammetry for indoor environments. Also, (Siebert & 

Teizer, 2014) introduced the sfm algorithm principle in UAS-based photogrammetry using 

related software (e.g, Agisoft PhotoScan and Autodesk Recap 360).      

3. Agriculture Analysis: UAS-based imagery can be a powerful technique in vegetation 

control, by replacing the old-fashioned techniques that depend on the visual assessment of 

inspectors (Colomina & Molina, 2014; Eisenbeiß, 2009; Siebert & Teizer, 2014).  

4. Mining: UAS are a very powerful tool when tested in confined spaces or other inaccessible 

places that are difficult for a human to reach. Mining is one of these places in which UAS 

can be very helpful, it is also considered as safer in dangerous locations (Eisenbeiß, 2009). 

5. Emergency Response and Prevention: UAS are very helpful when tested in post-disaster 

assessment, by collecting very high-quality critical data that can be stored and enabled for 

later accurate measurements. Many researchers and studies were conducted using UAS in 

emergency response, (Rufino & Moccia, 2005) used UAS to enhance control management 

of forest fires. Other applications of testing UAS in emergency responses can be related to 

crime scenes documentation, intelligence, surveillance, and reconnaissance.  

6. Aerial Photogrammetry: Image-based modeling using UAS images can be used for a 

variety of applications, such as documentation of archaeological and cultural heritage sites, 

creating 3D city models that are related to other aspects of the city and urban planning, 

architecture and design, and many other applications (Eisenbeiß, 2009). 

7. Environmental Monitoring: UAS can be a powerful tool for viewing and monitoring key 

resources, endangered species, their habits and behavior and much more in the 

environmental applications. Also, it is used to monitor hazardous places that are difficult 

for a human to achieve such as ice melting monitoring in Antarctica and in the North Pole.  

Similarly, (Eisenbeiß, 2009) mentioned how UAS images were used for documentation of 

large rock slide areas in Randa, Switzerland. 


