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Abstract 

Reliable Location Allocation Routing Design under Disruption: An Improved Column 

Generation Decomposition Approach 

Gounash Pirniya 
 

Every year, various human actions (e.g., terrorist attacks, strikes, etc.) and natural 

disasters (e.g., earthquakes, hurricanes, and etc.) cause disruptions in supply networks, and 

as the result, huge financial and humanitarian loss. Not only they brought loss of services to 

the system, they, depending on the type, partial or complete, may result in facility failures, 

roads failures or both, simultaneously. Therefore, having reliable systems are essential in 

order to reduce risks as well as cost in case of failures. Motivated by the importance of 

considering the failure in design level, we, in this thesis, focused on problem of locating 

facilities, allocating demand points to the facilities, and defining the rout among them while 

considering the complete failure in the elements of the network. The Reliable Location/ 

Allocation/ Routing Problem (RLARP) formulation which is Mixed Integer Programming 

model is proposed, taking into account failures in facilities and routs in different scenarios 

as failure sets. Along with bringing in trustworthy systems, we also contribute an exact 

decomposition methodology and propose a Column Generation model to tackle the 

complexity. The idea is to define a supply chain network at the design level to be robust 

against worst case failures and disruptions scenarios. To the best of author’s knowledge, the 

Column Generation technique has not been applied previously to solve RLARP problems in 

the literature. In addition, we consider the facility and transportation method failures in  our 
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model, despite the fact that mostly either facility failures or transportation failures are taken 

into account in the literature. Various data sets designated for validating Column Generation 

and RLARP formulation proposed in this thesis. Eventually, we compare the performance of 

CG and RLARP models over a range of instances. Results suggests that CG technique 

performs significantly better than solving the RLARP model with a general optimization 

solver (CPLEX) in terms of computational time and the size of instances that can be solved. 
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1. Chapter 1 

Introduction 

In recent years, the interest in the subject of disruption in supply chain networks has a 

notable increase. The reason behind this fact is the financial and humanitarian loss caused 

by natural disasters (e.g., earthquakes, hurricane, etc.) or human actions (e.g., terrorist 

attacks, strikes, etc.) in the recent events. Snyder et al. (2014) introduced specific reasons 

behind such a growth. First, recent conspicuous incidents brought the interdiction concept 

into public’s attention such as Japanese Tsunami in 2011, terrorist attacks of 11th September 

2011, Hurricane Katrina in 2005, and the west-coast port lockout in 2002. Second, as stated 

in Snyder et al. (2014), experts believe that although under the normal operating conditions, 

philosophies such as JIT (i.e., Just In Time) and lean concept perform very well for supply 

chain excellence, however, they fail to sustain a reliable supply chain networks when sudden 

changes occur in the system. Third, today’s supply chain networks are highly globalized 

rather than vertically integrated. Suppliers of a typical North American company such as 

Apple are distributed around the world; in some cases they are located in highly unstable 

geographies in the world. Consequently, a large body of researchers have started tackling the 
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risk management problem for supply chain networks to address the ever increasing needs of 

such globalized organizations.  

Mitigation techniques reduce the impacts of disruptions regardless of the kinds of them. 

Disruptions risks have more severe impacts on the business rather than operational risks, and 

that is the main reason behind such a growth in the field of mitigation techniques. To 

illustrate more, the operational risk is the probability of loss resulting from inadequate or 

failed procedures, system or policies such as employee errors, system failures, fraud or other 

criminal activities and any other event that disrupt the business (TechTarget). To compare 

operational risks with disruption risks (e.g., floods, earthquake, economic crises like changes 

in currency rates, strikes and machine breakdowns), the former impact operational factors 

rather than supply chains’ component while the latter can disturb the functionality of the 

supply chains for an unlimited duration (Ahmadi-Javid and Seddighi, 2013; Azad et al., 

2013). 

It may seem that disruptions occur rarely and it is not worth investing on mitigating the 

risk. However, historical evidences suggest that even a small disruption on the supply chain 

network may result in severe and destructive impact on supply chain networks and resulting 

in a huge loss which its repercussions can be last for years (Hendricks and Singhal, 2003, 

2005a,b). For instance, in 1998, strike on two general motors part plants resulted in closing 

of 100 other GM part plants, 26 assembly plants, having so many dealer lots empty for 

months (Snyder et al., 2014). 

Due to budgetary concerns, corporations may not find a good business case to invest in 

fortification and mitigation strategies to minimize the risk against failures. However, there 
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are clear evidence from the past experiences that, a reasonable investment especially at the 

design level results in significant savings in the long run. To further motivate, in 2011 

earthquake and following tsunami in Japan caused significant disruption on Toyota’s global 

supply chain network. As a result, Toyota’s sales dropped significantly due its centralized, 

less diverse supply chain network (Wall Street Journal 2011). On the contrary, Ford and GM 

did not face such a losses as a result of having a more geographical spread supply chain 

networks (Snyder et al., 2014). 

Disruptions on networks may cause partial or complete failures in the supply chain 

network. Facility failures or transportation method failures are common reasons for failure. 

However, occasionally, both facility and transportation method failures occur simultaneously 

due to the intentional or unintentional events. To protect the system and reduce risks, 

companies adopt fortification techniques, as mostly relocating the infrastructure is not a 

choice, while others invest on more reliable network at the design level which is the main 

scope of our research. Due to limited resources, it can be clearly stated that a moderate 

investment at the design level is much more economically viable than finding ad hoc 

solutions during the post disruptions era with significantly higher costs (Snyder, 2006). 

In this thesis, we confine our attention to the subject of Reliable Location / Allocation/ 

Routing Problem (RLARP), specifically at the design level of supply chain networks. We 

propose a mathematical model, called RLARP, to design a network which can perform 

efficiently and reliably, at the minimum cost in the presence of the disruptions.  More 

specifically, the model seeks the optimal location of facilities, allocation of demands along 

with the determination of routes from facilities to customers by considering the failures to 

reach a more reliable network.  The objective is to minimize the worst-case cost consisting 
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of fixed opening cost of facilities and transportation cost which is proportional to the 

travelled distance and satisfied demand.  Following the RLARP model, Column Generation 

solution methodology is proposed. 

Our main contributions in the thesis are as follows: Applying a mathematical 

decomposition technique (Column Generation (CG)) to reformulate Reliable Location/ 

Allocation/ Routing Problem (RLARP) in the context of supply chain network design 

whereas taking into account failure in services and the network components such as routes 

and facilities. The Column Generation technique, lets us reformulate our model and solve it 

in a timely manner for medium and large instances. We generate different data sets and test 

the two solution methodology over a range of instances, taking into account failure sets.  We 

use several graphs to do the performance analysis of the two techniques to figure out how 

beneficial is to use the CG technique. In addition, a series of experimental complexity 

analysis are done. 

The remained of the thesis is organized as follows: We present an overall explanation 

regarding different mitigation strategies and more detailed review of the literature in the field 

of facility location. Chapter 3 describes the column generation technique which is our main 

contribution in this thesis. In Chapter 4, we present the problem description and formulation, 

while Chapter 5 is dedicated to the explanation of the data set and computational results. 

Finally, in Chapter 6, we discuss the conclusion of the thesis and future research directions. 
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2. Chapter 2: 

Literature review 

In this chapter, we discuss an overview of studies related to reliable facility location 

problem under random disruptions. In supply chain field to mitigate the disruption different 

strategies will be applied as follows: Mitigating disruption through inventory, sourcing and 

demand flexibility, interaction with stakeholders, and facility location (Snyder et al., 2014). 

We explicitly review the facility location category as the subject of our studies is related to 

this area. 

2.1. Mitigating through facility location 

In this section, the literature is divided in two main categories: fortification models; and 

design models for reliable facility locations as described in Snyder (2006). Fortification 

models take into account that there exists a network in which facilities are already placed. It 

should be decided which infrastructures to fortify to protect them against disruptions 

considering the resource limitations. While design models like a classical facility location 
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assumes that the network is built from the scratch and no facilities exist at the time. Therefore, 

the decision should be made to choose a set of facility locations among potential locations 

to perform well even at the time of disruptions. Also, it should be mentioned that these two 

concepts can be integrated in one model, selecting the potential facility locations as well as 

fortifying them, which creates at least a tri-level model.  This causes solving such a model 

noticeably more difficult (Snyder, 2006). Also, it should be said that knowing the type of 

threats as well as the network that is going to be protected against the disruption could help 

choosing the best strategy to mitigate the system (Cappanera and Scaparra, 2011).  First, we 

review briefly the fortification part. Then, the design models is investigated in details as our 

research is fit to this area. 

2.1.1. Fortification models 

Reliability of the network can be increased by considering disruptions in the design level. 

However, as relocating the infrastructure, redesigning the entire system and changing the 

suppliers is not an option due to its high cost, fortification strategies is a good option to 

protect and secure the existing network (Snyder, 2006). In this field, different models are 

proposed mainly based on the type of threat and the network along with the objective they 

are seeking, considering limitations and conditions. 

Some proposed models are based on the game-theoretic or in another word defender-

attacker concept (Cappanera and Scaparra, 2011; Liberatore et al., 2011; Parvaresh et al., 

2014). These models are used for the case of considering the intentional attacks (planned 

operations) (e.g., terrorist attacks, labor strikes) rather than random unplanned disruptions 
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(e.g., natural disasters) (Cappanera and Scaparra, 2011), (Golany et al. 2009). In defender-

attacker approach, the goal of the attacker is to interdict a system in a way to cause the most 

harmful damage while the defender is trying to reduce the future repercussions of probable 

destructive attacks. That is the reason behind of seeing mostly the multi-level models in this 

field. However, Maria P. Scaparra (2005) and Church and Scaparra (2007) reduced the level 

of problem to one, by enumerating all interdiction patterns. Therefore, it became capable of 

solving medium-sized problems (Snyder, 2006). 

Scaparra and Church (2008b) propose a P-median optimization model to minimize the 

worst-case effect of 𝑟 intentional attacks targeted to non-fortified facilities. To do so, it 

should be identified which subset of 𝑞  facilities have to be fortified among 𝑝  located 

facilities in the system to face the minimum disruptive effects in the worst -case loss. 𝑟-

interdiction median problem with fortification (RIMF) is first formulated as mixed integer 

programming (MIP) by Church and Scaparra (2007). The author reformulate MIP as a 

maximal covering problem (MCP) with precedence constraints. They apply a greedy 

heuristic and interval search to reduce the size of the problem and then solve it by general 

MIP solvers. 

Scaparra and Church (2008a) formulate the RIMF problem as a bi-level MIP. The authors 

considered following assumptions in the model: the number of interdiction is known for 

protectors, facilities are uncapacitated and fortified facilities are immune from failures. They 

applied the tree search process for solving the problem. The largest size of 𝑝 , 𝑟  and 𝑞 

fortified facilities which was taken into account is 60, 8 and 7, respectively. Liberatore et al. 

(2011) proposed the stochastic version of bi-level RIMF as well as stochastic MCP. In their 

problem, the number of losses is uncertain with the specified probability. In their paper the 
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largest size of 𝑝 is 60, 𝑟 takes the amount between 2 to 5 and 𝑞 is the 10, 15, 20 percent of 

𝑝. 

Lim et al. (2010) formulate a MIP model to deal with network disruptions by considering 

two kinds of facilities; reliable and unreliable facilities. They found that one of the effective 

ways to build a reliable distribution network is fortifying some of the facilities to make them 

reliable while these disruptions occur randomly. They propose a Lagrangian Relaxation-

based solution algorithm, seeking minimum costs and charges to solve large scale problems 

in reasonable computation time. 

Cappanera and Scaparra (2011) develop a multi-level, defender-attacker-user, 

optimization model based on the Shortest-Path interdiction model of Israeli and Wood (2002) 

with an “additional level for modeling explicitly protection decisions”. By applying a game 

theoretical framework, their objective is to reach the best fortification plan that in case of 

worst case 𝑅 interdiction of unprotected links, minimize the increase in the shortest path 

length between the supply nodes and demand nodes. The author assumes that the only point 

that affects the travel cost is link status not link flow. The enumeration algorithm is used to 

solve the model to optimality. They propose a heuristic method for solving the lower-level 

interdiction problem at each node of an enumeration tree, and applied variable fixing rules 

to reduce the dimension of the problem. By using this methodology, they could find 

hardening strategies for large size networks. The size of their data sets are as follows: number 

of nodes and arcs are < 51, 88 >, < 102, 416 >, < 146, 618 > and < 227, 996 >, where the 

first number represents the number of nodes and the second is the number of arcs in the 

directed graph. Maximum number of fortification and interdiction are considered (3, 5, 7) 
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and (1, 2, 3, 4, 5), respectively.  For solving the algorithm C++ was used. Also, they used 

CPLEX to solve the MIP problems at each node of enumeration tree.  

2.1.2. Design models 

It is a tradition in the facility location problem to make the leanest decision for locating 

the facilities (Snyder et al., 2014). However, the reality of not being able to change the 

facility locations at the time of the disruptions as well as the recent destruct ive events in the 

globe, highlights the essential needs for considering the interdiction in the concept of facility 

location far in advance in the design level. To the limits of our knowledge, for the fi rst time, 

disruptions were taken into account in a facility location model in the publication of Drezner 

(1987). He proposed two models, the reliable version of the classical p-median with 

considering the probable failure of nodes as well as “(𝑝, 𝑞)-center” problem. In the latter 𝑝 

facilities should be located in a way to minimize the maximum cost at the time of interdiction 

of at most 𝑞  facilities. Neighborhood-search based heuristic was applied to solve both 

problems. 

Snyder and Daskin (2005) presented reliability models based on the classical 𝑃-median 

problem (PMP) and the uncapacitated fixed-charge location problem (UFLP). The bi-

objective formulation was used for both models, one considers the cost of location allocation 

without presence of failures (nominal cost) and another, responds to the expected cost after 

interdiction. Their objective is to choose facilities in a way to minimize the cost in case of 

facility failures and increase the resiliency of the system at the design time. Therefore, 

inexpensive and reliable facility locations would be chosen to have the less cost by 



 

10 
 

considering their reliability. It is also considered that customers will be assigned to their 

closest non-disrupted facility. They assume the same failure probability for all the facilities 

except for those which cannot be failed. Lagrangian relaxation algorithm was used for 

solving the problem. Also, generating a trade-off curve between minimal and expected cost 

indicates that often by a minimal increase in the operating cost at the design level, the system 

reliability would improve considerably. 

Relaxing the assumption that all facilities have the same disruption’s probability, make 

solving the problem much more difficult (Snyder, 2006). To encounter such an issue, some 

proposed stochastic programming and enumerate either all or set of the disruption scenarios 

taking into accounts that the size of the problem grows exponentially by the number of 

facilities (Shen et al. (2011), (Snyder, 2006), and Y. Zhang et al. (2015)), while Berman et 

al. (2007, 2009, 2011, 2013), Zhan et al. (2008), Cui et al. (2010) and Aboolian et al. (2013) 

calculate the probability that a customer is assigned to its 𝑟𝑡ℎ closest facility by proposing a 

non-linear term. 

Atoei et al. (2013) propose reliable capacitated supply chain network design (RSCND) 

model. The three-level of supply chain including customers, distributors and suppliers was 

considered. Their model is a bi-objective and also a scenario based model. They minimize 

the expected cost in the first level and in the second level maximize the reliability of the 

network. Their objective is to optimally locate the distribution centres (DCs), assign 

customers to DCs and DCs to suitable suppliers such that the costs are minimized and the 

reliability is increased. The random partial disruption can happen in the location, capacity of 

the DCs, and suppliers. They solve the problem by Lingo 11 but due to its limitation which 

cannot handle more than 50 variables, it cannot be used for solving the medium and large 
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size instances. To be able to solve the real word instances the metaheuristic approach, Non -

dominated Sorting Genetic Algorithm-II, is applied. 

Azad et al. (2013) propose a capacitated supply chain network design (SCND) model. 

Their formal model is Mixed Integer Linear programming (MILP). The objective is to reach 

the optimal network design with the minimum cost, considering the constraints such as 

limitation in the investments. The cost is including two main categories, the reliability costs 

and the transportation costs. Partial random disruptions can occur in both facility and 

transportation. Two transportation modes are considered, safe and unsafe. In safe 

transportation mode, disruptions cannot occur but for sure the cost of it is higher than the 

unsafe transportation mode. There are two types of customers’ assignments: Primary 

assignments is for the situations in which there are no failures. Therefore, there could be 

either safe or unsafe transportation mode. Secondary assignments are used at the time of 

existence of disruptions in which just safe transportation mode could be used. Due to the 

large number of variables and constraints, using a general optimization solver directly is not 

efficient, therefore modified Benders Decomposition (BD) algorithm was applied to solve 

the problem. They generated 30 random sets of data. Different ranges were taken into account 

as follows, customers (10-150), potential DCs (2-22), investment and transportation mode 

(3-5). 

Ahmadi-Javid and Seddighi (2013) consider a location routing problem (LRP) under 

disruption in a two-echelon supply chain network consisting of producer-distributors (PDs) 

which produce a single commodity and distribute it among customers. The problem is 

formulated as a mixed-integer linear programming under three different risk management 

policies, moderate, cautious and pessimistic. Their goal is to locate PDs, allocate them to 
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customers and define the routes in a way to minimize the total annual cost which includes 

the following components. The fixed cost of opening and operating PDs, the annual routing 

costs from opening PDs to customers, the annual distribution and production costs. The DCs 

have a limited capacity. The disruption may reduce the DCs capacity and fully interdict the 

vehicle depending on the type of the disruption. As the LRP is NP-hard, the two-stage 

heuristic based on the simulated annealing was proposed for solving the large-size instances. 

The largest data set they addressed in this paper had 800 scenarios, where the number of PDs 

was 30 and there were 35 vehicles and 200 customers. 

Azad et al. (2014) later propose the stochastic version of above problem with the same 

objective and model with some differences. The disrupted capacity of unreliable DCs in the 

case of disruption is stochastic and follows a normal distribution. They apply conditional 

value-at-risk (CVaR) approach to control the risk of model. Two approaches are used to solve 

the problem. One for solving small and medium-sized problems by reformulating the 

problem, as a second-order cone programming model. This approach gives an exact solution 

to the problem. The other one uses a heuristic approach, combination of tabu search and 

simulated annealing, which solves large-sized instances of the problem. 

Farahani et al. (2014) propose a hierarchical maximal covering location problem (HM-

CLP) with considering random disruptions. A disruption can happen occasionally and 

randomly in any facilities regardless of their type and level. Their goal is to maximize the 

total demand covering. As HMCLP by adding disruptions is NP-hard, metaheuristic method 

is proposed for solving the large-size problems. The authors apply a hybrid artificial bee 

colony algorithm. 



 

13 
 

Parvaresh et al. (2014) propose a bi-level p-hub median problem under intentional 

disruption model. In the upper level, which fulfills the goal of leaders, there are two 

objectives. The former minimizes the total transportation cost in the normal situation, while 

the latter follows the same objective but after happening the worst -case interdiction of 

maximum 𝑟-hubs. In the lower level, the aim of attacker is to select 𝑟 hubs among those 

which had been located by leaders, in a way to maximize the damages to the networks. Their 

objective is to design a more reliable hub network. In their publication, the capacity of hubs 

is considered unlimited. Also, the complete interdiction is taken into account which means 

in case of interdiction of a hub, it would not be functional any more. Moreover, the 

simultaneous failure of at most 𝑅 facilities is possible which make their work different from 

what Berman et al. (2009) did. The problem is solved by implementing multi-objective 

metaheuristics based on simulated annealing and tabu search. The largest size of potential 

hub location, 𝑝 and 𝑟 is 50, 5 and 2. 

Y. Zhang et al (2015), propose a two-stage stochastic mixed-integer programming in the 

subject of capacitated reliable location routing (RLRP) in which a set  of facilities can be 

fully disrupted randomly. They consider a scenario-based model with the objective of 

minimizing the total expected cost. The most probable scenarios are taken into accounts due 

to the fact that the problem size will grow exponentially. In the first stage, which is 

independent to scenarios, they decide which depots to open and in the second stage , the 

allocation of customers to satisfy their demands in the presence of failure of some depots 

would be covered. They develop a metaheuristic solution methodology based on Simulated 

Annealing (SA) approach for solving their model. In addition, the authors compare the 

performance of their RLRP with the classical models. 
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L. Yun et al (2015), propose uncapacitated reliable facility location design model under 

imperfect information which means that customers do not have the information regarding the 

status of the facilities until reaching there (trial and error strategy). They consider  the 

disruption of facilities probabilistic. They formulate their model as an integer program and 

their objective is to minimize the expected cost. They use a lagrangean relaxation algorithm 

to solve their model. They test their model in the real-world data set derived by Daskin (1995). 

Their data sets consist of 49 nodes, 88nodes and 150 nodes which mostly nodes are 

representing different states in the US. 
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3. Chapter 3 

Methodology 

In this chapter, we give a brief explanation regarding Column Generation (CG) technique 

which is our solution methodology in the thesis for solving the Reliable 

Location/Allocation/Routing problem. CG is a decomposition technique mostly applied for 

large scale problems with enormous number of variables in comparison to the number of 

constraints. The decision of which variable should enter the basis and whether or not we 

reach to an optimal solution will be done through tackling the optimization problem instead 

of enumeration (Nemhauser, 2012). 

To our best knowledge, L. R. Ford and Fulkerson (1958) were the first people applied the 

notion of column generation in linear programming context (Nemhauser, 2012). Later, the 

linear programming columnwise was developed by Dantzig and Wolfe (1960) as a st rategy 

in solution process. However, for the first time, Gilmore and Gomory (1961, 1963) 

implemented CG as part of a heuristic in an actual problem (Lubbecke and Desrosiers, 2005).  
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3.1. Classical Column Generation 

One of the exact decomposition methods to solve large scale operations problems or NP-

hard problems is Column Generation (CG). Column Generations’ common strategy in 

solving Linear Programming (LP) and Integer Linear Programming (ILP) problems is to 

decompose the problem into Master and Pricing problem. The CG strategy for solving LP 

and ILP problems is almost the same with a slight difference, that is why we divide this 

section into two subsections.  First, an LP Master Problem (MP) was taken into account in 

Subsection later, in Subsection 3.1.2, an ILP MP was considered. 

Many different kinds of NP-hard problems have been defined in the operations research 

literature. These kinds of problems are usually impossible to solve at all or in specific 

optimization problems, impossible to solve within a certain/allowable amount of time. In 

these kinds of problems, we tackle the complicated constraints because they mostly cause 

the major setback while solving operations problems. They usually prevent us from reaching 

the solutions and best results in a timely manner.  In many cases, the best way to reformulate 

NP-hard problems is to ignore the complicated constraint/s and enlarge the feasible solutions. 

Then, the rest of the problem could be categorized in either known or unknown optimization 

problems. If the problem is well-known, their convex hall has already been defined and they 

can be introduced as a set of solutions (i.e., X). For the later one, feasible solution polytope 

convexity should be checked so that in the decomposition process, we are able to reformulate 

it as a convex combination of its extreme points. Then, we will reach the Master Problem of 

Column Generation as a result of replacing the solutions by their convex combination of the 
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extreme points. It also must be checked that the integrality of the solution is always held in 

the set of solution. 

3.1.1. Having an LP Master Problem 

Consider the following linear program as the Master Problem (MP): 

 𝑍𝑀𝑃
∗ = min ∑ 𝑐𝑘𝜆𝑘

𝑘∈𝐾

  (3.1) 

Subject to: 

 ∑ 𝑎𝑘𝜆𝑘

𝑘∈𝐾

≥ 𝑏  (3.2) 

 𝜆𝑘 ≥ 0 𝑘 ∈ 𝐾 (3.3) 

 

This is an LP problem and as mostly we are dealing with the huge number of 𝐾 (columns), 

it may make the computation of the problem either impossible or relatively hard (impractical). 

To tackle this issue column generation deals with a subset of variables (𝐾′) to reduce the 

costly operations rather than dealing with huge number of 𝐾 at once. Therefore, we solve the 

so called Restricted Master Problem (RMP) in CG as below: 

 𝑍𝑅𝑀𝑃
∗ = min ∑ 𝑐𝑘𝜆𝑘

𝑘∈𝐾

  (3.4) 
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Subject to: 

 ∑ 𝑎𝑘𝜆𝑘

𝑘∈𝐾′

≥ 𝑏  (3.5) 

 𝜆𝑘 ≥ 0 𝑘 ∈ 𝐾′ (3.6) 

 

The first columns by which we start optimizing the RMP, need to be explicitly defined. 

Since there is no variable in the RMP, in many cases, the initial solution will be either 

calculated by devising a big-M method and adding artificial variables with large cost in the 

objective function or implementing a heuristic. The main point that should be considered in 

creating an initial solution (column) is to start with a feasible solution for our RMP. In our 

case, we applied the first method. More variables and columns will be added when needed 

according to the CGs method that will be described later. 

A CG iteration consists of: 

1) Finding the optimal objective value (𝑍𝑅𝑀𝑃
∗ ) and dual multipliers (𝜋∗) associated 

with constraints (3.5) of the RMP, 

2) Finding the minimum reduced cost value as well as a new column (i.e., 

configuration) that may be added to the RMP in the next iteration in pricing 

problem which will be explained further. 

To answer the question that how the promising columns will be produced and how to be 

decided which one should be added to the RMP, the simplex method needs to be recalled 

briefly as the CG uses the same notion as the simplex method to do so. In the simplex method, 
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in every single iteration, we are looking for a non-basic variable with the highest cost (the 

most negative reduced cost) to enter the basis. Therefore, we easily calculate the reduced 

cost by implicit enumeration from the below equation: 

 𝑅𝐶̅̅ ̅̅
𝑘 = 𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑘 = 𝑐𝑘 − (𝜋∗)𝑡𝑎𝑘  (3.7) 

 

where 𝜋 is the dual optimal solution of the RMP in current iteration. Our goal is to fix a 

variable 𝑘 ∈ 𝐾\𝐾′ such that its reduced cost is the minimum negative one, so its associated 

column (i.e., 𝑎𝑘) to be added to the RMP. The whole minimization process will be done 

through the pricing problem as follows: 

 𝑅𝐶
∗

= 𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐶𝑜𝑠𝑡
∗

= 𝑚𝑖𝑛{𝑐(𝑎) − (𝜋∗)𝑡𝑎| 𝑎 ∈ 𝐴}  (3.8) 

 

Therefore, if there exists a 𝑅𝐶̅̅ ̅̅ ∗ < 0 , it promises that there is at least a column to be added 

to the current RMP associated with a new variable.  The new column (i.e., configuration)  

will be added to the RMP and next iteration will be started. As such, column generation 

process will be repeated till there exists no 𝑅𝐶̅̅ ̅̅ ∗ < 0. Hence, in case of non-existence of a 

negative reduced cost (i.e., all 𝑅𝐶̅̅ ̅̅ ∗ ≥ 0), there would be no improving criteria and we have 

reached the optimal solution (i.e., 𝑍𝑅𝑀𝑃
∗  which is equal to 𝑍𝑀𝑃

∗ ) in CG. When we reach the 

optimal condition (i.e., 𝑅𝐶̅̅ ̅̅ ∗ ≥ 0), it can be clearly observed that although we just add 

promising columns to our RMP, the optimal solution is equal to the case that we solve the 

MP with all its columns, simultaneously. However, in way less computational time. 
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3.1.2. Having an ILP Master Problem 

In this subsection, we describe only the dissimilarity that considering ILP master problem 

will impose to the CG technique that already was explained in the subsection 3.1.1.  

Consider the following ILP as the Master Problem (MP): 

 𝑍𝐼𝐿𝑃−𝑀𝑃
∗ = min ∑ 𝑐𝑘𝜆𝑘

𝑘∈𝐾

  (3.9) 

Subject to: 

 ∑ 𝑎𝑘𝜆𝑘

𝑘∈𝐾

≥ 𝑏  (3.10) 

 𝜆𝑘 ∈ {0, 1} 𝑘 ∈ 𝐾 (3.11) 

 

As the CG is a technique for solving the LP problems, in case of having ILP master 

problem, we need to relax the constraints (3.11) to make it LP as follows:  

 𝑍𝐿𝑃−𝑀𝑃
∗ = min ∑ 𝑐𝑘𝜆𝑘

𝑘∈𝐾

  (3.12) 

Subject to: 

 ∑ 𝑎𝑘𝜆𝑘

𝑘∈𝐾

≥ 𝑏  (3.13) 
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 0 ≤ 𝜆𝑘 ≤ 1 𝑘 ∈ 𝐾 (3.14) 

 

The aforementioned LP model is considered as a MP and the rest of the procedure is done 

step by step based on what is former explained in Subsection 3.1.1 till reaching the optimality 

condition as indicated in Figure 3.1. When we reach the optimal solution (i.e., 𝑍𝐿𝑃−𝑅𝑀𝑃
∗ =

𝑍𝐿𝑃−𝑀𝑃
∗ ), in order to get the integer solution, either the last RMP should be solved as an ILP 

or the branch and price approach should be applied. Selecting the former approach, it gives 

us the �̃�𝐼𝐿𝑃 which is: 

 �̃�𝐼𝐿𝑃 ≠ 𝑍𝐿𝑃−𝑀𝑃
∗ ≠ 𝑍𝐼𝐿𝑃−𝑀𝑃

∗   (3.15) 

and 

 𝑍𝐼𝐿𝑃−𝑀𝑃
∗ ≤ 𝑍𝐼𝐿𝑃−𝑀𝑃

∗ ≤ �̃�𝐼𝐿𝑃  (3.16) 

 

Where 𝑍𝐿𝑃−𝑀𝑃
∗  and 𝑍𝐼𝐿𝑃−𝑀𝑃

∗  are lower and upper bound for the optimal solution of the 

original ILP problem (i.e., 𝑍𝐼𝐿𝑃−𝑀𝑃
∗ ), respectively. 
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Figure 3.1: Column Generation Flowchart for ILP problem 
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4. Chapter 4 

Problem description and formulation 

In this chapter, we confine describe the investigated problem. Then, the proposed model 

formulations, regular compact model as well as column generation based model, are 

explained. 

4.1. Problem description 

In this thesis, we study Reliable Location/ Allocation/ Routing Problem in supply chain 

networks. Considering a network as indicated in Figure 4.1, consisting of nodes and links in 

which, nodes are representing either customers or facilities, and links are representing routes. 

More implicitly, each node is either a facility or a customer and links are the routes between 

the customers and facilities. 

We assume that the failure sets in the problem are (pre)defined according to the most 

probable and disruptive interdiction in the network. Each failure set includes a combination 

of failed routes and facilities or nodes and links, exclusively. We also assume that if a facility 
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is failed, it can be used as a joint node, while in case of a rout failure, it is not usable anymore 

and consequently that path will be unavailable completely. Because the investigated problem 

is a failure dependent one, decisions depend on the failure sets, in contrast to the situation in 

which back up facilities will be defined for each facility. Having facility and route failures 

into account, opening the maximum number of 𝑝 facilities among potential locations in 

addition to allocating customers to facilities such that customers’ demands are satisfied, are 

the challenging decisions in network design phase. Our main objective is to minimize all 

operational costs taking into account the worst case interdiction. The costs consist of the 

transportation cost, which is proportional to satisfied demand and distance, as well as the opening 

cost needed for building up of each facility. 

 

Figure 4.1: Example of the Network. 
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4.2. Problem formulation 

In this section, we explain how the problem is formulated. Two mathematical 

formulations are proposed. The first one is a mixed integer programming model which is 

named RLARP, and the second one is the column generation based formulation. In 

Subsection 4.2.1 the former is discussed in detail, first notations including parameters and 

variables are explained and then the definition of its objective function as well as its 

constraints are given. The latter is formulated based on Column Generation technique which 

is described in Subsection 4.2.2. 

4.2.1. Reliable Location/Allocation/Routing problem (RLARP) Model 

We propose this model for formulating the Reliable Location/Allocation/  Routing 

problem (RLARP) considering different failure sets. The objective is to minimize the cost of 

opening a potential facility location as well as transportation cost, having the worst failure 

case into account. The model provides the best locations, best assignment of customers to 

selected potential facility locations and the best routes between customers and facilities in 

the presence of possible failure sets. The aforementioned model is formulated as below: 

4.2.1.1. Notations 

To illustrate the notations, we will first describe those defined in the model as sets, next 

parameters and finally variables. 
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Sets: 

We consider a set of customers 𝑖 ∈ 𝐼, potential facility locations 𝑗 ∈ 𝐽 as well as failure 

sets 𝐹 ∈ ℱ. 

Parameters: 

𝑓𝑗 = fixed opening cost of facility location 𝑗. 

𝐷𝑖 = demand of customer 𝑖. 

𝑝 = maximum number of open facilities. 

𝑙𝑒𝑛𝑔𝑡ℎℓ = length of link ℓ. 

Variables: 

𝑔𝑗 ∈ {0, 1} such that 𝑔𝑗 = 1 if the facility 𝑗 is open and 0 otherwise. 

𝑥𝑖𝑗
𝐹  ∈ {0, 1} to identify the customer 𝑖 that is assigned to facility location 𝑗. 

𝒴𝑖ℓ𝑗
𝐹 ∈ {0, 1} to identify the links which are used from a user 𝑖 to facility location 𝑗. 

𝑑𝑖𝑗
𝐹 = demand of 𝑖 that is satisfied by a facility located in 𝑗. 

COST𝑗 = max
𝐹∈ℱ

∑ ∑ 𝑑𝑖𝑗
𝐹 𝒴𝑖ℓ𝑗

𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ

ℓ∈𝐿𝑖∈𝐼

 the cost which is proportional to the distance 𝒴𝑖ℓ𝑗
𝐹   

and the satisfied demand 𝑑𝑖𝑗
𝐹 . 

𝑚𝑖ℓ𝑗
𝐹 = 𝑑𝑖𝑗

𝐹 𝒴𝑖ℓ𝑗
𝐹  used for the linearization. 
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4.2.1.2. Objective 

The objective function of our model is as follows: 

 min          ∑ COST𝑗

𝑗∈𝐽

+ ∑ 𝑓𝑗𝑔𝑗

𝑗∈𝐽

  (4.1) 

 

where COST𝑗 is the cost of satisfying the demand of those customers served by facility 𝑗 

under the worst failure case which is calculated by constraint (4.2).  

 COST𝑗 = max
𝐹∈ℱ

∑ ∑ 𝑑𝑖𝑗
𝐹 𝑦𝑖ℓ𝑗

𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ

 ℓ∈𝐿𝑖∈𝐼

 𝑗 ∈ 𝐽 (4.2) 

 

The second part of the objective function, 𝑓𝑗𝑔𝑗, takes care of computing opening cost of 

each potential facility location 𝑗. Therefore, it can be said that our model reaches a more 

reliable network by minimizing the maximum cost. 

4.2.1.3. Constraints 

Constraints of the Compact Model are written as follows: 

 𝑥𝑖𝑗
𝐹 ≤ 𝑔𝑗 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.3) 
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 𝑑𝑖𝑗
𝐹 ≤ 𝐷𝑖𝑥𝑖𝑗

𝐹  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.4) 

 ∑ 𝑔𝑗

𝑗∈𝐽

≤ 𝑝  (4.5) 

 ∑ 𝑦𝑖ℓ𝑗
𝐹

𝑙∈𝜔+(𝑣)\𝐹

= ∑ 𝑦𝑖ℓ𝑗
𝐹

𝑙∈𝜔−(𝑣)\𝐹

 𝑣 ∈ 𝑉\{𝑖, 𝑗}, 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.6) 

 ∑ 𝑦𝑖ℓ𝑗
𝐹

𝑙∈𝜔+(𝑖)\𝐹

= ∑ 𝑦𝑖ℓ𝑗
𝐹

𝑙∈𝜔−(𝑗)\𝐹

= 𝑥𝑖𝑗
𝐹  𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.7) 

 𝐶𝑂𝑆𝑇𝑗 ≥ ∑ ∑ 𝑑𝑖𝑗
𝐹 𝑦𝑖ℓ𝑗

𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ

 ℓ∈𝐿𝑖∈𝐼

 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.8) 

 𝑔𝑗 ∈ {0, 1} 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (4.9) 

 𝑥𝑖𝑗
𝐹 ∈ {0, 1} 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.10) 

 𝑦𝑖ℓ𝑗
𝐹 ∈ {0, 1} 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.11) 

 𝑑𝑖𝑗
𝐹 ≥ 0 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.12) 

 COST𝑗 ≥ 0  𝑗 ∈ 𝐽 (4.13) 

 

Constraints (4.3) ensures customers will be covered just by open facilities. Constraints 

(4.4) make sure that either a portion or whole demand of customer 𝑖’s demand may be 

fulfilled by facility 𝑗 only if it is assigned to that facility under failure 𝐹. The customers’ 
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demand can be satisfied by either one facility or several facilities as there is no constraints 

restricting that. Constraints (4.6) and (4.7) take care of the flow constraints (i.e., routing) 

between user 𝑖  and location 𝑗 , under the assumption that user 𝑖  is assigned to a facility 

located in 𝑗 , under failure 𝐹 . Constraints (4.8) takes care of computing the maximum 

transportaion cost which is proportional to satisfied demand as well as distance for facility 𝑗 

over all failure sets or in another word worst failure cost. Constraints (4.09), (4.10), (4.11), 

(4.12), and (4.13) define the domains of the variables. 

As we defined the COST𝑗  demonstrated at (4.2) in the most realistic way which is 

proportional to the distance and the satisfied demand, it makes constraint (4.8) a non-linear 

function.  As the non-linearized term is made from one continuous variable and one binary 

variable, it can be easily linearized by adding variables 𝑚𝑖ℓ𝑗
𝐹 ≥ 0: 

 𝑚𝑖ℓ𝑗
𝐹 ≤ 𝑦𝑖ℓ𝑗

𝐹 𝐷𝑖  (4.14) 

 𝑚𝑖ℓ𝑗
𝐹 ≤ 𝑑𝑖𝑗

𝐹   (4.15) 

 𝑚𝑖ℓ𝑗
𝐹 ≥ 𝑑𝑖𝑗

𝐹 + 𝐷𝑖(𝑦𝑖ℓ𝑗
𝐹 − 1)  (4.16) 

 

As a result of this linearization there would be some changes in the constraints of the 

model which are applied below: 

 𝑥𝑖𝑗
𝐹 ≤ 𝑔𝑗 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.17) 
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 𝑑𝑖𝑗
𝐹 ≤ 𝐷𝑖𝑥𝑖𝑗

𝐹  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.18) 

 ∑ 𝑔𝑗

𝑗∈𝐽

≤ 𝑝  (4.19) 

 ∑ 𝑦𝑖ℓ𝑗
𝐹

𝑙∈𝜔+(𝑣)\𝐹

= ∑ 𝑦𝑖ℓ𝑗
𝐹

𝑙∈𝜔−(𝑣)\𝐹

 𝑣 ∈ 𝑉\{𝑖, 𝑗}, 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.20) 

 ∑ 𝑦𝑖ℓ𝑗
𝐹

𝑙∈𝜔+(𝑖)\𝐹

= ∑ 𝑦𝑖ℓ𝑗
𝐹

𝑙∈𝜔−(𝑗)\𝐹

= 𝑥𝑖𝑗
𝐹  𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.21) 

 𝐶𝑂𝑆𝑇𝑗 ≥ ∑ ∑ 𝑚𝑖ℓ𝑗
𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ

 ℓ∈𝐿𝑖∈𝐼

 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.22) 

 𝑚𝑖ℓ𝑗
𝐹 ≤ 𝑦𝑖ℓ𝑗

𝐹 𝐷𝑖 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.23) 

 𝑚𝑖ℓ𝑗
𝐹 ≤ 𝑑𝑖𝑗

𝐹  𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.24) 

 𝑚𝑖ℓ𝑗
𝐹 ≥ 𝑑𝑖𝑗

𝐹 + 𝐷𝑖(𝑦𝑖ℓ𝑗
𝐹 − 1) 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.25) 

 𝑔𝑗 ∈ {0, 1} 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (4.26) 

 𝑥𝑖𝑗
𝐹 ∈ {0, 1} 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.27) 

 𝑦𝑖ℓ𝑗
𝐹 ∈ {0, 1} 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.28) 

 𝑑𝑖𝑗
𝐹 ≥ 0 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.29) 
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 COST𝑗 ≥ 0  𝑗 ∈ 𝐽 (4.30) 

 𝑚𝑖ℓ𝑗
𝐹 ≥ 0 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝑗 ∈ 𝐽, 𝐹 ∈ ℱ (4.31) 

 

All constraints are the same as what we already explained except for constraints (4.23), 

(4.24) and (4.25) added to the model to take care of linearization of constraint (4.8). Also, 

constraint (4.31) define the domain of set of variables added to the model for linearization. 

4.2.2. Column Generation Model 

In this section the modified Column Generation (CG) technique which we name Parallel 

CG (P-CG) used for reformulating our RLARP. What makes the P-CG different from 

classical CG, already explained in Chapter 3, is that it solves a set of pricing problem (PP) 

in each iteration rather than one, which improves performance of P-CG considerably. To 

recall, CG based models require two sets of models, master problem (MP) and Pricing 

Problem (PP). The former is responsible for selecting the configurations such that the cost 

of location, allocation as well as fixed opening cost of facilities  are minimized. While the 

latter is in charge of producing the configurations (i.e., columns) to be added to the Restricted 

Master Problem (RMP), to speed up reaching the optimality. 

In the first place the RMP starts by an initial column. In our case a dummy column plays 

a role as an initial column in the RMP. Each time the RMP is solved, a set of dual variables 

will be generated and transferred to the pricing problem to build up reduced cost as shown 

in Figure 4.2. Then the PP uses those dual variables to generate a configuration for each 
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potential facility location 𝑗. It also defines the assignment of customers to facility 𝑗 under 

failure 𝐹 in a way to facilitate reaching to a better solution for the RMP. After the qualified 

configurations (i.e., new columns with negative reduced cost) are added to the RMP, the 

RMP will be solved. This loop will continue until achieving an optimality condition which  

in our case is having a non-negative reduced cost (i.e., all 𝑅𝐶̅̅ ̅̅
𝑗
∗ ≥ 0). 

The proposed model, RLARP and CG based Model, have a significantly different 

performance which will be discussed in Chapter 5. As in Column Generation technique 

configuration is used the notations and parameters definition will become different from 

RLARP. 
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Figure 4.2: Column Generation Flowchart for RFLRP 

The remainder of this Subsection would be as follows. First master problem including its 

notations, objective function and constraints is explained and then the same subjects are 

described for Pricing Problem in the same sequence. 
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4.2.2.1. Master Problem 

The master problem aims to give us the most reliable network such that by selecting the 

best configurations, the cost is minimized. 

4.2.2.1.1. Notations 

Sets: 

Let Γ𝑗  be the set of configurations with respect to potential facility location 𝑗 . 

Configuration 𝛾 ∈ Γ𝑗 is defined by a set of customers assigned to a facility located in 𝑗 subject 

to failure 𝐹, for all 𝐹 ∈ ℱ. Let 

Γ = ⋃ 𝛤𝑗

𝑗∈𝐽

  

It is characterized by: 

𝑑𝑖
𝐹,𝛾

= demand of 𝑖 that is satisfied by a facility located in 𝑗 when failure 𝐹 occurs. 

Parameters: 

The rest of parameters in the master problem are as follows: 

𝑓𝑗 = fixed opening cost of facility location 𝑗. 

𝐷𝑖 = demand of customer 𝑖. 

𝑝 = number of open facilities. 
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𝒴𝑖ℓ
𝐹,𝛾

= the links in configuration 𝛾 which are used from a user 𝑖 to facility location 𝑗 

when failure 𝐹 occurs. 

Variables: 

The model requires two sets of decision variables: 

𝑧𝛾 ∈ {0, 1} such that 𝑧𝛾 = 1 if configuration 𝛾 is selected. 

𝑔𝑗 ∈ {0, 1} such that 𝑔𝑗 = 1 if the facility 𝑗 is open and 0 otherwise. 

4.2.2.1.2. Objective 

The objective consists in minimizing the cost of the selected configurations and fixed 

opening cost: 

 min          ∑ COST𝛾𝑧𝛾

𝛾∈Γ

+ ∑ 𝑓𝑗𝑔𝑗

𝑗∈𝐽

  (4.32) 

 

where 

 COST𝛾 = max
𝐹∈ℱ

∑ 𝑑𝑖𝑗
𝐹,𝛾

∑ 𝑦𝑖ℓ
𝐹,𝛾

𝑙𝑒𝑛𝑔𝑡ℎℓ

 ℓ∈𝐿𝑖∈𝐼

  (4.33) 

 

The cost is the expense of each configuration 𝛾 which is calculated in the pricing problem. 

It determines the demand weighted distance under worst failure case.  
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4.2.2.1.3. Constraints 

Constraints of the master problem are as follows: 

 ∑ 𝑧𝛾

𝛾∈Γ𝑗

= 𝑔𝑗 𝑗 ∈ 𝐽 (4.34) 

 ∑ 𝑑𝑖
𝐹,𝛾

𝑧𝛾

𝛾∈Γ

≥ 𝐷𝑖 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.35) 

 ∑ 𝑧𝛾

𝛾∈Γ

≤ 𝑝  (4.36) 

 0 ≤ 𝑧𝛾 ≤ 1 𝛾 ∈ Γ (4.37) 

 0 ≤ 𝑔𝑗 ≤ 1 𝑗 ∈ 𝐽 (4.38) 

Constraints (4.34) select at most one configuration per potential facility location just in 

the case that the facility 𝑗 is opened. Constraints (4.35) are demand constraints, which need 

to be fulfilled for any potential failure 𝐹 ∈ ℱ. Constraint (4.36) ensures that no more than 𝑝 

facilities are opened, at any time. 

4.2.2.2. Pricing Problem 

It is worth mentioning that pricing problem (PP) produces promising configurations to be 

added to restricted master problem (RMP) to accelerate reaching the optimal solution. Our 

PP is written for each potential facility location 𝑗. Each configuration will define the assigned 

customers to facility 𝑗, the amount of customers’ demand that is satisfied by facility 𝑗 and 



 

37 
 

the the route from customer 𝑖  to facility 𝑗  under failure 𝐹 . We now express the pricing 

problem associated with a configuration  𝛾 ∈ Γ𝑗, i.e., for a given facility location 𝑗. In order 

to alleviate the notations, indices 𝛾 and 𝑗 will be omitted in the sequel of this section. 

4.2.2.2.1. Notations 

Parameters: 

Let 𝑢𝑗
(4.34)  be unrestricted, 𝑢𝑖,𝐹

(4.35)
≥ 0  and 𝑢(4.36) ≥ 0  the values of the dual variables 

associated with constraints (4.34), (4.35) and (4.36) of the RMP, respectively. 

𝑙𝑒𝑛𝑔𝑡ℎℓ = demonstrates the length of each link ℓ ∈ 𝐿. 

Variables: 

𝑥𝑖
𝐹 ∈ {0, 1}, to identify the customer 𝑖 that are assigned to facility location 𝑗 when failure 

𝐹 occurs. 

𝒴𝑖ℓ
𝐹 ∈ {0, 1} to identify the links which are used from a user 𝑖 to facility location 𝑗. 

𝑑𝑖
𝐹 = demand of 𝑖 that is satisfied by a facility located in 𝑗 when failure 𝐹 occurs. 

COST = max
𝐹∈ℱ

∑ 𝑑𝑖
𝐹 ∑ 𝒴𝑖ℓ

𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ

ℓ∈𝐿𝑖∈𝐼

 the cost which is proportional to the distance 

𝒴𝑖ℓ
𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ and the satisfied demand 𝑑𝑖

𝐹 in the worst failure case. 
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4.2.2.2.2. Objective 

The objective is to minimize the reduced cost which is denoted by 𝑅𝐶̅̅ ̅̅
𝑗 in (4.39). To recall, 

in simplex method always the variable with the minimum reduced cost enters the basis in 

order to maximize the improvement of the objective function in each step, that is the logic 

behind having the reduced cost as the objective function of pricing problem.  

 [PP𝑗]                    min             𝑅𝐶̅̅ ̅̅
𝑗   (4.39) 

 

where 

 𝑅𝐶̅̅ ̅̅
𝑗 = COST − 𝑢𝑗

(4.34)
− ∑ ∑ 𝑑𝑖

𝐹𝑢𝑖,𝐹
(4.35)

+ 𝑢
(4.36)

𝐹∈ℱ𝑖∈𝐼

  (4.40) 

 

4.2.2.2.3. Constraints 

 𝑑𝑖
𝐹 ≤ 𝐷𝑖𝑥𝑖

𝐹  𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.41) 

 ∑ 𝑦𝑖ℓ
𝐹

𝑙∈𝜔+(𝑣)\𝐹

= ∑ 𝑦𝑖ℓ
𝐹

𝑙∈𝜔−(𝑣)\𝐹

 𝑣 ∈ 𝑉\{𝑖, 𝑗}, 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.42) 

 ∑ 𝑦𝑖ℓ
𝐹

𝑙∈𝜔+(𝑖)\𝐹

= ∑ 𝑦𝑖ℓ
𝐹

𝑙∈𝜔−(𝑗)\𝐹

= 𝑥𝑖
𝐹 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.43) 
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 COST ≥ ∑ 𝑑𝑖
𝐹 ∑ 𝑦𝑖ℓ

𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ

 ℓ∈𝐿𝑖∈𝐼

 𝐹 ∈ ℱ (4.44) 

 𝑥𝑖
𝐹 ∈ {0, 1} 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ\{𝑗} (4.45) 

 𝑦𝑖ℓ
𝐹 ∈ {0, 1} 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝐹 ∈ ℱ (4.46) 

 𝑑𝑖
𝐹 ≥ 0 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.47) 

 COST ≥ 0 𝐹 ∈ ℱ (4.48) 

 

Constraints (4.41) make the amount of 𝑑𝑖
𝐹 dependent to the condition that whether or not 

the customer 𝑖 is assigned to facility 𝑗. Constraints (4.42) and (4.43) take care of the flow 

constraints (i.e., routing) between user 𝑖 and location 𝑗, under the assumption that user 𝑖 is 

assigned to a facility located in 𝑗, under failure 𝐹. Constraints (4.45), (4.46), (4.47) and (4.48) 

define the domains of the variables. 

4.2.2.3. Linearized form of Pricing Problem 

As the cost is a non-linear function, 

 COST = max
 𝐹∈ℱ

∑ 𝑑𝑖
𝐹 ∑ 𝑦𝑖ℓ

𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ

 ℓ∈𝐿𝑖∈𝐼

  (4.49) 
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It makes the reduced cost a nonlinear function that can be easily linearized, using 

variables 𝑚𝑖ℓ
𝐹 ≥ 0: 

 𝑚𝑖ℓ
𝐹 ≤ 𝑦𝑖ℓ

𝐹 𝐷𝑖  (4.50) 

 𝑚𝑖ℓ
𝐹 ≤ 𝑑𝑖

𝐹  (4.51) 

 𝑚𝑖ℓ
𝐹 ≥ 𝑑𝑖

𝐹 + 𝐷𝑖(𝑦𝑖ℓ
𝐹 − 1)  (4.52) 

 

As a result of this linearization there would be some changes in the constraints of the 

pricing problem which are applied below: 

 𝑑𝑖
𝐹 ≤ 𝐷𝑖𝑥𝑖

𝐹  𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.53) 

 ∑ 𝑦𝑖ℓ
𝐹

𝑙∈𝜔+(𝑣)\𝐹

= ∑ 𝑦𝑖ℓ
𝐹

𝑙∈𝜔−(𝑣)\𝐹

 𝑣 ∈ 𝑉\{𝑖, 𝑗}, 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.54) 

 ∑ 𝑦𝑖ℓ
𝐹

𝑙∈𝜔+(𝑖)\𝐹

= ∑ 𝑦𝑖ℓ
𝐹

𝑙∈𝜔−(𝑗)\𝐹

= 𝑥𝑖
𝐹 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.55) 

 COST ≥ ∑ ∑ 𝑚𝑖ℓ
𝐹 𝑙𝑒𝑛𝑔𝑡ℎℓ

 ℓ∈𝐿𝑖∈𝐼

 𝐹 ∈ ℱ (4.56) 

 𝑚𝑖ℓ
𝐹 ≤ 𝑦𝑖ℓ

𝐹 𝐷𝑖 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝐹 ∈ ℱ (4.57) 

 𝑚𝑖ℓ
𝐹 ≤ 𝑑𝑖

𝐹 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝐹 ∈ ℱ (4.58) 
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 𝑚𝑖ℓ
𝐹 ≥ 𝑑𝑖

𝐹 + 𝐷𝑖(𝑦𝑖ℓ
𝐹 − 1) 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝐹 ∈ ℱ (4.59) 

 𝑥𝑖
𝐹 ∈ {0, 1} 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ\{𝑗} (4.60) 

 𝑦𝑖ℓ
𝐹 ∈ {0, 1} 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝐹 ∈ ℱ (4.61) 

 𝑑𝑖
𝐹 ≥ 0 𝑖 ∈ 𝐼, 𝐹 ∈ ℱ (4.62) 

 COST ≥ 0  (4.63) 

 𝑚𝑖ℓ
𝐹 ≥ 0 𝑖 ∈ 𝐼, ℓ ∈ 𝐿\𝐹, 𝐹 ∈ ℱ (4.64) 

 

Here we explain the constraints which are different from those that we have already 

explained in 4.2.2.2. Constraints (4.57), (4.58) and (4.59) take care of the linearization while 

(4.63) and (4.64) define the domains of the variables. 
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5. Chapter 5 

Computational Results 

In this chapter, we are going to first explain the data set which is used in the thesis to 

validate the RLARP and the column generation based model already introduced in Chapter 

4. Then, the aim is to compare the performance of the two formulations to see how beneficial 

is to use column generation technique. To do so, a general optimization solver CPLEX is 

used for solving the model with a computer having a following feature: Core i7 Q740 @ 1.73 

GHZ 1.73 GHz Processor, 4 GB RAM and 64-bit Operating System, x64-based processor. 

5.1. Data Set 

The data set used in the thesis is generated based on the notion of the data found in Daskin 

(1995) as well as Snyder and Daskin (2005). Their data set consists of 49 nodes, which the 

nodes indicate the 49 populous cities in the United State based on the information derived 

from 1990 Population and Housing Census.  In addition, we generate different sets of data 
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and test our model with them to provide us with fairly enough information to be able to 

analyse the performance of the model and solution strategy described in Chapter 4. 

Random networks were generated with 16, 19, 21, 26, and 38 nodes which present the 

location of either potential facility locations or customers. To build a network, we connected 

each node to its 2 to 5 closest nodes. The number of respective links of the nodes are 66, 74, 

80, 102, and 139. The length of each link (𝑙𝑒𝑛𝑔𝑡ℎℓ) which represents the distance between 

its source and destination node is generated in the interval of [10,40]. Also, the demand of 

each customer (𝐷𝑖) is generated in the interval of [30 − 100]. 

The fixed opening cost of each potential facility location depends on some factors such 

as price of the land, required area, facilities to be installed in the location, and cost of 

buildings. They are, accordingly, generated randomly in the interval of [10000-17000]. The 

maximum number of potential facility locations that can be opened (𝑝) is taken into account 

3. For the computational results, we consider three independent failure sets. Each set consists 

of multiple link failures. It is worth mentioning that our model is capable of considering 

facility, customer and link failures either simultaneously in one failure set or independently 

in different failure sets. We provide the data set associated with 16 nodes-66 links and 38 

nodes-139 links in Figure 5.1and Table 5.1, respectively. 

 

Table 5.1: Failure Sets 

Failure Sets Node Names 

Failure 1 2 3 14 17 18 29 31 33 7 22 

Failure 2 2 3 7 8 17 18 22 23 34 35 

Failure 3 10 14 25 29 39 43 49 51 22 7 
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Table 5.2: Cost of Building Facilities 

Facilities Fixed Opening Cost 

3 16610 

4 15040 

9 17000 

19 15220 

20 16471 

21 15792 

 

Table 5.3: Customer's Demand 

Customer Demand 
1 50 

2 53 

5 65 

6 92 

7 77 

8 59 

10 30 

11 40 

12 50 

13 60 

14 70 

15 80 

16 90 

17 31 

18 40 

22 88 

23 52 

24 56 

25 85 

26 41 

27 100 

28 67 

29 57 

30 43 

31 47 

32 59 
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33 48 

34 79 

35 100 

36 69 

37 95 

38 82 

 

 

Table 5.4: Link connections and distances between customers 

Start End Distance  Start End Distance  Start End Distance 
1 2 27.75  10 13 21.09  21 22 14.87 

1 4 33.49  10 16 13.52  22 9 17.65 

1 7 23.19  10 24 17.83  22 21 14.87 

1 11 27.75  11 1 27.75  22 23 16.04 

2 1 27.75  11 2 33.49  23 13 30.25 

2 3 22.62  11 3 23.19  23 22 16.04 

2 4 23.78  11 12 27.75  23 24 30.84 

2 11 33.49  11 14 16.11  24 10 17.83 

3 2 22.62  11 26 20.74  24 16 30.27 

3 5 28.34  12 7 28.34  24 23 30.84 

3 6 31.78  12 11 27.75  25 12 20.45 

3 9 13.52  12 16 21.09  25 16 33.97 

3 11 23.19  12 25 20.45  26 11 20.74 

3 14 21.09  13 9 31.55  26 14 26.98 

4 1 33.49  13 10 21.09  26 28 15.72 

4 2 23.78  13 23 30.25  27 14 13.82 

4 6 30.21  14 3 21.09  27 28 27.65 

4 7 14.84  14 11 16.11  28 26 15.72 

4 8 12.95  14 15 33.53  28 27 27.65 

5 3 28.34  14 17 23.84  28 29 33.43 

5 6 31.55  14 26 26.98  29 17 14.5 

5 9 21.09  14 27 13.82  29 28 33.43 

6 3 31.78  15 9 14.33  29 30 26.12 

6 4 30.21  15 14 33.53  29 38 28.47 

6 5 31.55  15 18 29.14  30 29 26.12 

6 8 16.11  16 7 15.73  30 31 24.47 

7 1 23.19  16 10 13.52  30 34 27.89 

7 4 14.84  16 12 21.09  31 30 24.47 

7 8 32.77  16 24 30.27  31 33 16.12 

7 10 33.53  16 25 33.97  31 38 16.39 

7 12 28.34  17 14 32.84  32 33 33.62 
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7 16 15.73  17 18 24.62  32 34 24.75 

8 4 12.95  17 29 14.5  33 18 22.3 

8 6 16.11  18 15 29.14  33 31 16.12 

8 7 32.77  18 17 24.62  33 32 33.62 

8 9 14.33  18 19 28.24  34 30 27.89 

8 10 15.73  18 20 19.85  34 32 24.75 

9 3 13.52  18 33 22.3  34 37 31.51 

9 5 21.09  18 36 32.94  35 37 28.85 

9 8 14.33  19 18 28.24  36 18 32.94 

9 10 23.06  19 20 31.67  36 20 23.01 

9 13 31.55  19 21 13.31  37 34 31.51 

9 15 14.33  20 18 19.85  37 35 28.85 

9 22 17.65  20 19 31.67  38 29 28.47 

10 7 33.53  20 36 23.01  38 31 16.39 

10 8 15.73  21 19 13.31  38 40 15.96 

10 9 23.06         
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Figure 5.1: 16 Nodes-66 Links Network. 
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5.2. Result 

In this section, we present our computational results for the proposed model and its 

reformulation, RLARP and Column Generation (CG), in Chapter 4. The models are solved 

with data sets which are different from each other in terms of at least one of the following 

criteria: number of nodes (𝑛), links (𝑙), facilities, and customers. In what follows, for each 

model, in addition to demonstrating the computational results, some analytical and 

complexity analysis are proposed. At the end, in 5.2.3 we investigate the differences in the 

performance of the RLARP model and CG based formulation. 

5.2.1. Results of RLARP Model 

To recall, the RLARP seeks the optimal location of facilities, allocation of customers to 

them as well as the routes between them while minimizing the worst failure case cost along 

with fixed opening cost of facilities. We solve our model for different networks as it can be 

seen in the Table 5.5 and Table 5.7 from smaller network to the bigger one. In this section 

the computational results corresponding to the RLARP model (i.e., Uncapacitated RLARP 

model), described in Chapter 4, and Capacitated RLARP model are provided. Besides, the 

comparison of the aforementioned models is explained, eventually. 

5.2.1.1. Result of Uncapacitated RLARP Model 

For each network, we consider two different size of potential facilities, 4 and 6 to see 

how the model performs while increasing the number of facilities and keeping the size of the 
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network as it is. Also, it should be mentioned that a node is considered either a facility or 

customer and no capacity constraints are taken into accounts for facilities. As it is 

demonstrated in Table 5.5, when the size of the network grows the computational time is 

increased exponentially as well, for both cases of 4 and 6 potential facilities. Therefore, the 

observed increase in computational time is attributed to the hike in number of nodes and 

links. 

Table 5.5: Results for Uncapacitated RLARP Model. 

 

5.2.1.1.1. 4 vs. 6 Potential Facilities 

To better understand the impact of decreasing the number of potential facilities in an 

identical network, Figure 5.2 is used to demonstrate the performance of the model. It can be 

observed that, in general, the computational time for the case of having 4 potential facilities 

is less than the 6 potential facilities. Considering the observations, one possible explanation 

for such a trend is that in case of considering the unlimited capacity, number of facilities 
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have brought more difficulties for solving the model than the number of customers in the 

same network. 

 

Figure 5.2: Performance Comparison of 4 VS. 6 Potential Facilities in Uncapacitated RLARP Model. 

5.2.1.1.2. Experimental Complexity Analysis 

We present a brief experimental complexity analysis for the 21 nodes-80 links network 

as CPLEX cannot reach the solution after 3,804.15 seconds for this specific instance. To do 

so, we fix the gap to 30%, 20% and 10% and solve the uncapacitated RLARP model, 

accordingly. As it can be observed in Table 5.6 in terms of CPU time reaching the solution 

in the case of considering 10% gap is way more time consuming than either 30% or 20%. 

However, in all three gaps we get the same solution regarding the selection of facilities. 
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Therefore, it is high probable to say that even by considering 30% gap, we may reach the 

optimal solution in a timely manner. 

Table 5.6: Uncapacitated RLARP Model Experimental Complexity Analysis for 21 nodes-80 links 

 

5.2.1.2. Result of Capacitated RLARP Model 

In this part, first we explain what changes are made to our uncapacitated RLARP model 

to create a capacitated version of it. Then proposed the results in Table 5.7. Later, we argue 

how the network size as well as number of potential facilities have an impact on the 

computational time. Finally, a complexity analysis of the model is discussed. 

To analyze how adding capacity constraints will have an effect on the performance of the 

RLARP model, we add the following constraint to the model, already explained in Section 

4.2.1 as below: 

 

We calculate a specific capacity for each facility (𝑄𝑗) in order not to let one facility to 

give an unlimited service to all customers while others are idle. To balance the amount of 

services given to the customers among facilities, the capacity associated with each of them 

is generated in the interval of [2�̅� − 2.3�̅�], where �̅� can be explained as an average demand 

and is calculated as follows: 
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Table 5.7: Results for Capacitated RLARP Model. 

 

 

In Table 5.7 the results associated with capacitated version of RLARP model is 

demonstrated. We solve the model for the same data sets which are used for uncapacitated 

RLARP model to be able to compare their performance later in 5.2.1.3. It can be observed in 

Table 5.7, when the network enlarges in terms of nodes and links the computational time 

raises. Except for the case of having 11 nodes-44 links, for the rest of instances the program 

could not reach the optimal solution. To clarify more, for the instance of 16 nodes-66 links 

even after running the program for 3 days we do not get a better solution than 5% gap. 

Therefore, to be able to compare their performance, we fix the gap to 5% for the instances 

that could not reach to the optimal solution either in a timely manner or due to the RAM 

limitations. The possible explanation for such results is that considering the capacity 
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constraints makes the problem more complicated (i.e., increase the complexity of the 

problem) to be solved. 

 

Figure 5.3: Comparison of 4 vs. 6 Potential Facilities in Capacitated RLARP Model.  

5.2.1.2.1. 4 vs. 6 Potential Facilities 

To compare having 6 potential facilities with 4, as it can be seen in Figure 5.3, unlike 

Uncapacitated RLARP, solving the network with 6 potential facilities is less time consuming 

than solving the problem for the same network with considering 4 potential facilities. A 

probable explanation for this might be that when considering the capacity for the network 

with the same number of nodes and links, the more customers means the more complexity. 

To clarify it more, when considering 4 potential facilities, the number of customers are two 
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more than the time of having 6 potential facilities. Thus, satisfying the demand of 2 more 

customers while taking care of capacity limitations seems to be likely the reason behind such 

a discrepancy. Therefore, we conclude that raising the number of potential facilities, which 

result in decreasing the number of customers, for the identical network lessen the 

computational time. 

5.2.1.2.1. Experimental Complexity Analysis 

In capacitated RLARP model, for the instances larger than 11 nodes-44 links, CPLEX 

cannot reach the optimal solution as indicated in Table 5.7. Therefore, we propose an 

experimental complexity analysis considering 30%, 20%, and 5% gap for the two instance 

of 13 nodes-52 links and 16 nodes-88 links.  As indicated in Table 5.8 and Table 5.9, solving 

the model with 5% gap is far more time taking than considering 20% and 30% gap. Also, as 

with different gaps we are getting different solutions, there is not enough ground to state that 

whether or not the final solution is the optimal one. However, there could be a possibility to 

reach optimal solution in 5% gap. In many cases, it was observed that 𝐿𝑃∗ was changing, 

while having no changes in the amount of 𝐼𝐿�̃�. Besides, the 𝐼𝐿�̃� is a feasible solution for the 

RLARP model. Hence, there is a chance of having the same optimal solution as the 𝐼𝐿�̃� over 

a range of experiments. 

Table 5.8: Capacitated RLARP Model Experimental Complexity Analysis for 13 nodes-52 links 
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Table 5.9: Capacitated RLARP Model Experimental Complexity Analysis for 16 nodes-88 links 

 

5.2.1.3. Uncapacitated vs. Capacitated 

In this part, we want to analyse the performance of the RLARP model with and without 

the presence of the capacity constraints. To do so, we use Figure 5.4 and Figure 5.5 which 

the former belongs to the case of having 6 potential facilities and the latter is for 4 potential 

facilities. 

 

Figure 5.4: Performance Comparison of Capacitated vs. Uncapacitated Considering 6 Potential  Facilities in 
RLARP Model. 
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Both graphs show that there has been a sharp rise for capacitated RLARP model when 

enlarging the network more than 13 nodes-52 links, while uncapacitade RLARP model has 

a steady increase. Also, it can be observed that in both cases the ucapacitated RLARP model 

reaches the solution in a way less computational time especially for larger instances than 13 

nodes. 

 

Figure 5.5: Performance Comparison of Capacitated vs. Uncapacitated Considering 4 Potential  Facilities in 
RLARP Model. 

5.2.2. Result of CG based model 

To have a recall, CG models consists of two sets of problem, master problem and pricing 

problem. As it was explained before in Chapter 4, in each iteration the restricted master 

problem and a set of pricing problems (i.e., one per facility location) are solved as we used 
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a parallel CG strategy. It should be mentioned that in CG model  which is the reformulation 

of the RLARP model by CG technique, we consider the same assumptions as RLARP model 

which in this chapter is named Uncapacitated RLARP. Therefore, in CG model we do not 

take into account the capacity constraint for each potential facility. It is worth mentioning 

that we programme the CG approach in JAVA and use CPLEX as the popular optimization 

solver. 

To be able to evaluate the CG model which is our main contribution in the thesis, we 

solve it with different data sets from 11 nodes-44 links to 38 nodes-139 links as indicated in 

Table 5.3. In addition, for each network we consider 4 and 6 potential facil ities to be able to 

later analyse the effect of such a change in the performance of the model. 
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Table 5.10: Results for CG based Model. 

  

Looking at the table, it can be clearly observed that, by increasing the size of the network 

(i.e., number of nodes and links) the computational time raises for both cases of 4 and 6 

potential facilities. As a result, we conclude that the size of the network has a direct impact 

on the computational time and increasing it results in the hike of computational time. 
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5.2.2.1. 4 vs. 6 Potential Facilities 

Here we want to figure out how the number of potential facilities have an impact on the 

performance of the model. To do so, Figure 5.6 indicates the computational time trend for 

the case of having 4 and 6 potential facilities independently. As it can be clearly observed, 

the computational time in case of considering 4 potential facilities is less than 6 potential 

facilities which is the same as what was observed in Uncapacitated RLARP model. Therefore, 

one possible explanation behind such a behaviour is that in the CG model for each potential 

facility we need to solve one more pricing problem in each iteration. By taking into account 

that in our problem solving one PP is more time consuming than solving a RMP, it justifies 

why increasing the number of potential facilities (6 potential facilities-10 customers) for an 

identical network (16 nodes-66 links) has raised the computational time more than increasing 

the number of customers (4 potential facilities-12 customers). For instance, in a network of 

16 nodes-66 links, in case of having 6 potential facilities-10 customers the computational 

time is 21.27 seconds, while in 4 potential facilities-12 customers the solving time is 12.08 

seconds which is taking almost half as long as 6 potential facility's case.  
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Figure 5.6: Comparison of 4 VS. 6 Potential Facilities in CG Model. 

5.2.3. Comparison of CG vs. RLARP Model 

The following part of this thesis moves on to compare the performance of the CG and 

RLARP model. To do so, Figure 5.7 demonstrates the performance of the RLARP and CG 

model in terms of computational time over different size of networks which are denoted in 

the figure by the number of their nodes. As it is expressed in Figure 5.7, in general the time 

required to reach a solution in CG model is much less than RLARP model. It is worth 

mentioning that in RLARP model as indicated in Table 5.5 when we go above 16 nodes-66 

links the program cannot reach the optimal solution, in contrast to the CG model that is 

capable of reaching optimal solution for the network of 38 nodes-139 links. Also, the figure 

reveals that there has been a sharp increase in computational time of RLARP strategy after 
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passing 16 nodes-66 links, while CG based model faces the hike after 26 nodes-102 links. It 

seems that these aforementioned results are mainly due to the capability of CG technique in 

which not all variables and columns will be taken into account simultaneously. Therefore, in 

comparison with RLARP model, it has the ability to handle larger instances with better 

performance. 

 

Figure 5.7: Performance Comparison of RLARP and CG based Model. 
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6. Chapter 6 

Conclusion and future research 

In the next chapter, we will first present the principal findings of the thesis in Section 6.1 

and later discuss the possible future research that can be done in Section  6.2. 

6.1. Conclusion 

To recall, this thesis studies on the area of reliable network by taking into account the 

interdiction. As it was mentioned earlier the interest in the aforementioned area has 

achieved a lot of attentions in the recent years. The main reasons behind such an increase 

can be summarized as below: 

• Recent conspicuous destructive incident 

• Failure of a lean concept at the time of unpredictable changes 

In this thesis, we focus on the Reliable Location/Allocation/Routing Problem in the 

design level and proposed a RLARP model with the objective of minimizing the worst 

interdiction cost as well as fixed opening cost of potential facilities. As it was reported in  
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Chapter 5 we tested the model with different size of data sets from 11 nodes-44 links to 

21 nodes-80 links. 

According to our observations we can conclude that due to the complexity of the model, 

it cannot perform well when enlarging the network size more than 16 nodes-66 links. 

Therefore, to tackle this issue, we used column generation decomposition technique as a 

solution methodology to reformulate the RLARP model as the Column Generation (CG) 

model. It is worth mentioning that the two formulation, RLARP and CG, are identical, 

however with a significantly different performance in terms of computational time and 

the size of the problems that they can solve. 

Considering all proposed results and analysis, we conclude that CG technique reduces the 

complexity of the model. The logical explanation behind this is CG technique 

decomposes the model into two parts and add the promising configurations (i.e., columns) 

in each iteration rather than considering all at once in one model. That  is the reason why 

the CG model has the capability of solving the instances twice as large as what RLARP 

model can handle. In addition, it should be mentioned that the Column Generation model 

reaches the optimal solution significantly faster in all instances. 

6.2. Future Work 

The following is a description of the future research that can be done as the extension of 

this thesis: 
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• Partial interdiction should be considered in the network. As it was mentioned 

earlier in other chapters, failures can be either complete or partial. It should be 

mentioned that the network does not always face a complete interdiction. To 

clarify more, one part of a facility may fail while others work which means they 

cannot work with their full capacity. 

• Capacity could be taken into account in our CG model as it is a very critical 

constraint. 

• Better validating the model with a real case study.  

•  Taking into account stochastic failure sets in the model. 

• Fortification can be taken into consideration in this model. As explained before, 

one way of tackling interdictions in the supply chain networks is to fortify the 

elements of the network. This strategy is an option mostly for the built networks’ 

elements as relocation of them is almost impossible considering the cost of it. 

However, depending on the budgetary limitation as well as the area of studies, 

fortification of the network can be taken into consideration in the design level.  

 



 

65 
 

7. References 

A. Ahmadi-Javid and A. H. Seddighi. A location-routing problem with disruption risk. 

Transportation Research Part E: Logistics and Transportation Review, 53:63{82, 2013.  

F. Atoei, E. Teimory, and A. Amiri. Designing reliable supply chain network with 

disruption risk. International Journal of Industrial Engineering Computations, 4(1):111-126, 

2013. 

N. Azad, G. K. D. Saharidis, H. Davoudpour, H. Malekly, and S. A. Yektamaram. 

Strategies for protecting supply chain networks against facility and transportation disruptions: 

an improved benders decomposition approach. Annals of Operations Research, 210(1):125-

163, 2013. ISSN 1572-9338. doi: 10.1007/s10479-012-1146-x. URL 

http://dx.doi.org/10.1007/s10479-012-1146-x. 

N. Azad, H. Davoudpour, G. K. Saharidis, and M. Shiripour. A new model to mitigating 

random disruption risks of facility and transportation in supply chain network design. The 

International Journal of Advanced Manufacturing Technology, 70(9-12):1757-1774, 2014. 



 

66 
 

O. Berman, T. Drezner, Z. Drezner, and G. O. Wesolowsky. A defensive maximal 

covering problem on a network. International Transactions in Operational Research, 

16(1):69-86, 2009. 

P. Cappanera and M. Scaparra. Optimal allocation of protective resources in shortest -path 

networks. Transportation Science, 45:6480, 2011. 

R. L. Church and M. P. Scaparra. Protecting critical assets: The r-interdiction median 

problem with forti_cation. Geographical Analysis, 39(2):129-146, 2007. 

G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations 

Research, 8(1):101-111, 1960. doi: 10.1287/opre.8.1.101. URL http://dx.doi.org/10. 

1287/opre.8.1.101. 

M. S. Daskin. Appendix H: Longitudes, Latitudes, Demands, and Fixed Costs for 

SORTCAP.GRT: A 49-Node Problem De_ned on the Continental United States, pages 480-

482. John Wiley & Sons, Inc., 1995. ISBN 9781118032343. doi: 

10.1002/9781118032343.app8. URL http://dx.doi.org/10.1002/9781118032343.app8.  

R. Z. Farahani, A. Hassani, S. M. Mousavi, and M. B. Baygi. A hybrid arti_cial bee 

colony for disruption in a hierarchical maximal covering location problem. Computers & 

Industrial Engineering, 75:129-141, 2014. 

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock 

problem. Operations Research, 9, 1961. URL http://www.jstor.org/stable/167051.  



 

67 
 

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting stock 

problempart ii. Operations Research, 11(6):863-888, 1963. doi: 10.1287/ opre.11.6.863. 

URL http://dx.doi.org/10.1287/opre.11.6.863. 

K. B. Hendricks and V. R. Singhal. The e_ect of supply chain glitches on shareholder 

wealth. Journal of Operations Management, 2003. 

K. B. Hendricks and V. R. Singhal. Association between supply chain glitches and 

operating performance. Management Science, 2005a. 

K. B. Hendricks and V. R. Singhal. An empirical analysis of the e ect of supply chain 

disruptions on long-run stock price performance and equity risk of the firm. Production and 

Operations Management 14(1), 35-52, 2005b. 

E. Israeli and R. K.Wood. Shortest-path network interdiction. Networks, 40(2):97-111, 

2002. 

J. L. R. Ford and D. R. Fulkerson. A suggested computation for maximal multi -

commodity network ows. Management Science, 5(1):97-101, 1958. doi: 

10.1287/mnsc.5.1.97. URL http://dx.doi.org/10.1287/mnsc.5.1.97. 

F. Liberatore, M. Scaparra, and M. Daskin. Analysis of facility protection strategies 

against an uncertain number of attacks: The stochastic R-interdiction median problem with 

fortification. Computers & Operations Research, 38:357366, January 2011.  

M. Lim, M. Daskin, A. Bassamboo, and S. Chopra. A facil ity reliability problem: 

Formulation, properties, and algorithm. Naval Research Logistics, 57:5870, February 2010.  



 

68 
 

M. E. Lubbecke and J. Desrosiers. Selected topics in column generation. Operations 

Research, 53(6):1007-1023, 2005. doi: 10.1287/opre.1050.0234. URL 

http://dx.doi.org/10.1287/ opre.1050.0234. 

R. L. C. Maria P. Scaparra. An optimal approach for the interdiction median problem with 

fortification. Working paper, 78, 2005. 

G. L. Nemhauser. Column generation for linear and integer programming. Optimization 

Stories, 20:64, 2012. 

F. Parvaresh, S. M. Husseini, S. H. Golpayegany, and B. Karimi. Hub network design 

problem in the presence of disruptions. Journal of Intelligent Manufacturing, 25(4):755-774, 

2014. ISSN 1572-8145. doi: 10.1007/s10845-012-0717-7. URL 

http://dx.doi.org/10.1007/s10845-012-0717-7. 

M. P. Scaparra and R. L. Church. A bilevel mixed-integer program for critical 

infrastructure protection planning. Computers and Operations Research, 35(6):1905 - 1923, 

2008a. 

M. P. Scaparra and R. L. Church. An exact solution approach for the interdiction median 

problem with fortification. European Journal of Operational Research, 189(1):76 - 92, 2008b. 

L. Snyder. Facility location under uncertainty: A review. IIE Transactions, 38(7):547-

564, 2006. 

L. Snyder and M. Daskin. Reliability models for facility location: The expected failure 

cost case. Transportation Science, 39(3):400-416, 2005. 



 

69 
 

L. Snyder, Z. Atan, P. Peng, Y. Rong, A. Schmitt, and B. Sinsoyal. OR/MS models for 

supply chains disruptions: A review. Social Science Research Network, pages 56-67, 2014. 

TechTarget. operational risk. URL http://searchcompliance.techtarget.com/ definition/ 

operational-risk. 

 


