
Collaborative Planning and Event Monitoring Over

Supply Chain Network

Sujoy Ray

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Ful�llment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montreal, Quebec, Canada

March 2017

© Sujoy Ray, 2017



CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Sujoy Ray

Entitled: Collaborative Planning and Event Monitoring Over

Supply Chain Network

and submitted in partial ful�lment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the �nal examining committee:

ChairDr. Pouya Valizadeh

External ExaminerDr. Patrick Hung

External to ProgramDr. Anjali Agarwal

ExaminerDr. Todd Eavis

ExaminerDr. Joey Paquet

Thesis SupervisorDr. Mourad Debbabi

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty



ABSTRACT

Collaborative Planning and Event Monitoring Over

Supply Chain Network

Sujoy Ray, Ph.D.

Concordia University, 2017

The shifting paradigm of supply chain management is manifesting increasing reliance

on automated collaborative planning and event monitoring through information-bounded

interaction across organizations. An end-to-end support for the course of actions is turning

vital in faster incident response and proactive decision making. Many current platforms

exhibit limitations to handle supply chain planning and monitoring in decentralized set-

ting where participants may divide their responsibilities and share computational load of

the solution generation. In this thesis, we investigate modeling and solution generation

techniques for shared commodity delivery planning and event monitoring problems in a

collaborative setting. In particular, we �rst elaborate a new model of Multi-Depot Vehicle

Routing Problem (MDVRP) to jointly serve customer demands using multiple vehicles

followed by a heuristic technique to search near-optimal solutions for such problem in-

stances. Secondly, we propose two distributed mechanisms, namely: Passive Learning and

Active Negotiation, to �nd near-optimal MDVRP solutions while executing the heuristic

algorithm at the participant's side. Thirdly, we illustrate a collaboration mechanism to

cost-e�ectively deploy execution monitors over supply chain network in order to collect

in-�eld plan execution data. Finally, we describe a distributed approach to collaboratively

monitor associations among recent events from an incoming stream of plan execution data.

Experimental results over known datasets demonstrate the e�ciency of the approaches to

handle medium and large problem instances. The work has also produced considerable

knowledge on the collaborative transportation planning and execution event monitoring.

iii



DEDICATION

To all my teachers, who inspired, guided and supported me

throughout my education.

iv



ACKNOWLEDGEMENTS

Support of several people helped me to conduct this research endeavor, to only some

of whom, it is possible to give particular mention here. At �rst, I would like to express my

deepest gratitude to my supervisor Dr. Mourad Debbabi. It would not have been possible

to complete this research work without his guidance, motivation, support and patience.

I am grateful to all the committee members of my dissertation: Dr. Patrick Hung, Dr.

Anjali Agarwal, Dr. Todd Eavis and Dr. Joey Paquet for their insightful comments and

advice. I would also like to thank Dr. Anjali Awasthi and Dr. Benjamin Fung for their

suggestions and feedback during the preparation of this thesis.

This thesis would not have been �nished without my co-authors and project part-

ners. I express my sincere thanks to my colleagues for their friendship and encouragement.

Special thanks to my team members: Andrei Soeanu, Aref Mourtada, Badr A�fy and Dr.

Wen Ming Liu for their collaboration, feedback and assistance for the implementation and

experiments. I am indebted to the Department of Computer Science and Software Engi-

neering and Concordia Institute for Information Systems Engineering for providing a great

facility to conduct this research. Research work for this thesis was partially funded by the

Natural Sciences and Engineering Research Council of Canada, Defence Research & Devel-

opment, Canada in partnership with MDA Corporation. I also sincerely thank Concordia

University and the Fonds de recherche du Québec � Nature et technologies (FRQNT) for

their �nancial support to conduct my research endeavor.

In all these years, I was fortunate to work with several renowned researchers across

the country. I would like to extend my gratitude to Dr. Mohamad Allouche, Dr. Abdeslem

Boukhtouta, Jean Berger, Dr. Micheline Bélanger and Dr. Nicolas Léchevin from Defence

Research and Development Canada for their help and everything they have taught me.

Looking back, I really cannot thank enough my wife Swagata who has been a con-

stant source of unwavering love and support. Lastly, and most of all, I would like to

acknowledge the in�nite care and a�ection of my parents, family and friends. Without

their encouragement and sacri�ces, I would never have made it this far.

Sujoy Ray

March 13, 2017

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF ABBREVIATIONS AND SYMBOLS . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Collaborative Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Collaborative Monitor Deployment . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Collaborative Plan Execution Monitoring . . . . . . . . . . . . . . . . 9

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background and Related Work 15

2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Near-Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Collaborative Optimization . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 Classi�cation of our Research Problems . . . . . . . . . . . . . . . . . 28

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Collaborative Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . 30

Problem Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Solution Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Collaborative Monitor Deployment . . . . . . . . . . . . . . . . . . . . 36

Problem Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Solution Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3 Collaborative Plan Execution Monitoring . . . . . . . . . . . . . . . . 40

Problem Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



Solution Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Multi-Depot Split-Delivery Vehicle Routing Problem 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Problem Description and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 MDSDVRP Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Solving MDSDVRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.3 Property Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.4 Re�nement Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6.1 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Collaborative Multi-Depot Vehicle Routing Problem 88

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Problem Description and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 Problem Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.4 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Collaborative Solution Generation: Passive Learning . . . . . . . . . . . . . 97

4.3.1 Evolutionary Learning and Solution Pool Handling . . . . . . . . . . 98

4.3.2 Template Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



4.3.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.4 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Cooperative Solution Generation: Active Negotiation . . . . . . . . . . . . . 112

4.4.1 Game of Customer Selection . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.2 Mechanism Implementation . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.4 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 Benchmarks and Comparative Study . . . . . . . . . . . . . . . . . . . . . . . 125

4.5.1 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.5.3 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Collaborative Monitor Deployment Problem 130

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2 Problem Description and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.3 Centralized Setup with Single Decision Maker . . . . . . . . . . . . . 133

5.2.4 Centralized Setup with Multiple Decision Makers . . . . . . . . . . . 135

5.2.5 Decentralized Setup with Multiple Decision Makers . . . . . . . . . . 136

5.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 Exact Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.2 Heuristic Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.3 Distributed Monitor Deployment . . . . . . . . . . . . . . . . . . . . . 142

5.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

viii



5.5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.3 Distributed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.4 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Collaborative Plan Execution Monitoring Problem 154

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3.1 Properties of Interesting Association Rules . . . . . . . . . . . . . . . 159

6.3.2 Identi�cation of Interesting Association Rules . . . . . . . . . . . . . 162

6.3.3 Update of Interesting Association Rules . . . . . . . . . . . . . . . . . 164

6.4 Centralized Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . 165

6.4.1 Itemset Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.3 Gateway Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.4 Maximum Con�dence Analysis . . . . . . . . . . . . . . . . . . . . . . 169

6.4.5 Incremental Update of Support and MCR . . . . . . . . . . . . . . . 170

6.4.6 [n − 1] Association Rule Tracking . . . . . . . . . . . . . . . . . . . . . 173

6.4.7 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.5 Collaborative Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . 181

6.5.1 Incremental Tracking of Maximal Frequent Itemsets . . . . . . . . . 182

6.5.2 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.6 Benchmark Results and Comparative Study . . . . . . . . . . . . . . . . . . . 185

6.6.1 Performance of Incremental Association Rule Mining . . . . . . . . . 186

6.6.2 Performance of Incremental Maximum Frequent Itemsets Mining . . 191

6.6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.6.4 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 194

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

ix



7 Conclusion 195

Bibliography 197

Appendix 221

x



LIST OF FIGURES

1.1 A transportation network for collaborative vehicle routing problem . . . . . 7

1.2 A transport network for collaborative monitor deployment . . . . . . . . . . 9

1.3 A system architecture for collaborative plan execution monitoring . . . . . 9

2.1 Classi�cation of collaborative vehicle routing problems . . . . . . . . . . . . 34

2.2 Classi�cation of Execution Monitors . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Survey of vehicle route planning problems . . . . . . . . . . . . . . . . . . . . 53

2.4 Survey of facility location problems . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 An example transport network of customers and depots . . . . . . . . . . . . 63

3.2 An overview of solution generation technique . . . . . . . . . . . . . . . . . . 67

3.3 Heuristic procedure of route generation . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Transport network and customer demands . . . . . . . . . . . . . . . . . . . . 76

3.5 3-depot heuristic solution on modi�ed-E016-03m problem. . . . . . . . . . 76

3.6 1-depot 3-vehicle solution of modi�ed-E016-03m using MDSDVRP. . . . . 77

3.7 3-depot 1-vehicle/depot convergence study on modi�ed-E016-03m instance. 78

3.8 Comparative study of solution quality and time. . . . . . . . . . . . . . . . 82

3.9 Convergence study on S76D2 instance [44] for multiple parameter values . 83

3.10 Performance comparisons of input parameters on CVRP instances . . . . . 85

4.1 Collaborative solution generation for multi-depot vehicle routing problems 103

4.2 Learning-based distributed solution generation . . . . . . . . . . . . . . . . . 109

4.3 Changes in depot's in�uence in solution generation . . . . . . . . . . . . . . 110

4.4 Negotiation-based solution generation on modi�ed-E016-03m problem . . . 123

4.5 Comparative Study of Multi-Depot Vehicle Routing Solution Approaches . 127

5.1 Heuristic technique of monitor deployment . . . . . . . . . . . . . . . . . . . 140

5.2 An instance of execution monitor deployment problem . . . . . . . . . . . . 144

5.3 Centralized monitor allocation trace . . . . . . . . . . . . . . . . . . . . . . . 146

xi



5.4 Performance comparison of heuristics with di�erent parameters . . . . . . . 151

5.5 Comparative study of the proposed algorithms . . . . . . . . . . . . . . . . . 152

6.1 Interesting rules generated from the �rst sliding window of Figure 1.3 . . . 163

6.2 Transactions in a bit matrix over sliding window . . . . . . . . . . . . . . . . 166

6.3 PAET generated from the �rst sliding window of Figure 1.3 . . . . . . . . . 168

6.4 States and transitions for incremental update using Hybrid Automaton . . . 171

6.5 Selection of update settings for state transitions . . . . . . . . . . . . . . . . 174

6.6 Comparison of three tree structures: PAET, CET (Moment) and FP-Tree . 181

6.7 Association rules and performance evaluation for di�erent datasets . . . . . 187

6.8 Memory and execution time comparison for BMS-WebView-1 dataset . . . 187

6.9 Memory and execution time comparison for BMS-WebView-2 dataset . . . 188

6.10 Performance comparison for T5I4D100K dataset . . . . . . . . . . . . . . . . 189

6.11 Performance comparison for T10I4D100K dataset . . . . . . . . . . . . . . . 190

6.12 Performance comparison for T20I5D100K dataset . . . . . . . . . . . . . . . 190

6.13 Performance comparison over Kosarak dataset . . . . . . . . . . . . . . . . . 190

6.14 Finding lifted association rules from Accidents dataset . . . . . . . . . . . . 191

6.15 Memory and execution time comparison for BMS-WebView-1 dataset . . . 192

6.16 Memory and execution time comparison for BMS-WebView-2 dataset . . . 192

6.17 Performance comparison for T5I4D100K dataset . . . . . . . . . . . . . . . . 193

xii



LIST OF TABLES

2.1 Comparison of the highlighted articles on active monitoring . . . . . . . . . 44

2.2 Comparison of highlighted articles on itemset and association rule mining . 54

3.1 Case study Problem Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Benchmark on known MDSDVRP problem instances [101] . . . . . . . . . . 79

3.3 Benchmark on known MDVRP problem instances [53, 55] . . . . . . . . . . 80

3.4 Benchmark on known SDVRP problem instances [68] . . . . . . . . . . . . . 81

4.1 Multi-round customer allocation and heuristic cost during problem solving 122

4.2 Per depot utility and cost in active negotiation for modi�ed-E016-03m . . 124

4.3 Scenario analysis of deviation from equilibrium . . . . . . . . . . . . . . . . . 124

4.4 Passive learning based distributed solutions for MDVRP instances . . . . . 125

4.5 Active negotiation based distributed solutions using outer edge ordering . . 126

4.6 Passive learning vs. Active negotiation for MDVRP solution generation . . 127

5.1 Case Study: weighted cost of edges in ascending order . . . . . . . . . . . . 145

5.2 Case Study: Distributed contribution adjustment . . . . . . . . . . . . . . . 146

5.3 Benchmarks on CVRP-P-Series [21] and SQ-Series [100] problems . . . . . . 148

5.4 Distributed monitor selection on CVRP instances . . . . . . . . . . . . . . . 150

6.1 Minimum requirements of supj(XY ) for supports of X and Y . . . . . . . . 158

6.2 Incremental update requirements of selected association rules . . . . . . . . 165

6.3 Requirements for incremental evaluation of confidence and lift . . . . . . . 175

6.4 [n − 1] association rule generation for USP {(a,N),(b,N),(c,+),(d,-),(e,0)} . 180

6.5 PAET nodes and association rules for various support and con�dence . . . 181

6.6 Changing requirements of mining MFIs . . . . . . . . . . . . . . . . . . . . . 185

6.7 Experimental Datasets characteristics . . . . . . . . . . . . . . . . . . . . . . 186

7.1 Benchmark on CVRP A-Set instances from Augerat et al.[21]- Part 1 . . . 222

7.2 Benchmark on CVRP A-Set instances from Augerat et al.[21]- Part 2 . . . 223

xiii



7.3 Benchmark on CVRP B-Set instances from Augerat et al.[21]-Part 1 . . . . 223

7.4 Benchmark on CVRP B-Set instances from Augerat et al.[21]-Part 2 . . . . 224

7.5 Benchmark on known CVRP instances: P-Set from Augerat et al.[21] . . . 224

7.6 Solutions from SQ-Series with better cost than best known . . . . . . . . . . 225

7.7 Solutions from SDVRP instances with better cost than best known . . . . . 228

xiv



LIST OF ABBREVIATIONS AND SYMBOLS

The following notations and abbreviations are frequently used in various chapters of this

thesis. The meaning of a notation remains same in all chapters unless otherwise stated.

Chapter 1:
a-RFID Active Radio-Frequency Identi�cation
CVRP Capacitated Vehicle Routing Problem
MDSDVRP Multi-Depot Split-Delivery Vehicle Routing Problem
SCN Supply Chain Network
SDVRP Split-Delivery Vehicle Routing Problem
TMS Transportation Management System
VRP Vehicle Routing Problem
Chapter 2:
COP Combinatorial Optimization Problem
FIS Frequent Itemsets
FLP Facility Location Problem
ILP Integer Linear Programming
LRP Location Routing Problem
NP Non-deterministic Polynomial-time
p-MP p-Median Problem
WSN Wireless Sensor Network
Chapter 3:
cij Cost of traversal along edge ⟨i, j⟩ of the transport network
di Customer demand for single type of commodity (di)
D Set of all depots
E Set of directed edges; each edge ⟨i, j⟩ ∈ E denotes a link between source vertex

i and destination vertex j
G A complete directed graph representing an SCN; G ∶= ⟨V,E⟩
K Set of vehicles
N Set of all customer nodes
V Set of all vertices including customer nodes and depots
Chapter 4:
ANDR Average Node Distance (Rounded)
DSE Dominant Strategy Equilibrium
Kp Set of vehicles under the control of participant p
MCDR Minimum Clustering Distance (Rounded)
πip Failure risk of participant p in monitor selection on vertex i
P Set of participating decision makers; each member is denoted as p ∈ P
R Total risk of failure in distributed monitor selection
VCG Vickery-Clarke-Groves mechanism
W t

p A template of weight vectors where each weight vector represents the interest
of a participant decision maker p to serve all customer nodes at iteration t

xv



Chapter 5:
ci Monitor deployment cost at vertex i
C Total budget; Cp denotes deployment budget of participant p
V Set of all vertices including relay nodes and monitors
S A set of monitors; S ⊆ V
Q A bipartite graph; Q ∶= ⟨V ∖ S,S,E′⟩ where V ∖ S, S and E′ are relay nodes,

monitors and a set of directed edges respectively; Each member ⟨i, j⟩ ∈ E′

represents a communication link from relay node i to a monitor j
wij Total number of traversal (as planned) on a directed edge ⟨i, j⟩
δij Energy consumed by i to send data to j for each traversal
γij Energy consumed by i to send data to j for all traversals from vertex i

Chapter 6:
A Alphabet; a set of all possible items
Ap A subset of events/items in A indicating concern of participant p
ARM Association Rule Mining
CET Closed Enumeration Tree
ς The value of current con�dence of an association rule
cmin Minimum con�dence threshold
FP-Tree Frequent Pattern Tree
MAREDS Mining Association Rules over Event Data Stream
MCR Maximum Con�dence Rule
MFI Maximum Frequent Itemset
PAET Partial Association Enumeration Tree
smin Minimum support threshold
USP Update Set Pairs

xvi



Chapter 1

Introduction

The huge technological advancement in the last few decades has brought new

challenges to the conventional operations for businesses ranging from private

enterprises to governmental institutions. Rapid economic changes, business ex-

pansion, infrastructure improvement and faster data sharing techniques have

placed high demand for collaboration in solution generation and monitoring of

business plans to e�ciently execute large-scale and long-lasting operations. In

general, an operation requires a complex process, constrained by dependencies

and priorities, that uses allocated resources through a set of tasks in order

to achieve its goal(s). Many academic and industrial e�orts can be found in

research literature on various aspects of automation from generating plans to

monitoring execution of various operations. In this regard, this dissertation ex-

plores automated collaborative solution generation and monitoring techniques

for operational plans in presence of multiple participants. Speci�c focus of this

study is on commodity delivery plans over Supply Chain Network (SCN).

Large organizations address commodity delivery planning and monitoring at three

di�erent levels over SCN, namely: strategic, operational and tactical [179]. At the strategic

level, decision makers select depots for serving the customers. Various network partition-

ing/clustering algorithms are popularly used to choose depot locations at the vicinity of the

1



customers. Once the depots are identi�ed, operational decision makers solve the underly-

ing routing problems as per the requirements. These sub-problems are often characterized

as Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), Traveling Re-

pairman Problem (TRP), etc. Analytic, heuristic and meta-heuristic algorithms are used

to solve the routing problems typically with an objective to minimize the routing cost.

The resulting solution is a set of tasks where each task forms a vehicle route. The tactical

o�cers execute these tasks in compliance with previously taken decisions. Timely planning

for logistic deployment is vital in situations like humanitarian aid, disaster relief and rescue

operations or national crises. For example, after a disaster, such as earthquake, multiple

disaster relief organizations (e.g. United Nations Disaster Assessment and Coordination

(UNDAC), Red Cross Society, etc.) launch major rescue operations to help potential vic-

tims. While their management teams remotely decide over establishing depots, the rescue

commanders decide on the routing plans and the drivers are asked to reach out the vic-

tims. Depending on speci�c needs, objectives of these tasks can be di�erent. However,

such an objective always represents optimization of a quanti�able (e.g. routing cost, rescue

time, etc.) subjected to a set of constraints. In government and commercial organizations,

commodity delivery planning signi�cantly save cost of operations.

SCN monitoring is also a challenging problem to the decision makers. Often time,

lack of su�cient tracking capability leads to missing crucial assets [32]. Holguin-Veras et al.

[235] has described the importance and di�culties of establishing communication within a

short duration during hurricane Katrina. A similar experience is documented by Schwartz

et al. [202] on the aftermath of Haiti earthquake where multiple organizations attempted

delivering necessary commodities and services over a large transport network. In this

respect, e�cient monitor placement and information tracking from pre-installed sensors

may notably enhance situation awareness over SCN by improving tracking of movement,

speed, e�ciency and cost for executing tasks [72, 99].

At a larger scale, e�cient plan modeling, solution generation and robust task moni-

toring require collaborative decision making framework and a vigilant advisory system as

discussed by Allen et al. [11]. However, collaborations of participants are often restricted

by the organizational policies over data sharing. It also demands for quick decision making

2



by analytical computation over collected information which is often approximately accu-

rate. In this respect, the available o�-the-shelf software solutions exhibit notable gaps in

the following important areas:

� Optimal partitioning of SCN to share delivery of logistics/commodities;

� Modeling collaborative planning and delivery of logistics/commodities;

� O�ering distributed algorithms for transportation problem solving;

� Elaborating collaborative approaches for plan execution monitoring.

Within the scope of this thesis, we intend to bridge these research gaps.

Large-scale multi-level commodity delivery planning has a major shortcoming. It

stems from the initial selection of locations for depots at the strategic level where decisions

are made without accurate knowledge of actual routing cost. Salhi and Rand have shown

that the best solution for depot locations found at routing stage contrasts the results ob-

tained from three di�erent location-allocation methods [196]. To overcome this limitation,

in this thesis, we investigate depot assignment and logistics delivery problems together in

the commodity delivery planning. In Chapter 3, we introduce a new linear model of the

combined problem and propose a generic solution search technique for a multi-depot ve-

hicle routing problem that may also employ split delivery of commodities, if needed. The

solutions of this problem are expected to e�ciently use limited number of vehicles with

prede�ned capacity to serve customers demands from various depots. However, the combi-

nation of these two sub-problems, namely depot selection and vehicle routing, signi�cantly

increases the problem complexity. Thus, it restricts researchers to handle large problem

instances with many depots and customers centrally with current computing capabilities.

Therefore, in Chapter 4, we study two collaboration mechanisms such that multiple partic-

ipants can jointly generate near-optimal solutions of multi-depot vehicle routing problem.

Similarly, in order to address plan execution monitoring, we �rst investigate collab-

orative technique to collect sensor data from SCN. Timely relayed execution information

may provide valuable input for decision making [29]. Additionaly, now-a-days, inexpensive

a-RFID tags are being frequently used with additional sensors to communicate data to

3



RFID readers over SCN [160]. These readers also transmit such information to distant

decision makers using in-�eld monitoring facilities. Fast and collaborative determination

of data relaying strategy is crucial for quick deployment of these technologies in operations,

such as disaster support, rescue missions, etc. [239]. However, remote RFID readers are

often constrained from on-board power supply and much of their energy is used to commu-

nicate with the monitors. Furthermore, monitor deployment incurs a signi�cant cost over a

large SCN which puts an additional constraint for limited deployment of monitors within a

deployment budget. Thus, obtaining an optimal strategy to minimize energy consumption

in such data communication is an open research problem with applications over diverse

networks, (e.g. wireless sensor networks (WSN), smart-grid, etc. [105, 249]). Moreover,

in a collaborative setup, participants also share the deployment budget [72]. In Chapter

5, we investigate centralized and distributed approaches for optimal monitor deployment

where the deployment budget is split among collaborative participants. Finally, in Chapter

6, we discuss collaborative monitoring of sensor generated data stream to reveal frequent

associations among recent events. Such association is often crucial to the remote decision

makers. For example, it is useful to analyze a recent delay event over SCN in connection

to other events such as weather, accidents, vehicle failure, etc. In this regard, a major

challenge lies in quickly inferring relationships among related events by mining incoming

data stream(s) generated by remote in-�eld sensors. Typical event mining techniques heav-

ily depend on batch processing of previous records. Batch processing needs availability of

adjusted information along with signi�cant computation time and memory. In contrast,

stream mining reveals association among recent events relevant to current situation.

1.1 Motivation

In commercial sectors, trade related surface transportation is constantly increasing in North

America. In the past, between 2009 and 2010, the transportation and warehousing sectors

were growing approximately by 4.3% [110]. In Canada, the Gross Domestic Product (GDP)

in the transportation and warehousing sectors was increased signi�cantly in last decade

from $50.2 billion in 2001 to $58.4 billion in 2010 [110]. According to the United States

4



Department of Transportation, the surface transportation trade between North American

Free Trade Agreement (NAFTA) partners was increased by 11.5% in January 2012 com-

pared to January 2011 at $75.5 billion [214]. The value of NAFTA freight turned $88.2

billion during November 2015 in which 51% ($45.1 billion) trade happened between the

US and Canada1. Interestingly, almost 60.4% of this trade was carried out by large trucks.

Thus, intelligent transportation planning and monitoring software hold the key for the cost

saving in such trade [72]. Meanwhile, worldwide Transport Management System (TMS)

software revenue also increased 20.6% from 2007 to 2008 ($538 million to $648 million) and

reached to $963 million at 2012 globally [72]. Another recent Gartner report [123] forecasts

that such technology-led evolution in supply chain convergence and process orchestration

will continue unabated where decision makers will increasingly use mature and proven

routing solutions and scheduling tools. According to their claim 65% of its respondents

view supply chain management technologies as a source of competitive advantages.

The process orchestration in TMS is also quickly changing with the new generation

of data communication technologies and fusion of sensor generated information. Timely

relayed execution information is providing more valuable input for decision making than

ever before [29]. Beside installation of sensors over SCN, more advanced decision-support

methods and tools are expected to trigger innovations in real-time information gathering,

changes in �eet management, tracking and re-routing of assets based on external changes

(such as weather, tra�c, etc.) [123]. Gartner predicts high bene�ts over such revolution-

ary changes in supply chain management and expects newer �eet routing and scheduling

applications in recent future [123]. Alongside, fast and collaborative monitoring of relayed

information is increasingly depending on sensor (RFID) technologies in operations, such

as disaster support, rescue missions, etc. [239]. E�cient monitoring of RFID informa-

tion reduces supply chain cost and operation time up to 2.8%-4.5% [197] and 57.18% [28]

respectively. Quicker decision making using RFID technology may reduce shipping lead

time for a single product up to 66.12%. In an experiment, Walmartâ��s pilot RFID im-

plementation to replace its bar code system reduced its CO2 emissions by 3.2% 2. RFID

1https://www.scranet.org/SCRA/News_Release/Newsletter/Industry_News/Canada_regains_

rank_as_top_North_America_trading_partner_with_US.aspx
2http://journals.isss.org/index.php/proceedings51st/article/viewFile/493/248

5

https://www.scranet.org/SCRA/News_Release/Newsletter/Industry_News/Canada_regains_rank_as_top_North_America_trading_partner_with_US.aspx
https://www.scranet.org/SCRA/News_Release/Newsletter/Industry_News/Canada_regains_rank_as_top_North_America_trading_partner_with_US.aspx
http://journals.isss.org/index.php/proceedings51st/article/viewFile/493/248


implementation has shortened number of trips for trucks and o�ered better product visi-

bility and tractability with improved inventory management [197]. E�cient RFID sensors,

better monitor placement and fast monitoring may reduce order quantity and inventory

level at distribution centers up to 47% [197]. On the other hand, RFID-based information

tracking is less labor intensive and represents only 0.5% of the product value [28]. Hence,

in the light of the aforementioned, collaborative planning and monitoring unfold important

research problems with signi�cant business impact.

1.2 Problem Overview

In collaboration, participants work together towards a shared objective. In order to attain

the objective, participants may willingly execute di�erent workload without the evalua-

tion of their personal interest. In this respect, collaboration di�ers from the concept of

cooperation where self-interested participants share the workload to reach a common goal.

In cooperation, participants perform together until their common goal can be achieved by

mutually bene�ting each party. Thus, it helps reaching a shared goal as long as individual

members may pursue their own sub-goals. In what follows, we introduce three collaborative

sub-problems in relation to this thesis, namely, collaborative vehicle routing, collaborative

monitor deployment and collaborative plan execution monitoring.

1.2.1 Collaborative Vehicle Routing

Collaborative vehicle routing handles commodity delivery to customers (demand points).

The customers can be represented as nodes in a complete graph where the graph denotes

a transport network. The latter is a type of SCN where transportation activities take

place (e.g. commodity delivery). Given a set of nodes (V ) and a set of directed edges

(E), where E is a relation in V × V , a transport network is a complete graph G = (V,E).

Each edge of the graph provides a traversal cost (cij) from source node i to destination

node j. Usually, a transport network is composed of two di�erent node types: Customers

(N) and Depots (D). While customer nodes are characterized with deterministic demand

(integer) for commodity (di), depot nodes have no demand. However, they host vehicles

6



Figure 1.1: A transportation network for collaborative vehicle routing problem

(k = 1,2, . . . ,K) to supply commodities to customers. Thus with prede�ned depots and

customers, a solution for a collaborative routing problem instance gives the routes for each

vehicle that minimizes the overall routing cost to serve all customer demands. Figure

1.1 depicts a small commodity delivery problem where each node represents a geographic

location as identi�ed through a red circle. These locations are connected to every other

nodes through a sequence of roads. We may abstract such connection with two directed

edges between each pair of nodes. The number inside the red circle denotes an integer

demand (di) of a commodity for the node i. Additionally, we assume an establishment

cost (ECi) to set up a depot at node i. As presented in Figure 1.1, there are three main

constraints to the collaborative vehicle routing:

� Limited Depots: Only a �xed number of depots can be established. Each node hosting

a depot will not input any demand assuming that the respective node can be directly

served by the host depot without any need for vehicle routing.

� Limited Vehicles: There exists a �xed number of vehicles (k = 1,2, . . . ,K) to serve

all customer demands. There can be a prede�ned number of vehicles associated per

depot or they can be considered as total K vehicles that can be used from all depots.

� Vehicle Capacity: Each vehicle has a limited integer capacity to load commodity.

7



In this setting, route planning evaluates feasibility of serving all demands. An optimal solu-

tion o�ers best locations for the depots (if not prede�ned) and optimal vehicle routes with

minimum cost of routing. Assuming, each newly found depot serves its own demand, the

problem aims at minimizing the combined depot establishment and routing cost. We for-

mulate this problem as Multi-Depot Split-Delivery Vehicle Routing Problem (MDSDVRP).

Unlike VRP, where a node is served by one vehicle, MDSDVRP allows multiple vehicles

to deliver commodity to a customer which may lower the total routing cost. Chapter 3

discusses MDSDVRP solution generation technique. Chapter 4 covers the collaboration

aspect of such solution generation in presence of multiple participants planning together.

1.2.2 Collaborative Monitor Deployment

Figure 1.2 depicts a screenshot of a transport network for the aforementioned SCN where

two organizations operate over a product delivery area from two depots. Each delivery

is performed by agents (e.g. vehicles) who visit di�erent vertices in sequence through

connecting paths (e.g. roads). The agents are assumed to have appropriate equipment to

communicate position, status, etc. to nearby relay nodes ( R ) through sensors. Execution

monitors ( M ) deploy additional devices to collect and process relayed data and deliver

information to distant decision makers. Each communication from relay-node i to monitor

j consumes energy δij from on-board power source of the relay node. More agents pass

through a relay node on the their way of routing node's energy consumption turns higher.

On the other hand, monitor deployment incurs setup and security cost. Limited budget

puts constraint on the number of deployed monitoring facilities (or monitors). Thus, the

core optimization problem of the monitor deployment aims at �nding a set of optimal

monitor deployment locations that minimizes weighted average energy consumption for

data communicated from relay nodes to monitors under a budget.

In collaborative monitor deployment, we extend the aforementioned problem such

that the participants may plan with individual monitor deployment budget. They can

jointly search optimal monitor locations by locally executing distributed optimization tech-

niques. Furthermore, in this case, they do not explicitly disclose individual budget to others

but negotiate to a globally optimal solution which can be potentially achieved by combining

8



Figure 1.2: A transport network for collaborative monitor deployment

their budget. Chapter 5 describes our proposed solution �nding approach.

1.2.3 Collaborative Plan Execution Monitoring

Figure 1.3: A system architecture for collaborative plan execution monitoring

Fig. 1.3 depicts a sequence of 14 transactions from an incoming data stream at a

data center where each transaction represents a set of events associated to a timestamp.

9



For example, transaction �abcde� represents a set of �ve remote events {a,b,c,d,e} occur-

ring at timestamp t3. In a centralized setting, one server is required to investigate the

relationships among these events. In data mining, these relationships are often re�ected

through association rules where antecedent and consequent of every rule indicates cause

and e�ect respectively. In Chapter 6, we propose an e�cient incremental association rule

mining approach in order to progressively extract exact set of desired association rules from

an incoming stream over a sliding window model. Furthermore, as depicted in Figure 1.3,

we extend this approach to collaboratively extract these rules in multiple subsets using a

number of servers. These servers are controlled by participating decision makers, each of

whom has interest in a subset of all possible events. The collaboration, in turn, reduces the

stream processing load and allows handling larger number of events at every update of the

sliding window. Such a setting also requires a small number of entities, namely Helpers,

to schedule the collection and mining of association rules in distributed setting.

1.3 Objectives

The main goal of this thesis is to contribute to a collaborative decision support framework

in the area of commodity delivery planning and plan execution monitoring over SCN. In

this respect, we investigate the aforementioned three sub-problems regarding collabora-

tive route planning, monitor deployment and plan execution monitoring. Therefore, the

objectives of this thesis can be summarized as follows:

� Modeling multi-depot split-delivery vehicle routing problem and developing algo-

rithms to produce near-optimal solutions for related problem instances;

� Investigating collaborative solution technique for multi-depot vehicle routing prob-

lems and contrasting the approach against cooperative solution generation technique;

� Modeling collaborative monitor deployment problem and elaborating a distributed

solution generation technique for the related problem instances;

� Designing and developing techniques for plan execution monitoring using stream

mining in centralized and distributed settings;

10



� Conducting case studies, experiments and performing comparative studies to evaluate

our solution approaches against existing techniques available in the literature.

Thus, our approach is expected to bridge notable gaps of collaborative solution generation

approaches among the currently available transport management systems.

1.4 Contributions

We investigate collaborative solution generation approaches for three optimization prob-

lems on route planning, monitor deployment and plan execution monitoring. We present

mathematical models of the underlying research problems and develop algorithms to �nd

near-optimal solutions. Following, we illustrate the technical contributions of this thesis:

� Collaborative Vehicle Routing: Our core contribution on this research problem in-

cludes the elaboration of a mathematical model for multi-depot, multi-vehicle per

depot vehicle routing with split delivery. In this respect, we propose a �exible

model using Integer Linear Programming (ILP). The �exibility allows customizing

the model via small modi�cations (according to the need) to address a number of

speci�c problems of the VRP family such as Multi-Depot Vehicle Routing Prob-

lem (MDVRP), Split-Depot Vehicle Routing Problem (SDVRP), Capacitated Vehi-

cle Routing Problem (CVRP), etc. Moreover, the concept of location routing brings

forward both location allocation and vehicle routing as part of the same objective

function. It helps customizing the depot establishment cost, as well as, prior es-

tablishment of depots at speci�c locations. With respect to the related heuristics

algorithm, it allows generating vehicle routes with near-optimal cost while serving

the customers by multiple vehicles belonging to the same or di�erent depots. How-

ever, the common solution approaches for multi-depot VRP assume a centralized

setup with complete knowledge of travel cost, locations of the depots, vehicles and

customers. In this thesis, we investigate collaborative route planning for multi-depot

VRP problems using two main concepts result sharing and sub-problem sharing. The

11



benchmark results show clear bene�ts in deriving routes using the proposed collabo-

rative approaches. The following diagram summarizes our contributions for collabo-

rative route planning where the rectangular boxes indicate our proposed techniques.

Route Planning over SCN

Heuristic technique for Multi-Depot Split-Delivery VRP

Collaborative Route Planning (Distributed)

Hybrid technique based on

Passive evolutionary learning

Cooperative Route Planning (Distributed)

Hybrid technique based on

Game theoretic negotiation

� Collaborative Monitor Deployment: Our contribution in this research problem is

focused on collaboratively deploying monitors over a subset of relay nodes on an

SCN to minimize energy consumption in information communication. Considering

individual deployment budget, we propose a mathematical model for multiple deci-

sion makers of monitor deployment. Hereof, we �rst present a centralized heuristic

algorithm to compute solutions under a common budget constraint. Second, we de-

velop a distributed approach to automate a collaborative negotiation mechanism for

near-optimal monitor deployment with individual budgets. The optimal location al-

location of monitors over SCN where the total budget is divided among participants,

is a distributed variant of classical facility location [75] and p-median problems [141].

Benchmark results show high accuracy and performance bene�ts of the proposed

collaboration approach particularly through e�ciently handling large problems.

� Collaborative Plan Execution Monitoring: Our contribution in this research e�ort is

focused on an incremental association rule mining solution to indicate causal rela-

tionships between events from a data stream. We design a data structure to store

events and apply incremental, in-memory algorithms to update rules quickly and

accurately. Primarily, we propose an e�cient mechanism to extract a set of desired

association rules e�ciently from an incoming data stream. Then, we illustrate a col-

laborative distributed technique to distribute the mining process in multiple servers

12



of participating decision makers for e�cient update of these association rules. The

distributed rule generation procedure also improves scalability and restricts knowl-

edge gathering without any loss of association rules. We highlight our contributions

for collaborative monitor deployment and collaborative plan execution monitoring in

the diagram below. The rectangular boxes indicate our developed techniques.

Monitoring over SCN

Collaborative Monitor Deployment

(Distributed)

Hybrid technique based on

multi-round risk reduction

Plan Execution Monitoring

Incremental stream monitoring over

sliding window model

Centralized association

rule mining

Collaborative association

rule mining

Traditional logistics planning and its subsequent execution phase(s) heavily depend on

human expertise for decision making. Thus, it exhibits intrinsic limitations in handling

large and complex operations. Human intervention often provides erroneous inputs and

incurs signi�cant delay in decision making. The new disruptive technologies (e.g. Internet

of Things), advanced data processing and increasing computing memory may improve the

planning and the tracking of plans with e�cient and su�ciently automated mechanism.

It can also handle intricate sharing responsibilities in commodity delivery and improve

the scope of situation responses. Furthermore, in current complex business environment,

handling of large-scale SCN problem in a centralized setup with complete knowledge of all

input parameters, is often impractical. The underlying techniques also su�er from known

scalability issues. Thus, distributed solution generation for optimization problems helps in

faster, e�cient and collaborative operation management for elaborated business operations.

However, distributing planning and monitoring problems over SCN is challenging. In this

thesis, we attempt to solve three core research problems in collaborative distributed setting.

13



1.5 Organization

The remainder of the thesis is organized as follows:

� Chapter 2 presents an overview of the related work on three aforementioned col-

laboration problems. We describe the context of these optimization problems with

detailed discussion in the light of the existing research literature.

� Chapter 3 discusses MDSDVRP. We present an Integer Linear Programming (ILP)

model and illustrate a heuristic based algorithm to near-optimally solve MDSDVRP

instances. We provide extensive benchmark results on a large number of existing

problem instances. The results of this chapter appears in [193].

� Chapter 4 proposes and evaluates two distributed approaches to solve multi-depot

VRP instances. We describe how such problems can be distributed among collabo-

rative decision makers and solved using aforementioned heuristics algorithm locally.

We compare the benchmark results with our solutions in a centralized setup. The

results of this chapter appears in [195] and [209].

� Chapter 5 elaborates a collaborative multi-round risk reduction approach to solve a

budget constrained monitor deployment problem that reduces energy consumption

between the relay nodes and monitors during data communication. We propose

a distributed model and a collaborative strategy to near-optimally solve monitor

locations when the budget is split among participants. We present certain benchmark

results on known problem instances. The results of this chapter appears in [192].

� Chapter 6 elaborates implementation of a stream mining technique that extracts as-

sociation rules among the generic events from a data stream. We have demonstrated

how such mining can be performed collaboratively using multiple servers. Our Ex-

perimental results clearly indicate that the proposed technique can be e�ciently

executed to monitor a large stream of events. A generic and scalable monitoring

technique may also bene�t several monitoring applications from diverse areas.

� Finally, Chapter 7 presents some concluding remarks. In this chapter, we recall and

summarize the research results and discuss possible future work.

14



Chapter 2

Background and Related Work

Collaborative planning and monitoring of supply chain activities allow sharing

of responsibilities for delivering commodities in a timely manner at the right

locations. The computation complexity and practical relevance of these plan-

ning and monitoring problems have attracted many researchers for more than

half a century. In this chapter, we survey and analyze previous research and

development e�orts to identify major collaboration challenges over two supply

chain activities, namely, vehicle route planning and plan execution information

monitoring. We begin with a brief overview of the related classical research

problems, their complexities and various solution generation approaches. We

also highlight limitations of these classical problems and solution techniques in

order to achieve collaboration in aforementioned supply chain activities.

2.1 Context

As the supply chain operations are continuously being a�ected by business expansion and

budget challenges, collaborative platforms are turning vital to the national and interna-

tional interest in order to share resources (e.g. vehicles) for task execution. Such a platform

helps to increase the use of common resources and sharing of responsibilities in commodity

delivery by e�ective route planning and joint execution status monitoring [120, 147]. This,

in turn, may lower the cost of operations and improve e�ciency. However, planning and

15



monitoring over SCN involve solving combinatorial optimization problems where optimal

solution generation is often intractable for large problem instances. In what follows, we

�rst present a general overview concerning the complexity of such problems.

2.1.1 Optimization Problems

The following terms will be frequently used in this thesis. We begin by de�ning them in

connection to previous research e�orts.

De�nition 1. Optimization Problem [230]: An instance I = (S, f) of an optimization

problem speci�es the following setting:

� A set of feasible solutions S for I, and

� A cost function f ∶ S → R, where R represents the set of real numbers.

In this setup, optimization can be achieved either by minimization or maximization.

� Solution s∗ is optimal for a minimization problem instance I, i� f(s∗) ≤ f(s),∀s ∈ S.

� Solution s∗ is optimal for a maximization problem instance I, i� f(s∗) ≥ f(s),∀s ∈ S.

Usually, S is de�ned over a solution space U . In applied mathematics, a solution s ∈ S is

generated using a set of decision variables that are subjected to a number of constraints.

If the variables are continuous, we categorize these problems as continuous optimization

problem. In contrast, if all or a subset of these variables are discrete, the category of the

optimization problem is called discrete [169]. In this dissertation, we use only discrete

binary and integer variables. Consequently, the main focus of this study is on a speci�c

subset of combinatorial discrete optimization problems.

In this context, the solution search space (U) is created from a �nite ground set

E. Thus, in combinatorial optimization, S ⊆ 2E where 2E de�nes all combinations (the

set of all subsets) of E. If ∣E∣ is large, enumerating all combinations is intractable. The

phenomenon is called combinatorial explosion. Thus, U and S are always implicitly de�ned

within the description of a combinatorial optimization problem.

16



De�nition 2. Combinatorial Optimization Problem [213]: An instance I of a combinato-

rial optimization problem (COP) is de�ned as a tuple ⟨U,P, f, o⟩ where:

� U is the solution space on which S and f are de�ned.

� P is the feasibility predicate, i.e. for any solution s ∈ S, s ∈ U and s satis�es P .

� f ∶ U → R.

� o is optimization (extremum) goal usually de�ned as minimization or maximization.

Combinatorial optimization deals with a set of predicates (often represented through equa-

tions and/or inequations), whereby a number of feasible solutions (S) in U are delimited.

S is discrete or can be reduced to discrete. Thus, the optimization determines a global

optimal solution s∗ ∈ S where s∗ satis�es P and f(s∗) meets the optimization objective.

It is also worthy to note that each COP includes a corresponding decision problem where

the function f(. . . ) only evaluates feasibility of the solution. In a canonical form, COP

can also be modeled as follows:

minimize f(x) (2.1)

Subject to: gi(x) ≤ 0 for each i ∈ {1, . . . ,m} (2.2)

hj(x) = 0 for each j ∈ {1, . . . , p} (2.3)

x ∈X. (2.4)

In this model, the requirements (predicates) are expressed (programmed) through a number

of equations and inequations (see Eq.s (2.2) and (2.3)). Given a set of variables xi ∈ X

and their corresponding coe�cients ai ∈ R, if f(x), gi(x) and hj(x) can be represented as

∑
i
aixi + b then it suggests that the requirements can be expressed in linear relationship

and S is bounded by a polyhedron. In mathematical programming, such a programming

method is called linear programming. Otherwise, the programming method is termed as

non-linear. In this thesis, we mainly deal with linear programming to model our problems.

Also, we consider discrete variables i.e. X represents binary ({0,1}) or integer (I) numbers.

The corresponding modeling technique is known as Integer Linear Programming (ILP).

17



In order to design solution algorithm for any COP instance, we �rst need to ascertain

the characteristics of the solution set S. In this respect, we study the convexity of the

polyhedron that S is bounded with (in case of a linear programming model).

De�nition 3. Convex Optimization [31]: An instance of an optimization problem is convex

if a convex objective function minimizes over a convex set of solutions (S) within a solution

space where:

� All constraint functions (e.g. gi in Eq. (2.2) and hj in Eq. (2.3)) are convex, and

� For any two solutions s, s′ ∈ S, f(αs+(1−α)s′) ≤ αf(s)+(1−α)f(s′) where α ∈ [0,1],

The �rst condition ensures that S is de�ned as a bounded space in U . Therefore, if we

consider s, s′ are two points in S, the convex set guarantees that a solution represented by

αs + (1 − α)s′ also belongs to S. In other words, all the points in a straight line between

any two elements of S also belongs to S. Since the objective function f (f ∶ U → R)

maps every member of U to the co-domain of a real-valued function, it is important that

f is also continuously de�ned for all solutions represented by αs + (1 − α)s′. Thus, it

ensures the existence of a solution. Furthermore, f is convex as identi�ed from the second

condition. It helps to �nd a global minimum value by comparing local minimum solutions

over di�erent subset of solutions while covering the search space. This guarantees that the

use of distributed/collaborative methods can solve certain types of convex optimization

problems. It also allows de�ning a set of necessary and su�cient conditions to explore

the solution search space [31]. In general, f can be linear, quadratic or even exponential

function. However, we only address f as a linear function as a part of an ILP. Thus, all

our discussed optimization problems are convex.

The computation complexity of any mathematical problem is always compared

through the mathematical computation model of an abstract Turing machine1 . A large

number of discrete COP can be solved and veri�ed in polynomial time using a deterministic

Turing machine [201]. From the perspective of computation complexity theory, these are

classi�ed as P. Alternatively, there exists another subclass of discrete COP, namely NP,

where only the veri�cation of the solution of its members can be performed in polynomial
1https://courses.engr.illinois.edu/cs498374/notes/38-nondet-tms.pdf

18

https://courses.engr.illinois.edu/cs498374/notes/38-nondet-tms.pdf


time using a deterministic or non-deterministic Turing machine. In Mathematics, relation

between P and NP is a major unsolved problem. We assume P ≠ NP in similarity to

previous research e�orts. Intuitively, NP is a set of decision problems. Beyond NP, there

exists another fundamental class of problems that can be at least as hard as NP to solve

or even harder. It is not necessary that their solutions can be veri�ed in polynomial time

even using a non-deterministic Turing machine. These are termed as NP-Hard problems.

Among these NP-Hard problems, if a problem is computationally NP-Hard for solution

generation but their solutions can be veri�ed in polynomial time, this sub-class of NP-

Hard problems is known to be NP-Complete. In this thesis, we deal with the discrete

COPs where the computation complexity of their solution generation is generally NP-

Hard. In order to prove such claim, we relate each of our problems to a known COP where

computation complexity of solution generation is NP-Hard. Majority of the supply chain

planning and monitoring optimization functions are typically associated to the following:

� Cost Minimization: Cost reduction is a common objective for a majority of decision

problems [102, 103].

� Delay Minimization: Faster deployment, rapid sustenance and quick stock replenish-

ment require delay minimization [147].

� Risk Minimization: Risk minimization is often considered vital while transporting

supplies in a hostile environment [208].

� Communication Minimization: Communication minimization in planning is impor-

tant in remote or hostile territories [175] and for sensor networks. For the latter,

communication minimization o�ers longer life of the sensors and relay nodes [22].

� Computation Minimization: Execution management systems with elaborated moni-

toring components require time-bound response generation, therefore monitoring can

be presented as an optimization problem under time constraints.

� Energy Consumption Minimization: Minimization in energy consumption is impor-

tant for the endurance of the sensor network, RFID technologies where the deployed

in-�eld instruments have limited source of energy [27].

19



� Path-Coverage Maximization: Supply chain management and surveillance problems

also seek to maximize path-coverage to achieve maximum coverage within the limi-

tation of constrained resources (e.g. fuel).

� Accuracy Maximization: Action planning requires accuracy maximization when con-

ducting supply chain operations within speci�c time-windows.

In practice, optimization functions are often designed with multiple criteria of di�erent

weight or importance according to the preference(s) of the decision maker(s). Moreover,

optimization problems over SCN are subjected to a set of typical constraints such as:

� Budget Constraint : Budget is one of the most common constraints for optimization

problems. It is usually represented through monetary cost, energy, etc.

� Resource Constraint : Planning and execution monitoring take place based on limited

resources in terms of assets, sensors, etc.

� Demand Constraint : Supply chain planning should respect demand ful�llment of the

customer needs. This often puts restrictions on mission planning.

� Capacity Constraint : Plans are executed via agents (e.g. transport vehicles, person-

nel, etc.) which have limited carrying capacity.

� Temporal Constraint : Decision making and task execution are often required to take

place within a corresponding time bound.

� Spatial Constraint : The task execution is also constrained from geographic features

(e.g. rivers, lakes, etc.) and spatially dispersed hazards.

� Communication Constraint : Supply chain planning may require radio silence to pre-

vent detection and conserve energy. In sensor networks, sensor-communications are

typically limited in a range.

In this thesis, we �rst discuss route planning. The focus is on cost optimization over

commodity delivery to a set of customers by a set of vehicles, from one or many depots

over a transport network. The transport network is characterized by a graph where each

20



node represents a customer or a depot and a directed edge between any two nodes denote a

traversal path between them with a deterministic cost. The constraints to the route planing

involve resource constraints, demand constraints and capacity constraints. Alongside, we

also discuss monitor deployment problem which involves energy minimization under budget

and monitoring resource constraints. In the case of execution monitoring, we further study

association among co-occurring events under memory and time constraints.

2.1.2 Near-Optimal Solution

Every combinatorial optimization problem has a corresponding decision problem which

evaluates if a solution is feasible given the problem constraints. A massive number of fea-

sible solutions may exist for a large-scale instance of an optimization problem where each

solution satis�es the constraints. Thus, tracing an optimal solution for such an instance is

challenging. As discussed, if the optimization problem is NP-Hard, exhaustive veri�cation

of all feasible solutions is often intractable. In such cases, approximate algorithms are used

to deal with the complexity of these problems. An approximation algorithm generates so-

lutions within a reasonable amount of time that respects all constraints of the optimization

problem but often does not guarantee the quality of the solution against the true optimal

solution the problem instance. In a minimization problem, the evaluation of the objective

function f over the near-optimal solution sno has higher value than that of the optimal

solution s∗, i.e. f(s∗) ≤ f(sno); given s∗, sno ∈ S. Similarly, for a maximization problem,

f(s∗) ≥ f(sno); given s∗, sno ∈ S. So, we de�ne near-optimal solution of an optimization

problem as follows:

De�nition 4. Near-Optimal Solution [31]: Given a prede�ned ratio: gap, a solution sno

of an optimization problem instance is near-optimal if and only if:

� sno satis�es all constraint functions and

�

∣∣f(sno)−f(s∗)∣∣
f(sno)

≤ gap where f is the objective (or cost) function of the problem

Therefore, a speci�c problem instance may have a range of solutions that are near-optimal.

Among them, a smaller value of ∣∣f(s
no)−f(s∗)∣∣
f(sno)

indicates better solution quality. Thus, it

21



serves as a metric to compare approximate algorithms based on solution accuracy. However,

in literature, value of optimal solution is unknown for many benchmark problem instances.

In this thesis, as we tackle the minimization problems, f(s∗) is replaced with the best

known solution value as f(sno)−f(sbestknown)

f(sno)
in order to compute a near-optimal solution.

Correspondingly, a negative value of the fraction indicates the �nding of a better solution

than previously best known solution.

2.1.3 Collaborative Optimization

Collaborative solution generation for optimization problems allows participants to jointly

conduct optimization procedure in the form of distributed sub-problems. Smith and Davis

pointed out that the distributed problem solving di�ers from distributed processing [207].

A typical assumption in distributed problem solving relates to having a high degree of

group coherence [70]. This depends on decision makers' willingness and capability to work

together towards a common goal. In some cases, a su�ciently e�ective payo� scheme can

also be designed for self-interested decision makers to join a collaborative e�ort [41, 156].

Thus, all participants help solving an original problem with a common objective using

their limited resources. Distributed participants may also require to declare partial results

from their shared tasks as computed using decentralized algorithms. These �ndings are

communicated mainly to agree upon a current solution. The task sharing or task passing

strategy is often discussed in four steps in the research literature [19]:

� Task Decomposition: This involves decomposing a large task into sub-tasks that can

be tackled by or passed to di�erent participants.

� Task Allocation: This involves assigning tasks/sub-tasks to appropriate participants.

� Task Accomplishment : Tasked participants proceed to accomplish their assignments,

which may include further decomposition and sub-sub-task assignment recursively to

the point that an agent can directly execute its task.

� Result Synthesis: Once an agent accomplishes its sub-task, it passes the result to an

appropriate agent that is able to compose partial results. The recipients compose

the results toward an overall solution in an iterative manner.

22



Therefore, distributed planning is tightly intertwined with the distributed problem solving,

being both a problem in itself and the means to solve a problem [70]. Decomposition of

tasks requires e�cient handling of available resources. In this respect, the distributed

solvers may be hosted by the participants who are often dissimilar in terms of knowledge,

capability (e.g. asset), information, expertise, etc. which results into heterogeneous sub-

task creation. In research literature, these constraints are termed as group competence.

Data synchronization plays another major role in sharing necessary information among

the distributed solvers [192]. In this thesis, we focus on the decomposition of speci�c

optimization problems in order to solve them in collaborative distributed setting. It should

be also noted that, due to limited knowledge, there exists a degree of stochastic uncertainty

in decision making from the side of participants. An e�ective framework to express such

uncertainty as constraints in optimization is through chance constraint [174].

De�nition 5. Chance Constraint Optimization [129, 167]: In canonical form, a chance

constraint optimization can be modeled as:

minimize f(x, ξ) (2.5)

Subject to: g(x, ξ) = 0 (2.6)

Pr(h(x, ξ) ≥ 0) ≥ pr (2.7)

x ∈X. (2.8)

where f , g and h represent the objective function, equality constraints and inequality con-

straints respectively. x ∈ X is a vector of decision variables and ξ denotes the vector of

uncertainty (random) variables. pr ∈ [0,1] represents the probability threshold.

Li et al. categorized chance constraint optimization problems based on optimization pro-

cess, uncertainties and constraints [140]. The optimization process can be linear or non-

linear while remaining in steady or dynamic state. The uncertainty can be modeled as

constant or time-dependent while the constraints can be individual or joint. They are

denoted using the �rst letter. For example, a linear optimization process at dynamic state

23



with constant uncertainty and joint chance constraint is referred as LDCS problem. In de-

centralized setting of P decision makers, if the probability over the inequality constraints

can be distributed per participant, then, Pr(h(x, ξ) ≥ 0) ≥ pr can be reformulated as

Pr(hp(x, ξ) ≥ 0) ≥ prp; ∀p ∈ P . In the case of individual chance constraint, each decision

maker requires satisfying individual constraint(s) to a certain probability threshold. How-

ever, for a majority of collaborative optimization problems, the chance constraint is jointly

de�ned where the probability is set over common decision making of all participants. Joint

chance constraint is formulated as:

Pr
⎛

⎝
⋀
p∈P

hp(x, ξ) ≥ 0
⎞

⎠
≥ pr (2.9)

In collaborative optimization, uncertainties are generated by the participants. It is assumed

that these participants perform individually without any consultation or dependence over

the action(s) of others. Thus, the uncertainty variables are uncorrelated. Normal (Gaus-

sian) distribution is often used as an adequate assumption to model such uncertainty [140].

Also, each objective function of our optimization problems (see. Section 1.2) is expected

to be a deterministic function that minimizes a quanti�er such as: routing cost, energy

consumption, etc. If such an objective function is also linear, then all our collaborative

optimization models optimize a deterministic convex objective f(x) instead of f(x, ξ) as

mentioned in Eq. (2.5). Furthermore, in this thesis, we only handle linear constraints for

all our optimization problems. Thus, we expect h(x, ξ) as a set of randomly perturbed

linear constraints which means that the decision variables and the random variables can be

decoupled. Finally, we treat the joint chance constraint in terms of risk. Let R be the total

risk bound of all participants to fail satisfying any optimization constraint. Then, we treat

a linear joint chance constraint as Pr( ⋀
p∈P

hTp ⋅ xp ≤ g) ≥ 1 −R. The superscript T denotes

transpose of a matrix. Many researchers analyzed the value of R to be (0 < R < 0.5] for

the convexity of the constraints [167, 174]. Nemirovski and Shapiro described this com-

putability of the probability and the convexity of the corresponding feasible set as a �rare

commodity� in majority of the chance constraint optimization problems [140]. Campi and

Garatti discussed feasibility and optimality of the chance-constrained optimization using

24



randomization [37]. In Chapters 4 and 5, we particularly follow a �nite-horizon optimal

control technique, as discussed by Ono and Williams [174]. We jointly optimize a dy-

namic chance constrained optimization problem and generate computationally tractable

near-optimal solutions by iterative reduction of risk. Our interest lies in addressing con-

vex collaboration problems. Finite-horizon optimal control technique considers two sets of

decision variables, namely control variables (X ) and state variables (U). The control vari-

ables are evaluates at every state of the system. For a �nite number of iterations (τ), the

technique computes values for control variables at each iteration while satisfying all state

and control constraints. State variables describe the mathematical state of the dynamic

chance-constrained optimization problem itself. A typical dependency of state variables is

as follows:

ut+1 = A ⋅ ut +B ⋅ xt +E ⋅ ωt (2.10)

where, state vector ut+1 is updated from its previous corresponding state vector ut. xt is

a control variable. ωt denotes an additive disturbance at step t. A, B and E are user

chosen constants. The process seeks minimizing or maximizing the control variables at

each step. In this setting, collaborative decision making requires decomposition, allocation,

accomplishment and synthesis of the tasks. Among these, task accomplishment requires

task speci�c activities. In progression of this thesis, we discuss a generic procedure of task

decomposition, allocation and synthesis in the view of �nite-horizon optimal control [173].

� Risk Decomposition: First, it should be noted that, in collaborative setup of P par-

ticipants, chance constraint in �nite-horizon optimal control depends on the state

variables. The values of the control variables are determined at every step while the

mathematical state of the iterative collaboration is only held by the state variables.

Based on this, we reformulate the chance constraint in the presence of N constraints

and decompose the risk based on Boole's inequality i.e. Pr(⋃iAi) ≤ ∑i Pr(Ai) [174]:

25



⎛

⎝
Pr[ ⋀

p∈P
⋀
i∈N

hTip ⋅Ui ≤ gip] ≥ 1 −R
⎞

⎠
≤
⎛

⎝
∀(p∈P,i∈N), P r[hTip ⋅Ui ≤ gip] ≥ 1 − πip

⎞

⎠

(2.11)

Ui = [u
0T
i , . . . , utTi , uτTi ] denotes a set of variables of all state vectors for constraint

i ∈ N ranging from step t = 0 to t = τ . T denotes transpose matrix. πip is the

individual risk bound of participant p on constraint i (πip ≥ 0 and ∑
i∈N
∑
p∈P

πip ≤ R).

� Risk Allocation: To allocate individual risk bound for each participant, �nite-horizon

optimal control technique uses an inverse cumulative distribution function over an

uni-variate distribution of risk, identi�ed by −mip(πip). Ono and Williams de-

�ned this function as convex and monotonically decreasing non-negative function for

πip ∈ (0,0.5] and formulated it accordingly [173, 174]. This function helps allocating

the individual chance constraints of decomposed risks as presented in Eq. (2.11). It

changes the individual chance constraint into inequations per participant using nom-

inal (expected) state of the state variables, represented by Up = [u
0T
p , . . . , utTp , uτTp ].

Thus, in e�ect, allows operating over expected state of the state variables removing

the dependence of the state variables over the additive disturbance as shown in Eq.

(2.12). In the collaborative setting of multiple participants and constraints, the risk

allocation can be performed in multiple iterations over a �nite horizon τ as follows:

ut+1p = Ap ⋅ u
t
p +Bp ⋅ x

t
p (2.12)

xtmin ≤ x
t
p ≤ x

t
max (2.13)

hTip ⋅Up ≤ gip −mip(πip) (2.14)

∑
i∈N

∑
p∈P

πip ≤ R (2.15)

In Eq. (2.12), utp is a vector representing a nominal state of state variables utp. Eq.

(2.13) limits the value of control variables. Over the set of state vectors ranging

from iteration 0 to τ , this approach reformulates and relaxes the chance constraints

over the expectation of a summation of indicator random variables (state vector)

as generated by Eq. (2.11). The newly formulated deterministic constraints in Eq.

26



(2.14) are based on the nominal state of the Up, measured as Up. Thus, the chance

constraints are relaxed into deterministic constraints. Eq. (2.14) also relates to the

failure of the whole system in case at least one participant fails to satisfy all the state

constraints.

� Result Synthesis: The aforementioned risk allocation can be formulated in a decen-

tralized collaborative optimization problem for each participant p ∈ P as follows:

minimize fp(Xp) + ρ∑
i∈N

πip,∀p ∈ P (2.16)

Subject to: ut+1p = Ad ⋅ u
t
p +Bp ⋅ x

t
p ∀t = [0, ..., τ − 1] (2.17)

xtmin ≤ x
t
p ≤ x

t
max ∀p ∈ P, t = [0, ..., τ − 1] (2.18)

hTip ⋅Ui ≤ gip −mip(πip) ∀i ∈ N, ∀p ∈ P (2.19)

Finally, this approach allows treating the allocation of risks from joint constraint

in Eq. (2.15) as a part of the optimization objective itself. Based on a centrally

de�ned value of constant ρ, the iterative approach aims at minimizing individual risk

for each constraint. ρ is termed as �price of risk� [174]. The modeling essentially

reformulates the bounded risk into a form of penalty over the minimization. However,

this unbounds the individual risk over the modeling approach. Thus, the individual

participant takes an amount of risk based on the value of ρ. Ono and Williams

proved that the amount of risk depends on a single-valued, continuous, monotonically

decreasing function mip(πip) as shown in Eq. (2.19). They also showed that the

generic decentralized optimization problem, as presented in Eq.s (2.16)-(2.19), has

an optimal solution. This solution also satis�es all constraints ranging from Eq.s

(2.12)-(2.15) including the limit over the probability of failure de�ned by Eq. (2.15).

27



2.1.4 Classi�cation of our Research Problems

In this dissertation, we investigate a collaborative commodity delivery setup where multiple

participants engage in operating vehicles from multiple depots (possibly owned by di�er-

ent organizations), sharing delivery of customer demands, and distributing computation

load of the route generation process. Furthermore, we discuss a collaborative information

monitoring framework whereby distributed decision makers can participate in monitor de-

ployment in supply chain and track task execution using the sensor generated data stream.

The network of supply chain involves �ow of products from producers/distributors to cus-

tomers. Such a network consists of physical locations and traversal paths among these

locations. Formally, these locations can be represented as vertices of a graph while the

directed edges between the vertices stand for the traversal paths (arcs) among locations.

Thus, we assume the transport network of SCN as a complete directed graph where a direct

edge (arc) exists between every two nodes. Therefore, in route planning for commodity

delivery and monitor deployment within SCN, the number of feasible solutions increases

in terms of combinatorics (such as sets, subsets, combinations or permutations) with the

insertion of node(s) in network. In addition, the aforementioned problems deal with the

optimization of di�erent quanti�ers (e.g. cost) over the SCN under a number of constraints.

For example, route planning typically deals with cost optimization over commodity deliv-

ery to a set of customers by a set of vehicles, from one or many depots over a transport

network. The constraints ensure serving every customer with limited vehicle capacity while

vehicles are tasked through a tour from a depot. Similarly, monitor deployment also re-

quires minimization of energy consumption while constrained by the limited budget. We

consider that execution monitors deploy additional devices to collect and process such re-

layed data and deliver information to distant decision makers. Such a monitor deployment

incurs setup and security cost. Limited budget places constraints on the number of de-

ployed monitoring facilities (or monitors). Thus, it is also a Combinatorial Optimization

Problem (COP). On the other hand, information monitoring is used to provide statistical

interpretation on the current state of the executing processes. This statistics is generated

by monitoring and control functions [245] by using well-chosen process parameters (also

called global aggregates [244]). An increased number of parameters along with the faster

28



data collection may represent the current state of the work-�ow process more accurately.

However, huge amount of data processing diminishes punctual situation awareness due

to bounded memory and computing power. Therefore, the classical monitoring objective

can be also characterized as an optimization trade-o� between timely response and exten-

sive data gathering. The computational complexity of COPs depends on the underlying

network. Given the characteristics of our problems and SCN, the solution generation of

these problems require handling of COP where the computational complexity of optimal

solution generation is NP-Hard. Multiple previous research articles have discussed on the

NP-Hard computation complexity for the class and variants of our problems. Optimal

solution generation for these problems requires exhaustive search in the solution space and

evaluation of every feasible solution. This makes the optimal solution generation intractable

for problem instances having large number of nodes in a complete network. Near-optimal

solution generation techniques for NP-Hard problems include greedy methods, branch and

bound heuristic, primal-dual heuristic, dual descent heuristic, node partitioning and substi-

tution, techniques, etc. The other class of programming techniques involve meta-heuristic

such as Ant Colony optimization, Evolutionary Algorithms, etc. where a population of

solutions continuously adapt/mutate to form better solutions. Distributed problem solv-

ing for optimization problems depends on the result sharing or the problem sharing. In

result sharing, participants solve the same problem but attain di�erent results based on

di�erent solution search criteria. Such result sharing approaches are instrumental in re-

solving high computational load and risk mitigation of central decision making. However,

decision makers are sometimes restricted from sharing complete problem input with oth-

ers due to organizational policy and security constraints. In such setting, the distributed

solution techniques require dividing a central problem into multiple sub-problems among

the participating decision makers and sharing computational loads based on treating the

sub-problems in their respective domains [195, 209]. In both cases, sharing policies may

impose no communication, partial communication or full communication of participating

entities [88]. Also, participants may access a common repository in the network to store

the results for evaluation purposes.

29



2.2 Literature Review

We review the existing research and development e�orts on vehicle routing for commodity

delivery, monitor deployment and event monitoring to illustrate the gap between the state-

of-the-art and our proposed collaborative solution generation techniques for these problems.

2.2.1 Collaborative Vehicle Routing

In general, coordination of the vehicle routing is performed considering proximity among

geographically located areas. Commodity delivery is particularly planned from one or more

coordinating center(s). In the past, large scale commodity delivery plans were mostly pre-

pared by applying transport network partitioning [77] and vehicle routing [228] in sequence.

In such multi-stage approach, network partitioning helps choosing facility locations and di-

viding SCN at the �rst stage. Then, in the latter stage, VRP variants are solved (near)

optimally to deliver commodities over a set of sub-networks where each sub-network has

smaller size than the original SCN. So, they are often referred as �cluster-�rst, route-second�

approach in literature [196].

Problem Elaboration

The transport network partitioning problem belongs to the more general graph partitioning

problem class where the objective is to approximately partition a graph into clusters having

least number of interconnections among each other. This, in essence, corresponds to the

workload distribution. The graph partitioning problem is known to be NP-complete [77].

Thus, there is no general tractable procedure that would allow e�ciently performing the

optimal graph partitioning for large problem instances. Nonetheless, speci�c approaches

allow using graph partitioning for the geographical information systems, telecommunication

networks, clustering, image processing, and many other areas [126, 172, 200], including

operations research. This has resulted to the development of heuristic methodologies [113]

that show the application of partitioning techniques using contiguous geographic clustering

by network route segmentation. Many algorithms for network partitioning exist in the

literature, such as K-Means clustering [119], DB-Scan algorithm, shortest path algorithms

30



[13], etc. However, an important limitation of the �cluster-�rst, route-second� approach

stems from the fact that the optimal locations for depots as obtained by partitioning at

the strategic level do not always optimize the cost at the operational level since the depot

locations are generally chosen without considering the potential routing cost. Salhi and

Rand [196] showed that the best solutions for facility locations obtained in �rst stage

do not necessarily lead to the lowest cost solution at the routing stage. VRP aims at

commodity delivery to a set of customers by a set of vehicles, from one or many depots over

a transport network characterized by a full mesh graph. However, VRP models deal with

the routing issues only from pre-established depots. The usual solution consists in a route

for each vehicle that begins and ends at the same depot. Dantzig and Ramser [57] formally

introduced the vehicle routing problem in their pioneering work on truck dispatching. VRP

entails combinatorial optimization to reach optimal routing cost solution. In 2002, Toth

and Vigo elaborated an extensive classi�cation of VRP family [228]. Subsequently, Golden

et al. documented the more recent advancements of the last decade [91]. The vehicle

routing problem can be mainly classi�ed into static and dynamic VRP. The static vehicle

routing problem is often extended in several directions, namely: Distance Constrained

VRP (DCVRP), VRP with Back Haul (VRPB) VRP with Pickup and delivery (VRPPD),

VRP with Time-Window (VRPTW), etc. [91, 228]. The dynamic counterpart of the

conventional VRP, commonly known as DVRP, focuses on the open-ended, time-dependent

policies that focuses on the evolution of the routes as a function of inputs that evolve in

real-time [229]. DVRP can be subjected to constraints with respect to quality, availability

and processing of information, etc. Many variants also include probability (for example:

Probabilistic TSP, Probabilistic VRP), apriori optimization (for example: APriori DTSP)

and stochastic event occurrences. The vehicle is often considered uncapacitated. The

DVRP problem is also modeled as a dynamic version of the VRP with time-windows.

In this thesis, we focus on a variant of a static capacitated-VRP (CVRP) which

involves delivering commodities to customers from multiple depots using vehciles with

limited capacity to carry commodities. However, unlike CVRP, we consider serving com-

modities to a customer nodes by multiple vehicles. In CVRP, demand of each customer

node is served by single vehicle. It involves an additional bin packing problem, which is

31



needed to be solved along with the routing in order to optimally use the available capacity

of the vehicles and optimally serve the customers. To avert such limitation, we investi-

gated Split-Delivery Vehicle Routing Problem (SDVRP). Like CVRP, SDVRP also aims

at minimizing the total travel cost for commodity delivery but it allows to serve individual

customer demand by more than one vehicle. Therefore, SDVRP instances observe relaxed

bin-packing constraints and a feasible solution always exists if the overall customer de-

mand is less or equal to the overall vehicle capacity available. The concept of split-delivery

was �rst introduced by Dror and Trudeau [69] and later further elaborated by Archetti

and Speranza [17]. Archetti et al. [18] recently published a survey on the progress in

SDVRP where the bene�ts of shared delivery are illustrated on various problem instances.

In computation theory, CVRP and SDVRP are both expressed as a linear optimization

problem with several constraints represented through linear equations and inequalities. In

this respect, most of the problem models adopt Vehicle Flow Model, Commodity Flow

Model or Set Partitioning Model [228]. However, an important limitation of SDVRP is the

availability of the single depot.

A collaborative setting needs to overcome the limitation of SDVRP by allowing ser-

vice from multiple depots through a collaborative platform. The Multi-Depot Vehicle

Routing Problem (MDVRP) was introduced in 1972 by two separate research e�orts. Till-

man and Cain [227] published an article on multiple terminal scheduling problem while

Wren and Holliday [12] published another similar article on scheduling vehicles from multi-

ple depots. An important sub-problem in this regard is also to identify locations for these

depots. Only a few research initiatives aims to model the location allocation and routing

problem together [179]. This problem category is known as Location Routing Problems

(LRP). It involves determining the depots and routes for the optimal number of vehicles

to reach customers. Jossef Perl [187] �rst introduced the multi-depot routing allocation

problem. Although LRP problem de�nition is elaborated, previous works have key model-

ing limitations such as candidate depots being often prede�ned, each depot is assumed to

have one vehicle, etc. Moreover, LRP precludes shared delivery of customer demand at a

node. Toward this end, we intend to incorporate idea from the Location Routing Problem

(LRP) [179] for shared commodity delivery which combines the location allocation and the

32



vehicle routing. This involves determining depots and routes for a �xed number of vehicles

to serve customers.

Recently, Gulczynski et al. [100] investigated a version of Multi-Depot Split-Delivery

Vehicle Routing Problem (MDSDVRP) by extending SDVRP. Their work relates to our

problem to some extent. The authors o�ered a mixed integer programming optimization

model which addresses route cost minimization by applying split delivery among vehicles

from the same or di�erent depots. However, the employed approach is multi-stage as it �rst

considers an assignment of customers to the depots using a distance based approximation,

then solves the split-delivery VRP for each depot. Thereafter, further improvements are

pursued by creating inter depot routes.

However, in MDSDVRP, the decision makers rely on a centralized planning. In this

setting, a decision making center is required to have all input information to solve the

problem. Furthermore, the center becomes solely responsible to solve the problem as a

whole. Therefore, it is expected to have control over all assets (e.g. task executing par-

ticipants/vehicles). In a business coalition, the centralized approach imposes signi�cant

limitation and often violates intelligence gathering, knowledge sharing, privacy preservation

policies, etc. Moreover, as these problems are NP-Hard, solution generation for medium

and large problems often turns memory and time consuming. In this regard, collaborative

planning and solution generation o�er an important alternative for collaborative opera-

tion management in several sectors ranging from humanitarian aid distribution to �eet

management in transport operations where joint solution generation is vital. Furthermore,

decentralization eliminates the single point of failure and allows distributed self-organizing

decision makers to pursue speci�c goal(s) based on their capabilities while aiming toward

overall e�ciency. In this approach, the computation loads of the decision makers also

become smaller in compare with the centralized solution generation procedure. However,

complete decentralization of vehicle routing problem is subjected to some critical challenges

from the algorithmic and knowledge sharing perspectives. Figure 2.1 depicts the classi�-

cation of collaborative vehicle routing problems. In distributed solving of the optimization

problems, decentralization can be achieved through result sharing [19, 210] and/or problem

sharing [195, 209].

33



Figure 2.1: Classi�cation of collaborative vehicle routing problems

Solution Generation

As the emerging technologies are unfolding newer possibilities for the organizations, re-

sponsibilities of mission planners and decision makers are signi�cantly extending almost

on yearly basis. Overwhelming data, coming from sensor networks, equipment and person-

nel, is raising a serious challenge in pursuit of getting the most bene�t in proper decision

making and situation awareness assessment. Additionally, global challenges, �scal restric-

tions and lack of expertise in new emerging technologies are also forcing decision makers

to consider distributed setting of problem solving by collaborating with partners and other

stakeholders. Thus, an automated distributed decision-support framework with distributed

information processing, planning and monitoring is a necessity to conduct future business

operations e�ectively.

VRPs represent a well studied class of NP-Hard problems [228] where analytic solu-

tion techniques, such as branch and bound [91], are intractable for medium and large scale

problems. In such cases, solution generation requires various supervised solution search

procedures such as: heuristic and meta-heuristic algorithms. They are commonly used

to �nd the near-optimal solutions for NP-Hard problems [97]. Heuristic methodologies

usually involve a directed search procedure based on knowledge gathering. Meta-heuristic

34



algorithm generally involves comparing and iterative enhancing of candidate solutions with

respect to a de�ned quality function measure. Some examples of these search techniques

are Tabu Search [86], Ant Colony [158], Genetic Algorithms [107], etc.

The problem and solution generation of vehicle routing and scheduling under various

logistics constraints have been investigated extensively [228]. In 1964, Clarke and Wright

[51] �rst introduced a heuristic for VRP by comparing possible cost saving in vehicle route

generation. Zhou et al. [262] used a genetic algorithm based approach for customer allo-

cation to their distribution centers. Heuristics and mathematical programming for cargo

loading were also studied in [97] and [20]. Concerning customer allocation, Chan and

Kumar [39] developed Ant Colony based meta-heuristic optimization for managing cus-

tomer demands. Ahuja et al. proposed mathematical programming based approaches for

planning fastest paths under dynamic tra�c conditions [8]. In similar context of logis-

tics planning for natural disasters, Ozdamar et al. presented an approach of planning in

emergency situation [178]. Yi and Kumar also used an Ant Colony based approach for

optimizing disaster relief operations [252].

In SDVRP, Archetti et al. showed that the SDVRP can be solved in polynomial time

if and only if common vehicle capacity (C) is 2 [18]. However, the problem becomes NP-

Hard for C > 2. Dror et al. described a local search algorithm based on speci�c SDVRP

properties [68]. Archetti et al. obtained improved results using Tabu search [17]. Chen et

al. also proposed a hybrid algorithm using the standard Clarke and Wright saving algo-

rithm in order to solve SDVRP. Gulczynski [101] combined a mixed integer programming

in conjunction with a variable length record-to-record travel algorithm to solve MDSDVRP

instances. Accompanying experimental results show the bene�ts obtained in traversal while

splitting the deliveries to the customers by vehicles starting from multiple depots.

However, in collaborative vehicles routing, decision making requires combinatorial

optimization. Dividing a decision problem into sub-problems is challenging from many

perspectives such as objective function, constraints, global knowledge, etc. To avoid such

challenges, previous researchers often used a centralized setting to aggregate input data

from the collaborators. Game theory was also studied to interact with self-interested

participants with an objective to determine the best strategy for every participant in

35



transportation over SCN and in resource pool fragmentation [247]. Martinez et al. [151]

published an incentive-based allocation to coordinate operations during aid distribution.

2.2.2 Collaborative Monitor Deployment

Information monitoring can provide valuable knowledge on the progress of the tasks and

task executing participants [29]. Ensuring continuous gathering of task-execution data is

also essential to attain high level supply chain visibility and enhanced situational awareness.

In this context, active Radio-Frequency Identi�cation (a-RFID) sensors are used to tag

high-value items. These sensors transmit item related data to nearby readers that relay

collected information to distant monitor(s). Monitoring task execution over the SCN is

important in many activities. Lack of su�cient tracking capability often leads to missing

crucial assets [32] and even loss of human lives [239]. Moreover, remote RFID readers are

constrained by the on-board power supply and much of their energy is used to communicate

with the monitors. Multiple researchers have characterized the adverse impact of larger

communication distance on radio signal strength [146, 253].

Problem Elaboration

Monitor deployment and similar problems are well studied in sensor deployment [226],

network management [3], facility location [141] and object localization [248]. Detailed

classi�cation of these location problems has been discussed in previous articles [75, 76,

127]. Several monitor deployment problems are captured through a graph to represent the

underlying network in order to optimize path coverage [104], reduce energy consumption

[181], minimize deployment [94] and transportation cost [75] under various constraints.

Depending on the model and objective function, deployment locations are selected either on

vertices [75] or edges [104]. Over SCN, monitor deployment is usually performed on a subset

of vertices taking in consideration of aspects such as security and maintenance. Deployment

is also possible between two locations (e.g. road, railway, etc.). Since, our research e�ort

is mainly concerned about monitor deployment in transportation environment including

emergency situations such as disaster relief, in this dissertation, we focus on deploying

monitors over a subset of vertices. These vertices can also be treated as relay nodes with

36



limited source of energy as they are often established in remote places.

Monitor deployment on the vertices are usually categorized as an optimization prob-

lem derived from the classical mini-max Facility Location Problem (FLP) and p-Median

Problem (p number of facilities) [67]. FLP aims to minimize the total cost of facility

deployment and transport to facility nodes. These facilities can be capacitated or unca-

pacitated, based on their limitation in serving capacity. The transportation cost is also

optimized in the p-Median Problem while such a problem restricts the number of facilities

to a prede�ned number p.

In our setting, commodity delivery routes are already established. Therefore, given

a prede�ned routing for commodity delivery among sensor-equipped relay nodes, we in-

vestigate optimal locations for the monitors to minimize energy consumption in data com-

munication between monitors and relay nodes. In this setting, the monitors may serve a

number of relay nodes but their total deployment cost is restricted by the total budget.

In this context, the problem of collaborative monitor deployment relates to the op-

timal selection of monitor locations where the total budget is split among participants.

Thus, it is a distributed problem derived from the classical Facility Location Problem [75]

and p-Median Problem [141] which have NP-Hard complexity. In a centralized setting,

monitor deployment problems are addressed with known budget which simpli�es the for-

mulation. If the budget is distributed among the participants then the exact value of the

total budget is unknown to any participant. In this context, the formulation requires cou-

pling through a joint chance constraint [174] to limit the probability of constraint violation

by the participants.

In Section 5.3.3, we investigate collaborative monitor deployment to explore how

the distributed decision makers with individual budgets may collaborate to minimize the

weighted average energy consumption in the data communications.

Solution Generation

As the p-Median Problems and uncapacitated FLPs both belong to the class of NP-

Hard problems, The Heuristic or meta-heuristic techniques are extensively studied in the

literature to e�ciently solve the p-Median Problems and uncapacitated FLPs [75, 141,

37



218]. The p-median problem is often addressed using greedy approaches, node partitioning,

node substitution, branch and bound, primal-dual heuristic, meta-heuristic techniques,

etc. [212, 237]. Uncapacitated FLP is usually approached with the greedy algorithms,

branch and bound, dual descent heuristic and other programming techniques [67]. Farahani

et al. [75] and Laporte et al. [127] surveyed models, classi�cation and approximation

algorithms to solve various FLPs. Various approximation algorithms for such problems

have also been surveyed [203]. Otto, and Kókai [177] discussed an evolutionary algorithm

to solve p-median problem by generating a population of solutions which continuously

adapt/mutate to form better solutions. Rault et al. [191] elaborated sensor placement in

WSNs as Multi-Criteria Optimization and classi�ed related energy-conservation schemes.

An approximate centralized algorithm was proposed [141] to solve the facility location by

considering facilities near every customer node within a speci�ed distance followed by a

rounding technique to choose among a smaller set of solutions.

In our context, we need an automated collaborative negotiation mechanism toward

the near-optimal monitor deployment with individual budgets. Thus, we prefer a prob-

lem speci�c heuristic approach that can be locally used by the collaborative participants

to reach a common near-optimal solution. For larger problems, heuristics can provide

better solution quality than the greedy algorithms and partitioning techniques. However,

heuristics have intrinsic limitation in guaranteeing solution quality. Recently, Shi Li [141]

has published an approximate centralized algorithm to address facility location with a

theoretical guarantee for the solution quality.

On the other hand, energy consumption in communications has turned extremely

important with the revolution in RFID-based tracking since the RFID transmitter-receivers

(also called readers) host limited on-board power supplies [181]. Gong et al. [94] applied

Particle Swarm Optimization to remove redundant RFID readers for RFID tag coverage.

Tian et al. [226] addressed distributed network design of RFID middleware. Palensky and

Dietrich [181] discussed e�cient demand management of intelligent energy systems. He et

al. [105] analyzed how to quickly redeploy spare sensors in order to maintain high quality

sensing by replacing the unavailable sensors [105]. These strategies in sensor allocation

can be partially applied to monitor deployment problem [249]. A centralized solution for

38



localization problem was discussed by Xin et al. [246] which considered sensor assignment

for a set of targets based on their target localization performance. The authors proposed an

iterative sampling technique which is also useful for assigning relay nodes to the monitors

based on energy consumption. However, monitor deployment is a more complex problem

as the locations of the monitors are unknown. Moreover, if the budget is distributed among

the participants, additional negotiation becomes crucial to reach a collaborative decision.

In a collaborative setup, monitor deployment is seen as a joint responsibility of mul-

tiple stakeholders who negotiate on such facility deployment. Thus, the corresponding

models require addressing chance-constraint over the negotiations among decision mak-

ers to reach optimal monitor deployment. Only a small number of research e�orts have

addressed distributed solution generation for facility location problems. Anussornnitisarn

et al. [14] presented the decentralized control of cooperative and autonomous agents for

solving the distributed resource allocation problem. Pantazopoulos et al. [183] elaborated

a distributed service facility placement to support user demands over a data network. The

proposed heuristic locally computes partial solution (e.g. 1-median problem) and uses lo-

cal tra�c measurements to converge to a global solution. Smaragdakis et al. [206] also

proposed a distributed solution for the web-service facility location by migrating, adding,

or removing servers within a sub-network using local information about topology and de-

mand. The algorithm starts with an initial set of facilities and progressively converges

toward the �nal set of facilities while gradually converges to a near-optimal solution cost.

Partial solution computation involves selecting vertices by various sampling methods using

neighborhood search. The inclusion of neighbor vertices forms clusters around the initially

selected vertices. A typical problem in this regard lies in cluster convergence when a sub-

set of vertices in a cluster is latter found as better �tting into others. Gong et al. [93]

surveyed population-distributed models along with associated algorithms for distributed

evolutionary multi-objective optimization. In this case, every distributed process generates

a population of solutions which continuously adapt/mutate to form better solutions.

39



2.2.3 Collaborative Plan Execution Monitoring

An execution monitor observes the behavior of the task execution(s) and detects if the

execution(s) is consistent with the earlier planning of the tasks. Monitoring is studied with

planning as a four-step process [71, 87, 232]. First, it starts with modeling of task execution

�ow, plan execution environment and task �ow (projection, anticipation, perception, etc.)

expectation. Second, it performs observation by collecting information from the results of

actions, partial or complete state of the environment and qualitative/quantitative measure

of its impact over task �ow. Third, it conducts state evaluation to analyze discrepancy

between the expected and the actual states while forecasting possible and forthcoming

exogenous events. Thus, it learns inconsistencies in the current task �ow and asserts a

new estimate of (near) optimal performance for the executing plan in its current state.

Finally, it carries out plan repair based on preexisting template or decides for re-planning

if the execution does not meet the requirements. Monitoring is also used for learning

inconsistencies in the current task �ow. The scienti�c concept of monitoring and re-

planning was introduced by McCarthy in 1977 [154]. This work discusses the impossibility

of listing all preconditions in the execution environment to have its intended e�ect. Thus,

optimization plays a vital role in monitoring.

Networking and database research communities work extensively on e�cient monitor-

ing frameworks with a typical centralized Network Operations Center (NOC) [109] where

all the nodes send information. A relevant taxonomy is presented in [63] with respect to

the state-of-the-art in monitoring approaches and techniques. These approaches are of-

ten related to the speci�cation-languages, monitoring characteristic, and event-handlers.

The speci�cation-language de�nes properties to be monitored, abstraction level of the

speci�cation and the expressiveness (property type and monitoring level) of the language.

Monitored properties can be domain speci�c or category speci�c, such as plan and policy

constraints, action opportunities, adversarial activities, projections, contingency planning,

reporting requirements and system fault detections [240]. They can also be general-purpose

or domain agnostic, like safety, liveness, security, performance related properties, etc. [50].

The monitoring language uses algebra, automata and/or logic. Taxonomy can be

40



Figure 2.2: Classi�cation of Execution Monitors

found based on the common issues of monitoring systems such as the type of software tar-

geted by the monitoring system, the platform constraints, and code maturity level. They

can be collectively categorized as operational issues. Platform-wise, monitors can be cate-

gorized as software and hardware monitors [188]. A software-driven monitoring system uses

code to observe and analyze. Monitoring code can be embedded to perform in-line checking

which uses the resources of the monitored application. Conversely, monitoring can be also

performed externally where each monitor executes a separate thread, on the same or on

a di�erent machine. If the monitored application waits for the checking to be performed,

then the monitor is called synchronous, otherwise, it is asynchronous. From the perspective

of state, monitor falls into two categories: (i) o�ine- when the processing of the collected

data is performed after execution and (ii) online- when the monitor a�ects the execution of

processes to gather and process information. An o�ine monitor analyzes collected informa-

tion using a larger bu�er over accumulated historical data. The classi�cation may further

span over the source program type, dependencies, and the generational level. Speci�cally,

the source type is related to the type of programs on which the monitoring activities are

envisioned, including general-purpose, domain-speci�c, and category-speci�c monitoring.

Monitors are generally implemented in (i) single process environment- the monitor executes

41



in the same process as the target program, (ii) multi-threaded environment- the monitor

and target application are executing as separate threads on the same processor or (iii)

multiprocessor environment- the monitor and its target program are executed on di�erent

processors. Figure 2.2 depicts a classi�cation of the execution monitors.

Problem Elaboration

Given a set of objectives, the planning process generates a schedule for commodity delivery

tasks based on available amount for resources over the SCN. The execution of these tasks

often requires monitoring key plan parameters for their successful completion or adaptive

re-planning. As these tasks need to comply with certain dependencies and priorities to use

the available resources, during the plan execution, occurrence of exogenous events prompt

change(s) in the course of actions within the execution environment. Such events can be

stochastic in nature or may follow a particular pattern as discussed by Nicola et al. [61]

concerning the rate-based transition systems. An e�ective monitoring technique identi�es

the requirements, analyzes the impact and carefully design transparent and sound changes

for a subset of tasks such that the original task-dependencies remain una�ected with the

minimal impact over the planning objectives. Monitoring process may optimize the use of

resources in the planned schedule. More precisely, the roles of monitoring are: (i) to detect

discrepancies between the predictions/expectations and the observations, (ii) to assess and

diagnose these discrepancies, and (iii) to decide about the recovery actions in pursuit of

plan repair. Thus, monitoring requires verifying sub-goals, usability, correctness, etc. [233].

Monitoring can be active or passive.

An active monitor e�ectively intervenes to rearrange the courses of actions using

its available resources and available actions. Thus, an active monitor is aware of a set of

actions. Active monitoring, also termed as monitoring enforcement, relies on two abstract

principles to verify accuracy of its proposed mechanisms [142, 219], namely, soundness and

transparency. The monitoring mechanism is sound when it produces valid results that al-

ways satisfy desired plan properties and dependencies. The enforcement of the monitor is

transparent when it preserves the semantic validity for the executing plan. In such case, a

monitor should execute a sequence of tasks unaltered for a valid input task sequence. The

42



application of active monitoring of plan execution has been gaining momentum among

research communities in the last few decades. A survey of such monitoring techniques

is presented by Pettersson [189]. In 1998, De Giacomo et al. introduced a calculus for

monitoring execution [60]. Veloso et al. [233] introduced the concept of rationale based

monitoring that captures planning related information and creates alternative choices for

subtasks during plan execution. Fichtner et al. [78] developed Fluent Calculus to express

dynamic domains in �rst-order logic then this was later implemented as Flux [224]. Levine

[135] and Fritz et al. [83] also presented a general perspective of the active execution

monitoring. They identi�ed a number of monitored properties, such as: plan feasibility,

validity, optimality, etc., and de�ned them as predicates to verify before and after every

action [135]. Security researchers also monitor properties such safety, liveness, security,

performance, etc. [142, 205]. However, active monitors often try to analyze and enforce

properties without considering the presence of an untrusted execution environment that

may impact over the availability of resources (for example: edit automata [142]). Further-

more, monitors, as discussed in various research areas, mainly analyze history of previous

actions or events (such as: bounded-history automata) to intervene on the executing ac-

tion(s) [219]. Thus, in execution monitoring, we only trust the correctness of the executed

action sequences for the current schedule and intervene over actions that are currently fail-

ing or likely to fail in future. Modeling of execution environment is a challenging problem.

Initiatives have been found in modeling environment as an ambient [34, 114] that host an

executing process or as an interacting process that communicates with all plan execut-

ing processes. Nielson et al. elaborated it as a context [33] also. However, majority of

these previous research e�orts ignore the algorithmic complexities of the active monitoring

and repairing plan execution and also consider the intervention instantaneous. Table 2.1

presents a comparison of some of the aforementioned initiatives as well as other research

works.

A passive monitor observes important parameters of the execution process of a plan

and the status of the engaged resources. It identi�es discrepancies between the expected

and the actual values and generates alerts, if necessary, after a quick analysis. Monitoring

can be performed against either a known threshold, expected values of monitored variables

43



Table 2.1: Comparison of the highlighted articles on active monitoring

Articles ArchitectureTechnique Location
Allen et al. [11]
Al-shaer [9]
Fabre et al. [73]
Fritz et al. [82]
Lesser and Corkill [130]
Steven J. Levine [135]
Ligatti et al. [143]

Distributed
Distributed
Distributed
Centralized
Distributed
Centralized
Centralized

Correlation, Impact assessment and Messages
Logic-based Filtering
Petri-Net Unfolding
Action Theory and Situational Calculus
Knowledge-based Problem Solving
Algorithmic
Specialized automata

External
Inline
External
Inline
External
External
External

or over external events. In the �rst case, the monitor generates alerts when the value of

it objective function crosses a predetermined threshold [54]. Value monitoring refers to a

periodic tracking process to generate approximate values of the monitored parameters. On

the other hand, event-driven monitors actually track a dynamic behavior of a program or

work-�ow through event sequences. It is often called tracing. Tracing is a highly memory

consuming technique [10]. It noti�es simultaneous occurrences of events within a certain

time interval. Many frameworks implement it using periodic sampling technique with a

de�ned interval of time [109].

Alerts are used to express di�erent aspects of the monitored execution. For example,

Threshold Crossing Alert (TCA) are triggered while an observed value crosses a threshold

resulting from plan and policy constraints, action opportunities, adversarial activities,

projections, contingency planning, reporting requirements, etc. Alerts are often domain

speci�c [240] and susceptible to situation (context), dependency, relevance, reactivity and

geographic location. The dependency context is elaborated in [98] while reactivity and

its real-time related aspects are discussed in [163]. Francalanza et al. characterized the

interaction among agents to respond occurences of event(s) across location boundaries in

the absence of a global clock [80]. In this regard, interactive alert management during

a plan execution represents an interesting and challenging topic for response generation

during the course of action.

Our underpinning motivation for execution monitoring is to obtain a domain ag-

nostic and fast procedure to attain high situational awareness among the decision makers

with a competitive computation cost and minimal exchange of monitored data. We fo-

cus on external, passive monitoring of data-stream(s) generated by in-�eld sensors over

44



the SCN. Analysis of the data streams evolving from various systems has been researched

extensively [216]. The application areas include real-time stock monitoring for �nancial

applications [122], vehicle monitoring in roads [121], Chlorine monitoring in water streams

[184], vote monitoring for elections [176], intrusion detection in large information network

[148], weather and environment monitoring [85], etc. The mining of events from historical

data is common in literature in order to extract relations for predicting future data values

[125]. Association rule mining is one such powerful technique that can reveal interest-

ing correlations, frequent patterns, associations or casual structures between data in large

datasets [6]. In association rule mining, alert thresholds are set over (i) support: frequency

of events (or set of events) and (ii) con�dence: dependency or coexistence of a set of events

in presence of another set of events, in the captured sequence of data stream.

Event monitoring is often performed o�ine on large datasets [6]. However, plan

execution monitoring requires analyzing timed events from external sources. These events

comes in an orderly and timely manner within a shorter interval of time to exhibit patterns

and may produce valid alerts for presently executing plans [116]. Rajaraman and Ullman

have pointed out the core concerns over matching the speed of data stream and computation

complexity of the mining algorithm [190]. Their recommendation of in-memory single-pass

real-time processing has also been supported by Jiang and Gruenwald [116]. It is also

important to accurately analyze when a frequent event, also termed as itemset, turns

infrequent and vice-versa [49]. In Chapter 6, we consider processing distinct items from

the streams in a general form. We focus on incrementally maintaining association rules of

our interest within the limitation of computing resources (memory and time).

Monitoring also requires adjustable sensitivity (adaptivity) of the monitor to meet

the behavioral requirements during the execution of a plan. A common problem of this

setup is the frequent cascading alerts, as the unfolding events bring the execution further

away from expectations. Cai et al. [36] presented a practical system to illustrate the

feasibility of identifying alerts from data streams in a centralized scenario. A good number

of relevant research e�orts have been conducted in the literature on handling reactivity

during real-time response generation [163].

A full-scale collaborative plan execution monitoring requires decentralized collection

45



and/or mining of items. It needs partitioning of its requirements under the constraints of

information access, analysis procedures and sharing mechanisms. Such partitioning needs

(i) knowledge to carry out monitoring activities, (ii) information �ltering, (iii) diagnosis

techniques (e.g. identifying possible causes for detected discrepancies), (iv) recovery mech-

anisms (e.g. fast re-planing from current state) and (v) integration of monitoring process

with the plan execution (e.g. plan self-repair). A suitable distributed architecture with

robust design, e�cient algorithms and protocols may help end-to-end data gathering and

exchanging of information among the distributed nodes.

Solution Generation

The stream data capturing techniques depend on model, data structure, algorithms and

architecture. Usually, event stream mining is performed using landmark model, damped

model or sliding window [116]. In landmark model, data is captured from a de�ned point

of time also known as landmark. In damped model, higher weight is assigned to each new

transaction of the incoming data streams. The sliding window model evaluates a transaction

if it is among the recent τ transactions. The τ is called the window size [49]. In Section 6,

we consider a sliding window model for stream data mining to identify relationships among

recent events.

In this regard, we have investigated the suitability of On-Line Analytical Processing

(OLAP) and On-Line Analytical Mining (OLAM) for plan monitoring and re-planning.

Several articles have applied OLAP and OLAM based approaches in plan execution mon-

itoring and re-planning. Nguyen et al. [170] published an OLAP-oriented architecture

tailored for providing proactive and timely response to unexpected situations by sensing

and interpreting events in the environment. Furthermore, in the context of logistics, Hoa et

al. [106] presented a mixed OLAP approach to enhance logistics work-�ow. A data mining

approach for generating fastest paths on a large routing network has been published by

Awasthi et al. [23].

In data mining, rules are generated through a two phase technique. First, frequent

itemset mining extracts itemsets that meet a minimum support threshold in a dataset. In

its second phase, association rules are formed from the extracted frequent itemsets. Rules

46



can be �ltered afterward as per user requirements. Most commonly used algorithms are

A-priori [118, 243] and FP-Growth [215] algorithms. Several variants of these algorithms

exist to mine itemsets [47, 222], e.g. Direct Hashing and Pruning (DHP) algorithm, Fast

Distributed Mining (FDM) algorithm, etc. However, these algorithms have high compu-

tational complexity which limits their ability to handle data streams. The �rst frequent

itemset mining over a data stream was proposed by Manku and Motwani in 2002 [149].

Afterward, several itemset mining algorithms were published based on clustering, classi�ca-

tion, pattern mining, change detection, cube analysis, etc. [4]. However, researchers often

prefer using tree-based data structure to concisely mine itemsets e.g. FP-Tree [96, 215],

Pre�x tree [48], Decision tree [164], Hoe�ding tree [65], etc. Among these data structures,

Decision tree and Hoe�ding tree are used of data classi�cation and decision making pur-

poses. They can only produce approximate solutions where the solution quality largely

depends on stream characteristics and computational con�gurations. Pre�x tree and FP-

Tree may host stored events for actual association rule generation. Among them, pre�x

tree consumes larger memory to store necessary information. However, for exact solution

generation it performs better than FP-Tree during stream mining since latter keeps reor-

ganizing branches with the changing support for tree nodes (representing itemsets). Gaber

et al. [85] surveyed complexity of extracting reliable samples for di�erent item distribu-

tion characteristics in various data-based, task-based and mining based event capturing

algorithms over the stream data. Other mining approaches apply graph model [43], expo-

nential histogram [59], weighted feature vector [184], etc. Moreover, notable other research

works include tilted time window model [45], lossy counting approach [149], classi�cation

approaches [255], etc. Cheng et al. introduced semi-frequent closed itemsets to count sup-

port approximately [46]. Computation of the proper window size is also challenging for

large-scale data-stream mining [4]. Also, researchers emphasize on mining selective set of

important events such as Top-K monitoring [182] while handling a large volume of infor-

mation. The quality of approximate solutions is evaluated using cherno� bound [149, 255]

or other experimental measures [45].

Leung and Khan [133] proposed one of the �rst algorithms to mine frequent itemsets

from streams by batch using a canonical ordered pre�x tree to store transactions of the

47



current and previous window. Li and Lee [138] applied a bit-sequence to store items in

a sliding window. This technique is called as MFI-TransSW. Left bit-shifting is used to

add new transactions and remove the old ones, while �AND� operation extracts frequent

itemsets [138]. LDS algorithm [64] extends the concept by using three lists to store items

over the sliding window. The �rst and second lists store items that are respectively present

and absent in a transaction. The third list captures the occurrences of items as a bit-string.

Frequent itemsets are extracted from these lists, upon user request, using either Eclat[257],

dEclat [258] or bEclat [30] algorithms. The choice of algorithm depends on the properties

of these lists. Chi et al. [48] proposed Moment to mine closed frequent itemsets over a

sliding window. Moment stores transactions and closed frequent itemsets in an inverse

FP-Tree and a pre�x tree structure (namely CET) respectively. CET keeps boundary

nodes to address state changes such as: infrequent itemset becoming frequent and vice

versa. NewMoment [137] and TMoment [171] extend Moment using additional hash table

for easy update and quick query. A pre�x tree stores single items and their occurrences at

the �rst level. NewMoment represents the occurrences of the itemsets using a bit-string

while TMoment uses an integer array of transaction IDs. Child nodes hold closed frequent

itemsets and their support. Jiang and Gruenwald [115] proposed CFI-Stream to store all

itemsets in a pre�x tree from all transactions. Frequent itemsets are extracted upon user

request by applying minimum support threshold. Yen et al. [251] proposed CloStream over

sliding window. CloStream maintains two tables to store current transactions and items

separately along with a list of closed itemsets. QMINE [166] also uses similar tables but

the second table keeps a set of bit-vectors to track items of the �rst table. Using landmark

model, Li et al. [139] proposed DSM-FI which processes stream data by batch and stores

it in a pre�x tree. However, infrequent itemsets are periodically pruned from the tree.

Zhi-Jun et al. [261] divided frequent itemsets to equivalent classes. All classes of itemsets

and their borders are maintained in an enumeration tree. Liu et al. [145] also mined closed

frequent itemsets but stored potentially frequent itemsets of each batch in a pre�x tree.

Yu et al. [256] proposed an approximate frequent itemset mining algorithm using false-

negative values. Using a damped model, Chang and Lee [40] proposed estDec algorithm

to mine frequent itemsets from stream. estDec holds potentially frequent itemsets (of the

48



near-future) in a lexicographic tree with weight values assigned to each node. Additionally,

Woo and Lee [242] extended estDec to EstMax algorithm that mines maximal frequent

itemsets. Leung and Jiang [132] mined frequent itemsets and stored them in an FP-Tree

like data structure. An expected support value is computed incrementally after processing

each batch to eliminate older itemsets.

Aggarwal and Yu [5] introduced a framework for online mining of frequent itemsets

and generating association rules. Their technique produces association rules with di�erent

support and con�dence values without any additional computation cost but it ignores

any dataset update as required for streams. Shin and Lee [204] used estDec to generate

association rules from frequent itemsets over damped model. They used a stack traversal

approach but these rules are always generated from the scratch, upon user request, by

traversing estDec tree. Thakkar et al. [223] proposed a stream management system to mine

frequent itemsets, extract and save association rules after a number of elapsed transactions

over the sliding window. Saved rules help in further analysis and comparison but are

not used in subsequent rule generation steps. Optional pruning eliminates duplicate and

uninteresting rules. Su et al. [42] proposed FFI_Stream which is an association rule

mining technique from a data stream based on quantitative attributes. Dang et al. [56]

divided stream data into clusters using Sliding Window with Expectation Maximization

(SWEM) technique. Itemsets are also mined using a modi�ed version of UF_Streaming

algorithm [131]. Here, a Membership Function Bias, also called MFB_Measure, explores

interesting frequent itemsets that may help generating association rules but the rules are

searched on request (not during the mining process). Thool and Voditel [225] mined Top-

K frequent items using space-saving algorithm, by [157]. Single item [1 − 1] rules are

generated by (re)scanning the extracted itemset list. Corpinar and Gundem [52] proposed

PNRMXS algorithm to mine positive and negative association rules from XML streams

using landmark model. Frequent Pattern-growth (FP-Growth) is used to extract [1 − 1]

rules from each batch from scratch. Paik et al. [180] proposed mining maximal frequent

itemsets from XML data streams. Association rules are generated for each batch separately

and �ltered using a minimum con�dence threshold. Generated rules are accumulated for

the entire stream in a landmark model fashion, yet the rule extraction is performed from

49



the scratch every time. Vijayarani and Prasannalakshmi [234] conducted an analysis on

association rules generation over the data streams.

Collaborative plan execution monitoring requires a continuous planning, monitoring

and re-planing framework [165, 241]. Fabre et al. [73] discussed on distributed monitoring

of plans in the context of concurrent and asynchronous systems using partial unfolding

approach over a Petri-Net. Al-Shaer [9] presented an active distributed monitoring strat-

egy where a set of re-con�gurable and self-directed management tasks can be modi�ed

automatically at run-time by evaluating expression generated from a set of predicates.

Likewise, Lavine [135] studied distributed monitoring algorithms and proposed a set of

o�ine and online monitoring algorithms in the area of robotics. Micalizio [159] elabo-

rated the autonomous recovery of plans operated by multiple agents using control loop of

three tasks: plan monitoring, agent diagnosis, and the plan repair. Francalanza et al. [80]

proposed a monitor semantics using labeled transition systems and formalized the aspect

of partitioning monitors based on the locations. Babcock and Olston presented a cost-

e�ective on-line monitoring technique [24] that involves the use of distributed constraints,

insertions and deletions from dataset as well as updates of numeric values. In connection

to plan repair or re-planning, new algorithms were proposed by Gerevini and Serina to

detect re-planning inconsistencies [87]. This work is especially remarkable for two reasons.

First, the authors conclude that a failed plan can be repaired more quickly than building

a new one. Second, they show that re-planning for one inconsistency may introduce new

inconsistencies later. McNeill et al. �rst used ontology in plan execution monitoring via

multi-agent systems in 2003 [155]. They considered that the re-planning failure may occur

from the faulty ontology during plan execution by multi-agent system. In 2004, Eiter et

al. showed a technique for o�ine generation of re-planning libraries [71]. They proposed

the use of reinforcement learning for choosing action less likely to fail. Van der Krogt and

de Weerdt showed another advanced guided plan repair approach by non-deterministic

removal of the actions from the plan and then added new actions for plan recovery based

on a heuristic technique.

In connection to our scope of data mining based approaches, items are usually col-

lected from various streams in a central location where the mining process takes place.

50



In the distributed setting, data stream is mined at distinct locations and the outputs are

aggregated at the end. Many published articles focused on the data partitioning and the

information exchange while mining stored data. Data is partitioned horizontally (row-wise)

or vertically (column-wise) [231, 118]. Cheung et al. introduced a Fast Distributed Mining

(FDM) algorithm with local pruning of infrequent items [47]. Otey et al. [176] developed a

customizable distributed outliers detection method for continuous and categorical data to

identify frequent itemsets. Park and Gupta [185], Sawant and Shah [198] and Zeng et al.

[259] have investigated approaches for distributed data mining. It should be noticed that

majority of the surveyed algorithms assume mining over the stored data in the distributed

locations across the network. These algorithms mainly focus on itemset mining rather than

rule generation. Only few articles can be seen on distributed association rule mining over

the stream data. Manjhi et al. [148] have proposed distributed extraction of the frequent

items using di�erent monitors for each stream. Items are then collected centrally through

the communications among monitors in a hierarchical way. Another framework has also

been proposed by Sun et al. [217] to extract global frequent itemsets from the distributed

data streams by aggregating locally generated frequent itemsets through adaptive �ltering.

The framework then communicates back with the outcome to local streams for veri�cation

and re�nement of newer itemsets. In connection to pattern mining, Huang et al. [108] have

proposed two Map-Reduce functions in a distributed sequential pattern mining algorithm

to extract candidate patterns locally and aggregate �nal output from the �rst function.

Zhang and Mao [260] have used a combination of decision trees to extract patterns lo-

cally and applied naïve bayes classi�ers to form global patterns from the distributed data

streams. Their algorithm uses statistical summaries to approximate the support values.

Cesario and Mastroianni [38] proposed a hybrid single-pass/multiple-pass framework for

mining frequent items and itemsets from the distributed data streams in multiple layers.

The outcome is communicated forward and backward fashion across di�erent layers to re-

�ne the output and minimize the error. Wu et al. [243] proposed a decentralized approach

to mine event association rules over multiple streams. Frequent itemsets are �ltered locally

and then merged centrally using a map-reduce function. Association rules are generated

upon user request using another map-reduce function. However, generated rules are neither

51



stored nor used in subsequent requests.

Most of the distributed techniques require reliable and extensive sharing of infor-

mation through communication. Many researchers simply dealt with the maintenance of

aggregation views without emphasizing the communication cost across the data sources.

Several published distributed monitoring techniques, such as Marian et al. [150] and Fagin

et al. [74], are a�ected by the limitations of numerous distributed and remote lookups.

Kaminka et al. [117] also discussed on the issues encountered while coordinating a plan

among geographically distributed agents in a dynamic environment. Several examples are

also discussed by Cormode et al. [54] for algorithmic distributed functional monitoring

problem. An improvement over communication can be achieved by setting a precision

gradient as proposed by Manjhi et al. [148].

2.3 Gap Analysis

Numerous articles have been published on vehicle routing problems for more than �ve

decades. Analysis of these articles reveals a lack of research e�ort particularly on the

collaborative handling of route planning. Figure 2.3 depicts the research gap on the col-

laborative vehicle routing from the �ndings of the literature review. As shown in the �gure,

only 5-10% of the recent publications deal with multi-depot vehicle routing problem while

only 2-5% discuss split-delivery vehicle routing problem. As per our analysis, published

articles combining multi-depot and split-delivery vehicle routing problem are less than 10.

Furthermore, most of these articles on MDVRP and SDVRP consider a centralized setup.

Thus, investigation for collaborative approaches to solve VRP is an important challenge.

Recent work on Gulczynski et al. [100] relates partially to the modeling of shared

delivery of commodities in multi-depot setting. However, this work exhibits some limi-

tations in the �eld of application. First, it employs an apriori, rule-based allocation of

customers to depots by favoring customer assignment to the nearest depots. In case of

insu�cient vehicle capacity, this may lead to a solution of higher cost. Such concerns were

addressed in Soeanu et al. [209], where a distant depot is required to serve a customer

that is closest to another depot in order to achieve overall cost reduction. Second, the

52



Figure 2.3: Survey of vehicle route planning problems

Figure 2.4: Survey of facility location problems

proposed solving technique leverages the Clarke and Wright (CW) saving mechanism that

has only limited applicability to the situations where the triangle inequality is satis�ed

[79]. Furthermore, the model of Gulczynski et al. considers prede�ned locations for de-

pots on the transport network. In contrast, we contribute by �nding a novel strategy to

near-optimally solve MDSDVRP in one stage and then to search for a distributed solution

generation technique that can help collaborative vehicle route planning in the presence of

multiple decision makers.

An analysis of the existing research literature also reveals a gap in collaborative han-

dling of plan execution monitor deployment. As we discussed before, monitor deployment

can be seen as an FLP variant. Figure 2.4 clearly depicts that while a large amount of

53



publications can be found on FLP, Uncapacited FLP (UFLP) and pMP, only 0-1% of this

research is dedicated to the distributed algorithm generation for FLP or similar problems.

Most of these existing techniques do not analyze how participants can locally compute

compatible partial solutions and then collaboratively converge to a global solution in the

absence of exact knowledge of input parameter(s). In this thesis, we address the important

collaboration aspect of problem modeling, application development and platform deploy-

ment on plan execution monitor deployment. Chapter 5 bridges the gap in terms of jointly

generating near-optimal global solution by collaborative budget contribution adjustment.

Table 2.2: Comparison of highlighted articles on itemset and association rule mining

Reference Algorithm Name Setting Model Itemsets Caching Rules
Wu et al.[243] - Distributed Sliding Win. 1 & 2 Stored 1-1 Rules

Thakkar et al. [223], Su et al.[42] SWIM, FFI_Stream Centralized Sliding Win. All FIS Stored All

Paik et al.[180] - Centralized Landmark Maximal Stored All

Thool and Voditel[225] Streaming-Rules Centralized Landmark Top-k Stored 1-1 Rules

Corpinar and Gundem[52] PNRMXS Centralized Landmark All FIS Stored 1-1 Rules

Shin and Lee[204] - Centralized Decay All FIS On req. All: on req.

Chang and Lee[40], Leung and
Jiang[132]

estDec,
DUF-streaming

Centralized Decay All FIS On req. NA

Woo and Lee[242] estMax Centralized Decay Maximal On req. NA

Li et al.[139] DSM-FI Centralized Landmark All FIS On req. NA

Liu et al.[145] FP-CDS Centralized Landmark Closed On req. NA

Zhi-Jun et al.[261], Yu et al.[256] - Centralized Landmark All FIS Stored NA

Leung and Khan[133], Li and
Lee[138], Tanbeer et al.[220],
Deypir and Sadreddini [64]

DSTREE,
MFI-TransSW,
CPS, LCS

Centralized Sliding Win. All FIS On req. NA

Jiang and Gruenwald [115], Yen
et al.[251], Naik and Pawar[166]

CFI-Stream,
CloStream, QMINE

Centralized Sliding Win. Closed On req. NA

Chi et al.[48], Ao et al.[15], Li et
al.[137], Keming Tang et al.[221],
Nori et al.[171]

Moment, FPCFI-
DS, NewMoment,
Stream_FCI, TMo-
ment

Centralized Sliding Win. Closed Stored NA

Manjhi et al.[148], Zhang and
Mao[260]

-, - Distributed Decay All FIS Stored NA

Cesario and Mastroianni [38] - Distributed Sliding Win. All FIS Stored NA

Wang and Chen[236] - Distributed Landmark Maximal On req. NA

Furthermore, in the vast scope of information monitoring we focus on capturing re-

cent frequent events and their associations in a distributed setting. Table 2.2 compares

highlighted research articles extracting frequent itemsets and association rules from the

54



stream data. Information monitoring of the data stream may reveal frequent associations

among the recent events in a supply chain e.g. delay and weather condition, accidents, ve-

hicle failure, etc. Such association is often crucial to the remote decision makers. External

monitoring of an executing process requires physically distributed, autonomously operated

agents that participate in a monitoring process bounded by their local and shared infor-

mation that is collected within a dynamic and uncertain environment. In this respect,

a major challenge lies in quickly inferring relationships among related events by mining

an incoming data stream generated by the remote sensors. It can be clearly seen that

only a small number of distributed approaches exists to mine frequent itemsets and as-

sociation rules on the stream data. Moreover, many previous research works ignore the

algorithmic complexities in extracting these itemsets and association rules which exhibits

a serious limitation to practically deploy them to capture association among events over a

fast data stream. Wilkins et al. [240] identi�ed the main challenges under four categories:

(i) Adaptivity: sensitivity of the monitor must meet the requirements and system's abil-

ity to extract high-value alerts and suggestions. (ii) Plan and situation-speci�c analysis:

commonly shared plan requires communicating only relevant tasks to participants as well

as accompanying instructions for coordination [98]. (iii) Provision of high-value, relevant

alerts: frequent alerts issued on every occurrence of a monitored condition may overload

the system and represents a known problem. The challenge also consists in minimizing and

eliminating, if possible, the False Positives (FP) along with limiting the �ow of unwanted

or redundant alerts. (iv) Reactivity: an execution monitor should give enough time and

means (techniques) to react to the events and situations in a dynamic data-rich �eld at a

high rate of incoming events.

2.4 Summary

Logistics delivery may bene�t from notable operational cost savings by increasing reliance

on shared serving of customer demands by multiple agents. However, traditional logistics

planning and supply chain monitoring exhibit intrinsic limitation in implementing a collab-

orative platform of decision making and information processing for better transportation

55



management. In this chapter, we thoroughly review the existing research and development

e�orts and analyze the gaps in the context of four core research problems. In common,

all these problems are computationally hard. In the next chapters, we elaborate a set of

proposed approaches to solve these core research problems of our interest. More precisely,

in this thesis, these research problems are addressed in the following order:

� Multi-Depot Split-Delivery Vehicle Routing: We elaborate an approach on how vehi-

cles can share responsibilities for commodity delivery in route planning.

� Collaborative/Cooperative Route Planning for Commodity Delivery: Next, we propose

how multiple participants can jointly plan routes for commodity delivery.

� Collaborative Monitor Deployment: We also present how collaborative participants

may deploy monitors to collect and send sensor generated information from the SCN.

� Collaborative Event Monitoring over Data Stream: Finally, we discuss a general pur-

pose distributed execution information monitoring technique to track association

among events from the sensor generated data stream during plan execution.

Apart from these aforementioned problems, we have identi�ed a number key challenges

for planning and execution monitoring over the supply chain network, as found during

the literature review. These challenges include modeling of complex information sharing

framework, reducing communication cost among agents, handling low processing power

of distributed (mobile) agents, preventing simultaneous access to shared resources and

devices, time synchronization, managing information privacy, security and safety issues

and joint evaluation of information.

56



Chapter 3

Multi-Depot Split-Delivery Vehicle

Routing Problem

In this chapter, we investigate an advanced decision-support platform to ad-

dress a combined problem of depot assignment and logistics delivery planning.

Currently available transport management systems exhibit notable gaps in op-

timal partitioning of transport network to share/collaborate on delivery of lo-

gistics/commodities [72]. In order to bridge the gap, we introduce a linear

model of a combinatorial optimization problem and propose a generic solution

search technique for multi-depot vehicle routing problems that may employ

shared delivery of commodities, if needed. The experimental results show that

the proposed algorithm exhibits very good performance when solving small and

medium size problem instances and reasonable performance for larger instances.

3.1 Introduction

A collaborative commodity delivery planning requires operating vehicles from multiple dis-

tribution centers (depots). In such a setup, location of the depots and vehicle routes are

required to be derived together while respecting prede�ned global constraints and limited

vehicle capacity. Furthermore, vehicles are expected to cooperate for shared delivery ar-

rangement among participating organizations. In this respect, we introduce a new problem

57



namely Multi-Depot Split-Delivery Vehicle Routing Problem (MDSDVRP). MDSDVRP is

an extension of classical vehicle routing problem that allows multi-depot vehicle route

generation with possibility of jointly serving customer demands. Furthermore, our model

and solution approach also consider establishing depot at most suitable locations in the

transport network which helps minimizing depot establishment and routing cost together.

In actuality, vehicle routing can be seen as a core problem in supply chain/logistics

planning, with conceptual, empirical and behavioral aspects. A holistic view of the supply

chain process o�ers an overarching perspective spanning over various facets such as facility

location, vehicle routing and environmental impact. In this respect, focusing on a single

aspect, for example minimizing the routing cost without considering facility locations may

result in higher warehousing cost and larger externalities such as: pollution, congestion,

etc. In the usual setup, the problem of multi-depot split delivery vehicle routing is con-

sidered with the common assumptions of Split-Delivery VRP (SDVRP) and Multi-Depot

VRP (MDVRP) under which we essentially consider a vehicle routing problem involving

commodity delivery as an abstract conceptual optimization problem [26] with few empir-

ical details. The participating entities are depots (as starting/ending points for vehicles),

customers (with deterministic demand) and vehicles (with prede�ned and available capac-

ity). Typical abstractions are observed in terms of unlimited route length (not considering

required stop-overs for rest, etc.) as well as deterministic infrastructure analysis (�xed

traversal cost across transport network nodes, etc.). Another prevalent abstraction is to

consider the problem of facility location separate as speci�cally employed by cluster �rst-

route second approaches [196]. However, in this work, we emphasize the importance of

considering together the problems of location allocation and vehicle routing.

The optimization goal of VRP is the overall cost minimization based on the cost

assigned on each edge of the transportation network. In the literature the deterministic

capacitated-VRP (CVRP) is a well-studied NP-Hard combinatorial optimization problem

having several variants and extensions [228]. In fact, the CVRP is composed of two prob-

lems: Bin-Packing and Routing. The Bin Packing Problem (BPP) addresses an optimal

allocation of commodity to vehicles having deterministic capacity. The routing problem

deals with the most e�cient routing possible using the loaded vehicles. We may note that

58



in shared commodity delivery settings (which represent practical aspects at the require-

ments level), it is possible to determine the feasibility of a problem instance by requiring

the total vehicle capacity to be greater or equal to the total demand. In other words, MDS-

DVRP will always yield a solution if the total available capacity is equal or more than the

total demand. In this respect, MDSDVRP is less restrictive than some of the other VRP

variants for which there may be no feasible solution (e.g some customers having demands

larger than the capacity of a single vehicle). However, MDSDVRP still belongs to the

NP-Hard class of problems [16, 100] and is therefore intractable when approached with an

exact algorithm. It is worthy to mention that it has a notable larger solution space since

splitting the delivery among di�erent vehicles is subject to combinatorial explosion. Conse-

quently, we detail an e�ective heuristic technique that yields good near-optimal solutions.

The contribution of this chapter can be summarized as follows:

� Elaborating a model for MDSDVRP to search optimal depot locations vehicle routes.

� Proposing a heuristic-based mechanism to quickly solve MDSDVRP near-optimally.

� Generating solution benchmarks on known problem instances and comparing with

existing results.

� Analyzing performance and providing notable insights of the proposed solution.

Another notable achievement relates to the �exibility of the proposed model. This allows

to customize it via small modi�cations (according to the need) in order to address speci�c

problems of the VRP family that are within the scope of the proposed model. These

include MDVRP (no split delivery), SDVRP (only one depot), CVRP (no split delivery and

only one depot), etc. Moreover, we explain location routing through the same model that

allows to consider both location allocation and vehicle routing as part of the same objective

function. In this context, it is also possible to customize the depot establishment cost values

such as to de�ning depots at speci�c locations. With respect to the related heuristics

algorithm, it allows to generate vehicle routes with near-optimal cost while serving the

customers by multiple vehicles belonging to the same or di�erent depots.

The remainder of the chapter is organized as follows. Section 3.2 elaborates the prob-

lem and propose an Integer Linear Programming (ILP) model for MDSDVRP. Section 3.3

59



describes our solution generation approach. It illustrates a generic heuristic based search-

ing mechanism designed to solve vehicle routing problem instances, MDSDVRP instances

in particular. Along with the algorithm, we also discuss two improvement techniques over

the initially derived solutions. Section 3.4 presents a relevant case study problem illustrat-

ing CVRP, MDVRP and MDSDVRP in order to demonstrate solution generation using

the proposed approach. In Section 3.5, we provide the results and compare them to ex-

isting benchmark values. We further conduct an analysis of the results in Section 3.6 to

determine appropriate ranges for the parameter values used in the solution approach. Fi-

nally, we summarize our �ndings in Section 3.7 by highlighting the advantages and the

limitations of the proposed procedure and highlight possible with future work.

3.2 Problem Description and Modeling

In the proposed MDSDVRP model, we employ split-delivery vehicle routing and also ad-

dress facility location by choosing depots from a subset of customer nodes (based on their

corresponding depot establishment cost). The model also allows the use of pre-established

depots by setting the corresponding depot establishing cost to zero.

3.2.1 Problem Statement

Multi-Depot Split-Delivery Vehicle Routing Problem (MDSDVRP) handles commodity

delivery to customers (demand points) that are represented as nodes in a complete graph

named as transport network. Given a set of nodes (V ) and a set of edges (E), where

E is a relation in (V × V ), a transport network is a complete graph G = (V,E). Each

edge of the graph provides the traversal cost (cij) between the corresponding two nodes

i and j. Usually, a transport network is composed of di�erent node types: Customers

(N) and Depots (D). While customer nodes are characterized with deterministic demand

(integer) for commodity (di), depot nodes (having no demand) alternatively host vehicles

(k = 1,2, . . . ,K) to supply customers. In case of prede�ned depots and customers, a

solution for an MDSDVRP instance gives the routes for each vehicle that minimizes the

overall routing cost to serve all customer demands. In our proposed formulation, we further

60



consider that if the depots are not prede�ned, the solution to MDSDVRP will determine

the optimal location(s) of the depot(s) within the set of customer nodes. In this case,

assuming that the newly found depot(s) will serve their own need(s), the goal of problem

is then to minimize the combined depot establishment and routing cost.

3.2.2 Assumptions

Classical VRP generally refers to the capacitated vehicle routing problem (CVRP) where

each location (customer) has a �nite demand (integer value) for the same type of com-

modity. A maximum number of vehicles having �nite capacity (integer value) can start

from and return to a single depot, with no restriction on the route length. In addition,

each location is served by only one vehicle and the sum of the demands served by a vehicle

does not exceed the vehicle capacity. It is also customarily assumed that the vehicle �eet

is homogeneous, that is all vehicles have the same capacity. Moreover, MDVRP changes

the assumption of single depot and considers the availability of more than one depot, each

of which can serve any of the customers. In this setup it is also customarily assumed that

the vehicle �eet is homogeneous across depots (the same maximum number of homoge-

neous vehicles). Capacitated VRP with split delivery (SDVRP) shares most assumptions

of CVRP except that each customer can be served by one or more vehicles that jointly

satisfy the total customer demand. This allows to address problems where the individual

capacity of the vehicles can be less than some (or all) of the customer demands. MDSD-

VRP combines the assumptions of MDVRP with those of SDVRP such that each customer

can be served by one or more vehicles, each of which can belong to the same or di�erent

depots. In addition to the aforementioned constraints, we intend to address the situation

where there is are no pre-established depot(s) in the problem. The depots locations are

then chosen from the set of customer locations. Consequently, the demands at the node

locations chosen as depot locations are considered to be served by the respective depot

itself. In order to solve the problem, the heuristic procedure may be exercised by one or

more decision maker(s). The corresponding MDSDVRP solution algorithm assumes that

all input information is exact. We assume that each decision maker has the knowledge of

all available vehicles in every depot along with their capacities. S/he also knows the cost

61



of routing across every edge of the transport network. In case of more than one decision

maker, we consider the existence of a centralized result sharing platform where multiple

decision makers can share information while searching a partially di�erent solution space.

3.2.3 MDSDVRP Modeling

VRP families of problems are usually expressed as linear optimization problem with several

constraints represented through linear equations [228]. The common models are named as

follows:

� Vehicle Flow Model : VRP is most commonly modeled using Integer Linear Program-

ming (ILP). It uses integer variables, associated to each arc or edge of the graph.

These variables track the number of traversal in each arc with respect to the con-

straints. The summation over the product of the number of traversals and the cost

associated to each arc represents a possible outcome. The optimized solution yields

the minimum value of all possible outcomes.

� Commodity Flow Model : The commodity �ow model uses additional integer variables

on the arc to represent the �ow of commodities along the paths traveled by the vehicle.

The model is also used more recently to get exact solution of CVRP.

� Set Partitioning Model : Set partitioning model is used to formulate the VRP problem

as a set-partitioning problem where we consider every feasible circuit possible with

respect to the constraints. The objective is to determine the collection of circuits that

generates the minimum cost, serves all the customers and satis�es other additional

constraints. This model generally requires a large number of variables.

In what follows, we present a vehicle �ow model our problem which extends original

CVRP for split-delivery and multi-depot operations. It also addresses depot localization.

In a complete directed graph G = (V,E) of a transport network, let cij be an input

cost matrix derived from a composed cost function (depending on various parameters) for

all node pairs. We extend this transport network graph G to G′ = (V ′,E′) wherein an

arbitrary node 0 is added in the transport graph such that V ′ = V ∪{0}. The concept was

62



0

A B

C D

2.4

2.1

2.2

1.1

1.4

1.2

1.3;2.3

Figure 3.1: An example transport network of customers and depots

earlier introduced by Yu et al. [254]. The intent of including node 0 as a virtual node is to

carefully capture the facility (depot) location subproblem as a part of the routing model.

The inclusion of additional edges between 0 and existing customer nodes is associated to

two new pair of cost values (ci0 and c0j). The establishment cost for node j is represented

as (ECj) where ECj = c0j . Consequently, we write the cost function c′ij as follows:

c′ij =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cij if {i, j} ⊂ V

ECj if i = 0 and j ∈ V

ci0 if j = 0 and i ∈ V

Figure 3.1 shows a sample graph in the proposed setting with customers (B and

D), depots (A and C) and two vehicles. Actual delivery routes can be assumed as:

AB→BD→DA and CD→DB→BC. The changes to the original transport network is con-

sidered with addition of a virtual node 0 and the inclusion of dotted paths. In this case,

a solution from the MDSDVRP model would result in the paths: 0A→AB→BD→D0 and

0C→CD→DB→B0. The proposed model evaluates a cost function based on its original �rst

set of routes rather than the later derived set of routes. Actually, we incorporate additional

routes 0A and 0C to re�ect ECA and ECC in the cost function and replace the cost of

63



paths D0 and B0 with DA and BC respectively. Toward this consideration, we associate

an additional set of boolean variables wi on top of the usual SDVRP formulation [16] to

determine the depot locations.

In formulation of the problem, we consider three given input parameters. First, the

establishment cost for creating depot on node i is termed as ECi. Second, the demand

level at each node i is: di for all i ∈ V . Finally, the let us consider that the maximum

vehicles available is K and each of them has capacity Ck. The aims of the modeling can

be summarized as follows:

� Determining an optimal number of depots and their locations, in absence of prede-

�ned depots;

� Computing the optimal cost of the overall customer serving;

� Evaluating optimal number of tasked vehicles;

� Elaborating routes (potentially shared) for each tasked vehicle for overall optimal

delivery cost.

The decision variables are as follows:

� xijk ∈ {0,1} are boolean variables to determine routes (1 if the edge (i, j) is taken

by vehicle k).

� yik ∈ N is an integer amount of resource deposited at node i by vehicle k.

� wi ∈ {0,1} is 1 if node i is a depot.

We present the ILP model formulation as follows:

min∑
i∈V

ECiwi + ∑
i∈V

∑
j∈V

cij ∑
k∈K

xijk, ∀i ≠ j (3.1)

Subject to:

64



Flow conservation:

∑
i∈V ′
∑
k∈K

xijk ≥ 1, ∀j ∈ V ′, i ≠ j (3.2)

∑
j∈V

∑
k∈K

x0jk ≤ ∣K ∣ (3.3)

x0ik = xi0k ∀i ∈ V and k ∈K (3.4)

∑
i∈V ′

xihk = ∑
j∈V ′

xhjk ∀h ∈ V
′and k ∈K, i, j ≠ h (3.5)

Sub-tour elimination:

∑
i∈S

∑
j∈S

xijk − ∑
j∈S

x0jk ≤ ∣S∣ − 1, S ⊆ V, ∣S∣ ≥ 2, k ∈K and i ≠ j (3.6)

Capacity restriction:

∑
i∈V

yik ≤ Ck, ∀k ∈K (3.7)

∑
k∈K

yik = di(1 −wi), ∀i ∈ V (3.8)

yik ≤ di ∑
j∈V ′

xijk, ∀i ∈ V and k ∈K (3.9)

Depot assignment:

∑
k∈K

x0ik ≥ wi, ∀i ∈ V (3.10)

x0ik ≤ wi, ∀i ∈ V, k ∈K (3.11)

Variables:

xijk ∈ {0,1}; where i, j ∈ V ′, i ≠ j, k ∈K (3.12)

wi ∈ {0,1}; where i ∈ V (3.13)

yik ≥ 0; where i ∈ V, i ≠ j, k ∈K (3.14)

The objective function Eq. (3.1) minimizes total depot establishment and routing

costs. With respect to the constraints, Eq. (3.2) and Eq. (3.5) impose that each customer

is visited by at least one vehicle. Eq. (3.3) and Eq. (3.4) set the limit of maximum vehicles

65



that can be used in solution and make sure that all vehicles in operation �nally return back

to node 0. Eq. (3.6) is a modi�ed version of generalized sub-tour elimination constraint

from [229] in order to accommodate that all routes start and �nishes at node 0 and passes

through a determined depot before reaching node 0. Eq. (3.7), Eq. (3.8) and Eq. (3.9)

impose that serving a customer on a route takes place if and only if the route is selected

and the total on-route serving does not exceed vehicle capacity, while ensuring that the

total demands of each customer are met. Finally, Eq. (3.10) and Eq. (3.11) assure that a

vehicle, if serving at least a customer, must start and �nish through a determined depot

location. These ILP constraints further satisfy the following compound relations:

� If x0jk is 1 then ∑i∈v xijk = 1 and xj0k = 1; i.e. a route for vehicle k will start and

end with through a proposed depot j.

� wi = 1 if xoik = 1, i.e. a node i is a depot if and only if it is directly connected to

node 0 in the solution.

� ∑k∈K yik = 0 if wi = 1, i.e. the demand of a prospective depot is 0 during computation

of the routes.

The proposed model is �exible and extensible, allowing to capture real-world problems.

� MDSDVRP model can handle pre-established depots with inputs of low establish-

ment cost for favored nodes and high establishment cost for others (see Table 3.4).

� With many vehicles and one depot in con�guration, this model expresses an SDVRP.

� One can provide product or service through the same model. For simplicity, we

assume that service delivery (e.g. surveillance) resembles product delivery but the

vehicle capacity (Ck) is not reduced after visiting the demand nodes. However it

must meet the service requirements (yik). Thus, we change Eq. (3.7) as follows:

yik ≤ Ck, ∀k ∈K and ∀i ∈ V (3.15)

66



3.3 Proposed Approach

In the following, we present an overview of the approach to solve the aforementioned

research problem. Under a set of assumptions, we propose an ILP model for the multi-

depot vehicle routing problem allowing joint serving of customer demands using vehicles

from multiple depots. The model allows to identify the problem requirements in terms of

variables and parameters. However, MDSDVRP belongs to the problem class NP-Hard

[100]. Therefore, no scalable exact solution algorithm exists to e�ciently �nd the optimal

solution. Consequently, we investigate a heuristic algorithm that can e�ciently explore

a large portion of the solution space in order to �nd a good near-optimal solution. The

proposed search procedure is guided by a learning mechanism that allows to steer the

search toward the most probable area of the solution space where near-optimal solutions

are likely to be found. We also employ a stochastic technique to prevent the premature

convergence of the algorithm to a local optimal solution.

3.3.1 Solving MDSDVRP

Solve using heuristic

algorithm

Prepare transportation

network

Set input parameters Re�ne the result

Evaluate solution qualityBreak into sub-problems

(+) Use Multi-point Stochastic
Insertion Cost Gradient Descent

(+) Setup vehicle capacities
(+) Determine search parame-
ters
(+) Input thresholds
(+) Stop condition
(max_iteration)

(+) Generate cost-matrix
(+) Generate demand-matrix

(+) Use selection of tours for
solution improvement
(+) Use permutation among
solution nodes

Figure 3.2: An overview of solution generation technique

MDSDVRP can be solved either analytically or using heuristic and meta-heuristic

techniques. Analytically, MDSDVRP requires solving a set of linear equations as created

in the model. The procedure is practical as long as the problem is smaller. Usually, ILP

67



models are represented using a suitable language used to describe a set of linear equations

in a readable manner by both human and machine. It is also necessary to use analytical

techniques like Branch and Bound, Branch and Cut to tighten the initial linear program-

ming relaxations. We initially selected AMPL (A Mathematical Programming Language)

to represent the problem. Then, we chose GNU Linear Programming Kit (GLPK) as a

freely available solver module for AMPL based ILP formulation. GLPK uses the revised

simplex method, the primal-dual interior point method for non-integer problems and the

branch-and-bound algorithm along with Gomory's mixed integer cuts for (mixed) integer

problems. We may additionally employ MIR cut [58], Cover cut and Clique cut [1], which

are helpful when solving ILP models. However, the complexity of MDSDVRP increases

exponentially with problem size. Therefore, we investigate solution �nding mechanism

through generative heuristics. This essentially involves the exploration of candidate solu-

tions which are �grown� from dynamically generated solution fragments ranked on their

cost. The process involves a guided search whereby the potentially good (cost e�ective)

�fragments� are marked bene�cial for subsequent exploration and retained in the data

structures. The costlier fragments are continuously discarded. In this way, the grown

solutions are also cost e�ective since only the cost e�ective fragments have been retained

during the search.

The solution generation technique requires a preparation procedure which analyzes

the transport network graph and the customer demands at the nodes in order to establish

an ordered traversal map (sorted based on cost) and respectively a demand map for all

customer demands. Moreover, di�erent solution search input parameters are also required

to be set before the algorithm run. After a careful analysis on various heuristic algorithms,

we arrived at a modi�ed multi-point stochastic insertion cost gradient descent algorithm to

address solution search from multiple depots. The search allows the insertion of customer

nodes in the explored set of route fragments, subsequently boosting the more cost e�ective

set of routes iteratively.

Figure 3.2 presents the solution generation approach which assures that a ready so-

lution is always available after the �rst pass. The algorithm is also expected to help in

68



cooperative solving of compound routing problems by a team of potentially remotely lo-

cated agents. In this setting, during the search process, progressively better upper bounds

found by di�erent agents can be exchanged for improved convergence. The heuristic solu-

tion can be further improved using meta-heuristic like techniques such as permutation of

adjacent nodes in routes, etc. Also, the approach allows the use of a divide and conquer

policy in order to handle large scale problems whereby sub-problems involving a subset of

the routes will be subjected to the same algorithm with the potential to yield better overall

results. In the following, we discuss the details of the multi-point stochastic insertion cost

gradient descent algorithm.

3.3.2 Algorithm Design

Initialize Search 

Parameters

Pop new multi-tour from 

sorted_search_queue

Use pseudo-random seed 

to explore new neighbor

new multi-tour feasible ?

yes

Perform a nearest 

neighbor search 

max_explored_neighbour reached?

no

no

Is qualified to insert in 

serve_map for serving (%)

Insert initial tour 

fragments in serve_map 

and sorted_search queue

Discard fragment

yes

no

Insert multi-tour into 

serve_map and 

sorted_search_queue

yes

sorted_search_queue empty or 

max_iteration reached?

yes

no

 m
a

x_
d

is
ti

n
ct

_
co

st

Sorted_Search_Queue

max_servemap _entry_size

1%  2%                                                                                 100%Serve_Map

Initialized from 

nearest_neighbor 

route search

Queue is ascendingly 

sorted by distinct cost

Figure 3.3: Heuristic procedure of route generation

Heuristics is employed to obtain near-optimal solution where exact algorithms and

equation solving are expensive in terms of memory and time allocated to the computation.

The stochastic multi-point insertion cost gradient descent is one such search technique.

69



It uses a seed based pseudo-random number generator to steer the solution search while

allowing to reproduce (for a given problem instance) the same solution by using the same

seed to solve the problem. Figure 3.3 presents the components of the high-level procedure.

It starts by determining a nearest neighbor-based solution (which is computationally in-

expensive to obtain), denoted by (Snn) and representing an initial upper bound reference.

Then, the main search starts with a base fragment (multi-tour consisting of initial vehicle

locations in their depot(s)) inserted in sorted_search_queue. The latter keeps the frag-

ments inserted into it in an ascending cost oder while the fragments with the same cost

are arranged in descending order of the amount of their total demand served.

At each iteration, the topmost fragment in the sorted_search_queue is selected by

popping it out and exploring it in order to insert a neighbor node not yet served or par-

tially served into one of its considered tours. The neighbor is identi�ed among the unserved

demand nodes by exploring them progressively up to a bound of maxnbr in an ascending

order of traversal cost from the last inserted element in the considered tour. An neighbor

that is explored can be inserted in the tour as per the vehicle's ability to serve the node

(enough remaining capacity when split delivery is not used or non-empty capacity other-

wise). After inserting the neighbor in the selected fragment, the latter is updated with

a corresponding increased cost of serving and increased amount of serving. The updated

fragment is then quali�ed for storing in the sorted_search_queue by examining if its cost

of serving �ts within the bounds of the corresponding servemap entry. The servemap data

structure is essentially employed to build up and represent the knowledge related to the

speci�c topology and serving availability characterizing the problem instance being solved.

The knowledge gathered is represented by a set of adjustable cost bounds corresponding to

particular percentages of total demand serving as discovered during fragment generation.

This knowledge is used to continuously guide the search procedure by qualifying or disqual-

ifying potential fragments while they are being explored. Thus, the servemap keeps entries

related to the cost of serving at each related serving percentage (granularity dependent).

Each entry holds a set of di�erent cost values (for the same serving percentage) with a

maximum cardinality of max_servemap_entry_size. A quali�ed fragment will update

the corresponding servemap entry.

70



Algorithm 1 : MDSDVRP Heuristics
1: Input: max_iteration,Snn,max_distinct_cost(mdc),max_explored_neighbor(maxnbr),
2: max_servemap_entry_size(msset), init_fragment, seed, usesplit

3: Global Knowledge: transport_network_graph(G), demand_map(dmap)
4: Output: S∗

5: Initiate: S∗ ← Snn; sorted_search_queue(sque) ← ∅; servemap ← {}; D∗ ← GetAllDemand(dmap);
6: Insert(init_fragment, sque);

7: while max_iteration ≥ 0 and sque is not empty do

8: Pop MultiTour s from top of sque;

9: if s contains more than one tour then

10: Use Shu�e(seed) to randomize their order;

11: end if

12: for selectedTour in s do

13: Find next customer nextDst← GetNextCustomer(G,LastInsertedElement(selectedTour));

14: maxNN ←maxnbr;

15: while maxNN > 0 and CountDistinctCostEntries(sque) ≤mdc do

16: Find demand to be served: nextServeNeed← GetDemandOf(nextDst, dmap);

17: if nextServeNeed > 0 then

18: if usesplit or nextServeNeed ≤ GetRemainingCapacity(selectedTour) then

19: InsertInTour(nextDst, selectedTour) ;

20: end if

21: if CostOf(s) > CostOf(S∗) then
22: continue;

23: end if

24: if GetServeAmt(s) = D∗ or GetRemainingCapacity(s) = 0 then

25: S∗ ← s;

26: Remove each multi-tour(s′) fragments from sque where CostOf(s
′) > CostOf(s);

27: end if

28: if SizeOf(GetEntry(GetServeAmt(s),servemap)) <msset or

CostOf(s) ≤ GetMaxValueIn(GetEntry(GetServeAmt((s),servemap)) then

29: Insert(CostOf(s), GetEntry(GetServeAmt(s), servemap));

30: Insert(s, sque);
31: end if

32: if SizeOf(serveset(GetServeAmt(s)))>msset then

33: RemoveMaxValueIn(GetEntry(GetServeAmt(s),servemap));

34: end if

35: end if

36: maxNN ←maxNN - 1;

37: end while

38: end for

39: max_iteration←max_iteration - 1;

40: end while

41: return S∗;

71



During solution search, the servemap entries are populated by progressively smaller

cost bounds in ascending order of cost. When the maximum entry size is reached, the

highest value is removed from the entry set updating the knowledge related to serving the

corresponding percentage of total demand. This in turn places tighter selection pressure

on subsequently explored fragments with the same serving amount. The fragments placed

in the sorted_search_queue are stored until the max_distinct_cost bound is reached.

Subsequently, a fragment is discarded if its updated cost is higher than the maximum cost

value of the stored fragments. When a fragment is updated such that is forms a complete

solution, any member of sorted_search_queue that has a higher cost can be removed

since a complete solution with lower cost has been found. The procedure continues as long

as the sorted_search_queue is not empty and alongside progressively lower cost complete

solutions can be identi�ed, with the one having the lowest cost remaining as the �nal result

of solution search. The e�ectiveness of this solution generation procedure stems from the

following. First, the heuristic employs an evolving selection pressure to identify better

quality fragments leveraging knowledge gathering based on the corresponding cost values

stored in the servemap. The fragments selected in this manner are potentially more able to

eventually develop good near-optimal solutions. Second, the procedure exhibits a thorough

local search characteristic since all the fragments in sorted_search_queue are explored

and updated according to their cost. Finally, the gradual solution generation trajectory

leverages bounded local neighbor exploration which allows for faster convergence.

Algorithm 1 elaborates in pseudo-code the aforementioned concept by extending our

previous work [210]. We describe next the notation used for the input parameters and

the output. An upper bound solution denoted by Snn provides an initial reference that

can be quickly determined using the nearest neighbor. A demand map (dmap) holds the

demands of each node. The sorted_search_queue is an ascendantly sorted queue of so-

lution fragments based on the cost. The servemap represents an associative array used

for knowledge gathering where each entry contains an ordered set (of parameterized max-

imum cardinality - max_servemap_entry_size) containing fragment serving cost values

corresponding to a related percentage of total serving. Seed (seed) represents a unique

number used to generate repeatable (for the same seed value) pseudo-random choices. The

72



maximum number of neighbors to be considered in fragment exploration is represented

by maxnbr. The usesplit is a binary input that selects whether the heuristic algorithm

considers split-delivery. The algorithm is presented at a high level of abstraction with self

explanatory names for the called procedures which follow the convention of having the �rst

letter capitalized.

3.3.3 Property Analysis

Heuristic algorithms provide practical means to approximately solve optimization problems

in short time and bounded memory with a trade-o� in solution quality [124]. Moreover,

speci�c challenges are faced during an extensive assessment of the properties characterizing

heuristic algorithms. In this respect, our technique has a similar pro�le. Thus, in the

scope of this chapter, we provide three important insights with respect to the termination,

convergence and solution quality.

� Termination: Every execution of MDSDVRP heuristic will eventually stop.

� Convergence: Any execution of MDSDVRP heuristic for a feasible problem will con-

verge toward a competitive solution if the search is not stopped by the maximum

iteration count.

� Solution quality: The solution found by executing the MDSDVRP heuristic represents

the lowest local optimal within the scope of the solution search space delineated by the

underlying search parameters.

With respect to the �rst property, every selected multi-tour fragment is restricted to

explore only within a set of customer nodes that are among the closest unserved (or partially

served) maxnbr neighbors. Therefore, for a feasible problem, the search procedure only

evaluates and stores distinct fragments that can grow at most to full solutions (all customers

fully served). In this respect, the fragment exploration procedure either reduces (eventually

down to 0) the remaining demand unserved or discards the disquali�ed fragments. Since

the solution space of MDSDVRP is �nite, albeit potentially very large, at the extreme

(for a su�ciently large values of the search parameters), the algorithm will stop after an

73



exhaustive evaluation of all competitive solutions within the search space. However, with

reasonable parameter values, the heuristic will only search a subset of the solution space,

bounded in memory and time.

Concerning the second property, given the dynamics of the search technique, the

potentially promising multi-tours will evolve similarly, (with respect to their granularity

based serving percentage) before growing to a full solution. This growth characteristic

is stemming from the fact that the serve_map restricts the storage of multi-tour frag-

ments over a cost bounded percentage of serving and the sorted_search_queue stores the

multi-tours in an ascending order of serving cost. Therefore, for each subsequent solution

found, the probability of �nding a better solution within a �xed delineated search space

decreases successively and the solution improvement margin follows a natural logarithmic

path. Figure 3.9 depicts the convergence characteristic . Our analysis on various problem

instances reveals empirically that the solution cost (y) convergence curve over time (t) can

be approximated as: y = −C1 × ln(t) + C2, (C1, C2 are positive constants) with Pearson

Coe�cient of Determination (R2) value of a few percentage points under unity.

Finally, the algorithm handles premature convergence by competitively ranking dif-

ferent potentially promising multi-tours based on their cost. The corresponding fragments

are quali�ed by the bounds maintained in serve_map according to the percentage of serv-

ing. In essence, serve_map supports a guided learning over the heuristic procedure in

order to promote the growth of potentially good multi-tour fragments from diverse ex-

ploration points within evolving tightness bounds. This guidance bene�ts the multi-point

gradient descent such that each of the growing multi-tours leads toward a local optimal

solution bounded by the search constraints. Therefore, the �nal solution emerges as the

lowest one among all the local optimal solutions, generated from the diversely explored

multi-tours.

3.3.4 Re�nement Technique

The initial heuristic technique we introduced in [210] included solution re�nement tech-

niques for improving the routing cost, including localized node permutation and a Density

74



Based Clustering tour re�nement. The latter was used to dynamically generate traver-

sal cost (distance equivalent) clusters over vehicle tour nodes. This was aimed at inter-

dependent route identi�cation using incremental clustering distances over related complete

solution tour pairs until all nodes of a tour belong to the same cluster. Then, if any node

(except for directly density connected ones) binds two otherwise separate clusters, then

the two tours are likely to allow for solution improvement by solving the corresponding

sub-problem. Thus, better (lower cost) routing is likely to be identi�ed if available. In

this work, we retain the localized node permutation re�nement and introduce an alternate

(more scalable) non-deterministic tour delineated sub-problem re�nement. Both of these

re�nements are detailed next. We employ the following schemes in order to locally improve

the heuristic solution as follows:

� Selective Localized Permutation Re�nement : We generate node permutations (up to

a prede�ned threshold) around adjacent tour nodes trying to obtain a lower routing

cost in the scope of a given vehicle tour. The permutation procedure is continued

successively around adjacent neighbors until no further gain can be achieved.

� Non-deterministic tour delineated sub-problem re�nement : we proceed to delineate

tour pairs in a non-deterministic way for iterative improvement. In each iteration, we

select a tour pair in pursuit of cost saving. If the cost saving is obtained, we attempt

further improvement on all the other pairs that share a member with one of the tours

previously improved. This way, better solution can be progressively identi�ed while

reducing the number of tour pairs selected for further improvement over multiple

iterations until no further cost savings can be obtained.

3.4 Case Study

In this section, we apply the proposed algorithms on a running example of a transport net-

work in various experimental setups. The selected problem is modi�ed from the original

CVRP problem instance: (E016-03m) as published by Golden et al. [90]. The con�gu-

ration of the transport network and customer demand of this new problem are presented

below.

75



Figure 3.4: Transport network and customer demands

Node X Y Demand EC
1 300 400 0 0
2 370 520 7 0
3 490 490 30 0
4 520 640 16 1000
5 200 260 9 1000
6 400 300 21 1000
7 210 470 15 1000
8 170 630 19 1000
9 310 620 23 1000
10 520 330 11 1000
11 510 210 5 1000
12 420 410 19 1000
13 310 320 29 1000
14 50 250 23 1000
15 120 420 21 1000
16 360 160 10 1000

Table 3.1: Case study Problem Instance

Figure 3.4 presents the example problem in a 2-Dimensional Euclidean graph. The cus-

tomer nodes and their demands are presented in the format of ([node no.]:[serving]). We

formed the problem such that the depots may use at most two vehicles. All of them have

capacity of delivering 90 units of commodity.

(a) Using Split-Delivery in heuristics (Cost: 2373) (b) Using No-Split Delivery in heuristics (Cost: 2402)

Figure 3.5: 3-depot heuristic solution on modi�ed-E016-03m problem.

With no restriction on the number of depots, the proposed heuristic mechanism

76



considers nodes 1, 2 and 3 as depots. Therefore, the heuristic algorithm starts �nding

routes after removing the demand from these nodes after considering that they are self-

served. The cost of the near-optimal solutions found with and without using split-delivery

are 2373 and 2402 respectively. Figure 3.5(a) depicts the solution computed with split

delivery. For this solution, it should be noted that a split delivery is formed at customer

node 13 and that depot 3 was not used in serving any customers. Figure 3.5(b) represents

the solution found without split-delivery which uses all depots. Afterward, we test the same

example with the restriction of single depot. The setup allows to verify the performance

of the proposed procedure on SDVRP and CVRP problem instances.

(a) Using Split-Delivery Heuristics (Cost: 2721) (b) Using No-Split Heuristics (Cost: 2786)

Figure 3.6: 1-depot 3-vehicle solution of modi�ed-E016-03m using MDSDVRP.

With a restriction allowing one depot, the heuristic algorithm may perform on the

case study problem instance similar to SDVRP. In such situation, we may additionally opt

out for split delivery and use the same heuristic algorithm to solve problem instance as

CVRP. We compare such solutions as presented in Figure 3.6. In this example, we setup

a Split-Delivery VRP with one depot where depot establishment cost is 0 for node 1. The

solutions found using heuristic algorithm are 2721 (see Figure 3.6(a)) and 2786 (see Figure

3.6(b)) using and without using split delivery respectively. The split delivery is slightly

bene�cial here as it can create better solution (with lower cost) than the optimal value

achieved using CVRP [111]. The lower cost is achieved due to splitting the delivery in

77



node 3 where vehicles v0 and v2 deliver 6 and 24 respectively to meet the demand.

(a) Convergence Analysis of Case Study (b) Detailed Convergence Frequency Distribution

Figure 3.7: 3-depot 1-vehicle/depot convergence study on modi�ed-E016-03m instance.

Figure 3.7 depicts the results obtained after performing convergence analysis on the

proposed heuristic approach for the MDVRP setup of the case study problem (see Figure

3.5(b)). In this setting, we explore an increasingly larger search scope of the solution space

by increasing the value of the maximum distinct cost (mdc) parameter. The latter repre-

sents the dominant factor in delimiting the scope of the solution search. The maximum

explored neighbors (maxnbr) parameter is set to 3 since this value was found to perform

well in benchmarks. The maximum serve map entry size (msset) is set to 50 accordingly.

In Figure 3.7(a), we can see the solution generation evolution pro�le, in terms of standard

deviation (σ) excursions from the mean (µ), corresponding to successive solution popu-

lation batches. Each batch consists of 100 individual solutions obtained by applying the

heuristic procedure repeatedly for the samemdc value but with di�erent randomly selected

seeds. We can initially note large (µ− σ) and (µ+ σ) excursions that progressively narrow

and �nally �atten for the larger values of the mdc. In addition, it is worthy to empha-

size that early on, the (µ − σ) excursions indicate that competitive solution are also being

found albeit dispersed in population with less competitive mean value. Moreover, for the

larger mdc values, the (µ − σ) and (µ + σ) excursions are distinctly narrow and positioned

around competitive mean solution values. Figure 3.7(b) provide further insight with re-

spect to the convergence of the procedure to near-optimal solution. It depicts the solution

frequency histogram for small (5), medium (15) and large (25) mdc values. We can see

78



Table 3.2: Benchmark on known MDSDVRP problem instances [101]

Problem totalDem vehCnt tightness bestKnown maxHeurVal avgGap[%]

(nodes) (depots) (vehCap) (split) (bestHeurVal) (avgHeurVal)(avgTime[sec])

SQ1 (32) 2400 (2) 12 (100) 1.0 (yes) 1058 (1048) 1072 (1056.38) -0.10 (1.00)

SQ2 (48) 3600 (3) 12 (100) 1.0 (yes) 1589 (1588) 1607 (1596.25) 0.51 (1.13)

SQ3 (64) 4800 (4) 12 (100) 1.0 (yes) 2131 (2116) 2182 (2152.25) 1.01 (2.63)

SQ4 (80) 6000 (5) 12 (100) 1.0 (yes) 2662 (2665) 2706 (2692.13) 1.16 (5.63)

SQ5 (64) 4800 (2) 25 (100) 0.96 (yes) 3422 (3446) 3481 (3461.50) 1.16 (8.63)

SQ6 (96) 7200 (3) 25 (100) 0.96 (yes) 5135 (5153) 5235 (5197.75) 1.27 (24.38)

SQ7(128) 9600 (4) 25 (100) 0.96 (yes) 6860 (6929) 7028 (6970.25) 1.61 (57.88)

SQ8(160) 12000 (5) 25 (100) 0.96 (yes) 8573 (8638) 8787 (8729.25) 1.84 (101.63)

SQ9 (96) 7200 (2) 36 (100) 1.0 (yes) 7051 (7047) 7074 (7062.75) 0.21 (41.13)

SQ10(144) 10800 (3) 36 (100) 1.0 (yes) 10578 (10587) 10668 (10638.25) 0.63 (127.75)

SQ11(192) 14400 (4) 36 (100) 1.0 (yes) 14117 (14152) 14296 (14234.13) 0.89 (302.75)

SQ12(240) 18000 (5) 36 (100) 1.0 (yes) 17645 (17780) 17886 (17829.25) 1.07 (566.75)

that for mdc = 5, the solution frequency distribution contains a wide spectrum spanning

over many less competitive solution with few hits on the best solution and many hits on

poor solutions. For mdc = 15, we note that the solution frequency distribution spectrum

is less wide, having more hits on the best solution albeit it still includes less competitive

solutions. Finally, formdc = 25, we observe an even narrower spectrum exhibiting the most

competitive solution frequency distribution along with notable hits on the best solution.

3.5 Experimental Results

We present our result in Table 3.2 by applying the proposed algorithm on known MDS-

DVRP instances published previously by Gulczynski et al. [100, 101]. The �rst, second

and third column de�ne the problem instance. The totalDem parameter represents the

combined demands of all customers while vehCnt and vehCap provide the maximum num-

ber of vehicles and related capacities. In the fourth column, the tightness of an instance

79



Table 3.3: Benchmark on known MDVRP problem instances [53, 55]

Problem totalDem vehCnt tightness bestKnown maxHeurVal avgGap[%]

(nodes) (depots) (vehCap) (split) (minHeurVal) (avgHeurVal)(avgTime[sec])

p01 (50) 777 (4) 4 (80) 0.607 (no) 577 (577) 588 (583.38) 1.13 (2.38)

p02 (50) 777 (4) 2 (160) 0.607 (no) 474 (472) 484 (477.88) 0.86 (3.75)

p03 (75) 1364 (5) 3 (140) 0.649 (no) 641 (638) 648 (643.13) 0.38 (12.75)

p04 (100) 1458 (2) 8 (100) 0.911 (no) 1002 (997) 1014 (1007.13) 0.52 (52.13)

p05 (100) 1458 (2) 5 (200) 0.729 (no) 750 (749) 774 (758.63) 1.17 (41.00)

p06 (100) 1458 (3) 6 (100) 0.81 (no) 877 (890) 906 (897.75) 2.36 (40.63)

p07 (100) 1458 (4) 4 (100) 0.911 (no) 886 (883) 909 (897.00) 1.25 (25.13)

p12 (80) 432 (2) 5 (60) 0.72 (no) 1319 (1314) 1331 (1319.88) 0.11 (13.75)

p15 (160) 864 (4) 5 (60) 0.72 (no) 2505 (2539) 2614 (2583.25) 3.08 (74.13)

p18 (240) 1296 (6) 5 (60) 0.72 (no) 3702 (3835) 3872 (3855.75) 4.03 (206.25)

p21 (360) 1944 (9) 5 (60) 0.72 (no) 5475 (5737) 5862 (5799.25) 5.64 (657.13)

represents a ratio between total customer demands and total capacity available [21] while

(split) conveys whether the heuristic solution employs shared delivery. The �fth and

sixth columns o�er results from our proposed approach and compare with currently best-

known values. In every run, the search is invoked eight times in parallel with di�erent

seed values in eight cores of an Intel core i7 machine. The bestHeurVal, maxHeurVal

and avgHeurVal denotes the best, worst and average routing cost for a problem instance.

The avgGap[%] in last column de�nes the percentage of the average gap of our solution

with respect to the best known value. avgTime[sec] is the average time taken to solve

the problem instance. The underlined values in column �ve and seven indicate �nding of

better result and average than previously known solutions of the corresponding problem

instances. The heuristic solutions are re�ned by performing localized permutation on up

to 4 adjacent nodes in a route. The routing details for the underlined results are presented

in the appendix. To solve the SQ problem series, the proposed algorithm uses mdc = 5,

msset = 100 and maxnbr = 1.

Similarly we solve known MDVRP instances [62] produced by Cordeau et al. [53].

80



Table 3.4: Benchmark on known SDVRP problem instances [68]

Problem totalDem vehCnt tightness bestKnown maxHeurVal avgGap[%]

(nodes) (vehCap) (split) (minHeurVal) (avgHeurVal)(avgTime[sec])

eil22 (21) 22500 4(6000) 0.937 (no) 375 (375) 379 (378.00) 0.82 (1.00)

eil23 (22) 10189 3(4500) 0.754 (no) 569 (570) 570 (570.00) 0.20 (1.00)

eil30 (29) 12750 3(4500) 0.944 (yes) 510 (510) 511 (510.50) 0.10 (1.25)

eil33 (32) 29370 4(8000) 0.917 (no) 835 (841) 843 (842.33) 0.93 (3.00)

eil51 (50) 777 5 (160) 0.971 (no) 521 (521) 533 (525.67) 0.90 (13.67)

eilA76 (75) 1364 10 (140) 0.974 (yes) 832 (831) 841 (836.25) 0.55 (57.63)

eilA101 (100) 1458 8 (200) 0.911 (no) 817 (822) 831 (827.25) 1.29 (115.75)

eilB76 (75) 1364 14 (100) 0.974 (yes) 1023 (1010) 1032 (1024.63) 0.17 (34.38)

eilB101 (100) 1458 14 (112) 0.929 (yes) 1077 (1088) 1095 (1090.60) 1.28 (155.40)

eilC76 (75) 1364 8 (180) 0.947 (yes) 735 (741) 747 (745.00) 1.40 (47.00)

eilD76 (75) 1364 7 (220) 0.885 (no) 683 (691) 695 (692.63) 1.46 (49.38)

S51D1 (50) 402 3 (160) 0.837 (no) 458 (464) 481 (467.75) 2.13 (4.75)

S51D2 (50) 1415 9 (160) 0.982 (yes) 726 (707) 715 (711.00) -2.06 (5.00)

S51D3 (50) 2275 15 (160) 0.947 (yes) 972 (953) 970 (959.75) -1.22 (8.00)

S51D4 (50) 4317 27 (160) 0.999 (yes) 1677 (1561) 1581 (1569.75) -6.79 (75.00)

S51D5 (50) 3645 23 (160) 0.99 (yes) 1440 (1337) 1351 (1344.25) -7.09 (31.88)

S51D6 (50) 6459 41 (160) 0.984 (yes) 2327 (2182) 2196 (2187.25) -6.35 (418.63)

S76D1 (75) 614 4 (160) 0.959 (no) 594 (601) 628 (612.38) 3.04 (17.63)

S76D2 (75) 2383 15 (160) 0.992 (yes) 1147 (1091) 1108 (1099.25) -4.29 (36.37)

S76D3 (75) 3542 23 (160) 0.962 (yes) 1474 (1440) 1456 (1448.25) -1.74 (82.00)

S76D4 (75) 5765 37 (160) 0.973 (yes) 2257 (2096) 2115 (2102.25) -7.31 (547.25)

S101D1 (100) 788 5 (160) 0.985 (no) 716 (733) 748 (740.80) 3.40 (53.80)

S101D2 (100) 3064 20 (160) 0.957 (yes) 1393 (1383) 1403 (1395.00) 0.20 (82.63)

S101D3 (100) 4841 31 (160) 0.976 (yes) 1975 (1889) 1904 (1897.38) -4.05 (244.63)

S101D5 (100) 7679 48 (160) 0.999 (yes) 2915 (2814) 2866 (2828.63) -3.00 (874.63)

81



(a) Time (sec.) taken to solve instances without split
delivery

(b) Time (sec.) taken to solve instances with split
delivery

Figure 3.8: Comparative study of solution quality and time.

We run the proposed heuristic algorithm by setting (usesplit) input parameter false in the

heuristic procedure. For these problem instances, the algorithm usesmdc = 25,msset = 100

and maxnbr = 3. During the solution enhancement, we perform localized permutation up

to 4 adjacent nodes in a route. Table 3.3 shows the results. In certain cases, we �nd similar

or better results than the best known solutions published in literature [62]. With the same

input parameters as used for solving the aforementioned MDVRP instances, Table 3.4

elaborates the result of applying heuristics over SDVRP instances introduced by Dror et

al. [44]. These problem instances are carefully designed such that capacitated vehicle

routes require sharing of commodity delivery in order to reach optimal routing. However,

all the problem setups consist of one depot. In order to solve SDVRP instances, we place

a restriction over depot deployment cost and start heuristic search directly from a known

depot. With the presented input parameters, we achieve better results for many of these

instances. Finally, we also solve CVRP Augerat et. al [21] A, B and P problem set by

restricting search from a given depot and without using split. Table 7.1, Table 7.2, Table

7.3, Table 7.4 and Table 7.5 elaborate the results presented in the Appendix.

82



Figure 3.9: Convergence study on S76D2 instance [44] for multiple parameter values

3.6 Results Analysis

Figure 3.8 depicts an overall estimate of the time taken in solving all the problem instances

considered in Section 3.5. In both sub-�gures, the solution time has been calculated for

all the solved problem instances with respect to number of customer nodes and vehicles.

We depict the results by category based on the use of split-delivery in solution. Figure

3.8 shows that the proposed technique is successful in solving CVRP, SDVRP, MDVRP

and MDSDVRP instances reasonably fast for small and medium scale problems. The

solution generation is faster especially in the cases where split-delivery is not used (see

Figure 3.8(a)). However, split-delivery (see Figure 3.8(b)) allows to generate good quality

solutions which are some times better than the best known values for these instances.

After a careful analysis of the results, it becomes apparent that the solving time increases

notably with respect to customer nodes. On the other side, the increase in vehicles also

adversely a�ects the solution time.

83



In analyzing the proposed procedure, we tested its performance using 18 di�erent

parameter combinations for mdc, maxnbr and msset as follows: mdc: {5,15,25}; maxnbr:

{1,3,5}; msset: {50,100}. We selected a representative SDVRP instance (S76D2) [44]

consisting of 76 nodes and 15 vehicles. Figure 3.9 illustrates our �ndings for the best

solution values obtained from 8 execution runs for each parameter combination. The

results are represented in two separate graphs corresponding to msset 50 and 100. We

can notice that the algorithm converges reasonably fast during the solution search and

improvement. To further analyze the convergence characteristic, we evaluate the trend-

lines for the parameter combinations (25 × 3 × 50) and (25 × 3 × 100). Both trend-lines

represent logarithmic curves: y = −4.213ln(t) + 7.5327 and y = −3.468ln(t) + 6.0566 with

R2 value 0.9609 and 0.9867 respectively. The �ndings indicate that (i) the general nature

of convergence curve is approximately logarithmic and (ii) the coe�cients (corresponding

to the search parameters) determines the approximate speed of convergence and quality of

the �nal solutions.

In fact, faster convergence corresponds to diminished solution quality. Conversely,

longer search time leads to better solutions for appropriate parameter combinations. The

lowest computation time is obtained with parameter combinations (25 × 1 × 50) and (15 ×

1 × 100) in the left and the right sub-�gures respectively. Likewise, the best solutions are

obtained with parameter combinations (25 × 3 × 50) and (25 × 3 × 100) in the left and the

right sub-�gures respectively. We may notice the level of dissimilarity with respect to the

solution �nding trajectory when comparing the left (less similar) and right (more similar)

sides of the �gure. Thus, we emphasize the selection of parameter combinations depending

on the need in terms of time and quality. We favored the combination (25 × 3 × 100) for

conducting the bulk of our benchmark experiments.

Figure 3.10 shows a performance evaluation with respect to average gap values on

18 parameter combinations over a set of 3 CVRP series (A, B and P-series [21]) consisting

of known problem instances for which optimal solutions are available in the literature. We

aimed at �nding appropriate parameter combinations that may lead the solution generating

procedure closer to optimality for a large number of problem instances. In the upper half

of Figure 3.10, we can see that the larger values for the 3 parameters used for solution

84



Figure 3.10: Performance comparisons of input parameters on CVRP instances

generation help in bringing average gap close to 1% for each of the 3 series. However, we

can notice a gradual increase in the average time for larger values of the parameters as

depicted in Figure 3.10-lower half. With respect to the latter, the y-axis represents the

average computation time ratio normalized by the maximum average computation time

which was obtained for the larger values of the parameters. Since we observe a plateau of

the average gap values in the neighborhood of 1% while reaching a mdc of 25 and maxnbr

85



of 3, we favor the combinations for which the average computation time ratio is lower.

Thus, from the experiments conducted, a de�ned range of parameter values can be

seen to correspond to �nding good near-optimal solutions. For the mdc, we note a snap

region for values over 15 which gradually reaches a plateau around a value of 25. With

respect to maxnbr, a range from 3 to 5 appears to be most bene�cial. In this context,

we can estimate that values larger than 5 would lead to a certain amount of fragments

grown from more distant neighbors, many of which will not eventually lead to competitive

solutions. Concerning the msset, we can note that in some cases the lower value of 50

corresponds to better results while in other cases, the value of 100 is better suited. This

indicates that a more strict (smaller msset) guided search may be more appropriate than

a less strict (higher msset) for some problems and vice versa.

3.6.1 Advantages and Limitations

The benchmark results show clear advantages in deriving routes using the proposed MDS-

DVRP solving approach. More precisely, the underlying heuristic is fast in producing

competitive solutions. In addition, it generates good quality near-optimal or optimal solu-

tions for many problem instances. Furthermore, the technique handles a diverse range of

problems from the VRP and LRP families. Finally, it o�ers con�gurable parameter setting

for the solution search to reach a user-desired trade-o� between faster convergence and

improved solution quality.

The proposed approach also has a number of limitations. First, the underlying

heuristic does not provide a hard guarantee of the solution quality. However, we initially

populate the data structures of the algorithm by generating �rst the nearest neighbor

solution. The latter can be quickly produced by extending each vehicle route in a manner

that successively incorporates unserved/underserved customer nodes among the neighbors

of the last served customer node of the route. Afterward, the nearest-neighbor solution

serves as initial accepting reference for the new solutions such that each new solution will

be accepted if it has lower cost compared to the current accepting reference. The latter

is also updated each time a better solution is found. Furthermore, the proposed solution

approach is appropriate for single type of commodity delivery. Multiple commodity types

86



requires handling an additional multi-dimensional bin-packing problem while searching

for the vehicle routes. Finally, this heuristic approach works in centralized setting where

all problem data is available to a single decision maker. However, it can be used to

quickly generate local solutions from the perspective of each decision maker participating

in distributed solution generation.

3.7 Summary

In this chapter, we presented a generalized VRP model (MDSDVRP) suitable for multi-

depot, multi-vehicle and split delivery along with a heuristic solution generation approach

with e�ciency re�nements. The proposed approach can provide competitive solutions

both in terms of cost as well as computation time for diverse instances of the VRP family.

We illustrated the approach with an instructive case study example which allowed to

compare di�erent solutions of the problem variants. In this respect, we evaluated the

proposed approach by generating extensive benchmark results for known problem instances

belonging to di�erent VRP variants, including CVRP, MDVRP, SDVRP and MDSDVRP.

Location routing represents another important feature allowing to optimize depot location

and vehicle routing in a single objective function. Finally, we also thoroughly analyzed the

trade-o� between faster convergence and improved solution quality.

The proposed approach has some applicability limitations in terms of single com-

modity delivery and the absence of time-windows, which are the subject of future work.

Other future work directions include extending the technique to handle maximum vehicle

tour cost and stochastic customer demands.

87



Chapter 4

Collaborative Multi-Depot Vehicle

Routing Problem

In this chapter, we discuss two distributed approaches where participants may

divide an original MDVRP instance into sub-problems and jointly reach a near-

optimal global solution. The �rst approach presents a collaborative evolution-

ary learning mechanism where each participant aims to continuously improve

its preference for customers by aggregating results from a number of assigned

sub-problems in order to reach the near-optimal solution for the original MD-

VRP. The second approach involves a cooperative solution generation mecha-

nism where self-interested participants jointly �nd a near-optimal solution for

an MDVRP instance while each participant has its own individual objective of

cost e�ective commodity delivery. In both cases, the underlying setup allows

every participant to decide on serving a set of customers based on prede�ned

locations for its depot(s) and �eet(s). Both approaches produce competitive

solutions while having their own advantages and limitations.

4.1 Introduction

The common solution generation approaches for multi-depot vehicle routing problem (MD-

VRP) assume a centralized setup with complete knowledge of travel cost, depot locations,

88



total number of vehicles, vehicle capacity and customers [12, 179, 187]. Such assumptions

are often impractical and the existing solution techniques also su�er from scalability issues

to handle medium and large problem instances. In contrast, distributed solution generation

algorithms help in collaborative operation management for vehicle routing problems with

multiple partners. These algorithms can be designed using result sharing and/or problem

sharing. The result sharing approach involves jointly searching optimal or near-optimal

solution in the same solution search space of the original problem. In Section 3.3.2, we

have presented a multi-point stochastic insertion cost gradient descent algorithm where

each participant may collaboratively explore di�erent regions of same search space of a

problem instance based on di�erent input seeds. This helps to simultaneously execute the

search procedure and mitigate risk of computation overload by one or more participants

in solution generation since the �nal result depends on the minimum solution value ob-

tained across all participants. Thus, such a collaborative result sharing yields near-optimal

solution in presence of multiple decision makers. However, in result sharing based decen-

tralized approaches, each participant solves the whole problem. This requires allocating

larger amount of computation resources to deal with medium and large-scale problems as

the solution search space becomes larger and larger. In contrast, collaborative and coop-

erative problem sharing approaches can be bene�cial to handle large VRP variants. Such

an approach allows executing distributed algorithms at each participant's location using

their computation setup. This, in turn, reduces the computation load at every participant

since they solve a part of the whole problem. It also opens the scope to observe certain

organizational policies.

Distributed setup of problem sharing �rst requires a mechanism to divide the MD-

VRP instance into sub-problems. Second, it needs a supervised procedure to combine

the results from the sub-problems. The combined output re�ects a solution to the original

problem. The supervised procedure ensures progressive convergence toward a near optimal

solution. As the divided sub-problems are smaller in size compared to the original problem,

solution search algorithms may perform more e�ciently on the sub-problems. However, it

is hard to �nd a proper mechanism to divide VRP customers among the participants as

the most appropriate partitioning cannot always be identi�ed without solving the original

89



problem itself [196]. In what follows, we elaborate the problem, present a decentralized

model and solve multi-depot vehicle routing problem from the perspective of collabora-

tive decision makers. Furthermore, we design an alternative cooperative distributed setup,

where rational self-interested participants jointly solve the original problem by putting to-

gether partial solutions of their interest to deliver commodities to customers based on their

vehicle capacities.

The remainder of the chapter is organized as follows. Section 4.2 describes and

presents a mathematical model for Collaborative Multi-Depot Vehicle Routing Problem.

Section 4.3 elaborates a collaborative solution generation approach, namely evolutionary

learning (also called passive learning), in two phases. The �rst phase elaborates on how to

divide the original problem into sub-problems. The second phase presents an evolutionary

learning procedure to combine results in a distributed setup. In this approach, each partic-

ipant repetitively shares routing cost of vehicle routing sub-problems and an evolutionary

learning mechanism �nds progressively better solutions by analyzing these continuously

shared cost and partial solutions. Finally, these solutions represent near-optimal vehicle

routes obtained by progressively applying heuristic techniques locally on the individual

sub-problem instances. Section 4.4 illustrates a negotiation based distributed solution gen-

eration approach whereby participants actively choose customers for commodity delivery

based on a game theoretic setup. In contrast to a pure collaboration approach, in negotia-

tion, decision makers are assumed to be rational but self-interested to optimize their cost

of operations. Section 4.5 describes and compares results obtained by applying techniques

from both approaches on known problem instances. Finally, we summarize our �ndings in

Section 4.6 by highlighting the advantages and the limitations of the proposed techniques.

4.2 Problem Description and Modeling

In what follows, we elaborate the problem setup. The latter considers pre-established de-

pots in the transport network each of which is owned by a decision maker. In a distributed

setting, every decision maker plans serving customers from the host depot(s) using vehi-

cles that are associated to the depot(s). Each of these vehicles has a maximum capacity

90



of serving a commodity. Each depot has a number of vehicles that determines depot's

capacity to serve customer demands. However, the exact number of vehicles at a depot is

only known by the depot itself. We propose two mechanisms to divide MDVRP instances

into multiple vehicle routing problems one for each decision maker. The solution genera-

tion approaches allow each decision maker to locally generate partial solution and share

their cost related information with other participants through an iterative procedure. The

procedure combines the solution cost and progressively converges toward a near-optimal

solution of the original MDVRP instance. In the �nal solution, each participant operates

independently over the transport network with its own depot(s) and its allotted customers.

4.2.1 Problem Statement

MDVRP handles commodity delivery to customers (demand points) over a common trans-

port network. Given a set of nodes (V ), representing depots (P ) and customers (N), and a

set of edges (E), a transport network is a complete graph G = (V,E) where E is a relation

in (V ×V ). Each edge ⟨i, j⟩ has a traversal cost (cij) between corresponding nodes i and j.

Similar to all vehicle routing problems, customer nodes of MDVRP are characterized with

a deterministic demand (integer) for commodity (di). In contrast, depots do not have any

demand and each of them locally hosts vehicles (k = 1,2, . . . ,Kp) to supply the customers.

Each vehicle k has a de�ned capacity (Ck) of carrying single type of commodity.

Unlike other VRP variants, in collaborative setting, information of vehicles and their

individual capacities is known only to its host depot. Thus, the aim of the problem is to

generate a set of vehicle routes per depot (p ∈ P ) where each route starts and ends in the

same depot and the total routing cost of all routes is minimum to serve all the customers.

4.2.2 Assumptions

In a collaborative MDVRP, a decision maker on each depot knows the complete transport

network, all customer demands and its own capacity of commodity delivery through avail-

able vehicles. In absence of a centralized setting, a decision maker can only collaborate

with other decision makers. Architecturally, such a collaboration can be implemented with

91



a shared-memory system or through peer-to-peer communication. In this setup, we con-

sider that each depot shares its own interest of serving customers and divides the whole

problem progressively into multiple (single or multi-depot) vehicle routing problems by

owning responsibilities of serving a subset of customers. Thus, the procedure performs a

decentralized problem sharing.

Without any loss of generality, we assume that a decision maker represents/owns

only one depot. This simpli�es the problem modeling as one participating decision maker

controls the vehicles of one depot. Thus, for each depot p, the underlying transport

network consists of N ′ ∶= N ∪{p} nodes. Each decision maker computes solution to its own

capacitated VRP or Split-Delivery VRP instance and learns from the combined outcome of

customer assignment. Progressively, they converge to a near-optimal solution of the original

problem instance. A limitation to this problem design is the following. In this approach,

it is only possible to consider split delivery, if required, while solving the individual sub-

problem instances with respect to every decision maker. In other words, the possibility

of split delivery in serving customer demands with other depots is restricted since the

proposed approach requires every depot to commit in advance the delivery of customer

demands for its preferred customers.

4.2.3 Problem Modeling

Unlike previous formulation of MDSDVRP, in this setting, the depots are already estab-

lished and every vehicle is associated to a depot. Therefore, the decision variables can be

expressed as follows:

� xijkp ∈ {0,1} determines vehicle route. If the edge ⟨i, j⟩ is traveled by vehicle k of

depot p, xijkp is 1. Otherwise, xijkp is 0.

� yikp ∈ N denotes an integer amount of resource deposited at node i by vehicle k of

depot p.

With these two sets of variables, we divide the model of MDVRP or MDSDVRP into

individual capacitated VRP or split-delivery vehicle routing problem (SDVRP) instances

respectively. In this regard, the optimal serving of a subset of customers from every

92



individual depot su�ers two major challenges. First, there is a probability that certain

customer demands (di) may remain under-served due to the individual decision making of

the depots solely based on transportation cost. Second, summation of the near-optimal

partial solutions from individual SDVRP instances, each of which is generated by a decision

maker from its individual depot based on its vehicle capacity, does not guarantee a high-

quality near-optimal solution for the original problem instance. This relates to the issue

of appropriate customer assignment as mentioned before.

Mathematically, the �rst challenge can be addressed through probability and risk.

Given a global risk factor R, the probability of serving customer demands can be captured

through a joint chance constraint as previously discussed in Section 2.1.3. Since the depots

are established, each decision maker aims at serving its preferred customers using its own

vehicle(s). In a capacity constrained collaboration environment, we assume that every col-

laborative decision maker contributes in commodity delivery based on its expectation over

the contribution of others. Let a state variable uip denote the contribution of participant p

using its own vehicles. Then, at every state of the solution generation, each participant lo-

cally requires the amount of commodity delivery to be more than uip, i.e. uip ≤ ∑k∈Kp
yikp.

On the other hand, in order to have a solution to the collaborative problem setup, each

customer demand must be ful�lled, i.e. (di −∑p∈P uip) ≤ 0 for each customer node i. This

extends Eq. (3.8) of the MDSDVRP model in Section 3.2.3. Now, in collaborative decision

making, participant p actually knows only the value of uip while it can estimate the values

for uip′ where p ≠ p′. Such estimation helps the participant p to assess the value of its state

variable uip. Therefore, in this setup, we express the joint chance constraint as follows:

Pr
⎡
⎢
⎢
⎢
⎢
⎣
⋀
p∈P
⋀
i∈N

[di − ∑
p∈P

uip ≤ 0]

⎤
⎥
⎥
⎥
⎥
⎦

≥ 1 −R (4.1)

Eq. (4.1) denotes that, the risk of any customer not to be served in full, should not exceed

R in order to produce a solution to this collaboration problem. However, evaluation of such

a joint constraint is hard during individual solution computation [174]. To overcome the

�rst challenge, we propose reformulating the joint chance constraint into individual chance

constraints. Such a decomposition is already discussed in Section 2.1.3. Let individual risk

93



of every participant p to break constraint Eq. (4.1) be πip on each node i ∈ N . Then, πip ≥ 0

and ∑
i∈N
∑
p∈P

πip ≤ R. This o�ers two speci�c advantages to the task decomposition. Refor-

mulation helps to express the joint chance constraint using individual constraints. More

importantly, it allows decomposing the risk of failure to every individual decision maker

alongside the decomposition of an MDSDVRP instance into multiple SDVRP instances.

Moreover, the decomposition helps to individually handle the risk through a uni-variate,

convex and monotonically decreasing distribution function of risk. We denote it using

function −mip(πip) similar to previous research e�orts [174, 173].

The other challenge for optimal solution search relates to iterative evaluation among

collaborative decision makers. Since, no participant can determine the optimal sharing

of responsibilities in serving the customer demands, each participant needs to share its

own solution cost of its current sub-problem with others and progressively converge to

the most appropriate overall solution. Iteratively, it helps all participants to reach the

optimal routing and serving of all customers. Similar to previous research e�orts [174],

we propose applying �nite horizon optimal control where involved participants perform

multi-round optimization. In order to adapt with this iterative procedure, we extend the

decision variables xijkp and yikp to xtijkp and ytikp respectively where t denotes the round. In

each round, the optimization procedure locally determines the values for decision variables

(xtijkp, ytikp), also termed as control variables. Likewise, a set of state variables Up =

[u0Tp , . . . , utTp , . . . , u
(τ−1)T
p ] holds the mathematical states of the multi-round optimization

problem as presented before in Section 2.1.3. In the set of state variables (Up), τ represents

a �nite horizon for the multi-round optimization while T indicates the transpose of a vector.

Thus, utTp is a vector that determines the expected contribution from a participant p for all

customer nodes at a round t. The states are updated as ut+1ip = Ap ⋅u
t
ip +(Bp ⋅ (∑k∈Kp

ytikp))

for all t = [0,⋯, τ − 1] from round t to t + 1 where Ap and Bp are user chosen constants.

Thus, the update of future state for each customer node depends on expected contribution

and the actual delivery by every participant. The following model captures the distributed

problem through a system of equations.

The objective function for the distributed multi-depot split-delivery vehicle routing

94



problem can be formulated over the transport network as follows:

min
τ−1

∑
t=0

⎛

⎝
∑
i∈N ′
∑
j∈N ′

cij ∑
k∈Kp

xtijkp
⎞

⎠
+ ρ∑

i∈N

πip, ∀i ≠ j and p ∈ P (4.2)

Subject to:

Flow conservation:

∑
j∈N

∑
k∈Kp

xtpjkp ≤ ∣Kp∣ (4.3)

∑
i∈N ′

xtihkp = ∑
j∈N ′

xthjkp ∀h ∈ N
′and k ∈Kp, i, j ≠ h (4.4)

Sub-tour elimination:

∑
i∈S

∑
j∈S

xtijkp − ∑
j∈S

xtpjkp ≤ ∣S∣ − 1, S ⊆ N ′, ∣S∣ ≥ 2, k ∈Kp and i ≠ j (4.5)

Capacity restriction:

∑
i∈N

ytikp ≤ Ck, ∀k ∈Kp and p ∈ P (4.6)

ytikp ≤ di ∑
j∈N ′

xtijkp, ∀i ∈ N and k ∈Kp (4.7)

∑
i∈N

utip ≤ ∑
k∈Kp

Ck ∀p ∈ P (4.8)

State evaluation:

0 ≤ utip ≤ di ∀i ∈ N and p ∈ P (4.9)
τ−1

∑
t=0

(di − ∑
p∈P

utip) ≤ −mip(πip), ∀i ∈ N (4.10)

ut+1ip = Ap ⋅ u
t
ip +Bp ⋅ ∑

k∈Kp

ytikp, ∀k ∈Kp and p ∈ P (4.11)

Variables:

xtijkp ∈ {0,1}; where i, j ∈ N ′, i ≠ j, k ∈K,p ∈ P and t = 0, . . . , τ (4.12)

ytikp ≥ 0; where i ∈ N,k ∈K,p ∈ P and t = 0, . . . , τ (4.13)

utip ≥ 0; where i ∈ V, p ∈ P and t = 0, . . . , τ (4.14)

95



In this model, two sets of control variables are used as denoted by xtijkp and ytikp. At

each iteration t, xtijkp indicates whether a vehicle k from depot p moves from node i to node

j. ytikp captures the actual contribution of vehicle k of depot p at node i as determined in

iteration t. Alongside, the set of state variables, utip represents the expected contribution

from each depot p at node i in iteration t.

Eq. (4.2) represents the objective function where we iteratively minimize the routing

cost for a split-delivery vehicle routing problem (SDVRP) along with individual risk of

collaboration. However, in collaborative setting, SDVRP model di�ers from its usual

modeling approaches as each participating depot is not required to serve all customer

demands. Thus, the guarantee of all customers being served is only handled by the chance

constraint. Nevertheless, in this setting, SDVRP routing cost optimization also represents

a linear function and all SDVRP constraints (Flow conservation, Sub-tour elimination,

Capacity restriction constraints) are linear as well. Thus, the SDVRP optimization is

convex. Ono and Williams proved that if the total risk R is bounded by 0 ≤ R ≤ 0.5, the

optimization problem remains convex even under the joint chance constraint of a global

risk value R [174]. This o�ers decomposing the global risk into individual risk πip for each

participant p at each node i. Eq. (4.2) also shows customizing the in�uence of risk (�price

of risk�) using a globally determined penalty constant ρ.

Eq. (4.3) and Eq. (4.4) are �ow conservation constraints similar to MDSDVRPmodel

as discussed in Section 3.2.3. In this chance-constrained model, a depot may partially serve

customers using its vehicles. However, Eq. (4.3) asserts that the total number of tours used

in the solution should not exceed the limit of maximum vehicles. Eq. (4.4) indicates that

the total incoming vehicles to a node are exactly equal to the total outgoing vehicles from

that node. Eq. (4.5) is a generalized sub-tour elimination constraint assuring that vehicles

starting from depot p are returning to the same depot. Eq. (4.6)-Eq. (4.8) deal with the

amount of commodity to be delivered at a customer node. Eq. (4.6) assures that no vehicle

can deliver more than its capacity while Eq. (4.7) indicates that a customer node must be

visited by a vehicle in order to be served and the total amount of delivery by a vehicle does

not exceed the demand of the customer node. Similarly, Eq. (4.8) assures that expected

total serving for all customer nodes does not exceed total vehicle capacity. Eq.s (4.9),

96



(4.10) and (4.11) evaluate the mathematical state of this multi-round optimization. Eq.

(4.9) assures that the expected delivery of commodity from a participant on a customer

node never exceeds customer demand. Eq. (4.10) presents the risk allocation over the full

serving of every customer demand. Finally, Eq. (4.11) denotes updating of the expected

contribution by a participant over a node based on the current participation and the current

serving at that node.

The proposed model presents three main concerns for a distributed solution tech-

nique of collaborative mutli-depot split-delivery vehicle routing problem. First, in order

to handle proper risk allocation, as required in Eq. (4.10), the solution generation needs

communication of state related information among participants. Second, the solution gen-

eration requires designing a speci�c approach to update the states at each round while

locally using heuristic techniques to optimize the single depot split-delivery vehicle rout-

ing problem. Finally, �nding appropriate Ap and Bp is computationally challenging for

evaluation of Eq. (4.11) since ytikp and utip are both integers.

4.2.4 Running Example

In order to explain the proposed approaches, we consider the same example of the CVRP in-

stance presented as (E016-03m) in Section 3.4. The con�guration of the transport network

and customer demands of the problem are kept same. However, in distributed collabora-

tive setting, we consider three participating decision makers from depot node 1, 2 and 3

respectively. Each participant has 2 vehicles of 90 units capacity for commodity delivery.

4.3 Collaborative Solution Generation: Passive Learning

In this section, we propose a multi-round technique for collaborative decision making,

based on reinforced learning procedure over adaptive elitist solutions as selected from an

evolving population pool of solutions. The technique allows participating decision makers

to jointly solve MDVRP instances near optimally. However, in this procedure, we avert

split delivery of customer demands using vehicles from di�erent depots. More precisely,

we treat the state variable utip ∈ {0, di} such that it can have only one of these two values.

97



if utip = di for a participant p, then for any other participant p′ ∈ P ; p′ ≠ p, utip′ = 0. The

reinforced learning procedure combines learning with evolutionary boosting technique. The

latter was introduced by Mayr et al. [153] in order to �nd near-optimal solutions based on

a statistical model. We call this technique passive learning.

The optimal solution generation in combinatorial optimization often renders the so-

lution search procedure intractable for large supply chain networks. Evolutionary learning

constructs a computationally tractable mechanism using boosting mechanism over a sta-

tistical model while searching in the solution search space. In this setting, the proposed

approach continuously learns solution quality from previously generated solutions while

improving decision making on assessing the assignment of each customer node to an ap-

propriate depot. The associated search procedure involves a repetitive generation of more

competitive solution populations through an elitist selection. The output of each genera-

tion progressively segregates sub-optimal solutions from potential near-optimal solutions.

Alongside, progressive evaluation of more and more competitive solutions raises the con�-

dence on the assignment of customer nodes. Thus, we successively minimize the error in

assigning the customer nodes to the appropriate depots through a boosting technique.

4.3.1 Evolutionary Learning and Solution Pool Handling

Passive learning stems from the boosting technique [35]. Boosting composes a series of

weak rules/learners into a strong learner which is generally used for classi�cation purposes

[199]. In the aforementioned model, variable utp = {u
t
1p, u

t
2p, . . . , u

t
ip, . . . , u

t
np} determines

expected contribution from a participant p for all customer nodes. Thus, utp determines

the amount of deliveries for each customer node from depot p. In classi�cation, we often

call utp as feature vector. Every element u
t
ip ∈ {0, di} of this vector denotes either customer

node i is served fully by depot p or it is not served at all. Let there also be a set of explored

solutions each of which is denoted as spj . In spj , sipj ∈ {0,1} denotes whether customer

node i is served by decision maker p in an observed solution spj . Then, the boosting can

be captured through an additive model:

Hτ(spj) =H
τ−1(spj) + ατThτ(spj) =

τ

∑
t=1

αtTht(spj) (4.15)

98



where Hτ is a boosted classi�er generated from τ weak hypotheses, ht (t = 1, . . . , τ) as

presented in Eq. (4.15). In an iteration t, hypothesis ht is incorporated with weight

vector αtT (T denotes transpose) to the classi�er Ht−1. Hypothesis ht focuses on assessing

solutions that are not well classi�ed by Ht−1 generated at previous iteration. In research

literature, various boosting techniques determine weight αtT and hypothesis ht for di�erent

error minimization objectives.

In classi�cation, we train a classi�er with a solution pool of known classes. If there

exists two main classes, near-optimal and sub-optimal, a trained classi�er then tries pre-

dicting a class for an unknown solution. Thus, a decision maker is able to classify a new

solution using the classi�er. Let opj be a boolean variable that determines a binary class.

Simply, if opj = true the solution is near-optimal whereas opj = false corresponds to a

sub-optimal solution. Thus, the classi�er performs like a black box with respect to the

feature variables and the solution class.

However, in collaborative solving of multi-depot vehicle routing problem, we �nd

two key challenges. At �rst, since the optimal solution is unknown during search, proper

opj = true label generation is di�cult. At every next round, a currently marked near-

optimal solution can be found sub-optimal with more exploration of newer cost e�ective

solutions. However, at any iteration, opj = false can be correctly labeled based on currently

best-known solution having lowest cost and a user de�ned gap. Secondly, the solution

generation procedure can evaluate only a very small subset of solutions from the solution

search space of medium and large scale problems.

Evolutionary learning addresses these challenges. However, unlike traditional classi-

�cation, it uses an interpretable function fi(u
t
ip) that determines the e�ect of a decision

making such as customer node i to be served from depot p. Mayr et al. [153] introduced

a link function ζ(. . . ) to represent the relation between the expectation (ξ) of opj and

observed values of the decision variables (utp) over a training sample spj , as shown in Eq.

(4.16):

ζ(ξ(opj ∣u
t
p = spj)) = γ0 +

n

∑
i=1

fi(sipj) (4.16)

where sipj denotes the value of variable utip on a solution sample spj . As such, Eq. (4.16)

99



is a Generalized Additive Model (GAM) where γ0 is an intercept.

The value of γ0 +
n

∑
i=1

fi(sipj) can be approximately computed based on various inde-

pendent factors (e.g. location, connections, demand, etc.) of a node in SCN for a given

problem instance. In our case, we use heuristic mechanism to locally generate the response

(which may be treated as partial solution). This, in turn, helps in marking a solution

sample spj , at a particular round, with label opj = true or opj = false and segregates

sub-optimal solutions.

Now among the potentially near-optimal solutions, if a feature utip is highly biased

to a particular value 0 or di then fi(u
t
ip = 0) and fi(u

t
ip = 1) contribute dominantly in

determining ζ(E(opj ∣u
t
p = spj)). For example, at round t, if all the near-optimal solutions

in a pool indicate that sipj = 0 then it means that customer node i should not be served

from depot p. On the other hand, if the potentially near-optimal solutions exhibit a mix

of sipj = 0 and sipj′ = 1 (∀j, j′ ∈ S), then node i's impact on the decision making is less

conclusive. As such, a simple voting procedure can be adopted, at the end of every round,

to (re)assign serving responsibilities for each customer node to a depot. Thus, the solution

search procedure converges as more and more customer nodes increasingly start to retain

previous assignment in the next round after the visiting of newer potentially near-optimal

solutions.

In the aforementioned technique, each decision variable (utip) is considered as inde-

pendent in the assessment of near-optimal and sub-optimal solutions. The variable inde-

pendence allows every solution spj to be considered as a point on a space of on orthogonal

axes. In this setting, near-optimal solutions can be seen as a subset of points delimited by

a series of cutting planes over the same orthogonal axes. Function fi helps to compute the

cutting planes over variables utip. Thus, for each sample spj , the error in boosting technique

can be seen as the di�erence: ∣Hτ(spj) − ζ(E(opj ∣u
t
p = spj))∣. This error may come from

wrongly attributing a customer node to a depot due to sampling limitations during each

iteration. Therefore, an implicit error mitigation strategy is needed in the design.

100



4.3.2 Template Generation

The most appropriate distribution of customers per depot is unknown in the beginning.

However, the use of a policy such as near-neighbor approach may allow more than half

of customers to be rightly assigned to their appropriate depots during an initial policy-

based allocation. Thereafter, we employ a multi-round distributed learning technique that

evaluates a pool of competitive solution samples in each round. The solution pool is

updated using a generator template of weight vectors for each depot as represented by:

W t
p=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

wt
1,1 wt

1,2 ⋯ wt
1,m

wt
2,1 wt

2,2 ⋯ wt
2,m

⋮ ⋮ ⋱ ⋮

wt
n,1 wt

n,2 ⋯ wt
n,m

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Thus, each participant p ∈ P from m depots (∣P ∣ = m) maintains a weighing vector for

each of n customers (∣N ∣ = n). These vectors determine the bias of participant p in

serving customer nodes. The generator template helps determining state variable utip. If

utip = di then wt
i,p = max

p′∈P
(wt

i,p′), which is maximum among the weights of all participants

for customer node i. Otherwise, utip = 0. We assume that the max(. . . ) function generates

an unambiguous customer distribution for all depots.

Initial Distribution Policy : Initially, a fairly good distribution policy is needed to start with

a favorable customer allocation. The policy should unambiguously distribute customer

nodes to the depots such that at least more than 50% customer allocation is correct. To

this end, we propose assigning customers to the depot that can serve with lowest cost if

served directly from the depot. To calculate the weight vector we apply a positive voting

policy. In this policy, �rst, the weight is determined proportionately in terms of distance

to all the depots. Second, the values are normalized such that the sum of weights across

each row is 1, i.e. ∑
p∈P

wt
i,p = 1. Finally, we apply a positive voting whereby the weight of

the selected decision maker (for a customer node) reaches more than 1
2 . The bias of other

decision makers are thereby readjusted proportionally. The following examples explain the

concept.

Example 1: Let the distances between customer node i and depots P1, P2 and P3

be 3, 4 and 5 units respectively. Then, their actual normalized approximate weights are

101



0.43 ( 1/3
1/3+1/4+1/5), 0.32 and 0.25 respectively. As per the policy, P1's weight is increased to

0.51. The weights of P2 and P3 proportionally decrease to to 0.275 and 0.215 respectively.

Example 2: Let the distances between customer node i and depots P1, P2 and

P3 be 2, 4 and 4 units respectively. Then, their actual normalized approximate weights

are 0.5, 0.25 and 0.25 respectively. As per the policy, P1's weight increases to 0.51. The

weights of P2 and P3 proportionally decrease to 0.245 and 0.245 respectively.

Example 3: Let the distances between customer node i and depots P1, P2 and

P3 be 3, 3 and 4 units respectively. Then, their actual normalized approximate weights

are 0.363, 0.363 and 0.273 respectively. As per the policy, weight of either P1 or P2 is

increased to 0.51 while the weights of the others are proportionally reduced to 0.28 and

0.21 respectively.

After initial distribution of customers to depots, the multi-round solution generation

process begins. As explained before, the distribution of a customer needs con�rmation of

more than 50% as implemented in max function. The proposed policy generates a unique

initial distribution of weights resulting to an unambiguous decision making over customer

selection. Thus, when depot p serves a customer node i then we call i as dominated by

depot p. This assures no other depot is currently dominating the same node. Later, we

explain how this policy helps the evolutionary learning based solution search.

In what follows, we discuss a distributed collaborative setup with an implementable

evolutionary learning procedure to divide the main problem into sub-problems using the

policy based on initialized generator template of weight vectors.

4.3.3 Proposed Approach

Figure 4.1 depicts a partially distributed setup where collaborative participants may join

from their respective depots with individual capacity of commodity delivery. The setup

performs two main distributed operations, namely: choosing customer nodes for commodity

delivery and computation of transportation cost. However, aggregation of the total cost

of solution and decision making for the update of weight vectors at the depots side are

performed centrally. Although, it is possible to implement a fully distributed setup without

any central authority to evaluate the total commodity delivery cost along with the decision

102



 Template of 

weight vector 

for participant p

 Template of 

weight vector 

for participant p

 Template of 

weight vectors 

for participant p

Start

Choose customer 

nodes for depot p

Compute service cost 

for depot p

Is it a better cost of delivery?

Update weight vectors

Stop

Aggregate total 

service cost

Is stop condition matched?

Distributed 

Centralized
yes

yes

no

no

Initialization

Figure 4.1: Collaborative solution generation for multi-depot vehicle routing problems

making for the update of weight vectors, it needs extensive peer-to-peer communication

among depots. This, in turn, reduces the e�ciency of the system. In what follows, we

discuss a four-step task sharing based collaborative optimization (see Section 2.1.3 for

details) in this setup. To simplify the discussion, we elaborate the task decomposition as

the last step.

Task Allocation: In the aforementioned setup, at round t, depot p's likelihood to

serve customer i is represented by its weight wt
i,p in the template W t

p as maintained at

participant p. A decision maker, who is associated to a depot, selects a customer node if

and only if its conclusive dominance was previously established over the respective node.

Then, at each round, every decision maker decides over the subset of customers under

his/her dominance whether to keep them under their dominance or not. Each decision

is made using a pseudo random function frandom([w
t
i,1,w

t
i,2, . . . ,w

t
i,m]) at participant p if

node i is under p's dominance. The output of the frandom function is a depot that is

chosen in a biased random fashion. The bias for a particular depot is generated using the

input weight vector. At round t, if the output indicates that the depot p is itself, then the

103



customer node is required to be served by p. If the output is another depot p′, then at

that particular round, it will be served by p′. Depots need to unambiguously ensure the

responsibility of serving a customer node to one and only one depot.

The aforementioned sub-problem design is important for four main reasons. First, it

divides the original problem instance into multiple sub-problems. Second, it assures that

at any round only one depot decides on the commodity delivery to a customer. Third, it

also ensures that only one depot remains responsible to serve a customer. Finally but most

importantly, frandom function o�ers an error mitigation strategy for near-optimal solution

search. Usually, during a multi-round solution generation, dominance of a particular depot

generally increases over a customer node in each round which helps the convergence of the

heuristic/meta-heuristic solution search. However, it may also lead the solution search to

a local optimal solution. A fairly designed random function o�ers a lower probability for a

customer node to be served by other depot(s) than its dominating depot. It allows the so-

lution search to reassess the potential of slightly di�erent customer assignment possibilities

which may lead the search process toward global optimal solution.

However, a task allocation does not guarantee existence of a solution since a partic-

ipant is not aware of the capacity of others by design. Eq. (4.10) re�ects this uncertainty

in risk allocation. Therefore, multiple randomization (calling frandom function) may be

required to reach a distribution where capacity of participants are enough to compute a

solution. Thus, we handle uncertainty in risk allocation. Once the participants agree to

start computing a solution, Eq. (4.8) is satis�ed.

Task Accomplishment : The task of computing routes is performed in a distributed

setting by individual participants at every round. The cost computation of individual SD-

VRP instance is performed by applying heuristic technique followed by a meta-heuristic

improvement. We use the heuristics de�ned in Algorithm 1 and associated meta-heuristic

techniques to compute the serving cost of each individual depot for its respectively assigned

customers (no commonly shared problem instance is involved among depots). Every indi-

vidually computed solution must satisfy Eq.s (4.4)-(4.7) of the distributed problem model.

Result Synthesis: Depots share their computed cost by communicating to a central

entity in order to calculate the total cost of service. If the total cost is found better than

104



the previously best found overall cost of the same MDVRP instance then it represents a

new minimum solution cost for the original problem instance. Then, an Update request is

sent to each participating depot to consider this assignment of customer nodes to be part

of their decision making for the next rounds.

Task Decomposition: Each depot individually adjusts weights in its weight vectors

while learning the situation with respect to the overall outcome of customer assignment.

As detailed in Section 4.3.1, boosting potentially increases the likelihood of choosing an

optimal allocation. During successive customer allocation round, customers are gradu-

ally allocated more appropriately toward a near-optimal solution. Thus, the interpretable

function fi(u
t
ip) dominantly contributes in determining the response of serving a customer

node by depot p. While certain allocations of customer nodes easily re�ect their domi-

nating depots, others may keep changing their dominating depots. With the progress of

the multi-round allocation procedure, the undelying boosting mechanism handles these

customers with increasingly less options of depots for �nal allocation. Thus, in the col-

laborative MDVRP model, we handle Eq. (4.11) on the decision making for customer

nodes.

In the solution search, task decomposition is critical for the convergence and success

of the proposed approach. We propose a LogitBoost based mechanism [81] to form a strong

additive learner model from the elitist solutions to update the weights. This procedure is

unique from two relevant aspects.

� Elitist Solutions: Elitist solutions are determined using a gap value with respect to

the currently best found solution (denoted as: CurrentBest) as reference. Let stmin

denote the current best solution then the subset of solutions having cost within a

speci�ed maximum gap (gap) are considered as elitist solution pool. For example,

with a 10% gap, all solutions are considered elitist where the solution cost is not

more than 1.1 × stmin. It is important to note that, an elitist solution is chosen best

on overall cost instead of the contribution of a depot p in this particular solution,

denoted as spj . This requires collaborative decision making since the participants

work in the best interest of the overall solution search.

105



� Dominance Selection: In each round, a sorted array of elitist solutions in descending

order of solution cost is used to determine the dominance of a depot. First, a binary

function bj(i, p) is used to identify if customer node i is allocated to depot p in the

elitist solution j. Second, a function rankj(p) uniquely determines the position of

solution j at depot p. The CurrentBest solution always has ranking 1. Then, the

weight wt
i,p can be calculated as ∑r

j=1
1

2rankj(p)
× bj(i, p). r denotes total number of

elitist solutions.

As we see, the dominance selection uses a polynomial series (∑∞j=1
1
2j
= 1) which assures

updated weight wt
i,p for a customer node i will never reach 1 for a depot p, in practice.

It also a�rms that there is always a chance for a customer node to be served by another

depot using frandom function even when that depot is not dominating the customer node.

The update of weight is based on an estimation with respect to which node allocation

produces a better solution, at the end of each round. If node i is served by a depot p in

most of the competitive solutions with lower routing cost, it is most likely to be served

by p. However, even if customer i is served by depot p only in the CurrentBest solution,

still customer i is conclusively under the dominance p (assuming more than 2 depots serve

customers).

Thus, we de�ne a weight adjustment function adjustp(. . . ) to update weights of cus-

tomer nodes in depot p between successive rounds. Two additional implementation-speci�c

thresholds are used, namely maxconf and minconf . They are user-chosen and they re-

strict updating weight higher or lower than these chosen values to give every customer node

a fair chance to be served by di�erent depots. adjustp(. . . ) can be described as follows:

wt+1
i,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ρ =Max(Min(∑r
j=1

1

2rankj(p)
× bj(i, p),maxconf),minconf) j = p

wt
i,j×(1−ρ)

1−wt
i,p

otherwise

4.3.4 Algorithm Design

Algorithm 2 presents a collaborative distributed solution generation technique on

problem data (depots, customers, initial allocation policy known to all depots) and input

parameters. The input parametersmaxham andmaxcapp represent the maximum number

106



Algorithm 2 Evolutionary Learning Procedure for depot p

1: Step 1: Local initialization at participant p

2: WeightMap W 0
n,m ← ρ(N,P ), CurrentBest←∞;CurrAllocp ← {}; CostMap← {};

3: Step 2: Local allocation at participant p
4: Initialize cntp ← 0; CurrAllocp ← {}; o← −1; Notify all (P ∖ {p}) depots to start;
5: while cntp ≤maxham and capc(CurrAllocp) ≤maxcapp do

6: Randomly choose node i in set {1, . . . , n} ∖CurrAllocp
7: if depot p dominates customer node i then
8: while (o = −1) or ¬available(o) do
9: o← frandom(w

t
i,1,w

t
i,2, . . . ,w

t
i,m)

10: end while

11: if o ≠ p then
12: Send the customer node i to o; cnt← cnt + 1;
13: else

14: Assign {i} to CurrAllocp;
15: end if

16: end if

17: end while

18: Receive subset of customers N ′ sent to p; Assign N ′ to CurrAllocp;
19: cntp ← cntp + ∣N

′∣

20: if (capc(CurrAllocp) >maxcapp) or (cntp >maxham) then
21: Notify depot p cannot execute Step 3 ; go to Step 2 ;
22: end if

23: Synchronize that all depots can start Step 3, Otherwise, go to Step 2 ;
24: Step 3: Local cost calculation at participant p
25: if CurrAllocp ∉ CostMap then
26: costp ← solveheur.(. . . ) for CurrAllocp;
27: else

28: Get costp from CostMap;
29: end if

30: Notify costp to all other depots; Synchronize and aggregate total ← ∑p∈P costp
31: Step 4: Local weight adjustment at participant p
32: if CurrentBest = ∞ or total < getTotal(CurrentBest) then
33: CurrentBest← total;
34: Add ⟨CurrAllocp, [cost1, . . . , costp, . . . , costm]⟩ to CostMap
35: for each customer node i in CurrAllocp do

36: Update weight using adjustp(
Ð→
wt
p, gap,CostMap,CurrentBest,maxconf,minconf)

37: end for

38: end if

39: Step 5: Central decision making
40: if maxIte() or isAcceptable(CurrentBest) then return CurrentBest;
41: else go to Step 2 ;
42: end if

107



of customer migrations allowed in a round by any depot and the maximum commodity

carriage capacity of a depot respectively. The minconf and maxconf are con�dence

levels while gap helps in choosing elitist solutions. The algorithm employs the following

data structures:

� WeightMap: An associative array holding weight vectors in each depot node;

� CostMap: Ordered associative array holding cost and related allocations;

� CurrentBest: Structure holding the current best cost and its customer allocation;

� CurrentAllocp: Structure holding current allocation of customer nodes for depot p;

CostMap and CurentBest may be stored at a shared location to reduce communication

load among depots. The following helper functions are used:

� capc(CurrentAllocp) computes required capacity to serve nodes in CurrentAlloc;

� available(p) determines if a depot is available to serve more customer nodes.

� frandom denotes a pseudo-random function to select a node given an input weight

vector.

� solveheur(. . . ) denotes the invocation of the heuristic technique to produce a solution

for a given customer allocation.

� adjustp(. . . ) reassigns new weight for the customer nodes for a depot p.

� maxIte() determines if the maximum round of iterations is reached.

� isAcceptable(CurrentBest) determines if the current allocation is �signi�cantly� bet-

ter than previously found solutions to be accepted.

4.3.5 Case Study

In what follows, we study the modi�ed-E016-03m problem by applying the proposed dis-

tributed learning technique. We assume the existence of three decision makers on three

depots of the problem instance. Since the maxham is 6, at most 6 nodes under dominance

108



Figure 4.2: Learning-based distributed solution generation

109



Figure 4.3: Changes in depot's in�uence in solution generation

110



of a depot can be exchanged with other depots. The minimum and the maximum con-

�dence levels are 0.015 and 0.985. Therefore, a customer node always will have at least

0.015 chance to be served by other depot. Based on demand and vehicle capacities, the

depots exchange their responsibilities of serving customers. While di�erent executions may

yield slightly di�erent solutions due to weighted randomness, the technique observes faster

converge with six intermediary steps. We start with a policy by allocating customer to

the least distant depot. The actual normalized approximate weight for each depot on a

customer node is then calculated as discussed in Section 4.3.2.

Figure 4.2 depicts multi-round solution generation procedure based on evolutionary

learning. As the customers and their demands are progressively allocated to the appropriate

depot, we can see successful cost lowering in this approach. The di�erent cost values are

presented in the six sub-�gures. In this case, the initial policy-led distribution of nodes

generates an overall cost of routing as 2650. The evolutionary learning procedure helps in

lowering the routing cost to 2402. The iterative update of the weight vector for the majority

of customer nodes retains the dominance of the same depot. However, interestingly, the

reassignment of weight for the customer nodes 16 and 6 changes from their early assignment

in the beginning from depots 1 to 3.

Figure 4.3 shows node allocation evolution dynamics and related weight adjustment.

Three depots are shown in blue (depot 1), red (depot 2) and green (depot 3) colors. In

this allocation, a total of 392 solutions with di�erent customer allocations have been tested

during the process run. Among them, there are six adjustment steps, as depicted, those

involve increasingly better allocations with reduced solution cost. The gray bands at the

bottom of the column show the node migration from a depot to another in successive better

allocations. The node from one depot migrates to the other with change of dominance in

the next round. The summation of normalized weight of all depots over a customer node

is 100% with a share of the dominating depot more than 50%. At each depicted step, for

every node n in x-axis, we have the weight vector depicted in y-axis such that the sum is

always 100%.

111



4.4 Cooperative Solution Generation: Active Negotiation

Often time, vehicle �eets are controlled by self-interested rational decision makers over

a shared transportation network. In such business environment, distributed platforms for

solving multi-depot vehicle routing problem may �nd non-collaborative decision makers. In

this case, a cooperative approach is more suitable than collaborative solution generation

approaches. In this section, we discuss a distributed mechanism to tackle multi-depot

vehicle routing problem among cooperative self-interested decision makers. We apply game

theory to jointly decide customer assignments.

The cooperative solution generation starts with P participating decision makers, each

of which has its own vehicle �eet. We assume that these rational decision makers are oper-

ating over a complete graph representing a common transport network similar to previous

passive learning technique. The routing cost for each edge of the graph is therefore known

to all decision makers. The customer demand is also a shared information. However, these

self-interested decision makers do not directly disclose their vehicle information (number

of vehicles and capacity of each vehicle) and the actual cost of serving a set of customers

in order to enjoy business advantage.

In this context, we propose a distributed algorithm between cooperative depots and

customers, where the �nal outcome is the (near) optimal customer assignment. The joint

execution of this algorithm helps the participants to cooperate in order to assign every

customer to a depot which o�ers to serve the customer demand at the lowest cost. The

procedure generates the �nal outcome in multiple rounds. In each round, the interaction

among the participating depots, for the negotiation of customer assignment (comparing

o�ered service cost) can be modeled as a game. The rules of the game are devised such that

the outcome minimizes the overall routing cost. In this context, the proposed approach

uses a reverse Vickrey auction [134] in each round to design a mechanism for executing

the �game� of assigning customers to appropriate depots. For each customer assignment,

a payment is given for the service of the depot that performs the commodity delivery. The

payment o�ers an incentive for fair cost o�ering by participating depots. Intuitively, a

rational and cooperative decision maker prefers selecting a subset of customers (part of

112



an outcome) that maximizes its pro�t, i.e. the di�erence between its received payment

and its serving cost. The payment, as designed in Vickrey auction, assures that every

rational decision maker reveals its true cost of serving a customer at every round of the

game. The solution generation procedure is inspired from several previous research e�orts

[144, 161, 162, 210]. While the approach has its own advantages and limitations, it can

potentially lead to a near-optimal routing solution while serving all customers.

The approach is particularly useful in small-world transport networks [128, 238].

The latter is generally characterized by random connectivity with speci�c properties such

as a short average path length, large clustering coe�cient [25] and an unfavorable topol-

ogy for hub formation [66]. Since every node is generally connected to every other node

through a short path (in terms of average node-to-node distance), no participant can make

strong assumptions about the o�erings of other participants based on topological consider-

ations. Thus, we expect the proposed planning approach to be suitable to urban logistics

distribution in pursuit of timely and e�ective operations.

4.4.1 Game of Customer Selection

We introduce a game G among P participants. Each participant p possesses Sp strategies,

based on their capacity of commodity delivery and a utility function ϕp. Sp is known as

strategy space of participant p. Let S = ⟨S1,S2, . . . ,Sp, . . . ,SP ⟩ denote a tuple of all pos-

sible strategies from P participants. In our context, each participant's strategy actually

represents its choices to serve customers as previously denoted using decision variables:

utp = [u
t
1p, u

t
2p, . . . , u

t
np] in the decentralized model (see. Section 4.2.3). Similar to evo-

lutionary learning, we may express utip as binary variable. In every round of the game,

each participant independently plays its strategy. Thus, we are interested in a pro�le of

strategies (ut) that represents strategies of all participants at round t denoted by a tuple

⟨ut1, u
t
2, . . . , u

t
m⟩. In this context, only a subset of these pro�les, each of which respects all

the given constraints can result into an outcome where the latter represents a valid assign-

ment of all customers. As such, each member of this subset may lead toward a solution to

our problem. A game may have several outcomes, denoted by set O. Thus, an outcome

o ∈ O indicates values of the decision variables after evaluating di�erent strategies from

113



ut. Let us assume that there exists a solution concept H that maps G using H(G) to a

set of valid customer assignments. Then, each member of this set denotes a particular

assignment of all customers to various participating depots. Combining a set of routes

heuristically calculated from the assigned customers of each depot determines a solution

of the multi-depot vehicle routing problem. Now, since each member of this set represents

a full assignment of all customers then it also a member of outcome O. In fact, each of

them also denotes an equilibrium of the game G.

In order to reach a solution, each player plays a particular strategy. The utility

function ϕp provides a numerical measure to evaluate a strategy utp against others (ut−p).

To solve the game in a cooperative setting, we rely on a speci�c equilibrium, namely

Dominant Strategy Equilibrium (DSE). In DSE, each decision maker p plays a strategy

which o�ers him/her the maximum utility with respect to all other available strategies in

Sp. We represent this strategy as ut,dsep while the rest of the strategies in Sp are denoted by

ut,dse−p . Therefore, mathematically, for all strategies in ut, ϕp(u
t,dse
−p , ut,dsep ) ≥ ϕp(u

t
−p, u

t
p),

where Sp = ut−p ∪ {u
t
p}. In DSE, the utility of a player decreases if the player deviates

from the equilibrium, irrespective of the strategies of other players. Thus, every rational

participant is expected to stick to its strategy ut,dsep if the implementation of the game is

truthful. The latter condition is also known as strategyproof.

The implementation of a game, also termed as mechanism design, is performed by

enforcing a set of rules. We apply a synthesis technique where we �rst specify our desired

outcome (�nd a solution of minimum routing cost) and then start designing a set of rules

accordingly. Therefore, these rules are intended to reveal the true cost of service from

each player. Therefore, a mechanism is a pair ⟨S, g⟩, where S is constructed over the set

of strategies for all players and g ∶ S → O is a function that maps strategy pro�les to

outcomes.

Meanwhile, each participant implements ϕp function to devise own strategy to con-

tribute in an outcome. Let us assume that there exists a social choice rule f that operates

over a tuple ϕ ∶= ⟨ϕ1, ϕ2, . . . , ϕm⟩ to produce a set of outcomes. Then, for a �nite set of

utility functions Φ, function f maps Φ as f ∶ Φ→ 2O where ϕ ∈ Φ.

Mechanism design implements function f in the the game. Mechanism ⟨S, g⟩ is said

114



to H − implement the social choice rule f if for all utility functions, f(ϕ) ⊆ g(H(G)).

More precisely, if g(H(G)) denotes our desired solutions then f is designed such that f(ϕ)

generates a subset of them. If f(ϕ) = g(H(G)), the mechanism is strongly implementing

f . If the strategy space of S is same to that of Φ, the mechanism can ask each player to

report its individual preference. Such a mechanism is widely known as direct revelation

mechanism. However, a truthful H-implementation of f in game environment also requires

ut as dominant game strategy for a given set of utilities.

From the revelation principle presented by David C. Parkes [186], if f is a DSE-

implementable choice rule in the game, f is truthfully DSE-implementable. Therefore,

in game G, players play ϕ as their dominant strategy where g(ϕ) ∈ f(ϕ). An important

special case in this game lies where each participant's utility has a quasi-linear form.

As we have mentioned, the computation of routing cost for a participant depends

on private information such as participant's vehicle capacity, number of available vehi-

cles, heuristic route generation algorithm, etc. Let us represent all this private infor-

mation through a private type θp. Thus, an outcome can be denoted as o(θ) where

θ = (θ1, θ2, . . . , θm). The o(θ) is computed over all outcomes from every participant. Then,

using quasi-linear form, we may express ϕp(o, θp) = ϑp(o, θp)+λp. Here ϑp(o, θp) represents

participant p's evaluation of a certain outcome and λp is a payment to p. Vickery-Clarke-

Groves (VCG) mechanism provides a truthful DSE-implementation for a social choice

function maximizing the summation of agent valuations where the payment for participant

p has the form [152]:

λp =
⎡
⎢
⎢
⎢
⎣
∑
q≠p

ϑq(o(θ), θq)
⎤
⎥
⎥
⎥
⎦
+ hp(θ−p) (4.17)

where hp(θ−p) is an arbitrary function of θ−p = (θ1, . . . , θp−1, θp+1, . . . , θm). VCG puts two

main constraints. First, there should be atleast two participants in each game. Second,

the payment to a participant should be independent of its evaluation for the outcome.

115



4.4.2 Mechanism Implementation

In a small-world transport network, an allocation of each customer to an appropriate depot

can be arranged as a game where each participant, in control of a depot, simultaneously

presents its serving cost. The capacity of each vehicle in the �eet of vehicles under each

depot is a private information. Therefore, no participant can guess the o�ers of another

participant since they cannot accurately predict the routing cost from other depots due to

small-world characteristics of the transport network. In a general setting, at any round,

a number of customers receive o�ers from the participating depots to allocate a customer

in their own route(s). The task of serving a customer is allocated to the depot that can

serve the customer with lowest cost. Without a thoughtful design of payments, depots

could be tempted to reveal �untrue� cost to gain personal advantage. In order to assure

truthful revelation, we propose the VCG mechanism to �pay� the winning depot at each

round. VCG mechanism secures a strategyproof implementation of the game at each round.

Furthermore, rational participants comply with this mechanism since a larger number of

assigned customers is more likely generate higher payment to a depot especially if the

routes can be designed using customers close to each other.

In a multi-depot vehicle routing problem, θp a�ects the generation of the routes and

evaluation of the routing cost of p for serving a chosen subset of customers. A locally

executing heuristic algorithm may produce a set of routes and determine the routing cost.

Given a set of all private types θ, an allocation function a(p, θ) allocates every customer

node to a depot along with relevant payment per customer node. Such an allocation is

designed over the submitted o�er of depot p to serve a subset of customer nodes which

maximizes depot's utility. For a participant p, cp(a(p, θ), θp) determines the routing cost

(using heuristic algorithm) from the allocated customer nodes to p. If the payment is

determined based on VCG mechanism, it ensures true revelation of the routing cost from

the participating decision makers. Using quasi-linear form of the utility, for each participant

p with type θp the payment can determined as:

ϕp(o, θp) = λp − cp(a(p, θ), θp) (4.18)

116



where cp(a(p, θ), θp) replaces ϑp(o(θ), θp). Eq. (4.18) denotes that the utility of partici-

pant p is maximum when it performs commodity delivery to its assigned customers with

minimum routing cost. This creates the premise for cooperative minimization of routing

cost for MDVRP instances. An e�ective determination of payment λp may allow the game

execution to reach the globally near-optimal routing cost. Thus, in order to implement a

social choice function minimizing overall routing cost, we use the VCG mechanism where

an depot's cost is given by cp(o, θp) = −ϑp(o, θp). Hence, payment for the depot p is:

λp = ∑
i∈P∖{p}

ci(o
∗(θ), θi) − ∑

i∈P∖{p}

ci(o
∗(θ−p), θi) (4.19)

In equation (4.19), o∗(.) is the outcome minimizing the total routing cost of all depots. The

payment to a participant p re�ects the di�erence in total routing cost of other participants

in p's presence and in p's absence. Thus, the payment is independent of p's evaluation of

its routing cost to serve a subset of customer nodes.

4.4.3 Proposed Approach

To solve MDVRP instances, we propose a distributed setting of the game for customer

selection by participating decision makers such that the total routing cost is minimum.

Such a game has three main challenges. First, it requires resolving the allocation func-

tion a(p, θ) in a decentralized setting to allocate customers without compromising private

information. Second, it requires distributed determination of the appropriate payment

(following VCG mechanism) to a depot for winning a subset of customers by revealing the

lowest serving cost. Finally, in order to understand the dominant strategy, each partici-

pant should �nd out and evaluate (possibly using heuristics) various pro�les of strategy

while respecting his/her total capacity of commodity delivery. Each of this pro�le involves

computing routes. This involves handling huge computation load at every round of the

game.

Thus, we propose to modify the aforementioned generic concept as follows.

� Game Setup: We address the allocation by including customer nodes in the game

execution. Let ai(p, θ) identify the allocation of customer node i to depot p. Every

117



depot locally computes its cost of serving a set of unassigned customer nodes at each

round. Depot p submits its o�er to a customer node it wants to serve. The o�er

consists of the cost of serving the customer node i in particular, as denoted by ν(i, p).

Depot p estimates ν(i, p) based on its total cost of serving the subset of customers

cp(a(p, θ), θp) such that ∑
i∈N

ai(p, θ) × ν(i, p) = cp(a(p, θ), θp). No strong assumptions

can be made by any depot with respect to the o�ering of the other depots due to the

small-world topological considerations as mentioned before. Each customer chooses

a depot that o�ers serving the customer node with the minimum cost. Thus, the

allocation takes place following the choice of the customers.

� Payment Handling: We address the distributed determination of payment as follows.

Each customer chooses the depot p that o�ers the minimum cost and pays p the

second minimum cost for service, i.e., min
i∈P∖{p}

ν(i, p). The customer pays only depot

p which o�ers the lowest cost of service. This mechanism design is strategyproof.

The second minimum cost is no less than the cost of service for the selected depot

and the additional payment does not depend on the cost revealed by the selected

depot. Finally, it respects Eq. (4.19), since in absence of the selected depot, the

customer node would have paid the second minimum cost to be served.

� Dominant Strategy Finding: Finding dominant strategy is di�cult in this setup of

the game. Since, the routing cost of each edge over the transport network is known

to all participants, it is only possible for a depot to approximately calculate the

routing cost of serving a subset of customers by another depot. However, with

private information, such as vehicle capacity, number of vehicles, etc. derivation of

an accurate routing cost for a depot is not possible by another depot. So, we simplify

the strategy �nding at the game execution using a prede�ned policy.

The aforementioned approach has intrinsic tractability challenges in �nding dominant strat-

egy. Thus, we propose a multi-round game execution as follows.

� Commitment Binding : The distributed setting of active negotiation forces a depot to

commit service to its assigned customers. This contrasts to a more cooperative setting

118



where a depot might leave a customer to other depot if there is an individual/overall

cost bene�t, by exchanging service to customers later in the game.

� Customer Ordering : It is essential to assign the right customers to the right depot.

As the exact algorithm would be computationally expensive, we address this issue

by auctioning the customers in a policy based ordering. We have experimented three

approximation policies based on di�erent distance/cost criteria among the customer

and the depots: a) no ordering: random choice of customers b) outer edge: sorting the

customers in a descending order of their largest distance
cost ratio from any of the depots

and c) depot bias: sorting the customers in a descending order of their evaluation

of vicinity to all the depots. The evaluation of vicinity is taken as the projection

of a point on the line that marks equal vicinity in a multi-dimensional space where

each orthogonal dimension marks a depot in the problem. For example, a point

(a, b) that holds distances a and b from two depots respectively has the vicinity ∣a−b√
2
∣.

Therefore, in this speci�c implementation of the approach, we design certain ordering,

that allows one customer at a time receives the o�ers of the depots. This contrasts

to the general notion where every customer node is auctioned at every round.

this is the general case, however it may be important to hint that when using an

auction based

� Insertion Cost Calculation: This is challenging for medium and large VRP instances

as it is often intractable to calculate the best insertion cost of serving a new customer

node in bounded memory and time. Therefore, we use a near-optimal heuristic

cost computation [210] (see Section 3.3.1) which is fast and broad in scope (o�ering

parallelism and being free from the limitations such as triangle inequality satisfaction,

angle/curvature issues). It uses multi-point stochastic insertion cost gradient descent

where solutions are assembled from connecting fragments. The multi-point aspect

deals with fragment construction by inserting unserved customer nodes in multiple

points of selected vehicle tours. The stochastic aspect is dealt with a seed based

pseudo-randomized vehicle selection for node visiting. The insertion cost gradient

descent relates to exploring lower cost fragments before higher cost ones.

119



The aforementioned game execution may generate near-optimal distributed solutions of

MDVRP instances by enforcing VCG mechanism with reasonable memory footprint and

computation time. An assumption has been made that at least two depots send valid

competitive o�ers to serve a customer demand. It also requires depots to have enough

remaining capacity to serve no less than the customer demand in order to participate in

an auction. Distributed setup exhibits few additional implementation challenges:

� If two or more depots submit the same amount of o�er to a customer, it will require

an additional decision to allocate the customer node to one of these depots.

� In every round, each participating depot has to (near) optimally solve a VRP (or

SDVRP) instance with previously allocated customers along with the new customer

subjected to the auction according to the policy.

� There is no guarantee that the a solution can be always found after certain steps

while auctioning according to a policy.

� The setup does not allow shared service to a customer from two di�erent depots.

Algorithm 3 Distributed Algorithm for Depot p's O�er

1: Select an auction policy ρ.
2: Initialize: N∗ ← {} as empty set.
3: Initialize each lkp ← Ck

p as initial capacity.
4: Use ρ to compute ordered list N[i...n] for all customers in N
5: for i = 1, . . . , n do

6: if ∑kp∈Kp
lkp ≥ di then

7: Assign serving cost←Heur(. . . ) with nodes N∗ ∪ {N[i]}
8: Send o�er of additional serving ν(i, p) as request
9: Initialize: reply ← −1
10: while reply ≤ 0 do
11: Wait for utility value update. Assign reply ← utility
12: if reply > 0 then
13: N∗ ← N∗ ∪ {N[i]}
14: Change capacity lkp for each assigned vehicle to l

k
p ← lkp−γ

k
p such that ∑kp∈Kp

γkp = di
15: end if

16: end while

17: end if

18: end for

120



The proposed setup may handle distributed computation for every depot relative to others.

However, the scope of auction makes the approach less suitable in certain contexts such as

rescue missions. In these cases, customers are often not in a position to actively take part

in the game and �pay� for the service. Then, same game can be executed among the depots

where the depots can cooperatively decide on serving customer nodes and di�erent forms

of payment such as reputation. Secure Multi-party Communication (SMC) among the

depots can be performed to select customers without involving customers in the loop [92].

The SMC respects privacy to identify better o�er without revealing one depot's o�er to

another. Secure comparison technique such as Yao's protocol [250] can be used. Therefore,

such implementation of our proposed approach can be complex.

4.4.4 Algorithm Design

In this section, we present two algorithms to be executed at the participating depots

and the customers. Algorithm 3 elaborates a multi-round cooperative game execution

from the perspective of each depot. Given an auction policy ρ, each depot, having enough

capacity, participates in carefully assigning new customer within the set of already assigned

customers and determine the routes using heuristic/meta-heuristic methods (Step 7) to

keep their o�ered cost ν(i, p) to the customer i at minimum as per the heuristic cost

calculation (Step 8). Customer may reply 0 or a non-zero integer. The latter is sent only

to the winning depot (Step 13-16) and represents the utility (which is the second minimum

cost of service) that covers depot p's cost of service and payment. The depot is thus

committed to serve the customer (Step 14) and subsequently its total available capacity of

commodity delivery reduces by the amount of customer demand (Step 15).
Algorithm 4 chooses the depot with lowest o�er of service for each customer. It keeps

track of the lowest and second lowest o�ers (Step 11). It o�ers the second lowest o�er of

serving customer node to the depot that provides the lowest o�er to serve the customer

(Step 17-21). Both algorithms stop after evaluating all customer demands and assigning

them appropriately. In this cooperative setting, the convergence of the solution search

procedure toward near-optimal solution depends partially on the chosen policy.

121



Algorithm 4 Distributed Algorithm for Customer i's Choice

1: Initialize all depots P [i...m] available to the customers
2: min←∞; secmin←∞; seldpt← −1
3: for p = 1, . . . , m do

4: Initialize: ν(i, p) ← −1
5: while ν(i, p) < 0 do
6: Wait for ν(i, p) value update.
7: if ν(i, p) > 0 then
8: if ν(i, p) <min then

9: secmin←min; min← ν(i, p); seldpt← p
10: end if

11: end if

12: end while

13: end for

14: for p = 1, . . . , m do

15: utility ← 0
16: if p = seldpt then
17: utility ← secmin
18: end if

19: Send utility to p
20: end for

4.4.5 Case Study

Figure 4.4 shows a solution obtained using the proposed approach on the running example

with the prede�ned con�guration of the transport network and vehicle capacity. We tested

three policies of customer orderings where, in each round, the cost o�ered by the depots

to the auctioned customer is equivalent to its heuristic insertion cost. More precisely, it

is the di�erence of the depot's routing cost after inserting the customer to its routes with

the depot's current routing cost. Each customer is assigned to the depot that o�ers lowest

cost on that round with the payment of second lowest o�er.

Table 4.1: Multi-round customer allocation and heuristic cost during problem solving

P∖N 14, 15, 5, 16, 8, 11, 4, 7, 13, 10, 6, 9, 12

P1 (Offer)

(Utility)

P2 (Offer)

(Utility)

P3 (Offer)

(Utility)

584, 73, 30, 264, 299, 194, 642, 228, 19, 68, 34, n/a, n/a

838, 538, 622, 710, 456, 562, 0, 336, 418, 320, 418, 0, 0

838, 538, 622, 720, 456, 680, 384, 336, 418, 484, 444, 234, 241

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 280, 0

1002, 754, 740, 710, 698, 562, 306, 482, 478, 320, 418, 280, 204

0, 0, 0, 0, 0, 0, 384, 0, 0, 0, 0, 0, 241

122



Figure 4.4: Negotiation-based solution generation on modi�ed-E016-03m problem

Initially, all customers are unassigned. In the �rst policy, customers are chosen

randomly and in each round, the depots are asked to submit their cost of serving to the

customer. In the second policy, the customers are auctioned according to the descending

order of the summation of their distances with respect to the depots. This assures that we

start sending o�ers and assigning customers form the outer edge of the customer pool. The

ordering in the example problem has been found as: ⟨14,15,5,16,8,11,4,7,13,10,6,9,12⟩.

Finally, we also test a third policy where we order the customers according to the bias to

any particular depot. The ordering is found as: ⟨14,5,15,4,13,7,16,8,9,6,10,11,12⟩. The

resulting MDVRP routing costs of these orderings are between 2402 to 3005 in 200 di�erent

runs for random ordering, 2537 for outer edge ordering and 2683 for depot bias respectively.

The second policy (outer edge customer ordering) provides better cost and the solution

can be seen in Figure 4.4. The identi�ed vehicle tours (4 in total) have di�erent colors and

are labeled with v0 and v1 for depot 1; v2 for depot 2 and v3 for depot 3. Nodes 4 to 16

are customers (the number alongside the node index showing the demand, e.g. v3(4:16) -

node 4 has demand 16).

Table 4.1 presents a step-by-step solution search. Table 4.2 highlights the �nal utility

and cost per depot. For customer 14, depots 1, 2 and 3 o�er 584, 838 and 1002 respectively.

123



Table 4.2: Per depot utility and cost in active negotiation for modi�ed-E016-03m

Participant Participant Optimal Routing Cost

(Overall Utility) (Routing Cost) (Total Routing Cost)[Gap]

P1(5218)

P2( 280)

P3( 625)

P1(1793)

P2( 234)

P3( 510)

2402

(2537)[0.056]

As such customer 14 is assigned to depot 1 with utility 838. Next, customer 15 receives

o�ers 73, 538 and 754 respectively from three depots and is assigned to depot 1. Likewise,

customers 5, 16, 8 and 11 are also assigned to depot 1. For customer 4, the o�ers are

642, 384 and 306 respectively and it is assigned to depot 3 with utility 384. Thereafter,

customers 7, 13, 10 and 6 are assigned to depot 1. For customers 9 and 12, depot 1 has

no o�er (n/a) as its capacity is exhausted. In contrast, depots 2 and 3 o�er 234 and 280

respectively for customer 9. So, the customer 9 is assigned to depot 2 with utility 280. For

customer 12, the o�ers are 241 and 204 from depot 2 and 3 respectively ans it is assigned

to depot 3. Finally, the solution reaches game equilibrium with the routing cost of 2537.

In all possible pairwise depot node swaps possible from this solution, at least one

depot decreases its utility and total routing cost increases. Table 4.3 shows the devia-

tion from equilibrium for four nearest cost-wise solutions that can be obtained by node

exchanges with respect to the game equilibrium (�rst column).

Table 4.3: Scenario analysis of deviation from equilibrium

(Game Sol.)∖Exchg. 9<>12 10<>12 6<>12 9<>4

Total Cost(2537)

Utility P1(5218)

Utility P2( 280)

Utility P3( 625)

2621

5218

121

618

2642

4720

240

452

2734

4802

182

418

2742

5173

306

316

In order to evaluate the bene�t of employing a prede�ned customer ordering, we

conducted experiments using two sets (each of one hundred random orderings). We in-

vestigated three adapted problems n16_k3∗; n22_k4∗ and n30_k3∗ (∗ marked problems

are adapted multi-depot versions of known VRP instances). The values corresponding to

the two sets have similar distributions and expected values indicating relevant sampling.

While some random orderings may give very good solutions, such orderings have very small

odds of being randomly generated. Moreover, for larger problems the number of possible

124



random ordering grows with the factorial of the node count, making it increasingly unlikely

to �nd a favorable random ordering. We also found that the proposed outer edge customer

ordering gives solutions (integer) that are better or in the vicinity of the corresponding

expected value (�oating point) of the random ordering experiments (2537 vs. 2538.17 for

n16_k3∗; 350 vs 353.54 for n22_k4∗ and 442 vs 529.31 for n30_k3∗).

4.5 Benchmarks and Comparative Study

The distributed solution generation framework for collaborative evolutionary learning (pas-

sive learning) and cooperative game theory based active negotiation has been implemented

in Java and tested on benchmark data of MDVRP instances provided by J.-F. Cordeau

[168].

4.5.1 Benchmark Results

The routing cost of a depot is computed using the heuristics technique mentioned in Chap-

ter 3.

Table 4.4: Passive learning based distributed solutions for MDVRP instances

Pb. [nodes/depots] depot node:cost zh ∣ zb

(Max.Veh./Cap.) (depot time mm:ss) [gap=1-zb/zh]
P01 [50/4]

(4 per depot/80)
51:199 (02:48); 52:203 (03:53); 53: 92 (01:12);
54:114 (00:40);

608 ∣ 577[0.05]

P02 [50/4]
(2 per depot/160)

51:114 (01:40); 52:167 (05:08); 53:106 (00:51);
54:102 (02:04);

489 ∣ 473[0.032]

P03 [75/5]
(3 per depot/140)

76: 63 (01:02); 77:164 (06:41); 78:175 (00:52);
79:140 (02:20); 80:121 (01:21);

663 ∣ 641[0.033]

P06 [100/3]
(6 per depot/100)

101:283 (13:43); 102:223 (04:35); 103:421 (07:32); 927 ∣ 876[0.055]

P07 [100/4]
(4 per depot/100)

101:221 (05:38); 102:217 (04:33); 103:209 (08:37);
104:302 (03:41);

949 ∣ 886[0.066]

Table 4.4 presents benchmark results obtained using passive evolutionary learning

collaboration approach for the reference problems (with 3 or more depots and up to 100

customers) alongside best known values. We did not include problems with two depots

(e.g. P04, P05) since in such case each depot can easily infer the capacity of the other. The

�rst table column shows the problem setup, the second provides the cost and computing

125



time per depot while the third contrast the sum of the depot costs yielding total cost of

solution (zh) against the best known value zb, giving the gap. The computation time of the

depot represents the routing cost calculation time and excludes the communication time.

Thus, the overall solution time is the maximum time value among the depots (e.g. for P07

it is 8:37). We can notice that the obtained solutions have competitive gaps relative to the

best known values.

Table 4.5: Active negotiation based distributed solutions using outer edge ordering

Pb. [nodes/depots]

(Max. Veh./Cap.)

[depots]{dep:veh.} solheur.game |

solbestcentr.[gap]

MCDR/ANDR

P01 [50/4]

(4 per depot/80)

[4]{51:4,52:2,53:1,54:4} 637|

577[0.094]

12/32

P02 [50/4]

(2 per depot/160)

[4]{51:2,52:1,53:1,54:2} 514|

473[0.079]

12/32

P03 [75/5]

(3 per depot/140)

[5]{76:2,77:3,78:2,79:3,80:1} 703|

641[0.088]

13/33

P06 [100/3]

(6 per depot/100)

[3]{101:4,102:5,103:6} 1061|

876[0.174]

13/34

P07 [100/4]

(4 per depot/100)

[4]{101:4,102:4,103:3,104:4} 1090|

886[0.187]

13/34

We perform distributed solution generation using game-based active negotiation on

the same benchmark MDVRP instances. The experiments are conducted with prede�ned

depot and customer locations, known demands and privately kept depot capacities (maxi-

mum allowed total vehicles capacity). The insertion cost is computed based on the heuristic

technique presented in Chapter 3. Table 4.5 shows the results obtained for each problem

along with the gap relative to the centralized best known value. For these problems, we

have also calculated the rounded minimum clustering distance (MCDR) and the rounded

average node distance (ANDR) in order to illustrate the relevance with respect to a small-

world transport network. The values show that there are no isolated node sets since MCDR

is notably smaller than the ANDR for each of the considered problems.

4.5.2 Comparisons

Table 4.6 compares solution values from Table 4.4, generated using evolutionary learning,

against the same problem instances (with 3 depots or more) obtained using distributed

game theoretic approach as per Table 4.5. The proposed evolutionary procedure provides

126



Table 4.6: Passive learning vs. Active negotiation for MDVRP solution generation

Problem [nodes/depots] (Max.Veh./Cap.) zh ∣ zgame[gap=1-zgame/zh]
P01 [50/4] (4 per depot/80) 608 ∣ 637 [-0.047]
P02 [50/4] (2 per depot/160) 489 ∣ 514 [-0.051]
P03 [75/5] (3 per depot/140) 663 ∣ 703 [-0.060]
P06 [100/3] (6 per depot/100) 927 ∣ 1061 [-0.144]
P07 [100/4] (4 per depot/100) 949 ∣ 1090 [-0.148]

better solutions. The quality of near-optimal solutions obtained from negotiation approach

is restricted by the satisfaction of the game equilibrium. Once the game equilibrium is

reached it is di�cult to improve such a solution in the negotiation approach.

Figure 4.5: Comparative Study of Multi-Depot Vehicle Routing Solution Approaches

Figure 4.5 depicts a comparative study of various aforementioned solution �nding

approaches as discussed in relation to multi-depot vehicle routing problems. On the x-axis,

we project time in seconds while, on the y axis, we evaluate solution cost for the modi�ed-

E016-03m problem of the case study. The comparison clearly shows that the distributed

learning technique presents comparable solution with centralized heuristic/meta-heuristic

solution search. However, in collaborative or cooperative setup, the distribution mechanism

and the solution search together take longer time than centralized solution generation. As

depicted in the �gure, split-delivery is proven advantageous for this MDVRP instance since

it lowers routing cost compared to the centralized solution approach.

127



4.5.3 Advantages and Limitations

We summarize next the advantages and limitations of two proposed solution generation

approaches for MDVRP in distributed setting. First of all, both approaches o�er task de-

composition by splitting the problem of multi-depot vehicle routing in distributed setting.

Such a decomposition allows distributed decision makers to handle sub-problems locally in

a decentralized setup, to use their own input and search parameters (without sharing with

others) and to enforce organizational policies. Thus, participants have a larger control in

decision making as needed in various organizational setups. Furthermore, as the task de-

composition divides the original problem instance into multiple smaller problem instances,

each participant can locally produce high quality near-optimal solutions using less memory

and computation time.

However, overall solution generation for the MDVRP instances takes longer time with

the increase in number of participants since the result synthesis from divided sub-problems

and proper task decomposition for the original problem turn more and more complex. Our

benchmark results indicate that the solution quality for the MDVRP instances is less com-

petitive for both approaches compared to the near-optimal solution found in centralized

setting. This mainly relates to the di�culty of �nding the most appropriate partitioning

of the customer nodes among participating decision makers. Moreover, these proposed dis-

tributed approaches require further improvement to address shared delivery of commodities

using vehicles from di�erent depots.

4.6 Summary

In this chapter, we �rst discussed a model of a chance constraint optimization problem to

address MDVRP in distributed settings. We have presented two innovative distributed ap-

proaches. First, the multi-round evolutionary learning (passive learning) approach enables

collaborative decision makers to search near-optimal solutions for relevant size problem in-

stances by locally computing sub-problems and interacting with other participants without

explicitly collecting or sharing �eet/capacity information. Second, the active negotiation

approach leverages a game theoretic interaction among cooperative participants where

128



mechanisms are designed to generate distributed solution search for MDVRP instances.

The proposed approach assigns customers to participating depots over transport networks

with small-world characteristics using a VCG strategyproof mechanism while aiming to

minimize total routing cost. The case studies and benchmark results for both approaches

show that near-optimal solutions can be found in these distributed settings despite the

lack of all information at each participant's side. In this regard, the learning approach

�nds better quality near-optimal solution. In future, for passive learning approach, it is

possible to investigate more e�ective initial assignment policies for quicker convergence of

the solution search.

129



Chapter 5

Collaborative Monitor Deployment

Problem

In this chapter, we investigate centralized and distributed models and ap-

proaches to determine (near) optimal deployment locations of execution mon-

itors over a well-tracked transport network under a �xed budget. The goal of

the optimization is minimizing the weighted average energy consumption for

data communication between the sensors and the monitors. We illustrate a col-

laboration strategy of monitor deployment when the total deployment budget

is unknown and split among multiple decision makers. We also determine a

satisfactory (fair) sharing of monitor deployment cost for every participant.

5.1 Introduction

Typically, SCN involves the �ow of products from producers/distributors to customers.

Such a network consists of physical locations and traversal paths among these locations.

Formally, these locations can be represented as the vertices of a graph while the directed

edges between vertices may stand for the traversal paths (arcs) among locations. Monitors

can be deployed on the vertices [75] or the edges [104] of a network. In SCN, monitor

deployment between two locations (e.g. road, railway, etc.) is costly from security and

maintenance perspectives. Thus, this research and development e�ort focuses on deploying

130



monitors over a subset of vertices. In this regard, the focus of this chapter can be stated

as follows:

� A mathematical model for monitor deployment with multiple decision makers;

� Centralized and distributed approaches to minimize energy consumption;

� Conduct and analyze a case study and generate new benchmark results.

The other contribution of this chapter relates to an automated collaborative negotiation

mechanism toward near-optimal monitor deployment with individual budgets. Also, a

heuristic is proposed to locally compute solutions under the budget constraint. The optimal

selection of monitor locations in SCN, where the total budget is split among participants,

is a distributed problem derived from classical facility location [75] and p-median problems

[141] which have NP-Hard computation complexity. This requires heuristic or meta-

heuristic techniques to e�ciently solve large problems [67, 75, 141]. These problems are

often addressed with known budget which simpli�es the formulation. If the budget is split

among the participants, the formulation requires coupling through a joint chance constraint

[174] to limit the probability of constraint violation by the participants.

The rest of the chapter is organized as follows. Section 5.2 describes the problem,

its assumptions and models. First, a base model is formulated using a known budget

constraint. Second, this model is extended for the distributed case where total budget is

split among participants. Section 5.3 presents the proposed approach. An exact (optimal)

solution algorithm is discussed followed by a faster heuristic technique. Afterward, a

distributed approach is detailed whereby participants locally run the heuristic technique

and collaborate toward a near-optimal solution. A deployment cost sharing mechanism

is also proposed in this regard. Section 5.4 presents a case study. Section 5.5 reports on

the results obtained for some Problem Instances (PI). Useful insights are shared on the

obtained results and the heuristic performance. Section 5.6 draws concluding remarks and

hints on the future work.

131



5.2 Problem Description and Modeling

5.2.1 Problem Statement

Let G = (V,E) be a complete directed graph representing an SCN. Vertices are divided

into monitor nodes (or monitor) and relay nodes (or node). Appropriate equipment can

be deployed on a monitor i at a deployment cost ci, to collect task execution data. The

execution information is produced by agents (e.g. vehicles) who visit a subset of vertices

in sequence (also called route) through a connecting paths (e.g. roads). A relay node

sends collected information to single monitor. Each edge ⟨i, j⟩ ∈ E, is associated to a pair

of integers: δij and wij . The proposed problem refers to deploying monitors on a subset

of vertices such that weighted average energy consumption in sending execution data is

minimum. In the process of optimal solution generation, P participants (Decision Makers)

will collaboratively determine monitor locations by individually allocating own budget Cp

on a subset of vertices. Every solution should respect the following:

� Each vertex is either a monitor or a relay node;

� Deployment cost on each selected vertex is split among a subset of decision makers;

� Every relay node sends data to the monitor incurring least energy consumption.

5.2.2 Assumptions

Task planning (e.g. product delivery) and communication between any two vertices are

considered independent of other vertices since G is a complete directed graph. Each vertex

is assumed as a source of at least one execution path. Thus, wij is a positive integer.

A number of factors (e.g. communication radius, obstacles, electromagnetic interference,

attenuation, environmental situation) a�ects the energy consumption value δij between

two locations. Young et al. [253] characterized these e�ects on radio signal strength

over a log normal shadowing model. In contrast, this e�ort attempts to minimize the

weighted average energy consumption based on predetermined values for δij speci�c to

every arc that serves as an input to the problem instance. We assume that each relay

node always receives execution information from all the agents moving from it to their

132



next destinations. However, in this context, we ignore the energy consumption in data

communication for each agent to its last departing vertex. All deployed monitors are

considered to have in�nite capacity to receive execution data. No participant knows the

exact budget of others. However, it is assumed that a feasible solution always exists and

the total budget is su�cient to deploy at least one monitor.

As discussed in Section 2.1.3, in the model formulation, two types of decision variables

are employed: control variables and state variables [174]. The monitor deployment problem

with a known budget can be represented through a system of linear equations. The values

assigned to the control variables (respecting the system of equations) represent a solution.

However, monitor deployment with individual budgets is described as a dynamic system

with multiple states where each state represents a system of equations with its own control

variables. In this context, state variables describe the mathematical �state� of that dynamic

system. A subsequent set of state variables typically depends on its previous corresponding

set.

5.2.3 Centralized Setup with Single Decision Maker

Let a set of boolean control variables xij determine each possible communication from a

relay node to a monitor. Let yi determine location of monitors in directed graph G.

xij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if vertex i communicates with vertex j;

0, otherwise.

yi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if a monitor is placed at vertex i;

0, otherwise.

Then, the objective function of a central decision maker can be presented as a binary

integer programming model:

min

∑
i∈V
(( ∑

k∈V
wik) × ( ∑

j∈V
δij × xij))

∑
i∈V
( ∑
k∈V,

wik)
; i ≠ j; i ≠ k (5.1)

133



Subject to:

Flow conservation:

xij ≤ yj , ∀i, j ∈ V ; i ≠ j (5.2)

xij + xjk ≤ 1, ∀i, j, k ∈ V (5.3)

∑
j∈V,i≠j

xij = 1 − yi, ∀i ∈ V (5.4)

∑
i∈V

∑
j∈V,i≠j

xij = ∣V ∣ − ∑
i∈V

yi (5.5)

Budget and energy consumption restrictions:

0 < ∑
i∈V

ci × yi ≤ C, ci > 0 (5.6)

δij × (2 × xij + yj − yk − 1) ≤ δik × (1 − 2 × xik + yj − yk) ∀i, j, k ∈ V ; i ≠ j ≠ k (5.7)

Eq. (5.1) presents the objective function (for centralized decision making) that minimizes

weighted average energy consumption for total data tra�c subjected to the following con-

straints. Eq. (5.2) mandates that if a directed edge ⟨i, j⟩ is selected for a solution then its

destination vertex j must be a monitor. Eqs. (5.3)-(5.5) impose additional inequalities.

Eq. (5.3) restricts that the monitors only receive data while relay nodes only send data to

the monitors. Eq. (5.4) states that every vertex communicates with a monitor unless it is

itself a monitor. Eq. (5.5) assures that the sum of all arcs to all monitors is equal to the

di�erence between all nodes and all monitors. Eq. (5.6) denotes the budget constraint C

to deploy at least one monitor. Eq. (5.7) denotes that a relay node communicates to the

monitor which incurs least energy consumption (see proof below). Eq.s (5.2), (5.4) and

(5.6) form the minimum set of constraints to reach the optimal solution but additional

valid constraints are added to reduce the solution search space.

Proposition 1. If relay node i sends execution information to monitor j on a directed

graph G = (V,E), then the constraint δij × (2×xij + yj − yk − 1) ≤ δik × (1− 2×xik + yj − yk)

∀i, j, k ∈ V re�ects that for any other monitor k, i ≠ j ≠ k, the energy consumption on arc

⟨i, k⟩ is higher than ⟨i, j⟩.

Proof. Let binary variables yj and yk decide if j and/or k are the monitors. Let xij and

xik be two other binary variables to decide if node i communicates to j or k. With these

134



four variables, there exist sixteen combinations. However, given Eq. (5.2), if xij = 1 then

yj = 1. Thus, four combinations can be excluded. In this setting, energy consumption δij

and δik are related as: (i) If xij = yj = 1 then δij ≤ δik, (ii) If xik = yk = 1 then δik ≤ δij , or

(iii) δik and δij are not related otherwise. These relations can be succinctly captured in:

δij × (2 × xij + yj − yk − 1) ≤ δik × (1 − 2 × xik + yj − yk).

5.2.4 Centralized Setup with Multiple Decision Makers

Decision makers may participate based on competition, cooperation or collaboration. In a

competition or cooperation, rational participants negotiate for deploying monitors individ-

ually on a subset of selected vertices. Classical form of such negotiation is often modeled

using the game theory and mechanism design [195]. In such setup, decision makers negoti-

ate based on a quanti�er, namely price. Price can be computed on a vertex using monitor

deployment cost, decision maker's utility for likely collection of information in that ver-

tex and available individual budget. However, this may lead to budget wastage since the

deployment cost cannot be shared easily. In contrast, in a collaborative setup, decision

makers may share the deployment cost of a monitor if they prefer the same vertex. Let

integer state variables uip represent the budget contribution of decision maker p for vertex

i. Then the constraints can be modi�ed as:

0 ≤ uip ≤ ci; ∀i ∈ V, p ∈ P (5.8)

∑
i∈V

uip −Cp ≤ 0, ∀p ∈ P (5.9)

ci × yi − ∑
p∈P

uip ≤ 0, ∀i ∈ V (5.10)

1 + ∑
p∈P

uip − ci − ((∣P ∣ − 1) × ci + 1) × yi ≤ 0, ∀i ∈ V (5.11)

Eq. (5.8) prevents individual contribution uip from exceeding the deployment cost of i. Eq.

(5.9) replaces Eq. (5.6) in the base model since the total budget is now distributed. Eq.s

(5.10) and (5.11) determine whether a monitor can be deployed at vertex i (i.e. yi = 1) from

the contributions of participants. These constraints determine individual contributions to

optimally deploy monitors. However, in this setup, all individual budgets (Cp) are known

to a central authority that performs the optimization. Therefore, this setup requires further

135



extension to capture the optimal decision making without a central authority.

5.2.5 Decentralized Setup with Multiple Decision Makers

Let there be a set S∗ ⊂ V , to optimally deploy monitors for budget C = ∑p∈P Cp. In col-

laborative deployment, the individual budget Cp is best spent if participants jointly prefer

deploying monitors in S∗. Thus, every participant may aim to derive S∗ and contribute

to every monitor in S∗. This puts the deployment procedure into risk as a monitor can-

not be deployed if ∑p∈P uip < ci (Eq. (5.10)). Ono and Williams [174] formalized such

decentralized behavior of decision makers through joint chance-constraints for multi-agent

systems. An iterative optimization of control variables in every state may lead to overall

risk minimization by updating changes in state variables. Let T and R be the total iter-

ations and global risk factor respectively. Then, a joint chance constraint can be written

by substituting uip, xij and yi with utip, x
t
ijp and ytip (t = 1,2, . . . , T ) and combining Eqs.

(5.10) and (5.11):

Pr
⎡
⎢
⎢
⎢
⎢
⎣
⋀
p∈P

[
T−1

∑
t=0

[ytip × ci − ∑
p∈P

utip ≤ 0]]⋀[
T−1

∑
t=0

[∑
p∈P

utip

+1 − ci − {(∣P ∣ − 1) × ci + 1} × ytip ≤ 0]]

⎤
⎥
⎥
⎥
⎥
⎦

≥ 1 −R

(5.12)

Eq. (5.12) represents a joint chance constraint that indicates a failure if any participant

does not satisfy risk constraints (Eqs. (5.10) and (5.11)). Ono and Williams [174] proved

that if the objective function is convex and 0 ≤ R ≤ 0.5, such an optimization problem is

also convex. This helps to decompose R with distributed risk πip for each participant on

each vertex such that in every iteration ∑p∈P ∑i∈V πip ≤ R where πip ≥ 0. Using Boole's

inequality, Pr(R) = Pr(⋃i∈V,p∈P πip) ≤ ∑p∈P ∑i∈V πip [174]. Thus, the bounded risk can be

replaced by an unbounded penalty in distributed optimization function (sp):

min
T−1

∑
t=0

∑
i∈V
(( ∑

k∈V
wik) × ( ∑

j∈V
δij × xtijp))

∑
i∈V
( ∑
k∈V,

wik)
+ρ∑

i∈V

πip (5.13)

Subject to:

136



xtijp ≤ y
t
jp, ∀i, j, k ∈ V (5.14)

xtijp + xtjkp ≤ 1, ∀i, j, k ∈ V (5.15)

∑
j∈V,i≠j

xtijp = 1 − ytip, ∀i ∈ V (5.16)

∑
i∈V

∑
j∈V,i≠j

xtijp = ∣V ∣ − ∑
i∈V

ytip (5.17)

0 < ∑
i∈V

ci × ytip ≤ ∑
p∈P

∑
i∈V

utip, ci > 0 (5.18)

δij(2 × xtijp + ytjp − ytkp − 1) ≤ δik(1 − 2 × xtikp + ytjp − ytkp)∀i, j, k ∈ V i ≠ j; i ≠ k (5.19)

0 ≤ utip ≤ ci; ∀ i ∈ V, ∀p ∈ P (5.20)

∑
i∈V

utip −Cp ≤ 0, ∀p ∈ P (5.21)

ut+1ip = Ap. u
t
ip +Bp. y

t
ip; ∀ i ∈ V, p ∈ P (5.22)

T−1

∑
t=0

(ci × ytip − ∑
p∈P

utip) ≤ −fip(πip), ∀i ∈ V (5.23)

T−1

∑
t=0

(1 + ∑
p∈P

utip − ci − ((∣P ∣ − 1) × ci + 1) × yi) ≤ −f
′
ip(πip), ∀i ∈ V (5.24)

The proposed procedure includes individual optimization of ∑i∈V πip in Eq. (5.13) which

re�ects the in�uence of risk in weighted average energy consumption; ρ, also termed as

�price of risk�, is a penalty constant known to all participants [174]. Eqs. (5.23) and

(5.24) introduce two sets of monotonically decreasing functions fip and f ′ip to progressively

reduce the gap between the centralized and the decentralized decision making. At every

iteration, decision of monitor deployment is re�ected in ytip. Eq. (5.18) prevents the

sum of the values of ytip from exceeding total available budget as determined (through a

communication process) locally. The updated contribution ut+1ip for each vertex will be

computed after each round using Eq. (5.22). Ap, Bp are participant speci�c constants.

The problem is convex if Eq. (5.13) is convex, Eq. (5.22) is linear and fip and f ′ip are

single-valued and monotonically decreasing functions [174]. One can anticipate that the

distributed solving will require communication among the participants to synchronize utip

values.

137



5.3 Proposed Approach

Collaborative monitor deployment under a known budget involves a combination of clas-

sical set covering and one-dimensional bin-packing (knapsack) problems. In addition, a

multi-round coordination of individual decisions is needed to iteratively build consensus.

The set covering mandates choosing optimal set of monitors S∗ ∈ V such that overall

weighted average energy consumption for relay nodes (V ∖ S∗) is minimum. Bin packing

restricts the optimal deployment of monitors in a budget. As the problem is NP-Hard on

a complete graph, heuristics can near-optimally solve it faster.

5.3.1 Exact Algorithm

Let integer γij = δij × ∑k∈V ∖{i}(wik) be a measure of weighted energy consumption for

vertex i to communicate with vertex j. Then, the aforementioned Eq.s can be further

simpli�ed into rules (R1-R5) to design the search procedure:

R1: In SCN, if the size of the optimal set of deployed monitors is ∣S∣, vertex i does not

communicate to vertex j if there exist at least (∣V ∣ − ∣S∣) distinct edges where the

energy consumption is lower than that of ⟨i, j⟩. (see proof below)

R2: If the optimal set of deployed monitors is S, then relay node i communicates to

monitor j i� the value of γij is the lowest, i.e. ∀j′ ∈ S, j ≠ j′, γij′ > γij. [Eq. (5.7)]

R3: Weighted average energy consumption is higher for any proper subset of a given set

of monitors [Eq. (5.4)].

R4: The deployment cost is higher for any superset of a set of monitors [Eq. (5.6)].

R5: Monitors do not communicate among them [Eq. (5.3)].

Rule 1. (R1) In supply chain network, if the size of the optimal set of deployed monitors

is ∣S∣, vertex i does not communicate to vertex j if there exist at least (∣V ∣ − ∣S∣) distinct

edges where the energy consumption is lower than that of ⟨i, j⟩.

Proof. Let S and V ∖ S be monitors and nodes respectively. In order to �nd optimal

weighted average energy consumption, γij for each node i ∈ V ∖S and j ∈ S can be reduced

138



to: min(
∑i∈V ∖S ∑j∈S γij×xij

Z ) (see Eq.s (5.1), (5.3) and (5.4)). Z represents the total amount

of communicated information. The exact members of S are unknown at the beginning.

However, for any S ⊂ V (as restricted by budget constraints), if xij = 1, there exist at least

(∣V ∣ − ∣S∣) distinct edges where γij′ < γij , j
′ ∈ V . This leads to assigning xij′ = 1 for one

of these (∣V ∣ − ∣S∣) distinct edges in the solution (by Eq. (5.2)) and contradicts Eq. (5.4)

since xij is already 1.

Rule R1 eliminates redundant communication links with high γij values. Rule R2

forces a relay node to choose its monitor where γij is minimum. Rules R3 and R4 set

boundaries for solution search. Rule R5 preserves one role (relay node or monitor) for the

vertices in a solution. Algorithm 5 applies these rules to �nd optimal solution for monitor

Algorithm 5 : Monitor Allocation (MonAlloc)

1: Initially: C, Q← ⟨φ,V,φ⟩, and Esort ← ⟨E,<γij ⟩
2: Input: Cd, Max_Energy; Output: S∗

3: S∗ ← φ; ∆←Max_Energy
4: if getCost(V ) > Cd then

5: while Esort ≠ φ do

6: e← �rst element of Esort;
7: update Q with e;
8: compute C′ ⊆ P(V ) such that monitor can be deployed in S ∈ C′ given the edges in

Q
9: for S ∈ C′ ∖ C do
10: if getCost(S) ≤ Cd and ∑i∈V ∖S minj∈S(γij) <∆ then

11: S∗ ← S; ∆← ∑i∈V ∖S∗minj∈S∗(γij);
12: end if

13: end for

14: C ← C ∪ C′; Esort ← Esort ∖ {e}
15: end while

16: end if

17: return S∗;

deployment from P(V ) (power-set of V ) possibilities. Esort stores a sequence of edges

sorted in ascending order of γij . Q is a bipartite graph with two disjoint sets of vertices. A

set of directed edges (E′) connects members of these two sets. Then, E′ ⊆ V1 × V2 re�ects

relay node to monitor communications. Initially, Q:=⟨φ,V,φ⟩, whereby all vertices are

assumed as monitors. The cost of such deployment exceeds the budget (Step 4). During

139



start

Initialize Search 

Parameters

Use function 

p_random() to select 

new monitor set  

Pop S0 from top of  

search_queue

Is  S0 a feasible solution?

yes

 Is it a better solution?

no

Is stop_condition reached?

end

Insert into search 

queue in ascending 

order of θ    

yes

no

no

Store as new  near-

optimal solution

Push back S0 to  

search_queue

     Is S0  explored k times?

no

yes

Figure 5.1: Heuristic technique of monitor deployment

the search, deployment cost gradually reduces to feasible values as edge e, having minimum

γij , is iteratively removed from Esort and added to Q (Step 7). The source vertex of e is a

relay node (V1 = V1 ∪ {e.source}) and thus excluded from V2 (V2 = V2 ∖ {e.source}). Rules

R1-R5 are applied to produce a collection of possible sets of monitors (C′) from Q in order

to compare against C, (a set of already generated and veri�ed sets of monitors). Each

member of C′ ∖ C is then tested for feasibility (Steps 10-12). If the new weighted average

energy consumption value is lower than previously stored value in ∆, it replaces existing

value in ∆. Corresponding S∗ (set of monitors), C and Esort (Step 14) are also updated

for the next round. Finally, S∗ is returned. Rule R3 represents a stop condition for this

algorithm.

5.3.2 Heuristic Technique

A heuristic algorithm can be applied to generate C′ in a tractable manner for larger prob-

lems. Figure 5.1 depicts the overview of the technique. It uses an e�ciently generated

140



solution pool by comparing a quanti�er θS , as presented in Eq. (5.25):

θS = [ ∑
i∈V ∖S

min
j∈S
(γij)]/[ ∑

j∈V

cj − ∑
j∈S

cj] (5.25)

where, ∑j∈V cj is the total deployment cost for all vertices.

First, Csort is de�ned as a sorted search queue (of maximum size sz) represented

by ⟨S,<θS ⟩ where S ∈ S and S ⊂ P(V ) ∖ {φ}. Pseudo random function p_random(. . . )

produces a subset of V as a candidate set of monitors in each iteration. Initially, Csort

is empty. Thus, p_random(. . . ) selects a subset of monitors from V . This subset is

inserted into Csort where it is arranged in ascending order of θS . New subsets of monitors

are iteratively explored later by picking the top entry (S0) from Csort. The cardinality of

explored subset is at least ∣S0∣ − cnv as determined by a convergence parameter (cnv). An

entry, representing a set of candidate monitors, from Csort is discarded once it is explored

k times to generate its subsets. Function p_random(. . . ) is computed based on weight

(wt(i)) of vertex i which is de�ned as follows:

wt(i) =
1

∑
j∈S−i

1
δij

[ ∑
j∈S−i

γij

δij
] −

1

∑
j∈S−i

1
δji

[ ∑
j∈S−i

γji

δji
] (5.26)

where, ∀i ∈ S, S−i = S ∖ {i}. In Eq. (5.26), wt(i) is a measure of saving that monitor

i o�ers compared to other monitors. It determines the likelihood of a vertex to send or

receive data in the optimal solution. A positive value indicates that, in general, it is

more energy consuming for vertex i to send data to other vertices than receiving while a

negative value indicates the opposite. wt(i) is then projected as a fraction over a 0-to-1

scale and normalized. In this scale, 0 and 1 mean relay node and monitor respectively. The

value 0.5 means random probability of a vertex with no bias to any role. This value is an

input to the p_random(. . . ) along with a seeding parameter. The latter helps to perform

the selection in a manner that can be retraced for the same seed value. When ∣S∣ > sz,

entries with largest θ value in Csort are dropped to maintain sz. If the deployment cost of

selected S (getCost(S)) does not exceed the budget, a solution is found. The new solution

is retained if it yields a lower weighted average energy consumption than the previously

stored solution. S is then removed from Csort. The retained solution is returned once

141



one of the following stop conditions is true: (i) after ite iterations; (ii) if Csort is empty;

(iii) if there is no improvement in θ after p (p ≪ ite) iterations. The procedure is bound

in memory as a result of dropping the set of monitors with the largest value of θ when

∣S∣ > sz. Initially deployment cost is highest (infeasible) and the weighted average energy

consumption is 0. The heuristic iteratively evaluates the increase in weighted average

energy consumption to decrease the deployment cost to feasibility.

5.3.3 Distributed Monitor Deployment

Algorithm 6 : Searching appropriate set of monitors

1: Initially: Csort ← φ
2: Input: P ; Output: sp
3: sp ←MonAlloc(Csort, ∣P ∣.Cp,Max_Energy)
4: communicate sp to other participants
5: receive sp′ from all P ∖ {p} participants
6: rank ← getRank(s−p, sp, p)

7: Cmin ← ∑p∈P ⌊
getEstCost(sp)

∣P ∣ ⌋

8: Cmax ←maxp∈P getEstCost(sp)
9: while Cmin < Cmax do

10: smid ←MonAlloc(Csort, ⌈
Cmin+Cmax

2 ⌉,Max_Energy)
11: U ← AdjustContribution(smid, P, p, τ, rank)
12: if ∑uip∈U

uip ≥ getEstCost(smid) then

13: sp ← smid; temp← getEstCost(smid)

14: if Cmin = temp then break; end if

15: Cmin ← getEstCost(smid)

16: else

17: Cmax ← getEstCost(smid)

18: end if

19: end while

The distributed monitor deployment requires solving two more sub-problems: (i)

decision coordination to derive a common solution and (ii) computation of individual con-

tribution on each monitor deployment. Two distributed algorithms are presented in this

regard. Algorithm 6 exploits binary search and decision coordination while locally running

the heuristic (Step 3). Csort may be stored in a common memory shared by the distributed

system to take computational advantage of tested solutions by other participants.

142



Initially, each participant determines a candidate set of monitors assuming the avail-

able budget ∣P ∣ times which is larger than its own. Once the choices are communicated

(Step 4-5), participants are ranked (Step 6) in a strict descending order of communicated

solution cost. Then, steps 7-8 determine the minimum (Cmin) and maximum (Cmax)

bounds of available budget to run a binary search (steps 9-21) to reach a common selec-

tion. Step 10 returns a set of monitors (if exists) for half of the sum of Cmin and Cmax.

If this solution can be deployed collaboratively, the lower bound Cmin is replaced with the

deployment cost. Otherwise, the upper bound is updated with the same. Binary search

ensures a deterministic and fast convergence to a near-optimal solution through iteratively

tighter budget approximation as re�ected from the choices of the participants. Thus, it

helps reducing the �price of risk� in collaborative deployment.

Algorithm 6 calls Algorithm 7 in step 11 for contribution adjustment among the par-

ticipants. Algorithm 7 takes input smid, a temporary solution, and reorders the candidate

monitors in ssort based on the amount of their collected information. For contribution

adjustment, each participant tries to make an average contribution (integer value) for ev-

ery monitor selected in ssort (steps 4-6). If the average contribution cannot be made by a

subset of participants, the remaining participants cover the de�cit equally (step 19). No

participant can contribute to monitor(s) collecting larger amount of information unless

it contributes accordingly to all the monitors collecting less amount of information (step

17). This policy helps in reaching consensus while extracting necessary contribution from

each decision maker. Algorithm 7 divides individual budget (Cp) to deploy monitors as

per the aforementioned policy. Step 7 communicates the individual decision (U) to other

participants. Then, an iterative contribution adjustment procedure takes place at steps

8-26 up to τ rounds. Upon receiving the other decisions, U is updated and a newer price

adjustment is communicated. Step 24 can break the loop once a consensus is reached to

deploy all monitors in smid.

143



Algorithm 7 : Distributed contribution adjustment

1: Initially: t← 0; U ← {uip = 0∣∀i ∈ V, p ∈ P};
2: Input: smid, P, p, τ, rank; Output: U
3: ssort ← ⟨smid,< ∑

i∈V

γij .xij
δij

⟩;y ← {yi = 0∣∀i ∈ V };est← Cp

4: for i ∶= 1 to ∣ssort∣ do

5: yi ← 1; uip ←min(est, ⌈
getCost({i})

∣P ∣ ⌉); est← est − uip;
6: end for

7: communicate U to other participants;
8: while t ≤ τ do
9: est← Cp; j← {ji = 0∣∀i ∈ ssort}
10: for i ∶= 1 to ∣ssort∣ do
11: for p ∈ P do

12: receive uip′ for p′ where p′ ≠ p and insert in U
13: if uip <

yi.ci
∣P ∣ then ji ← ji + 1; end if

14: end for

15: temp← ( ∑
p∈P

uip − yi. ci)

16: if temp ≥ 0 then
17: uip ← uip −max(0, ⌈ temp−rank+1

∣P ∣ ⌉)

18: else

19: uip ←min(est, uip + ⌈
−temp
∣P ∣−ji

⌉)

20: end if

21: est← est − uip;
22: end for

23: communicate U to other participants;
24: if ∑ji∈j ji = 0 then break; end if

25: t← t + 1;
26: end while

A(5)

C(3)

B(4)

F(5)

E(3)

D(3)

(3,3)

(1,3)(1,3)

(1,2)

(1,4)
(2,5)

(1,5)

(1,6)

(0,8)
(0,6)

(0,3)
(0,3)

(0,2)

(0,5)

(0,6)

Figure 5.2: An instance of execution monitor deployment problem

144



5.4 Case Study

Figure 5.2 shows a plan execution scenario on a complete transport network with six

vertices. The deployment cost is depicted with the vertex name (e.g. deployment cost of

A is 5). The execution paths are marked by directed edges annotated with two integers

for the number of agents on the execution path and associated energy consumption per

transmission. For example, the execution path from F to D is used by 1 agent and

the energy consumption on FD is 6. Assuming δij = δji, the weighted average energy

consumption is minimized for (i) known total budget of 7 and (ii) two distributed decision

makers (P1 and P2) with individual budgets of 3 and 4.

Table 5.1: Case Study: weighted cost of edges in ascending order

Edge γij Edge γij Edge γij Edge γij Edge γij Edge γij
EB 2 EC 3 FB 5 FD 6 AB 9 AD 15

CD 2 FE 3 EA 6 FA 8 BC 9 BF 15

CA 3 EF 3 CF 6 DE 8 DA 10 AE 18

CB 3 DC 4 FC 6 BA 9 DB 12 BD 18

CE 3 ED 4 BE 6 AC 9 DF 12 AF 24

Table 5.1 presents Esort where edges are ordered by γij . Figure 5.3 depicts the result

of each iteration (steps 5-15) in Algorithm 5. Every iteration is presented in a box with

its number at the left. The candidate monitors are shown using {. . .}. The sign �:X�

means that the required deployment cost exceeds the deployment budget 7. Otherwise,

the deployment cost is mentioned with the corresponding set. In this example, no edges

can be eliminated by Rule R1 since the smallest number of monitors that can be deployed

using the budget 7 is 1.

Algorithm 5 starts with a bipartite graph of V1 = φ and V2 = V . Initially no edges are

considered connected. Deploying monitors in every vertex of V (follow iteration 0 in Fig-

ure 5.3) is infeasible for budget value 7. Therefore, EB is added from Table 5.1. Thus, E

communicates data to B (follow step 6 in Algorithm 5). Accordingly, C′ = {{A,B,C,D,F}}.

With the addition of arc EB, {A,B,C,D,F} is the new set of monitors to be tested for feasi-

bility. Similarly, at iteration 2, C′ = {{A,B,D,F}} and CD is added toQ. The other possible

candidate set {A,B,D,E,F} is not tested since {{A,B,D,F}} is infeasible and {A,B,D,E,F}

145



Figure 5.3: Centralized monitor allocation trace

is its superset (Rule R4). Thus at iteration 2, Q ∶= ⟨{C,E},{A,B,D,F},{EB,CD}⟩. No new

candidate set is found up to iteration 6 while adding edges from Table 5.1. At iteration 7,

there are two new candidates: {A,B,D,E} and {A,B,C,D,E}. Since {A,B,D,E} is infeasible,

{A,B,C,D,E} is not tested. Subsequently, the procedure may run at most ∣V ∣×(∣V ∣−1)=30

iterations unless a stop condition is met. The optimal solution {B,D} is found at iteration

21 with the weighted average energy consumption 1.636.

In distributed setup, decision makers P1 and P2 individually run Algorithm 6 with

budget 3 and 4 respectively. Steps 3 and 10 of Algorithm 6 invoke heuristics to choose

the candidate set of monitors. Decision makers also communicate their choices (steps 4-5)

with increasingly tighter bounds as guided by a binary search. P1 and P2 execute step 3

Table 5.2: Case Study: Distributed contribution adjustment

Party Iteration t0 Iteration t1 Iteration t2
P1 E[2], C[1]

communicate
D[2], B[1]

communicate
D[2,1], B[1,3]
D[2,1], B[1,3]P2 D[2], B[2] D[1], B[3]

146



(in Algorithm 6) with budget 6 and 8 respectively. The proposed outcome for P1 and P2

are: {C,E} and {B,D}. Their ranks are 2 and 1 respectively. Cmin and Cmax are 6 and

7. In this case, the binary search will stop after one iteration. Step 11 will be executed to

determine the price contribution with the budget 7 and candidate set of monitors: {B,D}.

Table 5.2 re�ects the individual contribution of P1 and P2 from the execution trace of

Algorithm 7.

5.5 Results and Analysis

The accuracy and performance of the proposed algorithms are analyzed on the routes of

two commodity delivery problem types: Capacitated Vehicle Routing Problem (CVRP)

and Multi-Depot Split-Delivery Vehicle Routing Problem (MDSDVRP) instances [100,

101]. These choices are based on solution (vehicle routes) availability [193]. Experiments

are performed on few representative instances from P-Series CVRP [21] and SQ-Series

MDSDVRP. The demand of each vertex is mapped to its monitor deployment cost. In

CVRP, �rst vertex is considered as a depot with 0 demand. Vehicles with �nite capacity

always serve customer demands from this depot. In MDSDVRP, multiple depots serve

the customer demands. Thus, depots are always selected as monitors with no deployment

cost. Vehicles depart and return to the same depot. The routing solutions for each chosen

problem instance are given below. Pn16K8 (near) optimal routes:

R.1:1,3,1 R.2:1,7,1 R.3:1,8,1 R.4:1,16,13,11,1

R.5:1,15,6,1 R.6:1,14,10,8,1 R.7:1,12,5,1 R.8:1,4,2,1

Pn19K2 (near) optimal routes:

R.1:1,5,12,15,13,4,18,17,9,7,1; R.2:1,19,6,14,16,10,8,3,11,2,1;

Pn22K2 (near) optimal routes:

R.1:1,7,3,14,10,8,22,18,15,6,21,1

R.2:1,17,2,11,9,19,20,4,13,16,12,5,1

Pn23K8 (near) optimal routes:

R.1:1,14,10,18,1 R.2:1,5,8,1 R.3:1,4,20,19,1 R.4:1,22,21,7,1

R.5:1,9,17,1 R.6:1,3,2,1 R.7:1,11,13,16,12,1 R.8:1,6,15,23,1

147



Table 5.3: Benchmarks on CVRP-P-Series [21] and SQ-Series [100] problems

Bgt. Monitors Opt. (sec.) Heur. (sec.)
PI Pn16K8; see. Appendix for (near) optimal routes

20 [1,14,16] 6.522 (0.005) 6.522 (0.007)
50 [1,6,11,12,13,14] 3.61 (0.058) 3.61 (0.06)
100 [1,4,6,8,10,11,12,13,14,16] 2.04 (0.16) 2.04 (0.19)
PI Pn19K2; see. Appendix for (near) optimal routes

20 [1,6,11] 9.9 (0.005) 9.9 (0.007)
50 [1,6,8,11,12,18] 5.55 (0.07) 5.55 (0.08)
100 [1,4,8,11,12,13,14,18,19] 3.25 (0.36) 3.25 (0.358)
PI Pn22K2; see. Appendix for (near) optimal routes

20 [1,11,14,20] 9.261 (0.025) 9.261 (0.032)
50 [1, 2, 12,13,14,20,22] 5.043 (0.165) 5.05 (0.180)
100 [1,2,4,6,10, 12,13,14,20,21,22] 3.174 (2.89) 3.348 (0.506)
PI Pn23K8; see. Appendix for (near) optimal routes

20 [1,11,14,20] 7.16 (0.035) 7.2 (0.045)
50 [1,2,12,13,14,20,23] 3.93 (0.29) 3.95 (0.325)
100 [1,2,4,10,11,12,14,16,20,21,22,23] 2.43 (6.35) 2.667 (0.351)
PI Pn40K8; see. Appendix for (near) optimal routes

20 [1,11,18,30,37] 11.5 (0.135) 11.5 (0.17)
50 [1,10,11,18,23,25,27,37] 7.682 (59.378) 9.341 (8.973)
100 [1,2,5,11,18,20,22,25,27,30,32,37,39]* 6.11 (5.969)
PI Pn70K10; see. Appendix for (near) optimal routes

20 [1,16,24,50] 14.095 (0.184) 14.095 (0.165)
50 [1,16,36,43,50,56,66] 9.286 (183.3) 11.57 (12.586)
100 [1,2,5,11,18,20,22,25,26,27,30,32,37,39]* 8.857 (11.783)
150 [1,4,9,15,23,43,49,56,59,69,70]* 7.012 (11.02)
200 [1,8,9,13,16,20,23,28,30,33,37,43, 50,52,66,69]* 5.512 (11.431)
PI SQ1; see. ref. [193] for (near) optimal routes

300 [1,5,6,16,21,22,34] 7.162 (2.247) 7.378 (18.313)
400 [1,5,6,16,21,22,26,34] 6.378 (17.703) 6.594 (14.705)
500 [1,2,6,8,15,17,21,22,34] 5.514 (382.70) 5.703 (9.244)
PI SQ2; see. ref. [193] for (near) optimal routes

300 [1,3,16,21,38,45,50,51] 8.0 (149.31) 8.342 (39.061)
400 [1,5,16,22,35,38,47,50,51]* 7.621 (35.866)
500 [1,5,6,17,26,40,45,47,50,51]* 7.018 (28.075)
PI SQ3; see. ref. [193] for (near) optimal routes

300 [1,6,16,25,28,66,67,68]* 8.852 (9.808)
400 [1,6,17,19,21,30,40,66,67,68]* 8.241 (9.971)
500 [1,4,5,16,38,45,63,64,66,67,68]* 7.684 (9.517)

148



Pn40K5 (near) optimal routes:

R.1:1,12,17,30,22,35,31,10,39,1 R.2:1,28,9,32,27,8,24,25,7,1

R.3:1,13,18,38,16,34,40,11,6,1 R.4:1,9,5,20,14,26,15,1

R.5:1,2,23,29,4,37,36,21,3,33,1

Pn70K10 (near) optimal routes:

R.1:1,8,36,54,15,60,20,9,1 R.2:1,2,44,42,43,65,23,63,69,1

R.3:1,12,67,66,39,59,1 R.4:1,4,45,25,50,57,24,64,17,52,1

R.5:1,11,32,56,19,51,33,1 R.5:1,5,32,3,34,43,65,23,63,69,7,1

R.7:1,18,41,10,40,13,27,1 R.8:1,29,62,22,70,37,48,49,1

R.9:1,46,28,53,35,47,68,1 R.10:1,30,6,38,61,21,16,58,14,55,1

5.5.1 Accuracy

Table 5.3 compares the accuracy of the heuristics against optimal weighted average energy con-

sumption. VRP routes of the problem instances are computed using a solver from the other

research works [193]. The reference of the solution is provided for each instance. Monitors column

depicts the heuristic solution corresponding to the budget as shown in column Bgt. The columns

Opt. and Heur. depict the optimal and heuristically obtained minimum weighted average energy

consumption respectively along with the computation time. Optimal solution generation time for

few larger problem instances exceeds maximum run-time (12 hours) in an Intel core i7 machine,

so they are omitted in Table 5.3. The parameters of the experiments are: (i) maximum sz size =

100000, (ii) k = 5 and (iii) cnv = 3. Max. iteration (ite) is 1000000. Table 5.3 demonstrates that

the heuristic yields good-quality near-optimal solutions faster.

5.5.2 Performance

Table 5.3 indicates the bene�ts of the heuristics for large problem instances. However, no single set

of parameter values can yield the best solutions for all problem instances. To analyze the trade-

o� between solution accuracy and computing time, Pn70K10 is further analyzed with budget

150. Figure 5.4 compares the minimum weighted average energy consumption against the elapsed

computing time for various parameter combinations. Di�erent cnv, k and sz combinations are

tested. A large ite value is used to achieve convergence to near-optimality in all cases. Best

solution is picked from 8 runs. Figure 5.4 depicts faster convergence for higher cnv values. In

contrast, large k and sz produce better solutions but increase the time. In this problem instance,

149



T
a
b
le

5
.4
:
D
is
tr
ib
ut
ed

m
on
it
or

se
le
ct
io
n
on

C
V
R
P
in
st
an
ce
s

P
I

B
gt
.

A
vg
.

C
on
tr
ib
ut
io
ns

P
n2
3K

8
(5
,1
0,
15
,2
0)

3.
93

1
[0
,0
,0
,0
];
2
[0
,0
,4
,3
];
12

[2
,2
,2
,1
];
13

[1
,5
,4
,4
];
14

[0
,2
,2
,2
];
20

[2
,2
,1
,1
];
23

[0
,0
,2
,8
]

(1
0,
20
,3
0,
40
)

2.
56

1
[0
,0
,0
,0
];
2
[0
,3
,2
,2
];
10

[2
,2
,2
,2
];
11

[2
,2
,2
,2
];
12

[0
,1
,3
,3
];
14

[0
,0
,3
,3
];
16

[0
,4
,4
,3
];

19
[0
,0
,7
,1
0]
;
20

[2
,2
,1
,1
];

21
[2
,5
,4
,4
];
22

[2
,1
,1
,1
];
23

[0
,0
,1
,9
]

P
n4
0K

5
(5
,1
0,
15
,2
0)

7.
79
5

1[
0,
0,
0,
0]
;
11
[0
,0
,3
,2
];

18
[0
,0
,1
,3
];

23
[2
,2
,2
,2
];

25
[0
,4
,3
,3
];

27
[1
,2
,2
,2
];

30
[0
,0
,3
,3
];

37
[2
,2
,1
,1
]

(1
0,
20
,3
0,
40
)

6.
61
4

1[
0,
0,
0,
0]
;
11
[0
,2
,2
,1
];
15
[0
,1
,1
0,
10
];
18
[0
,1
,1
,1
];
22
[2
,2
,2
,2
];
23
[0
,0
,2
,7
];
24
[0
,6
,5
,5
];

36
[5
,4
,4
,4
];
39
[3
,4
,4
,4
]

P
n7
0K

10
(5
,1
0,
15
,2
0)

9.
80
9

1[
0,
0,
0,
0]
;
16
[0
,0
,4
,4
];
23
[0
,4
,4
,4
];
36
[3
,3
,2
,2
];
50
[0
,0
,3
,2
];
66
[2
,3
,2
,2
]

(1
0,
20
,3
0,
40
)

9.
40
5

1[
0,
0,
0,
0]
;
10
[0
,3
,1
3,
13
];
35
[5
,5
,5
,4
];
38
[0
,5
,5
,4
];
58
[4
,4
,3
,3
];
64
[0
,0
,1
,1
0]
;
66
[1
,3
,3
,2
]

(2
0,
50
,8
0)

7.
84
5

1[
0,
0,
0]
;
6[
7,
7,
7]
;
7[
7,
6,
6]
;
9[
0,
0,
16
];

29
[2
,1
4,
13
];

37
[4
,4
,4
];

40
[0
,4
,1
2]
;
43
[0
,6
,5
];

45
[0
,9
,8
]

(1
0,
20
,4
0,
80
)

7.
72
6

1[
0,
0,
0,
0]
;
6[
6,
5,
5,
5]
;
33
[0
,0
,1
,2
6]
;
37
[0
,4
,4
,4
];
42
[0
,5
,5
,5
];
53
[4
,5
,5
,5
];
54
[0
,0
,1
1,
11
];

63
[0
,1
,9
,9
]

(2
0,
30
,4
0,
50
,6
0)

5.
48
8

1[
0,
0,
0,
0,
0]
;

2[
0,
0,
6,
6,
6]
;

4[
3,
2,
2,
2,
2]
;

19
[3
,3
,3
,2
,2
];

26
[3
,3
,3
,2
];

36
[0
,3
,3
,2
,2
];

37
[3
,3
,2
,2
,2
];
38
[0
,2
,4
,4
,4
];
40
[0
,0
,
1,
8,
8]
;
43
[0
,3
,3
,3
,2
];
50
[1
,1
,1
,1
,1
];
52
[3
,3
,2
,2
,2
];

53
[0
,0
,0
,6
,1
2]
;
64
[0
,3
,3
,3
,2
];
66
[0
,0
,3
,3
,3
];
69
[2
,2
,2
,2
,2
];
70
[2
,2
,2
,1
,1
]

SQ
1

(5
0,
10
0,
15
0)

7.
32
4

1[
0,
0,
0]
;
3[
20
,2
0,
20
];
5[
20
,2
0,
20
];
8[
10
,2
5,
25
];
21
[0
,3
0,
30
];
22
[0
,5
,5
5]
;
34
[0
,0
,0
]

(1
00
,1
00
,1
00
)

7.
35
1

1[
0,
0,
0,
0]
;
3[
20
,2
0,
20
];
17
[2
8,
28
,2
9]
;
18
[3
0,
30
,3
0]
;
24
[2
0,
20
,2
0]
;
34
[0
,0
,0
]

(2
0,
40
,8
0,
16
0)

7.
13

1[
0,
0,
0,
0]
;
3[
0,
15
,2
2,
22
];
19
[0
,0
,3
,5
5]
;
24
[0
,0
,3
0,
30
];
28
[2
0,
25
,2
5,
25
];
34
[0
,0
,0
,0
];

(8
0,
80
,8
0,
80
,8
0)

6.
59
4

1[
0,
0,
0,
0,
0]
;

3[
12
,1
2,
12
,1
2,
12
];

8[
12
,1
2,
12
,1
2,
12
];

14
[1
2,
12
,1
2,
12
,1
2]
;

17
[1
7,
17
,1
7,
17
,1
7]
;
21
[1
2,
12
,1
2,
12
,1
2]
;
22
[1
2,
12
,1
2,
12
,1
2]
;
34
[0
,0
,0
,0
,0
]

(2
0,
40
,8
0,
10
0,
16
0)

7.
10
8

1[
0,
0,
0,
0,
0]
;
5[
0,
0,
20
,2
0,
20
];

6[
0,
8,
18
,1
8,
18
];

16
[0
,0
,1
1,
21
,2
1]
;
17
[1
7,
17
,1
7,
17
,1
7]
;

21
[3
,1
5,
14
,1
4,
14
];
34
[0
,0
,0
,0
,0
]

(5
0,
10
0,
15
0,
20
0)

6.
08
1

1[
0,
0,
0,
0]
;
3[
13
,1
6,
16
,1
5]
;
6[
0,
20
,2
0,
20
];
8[
0,
8,
26
,2
6]
;
17
[2
2,
21
,2
1,
21
];
21
[0
,2
0,
20
,2
0]
;

22
[1
5,
15
,1
5,
15
];
24
[0
,0
,3
0,
30
];
34
[0
,0
,0
,0
];

150



Figure 5.4: Performance comparison of heuristics with di�erent parameters

parameters cnv=3, k=5 and sz=160000 provide the best trade-o�.

5.5.3 Distributed Solutions

Table 5.4 presents experimental results from a few larger problem instances in distributed setup

(with 3, 4 or 5 decision makers) where participants collaborate to deploy monitors. Individual

budget of each participant and the resulting weighted average energy consumption are presented

in columns Bgt. and Avg. Column Contributions shows the share of individual budgets. The

number before bracket [] indicates a monitor while the comma separated values inside denote the

contribution of each decision maker. The best solution is selected from 8 runs. Figure 5.5 shows

a comparative analysis of the proposed algorithms for the �rst 3 problem instances in Table 5.4.

The c-x (e.g. c-50) denotes a centralized setup to �nd optimal solution using exact algorithm with

known budget `x' over a problem instance. Likewise, h-x refers to the use of heuristics in centralized

setup. In the distributed setup, the total budget is split among participants. For example, 5-10-15-

20 denotes individual budgets for 4 decision makers. The column chart denotes weighted average

energy consumption on primary y-axis. The secondary y-axis depicts the computation time via

an area chart. The peak of the area denotes the solving time in seconds. Few experiments (e.g.

c-100 for Pn40K5 PI) have been preemptively stopped after a 12 hour time limit. In general,

the results indicate that the distributed technique is able to achieve similar accuracy compared

to the centralized heuristic. However, its computation time is longer as the consensus generation

needs multiple iterations among participants. Figure 5.5 shows that for a comparatively small total

budget (of all decision makers), the negotiation takes longer to reach consensus. This indicates that

151



Figure 5.5: Comparative study of the proposed algorithms

the constrained distributed budget may lead to higher contribution mismatch among individually

selected monitors.

5.5.4 Advantages and Limitations

In this chapter, we �rst elaborate a centralized heuristic technique to determine near-optimal mon-

itor locations. Then we propose a collaborative monitor deployment technique where participating

decision makers decide over the locations for monitors without explicitly sharing their available in-

dividual budgets to a central entity. Concerning the advantages and limitations, most importantly,

the proposed approach o�ers an e�cient procedure to near-optimally solve the monitor deployment

problem in distributed setting. It also o�ers task decomposition by splitting the main problem

along with the iterative use of heuristic technique locally at each participant side. In this regard,

our experiments show that the technique produces good quality solutions. The approach allows

each distributed participant to compute solutions of allocated sub-problems using less memory and

computation time compared to centralized setting while using their own suitable parameter values

to execute the heuristics.

However, overall solution generation for the MDP instances needs longer time with increasing

number of participants and dissimilar available deployment budgets. Also, as the benchmark

results indicate that the centralized setting produces better quality near-optimal solutions for

MDP instances compared to the distributed setting.

152



5.6 Summary

This chapter elaborated a budget constrained monitor deployment problem. In this problem setup,

distributed decision makers with individual budgets collaborate to minimize weighted average en-

ergy consumption in the data communications. A collaborative multi-round risk reduction ap-

proach was proposed along with a distributed heuristic technique to reach a near-optimal solution.

As such, each participant determines monitor locations combining its own budget along with es-

timated deployment budgets for other participants. Over a number of iterations, each participant

aims at reducing the error in the budget estimation of others. However, distributed data shar-

ing requires addressing other aspects, such as secure communication, analysis of information gain,

guarantee of honest participation, etc. All these aspects represent potential future work directions.

Another relevant direction is to conduct a statistical analysis on energy consumption speci�c to

various SCN deployments.

153



Chapter 6

Collaborative Plan Execution

Monitoring Problem

Nowadays, numerous computing devices and sensors capture live local events and de-

liver pertinent information to distant data center(s) using advanced communication

technologies. At the data center, event related information comes as data stream.

So, it requires quick processing to extract complex interesting relationships among

the events. Interesting cause-and-e�ect relationships among events can be re�ected

as association rules. In this chapter, we handle incremental mining of interesting as-

sociation rules over the data stream. The proposed approach presents an e�cient

technique to update association rules through a pre�x tree data structure. The latter

stores a subset of simultaneously occurring events based on their frequencies of recent

appearance. Furthermore, we also present a collaboration strategy whereby willing

participants can jointly perform incremental generation of these association rules by

partially storing the original pre�x tree structure in their servers. The proposed ap-

proach is substantially less computation intensive in compare to previous e�orts.

6.1 Introduction

As the next generation enterprises are transforming toward digital businesses [2], stream data

analysis and mining are turning crucial for early detection of faults, performance measurement,

trend analysis and other diagnostics. Frost and Sullivan, a renowned market research organization,

predicts 3.5 times growth in mobile data monitoring market revenue from 2013 to 2020 [84]. A

154



recent Gartner report also declared that one fourth of the global �rms will incorporate big data

analytics by 2016 [72]. The applications of such analysis include remote monitoring of network

performance, supply chain execution, oil-�eld and pipeline operations, health data industries, etc.

[2]. Large cap companies, such as Accenture, Google, Microsoft, etc., also admit the necessity and

importance of this paradigm shift to track and trace important business parameters [2, 112, 194].

Stream data requires quick processing to extract relevant events and their relationships. Let

us consider an example of a monitoring system that o�ers alerts for possible delays on the delivery of

urgent medical aid by an organization. In such a system, deployed devices and sensors continuously

report tra�c status, weather conditions, patient's medical condition and other information to the

data center of the planning organization. This continuously reported data needs quick analysis, in

an online manner, to prioritize deliveries and to avoid any possible delays. Therefore, analysis and

mining of stream data may reveal hidden relations among recent events which, in turn, can help

in decision making while executing business operations.

Classical data mining algorithms assume the presence of data in conventional databases

where mining is performed centrally by accessing stored data multiple times and using powerful

processors. There exists no strict time constraint to produce the output. In contrast, data streams

are incessant and unbounded where timestamped events arrive at a high-speed. Thus, it requires

an alternative methodology. Furthermore, the frequencies of various events are also expected to

change over time which create a drift on the statistical properties of the events (also called concept

drift) and their associations. Therefore, online mining of interesting and useful association rules

exhibits great interest and complex challenges.

Data stream can be presented as a sequence of a timestamped set of simultaneous events

which is also known as transaction. A set of events denotes an itemset where each item represents

an event. So, a data stream can be treated as a temporal sequence of itemsets. The stream

of distinct events is commonly treated as moments [190]. Moments help in understanding the

distribution of frequencies for elements, analyzing stream properties and extracting stream related

knowledge [190]. Figure 1.3 depicts an example of such a sequence of data stream transactions.

Data streams are usually mined using landmark, damped or sliding window model. In a landmark

model, data is captured from a de�ned point of time. In the damped model, newer transactions

have higher contribution in the mining process. The sliding window model considers a transaction

valid as long as it is fresh. The freshness is determined by a window size (denoted by τ) [48].

In this chapter, we investigate frequently associated events using Association Rule Mining

(ARM). We propose a generic and e�cient incremental stream mining approach to �nd selected

association rules among the dependent events from a sliding window. The proposed approach

155



progressively extracts interesting association rules from a stream using a sliding window model.

Furthermore, as depicted in Figure 1.3, we extend this approach to collaboratively extract these

rules in multiple subsets using a number of servers. The servers collectively reduce the individual

stream processing load and allow handling large number of events during a sliding window up-

date. Few additional entities, namely helpers, are used to schedule the collection and mining of

association rules in such distributed setting.

The existing research e�orts, as reviewed in Section 2.2.3, only focus on the itemset mining

which extracts frequent itemsets. In contrast, we present a hybrid technique that incrementally

computes a large portion of interesting association rules by traversing a pre�x tree structure. The

rest of the rules are then iteratively generated from these incrementally generated rules. The

incremental rule generation technique performs a selective depth-�rst search while pruning the

pre�x tree simultaneously. In distributed setting, collaborative participants partially mine sub-

trees of this pre�x tree (as constructed in centralized setting) to �nd association rules of individual

interest. They locally execute the proposed hybrid technique over their respective sub-trees. In

this respect, the contribution of this work can be stated as follows:

� We present a generic and e�cient incremental data stream mining technique to �nd inter-

esting association rules among co-occurring events.

� We present a distributed approach where multiple servers collaboratively participate in gen-

erating association rules.

� We experimentally show that the proposed techniques perform better than some existing

techniques over various known datasets.

The rest of the chapter is organized as follows. In Section 6.2, we present the problem statement.

Section 6.3 analyzes various properties and requirements for the generation of association rules.

Section 6.4 presents the proposed approach in a centralized setting. Section 6.5 elaborates a

collaboration technique to perform the association rule mining in multiple servers. The section

also analyzes the scope of such distribution and associated redundancies. Section 6.6 provides

benchmarks on the performance of the proposed approaches over known datasets. We summarize

our �ndings in Section 6.7 along with future research directions.

6.2 Problem Statement

Let us assume that a �nite set of all possible items (also called alphabet) is represented by A =

{e1, e2, . . . , en}. Then, in a sliding window of size τ , a momentary association among two mutually

156



exclusive sets of items X and Y (X,Y ⊂ A) is de�ned by two thresholds. First, X ∪ Y should

appear at least smin times within the most recent τ transactions. Second, X ∪ Y should appear

at least cmin fraction of times X appears. These two thresholds, smin and cmin, are named as

minimum support and minimum con�dence respectively. An association rule that satis�es both

thresholds is known as strong association rule. In data mining, X and Y are called antecedent

and consequent respectively. A strong association rule between X and Y is denoted by X → Y . In

event monitoring, we search speci�c association rules which satis�es another additional threshold.

We interested in selected strong association rules where the product of individual occurrences

of X and Y is less than the co-occurrences of X ∪ Y within most recent τ transactions. This

threshold is known as lift. The lift is a ratio between the con�dence of the association rule over

the unconditional probability of appearance for the consequent (Y ). In this chapter, we investigate

mining of association rules over stream data especially where lift is greater than 1. We call them

interesting association rules or interesting rules.

Wu et al. [243] elaborates momentary support and momentary con�dence of an itemset

over timestamped stream using a lifetime function lj . At a timestamp tj , lj maps the domain

of alphabet A to the co-domain of a set of timestamps (TS). The latter can be expressed as

{ti ∶ j − τ < i ≤ j; ti ∈ TS}. The output of function lj is a set of timestamps which corresponds to

the appearances of an element of A within most recent τ transactions. For example, considering

τ = 10, in Figure 1.3, l10(a) = {t3, t5, t7, t9} and l10(b) = {t2, t3, t4, t5, t6, t7, t8, t10}. Using lifetime

function momentary support (supj), momentary con�dence (confj) and momentary lift (liftj) of

itemset X can be expressed as follows:

supj(X) = ∣ ⋂
e∈X

lj(e)∣;X ⊆ A (6.1)

confj(X → Y ) =
supj(X ∪ Y )

supj(X)
;X,Y ⊂ A (6.2)

liftj(X → Y ) =
τ × supj(X ∪ Y )

supj(X) × supj(Y )
;X,Y ⊂ A (6.3)

From Eq. (6.1), it can be seen that supj(X) ≥ supj(X ∪ Y ). It is also called apriori property.

Therefore, each interesting association rule must satisfy the following thresholds:

(i) supj(X ∪ Y ) ≥ smin.

(ii) confj(X → Y ) ≥ cmin.

(iii) liftj(X → Y ) > 1.

X,Y ⊂ A and X ∩ Y = ∅.

157



We denote these interesting association rules as X
l
Ð→ Y . Subsequently, we denote invalid associa-

tion rule and invalid interesting association rule amongX and Y asX ↛ Y andX
l
ÐÒÐ→ Y respectively.

If momentary support of an itemset is greater than or equal to smin (supj(X) ≥ smin) itemset X

is called frequent. Otherwise, itemset X is infrequent. If itemset X is present in all transactions

of the sliding window, we call it omnipresent. Furthermore, if frequent itemset X has a superset

X ∪ Y that has same support of X and there is no superset of X ∪ Y with the same support of

X ∪ Y , then we call X and X ∪ Y as itermediate itemset and closed itemset respectively. If X

denotes a set of items identi�ed as {a,b,c}, we often represent it as �abc�. Similarly, X ∪ Y is

referred as XY in short form throughout this chapter.

Association rules can be categorized based on the number of items in antecedent and conse-

quent. A [1−1] association rule refers to the relationship among two single items at the antecedent

and the consequent which also respects thresholds (i) and (ii). Similarly, in an [n − 1] association

rule, the antecedent and the consequent are a set of multiple items (up to n) and single item

respectively. Accordingly, we may also categorize [1 − n] and [n − n] association rules. Ideally

[n−n] association rules includes all [1− 1], [n− 1], [1−n] rules as well. However, in this chapter,

we depict them separately to explain the notion assuming n > 1.

6.3 Requirements Analysis

Table 6.1 presents an example of requirements for the minimum support of XY to generate rule

X
l
Ð→ Y over a sliding window of size 10 where the minimum support and minimum con�dence are

3 and 0.7 (or 70%) respectively. The values are shown in four distinct regions of colors. The cell

color gray with cell value `F' indicates that no interesting rule can be found with the corresponding

supports of X and Y in the given setting. The cell color green denotes that, in this setting, it

Table 6.1: Minimum requirements of supj(XY ) for supports of X and Y

Y τ ∶ 10, smin ∶ 3, cmin ∶ 0.7

supj 3 4 5 6 7 8 9 10 Evaluation Criteria
3 3 3 3 3 3 3 3 F Threshold (i)
4 3 3 3 3 3 4 4 F
5 F 4 4 4 4 5 5 F
6 F F 5 5 5 5 6 F Thresholds (i) & (ii).
7 F F 5 5 5 6 7 F
8 F F F 6 6 7 8 F
9 F F F F 7 8 9 F Thresholds (i), (ii) & (iii)

X

10 F F F F F F F F

158



is enough to evaluate threshold (i) to form an interesting rule since threshold (ii) and (iii) are

already satis�ed. Similarly, cell color yellow indicates that, it requires satisfying threshold (i) and

(ii) to form an interesting rule since threshold (iii) is already satis�ed. Only the region marked

with light-blue requires evaluating all three thresholds. In the incremental mining of interesting

association rules identi�cation of these regions is crucial for faster evaluation of a candidate rule.

6.3.1 Properties of Interesting Association Rules

To perform incremental mining of (interesting) association rules, we utilize the following properties

of the rules. These properties, as observed from the aforementioned thresholds, reduce the scope

of rule search and the requirements of evaluation between antecedent and consequent.

Given a set of items {a,b,c,d}, confj({a,b,c} → {d}) ≥ confj({a,b} → {c,d}) ≥ confj( {a}

→ {b,c,d}). Thus, the con�dence of rules generated likewise from the same itemset has an anti-

monotonic relationship. Function confj generates an anti-monotone with respect to the number of

items at the right hand side of the rule. We may notice that {a,b,c} → {d} is an [n−1] association

rule. So, if confj({a,b,c} → {d}) does not hold, there exists no association rules among the items

in {a,b,c,d} at the higher order [n − 2], [n − 3], etc. where the consequent is a superset of {d}. It

signi�cantly reduces the scope of the rule search. Property 1 mathematically captures our interest.

Property 1. Given itemsets X, Y and Z, frequent itemsets X, XY , XZ and XY Z relate through

an anti-monotonic relationship such that if X ↛ Y or X ↛ Z or XY ↛ Z or XZ ↛ Y then

X ↛ Y Z.

Proof. For an association rule X → Y Z, it requires to meet threshold (ii). If supj(XY Z)
supj(X) ≥ cmin

then following constrains must be respected (using apriori property).
supp

j (X∪Y )
supp

j (X)
≥ cmin,

supp
j (X∪Z)

supp
j (X)

≥ cmin,
supp

j (X∪Y ∪Z)
supp

j (X∪Y )
≥ cmin and

supp
j (X∪Y ∪Z)

supp
j (X∪Z)

≥ cmin

The aforementioned four relations indicate four association rules X → Y or X → Z or

XY → Z or XZ → Y respectively. Therefore, if one of them is invalid then X → Y Z does not meet

threshold (ii).

Property 2 helps in pruning the scope of search for interesting association rules among frequent but

non-omnipresent itemsets. In a short period of time, as captured by a sliding window, a number of

events can be always seen in every transaction. For example, in practice, weather condition may

remain hostile for a whole day. Property 2 indicates that such omnipresent events are not relevant

to form interesting associations among two sets of recent events.

159



Property 2. No association rule may have lift greater than 1 if its antecedent and/or consequent

itemset is omnipresent.

Proof. An interesting association rule X
l
Ð→ Y must satisfy threshold (iii). If supj(X) or supj(Y )

is present in all transactions then its support is τ . Since, supj(XY ) ≤ supj(X) and supj(XY ) ≤

supj(Y ). Then,
τ×supj(XY )

supj(X)×supj(Y ) cannot be greater than 1.

An aim of measuring interest in a rule is to quantify current co-occurrence of events against

random simultaneous occurrences. An intermediate itemset X which is a subset of its closed

frequent itemset XY indicates such co-occurrence. Therefore, a relationship between X and Y

is always considered as interesting association rule, as indicated by Property 3, unless X or Y is

omnipresent. During the rule search among frequent itemsets, in a sliding window, Property 3

reduces the evaluation requirements for X
l
Ð→ Y once we �nd an intermediate itemset X and its

closed frequent itemset XY .

Property 3. Given an intermediate itemset X and a closed frequent itemset XY that have same

support, there exists always a rule X
l
Ð→ Y if Y is not omnipresent.

Proof. Since, X, Y and XY (apriori property) are frequent then it satis�es threshold (i). Since,

supj(X) = supj(XY ) then it always satis�es threshold (ii). In this context, liftj(X → Y ) can be

simpli�ed as τ
supj(Y ) . Then, if Y is not present in all τ transactions, liftj(X

l
Ð→ Y ) > 1, which

meets threshold (iii).

Property 4, Property 5 and Property 6 extend the concept of Property 3. They dictate

similar conditions to mine interesting association rules. Our main interest, in these contexts, is

to make use of co-occurring events through these properties to improve the performance of the

incremental rule search algorithms. Property 6a. o�ers a unique performance improvement for the

proposed search. From Eq. 6.1, Eq. 6.2 and Eq. 6.3, it is clear that the evaluations of di�erent

thresholds require counting supports for the involved itemsets. In a large sliding window, counting

support each time for various itemsets adversely impacts the search performance. In this context,

Property 6a. signi�cantly reduces the load of support evaluation for some itemsets.

Property 4. Given intermediate itemsets X, XY and a closed non-omnipresent frequent itemset

XY Z, all have same support, X
l
Ð→ Y Z, XY

l
Ð→ Z, XZ

l
Ð→ Y , X

l
Ð→ Y and X

l
Ð→ Z are all valid

interesting rules except the case(s) where consequent(s) are omnipresent.

Proof. Using Property 1 and Property 3.

160



Property 5. Given an itemset X, an intermediate itemset XY and a non-omnipresent frequent

closed itemset XY Z such that supj(XY ) = supj(XY Z), following can be found true:

a. X
l
Ð→ Y ⇒ X

l
Ð→ Y Z

b. X
l
ÐÒÐ→ Y Z ⇒ X

l
ÐÒÐ→ Y

Proof. (a.) If X
l
Ð→ Y meets thresholds (i), (ii) and (iii), Since supj(XY ) = supj(XY Z) then the

relation X
l
Ð→ Y Z meets thresholds (i) and (ii). Now, τ×supj(XY )

supj(X)×supj(Y ) ≤
τ×supj(XY Z)

supj(X)×supj(Y Z) since

supj(Y ) ≥ supj(Y Z) then X
l
Ð→ Y Z meets threshold (iii) also.

(b.) Similarly, if X
l
ÐÒÐ→ Y Z, it does not meet thresholds (i), (ii) or (iii). Since supj(XY ) =

supj(XY Z), therefore, if X
l
ÐÒÐ→ Y Z does not meet threshold (i) or (ii) then X

l
ÐÒÐ→ Y also does not

meet the same threshold. Given, τ×supj(XY Z)
supj(X)×supj(Y Z) ≥

τ×supj(XY )
supj(X)×supj(Y ) , if X

l
ÐÒÐ→ Y Z does not satisfy

threshold (iii) then X
l
ÐÒÐ→ Y also does not satisfy the same.

Property 6. Given an intermediate itemset X and a closed frequent itemset XY such that

supj(X) = supj(XY ), the following can be found true with itemset XY Z:

a. supj(XZ) = supj(XY Z)

b. XY
l
Ð→ Z ⇒ X

l
Ð→ Y Z

c. X
l
ÐÒÐ→ Y Z ⇒ XY

l
ÐÒÐ→ Z and X

l
ÐÒÐ→ Y Z ⇒ X

l
ÐÒÐ→ Z

Proof. (a.) Given supj(X) = supj(XY ), Y occurs in every transaction where X occurs over

the sliding window tj . Now, if X and Z co-occur only among a subset these transactions then

supj(XZ) = supj(XY Z).

(b.) XY
l
Ð→ Z meets thresholds (i), (ii) and (iii). Since supj(X) = supj(XY ) then relation

X
l
Ð→ Y Z meets thresholds (i) and (ii). Now, τ×supj(XY Z)

supj(XY )×supj(Z) is less or equal to
τ×supj(XY Z)

supj(X)×supj(Y Z)

since supj(Z) ≥ supj(Y Z). Thus, interesting rule X
l
Ð→ Y Z meets threshold (iii) also.

(c.) Similarly, if X
l
ÐÒÐ→ Y Z, it does not meet threshold (i), (ii) or (iii). Since supj(X) =

supj(XY ), if X
l
ÐÒÐ→ Y Z does not meet threshold (i) or (ii) then X

l
ÐÒÐ→ Y also does not meet the

same threshold. Since τ×supj(XY Z)
supj(X)×supj(Y Z) ≥

τ×supj(XY Z)
supj(XY )×supj(Z) , if X

l
ÐÒÐ→ Y Z does not satisfy thresholds

(iii), then XY
l
ÐÒÐ→ Z also does not meet the same. Likewise, since supj(XZ) = supj(XY Z) and

supj(Z) ≥ supj(Y Z), X
l
ÐÒÐ→ Y Z also implies X

l
ÐÒÐ→ Z.

Now, if a set of items (Y ) occurs less than τ × cmin in a sliding window and yet forms

association rule X → Y with itemset X, we consider such an association rule interesting. Property

7 indicates the reason behind. From the perspective of rule search, the property is important

161



since it reduces the evaluation requirement of threshold (iii) where the consequent is less than

a particular constant value. Table 6.1 supports the property as one may notice that where the

support of consequent Y is less than 7 (10 × 0.7), evaluation criteria does not require checking

threshold (iii).

Property 7. Given itemsets X, Y and their frequent superset XY , rule X
l
Ð→ Y is valid if X is

not omnipresent, confj(X
l
Ð→ Y ) ≥ cmin and supj(Y ) < τ × cmin.

Proof. Given X, Y and XY are frequent, supj(XY ) meets threshold (i). Since confj(X
l
Ð→ Y ) ≥

cmin, it is a valid association rule. Finally, given, supj(Y ) is less than τ × cmin, supj(Y ) is also

less than τ ×
supj(XY )
supj(X) since supj(XY )

supj(X) ≥ cmin. Then, τ×supj(XY )
supj(X)×supj(Y ) > 1 as support of X cannot

exceed τ . This satis�es threshold (iii), i.e., liftj(X
l
Ð→ Y ) > 1 .

6.3.2 Identi�cation of Interesting Association Rules

The relations between various itemsets within an alphabet can be presented using lattice [136]. A

lattice is a fundamental and general algebraic structure to represent a partially ordered set which

is often drawn using Hasse diagram1. A lattice is denoted by ⟨L,∨,∧⟩ where L is a non-empty set

that supports binary OR and binary AND operations over L. From an alphabet A, a lattice can

be derived using a partially-ordered set (L,⪯) by considering X ∧ Y= X ∩ Y and X ∨ Y= X ∪ Y

for any X,Y ∈ L. In lattice theory, X ∧ Y is called as in�mum, meet or greatest lower bound.

Similarly, X ∨ Y is termed as supremum, join or least upper bound. So, the lattice for A contains

all possible subsets of A. Thus, a full lattice representation with its all feasible itemsets can be

extremely large. Storing such a lattice is memory consuming and often unnecessary in our context.

So, we prune the lattice using support threshold by removing itemsets that have support less than

minimum support threshold. The resulting structure is a partial lattice or meet-semilattice [136].

A meet-semilattice only respects the meet (or greatest lower bound) constraint in the de�nition of

lattice.

Figure 6.1 depicts a Hasse diagram of a meet-semilattice of itemsets and their support from

the �rst sliding window of the example presented in Figure 1.3. The meet-semilattice is presented

for minimum support 3 and minimum con�dence 0.7. The root of the lattice is denoted as ∅ in

similarity to the common practice. Level 1 (L1) at Figure 6.1(a) presents all �ve single items of the

alphabet in a strictly alphabetical order. Then, at each level, frequent itemsets of size of its level are

captured using the same alphabetical order along with their supports in the sliding window. The

infrequent itemsets or their supersets are not captured since a superset of an infrequent itemset is

1https://en.wikipedia.org/wiki/Hasse_diagram

162

https://en.wikipedia.org/wiki/Hasse_diagram


(a) Meet-semilattice of frequent itemsets with interesting [n − 1] rules

(b) Interesting [n − 1], [n − n] and [1 − n] association rules with lift > 1

Figure 6.1: Interesting rules generated from the �rst sliding window of Figure 1.3

also infrequent (apriori property) and they cannot form an association rule. Itemset {e} is circled in

red, since it is omnipresent and thus cannot directly be antecedent or consequent of any association

rule having lift greater than 1. However, supersets of {e} should be evaluated as antecedent or

consequent of a rule if their supports are less than τ . It should be noted that, supports of {a}, {c}

and {d} are less than 7 (τ ×cmin). Using Property 7, every association rule having consequent {a},

163



{c} and {d} or any of their supersets has lift greater than 1 unless they violates other properties.

A dotted straight line between every two itemsets of subsequent levels indicate failure to satisfy

threshold (ii). A continuous straight line is drawn otherwise. A black continuous arrow line shows

the [n − 1] interesting association rules (containing [1 − 1], [2 − 1] and [3 − 1] rules) between two

successive levels. At Figure 6.1(b), we evaluate feasible [1-n] and [n-n] interesting rules similarly

between every other levels among frequent itemsets that satisfy thresholds (i), (ii) and (iii). We

indicate them using green continuous arrow lines. We also �nd a [1-n] interesting rule {a} → {b,c,e}

between L1 and L4. Over a meet-semilattice, itemsets and rules can be searched using breadth-

�rst, depth-�rst or a hybrid search. In this chapter, we have decided to use a hybrid depth-�rst

search of rules since it may better take advantage of the properties during the traversal to shorten

the search time. Figure 6.1 depicts two [1-1] interesting rules {a}
l
Ð→ {c} and {c}

l
Ð→ {b}; three [2-1]

interesting rules: {a,b}
l
Ð→ {c}, {a,e}

l
Ð→ {c} and {c,e}

l
Ð→ {b}, one [3-1] interesting rule: {a,b,e}

l
Ð→

{c}, two [2-2] interesting rules: {a,b}
l
Ð→ {c,e} and {a,e}

l
Ð→ {b,c}, three [1-2] interesting rules: {a}

l
Ð→ {b,c}, {a}

l
Ð→ {c,e}, {c}

l
Ð→ {b,e} and one [1-3] interesting rule: {a}

l
Ð→ {b,c,e}.

6.3.3 Update of Interesting Association Rules

Table 6.2 depicts a set of general requirements of incremental update for interesting association

rules. There exist 12 update settings as identi�ed by U1-U12 based on increase and/or decrease of

two mutually exclusive itemsets namely X and Y along with their joint appearance, denoted by

XY , in the current sliding window. There can be one of two scenarios between X, Y and XY based

on whether they have already formed a rule or not. As the sliding window is updated, support of

X, Y and XY may increases by 1, decreases by 1 or remains una�ected. Assuming X, Y and XY

frequent in the current and next sliding windows, each row re�ects the evaluation requirements of

X, Y and XY for maintaining the current condition or changing it in one of the 12 update settings.

The big brackets ( . . . ), in Table 6.2, divide the evaluation requirements for an appropriate update

setting between requirements for satisfying con�dence and lift respectively. The symbol ς denotes

the current ratio of support for XY over the support for X, i.e. confj(X → Y ).

Let us consider that there exists an interesting rule between X and Y in the current sliding

window τj . Now if the support of X decreases in the next sliding window (τj+1) while the support

of Y and XY remain same, Table 6.2 shows that the existing interesting rule X
l
Ð→ Y is still valid in

the next sliding window and does not require any further evaluation. In contrast, if the support of

X increases in the next sliding window while the supports of Y and XY remain same, the existing

interesting rule requires two evaluations. If the current support of X is less than cmin

ς−cmin
or the

current support of Y is no greater to τς − τς
supj(X)+1 then, at the next sliding window τj+1, the

164



Table 6.2: Incremental update requirements of selected association rules

Scenario: X
l
ÐÒÐ→ Y X

l
Ð→ Y

Update Requirement Requirement

U1 supj(X)
decreased

(ς ≥ cmin or supj(X) ≤
cmin

cmin−ς
) and

(supj(Y ) < τς +
τς

supj(X)−1
)

rule unchanged

U2 supj(X)
increased

rule unfeasible (supj(X) <
cmin

ς−cmin
) or (τς − τς

supj(X)+1
≤ supj(Y ))

U3 supj(Y )
decreased

(ς ≥ cmin) and (supj(Y ) < τς + 1) rule unchanged

U4 supj(Y )
increased

rule unfeasible τς − 1 ≤ supj(Y )

U5 supj(X),
supj(XY )
decreased

rule unfeasible (supj(X) <
1−cmin
ς−cmin

) or (τς −
τ(1−ς)

supj(X)−1
≤ supj(Y ))

U6 supj(X),
supj(XY )
increased

(ς ≥ cmin or supj(X) ≤
1−cmin
cmin−ς

) and

(supj(Y ) < τς +
τ(1−ς)

supj(X)+1
)

rule unchanged

U7 supj(Y ),
supj(XY )
decreased

rule unfeasible (supj(X) <
1

ς−cmin
) or (τς +1− τ

supj(X)
≤ supj(Y ))

U8 supj(Y ),
supj(XY )
increased

(ς ≥ cmin or supj(X) ≤
1

cmin−ς
) and

(supj(Y ) < τς − 1 +
τ

supj(X)
)

rule unchanged

U9 supj(X)
decreased,
supj(Y )
increased

(ς ≥ cmin or supj(X) ≤
cmin

cmin−ς
) and

(supj(Y ) < τς − 1 +
τς

supj(X)−1
)

((supj(X) > supj(Y ) + 1) and (τς − 1 +
τς

supj(X)−1
≤

supj(Y )))

U10 supj(X)
increased,
supj(Y )
decreased

(ς ≥ cmin and supj(X) ≥
cmin

ς−cmin
) and

(supj(Y ) < τς + 1 −
τς

supj(X)+1
)

(supj(X) <
cmin

ς−cmin
) or ((supj(X) < supj(Y ) − 1)

and (τς + 1 − τς
supj(X)+1

≤ supj(Y )))

U11 supj(X),
supj(Y )
decreased

(ς ≥ cmin and supj(X) ≥
1−cmin
ς−cmin

)

and (supj(Y ) < τς + 1 −
τ(1−ς)

supj(X)−1
)

(supj(X) <
1−cmin
ς−cmin

) or (τς + 1 −
τ(1−ς)

supj(X)−1
≤

supj(Y ))

U12 supj(X),
supj(Y )
increased

(ς ≥ cmin or supj(X) ≤
1−cmin
cmin−ς

) and

(supj(Y ) < τς − 1 +
τ(1−ς)

supj(X)+1
)

(τς − 1 +
τ(1−ς)

supj(X)+1
≤ supj(Y ))

existing interesting rule X
l
Ð→ Y is no longer valid. Now, τ and cmin are prede�ned values while the

supports for X, Y and ς change from one sliding window to other. Table 6.2 clearly demonstrates

that the proposed search procedure requires evaluating support for X, Y and ς, if needed, with

every progression of the sliding window. So, next, we focus on devising a single pass traversal over

a stored meet-semilattice to reveal interesting association rules.

6.4 Centralized Association Rule Mining

Rajaraman and Ullman [190] have mentioned that handling the speed of stream is a key challenge

for mining rules using high-complexity mining algorithm(s). In addition, associated data structures

165



should also be managed prudently to quickly trace necessary information within a bounded memory.

In what follows, we propose an in-memory mining procedure to capture support of relevant items

using a bit matrix and a pre�x tree over the sliding window.

6.4.1 Itemset Scanning

Figure 6.2: Transactions in a bit matrix over sliding window

Transactions can be stored in horizontal or vertical layout. In a horizontal layout, each

row represents a transaction of items. Apriori-like algorithms often apply such layout to extract

frequent itemsets [211]. In the vertical layout, each row represents all occurrences of an event in

every valid transactions over the sliding window. It can be stored as a bit string. Algorithms

using vertical layout generally perform faster than horizontal ones when the sliding window size is

large [211]. Figure 6.2 depicts an incremental insertion of transactions from Figure 1.3 using a bit

matrix where data is stored in a vertical layout. Given a strictly prede�ned order of items in an

alphabet (e.g. a, b,⋯, e), occurrences of every item in a sliding window are stored as a separate

bit array through 1s and 0s. Items from every new transaction are stored column-wise at a column

indicated by a sliding pointer. In Figure 6.2, this designated column is marked in dark black

squares. The cell value 1 in a designated column denotes the presence of the corresponding item at

a transaction. Otherwise, cell value is kept 0. Once all transactions of a sliding window are �lled,

the sliding pointer denotes the oldest valid transaction which gets replaced by the new transaction.

This matrix is used to compute momentary support of an itemset. The computation procedure is

called scanning. To �nd support of an input itemset, scanning simply generates a new bit array of

the same size of sliding window using bit-wise �AND� operation among the rows corresponding to

every item from the input itemset. Then, it counts total number of 1s over the output bit array.

Scanning can be performed sequentially or hierarchically. When the sliding window size is large,

multiple bit arrays store the occurrences of an item. Thus, sequentially counting support can be

166



slower. Hierarchical counting saves execution time and reaches time-complexity of approximately

O(log(τ)) using parallel processing. In addition, the total appearance of every item is separately

kept in an integer array, namely �sum�. The array is updated with every new transaction.

The aforementioned scanning is e�cient but it does not keep momentary support of any

itemset beyond the scanning procedure. Thus, with every new transaction, it requires applying

apriori or similar technique(s) to �nd frequent itemsets and thereafter computing association rules.

For an alphabet A of size n, total possible itemsets and association rules are 2n − 1 and 3n −

2n+1 + 1 respectively. In this regard, storing momentary support of relevant itemsets o�ers faster

computation of association rules. Therefore, we propose mining support for selective itemsets in a

pre�x tree variant for a set of preferred itemsets.

6.4.2 Data Structure

We introduce Partial Association Enumeration Tree (PAET) as a pre�x tree variant that mines

relevant itemsets and o�ers faster search for momentary (interesting) association rules.

De�nition 1. Partial Association Enumeration Tree: Over a sliding window of size τ , given a

strictly ordered set of alphabet (A,≺) and a root node ⟨∅, τ,−⟩, PAET can be de�ned recursively

as a collection of nodes starting from the root. Each PAET node nX is a triplet, denoted by

⟨X,supj(X), nX∖{e}⟩, which consists of an itemset X (X ∈ P(A) ∖ {∅}), its support supj(X) in

last τ transactions and a pointer to a node nX∖{e}. Node nX satis�es the following:

� ∣X ∣ = 1, or supj(X) ≥ smin − 1

� If nX has pointer to nX∖{e} then ∀e, e′ ∈ A, supj(X ∖ {e}) ≤min
e′∈A

supj(X ∖ {e′}).

P(A) denotes the powerset of the alphabet A while ≺ and ⪯ indicate strict and partial ordering

respectively. PAET keeps all single items in the �rst level just below the root and thus re�ects the

�sum� integer array (See. Section 6.4.1) in our implementation. Additionally, it keeps every node

where its current support is more or equal to smin − 1. The pointer associated to node nX always

tracks one of its parent nodes having the lowest support. Figure 6.3 depicts a PAET generation

from the �rst sliding window of Figure 1.3.

6.4.3 Gateway Analysis

Incremental association rule mining over a reasonable size of sliding window needs the PAET to

be constructed in memory for faster access [48] where every tree node represents an itemset. The

tree size and the node selection require special attention for incremental insertion and deletion.

167



Figure 6.3: PAET generated from the �rst sliding window of Figure 1.3

The core challenge lies in constructing the tree to e�ciently search selected association rules in

every new window. To analyze an interesting association rule X
l
Ð→ Y quickly, momentary support

of node X, Y or XY should be accessed from the tree. Otherwise, it requires additional scanning

to compute support of needed itemset(s) in order to validate a rule with every new transaction

in the sliding window. This, in turn, makes the overall rule generation slower. So, we propose

inserting tree nodes representing itemsets at least one transaction before they can possibly meet

three thresholds of rule generation. Chi et al. have termed these nodes as Closed Enumeration

Tree (CET) gateway [48] while describing their tree data structure. In particular, the conditions

for insertion and deletion of new itemset (of size greater than 1) in a PAET are as follows:

� Insertion: Node nX corresponding to Itemset X is inserted in PAET if X is a subset of

current incoming transaction and it meets one of these two conditions:

(a) Leaf Insertion: The momentary support of X is computed greater or equal to smin −1,

i.e. supj(X) ≥ smin − 1, or

(b) Branch Insertion: A superset XY of X is found such that supj(XY ) ≥ smin − 1.

� Deletion: Node nX corresponding to Itemset X can be deleted from PAET if support of X

is reduced at the current sliding window and it meets one of these two conditions:

(a) Leaf Deletion: X denotes a leaf node and the momentary support of X is computed

168



less than smin − 1, i.e. supj(X) < smin − 1, or

(b) Branch Deletion: There exists a subset of X, identi�ed as X ∖ Y , in PAET where

supj(X ∖ Y ) < smin − 1.

Notably, single items are never added or deleted at the tree. Only, their supports are updated with

every window update, if required. In this approach, node insertion and deletion di�er from the

common approaches of stream mining for frequent itemsets [42, 48, 223]. The itemset is stored in

PAET if and only if it can possibly be an antecedent or consequent of an association rule in the

next transaction. Leaf insertion or deletion deals with one node while branch insertion or deletion

handles multiple nodes. In branch insertion, supports of all new nodes are required to be evaluated.

Property 6a. is used to reduce the total number of evaluations using the scanning procedure.

6.4.4 Maximum Con�dence Analysis

The con�dence of an interesting association rule changes due to the update of the supports of

antecedent, consequent and their joint appearances. Therefore, in addition to mine the support

of each itemset X, we propose tracking their parent nodes also. The itemset represented by these

parent nodes can potentially generate [n − 1] association rule(s) with X. In order to track these

nodes, we use the pointer of the PAET node nX to point to one of its parent nodes that has

minimum support among all its parent nodes. These pointers help in determining the maximum

con�dence for [n− 1] association rules involving two mutually exclusive subsets of X whose union

is X itself. We elaborate the concept using a term Maximum Con�dence Rule (MCR).

De�nition 2. [n − 1] Maximum Con�dence Rule (MCR): An association rule X → Y is called

[n − 1] maximum con�dence rule of XY if and only if its antecedent X ⊂ XY , ∣XY ∣ − ∣X ∣ = 1 and

confj(X → Y ) has the maximum value of con�dence in compare with any antecedent X ′ (X ′ ⊂XY )

and consequent XY ∖X ′.

Let us consider itemset ACE of cardinality 3 in Figure 6.3. In the meet-semilattice, its parents

of cardinality 2 are {a,c}, {a,e} and {c,e} with support 4, 4 and 6 respectively. Therefore, either

{a,c} → {e} or {a,e} → {c} can be considered as a [n − 1] MCR for itemset ace. Similarly, {c} →

{b} is an [1− 1] MCR for itemset {b,c}. Extending the de�nition, {a,b} → {c,e} is a [n− 2] MCR

for {a,b,c,e}. The following conditions re�ect the importance of a [n − 1] MCR during a sliding

window update.

C1: If [n− 1] MCR of XY does not meet the minimum con�dence threshold, no association rule

can be constructed where the union of antecedent and consequent itemsets form XY .

169



C2: If supj(X) = supj(XY ) then X → Y is a [n − 1] MCR of XY unless there already exists

another [n − 1] MCR of XY , X ′ → Y ′, where X ′ ∪ Y ′ =XY and supj(X
′) = supj(XY ).

C3: If X → Y is a [n−1] MCR of XY , increase in support of any subsets of XY except X holds

X → Y as MCR of XY in the next sliding window.

C4: If X → Y is a [n − 1] MCR of XY , decrease in support of X holds X → Y as MCR of XY

in the next sliding window.

C5: If X → Y is a [n − 1] MCR of XY , as tracked by the pointer of PAET node nXY , then

increase, decrease or no change in support at all the parent nodes of nXY together still holds

X → Y as MCR of XY in the next sliding window.

6.4.5 Incremental Update of Support and MCR

The incremental update of a PAET node occurs from one of the four input types: increase (+),

decrease (-), no change (0) or no impact (N) for any node in PAET. We call them transition triggers

denoted by a set IP . A traversal over PAET can be captured through these transition triggers

among a set of states. The following example elaborates the concept.

Let ξ− and ξ+ denote the oldest and the newest transactions. A powerset P(ξ−) indicates

all itesets a�ected by the outgoing transaction. For example, in Figure 1.3, at sliding window

τ2, ξ− represents the outgoing transaction {de}. Therefore, P(ξ−) represents {∅,{d},{e},{d,e}}.

Similarly, P(ξ+) is {∅,{c},{e},{c,e}}. A simple analysis reveals that there is no change of support

for all itemsets represented by P(ξ− ∩ ξ+). In this example, it is itemset {e}. However, the

momentary support increases for all itemsets denoted by P(ξ+) ∖ P(ξ− ∩ ξ+) (e.g. {{c},{c,e}}).

Conversely, the momentary support decreases for all itemsets denoted by P(ξ−) ∖ P(ξ− ∩ ξ+) (e.g.

{{d},{d,e}}). Also, there exists a large number of itemsets in the powerset of alphabet A, denoted

by P(A) ∖ P(ξ− ∪ ξ+), which are not impacted by the current update of the sliding window.

As the support of an itemset is updated, depending on various changes of its items, di�erent

actions are required to evaluate current rules and form the new ones. We �nd 15 di�erent states

(excluding initial and end state) which require various actions in relation to track change of support

and [n−1]MCR using the pointers. Figure 6.4 depicts all these states through a hybrid automaton.

Every state is identi�ed uniquely by a label Si and a set of symbols from IP . For example, state

S3 inherits symbols (+0)0∗. The symbol (+0)0∗ means that the corresponding itemset in PAET

has exactly one item whose support is increasing and at least one item whose support remains

same as it appears in both the outgoing and incoming transactions. The input legend of Figure

6.4 explains all the symbols in details.

170



These 15 states can be categorized as one of the four groups as shown in Figure 6.4:

Figure 6.4: States and transitions for incremental update using Hybrid Automaton

� Support-Update States: In these states, support of X for a PAET node nX changes but

no pointer change is necessary since supports of all parent nodes of nX either increase or

decrease together (Condition C5). Representative states are S1, S2, S4, S−1, S−2 and S−4.

� Pointer-Update States: In these states, support X for the PAET node nX does not change

but the support of its one or multiple parent nodes changes. This leads to evaluating the

change for the pointer of nX . Representative states are S5, S6, S8, S−5 and S−6. As the

evaluation is costly for the memory and computation during the search, we investigate further

details of these requirements for incremental update:

171



� In states S5 and S6, if the pointer of nX points to the only parent node whose support

increases it requires investigating all parent nodes of nX to �nd the lowest support

value. Otherwise no pointer update is required (Condition C3).

� In states S−5 and S−6, if the pointer of nX does not point to the only node whose

support decreases, it requires comparing the support of that speci�c parent node with

the current parent node pointed by nX , to �nd the lowest support for the parent nodes.

Otherwise no pointer update is required (Condition C4).

� In state S8, the pointer of nX may point to the single parent node whose support is

increasing or the single parent node whose support is decreasing or one of the existing

parent nodes whose supports have no change. In the �rst case, it requires evaluating all

parent nodes of nX to �nd the lowest support value. In the second case, no evaluation is

necessary (Condition C4). Finally, in the third case, it requires comparing the support

of currently pointed parent node with the support of that speci�c parent node whose

support is decreasing in order to �nd out if the change of pointer is necessary.

� No-Update States: In these states, support of X in the PAET node nX does not change and

no update is required for the the pointer of nX as well. All items in X are associated to (0)

and/or (N) transition trigger(s). Representative states are S0, S7 and S9.

� Support-Pointer Update States: In these states, the support of X in the PAET node nX

changes. Also, its pointer, pointing to a parent node, may also change after comparing the

support from all its parent nodes.

� In state S3, there exists only one parent node of nX whose support does not change over

the update while the supports of other parent nodes increase. Thus, if the pointer of

nX points to a parent node whose support increases, it requires evaluating the support

of that speci�c parent node whose support does not change in order to �nd the lowest

support for the parent nodes. Otherwise no pointer update is required.

� In state S−3, there exists only one parent node of node nX whose support does not

change over the update while the support of others decreases. Thus, if the pointer of

nX points to that parent node, it requires investigating all parent nodes of nX to �nd

the lowest support value. Otherwise no pointer update is required.

Representative states are S3 and S−3.

The changes of support and pointers inside PAET nodes can be formally treated as side-e�ect for

the hybrid automaton described in Figure 6.4. We add an additional implicit transition trigger ε to

172



IP in order to describe an implicit transition from a state to end state. Thus, IP can be denoted as

{+,−,0,N, ε} where every transition is a tuple ⟨si, γ, α, e, sj⟩ corresponding to a move from state si

to state sj based on an transition trigger e ∈ IP . If the evaluation of its underlying predicate γ = α

is true, sj represents a state where side e�ect takes place, if required as per program instruction.

Conversely, if γ = ¬α is true, sj denotes a state with no side e�ect. Therefore, in practice, we

may depict sj as one state where the evaluation of the predicate triggers the side e�ects inside the

state. Thus we �nd 15 states excluding the initial and the �nal states as depicted in Figure 6.4.

The following example presents a PAET traversal using this automaton.

Let us consider an update of the sliding window from τ1 to τ2 in Figure 1.3. Then, we may

construct an Update Set Pairs (USP) as: {(a,N), (b,N), (c,+), (d,−), (e,0)}. Then, in a depth

�rst search, we start searching �rst branch over PAET as depicted in Figure 6.3 as {a} ⇒ {a,b} ⇒

{a,b,c} ⇒ {a,b,c,e}. The �rst sequence of inputs is considered as ⟨([γ = α],N), ([γ = α],N), ([γ =

α],+), ([γ = α],0), ([γ = ¬α], ε)⟩, which we abbreviate as ⟨[α]N[α]N[α] + [α]0[¬α]ε⟩. We may

notice that each transition is guarded by a predicate and takes place for an input in IP . Each

input sequence �nishes at a leaf node as marked by [¬α]ε at the end of every input sequence.

However, in this example, the corresponding state transitions �nish in three steps: (step 1) from

initial state to S7 accepting ([γ = α],N), (step 2) from S7 to S9 accepting ([γ = α],N) and (step

3) from S9 to end state since S9 as enforced by an implicit transition to the end state irrespective

of the rest of the input sequence. In all visited states, required side e�ects take place. The search

algorithm learns from the transitions of the �rst input sequence and generates the second sequence

of inputs as: ⟨[¬α]N[α]+[α]0[¬α]ε⟩ which corresponds to searching {a} ⇒ {a,c} ⇒ {a,c,e}. Four

transitions occur here but no side e�ect takes place at PAET node na since the input N is preceded

by a predicate [γ = ¬α]. The depth-�rst search continues until node ne is reached.

6.4.6 [n − 1] Association Rule Tracking

The aforementioned hybrid automaton simpli�es the actions needed for rule generation during the

search process. Figure 6.5 depicts the connections between the states and the update settings.

In this bipartite graph, the set of states, at the up, shows the recipient states. The set of

update settings, at the bottom, presents di�erent requirements for interesting rule evaluations as

shown in Table 6.2. Each edge presents a collection of states from which a recipient state (the

current state of the automaton) can be reached where the corresponding update requirements are

needed to be evaluated. For example, state S−2 can be reached only from states S−1 and S−2 which

requires evaluation for update setting U11 at S−2. Update setting �NA� denotes that no action is

required. The exact choice of update settings for few transitions depends on the received inputs

173



Figure 6.5: Selection of update settings for state transitions

as shown in Figure 6.5. For example, state transition from state S−4 to same state S−4 with input

[α]0 or [α]− leads to update setting U5 or U11 respectively.

Now, in U11, the supports of antecedent X, consequent Y and their joint appearance XY

all are reduced by 1, as identi�ed from Table 6.2. Further analysis of U11 reveals that, if �rst

two conditions, (ς ≥ cmin and supj(X) ≥
1−cmin

ς−cmin
), are true then new association rules can be

created or an existing rule remains valid between two itemsets corresponding to the originating

state (S−1 or S−2) and the recipient state S−2. However, in order to �nd an interesting association

rule with lift > 1 another condition (supj(Y ) < τς + 1−
τ(1−ς)

supj(X)−1) has to be satis�ed also. In case

of failure to satisfy the �rst two conditions, no association rule exists between those two speci�c

itemsets. If only the last condition does not hold, an association rule may exists but it is no

longer interesting. Table 6.3 elaborates the exact need of evaluation actions for association rule

generation, if necessary. The table is divided in two parts, namely (i) Existing Rules: when a

[n − 1] association rule (interesting or uninteresting) exists between corresponding itemsets, (ii)

Non-Existing Rules: when no [n − 1] association rule exists between corresponding itemsets. The

column �Current State� denotes the present state of the depth-�rst search process. The column

�Consequent Support Update� denotes update status, such as increase (+), decrease (-), no change

(0) or no impact (N) for the consequent. It should be noted that, for all [n − 1] association rules,

consequent is an itemset consisting of single item. Subsequently, two columns under �Evaluation

Requirements� discusses required actions conditional to previous status of an existing relation

between two itemsets. All actions can be only taken for guard [γ = α]. The following example

elaborates the necessary actions.

We take the same update of the sliding window from τ1 to τ2 in Figure 1.3. With update set

174



Table 6.3: Requirements for incremental evaluation of confidence and lift

Line Current Consequent Evaluation Requirements
No. State Support Update confj(. . . ) liftj(. . . )

Existing Rules
1. S2 Any No Yes
2. S−2 Any Yes Yes
3. S3 Any No if (liftj−1(. . . ) ≤ 1)
4. S−3 Any Yes if (liftj−1(. . . ) > 1)
5. S4 (0) No if (liftj−1(. . . ) ≤ 1)
6. S−4 (-) Yes Yes
7. S−4 (0) Yes if (liftj−1(. . . ) > 1)
8. S4, S8, S−5 (+) No Yes
9. S5, S6, S9 (+) No if (liftj−1(. . . ) > 1)
10. S5, S8 (-) Yes Yes
11. S6 (N) Yes if (liftj−1(. . . ) > 1)
12. S−6 (N) No if (liftj−1(. . . ) ≤ 1)
13. S9, S−5 (-) No if (liftj−1(. . . ) ≤ 1)

Non-Existing Rules
14. S−5, S8 (+) Yes Yes
15. S−6 (N) Yes Yes
16. S2, S3, S4 Any Yes Yes

pairs {(a,N), (b,N), (c,+), (d,−), (e,0)}, let us consider traversing the meet-semilattice in Fig-

ure 6.1(a) for {b} ⇒ {b,c} ⇒ {b,c,e}. So, we construct the input to the hybrid automaton as

⟨[α]N[α] + [α]0[¬α]ε⟩. Now, when the search procedure reaches node nbc in PAET, the corre-

sponding transition in the automaton is state S7 to state S6. Now, S6 here can be reached with

consequent support update (+) from state S7 (denoting relation between {b} to {b,c}) as well

as consequent support update (+) from S1 (denoting relation between {c} to {b,c}). From the

meet-semilattice in Figure 6.1(a), it is clear that {b} ↛ {c} is not an association rule while {c}
l
Ð→

{b} is a valid interesting association rule for the minimum support and minimum con�dence of 3

and 0.7 respectively. No reevaluation of con�dence or lift is needed for {b} ↛ {c} as understood

from section of Non-Existing rules in Table 6.3. On the other hand, transition from state S1 to

S6 invokes update setting U2. Reevaluation of both the con�dence and the lift is needed for {c}
l
Ð→ {b} as found at line no. 11 in Table 6.3. As found in Figure 6.1(a), at sliding window τ2, {c}

→ {b} will be a valid association rule but its lift will be less than 1 which means it will no longer

remain as an interesting rule. Similarly, when the search procedure reaches node nbce in PAET,

the corresponding present state of in the automaton is still S6. This means revaluation of both

the con�dence and the lift is needed only for {c,e}
l
Ð→ {b}. As found in Figure 6.1(a), at sliding

window τ2, {c,e} → {b} will be only an association rule but its lift will be less than 1.

175



Algorithm 8 PAET update algorithm for incremental mining of [n − 1] association rules

Require: PAET t−1, Stack⟨Map(itemset, parent, si)⟩
1: Constant: IP ∶ {+,−,0,N}, S ∶ {s−6, s−5, . . . , s0, . . . , s9}, MIN_SUP , MIN_CONF

2: Known: ξ−, ξ+; {//Outgoing and incoming transactions respectively}

3: Input: USP ⟨(item, ip)⟩ ←genUSP(ξ−, ξ+, IP ) {//item ∈ A}
4: Initialize: Push each (item, ip) of USP at Stack in reverse alphabetical order along with parent ∅ and

state sitem

5: Function updatePAET(USP , Stack) { {//Recursive update of PAET tree}

6: Pop top (itemset, parent, si) from Stack

7: Search corresponding node nitemset in PAET t−1

8: bool ← exists(nitemset)

9: if bool and si ∈ {s1, s2, s3, s4} then
10: Increase support of itemset at nitemset by 1

11: else if bool and si ∈ {s−1, s−2, s−3, s−4} and supt−1(itemset) >=MIN_SUP then

12: Decrease support of itemset at nitemset by 1

13: else if bool and si ∈ {s−1, s−2, s−3, s−4} and supt−1(itemset) ==MIN_SUP − 1 then

14: Remove node nitemset and all nodes in PAET t−1 representing superset of itemset; bool ← false

15: else if ¬bool and si ∈ {s1, s2, s3, s4} and supt(itemset) ==MIN_SUP − 1 then

16: Add new node nitemset in PAET t−1; bool ← true

17: end if

18: Update pointer for nitemset using Hybrid Automaton as described in Section 6.4.4

19: if con�dence(getMCR(nitemset)) ≥ MIN_CONF then

20: Update [n − 1] association rules incrementally using Table 6.3

21: end if

22: if bool then

23: children← getChilds((itemset, ip), USP )

24: Push each child in children at Stack in reverse alphabetical order with parent itemset and corre-

sponding state schild

25: end if

26: if ¬ empty(Stack) then

27: updatePAET(USP , Stack)

28: end if

29: }

6.4.7 Algorithm Design

In what follows, we present two algorithms to capture [n − n] association rules. The �rst

algorithm captures the incremental generation of all [n− 1] association rules while the second one

focuses a modi�ed apriori technique to generate [n − n] association rules. Additional �lters and

acceleration techniques are used to quickly capture interesting rules.

In every update of the sliding window, a new transaction (ξ+) arrives and an old transaction

176



(ξ−) gets removed once the �rst sliding window is fully loaded. This forms a sequence of Update

Set Pair (denoted as USP) using genUSP function at Step 3. The genUSP function maps every

frequent item in alphabet and its IP type based on incoming and outgoing transactions. Thus, pair

(item, ip) in USP denotes whether a particular frequent item is increasing, decreasing, having no

change or under no e�ect. Next, at Step 4, each item of the USP is placed in reverse alphabetical

order into a Stack for further evaluation. The stack also keeps the parent for each item and its

corresponding state in the hybrid automaton. Each state has a prede�ned set of update instructions

for (i) node support, (ii) pointer handling, (iii) association rule evaluation, (iv) investigation of

non-existing association rules and (v) further tree traversal details. Function updatePAET (Step

6-Step 27) updates the PAET through a tail-recursion to perform a selective depth �rst search

using the stack. Inside updatePAET, traversal begins by popping the topmost pair out of the

stack. Algorithm 8 incrementally updates all feasible [n − 1] association rules. At Step 10 and

Step 12, it changes the support of itemsets. At Step 14 and Step 16, it adds or deletes PAET

nodes, as required. Step 18 presents the update of pointers for the existing nodes while Step 20

elaborates the reevaluation of all [n−1] association rules. The evaluation of association rules is only

performed when the con�dence of the MCR for its corresponding itemset passes the threshold of

maximum con�dence (Step 19). Finally, if further traversal is required for an itemset, its children

are generated using function getchilds. The children nodes are selectively added based on the need

for traversal using USP . Their states are also identi�ed using the hybrid automaton. Similar to

Step 4, new children nodes are reinserted into the stack in reverse alphabetical order to ensure

the depth-�rst search. This algorithm also relates between the search procedure and automaton

traversal. As the depth-�rst search progresses, the new input also performs the state transition

in the automaton until it reaches the end state as described in Section 6.4.4. We elaborate the

relation between tree traversal and state transition later in Section 6.4.8.

Algorithm 9 represents a modi�ed apriori rule generation procedure with two main adjust-

ments. First, it generates lifted association rules from the input of [n−1] association rules instead

of frequent itemsets. The apriori association rule generation is commonly performed using frequent

itemsets [7, 118]. Second, it applies the aforementioned properties (see Section 6.3.1) to search

these rules. The algorithm also applies a tail-recursion technique to subsequently generate all fea-

sible [n−n] rules from [n−1] association rules. The algorithm �rst searches all [n−2] association

rules from these input [n − 1] association rules. Next, it �nds [n − 3] association rules from from

the [n − 2] rules and so on. Additional �ltering is used to store only interesting association rules.

More precisely, the procedure begins with all [n− 1] association rules that are initially kept

in an array namely Rulelist. Each entry of the Rulelist is an alphabetically ordered map of rules.

177



Algorithm 9 [n − n] association rule mining from [n − 1] association rules

Require: N21Map(⟨id, rule⟩) {//All [n-1] association rules}

1: Constant: WINDOW_SZ, MIN_CONF , MIN_LIFT ;

2: Initially: RuleList⟨Mapord(⟨id, rule⟩)⟩ ← sort(N21Map), N2NMap(⟨id, rule⟩) ← ∅;
3: Function N2NRuleGen(RuleList) { {//Modi�ed Apriori-based rule generation}

4: newRuleList⟨Map(⟨id, rule⟩)⟩ ← ∅
5: if sizeof(RuleList) >1 then

6: for level=1 to sizeof(RuleList) do

7: entrymap(⟨id, rule⟩) ← elementof(RuleList, level)

8: if ¬ empty(entrymap(⟨id, rule⟩)) then
9: visitList⟨id⟩ ← {}
10: for all antecedent ∈ parentsof(antecedentof(rule)) do
11: proposedRule← ⟨antecedent, consequentof(rule)⟩
12: if ¬ contains(visitList, proposedRule) then

13: Add getId(proposedRule) to visitList

14: bool ←verify(proposedRule) {//Use Properties 4a., 5a., 6b. and 1 to check rule}

15: if bool then

16: Add to N2NMap using add(proposedRule, bool) {//new [n-n] assoc. rule found}

17: lvl ← getLevel(proposedRule)

18: Add proposedRule at level lvl of newRuleList⟨Mapord(⟨id, rule⟩)⟩
19: end if

20: end if

21: end for

22: end if

23: end for

24: end if

25: sort (newRuleList)
26: N2NRuleGen(newRuleList) {//Perform a tail-recursion}

27: }

A map contains only those rules where the level of the antecedents of the rule in PAET matches

with the position of the entry in the list. For example, an association rule {a,b} → {c} will be kept

within the second map element of the RuleList since its antecedent belongs to Level 2. Also, it is

the �rst element of this alphabetically ordered map given the alphabetical ordering of the rules.

In the beginning of any iteration i, a temporary new list is initialized at Step 4. The

list is similar to RuleList in structure. Next, for each [n − i] rule in RuleList, new candidate

[(n−1)−(i+1)] rules are produced at Step 11 by taking an item from the antecedent and adding it

to the consequent. For example, from [2−1] association rule {a,b}→ {c}, we may get two candidate

[1 − 2] rules: {a} → {b,c} and {b} → {a,c} in the next iteration. The proposed candidate rules

are then veri�ed using verify function (Step 14). This function evaluates the required properties

178



including the con�dence and/or lift for every proposed rule, as necessary. Once the proposed rule

succeeds the veri�cation, it is considered as a new [n-n] rule. New rules are stored in N2NMAP

and kept in newRuleList. New rules are subjected to the next level of evaluation after sorting

them in a prede�ned order (Step 25). Finally, Step 26 recursively calls the rule generation function

to explore newer [n − n] association rules.

In this context, we are also using boundary, an additional data structure, to track useful

information from PAET for [n − n] rule generation. A boundary is a bipartite graph among two

disjoint sets of itemsets. It reduces the scope of rule search based on properties relevant to our

selected association rules. Thus, it makes the search quicker but requires extra memory and periodic

update in every new sliding window. Therefore, its e�ectiveness is an important consideration. We

introduce the following two boundaries:

� Omnipresence (B1): B1 o�ers ignoring itemsets present in all transactions during rule search.

Property 2 assures that no interesting rule can be constructed considering them antecedent

or consequent.

� Consequence (B2): B2 determines if the consequent itemset (Y ) has any impact over a

selected association rule. Property 7 assures that if supj(Y ) is less than cmin × τ then

selected association rule is determined solely based on minimum support and minimum

con�dence requirements.

It is important to mention here that the Algorithm 9 is not incremental. It is called at every sliding

window update after incrementally generating the [n − 1] association rules. The incremental gen-

eration of association rules is generally e�cient than other existing techniques and it is completely

possible to evaluate all [n−n] rules incrementally by adding new rules and removing non-existing

association rules. However, it requires a large amount of memory and computing resources to track

a small number of rules. Therefore, we consider a design decision to generate the large number

of [n − 1] association rules incrementally and faster followed by generating a small number of the

[n − n] association rules every time from the scratch after the sliding window update.

6.4.8 Example

In the following, we analyze the transactions of the �rst sliding window from Figure 1.3 along with

incremental (interesting) association rule generation for next four sliding window update.

Table 6.4 explains the PAET traversal over Figure 6.3 during the update of the sliding

window from τ1 to τ2 (as depicted in Figure 1.3). Parameters τ , smin and cmin are kept at 10,

3 and 0.7 respectively. We consider that the input stack already holds all single items in reverse

179



Table 6.4: [n − 1] association rule generation for USP {(a,N),(b,N),(c,+),(d,-),(e,0)}

Si Pop (Stack) Prev.
Ptr.

Curr.
Ptr.

Rule Evaluation Push (Stack)

1 ({a},∅, s7) ∅ ∅ - ({a,e},{a}, s7), ({a,c},{a}, s6), ({a,b},{a}, s9)

2 ({a,b},{a}, s9) na na lift({a,b}
l
Ð→{c}) -

3 ({a,c},{a}, s6) na na lift({a}
l
Ð→{c}) ({a,c,e},{a,c}, s6)

4 ({a,c,e},{a,c}, s6) nac nac lift({a,e}
l
Ð→{c}) -

5 ({a,e},{a}, s7) na na - -
6 ({b},∅, s7) ∅ ∅ - ({b,e},{b}, s7), ({b,d},{b}, s−6),({b,c},{b}, s6)

7 ({b,c},{b}, s6) nc nc* lift({b}
l
Ð→ {c}) ({b,c,e},{b,c}, s6)

8 ({b,c,e},{b,c}, s6) nbc nbc lift({b,e}
l
Ð→{c}),

lift({c,e}
l
Ð→ {b})

-

9 ({b,d},{b}, s−6) nd nd - ({b,d,e},{b,d}, s−6)
10 ({b,d,e},{b,d}, s−6) nbd nbd - -
11 ({b,e},{b}, s7) nb nb - -
12 ({c},∅, s1) ∅ ∅ - ({c,e},{c}, s3)
13 ({c,e},{c}, s3) nc nc* - {e} omnipresent -
14 ({d},∅, s−1) ∅ ∅ - ({d,e},{d}, s−3)
15 ({d,e},{d}, s−3) nd nd - {e} omnipresent -
16 ({e},∅, s0) ∅ ∅ - -

alphabetical order. In every step (marked by column Si), the top most entry is taken out of the

stack and explored further for various update instructions. The columns Prev. Ptr. and Curr.

Ptr. present the change of pointers for corresponding PAET nodes. The * mark denotes that an

evaluation is necessary before assigning the pointers as discussed in Section 6.4.4. The column

Rule Update Tasks indicates whether evaluations are necessary to create, delete or update new

rules. However, at Steps 13 and 15, we may skip the rule evaluation task using B1 boundary since

item �e� is omnipresent. Similarly, all the lift evaluations except lift({c,e}
l
Ð→ {b}) can be avoided

using boundary B2 as the support of itemset {c} is less than τ × cmin = 7. Column Push (Stack)

presents new insertion of itemsets in the stack for further traversal. In this particular traversal, no

node is added or removed at the tree.

Table 6.5 shows the total number of PAET nodes along with [n − n] association rules and

[n − n] lifted interesting rules for di�erent values of support and con�dence over the transactions

presented in Figure 1.3. Figure 6.6 compares our proposed data structure against other similar

data structures from existing research e�ort. We construct Closed Enumeration Tree (CET) from

Chi et al. [48] and Frequent Pattern Tree (FP-Tree) from Grahne and Zhu [96] for the �rst sliding

window of the transactions. FP-Tree can be constructed with only 9 nodes whereas PAET and

CET have 19 and 20 nodes respectively. While FP-Tree hosts minimum number of nodes, rules

cannot be incrementally searched in such data structure as the whole tree may change over sliding

180



Table 6.5: PAET nodes and association rules for various support and con�dence

Supp. Conf. T1 T2 T3 T4
Nodes Rules Lifted Nodes Rules Lifted Nodes Rules Lifted Nodes Rules Lifted

30%
60% 19 37 21 19 33 12 19 33 19 15 33 19
70% 19 27 12 19 26 9 19 23 13 15 23 13
80% 13 18 9 19 14 6 19 14 6 15 14 6

40%
60% 17 19 12 15 16 3 15 16 7 15 16 7
70% 17 12 6 15 12 3 15 15 7 15 15 7
80% 17 12 6 15 9 3 15 9 3 15 9 3

50%
60% 11 11 6 11 11 0 11 11 4 11 11 4
70% 11 7 3 11 7 0 11 10 4 11 10 4
80% 11 7 3 11 4 0 11 4 0 11 4 0

window update depending on the support of di�erent itemsets. PAET contains comparatively less

number of nodes than CET since CET starts accumulating infrequent gateway nodes over time.

Figure 6.6: Comparison of three tree structures: PAET, CET (Moment) and FP-Tree

6.5 Collaborative Association Rule Mining

In the setting of collaborative association rule mining, there exists P decision makers, each of

whom (p ∈ P ) has own concern to produce alerts for a subset of events/items (Ap) from the

whole alphabet of items (A). In our context, these alerts originate from the lifted association

rules. Therefore, collaborative mining needs every participant to analyze a set of association

181



rules, where the antecedent and/or consequent of each rule contains item(s) from Ap. Evaluation

of an association rule X → Y involves determining support of X and the support of the joint

occurrences of X and Y . In the case of lifted association rules, support of Y is also analyzed.

Therefore, every participant needs to mine additional items beyond Ap to incrementally �nd lifted

association rules of own concern. Furthermore, after every update of the sliding window, supports

of various itemsets change which may subsequently alter the (interesting) rules as well. At time t,

let A′tp (Ap ⊆ A
′t
p ⊆ A) represent the subset of alphabet that should be monitored to incrementally

mine all interesting association rules. Now, without any knowledge over the support of all items

and itemsets at the current sliding window, it is di�cult for any participating decision maker to

correctly select A′tp in order to monitor all association rules of own interest. So, in this section, we

discuss a collaboration technique to mine PAET locally at distributed servers of the participating

decision makers in order to �nd all association rules. In this regard, we require a small number

of Helper entities (as depicted in Figure 1.3) to incrementally track necessary items (A′tp) for each

participant at every sliding window update.

6.5.1 Incremental Tracking of Maximal Frequent Itemsets

In what follows, we analyze an incremental tracking of Maximal Frequent Itemsets (MFI) in the

data center at every sliding window update in order to quickly compute A′tp for each participating

decision maker. We begin with the following property.

Property 8. If an association rule X → Y is valid at a particular update of the sliding window

then frequent itemsets X, Y and XY are all subsets of at least one MFI of itemset X among all

feasible MFIs at that window.

Proof. Let us assume that there exists no single MFI that is a superset of X, Y and XY together.

Then, X and Y , both being frequent, should be subsets of two di�erent MFIs (apriori property).

It also ensures that there is no MFI that is a superset of XY . However, it indicates that XY is

infrequent. Therefore, X → Y cannot be valid.

Property 8 indicates participant p should mine a set of items composed of elements from those

maximal frequent itemsets which contain atleast one item of Ap in order to track all interesting

association rules of Ap. Assuming that every item of A is monitored by at least one participant,

this collaborative setup will then produce all the interesting association rules of corresponding

centralized setting.

Similar to centralized setting, we propose mining MFIs against the support requirement

which is one less than actual minimum support threshold. This allows, in distributed setting, to

182



insert every relevant node to PAETs that may potentially be part of an association rule in the next

sliding window update. However, with every update of sliding window, MFIs are likely to change

as well. This involves formation of new MFIs and deletion of existing MFIs.

In the data center, Helpers identify these changes and deduce for every participant a new set

of required items to be monitored at every sliding window update. Often time, it also requires the

supports of new itemsets by scanning the bit matrix. The new information is then communicated

to every participant in order to meet their concerns. Similar to the centralized setting, new nodes

are locally added at the PAET of participant's side when their supports are one less than the

minimum support threshold. Thus, every participant starts tracking these nodes right before one

sliding window update where these nodes may potentially form association rules.

6.5.2 Algorithm Design

A quick mining of a PAET at the participant's server can be performed in three steps. First,

it needs for incremental tracking of MFIs. Second, it requires determining A′tp from these MFIs.

Finally, Helpers, communicate support of newly relevant itemsets to every participant from the data

center. The second and the last steps involve relatively simpler standard procedures. Therefore,

here, we mainly focus on a fast incremental technique to identify MFIs using previously generated

MFIs. Algorithm 10 presents an overview of the technique.

Algorithm 10 illustrates three core functions of the incremental search of MFIs using previous

MFIs as stored in oMFIt−1. The main function MFIGenerator uses the current update set pair

and previous MFIs to search MFIs in two main activities. First, it uses a switch statement after

identifying a change of support for a previous maximum frequent itemset. If the support of itemset

does not change (unrelated or no change as per USP), it retains the itemset as MFI for the current

set of MFIs (oMFIt) (Step 6 and Step 7). If the support of the itemset increases it calls to explore

its supersets to identify new MFIs (Step 8 and Step 9). If the support decreases, the function

looks into the subsets of the itemset (Step 10). Apart from this incremental update process,

function MFIGenerator also checks for supersets of each non-decreasing item of USP selectively in

order to search whether new MFIs are formed due to branch insertion (Steps 13-16). Signi�cant

computation can be saved in this last part of evaluation using already identi�ed MFIs in the switch

statement.

Function exploreSuperset identi�es new MFIs that are superset of a given MFI. It is a

recursive procedure that takes the advantage of a non-decreasing array generated using USP. This

array contains only those members of USP where the support of the item has not been decreased.

Every time, the function prepares a new itemset by increasing the input MFI with a new member

183



Algorithm 10 Incremental Generation of Maximal Frequent Itemsets
Require: oMFIt−1⟨id, itemset⟩, USPt⟨(item, ip)⟩ {//Ordered sequence of MFIs and USP}

1: Initially: SUP ←MIN_SUP − 1, oMFIt ← ∅; unrelated← −2;
2: Function MFIGenerator(oMFIt−1, USPt) { {//USPt stores items and their incremental change}

3: for all mfi ∈ oMFIt−1 do

4: change← getChange(USPt,mfi)
5: switch (change)

6: case unrelated: add mfi to oMFIt; break

7: case 0: add mfi to oMFIt; break

8: case 1: bool ← exploreSuperset(mfi, getNonDecreasingItemsets(USPt), -1,0, false)

9: if ¬bool then add mfi to oMFIt if no superset exists end if break

10: default: exploreSubset(mfi, getUnchangedItemsets(USPt); break

11: end switch

12: end for

13: for all item ∈ getNonDecreasingItemsets(USPt) do

14: bool ← exploreSuperset({item}, getNonDecreasingItemsets(USPt), -1,0, true)

15: if ¬bool and supportof({item}) ≥ SUP then add mfi to oMFIt if no superset exists end if

16: end for

17: }

18: Function exploreSuperset(mfi, nonDecreArr, tailPos, sibling, checkMFI) {

19: if checkMFI then existsMFI(head,oMFIt) then return true end if

20: if sizeof(head)=sizeof(nonDecreArr) then return false end if

21: head← getHeadUTail(mfi, nonDecreArr, sibling); bool ← true; temp← updateTailPos(tailPos)

22: if supportof(head) ≥ SUP then

23: bool ← exploreSuperset(head, nonDecreArr, tailPos + 1, 0, checkMFI);

24: if bool and hasMoreSibling(tailPos,nonDecreArr) then

25: bool ← exploreSuperset(mfi, nonDecreArr, temp, sibling + 1, checkMFI)

26: end if

27: else if ¬ hasMoreSibling(tailPos,nonDecreArr) and supportof(mfi) ≥ SUP then

28: add mfi to oMFIt if no other superset of mfi exists

29: else

30: bool ← exploreSuperset(mfi, nonDecreArr, temp, sibling + 1, checkMFI)

31: end if

32: if ¬bool and supportof(mfi) ≥ SUP then add head to oMFIt end if

33: return true

34: }

35: Function exploreSubset(mfi, nonChngArr) {

36: if supportof(mfi) ≥ SUP then add mfi to oMFIt; return end if

37: for all subset ∈ generateAllParents(mfi) do

38: if ¬ superSet(subset, nonChngArr) and supportof(subset) ≥ SUP then add subset to oMFIt

39: else exploreSubset(subset, nonChngArr)

40: end if

41: end for

42: }

184



from non-decreasing array and tests its support. If the support is no less than the minimum support

requirement (MIN_SUP -1, where MIN_SUP is the minimum support threshold) then it keeps

adding new items and evaluating. If not, then it removes the lastly added item and selects another

item from the non-decreasing array to create a new itemset from the input MFI. Newly found

MFIs are added to oMFIt if and only if oMFIt does not contain the MFI or its superset.

Finally, function exploreSubset is a small function to identify new MFIs when the support

of the current MFI does not meet minimum support requirements. First it generates all parent

itemsets from the current MFI where the size of each parent itemset is one less than that of the

current MFI. If the support of subset meets the minimum support requirement, it is considered

as a new MFI, otherwise the subset is recursively explored for its newer subsets that meets the

minimum support requirement.

Once the new MFIs (oMFIt) are identi�ed, simple calculation is performed to compute

A′
t
p. Let us consider an example. Let p1, p2 and p3 be three collaborative decision makers of the

data center analyzing the data stream depicted in Figure 1.3. The �xed concerns of p1, p2 and

p3 are {a,b}, {d} and {c,e}. Table 6.6 presents their requirements for mining itemsets for three

consecutive sliding window updates.

Table 6.6: Changing requirements of mining MFIs

Sliding window p1: concern {a,b} p2: concern {d} p3: concern {c,e}

τ1 → τ2
τ2 → τ3
τ3 → τ4

{a,b,c,e}
{a,b,c,e}
{a,b,c,e}

{b,d,e}
{a,d,e}
{d}

{a,b,c,d,e}
{a,b,c,d,e}
{a,b,c,e}

6.6 Benchmark Results and Comparative Study

In order to evaluate the performance, we implement the proposed algorithms in a Java application

and extensively test them over seven data streams. The implemented application module is called

as Mining Association Rules over Event Data Stream (MAREDS). Each data stream is generated

by simulating transactions from a known dataset. These datasets are carefully chosen in similarity

to previous research e�orts. All our experiments are performed using 3.40 GHz Intel Core i7-2600

PC with 8 GB main memory, running 64 bit Windows 7 operating system. The main aim of these

experiments is to quantitatively assess the advantages and limitations of MAREDS with respect

to centralized and collaborative monitoring of events. Therefore, we mainly perform the tests to

�nd small to medium number of association rules which can be transformed into meaningful alerts

during plan execution. Table 6.7 presents characteristics of seven datasets used in our experiments.

185



Table 6.7: Experimental Datasets characteristics

Dataset Data Type
Number
of items

Transactions Window
SizeCount Avg. length Max. length

BMS-WebView-1 Real 497 59602 2.51 267 2K, 50K
BMS-WebView-2 Real 3340 77512 4.62 161 2K, 50K
Kosarak Real 41270 990002 8.10 2498 5K - 120K
Accidents Real 468 340183 33.81 51 10K
T5I4D100K Synthetic 500 100K 4.87 17 10K - 80K
T10I4D100K Synthetic 500 100K 9.80 29 10K - 80K
T20I5D100K Synthetic 500 100K 19.85 47 10K - 80K

The �rst four datasets, namely BMS-WebView-1, BMS-WebView-2, Kosarak and Accident

are generated by capturing actual events from real environment. BMS-WebView-1 and BMS-

WebView-2 are two datasets of click streams of 59,601 and 77,512 transactions respectively. These

two real-world datasets were used for KDDCUP 20002. Kosarak3 is another large dataset of 990,000

anonymized transactions of click streams from a large online news portal. Accidents dataset is

published by Geurts et al. [89] containing information of tra�c accidents from 1991 to 2000 in

the region of Flanders (Belgium) as obtained from the National Institute of Statistics, Belgium.

This dataset is closely related to the delay monitoring for commodity delivery plan execution as

it mines large number of di�erent events/attributes of tra�c accidents. The last three datasets

namely T5I4D100K, T10I4D100K and T20I5D100K are synthetically generated by the IBM Quest

Synthetic Data Generator4. As identi�ed in Table 6.7, The symbols T , I and D in the three

synthetic datasets denote the average number of items per transaction, the average size of itemsets

in potential frequent sequences and the number of transactions in the dataset respectively.

6.6.1 Performance of Incremental Association Rule Mining

We compare the MAREDS application against two closely related existing approaches. Since,

there is no other suitable technique to incrementally generate association rules directly over sliding

window model, we consider two approaches (i) Moment: an existing incremental frequent itemsets

generation technique [48] and (ii) FP-Growth: a non-incremental frequent itemsets generation

technique [96], to �nd all required itemsets at every sliding window update. Then, both approaches

use e�cient apriori technique to generate rules from the frequent itemsets. It can be noticed that

all these approaches, MAREDS, Moment and FP-Growth depend on tree data structures (PAET,

CET, FP-Tree respectively).

2http://www.kdd.org/kdd-cup/view/kdd-cup-2000
3http://fimi.ua.ac.be/data/
4https://sourceforge.net/projects/ibmquestdatagen/

186

http://www.kdd.org/kdd-cup/view/kdd-cup-2000
http://fimi.ua.ac.be/data/
https://sourceforge.net/projects/ibmquestdatagen/


Figure 6.7: Association rules and performance evaluation for di�erent datasets

Figure 6.7 evaluates the performance of MAREDS application in 100 consecutive updates

for sliding window of size 50,000 (50K). Every dataset is tested over a range of con�dence values

for a �xed prede�ned support as marked in () within the legend. Each data point in this chart

is also associated with the minimum and maximum number of rules as found during the window

updates (presented in [] brackets). In all these experiments, MAREDS �nds association rules in

less than 10 milliseconds. It should be also noted that while decrease in con�dence values increases

the number of association rules, the performance of MARED remains stable for �xed support and

window size.

Figure 6.8: Memory and execution time comparison for BMS-WebView-1 dataset

187



Figure 6.9: Memory and execution time comparison for BMS-WebView-2 dataset

Figure 6.8 and Figure 6.9 depict comparative study of handling memory and execution time

for MAREDS against other two aforementioned approaches: Moment and FP-Growth. Experi-

ments are performed over a range minimum support values by keeping minimum con�dence �xed

at 70%. Two sub-graphs for each �gure present the performance for sliding window of size 2K and

50K in similar to previous research e�orts [48]. The performance is evaluated over a logarithmic

scale. The label on each data point represents the number of nodes in the corresponding trees.

It is evident that, within this test range, MAREDS performs faster than other two approaches.

It also stores less number of PAET nodes in compare with CET nodes in Moment and FP-Tree

nodes in FP-Growth. Finally, the column graph in the background at each sub-�gure projects

information of the average number of association rules (over the same logarithmic scale) for each

set of experiments. The average is calculated over the number of association rules as found from

100 consecutive sliding window update. We can see that the average number of association rules

reaches more than 20,000 at the end of each sub-�gure. Therefore, for the purpose of our plan

execution monitoring, we do not intend to stretch the experiments for further lower support values.

Figure 6.10, Figure 6.11 and Figure 6.12 compare performance of MAREDS, Moment and

FP-Growth for three synthetic datasets namely T5I4D100K, T10I4D100K and T20I5D100K. In

these cases, we evaluate execution time and number of nodes in the core data structure of each

approach for �xed percentage of minimum support and minimum con�dence values over a range of

sliding window sizes. In each �gure, two �xed minimum support values are presented in percentage,

one high and one low. The average run time is evaluated over a logarithmic scale. With the

increase of sliding window size, the absolute value of minimum support linearly increases (although

188



the percentage value is �xed). The performance of MAREDS is very little a�ected whereas the

execution time of FP-Growth increases continuously.

Figure 6.10: Performance comparison for T5I4D100K dataset

This stems from the fact that FP-Growth reads all valid transactions in each sliding window

update. So, with larger window size, FP-Growth takes more time to form FP-Tree and �nd rules.

Moment and MAREDS algorithms are incremental, so they are relatively stable, since the changes

of the corresponding trees are minimal after the �rst window. It is also observed that Moment

algorithm does not perform well in lower support as a large number of infrequent CET nodes start

impacting its memory management and performance negatively. In this range of experiments,

among all three approaches, MAREDS stores least number of tree nodes as marked by the labels.

Figure 6.13 compares all three approaches over Kosarak dataset. In Kosarak, as mentioned

in Table 6.7, the alphabet size is 41270 and the maximum transaction length is 2498 which are

highest among all seven datasets. Such a dataset generates large number of infrequent itemsets

which makes maintenance of CET di�cult for Moment although infrequent itemsets cannot be the

part of any association rule. Figure 6.13 shows that, in both cases, minimum support of 4% and

0.4%, Moment fails to produce results above sliding window size 10000. FP-Growth approach �nds

the association rules but takes longer time and mines far more tree nodes in compare to MAREDS.

Figure 6.14 depicts the performance of MAREDS over Accidents dataset. Characteristically,

the average length of transaction over this dataset is 33.81 for the alphabet size of 468. Therefore,

supports of itemsets are expected to be generally high in this dataset. Over a �xed sliding window

size 10000 and minimum con�dence value of 70%, as we decrease the minimum support from 90%

to 65%, the number of association rules increases from 218 to 27020. Likewise, the number of lifted

association rules also increases from 172 to 24144. The column graphs depict the association rules

189



Figure 6.11: Performance comparison for T10I4D100K dataset

Figure 6.12: Performance comparison for T20I5D100K dataset

Figure 6.13: Performance comparison over Kosarak dataset

190



Figure 6.14: Finding lifted association rules from Accidents dataset

and lifted association rules on secondary axis. Even with such a large number of rules, MAREDS

mines less number of tree nodes and computes rules faster compared to other two approaches.

6.6.2 Performance of Incremental Maximum Frequent Itemsets Mining

We extend the MAREDS application to incorporate the incremental generation of MFIs over data

streams using various datasets in the same experimental environment. We call the implementation

MAREDS-MFI in the following �gures. The �rst two experiments have been performed on BMS-

WebView-1 and BMS-WebView-2 datasets to evaluate the performance of the algorithm against

the change of minimum support thresholds. For each �gure, two charts have been presented for

sliding window size 2000 and 50000. The last experiment has been performed on T5I4D100K

dataset to evaluate the performance of the implementation against changing size of the sliding

window. Two charts have been presented for �xed minimum support percentage of 1.0% and 0.2%.

Figure 6.15 depicts two charts on BMS-WebView-1 datasets elaborating performance of

MAREDS-MFI implementation against di�erent values of minimum support. The average run-

time and number of MFIs are captured in each chart using primary and secondary Y-axes respec-

tively. The average run-time of MAREDS-MFI remains almost linear with decreasing values of the

minimum support thresholds. As the threshold is getting reduced, we notice that more and more

MFIs are being captured by our proposed algorithm. The label T1 in the all charts represents the

number of MFIs in the �rst sliding window while the label Avg. denotes the average number of

MFIs in next 100 sliding window update. As the average run-time is presented in logarithmic scale,

191



Figure 6.15: Memory and execution time comparison for BMS-WebView-1 dataset

Figure 6.16: Memory and execution time comparison for BMS-WebView-2 dataset

our implementation clearly outperforms one of the known algorithms for MFI capturing, namely

FPMax [95]. The faster searching of MFIs stems from the incremental handling of stream data.

A similar performance can be noticed in the two charts of Figure 6.16 where we compare

the performance of MAREDS-MFI implementation with FPMax for di�erent values of minimum

support over BMS-WebView-2 datasets.

Figure 6.17 depicts performance of MAREDS-MFI implementation against increasing size of

the sliding window. The average run-time of the implementation is presented in logarithmic scale

at primary Y-axis while the number of MFIs are presented in linear scale at secondary y-axis. In

both cases, number of MFIs varies little (range of 174-179 for Figure 6.17 (a) and range of 570-620

for Figure 6.17 (b)) in compare to the increase in sliding window size. The average run time of

192



Figure 6.17: Performance comparison for T5I4D100K dataset

MAREDS-MFI remains almost constant while execution time of FP-Max algorithm grows with

the increasing sliding window size.

6.6.3 Performance Analysis

The MAREDS application is actually designed to monitor data streams and generate alerts. The

incremental handling of a large number of transactions is bene�cial in practice for low concept

drift. With the update of sliding window, it demands for minimal changes of tree nodes and

existing rules. Furthermore, we assume that the number of association rules (lifted or non-lifted)

is reasonable to generate meaningful alerts. The aforementioned �gures in Section 6.6.1 clearly

present the suitability of MAREDS and the bene�ts of incremental association rule mining over

other existing approaches. The loading time of the �rst window of MAREDS is time consuming in

compare to FP-Growth. However, once the �rst window is loaded, the changes of PAET is often

found minimal with the update of the sliding window. Thus, MAREDS updates the support of

tree nodes faster and computes the changes in association rules e�ciently.

In Section 6.6.2, we discuss our implementation's performance for the incremental maximum

frequent itemsets mining approach. The charts clearly show the e�ciency of our approach against

other non-incremental MFI mining approach namely FPMax [95]. While comparing Figure 6.8

and Figure 6.15, it can be easily understood that incremental mining of MFI takes only a fraction

of time with respect to incremental association rule generation. The same can be observed in

other datasets as depicted in Figure 6.9 and Figure 6.16 along with Figure 6.10 and Figure 6.17.

Therefore, we believe a signi�cant improvement in performance can be achieved by distributing the

incremental mining process using our proposed setup of collaborative mining of association rules.

193



6.6.4 Advantages and Limitations

Incremental mining of association rules produces up-to-date rules of users' interest and helps gen-

erating alerts during plan execution monitoring. The key advantage of our approach consists in the

e�cient processing of stream data over the sliding window model. This involves the use of outgoing

and incoming transactions along with existing association rules from the last sliding window. This

approach is faster on average compared to traditional non-incremental mining procedures as it re-

quires updating only those association rules which are a�ected by the window update. Moreover,

collaborative incremental mining o�ers additional bene�ts since participating decision makers can

choose updating only the rules according to their interests. This leads to mining less number of

items and rules which corresponds to faster update and less memory use.

On the other hand, incremental rule mining becomes slower over high concept drift partic-

ularly when the sliding window update impacts the frequency of several itemsets along with the

con�dence and lift of a large number of association rules. Another speci�c problem of incremental

mining is the loading of the �rst sliding window. As we approach the PAET generation incremen-

tally, it takes longer time to load the �rst window while periodically updating the association rules

compared to non-incremental rule generation technique, such as combined FP-Growth and Apriori

technique. Furthermore, PAET is designed on a pre�x tree. The latter is a simple data structure

which is easy to update but requires a large amount of memory. Therefore, a more sophisticated

data structure is required for handling certain practical situations such as the need to obtain a

trade-o� between performance and memory.

6.7 Summary

In this chapter, we proposed a novel event monitoring procedure that extracts interesting relations

among generic events from a data stream. We have demonstrated how such incremental monitoring

can be performed in centralized and distributed settings. In this regard, the conducted experimen-

tal studies clearly indicate that the proposed algorithms can e�ciently capture interesting relations

as association rules from large stream of events. A generic and e�cient monitoring technique, that

can be deployed in distributed framework, can bene�t a large number of monitoring applications

from diverse application areas. In future, our research work can be extended by focusing on in-

crementally capturing patterns from data stream with the update of the sliding window and by

developing forecasting mechanisms. Also we intend to investigate potential modi�cations on top

of this study in order to address speci�c application domains.

194



Chapter 7

Conclusion

The transportation overhead cost is often considered as one of the largest spending for government,

business and defense organizations across the world. With the advent of computer-assisted planning

and tracking technologies, transportation related problems are expected to be handled in more

and more complex environment. The potential existence of di�erent information sources, that

are currently available in widely dispersed geographical locations, o�ers possibilities for e�cient

commodity delivery planning, plan tracking and successful completion of tasks over large transport

network. However, this requires developing a comprehensive framework of knowledge sharing and

problem solving in line with ever increasing global reach and adoption of cyberspace. In order to

mitigate the gap between current and future handling of transportation planning and monitoring,

we have investigated collaborative handling of three core research problems concerning the vehicle

route planning and monitoring. This thesis presents an innovative approach to solve these three

problems in a speci�c distributed setting. Throughout this thesis, we have discussed corresponding

models and solution algorithms in details.

More precisely, in Chapter 1, we have introduced three research problems and elaborated the

collaboration setting for vehicle routing problem, monitor deployment problem and plan execution

monitoring problem. Next, in Chapter 2, we have characterized these problems and discussed

an overview of existing research and development e�orts on these three aforementioned problems.

In Chapter 3, we have started by proposing a heurisitc technique to near-optimally solve multi-

depot vehicle routing problem in split-delivery setting. Although, this technique uses a centralized

setting, the heuristic elaborates a new way of solving multi-depot VRP variants. It is used as an

e�cient method of route planning at individual participants in the collaborative setting. It also

serves as a basis of comparison for the distributed approaches of solution generation. In Chapter

195



4, we have illustrated two distributed approaches to solve multi-depot VRP instances. The �rst

one is a collaborative evolutionary learning approach while the second approach is cooperative

negotiation based on game theory. These approaches address distributed solution generation for

multi-depot VRP and present generic techniques for solving various commodity delivery problems.

In Chapter 5, we have addressed a monitor deployment problem in a collaborative setting where

the monitor deployment budget is divided among participants. We have applied a multi-round risk

reduction technique to near-optimally �nd monitor locations for this budget constrained monitor

deployment problem. Finally, Chapter 6 describes an incremental approach for plan execution

monitoring based on data mining of interesting relations among generic events as association rules.

Unlike traditional approaches, we search these rules incrementally from a data stream with every

update of newer monitoring events using a sliding window model. We have also proposed a new

approach for collaborative mining of the association rules where each participant can partially

mine these rules according to its interest. Extensive experiments have been performed for each of

the solution approaches discussed in this thesis. We have documented detailed benchmark results

on known problem instances. These results have been contrasted against those obtained by other

known techniques in order to re�ect the suitability and e�ciency of the proposed approaches.

A fully functional distributed platform for advanced transportation management system

requires solving several research and technical issues. These problems are often complex and

restricted by constraints ranging from lack of resources to prohibitive policies. In the scope of

this thesis, we try to bridge a small portion of this gap in context of aforementioned three speci�c

research problems. We have successfully proposed a number of collaboration approaches that can

help using such a platform of transportation planning and monitoring. To this end, we have

designed and implemented speci�c algorithms for distributed decision makers who can locally

execute these algorithms while participating together to achieve a common global objectives. The

main contributions of this thesis include these algorithms which provide practical solutions for the

studied research problems. With increasing global reach and data sharing, we believe that these

algorithms will promote collaborative use of individual capabilities while using common resources

for transport planning and monitoring. In future, a distributed platform can be developed by

leveraging the proposed algorithms and techniques for joint planning and monitoring activities in

an integrated collaborative environment.

196



Bibliography

[1] Hernan Abeledo, Michael Bussieck, Leon Lasdon, Alex Meeraus, and Hua Ni. Global opti-

mization and the gams branch-and cut facility. CORS/INFORMS Joint International Work-

shop, Ban�, May 2004.

[2] Accenture. Accenture technology vision 2014 report. online http://www.accenture.com/

microsites/it-technology-trends-2014/Pages/tech-vision-report.aspx, 2014.

[3] Bernardetta Addis, Antonio Capone, Giuliana Carello, Luca G. Gianoli, and Brunilde Sanso.

Energy management through optimized routing and device powering for greener communi-

cation networks. IEEE/ACM Transactions on Networking, 22(1):313�325, Feb. 2014.

[4] Charu C. Aggarwal, editor. Data Streams - Models and Algorithms, volume 31 of Advances

in Database Systems. Springer, 2007.

[5] Charu C Aggarwal and Philip S Yu. Online generation of association rules. In Proceedings

of 14th International Conference on Data Engineering, pages 402�411. IEEE, 1998.

[6] Rakesh Agrawal, Tomasz Imieli«ski, and Arun Swami. Mining association rules between sets

of items in large databases. SIGMOD Rec., 22(2):207�216, Jun. 1993.

[7] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in

large databases. In Proceedings of the 20th International Conference on Very Large Data

Bases, VLDB '94, pages 487�499, San Francisco, CA, USA, 1994. Morgan Kaufmann Pub-

lishers Inc.

[8] R. Ahuja, J. Orlin, S. Pallottino, and M. Scutella. Dynamic shortest paths minimizing travel

times and costs. In Networks, pages 197�205, 2003.

[9] Ehab S. Al-shaer. Programmable agents for active distributed monitoring. In 10th

IFIP/ IEEE International Workshop on Distributed Systems: Operations and Management

(DSOM'99), 1999.

197

http://www.accenture.com/microsites/it-technology-trends-2014/Pages/tech-vision-report.aspx
http://www.accenture.com/microsites/it-technology-trends-2014/Pages/tech-vision-report.aspx


[10] Mohamed Ziad Albari. A taxonomy of runtime software monitoring systems.

http://www.informatik.uni-kiel.de/~wg/Lehre/Seminar-SS05/Mohamed_Ziad_

Albari/vortrag.pdf, 2005. Last accessed on November 1, 2016.

[11] James P. Allen, Kevin P. Barry, John M. Mccormick, and Ross A. Paul. Plan execution

monitoring with distributed intelligent agents for battle command. In Proceedings of SPIE,

page 5441, 2004.

[12] Alan Holliday Anthony Wren. Computer scheduling of vehicles from one or more depots to

a number of delivery points. Operational Research Quarterly (1970-1977), 23(3):333�344,

1972.

[13] John K. Antonio, Garng M. Huang, and Wei K. Tsai. A fast distributed shortest path algo-

rithm for a class of hierarchically clustered data networks. IEEE Transactions on Computers,

41(6):710�724, Jun. 1992.

[14] P. Anussornnitisarn, S. Nof, and O. Etzion. Decentralized control of cooperative and au-

tonomous agents for solving the distributed resource allocation problem. International Jour-

nal of Production Economics, pages 114�128, 2005.

[15] Fujiang Ao, Jing Du, Yuejin Yan, Baohong Liu, and Kedi Huang. An e�cient algorithm for

mining closed frequent itemsets in data streams. In IEEE 8th International Conference on

Computer and Information Technology (CIT) Workshops, pages 37�42. IEEE, 2008.

[16] C. Archetti and M. G. Speranza. Vehicle routing problems with split deliveries. International

Transactions in Operational Research, 19(1-2):3�22, 2012.

[17] Claudia Archetti and Maria Grazia Speranza. An overview on the split delivery vehicle rout-

ing problem. Operations Research Proceedings, pages 123�127. Springer Berlin Heidelberg,

2007.

[18] Claudia Archetti and MariaGrazia Speranza. The split delivery vehicle routing problem:

A survey. In Bruce Golden, S. Raghavan, and Edward Wasil, editors, The Vehicle Routing

Problem: Latest Advances and New Challenges, volume 43 of Operations Research/Computer

Science Interfaces, pages 103�122. Springer US, 2008.

[19] A. Arsie and E. Frazzoli. E�cient routing of multiple vehicles with no explicit communica-

tions. International Journal of Robust and Nonlinear Control, 18(2):154�164, Jan. 2007.

[20] S. Arunapuram, K. Mathur, and D. Solow. Vehicle routing and scheduling with full truck-

loads. In Transportation Science, pages 170�182, 2003.

198

http://www.informatik.uni-kiel.de/~wg/Lehre/Seminar-SS05/Mohamed_Ziad_Albari/vortrag.pdf
http://www.informatik.uni-kiel.de/~wg/Lehre/Seminar-SS05/Mohamed_Ziad_Albari/vortrag.pdf


[21] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, D. Naddef, and G. Rinaldi. Com-

putational results with a branch and cut code for the capacitated vehicle routing problem.

Technical report, Universite Joseph Fourier, Grenoble, France, 1995.

[22] Chen Avin and Carlos Brito. E�cient and robust query processing in dynamic environments

using random walk techniques. In Proceedings of the 3rd international symposium on Infor-

mation processing in sensor networks, IPSN '04, pages 277�286, New York, NY, USA, 2004.

ACM.

[23] A. Awasthi, S. Chauhan, Y. Lechevallier, M. Parent, and M. Proth. A data mining ap-

proach for adaptive path planning on large road networks. Foundations of Computational

Intelligence: Data mining, Special Issue, Springer Publications, pages 297�320, 2009.

[24] B. Babcock and C. Olston. Distributed top-k monitoring. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 28�39, 2003.

[25] Dionysios Barmpoutis and Richard M. Murray. Networks with the smallest average distance

and the largest average clustering, 2010.

[26] Edwin M. Bartee. A holistic view of problem solving. Management Science, 20(4-part-i):439�

448, 1973.

[27] Abder Rezak Benaskeur, Froduald Kabanza, Eric Beaudry, and Mathieu Beaudoin. A prob-

abilistic planner for the combat power management problem. In ICAPS, pages 12�19, 2008.

[28] Ygal Bendavid, Élisabeth Lefebvre, Louis A. Lefebvre, and Samuel Fosso-Wamba. Key

performance indicators for the evaluation of r�d-enabled b-to-b e-commerce applications:

the case of a �ve-layer supply chain. Information Systems and e-Business Management,

7(1):1�20, 2008.

[29] Zhuming Bi, Li Da Xu, and Chengen Wang. Internet of things for enterprise systems of

modern manufacturing. IEEE Transactions on Industrial Informatics, 10(2):1537�1546, May

2014.

[30] Christian Borgelt. E�cient implementations of apriori and eclat. In FIMI'03: Proceedings

of the IEEE ICDM workshop on frequent itemset mining implementations, 2003.

[31] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

New York, Mar. 2004.

199



[32] Murray Brewster. Canadian army has no idea how it lost three artillery shells

worth $500,000 on way out of Afghanistan. National Post, Feb. 2015. on-

line, http://news.nationalpost.com/2015/02/08/canadian-army-has-no-idea-how-

it-lost-three-artillery-shells-worth-500000-on-way-out-of-afghanistan/.

[33] Doina Bucur and Mogens Nielsen. Concurrency, Graphs and Models. chapter Secure Data

Flow in a Calculus for Context Awareness, pages 439�456. Springer-Verlag, 2008.

[34] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Access control for mobile agents: The

calculus of boxed ambients. ACM Transactions on Programming Languages and Systems,

26(1):57�124, 2004.

[35] Peter Bühlmann and Torsten Hothorn. Boosting algorithms: Regularization, prediction and

model �tting. Statistical Science, 22(4):477�505, Nov. 2007.

[36] Y. D. Cai, D. Clutter, G. Pape, J. Han, M. Welge, and L. Auvil. MAIDS: mining alarming

incidents from data streams. In In Proceedings of the 2004 ACM Int. Conf. Management of

Data (SIGMOD), Jun. 2004.

[37] M. C. Campi and S. Garatti. A sampling-and-discarding approach to chance-constrained

optimization: Feasibility and optimality. Journal of Optimization Theory and Applications,

148(2):257�280, 2011.

[38] Eugenio Cesario, Carlo Mastroianni, and Domenico Talia. A multi-domain architecture for

mining frequent items and itemsets from distributed data streams. Journal of grid computing,

12(1):153�168, 2014.

[39] Felix T.S. Chan and Niraj Kumar. E�ective allocation of customers to distribution centres:

A multiple ant colony optimization approach. Robotics and Computer-Integrated Manufac-

turing, 25(1):1 � 12, 2009.

[40] Joong Hyuk Chang and Won Suk Lee. Finding recently frequent itemsets adaptively over

online transactional data streams. Information Systems, 31(8):849�869, 2006.

[41] Archie Chapman, Rosa Anna Micillo, Ramachandra Kota, and Nick Jennings. Decen-

tralised dynamic task allocation using overlapping potential games. The Computer Journal,

53(9):1462 �1477, Oct. 2010.

[42] Peng Chen, Hongye Su, Lichao Guo, and Yu Qu. Mining fuzzy association rules in data

streams. In 2nd International Conference on Computer Engineering and Technology (IC-

CET), volume 4, pages V4�153. IEEE, 2010.

200

http://news.nationalpost.com/2015/02/08/canadian-army-has-no-idea-how-it-lost-three-artillery-shells-worth-500000-on-way-out-of-afghanistan/
http://news.nationalpost.com/2015/02/08/canadian-army-has-no-idea-how-it-lost-three-artillery-shells-worth-500000-on-way-out-of-afghanistan/


[43] R. Chen, K. Sivakumar, and H. Kargupta. An approach to online bayesian learning from

multiple data streams. In Proceedings of Workshop on Mobile and Distributed Data Mining,

PKDD '01, pages 31�45, 2001.

[44] Si Chen, Bruce L. Golden, and Edward A. Wasil. The split delivery vehicle routing problem:

Applications, algorithms, test problems, and computational results. Networks, 49(4):318�

329, 2007.

[45] Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah, and Jianyong Wang. Multi-

dimensional regression analysis of time-series data streams. In Proceedings of the 28th Inter-

national Conference on Very Large Data Bases, VLDB '02, pages 323�334. VLDB Endow-

ment, 2002.

[46] James Cheng, Yiping Ke, and Wilfred Ng. Maintaining frequent closed itemsets over a sliding

window. Journal of Intelligent Information Systems, 31(3):191�215, 2008.

[47] David W. Cheung, Jiawei Han, Vincent T. Ng, Ada W. Fu, and Yongjian Fu. A fast dis-

tributed algorithm for mining association rules. In Proceedings of the 4th International Con-

ference on Parallel and Distributed Information Systems, DIS '96, pages 31�43, Washington,

DC, USA, 1996. IEEE Computer Society.

[48] Yun Chi, Haixun Wang, S Yu Philip, and Richard R Muntz. Catch the moment: maintaining

closed frequent itemsets over a data stream sliding window. Knowledge and Information

Systems, 10(3):265�294, Oct. 2006.

[49] Yun Chi, Haixun Wang, P.S. Yu, and Richard R. Muntz. Moment: maintaining closed

frequent itemsets over a stream sliding window. In 4th IEEE International Conference on

Data Mining, pages 59�66, Nov. 2004.

[50] Koen Claessen. Safety property veri�cation of cyclic synchronous circuits. Electronic Notes

in Theoretical Computer Science, 88:55�69, Oct. 2004.

[51] G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of

delivery points. Operations Research, 12(4):568�581, Aug. 1964.

[52] Samet Çokp�nar and Ta�an �mre G undem. Positive and negative association rule mining

on xml data streams in database as a service concept. Expert Systems with Applications,

39(8):7503�7511, 2012.

[53] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search heuristic for

periodic and multi-depot vehicle routing problems. Networks, 30(2):105�119, 1997.

201



[54] Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional

monitoring. In Proceedings of the 19th annual ACM-SIAM symposium on Discrete algo-

rithms, SODA '08, pages 1076�1085, Philadelphia, PA, USA, 2008. Society for Industrial

and Applied Mathematics.

[55] Benoit Crevier, Jean-François Cordeau, and Gilbert Laporte. The multi-depot vehicle routing

problem with inter-depot routes. European Journal of Operational Research, 176(2):756�773,

2007.

[56] Xuan Hong Dang, Vincent CS Lee, Wee Keong Ng, and Kok Leong Ong. Incremental

and adaptive clustering stream data over sliding window. In Database and Expert Systems

Applications, pages 660�674. Springer, 2009.

[57] G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem. Management Science,

6(1):80�91, 1959.

[58] Sanjeeb Dash. Mixed integer rounding cuts and master group polyhedra. In Combinatorial

Optimization - Methods and Applications, pages 1�32. 2011.

[59] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream

statistics over sliding windows. In Proceedings of the 13th Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA '02, pages 635�644, Philadelphia, PA, USA, 2002. Society for

Industrial and Applied Mathematics.

[60] G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level robot

programs. In 6th International Conference on Principles of Knowledge Representation and

Reasoning, pages 453�465, 1998.

[61] Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. Rate-based transition

systems for stochastic process calculi. In ICALP (2), pages 435�446, 2009.

[62] DEIS - OR Group. Vrplib: A vehicle routing problem library. www.or.deis.unibo.it/

research_pages/ORinstances/VRPLIB/VRPLIB.html.

[63] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime software-fault

monitoring tools. IEEE Transactions on Software Engineering, 30(12):859�872, Dec. 2004.

[64] Mahmood Deypir and Mohammad Hadi Sadreddini. A dynamic layout of sliding window for

frequent itemset mining over data streams. Journal of Systems and Software, 85(3):746�759,

2012.

202

www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html


[65] Pedro Domingos and Geo� Hulten. Mining high-speed data streams. In Proceedings of the

Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD '00, pages 71�80, New York, NY, USA, 2000. ACM.

[66] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Critical phenomena in complex

networks. Reviews of Modern Physics, 80(4):1275�1335, 2008.

[67] Zvi Drezner, Jack Brimberg, Nenad Mladenovi¢, and Said Salhi. New heuristic algorithms

for solving the planar p-median problem. Computers & Operations Research, 62:296 � 304,

2015.

[68] Moshe Dror, Gilbert Laporte, and Pierre Trudeau. Vehicle routing with split deliveries.

Discrete Applied Mathematics, 50(3):239 � 254, 1994.

[69] Moshe Dror and Pierre Trudeau. Savings by split delivery routing. Transportation Science,

23(2):141�145, 1989.

[70] Edmund H Durfee. Distributed problem solving and planning. In Multi-agent systems and

applications, pages 118�149. Springer, 2001.

[71] T. Eiter, E. Erdem, and W. Faber. Plan reversals for recovery in execution monitoring. In

10th International Workshop on NonMonotonic Reasoning, Whistler, Canada, 2004.

[72] Chad Eschinger and C. Dwight Klappich. Market trends: Transportation management sys-

tems worldwide; 2007-2012. Press Release G00161482, Gartner Inc., Oct. 2008.

[73] Eric Fabre, Albert Benveniste, Stefan Haar, and Claude Jard. Distributed monitoring of

concurrent and asynchronous systems. Discrete Event Dynamic Systems, 15(1):33�84, Mar.

2005.

[74] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middle-

ware. In Principles of Database Systems (PODS), pages 102�113, 2001.

[75] Reza Zanjirani Farahani, Masoud Hekmatfar, Alireza Boloori Arabani, and Ehsan

Nikbakhsh. Hub location problems: A review of models, classi�cation, solution techniques,

and applications. Computers & Industrial Engineering, 64(4):1096 � 1109, 2013.

[76] Reza Zanjirani Farahani, Masoud Hekmatfar, Behnam Fahimnia, and Narges Kazemzadeh.

Hierarchical facility location problem: Models, classi�cations, techniques, and applications.

Computers & Industrial Engineering, 68:104 � 117, 2014.

[77] T. Feder, P. Hell, S. Klein, and R. Motwani. Complexity of graph partition problems. In

Symposium on the Theory of Computing, 1999.

203



[78] M. Fichtner, A. Grossmann, and M. Thielscher. Intelligent execution monitoring in dynamic

environments. Fundamenta Informaticae, 57(2-4):371�392, 2003.

[79] Christopher L. Fleming, Stanley E. Gri�s, and John E. Bell. The e�ects of triangle inequality

on the vehicle routing problem. European Journal of Operational Research, 224(1):1 � 7, 2013.

[80] Adrian Francalanza, Andrew Gauci, and Gordon J. Pace. Distributed system contract mon-

itoring. In Formal Languages and Analysis of Contract-Oriented Software (FLACOS), pages

23�37, 2011.

[81] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a

statistical view of boosting. Annals of Statistics, 28:1�45, 1998.

[82] Christian Fritz. Monitoring the execution of optimal plans. In The 17th International

Conference on Automated Planning and Scheduling (ICAPS) Doctoral Consortium, Sep. 22

2007.

[83] Christian Fritz and Sheila McIlraith. Monitoring plan optimality during execution. In The

17th International Conference on Automated Planning and Scheduling (ICAPS), 2007.

[84] Frost & Sullivan. Expansive increase of smart-phone use creates a need for mobile data

monitoring solutions. online, http://www.slideshare.net/FrostandSullivan/global-

mobile-data-monitoring-market, Apr. 2014.

[85] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining data

streams: A review. SIGMOD Rec., 34(2):18�26, Jun. 2005.

[86] Michel Gendreau, Gilbert Laporte, Christophe Musaraganyi, and Éric D. Taillard. A tabu

search heuristic for the heterogenous �eet vehicle routing problem. Compututers & Operations

Research, 26:1153�1173, Oct. 1999.

[87] A. Gerevini and I. Serina. Fast plan adaptation through planning graphs: Local and system-

atic search techniques. In 5th International Conference on Arti�cial Intelligence Planning

Systems, pages 112�121, Breckenridge, CO, USA, 2000.

[88] Heiko Gerlach. Partial communication and collusion with demand uncertainty. 2005.

[89] Karolien Geurts, Geert Wets, Tom Brijs, and Koen Vanhoof. Pro�ling high frequency ac-

cident locations using association rules. In Proceedings of the 82nd Annual Transportation

Research Board, page 18pp, Washington DC. (USA), Jan. 2003.

[90] B L Golden, E A Wasil, J P Kelly, and I-M Chao. Metaheuristics in vehicle routing, chapter

Fleet Management and Logistics. Kluwer, Boston, 1998.

204

http://www.slideshare.net/FrostandSullivan/global-mobile-data-monitoring-market
http://www.slideshare.net/FrostandSullivan/global-mobile-data-monitoring-market


[91] Bruce Golden, S. Raghavan, and Edward A. Wasil. The vehicle routing problem: latest

advances and new challenges. Operations research/Computer science interfaces series, 43.

Springer, 2008.

[92] Oded Goldreich. Foundations of cryptography - a primer. Foundations and Trends in The-

oretical Computer Science, 1(1), 2005.

[93] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang, and

Jing-Jing Li. Distributed evolutionary algorithms and their models: A survey of the state-

of-the-art. Applied Soft Computing, 34:286 � 300, 2015.

[94] Yue-Jiao Gong, Meie Shen, Jun Zhang, O. Kaynak, Wei-Neng Chen, and Zhi-Hui Zhan.

Optimizing RFID network planning by using a particle swarm optimization algorithm with

redundant reader elimination. IEEE Transactions on Industrial Informatics, 8(4):900�912,

2012.

[95] Gösta Grahne and Jianfei Zhu. High performance mining of maximal frequent itemsets. In

6th International Workshop on High Performance Data Mining (HPDM), 2003.

[96] Gösta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset mining using fp-trees.

IEEE Transactions on Knowledge and Data Engineering, 17(10):1347�1362, 2005.

[97] M. Gronalt, R. Hartl, and M. Reimann. New savings based algorithms for time constrained

pickup and delivery of full truckloads. European Journal of Operational Research, pages

520�535, 2008.

[98] Barbara J. Grosz and Sarit Kraus. The evolution of shared plans. In Foundations and

Theories of Rational Agency, pages 227�262. Kluwer Academic Publishers, 1998.

[99] François Grünewald and Andrea Binder. Inter-agency real-time evaluation in Haiti: 3 months

afterthe earthquake. online, https://ochanet.unocha.org/p/Documents/Haiti_IA_RTE_

1_final_report_en.pdf, Aug. 2010.

[100] Damon Gulczynski, Bruce Golden, and Edward Wasil. The multi-depot split delivery ve-

hicle routing problem: An integer programming-based heuristic, new test problems, and

computational results. Computers and Industrial Engineering, 61(3):794 � 804, 2011.

[101] Damon J. Gulczynski. Integer Programming-based Heuristics for Vehicle Routing Problems.

PhD thesis, Robert H. Smith School of Business, University of Maryland, USA, 2010.

205

https://ochanet.unocha.org/p/Documents/Haiti_IA_RTE_1_final_report_en.pdf
https://ochanet.unocha.org/p/Documents/Haiti_IA_RTE_1_final_report_en.pdf


[102] Xu Han, Huy Bui, Suvasri Mandal, Krishna R Pattipati, and David L Kleinman.

Optimization-based decision support software for a team-in-the-loop experiment: Asset pack-

age selection and planning. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

43(2):237�251, 2013.

[103] Xu Han, Manisha Mishra, Suvasri Mandal, Huy Bui, Diego Fernando Mart�nez Ayala, David

Sidoti, Krishna R Pattipati, and David L Kleinman. Optimization-based decision support

software for a team-in-the-loop experiment: Multilevel asset allocation. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 44(8):1098�1112, 2014.

[104] Amin Hassanzadeh, Ala Altaweel, and Radu Stoleru. Tra�c-and-resource-aware intrusion

detection in wireless mesh networks. Ad Hoc Networks, 21(0):18 � 41, 2014.

[105] Shibo He, Jiming Chen, Peng Cheng, Yu (Jason) Gu, Tian He, and Youxian Sun. Maintaining

quality of sensing with actors in wireless sensor networks. IEEE Transactions on Parallel

and Distributed Systems, 23(9):1657�1667, 2012.

[106] G. Hoa, C. Leea, H. Lau, and A. Ip. A hybrid intelligent system to enhance logistics work�ow:

An olap-based ga approach. International Journal of Computer Integrated Manufacturing,

pages 69 � 78, 2006.

[107] John H. Holland. Adaptation in Natural and Arti�cial Systems. MIT Press, Cambridge, MA,

USA, 1992.

[108] Jen-Wei Huang, Su-Chen Lin, and Ming-Syan Chen. Dpsp: distributed progressive sequential

pattern mining on the cloud. In Advances in Knowledge Discovery and Data Mining, pages

27�34. Springer, 2010.

[109] Ling Huang, Minos Garofalakis, Anthony D. Joseph, and Nina Taft. Approximate decision

making in large-scale distributed systems.

[110] Industry Canada. The list transportation. Canadian Investor Magazine, 1(3):8�9, Jun. 2012.

[111] Manuel Iori, Juan-José Salazar-González, and Daniele Vigo. An exact approach for the

vehicle routing problem with two-dimensional loading constraints. Transportation Science,

41(2):253�264, May 2007.

[112] Navendu Jain, Praveen Yalagandula, Michael Dahlin, and Yin Zhang. Self-tuning,

bandwidth-aware monitoring for dynamic data streams. In IEEE 25th International Confer-

ence on Data Engineering, (ICDE'09), pages 114�125. IEEE, 2009.

206



[113] Ahmad I. Jarrah and Jonathan F. Bard. Pickup and delivery network segmentation using

contiguous geographic clustering. JORS, 62(10):1827�1843, 2011.

[114] Yosr Jarraya, Arash Eghtesadi, Mourad Debbabi, Ying Zhang, and Makan Pourzandi. Cloud

calculus: Security veri�cation in elastic cloud computing platform. In The 2012 International

Conference on Collaboration Technologies and Systems, pages 447�454, 2012.

[115] Nan Jiang and Le Gruenwald. CFI-Stream: mining closed frequent itemsets in data streams.

In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 592�597. ACM, 2006.

[116] Nan Jiang and Le Gruenwald. Research issues in data stream association rule mining. SIG-

MOD Rec., 35(1):14�19, Mar. 2006.

[117] G. Kaminka, D. Pynadath, and M. Tambe. Monitoring deployed agent teams. In Agents,

pages 308�315, 2001.

[118] Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed mining of associa-

tion rules on horizontally partitioned data. IEEE Transactions on Knowledge and Data

Engineering, 16(9):1026�1037, Sep. 2004.

[119] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silver-

man, and Angela Y. Wu. An e�cient k-means clustering algorithm: Analysis and implemen-

tation. IEEE Transactions on Pattern Analysis Machine Intelligence, 24(7):881�892, Jul.

2002.

[120] Naim Kapucu and Vener Garayev. Collaborative decision-making in emergency and disaster

management. International Journal of Public Administration, 34(6):366�375, 2011.

[121] Hillol Kargupta, Ruchita Bhargava, Kun Liu, Michael Powers, Patrick Blair, Samuel Bushra,

James Dull, Kakali Sarkar, Martin Klein, Mitesh Vasa, and David Handy. Vedas: A mobile

and distributed data stream mining system for real-time vehicle monitoring. In Proceedings

of the 2004 SIAM International Conference on Data Mining, pages 300�311, 2004.

[122] Hillol Kargupta and Byung-Hoon Park. A fourier spectrum-based approach to represent deci-

sion trees for mining data streams in mobile environments. IEEE Transactions on Knowledge

and Data Engineering, 16:216�229, 2004.

[123] C. Dwight Klappich. Hype cycle for supply chain execution technologies, 2014. Press Release

G00263207, Gartner Inc., Jul. 2014.

207



[124] Natallia Kokash. An introduction to heuristic algorithms. online, http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.105.8050&rep=rep1&type=pdf, 2005.

[125] S Kotsiantis and D Kanellopoulos. Association rules mining: A recent overview. GESTS

International Transactions on Computer Science and Engineering, 32(1):71�82, Jan. 2006.

[126] S. Kucukpetek, F. Polat, and H. Ogztuzun. Multilevel graph partitioning: An evolutionary

approach. Journal of the Operational Research Society, pages 549�562, 2005.

[127] Gilbert Laporte, Stefan Nickel, and Francisco Saldanha da Gama. Location science. Springer,

Germany, Feb. 2015. ISBN: 978-3-319-13110-8.

[128] Vito Latora and Massimo Marchiori. E�cient behavior of small-world networks. Physical

review letters, 87(19), 2001.

[129] Miguel A. Lejeune and François Margot. Solving chance-constrained optimization problems

with stochastic quadratic inequalities. Operations Research, 64(4):939�957, May 2016.

[130] V.R. Lesser and D.D Corkill. The Distributed Vehicle Monitoring Testbed: A Tool for

Investigating Distributed Problem Solving Networks. AI Magazine, 4(3):15�33, 1983.

[131] Carson Kai-Sang Leung and Boyu Hao. Mining of frequent itemsets from streams of uncertain

data. In IEEE 25th International Conference on Data Engineering (ICDE'09), pages 1663�

1670. IEEE, 2009.

[132] Carson Kai-Sang Leung and Fan Jiang. Frequent itemset mining of uncertain data streams

using the damped window model. In Proceedings of the 2011 ACM Symposium on Applied

Computing, pages 950�955. ACM, 2011.

[133] Carson Kai-Sang Leung and Quamrul I. Khan. Dstree: a tree structure for the mining of fre-

quent sets from data streams. In 6th International Conference on Data Mining, (ICDM'06),

pages 928�932. IEEE, 2006.

[134] Jonathan Levin. Auction theory. [online], http://web.stanford.edu/~jdlevin/Econ%

20286/Auctions.pdf, Oct. 2004.

[135] Steven J. Levine. Monitoring the execution of temporal plans for robotic systems. Master's

thesis, Massachusetts Institute of Technology, 2011.

[136] Deren Li, Shuliang Wang, and Deyi Li. Spatial Data Mining: Theory and Application.

Springer Publishing Company, Incorporated, 1st edition, 2016.

208

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.8050&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.8050&rep=rep1&type=pdf
http://web.stanford.edu/~jdlevin/Econ%20286/Auctions.pdf
http://web.stanford.edu/~jdlevin/Econ%20286/Auctions.pdf


[137] Hua-Fu Li, Chin-Chuan Ho, and Suh-Yin Lee. Incremental updates of closed frequent item-

sets over continuous data streams. Expert Systems with Applications, 36(2):2451�2458, 2009.

[138] Hua-Fu Li and Suh-Yin Lee. Mining frequent itemsets over data streams using e�cient

window sliding techniques. Expert Systems with Applications, 36(2):1466�1477, 2009.

[139] Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan. An e�cient algorithm for mining frequent

itemsets over the entire history of data streams. In Proceedings of 1st International Workshop

on Knowledge Discovery in Data Streams, volume 39, 2004.

[140] Pu Li, Harvey Arellano-Garcia, and Günter Wozny. Chance constrained programming ap-

proach to process optimization under uncertainty. Computers & Chemical Engineering,

32(1):25�45, 2008.

[141] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.

Information and Computation, 222:45�58, Jan. 2013.

[142] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for run-time

security policies. International Journal of Information Security, 4(1):2�16, 2005.

[143] Jay Ligatti and Srikar Reddy. A theory of runtime enforcement, with results. In Proceedings

of the 15th European conference on Research in computer security, ESORICS'10, pages 87�

100, Berlin, Heidelberg, 2010. Springer-Verlag.

[144] A. Lim and F. Wang. The multi-depot vehicle routing problem: A one-stage approach. IEEE

Transactions on Automation Science and Engineering, 2, 2005.

[145] Xuejun Liu, Jihong Guan, and Ping Hu. Mining frequent closed itemsets from a landmark

window over online data streams. Computers & Mathematics with Applications, 57(6):927�

936, 2009.

[146] Dimitrios Lymberopoulos, Quentin Lindsey, and Andreas Savvides. An empirical character-

ization of radio signal strength variability in 3-D IEEE 802.15.4 networks using monopole

antennas. In Wireless Sensor Networks, pages 326�341. Springer, 2006.

[147] S Mandal, XU Han, KR Pattipati, and DL Kleinman. Agent-based distributed framework

for collaborative planning. In Aerospace Conference, 2010 IEEE, pages 1�11. IEEE, 2010.

[148] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston. Finding

(recently) frequent items in distributed data streams. In Proceedings of the 21st International

Conference on Data Engineering, ICDE '05, pages 767�778, Washington, DC, USA, 2005.

IEEE Computer Society.

209



[149] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data

streams. In Proceedings of the 28th International Conference on Very Large Data Bases,

VLDB '02, pages 346�357. VLDB Endowment, 2002.

[150] Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-k queries over web-

accessible databases. ACM Transactions on Database Systems, 29:319�362, Jun. 2004.

[151] Alfonso Pedraza Martinez, Sameer Hasija, and Luk Van Wassenhove. An operational mecha-

nism design for �eet management coordination in humanitarian operations. INSEAD Work-

ing Paper No. 2010/87/TOM/INSEAD Social Innovation Centre, Oct. 2010.

[152] A. Mas-Colell, M. Whinston, and J. R. Green. Microeconomic Theory. Oxford University

Press, 1995.

[153] Andreas Mayr, Harald Binder, Olaf Gefeller, and Matthias Schmid. The evolution of boosting

algorithms - from machine learning to statistical modelling. Methods of Information in

Medicine, 53(6):419�427, Dec. 2014.

[154] J. McCarthy. Epistemological problems of arti�cial intelligence. In 5th International Joint

Conference on Arti�cial Intelligence (IJCAI '77), Cambridge, MA, USA, 1977. Invited Talk.

[155] Fiona McNeill and Alan Bundy. Dynamic, automatic, �rst-order ontology repair by diagnosis

of failed plan execution. International Journal on Semantic Web and Information Systems,

3(3):1�35, 2007.

[156] Mona Mehrandish, Chadi M. Assi, and Mourad Debbabi. A game theoretic model to handle

network intrusions over multiple packets. In ICC, pages 2189�2194, 2006.

[157] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. An integrated e�cient solution

for computing frequent and top-k elements in data streams. ACM Transactions on Database

Systems (TODS), 31(3):1095�1133, 2006.

[158] Nicolas Meuleau and Marco Dorigo. Ant colony optimization and stochastic gradient descent.

Arti�cial Life, 8:103�121, 2002.

[159] Roberto Micalizio. A distributed control loop for autonomous recovery in a multi-agent

plan. In International Joint Conferences on Arti�cial Intelligence Organization (IJCAI),

pages 1760�1765, 2009.

[160] Michael Burkett. Key issues facing the supply chain industry. Press release, Gartner Inc.,

Phoenix, USA, May 2014.

210



[161] T. Miyamoto, K. Nakatyou, and S. Kumagai. Agent based planning method for an on-

demand transportation system. In Proceedings of the 2003 IEEE International Symposium

on Intellignet Control, 2003.

[162] T. Miyamoto, N. Tsujimoto, and S. Kumagai. A cooperative algorithm for autonomous

distributed vehicle systems with �nite bu�er capacity. IEICE Transactions on Fundamentals

of Electronics, Communications and Computer Sciences, E88-A(11):3036�3044, 2005.

[163] Abdel-Illah Mouaddib and Shlomo Zilberstein. Knowledge-based anytime computation. In

Proceedings of the 14th international joint conference on Arti�cial intelligence - Volume 1,

pages 775�781, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[164] Arinto Murdopo. Distributed decision tree learning for mining big data streams. Master's

thesis, Universitat Politechnica De Catalunya, BarcelonaTech, Barcelona, Spain, Jul. 2013.

[165] Karen L. Myers. CPEF: A continuous planning and execution framework. AI Magazine,

20(4):63�69, 1999.

[166] Shankar B Naik and Jyoti D Pawar. A quick algorithm for incremental mining closed frequent

itemsets over data streams. In Proceedings of the 2nd ACM IKDD Conference on Data

Sciences, pages 126�127. ACM, 2015.

[167] Arkadi Nemirovski and Alexander Shapiro. Convex approximations of chance constrained

programs. SIAM Journal on Optimization (SIOPT), 17(4):969�996, Dec. 2006.

[168] NEO. Vrp library. http://neo.lcc.uma.es/radi-aeb/WebVRP/.

[169] Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial Optimization:

Algorithms and Their Computational Complexity. Springer-Verlag New York, Inc., New York,

NY, USA, 1st edition, 2010.

[170] Tho Manh Nguyen, Josef Schiefer, and A. Min Tjoa. Sense & response service architecture

(saresa): an approach towards a real-time business intelligence solution and its use for a

fraud detection application. In Proceedings of the 8th ACM international workshop on Data

warehousing and OLAP, DOLAP '05, pages 77�86. ACM, 2005.

[171] Fatemeh Nori, Mahmood Deypir, and Mohamad Hadi Sadreddini. A sliding window based

algorithm for frequent closed itemset mining over data streams. Journal of Systems and

Software, 86(3):615�623, 2013.

[172] T. Oncan, S. N. Kabadi, and K. Nair. Vlsn search algorithms for partitioning problems using

matching neighborhoods. Journal of the Operational Research Society, pages 388�398, 2008.

211

http://neo.lcc.uma.es/radi-aeb/WebVRP/


[173] Masahiro Ono, Marco Pavone, Yoshiaki Kuwata, and J. Balaram. Chance-constrained dy-

namic programming with application to risk-aware robotic space exploration. Autonomous

Robots, 39(4):555�571, Dec. 2015.

[174] Masahiro Ono and Brian C. Williams. Decentralized chance-constrained �nite-horizon opti-

mal control for multi-agent systems. In Proceedings of 49th IEEE Conference on Decision

and Control, 2010.

[175] Héctor J Ortiz-Peña, Rakesh Nagi, Moises Sudit, Michael D Moskal, Michael Dawson, James

Fink, Timothy Hanratty, Eric Heilman, and Daniel Tuttle. From information needs to

information gathering: A system optimization perspective to isr synchronization. In SPIE

Defense, Security, and Sensing. International Society for Optics and Photonics, May 2012.

Proc. SPIE 8389, Ground/Air Multisensor Interoperability, Integration, and Networking for

Persistent ISR III, 838912.

[176] Matthew Eric Otey, Amol Ghoting, and Srinivasan Parthasarathy. Fast distributed outlier

detection in mixed-attribute data sets. Data Mining and Knowledge Discovery, 12(2-3):203�

228, May 2006.

[177] Stephan Otto and Gabriella Kókai. Decentralized evolutionary optimization approach to

the p-median problem. In Applications of Evolutionary Computing, volume 4974 of Lecture

Notes in Computer Science, pages 659�668. Springer Berlin Heidelberg, 2008.

[178] L. Ozdamar, E. Ekinci, and B. Kucukyazici. Emergency logistics planning in natural disas-

ters. Annals of Operations Research, pages 217�245, 2004.

[179] Zeynep Ozyurt and Deniz Aksen. Solving the multi-depot location-routing problem with

lagrangian relaxation. In Extending the Horizons: Advances in Computing, Optimization,

and Decision Technologies, volume 37 of Operations Research/Computer Science Interfaces

Series, pages 125�144. Springer US, 2007.

[180] Juryon Paik, Junghyun Nam, Ung Mo Kim, and Dongho Won. Association rule extraction

from xml stream data for wireless sensor networks. Sensors, 14(7):12937�12957, 2014.

[181] P. Palensky and D. Dietrich. Demand side management: Demand response, intelligent energy

systems, and smart loads. IEEE Transactions on Industrial Informatics, 7(3):381�388, Aug.

2011.

[182] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental maintenance for non-

distributive aggregate functions. In Proceedings of the 28th International Conference on

Very Large Data Bases, 2002.

212



[183] P. Pantazopoulos, M. Karaliopoulos, and I. Stavrakakis. Distributed placement of autonomic

internet services. IEEE Transactions on Parallel and Distributed Systems, 25(7):1702�1712,

Jul. 2014.

[184] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern discovery in

multiple time-series. In Proceedings of the 31st International Conference on Very Large Data

Bases, VLDB '05, pages 697�708. VLDB Endowment, 2005.

[185] Byung-Hoon Park and Hillol Kargupta. Distributed data mining: Algorithms, systems and

applications. pages 341�358. Citeseer, 2002.

[186] David C. Parkes. Chapter 2, iterative combinatorial auctions: Achieving economic and

computational e�ciency phd thesis, univesity of pennsylvania, 2001.

[187] Jossef Perl. The multi-depot routing allocation problem. American Journal of Mathematical

and Management Sciences, 7(1-2):7�34, 1987.

[188] Dennis K. Peters and David Lorge Parnas. Requirements-based monitors for real-time sys-

tems. IEEE Transactions on Software Engineering, 28:146�158, Feb. 2002.

[189] Ola Pettersson. Execution monitoring in robotics: A survey. Robotics and Autonomous

Systems, 53:73�88, 2005.

[190] Anand Rajaraman and Je�rey David Ullman. Mining of Massive Datasets. Cambridge

University Press, New York, NY, USA, 2011.

[191] Tifenn Rault, Abdelmadjid Bouabdallah, and Yacine Challal. Energy e�ciency in wireless

sensor networks: A top-down survey. Computer Networks, 67:104 � 122, 2014.

[192] Sujoy Ray, Mourad Debbabi, Mohamad Khaled Allouche, Nicolas Léchevin, and Micheline

Bélanger. Energy-e�cient monitor deployment in collaborative distributed setting. IEEE

Transactions on Industrial Informatics, 12(1):112�123, 2016.

[193] Sujoy Ray, Andrei Soeanu, Jean Berger, and Mourad Debbabi. The multi-depot split-delivery

vehicle routing problem: model and solution algorithm. Knowledge-Based Systems, 71(0):238

� 265, 2014.

[194] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A Kozuch.

Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In Proceedings of

the 3rd ACM Symposium on Cloud Computing, page 7. ACM, 2012.

213



[195] Mohammed Saleh, Andrei Soeanu, Sujoy Ray, Mourad Debbabi, Jean Berger, and Abdeslem

Boukhtouta. Mechanism design for decentralized vehicle routing problem. In Proceedings of

the 27th Annual ACM Symposium on Applied Computing, SAC '12, pages 749�754. ACM,

2012.

[196] Said Salhi and Graham K. Rand. The e�ect of ignoring routes when locating depots. Euro-

pean Journal of Operational Research, 39(2):150�156, 1989.

[197] Aysegul Sarac, Nabil Absi, and Stéphane Dauzère-Pérès. A literature review on the impact

of {RFID} technologies on supply chain management. International Journal of Production

Economics, 128(1):77 � 95, 2010.

[198] Vinaya Sawant and Ketan Shah. A survey of distributed association rule mining algorithms.

Journal of Emerging Trends in Computing and Information Sciences, 5(5), 2014.

[199] Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. The MIT

Press, 2012.

[200] Kirk Schloegel, George Karypis, and Vipin Kumar. Sourcebook of parallel computing. chap-

ter Graph Partitioning for High-performance Scienti�c Simulations, pages 491�541. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[201] Alexander Schrijver. Combinatorial optimization : polyhedra and e�ciency. Algorithms and

combinatorics. Springer-Verlag, Berlin, Heidelberg, New York, N.Y., et al., 2003.

[202] Timothy T Schwartz, Yves-François Pierre, and Eric Calpas. Building assessments and

rubble removal in quake-a�ected neighborhoods in haiti. Barr report, United States Agency

for International Development, May 2011.

[203] Zuo-Jun Max Shen, Roger Lezhou Zhan, and Jiawei Zhang. The reliable facility location

problem: Formulations, heuristics, and approximation algorithms. INFORMS Journal on

Computing, 23(3):470�482, 2011.

[204] Se Jung Shin and Won Suk Lee. On-line generation association rules over data streams.

Information and Software Technology, 50(6):569�578, 2008.

[205] P. Shirani, M. A. Azgomi, and S. Alrabaee. A method for intrusion detection in web services

based on time series. In 2015 IEEE 28th Canadian Conference on Electrical and Computer

Engineering (CCECE), pages 836�841, May 2015.

214



[206] Georgios Smaragdakis, Nikolaos Laoutaris, Kleomenis Oikonomou, Ioannis Stavrakakis, and

Azer Bestavros. Distributed server migration for scalable internet service deployment.

IEEE/ACM Transactions on Networking, 22(3):917�930, Jun. 2014.

[207] Reid G. Smith and Randall Davis. Frameworks for cooperation in distributed problem

solving. IEEE Transactions on Systems, Man, and Cybernetics, 11:61�70, 1981.

[208] Andrei Soeanu, Mourad Debbabi, Dima Alhadidi, Makram Makkawi, Mohamad Allouche,

Micheline Belanger, and Nicholas Lechevin. Transportation risk analysis using probabilistic

model checking. Expert Systems with Applications, 2015.

[209] Andrei Soeanu, Sujoy Ray, Mourad Debbabi, Jean Berger, and Abdeslem Boukhtouta. A

learning based evolutionary algorithm for distributed multi-depot VRP. In Advances in

Knowledge-Based and Intelligent Information and Engineering Systems - 16th Annual KES

Conference, San Sebastian, Spain, pages 49�58, 2012.

[210] Andrei Soeanu, Sujoy Ray, Mourad Debbabi, Jean Berger, Abdeslem Boukhtouta, and

Ahmed Ghanmi. A decentralized heuristic for multi-depot split-delivery vehicle routing prob-

lem. In IEEE International Conference on Automation and Logistics, (ICAL), Chongqing,

China, 15-16 Aug., 2011, pages 70�75.

[211] Mingjun Song and Sanguthevar Rajasekaran. A transaction mapping algorithm for frequent

itemsets mining. IEEE transactions on Knowledge and Data Engineering, 18(4):472�481,

2006.

[212] Ayse Durukan Sonmez and Gino J Lim. A decomposition approach for facility location

and relocation problem with uncertain number of future facilities. European Journal of

Operational Research, 218(2):327�338, 2012.

[213] Alexander Souza. Combinatorial optimization. [online] https://www2.informatik.hu-

berlin.de/alcox/lehre/lvws1011/coalg/combinatorial_algorithms.pdf, Jan. 2011.

[214] Sta� Report. BTS says surface trade with NAFTA partners up 11.5 percent annually in

January 2012. Logistics management, Bureau of Transportation Statistics, Mar. 2012.

[215] Chunhua Su and Kouichi Sakurai. A distributed privacy-preserving association rules mining

scheme using frequent-pattern tree. In Changjie Tang, CharlesX. Ling, Xiaofang Zhou,

NickJ. Cercone, and Xue Li, editors, Advanced Data Mining and Applications, volume 5139

of Lecture Notes in Computer Science, pages 170�181. Springer Berlin Heidelberg, 2008.

215

https://www2.informatik.hu-berlin.de/alcox/lehre/lvws1011/coalg/combinatorial_algorithms.pdf
https://www2.informatik.hu-berlin.de/alcox/lehre/lvws1011/coalg/combinatorial_algorithms.pdf


[216] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Distributed pattern discovery

in multiple streams. In Wee Keong Ng, Masaru Kitsuregawa, Jianzhong Li, and Kuiyu

Chang, editors, PAKDD, volume 3918 of Lecture Notes in Computer Science, pages 713�718.

Springer, 2006.

[217] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Distributed pattern discovery

in multiple streams. In Advances in Knowledge Discovery and Data Mining, pages 713�718.

Springer, 2006.

[218] Atsuo Suzuki and Zvi Drezner. The p-center location problem in an area. Location Science,

4:69 � 82, 1996.

[219] Chamseddine Talhi, Nadia Tawbi, and Mourad Debbabi. Execution monitoring enforcement

under memory-limitation constraints. Information and Computation, 206(2-4):158�184, 2008.

[220] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and Young-

Koo Lee. Sliding window-based frequent pattern mining over data streams. Information

sciences, 179(22):3843�3865, 2009.

[221] Keming Tang, Caiyan Dai, and Ling Chen. A novel strategy for mining frequent closed

itemsets in data streams. Journal of Computers, 7(7):1564�1573, 2012.

[222] T. Tassa. Secure mining of association rules in horizontally distributed databases. IEEE

Transactions on Knowledge and Data Engineering, 26(4):970�983, Apr. 2014.

[223] Hetal Thakkar, Barzan Mozafari, and Carlo Zaniolo. Continuous post-mining of association

rules in a data stream management system. Post-Mining of Association Rules: Techniques

for E�ective Knowledge Extraction, pages 116�132, 2009.

[224] Michael Thielscher. Reasoning Robots: The Art and Science of Programming Robotic Agents

(Applied Logic Series). Springer Netherlands, Oct. 2010.

[225] Manisha Thool and Preeti Voditel. Association rule generation in streams. International

Journal of Advanced Research in Computer and Communication Engineering, 2(5), May

2013.

[226] Wenhong Tian, Ruini Xue, Xu Dong, and Haoyan Wang. An approach to design and imple-

ment RFID middleware system over cloud computing. International Journal of Distributed

Sensor Networks, 2013, May 2013.

[227] Frank A. Tillman and Thomas M. Cain. An upper bounding algorithm for the single and

multiple terminal delivery problem. Management Science, 18(11):664�682, Jun. 1972.

216



[228] P. Toth and D. Vigo. An overview of vehicle routing problems. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2002.

[229] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. Society for Industrial and

Applied Mathematics, 2002.

[230] Marc Uetz. Descrete optimization 2010: Lecture 1. [online] http://wwwhome.math.utwente.

nl/~uetzm/do/DO_Lecture1.pdf, 2010.

[231] Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in vertically

partitioned data. In Proceedings of the 8th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD '02, pages 639�644, New York, NY, USA,

2002. ACM.

[232] R. Van der Krogt and M. de Weerdt. Plan repair as an extension of planning. In International

Conference on Automated Planning and Scheduling, pages 161�170, Monterey, California,

USA, 2005.

[233] Manuela M. Veloso, Martha E. Pollack, and Michael T. Cox. Rationale-based monitoring

for planning in dynamic environments. In AIPS, pages 171�180, 1998.

[234] S. Vijayarani and R. Prasannalakshmi. Comparative analysis of association rule generation

algorithms in data streams. International Journal on Cybernetics & Informatics (IJCI),

4(1), Feb. 2015.

[235] Tricia Wachtendorf, Bethany Brown, and Jose Holguin-Veras. Catastrophe characteristics

and their impact on critical supply chains: problematizing materiel convergence and man-

agement following hurricane katrina. Journal of Homeland Security and Emergency Man-

agement, 10(2):497�520, 2013.

[236] En Tzu Wang and Arbee LP Chen. Mining frequent itemsets over distributed data streams

by continuously maintaining a global synopsis. Data Mining and Knowledge Discovery,

23(2):252�299, 2011.

[237] Qian Wang, Rajan Batta, Joyendu Bhadury, and Christopher M. Rump. Budget constrained

location problem with opening and closing of facilities. Computers & Operations Research,

30(13):2047 � 2069, 2003.

[238] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature,

393(6684):440�442, Jun. 1998.

217

http://wwwhome.math.utwente.nl/~uetzm/do/DO_Lecture1.pdf
http://wwwhome.math.utwente.nl/~uetzm/do/DO_Lecture1.pdf


[239] Steven Way and Yufei Yuan. Transitioning from dynamic decision support to context-aware

multi-party coordination: A case for emergency response. Group Decision and Negotiation,

23(4):649�672, 2014.

[240] David E. Wilkins, Thomas J. Lee, and Pauline Berry. Interactive execution monitoring of

agent teams. Journal of Arti�cial Intelligence Research, 18:217�261, 2003.

[241] David E. Wilkins, Karen L. Myers, John D. Lowrance, and Leonard P. Wesley. Planning and

reacting in uncertain and dynamic environments. Journal of Experimental and Theoretical

AI, 7(1):197�227, 1995.

[242] Ho Jin Woo and Won Suk Lee. estmax: Tracing maximal frequent item sets instantly over

online transactional data streams. IEEE Transactions on Knowledge and Data Engineering,

21(10):1418�1431, 2009.

[243] Gang Wu, Huxing Zhang, Meikang Qiu, Zhong Ming, Jiayin Li, and Xiao Qin. A decen-

tralized approach for mining event correlations in distributed system monitoring. Journal of

parallel and Distributed Computing, 73(3):330�340, 2013.

[244] Fetahi Wuhib, Rolf Stadler, and Mike Spreitzer. Gossip-based resource management for

cloud environments. In 2010 International Conference on Network and Service Management

(CNSM), pages 1�8, 2010.

[245] Fetahi Zebenigus Wuhib. Distributed Monitoring and Resource Management for Large Cloud

Environments. PhD thesis, KTH- Royal Institute of Technology, Stockholm, Sweden, 2010.

[246] Kefei Xin, Peng Cheng, and Jiming Chen. Multi-target localization in wireless sensor net-

works: a compressive sampling-based approach. Wireless Comm. and Mobile Computing,

15(5):801�811, 2015.

[247] Xiaolong Xue, Jinfeng Lu, Yaowu Wang, and Qiping Shen. Towards an agent-based ne-

gotiation platform for cooperative decision-making in construction supply chain. In KES

International Symposium (KES-AMSTA), 2007.

[248] Po Yang, Wenyan Wu, M. Moniri, and C.C. Chibelushi. E�cient object localization us-

ing sparsely distributed passive RFID tags. IEEE Transactions on Industrial Electronics,

60(12):5914�5924, Dec. 2013.

[249] Qianqian Yang, Shibo He, Junkun Li, Jiming Chen, and Youxian Sun. Energy-e�cient

probabilistic area coverage in wireless sensor networks. IEEE Transactions on Vehicular

Technology, 64(1):367�377, 2015.

218



[250] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual

Symposium on Foundations of Computer Science, SFCS '82, pages 160�164, Washington,

DC, USA, 1982. IEEE Computer Society.

[251] Show-Jane Yen, Cheng-Wei Wu, Yue-Shi Lee, Vincent S Tseng, and Chaur-Heh Hsieh. A

fast algorithm for mining frequent closed itemsets over stream sliding window. In 2011 IEEE

International Conference on Fuzzy Systems (FUZZ), pages 996�1002. IEEE, 2011.

[252] W. Yi and A. Kumar. Ant colony optimization for disaster relief operations. In Transportation

Research Part E: Logistics and Transportation Review, pages 660�672, 2007.

[253] W.F. Young, K.A. Remley, C.L. Holloway, G. Koepke, D. Camell, J. Ladbury, and C. Dunlap.

Radiowave propagation in urban environments with application to public-safety communi-

cations. Antennas and Propagation Magazine, IEEE, 56(4):88�107, Aug. 2014.

[254] B. Yu, Z. Z. Yang, and J.-X. Xie. A parallel improved ant colony optimization for multi-

depot vehicle routing problem. Journal of the Operational Research Society, 62(1):183�188,

2011.

[255] Je�ery Xu Yu, Zhihong Chong, Hongjun Lu, and Aoying Zhou. False positive or false nega-

tive: Mining frequent itemsets from high speed transactional data streams. In Proceedings of

the 30th International Conference on Very Large Data Bases - Volume 30, VLDB '04, pages

204�215. VLDB Endowment, 2004.

[256] Je�rey Xu Yu, Zhihong Chong, Hongjun Lu, Zhenjie Zhang, and Aoying Zhou. A false

negative approach to mining frequent itemsets from high speed transactional data streams.

Information Sciences, 176(14):1986�2015, 2006.

[257] Mohammed J Zaki. Scalable algorithms for association mining. IEEE Transactions on

Knowledge and Data Engineering, 12(3):372�390, 2000.

[258] Mohammed J Zaki and Karam Gouda. Fast vertical mining using di�sets. In Proceedings of

the 9th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 326�335. ACM, 2003.

[259] Li Zeng, Ling Li, Lian Duan, Kevin Lu, Zhongzhi Shi, Maoguang Wang, Wenjuan Wu, and

Ping Luo. Distributed data mining: A survey. Information Technology and Management,

13(4):403�409, 2012.

[260] Meng Zhang and Guojun Mao. An approach for distributed streams mining using combina-

tion of naÃ¯ve bayes and decision trees. In Proceedings of The 3rd International Conference

219



on Advances in Databases, Knowledge, and Data Applications, pages 29�33, St. Maarten,

The Netherlands Antilles, Jan. 2011. IARIA.

[261] Xie Zhi-Jun, Chen Hong, and Cuiping Li. An e�cient algorithm for frequent itemset mining

on data streams. In Advances in Data Mining. Applications in Medicine, Web Mining,

Marketing, Image and Signal Mining, pages 474�491. Springer, 2006.

[262] G. Zhou, H. Min, and M. Gen. The balanced allocation of customers to multiple distribution

centers in the supply chain network: a genetic algorithm approach. In Computers and

Industrial Engineering, pages 251�261, 2002.

220



Appendix

The case study has been modi�ed from the E016-03m problem that was published by Golden et al.

[90]. Originally the problem was designed for one depot (node 1). We multiplied the x-y coordinate

of each node by 10 for better visibility in graphics.

Name: E016-03m-modifed; Comment: Christo�des, Mingozzi and Toth, 1981; Type: CVRP;

Dimension: 16; Edge_Weight_Type: EUC_2D; Capacity: 90; Vehicles: 3

NODE_COORD_SECTION DEMAND_SECTION DEPOT_SECTION

1: 300 400 1: 0 1,2,3

2: 370 520 2: 7

3: 490 490 3: 30

4: 520 640 4: 16

5: 200 260 5: 9

6: 400 300 6: 21

7: 210 470 7: 15

8: 170 630 8: 19

9: 310 620 9: 23

10: 520 330 10: 11

11: 510 210 11: 5

12: 420 410 12: 19

13: 310 320 13: 29

14: 50 250 14: 23

15: 120 420 15: 21

16: 360 160 16: 10

221



Table 7.1: Benchmark on CVRP A-Set instances from Augerat et al.[21]- Part 1

Problem totalDem vehCnt tightness bestKnown maxHeurVal avgGap[%]

(nodes) (depots) (vehCap) (split) (minHeurVal) (avgHeurVal) (avgTime[sec])

A-n32-k5 (31) 410 (1) 5 (100) 0.82 (no) 784 (784) 791 (785.31) 0.17 (2.31)

A-n33-k5 (32) 446 (1) 5 (100) 0.892 (no) 661 (661) 669 (663.25) 0.34 (1.50)

A-n33-k6 (32) 541 (1) 6 (100) 0.901 (no) 742 (742) 745 (742.31) 0.06 (1.38)

A-n34-k5 (33) 460 (1) 5 (100) 0.92 (no) 778 (778) 791 (784.92) 0.92 (1.42)

A-n34-k5 (33) 460 (1) 5 (100) 0.92 (yes) 778 (780) 783 (782.25) 0.60 (2.25)

A-n36-k5 (35) 442 (1) 5 (100) 0.884 (no) 799 (799) 829 (818.53) 2.41 (4.13)

A-n36-k5 (35) 442 (1) 5 (100) 0.884 (yes) 799 (820) 820 (820.00) 2.60 (3.00)

A-n37-k5 (36) 407 (1) 5 (100) 0.814 (no) 669 (670) 691 (680.19) 1.68 (5.19)

A-n37-k6 (36) 570 (1) 6 (100) 0.95 (no) 949 (955) 972 (965.00) 1.70 (2.75)

A-n37-k6 (36) 570 (1) 6 (100) 0.95 (yes) 949 (948) 968 (958.00) 0.99 (5.00)

A-n38-k5 (37) 481 (1) 5 (100) 0.962 (no) 730 (730) 739 (731.80) 0.28 (3.40)

A-n38-k5 (37) 481 (1) 5 (100) 0.962 (yes) 730 (724) 745 (730.17) 0.08 (4.50)

A-n39-k5 (38) 475 (1) 5 (100) 0.95 (no) 822 (822) 830 (826.56) 0.58 (3.89)

A-n39-k5 (38) 475 (1) 5 (100) 0.95 (yes) 822 (825) 840 (829.71) 0.99 (4.86)

A-n39-k6 (38) 526 (1) 6 (100) 0.876 (no) 831 (833) 841 (834.79) 0.50 (5.50)

A-n39-k6 (38) 526 (1) 6 (100) 0.876 (yes) 831 (834) 834 (834.00) 0.40 (4.00)

A-n44-k6 (43) 570 (1) 6 (100) 0.95 (no) 937 (937) 955 (943.69) 0.73 (7.08)

A-n44-k6 (43) 570 (1) 6 (100) 0.95 (yes) 937 (937) 938 (937.33) 0.07 (4.33)

A-n45-k6 (44) 593 (1) 6 (100) 0.988 (no) 944 (948) 966 (952.88) 0.99 (6.63)

A-n45-k6 (44) 593 (1) 6 (100) 0.988 (yes) 944 (932) 943 (938.63) -0.54 (9.13)

A-n45-k7 (44) 634 (1) 7 (100) 0.905 (no) 1146 (1151) 1164 (1157.91) 1.07 (6.82)

A-n45-k7 (44) 634 (1) 7 (100) 0.905 (yes) 1146 (1154) 1171 (1159.80) 1.24 (11.40)

A-n46-k7 (45) 603 (1) 7 (100) 0.861 (no) 914 (915) 948 (920.36) 0.75 (9.00)

A-n46-k7 (45) 603 (1) 7 (100) 0.861 (yes) 914 (926) 935 (929.00) 1.66 (10.20)

A-n48-k7 (47) 626 (1) 7 (100) 0.894 (no) 1073 (1073) 1112 (1101.62) 2.64 (13.08)

A-n48-k7 (47) 626 (1) 7 (100) 0.894 (yes) 1073 (1078) 1085 (1082.67) 0.97 (12.00)

A-n53-k7 (52) 664 (1) 7 (100) 0.948 (no) 1010 (1014) 1036 (1025.25) 1.52 (13.88)

A-n53-k7 (52) 664 (1) 7 (100) 0.948 (yes) 1010 (1008) 1023 (1015.75) 0.60 (16.50)

A-n54-k7 (53) 669 (1) 7 (100) 0.955 (no) 1167 (1173) 1190 (1180.13) 1.19 (16.88)

A-n54-k7 (53) 669 (1) 7 (100) 0.955 (yes) 1167 (1171) 1179 (1174.50) 0.69 (29.38)

A-n55-k9 (54) 839 (1) 9 (100) 0.932 (no) 1073 (1074) 1103 (1082.78) 0.93 (10.00)

A-n55-k9 (54) 839 (1) 9 (100) 0.932 (yes) 1073 (1074) 1093 (1082.00) 0.86 (16.71)

A-n60-k9 (59) 829 (1) 9 (100) 0.921 (no) 1354 (1357) 1377 (1364.45) 0.83 (27.18)

A-n60-k9 (59) 829 (1) 9 (100) 0.921 (yes) 1354 (1357) 1375 (1363.20) 0.72 (38.00)

A-n61-k9 (60) 885 (1) 9 (100) 0.983 (no) 1035 (1038) 1052 (1043.38) 0.84 (19.13)

A-n61-k9 (60) 885 (1) 9 (100) 0.983 (yes) 1034 (1022) 1028 (1025.63) -0.74 (36.63)

A-n62-k8 (61) 733 (1) 8 (100) 0.916 (no) 1290 (1310) 1325 (1319.46) 2.28 (37.69)

A-n62-k8 (61) 733 (1) 8 (100) 0.916 (yes) 1290 (1314) 1321 (1316.67) 2.10 (42.33)

A-n63-k9 (62) 873 (1) 9 (100) 0.97 (no) 1616 (1630) 1648 (1633.13) 1.10 (26.13)

A-n63-k9 (62) 873 (1) 9 (100) 0.97 (yes) 1616 (1625) 1633 (1627.50) 0.76 (36.13)

A-n63-k10 (62) 932 (1) 10 (100) 0.932 (no) 1315 (1321) 1330 (1325.50) 0.86 (23.63)

A-n63-k10 (62) 932 (1) 10 (100) 0.932 (yes) 1315 (1312) 1329 (1321.50) 0.54 (38.25)

A-n64-k9 (63) 848 (1) 9 (100) 0.942 (no) 1402 (1427) 1450 (1437.13) 2.51 (29.63)

A-n64-k9 (63) 848 (1) 9 (100) 0.942 (yes) 1402 (1410) 1443 (1429.00) 1.95 (42.25)

222



Table 7.2: Benchmark on CVRP A-Set instances from Augerat et al.[21]- Part 2

Problem totalDem vehCnt tightness bestKnown maxHeurVal avgGap[%]

(nodes) (depots) (vehCap) (split) (minHeurVal) (avgHeurVal) (avgTime[sec])

A-n69-k9 (68) 845 (1) 9 (100) 0.938 (no) 1159 (1171) 1181 (1174.89) 1.39 (35.00)

A-n69-k9 (68) 845 (1) 9 (100) 0.938 (yes) 1159 (1168) 1179 (1174.00) 1.30 (38.57)

A-n80-k10 (79) 942 (1) 10 (100) 0.942 (no) 1764 (1799) 1823 (1806.33) 2.40 (67.78)

A-n80-k10 (79) 942 (1) 10 (100) 0.942 (yes) 1764 (1785) 1816 (1799.86) 2.03 (97.00)

Table 7.3: Benchmark on CVRP B-Set instances from Augerat et al.[21]-Part 1

Problem totalDem vehCnt tightness bestKnown maxHeurVal avgGap[%]

(nodes) (depots) (vehCap) (split) (minHeurVal) (avgHeurVal) (avgTime[sec])

B-n31-k5 (30) 412 (1) 5 (100) 0.824 (no) 672 (672) 675 (672.44) 0.08 (1.38)

B-n34-k5 (33) 457 (1) 5 (100) 0.914 (no) 788 (789) 789 (789.00) 0.20 (1.88)

B-n34-k5 (33) 457 (1) 5 (100) 0.914 (yes) 788 (782) 783 (782.50) -0.65 (3.25)

B-n35-k5 (34) 437 (1) 5 (100) 0.874 (no) 955 (956) 979 (962.60) 0.86 (3.47)

B-n35-k5 (34) 437 (1) 5 (100) 0.874 (yes) 955 (976) 976 (976.00) 2.20 (4.00)

B-n38-k6 (37) 512 (1) 6 (100) 0.853 (no) 805 (805) 809 (806.80) 0.27 (4.73)

B-n38-k6 (37) 512 (1) 6 (100) 0.853 (yes) 805 (807) 807 (807.00) 0.30 (7.00)

B-n39-k5 (38) 440 (1) 5 (100) 0.88 (no) 549 (549) 571 (560.67) 2.11 (4.11)

B-n39-k5 (38) 440 (1) 5 (100) 0.88 (yes) 549 (550) 555 (552.57) 0.70 (4.29)

B-n41-k6 (40) 567 (1) 6 (100) 0.945 (no) 829 (834) 844 (838.20) 1.12 (4.50)

B-n41-k6 (40) 567 (1) 6 (100) 0.945 (yes) 829 (827) 839 (831.67) 0.37 (8.50)

B-n43-k6 (42) 521 (1) 6 (100) 0.868 (no) 742 (742) 749 (744.69) 0.42 (9.77)

B-n43-k6 (42) 521 (1) 6 (100) 0.868 (yes) 742 (741) 746 (743.33) 0.23 (11.67)

B-n44-k7 (43) 641 (1) 7 (100) 0.915 (no) 909 (909) 932 (925.79) 1.86 (8.71)

B-n44-k7 (43) 641 (1) 7 (100) 0.915 (yes) 909 (927) 933 (930.00) 2.30 (10.00)

B-n45-k5 (44) 486 (1) 5 (100) 0.972 (no) 751 (760) 772 (765.11) 1.90 (8.89)

B-n45-k5 (44) 486 (1) 5 (100) 0.972 (yes) 751 (758) 768 (763.29) 1.67 (11.57)

B-n45-k6 (44) 592 (1) 6 (100) 0.986 (no) 678 (678) 691 (682.50) 0.68 (8.88)

B-n45-k6 (44) 592 (1) 6 (100) 0.986 (yes) 678 (674) 677 (675.38) -0.32 (10.13)

B-n50-k7 (49) 609 (1) 7 (100) 0.87 (no) 741 (741) 744 (741.71) 0.13 (15.14)

B-n50-k7 (49) 609 (1) 7 (100) 0.87 (yes) 741 (743) 744 (743.50) 0.40 (19.50)

B-n50-k8 (49) 735 (1) 8 (100) 0.918 (no) 1312 (1319) 1332 (1327.75) 1.26 (14.88)

B-n50-k8 (49) 735 (1) 8 (100) 0.918 (yes) 1312 (1293) 1330 (1314.38) 0.22 (23.88)

B-n51-k7 (50) 684 (1) 7 (100) 0.977 (no) 1032 (1032) 1047 (1036.75) 0.47 (11.00)

B-n51-k7 (50) 684 (1) 7 (100) 0.977 (yes) 1032 (1026) 1042 (1034.75) 0.31 (19.38)

B-n52-k7 (51) 606 (1) 7 (100) 0.865 (no) 747 (748) 753 (751.54) 0.62 (15.69)

B-n52-k7 (51) 606 (1) 7 (100) 0.865 (yes) 747 (751) 753 (752.00) 0.70 (16.67)

B-n56-k7 (55) 616 (1) 7 (100) 0.88 (no) 707 (709) 716 (712.93) 0.87 (25.87)

B-n56-k7 (55) 616 (1) 7 (100) 0.88 (yes) 707 (717) 717 (717.00) 1.40 (20.00)

B-n57-k7 (56) 697 (1) 7 (100) 0.995 (no) 1153 (1158) 1192 (1173.13) 1.75 (22.00)

B-n57-k7 (56) 697 (1) 7 (100) 0.995 (yes) 1153 (1147) 1159 (1153.00) 0.05 (32.38)

B-n57-k9 (56) 803 (1) 9 (100) 0.892 (no) 1598 (1601) 1628 (1612.25) 0.93 (15.25)

B-n57-k9 (56) 803 (1) 9 (100) 0.892 (yes) 1598 (1594) 1613 (1601.75) 0.29 (28.25)

B-n63-k10 (62) 922 (1) 10 (100) 0.922 (no) 1496 (1537) 1548 (1542.38) 3.05 (29.75)

B-n63-k10 (62) 922 (1) 10 (100) 0.922 (yes) 1496 (1484) 1547 (1515.25) 1.29 (38.13)

B-n64-k9 (63) 878 (1) 9 (100) 0.975 (no) 861 (867) 881 (875.75) 1.71 (30.50)

B-n64-k9 (63) 878 (1) 9 (100) 0.975 (yes) 861 (861) 869 (865.13) 0.54 (49.00)

B-n66-k9 (65) 861 (1) 9 (100) 0.956 (no) 1316 (1318) 1332 (1323.00) 0.60 (36.63)

B-n66-k9 (65) 861 (1) 9 (100) 0.956 (yes) 1316 (1315) 1322 (1318.38) 0.24 (46.88)

B-n67-k10 (66) 907 (1) 10 (100) 0.907 (no) 1032 (1065) 1078 (1072.70) 3.83 (36.90)

B-n67-k10 (66) 907 (1) 10 (100) 0.907 (yes) 1032 (1040) 1075 (1059.33) 2.58 (53.17)

B-n68-k9 (67) 837 (1) 9 (100) 0.93 (no) 1272 (1287) 1294 (1289.88) 1.44 (40.75)

223



Table 7.4: Benchmark on CVRP B-Set instances from Augerat et al.[21]-Part 2

Problem totalDem vehCnt tightness bestKnown maxHeurVal avgGap[%]

(nodes) (depots) (vehCap) (split) (minHeurVal) (avgHeurVal) (avgTime[sec])

B-n68-k9 (67) 837 (1) 9 (100) 0.93 (yes) 1272 (1270) 1290 (1281.00) 0.74 (52.50)

B-n78-k10 (77) 937 (1) 10 (100) 0.937 (no) 1221 (1237) 1254 (1244.13) 1.91 (76.00)

B-n78-k10 (77) 937 (1) 10 (100) 0.937 (yes) 1221 (1222) 1247 (1232.50) 0.97 (97.38)

Table 7.5: Benchmark on known CVRP instances: P-Set from Augerat et al.[21]

Problem totalDem vehCnt tightness bestKnown maxHeurVal avgGap[%]

(nodes) (depots) (vehCap) (split) (minHeurVal) (avgHeurVal) (avgTime[sec])

P-n16-k8 (15) 246 (1) 8 (35) 1.13 (no) 450 (450) 450 (450.00) 0.00 (1.00)

P-n16-k8 (15) 246 (1) 8 (35) 1.13 (yes) 450 (440) 440 (440.00) -2.20 (1.00)

P-n19-k2 (18) 310 (1) 2 (160) 1.03 (no) 212 (212) 212 (212.00) 0.00 (1.00)

P-n19-k2 (18) 310 (1) 2 (160) 1.03 (yes) 212 (205) 205 (205.00) -3.40 (1.00)

P-n20-k2 (19) 310 (1) 2 (160) 1.03 (no) 216 (217) 217 (217.00) 0.50 (1.00)

P-n21-k2 (20) 298 (1) 2 (160) 1.07 (no) 211 (211) 211 (211.00) 0.00 (1.00)

P-n22-k2 (21) 308 (1) 2 (160) 1.03 (no) 216 (216) 216 (216.00) 0.00 (1.00)

P-n22-k8 (21) 22500 (1) 8 (3000) 1.06 (no) 603 (603) 603 (603.00) 0.00 (1.00)

P-n22-k8 (21) 22500 (1) 8 (3000) 1.06 (yes) 603 (575) 586 (577.38) -4.38 (1.00)

P-n23-k8 (22) 313 (1) 8 (40) 1.02 (no) 529 (529) 533 (529.50) 0.10 (1.00)

P-n23-k8 (22) 313 (1) 8 (40) 1.02 (yes) 529 (511) 519 (512.75) -3.15 (1.00)

P-n40-k5 (39) 618 (1) 5 (140) 1.13 (no) 458 (458) 464 (459.27) 0.29 (4.87)

P-n45-k5 (44) 692 (1) 5 (150) 1.08 (no) 510 (510) 520 (516.08) 1.22 (5.92)

P-n50-k10 (49) 951 (1) 10 (100) 1.05 (no) 696 (697) 707 (702.25) 0.92 (2.63)

P-n50-k10 (49) 951 (1) 10 (100) 1.05 (yes) 696 (692) 699 (696.25) 0.08 (4.50)

P-n50-k7 (49) 951 (1) 7 (150) 1.1 (no) 554 (556) 565 (560.07) 1.12 (8.47)

P-n50-k8 (49) 951 (1) 8 (120) 1.0 (no) 631 (638) 645 (641.38) 1.65 (4.50)

P-n50-k8 (49) 951 (1) 8 (120) 1.0 (yes) 631 (618) 622 (619.50) -1.82 (10.38)

P-n51-k10 (50) 777 (1) 10 (80) 1.02 (no) 741 (741) 756 (747.25) 0.86 (3.50)

P-n51-k10 (50) 777 (1) 10 (80) 1.02 (yes) 741 (730) 739 (733.88) -0.94 (4.50)

P-n55-k10 (54) 1042 (1) 10 (115) 1.1 (no) 694 (696) 702 (700.00) 0.89 (5.36)

P-n55-k15 (54) 1042 (1) 15 (70) 1.0 (no) 989 (996) 1067 (1024.75) 3.49 (14.00)

P-n55-k15 (54) 1042 (1) 15 (70) 1.0 (yes) 989 (922) 937 (928.00) -6.52 (11.38)

P-n55-k7 (54) 1042 (1) 7 (170) 1.14 (no) 568 (575) 579 (576.20) 1.48 (16.07)

P-n60-k10 (59) 1134 (1) 10 (120) 1.05 (no) 744 (750) 756 (752.50) 1.16 (8.50)

P-n60-k10 (59) 1134 (1) 10 (120) 1.05 (yes) 744 (742) 755 (749.25) 0.74 (17.50)

P-n60-k15 (59) 1134 (1) 15 (80) 1.05 (no) 968 (975) 980 (976.25) 0.93 (9.50)

P-n60-k15 (59) 1134 (1) 15 (80) 1.05 (yes) 968 (965) 971 (968.25) 0.09 (10.38)

P-n65-k10 (64) 1219 (1) 10 (130) 1.06 (no) 792 (800) 806 (802.33) 1.32 (19.08)

P-n70-k10 (69) 1313 (1) 10 (135) 1.02 (no) 827 (835) 845 (837.25) 1.26 (28.13)

P-n70-k10 (69) 1313 (1) 10 (135) 1.02 (yes) 827 (825) 837 (830.25) 0.41 (43.25)

P-n76-k4 (75) 1364 (1) 4 (350) 1.02 (no) 593 (598) 614 (606.31) 2.24 (19.23)

P-n76-k5 (75) 1364 (1) 5 (280) 1.02 (no) 627 (630) 648 (638.43) 1.83 (22.07)

P-n101-k4 (100) 1458 (1) 4 (400) 1.09 (no) 681 (696) 735 (718.31) 5.23 (40.75)

224



Table 7.6: Solutions from SQ-Series with better cost than best known

Problem[sol] SQ1 (Split) [1048]

Route 0, 1, 2,0 (3)

Serve 0,80,20,0 100

Cost 14,10,10 34

Route 0, 8, 7,0 (3)

Serve 0,85,15,0 100

Cost 14,10,10 34

Route 0, 3, 5,0 (3)

Serve 0,80,20,0 100

Cost 14,10,10 34

Route 0, 4, 6,0 (3)

Serve 0,20,80,0 100

Cost 10,10,14 34

Route 0, 2,10,0 (3)

Serve 0,40,60,0 100

Cost 10,10,20 40

Route 0, 4,12,0 (3)

Serve 0,40,60,0 100

Cost 10,10,20 40

Route 0, 5,13,0 (3)

Serve 0,40,60,0 100

Cost 10,10,20 40

Route 0,15, 7,0 (3)

Serve 0,55,45,0 100

Cost 20,10,10 40

Route 0,11, 3,0 (3)

Serve 0,90,10,0 100

Cost 28,14,14 56

Route 0, 9, 1,0 (3)

Serve 0,90,10,0 100

Cost 28,14,14 56

Route 0, 8,16,27,0 (4)

Serve 0, 5,85,10,0 100

Cost 14,14, 2,30 60

Route 0, 6,14,25,0 (4)

Serve 0,10,85, 5,0 100

Cost 14,14, 2,30 60

Route 33,19,18,33 (3)

Serve 0,75,25, 0 100

Cost 14,10,10 34

Route 33,17,20,33 (3)

Serve 0,80,20, 0 100

Cost 14,10,10 34

Route 33,21,24,33 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 33,23,22,33 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 33,31,23,33 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 33,28,20,33 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 33,18,26,33 (3)

Serve 0,35,65, 0 100

Cost 10,10,20 40

Route 33,29,21,33 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 33,25,17,33 (3)

Serve 0,90,10, 0 100

Cost 28,14,14 56

Route 33,32,24,33 (3)

Serve 0,90,10, 0 100

Cost 28,14,14 56

Route 33,19,27,33 (3)

Serve 0,15,85, 0 100

Cost 14,14,28 56

Route 33,22,30,33 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

Pb.[sol] SQ2 (Split) [1588]

Route 0, 8, 7,0 (3)

Serve 0,90,10,0 100

Cost 14,10,10 34

Route 0, 2, 1,0 (3)

Serve 0,20,80,0 100

Cost 10,10,14 34

Route 0, 4, 6,0 (3)

Serve 0,20,80,0 100

Cost 10,10,14 34

Route 0, 3, 5,0 (3)

Serve 0,80,20,0 100

Cost 14,10,10 34

Route 0,10, 2,0 (3)

Serve 0,60,40,0 100

Cost 20,10,10 40

Route 0, 4,12,0 (3)

Serve 0,40,60,0 100

Cost 10,10,20 40

Route 0,13, 5,0 (3)

Serve 0,60,40,0 100

Cost 20,10,10 40

Route 0,15, 7,0 (3)

Serve 0,50,50,0 100

Cost 20,10,10 40

Route 0,11, 3,0 (3)

Serve 0,90,10,0 100

Cost 28,14,14 56

Route 49,20,17,49 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 49,18,19,49 (3)

Serve 0,60,40, 0 100

Cost 10,10,14 34

Route 49,21,24,49 (3)

Serve 0,30,70, 0 100

Cost 10,10,14 34

Route 49,23,22,49 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 49,28,20,49 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 49,31,23,49 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 49,29,44,21,49 (4)

Serve 0,65, 5,30, 0 100

Cost 20, 2,12,10 44

Route 49,19,26,15,49 (4)

Serve 0,30,65, 5, 0 100

Cost 14,14, 2,22 52

Route 49,17,25,49 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

Route 50,38,36,50 (3)

Serve 0,90,10, 0 100

Cost 14,10,10 34

Route 50,33,34,50 (3)

Serve 0,80,20, 0 100

Cost 14,10,10 34

Route 50,37,35,50 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 50,40,39,50 (3)

Serve 0,80,20, 0 100

Cost 14,10,10 34

Route 50,44,36,50 (3)

Serve 0,50,50, 0 100

Cost 20,10,10 40

Route 50,34,42,50 (3)

Serve 0,40,60, 0 100

Cost 10,10,20 40

Route 50,39,47,50 (3)

Serve 0,40,60, 0 100

Cost 10,10,20 40

Route 50,37,45,50 (3)

Serve 0,40,60, 0 100

Cost 10,10,20 40

Route 50,35,43,50 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

225



Pb.[sol] SQ2 (Split) [1588] Continued ...

Route 0, 1, 9,0 (3)

Serve 0,10,90,0 100

Cost 14,14,28 56

Route 0,14,25, 6,0 (4)

Serve 0,85, 5,10,0 100

Cost 28, 2,16,14 60

Route 0,16,27,0 (3)

Serve 0,85,15,0 100

Cost 28, 2,30 60

Route 49,24,32,49 (3)

Serve 0,20,80, 0 100

Cost 14,14,28 56

Route 49,22,30,49 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

Route 49,19,27,49 (3)

Serve 0,20,80, 0 100

Cost 14,14,28 56

Route 50,33,41,50 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

Route 50,40,48,50 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

Route 50,46,32,50 (3)

Serve 0,85,15, 0 100

Cost 28, 2,30 60

Pb.[sol] SQ3 (Split) [2116]

Route 0, 5, 3,0 (3)

Serve 0,15,85,0 100

Cost 10,10,14 34

Route 0, 7, 8,0 (3)

Serve 0,25,75,0 100

Cost 10,10,14 34

Route 0, 2, 1,0 (3)

Serve 0,20,80,0 100

Cost 10,10,14 34

Route 0, 4, 6,0 (3)

Serve 0,20,80,0 100

Cost 10,10,14 34

Route 0,13, 5,0 (3)

Serve 0,55,45,0 100

Cost 20,10,10 40

Route 0, 2,10,0 (3)

Serve 0,40,60,0 100

Cost 10,10,20 40

Route 0, 4,12,0 (3)

Serve 0,40,60,0 100

Cost 10,10,20 40

Route 0,26,15, 7,0 (4)

Serve 0,10,55,35,0 100

Cost 22, 2,10,10 44

Route 0, 9, 1,0 (3)

Serve 0,90,10,0 100

Cost 28,14,14 56

Route 0, 8,16,0 (3)

Serve 0,15,85,0 100

Cost 14,14,28 56

Route 0, 3,11,57,0 (4)

Serve 0, 5,85,10,0 100

Cost 14,14, 2,30 60

Route 0,14,25, 6,0 (4)

Serve 0,85, 5,10,0 100

Cost 28, 2,16,14 60

Route 65,24,21,65 (3)

Serve 0,70,30, 0 100

Cost 14,10,10 34

Route 65,20,17,65 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 65,18,19,65 (3)

Serve 0,15,85, 0 100

Cost 10,10,14 34

Route 65,23,22,65 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 65,18,26,65 (3)

Serve 0,45,55, 0 100

Cost 10,10,20 40

Route 65,31,23,65 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 65,28,20,65 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 65,21,29,44,65 (4)

Serve 0,30,65, 5, 0 100

Cost 10,10, 2,22 44

Route 65,19,27,65 (3)

Serve 0, 5,95, 0 100

Cost 14,14,28 56

Route 65,17,25,65 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

Route 65,24,32,65 (3)

Serve 0,20,80, 0 100

Cost 14,14,28 56

Route 65,22,30,65 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

Route 66,37,40,66 (3)

Serve 0,10,90, 0 100

Cost 10,10,14 34

Route 66,33,34,66 (3)

Serve 0,85,15, 0 100

Cost 14,10,10 34

Route 66,37,35,66 (3)

Serve 0,10,90, 0 100

Cost 10,10,14 34

Route 66,38,39,66 (3)

Serve 0,90,10, 0 100

Cost 14,10,10 34

Route 66,37,45,66 (3)

Serve 0,40,60, 0 100

Cost 10,10,20 40

Route 66,36,44,66 (3)

Serve 0,50,50, 0 100

Cost 10,10,20 40

Route 66,34,42,66 (3)

Serve 0,45,55, 0 100

Cost 10,10,20 40

Route 66,47,39,66 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 66,48,39,66 (3)

Serve 0,90,10, 0 100

Cost 28,22,10 60

Route 66,43,64,66 (3)

Serve 0,85,15, 0 100

Cost 28, 2,30 60

Route 66,33,41,36,66 (4)

Serve 0, 5,85,10, 0 100

Cost 14,14,22,10 60

Route 66,46,32,66 (3)

Serve 0,85,15, 0 100

Cost 28, 2,30 60

Route 67,55,54,67 (3)

Serve 0,15,85, 0 100

Cost 10,10,14 34

Route 67,56,55,67 (3)

Serve 0,90,10, 0 100

Cost 14,10,10 34

Route 67,50,51,67 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 67,52,49,67 (3)

Serve 0,25,75, 0 100

Cost 10,10,14 34

Route 67,52,60,67 (3)

Serve 0,35,65, 0 100

Cost 10,10,20 40

Route 67,61,53,67 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 67,55,63,67 (3)

Serve 0,35,65, 0 100

Cost 10,10,20 40

Route 67,58,50,67 (3)

Serve 0,60,40, 0 100

Cost 20,10,10 40

Route 67,54,62,67 (3)

Serve 0, 5,95, 0 100

Cost 14,14,28 56

Route 67,49,57,67 (3)

Serve 0,15,85, 0 100

Cost 14,14,28 56

Route 67,59,51,67 (3)

Serve 0,90,10, 0 100

Cost 28,14,14 56

Route 67,53,64,67 (3)

Serve 0,20,80, 0 100

Cost 10,22,28 60

226



Pb.[sol] SQ9 (Split) [7047]

Route 0,28,36,0 (3)

Serve 0,60,40,0 100

Cost 40,10,50 100

Route 0,39,31,0 (3)

Serve 0,60,40,0 100

Cost 50,10,40 100

Route 0,21,29,37,0 (4)

Serve 0,20,60,20,0 100

Cost 30,10,10,50 100

Route 0,26,34,18,0 (4)

Serve 0,40,40,20,0 100

Cost 40,10,20,30 100

Route 0,15,23,24,0 (4)

Serve 0,10,30,60,0 100

Cost 20,10,30,42 102

Route 0,22,30,0 (3)

Serve 0,10,90,0 100

Cost 42,14,57 113

Route 0,32,24,0 (3)

Serve 0,90,10,0 100

Cost 57,14,42 113

Route 0,25,17,0 (3)

Serve 0,90,10,0 100

Cost 57,14,42 113

Route 0,19,27,0 (3)

Serve 0,10,90,0 100

Cost 42,14,57 113

Route 0,26,34,42,0 (4)

Serve 0,20,20,60,0 100

Cost 40,10,10,60 120

Route 0,23,31,47,0 (4)

Serve 0,30,20,50,0 100

Cost 30,10,20,60 120

Route 0,37,45,0 (3)

Serve 0,40,60,0 100

Cost 50,10,60 120

Route 0,20,36,44,0 (4)

Serve 0,20,20,60,0 100

Cost 30,20,10,60 120

Route 0,17,33,0 (3)

Serve 0,20,80,0 100

Cost 42,28,71 141

Route 0,24,40,0 (3)

Serve 0,20,80,0 100

Cost 42,28,71 141

Route 0,19,35,0 (3)

Serve 0,20,80,0 100

Cost 42,28,71 141

Route 0,22,38,0 (3)

Serve 0,10,90,0 100

Cost 42,28,71 141

Route 0,33,41,0 (3)

Serve 0,10,90,0 100

Cost 71,14,85 170

Route 0,35,43,0 (3)

Serve 0,10,90,0 100

Cost 71,14,85 170

Route 0,40,48,91,0 (4)

Serve 0,10,85, 5,0 100

Cost 71,14, 2,86 173

Route 0, 4, 1,0 (3)

Serve 0,60,40,0 100

Cost 10,10,14 34

Route 0, 6,15,0 (3)

Serve 0,50,50,0 100

Cost 14,14,20 48

Route 0, 9, 1,0 (3)

Serve 0,50,50,0 100

Cost 28,14,14 56

Route 0, 8,16,0 (3)

Serve 0,10,90,0 100

Cost 14,14,28 56

Route 0, 3,11,0 (3)

Serve 0,50,50,0 100

Cost 14,14,28 56

Route 0, 6,14,0 (3)

Serve 0,40,60,0 100

Cost 14,14,28 56

Route 0,12,20,0 (3)

Serve 0,60,40,0 100

Cost 20,10,30 60

Route 0,13,21,0 (3)

Serve 0,60,40,0 100

Cost 20,10,30 60

Route 0,10,18,0 (3)

Serve 0,60,40,0 100

Cost 20,10,30 60

Route 0,14,22,0 (3)

Serve 0,30,70,0 100

Cost 28,14,42 84

Route 0, 9,17,0 (3)

Serve 0,40,60,0 100

Cost 28,14,42 84

Route 0,11,19,0 (3)

Serve 0,40,60,0 100

Cost 28,14,42 84

Route 97,66,74,82,97 (4)

Serve 0,10,60,30, 0 100

Cost 30,10,10,50 100

Route 97,68,76,84,97 (4)

Serve 0,20,30,50, 0 100

Cost 30,10,10,50 100

Route 97,69,77,85,97 (4)

Serve 0,20,40,40, 0 100

Cost 30,10,10,50 100

Route 97,79,87,97 (3)

Serve 0,50,50, 0 100

Cost 40,10,50 100

Route 97,69,72,97 (3)

Serve 0,40,60, 0 100

Cost 30,30,42 102

Route 97,60,68,65,97 (4)

Serve 0,10,40,50, 0 100

Cost 20,10,30,42 102

Route 97,78,70,97 (3)

Serve 0,90,10, 0 100

Cost 57,14,42 113

Route 97,72,80,97 (3)

Serve 0,10,90, 0 100

Cost 42,14,57 113

Route 97,76,84,92,97 (4)

Serve 0,30,10,60, 0 100

Cost 40,10,10,60 120

Route 97,82,90,47,97 (4)

Serve 0,30,65, 5, 0 100

Cost 50,10, 2,62 124

Route 97,72,88,97 (3)

Serve 0,10,90, 0 100

Cost 42,28,71 141

Route 97,70,86,97 (3)

Serve 0,20,80, 0 100

Cost 42,28,71 141

Route 97,65,81,97 (3)

Serve 0,10,90, 0 100

Cost 42,28,71 141

Route 97,83,67,97 (3)

Serve 0,90,10, 0 100

Cost 71,28,42 141

Route 97,91,67,97 (3)

Serve 0,90,10, 0 100

Cost 85,42,42 169

Route 97,65,89,97 (3)

Serve 0,20,80, 0 100

Cost 42,42,85 169

Route 97,96,72,97 (3)

Serve 0,90,10, 0 100

Cost 85,42,42 169

Route 97,86,94,97 (3)

Serve 0,10,90, 0 100

Cost 71,14,85 170

Route 97,52,55,97 (3)

Serve 0,60,40, 0 100

Cost 10,14,10 34

Route 97,53,56,97 (3)

Serve 0,10,90, 0 100

Cost 10,10,14 34

Route 97,53,51,97 (3)

Serve 0,10,90, 0 100

Cost 10,10,14 34

Route 97,50,49,97 (3)

Serve 0,20,80, 0 100

Cost 10,10,14 34

Route 97,54,55,97 (3)

Serve 0,90,10, 0 100

Cost 14,10,10 34

Route 97,50,58,97 (3)

Serve 0,40,60, 0 100

Cost 10,10,20 40

Route 97,53,61,97 (3)

Serve 0,40,60, 0 100

Cost 10,10,20 40

Route 97,49,57,97 (3)

Serve 0,10,90, 0 100

Cost 14,14,28 56

Route 97,63,71,97 (3)

Serve 0,50,50, 0 100

Cost 20,10,30 60

Route 97,55,64,97 (3)

Serve 0,10,90, 0 100

Cost 10,22,28 60

227



Pb.[sol] SQ9 (Split) [7047] Continued...

Route 0,46,89,0 (3)

Serve 0,85,15,0 100

Cost 85, 2,86 173

Route 0, 7, 8,0 (3)

Serve 0,60,40,0 100

Cost 10,10,14 34

Route 0, 5, 8,0 (3)

Serve 0,60,40,0 100

Cost 10,10,14 34

Route 0, 2, 3,0 (3)

Serve 0,60,40,0 100

Cost 10,10,14 34

Route 97,75,67,97 (3)

Serve 0,90,10, 0 100

Cost 57,14,42 113

Route 97,65,73,97 (3)

Serve 0,10,90, 0 100

Cost 42,14,57 113

Route 97,63,71,79,87,95,97 (6)

Serve 0,10,10,10,10,60, 0 100

Cost 20,10,10,10,10,60 120

Route 97,93,85,77,97 (4)

Serve 0,60,20,20, 0 100

Cost 60,10,10,40 120

Route 97,60,62,97 (3)

Serve 0,50,50, 0 100

Cost 20,20,28 68

Route 97,59,66,97 (3)

Serve 0,50,50, 0 100

Cost 28,22,30 80

Route 97,67,59,97 (3)

Serve 0,60,40, 0 100

Cost 42,14,28 84

Route 97,62,70,97 (3)

Serve 0,40,60, 0 100

Cost 28,14,42 84

Table 7.7: Solutions from SDVRP instances with better cost than best known

Problem[sol] Solution Details (segments): tour serve / tour cost

eilB76

(split)

[1010]

Route 1,59,11,32,56,26,1 (6)

Serve 0,21,26,25, 7,14,0 93

Cost 20, 6,13,22, 9,33 103

Route 1,76, 5,53,35,1 (5)

Serve 0,20,30,19,19,0 88

Cost 3, 5, 9, 4,10 31

Route 1,27,13,41,18,1 (5)

Serve 0,18,16,33,20,0 87

Cost 6, 8, 5, 7, 8 34

Route 1,68,47, 9,36, 8,1 (6)

Serve 0,30,27,16,10,15,0 98

Cost 5, 6, 5, 5, 5,14 40

Route 1,69, 3,63,29,75,31,1 (7)

Serve 0,10,26,15,29,10,10,0 100

Cost 7, 7, 8, 6, 6, 7,14 55

Route 1,73,40,10,33,45, 4,1 (7)

Serve 0, 1,16,29,26,17,11,0 100

Cost 21, 5, 4, 7, 5, 3,20 65

Route 1,39,66,67,12,1 (5)

Serve 0,24, 9,37,29,0 99

Cost 27, 5, 7, 7,29 75

Route 1,46,30,16,58,55,14,28,1 (8)

Serve 0,21,12, 8,14,16,12,17,0 100

Cost 14, 4,10, 4,14, 8, 7,16 77

Route 1, 7,34, 2,57,24,64,1 (7)

Serve 0,19,27,11,26, 6,11,0 100

Cost 9, 9, 8,16, 6, 9,22 79

Route 1,52,17,50,25,19,51,33,1 (8)

Serve 0,12,19, 5,27,13,22, 2,0 100

Cost 11, 9, 9, 7,13, 6, 8,22 85

Route 1,54,12,60,15,20,1 (6)

Serve 0,22, 8,24,31,15,0 100

Cost 23, 8,15,11, 9,23 89

Route 1,22,62,70,48,49,31,1 (7)

Serve 0,28,15, 8,19,20,10,0 100

Cost 27,11,14,11, 6, 7,14 90

Route 1,30, 6,38,21,71,61,72,37,31,1 (10)

Serve 0, 1,21,14,22,11,13, 3,12, 2,0 99

Cost 18, 7, 7, 6, 6, 4, 5, 7,19,14 93

Route 1,74,2,44,42,43,65,23,63,1 (9)

Serve 0, 6,7,18,15,11,28,12, 3,0 100

Cost 21, 5,7, 4, 4, 9,14, 8,22 94

S51D2

(split)

[707]

Route 1,46,34,40,31,11, 6,1 (7)

Serve 0,43,19,47,18,20,12,0 159

Cost 31, 7,14,12, 9,14,14 101

Route 1,13,38,16,45,18,48,1 (7)

Serve 0,17,25,41,17,45,15,0 160

Cost 8,10, 7, 6, 9, 9, 9 58

Route 1,33,12,39,10,50, 6,1 (7)

Serve 0,15,46,18,24,47, 9,0 159

Cost 10, 6, 7, 7, 6, 8,14 58

Route 1, 7,15,26,14,19,47,1 (7)

Serve 0,21,19,43,37,18,19,0 157

Cost 11,10, 6,13,14,16, 2 72

Route 1,28, 9,27,32,29, 2,1 (7)

Serve 0,24,22,18,37,23,33,0 157

Cost 8,14, 7,10, 6,16,14 75

Route 1,17,51,35,22,30, 3,1 (7)

Serve 0,18,20,18,47,33,23,0 159

Cost 22, 6, 6, 9, 7, 9,21 80

Route 1,49,24, 8,44,25,1 (6)

Serve 0,19,20,47,43,23,0 152

Cost 16, 9, 6,12,12,25 80

Route 1,23, 4,37,36,21,33,1 (7)

Serve 0,18,46,22,45,21, 8,0 160

Cost 21,12,12, 6, 7,22,10 90

Route 1,48, 5,42,20,41,43,1 (7)

Serve 0,18,28,36,32,20,18,0 152

Cost 9, 8,13, 5,11,16,31 93

228



Problem[sol] Solution Details (segments): tour serve / tour cost

S51D3

(split)

[953]

Route 1,13,48,19,1 (4)

Serve 0,25,76,59,0 160

Cost 8, 6, 8,15 37

Route 1,33,12,39,1 (4)

Serve 0,79,31,50,0 160

Cost 10, 6, 7,16 39

Route 1,47,1 (2)

Serve 0,79,0 79

Cost 2, 2 4

Route 1, 7,15,26,19,1 (5)

Serve 0,31,74,23,20,0 148

Cost 11,10, 6,11,15 53

Route 1,18,43, 5,1 (4)

Serve 0,20,72,68,0 160

Cost 17,14,16,17 64

Route 1,49, 8,27, 9,1 (5)

Serve 0,53,31,52,24,0 160

Cost 16,11,11, 7,22 67

Route 1,16,46,45,38,1 (5)

Serve 0,29,43,61,27,0 160

Cost 25, 7,10, 7,18 67

Route 1,28, 9,32,29, 2,1 (6)

Serve 0,21,27,32,78, 2,0 160

Cost 8,14, 9, 6,16,14 67

Route 1, 2,23,21, 3,1 (5)

Serve 0,18,72,43,27,0 160

Cost 14, 7,15,12,21 69

Route 1, 6,50,31,35,10,39,1 (7)

Serve 0,20,51,26,33,20, 7,0 157

Cost 14, 8,10, 7, 9, 7,16 71

Route 1,24,44,25,1 (4)

Serve 0,18,68,70,0 156

Cost 22,13,12,25 72

Route 1,17,51,22,30,1 (5)

Serve 0,32,78,21,25,0 156

Cost 22, 6, 8, 7,29 72

Route 1,38,34,40,11,1 (5)

Serve 0, 5,28,56,56,0 145

Cost 18,18,14,10,28 88

Route 1, 4,37,36,21,1 (5)

Serve 0,30,76,43,11,0 160

Cost 33,12, 6, 7,32 90

Route 1, 5,20,41,42,14,1 (6)

Serve 0, 3,25,69,37,20,0 154

Cost 17,15,11,12, 9,29 93

S51D4

(split)

[1561]

Route 1,47, 33,1 (3)

Serve 0,36,124,0 160

Cost 2, 9, 10 21

Route 1,13, 48,1 (3)

Serve 0,46,114,0 160

Cost 8, 6, 9 23

Route 1,48, 5,1 (3)

Serve 0,17,143,0 160

Cost 9, 8, 17 34

Route 1, 38,13,1 (3)

Serve 0,134,26,0 160

Cost 18, 10, 8 36

Route 1,28,49, 7,1 (4)

Serve 0,58,81,21,0 160

Cost 8, 9, 9,11 37

Route 1, 15, 7,1 (3)

Serve 0,127,33,0 160

Cost 18, 10,11 39

Route 1, 2, 23,33,1 (4)

Serve 0,13,137,10,0 160

Cost 14, 7, 12,10 43

Route 1,39,50, 6,1 (4)

Serve 0,62,70,28,0 160

Cost 16, 8, 8,14 46

Route 1,19,26,15,1 (4)

Serve 0,54,94,12,0 160

Cost 15,11, 6,18 50

Route 1,38, 45,18,1 (4)

Serve 0, 9,106,45,0 160

Cost 18, 7, 9,17 51

Route 1, 7,25,24,1 (4)

Serve 0,19,93,48,0 160

Cost 11,14, 9,22 56

Route 1, 9, 27,1 (3)

Serve 0,36,124,0 160

Cost 22, 7, 28 57

Route 1,19,42,1 (3)

Serve 0,89,71,0 160

Cost 15,17,30 62

Route 1,16, 46,13,1 (4)

Serve 0,34,112,14,0 160

Cost 25, 7, 23, 8 63

Route 1, 9, 29, 2,1 (4)

Serve 0, 5,127,28,0 160

Cost 22,13, 16,14 65

Route 1,51,22,17,12,1 (5)

Serve 0,30,69,42,19,0 160

Cost 26, 8,10,10,12 66

Route 1,39,10,31,11,1 (5)

Serve 0, 5,23,63,69,0 160

Cost 16, 7, 8, 9,28 68

Route 1,47, 34,13,1 (4)

Serve 0,16,136, 8,0 160

Cost 2,32, 27, 8 69

Route 1,39,31,35,51,1 (5)

Serve 0,10,45,92,13,0 160

Cost 16,15, 7, 6,26 70

Route 1, 8, 44, 7,1 (4)

Serve 0,27,117,16,0 160

Cost 26,12, 23,11 72

Route 1,43,20,42,1 (4)

Serve 0,63,40,57,0 160

Cost 31, 9, 5,30 75

Route 1, 6,11, 40,1 (4)

Serve 0, 7,53,100,0 160

Cost 14,14,10, 38 76

Route 1,33, 3,21,36, 4,1 (6)

Serve 0, 8,12,45,84,11,0 160

Cost 10,11,12, 7,10,33 83

229



Problem[sol] Solution Details (segments): tour serve / tour cost

S51D4

(split)

[1561]

Continued...

Route 1, 3, 30,12,1 (4)

Serve 0,31,118,11,0 160

Cost 21, 9, 17,12 59

Route 1,32, 9,1 (3)

Serve 0,70,90,0 160

Cost 30, 9,22 61

Route 1, 2, 4, 37,1 (4)

Serve 0, 2,14,141,0 157

Cost 14,19,12, 44 89

Route 1,14, 41,42,1 (4)

Serve 0,25,127, 8,0 160

Cost 29,19, 12,30 90

S51D5

(split)

[1337]

Route 1,13,47,1 (3)

Serve 0,70,90,0 160

Cost 8, 7, 2 17

Route 1,28, 33,1 (3)

Serve 0,52,108,0 160

Cost 8, 8, 10 26

Route 1,48, 5,1 (3)

Serve 0,52,108,0 160

Cost 9, 8, 17 34

Route 1,12, 39,1 (3)

Serve 0,53,104,0 157

Cost 12, 7, 16 35

Route 1, 7,15,1 (3)

Serve 0,94,66,0 160

Cost 11,10,18 39

Route 1, 2,23,33,47,1 (5)

Serve 0,59,78, 3,20,0 160

Cost 14, 7,12, 9, 2 44

Route 1,15,26,19,1 (4)

Serve 0,45,63,52,0 160

Cost 18, 6,11,15 50

Route 1,49, 8,24,1 (4)

Serve 0,60,54,46,0 160

Cost 16,11, 6,22 55

Route 1,13,38,16,45,1 (5)

Serve 0, 8,49,52,51,0 160

Cost 8,10, 7, 6,25 56

Route 1,17, 51,10,1 (4)

Serve 0,50,106, 4,0 160

Cost 22, 6, 6,23 57

Route 1,47,50, 11, 6,1 (5)

Serve 0, 1,24,109,26,0 160

Cost 2,19, 8, 14,14 57

Route 1,49,27, 9,1 (4)

Serve 0,11,51,96,0 158

Cost 16,13, 7,22 58

Route 1,18, 43,48,1 (4)

Serve 0,40,111, 9,0 160

Cost 17,14, 22, 9 62

Route 1, 29,32,1 (3)

Serve 0,108,52,0 160

Cost 30, 6,30 66

Route 1,50,35,10,1 (4)

Serve 0,54,91,15,0 160

Cost 22,14, 9,23 68

Route 1,19,14,42,1 (4)

Serve 0,47,59,54,0 160

Cost 15,14, 9,30 68

Route 1, 3,30,22,17,1 (5)

Serve 0,33,60,64, 3,0 160

Cost 21, 9, 7,10,22 69

Route 1,24,44,25,1 (4)

Serve 0, 6,58,93,0 157

Cost 22,13,12,25 72

Route 1, 6,34,46,1 (4)

Serve 0,23,56,66,0 145

Cost 14,21, 7,31 73

Route 1, 3,21, 4,1 (4)

Serve 0,36,68,56,0 160

Cost 21,12, 8,33 74

Route 1,10,31,40,1 (4)

Serve 0,34,70,55,0 159

Cost 23, 8,12,38 81

Route 1,18,20,41,42,1 (5)

Serve 0,22,52,79, 1,0 154

Cost 17,17,11,12,30 87

Route 1,21,36, 37,1 (4)

Serve 0, 1,54,100,0 155

Cost 32, 7, 6, 44 89

230



Problem[sol] Solution Details (segments): tour serve / tour cost

S51D6

(split)

[2182]

Route 1, 13,1 (2)

Serve 0,131,0 131

Cost 8, 8 16

Route 1, 48,1 (2)

Serve 0,140,0 140

Cost 9, 9 18

Route 1,28, 7,1 (3)

Serve 0,39,121,0 160

Cost 8, 9, 11 28

Route 1,12,33,1 (3)

Serve 0,77,83,0 160

Cost 12, 6,10 28

Route 1,28, 2,1 (3)

Serve 0,42,118,0 160

Cost 8, 8, 14 30

Route 1,12, 39,1 (3)

Serve 0,33,127,0 160

Cost 12, 7, 16 35

Route 1,19, 5,1 (3)

Serve 0,50,110,0 160

Cost 15, 8, 17 40

Route 1,18, 38,1 (3)

Serve 0,36,117,0 153

Cost 17, 5, 18 40

Route 1, 3,33,1 (3)

Serve 0,118,42,0 160

Cost 21, 11,10 42

Route 1,19, 15,1 (3)

Serve 0,47,113,0 160

Cost 15,10, 18 43

Route 1,33, 23,1 (3)

Serve 0,18,142,0 160

Cost 10,12, 21 43

Route 1,28, 9,1 (3)

Serve 0,20,140,0 160

Cost 8,14, 22 44

Route 1,24,49,1 (3)

Serve 0,78,82,0 160

Cost 22, 9,16 47

Route 1,15, 26,1 (3)

Serve 0,29,131,0 160

Cost 18, 6, 23 47

Route 1, 47,1 (2)

Serve 0,121,0 121

Cost 2, 2 4

Route 1,38, 45,1 (3)

Serve 0,26,134,0 160

Cost 18, 7, 25 50

Route 1, 6,50,10,1 (4)

Serve 0,33,76,51,0 160

Cost 14, 8, 6,23 51

Route 1,49, 8,1 (3)

Serve 0,46,114,0 160

Cost 16,11, 26 53

Route 1, 6,16,1 (3)

Serve 0,65,95,0 160

Cost 14,15,25 54

Route 1, 25,24,1 (3)

Serve 0,131,29,0 160

Cost 25, 9,22 56

Route 1, 27,28,1 (3)

Serve 0,139,21,0 160

Cost 28, 20, 8 56

Route 1,17, 51,10,1 (4)

Serve 0,34,118, 8,0 160

Cost 22, 6, 6,23 57

Route 1,50, 11,1 (3)

Serve 0,49,111,0 160

Cost 22, 8, 28 58

Route 1, 14,19,1 (3)

Serve 0,114,46,0 160

Cost 29, 14,15 58

Route 1,12, 30,17,1 (4)

Serve 0, 5,106,49,0 160

Cost 12,17, 9,22 60

Route 1, 42, 5,1 (3)

Serve 0,129,31,0 160

Cost 30, 13,17 60

Route 1,10, 31,1 (3)

Serve 0,25,135,0 160

Cost 23, 8, 31 62

Route 1,18, 43,1 (3)

Serve 0,35,123,0 158

Cost 17,14, 31 62

Route 1,16, 46,1 (3)

Serve 0,21,136,0 157

Cost 25, 7, 31 63

Route 1, 22,17,1 (3)

Serve 0,125,35,0 160

Cost 32, 10,22 64

Route 1,10, 35,1 (3)

Serve 0,29,131,0 160

Cost 23, 9, 32 64

Route 1,18, 20, 5,1 (4)

Serve 0,48,110, 2,0 160

Cost 17,17, 15,17 66

Route 1,29, 32,1 (3)

Serve 0,35,125,0 160

Cost 30, 6, 30 66

Route 1, 34, 6,1 (3)

Serve 0,142,18,0 160

Cost 34, 21,14 69

Route 1, 7, 44,24,1 (4)

Serve 0, 9,137,13,0 159

Cost 11,23, 13,22 69

Route 1, 29, 4,1 (3)

Serve 0,104,56,0 160

Cost 30, 9,33 72

Route 1, 21, 4,1 (3)

Serve 0,119,41,0 160

Cost 32, 8,33 73

Route 1,11, 40,1 (3)

Serve 0,27,133,0 160

Cost 28,10, 38 76

Route 1,30, 36,1 (3)

Serve 0,31,129,0 160

Cost 29,16, 39 84

Route 1,42, 41,20,1 (4)

Serve 0,13,139, 8,0 160

Cost 30,12, 11,32 85

Route 1, 4, 37,1 (3)

Serve 0,17,143,0 160

Cost 33,12, 44 89

231



Problem[sol] Solution Details (segments): tour serve / tour cost

S76D2

(split)

[1091]

Route 1,68,35,47,53, 5,1 (6)

Serve 0,18,46,40,46,10,0 160

Cost 5, 5, 2, 5, 9, 7 33

Route 1,76,31,49,30,46,5,1 (7)

Serve 0,18,10,44,43,37,8,0 160

Cost 3,11, 7, 6, 4, 7,7 45

Route 1,69, 3,63,74,34,1 (6)

Serve 0,28,22,40,23,47,0 160

Cost 7, 7, 8, 5, 5,18 50

Route 1,27, 8,36,20, 9,1 (6)

Serve 0,33,27,35,47,18,0 160

Cost 6,10, 5, 7, 8,16 52

Route 1,18,41,10,40,73,13,1 (7)

Serve 0,13,37,44,31,16,19,0 160

Cost 8, 7,10, 4, 5, 9,12 55

Route 1,46, 6,38,37,48,1 (6)

Serve 0, 1,47,47,33,25,0 153

Cost 14,11, 7, 8, 6,27 73

Route 1,28,16,58,14,55,53,1 (7)

Serve 0,43,44,20,35,16, 1,0 159

Cost 16,12, 4, 9, 8,13,14 76

Route 1, 7,17,50,25,45, 4,52,1 (8)

Serve 0,12,20,32,24,27,22,23,0 160

Cost 9,12, 9, 7,15, 3,10,11 76

Route 1,64,24,57, 2,7,1 (6)

Serve 0,19,46,47,40,8,0 160

Cost 22, 9, 6,16,16,9 78

Route 1,75,29,23,62,22,31,1 (7)

Serve 0,40,26,29,16,23,26,0 160

Cost 20, 6, 9,12,11,13,14 85

Route 1,27,59,11,32,66,39,1 (7)

Serve 0, 2,29,17,39,19,47,0 153

Cost 6,14, 6,13,20, 5,27 91

Route 1,2,44,42,43,65,1 (6)

Serve 0,4,27,43,46,38,0 158

Cost 25,7, 4, 4, 9,43 92

Route 1,8,54,15,60,67,12,1 (7)

Serve 0,7,26,18,20,47,42,0 160

Cost 14,9, 7,11,15, 7,29 92

Route 1,18,33,26,56,19,51,45,1 (8)

Serve 0, 9,29,35,21,23,29,14,0 160

Cost 8,14,12, 9,14, 6,10,21 94

Route 1,16,21,71,61,72,70,31,1 (8)

Serve 0, 2,22,46,45,18,22, 5,0 160

Cost 27,11, 6, 4, 5, 9,23,14 99

S76D3

(split)

[1440]

Route 1,13,40,32,56,26,10,1 (7)

Serve 0,19,23,20,38,31,21,0 152

Cost 12,10,16,22, 9,10,24 103

Route 1,76, 5,1 (3)

Serve 0,75,76,0 151

Cost 3, 5, 7 15

Route 1,69, 7,1 (3)

Serve 0,68,62,0 130

Cost 7, 5, 9 21

Route 1,68,35,53,1 (4)

Serve 0,44,59,55,0 158

Cost 5, 5, 4,14 28

Route 1,68, 9,47,1 (4)

Serve 0,17,64,79,0 160

Cost 5,10, 5,11 31

Route 1,18,33,41,1 (4)

Serve 0,30,79,47,0 156

Cost 8,14, 9,14 45

Route 1,27,59,73,13,1 (5)

Serve 0,19,57,57,27,0 160

Cost 6,14, 5, 9,12 46

Route 1,31,75,29, 3,1 (5)

Serve 0,38,32,76,14,0 160

Cost 14, 7, 6,10,15 52

Route 1,52,34,74,63,1 (5)

Serve 0,33,24,58,45,0 160

Cost 11,10, 5, 5,22 53

Route 1,54,15,36,1 (4)

Serve 0,59,79,22,0 160

Cost 23, 7,10,18 58

Route 1,59,11,39,1 (4)

Serve 0, 2,77,72,0 151

Cost 20, 6, 7,27 60

Route 1,28,14,58,16,46,1 (6)

Serve 0,20,27,70,20,23,0 160

Cost 16, 7, 9, 4,13,14 63

Route 1,46,30, 6,37,48,49,1 (7)

Serve 0, 9,25,17,68,29, 7,0 155

Cost 14, 4, 7,10, 6, 6,21 68

Route 1,17,50,25, 4,1 (5)

Serve 0,21,46,61,24,0 152

Cost 19, 9, 7,14,20 69

Route 1,45,19,51,1 (4)

Serve 0,19,67,74,0 160

Cost 21,14, 6,30 71

Route 1,64,24,57,1 (4)

Serve 0,52,20,75,0 147

Cost 22, 9, 6,37 74

Route 1,12,67,66,1 (4)

Serve 0,21,44,79,0 144

Cost 29, 7, 7,32 75

Route 1,49,22,62,1 (4)

Serve 0,32,32,78,0 142

Cost 21, 9,11,34 75

Route 1,44,42,43, 2,1 (5)

Serve 0,26,23,79,27,0 155

Cost 32, 4, 4,11,25 76

Route 1,70,72,38,1 (4)

Serve 0,73,69,17,0 159

Cost 37, 9,10,32 88

Route 1, 3,63,23,65,1 (5)

Serve 0,23, 6,46,77,0 152

Cost 15, 8, 8,14,43 88

Route 1,46,30,21,71,61,1 (6)

Serve 0, 2, 3,37,37,79,0 158

Cost 14, 4,18, 6, 4,43 89

Route 1, 8,60,20,55,53,1 (6)

Serve 0,22,45,20,67, 6,0 160

Cost 14,24,18, 9,13,14 92

232



Problem[sol] Solution Details (segments): tour serve / tour cost

S76D4

(split)

[2096]

Route 1,51,56,19,25,1 (5)

Serve 0,35,55,26,44,0 160

Cost 30,15,14,13,33 105

Route 1, 68,1 (2)

Serve 0,143,0 143

Cost 5, 5 10

Route 1, 69,1 (2)

Serve 0,138,0 138

Cost 7, 7 14

Route 1, 18,1 (2)

Serve 0,135,0 135

Cost 8, 8 16

Route 1, 8,1 (2)

Serve 0,143,0 143

Cost 14, 14 28

Route 1, 46, 5,1 (3)

Serve 0,126,34,0 160

Cost 14, 7, 7 28

Route 1,47, 9,36,1 (4)

Serve 0,31,41,88,0 160

Cost 11, 5, 5,18 39

Route 1,13, 73,1 (3)

Serve 0,21,139,0 160

Cost 12, 9, 21 42

Route 1, 7,74, 3,1 (4)

Serve 0,39,74,46,0 159

Cost 9,12, 9,15 45

Route 1,35,53, 14,28,1 (5)

Serve 0,24,17,102,17,0 160

Cost 10, 4, 9, 7,16 46

Route 1, 64,34,1 (3)

Serve 0,131,21,0 152

Cost 22, 6,18 46

Route 1,41,45, 4,1 (4)

Serve 0, 1,20,139,0 160

Cost 14, 9, 3, 20 46

Route 1,36, 54,1 (3)

Serve 0,15,143,0 158

Cost 18, 7, 23 48

Route 1,63,29,75,1 (4)

Serve 0,60,47,53,0 160

Cost 22, 6, 6,20 54

Route 1,75, 22,31,1 (4)

Serve 0,12,143, 5,0 160

Cost 20, 8, 13,14 55

Route 1,40,10,33,1 (4)

Serve 0,66,51,43,0 160

Cost 22, 4, 7,22 55

Route 1, 50,52,1 (3)

Serve 0,141,19,0 160

Cost 28, 17,11 56

Route 1, 5,30,48,49,1 (5)

Serve 0,17,42,73,28,0 160

Cost 7,11,11, 6,21 56

Route 1,30, 16,28,1 (4)

Serve 0,34,118, 8,0 160

Cost 18,10, 12,16 56

Route 1,28, 58,1 (3)

Serve 0,25,135,0 160

Cost 16,12, 28 56

Route 1,27, 12,1 (3)

Serve 0,24,133,0 157

Cost 6,24, 29 59

Route 1,53,55,20,1 (4)

Serve 0,32,41,82,0 155

Cost 14,13, 9,23 59

Route 1,13,40,11,59,1 (5)

Serve 0, 1,77,33,49,0 160

Cost 12,10,12, 6,20 60

Route 1, 2, 44,34,1 (4)

Serve 0,24,126,10,0 160

Cost 25, 7, 14,18 64

Route 1,41, 26,33,1 (4)

Serve 0,32,124, 4,0 160

Cost 14,19, 12,22 67

Route 1,75, 62,1 (3)

Serve 0,38,121,0 159

Cost 20,15, 34 69

Route 1, 76,1 (2)

Serve 0,124,0 124

Cost 3, 3 6

Route 1,39,66,67,12,1 (5)

Serve 0,25,49,72, 5,0 151

Cost 27, 5, 7, 7,29 75

Route 1,42,43, 2,1 (4)

Serve 0,96,27,37,0 160

Cost 36, 4,11,25 76

Route 1,36,15, 60,1 (4)

Serve 0,30,29,101,0 160

Cost 18,10,11, 38 77

Route 1,48,37,70,31,1 (5)

Serve 0,13,37,89,19,0 158

Cost 27, 6, 7,23,14 77

Route 1, 5, 72,37,1 (4)

Serve 0,14,139, 5,0 158

Cost 7,33, 7,33 80

Route 1,52,17,24,57, 2,1 (6)

Serve 0,13,25,35,73,14,0 160

Cost 11, 9,13, 6,16,25 80

Route 1,30,21,71,38,1 (5)

Serve 0, 8,37,87,28,0 160

Cost 18,18, 6, 9,32 83

Route 1, 2, 65,23,1 (4)

Serve 0,11,121,25,0 157

Cost 25,18, 14,30 87

Route 1, 6,61,38,1 (4)

Serve 0,36,98,24,0 158

Cost 25,18,12,32 87

Route 1,73, 32,66,1 (4)

Serve 0, 4,100,56,0 160

Cost 21,16, 20,32 89

233



Problem[sol] Solution Details (segments): tour serve / tour cost

S101D3

(split)

[1889]

Route 1,11,64,65,50,1 (5)

Serve 0,44,20,69,24,0 157

Cost 25, 9,14,13,44 105

Route 1, 2,21,67,72,66,36,1 (7)

Serve 0, 4,52,24,21,30,29,0 160

Cost 15,16, 9, 9,10,12,41 112

Route 1,54,27,29,1 (4)

Serve 0,29,74,57,0 160

Cost 4, 8, 8, 6 26

Route 1,14,95,1 (3)

Serve 0,74,64,0 138

Cost 11, 4,12 27

Route 1,90, 7,97,1 (4)

Serve 0,52,30,78,0 160

Cost 9, 5, 4,15 33

Route 1,59, 3,41,1 (4)

Serve 0,59,33,68,0 160

Cost 9, 9, 9,11 38

Route 1,28,70, 2,51,1 (5)

Serve 0,38,26,17,79,0 160

Cost 5, 7, 4, 6,17 39

Route 1,96,98,93,1 (4)

Serve 0,41,74,45,0 160

Cost 15, 3, 3,18 39

Route 1,41,22,73,1 (4)

Serve 0, 7,77,76,0 160

Cost 11, 7, 4,22 44

Route 1, 4,78,77,29,1 (5)

Serve 0,79,18,60, 3,0 160

Cost 22, 3, 4, 9, 6 44

Route 1,13,81,69,1 (4)

Serve 0,38,35,79,0 152

Cost 15, 6, 2,21 44

Route 1,100,94,99,1 (4)

Serve 0, 48,60,52,0 160

Cost 17, 3, 3,21 44

Route 1,53, 8,89,1 (4)

Serve 0,35,75,50,0 160

Cost 11,10, 6,19 46

Route 1,19,83,1 (3)

Serve 0,77,79,0 156

Cost 16, 9,23 48

Route 1,60,38,101,99,93,1 (6)

Serve 0,20,33, 79, 3,23,0 158

Cost 18, 4, 3, 3, 3,18 49

Route 1,32,71,31,1 (4)

Serve 0,33,48,59,0 140

Cost 17, 7, 5,25 54

Route 1, 7,94,86,92,62, 6,1 (7)

Serve 0,15, 3,40,35,31,36,0 160

Cost 11, 9, 3, 3, 6, 7,21 60

Route 1,42,23,75,1 (4)

Serve 0,22,79,59,0 160

Cost 29, 4, 3,25 61

Route 1,61,6,85,18,1 (5)

Serve 0,48,1,24,79,0 152

Cost 18, 4,4, 6,30 62

Route 1,34,82,10,52,1 (5)

Serve 0,45,28,60,20,0 153

Cost 25, 3, 6, 6,27 67

Route 1,30,25,55,1 (4)

Serve 0,58,60,39,0 157

Cost 30, 7,10,23 70

Route 1,33,91,11,1 (4)

Serve 0,75,71,14,0 160

Cost 34, 4, 7,25 70

Route 1,88,43,44,16,58,1 (6)

Serve 0,31,15,23,60,31,0 160

Cost 18, 7, 9, 7, 7,23 71

Route 1,29,80,35,79,1 (5)

Serve 0, 8,24,36,76,0 144

Cost 6,19,11, 5,31 72

Route 1,63,12,20,1 (4)

Serve 0,34,68,52,0 154

Cost 25, 8, 7,32 72

Route 1,43,15,45,1 (4)

Serve 0,34,69,57,0 160

Cost 25, 9, 6,32 72

Route 1, 9,47,46,84,1 (5)

Serve 0,33,70,17,27,0 147

Cost 26, 9,11, 8,21 75

Route 1,55,56,26,40, 5,1 (6)

Serve 0,36,20,69, 4,29,0 158

Cost 23, 8, 4, 9, 9,25 78

Route 1,49,48,37,1 (4)

Serve 0,57,21,79,0 157

Cost 28, 6, 7,41 82

Route 1,94,17,87,39,45,1 (6)

Serve 0, 1,44,77,22,14,0 158

Cost 20, 9, 6,13,11,32 91

Route 1,41,74,75,76,24,68,40,57,1 (9)

Serve 0, 3,21, 7,22,44,20,21,22,0 160

Cost 11, 9, 4, 4, 8,12,10, 7,29 94

S101D5

(split)

[2814]

Route 1,52,72, 66,21,1 (5)

Serve 0,16,27,111, 6,0 160

Cost 27,13,10, 21,32 103

Route 1,12,65,50,1 (4)

Serve 0,16,61,83,0 160

Cost 34,13,13,44 104

Route 1,54,29,1 (3)

Serve 0,76,84,0 160

Cost 4, 7, 6 17

Route 1,28, 70,1 (3)

Serve 0,53,107,0 160

Cost 5, 7, 12 24

Route 1,73,75,23,1 (4)

Serve 0,25,48,87,0 160

Cost 22, 3, 3,27 55

Route 1,34, 80,1 (3)

Serve 0,56,104,0 160

Cost 25, 6, 26 57

Route 1,84,46, 9,1 (4)

Serve 0, 8,75,77,0 160

Cost 21, 8, 6,26 61

Route 1, 55,56,1 (3)

Serve 0,102,58,0 160

Cost 23, 8,30 61

234



Problem[sol] Solution Details (segments): tour serve / tour cost

S101D5

(split)

[2814]

Continued...

Route 1,59,41,1 (3)

Serve 0,91,69,0 160

Cost 9, 4,11 24

Route 1,90, 7,95,1 (4)

Serve 0,77,31,52,0 160

Cost 9, 5, 3,12 29

Route 1,27,13,29,1 (4)

Serve 0,84,57,19,0 160

Cost 11, 7, 9, 6 33

Route 1,14, 98,1 (3)

Serve 0,52,108,0 160

Cost 11, 6, 17 34

Route 1,53,19,1 (3)

Serve 0,77,83,0 160

Cost 11, 8,16 35

Route 1,97,60,96,1 (4)

Serve 0,46,93,21,0 160

Cost 15, 3, 4,15 37

Route 1, 51, 2,1 (3)

Serve 0,108,52,0 160

Cost 17, 6,15 38

Route 1,97,100,94, 7,1 (5)

Serve 0, 6, 46,98,10,0 160

Cost 15, 2, 3, 9,11 40

Route 1,41,22, 74,1 (4)

Serve 0,32,23,105,0 160

Cost 11, 7, 3, 20 41

Route 1,95,96,38,99,93,1 (6)

Serve 0,10,31,31,38,50,0 160

Cost 12, 3, 6, 1, 3,18 43

Route 1, 4,78,77,1 (4)

Serve 0,62,91, 7,0 160

Cost 22, 3, 4,16 45

Route 1,19, 84,61,1 (4)

Serve 0,28,101,31,0 160

Cost 16, 7, 4,18 45

Route 1,81,69,77,29,1 (5)

Serve 0,53,57,47, 3,0 160

Cost 21, 2, 8, 9, 6 46

Route 1, 3,58,88,1 (4)

Serve 0,59,86,15,0 160

Cost 18, 6, 7,18 49

Route 1,88,43,1 (3)

Serve 0,69,91,0 160

Cost 18, 7,25 50

Route 1,93,99,92,101,38,1 (6)

Serve 0, 2,21,70, 53,14,0 160

Cost 18, 3, 4, 3, 3,21 52

Route 1, 7,62,86,60,1 (5)

Serve 0,22,87,50, 1,0 160

Cost 11,14, 4, 5,18 52

Route 1,71,11,32,1 (4)

Serve 0,56,64,40,0 160

Cost 21, 8, 8,17 54

Route 1,54,76,73,22,1 (5)

Serve 0,15,92,23,30,0 160

Cost 4,23, 5, 4,18 54

Route 1,89,63, 8,1 (4)

Serve 0,52,79,29,0 160

Cost 19, 6, 9,21 55

Route 1,51,34,82,52,1 (5)

Serve 0, 2, 4,71,83,0 160

Cost 17, 8, 3, 7,27 62

Route 1,61, 6,85,18,1 (5)

Serve 0,34,21,52,52,0 159

Cost 18, 4, 4, 6,30 62

Route 1,57, 5,1 (3)

Serve 0,71,89,0 160

Cost 29, 8,25 62

Route 1,69,30, 25,1 (4)

Serve 0, 1,57,102,0 160

Cost 21, 9, 7, 30 67

Route 1,100,17,45,38,1 (5)

Serve 0, 31,17,93,19,0 160

Cost 17, 12, 6,11,21 67

Route 1,83,49,48,1 (4)

Serve 0,17,53,90,0 160

Cost 23, 5, 6,34 68

Route 1,70,31, 33,1 (4)

Serve 0, 4,45,111,0 160

Cost 12,13,10, 34 69

Route 1,11,64,91,1 (4)

Serve 0,24,72,64,0 160

Cost 25, 9, 4,32 70

Route 1,83, 47, 9,1 (4)

Serve 0,43,111, 6,0 160

Cost 23,13, 9,26 71

Route 1,62,17,87, 6,1 (5)

Serve 0,19,47,63,31,0 160

Cost 25, 4, 6,16,21 72

Route 1,32,12,20, 8,1 (5)

Serve 0,24,47,57,32,0 160

Cost 17,17, 7,11,21 73

Route 1,58,16,42,23,1 (5)

Serve 0,13,61,69,17,0 160

Cost 23, 7,12, 4,27 73

Route 1,40,26,56,1 (4)

Serve 0,56,55,49,0 160

Cost 34, 9, 4,30 77

Route 1,88,43, 44,15,1 (5)

Serve 0,10,13,100,37,0 160

Cost 18, 7, 9, 11,32 77

Route 1,29,80,79,35,10,1 (6)

Serve 0, 4, 7,55,65,29,0 160

Cost 6,19, 6, 5,11,32 79

Route 1,31,21,67,1 (4)

Serve 0,13,80,67,0 160

Cost 25, 7, 9,40 81

Route 1,8,49,48, 37,1 (5)

Serve 0,2,32,18,108,0 160

Cost 21,7, 6, 7, 41 82

Route 1,98,15,39,1 (4)

Serve 0, 2,69,89,0 160

Cost 17,15,11,42 85

Route 1,52,72,36,10,1 (5)

Serve 0,12,50,75,23,0 160

Cost 27,13, 7, 9,32 88

Route 1,73,76,24,68,40, 5,1 (7)

Serve 0, 7, 7,50,50,32,14,0 160

Cost 22, 5, 8,12,10, 9,25 91

235


	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS AND SYMBOLS
	Introduction
	Motivation
	Problem Overview
	Objectives
	Contributions
	Organization

	Background and Related Work
	Context
	Literature Review
	Gap Analysis
	Summary

	Multi-Depot Split-Delivery Vehicle Routing Problem
	Introduction
	Problem Description and Modeling
	Proposed Approach
	Case Study
	Experimental Results
	Results Analysis
	Summary

	Collaborative Multi-Depot Vehicle Routing Problem
	Introduction
	Problem Description and Modeling
	Collaborative Solution Generation: Passive Learning
	Cooperative Solution Generation: Active Negotiation
	Benchmarks and Comparative Study
	Summary

	Collaborative Monitor Deployment Problem
	Introduction
	Problem Description and Modeling
	Proposed Approach
	Case Study
	Results and Analysis
	Summary

	Collaborative Plan Execution Monitoring Problem
	Introduction
	Problem Statement
	Requirements Analysis
	Centralized Association Rule Mining
	Collaborative Association Rule Mining
	Benchmark Results and Comparative Study
	Summary

	Conclusion
	Bibliography
	Appendix

