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Abstract

Hub Network Design Problems with Profits

Armaghan Alibeyg, Ph.D.

Concordia University, 2017

In this thesis we study a new class of hub location problems denoted as hub

network design problems with profits which share the same feature: a profit oriented

objective. We start from a basic model in which only routing and location decisions

are involved. We then investigate more realistic models by incorporating new elements

such as different types of network design decisions, service commitments constraints,

multiple demand levels, multiple capacity levels and pricing decisions. We present

mixed-integer programming formulations for each variant and extension and provide

insightful computational analyses regarding to their complexity, network topologies

and their added value compared to related hub location problems in the literature.

Furthermore, we present an exact algorithmic framework to solve two variants of

this class of problems. We continue this study by introducing joint hub location

and pricing problems in which pricing decisions are incorporated into the decision-

making process. We formulate this problem as a mixed-integer bilevel problem and

provide feasible solutions using two math-heuristics. The dissertation ends with some

conclusions and comments on avenues of future research.
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Chapter 1

Introduction

1.1 Overview

Hub-and-spoke networks are frequently employed in transportation and telecommu-

nication systems to efficiently route commodities between many origins and destina-

tions. One of the key features of these networks is that direct connections between

origin/destination (O/D) pairs can be replaced by fewer, indirect but privileged con-

nections by using transshipment, consolidation, or sorting points, called hub facilities.

This reduces the total setup cost at the expense of increasing some individual trans-

portation costs. Overall transportation costs may also decrease due to the bundling

or consolidating of flows through inter-hub arcs.

Hub location problems (HLPs) deal with joint location and network design de-

cisions so as to optimize a cost-based (or service-based) objective. The location

decisions focus on the selection of a set of nodes to place hub facilities, whereas the

network design decisions deal with the selection of the links to connect origins and

destinations, possibly via hubs, as well as the routing of commodities through the

network. Typically, HLPs assume that hubs must be located at the nodes of a given

network, distances satisfy the triangle inequality, and there is a constant discount
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factor on the transportation costs of the arcs connecting hubs. In addition, classi-

cal HLPs impose that all flows are routed via the selected hubs and ignore all arc

setup costs. Such problems have optimal solutions where an arc exists connecting

each pair of hubs, so optimal routing paths consist of at most three arcs, two arcs

connecting non-hub nodes and hub nodes, plus one intermediate arc connecting two

hub nodes. This optimality condition implies that the network design decisions are

mainly determined by the allocation of non-hub nodes to hubs (see Contreras [31]),

and has been extensively exploited to develop formulations and solution algorithms

for solving these classical HLPs.

Hub arc location problems (HALPs) no longer assume that the above optimality

condition holds, and incorporate explicit hub arc selection decisions. HALPs, in

which a cardinality constraint on the number of opened hub arcs is considered, were

introduced in Campbell et al. [24]. HALPs that incorporate setup costs for the hub

nodes and hubs arcs were studied in Contreras and Fernández [38] and Gelareh et al.

[58].

In most hub location applications arising in the design of distribution and trans-

portation systems, a profit is obtained for serving (i.e. routing) the demand of a

given commodity. Capturing such profit may incur not only a routing cost but also

additional setup costs, as the O/D nodes of the commodity may require the a priori

installation of transport infrastructure. Classical HLPs and HALPs, however, ignore

such profits and associated setup costs, as reflected by the requirement that the de-

mand of every commodity must be served. Indeed, the overall profit obtained when

all the commodities must be served is constant, and it does not affect the optimiza-

tion of the distribution system. Broadly speaking, this requirement expresses the

implicit hypothesis that the overall costs of solution networks will be compensated
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by the overall profits. Of course, such hypothesis does not necessarily hold, and in-

corporating decisions on the O/D nodes that should be served and their associated

commodities may have important implications in the strategic and operational costs.

1.2 Hub Network Design Problems with Profits

In this dissertation we study a new class of problems in hub location denoted as

hub network design problems with profits (HNDPPs). HNDPPs integrate within the

decision-making process additional strategic decisions on the nodes and the commodi-

ties that have to be served and consider a profit-oriented objective which measures

the tradeoff between the profit of the commodities that are served and the overall

network design and transportation costs. Broadly speaking, HNDPPs focus on the

following strategic decisions: i) where to locate the hubs; ii) what edges to activate

and of what type; and, iii) what commodities to serve (this also dictates the nodes to

activate). As usual, the operational decisions determine how to route the commodi-

ties that are selected to be served. HNDPPs generalize HLPs and HALPs as they

incorporate one additional level to the decision-making process. To the best of our

knowledge, hub location models incorporating explicit decisions on the nodes to be

served have not yet been addressed in the literature.

Potential transportation applications of HNDPPs arise in the airline and ground

transportation industries. As an example, in the case of airline companies network

planners have to design their transportation network when they are first entering

into the market, or may have to modify already established hub-and-spoke networks

through alliances, merges and acquisitions of companies. The involved decisions are

to determine the cities that will be part of their network, i.e. what cities they will

provide service to (served nodes) and what O/D flights to activate (served commodi-

ties) in order to offer air travel services to passengers (served demand) between city
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pairs. Additional decisions focus on the location of their main airports (hub facilities)

and on the selection of the legs used for connecting regional airports (served nodes)

with hub airports and for connecting some hub airports between them. Finally, the

transportation of passengers using one or more O/D paths on their established net-

work. The objective is to find an optimal hub network structure that maximizes the

total net profit for providing air travel services to a set of O/D flights while taking

into account the (re)design cost of the network. Depending on the regulations or the

company service policy, passenger air travel services could be provided: i) only to city

pairs that are profitable, ii) between all city pairs that are served by the company,

or iii) to a percentage of them (private companies with service commitment or with

market penetration policies).

The first contribution of this thesis is to study the most basic variants of HNDPP

denoted as the uncapacitated hub location problems with profit (UHLPP) that con-

centrates on the following strategic decisions: i) which nodes should be served by

the hub network, ii) where the hub facilities should be located among these selected

nodes and, iii) which commodities are profitable to be routed and through which

path. That is, the UHLPP focuses mainly on the location decisions and disregards

any link activation decisions. The UHLPP considers a profit oriented objective in

which the aim is to maximize the difference between the total revenue obtained from

the routing of flows, which depends on the design of the hub network, and set-up costs

for designing it. To the best of our knowledge, this is the first time in the literature

of HLPs that servicing node decisions are incorporated. This makes UHLPP more

challenging than classical HLPs since for routing commodities through the network,

both their associated origin and destination nodes must be served. Moreover, some

commodities may not be routed if not profitable even if their associated O/D nodes

are served. We propose a MIP formulation for UHLPP based on the formulation of
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Hamacher et al. [65] for UHLPMA. We also present lagrangean relaxation heuristic

that uses a lagrangean function that can be decomposed into subproblems which can

be solved efficiently.

The second contribution of this dissertation is to propose and introduce the foun-

dations of alternative HNDPPs of increasing complexity, which incorporate additional

features. We start with a pure profit-driven model, and progressively present vari-

ations which consider alternative constraints and/or additional decisions, which, in

turn, may imply additional costs. The first one, denoted as PO1, is flexible in the

sense that among all commodities associated with served O/D nodes, only those that

are actually profitable are indeed routed. The second model, denoted as PO2, con-

siders a more restrictive scenario in which no commitments or regulations exist and

thus, all commodities whose O/D nodes are both activated would have to be served,

even if this would reduce the total profit. For decisions we consider the activation,

with associated setup costs, of two additional types of edges. Access edges allow

non-hub nodes to be connected to a hub whereas bridge edges allow connecting hub

nodes without using a discount factor. We further introduce an extension of the pri-

mary HNDPPs that incorporates link activation decisions on access and bridge edges

denoted as PND. We also consider two more general models that allow serving the

existing demand at different levels denoted as POM1 and POM2. The second of

such models allows, in addition, to activate at different levels the various elements

of solution networks. This results in a capacitated HNDPP of notable difficulty.

Mathematical programming formulations for these models are presented and compu-

tationally tested in terms of: the structure of the solution networks it produces, its

sensitivity to the input parameters, its relation to the other models, and its difficulty

for being optimally solved with a commercial solver.

In the third part of this dissertation we focus on methodological aspects leading
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to the exact solution of two primary profit-oriented HNDPPs mentioned above. We

propose a unified algorithmic framework applicable to large-scale instances of both

PO1 and PO2 models involving up to 100 nodes. It is an exact branch-and-bound

(BB) procedure in which a sophisticated lagrangean relaxation is used to obtain tight

bounds at each node of the enumeration tree. In particular, the proposed lagrangean

function resorts to the solution of well-known quadratic boolean problems (QBPs). We

show how, due to the special cost structure associated with the quadratic term of the

objective function, the QBPs can be efficiently solved by transforming them to clas-

sical minimum cut problems. The algorithm is enhanced through several algorithmic

refinements that make it more efficient. These include: (i) variable elimination tech-

niques that allow reducing considerably the size of the formulations at the root node,

(ii) a partial enumeration (PE) phase capable of effectively exploring the solution

space by reducing the required number of nodes in the tree, and (iii) the use of simple

but effective primal heuristics embedded in the subgradient algorithm that exploit

the structure of the problem. Computational experiments confirm the effectiveness

of our exact algorithmic framework since it is able to obtain optimal solutions for

instances with up to 100 nodes

Finally, in the last part of this dissertation we study joint hub location and pricing

problems that we formulate as a mixed-integer bilevel programs. To maximize the

profit, which is the difference between the revenue and costs, firms need to integrate

within their pricing decisions, the rational reaction of customers to the price. In other

words, although firms want to maximize their revenue, customers want to pick the

service with minimum cost. For instance in airline transportation, pricing decisions

have become very important since there is an intense competition between firms to

capture the customers’ demand. The objective of the study of this extension is to be

able to show this complex decision making process in which there is a leader (firm)
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that needs to identify the price that is high enough to maximize its profit and low

enough so that minimizes the cost of the follower (the customer). If the firm sets

the price higher than the competitor, the customer will choose the competitor. hub

location and pricing problems (HLPPs) involve two decision levels: The upper level is

concerned with maximizing the difference between the leader’s revenue obtained from

prices set on the arcs (or commodities) and the routing and setup costs of opening

hub facilities, while in the lower level the follower reacts by choosing a route with

minimum price. We study two variants of HLPPs: pricing on arcs and pricing on

commodities. We propose a mixed-integer bilevel programing formulation for each

variant. We develop a math-heuristic to solve HLPPs with pricing on arcs.

A summary of the proposed models and their main features is given in Table 1.1.

Main features UHLPPPO1PO2PNDPOM1POM2HLPP

Locational decisions
- Hub nodes

√ √ √ √ √ √ √
- Served nodes

√ √ √ √ √ √
- Multiple capacity/operational levels

√
Link activation decisions
- Hub edges

√ √ √ √ √
- Access edges

√
- Bridge edges

√
Operational decisions
- Single demand level

√ √ √ √ √
- Multiple demand levels

√ √
Demand service type
- Only to profitable pairs of served nodes

√ √ √ √ √ √
- Between all pairs of served nodes

√
Pricing Decisions
- Given as an input of the problem

√ √ √ √ √ √
- Part of the decision process

√
Objective
- Pure profit-oriented

√ √ √ √ √ √
- Profit-oriented with service commitments

√

Table 1.1: Summary of considered HNDPPs.
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1.3 Scope and Objectives

The main objective of this dissertation is to introduce and study a new challenging

class of HLPs that considers a profit oriented perspective. The specific objectives of

this research are summarized as follows:

1. To introduce a class of hub location problems where it is not necessary to provide

service to all demand nodes. A profit is associated with each flow between pair

of nodes. We present a mixed-integer programming (MIP) formulation and a

lagrangean relaxation algorithm to solve this problem.

2. To introduce a class of hub network design problems with a profit-oriented

objective. These problems relax different unrealistic assumptions usually con-

sidered in classical HLPs such as fully connected networks and serving all the

nodes. We propose and analyze alternative models and integer programming

formulations.

3. To develop an exact algorithmic framework for HNDPPs where a sophisticated

lagrangean function that exploits the structure of the problems is used to effi-

ciently obtain bounds at the nodes of an enumeration tree.

4. To introduce hub location problems which consider joint design and pricing

decisions. These problems are formulated as mixed-integer bilevel programs

where the first level maximizes the profit of the leader by selecting a set of hubs

and prices that minimizes the routing costs of the follower in the second level.

We obtain feasible solutions for these complex problems by using two variants

of a math-heuristic.
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1.4 Organization of the Thesis

This manuscript is organized as follows. Chapter 2 reviews the most relevant literature

related to HNDPPs and HLPPs. Chapter 3 presents the formal definition, model-

ing assumption, mathematical formulation and a lagrangean relaxation of UHLPPs.

Chapter 4 introduces several variants of HNDPPs and their mathematical program-

ming formulations of each variant as well as some computational experiments to

compare the complexity of each problem using a general solver. Chapter 5 presents

the lagrangean relaxation-based branch and bound applied to solve PO1 and PO2

together with some computational experiments that compares the result of the exact

method with a general purpose solver. Chapter 6 introduces the formal definition

and the mixed-integer bilevel program of HLPPs and some computational experi-

ments obtained from a math-heuristic. The manuscript ends with conclusions and

future research directions in Chapter 7.

9



Chapter 2

Literature Review

In this Chapter we review the most relevant studies related to this thesis. More

specifically, in Section 2.1 we first provide a brief introduction about general network

design problems (GNDPs). In Section 2.2, we explain HLPs in general, and the

more related HLPs to HNDPP including uncapacitated hub location problems with

multiple allocation, hub covering problems, hub arc location problems and competitive

hub location problems (CHLP). In each case we highlight the main differences between

the referred problem and HNDPPs. Also, a brief literature review of other network

optimization problems with profits is provided in Section 2.3. The chapter ends with

a short overview on bilevel programming in Section 2.4, which is related to Chapter

6 of this manuscript.
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2.1 General Network Design Problems

Facility location and network design problems are the two classes of NP-hard prob-

lems which lie at the heart of network optimization. Facility location refers to siting

facilities at nodes while network design problems are about opening links to connect

facilities. General network design problems provide a unified view of combined fa-

cility location and network design problems (Contreras and Fernández [37]). This

class of problems involves two types of decisions: design decisions, which refer to the

location of facilities and opening links to connect facilities and operational decisions,

which deal with the allocation of customers to facilities and with the routing of their

demands.

The p-median location problem is one of the classical discrete location problems,

which consists of locating p facilities on a given network (i.e. nodes or arcs) and

allocating a set of customers to these facilities with the goal of minimizing the trans-

portation cost. Hakimi [64] showed that there exists at least one optimal solution

in which all p facilities are located only at nodes of the network. This is known

as the Hakimi property. Another classical facility location problem is the uncapaci-

tated facility location problem (UFLP), in which there exists a fixed cost for locating

each facility and thus the number of facilities to be opened is unknown (Kuehn and

Hamburger [77]). The p-center problem (Hakimi [64]), the location-covering problem

(Toregas et al. [116]), and the maximum covering location problem (Church and ReV-

elle [28]), are other types of facility location problems that involve design decisions.

A recent review of facility location problems can be found in (Smith et al. [115] and

Laporte et al. [83]).

Network design problems consist of design decisions, which means that the network
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is not given and must be constructed, by choosing some elements from a given under-

lying network. Indeed, these types of problems involve selecting links to be activated

for connecting users and facilities and facilities among them. They can be divided into

two main categories: single-commodity and multiple-commodity. Single-commodity

network design problems deal with one type of flow while multiple-commodity prob-

lems are concerned with networks dealing with different types of flow, which makes

them more complicated than single commodity network design problems. Well-known

examples of single commodity problems involving design decisions are fixed-charge

network design problems, which consider both set-up and flow costs (Magnanti and

Wong [88]; Minoux [96]), and network loading problems, which consider only set-up

costs for the arcs (Magnanti et al. [87]). Some well-known multi-commodity network

design problems are the capacitated multi-commodity network design problem (Gen-

dron et al. [60]), and the hub-and-spoke network design problem (O’Kelly [99]). The

interested reader is referred to up-to-date references of network design problems like

Croxton et al. [43] and Frangioni and Gendron [56].

Some types of network optimization problems have both location decisions and

network design decisions. For instance, location vehicle routing problems (Nagy and

Salhi [98], Drexl and Schneider [49]) in which it is required to locate a set of depots

and to design routes to visit customers. Also, the minimum cost Steiner tree problem

in which it is required to locate the Steiner nodes and to connect the edges of the

tree (Winter [118]).

In some classical facility location problems such as p-median and p-center prob-

lems, allocation decisions have to be made to indicate the facility that should serve

each customer. In some problems, referred to as single allocation, each customer

should be served by only one facility while in some others, referred to as multiple

allocation, a customer may be assigned to more than one facility. Routes are the
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paths that are used to deliver user’s demands so routing decisions are concerned with

designing the routes for sending flows between pairs of nodes. The links that define

the routing paths can be seen as the outcome of some network design decisions, so

routing and network design problems are closely related. Transportation problems

(Monge [97]; Kantorovich [74]) and network flow problems (Ahuja et al. [3]), are the

two well-known network optimization problems with routing decisions.

Considering the different types of the decisions in the GNDPs mentioned above,

location and allocation decisions identify the set of open facilities and the assignment

pattern of customers to facilities. However, in the case of network design the goal of

the routing decisions is to find the links to be activated and through which demand

will be routed. Thus, these decisions strongly depend on the role of the facilities and

type of service demand required by customers. Contreras and Fernández [37] propose

a classification of GNDPs based on the type of the demand.

In GNDPs with user-facility (UF) demand service is offered at or from facilities

and demand is routed between facilities and users. When each user goes to the facility,

the goal is to find a path with minimum cost. When servers travel from the facilities

to possibly provide service to several users, routing decisions may be involved. If the

set-up cost for activating the links is zero, the network design decisions are trivial

and will activate all the links. In such a case, the optimal routing decisions simply

consist of allocating each user directly to facilities. However, when considering set-up

costs the problem will be a GNDP with UF demand involving nontrivial network

design decisions. Location-network design problems (Melkote and Daskin [95]; Con-

treras et al. [41]) and location-vehicle routing problems (Nagy and Salhi [98]) are two

common examples of this kind of problems.

In GNDPs with user-user (UU) demand, demand relates pairs of users to user

by means of facilities. In this type of problems, facilities play the role of providing
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connection between pairs of users. So network design and routing decisions in GNDPs

with UU demand focus on connecting both users and facilities and facilities among

them. If there is no fixed cost for opening facilities, like in classical network design

problems, location decisions will be trivial because all the facilities will be opened.

Well-known examples of GNDPs with UU demand are classical hub location problems

(O’Kelly [99]; O’Kelly [101]; Campbell [21]), in which the routing decisions involve

the selection of paths for sending commodities through the network. Concentrator

location problems (Yaman [119]; Labbé and Yaman [81]; Gouveia and Saldanha-da

Gama [62]), tree-star location problems (Contreras et al. [39]; Contreras et al. [40]),

and cycle-star location problems (Labbe et al. [78]) are other examples of GNDPs

with UU demand and non-trivial routing decisions. This review focuses on GNDPs

with UU demand and, in particular, on HLPs.

As mentioned, in GNDPs with UU demand facilities are used as intermediate

locations to consolidate or re-route flows between the users. These problems can

be classified according to the topological structure induced by the facilities and the

edges of the network connecting them. They can be classified as follows: (i) cliques,

i.e. fully interconnected facilities, (ii) trees, i.e. connecting facilities by a tree, (iii)

cycles, i.e. the edges connecting the facilities form a cycle. Hub location problems

(HLPs) are the best-known GNDPs with UU demand, which commonly lie on the

first category (fully interconnected facilities). HLPs deal with location decisions for

selecting which facilities to open and with network design decisions for selecting which

links to route the demand through the network.

2.2 Hub Location Problems

Hub-and-spoke networks are used in many distribution systems such as airline passen-

ger, trucking and postal delivery networks. The key feature of these networks is that
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direct connections between all spokes are replaced with fewer, indirect connections

by using transshipment facilities called hubs. Hub-and-spoke networks reduce the

total set-up cost of the network but may increase individual travel times. However,

transportation costs may decrease due to the bundling or consolidating of flows on

the interhub links.

HLPs deal with the location of hubs, the design of the hub network, and the routing

of flows from origins to destinations so as to optimize a considered objective function.

The hubs can provide two major functions: i) a switching, sorting, or connecting

(SSC) function, and ii) a consolidation/break-bulk (CB) function (Campbell et al.

[25]). As a switching point (SSC function), a hub redirects the flow to enter via one

link and depart via another. So, instead of using direct links from every origin to

every destination, by redirecting flows based on their destination, all the nodes are

connected with fewer links. The CB function aggregates or disaggregates the flows

by combining many small separate flows into larger ones or splitting a large flow into

separate smaller ones.

HLPs are known to be NP-hard due to the inclusion of elements from facility

location and network design which are the main elements of a HLP. The first papers

in hub location are probably by Goldman [61] and O’Kelly [100], adapting the node

optimality property of Hakimi [64] to the hub median problem. Early reviews of

HLPs are Campbell [22], and O’Kelly and Miller [105]. Campbell [22] provide a com-

prehensive review on network hub location problems, classification of fundamental

problems and formulations, and a wide variety of applications of HLPs. O’Kelly and

Miller [105] focus on network design decisions in hub location and introduce different

possible topological structures for hub-and-spoke networks. Bryan and O’Kelly [20]

review hub location research in air transportation applications. More recent reviews
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of HLPs are Campbell et al. [25], Alumur and Kara [7], Kara and Taner [75], Camp-

bell and O’Kelly [26], Farahani et al. [53] and Contreras [31]. Of particular interest

is the work of Campbell and O’Kelly [26], which provides insights into early motiva-

tions in hub location research and highlights the most recent and promising research

directions.

2.2.1 Features, Assumptions and Properties

The main assumptions made in most HLPs are as follows: i) distance satisfy triangle

inequality, ii) there is no set-up costs on the arcs, iii) there is an obligation of routing

flows via a set of hubs, iv) flows are discounted on the hub arcs to reflect economies

of scale. The discount factor is used to provide reduced flow costs on hub arcs due

to the consolidation of flows between hubs. i.e., the per unit transportation cost is

discounted if the flow passes via a hub arc.

As a consequence of the above assumptions, important properties arise in most

HLPs. Since flows are forced to be routed via hubs (assumption (iii)), no direct

connection is allowed and this means that the OD paths consist of at least one hub

node. Also assumption (i) together with (ii) implies that OD paths contains at most

two hubs. However, whenever assumption (i) does not satisfied, paths may contain

more than two hubs and more than one hub arc.

A hub-and-spoke network generally consists of three type of arcs: hub arcs con-

necting two hub facilities, access arcs connecting non-hub nodes to hubs, bridge arcs

connecting two hub nodes without reduced unit transportation cost of a hub arc.

To clarify the idea of using each type of arcs, a more detailed look of O/D paths is

provided. An O/D path contains three main legs in general: the collection leg (from

the origin to the first hub), the transfer leg (between hubs), and the distribution leg

(from the last hub to the destination). The collection and distribution legs contain
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only one access arc because of the triangle inequality. The transfer leg, if it exists,

may consists of several bridge and hub arcs, depending on additional assumptions

made on the model. However, not all O/D paths contain a transfer leg (origin-hub-

destination). Considering the paths that the origin or destination is a hub node, a

bridge arc can occur as the first (or the last) arc in the path or between any two hubs

in other paths. We refer to Campbell et al. [24] for more information regarding to

the analysis of O/D paths.

2.2.2 The Uncapacitated Hub Location Problem with Mul-

tiple Assignments

One of the most fundamental and intensively studied HLPs is the uncapacitated hub lo-

cation problem with multiple assignments (UHLPMA). The main decisions in UHLPs

are the location of hub facilities and the routing of commodities through the hub

network with the objective of minimizing the total set-up and transportation cost.

Several MIP formulations (Campbell [21], Hamacher et al. [65], Maŕın et al. [92]) and

solution algorithms (Contreras et al. [32], de Camargo et al. [44], Klincewicz [76])

have been introduced for the UHLPMA. Various extensions of the UHLPMA have

also been studied, such as capacitated models (Ebery et al. [50], Maŕın [90]), stochas-

tic models (Alumur et al. [8], Contreras et al. [34]), and dynamic models (Contreras

et al. [33]).

We can formally define the UHLPMA as follows. Let G = (N,A) be a directed

complete graph, where N={1, 2, ..., n} represents the set of potential nodes to provide

service and A represents the set of arcs. Let H ⊆ N be the set of potential hub

locations, and K represent the set of commodities whose origin and destination points

belong to N . Wk is the amount of flow k ∈ K to be routed from origin o(k) ∈ N to

destination d(k) ∈ N . For each node k ∈ N , fk is the fixed cost of opening a hub at
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node k. Let dij be the distance between nodes i and j, which we assume to satisfy

the triangle inequality.

Considering the assumption of fully interconnection between hubs and that dis-

tances satisfy the triangle inequality, we know every O/D path contains at least one

and at most two hubs. Thus, paths between two nodes are of the form (o(k), i, j, d(k)),

where (i, j) ∈ H ×H is the ordered pair of hubs and o(k) and d(k) are the origin and

destination of commodity k, respectively. Thus, the directed transportation costs of

routing commodity k through the path (o(k), i, j, d(k)) is Fijk = Wk(χdo(k)i + αdij +

δdjd(k)), where χ, α and δ represent the collection, transfer and distribution costs

along the path. We assume that α < χ and α < δ to reflect economies of scale

between hubs. In order to provide an MIP formulation for the UHLPMA, we define

the following sets of decision variables

zi =

⎧⎪⎨
⎪⎩

1 if a hub facility is located at node i;

0 otherwise.

xijk =

⎧⎪⎨
⎪⎩

1 if commodity k is routed using hub arc (i, j);

0 otherwise.

The UHLPMA can be stated as follows (Hamacher et al. [65], Maŕın [90]):
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minimize
∑
k∈K

∑
(i,j)∈A

Fijkxijk +
∑
i∈H

fizi

subject to
∑

(i,j)∈A
xijk = 1 ∀ k ∈ K (2.1)

∑
j∈H

xijk +
∑

j∈H:i �=j

xjik ≤ zi k ∈ K, i ∈ H (2.2)

xijk ≥ 0 ∀ (i, j) ∈ A ∀ k ∈ K (2.3)

zi ∈ {0, 1} ∀ i ∈ H. (2.4)

The objective function minimizes the set-up cost for opening the hubs and the

transportation costs for routing the commodities through the network. Constraints

(2.1) guarantee that there is a single path connecting the origin and destination

nodes of every commodity. Constraints (2.2) prohibit commodities from being routed

via a non-hub node. We note that this formulation has O(n4) variables and O(n3)

constraints and is known to provide tight linear programming (LP) relaxation bounds.

2.2.3 Hub Arc Location Problems

HALPs relax the assumption of fully interconnection of hub nodes previously used in

UHLPMA. Although the assumption that the hub arcs form a complete graph on the

hub nodes simplifies the network design decisions, the topology and cost structure

imposed by this assumption may not be very realistic in some applications in which

there is a considerable set-up cost associated with the hub arcs. For this reason,

HALPs incorporate an additional network design decision that considers the location

of a set of hub arcs, and their associated hub nodes. This considerably increases

the complexity of designing the hub network, as a new type of arc may arise. In

UHLPMA, it is assumed that the transportation cost is discounted between all hub
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pairs. However, in hub arc location models, it is possible to connect two hubs with

a bridge arc. For this reason, the structure of O/D paths become more involved in

HALPs (Campbell et al. [24]).

The HALP consists of locating a set of hub arcs and hub nodes, and of deter-

mining the routing of flows through the network, with the objective of minimizing

the set-up cost for designing the network and the transportation costs for routing

the commodities through the network. Some HALPs impose particular topological

structures such as tree-star (Contreras et al. [40]), star-star (Labbé and Yaman [82]),

ring-star (Contreras et al. [42]), and hub lines (Martins de Sá et al. [93, 94]). Figure

2.1, compares the topological structure of classical UHLPMA and HALPs.

Figure 2.1: Solution network of a UHPMA (A) and of a HALP (B).

2.2.4 Hub Covering Problems

Contrary to most HLPs and HALPs that optimize a cost-based (or service-based)

objective, HNDPPs deal with a profit-oriented objective for the simultaneous opti-

mization of the revenue obtained for the service offered and the costs due to the design

of the network and to transportation. This feature relates HNDPPs to maximal hub
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covering problems (MHCPs) in which commodities between O/D pairs have to be de-

livered within a time limit (service level). It is implicitly assumed that a commodity

is served whenever its O/D nodes are within a predefined radius of some hub node.

Because MHCPs restrict the length of the arcs of O/D paths to a given coverage

radius, applications of these problems frequently arise in the design of telecommuni-

cation networks, where the signal deterioration must be taken into account (Campbell

and O’Kelly [26]). Campbell [21] introduces different MHCPs, which have also been

studied and extended by other authors (see Alumur and Kara [7], O’Kelly and Miller

[105], Zanjirani Farahani et al. [120]). More recently, Hwang and Lee [70] study the

uncapacitated single allocation p-hub maximal covering problem, which maximizes

the overall demand that can be covered by p facilities within a fixed coverage ra-

dius. Lowe and Sim [85] study a MHCP that considers jointly hub setup costs and

flow transportation costs, subject to covering constraints. Similarly to HNDPPs, in

MHCPs some commodities may remain unserved. However, in contrast to HNDPPs,

MHCPs implicitly assume that the setup cost for providing service to O/D nodes is

zero and thus, they do not incorporate decisions on the nodes to be served.

2.2.5 Competitive Hub Location Problems

Another class of problems related to HLPPs are the so-called CHLPs since they also

consider that it may be possible not to capture the total demand due to the presence

of competitors. While most HLPs are concerned with the design of the hub network of

a single firm, CHLPs consider an environment in which several firms exist in a market

and compete to provide service to customers. In CHLPs each commodity chooses the

competing firm that will serve its demand, based on several criteria such as travel

time or service cost. The usual objective in CHLPs is to maximize the market share of

some firm. Marianov et al. [89] introduce CHLPs with two competitors in which the
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follower looks for the best location for a set of hubs so as to maximize the captured

demand. The first model assumes that a commodity demand will be fully captured if

its routing cost does not exceed the current competitor’s cost. A more realistic model

is also considered, in which the fraction of the commodity demand that is captured

is modeled using a stepwise linear function, which is used for the comparison with

the competitor’s routing costs. In both models, at most one path can be used to

route commodities between each O/D pair. Eiselt and Marianov [51] extend these

models to allow using more than one path to connect an O/D pair. The fraction of

commodity demand that is routed on a particular path is modeled with a gravity-like

attraction function that depends on both, the routing cost and the travel time.

Gelareh et al. [59] present a model arising in liner shipping networks, where a

new liner service provider designs its network to maximize its market share, using a

stepwise attraction function, which depends on service times and routing costs. Lüer-

Villagra and Marianov [86] study a competitive model in which a new company wants

to enter the market of an existing company. The aim is to determine the prices to

charge to served commodities so as to maximize the profit of the entering company,

rather than its market share. Commodities preferences for the selected firm and

service route are modeled using a logit model. O’Kelly et al. [104] present a model

with price-sensitive demands. It considers three different service levels for routing

commodities between O/D pairs that use either two-hub O/D paths, one-hub O/D

paths or direct connections. The model is formulated as an economic equilibrium

problem that maximizes a nonlinear concave utility function minus the routing costs

and the setup cost for the location of the hubs.

CHLPs have also been studied under a game theoretic framework, such as Stack-

elberg hub location models, cooperative game theoretic models with alliances and

mergers, and non-cooperative game theoretic models (see Adler and Smilowitz [2],
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Lin and Lee [84], Asgari et al. [13], Sasaki et al. [112], Contreras [31]). We note that

HNDPPs can be clearly differentiated from CHLPs, as the focus of the former is to

optimize the individual decision related to one single firm rather than on competition

aspects. To the best of our knowledge, besides Sasaki et al. [111] all CHLPs previ-

ously studied focus on the location of hubs and do not explicitly consider hub arc

selection decisions. Moreover, none of them consider other relevant decisions such as

the activation of access/bridge arcs and servicing decisions for O/D nodes.

2.2.6 Hub Location Problems in the Airline Industry

Besides MHCPs and CHLPs, other studies have also considered the design of airline

hub networks. The seminal work by Grove and O’Kelly [63] analyses the relationship

between hub-and-spoke networks and congestion after the U.S. Airline Deregulation

Act of 1978. They considered an existing hub network with fixed hubs and performed

a simulation of daily operations to analyze schedule delay. Aykin [14] study the design

of hub networks in air transportation systems under different network policies: (i)

nonstrict hubbing, in which direct connections between non-hub nodes are allowed if

found cost efficient, and (ii) strict and restrictive hubbing, in which all demand flows

to/from a node have to be routed through the same hub (single assignments). In the

former case, three service policies are considered: nonstop, one-hub-stop, and two-

hub-stop, whereas in the later case only one and two-hub-stops are allowed. Although

the considered variants focuses mainly on the minimization of the setup cost for

establishing hubs and routing flows, other extensions are discussed in Aykin [14]

where the objective is to maximize profit when considering demand variations under

competitive market conditions. In particular, it is assumed that demand flows are

dependent on the service route selected for each OD pair. Sasaki et al. [113] study

the particular case in which only the one-stop service policy is allowed. They show
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how the p-hub median problem with multiple assignments under such policy can be

modeled as a p-median problem. Contrary to HNDPPs, these previously mentioned

models only focus on the location of hubs and do not consider other relevant decisions

such as the activation of hub, access, and bridge arcs and servicing decisions for O/D

nodes.

Jaillet et al. [71] consider a different approach for designing airline hub networks.

Instead of explicitly considering the locational decision and associated setup costs

for the hubs, the authors model the design of these networks as capacitated multi-

commodity network design problems in which a predefined set of service policies

are considered. Solution networks of these models will suggest the presence of hubs

if cost efficient. Moreover, the number and type of aircraft of different capacity

activated at each link are determined by these models. Three variants associated

with different service policies are considered. The one-stop model considers only two

possible services for each OD pair: (i) non-stop and (ii) one-hub-stop. The two-

stop model is an extension of the first one in which a two-hub-stop service is added.

Finally, the all-stop model considers no restrictions on the number of stops in each

OD path. As already pointed out by Bryan and O’Kelly [20], caution must be taken

when comparing the results of the models given in Jaillet et al. [71] to the ones

obtained with classical hub location models as the definition of a hub is not the same.

In most HLPs, a hub corresponds to a transshipment point with sufficient installed

infrastructure to consolidate and reroute flows. However, in Jaillet et al. [71] hubs are

defined as any city that receives a large amount of flow and thus, any city is allowed to

serve as a transshipment point without ensuring that sufficient infrastructure exists

to consolidate and reroute large amounts of flow. Therefore, these models focus

only on link activation decisions and disregard the locational and servicing decisions

considered in HNDPPs. We refer to Bryan and O’Kelly [20], O’Kelly [103], and Saberi
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and Mahmassani [110] for additional studies of HLPs arising in airline transportation.

2.3 Related Network Optimization Problems

HNDPPs are also related to other network optimization problems, aiming at maxi-

mizing the captured demand or optimizing some profit-oriented objective. Examples

of the former are the maximal covering location (Church and ReVelle [28]) or the

competitive facility location problem (Aboolian et al. [1]). Examples of the latter are

prize-collecting versions of problems that do not consider locational decisions: trav-

eling salesman (Feillet et al. [54]), vehicle routing (Aras et al. [12]), rural postman

(Aráoz et al. [11]), and prize-collecting Steiner tree problems (Álvarez-Miranda et al.

[9]). The above mentioned prize-collecting problems share with HNDPPs a distin-

guishing feature: they generalize their corresponding classical version by incorporat-

ing one additional level to the strategic decision-making process, so as to determine

the demand customers to be served. In its turn, such decisions induce additional

network design decisions. Nevertheless, according to the classification of Contreras

and Fernández [37], all mentioned problems are user-facility demand. That is, service

demand relates users (nodes) and service centers (facilities). Instead, HNDPPs are

user-user demand, as service demand relates pairs of users among them (O/D nodes

of commodities).

2.4 Bilevel Programming

A bilevel programming problem is a hierarchical optimization problem in which part

of the constraints translate the fact that some of the variables constitute an opti-

mal solution to a second optimization problem, (Labbé and Violin [80]). Bracken

and McGill [17] first studied these problems and called them mathematical programs
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with optimization problems in the constraints. Candler and Norton [27] later intro-

duced the terms bilevel and multilevel. In a bilevel programming problem the first

optimization problem is known as the leader or the first level while the second one is

called as the follower or the second level. The main point in any bilevel programming

problem is that the optimality of the follower is one of the constraints for the leader’s

optimization problem meaning that solution of the first level is not feasible, if it does

not lead to an optimal solution for the second level. A generic bilevel programming

problem can be formulated as:

max
x,y

f(x, y)

(x, y) ∈ X (2.5)

where y solves (2.6)

min
y

g(x, y) (2.7)

s.t. (x, y) ∈ Y. (2.8)

where x and y denote decision vectors and X and Y the set of feasible solutions of

the leader and the follower, respectively. f is the objective function of the first level

while g is the objective function of the second level.

From a computational point of view, Jeroslow [72] showed that even the simple

version of bilevel programming problem with linear objective function and constraints

is NP-hard. Hansen et al. [66] later proved the strong NP-hardness of the problem.

Considering this difficulty, most of the studies have focused on particular cases such as

linear and convex functions to be able develop efficient solution methods (see Vicente

et al. [117], Dempe [46], Colson et al. [29], Colson et al. [30]).

26



2.4.1 Classification and Applications

Bilevel programming has been applied to different optimization problems. Labbé and

Violin [80] reviews four general types of applications of bilevel programming. We

summarize them below and provide a general definition for each application briefly.

• Pricing setting problems : In a price setting problem the prices or taxes to

some activities are set by the leader (first level) and the follower (second level)

selects activities among the taxed and untaxed ones to minimize its operating

costs. Examples of such problems are the optimization of highways toll systems

(Labbé et al. [79], Dewez et al. [48], Heilporn et al. [68] Heilporn et al. [69]),

telecommunications (Bouhtou et al. [16], Bouhtou et al. [15]), freight tariff-

setting (Brotcorne et al. [18]), network design and pricing (Brotcorne et al. [19]),

and setting the price for the transportation of hazardous materials (Amaldi et al.

[10]).

• Network pricing problems with pricing on arcs : a network pricing problem on

arcs is a pricing problem on a network, in which the leader is an authority which

owns a subset of arcs and imposes tolls on them, and the follower is the user who

travels on the network. The authority wants to maximize his/her revenue while

the follower wants to minimize its costs and travel on a minimum cost path.

Labbé et al. [79] introduced a bilevel network pricing for a multicommodity

network, which is an example of an arc pricing. They also proved that the single

toll arc network pricing is a particular case that can be solved polynomially.

They provide a one level MIP formulation for network pricing on arcs, which

is nonlinear. They linearized it by adding extra variables and constraints and

later Dewez et al. [48] present several families of valid inequalities in order

to reinforce the linear relaxation. For more studies on arc pricing we refer the
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reader to Roch et al. [109], Garey and Johnson [57] and Joret [73] among others.

• Network pricing problems with pricing on paths : A network pricing problem on

paths involves tolls associated with paths. Heilporn et al. [68] proved that the

multicommodity path network pricing problem is strongly NP-hard, whether

toll arcs are single or bidirectional. However, the path network pricing with

only one toll path is equivalent to the single toll arc mentioned above, and thus

is polynomial. Moreover, the path network pricing with only one commodity is

also polynomial (Dewez and Labbé [47], Heilporn et al. [68]).

• Product pricing problems : The product pricing problem has at the first level

a company producing and pricing a set of products to maximize its revenue,

while in the second level the customers want to maximize their total utility or

minimize their costs. Different versions of this problem have been widely studied

in economics having different objective functions and constraints. Heilporn et al.

[67] provide parallel between the pricing of substitutable products in economics

and pricing of arcs of a highway network (with a polynomial number of paths) in

transportation. In other words, customers correspond to commodities, products

to toll arcs, prices to tolls and flows to flows. See Heilporn et al. [69] and Shioda

et al. [114] for different formulations of product pricing problems.

2.4.2 The Single Level Reformulation of a Bilevel Pro-

gram Problem

A very common approach to deal with bilevel programmings is to reformulate

them as a single level MIP formulation using the approach presented in Labbé

et al. [79]. They show how the second level optimization problem can be re-

placed by its primal and dual constraints and its optimality conditions stating
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that the primal and dual objective functions of each follower must be equal.

More specifically, the single level reformulation of a bilevel programming prob-

lem consists of : i) the objective function and constraints of the first level,

ii) the primal and dual constraints of the second level, and iii) the optimal-

ity conditions of the second level. For example, consider the following bilevel

program:

max
T,x,y

Tx

TC ≥ f (2.9)

where (x,y) solves (2.10)

min
x,y

Tx+ dy (2.11)

s.t. Ax+ By ≥ b (2.12)

where T is the price of the leader and d the price of the competitor. x is a

decision vector which gets the value 1 if the follower choose the leader and 0,

otherwise. y is the decision vector gets value of 1 if the follower chooses the

competitor and 0, otherwise. (2.11) is the objective of the second level and

(2.12) the constraints of the second level. To write the dual of the second level,

we define λ as the dual variable associated with constraint (2.12). The bilevel

programming can be reformulated as single level as following:

29



max
T,x,y

Tx (2.13)

s.t. TC ≥ f (2.14)

Ax+ By ≥ b (2.15)

λA = T (2.16)

λB = d (2.17)

Tx+ dy = λb (2.18)

Constraints (2.16) and (2.17) are the dual constraints of the second level. Con-

straints (2.15) to (2.18) are the KKT conditions. The problem with this refor-

mulation is that it has a nonlinear term both in the objective function (2.13) and

constraint (2.17). Depending on the type of problem, sometimes it is possible

to linearize formulations by defining additional variables and constraints.
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Chapter 3

A Lagrangean Relaxation for

Uncapacitated Hub Location

Problems with Profits

In this chapter we introduce the most basic variants of hub network design problems

with profits (HNDPPs) denoted as the uncapacitated hub location problem with prof-

its (UHLPP), where it is not necessary to provide service to all demand nodes. The

UHLPP releases the classical requirement of most HLPs that all service demand must

be satisfied, and incorporates one additional level to the decision making process so

as to determine the O/D nodes and associated commodities whose demand must be

served. The rationale behind the UHLPP is that in many applications a profit is ob-

tained for serving the demand of a given commodity. Capturing such a profit is likely

to incur not only a routing cost but also additional setup costs, as the O/D nodes

of the served commodities may require the installation of additional infrastructure.

Classical HLPs, however, ignore these considerations, as reflected by the requirement
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that the demand of every commodity must be served. Broadly speaking, this re-

quirement expresses the implicit hypothesis that the overall cost of solution networks

will be compensated by the overall profit. Since such hypothesis does not necessarily

hold, incorporating decisions on the nodes where service should be offered and the

commodities that should be routed have important implications in the strategic and

operational costs.

In UHLPPs a profit is associated with each flow between pair of nodes. The

goal is the simultaneous optimization of the collected profit, the set-up cost of the

hub network and the cost for routing the flow. Potential applications appear in

the design of airline and ground transportation networks. A mathematical model

and a lagrangean relaxation approach are presented to solve this class of problems.

Numerical results on a set of benchmark instances are reported. The material used

for this chapter is from Alibeyg et al. [4].

The reminder of this chapter is organized as follows. Section 3.1 provides the for-

mal definition of the UHLPP and presents the MIP formulation. Section 3.2 describes

the proposed lagrangean relaxation and analyzes the structure of the subproblems and

their solutions. The chapter ends with some computational results in Section 3.3.

3.1 Problem Description

Let G = (N,A) be a directed complete graph, where N={1, 2, ..., n} represents the

set of potential nodes to provide service and A represents the set of arcs. Let H ⊆ N

be the set of potential hub locations, and K represents the set of commodities whose

origin and destination points belong to N . Wk is the amount of flow k ∈ K to be

routed from origin o(k) ∈ N to destination d(k) ∈ N . For each node i ∈ N , fi is the

fixed cost of opening a hub at node i, and ci the set-up cost for serving node i. Let

dij be the distance between nodes i and j, which we assume to satisfy the triangle
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inequality. We define Pk the per unit price of routing commodity k ∈ K which does

not depend on the path used to route the commodity.

Considering the assumption of fully interconnection between hubs and that dis-

tances satisfy the triangle inequality, every O/D path will contain at least one and at

most two hubs. Thus, paths between two nodes are of the form (o(k), i, j, d(k)), where

(i, j) ∈ H×H is the ordered pair of hubs and o(k) and d(k) are the origin and destina-

tion of commodity k, respectively. Thus, the directed transportation costs of routing

commodity k through the path (o(k), i, j, d(k)) is Fijk = Wk(χdo(k)i + αdij + δdjd(k)),

where χ, α and δ represent the collection, transfer and distribution costs along the

path. We assume that α < χ and α < δ to reflect economies of scale between hubs.

Using known properties of optimal solutions of classical HLPs (Contreras et al. [32]),

we can define undirected transportation costs. In particular, we define a hub edge

as a set e ∈ E, where E is the set of subsets of H containing one or two hubs. We

define e as {e1, e2} if |e| = 2 and as {e1} if |e| = 1. The undirected transportation

cost Fek for each e ∈ E and k ∈ K is defined as Fek = min{Fijk, Fjik} if e = {i, j},
and Fek = Fiik if e = {i}. Using these undirected transportation costs, we can define

a set of candidate hub edges Ek for each commodity k ∈ K as

Ek =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{e ∈ E : |e| = 1} ∪ {e ∈ E : |e| = 2 and Fek < min{F{e1}k, F{e2}k}}, if o(k) 
= d(k),

{e ∈ E : |e| = 1}, otherwise.

The UHLPP consists of selecting a set of O/D nodes to be served, of locating

a set of hubs facilities and of determining the routing of a subset of flows through

the network, with the objective of maximizing the difference between total revenue

obtained from routing commodities minus the set-up cost for designing the network

and the transportation cost for routing the commodities through the network.
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3.1.1 A Mixed Integer Programming Formulation

In order to provide a MIP formulation for the UHLPP, we define the following sets

of decision variables. We define binary location variables zi, i ∈ H, equal to 1 if and

only if a hub is located at node i . We also introduce binary serving node variables

si, i ∈ N equal to 1 if node i is served as a non-hub node. Routing variables are

defined as xek, e ∈ Ek and k ∈ K equal to 1 if commodity k is routed using hub edge

e. Using these three sets of variables, the UHLPP can be stated as follows:

(UHLPP ) maximize
∑
k∈K

∑
e∈Ek

Wk(Pk − Fek)xek −
∑
i∈N

fizi −
∑
i∈N

cisi

subject to
∑
e∈Ek

xek ≤ so(k) + zo(k) ∀ k ∈ K (3.1)

∑
e∈Ek

xek ≤ sd(k) + zd(k) ∀ k ∈ K (3.2)

∑
e∈Ek:i∈e

xek ≤ zi ∀ k ∈ K, ∀ i ∈ N (3.3)

si + zi ≤ 1 ∀ i ∈ N (3.4)

xek ≥ 0 ∀ e ∈ Ek ∀ k ∈ K (3.5)

zi ∈ {0, 1} ∀ i ∈ N (3.6)

si ∈ {0, 1} ∀ i ∈ N (3.7)

The first term of the objective function represents the net profit of routing the

flows and the second and third terms represent the total set-up cost of opening a

set of hubs and servicing a set of non-hub nodes, respectively. Constraints (3.1) and

(3.2) state that to route each commodity, its origin and destination should be in the

network, either as hub or non-hub node. Constraints (3.3) prohibit commodities from
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being routed via a non-hub node, whereas constraints (3.4) state that a node can be

either hub or non-hub node, in case it becomes part of the solution network. Finally,

Constraints (3.5)-(3.7) are the standard integrality constraints.

3.2 Solution Algorithm

Lagrangean relaxation (LR) is a well-known decomposition technique used for solving

large-scale combinatorial optimization problems (Fisher [55]). It exploits the structure

of the problems to compute bounds on the optimal solution value. LR has been

successfully applied to different variants of HLPs (Contreras et al. [33], Maŕın [91]).

In this section we describe a LR for the UHLPP.

3.2.1 Lagrangean Relaxation

In the case of model UHLPP, if we relax constraints (3.2) and (3.3) incorporating

them to the objective function with weights given by a multiplier vector (u, v) of

appropriate dimension, we obtain the following lagrangean function:

L(u, v) = maximize
∑
k∈K

∑
e∈Ek

Wk(Pk − Fek)xek −
∑
i∈N

fizi −
∑
i∈N

cisi

−
∑
k∈K

vk(
∑
e∈Ek

xek − sd(k) − zd(k))

−
∑
i∈N

∑
k∈K

uik(
∑

e∈Ek:i∈e
xek − zi)

subject to (3.1), (3.4)− (3.7).

Constraint (3.1) can be grouped into |N | independent blocks, one for each possible

origin node of commodities. Let Ki be the set of commodities originated at node

i ∈ N . We thus observe that the location and servicing decisions of each potential

hub/service node i ∈ N only depend on the subset of commodities Ki. Therefore,
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L(u, v) is separable into N subproblems, one for each origin node i ∈ N as follows:

Li(u, v) = maximize
∑
k∈K

∑
e∈Ek

P̄kxek −
∑
i∈N

f̄izi −
∑
i∈N

c̄isi

subject to
∑
e∈Ek

xek ≤ si + zi ∀ k ∈ Ki

si + zi ≤ 1

xek ∈ {0, 1} ∀ k ∈ Ki

zi ∈ {0, 1}

si ∈ {0, 1},

where

P̄k =

⎧⎪⎨
⎪⎩

(Pk − Fek)Wk − vk − ue1k − ue2k, if(e1 
= e2),

(Pk − Fek)Wk − vk − ue1k, if(e1 = e2),

c̄i =

{
ci −

∑
k∈K:d(k)=i

vk,

f̄i =

{
fi −

∑
k∈K

uik −
∑

k∈K:d(k)=i

vk.

The optimal solution to each Li(u, v) can be efficiently obtained by evaluating the

three following cases:

i) Node i will not be a hub facility nor served, i.e., zi = si = 0, and thus no

commodity originated at i will be routed through the network, i.e., xek = 0, for

each k ∈ Ki. This case will be optimal whenever

∑
k∈Ki

max

{
0,max

e∈Ek

P̄k

}
−min

{
c̄i, f̄i

}
< 0.
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ii) Node i will be used to locate a hub facility, i.e., zi = 1, si = 0, and a subset of

commodities in k ∈ Ki with strictly positive benefit will be routed. This case

will be optimal whenever −c̄i > −f̄i, and

∑
k∈Ki

max

{
0,max

e∈Ek

P̄k

}
− f̄i > 0.

iii) Node i will not be a hub but will be served, i.e., zi = 0, si = 1, and a subset of

commodities in k ∈ Ki with strictly positive benefit will be routed. This case

will be optimal whenever −c̄i < −f̄i, and

∑
k∈Ki

max

{
0,max

e∈Ek

P̄k

}
− c̄i > 0.

The following proposition follows from the above analysis.

PROPOSITION 3.1 L(u, v) =
∑
i∈N

Li(u, v).

In order to obtain the best upper bound, we solve the lagrangean dual of UHLPP,

which is given by:

(D) ZD = min
(u,v)≥0

L(u, v) =
∑
i∈N

Li(u, v) (3.8)

We use a standard implementation of the subgradient optimization algorithm to

solve D. The output of this algorithm is an upper bound on the optimal value of the

original problem.

3.2.2 Primal Heuristic

At each iteration of the subgradient optimization algorithm, we use the lagrangean

solutions to construct feasible solutions for the UHLPP. In particular, the lagrangean

solutions consist of a set of open hub facilities, a set of served non-hub nodes and
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a set of commodities routed via some paths. However, because we relax the set of

constraints that links routing decisions with locations of hub nodes and the destination

of each commodity, routing solutions may not be feasible for the original problem.

Therefore, to construct a feasible solution to the UHLPP we only consider the sets of

hubs and served nodes from the lagrangean solution and we then route commodities

via the shortest path on the solution network if its associated profit is strictly positive.

3.3 Computational Experiments

We have run a set of computational experiments in order to analyze and compare the

performance of the proposed formulation and solution algorithm. The most commonly

used set of instances in the hub location literature, the australian post (AP) set of

instances, has been used to perform the computational experiments. We used different

problem sizes (N=10, 20, 25, 40, 50, 60, 70, 75) and three different transportation

discount factors (α = 0.2, 0.5, 0.8) in our experiments. The LR algorithm was coded

in C and run on a server with an Intel(R) processor running at 3.4GHz and 24 GB

of RAM under Windows 7 environment.

We compare the linear programming (LP) relaxation bounds of formulation UHLPP

obtained with CPLEX 12.5.1 and the upper bounds obtained with the LR. We also

compare the CPU time required for CPLEX to solve the UHLPP to optimality and

the CPU time required for the proposed LR to obtain the lower and upper bounds.

The detailed results are summarized in Table 3.1. The first column shows the prob-

lem size. The second column is the value for α. The third column shows the LP

%gap found by CPLEX while column 4 shows the time used by CPLEX to solve each

problem to optimality. Nodes in column 5 presents the number of branched nodes.

The second part of the table is for LR which shows the %gap obtained by LR and

the associated CPU time, respectively.
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CPLEX LR
N α % LP GAP Time(sec) Nodes % LR GAP Time(sec)
10 0.2 7.61 1.70 6 7.61 0.50
10 0.5 0.00 1.68 0 0.00 0.33
10 0.8 0.00 1.77 0 0.00 0.17
20 0.2 0.00 4.38 0 0.85 3.02
20 0.5 0.00 3.74 0 0.60 3.93
20 0.8 0.00 4.22 0 0.00 4.06
25 0.2 0.00 30.08 0 0.10 8.38
25 0.5 0.00 41.41 2 0.12 8.61
25 0.8 0.00 43.90 0 0.06 9.19
40 0.2 0.00 231.00 0 0.46 88.33
40 0.5 0.00 242.97 0 0.32 88.62
40 0.8 0.00 182.00 0 0.18 88.81
50 0.2 0.00 1259.00 0 0.20 208.84
50 0.5 0.00 1115.95 0 0.29 213.37
50 0.8 0.00 1094.78 0 0.13 212.67
60 0.2 N.A. N.A. N.A. 0.50 453.26
60 0.5 N.A. N.A. N.A. 0.41 454.84
60 0.8 N.A. N.A. N.A. 0.19 453.63
70 0.2 N.A. N.A. N.A. 0.67 861.91
70 0.5 N.A. N.A. N.A. 0.67 869.27
70 0.8 N.A. N.A. N.A. 0.57 877.85
75 0.2 N.A. N.A. N.A. 0.39 1145.69
75 0.5 N.A. N.A. N.A. 0.60 1148.64
75 0.8 N.A. N.A. N.A. 0.25 1159.12

Table 3.1: Computational results for UHLPP with AP instances
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As can be seen in Table 3.1, formulation UHLPP has small optimality gap asso-

ciated with its LP relaxation bound. In all but one instance with up to 50 nodes,

the optimal solution of the LP relaxation was integer. However, CPLEX is not able

to load larger instances having more than 50 nodes due to memory limitations. On

the other hand, the proposed LR is able to obtain tight lower and upper bounds for

instances with up to 75 nodes in reasonable CPU times. The CPU time required by

the LR to obtain a close estimation of the LP bound is considerable smaller than the

CPU time required by CPLEX to optimally solve the LP relaxation. Moreover, the

primal heuristic is able to find the optimal solution for all instances that CPLEX was

able to solve the problem.
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Chapter 4

Hub Network Design Problems

with Profits

This chapter presents a class of hub network design problems with profit-oriented

objectives, which extend several families of classical hub location problems. Potential

applications arise in the design of air and ground transportation networks. These

problems include decisions on the origin/destination nodes that will be served as

well as the activation of different types of edges, and consider the simultaneous op-

timization of the collected profit, setup cost of the hub network and transportation

cost.

We propose and analyze alternative models and integer programming formula-

tions. Results from computational experiments show the complexity of such models

and highlight their superiority for decision-making. Given the inherent difficulty of

the considered models, CPLEX was only able to solve small to medium-size problems.

In chapter 5, we present an exact solution algorithm that is capable of solving more

realistic, large-scale instances for the primary models. The material used for this

chapter is from Alibeyg et al. [6].
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The chapter is organized as follows. Section 4.1 presents the formal definition

and modeling assumptions of a primary HNDPP. It also presents a mathematical

programming formulation for the problem and some variants of it. Sections 4.2 and

4.3 provide more realistic and complex extensions of HNDPPs. Section 4.4 describes

the computational experiments we have run. The results produced by each model

are presented and analyzed. The results of the different models are compared among

them.

4.1 Primary HNDPPs

In this section we first introduce a primary model where the core strategical and op-

erational decisions in HNDPPs are identified. In this model, the main criterion that

guides decisions is profit. It is applicable to private companies where their ultimate

goal is to maximize their net profit, independently of any other consideration. Com-

panies would only provide service to O/D nodes that increase their profit and, among

all commodities associated with served O/D nodes, only the profitable ones would

be actually routed. We next describe possible variants in which: (i) external regu-

lations could force companies to provide transportation services to any commodity

where both its origin and destination nodes are served, even if this would reduce their

profit, and (ii) market penetration policies are applied to ensure a predefined pres-

ence of a company in the market by forcing to serve a minimum number of customer

demands, even if this is suboptimal from a profit perspective.

4.1.1 Formal Definition and Modeling Assumptions

We can formally define a HNDPP as follows. Let G = (N,A) be a complete directed

graph, where N = {1, 2, . . . , n} represents the set of nodes and A represents the
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set of arcs. For each i ∈ N , ci ≥ 0 denotes the setup cost for serving node i and

for each i ∈ H, fi ≥ 0 is the fixed setup cost for opening a hub at node i. If a

node i ∈ H is selected to be a hub, it is assumed that it will be possible to serve

commodities originated (or with destination) at i without activating node i as a

servicing node. That is, there is no need to incur in the setup cost ci for serving

node i if it becomes a hub. Each node will thus be exactly one of the following: a

hub node, a served node, or an unserved node. For (i, j) ∈ A, dij ≥ 0 denotes the

distance or unit transportation cost between nodes i and j, which we assume to be

symmetric, i.e., dij = dji, and to satisfy the triangle inequality. Let H ⊂ N be the set

of potential hub locations and AH ⊂ A the subset of arcs connecting two potential

hub nodes, i.e. AH = {(i, j) ∈ A | i, j ∈ H}, where it is possible that the two hubs

coincide, i.e., i = j. We also consider the following two sets of undirected edges.

The set of edges connecting two potential hubs, denoted as EH = {{i, j} | i, j ∈ H},
and the set of edges where at least one endnode is a potential hub, denoted by

EB = {{i, j} | i ∈ N, j ∈ H, i 
= j}. Since N and H are different sets, so are EH

and EB. Any edge {i, j} ∈ EH is indistinctively denoted as {j, i}. Instead, when

we write {i, j} ∈ EB, we assume that i ∈ N , j ∈ H (this representation is not in

conflict with the fact that such an edge can be traversed both in the direction from

i to j and in the direction from j to i). The elements of EH are called hub edges

whereas the elements of EB are either access or bridge edges and will be discussed in

detail later in this section. In the literature hub edges are often referred to as hub

arcs. Throughout this chapter we prefer to maintain the distinction between edges

and arcs.

Edges in EH can be activated incurring setup costs. We denote by re ≥ 0 the

setup cost of hub edge e ∈ EH . When edges in EH are activated, their associated

arcs can be used for sending flows in any of their two directions. A hub edge e =
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{i, j} ∈ EH has a per unit flow cost αdij. The parameter α, (0 ≤ α ≤ 1) is used

as a constant discount factor to provide reduced unit transportation costs on hub

edges to represent economies of scale. It has been already pointed out in O’Kelly

[102] and other works (see Contreras [31]), the limitations of using a constant flow-

independent discount factor to model economies of scale between hubs in classical

HLPs. However, Campbell [23] has shown that, even if setup costs for hub edges

are not considered, this assumption is reasonable for HALPs given that hubs nodes

are not fully interconnected. In the case of HNDPPs, in which setup costs of hub

edges are considered, such limitation could be further mitigated as the activation of

hub edges will occur only if enough flow is routed through them. Similarly to other

HALPs, in this primary HNDPP variant edges in EB are activated without incurring

any setup cost. Also, no discount factor is applied to flows sent via edges in EB. The

per unit transportation cost of the two arcs associated with edge e = {i, j} ∈ EB is

dij.

LetK denote the set of commodities where each k ∈ K is defined as (o(k), d(k),Wk),

where o(k), d(k) ∈ N , respectively denote its origin and its destination, also referred

to as its O/D pair, and Wk denotes its service demand, i.e., the amount of flow that

must be routed from o(k) to d(k) if commodity k is served. The effect of serving

commodity k is threefold. On the one hand it forces the activation of its O/D nodes

o(k) and d(k). On the other hand, it produces a per unit revenue Rk ≥ 0, which is

independent of the path used to send the commodity demand Wk through the solu-

tion network. Finally, serving commodity k also incurs a transportation cost which

depends on Wk and on the path that is used to route it from o(k) to d(k).

Similarly to most HLPs, we require that all O/D paths include at least one hub

node. That is, the solution network contains no direct connections between two

non-hub nodes. We assume that served nodes can be assigned to more than one
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hub node, i.e. multiple assignments. Moreover, we require solution networks to

contain at most three edges in each O/D path. While this hypothesis is common in

classical hub location models, it may seem restrictive as compared to general network

design models. Note, however, that this hypothesis is consistent with the potential

applications that we mention, mainly air transportation where paths with three legs

already correspond to two intermediate transfers. On the other hand, our models are

profit-oriented so they include additional decisions on the commodities to be served,

increasing their difficulty with respect to cost-oriented models.

For a given commodity k let (o(k), i, j, d(k)) denote the path connecting o(k) and

d(k), which uses a collection edge between o(k) and hub i, a transfer edge between

hubs i and j, and a distribution edge between hub j and d(k). When i 
= j, not

only both i and j are hub nodes, but also the intermediate leg, {i, j}, must be a hub

edge. Note that O/D paths of the form (o(k), o(k), d(k), d(k)), using just one hub

edge, may arise only when both o(k) and d(k) are hub nodes. O/D paths with i = j

do not use any hub edge and consist solely of the collection and distribution legs, i.e.

(o(k), i, i, d(k)) (origin-hub-destination) with o(k) 
= i and d(k) 
= i.

Paths using at least two edges necessarily contain a collection or a distribution

leg, i.e. some edge from EB used with no discount factor. Such edges are of one

of the following two classes: access or bridge edges. The only difference between an

access and a bridge edge is that the former connects a non-hub node to a hub node

whereas the latter connects two hub nodes. Even if a bridge edge connects two hub

nodes, it differs from a hub edge in its setup cost and its per unit (non-discounted)

routing cost. In the primary HNDPP we assume that no bridge edge will be used

as intermediate transfer edge in a three-leg O/D path. The reader is addressed to

Campbell et al. [24] for further details and an extensive analysis on possibilities for

O/D paths in hub location.
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Taking into account the above mentioned assumptions and requirements on the

structure of O/D paths, we define the per unit transportation cost for routing com-

modity k on the path (o(k), i, j, d(k)) as Fijk = (χdo(k)i + αdij + δdjd(k)), where the

parameters χ and δ reflect weight factors for collection and distribution, respectively.

The HNDPP consists of (i) selecting a set of O/D nodes to be served; (ii) locating

a set of hub facilities; (iii) activating a set of hub edges; (iv) selecting a set of

commodities to be served, both of whose O/D nodes have been selected in (i); and,

(v) determining the routs of the selected commodities through the solution network,

with the objective of maximizing the difference between the total revenue obtained for

routing the demand of the served commodities minus the sum of the setup costs for

the design of the network and the transportation costs for routing the commodities.

The HNDPP is clearly NP-hard given that it has as a particular case the classical

uncapacitated hub location problem with multiple assignments (UHLPMA), which is

known to be NP-hard (Contreras and Fernández [38]) Indeed, the HNDPP reduces

to the UHLPMA when ci = 0, for i ∈ N , re = 0, for e ∈ EH , and Rk =
∑

i∈N fi +

max{Fijk : (i, j) ∈ AH}, for k ∈ K.

4.1.2 An Integer Programming Formulation

For i ∈ H, we introduce binary location variables zi equal to 1 if and only if a hub

is located at node i, and for i ∈ N we define binary variables si equal to 1 if and

only if node i is served (i.e. activated as a non-hub node). For e ∈ EH , we define

ye equal to 1 if and only if hub edge e is activated. Finally, for k ∈ K, i, j ∈ H, we

define routing variables xijk equal to 1 if and only if commodity k is routed via arc

(i, j) ∈ AH . When i = j, xiik = 1 indicates that commodity k is routed on the path

(o(k), i, d(k)) visiting only hub i and thus, it is not routed via a hub edge. Using

these sets of variables, the HNDPP can be formulated as follows:
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(PO1) maximize
∑
k∈K

∑
(i,j)∈AH

Wk(Rk − Fijk)xijk −
∑
i∈H

fizi −
∑
i∈N

cisi

− ∑
e∈EH

reye (4.1)

subject to
∑

(i,j)∈AH

xijk ≤ so(k) + zo(k) k ∈ K (4.2)∑
(i,j)∈AH

xijk ≤ sd(k) + zd(k) k ∈ K (4.3)∑
j∈H

xijk +
∑

j∈H:i �=j

xjik ≤ zi k ∈ K, i ∈ H (4.4)

xijk + xjik ≤ ye k ∈ K, e = {i, j} ∈ EH (4.5)

xijk ≥ 0 (i, j) ∈ AH , k ∈ K (4.6)

zi ∈ {0, 1} i ∈ H (4.7)

si ∈ {0, 1} i ∈ N (4.8)

ye ∈ {0, 1} e ∈ EH (4.9)

The first term of the objective function represents the net profit for routing the

commodities. The other terms represent the total setup costs of the hubs that are

chosen, the non-hub nodes that are selected to be served, and the hub edges that

are used. Constraints (4.2) and (4.3) impose that the O/D nodes of each routed

commodity are activated, either as hub or served nodes. Constraints (4.4) prevent

commodities from being routed via non-hub nodes, whereas constraints (4.5) activate

hub edges. Finally, constraints (4.6) to (4.9) define the domain for the decision

variables. As usual in uncapacitated hub location models, the above formulation

does not require to explicitly impose the integrality of the routing variables x. Each

commodity, if routed, will use exactly one path of the solution network. Also, given

that fi ≥ 0 and ci ≥ 0, in any optimal solution to PO1 a hub node will not be

activated also as a served node, that is si + zi ≤ 1 for each i ∈ H.
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The above formulation has a very large number of variables and constraints. How-

ever, we can exploit the following properties to reduce its size.

Property 4.1 There is an optimal solution to formulation (4.1)–(4.9) where xijk =

0, for every k ∈ K and (i, j) ∈ AH , with Rk − Fijk ≤ 0.

Property 4.1 is a direct consequence of the modeling assumption that only prof-

itable commodities will be routed. According to it, for each commodity k ∈ K all

the routing variables whose cost is not strictly smaller that its revenue Rk can be

eliminated, as routing them will not increase the system overall profit.

Property 4.2 Let Q = {(z, s, y, x) that satisfy (4.2)−(4.9)} be the domain of feasible

solutions to PO1. Then,

For every k ∈ K and e = {i, j} ∈ EH , ye ≤ zi and ye ≤ zj.

Property 4.2 is a direct consequence of the fact that points (z, s, y, x) that satisfy

constraints (4.4) and (4.5) ensure that ye = 1 if its endnodes are hubs.

4.1.3 HNDPPs with Service Commitments

Model PO1, is “flexible”, in the sense that, among all commodities connecting served

O/D nodes, only those that are actually profitable will be routed. In PO1 it is

thus possible that a commodity is not routed even if both its origin and destination

are activated. It will only be served if routing it produces an additional profit. As

mentioned, such a model can be applicable, for instance, in airline and ground trans-

portation systems. Servicing a city does not mean that connections between this city

and any other servicing city in a company’s network will be necessarily offered. Only

connections between such city and other cities that are profitable will be offered.

A more restrictive variant of PO1, denoted as PO2, arises in applications where

either service commitments or external regulations impose the decision maker to
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serve any commodity whose O/D nodes are both activated, even if this would reduce

the total profit. An important consequence of this requirement is that the solution

networks to PO2 will consist of a single connected component with no isolated hub

nodes. PO2 can be formulated by adding to PO1 the following constraint:

so(k) + zo(k) + sd(k) + zd(k) ≤
∑

(i,j)∈AH

xijk + 1 k ∈ K. (4.10)

Constraints (4.10) force commodities to be routed if their O/D nodes are both

activated. We note that Property 1 no longer holds for PO2 because of the addition of

constraints (4.10). As it will be shown in Section 4.4, this additional requirement con-

siderably increases the complexity for optimally solving PO2 with a general purpose

solver.

Previous models can be easily adapted to deal with market penetration policies

that ensure a predefined presence of a company in the market by servicing a minimum

number of customers demands, even if this is suboptimal from a profit perspective.

This can be attained by imposing to serve a fraction of the total number of commodi-

ties or to route a fraction of the total demand, for example.

A constraint that imposes that a minimum fraction 0 ≤ β1 ≤ 1 of the total number

of commodities are served is:

∑
k∈K

∑
(i,j)∈AH

xijk ≥ β1|K|, (4.11)

Similarly, a constraint that imposes that the overall flow that is routed through

the network is at least a fraction 100β1 of the overall demand
∑

k∈K Wk is:

∑
k∈K

∑
(i,j)∈AH

Wkxijk ≥ β2

∑
k∈K

Wk. (4.12)
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4.1.4 HNDPPs with Direct Connections

Previous models assume that all O/D paths include at least one hub node. That is,

the solution network contains no direct connections between two non-hub nodes. In

airline passenger transportation, there might be pairs of cities that produce higher

profits when connected with nonstop flights than via one or two-hub stop flights. PO1

can be easily extended to allow such direct connections. To model this case, we need

to define an extra set of routing variables ψk equal to 1 if and only if commodity

k is routed via a direct link between o(k) and d(k). The objective function (4.1)

is modified by adding the extra term
∑

k∈K Wk(Rk − do(k)d(k))ψk, to account for the

revenue of serving commodities that are connected directly. Moreover, constraints

(4.2) and (4.3) need to be modified as below.

∑
(i,j)∈AH

xijk + ψk ≤ so(k) + zo(k) k ∈ K

∑
(i,j)∈AH

xijk + ψk ≤ sd(k) + zd(k) k ∈ K.

4.2 HNDPPs with Setup Costs on Access/Bridge

Edges

We now introduce an extension of the primary HNDPPs presented in the previous

section that incorporates link activation decisions on access and bridge edges. This

makes more challenging not only the design of the hub network, but also the routing

of commodities, which in turn makes the problem considerably more difficult to solve.

We recall that EB denotes the set of edges which can be activated as access or bridge

edges. Let qe denote the setup cost of edge e ∈ EB.

Contrary to previous models where bridge edges can only appear in a three-leg
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O/D path as collection or distribution leg, in this new model, we now consider that

a bridge edge can also appear as a transfer (or intermediate) leg. Consequently, the

transportation cost of commodities that are routed through bridge arcs is different

from the ones that use hub arcs since there is no discount factor on the bridge arcs.

We thus define the per unit transportation cost for routing commodity k on the path

(o(k), i, j, d(k)) (where arc (i, j) ∈ EB is a bridge arc) as F
′
ijk = (χdo(k)i+dij+δdjd(k)).

Given that now it is possible to route commodities between hub nodes with a bridge

edge on a three-leg O/D path, the model will have to select whether to activate a

link as a hub edge if enough flow is being routed, so as to compensate the higher

setup cost associated with a hub edge. Otherwise, it may active the link only as a

bridge edge to get a smaller profit out of a set of commodities. Note that, because of

the setup costs on bridge edges, optimal solutions may concatenate two consecutive

bridge arcs, despite of the triangle inequality on routing costs.

We introduce two new sets of decision variables. For e ∈ EB, te equals to 1 if

and only if edge e is activated as an access or bridge edge. The new set of routing

variables are used to differentiate the type of routing used for each commodity. In

particular, we define x
′
ijk equals to 1 if and only if commodity k ∈ K is routed via

bridge arc (i, j) ∈ AH . the HNDPPs with setup costs on access/bridge edges can

then be formulated as:

(PND) maximize
∑
k∈K

∑
(i,j)∈AH

Wk(Rk − Fijk)xijk +
∑
k∈K

∑
(i,j)∈AH

Wk(Rk − F
′
ijk)x

′
ijk

− ∑
i∈H

fizi −
∑
i∈N

cisi −
∑

e∈EH

reye −
∑

e∈EB

qete (4.13)

subject to (4.4)− (4.9)
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∑
(i,j)∈AH

(xijk + x
′
ijk) ≤ so(k) + zo(k) k ∈ K (4.14)

∑
(i,j)∈AH

(xijk + x
′
ijk) ≤ sd(k) + zd(k) k ∈ K (4.15)

∑
j∈H

x
′
ijk +

∑
j∈H:i �=j

x
′
ijk ≤ zi k ∈ K, i ∈ H (4.16)

x
′
ijk + x

′
jik ≤ te k ∈ K, e = {i, j} ∈ EB (4.17)∑

(i,j)∈AH

(xijk + x
′
jik) ≤ 1 k ∈ K (4.18)

∑
j∈H

(xijk + x
′
jik) ≤ to(k)i k ∈ K, (o(k), i) ∈ EB (4.19)∑

i∈H
(xijk + x

′
jik) ≤ td(k)j k ∈ K, (d(k), j) ∈ EB (4.20)

x
′
jik ≥ 0 (i, j) ∈ AH , k ∈ K (4.21)

te ∈ {0, 1} e ∈ EB. (4.22)

The first term of the objective function represents the net profit of routing com-

modities through hub edges (with discount factor) while the second term is the net

profit of routing commodities through bridge edges (without discount factor). The

setup costs are the same as in PO1 with additional setup costs of the access/bridge

edges. Constraints (4.14), (4.15), and (4.16) are equivalent to constraints (4.2), (4.3),

and (4.4). Constraints (4.17) activate bridge edges. Constraints (4.18) indicate that

commodities can be routed using either hub edges or bridge edges. Constraints (4.19)

and (4.20) impose that collection and distribution edges are activated (either as access

or bridge edges).

4.3 HNDPPs with Multiple Demand Levels

In all previous models, it is assumed that if a commodity k ∈ K is served then all its

demandWk will be routed and a revenue Rk will be received. However, in practice, for

a given O/D pair the amount of demand Wk that is actually served can be related to

the price set to provide such transportation service. That is, the amount of demand
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that requires service associated with a commodity k will depend on the per unit

revenue Rk set by the company. Therefore, an additional operational decision can be

considered, which is to select for each commodity k ∈ K the revenue level that will

allow the company to capture the optimal portion of the total demand Wk.

In this section we extend the primary model PO1 to the case with multiple demand

levels, and consider profit-oriented models where the above mentioned decisions are

taken into account. The amount of price-dependent demand that is captured for each

commodity, is usually modeled with various nonlinear continuous functions ( see, for

instance Lüer-Villagra and Marianov [86],O’Kelly et al. [104]). In this study, to keep

the model tractable while maintaining the rest of the decisions already considered,

we employ a discrete approximation function that considers a set of possible values

for commodities demands, each of them associated with a profit. We use L as the

index set of demand and revenue levels for the commodities. For each commodity

k ∈ K and level l ∈ L, let now W l
k denote the amount of demand that is routed if

commodity k is served at level l, and Rl
k the corresponding revenue. All other data

remains as in the previous models.

To formulate the first profit-oriented model with multiple demand levels, denoted

as POM1, for each l ∈ L, i, j ∈ H and k ∈ K, we substitute the original set of routing

variables x by an extended set of continuous routing variables, xl
ijk, which denote the

fraction of commodity k served at demand level l that is routed via arc (i, j) ∈ AH .

The remaining decision variables are the same as in previous primary models, since

we assume that they do not depend on demand levels. The POM1 can be formulated

as follows:
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(POM1) maximize
∑
l∈L

∑
k∈K

∑
(i,j)∈AH

W l
k(R

l
k − Fijk)x

l
ijk −

∑
i∈H

fizi

−
∑
i∈N

cisi −
∑
e∈EH

reye

subject to (4.6)− (4.9)∑
l∈L

∑
(i,j)∈AH

xl
ijk ≤ so(k) + zo(k) k ∈ K (4.23)

∑
l∈L

∑
(i,j)∈AH

xl
ijk ≤ sd(k) + zd(k) k ∈ K (4.24)

∑
l∈L

∑
j∈H

xl
ijk +

∑
l∈L

∑
j∈H:i �=j

xl
jik ≤ zi k ∈ K, i ∈ H (4.25)

xl
ijk + xl

jik ≤ ye k ∈ K, e = {i, j} ∈ E, l ∈ L (4.26)

xl
ijk ≥ 0 (i, j) ∈ AH , k ∈ K, l ∈ L. (4.27)

The first term of the objective function represents the net profit for routing com-

modities at their different demand levels. The other terms are as in previous models.

Constraints (4.23)-(4.27) are the analog to (4.2)-(4.6) taking into account the possible

demand levels of the commodities.

Given that POM1 does not consider any capacity constraints on the hubs or edges,

it has a very useful property which can be exploited to considerably reduce the size of

the above formulation. In particular, it can be shown that there is always an optimal

solution to POM1 in which for each served commodity, exactly one demand level and

one path are selected. Moreover, for each commodity k ∈ K, its optimal demand

level can be identified a priori. This observation is formalized in the following result.

PROPOSITION 4.1 For each k ∈ K, let lk ∈ argmaxl∈L{W l
kR

l
k}. Then,

1. There is an optimal solution to POM1 where xl
ijk = 0, for l 
= lk, (i, j) ∈ AH .

2. An optimal solution to POM1 can be found by solving PO1 with Wk = W lk
k and
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Rk = Rlk
k , for each k ∈ K.

Proposition 4.1 is a direct consequence of the fact that in POM1 we assume that

the demand levels of the commodities have no effect on of the setup costs of the

network design decisions, particularly, on the setup costs of the hubs and served

nodes.

Instead, in the model that we present next, denoted as POM2, we assume that

hubs and served nodes can be activated at different operation levels, incurring setup

costs, which depend on the amount of flow that is processed at the nodes. That is,

POM2 is a capacitated model which considers multiple capacity levels to limit the

maximum flow processed at a hub or served node. To this end, we denote as T the

index set of operation levels for the hubs and for the served nodes (for ease of notation

and without loss of generality we assume they are the same). For each potential hub

i ∈ H and operation level t ∈ T , let f t
i denote the setup cost for hub i with operation

level t, which allows serving a maximum amount of flow ϕt
i. Similarly, for each i ∈ N

and t ∈ T , let cti denote the setup cost for serving node i with operation level t, which

allows serving a maximum amount of flow ρti. The per unit transportation cost for

routing commodity k ∈ K on the path (o(k), i, j, d(k)) is computed as in previous

models, i.e. Fijk = (χdo(k)i +αdij + δdjd(k)), and is independent of the levels at which

the facilities i, j ∈ H are opened. We now extend the set of decision variables for the

hubs and served nodes to the following. For each i ∈ H and t ∈ T , variable zti takes

the value 1 if and only if a hub is located at node i with operation level t. For i ∈ N

and t ∈ T , variable sti is equal to 1 if and only if node i is served with operation level

t. POM2 can be formulated as follows:
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(POM2) maximize
∑
l∈L

∑
k∈K

∑
(i,j)∈AH

W l
k(R

l
k − Fijk)x

l
ijk −

∑
i∈H

∑
t∈T

f t
i z

t
i

−
∑
i∈N

∑
t∈T

ctis
t
i −

∑
e∈EH

reye

subject to (4.6)− (4.9), (4.26)− (4.27)∑
l∈L

∑
(i,j)∈AH

xl
ijk ≤

∑
t∈T

(sto(k) + zto(k)) k ∈ K (4.28)

∑
l∈L

∑
(i,j)∈AH

xl
ijk ≤

∑
t∈T

(
std(k) + ztd(k)

)
k ∈ K (4.29)

∑
l∈L

(∑
j∈H

xl
ijk +

∑
j∈H:i �=j

xl
jik

)
≤

∑
t∈T

zti k ∈ K, i ∈ H (4.30)

∑
t∈T

sti +
∑
t∈T

zti ≤ 1 i ∈ H (4.31)

∑
k∈K

∑
l∈L

W l
k

(∑
j∈H

xl
ijk +

∑
l∈L

∑
j∈H:i �=j

xl
jik

)
≤

∑
t∈T

ϕt
iz

t
i i ∈ H (4.32)

∑
(i,j)∈A

∑
l∈L

⎛
⎝ ∑

k∈K:o(k)=h

W l
kx

l
ijk +

∑
k∈K:d(k)=h

W l
kx

l
ijk

⎞
⎠ ≤

∑
t∈T

ρths
t
h +M

∑
t∈T

zth h ∈ N (4.33)

zti , s
t
i ∈ {0, 1} i ∈ N, t ∈ T. (4.34)

The objective function and constraints (4.28)-(4.31) have a similar interpretation

to those of PO1. Constraints (4.32) guarantee that the service level at which a hub

is opened allows to serve all the incoming and outgoing flow that is routed through

it. Constraints (4.33) have a similar interpretation, with respect to the served nodes.

They state that the total incoming and outgoing flow at a served node must not

exceed its installed operational capacity. The last term M
∑

t∈T ztm on the right hand

side of the constraints is used to deactivate the constraint in case node h becomes a
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hub node, where M stands for a sufficiently large constant.

Of course more general models could be considered where different operation levels

and associated setup costs are considered also for all edges. This will indeed increase

further the complexity of the models, although the modeling techniques will be quite

similar to the ones we have used so far. We close this section by noting that Property

4.2 holds for all the considered models.

4.4 Computational Experiments

In this section we describe the computational experiments we have run in order to

analyze the performance and various aspects of the HNDPPs we have introduced in

Sections 4.1 and 4.2. We give numerical results that allow quantifying the quality

of the formulations we have presented and comparing the computational difficulty

of the different HNDPPs models. We also provide insight on the tradeoff of the

decisions involved in our models by analyzing their optimal network structures and by

evaluating the effect of the different parameters on the characteristics of the optimal

solutions obtained with each of the considered models.

This section is structured in several parts. We first describe the computational

environment and the set of benchmark instances we have used. In Section 4.4.1, we

compare some of the proposed profit-oriented models we have proposed with their

classical cost-oriented counterparts. In Sections 4.4.2 to 4.4.4 we respectively give

numerical results to analyze the computational performance and limitations of the

formulations for the primary models PO1 and PO2, model PND that incorporates

decisions on bridge arcs, and model POM2, which allows multiple service levels. We

close the section with a sensitivity analysis with respect to some of the parameters in

Section 4.4.5, and with a focus on decision-making aspects in Section 4.4.6, where we

give managerial insight by analyzing the structure of the solution networks produced
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by the different models.

All experiments were run on an HP station with an Intel Xeon CPU E3-1240V2

processor at 3.40 GHz and 24 GB of RAM under Windows 7 environment. All

formulations were coded in C and solved using the callback library of CPLEX 12.6.3.

We use a traditional (deterministic) branch-and-bound solution algorithm with all

CPLEX parameters set to their default values. In all experiments the maximum

computing time was set to 86,000 seconds (one day).

The benchmark instances we have used for the experiments are the well-known

CAB data set of the US Civil Aeronautics Board (CAB), with additional data that

we generated for the missing information. These instances were obtained from the

website (http://www.researchgate.net/publication/269396247 cab100 mok). The data

in the CAB set refers to 100 cities in the US. It provides Euclidean distances between

cities, dij, and the values of the service demand between each pair of cities, Wk, where

o(k) 
= d(k). We have considered instances with n ∈ {15, 20, 25, 30, 35, 40, 45, 50, 60, 70}
and α ∈ {0.2, 0.5, 0.8}. The largest 70 nodes instances have only been used with the

primary formulation PO1. Since CAB instances do not provide the setup costs for

opening facilities, we use as the setup cost of opening hubs, i.e. fi, generated by

de Camargo et al. [45]. The setup costs ci, i ∈ N , for served nodes are ci = νfi,

where ν = 0.1 unless otherwise stated. The setup costs re, e = {i, j} ∈ EH , for

activating hub edges are re = τ(fi + fj)/2, where τ ∈ {0.3, 0.6, 0.4} is a parameter

used to model the increase (decrease) in setup costs on the hub edges when consid-

ering smaller (larger) discount factors α. The setup costs qe, e = {i, j} ∈ HB, for

activating access/bridge edges are set to qe = σ(fi + fj)/2, where σ = 0.01 unless

otherwise stated. The revenues Rk, k ∈ K, for routing commodities are randomly

generated as Rk = ϕ
∑

(i,j)∈AH
Fijk/|AH |, where ϕ is a continuous random variable

following a uniform distribution ϕ ∼ U [0.25, 0.35]. The collection and distribution
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factors are χ = δ = 1.

4.4.1 Profit-oriented vs Cost-oriented Comparison

Since all the models we have proposed are profit-oriented, a natural question is how

they compare to traditional cost-oriented models in which all nodes and associated

commodities must be served. We next present a comparison of these two classes

of models. Our main goal is to appreciate the added value of integrating within the

decision-making process additional strategic decisions on the nodes and the commodi-

ties that have to be served, which are not explicitly considered in cost-oriented models.

The profit-oriented models we have considered for this comparison are the primary

HNDPP formulated via PO1 and the HNDPP with setup costs on access/bridge

edges, formulated with PND.

In order to make this comparison as fair as possible, we have selected cost-oriented

hub arc location models which already incorporate the other strategic decisions (with

their associated setup costs) such as where to locate the hubs, what hub edges to

activate, and the operational decisions to determine how to route commodities. They

impose activating all demand nodes and routing all commodities, and aim at mini-

mizing the total setup cost for the hub nodes and hub edges and the transportation

cost for routing commodities. Such models belong to the class of HALPs studied in

Contreras and Fernández [38]. From a network topology view-point, they can also be

seen as hub network design problems with Protocol F networks (O’Kelly and Miller

[105]).

For each of the considered profit-oriented models PO1 and PND, we obtain an

optimal solution to an associated cost-oriented model, denoted as PO1 −HALP and

PND −HALP , as follows. We first solve formulations PO1 and PND with ci = 0,

for i ∈ N , and Rk =
∑

i∈N fi +
∑

e∈EH
re + max {Fijk : (i, j) ∈ AH}, for k ∈ K. For
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PND we also set qe = 0, for e ∈ E. The optimal PO1 and PND solutions obtained

with this data consist, in each case, of sets of served nodes, open hub nodes, hub

edges (plus access/bridge edges for PND), and OD paths for each commodity. Since

all commodities are routed in these solutions, even if not profitable, we do a post-

processing step to improve the obtained solutions in which all commodities with a

negative profit are removed from the solution. The idea of this last step is that a

decision-maker can use a cost-based model to obtain the design of the network and

decide after which commodities to route based on their profits.

The information on the structure of optimal network and on operational aspect

of solution network for PO1 and PO1 −HALP with a set of 21 instances with up to

60 nodes is summarized in Table 4.1, and for PND and PND−HALP in Table 4.2.

These tables contain one block with six columns for each model. Columns Open n-H

and Open H respectively show the number of nodes activated as non-hub and as hubs,

whereas hub edges give the actual number of hub edges relative to its maximum pos-

sible value. Recall that the number of hub edges in a fully interconnected hub-level

network is
∑

i∈H zi(
∑

i∈H zi − 1)/2. The last three columns in each block help ana-

lyzing the operational implications of the obtained solutions: %Served nodes indicate

the percentage of nodes served (including both non-hub and hub nodes), % Served

O/D show the percentage of commodities served in the solution network, computed

as 100
∑

k∈K
∑

i,j∈H xijk/|K|, and % Routed Flows give the percentage of all the

demand that is served, computed as 100
∑

k∈K
∑

i,j∈H Wkxijk/
∑

k∈K Wk. The last

column shows %deviations between the optimal solution value of the profit-oriented

model and the feasible solution obtained with the cost-oriented model, computed as

100(vc − v∗)/v∗, where v∗ denote the optimal value of PO1 in Table 4.1 (PND in

Table 4.2), and vc the solution value of PO1−HALP (PND−HALP in Table 4.2).

The results of the last columns of Table 4.1 show that the solutions provided
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PO1 PO1 −HALP
α n Open Hub %Served %Served %Routed Open Hub %Served %Served %Routed %Dev

n-H H Edges Nodes O/D Flows n-H H Edges Nodes O/D Flows

0.2 25 19 6 10/15 100.00 75.67 91.87 19 6 10/15 100 75.67 91.87 0.00
30 24 6 9/15 100.00 78.51 91.48 24 6 10/15 100 78.39 91.46 0.09
35 28 7 11/21 100.00 83.61 92.91 28 7 11/21 100 83.61 92.91 0.00
40 33 7 11/21 100.00 80.64 91.77 32 8 12/28 100 84.62 93.94 0.20
45 37 8 11/28 100.00 75.61 91.17 37 8 12/28 100 80.35 92.67 0.07
50 42 8 12/28 100.00 78.12 93.00 42 8 12/28 100 78.12 93.00 0.00
60 52 8 13/28 100.00 75.14 92.42 51 9 14/36 100 78.62 94.74 1.59

0.5 25 16 5 4/10 84.00 34.50 58.81 19 6 9/15 100 48.83 71.71 12.77
30 21 5 4/10 86.67 36.21 59.30 24 6 10/15 100 51.61 71.11 13.76
35 24 6 4/15 85.71 38.07 60.91 28 7 11/21 100 57.06 75.64 11.84
40 28 6 4/15 85.00 37.24 59.05 32 8 12/28 100 56.86 75.62 14.19
45 30 5 3/10 77.78 32.02 51.71 37 8 12/28 100 55.10 74.58 12.54
50 34 6 4/15 80.00 32.94 57.79 42 8 13/28 100 54.45 74.86 13.30
60 44 7 6/21 85.00 39.83 63.42 51 9 13/36 100 49.80 75.37 12.33

0.8 25 16 3 1/3 76.00 26.83 48.57 20 5 4/10 100 40.67 60.61 17.82
30 20 4 1/6 80.00 30.80 50.28 24 6 4/15 100 42.30 60.50 15.75
35 23 5 1/10 80.00 32.69 52.03 28 7 5/21 100 44.20 62.60 14.58
40 27 5 1/10 80.00 32.95 50.49 33 7 5/21 100 45.19 62.89 14.91
45 29 5 1/10 75.56 28.84 49.41 38 7 6/21 100 43.03 59.54 15.75
50 31 5 1/10 72.00 26.04 48.42 43 7 7/21 100 37.02 60.69 17.05
60 36 5 1/10 68.33 24.35 48.66 52 8 7/28 100 40.34 63.54 13.75

Table 4.1: Structure of optimal networks for PO1 and PO1 −HALP .

by PO1 − HALP are actually optimal or very close from being optimal when the

discount factor α is small. However, the solutions significantly deteriorate as the

discount factor increases, with deviations ranging from 11% to 18%. This can be

partially explained by the need to install additional hub nodes (between 1 and 3) and

activate additional hub edges (between 3 and 9) to serve all demand flows. Even with

such increase on the available infrastructure, the average increase on the percentage

of routed flows which are actually profitable is only about 25%.

Table 4.2 shows that somehow similar results are obtained for the case of PND−
HALP . However, the percentage deviation of the solutions of obtained with PND−
HALP are much higher, ranging between 12% and 142%. Note that deviations

higher than 100% indicate that the objective function is negative, meaning that losses

(instead of profits) are observed in these instances. This can be partially attributed to
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PND PND −HALP

α n Open Access Bridge Hub %Served %Served %Routed Open Access Bridge Hub %Served %Served %Routed %Dev

n-H H Edges Edges Edges Nodes O/D Flows n-H H Edges Edges Edges Nodes O/D Flows

0.2 25 19 6 28/114 1/15 10/15 100.00 74.67 91.32 17 8 32/136 4/28 14/28 100 82.33 94.05 19.22

30 22 5 29/110 1/10 7/10 90.00 61.84 79.81 19 11 40/209 11/55 21/55 100 90.69 99.54 43.91

35 28 7 41/196 1/21 11/21 100.00 76.89 91.02 25 10 50/250 9/45 17/45 100 87.48 98.76 18.21

40 33 7 49/231 1/21 11/21 100.00 74.36 90.19 29 11 56/319 12/55 18/55 100 86.35 98.65 22.17

45 38 7 55/266 1/21 11/21 100.00 70.30 88.52 33 12 76/396 15/66 20/66 100 82.93 97.53 25.05

50 41 7 58/287 1/21 11/21 96.00 66.82 87.98 38 12 77/456 13/66 20/66 100 83.51 99.03 25.25

0.5 25 16 5 22/80 1/10 4/10 84.00 34.33 58.61 16 9 34/144 7/36 14/36 100 56.33 77.70 45.48

30 21 5 29/105 0/10 4/10 86.67 35.75 58.66 27 3 35/81 0/3 3/3 100 32.18 53.19 12.83

35 24 6 37/144 1/15 4/15 85.71 37.23 60.21 21 14 52/294 22/91 27/91 100 68.74 86.81 77.01

40 26 6 42/156 2/15 4/15 80.00 34.04 56.92 27 13 65/351 18/78 24/78 100 62.69 82.35 68.49

45 28 5 46/140 1/10 3/10 73.33 30.00 50.24 32 13 74/416 15/78 24/78 100 59.14 81.60 61.83

50 34 6 54/204 1/15 4/15 80.00 31.80 57.38 35 15 86/525 17/105 36/105 100 62.86 84.68 94.37

0.8 25 16 3 23/48 0/3 1/3 76.00 26.83 48.57 10 15 30/150 26/105 19/105 100 58.00 74.93 128.40

30 20 4 33/80 1/6 1/6 80.00 30.57 49.91 20 10 52/200 12/45 13/45 100 47.24 71.31 67.63

35 23 5 41/115 2/10 1/10 80.00 32.27 51.72 20 15 63/300 28/105 18/105 100 54.37 78.24 97.37

40 25 5 46/125 2/10 1/10 75.00 30.00 48.53 24 16 65/384 29/120 24/120 100 53.85 75.73 122.55

45 27 5 51/135 2/10 1/10 71.11 26.57 47.67 27 18 77/486 33/153 28/153 100 55.30 76.90 142.50

50 30 5 54/150 2/10 1/10 70.00 24.16 47.54 38 12 96/456 17/66 18/66 100 45.80 71.04 73.98

Table 4.2: Structure of optimal networks for PND and PND −HALP .

two points: (i) contrary to PND, PND−HALP does not explicitly considers setup

costs for the activation of access/bridge edges (as in all HALPs previously considered

in the literature), and (ii) the need to install more hub nodes and hub edges to serve

all demand, as compared to PND.

Figure 4.1 compares the optimal networks obtained with the profit-oriented models

and the cost-oriented counterparts for a particular instance with n = 25 and α = 0.6.

Figures 4.1a and 4.1c show the optimal networks of PO1 and PND, respectively,

whereas Figures 4.1b and 4.1d show the optimal networks PO1−HALP and PND−
HALP , respectively. Triangles represent hubs, full circles served nodes, and empty

circles unserved nodes. Black lines represent hub edges while gray lines represent

access and bridge edges.

Given that cost-based hub models impose that all commodities are served, they

imply a larger number of hub nodes and hub edges. As can be seen, in both cases

62



Figure 4.1: Optimal networks for PO1 and PND with n = 25 and α = 0.6.

the profit-oriented model which incorporates decisions on the nodes and demand that

must be served produces a considerably better solution than the one obtained with

the cost-oriented counterpart. This is particularly true in the case of the formulations
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that incorporate decisions on access/bridge edges, which produces a negative total

profit. This creates an increase in the setup cost of the network and, as a result,

solutions networks with a notable decrease in the total profits when compared to

their profit-oriented counterpart.

Figure 4.1 also allows to compare the optimal networks produced by the profit-

oriented formulations PO1 and PND, so we can analyze the effect of incorporating

decisions on the use of access/bridge edges, inducing additional setup costs. As can

be observed the difference on the number of served nodes and served commodities

is very small. Nevertheless, the total profit obtained with the solution produced by

PO1 is about 2% higher than the one obtained with PND.

4.4.2 Numerical Results for Primary HNDPPs

Our first series of experiments was oriented to study the computational performance

of the primary HNDPPs, represented by formulations PO1 and PO2, whose numerical

results are summarized in Tables 4.3 and 4.4.

Table 4.3 gives results on the computational effort needed to solve the primary

profit-oriented models with a set of 24 instances with up to 70 nodes for PO1 and

the subset with the 21 instances with up to 60 nodes in the case of PO2. The first

two columns give information on the instances: α, the discount factor on hub edges,

and n, the number of nodes. The first of the two 4-columns blocks corresponds to

PO1, whereas the second one corresponds to PO2. Each column within each block

gives information about the performance of the solution algorithm and its associated

bounds for the corresponding model. % LP GAP shows percentage gaps between the

values of the linear programming (LP) relaxations and optimal values, computed as

100(vLP − v∗)/v∗, where v∗ and vLP denote the optimal and LP values, respectively.

Optimal value give optimal solution values (v∗), Time(sec) the computing times (in
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seconds) needed to optimally solve each instance, and Nodes the number of nodes

explored by CPLEX in the enumeration tree.

PO1 PO2

α n % LP gap Time (s) Nodes Optimal value % LP gap Time (s) Nodes Optimal value

0.2 25 0.00 3.00 0 4940995.75 0.00 25.15 0 4794995.92
30 0.00 9.64 0 5475562.01 0.00 130.19 0 5286060.60
35 0.00 30.05 0 6219389.73 0.00 386.81 0 6007414.96
40 0.00 126.12 0 5992658.91 0.00 1162.89 0 5808861.17
45 0.00 249.46 0 6171839.75 0.00 2364.55 0 5963158.91
50 0.00 513.20 0 6471414.64 0.00 5557.70 0 6255892.56
60 0.00 2370.97 0 7416226.43 0.00 37065.80 0 7153438.48
70 0.00 10460.44 0 7795411.69

0.5 25 0.00 1.60 0 3315967.83 0.00 10.24 0 2926230.46
30 0.00 4.55 0 3624158.73 0.00 31.81 0 3201896.50
35 0.00 10.16 0 4048946.70 0.00 109.04 0 3488014.39
40 0.00 21.53 0 3909497.15 0.00 216.29 0 3405507.62
45 0.00 42.17 0 3894805.98 0.00 566.33 0 3316412.33
50 0.00 75.90 0 4219096.87 0.00 1364.90 0 3522264.30
60 0.00 309.06 0 4777497.83 0.00 8339.37 0 3990983.53
70 0.00 1006.20 0 5006776.75

0.8 25 0.00 1.36 0 2940862.05 0.00 7.06 0 2557728.67
30 0.00 3.62 0 3125465.17 0.00 17.87 0 2701547.65
35 0.00 7.89 0 3503413.58 0.00 42.68 0 2939186.01
40 0.00 15.42 0 3354761.27 0.00 88.42 0 2879733.41
45 0.00 27.38 0 3451620.79 0.00 160.15 0 2846768.07
50 0.00 44.93 0 3679333.83 0.00 305.75 0 2991043.52
60 0.00 121.70 0 4083218.91 0.00 805.18 0 3300799.91
70 0.00 293.20 0 4276872.10

Table 4.3: Computational experiments for PO1 and PO2.

The results of Table 4.3 show that CPLEX can solve to optimality all considered

PO1 instances with up to 70 nodes. The computing times largely depend not only

on the sizes of the instances but also on the discount factor α. While for α = 0.8 all

instances were solved in less than 5 minutes, the largest 70 node instance required

almost three hours of computing time for the smallest discount factor α = 0.2, which

still can be considered small for an instance of that size. These small computing

times are attributed to the effectiveness of Property 1 for eliminating a large number

of xijk variables and constraint (4.5). In particular, for α = 0.2, α = 0.5 and α = 0.8,
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respectively, the average percentage of eliminated variables is 94% , 97% and 98%,

whereas the average percentage of eliminated constraint (4.5) is 87%, 94%, and 96%.

Note that all 24 considered instances were optimally solved at the root node, as the

solutions to their LP relaxations were already optimal. From this point of view, PO1

has a performance similar to other traditional hub location models without capacity

constraints, that very often have integer LP solutions (Hamacher et al. [65]).

The last four columns of Table 4.3, which summarize the results for model PO2,

allow us to quantify the effect of the constraint (4.10) on the difficulty for solving the

basic models. Recall that these constraints force commodities to be routed if their

O/D nodes are both activated. We can observe a notable increase of the computing

times relative to those of PO1, particularly for the instances with the smallest discount

factor α = 0.2 (observe the 10 hours of computing time that were needed to solve

the largest instance with n = 60). This is indeed due to the fact that Property

1 no longer holds for PO2 so it is not possible to eliminate a priori variables and

constraints. Nevertheless, PO2 has shown to be a tight formulation, in the sense

that, similarly to PO1, the LP relaxation of all the considered instances was already

integer, so no additional enumeration was needed.

The information on the structure of optimal networks and on operational aspects

of solution networks for PO1 and PO2 is summarized in Table 4.4, which contains

one block with six columns for each formulation. Columns Open n-H and Open H

respectively show the number of nodes activated as non-hub and as hubs, whereas hub

edges give the actual number of hub edges relative to its maximum possible value.

Recall that the number of hub edges in a fully interconnected hub-level network

is
∑

i∈H zi(
∑

i∈H zi − 1)/2. The last three columns in each block help analyzing

the operational implications of the obtained solutions: %Served nodes indicate the

percentage of nodes served (including both non-hub and hub nodes), % Served O/D
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show the percentage of commodities served in the solution network, computed as

100
∑

k∈K
∑

i,j∈H xijk/|K|, and % Routed Flows give the percentage of all the demand

that is served, computed as 100
∑

k∈K
∑

i,j∈H Wkxijk/
∑

k∈K Wk.

PO1 PO2

α n Open Hub %Served %Served %Routed Open Hub %Served %Served %Routed
n-H H Edges Nodes O/D Flows n-H H Edges Nodes O/D Flows

0.2 25 19 6 10/15 100.00 75.67 91.87 17 6 9/15 92.00 84.33 91.43
30 24 6 9/15 100.00 78.51 91.48 19 5 6/10 80.00 63.45 78.91
35 28 7 11/21 100.00 83.61 92.91 27 7 11/21 97.14 94.29 95.59
40 33 7 11/21 100.00 80.64 91.77 31 8 12/28 97.50 95.00 95.86
45 37 8 11/28 100.00 75.61 91.17 36 8 12/28 97.78 95.56 95.77
50 42 8 12/28 100.00 78.12 93.00 40 8 12/28 96.00 92.08 94.92
60 52 8 13/28 100.00 75.14 92.42 49 8 12/28 95.00 90.17 94.22
70 62 8 13/28 100.00 75.61 92.10

0.5 25 16 5 4/10 84.00 34.50 58.81 12 4 5/6 64.00 40.00 57.48
30 21 5 4/10 86.67 36.21 59.30 15 4 5/6 63.33 39.31 56.94
35 24 6 4/15 85.71 38.07 60.91 18 4 5/6 62.86 38.82 56.38
40 28 6 4/15 85.00 37.24 59.05 21 4 5/6 62.50 38.46 56.35
45 30 5 3/10 77.78 32.02 51.71 21 3 3/3 53.33 27.88 44.25
50 34 6 4/15 80.00 32.94 57.79 26 4 4/6 60.00 35.51 54.04
60 44 7 6/21 85.00 39.83 63.42 33 5 6/10 63.33 39.72 56.95
70 50 7 5/21 81.43 35.76 61.20

0.8 25 16 3 1/3 76.00 26.83 48.57 12 2 1/1 56.00 30.33 45.28
30 20 4 1/6 80.00 30.80 50.28 14 3 1/3 56.67 31.26 45.52
35 23 5 1/10 80.00 32.69 52.03 17 3 1/3 57.14 31.93 45.69
40 27 5 1/10 80.00 32.95 50.49 20 3 1/3 57.50 32.44 45.33
45 29 5 1/10 75.56 28.84 49.41 21 3 1/3 53.33 27.88 43.43
50 31 5 1/10 72.00 26.04 48.42 22 3 1/3 50.00 24.49 42.12
60 36 5 1/10 68.33 24.35 48.66 26 3 1/3 48.33 22.94 41.59
70 41 5 1/10 65.71 22.42 47.91

Table 4.4: Structure of optimal networks for PO1 and PO2.

All indicators point out the high influence of the discount factor α on the design

of optimal networks for both PO1 and PO2. As could be expected, the value of α

has an important effect on the number of hub edges in optimal networks, but its

effect is also noticeable on the number of hubs opened and non-hub nodes activated.

This indicates that, even if it is not explicit in the formulations, large values of the

discount factor for hub edges have a discouraging effect on the number of nodes that

are activated (as hubs or as non-hubs) in optimal networks.

In particular, for PO1 the number of open hubs and activated non-hub nodes range
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in the intervals [3, 8] and [16, 62], respectively. For n fixed, both numbers decrease

as α increases. For PO2, the effect of constraint (4.10) on the number of activated

non-hub nodes is evident for all values of α. In contrast, the effect of constraint (4.10)

on the number of hubs opened in optimal networks is influenced by the value of α.

For the smallest value α = 0.2, this number is quite similar to that of PO1, whereas

when α increases, PO2 produces optimal networks where the number of open hubs is

smaller than in the case of PO1.

For both models, the hub-level solution network is incomplete for all instances.

Again the effect of the discount factor is relevant, as the sparsity of the hub-level

solution networks clearly increases with the value of α. The reduction on the number

of open hubs of PO2 relative to PO1 produces, in its turn, an increase on the sparsity

of the hub-level solution networks of PO2, particularly for the instances with the

highest value of α = 0.8, whose optimal solutions always have just one hub edge.

Focusing on the operational aspects of solution networks, for PO1 we can observe

that the percentage of served nodes and served O/D pairs range between 65%-100%

and 48%-98%, respectively. For instances of all sizes, both percentages clearly de-

crease as the value of α increases, although the decrease is more evident for the

served O/D pairs, which for α = 0.8 is below 33%, than for the served nodes, which

for the same value of α = 0.8 ranges in 65%−80%. The percentage of overall demand

routed in optimal networks, ranges between 48%-93%, which clearly indicates that

optimal networks tend to serve commodities with higher demand. The effect of α on

these values is also clear and similar to that on the served nodes.

Despite the increase of the sparsity of the hub-level solution networks of PO2, the

effect of constraint (4.10) is not so evident on the operational indicators of its solution

networks. While there is a slight decrease with respect to PO1 on the percentage of

served nodes, which ranges between 48%-98%, it is difficult to appreciate a decrease
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on the percentage of served O/D pairs, which ranges between 23%-95%. The per-

centage of overall demand routed in optimal networks, ranges in 41%-96%. While

this percentage is higher for PO2 than for PO1 when α = 0.2 (with the exception of

the 30 nodes instance), it is smaller for PO2 than for PO1 when α = 0.8. Taking into

account that for each instance and value of α, the net profit obtained with PO2 is

always smaller than that of PO1 (see the optimal values in the corresponding columns

of Table 4.3), it seems clear that model PO1 should be preferred to model PO2 for

larger values of α. Nevertheless for smaller values of α the comparison is not clear,

as PO2 produces solutions in which the percentage of served demand is higher than

with PO1.

4.4.3 Numerical Results for HNDPPs with Setup Costs on

Access/Bridge Edges

Next we discuss the results we have obtained with formulation PND, which incor-

porates network design decisions on bridge and access arcs. For these experiments

we have considered the subset of 21 instances with up to 60 nodes and values of

α ∈ {0.2, 0.5, 0.8}. The obtained results are summarized in Table 4.5, where columns

Access Edges and Bridge Edges give the number of edges of each type in optimal

solutions.

A first observation is that the computing times of PND are considerably higher

than those of the most time consuming primary formulation, PO2, particularly as

the number of nodes of the instances increase. This is not surprising as PND has a

larger number of both binary variables (those associated with the activation of access

and bridge edges) and continuous variables (those associated to the flows routed via

inter-hub bridge arcs). In any case, for PND we can again observe the influence

of the discount factor α on the difficulty for solving the instances. For the largest
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α n % LP Time Nodes Optimal Open Access Bridge Hub Served %Served %Routed
gap (sec) value n-H H Edges Edges Edges Nodes O/D pairs Flows

0.2 25 2.09 15.77 0 4850184.96 19 6 28/114 1/15 10/15 100.00 74.67 91.32
30 2.08 87.97 0 5362669.76 22 5 29/110 1/10 7/10 90.00 61.84 79.81
35 2.01 325.68 0 6086281.06 28 7 41/196 1/21 11/21 100.00 76.89 91.02
40 3.31 1568.98 0 5831812.30 33 7 49/231 1/21 11/21 100.00 74.36 90.19
45 3.20 4127.66 0 5969894.50 38 7 55/266 1/21 11/21 100.00 70.30 88.52
50 2.86 9856.98 0 6239525.42 41 7 58/287 1/21 11/21 96.00 66.82 87.98
60 2.80 66650.76 3 7105816.66 51 8 88/408 5/28 13/28 98.33 70.85 91.22

0.5 25 9.62 12.48 0 3246177.24 16 5 22/80 1/10 4/10 84.00 34.33 58.61
30 8.14 54.49 0 3530787.94 21 5 29/105 0/10 4/10 86.67 35.75 58.66
35 9.64 158.94 4 3928183.15 24 6 37/144 1/15 4/15 85.71 37.23 60.21
40 9.73 421.83 0 3773879.34 26 6 42/156 2/15 4/15 80.00 34.04 56.92
45 10.69 951.06 6 3752423.62 28 5 46/140 1/10 3/10 73.33 30.00 50.24
50 8.85 1675.92 4 4051369.73 34 6 54/204 1/15 4/15 80.00 31.80 57.38
60 10.79 21927.88 13 4521280.50 39 6 62/234 2/15 5/15 75.00 31.16 59.15

0.8 25 14.91 6.94 0 2875551.32 16 3 23/48 0/3 1/3 76.00 26.83 48.57
30 15.87 39.66 7 3011761.00 20 4 33/80 1/6 1/6 80.00 30.57 49.91
35 16.73 154.96 26 3363665.77 23 5 41/115 2/10 1/10 80.00 32.27 51.72
40 17.03 244.24 2 3210437.26 25 5 46/125 2/10 1/10 75.00 30.00 48.53
45 17.02 413.09 7 3283658.34 27 5 51/135 2/10 1/10 71.11 26.57 47.67
50 15.78 624.69 2 3507899.84 30 5 54/150 2/10 1/10 70.00 24.16 47.54
60 15.50 4450.06 8 3864127.25 36 5 70/180 3/10 1/10 68.33 24.18 48.63

Table 4.5: Computational experiments for PND.

value of α = 0.8 the computing time for the largest 60 nodes instance is moderate,

as it can be solved in less than 1.50 hours. Instead, the same instance becomes really

challenging when α = 0.2, as the computational effort needed to solve it rises to more

than 18 hours.

From a computational point of view, a clear difference of PND with respect to

PO1 and PO2 is that, for all instances and values of α, the LP relaxation of PND

produced non-integral solutions with strictly positive percentage gaps. These gaps

are quite small for α = 0.2 (smaller 3.5%), and except for the largest instance with

n = 60, they can be closed already at the root node by the CPLEX cuts added by

default. As α increases the values of % LP gap get larger and range in 15%-17% for

α = 0.8. Still, the computational effort required to close such gaps is moderate.

Looking at the structure of optimal networks produced by PND we can observe

that, similarly to the previous formulations, the hub-level solution networks are in-

complete in all instances and their sparsity increases with the value of α. Furthermore,

we can appreciate that adding decisions on access/bridge edges does not seem to have

70



an important effect on the number of hub nodes that are opened, which is quite simi-

lar to that of PO1. It can be also observed that, for most of the instances, the number

of hub edges in optimal solutions is the same as in PO1 and decreases slightly in only

three instances. There is usually a small number of bridge edges, which seems inde-

pendent of the value of α. For the smaller value of α = 0.2 the number of hub edges

is always higher than that of bridge edges, although this relation tends to change as α

increases. The explanation is clear: hub edges are activated only if the discount factor

α produces enough reduction in the routing costs since their setup cost is higher than

that of bridge edges; otherwise profitable commodities are routed via bridge edges.

When analyzing the operational indicators of solution networks, it can be seen

that the percentage of served nodes and served O/D pairs ranges in 68%-100% and

24%-75%, respectively. These values are very similar to those of PO1, although

some decreases can be appreciated, mainly in the instances where the number of hub

edges does not coincide. Something similar can be observed with the percentage of

routed flows, which ranges in 48%-92%, and are always slightly smaller than those

of PO1 except for the instances where there is a reduction on the number of hub

edges, where the decrease on the flows that are routed may reach 11%. Similarly to

the previous models, the difference on the percentage of served O/D pairs and routed

flows indicates that optimal networks tend to serve commodities with higher demand.

4.4.4 Numerical Results for HNDPPs with Multiple Demand

Levels

We have run a last series of computational experiments to evaluate the more general

model POM2, in which hubs and served nodes can be activated at different operation

levels, incurring setup costs, which depend on the amount of flow that is being pro-

cessed at the nodes. Now we have only considered the instances with up to 35 nodes
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as the computing times of larger instances become prohibitive. Moreover, for larger

instances, in most cases no feasible integer solution was known at termination.

For these experiments we have adapted the CAB instances used in the previous

sections to incorporate demand and revenue levels for the commodities and multiple

capacity levels for the hub facilities in the following way. For each k ∈ K, we set

W 1
k and R1

k to Wk and Rk, respectively. Data for the other levels are generated by

decreasing demand and increasing revenue. That is, we defined W l
k = 0.3W l−1

k and

1.2Rl
k = Rl−1

k for l = 2, . . . , |L|. In addition, for each i ∈ H, we set f 1
i = fi and

f t
i = 0.9f t−1

i , t = 2, ..., |T |. We generated in the same way different levels of setup

costs for served nodes. That is, for each i ∈ N , c1i = ci and cti = 0.9 ct−1
i , t = 2, ..., |T |.

We have also generated different levels of capacities for the hub and served nodes.

For each i ∈ H, we set ϕ1
i = λ

∑
i∈H Oi/

∑
i∈H z∗i , where λ is a continuous random

variable following a uniform distribution λ ∼ U [0.9, 1.1], and Oi is the total flow

passing through hub i at the optimal solution of POM1 (denoted as z∗). For other

capacity levels of hub nodes, ϕt
i = 0.7ϕt−1

i , t = 2, ..., |T |. Capacities of the served

nodes are generated as a fraction of the capacities for the hubs, i.e. ρti = γ ϕt
i,

t = 1, ..., |T |, and γ = 0.5. Finally, we have considered |L| = |T | = 5.

The obtained numerical results are summarized in Table 4.6, which highlights the

computational difficulty of POM2. Since optimality of the best-known solution could

not be proven in all cases, column %gap end gives the percentage optimality gap at

termination and %LP gap the percentage deviation of the LP bound with respect

to the best-known solution at termination. The value of such solution is given in

column Best-known value. A value 0.01 in column %gap end indicates that such

value corresponds to an optimal solution.

From the obtained results it can be seen that formulation POM2 is quite tight,

producing rather small % LP gaps at the root node, which do not exceed 6.5%, even
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α n % LP % gap Time Nodes Best-known Best Open Hub %Served %Served %Routed

gap end (sec) value bound n-H H Edges Nodes O/D pairs Flows

0.2 25 3.82 0.00 17379.39 3306 3571879.69 3571537.82 16 9 4/36 100.00 96.83 68.11

30 4.45 2.90 86404.12 1435 3485278.93 3387018.15 19 11 3/55 100.00 97.47 65.13

35 6.49 5.52 86407.77 495 3372157.52 3195736.83 23 12 2/66 100.00 86.64 56.42

0.5 25 4.93 0.00 2367.17 1967 2947676.67 2947461.66 17 7 1/21 96.00 83.17 53.99

30 4.87 0.00 43392.63 13324 2893186.37 2892897.33 22 8 1/28 100.00 86.55 51.77

35 5.91 0.74 86410.32 3655 2964770.23 2943064.70 24 10 1/45 97.14 82.27 50.71

0.8 25 5.25 0.00 595.45 1981 2839814.46 2839554.07 18 6 0/15 96.00 81.17 48.84

30 5.50 0.00 2398.61 3489 2822441.80 2822176.98 22 7 0/21 96.67 80.34 49.55

35 5.87 0.00 21198.95 15736 2936660.82 2936367.74 25 9 0/36 97.14 80.76 50.01

Table 4.6: Computational experiments for POM2.

for the instances that could not be solved to optimality. Unfortunately, these small

gaps are very difficult to close, as indicated by the high number of nodes that are

explored in the search trees and by the high computing times, which, for the small

size instances, are affordable when α = 0.8, but become prohibitive as α decreases or

as the size of the instances increases.

Anyway, Table 4.6 allows to appreciate that in the optimal/best-known solution

networks produced by POM2 the total number of activated nodes is roughly the same

as in all previous models for instances of the same size and value of α, although the

number of open hubs is slightly higher (so the number of activated non-hubs is slightly

lower). At the hub-level network, however, we can observe very small values for the

ratio of the number of hub edges relative to the number of hub nodes, resulting in

highly sparse hub-level networks. As can be seen, only the instances with α = 0.2

produced solution networks with more than one (but very few) hub edges, whereas

the hub-level networks for the α = 0.5 instances have just one hub edge, and no hub

edge is activated in the solution networks to the instances with α = 0.8.

In all cases, the percentages of served nodes are very high, and follow a similar

trend as in previous models, with full node service for instances with α = 0.2 and

decreasing slightly when α = 0.5, 0.8. Nevertheless, even for the instances with a

higher value of α = 0.8 this percentage is never below 96% which is considerably
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higher than the percentage of nodes served with the other models for the same value

of α. Something similar happens with the percentage of served O/D pairs, which is

never below 80%, independently of the value of α. On the contrary, the percentages of

routed flows are noticeably smaller than in previous models. This is indeed a sign of

the selective nature of POM2 where activated nodes and hubs can operate at different

service levels and demand flows partially routed. This can be better appreciated in

Table 4.7 that shows the service levels of the solution networks of POM2.

α n Open Hubs Served Nodes Routed Flows
level l level l level l

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0.2 25 7 0 1 0 1 2 2 5 1 6 224 75 97 95 105

30 8 1 1 0 1 1 4 6 3 5 331 127 159 160 94
35 9 1 0 0 2 2 4 8 1 8 348 141 143 176 250

0.5 25 3 2 1 0 1 2 2 4 3 6 170 61 72 78 126
30 5 1 1 0 1 3 2 5 4 8 242 119 103 117 188
35 7 1 0 1 1 3 3 7 6 5 344 119 137 161 242

0.8 25 2 2 1 0 1 1 4 4 3 6 154 68 64 86 127
30 4 2 0 0 1 3 2 6 3 8 228 89 99 117 184
35 7 0 1 0 1 3 4 7 5 6 327 138 139 161 229

Table 4.7: Service levels for solution networks to POM2.

As can be seen, most of the hub nodes are activated at the lowest service level,

and this trend is more evident for the lowest value α = 0.2. In contrast, served nodes

tend to be activated at higher service levels. In particular, the percentage of served

nodes activated at the highest service level ranges in 30% – 60%. Routed flows are

served at all service levels, although higher frequencies correspond either to the lowest

or highest service levels.

4.4.5 Sensitivity Analysis

Below we present a sensitivity analysis of the presented models with respect of some of

their input data. Figure 4.2 compares the optimal hub networks produced by primary
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formulation PO1 for the CAB instance with n = 25 and α = 0.5 when setting ci as

0%, 15% and 40%, of the setup cost fi.

a) ci= 0.00 fi : 8,811,009.83 6 hubs and 15 served nodes 54.38% routed flows
b) ci= 0.15 fi : 7,388,362.45 6 hubs and 10 served nodes 43.57% routed flows

c) ci= 0.40 fi : 5,636,245.08 4 hubs and 8 served nodes 38.80% routed flows 
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Figure 4.2: Optimal network for PO1 with different setup costs ci with n = 25 and
α = 0.5.

Figure 4.2a depicts the optimal solution network with no setup costs for serviced

nodes. It consists of two disconnected components with five interconnected hubs, one

isolated hub, and 15 served nodes. Even if there are no setup costs for activating

served nodes, four nodes remain unserved. Figures 4.2b and 4.2c show that, as could

be expected, increasing the setup costs for serving nodes reduces the number of served

nodes. In particular, using setup costs ci = 0.15fi (Figure 4.2b), reduces to 10

the number of served nodes. Moreover, the topology of the hub-level network also

changes, even if the number of hubs has not changed. The overall profit is reduced

by 16.14%. When setup costs are further increased to ci = 0.40fi (Figure 4.2c), the

optimal solution network consists of a single connected component with four fully

interconnected hubs. Now the number of served nodes has decreased to eight and the

total profit is reduced by 36.03% with respect to the case where ci = 0.

Figure 4.3 allows to compare the effect of the discount factor α in solution net-

works. It shows the optimal networks produced by the primary formulation PO1 for

the CAB instance with n = 25 and three different values of the discount factor α.
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The optimal network for α = 0.2 (Figure 4.3a) consists of a single connected com-

ponent with six hubs, seven hub edges, and six unserved nodes. When increasing

the discount factor to α = 0.5 (Figure 4.3b), the solution network consists of two

disconnected components but one hub node less and and nine unserved nodes. This

causes a considerable reduction in both the number of served O/D pairs and routed

flows. Figure 4.3c shows the solution network for the highest value α = 0.8. Now the

number of hub nodes has further decreased to three. Even if the number of served

nodes remains the same as with α = 0.5 there is a further decrease on the served

O/D pairs and the total routed flow.
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Figure 4.3: Optimal network for PO1 with different discount factors α with n = 25
and ν = 0.1.

4.4.6 Comparison and Tradeoff of Proposed Models

We conclude the section by analyzing the tradeoff of our different profit-oriented

models among them. In particular, we analyze the profit each of them produces

per O/D pair served and per unit of flow routed. For this we use Figures 4.4 and

4.5, which respectively depict the profit per O/D pair served and the profit per unit

of flow routed for the primary models, represented by formulations PO1, PO2, the

model with access/bridge edge decisions, represented by PND, and the capacitated
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multiple level model, represented by POM2. For a better visualization, each figure is

separated in three parts, one for each tested value of α.
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Figure 4.4: Comparison of Models: Profit per served O/D pair.
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Figure 4.5: Comparison of Models: Profit per routed unit of flow.

Figure 4.4 clearly illustrate the superiority of PO1 and PND models with respect

to the other models in terms of the profit per served O/D pair. For these values of

α, the quality of the models, measured in terms of their ability of producing solutions

with a better tradeoff between their profit and the service level attained, is inversely

proportional to their sophistication. Thus the primary HNDPP and the model with

access/bridge edge decisions, outperforms the primary model that forces to serve any

commodity whose O/D nodes are both activated, which, in turn, outperforms the

multiple level model. Figure 4.5 shows that, in terms of the profit obtained per unit

of flow routed, PO1 and PND models are also superior to the other models, although

the differences are rather minor. In our opinion, both figures could be very useful
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to help a decision maker chose among the presented models, taking into account the

potential context and priorities.
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Chapter 5

Exact Solution of Hub Network

Design Problems with Profits

Given the inherent difficulty of the HNDPPs introduced in Chapter 4 and the fact

that CPLEX was not able to solve them for larger size instances, in this chapter

we propose an exact algorithm to solve the two primary HNDPPs denoted as PO1

and PO2. This algorithmic framework uses a lagrangean relaxation that exploit the

structure of the problems and can be solved efficiently to efficiently obtain bounds

at the nodes of an enumeration tree. In particular, the lagrangean functions can be

decomposed in two independent subproblems: one of them is trivial and the other

one can transformed into a quadratic boolean problem (QBP), which can be solved

efficiently as a max-flow problem. The lagrangean dual problems were solved with

a subgradient optimization algorithms that applied simple primal heuristics, which

produced valid lower bounds. The lagrangean relaxation was embedded within exact

branch-and-bound algorithms for each of the considered problems. Moreover, reduc-

tion tests were applied at the root node, which helped to considerably reduce the

number of variables and constraints. These tests were enhanced with the application

of a partial enumeration phase to reduce the number of branches of the enumeration
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phase. The results from computational experiments with benchmark instances with

up to 100 nodes assessed the efficiency of the proposed framework, and its superiority

over CPLEX. The material used for this chapter is from Alibeyg et al. [5].

The chapter is organized as follows. Section 5.1 describes the proposed lagrangean

relaxations of PO1 and PO2 and the solution of their associated lagrangean duals.

Section 5.2 explains the variable elimination techniques used whereas Section 5.3

presents the partial enumeration and the overall branch-and-bound algorithm. Sec-

tion 5.4 describes the computational experiments we have run.

5.1 Lagrangean Relaxation

Lagrangean relaxation (LR) is a well-known decomposition method that exploits the

inherent structure of the problems to compute dual bounds on the value of the optimal

solution. Pirkul and Schilling [108], Elhedhli and Wu [52], and Contreras et al. [36]

provide some examples of successful implementations of LR for obtaining tight bounds

for various classes of HLPs.

We use the following MIP formulation for the first primary HNDPP, denoted as

PO1 presented in Chapter 4:

(PO1) maximize
∑
k∈K

∑
(i,j)∈AH

Wk(Rk − Fijk)xijk −
∑
i∈H

fizi −
∑
i∈N

cisi

−
∑
e∈EH

reye (5.1)

subject to si + zi ≤ 1 i ∈ H (5.2)∑
(i,j)∈AH

xijk ≤ so(k) + zo(k) k ∈ K (5.3)

∑
(i,j)∈AH

xijk ≤ sd(k) + zd(k) k ∈ K (5.4)

∑
j∈H

xijk +
∑

j∈H:i �=j

xjik ≤ zi k ∈ K, i ∈ H (5.5)
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xijk + xjik ≤ ye k ∈ K, e = {i, j} ∈ EH (5.6)

xijk ≥ 0 k ∈ K, (i, j) ∈ AH (5.7)

zi ∈ {0, 1} i ∈ H (5.8)

si ∈ {0, 1} i ∈ N (5.9)

ye ∈ {0, 1} e ∈ EH . (5.10)

The first term of the objective function is the net profit of the commodities that

are routed. The other terms represent the total setup costs of the hubs that are

chosen, the non-hub nodes that are selected to be served, and the hub edges that

are used. Constraints (5.2) guarantee that if a node is activated as a hub then it

is not activated as a served node. Constraints (5.3) and (5.4) impose that the O/D

nodes of each routed commodity are activated, either as hub or served nodes. When

o(k) or d(k) do not belong to H then the right hand side of constraints (5.3) and

(5.4) reduces to so(k) and sd(k), respectively. Constraints (5.5) prevent commodities

from being routed via non-hub nodes, whereas constraints (5.6) activate hub edges.

Finally, constraints (5.7)-(5.10) define the domain for the decision variables. (5.1) -

(5.10) does not require to explicitly impose the integrality of the routing variables x,

since each routed commodity will use exactly one path of the solution network. Also,

(5.1) - (5.10) uses |N | + |H| + |EH | binary variables, |K||AH | continuous variables,

and |H|+ |K|(2 + |H|+ |EH |) constraints.
An extension of the above primary HNDPP, denoted as PO2, considers service

commitments that impose to serve any commodity whose O/D nodes are both acti-

vated, even if this would reduce the total profit. An MIP formulation for this more

restrictive model can be obtained by adding to (5.1) - (5.10) the following set of
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constraints (Alibeyg et al. [6]):

so(k) + zo(k) + sd(k) + zd(k) ≤
∑

(i,j)∈AH

xijk + 1 k ∈ K. (5.11)

Constraints (5.11) force to route any commodity where both its O/D nodes are acti-

vated. PO2 has the same number of variables as PO1 but |K| additional constraints.
The effect of constraints (5.11) in the actual difficulty for solving the problem is noto-

rious. The results of Alibeyg et al. [6] show that the required CPU times for solving

PO2 with a commercial solver are at least one order of magnitude higher than those

of PO1 for all considered benchmark instances. As we will show later in Section 5.4,

our algorithmic framework is capable of considerably mitigating the effect of (5.11)

in the CPU times.

Our algorithmic framework uses LR to obtain upper bounds of PO1 and PO2. In

the case of PO1 we relax the sets of constraints (5.5) and (5.6), whereas for PO2 we

also relax the additional set of constraints (5.11). Hence, the structure of the resulting

lagrangean function is very similar in both cases: the domain is the same and only the

objective functions differ. In both cases the lagrangean function can be decomposed

in two subproblems: one of them is trivial and the other one can transformed into

a QBP. Due to the structure of the cost coefficients, we show how the lagrangean

function can actually be evaluated in polynomial time. We next provide the details

of the entire process for PO1 and then briefly describe how to proceed in a similar

fashion for PO2.
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5.1.1 The Lagrangean function for PO1

When we relax constraints (5.5) and (5.6), and incorporate them to the objective

function of PO1, with weights given by a multiplier vector (λ, μ) of appropriate di-

mension, we obtain the following lagrangean function:

L1(λ, μ) = maximize
∑
k∈K

∑
(i,j)∈AH

Wk(Rk − Fijk)xijk −
∑
i∈H

fizi −
∑
i∈N

cisi

−
∑
e∈EH

reye −
∑
k∈K

∑
i∈H

λik(
∑
j∈H

xijk +
∑

j∈H:i �=j

xjik − zi)

−
∑

e={i,j}∈EH

∑
k∈K

μek(xijk + xjik − ye)

subject to (5.2)− (5.4), (5.7)− (5.10),

which is equivalent to

L1(λ, μ) = maximize
∑
k∈K

∑
(i,j)∈AH

P ijkxijk −
∑
i∈H

f izi −
∑
i∈N

cisi −
∑
e∈EH

reye

subject to (5.2)− (5.4), (5.7)− (5.10),

where

• P ijk =

⎧⎪⎨
⎪⎩

(Rk − Fijk)Wk − λik − λjk − μ{i,j}k, if (i 
= j)

(Rk − Fiik)Wk − λik, if (i = j),

• f i = fi −
∑
k∈K

λik,

• re = re −
∑
k∈K

μek.

Note that L1(λ, μ) can be decomposed in two independent subproblems, one in

the y space, that we denote Ly(μ), and another one in the (z, s, x) space, that we

denote Lz,s,x(λ, μ). The first subproblem reduces to

Ly(μ) = max

{
−

∑
e∈EH

reye : y ∈ {0, 1}|EH |
}
,
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and an optimal solution can be obtained by inspection. That is, we set ye = 1 for all

e ∈ EH with re < 0, and ye = 0 otherwise. Subproblem Lz,s,x(λ, μ) can be stated as

Lz,s,x(λ, μ) = maximize
∑
k∈K

∑
(i,j)∈AH

P ijkxijk −
∑
i∈H

f izi −
∑
i∈N

cisi

subject to (5.2)− (5.4), (5.7)− (5.9).

We next show that Lz,s,x(λ, μ) can be reformulated as a QBP involving only |N |
binary variables.

5.1.1.1 Solution to Subproblem Lz,s,x(λ, μ)

Given (5.2), for each i ∈ H we can replace si + zi with a new binary variable hi, with

cost coefficient Fi = min
{
ci, fi

}
. For each i ∈ N \ H we just define hi = si with

coefficient Fi = ci. We can now express Lz,s,x(λ, μ) as

Lh,x(λ, μ) = maximize
∑
k∈K

∑
(i,j)∈AH

P ijkxijk −
∑
i∈N

Fihi

subject to
∑

(i,j)∈AH

xijk ≤ ho(k) k ∈ K (5.12)

∑
(i,j)∈AH

xijk ≤ hd(k) k ∈ K (5.13)

hi ∈ {0, 1} i ∈ N.

Given that (5.12) and (5.13) imply that, in an optimal solution to Lh,x(λ, μ) when

both ho(k) = hd(k) = 1, commodity k will be routed via arc (ik, jk) ∈ argmax
{
P ijk : (i, j) ∈ AH

}
,

provided P ikjkk > 0. This allows us to project out the xijk variables and to rewrite

Lh,x(λ, μ) only in terms of the h variables. For each k ∈ K, letQk = max
{
0,max(i,j)∈AH

{
P ijk

}}
and

Lh(λ, μ) = max

{∑
k∈K

Qkho(k)hd(k) −
∑
i∈N

Fihi : h ∈ {0, 1}|N |
}
.

We note that the only difference between the above expression for Lh(λ, μ) and a
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standard QBP formulation is that the former is stated on a directed graph, whereas

QBP is typically stated on an undirected graph. Indeed, this difference can be easily

overcome by redefining the cost coefficients as follows. For each pair l,m ∈ N , with

l < m let k, k̄ ∈ K denote the two commodities with endnodes l and m, i.e. o(k) = l,

d(k) = m, and o(k̄) = m, d(k̄) = l. By setting Qlm = Qk +Qk, we finally obtain the

following QBP reformulation of Lz,s,x(λ, μ):

Lh(λ, μ) = max

{ ∑
l,m∈N :l<m

Qlmhlhm −
∑
i∈N

Fihi : h ∈ {0, 1}|N |
}
.

Although QBP is NP-hard in the general case, there are some particular cases

which are known to be polynomially solvable. Picard and Ratliff [107] show that

when all cost coefficients of the quadratic term are non-negative, the QBP reduces to

a minimum cut problem in an auxiliary network. Given that by definition Qlm ≥ 0

for all l,m ∈ N , l < m, for any feasible multiplier vector (λ, μ) ≥ 0, Lh(λ, μ) can

thus be evaluated in polynomial time. For the sake of completeness, we next provide

a sketch of the procedure to define the auxiliary network used for solving Lh(λ, μ)

as a minimum cut problem. The reader is addressed to Picard and Ratliff [107] for

further details.

Let GAux = (V Aux, AAux) be a digraph where the set of nodes V Aux contains the

original nodes l ∈ N , denoted as vl, plus an artificial source s0 and an artificial sink

sn. The set of arcs A
Aux is characterized as follows. There is an arc (s0, vl) connecting

the source with each l ∈ N of capacity
∑

m∈N Qlm, if Fl ≥ 0, and 2(
∑

m∈N Qlm −Fl),

otherwise. There is also an arc (vl, sn) connecting each l ∈ N with the sink of capacity

Fl, if Fl ≥ 0, and
∑

m∈N Qlm − Fl, otherwise. For each pair l,m ∈ N with l < m

there is also an arc (vl, vm) with capacity Qlm. Finally, there is an arc (s0, sn) with

capacity K −∑
l,m∈N :l<m Qlm, where K =

∑
l,m∈N :l<m Qlm.

Any (s0, sn)-cut in the above network can be associated with a solution h̄ to
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Lh(λ, μ) (and vice-versa) as follows. If, for a given l ∈ N , (s0, vl) does not belong

to the (s0, sn)-cut, then h̄l = 1 in the associated solution to Lh(λ, μ). Moreover, the

arcs of the cut of the form (vl, vm) correspond to the pairs l,m ∈ N , l < n, where

both h̄l = h̄m = 1. Furthermore, the value of the cut is precisely the value of Lh(λ, μ)

for the solution h̄ plus the constant K. An optimal solution to Lh(λ, μ) can thus be

obtained by finding a minimum (s0, sn)-cut in GAux.

An optimal solution (z̄, s̄, x̄) to Lz,s,x(λ, μ) in the original space can be retrieved

from an optimal solution (h̄, ȳ) to Lh(λ
t, μt) as follows. Note first that the only non-

zero components of x̄ are associated with commodities k ∈ K with h̄k = 1. For

each such commodity, we set x̄ikjkk = 1 if P ikjkk > 0, and 0 otherwise. As for the

s variables, we set s̄i = h̄i for each i ∈ N \ H such that Fi = ci, and 0 otherwise.

Finally, we set z̄i = h̄i for all i ∈ H such that Fi = fi, and 0 otherwise.

PROPOSITION 5.1 For a given vector of multipliers (λ, μ), the lagrangean function

L1(λ, μ) can be solved in O(|K||AH |+ |N |3) time.

Proof The solution of Ly(μ) has complexity O(|EH |), which is dominated by the

evaluation of coefficients Qlm for l,m ∈ N for l < m, with complexity O(|K||AH |).
Given that |V Aux| = O(|N |) and |AAux| = O(|N |2), the solution of Lz,s,x(λ, μ) can be

obtained in O(|N |3) time using the max-flow algorithm given in [106] and the result

follows. �

5.1.1.2 Solution to the Lagrangean Dual

In order to obtain the best upper bound for PO1 using L1(λ, μ) we solve its associated

lagrangean dual problem

(D1) ZD1 = min
(λ,μ)≥0

L1(λ, μ) = Ly(μ) + Lh(λ, μ).
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We use subgradient optimization to solve D1. The algorithm follows the usual

iterative scheme (λt+1, μt+1) = (λt, μt) + εtγ
t, where εt is the step length and γt is

a subgradient of L1 at (λt, μt). A subgradient of L1 at a given point (λt, μt) can be

easily obtained from an optimal solution (s̄, z̄, x̄, ȳ) to L1(λ
t, μt). In particular,

γt =

⎛
⎝(∑

j∈H
x̄ijk +

∑
j∈H:i �=j

x̄jik − z̄i

)
i,k

, (x̄ijk + x̄jik − ȳe)i,j,e

⎞
⎠ .

We update the step length according to εt = Λt(L1(λ
t, μt)− η)/||γt||2, where η is

a valid lower bound on the optimal value of PO1 and Λt is a given parameter whose

value is updated at certain iterations (see Section 6.5.1 for the specific details of

our implementation). Algorithm summarizes the subgradient optimization algorithm

that we apply. The algorithm terminates when one of the following criteria is met:

(i) all the components of the subgradient are zero. In this case the current solution

is proven to be optimal, (ii) the difference between the upper and lower bounds is

bellow a threshold value, i.e., |ZD1 − Z∗| < ε, (iii) there is no improvement on the

value of the upper bound after niter consecutive iterations, and (iv) the maximum

number of iteration Itermax is reached.

Algorithm 5.1 Subgradient Optimization for PO1

Initialization
ZD1 = +∞; Initialize (λ0, μ0); Λ0

Let η be a lower bound on the optimal solution value
while Stopping criteria not satisfied do

Solve L1(λ
t, μt) and obtain an optimal solution (s̄, z̄, x̄, ȳ)

if L1(λ
t, μt) < ZD1 then
ZD1 ← L1(λ

t, μt)
end if
Compute the subgradient γt

Compute the step length εt ← Λt(L1(λ
t, μt)− η)/||γt||2

(λt+1, μt+1) ← (λt, μt) + εtγ
t

t ← t+ 1
end while
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5.1.2 The Lagrangean Function for PO2

Similarly to PO1, in our LR of PO2 we relax (5.5) and (5.6), incorporating them to

the objective function with a multiplier vector (λ, μ). Moreover, we also relax (5.11),

weighted with a multiplier vector π. An important property of this relaxation is that

the domain of the lagrangean function

L2(λ, μ, π) =
∑
k∈K

πk +max
∑
k∈K

∑
(i,j)∈AH

P ijkxijk −
∑
i∈H

f izi −
∑
i∈N

cisi −
∑
e∈EH

reye

s.t. (5.2)− (5.4), (5.7)− (5.10),

where

• P ijk =

⎧⎪⎨
⎪⎩

(Rk − Fijk)Wk − λik − λjk − μ{i,j}k − πk, if (i 
= j)

(Rk − Fiik)Wk − λik − πk, if(i = j),

• ci = ci −
∑

k∈K:o(k)=i or d(k)=i

πk,

• f i = fi −
∑
k∈K

λik −
∑

k∈K:o(k)=i or d(k)=i

πk,

• re = re −
∑
k∈K

μek,

remains the same as in L1(λ, μ) and the only difference is the objective function.

It now consists of the constant
∑

k∈K πk, which does not appear in L1(λ, μ) but is

irrelevant for the optimization, and two terms, one in the y space, which has exactly

the same cost coefficients as in L1(λ, μ), and another one in the (z, s, x) space, where

the cost coefficients are now different from those of L1(λ, μ). As before, Lz,s,x(λ, μ, π)

can be transformed into a QBP on an undirected graph with non-negative cost coef-

ficients. Thus, L2(λ, μ, π) =
∑

k∈K πk + Ly(μ) + Lz,s,x(λ, μ, π) can also be solved in

polynomial time by transforming Lz,s,x(λ, μ, π) into a min-cut problem.

Similarly to PO1, in order to obtain the best upper bound for PO2 using L2(λ, μ, π)
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we solve its associated lagrangean dual problem

(D2) ZD2 = min
(λ,μ,π)≥0

L2(λ, μ, π) =
∑
k∈K

πk + Ly(μ) + Lz,s,x(λ, μ, π).

We apply a subgradient optimization algorithm similar to Algorithm (5.1) for

solving the lagrangean dual. Details are omitted.

5.1.3 Lower Bounds from Primal Solutions

In this section we explain how feasible solutions are constructed to obtain valid lower

bounds for PO1 and PO2. In particular, we exploit the information generated from

the integer solutions to the lagrangean duals at some iterations of the corresponding

subgradient optimization algorithms.

5.1.3.1 A Primal Heuristic for PO1

Let (s̄, z̄, x̄, ȳ) denote the solution to L1(λ, μ) at the current iteration. Since in L1(λ, μ)

the sets of constraints (5.5) and (5.6) are relaxed, the solution (s̄, z̄, x̄, ȳ) may not be

feasible for PO1. We next describe a simple heuristic to obtain a feasible solution

(ŝ, ẑ, x̂, ŷ) to PO1.

The initial solution is the outcome of L1(λ, μ) but with all routing variables at

value zero, i.e., initially, (ŝ, ẑ, x̂, ŷ) = (s̄, z̄,0, ȳ). This solution contains a set of open

hubs, a set of served nodes, and a set of active hub edges. Given that Ly(μ) and

Lh(λ, μ) are independently solved, some hub edges could be associated with closed

hub nodes. In order to guarantee the feasibility of the edge variables ŷ, we close all hub

edges that do not have both end-nodes open as hubs. That is, for each e = {i, j} ∈ EH

such that ẑi = 0 or ẑj = 0, we set ŷe = 0. Finally, we select the set of commodities to

be served and their routing paths as follows. For each commodity k ∈ K with both

end-nodes activated, we identify the most “attractive” path among the ones using
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open hub edges (and thus open hub nodes), and route commodity k through it only

if it is profitable. That is, for each k ∈ K with ŝo(k) + ẑo(k) = ŝd(k) + ẑd(k) = 1, let

e(k) ∈ argmax {Rk − Fek : ŷe = 1, e ∈ EH}. If Rk − Fe(k)k > 0, then x̂e(k)k = 1, and

0 otherwise.

5.1.3.2 A Primal Heuristic for PO2

To obtain feasible solutions to PO2 we apply a two phase heuristic. The first phase is

an adaptation of the heuristic applied to PO1. Since the quality of the PO2 solutions

produced by such first phase is usually quite weak, we apply a second phase to improve

the outcome of the first phase.

The first phase starts with (ŝ, ẑ, x̂, ŷ) = (s̄, z̄,0, ȳ), and then closes all hub edges

that do not have both end-nodes open as hubs. The set of commodities to be served

and their routing paths are selected as follows. In order to satisfy constraints (5.11),

for each commodity with both end-nodes activated we identify the best path among

the ones using open hub edges, and route such commodity through it regardless if it

is profitable or not. That is, for each k ∈ K with ŝo(k) + ẑo(k) = ŝd(k) + ẑd(k) = 1, let

e(k) ∈ argmax {Rk − Fek : ŷe = 1, e ∈ EH} and set x̂ekk = 1 (independently of the

sign of Rk − Fekk). Let η̂ denote the objective value of (ŝ, ẑ, x̂, ŷ).

The second phase is a three-step procedure that aims at improving the output of

Phase 1 by: (i) activating additional hub edges, (ii) adding new served nodes, and

(iii) closing open hub nodes.

(i) For each non-activated hub edge e = {i, j} ∈ EH but with both endnodes open

as a hubs, we compute the variation in the objective function if hub edge e

were activated and the commodities re-routed accordingly. Then, the hub edge

is activated if the estimation is positive. That is, we consider in an arbitrary

order each e = {i, j} ∈ EH with ŷe = 0 and ẑi = ẑj = 1, and for each k ∈ K we
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set

Δk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{Rk − Fijk, 0} if
∑

(i′,j′)∈A x̂i′j′k = 0,

max{Fekk − Fijk, 0} if x̂ekk = 1,

0 otherwise.

If Γe =
∑

k∈K Δk − rij > 0, then ŷe = 1 and η̂ = η̂ + Γe.

(ii) For each node i ∈ N that is not served, we compute the variation in the objective

function if node i was served and its associated commodities routed. The node

is then served if the estimation is positive. We denote as Â = {(i′, j′) ∈ A |
ŷi′j′ = 1} the set of arcs whose associated hub edges are active in the current

solution. We consider in an arbitrary order each i ∈ N with ŝi = 0, and for

each k ∈ K we define

Δk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{Rk −min(i′,j′)∈Â{Fi′j′k}, 0}, if o(k) = i and ŝd(k) + ẑd(k) = 1,

max{Rk −min(i′,j′)∈Â{Fi′j′k}, 0}, if d(k) = i and ŝo(k) + ẑo(k) = 1,

0 otherwise.

If Γi =
∑

k∈K Δk − ci > 0, then ŝi = 1 and η̂ = η̂ + Γi.

(iii) For each hub i ∈ H that is open we compute the variation in the objective

function if hub i was closed and its associated commodities re-routed. The

hub node is then closed if the estimation is positive. We denote as Ê(i) =

{{i′, j′} ∈ E | ŷi′j′ = 1, and i′ = i or j′ = i} the set of active hub edges incident

to i. We consider in an arbitrary order each i ∈ N with ẑi = 1, and for each
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k ∈ K we define

Δk =

⎧⎪⎪⎨
⎪⎪⎩
−(Rk − Fi(k)j(k)k), if x̂i(k)j(k)k = 1 and {i(k), j(k)} ∈ Ê(i),

0, otherwise.

If Γi =
∑

k∈K Δk + fi +
∑

(i′,j′)∈Ê(i) ri′j′yi′j′ > 0, then ẑi = 0, ŷe = 0 for all

e ∈ Ê(i), and η̂ = η̂ + Γi.

5.2 Variable Elimination Techniques

One of the main challenges of the MIP formulations we use to model PO1 and PO2 are

the very large number of variables and constraints that these require, even for small-

size instances. By slightly increasing the size of the instances, the number of variables

in the formulations becomes so large that considerable amounts of computing time

and memory are required to solve them with a commercial solver. In the previous

sections, we have presented LRs whose lagrangean functions can be solved efficiently

in polynomial time. Still, any reduction on the size of the formulations is highly

beneficial for attaining a higher efficiency. In our algorithmic framework we reduce

the size of the instances by means of three effective procedures: (i) Preprocessing, valid

only for PO1, which is applied prior to the solution of D1, and aims at eliminating

variables and constraints; (ii) Reduction Tests, valid for both PO1 and PO2, which

eliminate variables based on the information obtained from the lagrangean functions;

and, (iii) Post-processing, which further eliminates variables, both for PO1 and PO2,

using jointly information from the reduction tests and valid lower bounds.
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5.2.1 Preprocessing

In the case of PO1, it is possible to a priori eliminate routing variables x that will

not make part of an optimal solution by using the following property.

Property 5.1 [Alibeyg et al. [6]] There is an optimal solution to formulation (5.1)

– (5.10) where xijk = 0, for all k ∈ K and (i, j) ∈ AH , with Rk − Fijk ≤ 0.

The use of Property 5.1 in PO1 allows to eliminate all routing variables with unprof-

itable arcs. That is, for each k ∈ K we set xijk = 0 for all (i, j) ∈ AH such that

Rk−Fijk ≤ 0. Since we are assuming that routing costs are symmetric, if (i, j) ∈ AH is

unprofitable so is (j, i) ∈ AH . Thus, when we set xijk = 0 we not only set xjik = 0, but

also eliminate the corresponding constraint (5.6), as it becomes unnecessary. Hence,

for each k ∈ K we restrict the set of potential candidate arcs for routing it to the

arcs that are profitable for this commodity, Ak = {(i, j) ∈ AH | Rk − Fijk > 0}. Let

also Ek denote the corresponding set of profitable hub edges for k.

Since the above elimination affects variables and constraints of PO1, it can also

be extended to the lagrangean function L1(λ, μ), where only arcs and edges of Ak

and Ek, respectively, will now be considered. We also note that the reduction on the

number of constraints (5.6) of PO1 causes a significant reduction on the number of

lagrangean multipliers μ in L1(λ, μ).

An important consequence of (5.11), is that Property 5.1 does not hold for PO2

as all the commodities whose O/D nodes are active must be served, independently of

whether or not there are profitable arcs for them.

5.2.2 Reduction Tests

Another way of reducing the size of the formulations is to develop tests to eliminate

variables based on information generated from the LR. We next develop two such
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tests based on sufficient conditions that determine if a potential hub will be closed

or if a hub edge will not be activated in an optimal solution of a given HNDPP

instance. These tests are valid for both PO1 and PO2, since they are based on the

information produced by their respective lagrangean functions L1 and L2. We will

not distinguish the case of PO1 from the case of PO2, since the structure of the terms

that construct the lagrangean functions L1(λ, μ), and L2(λ, μ) is exactly the same

and the rationale of the tests is also the same in both cases. Similar reduction tests

have been successfully applied to other HLPs (Contreras et al. [35, 36]).

5.2.2.1 Elimination of Potential Hub Nodes

The idea of this test is to use the lagrangean function to obtain upper bounds on the

profit that would be obtained in the original problem if a given node l ∈ H is chosen

to become a hub. If this estimated profit is less than the value of the best known

solution to the original problem, then node l will not be a hub in any optimal solution.

Let L̂h(λ, μ, Sz) denote the value of Lh(λ, μ) when restricted to a set of potential hub

nodes Sz ⊆ H, and its associated set of hub arcs AS = {(i, j) ∈ AH : i, j ∈ Sz}. That
is,

L̂h(λ, μ, Sz) = maximize
∑
k∈K

Qkho(k)hd(k) −
∑
i∈N

Fihi

subject to hi ∈ {0, 1} i ∈ N,

where Qk = max
{
0,max(i,j)∈AS

{
P ijk

}}
. Let L̂l

h(λ, μ, Sz) denote the optimal value

of L̂h(λ, μ, Sz) with the additional constraint that hub l is open, i.e. zl = 1. The

only difference between L̂h(λ, μ, Sz) and L̂l
h(λ, μ, Sz) is that, in the latter, node l is

now a priori activated as an open hub. This means that now Fl = {fl} and hl = 1.

The following result can be used to perform variable elimination tests on hub location

decisions.
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PROPOSITION 5.2 Let η be a valid lower bound on the optimal value of PO1 (resp.

PO2), Sz ⊆ H a given set of potential hub nodes, l ∈ Sz a specific potential hub node,

and (λ, μ) a multiplier vector. If Δl(λ, μ, Sz) = Ly(μ) + L̂l
h(λ, μ, Sz) < η, then zl = 0

in any optimal solution.

Proof The result follows since Δl(λ, μ, Sz) is an upper bound on the objective

function value of any solution in which a hub is located at node l. Therefore, if

Δl(λ, μ, Sz) < η, no optimal solution will have an open hub at l ∈ Sz, so zl = 0. �

We use this result as follows. The subgradient optimization is initialized with

all possible nodes as candidate hub nodes, that is Sz = H. Once the deviation

between the upper and lower bounds becomes smaller than a given threshold εTest

after a number of iterations of the subgradient optimization algorithm, we apply the

reduction test for each l ∈ Sz that is not active in the current subgradient optimization

iteration, i.e. s̄l = z̄l = 0, every niterTest1 iterations. If Δl(λ, μ, Sz) < η, we eliminate

l from the set of candidate hub nodes, i.e. Sz ← Sz \ {l}. According to Proposition

5.2, by applying the test in this way we ensure that Sz always contains an optimal

set of hubs.

When some node is eliminated from Sz, not only the associated zl variable is

eliminated from the LR, but also several routing variables xijk associated with node l.

This plays an important role in the computational complexity for solving Lz,s,x(λ, μ),

as the running time is now dependent of the size of AS, instead of AH . That is, the

lagrangean functions L1(λ, μ) and L2(λ, μ, π) can now be solved in O(|K||AS|+ |N |3)
time. Another important consequence of eliminating one variable zl is that we can

remove |K| constraints (5.5) from the solution process, which in turn significantly

reduces the solution space of the lagrangean dual problems D1 and D2.
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5.2.2.2 Elimination of Potential Hub Edges

An immediate consequence of the elimination of potential hub nodes is that if the

two end-nodes of a hub edge have been eliminated, then the hub edge can also be

eliminated. That is, we set ye = 0 for all e = {i, j} ∈ EH where zi and zj have been

set to zero.

Additional hub edges can be further eliminated by estimating an upper bound

on the objective function value if a hub edge is activated. This bound can be easily

computed after setting at value one the variable associated with the candidate edge

in Ly(μ). In particular, for a set of candidate hub edges Sy ⊆ EH , and a hub edge

ē ∈ Sy, let L̂ē
y(μ, Sy) denote the optimal value of Ly(μ) restricted to Sy when hub

edge ē has been activated

L̂ē
y(μ, Sy) = −rē −

∑
e∈Sy\{ē}

min{0, re}.

The following result can be used to perform reduction tests on hub edge activation

decisions.

PROPOSITION 5.3 Let η be a valid lower bound on the optimal value of PO1 (resp.

PO2), Sy ⊆ EH a given set of potential hub edges, ē ∈ Sy a specific potential hub

edge, and (λ, μ) a multipliers vector. If Δē(λ, μ, Sy) = L̂ē
y(μ, Sy) + Lz,s,x(λ, μ) < η,

then yē = 0 in any optimal solution.

Proof The result follows since Δē(λ, μ, Sy) is an upper bound on the objective

function value of any solution in which a hub edge ē is activated. Therefore, if

Δē(λ, μ, Sy) < η, hub edge ē will not be activated in any optimal solution. �

Reduction tests for hub edges are applied immediately after reduction tests for

hub nodes. Let EH0 denote the set of edges eliminated in the first phase of the
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hub elimination test. For the second phase, we set Sy = EH \ EH0 , and apply

the elimination test to each candidate hub edge ē in the updated set Sy. Then, if

Δē(λ, μ, Sy) < η, we eliminate ē from the set of candidate hub edges, i.e. Sy ←
Sy \ {ē}. According to Proposition 5.3, applying the test in this way ensures that Sy

always contains an optimal set of hub edges.

In addition, once a ye variable has been eliminated, we can also remove |K| con-
straints (5.6) from the solution process, which causes a considerable reduction of the

solution space of the lagrangean dual problems D1 and D2.

5.2.3 Post-processing

This is a simple procedure where we use information obtained from the reduction

tests for hub edges to update the set of candidate hub edges Ak, so as to further

eliminate additional routing variables xijk. In particular, for each k ∈ K, we remove

from its set of profitable edges Ak any hub edge that has been fixed to zero during the

hub edge elimination test. That is, any variable xijk associated with an arc removed

from Ak is permanently set at value 0. Given that the amount of time for updating

this set is significant, this procedure is only applied every niterTest2 applications of

the tests.

5.3 An Exact Solution Algorithm

In this section we present the complete algorithmic framework used for solving prob-

lems PO1 and PO2 to optimality. Its core component is a branch-and-bound method

in which, at every node of the enumeration tree, we obtain lower and upper bounds

by using the subgradient optimization algorithms and the primal heuristics presented

in Section 5.1. We also apply a partial enumeration phase to enhance the application

97



of the reduction tests. This phase is applied at the beginning of the branch-and-

bound procedure right after solving the root node. It is particularly useful to reduce

the number of variables to branch on, and to reduce the size of the subproblems in

the nodes of the tree. Contreras et al. [35, 36] provide some examples of success-

ful implementations of branch-and-bound algorithms based on lagrangean bounds

used to solve HLPs. We next describe the partial enumeration and then the overall

branch-and-bound algorithm.

5.3.1 Partial Enumeration

The partial enumeration works as follows. Let H0 and H1 denote the set of potential

hubs that have been already fixed at value 0 and 1, respectively. Since, the partial

enumeration is applied after solving the root node, initially we have H0 = H \Sz and

H1 = ∅. Then, for each hub not yet considered i ∈ H \ (H0 ∪ H1), we temporarily

fix zi = 1 and solve the resulting lagrangean dual problem using an iteration limit

of Itermax = 80. If the resulting upper bound ub1i is smaller than the current best

lower bound, we set zi = 0 (as well as the the related y variables) and we update

the set H0, accordingly. Otherwise, we temporarily fix zi = 0 and solve the resulting

lagrangean function. If the obtained upper bound ub0i is smaller than the current

best lower bound, we set zi = 1 and update the set H1. At the end of the partial

enumeration we re-optimize the lagrangean dual problem using an iteration limit of

Itermax = 1, 000 to further improve the bound of the root node.

5.3.2 Branch and Bound

We now present a branch-and-bound algorithm in which valid lower and upper bounds

are constructed at each node of the enumeration tree with the proposed LR. The tree

is structured in three levels: the first level where we branch on the z variables (hub
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nodes); the second level where we branch on the s variables (served nodes); and a third

level, where we branch on the y variables (hub edges). Each level is explored according

to a depth first search policy in which the 1-branch is explored first. No subsequent

level is explored until all the nodes of the previous level have been explored. The

strategy for selecting of the branching variable at each node of the first level is guided

by the output of the partial enumeration. In particular, for each potential hub node

not yet fixed i ∈ H \ (H0 ∪ H1), we compute δi = min{ub0i , ub1i }. At any point

during the first level, the branching variable zj is the selected as j ∈ argmax{δi | i ∈
H \ (H0 ∪H1)}.

After finishing branching on the z variables, we continue branching on the s vari-

ables. For each active node at the end of the first level, we set si = 0 for all i ∈ H1,

and continue branching on the remaining si variables with i ∈ N \ H1. During the

second level, branching variables are arbitrarily selected. If some nodes remain active

after completing the branching on the z and s variables, then the branching on the

hub edge variables y begins. For each active node at the end of the second level, we

set ye = 0 for all e ∈ H0 × H0. During the third level, branching variables are also

arbitrarily selected. Given that the lagrangean dual problems are only approximately

solved with Algorithm (5.1), it may happen that there are some active nodes after

finishing branching in the third level. In this case, the remaining routing subproblems

can be efficiently solved to optimality as described in Section 5.1.3. Finally, at each

node of the enumeration tree, we use the optimal dual solution to the lagrangean dual

of its parent node, as the initial solution to the current lagrangean dual, instead of

starting from scratch.
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5.4 Computational Experiments

We have run extensive computational experiments to analyze and compare the per-

formance of the lagrangean relaxation, the reduction tests and the exact algorithm,

both for PO1 and PO2. All algorithms were coded in C and run on an HP station

with an Intel Xeon CPU E3-1240V2 processor at 3.40 GHz and 24 GB of RAM under

Windows 7 environment. In all the experiments the maximum CPU time was set to

86,400 seconds (one day).

The benchmark instances are the same we used in Alibeyg et al. [6]. Most of the

data comes from the well-known CAB data set of the US Civil Aeronautics Board from

http://www.researchgate.net/publication/269396247 cab100 mok. This data provides

Euclidean distances dij between 100 cities in the US and the values of the service

demand Wk between each pair of cities. We have considered instances with n ∈
{25, 30, 40, 50, 60, 70, 80, 90, 100} and α ∈ {0.2, 0.5, 0.8}. Since the CAB instances do

not provide setup costs fi for opening hubs, we use the ones generated by de Camargo

et al. [45]. For the remaining missing information, we use the following additional

data that we generated for the computational experiments of Alibeyg et al. [6]. The

setup costs ci for served nodes are ci = νfi, where ν = 0.1 unless otherwise stated.

The setup costs for activating hub edges are re = τ(fi+fj)/2, where τ ∈ {0.3, 0.6, 0.4}
is a parameter used to model the increase (decrease) in setup costs on the hub edges

when considering smaller (larger) discount factors α. The revenues Rk for routing

commodities are randomly generated as Rk = ϕ
∑

(i,j)∈AH
Fijk/|AH |, where ϕ is a

continuous random variable following a uniform distribution ϕ ∼ U [0.25, 0.35]. The

collection and distribution factors are χ = δ = 1.
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5.4.1 Implementation Details

After some fine-tuning, we set the following parameter values for the subgradient

optimization algorithm. The maximum number of iterations, Itermax, is 3,000 at

the root node, 80 at each application of the partial enumeration, and 1,000 in the re-

optimization after the partial enumeration. At each node of the branch and bound tree

we set Itermax = 200. The additional parameters that are used for the termination

criteria of the subgradient optimization are the following: the threshold between the

upper and lower bounds is ε = 10−6 (termination criterion ii); and the number of

consecutive iterations without improvement is niter = 1, 500 (termination criterion

iii). We set (λ0, μ0, π0) = (95, 85, 85) as the initial multipliers vector. The parameter

Λt that is used in the computation of the step length is initialized to 7 and halved

every 500 iterations, provided that the % gap is less than %50, and is reset to its

initial value whenever it becomes smaller than 2. We apply the heuristics every

10 iterations of the subgradient algorithm. We use η = 0 as the initial lower bound.

This value is updated and recorded for further applications of the subgradient and the

elimination tests, whenever the heuristic improves the incumbent solution. We apply

the elimination tests every niterTest1 = 100 and iterations of subgradient optimization

and the post-processing every niterTest2 = 700 applications of the tests. Both the tests

and post-processing are only applied if the percentage gap between the upper and

lower bounds is below the threshold εTest = %5.

5.4.2 Comparison of the Exact Algorithmic Framework and

CPLEX

We next analyze and compare the performance of the general purpose solver CPLEX

12.6.3 using a traditional (deterministic) branch-and-bound algorithm and our exact
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algorithmic framework for PO1 and PO2. The application of CPLEX to PO1 and PO2

is referred to as CPLEX1 and CPLEX2, respectively, whereas our exact algorithms

for PO1 and PO2 are referred to as BB1 and BB2, respectively. All parameters

have been set to their default values both in CPLEX1 and CPLEX2. It is worth

mentioning that, similar to Alibeyg et al. [6], Property 5.1 is also applied to CPLEX1.

Figures 5.1 and 5.2 give performance profiles of CPLEX1 (dotted line) and BB1

(solid line), and of CPLEX2 (dotted line) and BB2 (solid line), respectively. In each

figure, the horizontal axis refers to computing times while the vertical axis refers to

number of instances. The points (x, y) depicted in the lines on each figure indicate

the total number of instances y optimally solved within the computing time x. In

general, small size instances can be solved rather fast both with CPLEX and our exact

algorithms, but the performance decreases as the sizes of the instances increase. This

is why in the two lines depicted in each figure the vertical values increase fast at

the beginning but slow down after a while. Throughout the considered one-day time

interval, BB1 is consistently better than CPLEX1. Moreover, within the time limit,

BB1 is able to optimally solve all 27 instances, while CPLEX1 solves 18. The effect

of the additional set of constraints (5.11) on the difficulty for solving PO2 is evident,

and both CPLEX2 and BB2 are slower than their respective counterparts for PO1.

In any case, BB2 still outperforms CPLEX2 and, within the time limit, it is able to

optimally solve 21 instances instead of the 15 instances optimally solved by CPLEX2.

Tables 5.1 and 5.2 give information of the bounds at the root nodes and of the

complete enumeration trees of the compared solution methods for PO1 and PO2,

respectively. The first two columns of each table give some instances data: α, the

discount factor on hub edges, and |N |, the number of nodes. The next two columns,
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Figure 5.1: Performance profile of CPLEX and BB1 for PO1.

under the heading % Dev, give the percentage deviations of the upper bounds pro-

duced by the employed relaxations: Linear Programming (LP) in the case of CPLEX

and lagrangean in our proposed solution algorithms. These deviations have been

computed as 100(vRP − v∗)/v∗, where vRP denotes the upper bound produced by the

relaxed problem (LP or lagrangean) and v∗ the optimal or best-known value. The

next two columns under the header Nodes give the number of nodes explored in the

enumeration trees. The three columns under the header Time (sec) give comput-

ing times in seconds. The first of these columns gives the total time consumed by

CPLEX, and the other two refer to our exact solution algorithms: LR for the com-

puting time for solving the lagrangean Dual at the root node and BB for the overall
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Figure 5.2: Performance profile of CPLEX and BB2 for PO2.

time needed to optimally solve each instance. Finally, the last two columns RT and

PE give the percentage of hubs fixed with the reduction tests (see Section 5.2.2) and

with the partial enumeration (see Section 5.3.1), respectively. That is, the entries

of these columns are computed as 100(FH/|H|), where FH is the number of hubs

fixed in each case. The entries corresponding to instances that could not be handled

by CPLEX because of insufficient memory are filled with the text mem. When an

instance could not be solved to optimality within the time limit, the correspond-

ing entry in the column of the computing times is time followed by the percentage

optimality gap at termination, in parenthesis.

The results of Table 5.1 confirm the superiority of BB1 over CPLEX1. On the

one hand, even if formulation (5.1)-(5.10) produces, in general, very tight LP bounds,

it has a very strict limitation in terms of the size of the instances that can be handled

by CPLEX1. It is true that the LP gap of CPLEX1 is always % 0.00 for the 18

instances with up to 70 nodes. However, the quality of these bounds contrasts with the
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α |N | % Dev Nodes Time (sec) % Fixed hubs

LP LR CPLEX BB CPLEX LR BB RT PE

0.2

25 0.00 0.00 0 0 3.00 1.80 1.80 0.00 0.00

30 0.00 0.00 0 0 9.64 5.63 5.63 0.00 0.00

40 0.00 0.04 0 0 126.12 35.78 45.66 0.00 100.00

50 0.00 0.11 0 0 513.20 81.94 120.31 0.00 100.00

60 0.00 0.16 0 160 2370.97 181.69 349.34 0.00 98.33

70 0.00 0.27 0 218 10460.44 391.55 850.60 0.00 98.57

80 mem 0.26 mem 340 mem 736.90 1641.43 0.00 98.75

90 mem 0.36 mem 1318 mem 1298.37 4129.42 1.11 97.78

100 mem 0.64 mem 6738 mem 1970.64 19048.79 0.00 90.00

0.5

25 0.00 0.00 0 0 1.60 0.36 0.36 8.00 8.00

30 0.00 0.00 0 0 4.55 3.85 3.85 13.33 13.33

40 0.00 0.03 0 0 21.53 13.67 19.08 15.00 100.00

50 0.00 0.10 0 0 75.90 45.63 59.83 18.00 100.00

60 0.00 0.13 0 162 309.06 110.09 189.35 18.33 98.33

70 0.00 0.27 0 570 1006.20 248.81 626.97 7.14 97.14

80 mem 0.40 mem 600 mem 446.79 1170.51 12.50 92.50

90 mem 1.46 mem 3676 mem 634.52 14824.07 0.00 67.78

100 mem 1.28 mem 3666 mem 1161.68 17537.49 1.00 77.00

0.8

25 0.00 0.02 0 0 1.36 1.83 2.34 24.00 100.00

30 0.00 0.01 0 0 3.62 3.42 4.71 20.00 100.00

40 0.00 0.03 0 0 15.42 9.61 13.55 22.50 100.00

50 0.00 0.36 0 128 44.93 22.09 43.13 24.00 94.00

60 0.00 0.27 0 132 121.70 46.91 100.51 25.00 96.67

70 0.00 0.51 0 166 293.20 155.21 386.88 2.86 85.71

80 mem 0.53 mem 792 mem 267.48 1085.56 5.00 88.75

90 mem 0.88 mem 24214 mem 471.32 20789.11 6.67 88.89

100 mem 0.87 mem 52372 mem 698.48 58546.99 11.00 89.00

Table 5.1: Results of exact algorithm using CAB instances for PO1

insufficiency of the 24 GB of memory available: none of the remaining nine instances

with 80-100 nodes could even be uploaded to the CPLEX solver. In contrast, our

lagrangean Dual D1 is highly effective in all cases, as it is able to produce tight bounds

for all 27 instances using only 2 GB of memory for the largest considered instances

with up to 100 nodes. In some cases achieving convergence when solving D1 was very

difficult, and the actual upper bound ZD1 could not be attained. This explains why

in some cases % Dev is 0.00 for LP, but it is strictly positive for LR. Still, the bounds

we could obtain with D1, together with the quality of the heuristic applied within
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subgradient optimization, assess its effectiveness. The optimality of four out of the

27 PO1 instances was already proven after solving D1 at the root node. For these

instances, the heuristic applied within subgradient optimization produced a feasible

solution with the same value as that of the upper bound. For 16 and seven of the

remaining 23 instances, the percent deviation after solving D1 was below % 0.5 and

% 1.46, respectively.

The columns under Time (sec) relative to D1 and BB1 confirm that these good

results were obtained with a small computing effort. On the one hand, BB1 is able to

solve all 27 instances to proven optimality within the CPU time limit, while CPLEX1

is able to solve only instances with up to 70 nodes. On the other hand, BB1 is, in

general, much faster than CPLEX1 on the 18 instances that could be solved by

CPLEX1, particularly for the instances with the smallest discount factor α = 0.2.

Note that BB1 is faster than CPLEX1 in 15 of out of the 18 such instances. Finally,

the last two columns of Table 5.1 assess the effectiveness of the reduction tests and,

particularly, of the partial enumeration: in 21 benchmark instances it was possible

to fix more than % 80 of the hubs. The side effect of the good performance of these

tests is that no enumeration is required in 11 out of the 27 tested instances.

The results of Table 5.2 confirm that, as mentioned, solving PO2 is more chal-

lenging than solving PO1 both for CPLEX and for our exact algorithmic framework.

In any case, the superiority of our exact algorithm over CPLEX becomes even more

evident for PO2 than for PO1. In particular, with the 24 GB of memory available,

CPLEX2 could only handle the 15 instances with up to 60 nodes, all of which were

optimally solved at the root node. However, it was not possible to even upload to

CPLEX any of the remaining 12 instances with 70-100 nodes. The reason for which

CPLEX2 could handle fewer instances than CPLEX1 is that Property 5.1 no longer
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α |N | % Dev Nodes Time (sec) % Fixed hubs

LP LR CPLEX BB CPLEX LR BB RT PE

0.2

25 0.00 0.00 0 0 25.15 28.23 28.23 12.00 12.00

30 0.00 0.07 0 30 130.19 61.34 81.31 13.33 93.33

40 0.00 0.20 0 166 1162.89 486.23 735.45 2.50 95.00

50 0.00 0.19 0 150 5557.70 552.99 1153.80 4.00 98.00

60 0.00 0.71 0 872 37065.80 7015.70 13311.15 0.00 83.33

70 mem 0.97 mem 2610 mem 7550.15 57608.85 0.00 64.29

80 mem 1.15 mem 259 mem 15347.87 time (0.02) 0.00 0.00

90 mem 1.40 mem 335 mem 27938.78 time (0.92) 43.33 47.77

100 mem 1.44 mem 573 mem 14092.6 time (0.35) 0.00 64.00

0.5

25 0.00 0.04 0 0 10.24 21.04 23.32 40.00 100.00

30 0.00 0.03 0 0 31.81 41.99 46.45 36.67 100.00

40 0.00 0.14 0 0 216.29 138.28 162.76 37.50 100.00

50 0.00 0.29 0 100 1364.90 379.20 530.78 42.00 94.00

60 0.00 0.39 0 0 8339.37 1326.02 1526.58 36.67 100.00

70 mem 0.87 mem 524 mem 3654.87 9727.55 27.14 75.71

80 mem 0.91 mem 622 mem 7117.06 15128.05 0.00 85.00

90 mem 4.02 mem 175 mem 10881.89 time (2.77) 0.00 12.22

100 mem 3.74 mem 54 mem 18334.13 time (3.17) 0.00 17.00

0.8

25 0.00 0.04 0 0 7.06 18.40 19.83 44.00 100.00

30 0.00 0.02 0 0 17.87 25.64 28.32 50.00 100.00

40 0.00 0.05 0 34 88.42 125.79 141.74 45.00 95.00

50 0.00 0.11 0 0 305.75 252.98 280.06 52.00 98.00

60 0.00 0.09 0 0 805.18 420.89 453.19 53.33 100.00

70 mem 0.38 mem 198 mem 1259.86 1690.30 50.00 97.14

80 mem 0.68 mem 220 mem 3931.77 5099.68 42.50 93.75

90 mem 1.05 mem 8366 mem 5122.81 83735.91 0.00 93.33

100 mem 1.04 mem 11174 mem 8995.96 time (0.61) 42.00 88.00

Table 5.2: Results of the exact algorithm for PO2 with CAB instances

applies to PO2 so, for a given instance, the actual size formulation (5.1)-(5.11) is con-

siderably larger than that of the PO1 formulation (5.1)-(5.10). Despite the fact that

Property 5.1 no longer applies to the PO2 formulation (5.1)-(5.11), D2 could be op-

timally solved for all 27 instances using only 3 GB of memory, producing percentage

deviations %Dev smaller than %1 for 20 of the instances, and smaller than 4.02%

for the remaining 6 instances. Moreover, BB2 was able to solve to optimality 21

benchmark instances within the time limit of 86,400 seconds. For the remaining six

instances the percentage optimality gaps at termination (given in parentheses under
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the column Time (sec)) never exceed %3.17. The effectiveness of the partial enu-

meration and the reduction tests is higher in PO2 than in PO1. This effectiveness

is particularly noticeable for the instances with higher values of α. Altogether, the

partial enumeration was able to fix all the hubs in 7 instances, and the reduction tests

fixed more than % 40 of the hubs in 11 additional instances.

We complete the information reported and discussed above, by analyzing in detail

the performance of each of the steps of the enumeration trees of BB1 and BB2. In

particular, Tables 5.3 and 5.4 show additional information of the partial enumeration

at the root node, as well as of each of the branching levels, namely branching on

hubs (z variables), branching on served nodes (s variables) and branching on hub

edges (y variables). The first two columns in each table give the discount factor α,

and the number of nodes |N | of each instance. The next three columns under the

heading of Nodes depict the exact number of nodes explored at each of the levels

of the enumeration trees: enumeration on the hub variables (z), enumeration on the

served nodes variables (s), and enumeration on the hub edges variables (y). The next

five columns, under the heading Time (sec), indicate the computing times, in seconds,

consumed at each of the following steps: root node, partial enumeration, branching

on z, branching on s, and branching on y. Similarly, the last four columns under

the heading %Dev give the percent deviation of the best-known solution at the end

of each step relative to the optimal (or best-known solution). These deviations have

been computed as 100(v−v∗)/v∗ where v is the upper bound at the end of each level,

and v∗ denotes the optimal or best-known value for each instance.

Table 5.3 further confirms the effectiveness for PO1 of Property 5.1 and of the

partial enumeration at the root node, which allow fixing hubs and also eliminating

hub edges. Note that, particularly for smaller values of α, the enumeration trees of

BB1 generate very few nodes at the first level (z) and also at the level of the hub
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α |N | Nodes Time (sec) % Dev

z s y Root PE z s y Root PE z s

0.2

25 0 0 0 2 0 0 0 0 0.00 0.00 0.00 0.00

30 0 0 0 6 0 0 0 0 0.00 0.00 0.00 0.00

40 0 0 0 36 9 0 0 1 0.04 0.00 0.00 0.00

50 0 0 0 82 36 2 0 0 0.11 0.03 0.00 0.00

60 2 104 54 182 106 7 36 18 0.16 0.06 0.06 0.01

70 2 146 70 392 322 13 86 38 0.27 0.05 0.05 0.01

80 2 220 118 737 588 21 202 92 0.26 0.11 0.11 0.02

90 4 758 556 1298 1049 53 1097 632 0.36 0.19 0.19 0.04

100 44 3182 3512 1971 2184 418 7607 6870 0.64 0.21 0.20 0.04

0.5

25 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00

30 0 0 0 4 0 0 0 0 0.00 0.00 0.00 0.00

40 0 0 0 14 4 1 0 0 0.03 0.01 0.01 0.00

50 0 0 0 46 12 2 0 0 0.10 0.07 0.07 0.00

60 2 130 30 110 32 5 33 9 0.13 0.04 0.04 0.01

70 6 452 112 249 129 16 187 46 0.27 0.13 0.13 0.06

80 28 404 168 447 272 74 288 89 0.40 0.23 0.20 0.02

90 454 2144 1078 635 1189 3377 6646 2977 1.46 1.02 0.36 0.03

100 572 2480 614 1162 1428 5028 8033 1886 1.28 0.81 0.22 0.06

0.8

25 0 0 0 2 0 0 0 0 0.02 0.00 0.00 0.00

30 0 0 0 3 1 0 0 0 0.01 0.00 0.00 0.00

40 0 0 0 10 3 0 0 1 0.03 0.00 0.00 0.00

50 8 120 0 22 10 4 8 0 0.36 0.10 0.10 0.00

60 4 128 0 47 20 6 28 0 0.27 0.11 0.11 0.00

70 52 114 0 155 108 74 50 0 0.51 0.09 0.02 0.02

80 70 722 0 267 219 134 465 0 0.53 0.25 0.17 0.00

90 140 20278 3796 471 473 398 16065 3382 0.88 0.63 0.45 0.45

100 210 46960 5202 698 677 862 52043 4267 0.87 0.66 0.56 0.56

Table 5.3: Detailed results of exact algorithm using CAB instances for PO1

edges, where only for 12 out of the 27 instances any such node was generated. As

can be seen, the most consuming level is the branching on served nodes (s), but a

reduction in the percent deviation can be clearly observed after each step. In any

case, the majority of the instances can be solved to optimality in less than one hour

of computing time (21 out of 27), including the three larger instances with N = 80

nodes, which highlights the efficiency of BB1.

The results of Table 5.4 allow making similar observations about the effectiveness

of BB2 for solving PO2. Similarly to BB1, there are fewer nodes at the hub nodes

level (z) than at the other levels. However, for the largest instances there are still quite

a few hubs to branch on after the partial enumeration. Despite the difficulty of PO2,

BB2 is still robust for solving it: nine out of the 27 instances are optimally solved
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α |N | Nodes Time (sec) % Dev

z s y Root PE z s y Root PE z s

0.2

25 0 0 0 28 0 0 0 0 0.00 0.00 0.00 0.00

30 4 26 0 61 13 3 4 0 0.07 0.06 0.02 0.02

40 6 106 54 486 86 18 91 55 0.20 0.10 0.10 0.03

50 2 88 60 553 234 77 171 119 0.19 0.07 0.07 0.03

60 92 466 314 7016 1536 823 2321 1615 0.71 0.39 0.31 0.05

70 366 1392 852 7550 4313 10165 21481 14100 0.97 0.44 0.30 0.07

80 256 3 n.a. 15348 11870 59241 561 time 1.15 1.15 0.02 0.02

90 335 n.a. n.a. 27939 17165 41395 time time 1.40 0.93 0.93 0.92

100 490 83 n.a. 14093 26171 41851 4778 time 1.44 1.02 0.35 0.35

0.5

25 0 0 0 21 1 1 0 0 0.04 0.02 0.00 0.00

30 0 0 0 42 3 0 0 0 0.03 0.00 0.00 0.00

40 0 0 0 138 22 0 0 0 0.14 0.00 0.00 0.00

50 10 90 0 379 66 23 62 0 0.29 0.12 0.12 0.12

60 0 0 0 1326 187 14 0 0 0.39 0.13 0.00 0.00

70 170 286 68 3655 937 2424 2003 709 0.87 0.32 0.19 0.03

80 80 474 68 7117 1580 1481 4101 848 0.91 0.86 0.24 0.02

90 175 n.a. n.a. 10882 22216 53576 time time 4.02 3.56 2.85 2.85

100 54 n.a. n.a. 18334 34389 33754 time time 3.74 3.27 3.27 3.27

0.8

25 0 0 0 18 1 0 0 0 0.04 0.00 0.00 0.00

30 0 0 0 26 2 1 0 0 0.02 0.01 0.00 0.00

40 4 30 0 126 6 4 6 0 0.05 0.01 0.01 0.01

50 0 0 0 253 21 0 0 0 0.11 0.00 0.00 0.00

60 0 0 0 421 25 0 0 0 0.09 0.00 0.00 0.00

70 4 194 0 1260 138 34 258 0 0.38 0.05 0.03 0.03

80 30 168 22 3932 357 237 473 101 0.68 0.27 0.27 0.02

90 38 6100 2228 5123 452 783 51097 26281 1.05 0.62 0.62 0.62

100 98 9816 1260 8996 734 1566 64718 12828 1.04 0.61 0.61 0.61

Table 5.4: Detailed results of exact algorithm using CAB instances for PO2

without any branching, including the 60 nodes instances for α = 0.5, 0.8. Moreover,

15 instances are optimally solved in less than an hour of computing time. For only

six instances the optimality of the best-known solution could not be proven within

the time limit of one day.
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Chapter 6

Hub Location and Pricing

Problems

As we have mentioned before, one of the main applications of the HNDPPs that we

have studied in the previous chapters, arise in airline transportation, where airline

companies locate hub facilities (main airports) and set prices on the flights so as to

maximize their profit while having the restriction of choosing a price that is lower than

the competitor in order to capture the customers’ demand. That is, the ticket prices

have to be low enough to capture the demand of some of the attractive customers.

Without the presence of other competitors, the company is free to set the price as

high as possible since the customers have no other choice. However, in practice there

exist competitors that have set their own prices and the customers always prefer the

company that minimizes their cost.

In this chapter we focus on joint hub location and pricing problems applicable

to the design of transportation and telecommunication networks. In this class of

problems the goal is to determine the set of prices, location of hub facilities and the

routes for serving the commodities. The company, having information on the price

of the competitor and the possible reaction of the customers to its decision, wishes to
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find the optimal network and price that would lead to an optimal routing decision for

the costumers. Once the price and network are fixed, the customers make an optimal

choice between the company and the competitor.

Dealing with such problems gives rise to hub location and pricing problems (HLPPs)

with two levels in the decision making process: the first level is a company (the leader)

that decides about the price and location of hubs with the objective of maximizing

its total profit (the difference between the revenue of routing commodities and the

transportation and set up cots of opening hub facilities). The second level is a set

of commodities (the followers) that are looking for the service provider and the path

that minimizes their routing costs. Similar to other network pricing problems de-

scribed in Chapter 2, there are two options on the price setting: pricing on paths

and pricing on arcs. In the hub location and pricing problem with pricing on paths

(HLPP-P), prices are set on each commodity using a path that includes at least one

hub and at most two hubs. However, in the hub location and pricing problem with

pricing on arcs (HLPP-A), there is a price associated with each arc of the network

regardless of which commodities use the arc. The latter problem is more flexible

in the sense that it allows paths with more than one hub arc. In this chapter, we

show how both problems can be stated as MIP bilevel programs. We also present

single-level reformulations for each of them.

The results of computational experiments clearly show the difficulty of HLPP-As,

as a general purpose solver is not able to solve single-level reformulations even for a

ten node instance due to memory issues. We use two variants of a math-heuristic to

provide feasible solutions to the HLPP-A. Both heuristics construct feasible solutions

in three steps. In the first step, we select the set of open hubs. Second, we set

prices on each arc of the solution network. Having the network and prices, in the last

step we solve the routing problem. The two heuristics differ in the way solutions are
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initially constructed. The first heuristic generates many random solution networks

at each iteration using a given criteria. The second heuristic randomly opens hubs

and changes the solution using destroy and repair strategies. However, they both set

prices and identify feasible routes in a similar way.

This chapter is organized as follows: In Section 6.1 we present the formal defi-

nition and assumptions of the considered HLPPs. Sections 6.2 and 6.3 present the

bilevel program together with the single-level MIP formulation of the HLPP-P and

the HLPP-A, respectively. Section 6.4 describes the two math-heuristics used to solve

the HLPP-A. The chapter ends in Section 6.5 by presenting some computational ex-

periments.

6.1 Formal Definition of the Hub Location and

Pricing Problem

We can formally define the HLPP as follows. Let G = (N,A) be a complete directed

graph, where N={1, 2, ..., n} represents the set of nodes and A represents the set of

arcs. For each a = (i, j) ∈ A, let Ca denote the distance or unit transportation cost

between nodes i and j, which we assume to be symmetric. Let H ⊆ N be the set of

potential hub locations. The parameter α (0 ≤ α ≤ 1) is used as a discount factor

to provide reduced unit transportation costs on hub edges to represent economies of

scale.

Let K denote the set of commodities. Commodity k ∈ K is defined as a triplet

(o(k), d(k),Wk), where o(k), d(k) ∈ N , respectively denote its origin and its desti-

nation, also referred to as its O/D pair, and W k denotes its service demand, i.e.,

the amount of flow that must be routed from o(k) to d(k) if commodity k is served.

We define the per unit transportation cost for routing commodity k on the path
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(o(k), i, j, d(k)) as F k
a = (χC(o(k)i) + αC(ij) + δC(jd(k))), where the parameters χ and

δ reflect weights factors for collection and distribution, respectively. For each i ∈ H,

fi is the fixed setup cost for opening a hub at node i. Let qk denote the competitor’s

price for commodity k. We also define δ(i) ⊆ A for each i ∈ H as the subset of arcs

incident to node i and accordingly, δ−(j) as the subset of arcs entering node i and

δ+(j) as the subset of arcs leaving node i.

Similarly to most HLPs, we consider the following assumptions:

• All O/D paths include at least one hub node. That is, the solution network

contains no direct connections between two non-hub nodes.

• Nodes can be assigned to more than one hub node, i.e. multiple assignments.

• There is no set-up cost on the arcs and thus, hubs are fully interconnected.

• Distances satisfy the triangle inequality.

• In case of equal prices, the lower level (the set of commodities) always prefers

the leader to its competitor.

6.2 HLPs with Pricing on Paths

In the HLP with Pricing on Paths, profit is defined for each commodity based on

each specific path. For simplicity, we require solution networks to contain at most

three edges in each O/D path (at most one hub arc). This hypothesis that is common

in classical hub location models may seem restrictive as compared to other network

design models. Note, however, that this hypothesis is consistent with the potential

applications that we mention, mainly air transportation where paths with three legs

already correspond to two intermediate transfers.
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6.2.1 A Bilevel Programming Formulation

We define the following set of decision variables. For each a ∈ A and k ∈ K, we

define the continuous variable P k
a as the price of commodity k routed through hub

arc a. For i ∈ H, zi is the binary location variable equal to 1 if and only if a hub is

located at node i. For k ∈ K, a ∈ A, we define routing variables xk
a equal to 1 if and

only if commodity k is routed via arc a ∈ A. Finally, for k ∈ K, we define the binary

variable yk equal to 1 if commodity k is routed by the competitor, 0 otherwise. Using

these sets of variables, the HLPP-P can be formulated as follows:

(POP ) max
P,z,x,y

∑
k∈K

W k
∑
a∈A

(P k
a − F k

a )x
k
a −

∑
i∈H

fizi (6.1)

zi ∈ {0, 1} i ∈ H (6.2)

P k
a ≥ 0 a ∈ A, k ∈ K (6.3)

where (x,y) solves

min
x,y

∑
k∈K

(
∑
a∈A

P k
a x

k
a + qkyk) (6.4)

s.t.
∑
a∈A

xk
a + yk = 1 k ∈ K (6.5)

∑
a∈δ(i)

xk
a ≤ zi k ∈ K, i ∈ H (6.6)

xk
a, yk ≥ 0 a ∈ A, k ∈ K. (6.7)

The upper-level objective (6.1) is to maximize the difference between the revenue

arising from routing commodities and the transportation costs and set-up costs. The

objective of the lower-level problem (6.4) is to minimize the transportation cost by

choosing the path and the company with the minimum cost. Constraints (6.5) force
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commodities to be routed either by the leader or by the competitor. Constraints (6.6)

prohibit commodities to be routed through hubs that are not open.

6.2.2 Moving Constraints to the Upper Level

In general, we cannot freely move constraints from one level to the other if the con-

straint includes variables that are used in both levels. However, Brotcorne et al.

[19] proved that when some conditions are satisfied, we can move a specific set of

constraints to the upper level.

PROPOSITION 6.1 (Brotcorne et al. [19]) Assume that P1 admits an optimal so-

lution and that the matrix G has nonnegative entries. Then the sets of optimal solu-

tions of the mathematical programs P1 and P2, displayed below, are nonempty and

coincide.

(P1) max
T,x,y

Tx− cx

where (x,y) solves

min
x,y

Tx+ dy

s.t. Ex+ Fy = b1

Gx ≤ b2

x, y ≥ 0

(P2) max
T,x,y

Tx− cx

Gx ≤ b2

where (x,y) solves

min
x,y

Tx+ dy

s.t. Ex+ Fy = b1

x, y ≥ 0.

PROPOSITION 6.2 Constraints (6.6) of POP can be moved to the upper level.

Proof . To prove the result, we will show that for a fixed location vector z, the

resulting pricing and routing problem can be cast in the format P1. To aim this, we

introduce xi as the total number of commodities passing through hub node i
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xi =
∑
k∈K

xk
a ∀a ∈ δ(i),

and replace the individual commodity constraints
∑

a∈δ(i)
xk
a ≤ zi by the equivalent

global constraint

xi ≤ |K|zi.
The resulting bilevel program is

max
P,x,y

∑
k∈K

W k(P k − F k)xk

where (x,y) solves

min
x,y

∑
k∈K

(P kxk + qkyk)

s.t. xk + yk = 1 k ∈ K

x ≤ |K|z

x =
∑
k∈K

xk

y =
∑
k∈K

yk

xk, yk ≥ 0. k ∈ K

Now by making the correspondences

x ≡ x

y ≡ (y, (xk)k∈K , (yk)k∈K)

G ≡ I

b2 ≡ |K|z
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Ex+ Fy = b1 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 −I . . . −I 0 . . . 0

0 I 0 . . . 0 −I . . . −I

0 0 I . . . 0 I . . . 0

0 0 0
. . . 0 0

. . . 0

0 0 0 . . . I 0 . . . I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

(xk)k∈K

(yk)k∈K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

once recovers the generic form of P1 and the results follows.

�

6.2.3 A Single-level MIP Reformulation

We next present a single-level MIP reformulation based on the procedure described

in Section 6.2.2. We recall that Labbé et al. [79] show that the single-level reformu-

lation of a bilevel programming problem consists of : i) the objective function and

constraints of the first level, ii) the primal and dual constraints of the second level

and, iii) the optimality conditions of the second level. After moving constraints (6.6)

to the first level, in the second level we have:

minimize
∑
k∈K

(
∑
a∈A

P k
a x

k
a + qkyk) (6.8)

subject to
∑
a∈A

xk
a + yk = 1 k ∈ K (6.9)

xk
a, yk ≥ 0 a ∈ A, k ∈ K, (6.10)

and the dual of the second level is:
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maximize
∑
k∈K

λk

subject to λk ≤ P k
a a ∈ A, k ∈ K (6.11)

λk ≤ qk k ∈ K, (6.12)

where λk is the dual variable associated with constraints (6.9). The KKT conditions

associated with the primal and the dual pair of the second level are:

∑
a∈A

xk
a + yk = 1 k ∈ K (6.13)

xk
a, yk ≥ 0 a ∈ A, k ∈ K (6.14)

λk ≤ P k
a a ∈ A, k ∈ K (6.15)

λk ≤ qk k ∈ K (6.16)∑
k∈K

λk =
∑
k∈K

∑
a∈A

P k
a x

k
a + qkyk. (6.17)

Now, given that the second level problem can be decomposed by commodity, we

have:

λk =
∑
a∈A

P k
a x

k
a + qkyk k ∈ K. (6.18)

From (6.18) together with (6.15) and (6.16), we obtain:

∑
a∈A

P k
a x

k
a + qkyk ≤ P k

b b ∈ A, k ∈ K (6.19)

∑
a∈A

P k
a x

k
a + qkyk ≤ qk k ∈ K. (6.20)
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Therefore, the single-level MIP reformulation of the HLPP-P can be shown as

follows:

maximize
∑
k∈K

W k
∑
a∈A

(P k
a − F k

a )x
k
a −

∑
i∈H

fizi (6.21)

subject to
∑
a∈A

xk
a + yk = 1 k ∈ K (6.22)

∑
a∈δ(i)

xk
a ≤ zi k ∈ K, i ∈ H (6.23)

∑
a∈A

P k
a x

k
a + qkyk ≤ P k

b k ∈ K, b ∈ A (6.24)

∑
a∈A

P k
a x

k
a + qkyk ≤ qk k ∈ K (6.25)

∑
k∈K

λk =
∑
k∈K

∑
a∈A

P k
a x

k
a + qkyk (6.26)

xk
a, yk ≥ 0 a ∈ A, k ∈ K (6.27)

zi ∈ {0, 1} i ∈ H (6.28)

P k
a ≥ 0 a ∈ A, k ∈ K, (6.29)

We note that the first term of the objective (6.21) and constraints (6.24) and

(6.25) are nonlinear due to the multiplication of the P k
a x

k
a variables. To avoid the

nonlinear term in constraints (6.25) and (6.24), we can replace them by the following

constraints where M1 is a big number:

P k
a ≤ P k

b +M1(1− xk
a) k ∈ K, a ∈ A, b ∈ A (6.30)

P k
a ≤ qk +M1(1− xk

a) k ∈ K, a ∈ A, (6.31)
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To linearize the objective function we define a new set of variables. For each a ∈ A

and k ∈ K, let Rk
a = xk

aP
k
a , which shows the effective price paid by commodity k on

arc a and is equal to P k
a if the commodity uses an arc a, and 0 otherwise. We also

need to add the following additional constraints to make the linearizion valid:

Rk
a ≤ P k

a k ∈ K, a ∈ A (6.32)

Rk
a ≤ M2x

k
a k ∈ K, a ∈ A, (6.33)

Where M2 is the upper bound on the price, which can be set to the price of the

competitor (qk) since the leader cannot set a price larger than the competitor if

he/she wants the customer to choose him/her. The linear MIP formulation is thus as

follows:

(POPL) maximize
∑
k∈K

W k
∑
a∈A

(Rk
a − F k

a x
k
a)−

∑
i∈H

fizi

subject to
∑
a∈A

xk
a + yk = 1 k ∈ K (6.34)

∑
a∈δ(i)

xk
a ≤ zi k ∈ K, i ∈ H (6.35)

∑
a∈A

Rk
a + qkyk ≤ P k

b k ∈ K, b ∈ A (6.36)

∑
a∈A

Rk
a + qkyk ≤ qk k ∈ K (6.37)

∑
k∈K

λk =
∑
k∈K

∑
a∈A

Rk
a + qkyk (6.38)

Rk
a ≤ P k

a k ∈ K, a ∈ A (6.39)

Rk
a ≤ qkxk

a k ∈ K, a ∈ A (6.40)

xk
a, yk ≥ 0 a ∈ A, k ∈ K (6.41)

zi ∈ {0, 1} i ∈ H (6.42)

P k
a , R

k
a ≥ 0 a ∈ A, k ∈ K. (6.43)
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Preliminary computational experiments showed that, due to the huge number of

variables and constraints required in POPL, only small size instances with up to 15

nodes can be solved with a general purpose solver. However, the following results

show that this problem can be actually transformed into the UHLPP introduced in

Chapter 3.

PROPOSITION 6.3 The optimal price P k
b to route each commodity k ∈ K through

any arc b ∈ A corresponds to the price of the competitor qk for routing the same

commodity.

Proof . If commodity k ∈ K is routed, due to (6.36) there is at most one hub arc

b ∈ A on the routes of the commodity with the price of P k
b ≥ Rk

a . Indeed, to max-

imize the profit, the leader wants to choose the maximum possible price for the arc

b. On the other hand, he/she has the information on the reaction of the follower,

who will opt for the minimum price. If the leader sets P k
b to any value greater than

qk, the follower reacts by choosing the competitor. On the other hand, if P k
b is set

to any value less than qk, the follower will choose the leader but the leader is losing

(P k
b − qk) from the per unit profit. So, since it is the simultaneous optimization of

both levels, the optimal value for P k
b is qk. �

PROPOSITION 6.4 The HLPP-P is equivalent to the UHLPP .

Proof . We can use Proposition 6.4 to a priori define the pricing decisions in all the

paths to P k
a = qk for each k ∈ K and a ∈ A. Setting ci = 0 for each i ∈ N the

HLPP-P reduces then to a single level problem where only the locational decisions

and routing decisions need to be optimized. This corresponds to the solution of the

UHLPP and the result follows. �
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6.3 HLPs with Pricing on Arcs

We now consider HLPs with pricing on arcs, where there is a price associated with

every arc of the network. In this case, in order to obtain the total price for the routing

of a given commodity, one needs to add the price of all the arcs on the path of that

commodity. Contrary to HLPs with pricing on paths, when pricing on arcs we allow

paths to be more flexible, and as a result, they may contain more than one hub arc.

The main challenge in these problems is that since the pricing strategy is different

for the leader and the competitor, i.e., the competitor’s price focuses on commodities

while the leader’s price focuses on arcs, pricing is far from trivial. Moreover, as each

arc may be used in the path to route several commodities, setting the prices on the

arcs becomes more involved. However, similar to path pricing, the pricing restriction

still exists, i.e. the total price of each commodity (sum of the prices of all the arcs

that are on the path of the commodity) needs to be less than the competitor’s price.

6.3.1 A Bilevel Programming Formulation

We define Pa as the price for using arc a ∈ A. In order to keep track of the arcs used

for routing each commodity, we need to define the following set of decision variables.

Uk
i is equal to 1, if arc (o(k), i) ∈ A is the first arc in the path of commodity k ∈ K,

where o(k) is the origin of k and i ∈ H is the first hub in the path. V k
j is equal to

1, if arc (j, d(k)) is the last arc used to route commodity k ∈ K, where d(k) is the

destination of k and j ∈ H is the last hub on the path. xk
a is equal to 1 if hub arc

a ∈ A is used in the path of commodity k, 0 otherwise. Using these decision variables,

the HLPP-A can be stated as:
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(POA) max
P,U,V,x,y

∑
a∈A

∑
k∈K:a1=o(k)

W k(Pa − Ca)U
k
a2
+
∑
a∈A

∑
k∈K:a2=d(k)

W k(Pa − Ca)V
k
a1

+
∑
a∈A

∑
k∈K

W k(Pa − αCa)x
k
a −

∑
i∈H

fizi

Pa ≥ 0 a ∈ A (6.44)

zi ∈ {0, 1} i ∈ H (6.45)

where (U,V,x,y) solves

min
U,V,x,y

∑
a∈A:o(k)=a1

∑
k∈K

PaU
k
a2
+

∑
a∈A:d(k)=a2

∑
k∈K

PaV
k
a1

+
∑
a∈A

∑
k∈K

Pax
k
a +

∑
k∈K

qkyk (6.46)

s.t.
∑

a∈δ−(i)

xk
a + Uk

i ≤ zi i ∈ H, k ∈ K (6.47)

∑
a∈δ+(j)

xk
a + V k

j ≤ zj j ∈ H, k ∈ K (6.48)

∑
i∈H

Uk
i + yk = 1 k ∈ K (6.49)

∑
j∈H

V k
j + yk = 1 k ∈ K (6.50)

Uk
i +

∑
a∈A:a2=i

xk
a = V k

i +
∑

a∈A:a1=i

xk
a k ∈ K, i ∈ H (6.51)

xk
a ∈ {0, 1} a ∈ A, k ∈ K (6.52)

Uk
i , V

k
i ∈ {0, 1} i ∈ H, k ∈ K (6.53)

yk ∈ {0, 1} k ∈ K. (6.54)

The objective of the leader is to maximize the difference between the revenue and

cost of routing each commodity. The first term shows the profit of routing through

the first leg and the second term is the profit of routing through the last leg while the
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third term is the profit of routing through hub arcs. Similarly, the objective function

of the second level has also three parts for the transportation cost if the customer

chooses the leader and the last part is in case of choosing the competitor. Constraints

(6.47) indicate that if hub i ∈ H is used to route commodity k, either as the first

hub or in between, that hub should be open. Equivalently, constraints (6.48), show

that to use hub j ∈ H on the path of k ∈ K, as the last hub or in between, j should

be open as a hub. Constraints (6.49) and (6.50) impose that each commodity can

be routed either by the leader or the competitor. Finally, constraints (6.51) are the

flow conservation constraints to ensure a feasible path is built between the origin and

destination of a commodity, if routed.

6.3.2 Moving Constraints to the Upper Level

Similar to the previous model, it is possible to move some of the constraints of the

lower level of POA to the upper level.

PROPOSITION 6.5 Constraints (6.47) and (6.48) of POA can be moved to the upper

level.

Proof . To prove the result, we will show that for a fixed location vector z, the

resulting pricing and routing problem can be cast in the format P1. To aim this, we

introduce xi as the total number of commodities passing through hub node i

xi =
∑
k∈K

(xk
a + Uk

i ) ∀a ∈ δ−(i),

or equivalently

xi =
∑
k∈K

(xk
a + V k

i ) ∀a ∈ δ+(i),

and replace the individual commodity constraints (6.47) and (6.48) by the

equivalent global constraint

xi ≤ |K|zi.
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The resulting bilevel program is :

max
P,U,V,x,y

∑
k∈K

W k{(P − C)Uk + (P − C)V k + (P − αC)xk}

where (U,V,x,y) solves

min
U,V,x,y

∑
k∈K

{P (Uk + V k + xk) + qkyk}

s.t. x ≤ |K|z

Uk + yk = 1 k ∈ K

V k + yk = 1 k ∈ K

xk + Uk = xk + V k k ∈ K

x =
∑
k∈K

(xk + Uk)

x =
∑
k∈K

(xk + V k)

y =
∑
k∈K

yk

Uk, V k, xk, yk ≥ 0 k ∈ K.

Now, by making the correspondences

x ≡ x

y ≡ (y, (Uk)k∈K , (V k)k∈K , (xk)k∈K , (yk)k∈K)

G ≡ I

b2 ≡ |K|z
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Ex+ Fy = b1 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 −I . . . −I 0 . . . 0 −I . . . −I 0 . . . 0

0 I 0 . . . 0 −I . . . −I 0 . . . 0 0 . . . 0

0 0 0 . . . 0 I . . . 0 I . . . 0 0 . . . 0

0 0 0 . . . 0 0
. . . 0 0

. . . 0 0 . . . 0

0 0 0 . . . 0 0 . . . I 0 . . . I 0 . . . 0

0 0 0 . . . 0 I . . . 0 0 . . . 0 I . . . 0

0 0 0 . . . 0 0
. . . 0 0 . . . 0 0

. . . 0

0 0 0 . . . 0 0 . . . I 0 . . . 0 0 . . . I

0 0 0 . . . 0 0 . . . 0 I . . . 0 −I . . . 0

0 0 0 . . . 0 0 . . . 0 0
. . . 0 0

. . . 0

0 0 0 . . . 0 0 . . . 0 0 . . . I 0 . . . −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

(xk)k∈K

(yk)k∈K

(Uk)k∈K

(V k)k∈K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

...

1

1

..

.

1

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

one recovers the generic form of P1, and the result follows. �

6.3.3 The Single-level Reformulation

We next present a single-level MIP reformulation based on the procedure described in

Section (2.4.2). After moving the constraints that include first-level variables to the

upper level, the next step is finding the dual of the second level. As mentioned, the

reformulation consists of the constraints from the first level plus the KKT conditions

of the second level. By moving constraints (6.47) and (6.48) to the first level, at the

second level we have:

minimize
∑

a∈A:o(k)=a1

∑
k∈K

PaU
k
a2
+

∑
a∈A:d(k)=a2

∑
k∈K

PaV
k
a1

+
∑
a∈A

∑
k∈K

Pax
k
a +

∑
k∈K

qkyk

subject to
∑
i∈H

Uk
i + yk = 1 k ∈ K (6.55)

∑
j∈H

V k
j + yk = 1 k ∈ K (6.56)

Uk
i +

∑
a∈A:a2=i

xk
a = V k

i +
∑

a∈A:a1=i

xk
a k ∈ K, i ∈ H. (6.57)
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Let (λk, γk, βk
i ) be the dual variables associated with constraints (6.55), (6.56) and

(6.57), respectively. The dual of the second level is :

minimize
∑
k∈K

(λk + γk)

subject to λk + βk
a2

≤ Pa k ∈ K, a ∈ A : o(k) = a1 (6.58)

γk − βk
a1

≤ Pa k ∈ K, a ∈ A : d(k) = a2 (6.59)

λk + γk ≤ qk k ∈ K (6.60)

βk
a2
− βk

a1
≤ Pa k ∈ K, a ∈ A, (6.61)

and the KKT conditions associated with the primal and the dual pair of the second

level are:

∑
i∈H

Uk
i + yk = 1 k ∈ K (6.62)

∑
j∈H

V k
j + yk = 1 k ∈ K (6.63)

Uk
i +

∑
a∈A:a2=i

xk
a = V k

i +
∑

a∈A:a1=i

xk
a k ∈ K, i ∈ H (6.64)

λk + βk
a2

≤ Pa k ∈ K, a ∈ A : o(k) = a1 (6.65)

γk − βk
a1

≤ Pa k ∈ K, a ∈ A : d(k) = a2 (6.66)

λk + γk ≤ qk k ∈ K (6.67)

βk
a2
− βk

a1
≤ Pa k ∈ K, a ∈ A (6.68)∑

k∈K
(λk + γk) =

∑
k∈K

(
∑

a∈A:o(k)=a1

PaU
k
a2
+

∑
a∈A:d(k)=a2

PaV
k
a1

+
∑
a∈A

Pax
k
a + qkyk). (6.69)
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Now, given that the second level can be decomposed by commodity, we have:

λk + γk =
∑

a∈A:o(k)=a1

PaU
k
a2
+

∑
a∈A:d(k)=a2

PaV
k
a1
+
∑
a∈A

Pax
k
a + qkyk. (6.70)

From (6.70) together with (6.67) we obtain:

∑
a∈A:o(k)=a1

PaU
k
a2
+

∑
a∈A:d(k)=a2

PaV
k
a1
+
∑
a∈A

Pax
k
a + qkyk ≤ qk ∀k ∈ K (6.71)

Therefore, the single-level MIP reformulation of the HLPP-A is as follows:

maximize
∑
a∈A

∑
k∈K:a1=o(k)

W k(Pa − Ca)U
k
a2
+
∑
a∈A

∑
k∈K:a2=d(k)

W k(Pa − Ca)V
k
a1

+
∑
a∈A

∑
k∈K

W k(Pa − αCa)x
k
a −

∑
i∈H

fizi

subject to
∑

a∈δ−(i)

xk
a + Uk

i ≤ zi i ∈ H, k ∈ K (6.72)

∑
a∈δ+(j)

xk
a + V k

j ≤ zj j ∈ H, k ∈ K (6.73)

∑
i∈H

Uk
i + yk = 1 k ∈ K (6.74)

∑
j∈H

V k
j + yk = 1 k ∈ K (6.75)

Uk
i +

∑
a∈A:a2=i

xk
a = V k

i +
∑

a∈A:a1=i

xk
a k ∈ K, i ∈ H (6.76)

λk + βk
a2

≤ Pa k ∈ K, a ∈ A : o(k) = a1 (6.77)

γk − βk
a1

≤ Pa k ∈ K, a ∈ A : d(k) = a2 (6.78)

βk
a2
− βk

a1
≤ Pa k ∈ K, a ∈ A (6.79)
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∑
a∈A:o(k)=a1

PaU
k
a2
+

∑
a∈A:d(k)=a2

PaV
k
a1

+
∑
a∈A

Pax
k
a + qkyk ≤ qk ∀k ∈ K (6.80)

∑
k∈K

(λk + γk) =
∑
k∈K

(
∑

a∈A:o(k)=a1

PaU
k
a2
+

∑
a∈A:d(k)=a2

PaV
k
a1

+
∑
a∈A

Pax
k
a + qkyk) (6.81)

xk
a ∈ {0, 1} a ∈ A, k ∈ K (6.82)

Uk
i , V

k
i ∈ {0, 1} i ∈ H, k ∈ K (6.83)

yk ∈ {0, 1} k ∈ K. (6.84)

This formulation has nonlinear terms both in the constraints and objective function.

To linearize them we need to define three sets of new variables (|N | × |K| × 2+ |A| ×
|K| in total), as the effective price of the first leg, the last leg and the hub arcs,

respectively:

• PCk
a = PaU

k
a2

k ∈ K, a ∈ A : o(k) = a1,

• PDk
a = PaV

k
a1

k ∈ K, a ∈ A : d(k) = a2,

• PHk
a = Pax

k
a k ∈ K, a ∈ A,

Using these three new variables and their linking constraints, the linearized MIP

single-level reformulation is :

130



(POAL) maximize
∑
a∈A

∑
k∈K:a1=o(k)

W kPCk
a − CaU

k
a2
+
∑
a∈A

∑
k∈K:a2=d(k)

W kPDk
a

−CaV
k
a1
+
∑
a∈A

∑
k∈K

W kPHk
a − αCax

k
a −

∑
i∈H

fizi

subject to (6.72)− (6.79)∑
a∈A:a1=o(k)

PCk
a +

∑
a∈A:a2=d(k)

PDk
a +

∑
a∈A

PHk
a

+qkyk ≤ qk k ∈ K (6.85)∑
k∈K

(λk + γk) =
∑
k∈K

(
∑

a∈A:o(k)=a1

PCk
a +

∑
a∈A:d(k)=a2

PDk
a

+
∑
a∈A

PHk
a + qkyk) (6.86)

PHk
a ≤ Mk

aX
k
a k ∈ K, a ∈ A (6.87)

Pa − PHk
a ≤ Na(1−Xk

a ) k ∈ K, a ∈ A (6.88)

PHk
a ≤ Pa k ∈ K, a ∈ A (6.89)

PCk
a ≤ Mk

aU
k
a2

k ∈ K, a ∈ A : o(k) = a1 (6.90)

Pa − PCk
a ≤ Na(1− Uk

a2
) k ∈ K, a ∈ A : o(k) = a1 (6.91)

PCk
a ≤ Pa k ∈ K, a ∈ A : o(k) = a1 (6.92)

PDk
a ≤ Mk

aV
k
a1

k ∈ K, a ∈ A : d(k) = a2 (6.93)

Pa − PDk
a ≤ Na(1− V k

a1
) k ∈ K, a ∈ A : d(k) = a2 (6.94)

PDk
a ≤ Pa k ∈ K, a ∈ A : d(k) = a2 (6.95)

zi ∈ {0, 1} i ∈ H (6.96)

xk
a ∈ {0, 1} a ∈ A, k ∈ K (6.97)

Uk
i , V

k
i ∈ {0, 1} i ∈ H, k ∈ K (6.98)

PHk
a , PCk

a , PDk
a ≥ 0 a ∈ A, k ∈ K (6.99)

Pa ≥ 0 a ∈ A (6.100)

yk ∈ {0, 1} k ∈ K. (6.101)
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Constraints (6.87) to (6.95) are the linking constraints associated with the new

variables (3 × |A| × |K|, 3 × |N | × |K| × 2 in total). Constraints (6.87) impose that

PHk
a = 0, if hub arc a is not used for commodity k ∈ K. Constraints (6.88) and

(6.89) set PHk
a = Pa, if hub arc a ∈ A is used for commodity k ∈ K. Constraints

(6.90) to (6.92) impose the same condition for the collection leg while Constraints

(6.93) to (6.95) are for the distribution leg.

Note that routing variables have to be binary for this linearizion to be valid. Also,

the choice of Mk
a and Na must be as tight as possible to ensure a valid formulation.

Indeed, the smallest value for them is the price of competitor qk. Constraints (6.85)

enforce the total price of the arcs of the path of each commodity k to be less than

qk. Using these constraints, an upper bound on the price of each arc can be qk which

refers to a single arc path. As a result, if an arc is used for each commodity k, its

price cannot exceed qk.

6.4 A Heuristic Algorithm for HLPs with Pricing

on Arcs

In this section we describe two versions of a math-heuristic we have developed to ob-

tain feasible solutions and thus, lower bounds on the optimal value of the HLPP-A.

The idea of the proposed heuristic is to decompose the decision-making process into

three steps and to obtain feasible solutions of each subproblem based on the infor-

mation obtained from the previous step. The proposed heuristics have two phases:

a constructive phase and local search phase. The constructive phase concentrates on

obtaining feasible solutions and has three steps: i) selection of hub facilities, ii) de-

termination of prices on the arcs, and iii) selection and routing of commodities. The

local search phase improves the hub network obtained by the constructive phase by
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exploring four neighborhoods: i) open a hub node, ii) close a hub node, iii) open/close

hubs, and iv) close two hubs. The two versions of the heuristic differ only in the first

phase. Each of these use a different way to select the hubs. The first one, denoted as

MH1, selects at each iteration different sets of hubs based on a given criteria while in

the second one (MH2), at each iteration a set nodes is randomly selected to be open

as hubs and then the set is modified by using a destroy/repair strategy.

In what follows, let (z̃, P̃ , ỹ, Ũ , Ṽ , x̃) denote a feasible solution to POA and h̃ =

{i : z̃i = 1 : i ∈ H} represent the set of open hubs at the current iteration. We

initialize (z̃, P̃ , ỹ, Ũ , Ṽ , x̃) ← (0, 0, 0, 0, 0, 0) and h̃ ← ∅ at iteration 0. We define η as

the current lower bound. Let N̄ be the sorted set of all the nodes (N) in a decreasing

order based on the total flow originating at each node (Oi =
∑

k∈K:o(k)=i

W k) and, N be

the sorted set of nodes on an increasing order based on their distance from the other

nodes (Di =
∑

a∈A:a1=i

Ca).

6.4.1 Constructive Phase

As mentioned, the constructive phase has three steps. The first one focuses on se-

lecting hub facilities, the second one determines the prices on arcs, and the third one

selects the routing of commodities. After finding the routes for the solution network

and prices, we obtain a valid lower bound by using the objective function of the leader

defined in POA. In what follows, we explain each step in detail.

6.4.1.1 Selection of Hubs

Given that there are no set-up cost on hub arcs, by selecting the set of open hubs,

the hub-and-spoke network can be obtained. That is, when there is no set-up cost on

the arcs, the network design decisions become trivial and the hubs are fully intercon-

nected. As mentioned, MH1 and HM2 differ in the way the initial hub network is
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constructed. Their main difference is that MH1 constructs many solution networks

at each iteration while the output of hub selection step for MH2 is one network.

• Hub Selection in MH1: At each iteration, from the set N̄ (set of ordered

nodes based on the highest demand), we select the first M nodes to be candidate

locations for the hubs, where M ∼ U [m1,m2] and m1, m2 are integer numbers less

than or equal to |N |. Next, we define the set Γ = {h̃ : h̃ ⊆ M and |h̃| = n} as the set

of subsets of M with cardinality Π where Π ∼ U [Π1,Π2] and Π1, Π2 are integers less

than M . That it, at each iteration, we generate |Γ| = (
M
Π

)
different subsets of open

hubs where the elements of each subset h̃ are from the set of Π-combinations of M .

For each set h̃, we proceed with the pricing and routing steps as explained in Sections

6.4.1.2 and 6.4.1.3 to obtain a complete feasible solution. We try all the combinations

until there is no improvement on the lower bound after r < |Γ| solutions. We start

the next iteration by selecting different values for M and Π while m1,m2,Π1 and Π2

do not change.

Figure 6.1 shows an example of a hub selection step for a network with |N | = 10

for MH1. Let M = 5 and Π = 3 and the first 5 elements of the set N̄ be {4, 2, 5, 7, 1}.
So, the total number of subsets of M with the cardinality of 3 are |Γ| = (

5
3

)
= 10.

That is, we obtain 10 solution networks with 10 different sets of open hubs h̃.

• Hub Selection in MH2: At each iteration from the set N̄ (set of ordered nodes

based on the highest demand), we select the first 70% of the nodes and add them to

the set of open hubs h̃. Next, we apply destroy/ repair strategies. The repair strategy

randomly selects G nodes from the set N , where G ∼ U [g1, g2] and g1, g2 are integer

numbers less than or equal |N |. Then, adds the selected nodes to the set of open

hubs h̃, if they are not already there. The destroy strategy selects the first 40% of the

elements from the set N (set of ordered nodes based on the highest distance from the

other nodes) and removes them from the set h̃, if they are already in the set. Figure
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Figure 6.1: Example of a hub selection step of MH1

6.2 shows an example of a hub selection step for a network with |N | = 10 number of

nodes for MH2 with |N | = 10 and G = 2. The first 7 (70%) elements of the set N̄

are {4, 2, 5, 7, 1, 8, 6, 3} and the first 4 (40%) elements of the set N are considered to

be {3, 9, 6, 8}.
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Figure 6.2: Example of a hub selection step of MH2
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6.4.1.2 Solving the Pricing Subproblem

Once an initial solution network has been obtained from the previous step, the goal

of the second step is to find a good feasible price for each arc of this network. To

achieve this goal, we first construct feasible temporary routes for some commodities

in such a way that all the arcs are used at least for one commodity (to guarantee that

a price will be set on each arc). We call them temporary because we only use them

in this step to set the pricing on arcs and we disregard them afterwards. The way we

construct these paths is as follows:

� For each k ∈ K such that o(k), d(k) ∈ h̃: a feasible path for k where both O/D

nodes are open as hubs, is (o(k), o(k), d(k), d(k)), which corresponds to the routing

solution (Ũk
o(k), x̃k

(o(k),d(k)), Ṽ k
d(k)) = (1, 1, 1). That is, we select a one-leg path using

the hub arc (o(k), d(k)) ∈ A.

� For each k ∈ K such that o(k) ∈ h̃, d(k) /∈ h̃: a feasible path for k where its

origin is a hub and its destination is a non-hub node, is (o(k), o(k), o(k), d(k)), which

corresponds to the routing solution (Ũk
o(k), Ṽ k

o(k)) = (1, 1). That is a one-leg path

using the arc (o(k), d(k)) ∈ A.

� For each k ∈ K such that o(k) /∈ h̃, d(k) ∈ h̃: a feasible path for k where its

origin is a non-hub and its destination is a hub node, is (o(k), d(k), d(k), d(k)) which

corresponds to the routing solution (Ũk
d(k), Ṽ k

d(k)) = (1, 1). That is a one-leg path

using the arc (o(k), d(k)) ∈ A.

Note that there is no need to consider the commodities in which none of their

OD pairs are hubs because the access arcs and the hub arcs on the route of those

commodities are already considered by the above three cases. After constructing the

temporary paths, to solve the pricing problem with the existing network and paths,

we only need to solve an optimization problem with the objective of maximizing

the total revenue of routing commodities. The only constraint that exists is to set

136



prices of arcs in such a way that for each commodity k ∈ K, the total price of the

commodity does not exceed the existing price of the competitor (qk) and the only

decision variable of this problem is the price of each arc (P̃a, ∀a ∈ A). This is an LP

problem that can be formulated as follows:

(PRICE) maximize
∑
a∈A

∑
k∈K:a1=o(k)

P̃aU
k
a2
+
∑
a∈A

∑
k∈K:a2=d(k)

P̃aV
k
a1

+
∑
a∈A

∑
k∈K

P̃ax
k
a

subject to
∑

a∈A:o(k)=a1

P̃aU
k
a2
+

∑
a∈A:d(k)=a2

P̃aV
k
a1

+
∑
a∈A

P̃ax
k
a ≤ qk k ∈ K(6.102)

P̃a ≥ 0 a ∈ A.(6.103)

This is a linear program problem that can be solved by a general solver very

efficiently. After finding the prices, we reset all the routing variables to zero and

proceed to the next step.

6.4.1.3 Solving the Routing Subproblem

Given the solution network and prices from the previous steps, the routing subproblem

has two objectives: maximizing the total profit of routing commodities (the objective

of the leader) and minimizing the total price of routing each commodity (the objective

of the follower). To better clarify the idea of the routing subproblem, we provide

an example in Figure 6.3. This figure shows possible routes for a commodity after

fixing the network and prices. The diamonds show the hub nodes and the circles

represent the served nodes. The network solution of this example includes three hubs

(1, 2, 3) and the OD pair of the commodity is (15, 24). The numbers on the arcs are

137



in the form Pa(Ca), where Pa represents the unit price on each arc a and Ca the

unit transportation cost. The price of the competitor for this commodity (q(15,24))

is assumed to be 30 and the discount factor α on the hub arcs is assumed to be

0.5. The optimal path is the path that has the price low enough for the customer

(less than or equal to the price of the competitor) and gives the maximum profit to

the leader. The optimal path for this instance is highlighted by solid lines which is

(15−1−2−3−24) with the unit price of 4+12+5+9 = 30 and unit transportation

cost of 6 + 0.5 × 5 + 0.5 × 3 + 6 = 16. So, the per unit profit of routing this

commodity through this path is 30 − 16 = 14 units which is the maximum profit

possible among all the paths. So, any path with the price higher than 30 (such as

path 15− 3− 1− 24) cannot be optimal because the customer prefers to pay less and

chooses the competitor. Also, any path with a price less than or equal to 30 but not

maximum profit, such as path 15− 1− 2− 24, is not optimal for the leader because

he/she wants to maximize his/her profit.

4(6)

9(6)

12(5)

5 (3)
22(15)

15(10)
15(17)

6(5)

10(18)

3(5)

9(3)

13(12)

Figure 6.3: Example of possible routes for a commodity with OD pairs =(15, 24) on
a given network.

Based on the above remark, the routing subproblem can be solved in two phases.

First, for each commodity k ∈ K, we compute the length of the shortest path (ξk)

(relative to the current set of prices) between its origin and destination on the existing

hub-and-spoke network using the well-known Floyd–Warshall algorithm. Second,
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after finding the length of the shortest path for each commodity, there might be more

than one path having the same length. To retrieve the path that has the minimum

price and maximum profit (the difference between the revenue and the transportation

cost), we need to take into account two assumptions :i) there is a discount factor

on the transportation cost of the hub arcs which gives priority to the paths that

have more hub arcs, ii) the leader will be chosen when the prize he offers for some

commodity is the same as that of the competitor. A MIP formulation for the routing

subproblem associated with each commodity k ∈ K that reflects these assumptions

is the following:

(ROUTE) maximize
∑

a∈A:a1=o(k)

W k(Pa − Ca)Ũ
k
a2
+

∑
a∈A:a2=d(k)

W k(Pa − Ca)Ṽ
k
a1

+
∑
a∈A

W k(Pa − αCa)x̃
k
a

s.t.
∑

a∈δ−(i)

x̃k
a + Ũk

i ≤ zi i ∈ h̃ (6.104)

∑
a∈δ+(j)

x̃k
a + Ṽ k

j ≤ zj j ∈ h̃ (6.105)

∑
i∈h̃

Ũk
i + ỹk = 1 (6.106)

∑
j∈h̃

Ṽ k
j + ỹk = 1 (6.107)

Uk
i +

∑
a∈A:a2=i

x̃k
a = Ṽ k

i +
∑

a∈A:a1=i

x̃k
a i ∈ h̃ (6.108)

∑
a∈A:o(k)=a1

PaŨ
k
a2
+

∑
a∈A:d(k)=a2

PaṼ
k
a1

+
∑
a∈A

Pax̃
k
a +

∑
k∈K

qkỹk = ςk (6.109)

x̃k
a ∈ {0, 1} a ∈ A (6.110)

Ũk
i , Ṽ

k
i ∈ {0, 1} i ∈ h̃ (6.111)

ỹk ∈ {0, 1}. (6.112)
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The decision variables of the above model are only the routing variables since the

location and pricing decisions are known by the previous steps. The objective function

maximizes the total profit when routing commodity k ∈ K. Constraints (6.104) to

(6.108) take care of the feasibility of the path. Constraint (6.109) forces commodity

k to be routed through the path that has the minimum price and ςk = min
{
ξk, qk

}
is the the value of the minimum price path for a commodity which is the minimum

of the price of competitor (qk) and the length of the shortest path (ξk). Note that

the above optimization problem identifies the commodities whose routing is profitable

for the leader. That is, according to the maximization objective function the leader

cannot choose commodities with negative profit and, accordingly, those commodities

will be routed by the competitor.

6.4.1.4 Evaluation of the Lower Bound

By following the above steps, we can construct a feasible solution (z̃, P̃ , ỹ, Ũ , Ṽ , x̃)

at each iteration. The last step in the constructive phase is to obtain a valid lower

bound. This is done by evaluation the original objective function of POA using the

obtained feasible solution:

η =
∑
a∈A

∑
k∈K:a1=o(k)

W k(P̃a − Ca)Ũ
k
a2
+
∑
a∈A

∑
k∈K:a2=d(k)

W k(P̃a − Ca)Ṽ
k
a1

+
∑
a∈A

∑
k∈K

W k(P̃a − αCa)x̃
k
a −

∑
i∈H

fiz̃i.

Algorithm (6.2) summarizes the constructive phase of the heuristic we developed.

Let η̃ be the best lower bound and η∗ be a lower bound at each iteration and let

S̃ = (z̃, P̃ , ỹ, Ũ , Ṽ , x̃) denote the feasible solution at each iteration.
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Algorithm 6.1 Constructive Phase

Initialize S̃ ← 0, η ← 0,η∗ ← 0

iteration t̃
Select the set of open hubs using MH1 or MH2

Solve PRICE to define the prices
Solve ROUTE to define the set of routed commodities
Evaluate η
If η > η∗

η∗ = η

t̃ ← t̃+ 1

6.4.2 Local Search Phase

We apply a variable neighborhood search (VNS) heuristic on the most promising

solutions obtained from the constructive phase. Since both the constructive and the

local search phases are expensive due to the required computational effort to solve the

routing subproblem to optimality, we only apply the local search whenever we obtain

a better solution on the constructive phase or on certain iterations. The proposed

VNS starts from an initial solution and applies four systematic search methods to find

neighbor solutions. If a neighbor solution is better than the current best solution, that

solution will be accepted. If not, it will continue searching until all neighbor solutions

are examined. Then, it starts the new search method. The accepted solution will be

the basics of the next neighborhood search.

The neighborhoods we consider explore solutions where the set of open hubs

changes. We explore four neighborhood structures which consider solutions within

the feasible domain. Let S = (z, P, y, U, V, x) be the best solution obtained from the

constructive phase and the set h as the set of open hubs associated with the obtained

solution (h = {i : zi = 1 : i ∈ H}). We update the set of h to the set h′ by adding

or removing elements. Accordingly, the new value for the prices (P ′) and routing

variables (y′, U ′, V ′, x′) are obtained by solving the routing and pricing subproblems
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to optimality for the updated set of hubs.

The first neighborhood we explore is open/close which considers a subset of feasi-

ble solutions that are obtained by opening a new hub and closing an open hub. That

is:

Nopen\close ⊂ {S ′ = (z′, P ′, y′, U ′, V ′, x′) : h′ = h\{m} ∪ {n}, m ∈ h, n ∈ N\h,

P ′ ∈ argmax PRICE, and (y′, U ′, V ′, x′) ∈ argmax ROUTE}.

The second type of neighborhood we explore is close-close where closes two hubs

that are open in the current best solution S.

Nclose−close ⊂ {S ′ = (z′, P ′, y′, U ′, V ′, x′) : h′ = h\{m,n}, m, n ∈ h,

P ′ ∈ argmax PRICE, and (y′, U ′, V ′, x′) ∈ argmax ROUTE}.

The third type of neighborhood considers a subset of feasible solutions that are

obtained from the current best solution S.

Nopen ⊂ {S ′ = (z′, P ′, y′, U ′, V ′, x′) : h′ = h ∪ {m}, m ∈ N\h,

P ′ ∈ argmax PRICE, and (y′, U ′, V ′, x′) ∈ argmax ROUTE}.

We explore all the neighborhoods and perform all improvement moves.

Finally, the last neighborhood we try is close neighborhood which considers a

subset of feasible solutions that are obtained from the current best solution S by

closing one hub. Then,

Nclose ⊂ {S ′ = (z′, P ′, y′, U ′, V ′, x′) : h′ = h\{m}, m ∈ h,

P ′ ∈ argmax PRICE, and (y′, U ′, V ′, x′) ∈ argmax ROUTE}.
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To provide diversity, we also apply VNS every tls iterations on the current solution

of the constructive phase.

Algorithm 6.2 Local Search Phase

Initialization
Select the set of neighborhood structure Nk, for k = 1, ..., 4
Find an initial solution S = (z, P, y, U, V, x)

while Stopping criteria not satisfied do
k ← 1
for (k ≤ 4) do

Generate a feasible solution S ′ ∈ Nk

If S ′ is better than the incumbent, S ← S ′ and continue the search
with Nk

If all moves are examined, k ← k + 1
end for

end while

The stopping criteria that we chose is one of the following: (i) the maximum CPU

time (timemax) or (ii) the maximum number of iterations tmax.

6.5 Computational Results

In this section we describe the computational experiments we have run in order to

analyze the performance and various aspects of the HLPs with profit on arcs. We

do not perform experiments for HLPs with pricing on paths since as we explained in

Section 6.2, this class of HLPPs are a special case of UHLPPs introduced in Chapter

3.

Our computational Experiments focus on two aspects. In Section 6.5.2, we first

study the empirical computational complexity of the problem and compare and an-

alyze the performance of our two heuristics. In Section 6.5.3, we next study the

structure of the solution networks as well as economical aspects of the problem by

performing a sensitivity analysis on the parameters of the model.

All experiments were run on an HP station with an Intel Xeon CPU E3-1240V2
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processor at 3.40 GHz and 24 GB of RAM under Windows 7 environment. All

formulations were coded in C and solved using the callback library of CPLEX 12.6.3.

We use a traditional (deterministic) branch-and-bound solution algorithm with all

CPLEX parameters set to their default values. In all experiments the maximum

computing time was set to 86,000 seconds (one day).

The benchmark instances we have used for the experiments are the well-known

CAB data set of the US Civil Aeronautics Board, with additional data that we gen-

erated for the missing information. These instances were obtained from the website

(http://www.researchgate.net/publication/269396247 cab100 mok). The data in the

CAB set refers to 100 cities in the US. It provides Euclidean distances between cities,

dij, and the values of the service demand between each pair of cities,W k, where o(k) 
=
d(k). We have considered instances with n ∈ {5, 7, 10, 25, 30, 40, 50, 60, 70, 80, 90, 100}
and α ∈ {0.2, 0.5, 0.8}. Since CAB instances do not provide the setup costs for open-

ing facilities, we use as the setup cost of opening hubs, i.e. fi, generated by de Ca-

margo et al. [45]. To have more reasonable solutions, we used fi × ζ where ζ is set

to 2. The price of the competitor qk, k ∈ K, for routing commodities are randomly

generated as qk = ϕ
∑

(i,j)∈AH
F k
a /|A|, where ϕ is a continuous random variable fol-

lowing a uniform distribution ϕ ∼ U [0.3, 0.4]. The collection and distribution factors

are χ = δ = 1.

6.5.1 Implementation Details of the Heuristics

After some fine-tuning, we set the following parameter values forMH1. The maximum

number of iterations, tmax = 25. The additional parameters that are used are the

following: the number of consecutive solutions with the same combinations without

improvement is r = 10. We set M ∼ U [3, |N |] and Π ∼ U [1, 8] as the parameters

of the network design phase while Π < M . We use η = 0 as the initial lower bound.
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This value is updated whenever the heuristic improves the incumbent solution. We

apply the local search phase every tls = 10 or any time there is an improvement on

the lower bound.

For MH2, the maximum number of iterations, tmax. We set G ∼ U [1, 8] as the

initial number of hubs at the beginning of each iteration. We apply the local search

phase every tls = 40 or any time there is an improvement on the lower bound. Other

parameters are similar to the ones used in MH1.

6.5.2 Numerical Results for Hub Location Problems with

Pricing on Arcs

Table 6.1 provides detailed information of the lower bounds obtained by the two

heuristics and the optimal solutions found by CPLEX. The first two columns of each

table give some instances data: |N |, the number of nodes and α, the discount factor

on hub arcs. The next three columns, under the heading Time (sec) give computing

times in seconds. The three columns under the heading Profits indicate the optimal

profit found by CPLEX and the lower bounds on the profits obtained by MH1 and

MH2, respectively. The two columns under % Dev, give the percentage deviations of

the lower bound produced by each heuristic with respect to the best known solution.

These deviations have been computed as 100(vbest − vh)/vbest, where vh denotes the

lower bound by each heuristic and vbest is the optimal or best-known value. The next

two columns under the header Hubs give the number of hubs open in the solution

of each heuristic. Finally, the last two columns are the percentage of the market

share of the leader obtained from the solutions of each heuristic, which is computed

as 100(x/|K|) where x is the total commodities routed by the leader and |K| is the
total number of commodities. The entries corresponding to instances that could not

be handled by CPLEX because of insufficient memory are filled with the sign “∗”.
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Time Profits % Dev Hubs % Market Share

|N | α CPLEX MH1 MH2 CPLEX MH1 MH2 MH1 MH2 MH1 MH2 MH1 MH2

0.2 0.08 0.87 0.90 662629.26 662629.26 662629.26 0.00 0.00 2 2 40.00 40.00

5 0.5 0.08 0.85 0.77 574776.94 574776.94 574776.94 0.00 0.00 1 1 30.00 30.00

0.8 0.08 0.77 0.78 574776.94 574776.94 574776.94 0.00 0.00 1 1 30.00 30.00

0.2 4.43 5.02 1.81 1935568.70 1935568.70 1935568.70 0.00 0.00 4 4 59.52 59.52

7 0.5 0.28 4.86 1.74 1329601.59 1329601.59 1329601.59 0.00 0.00 2 2 30.95 30.95

0.8 0.28 4.64 1.76 1250039.70 1250039.70 1250039.70 0.00 0.00 1 1 19.05 19.05

0.2 * 10.95 7.69 * 2186167.51 2186167.51 0.00 0.00 5 5 60.00 60.00

10 0.5 * 10.83 6.68 * 1509353.47 1509353.47 0.00 0.00 2 2 23.33 23.33

0.8 * 10.66 6.54 * 1359764.72 1359764.72 0.00 0.00 2 2 23.33 23.33

0.2 * 452.46 212.98 * 4817486.83 4761101.00 0.00 1.17 10 9 43.50 39.33

25 0.5 * 444.69 201.09 * 3305241.83 3305241.83 0.00 0.00 5 5 22.50 22.50

0.8 * 409.31 201.39 * 2854727.73 2854727.73 0.00 0.00 3 3 11.67 11.67

0.2 * 831.42 511.25 * 5187146.44 5187146.44 0.00 0.00 9 9 33.45 33.45

30 0.5 * 814.50 489.94 * 3650768.07 3650768.07 0.00 0.00 4 4 15.40 15.40

0.8 * 816.07 480.99 * 3235522.62 3235522.62 0.00 0.00 4 4 14.71 14.71

0.2 * 4951.18 4683.55 * 5755605.01 5683600.99 0.00 1.25 14 12 39.36 33.78

40 0.5 * 4477.03 4319.75 * 3794763.42 3794763.42 0.00 0.00 4 4 11.35 11.35

0.8 * 4469.05 5833.87 * 3455431.93 3309762.88 0.00 4.22 4 4 10.96 10.77

0.2 * 17800.58 46969.14 * 6355614.54 6355614.54 0.00 0.00 14 14 31.67 31.67

50 0.5 * 17133.33 46595.79 * 4095398.73 4095398.73 0.00 0.00 7 7 16.04 16.04

0.8 * 17018.97 46490.46 * 3631810.39 3428770.69 0.00 5.59 4 4 8.98 8.65

0.2 * 26061.56 74949.34 * 7465693.33 7465693.33 0.00 0.00 15 15 28.25 28.25

60 0.5 * 25917.78 73334.61 * 4920486.10 4920486.10 0.00 0.00 8 8 15.90 15.90

0.8 * 25944.06 73320.78 * 4297049.02 4297049.02 0.00 0.00 5 5 9.52 9.52

0.2 * 76450.86 86400 * 7901256.32 7901256.32 0.00 0.00 16 16 25.30 25.30

70 0.5 * 75602.29 86400 * 5131974.57 5159831.57 0.54 0.00 10 8 15.78 13.56

0.8 * 86400 86400 * 4402958.34 4402958.34 0.00 0.00 5 5 8.07 8.07

0.2 * 86400 86400 * 8102227.05 7152094.18 0.00 11.73 16 9 22.36 11.88

80 0.5 * 86400 86400 * 4738415.02 5193828.53 8.77 0.00 5 8 6.95 10.60

0.8 * 86400 86400 * 4269732.78 0.00 0.00 100.00 5 0 6.84 0.00

0.2 * 86400 86400 * 5442408.79 0.00 0.00 100.00 4 0 4.97 0.00

90 0.5 * 86400 86400 * 4711548.67 0.00 0.00 100.00 4 0 4.96 0.00

0.8 * 86400 86400 * 4318638.14 0.00 0.00 100.00 4 0 4.89 0.00

0.2 * 86400 86400 * 3792366.98 0.00 0.00 100.00 2 0 4.97 0.00

100 0.5 * 86400 86400 * 3642778.23 0.00 0.00 100.00 2 0 4.97 0.00

0.8 * 86400 86400 * 3493189.47 0.00 0.00 100.00 2 0 4.37 0.00

Table 6.1: Computational experiments for MH1 and MH2 using CAB instances.
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The results shown in Table 6.1 clearly confirms the complexity of the problem

since CPLEX is only able to solve very small instances with 5 and 7 nodes. After

that, it runs out of memory. Among the two heuristics, MH2 appears to be faster

for instances up to 40 nodes, however, for 50 nodes and more MH1 is much faster.

MH1 finds a solution for 26 out of 36 instances within the time limit of one day CPU

Time while MH2 is able to find a solution for 24 out of 36 instances. In terms of the

quality of the lower bounds, it is confirmed that both of the heuristics provide optimal

solutions for the 6 instances that CPLEX is able to solve to optimality. However, for

larger instances the optimal solution is not known and the %Dev presented are with

respect to the best known solution. The instances with zero gap for both heuristics

are the ones that reach to the same lower bounds using both heuristics (22 out of 36).

Among the 14 remaining, MH1 provides the best known solutions for 12 instances.

Moreover,MH2 is not able to provide a lower bound more than zero for large instances

with 80, 90 and 100 nodes because the larger the instance, the harder it is to find the

right locations for the hubs. This confirms that MH1 performs better than MH2.

Comparing the number of hubs and the market share values for both heuristics, it is

shown that better bounds are from the results with larger number of open hubs and

higher values of market share. Also, the smaller the discount factor, the more hubs

are open and the higher market share will be obtained.

6.5.3 Sensitivity Analysis

In this section we present a sensitivity analysis of the presented model with respect

to some of the parameters. Figure 6.4 allows to compare the effect of the discount

factor α on the solution networks. It shows the networks produced by MH1 (the best

known solution) for the CAB instance with n = 25 and three different values of the

discount factor α. Note that the network design decisions in this problem are trivial
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Figure 6.4: Network solution for POA obtained by MH1 for different discount factors
α and N = 25.

since there is no set-up costs on the arcs. However, the arcs presented here denotes

the arcs that are used by the customer and the rest of the arcs that are not shown

are the ones that are not used to transport any commodity. The network for α = 0.2

(Figure 6.4a) consists of 10 hubs, and uses 45 hub edges, and serves 15 other nodes

with 43% of the market share. However, by increasing the discount factor to α = 0.5

(Figure 6.4b), the solution network consists of only 5 hubs and commodities travel
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from 10 hub edges which causes a considerable reduction in the market share and

profit. Figure 6.4c shows the solution network for the highest value α = 0.8. Now

the number of hub nodes has further decreased to three and the leader only captures

12% of the market share.

Figure 6.5: The Leader’s and the competitor’s economical behavior in the market by
increasing the market share of the leader, N = 25, α = 0.5.

Figure 6.5 represents the economical behavior of the leader and the competitor by

changing the market share of the leader. The horizontal axis shows the percentage of

the market share of the leader and the vertical axis shows revenue/cost and the gray

arrows represents the profit of the leader (revenue-cost). To increase the market share

of the leader (decreasing the market share of the competitor) we increased the price

of the competitor (qk) for each commodity k ∈ K. Starting from the zero market

share, the revenue of the competitor is high (8, 021, 28) because he has all the market

and the leader’s profit is zero. By increasing q, the competitor’s revenue increases up

to 11,576,43 but he is losing the market and accordingly, the leader’s market share

and revenue increases (4,466,14). However, when q reaches to approximately twice its
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Scenario α Hubs %Market share
Set-up Transportation Leader’s Leader’s Competitor’s
cost (M) cost (M) revenue (M) profit (M) revenue (M)

S1 0.5 4 24.00 4.19 6.87 17.70 6.65 12.38

S2 0.2 5 29.17 5.59 5.98 19.17 7.61 10.91

S3 0.8 4 23.83 4.19 7.16 17.31 5.96 12.77

Table 6.2: Sensitivity analysis on the discount factor for the CAB instance with
N = 25.

original value, the revenue of the competitor starts decreasing, and around 8% of the

customers are attracted by the leader. As it is shown on the graph, the slope of the

reduction on the revenue of the competitor is small at the beginning and that explains

why the profit of the leader increases slowly. When the leader has captured %18.75

of the market, the revenues of the competitor and the leader are equal (9,684,41).

As the competitor gets weaker, the leader gets stronger and his profit increases more

rapidly.

Figure 6.5 also shows the trend of the transportation and set-up costs of the leader.

When the leader captures more demand, the number of hubs increases to be able to

route more commodities. Accordingly, the transportation cost also increases but with

a lower speed and this is due to the discount factor α on the hub arcs which reflects

economies of scale.

Table 6.2 to 6.4 give the sensitivity analysis on different parameters of the model:

the discount factor (α), price of the competitor (q), and set-up cost on the hubs (f),

respectively. κ is a coefficient we used to change the values of the q and ζ is used to

change values of f . We study seven different scenarios where S1 is used as the base

scenario. We use both heuristics to obtain a feasible solution for each scenario and

compare them. Both of heuristics produce the same solution.

Table 6.2 studies the effect of changing the discount factor. By decreasing α from

0.5 in S1 to 0.2 in S2, the number of hubs increases from 4 to 5 and accordingly
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Scenario κ Hubs %Market share
Set-up Transportation Leader’s Leader’s Competitor’s
cost (M) cost (M) revenue (M) profit (M) revenue (M)

S1 1.5 4 24.00 4.19 6.87 17.70 6.65 12.38

S4 1 2 10.00 1.80 2.90 6.64 1.94 13.41

S5 2 9 59.17 10.75 10.49 35.10 13.85 5.01

Table 6.3: Sensitivity analysis on the competitor’s price for the CAB instance with
N = 25.

Scenario ζ Hubs %Market share
Set-up Transportation Leader’s Leader’s Competitor’s
cost (M) cost (M) revenue (M) profit (M) revenue (M)

S1 4 4 24.00 4.19 6.87 17.70 6.65 12.38

S6 3 7 39.00 6.25 8.36 22.65 8.03 7.43

S7 5 3 17.83 4.34 6.40 16.35 5.61 13.73

Table 6.4: Sensitivity analysis on the set-up cost of the hubs for the CAB instance
with N = 25.

the market share from 24% to %29. Capturing more commodities will increase more

the revenues than the transportation costs since commodities benefit more from the

discount factor on the hub arcs. Although the set-up costs increase, the reduction

on the transportation costs and the increase on the revenues help the leader attain

a higher profit, which leads to less revenue for the competitor. On the contrary, in

S3 by increasing α to 0.8, the number of hubs does not change as compared with S1

while the transportation cost increases and this causes capturing less customers from

the market.

Table 6.3 studies the effect of changing the competitor’s price. In S4, 33% reduc-

tion on the price of the competitor will give more power to the competitor and and

the produce a loss in market capture of 14%.. This incredibly decreases the leader’s

revenue (62%) while the competitor only experiences a moderate increase on his rev-

enue due to selling commodities at a lower price. S5 increases the competitor’s price
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to 33% compared to S1 and this results a huge number of customers (59%) being at-

tracted by the leader and leaving the competitor. Although the competitor is selling

products 33% more expensive, his revenue decreases 1, 5% while the leader’s revenue

increases 1%.

Table 6.4 studies the effect for changing the set-up cost of opening the hubs.

Obviously, due to the 25% reduction on the set-up cost in S6, more hubs will be

open as compared with S1, which helps the leader to route more commodities and

have a 60% increase in the market share as compared with S1. Although there is

a reduction on the unit set-up cost, the total set-up cost increases due to the 75%

increase on the number of open hubs. Accordingly, the revenue and profit of routing

more commodities will increase while the revenue of the competitor decreases due to

losing part of the market share. On the other hand, in S7 by increasing the set-up

cost to 25%, the leader loses 30% of his market share which leads to a 7.6% reduction

on its revenue.
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Chapter 7

Conclusions

This dissertation introduced a new class of hub location problems (HLPs) called hub

network design problems with profits (HNDPPs) and seven different alternative mod-

els of increasing complexity. Each of these involve interesting features, assumptions

and applications that add new avenues of research to the current state-of-the-art in

hub location research. HNDPPs are different from the studied HLPs, in their profit

oriented objectives which leads to incorporate different types of locational decisions

(on the hubs, served nodes), network design decisions (on the hub edges, access edges

and bridge edges), operational decisions (on demand levels), and pricing decisions.

Moreover, the flexibility arising from the profit maximization objectives, allow these

problems to offer different service commitments. All these and still more, deserve to

be explored in this new line of research.

We started with the most basic variant of HNDPPs, denoted as the uncapacitated

hub location problem with profits (UHLPP) in which the selection of a set of nodes to

be served is part of the decision process. Potential applications appear in the design

of airline and ground transportation networks. We presented a MIP formulation for

the problem and we solved it by means of Lagrangean relaxation. A primal heuristics

is used to obtain feasible solutions for the problem. Computational results confirm
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the efficiency of the proposed approach. Benchmark instances involving up to 75

nodes were solved with small optimality gaps.

We further proposed and introduced the foundations of alternative HNDPPs of

increasing complexity. These models incorporate different features and relax different

unrealistic assumptions usually considered in classical HLPs such as fully connected

networks and serving all the nodes. To do so, HNDPPs integrate several locational

and network design decisions such as the selection of origin/destination nodes, a set

of commodities to serve, and a set of access, bridge and hub edges.

We compared profit oriented models to their traditional cost-oriented hub arc lo-

cation problems in which all nodes and associated commodities must be served. The

solutions of the profit-oriented models do not only outperform the cost-oriented coun-

terparts in terms of the total collected profit, specially for medium and high values

of the discount factor α, but also the topology of the obtained solutions networks are

substantially different. This clearly illustrates the added-value of integrating within

the decision-making process additional strategic decisions on the nodes and the com-

modities that have to be served. We also compared HNDPPs among them in terms

of the profit per served O/D pair and profit per routed unit of flow. Results indicate

that the quality of the models, measured in terms of their ability to produce solutions

with a better trade-off between their profit and the service level attained, is inversely

proportional to their sophistication.

The results of computational experiments also pointed out the significant influence

of the discount factor on the design of optimal networks of all HNDPPs. The value of

α affects not only the number of hub edges but also number of hubs opened and non-

hub nodes activated in solution networks. The higher the value of α, fewer hub edges

and hubs are activated as well as fewer nodes are served. Moreover, discount factor

also affects the CPU times. It seems clear that the computing times are considerable
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higher in all the models with smaller values of α. Given the inherent difficulty of the

considered models, CPLEX was only able to solve small to medium-size problems.

We next developed an exact algorithmic framework for primary hub network de-

sign problems with profits. We considered two variants, which differ from each other

in only one set of constraints that forces to route all the commodities with their two

end-nodes activated.

We proposed a Lagrangean relaxation that exploits the structure of the problems

and can be solved efficiently. In particular, the Lagrangean functions can be decom-

posed in two independent subproblems: one of them is trivial and the other one can

be transformed into a quadratic boolean problem, which can be solved efficiently as

a max-flow problem. The Lagrangean dual problems were solved with a subgradient

optimization algorithm that applied simple primal heuristics, which produced valid

lower bounds. The Lagrangean relaxation was embedded within exact branch-and-

bound algorithms for each of the considered problems. Moreover, reduction tests

were applied at the root node, which helped to considerably reduce the number of

variables and constraints. These tests were enhanced with the application of a partial

enumeration phase to reduce the number of branches of the enumeration phase.

The results from computational experiments with benchmark instances with up

to 100 nodes assessed the efficiency of the proposed framework, and its superiority

over CPLEX. On the one hand, because of memory limitations CPLEX was not able

to solve instances with more than 60 or 70 nodes, depending on the version of the

problem, whereas our proposed solution algorithms did not have this limitation. On

the other hand, for the instances where both types of methods could be compared,

our algorithms consistently outperformed CPLEX.

In the last part of this dissertation, we went further by introducing hub location

problems which consider joint location, pricing and routing decisions that we denoted
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as hub location and pricing problems (HLPPs). In all the considered problems, prices

are exogenous. i.e., are defined as part of the inputs of the problem. However, HLPPs

incorporate pricing decisions within the decision making process. These problems are

interesting in the sense that they are presenting a different environment in HLPs that

involves a leader and a follower. The leader (first level) wants to maximize its profit

while in the second level, customers want to minimize their objectives. Our proposed

models are able to consider both optimization problems by means of bilevel program.

Two types of pricing are considered: pricing on paths and pricing on arcs. We showed

how both problems can be stated as MIP bilevel programs. We also presented single-

level reformulations for these problems. We studied the complexity of each type as

well as their features and capabilities in modeling the real world behaviors of firms in

the market. We showed that HLPs with pricing on paths are equivalent to UHLPPs.

We developed two variants of a math-heuristic to provide feasible solutions to the

HLP with pricing on arcs. The two heuristics differ in the way feasible solutions

are constructed. We also improved the solutions by applying a variable neighborhood

search (VNS). We run some computational experiments on a set of CAB instances

with up to 100 nodes. The results showed that CPLEX is not able to solve instances

with more than 10 nodes due to memory issues. Moreover, MH1 performs better

than MH2 both in the quality of the solutions and the CPU time since MH2 is

not able to obtain any feasible solution with a positive objective value after one

day of CPU time for instances with 80, 90 and 100 nodes. In the second part of

our experiments we analyzed the sensitivity of our model to the parameters such as

discount factor α, competitor’s price q and, set-up cost of opening hubs f . Solution

networks with smaller values of α include more hubs, have higher market share and

lead to higher profit while the ones with higher discount factor clearly benefit less from

the market. Moreover, we showed how the leader’s profit and the competitor’s revenue
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are sensitive to the price of the competitor. Higher prices from the competitor attract

more customers to the leader while lower prices give more power to the competitor.

Furthermore, increasing set-up cost of the leader decreases its number of hubs and

makes it weaker in the market.

Naturally, there exist several aspects related to this work worth to be further in-

vestigated that are unfortunately out of the scope of this dissertation. For this reason

we briefly describe some future research avenues in which we are interested. We are

currently working on more challenging extensions of HNDPPs in which O/D paths

can use several hub and bridge arcs. Moreover, improving the proposed heuristic for

the HLP with pricing on arcs by applying a more efficient way to solve approximately

the routing subproblems instead of optimally solving them is worth studying. Al-

though pricing problems appear to be very complex, they are very applicable and

there is a lot of room to develop these models by considering other features. Exam-

ple of these features are considering triangle inequality on the prices, including more

network design decisions and allowing HLPs with pricing on paths to include several

hub arcs, among others.
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[81] Labbé, M. and H. Yaman (2006). Polyhedral analysis for concentrator location

problems. Computational optimization and applications 34 (3), 377–407.
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[90] Maŕın, A. (2005a). Formulating and solving splittable capacitated multiple allo-

cation hub location problems. Computers & operations research 32 (12), 3093–3109.
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