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Abstract 

Managing Consistency and Consensus in Group Decision-Making with Incomplete Fuzzy 

Preference Relations 

Aqeel Asaad Al Salem, Ph.D. 

Concordia University, 2017 

Group decision-making is a field of decision theory that has many strengths and benefits. It can 

solve and simplify the most complex and hard decision problems. In addition, it helps decision-

makers know more about the problem under study and their preferences. Group decision-making 

is much harder and complex than individual decision-making since group members may have 

different preferences regarding the alternatives, making it difficult to reach a consensus.    

In this thesis, we deal with three interrelated problems that decision-makers encounter during the 

process of arriving at a final decision. Our work addresses decision-making using preference 

relations. The first problem deals with incomplete reciprocal preference relations, where some of 

the preference degrees are missing. Ideally, the group members are able to provide preferences for 

all the alternatives, but sometimes they might not be able to discriminate between some of the 

alternatives, leading to missing values. Two methods are proposed to handle this problem. The 

first is based on a system of equations and the second relies on goal programming to estimate the 

missing information. The former is suitable to complete any incomplete preference relation with 

at least 𝑛 − 1 non-diagonal preference degrees whereas the latter is good to handle ignorance 

situations, where at least one alternative has not been given any preferences. The second problem 

deals with the theme of consensus. In a group decision-making situation, reaching an agreement 
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or consensus is important. A novel method based on Spearman’s correlation to measure group 

ranking consensus is proposed. This method adopts the idea of measuring the monotonic degree 

among the decision-makers. Based on this method, a feedback mechanism is developed that acts 

as a moderator to guide the group into the consensus solution. The third problem deals with rank 

reversal. Our investigation leads to inconsistency of information and score aggregation method as 

the main causes of this phenomenon. However, obtaining a consistent preference relation is hard 

in practice. Thus, two score aggregation methods are proposed to handle rank reversal. The first 

method is used in case of replacement or addition of a new alternative in the alternative set. This 

method performs better than sum normalization aggregation method in avoiding rank reversal. The 

second method is used when an alternative is removed and has been proven to prevent rank reversal 

from occurring. 
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Chapter 1:  

Introduction and Background 

Decision-making can be done individually or by a group of decision-makers, also known as group 

decision-making. The group decision is a choice between at least two alternatives made by group 

members or by group’s leader by consulting the members (Bedau & Chechile, 1984). Individual 

decision-making is difficult but group decision-making is even harder and complex due to 

involvement of multiple different preferences making the consensus difficult to reach. 

Furthermore, individual decisions in small organizations are usually done at lower managerial 

levels; however, in large organizations group decisions are commonly made at higher managerial 

levels (Lu et al., 2007). 

Three preference representation formats are commonly used in group decision-making: preference 

orderings (where each individual ranks alternatives from best to worst), utility values (where an 

individual assigns utility values for alternatives such that the higher the value, the better is the 

alternative) and preference relations (Herrera-Viedma et al., 2014). Preference relations are based 

on pairwise comparisons where each pair of alternatives are compared at a time by an expert. 

Millet (1997) compared five different types of preference elicitation methods and concluded that 

preferences based on pairwise comparison are more accurate than the others. In group decision-

making, some of the decision-makers may not be able to provide complete information about their 

preferences on the alternatives. That could be related to either the decision-maker not having 
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enough knowledge about part of the problem or not being able to discriminate between some of 

alternatives (Herrera-Viedma et al., 2007b). Thus, the decision-maker gives incomplete 

preferences where some values are missing. 

In group decision-making, two processes are employed: consensus and then selection. The 

selection process could be applied without adopting consensus through applying the preference 

relations provided by the decision-makers (Roubens, 1997). This could, however, lead to a solution 

that might not be accepted by some of the decision-makers, since it does not reflect their 

preferences (Saint & Lawson, 1994; Butler & Rothstein, 2007). Therefore, they might reject the 

solution. Thus, consensus is important before applying selection (Kacprzyk et al., 1992). For the 

selection process, some methods are known to exhibit rank reversal. Rank reversal occurs when a 

new alternative is added to (or removed from) a set of alternatives, which causes a change in the 

ranking order of the alternatives (Barzilai & Golany, 1994). 

According to Lu et al. (2007), numerous types of decision-making methods can be used in group 

decision-making problems. Generally, each of these methods follows a rule. Among these rules 

are: 

1. Authority rule: the leader of the group has the authority to make the final decision after 

holding an open discussion with the members of the group about the decision problem. 

a. Advantage(s): the method attains the final decision fast. 

b. Disadvantage(s): the method does not takes advantage of the strengths of the 

experts in the group.  

2. Majority rule: the group decision is made based on the vote of the majority of the group. 
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a. Advantage(s): clear voting rule (democratic participation) and generating fast final 

decision.  

b. Disadvantage(s): the decision may not be well executed because of inadequate 

discussions among the group. 

3. Negative minority rule: the method is based on eliminating the most unpopular alternative 

one at a time through a vote until only one alternative remains. 

a. Advantage(s): good for situations with few experts (voters) and lots of ideas. 

b. Disadvantage(s): slow method and might lead to discomfort among decision-

makers who are in favor of some eliminated alternatives. 

4. Ranking rule: it is based on ranking of the alternatives by the experts. Such a method 

assigns a number for every alternative by all experts individually. Then the score of each 

alternative is aggregated. The alternative that has the highest score is selected. 

a. Advantage(s): includes voting procedure. 

b. Disadvantage(s): might result in a decision not supported by the group. 

5. Consensus rule: consensus means full agreement by the group on the decision. The rule 

is based on reaching decision through discussions and negotiations until all the experts in 

the group understand and agree with what will be done.  

a. Advantage(s): the decision is supported by the group. 

b. Disadvantage(s): might be hard to reach consensus and is time consuming. 

However, since it is hard and inconvenient to reach full and unanimous agreement among all the 

experts in the group, besides, a full agreement is not always necessary in practice. A soft consensus 
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has been developed, which does not require a full agreement among the experts, relies mainly on 

consensus measure (Cabrerizo et al., 2010;  Herrera-Viedma et al., 2014;  Chiclana et al., 2013). 

Based on these rules several methods have been developed to improve the processes of group 

decision-making. The most popular two are Delphi method and multi-voting technique (Lu et al., 

2007). Delphi method was developed by Gordon and Helmer in 1953. The method is based on 

reaching consensus on an opinion without a need from the experts to set together. It could be 

through survey, questionnaires etc. Several applications of Delphi method have shown its 

effectiveness in dealing with complex decision problems. Multi-voting technique is used to attain 

group consensus fast by letting each expert rank the alternatives and collation of the expert’s ranks 

into the group consensus.        

1.1. A Brief Review 

1.1.1. Preference relation preliminary knowledge 

Definition 1.1 (Urena et al., 2015): A preference relation 𝑅 is a binary relation defined on the set 

𝑋 and is characterized by a function 𝜇𝑝: 𝑋 × 𝑋 → 𝐷, where 𝐷 is the domain of representation of 

preference degrees provided by the decision-maker. 

Definition 1.2 (Urena et al., 2015): An additive preference relation 𝑃 on a finite set of alternatives 

𝑋 is characterised by a membership function 𝜇𝑝: 𝑋 × 𝑋 → [0,1], 𝜇𝑝(𝑥𝑖, 𝑥𝑗) = 𝑝𝑖𝑗 such that 𝑝𝑖𝑗 +

𝑝𝑗𝑖 = 1 ∀𝑖, 𝑗 ∈ {1,… , 𝑛}. Furthermore: 
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𝑝𝑖𝑗 > 0.5 indicates that the expert prefers alternative 𝑥𝑖 to alternative 𝑥𝑗, with 𝑝𝑖𝑗 = 1 being the 

maximum degree of preference for 𝑥𝑖 over 𝑥𝑗; 

𝑝𝑖𝑗 = 0.5 represents indifference between 𝑥𝑖 and 𝑥𝑗; therefore, 𝑝𝑖𝑖 = 0.5. 

Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑇} be the set of decision-makers, and 𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑇} be the weight 

vector of decision-makers, where 𝑤𝑘 > 0, 𝑘 = 1,2, … , 𝑇 such that ∑ 𝑤𝑘 = 1𝑇
𝑘=1 . Then, 𝑃𝑘 =

(𝑝𝑖𝑗
𝑘 )

𝑛×𝑛
 is the judgment/preference relation of decision-maker 𝑒𝑘 ∈ 𝐸 on the set of 

alternatives 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. 

1.1.2. Incomplete preference relations 

The individuals in group decision-making come from different background and expertise and each 

has their motivations or goals. They look at the problem from different angles, yet all have to reach 

an agreement. Each individual is required to give preferences for a set of pre-determined 

alternatives. Since each individual has unique experience, he or she may not be able to give a 

preference degree for some of the alternatives. This could be related to number of reasons. First, 

they may not have enough knowledge about part of the problem or may not be able to give 

preferences degrees for some of the alternatives, or decide which alternative is better than the 

other. In this situation, they provide incomplete information (Herrera-Viedma et al., 2007b) or it 

can be simply due to time pressure (Xu, 2005a).  

Definition 1.3 (Urena et al., 2015): A function 𝑓: 𝑋 → 𝑌 is partial when not every element in the 

set 𝑋 necessarily maps to an element in the set 𝑌. When every element from the set 𝑋 maps to one 

element of the set 𝑌 then we have a total function. 



Chapter1: Introduction and Background 

6 | P a g e  

  

Definition 1.4 (Urena et al., 2015): A preference relation 𝑃 on a set of alternatives 𝑋 with a partial 

membership function is an incomplete preference relation. 

A number of papers look at this problem. Xu (2005a) proposed two approaches to find the priority 

vector of an incomplete fuzzy preference relation based on a system of equations. The first 

approach uses the system of equations to generate the priority vector of an incomplete fuzzy 

preference relation. On the other hand, the second approach uses the provided information to 

estimate the unknown values and then generates the priority vector by the system of equations. Xu 

(2006) studied five types of incomplete linguistic preference relations, namely, incomplete 

uncertain linguistic preference relation, incomplete triangular fuzzy linguistic preference relation, 

incomplete trapezoid fuzzy linguistic preference relation, expected incomplete linguistic 

preference relation and acceptable expected incomplete linguistic preference relation. Then, based 

on some transformation functions, he converted them into the expected incomplete linguistic 

preference relations. He used the expected incomplete linguistic preference relations based on 

additive consistency to calculate the complete linguistic preference relations. Fedrizzi and Giove 

(2007) proposed a method based on a linear system to calculate missing values of an incomplete 

matrix of pairwise comparison. Chiclana et al. (2009) analyzed two methods for estimating missing 

values in incomplete fuzzy preference relation, one of them being Fedrizzi and Giove’s (2007) 

method. They ended up with proposing a reconstruction policy for using both methods. Alonso et 

al. (2008) introduced an iterative procedure to estimate missing information for incomplete fuzzy, 

multiplicative, interval-valued and linguistic preference relations. Lee (2012) proposed an 

incomplete fuzzy preference relations method based on additive consistency and order 

consistency. 
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1.1.3. Consensus in group decision-making 

Consensus in group decision-making can be interpreted in three ways (Herrera-Viedma et al., 

2014). It could mean full agreement or a unanimous decision by the group members or reaching 

consensus by a moderator who facilitates the process of agreement, or it could mean attaining the 

consent, where some individuals might not completely agree but are willing to go with the majority 

opinion of the group. Consensus is the main goal in any group decision-making problem, since 

obtaining an acceptable solution by the group is important.  

Xu (2009) proposed an automatic approach for reaching consensus in multi-attribute group 

decision-making. His approach was based on numerical settings, where each individual constructs 

a decision matrix. Then, these matrices are aggregated into one group-decision matrix. The method 

calculates the similarity measure between each individual matrix and the group decision matrix to 

determine the degree of consensus. A convergent iterative algorithm is introduced for individual 

matrices to reach the consensus. Sun and Ma (2015) proposed an approach for consensus using 

linguistic preference relations. They used consensus measure based on the dominance degree 

between group preference relation and individuals’ preference relations. Zhang and Dong (2013) 

proposed an interactive consensus reaching process based on optimization to increase consensus 

of individuals and minimize the number of adjusted preference values. Guha and Chakraborty 

(2011) introduced an iterative fuzzy multi-attribute group decision-making technique to reach 

consensus using fuzzy similarity measures. In addition, their method considers the degrees of 

confidence of experts’ opinions in the procedure. Herrera-Viedma et al. (2002) proposed a 

consensus model suitable for four different preference structures. Their model uses two consensus 

criteria: a consensus measure for measuring the degree of consensus between the experts, and a 
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proximity measure to measure the difference between the preferences of individuals and the group 

preference relation. 

1.1.4. Rank reversal 

Our literature review on decision-making reveals that a number of methods suffer from the rank 

reversal phenomenon. These include Analytic Hierarchy Process (AHP) (Barzilai & Golany, 1994; 

Wang & Luo, 2009), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

(Wang et al., 2007; Wang & Luo, 2009), ELimination and Choice Expressing Reality (ELECTRE), 

Preference Ranking Organisation Method for Enrichment Evaluations (PROMETHEE) (Frini et 

al., 2012; Mareschal et al., 2008), Data Envelopment analysis - Analytic hierarchy process 

(DEAHP), Borda-Kendall (BK) (Wang & Luo, 2009 ) and Weighted Sum Method (WSM)( Wang 

& Luo, 2009), to name a few. 

The rank reversal issue has created concerns over the use of the affected methods, especially AHP. 

Rank reversal could be of two types: partial or total. Partial rank reversal happens to limited 

alternatives while other alternatives still have the same ordering. Suppose that the current ranking 

of three alternatives is 𝐴3 ≻ 𝐴1 ≻ 𝐴2, which means that alternative 𝐴3 is preferred over alternative 

𝐴1 and 𝐴2 respectively. However, when another non-dominating alternative (𝐴4) is added, the 

ranking becomes: 𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2. Notice that alternative 𝐴3 now becomes second while 

alternative 𝐴1 is the first. This is called partial rank reversal. On the other hand, total rank reversal 

occurs when the whole ordering or ranking is reversed. In this case, the best alternative becomes 

the worst and the worst becomes the best 𝐴2 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴3 (Dymova et al., 2013; Garcia-

Cascales & Lamata, 2012). 
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Many reasons behind the rank reversal in preference relation have been studied by researchers, 

especially in AHP. The three main reasons are inconsistency, preference relations aggregation 

method, and score aggregation method. Dodd et al. (1995) claimed that Saaty’s AHP misses a 

form of inconsistency within its model, which makes the results doubtful. This claim somehow 

agrees with Stewart (1992) who stated that rank reversal is a consequence of the way the weights 

are elicited, ratio scales, and the eigenvector approach. Farkas et al. (2004) blamed inconsistency 

in pairwise comparison for this issue. Chou (2012) attributes rank reversal in AHP to the 

aggregation method, due to Saaty’s ratio scale and the inconsistency of judgments.  

Other researchers, like Schenkerman (1994), believed that rank reversal in AHP is caused by 

normalization and its scales seem arbitrary. He claimed that criteria weights are dependent on the 

alternatives measurements. Thus, any change in the number of alternatives and normalization 

imposes revision of the criteria weights. Other researchers such as Lai (1995) pointed out that rank 

reversal happens because of multiplying criteria weights by an unrelated normalized scale of 

performance ratings. Dyer (1990) claimed that the problem is not just rank reversal, but rather the 

AHP results’ are arbitrary. This is because the criteria weights may not be right due to the 

normalization procedure. 

1.2. Scope and Objectives 

The scope of our work is limited to additive preference relations in group decision-making. In 

preference relations settings, decision-makers might not give complete information for their 

preference degrees on some of the alternatives. In fact, it is unrealistic in group decision-making 

to acquire all the knowledge about the problem and discriminate between the alternatives, 
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especially if the set of alternatives is large (Urena et al., 2015). Thus, it is important and desirable 

to manage incomplete preference relations by estimating missing information (Urena et al., 2015). 

Therefore, our first objective in the thesis is to capture decision-maker preferences in numerical 

settings, particularly additive preference relations, accurately by proposing a method that has the 

ability to handle incomplete preference relations. Many papers have studied this issue in the 

general case where at least 𝑛 − 1 non-diagonal preference degrees are given; however, very few 

papers have studied the ignorance situations. In the ignorance situations, at least one alternative 

has not been given any preference degree. Thus, our goal is to handle these situations in preference 

relations.  

In group decision-making, reaching a level of agreement between the group members is important 

even when each member differs from the others. Measuring consensus, aggregation of preferences, 

and ranking are considered as main issues to be solved in any group decision-making problem 

(Ben-Arieh & Chen, 2006). Therefore, it is very important to measure consensus degree between 

individuals and group preference relation to find the similarities. Consensus process in group 

decision-making involves aggregating individual preferences relations into a collective or group 

preference relation. Then a similarity measure is used to measure the degree of similarities between 

the individual matrices and the collective one. If the similarity is greater than or equal to a pre-

defined threshold, then the collective preference relation is considered as consensus. Otherwise, 

the decision-makers with consensus degree below the threshold are asked to re-evaluate their 

preferences until the consensus degree reaches the acceptable level of similarity. Generally, 

consensus is an interactive and iterative process where decision-makers revise their preferences 

until they reach a manageable level of acceptance. Thus, our second objective in this thesis is to 
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develop a new consensus measure for group decision-making based on rank correlation, where 

similarity/distance functions are not the main measures to measure the coherence among decision-

makers. A number of papers, such as Perez et al. (2016), Cabrerizo et al. (2015), and Herrera-

Viedma et al. (2014) reported that developing a new consensus measure is beneficial to overcome 

some drawbacks of similarity/distance functions. A study done by Chiclana et al. (2013) compares 

five different similarity/distance measures of consensus in group decision-making, namely, 

Manhattan, Euclidean, Cosine, Dice and Jaccard,. They found that different similarity/distance 

measures could generate significantly different results. Moreover, the chosen measure could affect 

the speed of convergence for consensus. 

The last process in group decision-making is selection. The preference relations are known to have 

a phenomenon called rank reversal. This phenomenon is considered as an issue by some decision-

makers. Thus, they might hesitate to rely on preference relations. For instance, recently Anbaroglu 

et al. (2014) chose to use Weighted Product Model (WPM) instead of well-known and widely used 

models such as AHP and WSM just because it does not suffer from any kind of rank reversal 

issues. Furthermore, they commented on the problem of rank reversal as “a serious limitation” of 

the multi-criteria decision-making (MCDM) field, which could mislead researchers from 

understanding the difference between examined alternatives. Therefore, our third objective in this 

thesis is to solve the rank reversal issue by investigating and addressing its possible causes in 

additive preference relations. The literature on preference relations, especially multiplicative 

preference relation, links this phenomenon to inconsistency of the data, the concept of pairwise 

comparison on which all preference relations are based, preference aggregation method, and score 

aggregation method. Currently, there is no complete study that investigates these possible reasons 
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for rank reversal in preference relations. Leskinen and Kangas (2005) used a regression model to 

study the inconsistency of pairwise comparisons. They concluded that inconsistency could lead to 

rank reversal. However, this phenomenon does not occur when there is a single criterion and data 

is consistent. But, in multiple criteria, even if the data are consistent, the aggregation method or 

the arithmetic mean can result in rank reversals. Furthermore, to emphasize this issue we pointed 

out that it violates the contraction consistency condition (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝛼) [mentioned by Pavlicic 

(2001), adopted from Amartya Sen] that states: 

Contraction consistency condition: If alternative 𝐴 is the best in the set of alternatives 𝑆 such 

that 𝐴 ∈ 𝑆, then it has to be the best in every subset 𝐸 ⊂ 𝑆 where 𝐴 ∈ 𝐸. 

Our aim is to investigate the reasons behind this phenomenon so that they can be prevented or 

limited when not desired by the group. 

1.3. Thesis Organization 

In this thesis, we deal with three associated problems that decision-makers encounter during the 

process of reaching a final decision in a group decision-making setting. The three problems 

(challenges) are splits into three stages, where each stage relies on the stage before, as shown in 

Figure 1.1. In the first stage, we deal with incomplete reciprocal preference relations for missing 

information in general case and ignorance situations. In the second stage, we deal with the 

consensus process by proposing a novel consensus measure and feedback mechanism.  For the 

third stage, we study the causes of rank reversal phenomena in preference relations. The rest of 
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this thesis is organized based on these contributions, which are presented in Chapters 2, 3 and 4 

respectively.  

In Chapter 2, we propose two new methods for incomplete reciprocal fuzzy preference relations 

based on additive consistency. The first method is for the general case where at least 𝑛 − 1 non-

diagonal preference degrees are given. This method is based on using a system of equations to 

estimate the values of missing preference degrees. The second method, based on goal 

programming, was designed specifically for ignorance situations. It can also be used to estimate 

values for the general case. In the goal programming model, the objectives are to minimize the 

errors between the missing preferences degrees and their estimations subject to all the missing 

preference degrees between 0 and 1. 

In Chapter 3, we propose a new consensus measure based on rank correlation to address the 

consensus among decision-makers. We utilized Spearman’s correlation to measure rank consensus 

on preference degrees between the decision-makers. Thus, we define ranked preference vector for 

each decision-maker and develop a new rank similarity degree measure. In addition to measuring 

rank consensus, we introduce a feedback mechanism to assist the group reach a consensus state. 

In Chapter 4, we study the rank reversal in additive preference relations. We investigate the 

possible causes behind this phenomenon. The study is based on additive consistency. Thereby, we 

study the link of inconsistency, preference aggregation methods, score aggregation methods and 

their effect on generating rank reversal. We also propose two new score aggregation methods to 

handle this phenomenon when it is not desirable by the group. The first score aggregation method 

is used when a new alternative is added or replaced by the group. In this method, a consistency 
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element on the aggregation method is used. The second method is used to prevent rank reversal 

when an alternative is removed from consideration. 

Finally, in Chapter 5 we present the thesis conclusions, contributions, and our perspective for 

future works. 
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Figure 1.1: Relationship between the three stages
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Chapter 2: 

Two New Methods for Decision-Making with 

Incomplete Reciprocal Fuzzy Preference 

Relations Based on Additive Consistency 

 

2.1. Introduction 

Multi-attributes decision-making (MADM) involves making decisions among a set of alternatives 

with respect to a set of attributes/criteria by a committee of decision-makers. The main idea behind 

MADM is that the decision-maker (DM) usually faces a problem of selecting an alternative from 

a number of pre-determined choices, which need to be evaluated based on a number of criteria. 

Usually, there is no unique or best solution, as the solution is often reached through a compromise: 

typically, a trade-off between the criteria and decision-makers’ preferences (Hwang & Yoon, 

1981). Generally, MADM has issues with regards to the accuracy of decision-maker judgments, 

the consistency of the judgments, and the method to be used to find the solution (Easley et al., 

2000).  

In decision-making, there are three commonly used preference representation formats: preference 

orderings, where each individual ranks alternatives from the best to the worst, utility values, where 

an individual assigns utility values to alternatives such that the higher the value the better is the 

alternative, and preference relations (Herrera-Viedma et al., 2014). Preference relations are based 

on pairwise comparisons where each two alternatives are compared by an expert at a time. Millet 
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(1997) compared five different types of preference elicitation methods and concluded that 

preferences based on pairwise comparison are more accurate than the others.  

Fuzzy preference relations are commonly used in decision-making for evaluating a set of 

alternatives with respect to a set of attributes. However, in some situations, decision-makers may 

not be able to provide complete information about their preferences on the alternatives. That could 

be due to the decision-maker not having enough knowledge about part of the problem or being 

unable to discriminate between some of the alternatives (Herrera-Viedma et al., 2007b) or it might 

be because of time pressure (Xu, 2005a). In fact, it is unrealistic for all decision-makers to acquire 

all the levels of knowledge of the whole problem and be able to discriminate between all the 

alternatives, especially if the set of alternatives is large (Urena et al., 2015). Thus, some decision-

makers might not be able to provide information for some of the alternatives. In this case, it is 

important and desirable to manage incomplete preference relations by estimating the missing 

information (Urena et al., 2015). Moreover, in some cases, the decision-maker might not be able 

to give his/her assessments for at least one of the alternatives with respect to the others. This 

situation is called an ignorance situation and the alternative is called the ignorance alternative 

(Chen et al., 2014; Alonso et al., 2009).  Most of the existing methods are not compatible with 

estimating unknown preference degrees for ignorance situations such as the model proposed by 

Herrera-Viedma et al. (2007a). Furthermore, according to Meng and Chen (2015), other methods 

try to assign fixed values for the ignorance alternative such as 0 or 0.5. 

The main objectives of this work are to solve the problems associated with incomplete preference 

relations, namely, additive fuzzy preference relation, multiplicative preference relation, and 
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linguistic preference relation, when some information is missing or when an ignorance situation is 

present by: 

(1) Proposing a method that has the ability to handle incomplete preference relations with high 

consistency rate, and also generate a perfect consistent matrix when at least each alternative is 

compared once.  

(2) Proposing a method that solves the ignorance situation with a high consistency level without 

modifying or changing the decision-maker’s preferences.  

The rest of the chapter is organized as follows: we present a brief preliminary knowledge on 

preference relations in section 2.2. Then a literature review on additive fuzzy preference relations 

is given in section 2.3 followed by proposed methodology in section 2.4. In section 2.5, the 

proposed methods are demonstrated with examples. In section 2.6, we validated the proposed 

methods. Finally, conclusions are given in section 2.7. 

2.2. Preliminary Knowledge 

In this section, we provide brief knowledge on three types of preference relations, namely, additive 

fuzzy preference relation, multiplicative preference relation and linguistic preference relation.   

Definition 2.1 (Urena et al., 2015): A preference relation 𝑅 is a binary relation defined on the set 

𝑋 that is characterized by a function 𝜇𝑝: 𝑋 × 𝑋 → 𝐷, where 𝐷 is the domain of representation of 

preference degrees provided by the decision-maker. 
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2.2.1. Fuzzy additive preference relation 

Definition 2.2 (Xu, 2007): A fuzzy additive preference relation 𝑃 on a finite set of alternatives 𝑋 

is represented by a matrix 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛
⊂ 𝑋 × 𝑋 with: 

𝑝𝑖𝑗 ∈ [0,1],   𝑝𝑖𝑗 + 𝑝𝑗𝑖 = 1,   𝑝𝑖𝑖 = 0.5   ∀𝑖, 𝑗 = 1,… , 𝑛. 

 

 

when 𝑝𝑖𝑗 > 0.5 indicates that the expert prefers alternative 𝑥𝑖 over alternative 𝑥𝑗; 𝑝𝑖𝑗 < 0.5 

indicates that the expert prefers alternative 𝑥𝑗 over alternative 𝑥𝑖; 𝑝𝑖𝑗 = 0.5 indicates that the expert 

is indifferent  between 𝑥𝑖 and 𝑥𝑗, thus, 𝑝𝑖𝑖 = 0.5. 

Furthermore, the additive preference relation 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛 is additive consistent if and only if the 

following additive transitivity is satisfied (Meng & Chen, 2015; Urena et al., 2015; Herrera-

Viedma et al., 2007a; Tanino, 1984): 

𝑝𝑖𝑗 + 𝑝𝑗𝑘 = 𝑝𝑖𝑘 + 0.5       ∀𝑖𝑗𝑘 = 1,2, … , 𝑛. 

2.2.2. Multiplicative preference relation 

 Definition 2.3 (Saaty, 1980): A multiplicative preference relation 𝐴 on the set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

of alternatives is defined as a reciprocal matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛  ⊂ 𝑋 × 𝑋 with the following 

conditions: 

                                     𝐴1  𝐴2 … 𝐴𝑛

𝑃 = (𝑝𝑖𝑗)𝑛𝑥𝑛
=

𝐴1

𝐴2

⋮
𝐴𝑛

[

0.5 𝑝12 … 𝑝1𝑛

𝑝21 0.5 … 𝑝2𝑛

⋮ ⋮ ⋱ ⋮
𝑝𝑛1 𝑝𝑛2 ⋯ 0.5

]
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𝑎𝑖𝑗 > 0,   𝑎𝑖𝑗𝑎𝑗𝑖 = 1,   𝑎𝑖𝑖 = 1,   ∀𝑖𝑗 = 1, 2, … , 𝑛. 

where 𝑎𝑖𝑗 is interpreted as the ratio of the preference intensity of the alternative 𝑥𝑖 to 𝑥𝑗.  

There are several numerical scales for the multiplicative preference relation, however, the most 

popular one is the 1-9 Saaty scale. 𝑎𝑖𝑗 = 1 means that alternatives 𝑥𝑖 and 𝑥𝑗 are indifferent; 𝑎𝑖𝑗 >

1 implies that alternative 𝑥𝑖 is preferred to 𝑥𝑗. As the ratio of intensity of (𝑎𝑖𝑗) increases, the 

stronger is the preference intensity of 𝑥𝑖 over 𝑥𝑗. Thus, 𝑎𝑖𝑗 = 9 means that alternative 𝑥𝑖 is 

absolutely preferred to 𝑥𝑗. 

The multiplicative preference relation 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is called consistent if the following 

multiplicative transitivity is satisfied (Saaty, 1980): 

𝑎𝑖𝑗 = 𝑎𝑖𝑘𝑎𝑘𝑗,   𝑎𝑖𝑖 = 1,   ∀𝑖, 𝑗 = 1, 2, … , 𝑛. 

Chiclana et al. (2001) proposed a transformation function to transfer a multiplicative preference 

relation, 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, into a fuzzy preference relation, 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛, as follows: 

𝑝𝑖𝑗 =
1

2
(1 + log9 𝑎𝑖𝑗)   ∀𝑖, 𝑗 = 1, 2, … , 𝑛                                                                                            (2.1) 

Moreover, if 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is a consistent multiplicative preference relation, then the transformed 

𝑃 = (𝑝𝑖𝑗)𝑛×𝑛 is an additive consistent fuzzy preference relation. 
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2.2.3. Linguistic preference relation 

Definition 2.4 (Xu, 2005b): A linguistic preference relation 𝐿 on the set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} of 

alternatives is represented by a linguistic decision matrix 𝐿 =  (𝑙𝑖𝑗)𝑛×𝑛  ⊂ 𝑋 × 𝑋 with  

𝑙𝑖𝑗 ∈ 𝑆̅,   𝑙𝑖𝑗 ⊕ 𝑙𝑗𝑖 = 𝑠0,   𝑙𝑖𝑖 = 𝑠0,   ∀𝑖𝑗 = 1, 2, … , 𝑛. 

where 𝑙𝑖𝑗 represents the preference degree of the alternative 𝑥𝑖 over 𝑥𝑗. When 𝑙𝑖𝑗 = 𝑠0, means that 

the decision-maker is indifferent between alternative 𝑥𝑖 and 𝑥𝑗; 𝑙𝑖𝑗 > 𝑠0 indicates that 𝑥𝑖 is 

preferred over 𝑥𝑗. 

Moreover, 𝐿 =  (𝑙𝑖𝑗)𝑛×𝑛 is consistent when, 

𝑙𝑖𝑗 = 𝑙𝑖𝑘 ⊕ 𝑙𝑘𝑗   ∀𝑖, 𝑗, 𝑘 = 1, 2, … , 𝑛. 

Let 𝑆 = {𝑠𝛼|𝛼 = −𝑡,… ,−1, 0, 1, … , 𝑡} be a linguistic label set with odd cardinality. Then 𝑠𝛼 

represents a possible value for a linguistic label. In addition, 𝑡 is a positive integer number and 

𝑠−𝑡and 𝑠𝑡 are the lower and upper limits of linguistic labels, respectively, while 𝑠0 represents an 

assessment of “indifference.”  

The linguistic label set has following characteristics (Xu, 2004, 2005b): 

1. The set is ordered: 𝑠𝛼 > 𝑠𝛽 if and only if 𝛼 > 𝛽 

2. There is the negation operator: neg(𝑠𝛼) = 𝑠−𝛼 
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In addition, Xu (2004, 2005b) extended the discrete linguistic label set to a continuous set  𝑆̅ =

{𝑠𝛼|𝛼 ∈ [−𝑞, 𝑞]} to preserve all the information. In this extension 𝑞 is a large positive integer such 

that (𝑞 > 𝑡). In general, if  𝑠𝛼 ∈ 𝑆 then this represents the original linguistic label, otherwise, 𝑠𝛼 

is only the virtual linguistic label which appears only in operations.  

Let 𝑠𝛼,𝑠𝛽 ∈ 𝑆̅ and 𝜇, 𝜇1, 𝜇2 ∈ [0, 1]. Some operational laws introduced by Xu (2004, 2005b) are as 

follows:  

1. 𝑠𝛼 ⊕ 𝑠𝛽 = 𝑠𝛼+𝛽; 

2. 𝑠𝛼 ⊕ 𝑠𝛽 = 𝑠𝛽 ⊕ 𝑠𝛼; 

3. 𝜇𝑠𝛼 = 𝑠𝜇𝛼; 

4. (𝜇1 + 𝜇2)𝑠𝛼 = 𝜇1𝑠𝛼 ⊕ 𝜇2𝑠𝛼; 

5. 𝜇(𝑠𝛼 ⊕ 𝑠𝛽) = 𝜇𝑠𝛼 ⊕ 𝜇𝑠𝛽; 

In addition, for any 𝑠 ∈ 𝑆̅ , 𝐼(𝑠) represents the lower index of  , e.g. if 𝑠 = 𝑠𝛼 → 𝐼(𝑠) = 𝛼 and it is 

called the gradation of 𝑠 in 𝑆̅. Likewise, we could get the inverse of 𝐼(𝑠): 𝐼−1(𝛼) = 𝑠𝛼. 

An example of the linguistic label set is when 𝑡 = 3, then 𝑆 ={𝑠−3= very low, 𝑠−2= low, 𝑠−1= 

slightly low, 𝑠0=medium, 𝑠1= slightly high, 𝑠2= high, 𝑠3= very high}. 

Sometimes, depending on the decision problem, experts provide their assessments on the linguistic 

preference relation using different granularity (multi-granularity). Thus, these granularities need 

to be unified. Dong et al. (2009) provided following transformation function for unifying multi-

granularity into a common granularity (𝑇): 
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𝑙𝑖𝑗 =
𝑇 − 1

𝑇′ − 1
𝑙𝑖𝑗
′                                                                                                                                            (2.2) 

where 𝑇 is the intended granularity (normal granularity) and  𝑇′is the granularity of 𝐿′(𝑙𝑖𝑗
′ )

𝑛×𝑛
.  

Dong et al. (2009) and Xu (1999) propose a transformation function to transfer linguistic 

preference degree (𝑙𝑖𝑗) into fuzzy preference degree based on linear scale function, as follows: 

𝑝𝑖𝑗 = 0.5 +
𝐼(𝑙𝑖𝑗)

𝑇 − 1
= 0.5 +

𝐼(𝑙𝑖𝑗)

2𝑡
                                                                                                         (2.3) 

where 𝑇 is the granularity of 𝑆. 

2.3. Literature Review 

Preference relations can be categorized into: numeric and linguistic preferences (Urena et al., 

2015). The numeric preference relations are of five types: crisp preference relation, additive 

preference relation, multiplicative preference relation, interval-valued preference relation, and 

intuitionistic preference relation. On the other hand, there are two main methodologies for 

linguistic preference relation: linguistic preference relation based on cardinal representation and 

linguistic preference relation based on ordinal representation.  

Many papers have been published about incomplete preference relation in decision-making. Xu 

(2005a) proposed two approaches to find the priority vector of an incomplete fuzzy preference 

relation based on a system of equations. The first approach uses the system of equations to generate 

the priority vector of an incomplete fuzzy preference relation. On the other hand, the second 

approach uses the provided information to estimate the unknown values and then generates the 
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priority vector by the system of equations. Xu (2006) studied five types of incomplete linguistic 

preference relations, namely, incomplete uncertain linguistic preference relation, incomplete 

triangular fuzzy linguistic preference relation, incomplete trapezoid fuzzy linguistic preference 

relation, expected incomplete linguistic preference relation and acceptable expected incomplete 

linguistic preference relation. Then, based on some transformation functions, he converted them 

into the expected incomplete linguistic preference relations. He used the expected incomplete 

linguistic preference relations based on additive consistency to calculate the complete linguistic 

preference relations. Fedrizzi and Giove (2007) proposed a method based on a linear system to 

calculate missing values of an incomplete matrix of pairwise comparison. Chiclana et al. (2009) 

analyzed two methods for estimating missing values in incomplete fuzzy preference relation, one 

of them being Fedrizzi and Giove’s (2007) method. They ended up with proposing a reconstruction 

policy for using both methods. Alonso et al. (2008) introduced an iterative procedure to estimate 

missing information for incomplete fuzzy, multiplicative, interval-valued and linguistic preference 

relations. Lee (2012) proposed an incomplete fuzzy preference relations method based on additive 

consistency and order consistency. Table 2.1 summarizes these approaches.   

Table 2.1: Some approaches to solve incomplete preference relations 

Author(s) Method Types of incomplete prefernce relation

Xu (2005a) System of equations Fuzzy preference relation

Fedrizzi and Giove (2007) Linear system Fuzzy, multiplicative

Based on additive consistency Alonso et al. (2008)

Uncertain linguistic, triangular fuzzy linguistic, 

trapezoid fuzzy linguistic, expected linguistic and 

acceptable expected linguistic

Expected incomplete linguistic 

preference relations based on 

additive consistency property 

Xu (2006) 

Fuzzy, multiplicative, interval-valued and     

linguistic 

Fuzzy preference relations, multiplicative and 

linguistic

Based on additive consistency Proposed method

Fuzzy preference relations Based on additive 

consistency and order 

Lee (2012)
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2.3.1. Incomplete preference relations 

Definition 2.5 (Urena et al., 2015): A function 𝑓: 𝐴 → 𝑌 is partial when not every element in the 

set 𝐴 necessarily maps to an element in the set 𝑌. When every element from the set 𝐴 maps to one 

element of the set 𝑌, we have a total function. 

Definition 2.6 (Urena et al., 2015): A preference relation 𝑃 on a set of alternatives 𝐴 with a partial 

membership function is an incomplete preference relation. 

The individuals in group decision-making come from different backgrounds or expertise and each 

has their motivations or goals in the problem, which might differ from the other members (Urena 

et al., 2015). Despite that, each individual might look at the problem from a different angle; they 

all have to interact to reach an agreement. Each individual is asked to give preferences on the set 

of pre-determined alternatives. However, since each individual has their own experience, they 

might not be fully aware of the problem and might not give their preferences degree for some of 

the alternatives. This could be related to number of reasons. They might not have enough 

knowledge about part of the problem, or they cannot discriminate between the alternatives. Then 

they do not give their preferences on those alternatives and provide incomplete information 

(Herrera-Viedma et al., 2007b) or it might be because of time pressure (Xu, 2005a). 

In general, incomplete preference relation can be completed based on additive consistency if at 

least a set of 𝑛 − 1 nonleading diagonal preference values are known and each one of the 

alternatives are compared directly or indirectly at least once (Xu et al., 2013; Alonso et al., 2009; 

Herrera-Viedma et al., 2007a). 
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2.3.2. Research gaps 

Despite the existing large number of publications on the incomplete preference relation problem, 

few of them discuss ignorance situations such as Alonso et al. (2009), Chen et al. (2014) and Meng 

and Chen (2015). Alonso et al. (2009) proposed five strategies for solving the ignorance situation. 

Two of these strategies are for individual, where the estimation of the missing information depends 

on the expert without relying on information from other members of the group. The other two are 

for social, where missing information of the ignorance alternative can be estimated from other 

members of the group. The last strategy is a hybrid of both individual and social strategies. Chen 

et al. (2014) solves the drawbacks of Lee’s (2012) method. At the first stage, it assumes that the 

ignorance alternative is indifferent with respect to the other alternatives. Thus, its preference 

degrees are equal to 0.5. Then, based on this assumption, the method modifies the consistency, 

both the additive and the order consistency, of the matrix until it gets to the perfect consistency. 

Meng and Chen (2015) propose a goal programming method to find the priority vector for 

incomplete fuzzy preference relation based on additive consistency.  

Chen et al. (2014) report that Alonso et al.’s (2009) method violates the property of additive 

consistency; thus they claim their method is more appropriate, as it satisfies the additive 

consistency and the order consistency. However, Chen et al.’s (2014) method does not preserve 

decision-maker preference degrees, at least for the ignorance situation. Nevertheless, all these 

methods are suitable for certain situations.  

Moreover, most of the publications are based on comparing the alternatives directly without 

explicitly considering the attributes. Incorporating the attributes will make the alternatives 
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evaluation process more accurate with deeper understanding of the differences between the 

alternatives. Although this could increase the number of preference relations, it will increase the 

confidence of the decision-maker about their assessments on the alternatives and thus the final 

solution. 

2.4. Proposed Methodology 

Transitivity is considered as the main part in defining consistency in decision-making. However, 

some might argue about its representation to real life individual behavior. One might argue that 

real life choices could be done in intransitive manner such that an individual might prefer apple 

over banana and banana over orange but orange over apple. This could be true if the decision was 

made based on comparing the alternatives directly. However, if a set of certain criteria or attributes 

has been defined first to draw a judgement on the alternatives, then intransitivity in preference 

relation under one attribute does not exist. For instance, if we set taste for comparing apple, banana 

and orange as an attribute, then if the individual prefers the taste of apple over the taste of banana 

and the taste of banana over the taste of orange, then  certainly he or she prefers the taste of apple 

over the taste of orange. In MADM, the tradeoff between criteria makes maintaining the 

transitivity among the alternatives hard. However, transitivity within a criterion is a 

straightforward acquired property. 

Therefore, the best adoption to additive consistency is to apply it in MADM concept. The general 

steps of the decision-making process in MADM as described by Howard (1991), Pohekar and 

Ramachabdran (2003), and Wang et al. (2009) are: 

1. Defining the objectives; 
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2. Generating or choosing the criteria; 

3. Identifying the alternatives; 

4. Unifying criteria units through normalization; 

5. Generating criteria weights; 

6. Choosing and applying one of MADM methods; and 

7. Selecting the best alternative. 

Since we are dealing with preference relations, step 4 is not necessary. 

2.4.1. System of equations method 

Any incomplete additive preference relation with at least (𝑛 − 1) non-leading diagonal preference 

degrees can be completed by additive consistency. Additive consistency formulation, which is 

based on transitivity among preferences degrees, for known 𝑝𝑖𝑗 and 𝑝𝑗𝑘 and unknown 𝑝𝑖𝑘 is given 

by: 

𝐹1:    𝑝𝑖𝑘 = 𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5     (𝑖, 𝑗) 𝑎𝑛𝑑 (𝑗, 𝑘) 𝑎𝑟𝑒 𝑘𝑛𝑜𝑤𝑛                                                           (2.4)   

From this formulation, two other formulations can be generated based on the characteristics of 

reciprocal rule, (𝑝𝑖𝑗 + 𝑝𝑗𝑖 = 1), as follows: 

𝐹2:    𝑝𝑖𝑘 =  𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5    (𝑗, 𝑖) 𝑎𝑛𝑑 (𝑗, 𝑘) 𝑎𝑟𝑒 𝑘𝑛𝑜𝑤𝑛, using 𝑝𝑖𝑗 = 1 − 𝑝𝑗𝑖                        (2.5)   

𝐹3:    𝑝𝑖𝑘 =  𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5    (𝑖, 𝑗) 𝑎𝑛𝑑 (𝑘, 𝑗) 𝑎𝑟𝑒 𝑘𝑛𝑜𝑤𝑛, using 𝑝𝑗𝑘 = 1 − 𝑝𝑘𝑗                      (2.6) 



Chapter 2: Two New Methods for Decision-Making with Incomplete Reciprocal Fuzzy Preference Relations Based on Additive Consistency 

29 | P a g e  

  

Proposition 2.1: Given at least (𝑛 − 1) non-leading diagonal preference degrees, the additive 

preference relation can be completed for unknown preference degree 𝑝𝑖𝑘 by: 

 𝑝𝑖𝑘 =
1

3(𝑛−2)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

.                                                                   (2.7) 

Proof: By taking the average of equations (2.4), (2.5) and (2.6) for unknown 𝑝𝑖𝑘 for 𝑛 

alternatives, the following equation is generated: 

  

𝑝𝑖𝑘 =
1

3𝑛
[∑(𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5)

𝑛

𝑗=1

+ (𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5) + (𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5)] 

⟹ 𝑝𝑖𝑘 =
1

3𝑛
∑(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1

 

⟹ 𝑝𝑖𝑘 =
1

3𝑛
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

+
1

3𝑛
(𝑝𝑖𝑖 + 𝑝𝑘𝑘 + 4𝑝𝑖𝑘 − 2𝑝𝑘𝑖 + 1) 

⟹ 𝑝𝑖𝑘 =
1

3𝑛
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

+
1

3𝑛
(0.5 + 0.5 + 4𝑝𝑖𝑘 − 2(1 − 𝑝𝑖𝑘) + 1) 

⟹ 𝑝𝑖𝑘 =
1

3𝑛
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

+
1

3𝑛
(6𝑝𝑖𝑘) 
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⟹ (3𝑛)𝑝𝑖𝑘 = ∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

+ (6𝑝𝑖𝑘) 

⟹ 3(𝑛 − 2)𝑝𝑖𝑘 = ∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5) 

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

 

⟹ 𝑝𝑖𝑘 =
1

3(𝑛 − 2)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

 ∎ 

The reciprocal rule implies that the matrix could be separated into two portions; upper triangular 

matrix and lower triangular matrix. Completing any portion will fulfill the other one. Thus, we 

will focus on completing the upper triangular matrix by using (2.7).  

 

Proposition 2.2: To complete the upper triangular matrix for an incomplete reciprocal additive 

preference relation with at least (𝑛 − 1) non-leading diagonal preference degrees, the following 

system of equations is applied: 

𝑝𝑖𝑘 =
1

𝑛−2
[∑ (𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5)𝑛

𝑗=1
𝑖<𝑗<𝑘

+ ∑ (𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5)𝑛
𝑗=1

𝑖>𝑗<𝑘

+ ∑ (𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5)𝑛
𝑗=1

𝑖<𝑗>𝑘

]    ∀ 𝑖 < 𝑘.             (2.8)  

                                        𝐴1        𝐴2           𝐴3     … 𝐴𝑛

𝑃 = (𝑝𝑖𝑗)𝑛×𝑛
=

𝐴1

𝐴2

𝐴3

⋮
𝐴𝑛 [

 
 
 
 

0.5 𝑝12 𝑝13 … 𝑝1𝑛

1 − 𝑝12 0.5 𝑝23 … 𝑝2𝑛

1 − 𝑝13 1 − 𝑝23 0.5 … 𝑝3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
1 − 𝑝1𝑛 1 − 𝑝2𝑛 1 − 𝑝3𝑛 ⋯ 0.5]
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Proof: 𝑗 could fall in three positions between 𝑖 and 𝑘: 𝑖 < 𝑗 < 𝑘, 𝑖 > 𝑗 < 𝑘 and 𝑖 < 𝑗 > 𝑘. Solve 

(2.7) for 𝑝𝑖𝑘 such that 𝑖 < 𝑗 < 𝑘: 

𝑝𝑖𝑘 =
1

3(𝑛 − 2)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − (1 − 𝑝𝑖𝑗) − (1 − 𝑝𝑗𝑘) + 0.5)

𝑛

𝑗=1
𝑖<𝑗<𝑘

 

⟹ 
1

3(𝑛 − 2)
∑ (3𝑝𝑖𝑗 + 3𝑝𝑗𝑘 − 1.5) 

𝑛

𝑗=1
𝑖<𝑗<𝑘

 

⟹ 
1

3(𝑛 − 2)
∑ 3(𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5) 

𝑛

𝑗=1
𝑖<𝑗<𝑘

 

⟹ 𝑝𝑖𝑘 =
1

(𝑛−2)
∑ (𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5)𝑛

𝑗=1
𝑖<𝑗<𝑘

  ∀ 𝑖 < 𝑗 < 𝑘                                                               (2.8.1)  

Solve (2.7) for 𝑝𝑖𝑘 such that 𝑖 > 𝑗 < 𝑘: 

𝑝𝑖𝑘 =
1

3(𝑛 − 2)
∑ (2(1 − 𝑝𝑗𝑖) + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − (1 − 𝑝𝑗𝑘) + 0.5)

𝑛

𝑗=1
𝑖>𝑗<𝑘

 

⟹ 
1

3(𝑛 − 2)
∑ (3𝑝𝑗𝑘 − 3𝑝𝑗𝑖 + 1.5) 

𝑛

𝑗=1
𝑖>𝑗<𝑘

 

⟹ 
1

3(𝑛 − 2)
∑ 3(𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5) 

𝑛

𝑗=1
𝑖>𝑗<𝑘
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⟹ 𝑝𝑖𝑘 =
1

(𝑛−2)
∑ (𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5)𝑛

𝑗=1
𝑖>𝑗<𝑘

  ∀ 𝑖 > 𝑗 < 𝑘                                                               (2.8.2)  

Solve (2.7) for 𝑝𝑖𝑘 such that 𝑖 < 𝑗 > 𝑘: 

𝑝𝑖𝑘 =
1

3(𝑛 − 2)
∑ (2𝑝𝑖𝑗 +  2(1 − 𝑝𝑘𝑗) − (1 − 𝑝𝑖𝑗) − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖<𝑗>𝑘

 

⟹ 
1

3(𝑛 − 2)
∑ (3𝑝𝑖𝑗 − 3𝑝𝑘𝑗 + 1.5) 

𝑛

𝑗=1
𝑖<𝑗>𝑘

 

⟹ 
1

3(𝑛 − 2)
∑ 3(𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5) 

𝑛

𝑗=1
𝑖<𝑗>𝑘

 

⟹ 𝑝𝑖𝑘 =
1

(𝑛 − 2)
∑ (𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖<𝑗>𝑘

  ∀ 𝑖 < 𝑗 > 𝑘                                                            (2.8.3) 

Therefore, (2.7) can be rewritten as a system of linear of equations based on (2.8.1), (2.8.2) and 

(2.8.3) for all 𝑖 < 𝑘 as follows: 

𝑝𝑖𝑘 =
1

𝑛 − 2

[
 
 
 
 

∑ (𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5)

𝑛

𝑗=1
𝑖<𝑗<𝑘

+ ∑ (𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5)

𝑛

𝑗=1
𝑖>𝑗<𝑘

+ ∑ (𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖<𝑗>𝑘 ]

 
 
 
 

    ∀ 𝑖 < 𝑘∎ 
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Thus, in the case of the decision-maker giving preference degrees only for 𝑛 − 1 values such that 

each pair of the alternatives are compared only once, (2.8) can be used to estimate the rest of the 

unknown values with perfect consistency.  

Definition 2.7: Let 𝑃 = (𝑝𝑖𝑘)𝑛×𝑛  be a completed preference decision matrix from (2.8) and  

𝑃𝑒(𝑝𝑖𝑘
𝑒 )𝑛×𝑛 be an estimated preference decision matrix from (2.7). Then the consistency degree 

(DC) between 𝑃 and 𝑃𝑒 is accepted if and only if 𝐶𝐷(𝑃, 𝑃𝑒) ≥ 𝛼  where 𝐶𝐷(𝑃, 𝑃𝑒)is the 

consistency degree between 𝑃 and 𝑃𝑒, and 𝛼 is the least accepted consistency that is defined by 

the expert(s).  

Saaty (1980) suggested that 𝛼 should be greater than or equal to 90%. In other words, the 

inconsistency degree should be less than or equal to 10%. 

Thus, the consistency degree (similarity degree) between provided (or completed) matrix and the 

estimated one by additive consistency is: 

𝐶𝐷(𝑃, 𝑃𝑒) = 1 −
2

𝑛(𝑛 − 1)
∑ ∑|𝑝𝑖𝑘 − 𝑝𝑖𝑘

𝑒 |

𝑛

𝑘=2
𝑖<𝑘

𝑛−1

𝑖=1

                                                                                  (2.9) 

2.4.2. Goal programming model 

Based on (2.8), multi-objective programming model is introduced. The model objectives are to 

find the errors between the missing preferences degrees and their estimations. Thus, the solution 

to the missing preferences degrees can be obtained by solving the following multi-objective 
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programming model, where the objectives are to minimize the errors between the missing 

preferences degrees and their estimations subject to all missing preferences between 0 and 1. 

(𝑀𝑂𝑃) min 𝜀𝑖𝑘 = ∑ ∑ ||𝑝𝑖𝑘

𝑛

𝑘=2
𝑖<𝑘

𝑛−1

𝑖=1

−
1

𝑛 − 2

[
 
 
 
 

∑ (𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5)

𝑛

𝑗=1
𝑖<𝑗<𝑘

+ ∑ (𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5)

𝑛

𝑗=1
𝑖>𝑗<𝑘

+ ∑ (𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖<𝑗>𝑘 ]

 
 
 
 

|| 

𝑠. 𝑡.  𝑝𝑖𝑘 ∈ [0, 1]       𝑖 = 1, 2, …𝑛 − 1;   𝑘 = 2, 3, …𝑛; 𝑖 < 𝑘  

       𝑝𝑘𝑖 = 1 − 𝑝𝑖𝑘    𝑖 = 1, 2, … 𝑛 − 1;   𝑘 = 2, 3, … 𝑛; 𝑖 < 𝑘 

The solution to the above multi-objective programming model is found by solving the following 

goal programming model.  

(𝐺𝑃) min 𝑧 = ∑ ∑(𝑑𝑖𝑘
+ + 𝑑𝑖𝑘

− )

𝑛

𝑘=2
𝑖<𝑘

𝑛−1

𝑖=1

 

𝑠. 𝑡.     

𝑝𝑖𝑘 −
1

𝑛 − 2

[
 
 
 
 

∑ (𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5)

𝑛

𝑗=1
𝑖<𝑗<𝑘

+ ∑ (𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5)

𝑛

𝑗=1
𝑖>𝑗<𝑘

+ ∑ (𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖<𝑗>𝑘 ]

 
 
 
 

− 𝑑𝑖𝑘
+

+ 𝑑𝑖𝑘
− = 0                𝑖 = 1, 2, … 𝑛 − 1;   𝑘 = 2, 3, … 𝑛; 𝑖 < 𝑘  

𝑝𝑖𝑘 ∈ [0, 1]          𝑖 = 1, 2, … 𝑛 − 1;   𝑘 = 2, 3, … 𝑛; 𝑖 < 𝑘 
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𝑝𝑘𝑖 = 1 − 𝑝𝑖𝑘    𝑖 = 1, 2, … 𝑛 − 1;   𝑘 = 2, 3, … 𝑛; 𝑖 < 𝑘 

𝑑𝑖𝑘
+ ∗ 𝑑𝑖𝑘

− = 0        𝑖 = 1, 2, … 𝑛 − 1;   𝑘 = 2, 3, …𝑛; 𝑖 < 𝑘 

𝑑𝑖𝑘
+ , 𝑑𝑖𝑘

− ≥ 0 

where 𝑑𝑖𝑘
+  is the positive deviation from the goal 𝜀𝑖𝑘 and 𝑑𝑖𝑘

−  is the negative deviation from the 

goal 𝜀𝑖𝑘. 

The model objectives are to minimize the deviations from the target of the goal subject to the same 

constraints as the multi-objective model. In addition to the errors between the missing preferences 

degrees and their estimations, the product of the positive and negative deviations from the goal 

should be equal to 0 and that all the decision variables are greater than or equal to 0. 

2.4.3. Algorithm for group decision-making with incomplete fuzzy preference relations  

In any group decision-making problem, there are usually two processes: A) consensus process and 

B) selection process. Since our focus is on completing the information, we will apply the selection 

process. The selection process consists of two phases, aggregation phase and exploitation phase as 

follows: 

A. Aggregation phase 

This phase constructs a collective preference relation by aggregating the provided preference 

relations by the decision-makers. The aggregation will be conducted by an importance-induced 

ordered weighted averaging (I-IOWA) operator.  
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Importance induced ordered weighted averaging (I-IOWA) operator 

Importance-induced ordered weighted averaging (I-IOWA) is a modified aggregation operator of 

induced ordered weighted averaging (IOWA) proposed by Chiclana et al. (2007). This operator is 

based on transferring the original preference values into new values by using the decision-makers’ 

importance degrees. First, we introduce the definition of (IOWA) as follows: 

 Definition 2.8 (Chiclana et al., 2007): An IOWA operator of dimension 𝑛 is a 

function 𝛷𝑊: (ℝ × ℝ)𝑛 → ℝ, to which a set of weights or weighting vector is associated, 𝑊 =

(𝑤1, 𝑤2, … , 𝑤𝑛 ), such that 𝑤𝑖 ∈ [0, 1] and ∑ 𝑤𝑖 = 1𝑛
𝑖 ,  to aggregate the set of second arguments 

of a list of n 2-tuples {〈𝑢1, 𝑝1〉,… , 〈𝑢𝑛, 𝑝𝑛〉} according to the following expression:  

𝑃𝑐 = 𝛷𝑊(〈𝑢1, 𝑝1〉, … , 〈𝑢𝑛, 𝑝𝑛〉) = ∑𝑤𝑖

𝑛

𝑖=1

∗ 𝑝𝜎(𝑖) 

being 𝜎: {1, . . . , 𝑛} → {1, . . . , 𝑛} a permutation such that 𝜇𝜎(𝑙) > 𝜇𝜎(𝑙+1) is the 2-tuple with 𝜎(𝑖) 

the 𝑖th highest value in the set { 𝜇1, 𝜇2, … , 𝜇𝑛}. 

The associated weights of the IOWA operator are obtained by 

𝑤𝑘 = 𝒬 (
𝑆(𝑘)

𝑆(𝑛)
) − 𝒬 (

𝑆(𝑘 − 1)

𝑆(𝑛)
),   ∀𝑘 

where 𝑘 = {1, 2, … , 𝑛}, 𝑆(𝑘) = ∑ 𝜇𝜎(𝑙)
𝑘
𝑙=1 , 𝑆(𝑛) = ∑ 𝜇𝑙

𝑛
𝑙=1 , and 𝜎 is the permutation such that 

𝜎(𝑘) is the 𝑘th largest value in the set { 𝜇1, 𝜇2, … , 𝜇𝑛}. 
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The associated weights (𝑤𝑘) are obtained by using a fuzzy majority concept and a fuzzy linguistic 

quantifier. There are several common fuzzy linguistic quantifiers such as all, most of, and as many 

as possible.  

Definition 2.9 (Chiclana et al., 2007): If a set of experts, 𝐸 =  {𝑒1, . . . , 𝑒𝑚}, provide preferences 

about a set of alternatives, 𝑋 = {𝑥1, . . . , 𝑥𝑛}, by means of the fuzzy preference relations, 

{𝑃1, . . . , 𝑃𝑚}, and each expert 𝑒𝑘 has an importance degree, 𝜇𝐼(𝑒𝑘) ∈ [0, 1], then an I-IOWA 

operator of dimension 𝑛, 𝛷𝑊
𝐼  , is an IOWA operator whose set of order inducing values is the set 

of importance degrees. 

B. Exploitation phase  

By using the information of the collective preference relation, the alternatives are ranked from the 

best to the worst. The ranking of the alternatives will be obtained by using quantifier guided 

dominance degree (QGDD). This is used to quantify the dominance that one alternative has over 

the others, as follows: 

𝑄𝐺𝐷𝐷𝑖 = 𝛷𝑊(𝑝𝑖𝑗
𝑐 ,   ∀𝑗 = 1, … , 𝑛) = ∑ 𝑤𝑗

𝑛
𝑗=1 ∗ 𝑝𝜎(𝑗)

𝑐    

Where 𝜎(𝑗) is the 𝑗th highest value in the (𝑝𝑖𝑗
𝑐 ,   ∀𝑗 = 1,… , 𝑛). 

Thus, to solve any preference relation with incomplete information, different types of preference 

relation, i.e. linguistic or multiplicative preference relations, need to be transformed into a fuzzy 

additive preference relation. Then the following steps apply, see the flowchart in Figure 2.1: 
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1. If multiplicative or linguistic preference relations are provided, transfer them into fuzzy 

preference relation using (2.1) or (2.3) respectively.  

2. Complete any incomplete fuzzy additive preference relation by using (2.8) or (𝐺𝑃) model. 

3. Aggregate the decision-makers’ preference relation into collective preference relation (𝑃𝐶) 

by applying importance-induced ordered weighted averaging (I-IOWA) operator. 

4. Rank alternatives based on quantifier guided dominance degree (QGDD) method. 
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Figure 2.1: Solving incomplete preference relation flowchart 
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2.5. Numerical Examples 

2.5.1. MADM under missing values 

Suppose a decision-maker has to select one alternative from four pre-determined alternatives 𝐴 =

{𝐴1, 𝐴2, 𝐴3, 𝐴4} using four attributes 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} with importance weights 𝜇𝑈 =

(0.15, 0.2, 0.35, 0.3). The decision-maker provides the following assessments: 

     𝑢1

       𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.9 1 0.8
0.1 0.5 ? ?
0 ? 0.5 0.8

0.2 ? 0.2 0.5

]
, 

     𝑢2

       𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.2 0.6 0.4
0.8 0.5 ? ?
0.4 ? 0.5 ?
0.6 ? ? 0.5

]
, 

     𝑢3

      𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.6 0.6 0.3
0.4 0.5 0.4 0.3
0.4 0.6 0.5 0.3
0.7 0.7 0.7 0.5

]
, 

     𝑢4

       𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.3 ? 0.6
0.7 0.5 ? 0.5
? ? 0.5 ?

0.4 0.5 ? 0.5

]
 

2.5.1.1. System of equations 

By using the proposed system of equations method, the following estimation for preference 

relation under attributes ( 𝑢1) and ( 𝑢2) is obtained: 

𝑝23
𝑢1 = 0.5 ∗ [(𝑝13

𝑢1 − 𝑝12
𝑢1 + 0.5) + (𝑝24

𝑢1 − 𝑝34
𝑢1 + 0.5)] 

       = 0.5 ∗ [(1 − 0.9 + 0.5) + (𝑝24
𝑢1 − 0.8 + 0.5)] 

𝑝24
𝑢1 = 0.5 ∗ [(𝑝14

𝑢1 − 𝑝12
𝑢1 − 0.5) + (𝑝23

𝑢1 + 𝑝34
𝑢1 + 0.5)] 
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       = 0.5 ∗ [(0.8 −  0.9 − 0.5) + (𝑝23
𝑢1 + 0.8 + 0.5)] 

⟹ 𝑝23
𝑢1 = 0.43, 𝑝24

𝑢1 = 0.57 

⟹ 𝑝32
𝑢1 = 1 − 𝑝23

𝑢1 = 0.57, 𝑝42
𝑢1 = 1 − 𝑝24

𝑢1 = 0.43 

𝑝23
𝑢2 = 0.5 ∗ [(𝑝13

𝑢2 − 𝑝12
𝑢2 + 0.5) + (𝑝24

𝑢2 − 𝑝34
𝑢2 + 0.5)] 

       = 0.5 ∗ [(0.6 − 0.2 + 0.5) + (𝑝24
𝑢2 − 𝑝34

𝑢2 + 0.5)] 

𝑝24
𝑢2 = 0.5 ∗ [(𝑝14

𝑢2 − 𝑝12
𝑢2 − 0.5) + (𝑝23

𝑢2 + 𝑝34
𝑢2 + 0.5)] 

       = 0.5 ∗ [(0.4 −  0.2 − 0.5) + (𝑝23
𝑢2 + 𝑝34

𝑢2 + 0.5)] 

𝑝34
𝑢2 = 0.5 ∗ [(𝑝14

𝑢2 − 𝑝13
𝑢2 + 0.5) + (𝑝24

𝑢2 − 𝑝23
𝑢2 + 0.5)] 

       = 0.5 ∗ [(0.4 − 0.6 + 0.5) + (𝑝24
𝑢2 − 𝑝23

𝑢2 + 0.5)] 

⟹ 𝑝23
𝑢2 = 0.9, 𝑝24

𝑢2 = 0.7, 𝑝34
𝑢2 = 0.3 

⟹ 𝑝32
𝑢2 = 0.1, 𝑝42

𝑢2 = 0.3 𝑝43
𝑢2 = 0.7 

2.5.1.2. Missing value estimating using GP model 

For preference relation under attribute 𝑢4, the following GP model is constructed: 

min z =𝑑12
+ + 𝑑12

− + 𝑑13
+ + 𝑑13

−  𝑑14
+ + 𝑑14

− + 𝑑23
+ + 𝑑23

− + 𝑑24
+ + 𝑑24

− + 𝑑34
+ + 𝑑34

−  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
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𝑝12 = 0.3 

𝑝14 = 0.6 

𝑝24 = 0.5 

𝑝12  −  0.5 𝑝13  +  0.5 𝑝23  −  0.5 𝑝14  +  0.5 𝑝24  −  𝑑12
+ + 𝑑12

−  =  0.5 

𝑝13  −  0.5 𝑝12  −  0.5 𝑝23 −  0.5 𝑝14 +  0.5 𝑝34  − 𝑑13
+ + 𝑑13

−  =  0 

𝑝14  −  0.5𝑝12  −  0.5 𝑝24 −  0.5 𝑝13  −  0.5 𝑝34   − 𝑑14
+ + 𝑑14

−  =  −0.5 

𝑝23  −  0.5 𝑝13  +  0.5𝑝12  −  0.5 𝑝24  +  0.5 𝑝34   −  𝑑23
+ + 𝑑23

−  =  0.5 

𝑝24  −  0.5 𝑝14  +  0.5 𝑝12  −  0.5𝑝23  −  0.5 𝑝34   −  𝑑24
+ + 𝑑24

−  =  0 

𝑝34  −  0.5 𝑝14 +  0.5 𝑝13  −  0.5 𝑝24  +  0.5 𝑝23  −  𝑑34
+ + 𝑑34

−  =  0.5 

𝑝𝑖𝑘 ∈ [0, 1]          𝑖 = 1, 2, 3;   𝑘 = 2, 3, …4; 𝑖 < 𝑘 

𝑝𝑘𝑖 = 1 − 𝑝𝑖𝑘    𝑖 = 1, 2, 3;   𝑘 = 2, 3, … 4; 𝑖 < 𝑘 

𝑑𝑖𝑘
+ ∗ 𝑑𝑖𝑘

− = 0        𝑖 = 1, 2, 3;   𝑘 = 2, 3, … 4; 𝑖 < 𝑘 

𝑑𝑖𝑘
+ , 𝑑𝑖𝑘

− ≥ 0       𝑖 = 1, 2, 3;   𝑘 = 2, 3, … 4; 𝑖 < 𝑘 

This model derives 𝑝13
𝑢4 = 0.9, 𝑝23

𝑢4 = 1, 𝑝34
𝑢4 = 0.1, 𝑝31

𝑢4 = 0.1, 𝑝32
𝑢4 = 0 and  𝑝43

𝑢4 = 0.9. 

Note that the same results are also generated by the GP model for these two matrices. 
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Thus, the complete preference relations are: 

     𝑢1

       𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.9 1 0.8
0.1 0.5 0.43 0.57
0 0.57 0.5 0.8

0.2 0.43 0.2 0.5

]
, 

     𝑢2

       𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.2 0.6 0.4
0.8 0.5 0.9 0.7
0.4 0.1 0.5 0.3
0.6 0.3 0.7 0.5

]
, 

     𝑢3

       𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.6 0.6 0.3
0.4 0.5 0.4 0.3
0.4 0.6 0.5 0.3
0.7 0.7 0.7 0.5

]
, 

     𝑢4

       𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.3 0.9 0.6
0.7 0.5 1 0.5
0.1 0 0.5 0.1
0.4 0.5 0.9 0.5

]
 

The consistency degrees, using (2.9), of these matrices are: 𝐶𝐷(𝑃𝑢1) = 83%, 𝐶𝐷(𝑃𝑢2) = 100%, 

𝐶𝐷(𝑃𝑢3) = 93% and 𝐶𝐷(𝑃𝑢4) = 90%. In this case, 𝐶𝐷(𝑃𝑢1) < 90% the decision-maker might 

need to revise their judgments and update their preference relation. However, in this example we 

are going to pursue with this matrix as 83% is an acceptable consistency level. 

2.5.1.3. Aggregating and selecting processes 

The next step is to aggregate these attributes by using I-IOWA with the fuzzy linguistic quantifier 

most of defined by 𝒬(𝑟)  =  𝑟
1

2⁄ , which gives the following weights vector 𝑊 =

 (0.59, 0.22, 0.11, 0.08). Thus, the collective fuzzy preference relation is: 

𝑃𝑈 = 𝛷𝑚𝑜𝑠𝑡(〈0.15, 𝑢1〉, 〈0.2, 𝑢2〉, 〈0.35, 𝑢3〉, 〈0.3, 𝑢4〉)  

𝑃𝑈 = 0.59 ∙ 𝑢3 + 0.22 ∙ 𝑢4 + 0.11 ∙ 𝑢2 + 0.08 ∙ 𝑢1 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.58 0.63 0.35
0.42 0.5 0.46 0.37
0.37 0.54 0.5 0.34
0.65 0.63 0.66 0.5

]
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whose elements represent the preference of one alternative over another for most of the more 

important attributes. 

Having (𝑃𝑈), we apply the selection process with fuzzy quantifier most of defined by 𝒬(𝑟)  =

 𝑟
1

2⁄ , we get the associated weights vector 𝑊 =  (0.5, 0.21, 0.16, 0.13). Then the quantifier 

guided dominance degrees (QGDD) of the alternatives are:  

𝑄𝐺𝐷𝐷(𝐴1) = 0.5 ∙ 0.63 + 0.21 ∙ 0.58 + 0.16 ∙ 0.5 + 0.13 ∙ 0.35 = 0.563 

𝑄𝐺𝐷𝐷(𝐴2) = 0.5 ∙ 0.5 + 0.21 ∙ 0.46 + 0.16 ∙ 0.42 + 0.13 ∙ 0.37 = 0.461 

𝑄𝐺𝐷𝐷(𝐴3) = 0.5 ∙ 0.54 + 0.21 ∙ 0.5 + 0.16 ∙ 0.37 + 0.13 ∙ 0.34 = 0.479 

𝑄𝐺𝐷𝐷(𝐴4) = 0.5 ∙ 0.66 + 0.21 ∙ 0.65 + 0.16 ∙ 0.63 + 0.13 ∙ 0.5 = 0.633 

𝑄𝐺𝐷𝐷(𝐴4) > 𝑄𝐺𝐷𝐷(𝐴1) > 𝑄𝐺𝐷𝐷(𝐴3) > 𝑄𝐺𝐷𝐷(𝐴2) 

Thus, 𝐴4 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴2  

2.5.2. Group decision-making with heterogeneous information  

Suppose five decision-makers 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} have to select one alternative from four pre-

determined alternatives 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4}. The decision-makers have the following importance 

degree vector 𝜇𝐼(𝑒𝑘) = {0.15, 0.30, 0.1, 0.28, 0.17}. Suppose that the decision-maker 𝑒1 provides 

an incomplete fuzzy additive preference relation while 𝑒2 provides a complete one. Suppose that 

the decision-maker 𝑒3 provides an incomplete linguistic preference relation while 𝑒4 provides a 

complete one and the selected granularity of them are 𝑇𝑒3 = 7 and 𝑇𝑒4 = 11, respectively. Also, 
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the decision-maker 𝑒5 provides his assessments using incomplete multiplicative preference 

relation. The preference relations are as follows:  

𝑃1 =

        𝐴1   𝐴2   𝐴3   𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.3 ? 0.6

0.7 0.5 ? 0.5

? ? 0.5 ?

0.4 0.5 ? 0.5

]
                                                      𝑃2 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.65 0.6 0.4

0.35 0.5 0.45 0.25

0.4 0.55 0.5 0.3

0.6 0.75 0.7 0.5

]
  

𝐿3 =

        𝐴1  𝐴2   𝐴3   𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

𝑠0 𝑠1 ? 𝑠1

𝑠−1 𝑠0 𝑠1 ?

? 𝑠−2 𝑠0 𝑠0

𝑠−3 ? 𝑠0 𝑠0

]
                                                         𝐿4 =

        𝐴1  𝐴2   𝐴3   𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

𝑠0 𝑠1 𝑠3 𝑠3

𝑠−1 𝑠0 𝑠2 𝑠2

𝑠−3 𝑠−2 𝑠0 𝑠0

𝑠−3 𝑠−2 𝑠0 𝑠0

]
 

𝐴5 =

        𝐴1  𝐴2  𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4 [
 
 
 
 

1 ? 4 5

? 1 3 ?
1

4

1

3
1 ?

1

5
? ? 1]

 
 
 
 
 

First, we transform 𝐿3 → 𝑃3 and 𝐿4 → 𝑃4 by using (2.3) with common granularity(𝑇 = 9) by 

applying (2.2) and 𝐴5 → 𝑃5 by using (2.1) into fuzzy additive preference relations, to get: 

𝑃3 =

       𝐴1      𝐴2      𝐴3      𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.625 ? 0.625
0.375 0.5 0.625 ?

? 0.375 0.5 0.5
0.375 ? 0.5 0.5

]
                        𝑃4 =

       𝐴1      𝐴2      𝐴3      𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.625 0.875 0.875
0.375 0.5 0.75 0.75
0.125 0.25 0.5 0.5
0.125 0.25 0.5 0.5

]
 

𝑃5 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 ? 0.82 0.87
? 0.5 0.75 ?

0.18 0.25 0.5 ?
0.13 ? ? 0.5

]
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2.5.2.1. Missing value estimating using GP model 

We apply the goal programming model to estimate the missing preference degrees for 𝑃1,  𝑃3 and 

𝑃5 to get the following complete preference relations: 

𝑃1 =

       𝐴1   𝐴2   𝐴3   𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.3 0.9 0.6
0.7 0.5 1 0.5
0.1 0 0.5 0.1
0.4 0.5 0.9 0.5

]
                        𝑃3 =

       𝐴1          𝐴2          𝐴3          𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.625 0.6875 0.625
0.375 0.5 0.625 0.5625
0.3125 0.375 0.5 0.5
0.375 0.4375 0.5 0.5

]
 

𝑃5 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.57 0.82 0.87
0.43 0.5 0.75 0.8
0.18 0.25 0.5 0.55
0.13 0.2 0.45 0.5

]
 

2.5.2.2. Aggregating and selecting processes 

The next step is aggregating these preference relations by using I-IOWA with the fuzzy linguistic 

quantifier most of defined by 𝒬(𝑟)  =  𝑟
1

2⁄ , which gives the following weights vector 𝑊 =

 (0.55, 0.21, 0.11, 0.08, 0.05). Thus, the collective fuzzy preference relation is: 

𝑃𝐶 = 𝛷𝑚𝑜𝑠𝑡(〈0.15, 𝑃1〉, 〈0.3, 𝑃2〉, 〈0.1, 𝑃3〉, 〈0.28, 𝑃4〉, 〈0.17, 𝑃5〉)  

𝑃𝐶 = 0.55 ∙ 𝑃2 + 0.21 ∙ 𝑃4 + 0.11 ∙ 𝑃5 + 0.08 ∙ 𝑃1 + 0.05 ∙ 𝑃3 =

       𝐴1    𝐴2   𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.61 0.71 0.58
0.39 0.5 0.6 0.45
0.29 0.4 0.5 0.36
0.42 0.55 0.64 0.5

]
 

whose elements represent the preference of one alternative over another for most of the more 

important decision-makers. 
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Having (𝑃𝐶), we apply the selection process with fuzzy quantifier most of defined by 𝒬(𝑟)  =

 𝑟
1

2⁄ , to get the associated weights vector 𝑊 =  (0.5, 0.21, 0.16, 0.13). Lastly, we calculate the 

quantifier guided dominance degrees (QGDD) for each of the alternatives:  

𝑄𝐺𝐷𝐷(𝐴1) = 0.640, 𝑄𝐺𝐷𝐷(𝐴2) = 0.528, 𝑄𝐺𝐷𝐷(𝐴3) = 0.430, 𝑄𝐺𝐷𝐷(𝐴4) = 0.568 

𝑄𝐺𝐷𝐷(𝐴1) > 𝑄𝐺𝐷𝐷(𝐴4) > 𝑄𝐺𝐷𝐷(𝐴2) > 𝑄𝐺𝐷𝐷(𝐴3) 

Thus, 𝐴1 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴3  

2.6. Models Validation 

Example 2.1 (Herrera-Viedma et al., 2007b): Assume that a decision-maker provides the following 

incomplete fuzzy preference relation  𝑃 = (𝑝𝑖𝑗)4×4
 for an attribute: 

In this example, there are 3 known preference degrees 𝑝12, 𝑝13 and 𝑝14 in the upper triangular 

relation. To complete this matrix, 3 systems of equations were conducted to estimate the missing 

preference degrees, as follows: 

𝑝23 = 0.5 ∗ [(𝑝13 − 𝑝12 + 0.5) + (𝑝24 − 𝑝34 + 0.5)] 

𝑝24 = 0.5 ∗ [(𝑝23 + 𝑝34 − 0.5) + (𝑝14 − 𝑝12 + 0.5)] 

𝑝34 = 0.5 ∗ [(𝑝14 − 𝑝13 + 0.5) + (𝑝24 − 𝑝23 + 0.5)] 

Solving this system of equations results in 𝑝23 = 0.9, 𝑝24 = 0.7 and 𝑝34 = 0.3. These results 

match with Herrera-Viedma et al.’s (2007b) solution. 

        𝐴1  𝐴2 𝐴3 𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.2 0.6 0.4
0.8 0.5 ? ?
0.4 ? 0.5 ?
0.6 ? ? 0.5

]
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With regards to Example 2.1, the GP model generates same results as the system of equations 

method.  

Sometimes, the provided preferences degrees are not consistent. Thus, trying to estimate the 

missing preference(s) will result in an inconsistent matrix or results that violate the additive 

consistency property. 

Example 2.2 (Meng & Chen, 2015): Assume an expert provides the following incomplete 

preference relation: 

By using the two proposed methods, we get: 𝑝14 = 𝑝23 = 0.6 and 𝑝41 = 𝑝32 = 0.4 with a 

consistency rate of 93.3%. These results are similar to Meng and Chen (2015).   

Furthermore, the GP model can also estimate missing preferences of an ignorance situation. The 

ignorance situation rarely happens in a real life situation, but it could exist. Thus, having a model 

that could deal with this situation and produces a high successful consistency level is required. The 

next example represents this situation. 

Example 2.3 (Chen et al., 2014; Meng & Chen, 2015): Assume there is an incomplete fuzzy 

preference relation  𝑃 = (𝑝𝑖𝑗)4×4
 for 𝑛 = 4 alternatives evaluated under one criterion, where the 

      𝐴1  𝐴2  𝐴3 𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.4 0.6 ?
0.6 0.5 ? 0.6
0.4 ? 0.5 0.6
? 0.4 0.4 0.5

]
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decision-maker has not provided any preference degrees for alternative 1 with respect to other 

alternatives, shown as follows: 

By using the GP model, the following solution is generated: 

      𝐴1  𝐴2  𝐴3 𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.1 0 0.3
0.9 0.5 0.4 0.7
1 0.6 0.5 0.8

0.7 0.3 0.2 0.5

]
 

Whereas, Chen et al.’s (2014) and Meng and Chen’s (2015) solutions are as follows: 

                                                         𝐴1   𝐴2   𝐴3   𝐴4

                        Chen et al. , (2014):    

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.48 0.41 0.62
0.52 0.5 0.43 0.64
0.59 0.57 0.5 0.71
0.38 0.36 0.29 0.5

]
 

                                                         𝐴1   𝐴2   𝐴3   𝐴4

               Meng and Chen (2015):    

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.60 0.50 0.80
0.40 0.5 0.4 0.7
0.50 0.6 0.5 0.8
0.20 0.3 0.2 0.5

]
 

The three solutions have a 100% consistency rate; however, Chen et al.’s (2014) solution is based 

on order consistency and their method modifies the decision-maker’s preferences such that the 

output preference relation becomes 100% consistent. The solution of Meng and Chen (2015) does 

      𝐴1  𝐴2  𝐴3 𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 ? ? ?
? 0.5 0.4 0.7
? 0.6 0.5 0.8
? 0.3 0.2 0.5

]
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not modify the provided preferences degrees. However, Meng and Chen’s (2015) model does not 

outperform our proposed model. For instance, consider the following example: 

Example 2.4 (Meng & Chen, 2015): Assume there is an incomplete fuzzy preference relation  𝑃 =

(𝑝𝑖𝑗)4×4
 for 𝑛 = 4 alternatives evaluated under one criterion, where the decision-maker has not 

provided any preference degrees for alternative 3 with respect to other alternatives, shown as 

follows: 

Meng and Chen’s (2015) solution and our model solution are given as follows: 

                                                        𝐴1   𝐴2   𝐴3   𝐴4

                Meng and Chen (2015):    

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.3 0.43 0.6
0.7 0.5 0.52 0.5
0.57 0.48 0.5 0.44
0.4 0.5 0.56 0.5

]
 

                                   

                                      𝐴1  𝐴2  𝐴3 𝐴4

𝑂𝑢𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛:    

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.3 0.9 0.6
0.7 0.5 1 0.5
0.1 0 0.5 0.1
0.4 0.5 0.9 0.5

]
 

Meng and Chen’s (2015) solution has an 85.6% consistency rate while our proposed model 

solution has a 90% consistency rate. 

With regards to the ranking order of the alternatives, the three methods produce the same first 

ranking order by using the weighted arithmetic mean method; however, they differ slightly in the 

      𝐴1  𝐴2  𝐴3 𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.3 ? 0.6
0.7 0.5 ? 0.5
? ? 0.5 ?

0.4 0.5 ? 0.5

]
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ranking order of the others. The proposed method tends to generate a high consistency level despite 

the nature of the problem under study. Tables 2.2 and 2.3 show the comparison between the 

proposed method and other methods for examples 2.3 and 2.4 respectively.   

Table 2.2: Comparison of the three methods in example 2.3 

Matrix consistency

Meng and Chen (2015) 100% A2 A4

Chen et al. (2014) 100% A3 A2 A1 A4

Propose method 100% A3 A2 A4 A1

Ranking order

A1=A3

 

Table 2.3: Comparison of two methods in example 2.4 

Matrix consistency

Meng and Chen (2015) 85.6% A2 A3 A4 A1

Propose method 90% A2 A1 A4 A3

Ranking order

 

 

2.7. Conclusions  

In this chapter, two new methods to handle incomplete reciprocal fuzzy preference relations based 

on additive consistency have been proposed. The first is based on a system of equations. This 

method can deliver perfect consistency when 𝑛 − 1 non-leading diagonal preference values are 

given for each pair of alternatives. The second method is based on a goal programming concept. 

This method has the characteristics of the system of equations method in addition to estimating 

the information of ignorance alternative with a high consistency rate. Both methods are illustrated 

for multi-attributes/group decision-making problem and heterogeneous information cases. The 

proposed methods mainly focus on completing the upper triangular matrix (preference relation) by 

taking advantage of the additive transitivity properties. 



Chapter 3: New Consensus Measure for Group Decision-Making Based on Spearman’s Correlation Coefficient for Reciprocal Fuzzy … 

52 | P a g e  

  

Chapter 3: 

New Consensus Measure for Group Decision-

Making Based on Spearman’s Correlation 

Coefficient for Reciprocal Fuzzy Preference 

Relations 

3.1. Introduction 

In group decision-making, reaching a level of agreement about the decision between the group 

members is important, even if each member has different goals or objectives about the alternatives. 

In fact, reaching consensus along with aggregation function and ranking method are considered as 

the main open-ended research problems in group decision-making (Ben-Arieh & Chen, 2006). 

Consensus is the main goal in group decision-making problems, since obtaining an acceptable 

solution by the group is important.  

Therefore, it is very important to measure the consensus degree between the individuals of the 

group to find the degree of agreement among them. Consensus in group decision-making can be 

interpreted in three ways (Herrera-Viedma et al., 2014). It could mean full agreement or unanimous 

decision by the group members or reaching consensus by a moderator who facilitates the process 

of agreement, or it could mean attaining a consent in which some individuals might not completely 

agree but are willing to go with the opinion of the group. 



Chapter 3: New Consensus Measure for Group Decision-Making Based on Spearman’s Correlation Coefficient for Reciprocal Fuzzy … 

53 | P a g e  

  

Generally, two processes are employed in group decision-making: consensus and selection. The 

selection process could be applied without adopting a consensus process through applying the 

preference relations provided by the decision-makers (Roubens, 1997). However, this could lead 

to a solution that might not be accepted by some of the decision-makers since it does not reflect 

their preferences (Saint & Lawson, 1994; Butler & Rothstein, 2007). Therefore, they might reject 

the solution. Thus, it is important to reach a consensus before applying selection process (Kacprzyk 

et al., 1992). 

Consensus in group decision-making involves aggregating individual preference relations into a 

collective or group preference relation. Typically, similarity/distance measures are used to measure 

the degree of similarities or consensus between the individuals and the individual and the collective 

preference relation. If the similarity is greater than or equal to a pre-defined threshold, then the 

collective preference relation is considered as consensus. Otherwise, the decision-makers with 

consensus degree below the threshold are asked to re-evaluate their preferences until the consensus 

degree reaches to the acceptable level of similarity. Generally, a consensus process is considered 

as an interactive and iterative process where decision-makers revise their preferences until they 

reach an acceptable level of agreement. 

The remaining chapter is organized as follows: we start with some preliminary knowledge on 

preference relations in section 3.2. In section 3.3, we present a brief review on consensus from the 

literature. In section 3.4, we lay out the proposed consensus model including feedback mechanism. 

In section 3.5, we provide two numerical examples to show how the model works. Following that, 

in section 3.6 we validate the model performance in comparison to other existing models. Finally, 

in section 3.7 we present the conclusions.                    
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3.2. Preliminary Knowledge  

In this section, we provide brief knowledge on three types of preference relations, namely, additive 

fuzzy preference relations, multiplicative preference relation and linguistic preference relation.    

Definition 3.1 (Urena et al., 2015): A preference relation 𝑅 is a binary relation defined on the set 

𝑋 that is characterized by a function 𝜇𝑝: 𝑋 × 𝑋 → 𝐷, where 𝐷 is the domain of representation of 

preference degrees provided by the decision-maker. 

3.2.1. Fuzzy preference relation 

Definition 3.2 (Xu, 2007): A fuzzy additive preference relation 𝑃 on a finite set of alternatives 𝑋 

is represented by a matrix 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛
⊂ 𝑋 × 𝑋 with: 

𝑝𝑖𝑗 ∈ [0,1],   𝑝𝑖𝑗 + 𝑝𝑗𝑖 = 1,   𝑝𝑖𝑖 = 0.5   ∀𝑖, 𝑗 = 1,… , 𝑛. 

 

 

when 𝑝𝑖𝑗 > 0.5 indicates that the expert prefers alternative 𝑥𝑖 over alternative 𝑥𝑗; 𝑝𝑖𝑗 < 0.5 

indicates that the expert prefers alternative 𝑥𝑗 over alternative 𝑥𝑖; 𝑝𝑖𝑗 = 0.5 indicates that the expert 

is indifferent between 𝑥𝑖 and 𝑥𝑗, thus, 𝑝𝑖𝑖 = 0.5. 

                                     𝐴1  𝐴2 … 𝐴𝑛

𝑃 = (𝑝𝑖𝑗)𝑛𝑥𝑛
=

𝐴1

𝐴2

⋮
𝐴𝑛

[

0.5 𝑝12 … 𝑝1𝑛

𝑝21 0.5 … 𝑝2𝑛

⋮ ⋮ ⋱ ⋮
𝑝𝑛1 𝑝𝑛2 ⋯ 0.5

]
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Furthermore, the additive preference relation 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛 is additive consistent if and only if the 

following additive transitivity is satisfied (Meng & Chen, 2015; Urena et al., 2015; Herrera-

Viedma et al., 2007a; Tanino, 1984); 

𝑝𝑖𝑗 + 𝑝𝑗𝑘 = 𝑝𝑖𝑘 + 0.5       ∀𝑖𝑗𝑘 = 1,2, … , 𝑛. 

3.2.2. Multiplicative preference relation 

 Definition 3.3 (Saaty, 1980): A multiplicative preference relation 𝐴 on the set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

of alternatives is defined as a reciprocal matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛  ⊂ 𝑋 × 𝑋 with the following 

conditions: 

𝑎𝑖𝑗 > 0,   𝑎𝑖𝑗𝑎𝑗𝑖 = 1,   𝑎𝑖𝑖 = 1,   ∀𝑖𝑗 = 1, 2, … , 𝑛. 

where 𝑎𝑖𝑗 is interpreted as the ratio of the preference intensity of the alternative 𝑥𝑖 to 𝑥𝑗.  

There are several numerical scales for the multiplicative preference relation, however, the most 

popular one is the 1-9 Saaty scale. 𝑎𝑖𝑗 = 1 means that alternatives 𝑥𝑖 and 𝑥𝑗 are indifferent; 𝑎𝑖𝑗 >

1 implies that alternative 𝑥𝑖 is preferred to 𝑥𝑗. As the ratio of intensity of (𝑎𝑖𝑗) increases, the 

stronger is the preference intensity of 𝑥𝑖 over 𝑥𝑗. Thus, 𝑎𝑖𝑗 = 9 means that alternative 𝑥𝑖 is 

absolutely preferred to 𝑥𝑗. 

The multiplicative preference relation 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is called consistent if the following 

multiplicative transitivity is satisfied (Saaty, 1980): 

𝑎𝑖𝑗 = 𝑎𝑖𝑘𝑎𝑘𝑗,   𝑎𝑖𝑖 = 1,   ∀𝑖, 𝑗 = 1, 2, … , 𝑛. 
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Chiclana et al. (2001) proposed a transformation function to transfer a multiplicative preference 

relation, 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, into a fuzzy preference relation, 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛, as follows: 

𝑝𝑖𝑗 =
1

2
(1 + log9 𝑎𝑖𝑗)   ∀𝑖, 𝑗 = 1, 2, … , 𝑛                                                                                            (3.1) 

𝑎𝑖𝑗 = 92𝑝𝑖𝑗−1   ∀𝑖, 𝑗 = 1, 2, … , 𝑛                                                                                                           (3.1′) 

Moreover, if 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is a consistent multiplicative preference relation, then the transformed 

𝑃 = (𝑝𝑖𝑗)𝑛×𝑛 is an additive consistent fuzzy preference relation. 

3.2.3. Linguistic preference relation 

Definition 3.4 (Xu, 2005b): A linguistic preference relation 𝐿 on the set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} of 

alternatives is represented by a linguistic decision matrix 𝐿 =  (𝑙𝑖𝑗)𝑛×𝑛  ⊂ 𝑋 × 𝑋 with  

𝑙𝑖𝑗 ∈ 𝑆̅,   𝑙𝑖𝑗 ⊕ 𝑙𝑗𝑖 = 𝑠0,   𝑙𝑖𝑖 = 𝑠0,   ∀𝑖𝑗 = 1, 2, … , 𝑛. 

where 𝑙𝑖𝑗 represents the preference degree of the alternative 𝑥𝑖 over 𝑥𝑗. When 𝑙𝑖𝑗 = 𝑠0, means that 

the decision-maker is indifferent between alternative 𝑥𝑖 and 𝑥𝑗; 𝑙𝑖𝑗 > 𝑠0 indicates that 𝑥𝑖 is 

preferred over 𝑥𝑗. 

Moreover, 𝐿 =  (𝑙𝑖𝑗)𝑛×𝑛 is consistent when, 

𝑙𝑖𝑗 = 𝑙𝑖𝑘 ⊕ 𝑙𝑘𝑗   ∀𝑖, 𝑗, 𝑘 = 1, 2, … , 𝑛. 
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Let 𝑆 = {𝑠𝛼|𝛼 = −𝑡,… ,−1, 0, 1, … , 𝑡} be a linguistic label set with odd cardinality. Then 𝑠𝛼 

represents a possible value for a linguistic label. In addition, 𝑡 is a positive integer number and 

𝑠−𝑡and 𝑠𝑡 are the lower and upper limits of linguistic labels, respectively, while 𝑠0 represents an 

assessment of “indifference.”  

The linguistic label set has following characteristics (Xu, 2004, 2005b): 

1. The set is ordered: 𝑠𝛼 > 𝑠𝛽 if and only if 𝛼 > 𝛽 

2. There is the negation operator: neg(𝑠𝛼) = 𝑠−𝛼 

In addition, Xu (2004, 2005b) extended the discrete linguistic label set to a continuous set  𝑆̅ =

{𝑠𝛼|𝛼 ∈ [−𝑞, 𝑞]} to preserve all the information. In this extension 𝑞 is a large positive integer such 

that (𝑞 > 𝑡). In general, if  𝑠𝛼 ∈ 𝑆 then this represents the original linguistic label, otherwise, 𝑠𝛼 

is only the virtual linguistic label which appears only in operations.  

Let 𝑠𝛼,𝑠𝛽 ∈ 𝑆̅ and 𝜇, 𝜇1, 𝜇2 ∈ [0, 1]. Xu (2004, 2005b) introduced some operational laws as 

follows: 

1. 𝑠𝛼 ⊕ 𝑠𝛽 = 𝑠𝛼+𝛽; 

2. 𝑠𝛼 ⊕ 𝑠𝛽 = 𝑠𝛽 ⊕ 𝑠𝛼; 

3. 𝜇𝑠𝛼 = 𝑠𝜇𝛼; 

4. (𝜇1 + 𝜇2)𝑠𝛼 = 𝜇1𝑠𝛼 ⊕ 𝜇2𝑠𝛼; 

5. 𝜇(𝑠𝛼 ⊕ 𝑠𝛽) = 𝜇𝑠𝛼 ⊕ 𝜇𝑠𝛽; 
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In addition, for any 𝑠 ∈ 𝑆̅ then 𝐼(𝑠) represents the lower index of  , e.g. if 𝑠 = 𝑠𝛼 → 𝐼(𝑠) = 𝛼 and 

it is called the gradation of 𝑠 in 𝑆̅. Likewise, we could get the inverse of 𝐼(𝑠): 𝐼−1(𝛼) = 𝑠𝛼. 

An example of the linguistic label set is when 𝑡 = 3, then 𝑆 ={𝑠−3= very low, 𝑠−2= low, 𝑠−1= 

slightly low, 𝑠0=medium, 𝑠1= slightly high, 𝑠2= high, 𝑠3= very high}. 

Sometimes, depending on the decision problem, experts provide their assessments on the linguistic 

preference relation using different granularity (multi-granularity). Thus, these granularities need 

to be unified. Dong et al. (2009) provided following transformation function for unifying multi-

granularity into a common granularity (𝑇): 

𝑙𝑖𝑗 =
𝑇 − 1

𝑇′ − 1
𝑙𝑖𝑗
′                                                                                                                                            (3.2) 

where 𝑇 is the intended granularity (normal granularity), 𝑇′is the granularity of 𝐿′(𝑙𝑖𝑗
′ )

𝑛×𝑛
.  

Dong et al. (2009) and Xu (1999) propose a transformation function to transfer linguistic 

preference degree (𝑙𝑖𝑗) into fuzzy preference degree based on linear scale function, as follows: 

𝑝𝑖𝑗 = 0.5 +
𝐼(𝑙𝑖𝑗)

𝑇 − 1
= 0.5 +

𝐼(𝑙𝑖𝑗)

2𝑡
                                                                                                         (3.3) 

𝑙𝑖𝑗 = 𝐼−1( (𝑝𝑖𝑗 − 0.5) ∙ (𝑇 − 1) )                                                                                                         (3.3′) 

where 𝑇 is the granularity of 𝑆. 
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3.3. Literature Review 

Consensus can be interpreted differently in the group decision-making field. It could mean full 

unanimous agreement, or it could be reaching consensus by a special individual or as a way for 

decision-making in multi-person settings. In general, consensus aims at attaining consent of the 

members of the group, which will lead to a decision that will benefit the entire group (Herrera-

Viedma et al., 2014). Consensus is an iterative process that is composed of a number of rounds 

where decision-makers in each round are asked to revise their preferences to reach a consensus 

level by a facilitator or moderator. The facilitator’s role is to gather all the information from the 

experts and apply some consensus measures to check if the group has reached a state of agreement 

or not. Therefore, the main step in the consensus process is to measure the consensus degrees of 

the experts. 

Xu (2009) proposed an automatic approach for reaching consensus in multi-attribute group 

decision-making. His approach was based on numerical settings, where each individual constructs 

a decision matrix. Then these matrices are aggregated into one group decision matrix. The method 

calculates the similarity measure between each individual matrix and the group decision matrix to 

determine the degree of consensus. Moreover, he introduced a convergent iterative algorithm for 

individual matrices to reach the consensus. Sun and Ma (2015) proposed an approach for a 

consensus measure of linguistic preference relations. They used consensus measure based on the 

dominance degree to measure the consensus between group preference relation and individuals’ 

preference relations. Zhang and Dong (2013) proposed an interactive consensus reaching process 

based on optimization consensus rules to increase consensus of individuals and minimize the 

number of adjustments of adjusted preference values. Guha and Chakraborty (2011) introduced an 
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iterative fuzzy multi-attribute group decision-making technique to reach consensus by using a 

fuzzy similarity measure to measure consensus degree. In addition, their method considers the 

degrees of confidence of experts’ opinions in the procedure. Herrera-Viedma et al. (2002), 

proposed a consensus model suitable for four different preference structures. Their model uses two 

consensus criteria: a consensus measure for measuring the degree of consensus between the experts 

and a proximity measure to measure the difference between the preferences of individuals and the 

group preference relation. Consensus and consistency measures have been used in the literature 

lately to guide the consensus process. For example, Herrera-Viedma et al. (2007a) proposed a 

consensus model based on consensus and consistency measures. They used two consensus 

measures: consensus degrees, to find the agreement of all experts, and proximity degrees, to find 

the agreement between the individuals and the group preference. Recently, Cabrerizo et al. (2010) 

proposed a consensus model for group decision-making in an unbalanced fuzzy linguistic setting 

using consistency and consensus measures. They used three different levels of consensus degrees: 

consensus degree on pairs of alternatives, consensus degree on alternatives, and consensus degree 

on the relation, in addition to proximity measures. Table 3.1 provides a summary of consensus 

measures. 
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Table 3.1: A brief literature of some consensus measures 

Author(s) Method based Types of informatin 

Zhang and Dong (2013) Distance measure Multi-attribute group decision making

Guha and Chakraborty (2011) Similarity measure Fuzzy multi-attribute group decision making

Cabrerizo et al., (2010) Similarity measure and consistency measure Unbalanced fuzzy linguistic

Xu (2009) Distance measure Multi-attribute group decision making

Herrera-Viedma et al., (2007) Similarity measure and consistency measure Fuzzy preference relation

Proposed Method Rank correlation Fuzzy preference relations, multiplicative 

and linguistic

Dominance degree (similarity degree and 

deviation degree)

Preference ordering, fuzzy preference 

relation, multiplicative preference relation 

and utility function

Dissimilarity measure Herrera-Viedma et al., (2002)

Linguistic preference relationsSun and Ma (2015)

 

3.3.1. Research gaps 

Our goal is to measure the consensus degree among the experts differently by not relying directly 

on similarity/distance functions. As mentioned in number of papers such as Perez et al. (2016), 

Cabrerizo et al. (2015), and Herrera-Viedma et al. (2014), developing a new consensus measure is 

beneficial to overcome some drawbacks of similarity/distance functions. A study done by Chiclana 

et al. (2013) compares five different similarity/distance measures of consensus in group decision-

making, namely, Manhattan, Euclidean, Cosine, Dice, and Jaccard. They found that different 

similarity/distance measures could generate significantly different results. Moreover, the chosen 

measure could affect the speed of convergence to consensus.  

Furthermore, sometimes similarity/distance functions do not correctly reflect the agreement 

among the experts. For example, if a decision-maker provides his/her preferences on the 

alternatives by shifting (increasing/decreasing) other decision-maker preferences by 0.05, then the 

similarity/distance function will show that both decision-makers are not fully in agreement even 

though both prefer the same alternatives but with different intensities. Thus, we propose a new 
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consensus measure based on Spearman’s rank correlation coefficient. This new consensus measure 

calculates the rank correlation consensus between each pair of experts. Agreement on preference 

degrees ranks between pairs of decision-makers is measured. The new measure ranges from a value 

of 1 (perfect agreement among experts’ rank preferences) to a value of -1 (total disagreement). 

The closer the rank correlation to 1, the more positive correlation between decision-makers’ ranked 

preferences, which means that the preference degrees ranks are in the same direction. Conversely, 

the closer the rank correlation to -1, the more negative correlation between the decision-makers’ 

ranked preferences, which means the preference degrees ranks are in the opposite direction. 

Moreover, based on this consensus measure we also propose a feedback mechanism to improve 

group consensus level for reciprocal preference relations. 

3.4. A New Consensus Measure Based on Spearman’s Rank Correlation 

Coefficient 

We propose a new measurement of consensus based on Spearman’s rank correlation. This new 

method utilizes the advantages of rank correlation coefficient among decision-makers’ ranked 

preferences to measure the rank correlation consensus between each pair of experts. The new 

measurement is suitable for reciprocal preference relations.  

The reason for choosing Spearman’s correlation over Pearson’s correlation is that we are interested 

in general monotonic relations rather than linear relations. Moreover, Spearman’s correlation is a 

kind of qualitative measure whereas Pearson’s correlation is a quantitative one. In addition, the 

proposed feedback mechanism relies on the decision-makers’ input with respect to others and gives 

suggestions based on the rank of preference degrees rather than the valuations of other decision-
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makers. Thus, if the preference intensities among decision-makers vary, it does not matter as long 

as all the decision-makers have the same or almost the same rank preference degrees. This simply 

means that all prefer the same alternative but with different degrees. Therefore, trying to bring the 

preference intensities closer is not our main concern here. Making preference intensities almost 

the same could face resistance from decision-makers especially if their inputs are far from the 

original ones. Consequently, focusing on the preference ranks could make decision-makers more 

willing to accept changes, since this procedure, in general, asks them to rearrange their inputs in 

such a way that brings them closer to the rest of the decision-makers. 

Definition 3.5:  Let 𝑉𝑘 = (𝑝12
𝑘 , 𝑝13

𝑘 , … , 𝑝1𝑛
𝑘 , 𝑝23

𝑘 , … , 𝑝(𝑛−1)𝑛
𝑘 ) be a vector of preference degrees or 

intensities of decision-maker 𝑘 of a reciprocal preference relation 𝑃𝑘 = (𝑝𝑖𝑗
𝑘 )

𝑛×𝑛
, such that 𝑉𝑘 

represents the upper triangular relation with 
𝑛2−𝑛

2
  elements. 

This vector represents the upper triangular relation of 𝑃𝑘  provided by decision-maker 𝑘. We could 

also define another vector for the lower triangular relation in the same manner. However, that is 

not necessary since the reciprocal rule guarantees the same results if we apply any of the vectors. 

Then we rank the elements of the vector by using true rank scores to get ranked vector. 

Definition 3.6:  For every preference degree in 𝑉𝑘, there is a true rank score such that the 

preference degrees are given a score based on their intensity degree such that the largest preference 

degree is assigned a rank score of 1 and the smallest assigned a rank score of  
𝑛2−𝑛

2
,  

𝑅𝑉𝑘  = ((𝑝12
𝑘 , 𝑜12

𝑘 ), (𝑝13
𝑘 , 𝑜13

𝑘 ), … , (𝑝(𝑛−1)𝑛
𝑘 , 𝑜(𝑛−1)𝑛

𝑘 )) = (𝑜12
𝑘 , 𝑜13

𝑘 , … , 𝑜(𝑛−1)𝑛
𝑘 ) 
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where 𝑜𝑖𝑗
𝑘  represents the true rank (𝑒. 𝑔: 1,2, … ,

𝑛2−𝑛

2
)of 𝑝𝑖𝑗

𝑘  among the elements of vector 𝑉𝑘. 

Moreover, the ranked vector of the upper triangular relation (𝑅𝑉) and the ranked vector of the 

lower triangular relation (𝑅𝑉∗) of 𝑃 have the following property:  

𝑜𝑖𝑗 + 𝑜𝑗𝑖 =
𝑛2 − 𝑛 + 2

2
                                                                                                                            (3.4) 

where 𝑜𝑖𝑗 is the true rank on (𝑅𝑉) and 𝑜𝑗𝑖 is the true rank on (𝑅𝑉∗). 

3.4.1. Spearman's rank correlation coefficient 

The Spearman’s rank correlation is a special case of Pearson’s correlation coefficient (Chen & 

Popovich, 2002). Spearman’s correlation measures the degree of monotonic relation between 

vector 𝑋 and vector 𝑌, while Pearson’s correlation measures only the linear relationship (Hauke 

& Kossowski, 2011; Embrechts et al., 2002). Pearson’s correlation treats real data in a quantitative 

way, whereas Spearman’s correlation treats them to some extent in qualitative way (Hauke & 

Kossowski, 2011). 

Spearman’s correlation has the following properties (Embrechts et al., 2002): 

1. Symmetry: 𝜌(𝑋, 𝑌) = 𝜌(𝑌, 𝑋). 

2. Normalization: 𝜌(𝑋, 𝑌) ∈ [−1,1]. 

3. Comonotonic: 𝜌(𝑋, 𝑌) = 1 ⟺ 𝑋, 𝑌. 

4. Countermonotonic: 𝜌(𝑋, 𝑌) = −1 ⟺ 𝑋, 𝑌. 

5. For 𝑋 strictly monotonic:𝜌(𝑋, 𝑌) = {
𝜌(𝑋, 𝑌)            𝑋 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

−𝜌(𝑋, 𝑌)        𝑋 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔
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6. Uncorrelated (independent): 𝜌(𝑋, 𝑌) = 0 ⟺ 𝑋, 𝑌. 

The Spearman’s correlation is a simplification of Pearson’s correlation coefficient on the rank.  

The Pearson’s correlation coefficient on the rank is defined as follows: 

Definition 3.7: Given a sample of two 𝑛 - dimensional vectors 𝒙 =  (𝑥1, . . . , 𝑥𝑛) and 𝒚 =

 (𝑦1 , . . . , 𝑦𝑛), then for each vector, the variables are given true rank scores such that the largest 

variable is assigned a score of 1 and the smallest is assigned a score of 
𝑛2−𝑛

2
. Thus, having 𝑅𝑉 of 

the vectors 𝒙 and 𝒚 ,{(𝑜1
𝑥, 𝑜1

𝑦
) , . . . , (𝑜𝑛2−𝑛

2
 

𝑥 , 𝑜
𝑛2−𝑛

2
 

𝑦
)} , the Pearson correlation coefficient on the 

rank is computed as  

𝑐𝑜𝑟(𝒙 , 𝒚 ) = 𝜌𝑝 =
∑ (𝑜𝑖

𝑥−𝑜
𝑥
)𝑚 

𝑖 (𝑜𝑖
𝑦
−𝑜

𝑦
)

√∑ (𝑜𝑖
𝑥−𝑜

𝑥
)
2𝑚 

𝑖   √∑ (𝑜
𝑖
𝑦
−𝑜

𝑦
)
2𝑚

𝑖

                                                                                    (3.5)                                                            

where 𝑜
𝑥

=
1

𝑚
∑ 𝑜𝑖

𝑥𝑚 
𝑖  and 𝑜

𝑦
=

1

𝑚
∑ 𝑜𝑖

𝑦𝑚 
𝑖  are the arithmetic means of the true ranked scores, 𝑜𝑖

𝑥and 

𝑜𝑖
𝑦

 are the true ranked of 𝑥𝑖 and 𝑦𝑖, respectively. 

In our case, rank correlation consensus (𝑟𝑐𝑐) measure based on the Pearson correlation 

coefficient on the rank of preference relation is given by: 

𝑟𝑐𝑐(𝒙 , 𝒚 ) = 𝜌𝑝 =
∑ ∑ (𝑜𝑖𝑗

𝑥 −𝑜
𝑥
)𝑛 

𝑗=2,𝑖<𝑗 (𝑜𝑖𝑗
𝑦
−𝑜

𝑦
)𝑛−1

𝑖=1

√∑ ∑ (𝑜𝑖𝑗
𝑥 −𝑜

𝑥
)
2

𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1   √∑ ∑ (𝑜

𝑖𝑗
𝑦
−𝑜

𝑦
)
2

𝑛
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

                                                    (3.5′)  
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where 𝑜
𝑥

=
2

𝑛2−𝑛
∑ 𝑜𝑖𝑗

𝑥
𝑛2−𝑛

2
 

𝑖
 and 𝑜

𝑦
=

2

𝑛2−𝑛
∑ 𝑜𝑖𝑗

𝑦
𝑛2−𝑛

2
 

𝑖
 are the arithmetic means of the true ranked 

scores, 𝑜𝑖𝑗
𝑥 , and 𝑜𝑖𝑗

𝑦
 are the true ranked of 𝑅𝑉𝑥 and 𝑅𝑉𝑦, respectively.   

In the presence of tied ranks within a vector, the Pearson correlation coefficient formula is applied 

(Chen & Popovich, 2002). However, when there are no tied ranks, Spearman’s rank correlation 

coefficient formula is used. To calculate Spearman’s rank correlation coefficient, the Pearson 

correlation coefficient is simplified to (Chen & Popovich, 2002; Kendall & Gibbons, 1990): 

𝑐𝑜𝑟(𝒙 , 𝒚 ) = 𝜌𝑠 = 1 −
6 ∑ 𝑑𝑖

2𝑚
𝑖=1

𝑚3 − 𝑚
                                                                                                         (3.6) 

where 𝑑𝑖  is the difference of the ranking of the two vectors and 𝑚 is the number of elements or 

variables of the vector. 

Proposition 3.1: To calculate the rank correlation consensus (𝑟𝑐𝑐) measure based on Spearman’s 

rank correlation coefficient with no tied ranks for (𝑅𝑉𝑘) and (𝑅𝑉ℎ), the following formula is 

equivalent to (3.6): 

𝑟𝑐𝑐𝑘ℎ = 𝜌𝑠 = 1 −
48∑ ∑ (𝑜𝑖𝑗

𝑘 − 𝑜𝑖𝑗
ℎ )

2𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

(𝑛3(1 − 𝑛)2 − 4𝑛)(1 − 𝑛)
                                                                              (3.7) 

where 𝑜𝑖𝑗
𝑘 and 𝑜𝑖𝑗

ℎ  are the true ranked of 𝑉𝑘 and 𝑉ℎ respectively and 𝑛 is the number of alternatives. 

Proof: from the ranked vector (𝑅𝑉𝑘) and (𝑅𝑉ℎ), the number of variables is 
𝑛2−𝑛

2
 . Thus, 𝑚 =

 
𝑛2−𝑛

2
 by substituting this and 𝑑𝑖 = 𝑑𝑖𝑗 = 𝑜𝑖𝑗

𝑘 − 𝑜𝑖𝑗
ℎ  into (3.6) we get: 
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 𝑐𝑜𝑟(𝑅𝑉𝑘 , 𝑅𝑉ℎ) = 𝜌 = 1 −
6∑ 𝑑𝑖

2𝑚
𝑖=1

𝑚3−𝑚
 

                                = 1 −
6∑ ∑ (𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ )

2
𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

(
𝑛2−𝑛

2
)
3

−(
𝑛2−𝑛

2
)

= 1 −
6∑ ∑ (𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ )

2
𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

(𝑛2−𝑛)
3

8
−

𝑛2−𝑛

2

 

                                = 1 −
6∑ ∑ (𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ )

2
𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

(𝑛2−𝑛)
3
−4(𝑛2−𝑛)

8

= 1 −
48∑ ∑ (𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ )

2
𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

(𝑛2−𝑛)3−4(𝑛2−𝑛)
   

                                   = 1 −
48∑ ∑ (𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ)

2
𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

[(𝑛2−𝑛)2−4](𝑛2−𝑛)
= 1 −

48∑ ∑ (𝑜𝑖𝑗
𝑘 −𝑜𝑖𝑗

ℎ )
2

𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

[𝑛2(𝑛−1)2−4](𝑛−1)𝑛
 

                                  = 1 −
48∑ ∑ (𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ)

2
𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

[𝑛3(𝑛−1)2−4𝑛](𝑛−1)
∎ 

Note: The tied numbers are handled by midrank method. The midrank method is based on 

averaging the ranks that these tied numbers possess (Kendall & Gibbons, 1990). For instance, if 

the fifth and sixth numbers are tied, then each is assigned number 5
1

2
 , and if the third to the seventh 

are tied, each is assigned the number 
(3+4+5+6+7)

5
= 5 and thus the next assigned rank number is 8 

if it’s not tied with others and so on.  

Definition 3.8: The general rule of the midrank method is when there are 𝑧 elements of tied ranks 

in 𝑉 at 𝑙𝑡ℎ rank position, then the assigned number of each of these is 𝑙 + [(𝑧 − 1) ∙ 0.5]. 

The rank correlation consensus (𝑟𝑐𝑐) measure has a value range from -1 to 1. The value 1 means 

that both decision-makers’ ranked preferences are the same (both are positively rank correlated). 

Whereas, -1 means that the two decision-makers’ ranked preferences are opposite (both are 
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negatively rank correlated). When  (𝑟𝑐𝑐) equals zero, there is no correlation between the two 

decision-makers’ ranked preferences; both are independent. Ideally, the closer (𝑟𝑐𝑐) to 1, the 

closer the decision-makers’ ranked preferences are to the consensus and vice versa.  

The rank correlation consensus measure could be mapped to the domain [0,1] to have the rank 

correlation consensus degree (𝑟𝑐𝑐𝑑), as in the following definition: 

Definition 3.9: The rank correlation consensus degree (𝑟𝑐𝑐𝑑) is a function 𝑓: 𝑟𝑐𝑐 → [0,1], 

𝑓(𝑟𝑐𝑐) = 𝑟𝑐𝑐𝑑 = 0.5 × (1 + 𝑟𝑐𝑐). 

Thus, 𝑟𝑐𝑐𝑑 is interpreted as follows: when 𝑟𝑐𝑐𝑑 = 0.5 then the two relations are rank independent 

where no rank correlation exists between the ranked preferences. For 𝑟𝑐𝑐𝑑 < 0.5 the ranks of 

preference relations are negatively correlated (moving in the opposite direction), whereas 

for 𝑟𝑐𝑐𝑑 > 0.5, the ranked preferences are moving in the same direction. 

3.4.2. Rank similarity degree 

From the ranked vector (𝑅𝑉) we could also find the rank similarity degree  (𝑟𝑠𝑑) between any 

pair of decision-makers’ preference ranks. This degree shows how far the two preference rankings 

of a pair of decision-makers are from each other.  The rank similarity degree value at 0 means 

there is no similarity at all and that one of the preference ranks is ranked first and the other is 

ranked last, while 1 means that both alternatives are ranked at the same position by both decision-

makers.   
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Proposition 3.2: Given two ranked vector 𝑅𝑉𝑘and 𝑅𝑉ℎ , for a pair of decision-makers 𝑘 and ℎ 

∈ 𝑇 = 1, … 𝑡, the rank similarity degree ( 𝑟𝑠𝑑𝑖𝑗
𝑘ℎ) between each pair of preference ranks of the two 

decision-makers is given as follows: 

𝑟𝑠𝑑𝑖𝑗
𝑘ℎ = 1 − |

2(𝑜𝑖𝑗
𝑘 − 𝑜𝑖𝑗

ℎ )

𝑛(𝑛 − 1) − 2
|                                                                                                                 (3.8) 

This formula has been derived by normalizing the difference of rank to the maximum possible 

difference on scores as follows: the maximum score a ranked vector (𝑅𝑉) could have is  
𝑛2−𝑛

2
 and 

the minimum is 1. Thus, the difference between the maximum score and the minimum is  
𝑛2−𝑛−2

2
 . 

By dividing the difference of rank by this difference, we get 
2(𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ )

𝑛(𝑛−1)−2
 . Then, we take the absolute 

value of this normalization formula to prevent negative difference. Thus, the rank similarity degree 

is 1 minus the absolute value of the normalization formula.  

3.4.3. Rank correlation consensus algorithm 

The proposed consensus measure is based on rank correlation coefficient. This measure uses 

Spearman’s rank correlation coefficient to measure rank correlation consensus coefficient for 

reciprocal preference relation 𝑃𝑘 = (𝑝𝑖𝑗
𝑘 )

𝑛×𝑛
. To measure rank correlation consensus, the 

following steps are applied: 

1. For each 𝑃𝑘, 𝑘 ∈ 𝑇 = {1, 2, … , 𝑡} establish a preference vector 𝑉𝑘 =

(𝑝12
𝑘 , 𝑝13

𝑘 , … , 𝑝1𝑛
𝑘 , 𝑝23

𝑘 , … , 𝑝(𝑛−1)𝑛
𝑘 ) from the preference relation (𝑃𝑘) , which is provided by 
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the decision-maker 𝑘. This vector represents the preference intensities in the upper 

triangular relation of (𝑃𝑘). 

2. Give a true rank (e.g. 1,2, … ,
𝑛2−𝑛

2
) for each element in 𝑉𝑘 such that the largest preference 

degree is allotted score 1 and the smallest is allotted score 
𝑛2−𝑛

2
 , then  a ranked vector 

(𝑅𝑉𝑘) of 
𝑛2−𝑛

2
 elements can be established as follows: 

𝑅𝑉𝑘 = (𝑜12
𝑘 , 𝑜13

𝑘 , … , 𝑜(𝑛−1)𝑛
𝑘 ) 

where 𝑜𝑖𝑗
𝑘  represents the true rank of 𝑝𝑖𝑗

𝑘  with respect to the preference degrees of vector 

𝑉𝑘. 

3. For every pair of decision-makers, 𝑘 and ℎ ∈ 𝑇, calculate rank similarity degree (𝑟𝑠𝑑𝑖𝑗
𝑘ℎ) 

on the vectors 𝑅𝑉𝑘and 𝑅𝑉ℎ: 

𝑟𝑠𝑑𝑖𝑗
𝑘ℎ = 1 − |

2(𝑜𝑖𝑗
𝑘 − 𝑜𝑖𝑗

ℎ )

𝑛(𝑛 − 1) − 2
|                                                                                                        

4. For every pair of decision-makers 𝑘 and ℎ ∈ 𝑇, calculate the rank correlation consensus 

coefficient (𝑟𝑐𝑐𝑘ℎ = 𝑟𝑐𝑐ℎ𝑘) using (3.7) if there is no tied rank or (3.5′) if the ties exist 

with adopting the midrank method. The rank correlation consensus, 𝑟𝑐𝑐 ∈ [−1, 1], where 

-1 means strong negative rank correlation between decision-maker 𝑘 and ℎ, 0 no rank 

correlation, and 1 strong positive rank correlation. Ideally, the closer 𝑟𝑐𝑐 is to 1 the better 

it is. This can be transformed into rank correlation consensus degree by:  
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𝑟𝑐𝑐𝑑𝑘ℎ =
1

2
(1 + 𝑟𝑐𝑐𝑘ℎ) ∈ [0,1]                                                                                             (3.9) 

5. Calculate the rank correlation consensus for each decision-maker 𝑒 ∈ 𝑇 

 𝑟𝑐𝑐𝑘 =
∑ 𝑟𝑐𝑐𝑘ℎ𝑡

ℎ=1,ℎ≠𝑘

𝑡−1
                                                                                                               (3.10) 

6. Calculate experts’ rank correlation consensus 

 𝑟𝑐𝑐𝑇 =
∑ 𝑟𝑐𝑐𝑘𝑡

𝑘=1

𝑡
                                                                                                                       (3.11) 

7. Calculate collective relation rank correlation consensus 

 𝑟𝑐𝑐𝑐 =
∑ 𝑟𝑐𝑐𝑐𝑘𝑡

𝑘=1

𝑡
                                                                                                                      (3.12) 

By applying the rank correlation consensus measure, five types of measures are obtained as shown 

in Figure 3.1: 

1. Between individuals’ rank correlation consensus 𝑟𝑐𝑐𝑘ℎ, which shows the similarity degree 

of the preferences ranks between decision-maker 𝑘 and ℎ.  

2. Individual rank correlation consensus 𝑟𝑐𝑐𝑘, which represents the similarity degree of the 

preferences ranks of decision-maker 𝑘 to other decision-makers. 

3. Among decision-makers’ rank correlation consensus 𝑟𝑐𝑐𝑇, which represents the similarity 

degree of the preferences ranks among them. 
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4. Between individuals and collective rank correlation consensus 𝑟𝑐𝑐𝑐𝑘, which shows the 

degree of similarity of the preferences ranks between the collective relation 𝑐 and the 

decision-maker 𝑘. 

5. Collective relation’ rank correlation consensus 𝑟𝑐𝑐𝑐, which represents the similarity degree 

of the preferences ranks between individuals and collective preference relation. 

 

Figure 3.1: Rank correlation consensus types and relations 
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Note: Rank correlation consensus degree is not equivalent to consensus degree obtained by 

similarity/distance functions. In general, rank correlation consensus should be the one to rely on 

to attain the consensus level. 

3.4.4. Feedback mechanism 

The purpose of this mechanism is to help and guide decision-makers to improve their consensus 

level. The proposed feedback mechanism uses consensus results to help the experts with low 

consensus to improve their evaluations and thus their consensus level with regards to other 

decision-makers. This method uses other decision-makers’ assessments, which usually have the 

best consensus in the group, to generate suggestions to the individuals who have fewer 

contributions to the consensus state. This feedback mechanism relies heavily on the rank similarity 

degrees between the experts.  

Theorem 3.1: Let 𝑟𝑐𝑐𝑘ℎ be the rank correlation consensus between preference relation of decision-

maker 𝑘 and preference relation of decision-maker ℎ, then increasing 𝑟𝑠𝑑𝑖𝑗
𝑘ℎ leads to 

increase 𝑟𝑐𝑐𝑘ℎ.  

Proof: From 𝑟𝑠𝑑𝑖𝑗
𝑘ℎ = 1 − |

2(𝑜𝑖𝑗
𝑘 −𝑜𝑖𝑗

ℎ )

𝑛(𝑛−1)−2
|, we get |𝑜𝑖𝑗

𝑘 − 𝑜𝑖𝑗
ℎ | = (1 − 𝑟𝑠𝑑𝑖𝑗

𝑘ℎ) ∙
(𝑛(𝑛−1)−2)

2
.  

When no ties in ranks, 

 𝑟𝑐𝑐𝑘ℎ = 1 −
48∑ ∑ (𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ )

2
𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

[𝑛3(𝑛−1)2−4𝑛](𝑛−1)
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 = 1 −
48∑ ∑ ((1−𝑟𝑠𝑑𝑖𝑗

𝑘ℎ)∙
(𝑛(𝑛−1)−2)

2
)

2
𝑛 
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

[𝑛3(𝑛−1)2−4𝑛](𝑛−1)
= 1 −

12[(𝑛(𝑛−1)−2)]2

[𝑛3(𝑛−1)2−4𝑛](𝑛−1)
∙ ∑ ∑ (1 − 𝑟𝑠𝑑𝑖𝑗

𝑘ℎ)
2𝑛 

𝑗=2,𝑖<𝑗
𝑛−1
𝑖=1  

When there are ties in ranks, 

𝑟𝑐𝑐𝑘ℎ < 1 −
12[(𝑛(𝑛−1)−2)]2

[𝑛3(𝑛−1)2−4𝑛](𝑛−1)
∙ ∑ ∑ (1 − 𝑟𝑠𝑑𝑖𝑗

𝑘ℎ)
2𝑛 

𝑗=2,𝑖<𝑗
𝑛−1
𝑖=1   

Therefore, 

𝑟𝑐𝑐𝑘ℎ ≤ 1 −
12[(𝑛(𝑛 − 1) − 2)]2

[𝑛3(𝑛 − 1)2 − 4𝑛](𝑛 − 1)
∙ ∑ ∑ (1 − 𝑟𝑠𝑑𝑖𝑗

𝑘ℎ)
2

𝑛 

𝑗=2,𝑖<𝑗

𝑛−1

𝑖=1

∎ 

Moreover, the rank similarity degree has the following properties: 

1. 𝑟𝑠𝑑𝑖𝑗
𝑘ℎ = 𝑟𝑠𝑑𝑖𝑗

ℎ𝑘 

Proof: It is obvious from the absolute value in (3.8). 

2. 𝑟𝑠𝑑𝑖𝑗
𝑘ℎ = 𝑟𝑠𝑑𝑗𝑖

𝑘ℎ 

Proof: By substituting 𝑜𝑗𝑖 =
𝑛2−𝑛+2

2
− 𝑜𝑖𝑗, from (3.4), into 𝑟𝑠𝑑𝑗𝑖

𝑘ℎ = 1 − |
2(𝑜𝑗𝑖

𝑘 −𝑜𝑗𝑖
ℎ)

𝑛(𝑛−1)−2
| , we get 

      𝑟𝑠𝑑𝑗𝑖
𝑘ℎ = 1 − |

2(𝑜𝑗𝑖
𝑘 −𝑜𝑗𝑖

ℎ)

𝑛(𝑛−1)−2
| = 1 − |

2(
𝑛2−𝑛+2

2
 − 𝑜𝑖𝑗

𝑘  − 
𝑛2−𝑛+2

2
+𝑜𝑖𝑗

ℎ )

𝑛(𝑛−1)−2
| = 1 − |

2(𝑜𝑖𝑗
ℎ− 𝑜𝑖𝑗

𝑘 )

𝑛(𝑛−1)−2
| 

                 = 𝑟𝑠𝑑𝑖𝑗
ℎ𝑘 = 𝑟𝑠𝑑𝑖𝑗

𝑘ℎ∎ 
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The feedback mechanism can be conducted in two ways depending on the main concern: A) if the 

rank correlation consensus between decision-makers is the priority, or B) if the rank correlation 

consensus of the collective relation is important. Figure 3.2 shows the flowchart of the consensus 

process. 

 

Figure 3.2: Consensus process 

A. Feedback mechanism for rank correlation consensus between decision-makers: 

1. Select the decision-maker who has the lowest rank correlation consensus (𝑟𝑐𝑐𝑘) for 

him/her to review their judgments.  

2. Once the decision-maker is selected (𝑘), look at his/her rank similarities degrees (𝑟𝑠𝑑𝑖𝑗
𝑘ℎ) 

with respect to other decision-makers. Find the lowest ∑ 𝑟𝑠𝑑𝑖𝑗
𝑘ℎ𝑡

ℎ=1
ℎ≠𝑘

 to identify the element 
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of preference vector to modify and then find which decision-maker has the lowest rank 

similarity degree with respect to the identified vector element, min
∀ℎ∈𝑇

{𝑟𝑠𝑑𝑖𝑗
𝑘ℎ}. For instance, 

if we have following 𝑟𝑠𝑑: 

 𝑟𝑠𝑑13
31 = 0.4, 𝑟𝑠𝑑13

32 = 0.2, 𝑟𝑠𝑑13
34 = 0.6, and 

 𝑟𝑠𝑑12
31 = 0.9, 𝑟𝑠𝑑12

31 = 0.6,  𝑟𝑠𝑑12
34 = 0.3,  

then the decision-maker modifies 𝑝13
3  since ∑ 𝑟𝑠𝑑13

3ℎ4
ℎ=1
ℎ≠𝑘

= 1.2 < ∑ 𝑟𝑠𝑑12
3ℎ4

ℎ=1
ℎ≠𝑘

= 1.8, with 

respect to 𝑜13
2  position since min

∀ℎ∈𝑇
{𝑟𝑠𝑑13

𝑘ℎ} = 𝑟𝑠𝑑13
32. 

3. Once the preference degree that needs to be changed is known (𝑝𝑖𝑗
𝑘 ), make the modification 

based on the position of the ranked element of decision-maker ℎ who has the lowest rank 

similarity degree as follows: 

 If 𝑜𝑖𝑗
𝑘 > 𝑜𝑖𝑗

ℎ  ⇒ 𝑝𝑖𝑗
𝑘 ∈ [𝑝𝑘{𝑜𝑖𝑗

ℎ }, 𝑝𝑘{𝑜𝑖𝑗
ℎ − 1}]; 

 If 𝑜𝑖𝑗
𝑘 < 𝑜𝑖𝑗

ℎ  ⇒ 𝑝𝑖𝑗
𝑘 ∈ [𝑝𝑘{𝑜𝑖𝑗

ℎ + 1}, 𝑝𝑘{𝑜𝑖𝑗
ℎ }] 

where 𝑝𝑘{𝑜𝑖𝑗
ℎ } is the preference degree value of 𝑘 at the rank position 𝑜𝑖𝑗

ℎ . Moreover,  

o If 𝑝𝑘{𝑜𝑖𝑗
ℎ − 1} = 𝑝𝑘{0} ⇒ 𝑝𝑘 = 1 

o If 𝑝𝑘{𝑜𝑖𝑗
ℎ + 1} = 𝑝𝑘 {

𝑛2−𝑛

2
+ 1} ⇒ 𝑝𝑘 = 0 

o If {𝑜𝑖𝑗
ℎ } does not exist exactly in 𝑘 then find where it lies such that 𝑝𝑖𝑗

𝑘  should fall in 

the rank between {𝑜𝑖𝑗
ℎ }and {𝑜𝑖𝑗

ℎ + 1}/{𝑜𝑖𝑗
ℎ − 1}. For example, if 𝑝𝑘{𝑜𝑖𝑗

ℎ } = 𝑝𝑘{1.5} 
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but there is no rank position at 1.5 in 𝑘 then we could approximate it to 𝑝𝑘{1}  or 

𝑝𝑘{2} depending on the other rank position {𝑜𝑖𝑗
ℎ + 1}/{𝑜𝑖𝑗

ℎ − 1}. 

4. After the adjustment, recalculate the rank correlations consensus and repeat steps 1-3. 

5. The process is finished when 𝑟𝑐𝑐𝑇 ≥ 𝛼 and/or  𝑟𝑐𝑐𝑘ℎ ≥ 𝛽, where 𝛼 and 𝛽 are the agreeable 

consensus level between the experts and among the pair of experts respectively. 

This feedback mechanism is built to improve rank consensus level of the experts without relying 

on the collective preference relation. Once the consensus level is attained then collective 

preference relation could be constructed.  

B. Feedback mechanism for rank correlation consensus on the collective preference relation: 

We could apply the feedback mechanism between the experts and the collective preference relation 

by modifying step 2 and 5 into: 

Step 2'. Identify the lowest rank similarity degree (𝑟𝑠𝑑𝑖𝑗
𝑐𝑘), that has the farthest rank between the 

rank position 𝑜𝑖𝑗
𝑐  and 𝑜𝑖𝑗

𝑘 . 

Step 5'. The process is finished when 𝑟𝑐𝑐𝑐 ≥ 𝛼 and/or  𝑟𝑐𝑐𝑐𝑘 ≥ 𝛽, where 𝛼 and 𝛽 are the agreeable 

consensus level of the collective relation and between the experts and the collective relation 

respectively.  

Thus, in this case we only need to know which preference degree to modify, since 𝑘 is known from 

the rank correlation consensus (min
∀𝑘∈𝑇

{𝑟𝑐𝑐𝑐𝑘}) between 𝑅𝑉𝑘 and ranked collective vector 𝑅𝑉𝑐. 
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3.5.     Numerical Examples 

3.5.1.  Group decision-making example under homogeneous information 

Suppose four decision-makers provide their assessments on four alternatives using fuzzy 

preference relations as follows: 

𝑃1 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.50 0.38 0.20 0.28
0.62 0.50 0.32 0.40
0.80 0.68 0.50 0.58
0.72 0.6 0.42 0.50

]
                                            𝑃2 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.50 0.38 0.25 0.33
0.62 0.50 0.37 0.45
0.75 0.63 0.50 0.58
0.67 0.55 0.42 0.50

]
 

𝑃3 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.50 0.75 0.55 0.41
0.25 0.50 0.30 0.16
0.45 0.70 0.50 0.36
0.59 0.84 0.64 0.50

]
                                         𝑃4 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.50 0.40 0.30 0.60
0.60 0.50 0.40 0.70
0.70 0.60 0.50 0.80
0.40 0.30 0.20 0.50

]
 

A. Consensus measure 

To find the rank correlation consensus among these experts (preferences), we apply the rank 

correlation consensus coefficient measure as mentioned above without relying on the collective 

relation. 

1.    𝑉1 = (0.38, 0.20, 0.28, 0.32, 0.40, 0.58) , 𝑉2 = (0.38, 0.25, 0.33, 0.37, 0.45, 0.58) 

   𝑉3 = (0.75, 0.55, 0.41, 0.30, 0.16, 0.36) , 𝑉4 = (0.40, 0.30, 0.60, 0.40, 0.70, 0.80) 

2. 𝑅𝑉1 = (3, 6, 5, 4, 2, 1) ,                                 𝑅𝑉2 = (3, 6, 5, 4, 2, 1) 

𝑅𝑉3 = (1, 2, 3, 5, 6, 4) ,                                 𝑅𝑉4 = (4.5, 6, 3, 4.5, 2, 1) 

3. The rank similarity degrees are summarized in Table 3.2. 
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Table 3.2: Rank similarity degrees between decision-makers 

p
1
/p

2
p

1
/p

3
p

1
/p

4
p

2
/p

3
p

2
/p

4
p

3
/p

4

rsd12 1 0.6 0.7 0.6 0.7 0.3

rsd13 1 0.2 1 0.2 1 0.2

rsd14 1 0.6 0.6 0.6 0.6 1

rsd23 1 0.8 0.9 0.8 0.9 0.9

rsd24 1 0.2 1 0.2 1 0.2

rsd34 1 0.4 1 0.4 1 0.4

Rank Similarity degrees

 

 

1 means that both decision-makers rank the associated preference degree in the same 

position. If the rank similarity degree is less than 1, more differentiation exists on the rank 

between both experts. 

4. From step 2, we see that all of the decision-makers have no tied ranks except for decision-

maker 4. Thus, we apply (3.7) to find the rank correlation consensus coefficient for 𝑟𝑐𝑐12, 

𝑟𝑐𝑐13 and 𝑟𝑐𝑐23. Eq (3.5′) is used to find the rank correlation coefficient for 𝑟𝑐𝑐14, 

𝑟𝑐𝑐24 and 𝑟𝑐𝑐34.  For example, 

 𝑟𝑐𝑐13 = 1 −
48∑ ∑ (𝑜𝑖𝑗

𝑘 −𝑜𝑖𝑗
ℎ )

2
𝑛
𝑗=2,𝑖<𝑗

𝑛−1
𝑖=1

(𝑛3(1−𝑛)2−4𝑛)(1−𝑛)
= 1 −

48∑ ∑ (𝑜𝑖𝑗
1 −𝑜𝑖𝑗

3 )
2

4
𝑗=2,𝑖<𝑗

3
𝑖=1

(43(1−4)2−4×4)(1−4)
 

          = 1 −
48∑ ∑ (𝑜𝑖𝑗

1 −𝑜𝑖𝑗
3 )

2
4
𝑗=2,𝑖<𝑗

3
𝑖=1

1680
 

          = 1 −
48[(3−1)2+(6−2)2+(5−3)2+(4−5)2+(2−6)2+(1−4)2]

1680
 

          = 1 −
48[50]

1680
= −0.429 

Table 3.3 shows all the 𝑟𝑐𝑐𝑘ℎ, 𝑟𝑐𝑐𝑘 and 𝑟𝑐𝑐𝑇: 
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Table 3.3: Rank correlation consensus between DMs 

e1 e2 e3 e4

e1 1 1 -0.429 0.812

e2 1 1 -0.429 0.812

e3 -0.429 -0.429 1 -0.551

e4 0.812 0.812 -0.551 1

rcc
k 0.461 0.461 -0.469 0.358

rcc
T 0.203

rcc
kh

 

From Table 3.3, we see that all the decision-makers have good positive rank correlation 

with each other except for decision-maker 3, which has the lowest rank correlation 

consensus (𝑟𝑐𝑐1 = 𝑟𝑐𝑐2 > 𝑟𝑐𝑐4 > 𝑟𝑐𝑐3). Moreover, all the rank correlations consensus 

with decision-maker 3 are negative. Thus, to improve the consensus level among decision-

makers, decision-maker 3 has to revise his/her assessments. 

 

B. Feedback mechanism 

1. We see that decision-maker 3 has the lowest 𝑟𝑐𝑐3 = −0.469. Thus he/she is selected to 

revise his/her assessments. 

2. Table 3.4 shows all rank similarity degrees of all decision-makers with respect to decision-

maker 3: 
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Table 3.4: Rank similarity degrees between DM 3 and other DMs 

p
1
/p

3
p

2
/p

3
p

3
/p

4 Sum

rsd12 0.6 0.6 0.3 1.5

rsd13 0.2 0.2 0.2 0.6

rsd14 0.6 0.6 1 2.2

rsd23 0.8 0.8 0.9 2.5

rsd24 0.2 0.2 0.2 0.6

rsd34 0.4 0.4 0.4 1.2

Rank Similarity degrees

 

Notice that min
∀ℎ∈𝑡

{∑ 𝑟𝑠𝑑𝑖𝑗
3ℎ4

ℎ=1
ℎ≠3

} = 𝑟𝑠𝑑13
3ℎ = 𝑟𝑠𝑑24

3ℎ = 0.6, thus we pick any of them. For  

min
∀ℎ∈𝑡

{𝑟𝑠𝑑24
3ℎ} ⟹ 𝑟𝑠𝑑24

31 = 𝑟𝑠𝑑24
32 = 𝑟𝑠𝑑24

34 = 0.2 for all decision-makers. That means the 

rank position for the decision-makers are the same, 𝑜24
1 = 𝑜24

2 = 𝑜24
4 = 2. 

3. Thus 𝑝24
3  is the one to modify, 𝑝24

3 {𝑜24
3 } = 𝑝24

3 {6} ⇒ 𝑝24
3 {2}. In this case: 𝑜24

3 > 𝑜24
1   

⟹ 𝑝24
3 ∈ [𝑝3{2}, 𝑝3{1}] 

⟹  𝑝24
3 ∈ [0.55, 0.75] 

Suppose that the decision-maker is willing to change his/her assessment for this preference 

degree from 𝑝24
3 = 0.16 to 𝑝24

3′
= 0.65. 

This changes the result on new  𝑟𝑐𝑐𝑘ℎ:  𝑟𝑐𝑐1′ = 0.613,  𝑟𝑐𝑐2′ = 0.613,  𝑟𝑐𝑐3′ =

−0.039,  𝑟𝑐𝑐4′ = 0.483 and  𝑟𝑐𝑐𝑇′ = 0.418. 

4. Again  𝑟𝑐𝑐3′ is the lowest one. The same steps are repeated. This time 𝑝34
3  is the one to 

modify 𝑝34
3 {5} ⇒ 𝑝34

3 {1}. In this case; 𝑜34
3 > 𝑜34

1   

 ⟹ 𝑝34
3 ∈ [𝑝3{1}, 𝑝3{0}] 

 ⟹  𝑝34
3 ∈ [0.75, 1] 
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Suppose that the decision-maker decides to change it to 𝑝34
3 = 0.8. This results on a 

new 𝑟𝑐𝑐𝑘ℎ:  𝑟𝑐𝑐1′ = 0.842,  𝑟𝑐𝑐2′ = 0.842,  𝑟𝑐𝑐3′ = 0.640,  𝑟𝑐𝑐4′ = 0.705 and  𝑟𝑐𝑐𝑇′ =

0.757. 

5. If these results satisfy the condition of the consensus level, then stop and construct the 

collective relation. However, if the consensus level is at 0.8, then carry on the process. Still 

decision-maker 3 has the lowest rank correlation consensus. This 

time min
∀ℎ∈𝑡

{∑ 𝑟𝑠𝑑𝑖𝑗
3ℎ4

ℎ=1
ℎ≠3

} = 𝑟𝑠𝑑13
3ℎ = 1.8, and min

∀ℎ∈𝑡
{𝑟𝑠𝑑13

3ℎ} ⟹ 𝑟𝑠𝑑13
31 = 𝑟𝑠𝑑13

32 = 𝑟𝑠𝑑13
34 =

0.6. Thus 𝑝13
3 is the one to modify 𝑝13

3 {4} ⇒ 𝑝13
3 {6}. In this case; 𝑜13

3 < 𝑜13
1  

 ⟹ 𝑝13
3 ∈ [𝑝3{7}, 𝑝3{6}] 

 ⟹  𝑝13
3 ∈ [0, 0.3] 

Suppose that the decision-maker decides to change it to 𝑝13
3 = 0.29. This results in a 

new 𝑟𝑐𝑐𝑘ℎ:  𝑟𝑐𝑐1′ = 0.899,  𝑟𝑐𝑐2′ = 0.899,  𝑟𝑐𝑐3′ = 0.842,  𝑟𝑐𝑐4′ = 0.792 and  𝑟𝑐𝑐𝑇′ =

0.858, which attains the consensus level. Therefore the feedback mechanism is finished 

and the new 𝑃3∗is: 

𝑃3∗
=

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.50 0.75 0.29 0.41

0.25 0.50 0.30 0.65

0.71 0.70 0.50 0.8

0.59 0.35 0.2 0.50

]
 

The new rank correlation consensus for decision-maker 3 with the other decision-makers, each 

decision-maker’s rank correlation consensus and experts’ rank correlation consensus are shown in 

Table 3.5. 
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Table 3.5: The new rank correlation consensus  

e1 e2 e3* e4

e1 1 1 0.886 0.812

e2 1 1 0.886 0.812

e3* 0.886 0.886 1 0.754

e4 0.812 0.812 0.754 1

rcck 0.899 0.899 0.842 0.792

rccT

rcckh

0.858  

Notice the improvement in the rank correlation consensus for the three types of correlations. They 

all become strongly positive correlated and more importantly, the expert’s rank correlation 

consensus has increased. 

If the collective preference relation is constructed using a weighted averaging operator with equal 

weights for the experts, the following preference relation is obtained: 

𝑃𝑐 =

       𝐴1    𝐴2    𝐴3    𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.50 0.48 0.26 0.41
0.52 0.50 0.35 0.55
0.74 0.65 0.50 0.69
0.60 0.45 0.31 0.50

]
 

By using 𝐴𝑖 =
2

𝑛2
∑ 𝑃𝑖𝑗

𝑐𝑛
𝑗=1  , which is equivalent to the sum normalization method, we get 𝐴3 ≻

𝐴2 ≻ 𝐴4 ≻ 𝐴1. 

3.5.2. Group decision-making under heterogeneous information 

Suppose four decision-makers provide their assessments. The first one prefers fuzzy preference 

relation and the second one uses multiplicative preference relation. The third and the fourth 
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decision-makers provide linguistic preference relations with 𝑇3 = 5 and 𝑇4 = 13   respectively. 

The following assessments are obtained for the four alternatives: 

𝑃1 =

       𝐴1  𝐴2 𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.6 0.8 0.9
0.4 0.5 0.7 0.7
0.2 0.3 0.5 0.5
0.1 0.3 0.5 0.5

]
                                                            𝐴2 =

       𝐴1  𝐴2 𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4 [
 
 
 
 

1 4 6 7
1

4⁄ 1 3 4

1
6⁄

1
3⁄ 1 2

1
7⁄

1
4⁄

1
2⁄ 1]

 
 
 
 
 

𝐿3 =

       𝐴1  𝐴2 𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

𝑠0 𝑠1 𝑠2 𝑠0

𝑠−1 𝑠0 𝑠0 𝑠2

𝑠−2 𝑠0 𝑠0 𝑠1

𝑠0 𝑠−2 𝑠−1 𝑠0

]
                                                            𝐿4 =

       𝐴1  𝐴2 𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

𝑠0 𝑠2 𝑠4 𝑠6

𝑠−2 𝑠0 𝑠3 𝑠5

𝑠−4 𝑠−3 𝑠0 𝑠5

𝑠−6 𝑠−5 𝑠−5 𝑠0

]
 

A. Consensus measure 

Before measuring the rank correlation consensus, 𝐴2, 𝐿3and 𝐿4 need to be transferred into fuzzy 

preference relation using (3.1) and (3.3), respectively as follows: 

𝑃2 =

       𝐴1     𝐴2    𝐴3     𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.82 0.91 0.94
0.18 0.5 0.75 0.82
0.09 0.25 0.5 0.66
0.06 0.18 0.34 0.5

]
                                 𝑃3 =

       𝐴1     𝐴2    𝐴3     𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.75 1 0.5
0.25 0.5 0.5 1
0 0.5 0.5 0.75

0.5 0 0.25 0.5

]
  

𝑃4 =

       𝐴1     𝐴2    𝐴3     𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.67 0.83 1
0.33 0.5 0.75 0.92
0.17 0.25 0.5 0.92
0 0.08 0.08 0.5

]
 

The collective preference relation is obtained by using weighted averaging operator with equal 

weights: 
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𝑃𝑐 =

     𝐴1      𝐴2     𝐴3      𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.71 0.89 0.84
0.29 0.5 0.68 0.86
0.12 0.33 0.5 0.707
0.17 0.14 0.29 0.5

]
 

1.    𝑉1 = (0.6, 0.8, 0.9, 0.7, 0.7, 0.5) , 𝑉2 = (0.82, 0.91, 0.94, 0.75, 0.82, 0.66) 

   𝑉3 = (0.75, 1, 0.5, 0.5, 1, 0.75) , 𝑉4 = (0.67, 0.83, 1, 0.75, 0.92, 0.92) 

𝑉𝑐 = (0.71, 0.89, 0.84, 0.68, 0.86, 0.707) 

2. 𝑅𝑉1 = (5, 2, 1, 3.5, 3.5, 6) ,  𝑅𝑉2 = (3.5, 2, 1, 5, 3.5, 6),𝑅𝑉3 = (3.5, 1.5, 5.5, 5.5, 1.5, 3.5)  

            𝑅𝑉4 = (6, 4, 1, 5, 2.5, 2.5), 𝑅𝑉𝑐 = (4, 1, 3, 6, 2, 5) 

Table 3.6 presents the results obtained by applying the rank correlation consensus measure 

between individuals and the collective relation: 

Table 3.6: Rank correlation consensus between individuals and the collective 

DM1 DM2 DM3 DM4 rccck

DM1 1 0.8676 -0.121 0.397 0.551

DM2 0.8676 1 0.061 0.309 0.725

DM3 -0.121 0.061 1 -0.061 0.717

DM4 0.397 0.309 -0.061 1 0.290

rcck 0.381 0.412 -0.040 0.215

rccT

rcckh

0.571
0.242  

B. Feedback mechanism 

Based on these results, we find that decision-maker 4 needs to adjust their 

evaluation, min{𝑟𝑐𝑐𝑐𝑘} = 𝑟𝑐𝑐𝑐4 to get the group closer to the rank consensus level. Thus, first 

min{𝑟𝑠𝑑𝑖𝑗
𝑐4} is found to identify which preference degree is needed to modify, then step 3 is applied 
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to provide suggestion to DM4 with regards to this preference degree. The following summarizes 

the steps in the feedback mechanism to reach the target rank correlation consensus level: 

Round 1.  min{𝑟𝑐𝑐𝑐𝑘} = 𝑟𝑐𝑐𝑐4 ⇒ min{𝑟𝑠𝑑𝑖𝑗
𝑐4} = 𝑟𝑠𝑑13

𝑐4 = 0.4 ⇒ 𝑝13
4 ∈ [𝑠6, 𝑠6] ⇒ 𝑝13

4′ = 𝑠6 ⇒

𝑟𝑐𝑐𝑐(1)
= 0.66. 

Round 2.  min{𝑟𝑐𝑐𝑐𝑘} = 𝑟𝑐𝑐𝑐1 ⇒ min{𝑟𝑠𝑑23
𝑐1} = 𝑟𝑠𝑑23

𝑐1 = 0.5 ⇒ 𝑝23
1 ∈ [0,0.5] ⇒ 𝑝23

1′ = 0.5 ⇒

𝑟𝑐𝑐𝑐(2)
= 0.7252. 

Round 3.  min{𝑟𝑐𝑐𝑐𝑘} = 𝑟𝑐𝑐𝑐4 ⇒ min{𝑟𝑠𝑑12
𝑐4} = 𝑟𝑠𝑑12

𝑐4 = 0.6 ⇒ 𝑝12
4 ∈ [𝑠5, 𝑠5] ⇒ 𝑝12

4′ = 𝑠5 ⇒

𝑟𝑐𝑐𝑐(3)
= 0.7563. 

Round 4.  min{𝑟𝑐𝑐𝑐𝑘} = 𝑟𝑐𝑐𝑐3 ⇒ min{𝑟𝑠𝑑14
𝑐3} = 𝑟𝑠𝑑14

𝑐3 = 0.5 ⇒ 𝑝14
3 ∈ [𝑠1, 𝑠2] ⇒ 𝑝14

3′ = 𝑠2 ⇒

𝑟𝑐𝑐𝑐(4)
= 0.9412. 

If 𝑟𝑐𝑐𝑐 = 0.9412 is greater than or equal to the pre-assigned rank consensus level, then stop and 

start the selection process. Based on these modifications, the following new collective relation is 

obtained, using weighted averaging operator with equal weights: 

𝑃𝑐′
=

      𝐴1     𝐴2    𝐴3     𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

[

0.5 0.77 0.93 0.96
0.23 0.5 0.63 0.86
0.07 0.38 0.5 0.71
0.04 0.14 0.29 0.5

]
 

By using 𝐴 
𝑖
=

2

𝑛2
∑ 𝑃𝑖𝑗

𝑐𝑛
𝑗=1  , we get 𝐴1 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4. 
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3.6. Validation 

We conducted some tests on the proposed method using some examples available in the literature. 

Our method shows almost the same conclusions to the other researchers’ conclusions. However, 

we should mention that some of these methods are not based on reciprocal preference relations. In 

addition, the aggregation operators and selection methods are different, which play a significant 

role in the final results. Table 3.7 summarizes these findings.          

Table 3.7: Proposed method vs. some available methods 

Zhang et al. (2016) Pérez et al. (2014) Wu and Xu (2012)

Consensus model based Similarity Similarity+expert weights Distance

Aggregation Operator Weighted Averaging Not Given Weighted Averaging

Group Members 4 4 5

No. of Alternatives 4 4 6

Selection Method QGDD Not Given Sum Normalization

Alternatives Ranking A2≻A1≻A3≻A4 A1≻A2≻A3≻A4 A3≻A2≻A1≻A4≻A6≻A5

Proposed Method Ranking rcc
c
≈0.9, A2≻A1≻A3≻A4 rcc

c
=0.92, A1≻A2≻A4≻A3 rcc

c
≈0.93, A3≻A2≻A1≻A4≻A6≻A5

Herrera-Viedma et al, (2007a)

Consensus model based Similarity+Consistency

Aggregation Operator IOWA

Group Members 4

No. of Alternatives 4

Selection Method Not Available

Alternatives Ranking                    A2≻A1≻A4≻A3
*

Proposed Method Ranking   rcc
c
≈0.9, A2≻A1≻A4≻A3

QGDD-quantifier guided domonance degree, IOWA-induced ordered weighted averaging, * the ranking was 

generated by using weighted averaging method with equal weights using sum normalization by us

Authors

Authors

Herrera-Viedma et al, (2002)

rcc
c
≈0.77, A3≻A2≻A1≻A5≻A4≻A6

                 A2≻A3≻A1≻A5≻A4≻A6

QGDD

6

8

S-OWA OR-LIKE

ordinal/dissimilarity

 

We point out that the examples of Zhang et al. (2016) and Wu and Xu (2012) are based on 

reciprocal relations while the others are not. Herrera-Viedma et al. (2002) started the problem with 

reciprocal preference relations; however, the aggregation operator does not maintain this property. 

It can be seen from Table 3.7 that the proposed method has similar results to the problems with 

reciprocal relations. Also, it performs great on problems that are not based on reciprocal relations. 
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We should mention that for the non-reciprocal problems in Table 3.7, the upper triangular relation 

of the problems were considered. The results are almost the same except for minor ranking orders 

for Pérez et al.’s (2014) and Herrera-Viedma et al.’s (2002) problems, which could be linked to 

the level of consensus to be achieved. Also, the effect of using different selection methods and 

aggregation operators in finding the solution should not be ignored. 

3.7. Conclusions  

In this chapter, we presented a consensus model based on Spearman’s correlation. The proposed 

model does not rely directly on similarity/distance measures rather than on ranks of preference 

degrees on reciprocal preference relations. The novelty of this work lies in considering the 

coherence of decision-maker preference degrees ranks as a whole in comparison with rest of the 

group members. In addition, a feedback mechanism is proposed to play the role of the moderator 

to provide suggestions to the decision-maker who is not close in rank correlation consensus to the 

group members. The model was tested on several problems and the results proved the validity of 

the model. Two examples dealing with different information types are illustrated. 
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Chapter 4: 

Investigating Rank Reversal in Preference 

Relation Based on Additive Consistency: 

Causes and Solutions 

4.1. Introduction 

Multi-Criteria Decision-making (MCDM) is a field with many strengths, among which is its ability 

to assist decision-makers in solving difficult decisions involving conflicting criteria and to help 

them learn more about their preferences. However, some methods are known to have a 

phenomenon called rank reversal. Rank reversal occurs when a new alternative is added to (or 

removed from) a set of alternatives, which causes a change in the ranking order of the alternatives 

(Barzilai & Golany, 1994). The literature on decision-making reveals that a number of methods 

suffer from this phenomenon. Some of them are Analytic Hierarchy Process (AHP) (Barzilai & 

Golany, 1994; Wang & Luo, 2009), Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) (Wang et al., 2007; Wang & Luo, 2009), ELimination and Choice Expressing 

Reality (ELECTRE), Preference Ranking Organisation Method for Enrichment Evaluations 

(PROMETHEE) (Frini et al., 2012; Mareschal et al., 2008), Data Envelopment analysis - Analytic 

hierarchy process (DEAHP), Borda-Kendall (BK) (Wang & Luo, 2009) and Weighted Sum 

Method (WSM)( Wang & Luo, 2009). 

The rank reversal phenomenon has raised concerns against the use of affected methods, especially 

AHP. Rank reversal could be of two types: partial or total. Partial rank reversal happens to limited 
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alternatives while other alternatives still have the same ordering. For example, suppose that the 

current ranking of three alternatives is 𝐴3 ≻ 𝐴1 ≻ 𝐴2, such that alternative 𝐴3 is preferred over 

alternative 𝐴1 and 𝐴2 respectively. However, when a new alternative 𝐴4, which is not dominant, 

is introduced, the ranking could become  𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2. Notice that alternative 𝐴3 now 

becomes second while alternative 𝐴1 is first. This is called partial rank reversal. On the other hand, 

total rank reversal is the same as the partial rank reversal except that the whole ranking order is 

reversed. In this case, the best alternative becomes the worst and the worst becomes the best 𝐴2 ≻

𝐴4 ≻ 𝐴1 ≻ 𝐴3 (Dymova et al., 2013; Garcia-Cascales & Lamata, 2012).  

Belton and Gear (1983) were the first to notice this phenomenon in AHP. Since then, the literature 

of MCDM has been in debate about the impact of this phenomenon, and the validity of the affected 

methods. Many researchers such as Dyer (1990), Schenkerman (1994), Perez (1995), and Leung 

and Cao (2001) criticized the exhibited methods, whereas researchers such as Saaty and Vargas 

(1984), Saaty (1987), Forman (1990), and Millet and Saaty (2000) argued for the legitimacy of 

this phenomenon.  

To emphasize the phenomenon of rank reversal, we point the reader to the contraction consistency 

condition mentioned by Pavlicic (2001) adopted from Amartya Sen that states: 

Contraction consistency condition: If alternative 𝐴 is the best in the set of alternatives 𝑆 such 

that 𝐴 ∈ 𝑆, then it has to be the best in every subset 𝐸 ⊂ 𝑆 where 𝐴 ∈ 𝐸. 

This phenomenon could drive some decision-makers away from using methods known to have 

rank reversal, even if they are well-known. For instance, recently Anbaroglu et al. (2014) chose to 

use the Weighted Product Model (WPM) instead of relying on well-known and widely used 
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models such as AHP and WSM just because it does not suffer from any kind of rank reversal 

issues. Furthermore, they commented on the problem of rank reversal as “a serious limitation” of 

the MCDM field, which could lead researchers to misunderstand the difference between examined 

alternatives. Therefore, a need for handling this phenomenon is necessary, at least for the experts 

who are not in favor of it. The literature on preference relations, especially multiplicative 

preference relations, links this phenomenon to inconsistency of the data, the concept of pairwise 

comparison on which preference relations are based, the preference aggregation method, and the 

score aggregation method. To our knowledge, there is no complete study yet that investigates these 

three possible reasons for rank reversal in preference relations. There is one study, conducted by 

Leskinen and Kangas (2005), on the inconsistency of pairwise comparison based on a regression 

model. They concluded that inconsistency could lead to rank reversal. This phenomenon, however, 

does not occur when there is single criterion. But, in multiple criteria even if the data are consistent, 

the aggregation method (i.e. arithmetic mean) can result in rank reversals.  

In this chapter, our goal is to investigate how inconsistency and aggregation methods could lead 

to rank reversal in preference relations. 

The rest of the chapter is organized as follows: in section 4.2 we present some preliminary 

knowledge on preference relations. In section 4.3, we present a review of rank reversal literature 

regarding possible causes and attempts to solve rank reversal. In section 4.4, we study the possible 

causes of rank reversal in preference relation, namely, inconsistency of preference relation, 

aggregation operators, and score aggregation method and their link to rank reversal. In section 4.5, 

we propose score aggregation methods that have better performance than the sum normalization 
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method in avoiding rank reversal. In section 4.6, we provide a numerical example. Finally in 

section 4.7, we present the conclusions.     

4.2. Preliminary Knowledge 

Definition 4.1 (Urena et al., 2015): A preference relation 𝑅 is a binary relation defined on the set 

𝑋 that is characterized by a function 𝜇𝑝: 𝑋 × 𝑋 → 𝐷, where 𝐷 is the domain of representation of 

preference degrees provided by the decision-maker. 

Definition 4.2 (Xu, 2007): A fuzzy additive preference relation 𝑃 on a finite set of alternatives 𝑋 

is represented by a matrix 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛
⊂ 𝑋 × 𝑋 with: 

𝑝𝑖𝑗 ∈ [0,1],   𝑝𝑖𝑗 + 𝑝𝑗𝑖 = 1,   𝑝𝑖𝑖 = 0.5   ∀𝑖, 𝑗 = 1,… , 𝑛. 

when 𝑝𝑖𝑗 > 0.5 indicates that the expert prefers alternative 𝑥𝑖 over alternative 𝑥𝑗; 𝑝𝑖𝑗 < 0.5 

indicates that the expert prefers alternative 𝑥𝑗 over alternative 𝑥𝑖;  𝑝𝑖𝑗 = 0.5 indicates that the 

expert is indifferent between 𝑥𝑖 and 𝑥𝑗, thus, 𝑝𝑖𝑖 = 0.5. 

Furthermore, the additive preference relation 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛 is additive consistent if and only if the 

following additive transitivity is satisfied (Meng & Chen, 2015; Urena et al., 2015; Herrera-

Viedma et al., 2007a; Tanino, 1984): 

                                     𝐴1  𝐴2 … 𝐴𝑛

𝑃 = (𝑝𝑖𝑗)𝑛𝑥𝑛
=

𝐴1

𝐴2

⋮
𝐴𝑛

(

0.5 𝑝12 … 𝑝1𝑛

𝑝21 0.5 … 𝑝2𝑛

⋮ ⋮ ⋱ ⋮
𝑝𝑛1 𝑝𝑛2 ⋯ 0.5

)
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𝐹1:    𝑝𝑖𝑘 = 𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5                                                                                                                   (4.1)   

Definition 4.3 (Saaty, 1980): A multiplicative preference relation 𝐴 on the set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

of alternatives is defined as a reciprocal matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛  ⊂ 𝑋 × 𝑋 with the following 

conditions: 

𝑎𝑖𝑗 > 0,   𝑎𝑖𝑗𝑎𝑗𝑖 = 1,   𝑎𝑖𝑖 = 1,   ∀𝑖𝑗 = 1, 2, … , 𝑛. 

where 𝑎𝑖𝑗 is interpreted as the ratio of the preference intensity of the alternative 𝑥𝑖 to 𝑥𝑗.  

There are several numerical scales for the multiplicative preference relation; however, the most 

popular one is the 1-9 Saaty scale. 𝑎𝑖𝑗 = 1 means that alternative 𝑥𝑖 and 𝑥𝑗 are indifferent; 𝑎𝑖𝑗 > 1 

implies that alternative 𝑥𝑖 is preferred to 𝑥𝑗. As the ratio of intensity of (𝑎𝑖𝑗) increases, the stronger 

is the preference intensity of 𝑥𝑖 over 𝑥𝑗. Thus, 𝑎𝑖𝑗 = 9 means that alternative 𝑥𝑖 is absolutely 

preferred to 𝑥𝑗. 

The multiplicative preference relation 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is called consistent if the following 

multiplicative transitivity is satisfied (Saaty, 1980): 

𝑎𝑖𝑗 = 𝑎𝑖𝑘𝑎𝑘𝑗,   𝑎𝑖𝑖 = 1,   ∀𝑖, 𝑗 = 1, 2, … , 𝑛. 

The AHP method, which uses multiplicative preference relations, decomposes complex problems 

into a hierarchy consisting of several levels, where the top level represents the goal and the lower 

                                     𝐴1  𝐴2 … 𝐴𝑛

𝐴 = (𝑎𝑖𝑗)𝑛𝑥𝑛
=

𝐴1

𝐴2

⋮
𝐴𝑛

(

1 𝑎12 … 𝑎1𝑛

𝑎21 1 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 1

)
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levels consist of criteria, sub-criteria and alternatives respectively. The elements in each level are 

compared with each other through pair-wise comparison by using scale of 1-9 to find their relative 

importance. Then the weight for each element is computed using the eigenvector method.  The 

same technique is used at the lower level with respect to a higher level element to find their relative 

importance (Saaty, 1980).  

4.3. Literature Review 

The purpose of this section is to explore the literature of MCDM to investigate possible causes of 

rank reversal phenomena. We will then cover the attempts of researchers to solve this issue. Thus, 

two main subsections will be explored: the literature of rank reversal causes and attempts to fix 

rank reversal.   

4.3.1. The literature on rank reversal causes’ 

The literature on multiplicative preference relations, especially AHP, discusses three possible 

reasons behind rank reversal, see Table 4.1: inconsistency, pairwise comparison, and aggregation 

method. Dodd et al. (1995) claimed that Saaty’s AHP misses a form of inconsistency within its 

model, which puts its results under doubt. This claim somehow agrees with Stewart (1992), who 

stated that rank reversal is a consequence of the way the weights are elicited, ratio scales, and the 

eigenvector approach. Farkas et al. (2004) also blamed inconsistency in pairwise comparison for 

this issue. According to Paulson and Zahir (1995), judgmental uncertainty could also cause rank 

reversal. Chou (2012) referred the issue of rank reversal in AHP due to the aggregation method, 

Saaty’s ratio scale, and the inconsistency of judgments. However, researchers like Karapetrovic 

and Rosenbloom (1999) refused to link the problem to inconsistency. They argued that there is no 
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direct relation between the consistencies or inconsistencies of pairwise comparison matrices and 

the occurrence of rank reversal. They stated that each could be considered as a separate problem. 

Ishizaka and Labib (2011) agreed with them and reported that rank reversal is independent of the 

consistency of the data and priority method. Moreover, they believed this phenomenon could 

happen in any additive model.  

Table 4.1: The causes’ literature of rank reversal  

Cause(s) Author(s)

Weights elicited method, Saaty’s ratio scale and eigenvector approach Stewart (1992)

Aggregation method, Saaty’s ratio scale and inconsistency Chou (2012)

AHP method and score aggregation Ishizaka and Labib (2011)

Normalization and ratio scale Schenkerman (1994)

Multiplying criteria weights by unrelated normalized scale Lai (1995); Perez (1995)

AHP method Dyer (1990); Triantaphyllou (2001)

Normalization methods Rosenbloom (1997) 

Eigenvalue method Bana e Costa and Vansnick (2008)

Inconsistency
Dodd et al. (1995); Farkas et al., (2004); 

Paulson and Zahir (1995)

 

Other researchers like Schenkerman (1994) believed that the rank reversal in AHP is caused by 

normalization, and its scales seem arbitrary. He claimed that criteria weights are dependent on the 

measurements of the alternatives. Thus, any change in the number of alternatives and 

normalization imposes revising of the criteria weights. Correspondingly, Ishizaka and Labib 

(2011) claimed that the rank reversal phenomenon is related to the method rather than modelling 

procedure and it may not be resolved because aggregation of the standardized units is not simply 

interpretable, which has been even disputed by French school. Lai (1995) pointed out that rank 

reversal happens because of multiplying criteria weights by unrelated normalized scale of 

performance ratings. Dyer (1990) claimed that the problem is not just rank reversal but the AHP 

results are arbitrary. This is because the criteria weights may not be right due to the normalization 
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procedure. Triantaphyllou (2001) agreed with Dyer that in AHP or any additive variants of it, 

ranking is arbitrary often tends to generate rank reversal even if the data is perfectly consistent. 

According to Rosenbloom (1997), researchers tried to resolve this problem in AHP by proposing 

different normalization methods. Perez (1995) argued that the phenomenon of rank reversal is 

common in almost all of ordinal aggregation methods such as AHP. He claimed that rank reversal 

could be avoided if both criteria weights and performance ratings are generated from a common 

space of scales. On the other hand, Bana e Costa and Vansnick (2008) blamed the eigenvalue 

method. They stated that the priority vector violates a condition of order preservation, which makes 

use of AHP in decision-making very problematic. 

4.3.2. Attempts to fix rank reversal 

The rank reversal phenomenon in AHP was initially observed by Belton and Gear in 1983 after 

they discovered that introducing a new similar alternative to the existing ones could reverse the 

ranking of the alternatives. They proposed a modified normalization method to overcome the rank 

reversal issue in the original AHP, which is later known as a Revised AHP. The revised method 

differs from the original AHP prioritization method where each criterion is divided by the max 

value with respect to it for all the alternatives. Later on, this method came to be known as the ideal 

model.  Afterwards, Schenkerman (1994) claimed that in methods such as Referenced AHP, 

normalization to maximum entry (ideal model), normalization to minimum entry, and linking pins 

avoid rank reversal only when the criteria are quantitative. On the other hand, Saaty (1987) linked 

rank reversal with the existence of near or similar copies within the set of alternatives. To solve 

this issue, either the set of alternatives has to be revised or more criteria need to be considered. 
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Saaty defines a near copy as an alternative that has close values within 10% for overall criteria. 

However, Dyer (1990) later criticized this suggestion. 

Lootsma (1993), followed by Sheu (2004), claimed that using a geometric mean aggregation 

method in AHP helps to avoid rank reversal. Likewise, Ishizaka and Labib (2011) mentioned that 

using geometric mean in AHP prevents rank reversal since geometric mean in both row and 

column approaches produces the same results, unlike eigenvector methods. Barzilai and Golany 

(1994) stated that the rank reversal problem is related to the structure of AHP mainly through the 

additive aggregation rule. They argued that the multiplicative procedures such as the geometric 

mean and the weighted-geometric-mean aggregation rule are the solution. In fact, some studies 

have shown that multiplicative methods such as the weighted product model and the multiplicative 

AHP are immune against rank reversal (Wang & Triantaphyllou, 2008). Barzilai and Lootsma 

(1997) demonstrated that the multiplicative AHP method does not generate rank reversal by testing 

the method on Belton and Gear’s (1983) example. Additionally, the multiplicative variants of the 

AHP tend to be more reliable and do not show any kind of rank reversal, which means they are 

perfect (Triantaphyllou, 2001). On the other hand, Buede and Maxwell (1995) pointed out that 

using geometric mean “will not eliminate rank reversal,” contrary to removing normalization of 

the ratio scale, which guarantees immunity against rank reversal.  

Farkas et al. (2004) developed an approach by determining the intervals for all possible 

occurrences of rank reversals. They demonstrated it for an example of a 3X3 matrix. Recently, 

Rodriguez et al. (2013) proposed a modification to the fuzzy AHP- TOPSIS method with a 

graphical approach for rank reversal detection and analysis. They claimed that this graphical 

approach increases the level of confidence in the results. However, they mentioned that the 
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graphical approach is not suitable when large set of criteria are under consideration. Table 4.2 

summarizes the attempts to avoid/solve rank reversal in AHP. 

Table 4.2: Some attempts to solve AHP's rank reversal 

Solution Author(s)

Max normalization method Belton and Gear (1983) 

Find the intervals of all  rank reversals Farkas et al. (2004)

Graphical approach Rodriguez et al. (2013)

Exclude/remove near or similar copies 

of the alternatives

Saaty (1987)

Lootsma (1993); Sheu (2004); Ishizaka 

and Labib (2011); Barzilai and Golany 

(1994); Wang and Triantaphyllou 

(2008); Barzilai and Lootsma (1997) 

Geometric mean aggregation method 

 
 

4.4. Mathematical Investigation of Rank Reversal Causes in Preference 

Relations 

According to Chiclana et al. (2009), preference relations have three fundamental and hierarchical 

levels of rationality assumptions: 1) the first level requires indifference between any alternative 𝑥𝑖 

and itself, 2) the second level requires that if the decision-maker prefers 𝑥𝑖 to 𝑥𝑗 then they should 

not at the same time prefer 𝑥𝑗 to 𝑥𝑖, and 3) the third level is related to transitivity among any three 

alternatives. There are a number of consistency properties in the literature. A few of these are: 

triangle condition, weak transitivity, max-min transitivity, max-max transitivity, restricted max-

min transitivity, restricted max-max transitivity, multiplicative transitivity, and additive 

transitivity (Herrera-Viedma et al., 2004). Among these properties, additive and multiplicative 

transitivity are the most used and are equivalent to each other through a transformation function. 

The transitivity property is interpreted by the idea that the preference value of any two alternatives 
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obtained directly by comparison should be equal to or greater than the preference value of an 

indirect alternative (intermediate alternative) that is between them (Herrera-Viedma et al., 2004). 

Furthermore, any property that enforces transitivity in the preferences is called a consistency 

property (Chiclana et al., 2009). 

4.4.1. Additive consistency  

From (4.1) two other formulations can be generated based on the characteristics of the reciprocal 

rule, (𝑝𝑖𝑗 + 𝑝𝑗𝑖 = 1), as follows: 

 𝐹2:    𝑝𝑖𝑘 =  𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5                                                                                                            (4.2)   

 𝐹3:    𝑝𝑖𝑘 =  𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5                                                                                                            (4.3) 

Proposition 4.1: Let 𝑃 = (𝑝𝑖𝑘)𝑛×𝑛 be an additive preference relation, then for every preference 

degree on 𝑃 we can find its estimation based on the additive consistency through: 

 𝑝𝑖𝑘 =
1

3(𝑛−2)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

.                                                                   (4.4) 

Proof: by taking the average of equations (4.1), (4.2) and (4.3) for 𝑝𝑖𝑘 for 𝑛 alternatives, the 

following equation is generated: 

  

𝑝𝑖𝑘 =
1

3𝑛
[∑(𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5)

𝑛

𝑗=1

+ (𝑝𝑗𝑘 − 𝑝𝑗𝑖 + 0.5) + (𝑝𝑖𝑗 − 𝑝𝑘𝑗 + 0.5)] 

⟹ 𝑝𝑖𝑘 =
1

3𝑛
∑(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
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⟹ 𝑝𝑖𝑘 =
1

3𝑛
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

+
1

3𝑛
(𝑝𝑖𝑖 + 𝑝𝑘𝑘 + 4𝑝𝑖𝑘 − 2𝑝𝑘𝑖 + 1) 

⟹ 𝑝𝑖𝑘 =
1

3𝑛
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

+
1

3𝑛
(0.5 + 0.5 + 4𝑝𝑖𝑘 − 2(1 − 𝑝𝑖𝑘) + 1) 

⟹ 𝑝𝑖𝑘 =
1

3𝑛
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

+
1

3𝑛
(6𝑝𝑖𝑘) 

⟹ (3𝑛)𝑝𝑖𝑘 = ∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

+ (6𝑝𝑖𝑘) 

⟹ 3(𝑛 − 2)𝑝𝑖𝑘 = ∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5) 

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

 

⟹ 𝑝𝑖𝑘 =
1

3(𝑛 − 2)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

 ∎ 

For a reciprocal additive preference relation, (4.4) can be re-written as: 

𝑝𝑖𝑘 =
1

(𝑛 − 2)
∑ (𝑝𝑖𝑗 + 𝑝𝑗𝑘 − 0.5)

𝑛

𝑗=1
𝑖≠𝑗≠𝑘

                                                                                                                (4.5) 

Definition 4.4: Let 𝑃 = (𝑝𝑖𝑘)𝑛×𝑛  be a given reciprocal additive preference relation and 𝑃𝑒 =

(𝑝𝑖𝑘
𝑒 )𝑛×𝑛 be the estimated additive preference relation calculated by (4.5). Then the consistency 

degree of 𝑃 is calculated by  

𝐶𝐷(𝑃, 𝑃𝑒) = 1 −
2

𝑛(𝑛 − 1)
∑ ∑|𝑝𝑖𝑘 − 𝑝𝑖𝑘

𝑒 |

𝑛

𝑘=2
𝑖<𝑘

𝑛−1

𝑖=1

                                                                                  (4.6) 
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Thus (4.4) is used to check the consistency degree of any reciprocal additive preference relation. 

When 𝐶𝐷(𝑃, 𝑃𝑒) = 1 then 𝑃  is perfectly consistent; keeping in mind that 𝑝𝑖𝑘 is a preference 

degree or preference intensity of alternative 𝑖 over alternative 𝑘.  

The additive consistency implies dependency between alternatives, which is clear from the 

transitivity property. Thus, any change in the examined set of the alternatives implies a possible 

change on the preference degrees. This is correct, especially if the provided information is not 

perfectly consistent. To illustrate this, let us assume that the provided information for a set of 𝑛 

alternatives is perfectly consistent. Then, if we remove an alternative (ℎ) from the set,  𝑃𝑛 →

𝑃𝑛−1 = (𝑝𝑖𝑘)𝑛−1×𝑛−1, or if we add an alternative (ℎ) to the set,  𝑃𝑛 → 𝑃𝑛+1 = (𝑝𝑖𝑘)𝑛+1×𝑛+1. 

Therefore, the remaining preference degrees from  𝑃𝑛 after 𝑛 is modified can maintain their 

valuations only if (4.4) is satisfied. This can only happen if the original information and the new 

alternative are perfectly consistent.  

Theorem 4.1: Based on additive consistency, a preference degree (𝑝𝑖𝑘
𝑛 ) maintains its valuation 

after removing or adding an alternative ℎ from 𝑛 if 

 𝑝𝑖𝑘
𝑛−1𝑜𝑟 𝑝𝑖𝑘

𝑛+1 =
1

3
(2𝑝𝑖ℎ + 2𝑝ℎ𝑘 − 𝑝ℎ𝑖 − 𝑝𝑘ℎ) +

1

6
     ∀ 𝑖𝑘 ∈ 𝑛                                                     (4.7) 

Otherwise the preference relation  𝑃𝑛or 𝑃𝑛+1 is not perfectly consistent. 

Proof: from(4.4), 𝑝𝑖𝑘
𝑛 =

1

3(𝑛−2)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

, when we remove ℎ from 

𝑛 we get: 
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 𝑝𝑖𝑘
𝑛−1 =

1

3(𝑛−1−2)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)𝑛−1

𝑗=1
𝑖≠𝑗≠𝑘

𝑛\{ℎ}

 

            =
1

3(𝑛−3)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)𝑛−1

𝑗=1
𝑖≠𝑗≠𝑘

𝑛\{ℎ}

 

For 𝑗 ≠ 𝑖 ≠ 𝑘 and 𝑛\{ℎ} = 𝑛 − 1, then  

 𝑝𝑖𝑘
𝑛−1 =

1

3(𝑛−3)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5)𝑛−1

𝑗=1
𝑖≠𝑗≠𝑘

𝑛\{ℎ}

 

=
1

3(𝑛 − 3)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5) + ⋯

+ (2𝑝𝑖(𝑛−1) + 2𝑝(𝑛−1)𝑘 − 𝑝(𝑛−1)𝑖 − 𝑝𝑘(𝑛−1) + 0.5)] 

=
1

3(𝑛 − 3)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯+ (2𝑝𝑖(𝑛−1) + 2𝑝(𝑛−1)𝑘 − 𝑝(𝑛−1)𝑖 − 𝑝𝑘(𝑛−1))]

+
𝑛 − 3

6(𝑛 − 3)
 

For 𝑗 ≠ 𝑖 ≠ 𝑘 and ℎ ∈ 𝑛, then  

 𝑝𝑖𝑘
𝑛 =

1

3(𝑛 − 2)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5) + ⋯

+ (2𝑝𝑖(ℎ) + 2𝑝(ℎ)𝑘 − 𝑝(ℎ)𝑖 − 𝑝𝑘(ℎ) + 0.5) + ⋯

+ (2𝑝𝑖(𝑛) + 2𝑝(𝑛)𝑘 − 𝑝(𝑛)𝑖 − 𝑝𝑘(𝑛) + 0.5)] 
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=
1

3(𝑛 − 2)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯+ (2𝑝𝑖(ℎ) + 2𝑝(ℎ)𝑘 − 𝑝(ℎ)𝑖 − 𝑝𝑘(ℎ)) + ⋯

+ (2𝑝𝑖(𝑛) + 2𝑝(𝑛)𝑘 − 𝑝(𝑛)𝑖 − 𝑝𝑘(𝑛))] +
𝑛 − 2

6(𝑛 − 2)
 

Thus, the only way  𝑝𝑖𝑘
𝑛−1 =  𝑝𝑖𝑘

𝑛  after removing ℎ is if  

1

3(𝑛 − 3)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯+ (2𝑝𝑖(𝑛−1) + 2𝑝(𝑛−1)𝑘 − 𝑝(𝑛−1)𝑖 − 𝑝𝑘(𝑛−1))] +

1

6

=
1

3(𝑛 − 2)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯+ (2𝑝𝑖(ℎ) + 2𝑝(ℎ)𝑘 − 𝑝(ℎ)𝑖 − 𝑝𝑘(ℎ))

+ ⋯+ (2𝑝𝑖(𝑛) + 2𝑝(𝑛)𝑘 − 𝑝(𝑛)𝑖 − 𝑝𝑘(𝑛))] +
1

6
 

⇒
1

3(𝑛 − 3)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯+ (2𝑝𝑖(𝑛−1) + 2𝑝(𝑛−1)𝑘 − 𝑝(𝑛−1)𝑖 − 𝑝𝑘(𝑛−1))]

−
1

3(𝑛 − 2)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯

+ (2𝑝𝑖(𝑛) + 2𝑝(𝑛)𝑘 − 𝑝(𝑛)𝑖 − 𝑝𝑘(𝑛))]

=
1

3(𝑛 − 2)
(2𝑝𝑖(ℎ) + 2𝑝(ℎ)𝑘 − 𝑝(ℎ)𝑖 − 𝑝𝑘(ℎ)) 

Since, 

(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯+ (2𝑝𝑖(𝑛−1) + 2𝑝(𝑛−1)𝑘 − 𝑝(𝑛−1)𝑖 − 𝑝𝑘(𝑛−1))

= (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯+ (2𝑝𝑖(𝑛) + 2𝑝(𝑛)𝑘 − 𝑝(𝑛)𝑖 − 𝑝𝑘(𝑛)) 

Then, 



Chapter 4: Investigating Rank Reversal in Preference Relation Based on Additive Consistency: Causes and Solutions 

104 | P a g e  

  

1

3(𝑛 − 3)(𝑛 − 2)
[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯

+ (2𝑝𝑖(𝑛−1) + 2𝑝(𝑛−1)𝑘 − 𝑝(𝑛−1)𝑖 − 𝑝𝑘(𝑛−1))]

=
1

3(𝑛 − 2)
(2𝑝𝑖(ℎ) + 2𝑝(ℎ)𝑘 − 𝑝(ℎ)𝑖 − 𝑝𝑘(ℎ)) 

Multiply both sides by 3(𝑛 − 3)(𝑛 − 2), we get, 

[(2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) + ⋯+ (2𝑝𝑖(𝑛−1) + 2𝑝(𝑛−1)𝑘 − 𝑝(𝑛−1)𝑖 − 𝑝𝑘(𝑛−1))]

= (𝑛 − 3)(2𝑝𝑖(ℎ) + 2𝑝(ℎ)𝑘 − 𝑝(ℎ)𝑖 − 𝑝𝑘(ℎ)) 

Thus, 

 ∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) =𝑛−1
𝑗=1

𝑖≠𝑗≠𝑘
𝑛\ℎ

(𝑛 − 3)(2𝑝𝑖ℎ + 2𝑝ℎ𝑘 − 𝑝ℎ𝑖 − 𝑝𝑘ℎ) 

1

3(𝑛 − 3)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗) =

𝑛−1

𝑗=1
𝑖≠𝑗≠𝑘
𝑛\ℎ

1

3(𝑛 − 3)
(𝑛 − 3)(2𝑝𝑖ℎ + 2𝑝ℎ𝑘 − 𝑝ℎ𝑖 − 𝑝𝑘ℎ) 

1

3(𝑛 − 3)
∑ (2𝑝𝑖𝑗 + 2𝑝𝑗𝑘 − 𝑝𝑗𝑖 − 𝑝𝑘𝑗 + 0.5) =

𝑛−1

𝑗=1
𝑖≠𝑗≠𝑘
𝑛\ℎ

1

3
(2𝑝𝑖ℎ + 2𝑝ℎ𝑘 − 𝑝ℎ𝑖 − 𝑝𝑘ℎ) +

1

6
 

𝑝𝑖𝑘
𝑛−1 =

1

3
(2𝑝𝑖ℎ + 2𝑝ℎ𝑘 − 𝑝ℎ𝑖 − 𝑝𝑘ℎ) +

1

6
 

Also, we get the same conclusion when ℎ is added to 𝑛 ∎ 
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This shows how removing or adding an alternative could affect the entire information, especially 

when they are inconsistent. Thus, introducing new information implies a change in the original 

information, particularly if the new information is not consistent. Usually decision-makers do not 

revise their assessments based on the new information. In general, the decision-makers compare 

two alternatives at a time; however, when we consider the consistency of the information, all the 

alternatives need to be considered. So the decision-makers do not revise their previous assessments 

on a pair of alternatives if another alternative is removed or a new one is added. Moreover in real 

life, most decision-makers are not consistent in their opinions. Thus, how should we handle 

acceptably inconsistent information in a way to avoid rank reversal? Saaty (1980) suggested that 

the acceptable inconsistency degree should be less than or equal to 10%. 

4.4.2. Aggregation methods 

Aggregation methods or operators are used to aggregate individual preference relations into a 

collective one. For example, in group decision-making, the individuals’ preference relations are 

aggregated into a collective preference relation. There are many aggregation operators in the 

literature; however, the most common one is the weighted averaging operator. The weighted 

averaging operator is defined as follows: 

𝑝𝑖𝑘
𝑐 = ∑ 𝑤𝑡 ∙ 𝑝𝑖𝑘

𝑡𝑚
𝑡=1                                                                                                                                    (4.8)    

where 𝑤𝑡 is the weight of decision-maker 𝑡 such that ∑ 𝑤𝑡 = 1𝑚
𝑡=1 , 𝑝𝑖𝑘

𝑡  is the given preference 

degree by decision-maker 𝑡, 𝑚 is the number of decision-makers, and 𝑝𝑖𝑘
𝑐  is the collective 

preference degree. The weighted averaging operator becomes an averaging operator when the 

decision-makers have equal weights. 
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Proposition 4.2: Let 𝑃𝑡 = (𝑝𝑖𝑘
𝑡 )𝑛×𝑛 be a reciprocal additive preference relation given by a 

decision-maker 𝑡. When all 𝑃𝑡s are perfectly consistent then the collective preference relation is 

also perfectly consistent. 

Proof: from (4.8) 

𝑝𝑖𝑘
𝑐 = ∑ 𝑤𝑡 ∙ 𝑝𝑖𝑘

𝑡
𝑚

𝑡=1
 

and from (4.5) 𝑝𝑖𝑘
𝑡 =

1

(𝑛−2)
∑ (𝑝𝑖𝑗

𝑡 + 𝑝𝑗𝑘
𝑡 − 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

 then 

 𝑝𝑖𝑘
𝑐 = ∑ 𝑤𝑡 ∙ 𝑝𝑖𝑘

𝑡𝑚
𝑡=1 = ∑ 𝑤𝑡 ∙

1

(𝑛−2)
∑ (𝑝𝑖𝑗

𝑡 + 𝑝𝑗𝑘
𝑡 − 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

𝑚
𝑡=1  

       =
1

(𝑛−2)
∑ 𝑤𝑡 ∙ ∑ (𝑝𝑖𝑗

𝑡 + 𝑝𝑗𝑘
𝑡 − 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

𝑚
𝑡=1  

       =
1

(𝑛−2)
∑ (∑ 𝑤𝑡 ∙𝑚

𝑡=1 𝑝𝑖𝑗
𝑡 + ∑ 𝑤𝑡 ∙𝑚

𝑡=1 𝑝𝑗𝑘
𝑡 − ∑ 𝑤𝑡 ∙𝑚

𝑡=1 0.5)𝑛
𝑗=1

𝑖≠𝑗≠𝑘

 

       =
1

(𝑛−2)
∑ (𝑝𝑖𝑗

𝑐 + 𝑝𝑗𝑘
𝑐 − 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

= 𝑝𝑖𝑘
𝑒 ∎ 

Similarly, when an arithmetic mean operator is used, the consistency is also maintained.  

𝑝𝑖𝑘
𝑐 =

1

𝑚
∑ 𝑝𝑖𝑘

𝑡
𝑚

𝑡=1
                                                                                                                                 (4.8.1) 

Proof: from (4.5) 𝑝𝑖𝑘
𝑡 =

1

(𝑛−2)
∑ (𝑝𝑖𝑗

𝑡 + 𝑝𝑗𝑘
𝑡 − 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

 then 
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 𝑝𝑖𝑘
𝑐 =

1

𝑚
∑ 𝑝𝑖𝑘

𝑡𝑚
𝑡=1 =

1

𝑚
∑

1

(𝑛−2)
∑ (𝑝𝑖𝑗

𝑡 + 𝑝𝑗𝑘
𝑡 − 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

𝑚
𝑡=1  

       =
1

(𝑛−2)
∙

1

𝑚
∑ ∑ (𝑝𝑖𝑗

𝑡 + 𝑝𝑗𝑘
𝑡 − 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

𝑚
𝑡=1  

       =
1

(𝑛−2)
∑ (

1

𝑚
∑ 𝑝𝑖𝑗

𝑡𝑚
𝑡=1 + 

1

𝑚
∑ 𝑝𝑗𝑘

𝑡𝑚
𝑡=1 −

1

𝑚
∑ 0.5𝑚

𝑡=1 )𝑛
𝑗=1

𝑖≠𝑗≠𝑘

 

       =
1

(𝑛−2)
∑ (𝑝𝑖𝑗

𝑐 + 𝑝𝑗𝑘
𝑐 − 0.5)𝑛

𝑗=1
𝑖≠𝑗≠𝑘

= 𝑝𝑖𝑘
𝑒 ∎ 

Proposition 4.3: The constructed collective preference relation by arithmetic mean operator or 

weighted averaging operator gains the mean of the individuals’ preference relations consistency 

degrees or the weighted averaging of the individuals’ preference relations consistency degrees, 

respectively. 

Proof: from (4.6) 

 𝐶𝐷(𝑃𝑡, 𝑃𝑒(𝑡)) = 1 −
2

𝑛(𝑛−1)
∑ ∑ |𝑝𝑖𝑘

𝑡 − 𝑝𝑖𝑘
𝑒(𝑡)|𝑛

𝑘=2
𝑖<𝑘

𝑛−1
𝑖=1 , then for 𝑡 = 1,2, …𝑚, we get: 

𝐶𝐷(∑ 𝑃𝑡𝑚
𝑡=1 , ∑ 𝑃𝑒(𝑡)𝑚

𝑡=1 ) = 1 −
2

𝑛(𝑛−1)
∑ ∑ |∑ 𝑝𝑖𝑘

𝑡𝑚
𝑡=1 − ∑ 𝑝𝑖𝑘

𝑒(𝑡)𝑚
𝑡=1 |𝑛

𝑘=2
𝑖<𝑘

𝑛−1
𝑖=1 , 

𝐶𝐷 (
1

𝑚
∑ 𝑃𝑡𝑚

𝑡=1 ,
1

𝑚
∑ 𝑃𝑒(𝑡)𝑚

𝑡=1 ) = 1 −
2

𝑛(𝑛−1)
∑ ∑ |

1

𝑚
∑ 𝑝𝑖𝑘

𝑡𝑚
𝑡=1 −

1

𝑚
∑ 𝑝𝑖𝑘

𝑒(𝑡)𝑚
𝑡=1 |𝑛

𝑘=2
𝑖<𝑘

𝑛−1
𝑖=1 , 

⇒ 𝐶𝐷 (
1

𝑚
∑ 𝑃𝑡𝑚

𝑡=1 ,
1

𝑚
∑ 𝑃𝑒(𝑡)𝑚

𝑡=1 ) = 𝐶𝐷(𝑃𝑐 , 𝑃𝑒(𝑐)) = 1 −
2

𝑛(𝑛−1)
∑ ∑ |𝑝𝑖𝑘

𝑐 − 𝑝𝑖𝑘
𝑒(𝑐)

|𝑛
𝑘=2
𝑖<𝑘

𝑛−1
𝑖=1 ,  

This is also true for the weighted averaging operator∎ 
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For an inconsistent preference relation, removal or addition of an alternative ℎ could play a 

significant role in altering the ranking order of the alternatives if ℎ is the outbalance element among 

the alternatives. 

To illustrate this, first we define the following score aggregation method, which is called the sum 

normalization method: 

𝑆𝑖 =
∑ 𝑝𝑖𝑘

𝑛
𝑘=1

∑ ∑ 𝑝𝑖𝑘
𝑛
𝑘=1

𝑛
𝑖=1

=
2

𝑛2
∑ 𝑝𝑖𝑘

𝑛

𝑘=1

                                                                                                           (4.9) 

where 𝑆𝑖 is the score of alternative 𝑖 and ∑ 𝑆𝑖
𝑛
𝑖=1 = 1. The higher the score of an alternative, the 

better it is. 

Theorem 4.2: Let the sum normalization method, equation(4.9), be the way to generate the 

ranking scores for the alternatives, then the following are true if alternative ℎ is removed: 

For 𝑆𝑖
𝑛 > 𝑆𝑖′

𝑛 and  ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 ≠ ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1  then, 

𝑆𝑖
𝑛−1 > 𝑆𝑖′

𝑛−1 if and only if 

 ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ                                                                                                   (4.9.1)  

For 𝑆𝑖
𝑛 > 𝑆𝑖′

𝑛 and  ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 = ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1  then              

𝑆𝑖
𝑛−1 = 𝑆𝑖′

𝑛−1                                                                                                                                           (4.9.2) 

𝑝𝑖′ℎ < 𝑝𝑖ℎ                                                                                                                                                (4.9.3) 
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Proof: for (4.9.1),  

∑ 𝑝𝑖𝑘
𝑛
𝑘=1 = ∑ 𝑝𝑖𝑘

𝑛−1
𝑘=1 + 𝑝𝑖ℎ ∀𝑖 ∈ 𝑛, substitute this into(4.9), 

𝑆𝑖 =
2

𝑛2
∑ 𝑝𝑖𝑘

𝑛
𝑘=1 =

2

𝑛2
[∑ 𝑝𝑖𝑘

𝑛−1
𝑘=1 + 𝑝𝑖ℎ], 

For 𝑆𝑖
𝑛 > 𝑆𝑖′

𝑛 we get 

 
2

𝑛2
[∑ 𝑝𝑖𝑘

𝑛−1
𝑘=1 + 𝑝𝑖ℎ] >

2

𝑛2
[∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 + 𝑝𝑖′ℎ] ⟹ ∑ 𝑝𝑖𝑘

𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ 

Since 𝑆𝑖
𝑛−1 =

2

(𝑛−1)2
∑ 𝑝𝑖𝑘

𝑛−1
𝑘=1  and 𝑆𝑖′

𝑛−1 =
2

(𝑛−1)2
∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 , then 𝑆𝑖

𝑛−1 > 𝑆𝑖′
𝑛−1∎  

However, when 𝑆𝑖
𝑛 > 𝑆𝑖′

𝑛 but ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 = ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1  then  

∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ ⇒ 𝑝𝑖′ℎ − 𝑝𝑖ℎ < 0 since 𝑝𝑖′ℎ < 𝑝𝑖ℎ ⟹ 𝑆𝑖

𝑛 > 𝑆𝑖′
𝑛 and since 

∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 = ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1  then 𝑆𝑖

𝑛−1 =
2

(𝑛−1)2
∑ 𝑝𝑖𝑘

𝑛−1
𝑘=1 =

2

(𝑛−1)2
∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 = 𝑆𝑖′

𝑛−1, this completed the 

proof ∎ 

This is also true when an alternative ℎ is added. Therefore, rank reversal could occur when (4.9.1) 

and (4.9.3) are not satisfied.  

Example 4.1: Suppose a decision-maker provides his assessments for one criterion on four 

alternatives using following reciprocal additive preference relation: 
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        𝐴1  𝐴2   𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

(

0.5 0.55 0.62 0.65
0.45 0.5 0.7 0.75
0.38 0.3 0.5 0.85
0.35 0.25 0.15 0.5

)
 

Based on (4.6), the consistency degree of this preference relation is 82%. By using (4.9) the 

following ranking scores are generated: 

𝐴2(0.3) > 𝐴1(0.29) > 𝐴3(0.254) > 𝐴4(0.156) 

However, when alternative 𝐴4 is removed, the consistency degree increases to 87% with the 

following ranking scores: 

𝐴1(0.371) > 𝐴2(0.367) > 𝐴3(0.262) 

Notice that 𝐴1and 𝐴2 have been reversed. This is because 𝐴4 was the outbalance element that 

differentiating between 𝐴1and 𝐴2. In fact, this happens because (4.9.1) is violated: 

 ∑ 𝑝1𝑘
𝑛−1
𝑘=1 = 0.5 + 0.55 + 0.62 = 1.67, ∑ 𝑝2𝑘

𝑛−1
𝑘=1 = 0.45 + 0.5 + 0.7 = 1.65, 𝑝14 = 0.65 and 

𝑝24 = 0.75, 

𝑆2
4(0.3) > 𝑆1

4(0.29) Thus 𝑆2
3 > 𝑆1

3 only if 

 ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ 

But ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 ≯ 𝑝𝑖′ℎ − 𝑝𝑖ℎ ⟹ −0.02 < 0.1. 
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Theorem 4.3: For any perfectly consistent reciprocal preference relation, (4.9.1), (4.9.2), and 

(4.9.3) are satisfied by the additive consistency. 

Proof: from (4.7) 

𝑝𝑖𝑘
𝑛−1 =

1

3
(2𝑝𝑖ℎ + 2𝑝ℎ𝑘 − 𝑝ℎ𝑖 − 𝑝𝑘ℎ) +

1

6
  Then  

∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 =

1

3
(2𝑝𝑖ℎ + 2𝑝ℎ1 − 𝑝ℎ𝑖 − 𝑝1ℎ) +

1

6
+

1

3
(2𝑝𝑖ℎ + 2𝑝ℎ2 − 𝑝ℎ𝑖 − 𝑝2ℎ) +

1

6
+ ⋯+

1

3
(2𝑝𝑖ℎ + 2𝑝ℎ(𝑛−1) − 𝑝ℎ𝑖 − 𝑝(𝑛−1)ℎ) +

1

6
, and  

∑ 𝑝𝑖′𝑘
𝑛−1
𝑘=1 =

1

3
(2𝑝𝑖′ℎ + 2𝑝ℎ1 − 𝑝ℎ𝑖′ − 𝑝1ℎ) +

1

6
+

1

3
(2𝑝𝑖′ℎ + 2𝑝ℎ2 − 𝑝ℎ𝑖′ − 𝑝2ℎ) +

1

6
+ ⋯+

1

3
(2𝑝𝑖′ℎ + 2𝑝ℎ(𝑛−1) − 𝑝ℎ𝑖′ − 𝑝(𝑛−1)ℎ) +

1

6
 , then 

∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 =

(𝑛−1)

3
[(2𝑝𝑖ℎ − 𝑝ℎ𝑖) − (2𝑝𝑖′ℎ − 𝑝ℎ𝑖′)], but for reciprocal relation 𝑝ℎ𝑖 =

1 − 𝑝𝑖ℎ then ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 = (𝑛 − 1)[𝑝𝑖ℎ − 𝑝𝑖′ℎ]  

⇒ ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 = (1 − 𝑛)[𝑝𝑖′ℎ − 𝑝𝑖ℎ]  

Thus ∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 − ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ. When the left hand side of this equals to 0, which means 

∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1 = ∑ 𝑝𝑖′𝑘

𝑛−1
𝑘=1 ⟹ 0 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ ⟹ 𝑝𝑖′ℎ < 𝑝𝑖ℎ which satisfies (4.9.1), (4.9.2) 

and(4.9.3)∎  

Example 4.2: Suppose a decision-maker provides his assessments for one criterion on four 

alternatives using following reciprocal additive preference relation: 
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        𝐴1  𝐴2   𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

(

0.5 0.41 0.62 0.66
0.59 0.5 0.71 0.75
0.38 0.29 0.5 0.54
0.34 0.25 0.46 0.5

)
 

This preference relation is 100% consistent and yields following ranking scores using (4.9): 

 𝐴2(0.319) > 𝐴1(0.274) > 𝐴3(0.214) > 𝐴4(0.193) 

When 𝐴4 is removed, the consistency degree is still 100%. Likewise, the ranking order is: 

𝐴2(0.4) > 𝐴1(0.34) > 𝐴3(0.260) 

There is no rank reversal because (4.9.1) is satisfied  

𝑆2
4 > 𝑆1

4 ⇒ ∑ 𝑝2𝑘
𝑛−1
𝑘=1 − ∑ 𝑝1𝑘

𝑛−1
𝑘=1 > 𝑝1ℎ − 𝑝2ℎ ⇒ {1.8 − 1.53}0.27 > {0.66 − 0.75} − 0.09. 

𝑆2
4 > 𝑆3

4 ⇒ ∑ 𝑝2𝑘
𝑛−1
𝑘=1 − ∑ 𝑝3𝑘

𝑛−1
𝑘=1 > 𝑝3ℎ − 𝑝2ℎ ⇒ {1.8 − 1.17}0.63 > {0.54 − 0.75} − 0.21. 

𝑆1
4 > 𝑆3

4 ⇒ ∑ 𝑝1𝑘
𝑛−1
𝑘=1 − ∑ 𝑝3𝑘

𝑛−1
𝑘=1 > 𝑝3ℎ − 𝑝1ℎ ⇒ {1.53 − 1.17}0.36 > {0.54 − 0.66} − 0.12. 

4.5. Proposed Score Aggregation Methods  

Based on these results, the only way to ensure ranking order is free of rank reversal in the 

preference relations is by ensuring that the preference relation(s) is perfectly consistent. However, 

to some extent this is hard to achieve in real world problems, especially in a group decision-making 

environment where there is a tradeoff between consistencies and consensus (Herrera-Viedma et 

al., 2007a). Thus, we need to handle rank reversal when it is not desirable by maintaining some 
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guidelines that deal with the dependency of the data/information. Here we present three scenarios 

that are possible to happen to the set of alternatives during the decision process: a new alternative 

is introduced, an existing alternative is removed, or one alternative is replaced by a new one.  

Note: This is only applied if the set of alternatives have been modified. 

Proposition 4.4: The following formulation does better than the sum normalization method in 

avoiding rank reversal in reciprocal preference relations when a new alternative, ℎ, is introduced: 

𝑆̃𝑖
𝑛+1 =

2∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 +𝑝𝑖ℎ+𝑝𝑖ℎ

𝑒

(𝑛+1)2
      ∀𝑖 ∈ 𝑛 + 1                                                                                      (4.10)  

where 𝑝𝑖ℎ
𝑒  is the estimated preference degree calculated by (4.5). 

Proof:  

When 𝑃𝑛+1is perfectly consistent, then 𝑆𝑖
𝑛+1 = 𝑆̃𝑖

𝑛+1since 𝑝𝑖ℎ = 𝑝𝑖ℎ
𝑒  thus  

𝑆̃𝑖
𝑛+1 =

2∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 +𝑝𝑖ℎ+𝑝𝑖ℎ

𝑒

(𝑛+1)2
=

2∑ (𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 +𝑝𝑖ℎ)

(𝑛+1)2
=

2∑ 𝑝𝑖𝑘
𝑛+1
𝑘=1

(𝑛+1)2
= 𝑆𝑖

𝑛+1. However, when 

 𝑃𝑛 has an acceptable consistency degree but ℎ ∈ 𝑛 + 1 is not, then the ranking generated by the 

sum normalization method might be affected by the information of ℎ. Thus, integrating the values 

driven by the consistency property (4.5) and the provided ones for ℎ will improve the consistency 

degree of 𝑃𝑛+1. The chances of rank reversal decreases as the consistency increases.  

For 𝑆𝑖
𝑛+1 > 𝑆𝑖′

𝑛+1 then  
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2

(𝑛−1)2
∑ 𝑝𝑖𝑘

𝑛+1
𝑘=1 >

2

(𝑛−1)2
∑ 𝑝𝑖′𝑘

𝑛
𝑘=1 ⟹ ∑ 𝑝𝑖𝑘

𝑛
𝑘=1,ℎ∉𝑛 + 𝑝𝑖ℎ > ∑ 𝑝𝑖′𝑘 + 𝑝𝑖′ℎ

𝑛
𝑘=1,ℎ∉𝑛 ,  

since ∑ 𝑝𝑖𝑘 = ∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 +𝑛+1

𝑘=1 𝑝𝑖ℎ then 

 ∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ. Thus 𝑆𝑖

𝑛 > 𝑆𝑖′
𝑛 and 𝑆𝑖

𝑛+1 > 𝑆𝑖′
𝑛+1 only 

if ∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ.  

However, with 𝑆̃𝑖
𝑛+1 > 𝑆̃𝑖′

𝑛+1, after eliminating the constants in both sides we get, 

⟹ ∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 +

𝑝𝑖ℎ+𝑝𝑖ℎ
𝑒

2
> ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 +

𝑝
𝑖′ℎ

+𝑝
𝑖′ℎ
𝑒

2
⟹ 2∑ 𝑝𝑖𝑘

𝑛
𝑘=1,ℎ∉𝑛 − 2∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 >

𝑝𝑖′ℎ + 𝑝𝑖′ℎ
𝑒 − 𝑝𝑖ℎ − 𝑝𝑖ℎ

𝑒 , but 𝑝𝑖ℎ
𝑒 =

1

(𝑛+1−2)
∑ (𝑝𝑖𝑘 + 𝑝𝑘ℎ − 0.5)𝑛+1

𝑘=1
𝑘≠𝑖≠ℎ

 then 

⟹ 2(∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 ) > 𝑝𝑖′ℎ − 𝑝𝑖ℎ −

1

(𝑛−1)
∑ (𝑝𝑖𝑘 + 𝑝𝑘ℎ − 0.5)𝑛+1

𝑘=1
𝑘≠𝑖≠ℎ

+

1

(𝑛−1)
∑ (𝑝𝑖′𝑘 + 𝑝𝑘ℎ − 0.5)𝑛+1

𝑘=1
𝑘≠𝑖′≠ℎ

, 

⟹ 2(∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 ) > 𝑝𝑖′ℎ − 𝑝𝑖ℎ −

1

(𝑛−1)
∑ (𝑝𝑖𝑘 + 𝑝𝑘ℎ)𝑛+1

𝑘=1
𝑘≠𝑖≠ℎ

+

1

(𝑛−1)
∑ (𝑝𝑖′𝑘 + 𝑝𝑘ℎ)𝑛+1

𝑘=1
𝑘≠𝑖′≠ℎ

, 

⟹ 2(∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 ) > 𝑝𝑖′ℎ − 𝑝𝑖ℎ +

1

(𝑛−1)
∑ (𝑝𝑖′𝑘 − 𝑝𝑖𝑘)

𝑛+1
𝑘=1

𝑘≠𝑖≠ℎ

,  

but ∑ 𝑝𝑖𝑘
𝑛+1
𝑘=1

𝑘≠𝑖≠ℎ

= ∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 − 0.5, thus  
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⟹
2𝑛−1

𝑛−1
(∑ 𝑝𝑖𝑘

𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 ) > (𝑝𝑖′ℎ − 𝑝𝑖ℎ) ⟹ ∑ 𝑝𝑖𝑘

𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 >

𝑛−1

2𝑛−1
(𝑝𝑖′ℎ − 𝑝𝑖ℎ), 

When generating the ranking scores for  𝑃𝑛+1 with sum normalization there is no rank reversal 

only if  

∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 > 𝑝𝑖′ℎ − 𝑝𝑖ℎ, 

but with (4.10) there is no rank reversal only if 

∑ 𝑝𝑖𝑘
𝑛
𝑘=1,ℎ∉𝑛 − ∑ 𝑝𝑖′𝑘

𝑛
𝑘=1,ℎ∉𝑛 >

𝑛−1

2𝑛−1
(𝑝𝑖′ℎ − 𝑝𝑖ℎ), so clearly (4.10) has a higher possibility to 

avoid rank reversal than sum normalization. In addition, (4.10) ensures maintaining the sum of 

the scores of the alternatives at 1,  ∑ 𝑆̃𝑖
𝑛+1
𝑖=1 = 1∎  

Proposition 4.5: The following formulation does better than the sum normalization method in 

avoiding rank reversal in reciprocal preference relations when an alternative ℎ is replaced by a 

new alternative ℎ′:  

𝑆̃𝑖
𝑛′ =

2∑ 𝑝𝑖𝑘
𝑛−1
𝑘=1,ℎ′∉𝑛−1

+𝑝𝑖ℎ′+𝑝𝑖ℎ′
𝑒

𝑛2       ∀𝑖 ∈ 𝑛                                                                                          (4.11)  

Proof:  

Similar to the proof of the previous proposition. 

Proposition 4.6: The following formulation prevents rank reversal from occurring in reciprocal 

preference relations when an alternative, ℎ, is removed: 
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𝑆̃𝑖
𝑛−1 =

2(∑ 𝑝𝑖𝑘 + 𝑝𝑖ℎ
𝑛−1
𝑘=1 )

𝑛2 − 2∑ 𝑝ℎ𝑘
𝑛
𝑘=1

=
2∑ 𝑝𝑖𝑘

𝑛
𝑘=1

𝑛2 − 2 ∑ 𝑝ℎ𝑘
𝑛
𝑘=1

      ∀𝑖 ≠ ℎ                                                            (4.12) 

Proof: 

𝑆𝑖 =
2

𝑛2
∑ 𝑝𝑖𝑘

𝑛
𝑘=1 ⇒ 𝑛2𝑆𝑖 = 2∑ 𝑝𝑖𝑘

𝑛
𝑘=1  , when 𝑆𝑖

𝑛 > 𝑆𝑖′
𝑛 then 

𝑛2𝑆𝑖 > 𝑛2𝑆𝑖′ Thus if we divide both sides by any constant greater than zero, the inequality will 

not be affected. Therefore, we divide both sides by 𝑛2 − 2∑ 𝑝ℎ𝑘
𝑛
𝑘=1  since 2∑ 𝑝ℎ𝑘

𝑛
𝑘=1  is always 

less than 𝑛2, where 𝑛 is the number of alternatives of the original problem. We get: 

 
𝑛2𝑆𝑖

𝑛2−2∑ 𝑝ℎ𝑘
𝑛
𝑘=1

>
𝑛2𝑆

𝑖′

𝑛2−2∑ 𝑝ℎ𝑘
𝑛
𝑘=1

⟹
2∑ 𝑝𝑖𝑘

𝑛
𝑘=1

𝑛2−2∑ 𝑝ℎ𝑘
𝑛
𝑘=1

>
2∑ 𝑝𝑖𝑘

𝑛
𝑘=1

𝑛2−2∑ 𝑝ℎ𝑘
𝑛
𝑘=1

 

⇒ 𝑆̃𝑖
𝑛−1 > 𝑆̃𝑖′

𝑛−1  ∀𝑖 ≠ ℎ, and this formulation also ensures maintaining the sum of the scores of 

the alternatives at 1,  ∑ 𝑆̃𝑖
𝑛−1
𝑖=1 = 1∎   

4.6. Numerical Example 

Suppose that four decision-makers provide their assessments (by fuzzy preference relations) on 

four alternatives as follows: 

𝑃1 =

       𝐴1     𝐴2    𝐴3     𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

(

0.50 0.38 0.20 0.28
0.62 0.50 0.32 0.40
0.80 0.68 0.50 0.58
0.72 0.6 0.42 0.50

)
                                    𝑃2 =

       𝐴1     𝐴2    𝐴3     𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

(

0.50 0.38 0.25 0.33
0.62 0.50 0.37 0.45
0.75 0.63 0.50 0.58
0.67 0.55 0.42 0.50

)
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𝑃3 =

       𝐴1     𝐴2    𝐴3     𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

(

0.50 0.75 0.55 0.41
0.25 0.50 0.30 0.16
0.45 0.70 0.50 0.36
0.59 0.84 0.64 0.50

)
                                     𝑃4 =

       𝐴1     𝐴2    𝐴3     𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

(

0.50 0.40 0.30 0.60
0.60 0.50 0.40 0.70
0.70 0.60 0.50 0.80
0.40 0.30 0.20 0.50

)
 

After several rounds of discussion, they reach an acceptable level of consensus, which results in 

the following collective preference relation, which has been aggregated by a weighted averaging 

operator assuming equal weights for decision-makers: 

𝑃𝑐 =

             𝐴1  𝐴2   𝐴3    𝐴4      

𝐴1

𝐴2

𝐴3

𝐴4

(

0.5 0.48 0.26 0.41
0.52 0.5 0.35 0.55
0.74 0.65 0.5 0.69
0.59 0.45 0.31 0.5

)
 

This preference relation is 95% consistent. If we calculate the ranking score by the sum 

normalization method (4.9), then we get the following ranking order: 

 𝐴3(0.323) ≻ 𝐴2(0.24) ≻ 𝐴4(0.231) ≻ 𝐴1(0.206). 

A. Adding a new alternative 

Now consider that the decision-makers introduce a new alternative 𝐴5. Going through the 

consensus process, they end up with the following collective preference relation:   

𝑃𝑐 =

       𝐴1   𝐴2    𝐴3    𝐴4       𝐴5

𝐴1

𝐴2

𝐴3

𝐴4

𝐴5 (

 
 

0.5 0.48 0.26 0.41 0.52
0.52 0.5 0.35 0.55 0.92
0.74 0.65 0.5 0.69 0.25
0.59 0.45 0.31 0.5 0.55
0.48 0.08 0.75 0.45 0.5 )
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The consistency degree of this preference relation has dropped to 78.5% and the new ranking order 

by (4.9) is:  

 𝐴2(0.227) ≻ 𝐴3(0.226) ≻ 𝐴4(0.192) ≻ 𝐴5(0.181) ≻ 𝐴1(0.174) 

Notice that by introducing 𝐴5, which is a non-dominant alternative, the ranking order for the first 

two alternatives has reversed. This is because the collective preference relation is not perfectly 

consistent and thus, there is no guarantee that (4.9.1) and (4.9.3) are satisfied. 

However, if we apply(4.10), which relies on improving the consistency of the added alternative, 

we get the following ranking order:  

 𝐴3(0.251) ≻ 𝐴2(0.207) ≻ 𝐴4(0.19) ≻ 𝐴5(0.181) ≻ 𝐴1(0.171) 

This ranking order is similar to the original problem except that alternative 𝐴5 has been placed in 

its right ranking position among the alternatives. 

B. Replacing an alternative  

Now, let us consider that alternative 𝐴2 has been replaced by 𝐴2′ in the original problem. The 

collective preference relation is 81% consistent for the collective preference relation below: 

𝑃𝑐 =

             𝐴1  𝐴2′   𝐴3    𝐴4      

𝐴1

𝐴2′

𝐴3

𝐴4

(

0.5 0.55 0.26 0.41
0.45 0.5 0.6 0.45
0.74 0.4 0.5 0.69
0.59 0.55 0.31 0.5

)
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The following are the ranking orders obtained by the sum normalization method (4.9) and the 

proposed formula(4.11), respectively: 

Obtained by (4.9):  𝐴3(0.291) ≻ 𝐴2′(0.25) ≻ 𝐴4(0.244) ≻ 𝐴1(0.215) 

Obtained by (4.11):  𝐴3(0.314) ≻ 𝐴2′(0.25) ≻ 𝐴4(0.236) ≻ 𝐴1(0.2) 

Note that both methods generate the same ranking order but with different score values. 

C. Removing an alternative 

Consider Example 4.1 again,  

        𝐴1  𝐴2   𝐴3  𝐴4

𝐴1

𝐴2

𝐴3

𝐴4

(

0.5 0.55 0.62 0.65
0.45 0.5 0.7 0.75
0.38 0.3 0.5 0.85
0.35 0.25 0.15 0.5

)
 

Where the preference relation is 82% consistent and has the following ranking order, by (4.9): 

 𝐴2(0.3) > 𝐴1(0.29) > 𝐴3(0.254) > 𝐴4(0.156) 

We saw that when alternative 𝐴4 is removed, the consistency degree increases but the ranking 

order has reversed between the first and the second: 

𝐴1(0.371) > 𝐴2(0.367) > 𝐴3(0.262) 

However, if we apply (4.12) we get the following ranking order: 
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𝐴2(0.356) > 𝐴1(0.344) > 𝐴3(0.3) 

which is consistent with the ranking order of the original problem. 

4.7. Conclusions  

In this chapter, we have proved that consistency of the data/information is the main cause of rank 

reversal in preference relation. Also, we have shown that when the preference relations are 

perfectly consistent then neither a weighted averaging aggregation operator nor an arithmetic mean 

aggregation operator could cause rank reversal. This is also true for the score aggregation operator, 

particularly, the sum normalization method. However, when the preference relation is inconsistent, 

which is usually the case in real life decision problems, then the score aggregation operator could 

generate rank reversal when the set of alternatives is modified. Thus, we proposed modified score 

aggregation operators that could be used when a change in the set of alternatives is done. The 

proposed score aggregation operators integrate the consistency element to reduce the chances of 

rank reversal. We show that the proposed operators perform better than the sum normalization 

method in avoiding rank reversal when a change happens in the set of alternatives.
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Chapter 5 

Conclusions and Future Works 

5.1. Conclusions and Contributions 

The process of reaching a decision in group decision-making is complex and hard to achieve, 

especially if the decision problem is complicated. Usually, the members of the group differ in their 

expertise as well as come from different backgrounds with different goals and objectives. In 

addition, decision problems with different attributes or criteria, which usually are conflicting, make 

consensus hard to achieve. In this thesis, we have considered the most important processes of 

decision-making from the early stages where the decision-makers provide their preferences in the 

alternatives to the consensus process and reach a decision in the selection stage. Our scope was 

handling the challenges that the decision-maker usually faces under each of these three stages in 

preference relations format. Making decisions based on preference relation tends to be more 

accurate than other preference representation formats. However, this concept has its own 

challenges, as do the other decision-making representation formats.  

In this thesis, we focus our work on solving the issues of the three main problems that decision-

making could encounter. In the first stage, the stage of providing the information, we dealt with 

the problem of missing information and how to help the decision-maker complete their preference 

relation. In the second stage, we proposed a novel methodology to help the group members reach 

the consensus state. Lastly, in the third stage, the selection process, we addressed the issue of rank 
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reversal in preference relation. Each of these issues has been solved separately, as presented in 

Chapters 2, 3 and 4 of this thesis. 

For the first problem, we proposed two new methods to handle missing information in an 

incomplete reciprocal fuzzy preference relation. The solution was based on completing the missing 

information by relying on additive consistency through focus on completing the upper triangular 

relation. The first method, which is based on the system of equations, relies on the provided 

information from the decision-maker to estimate the preference degree(s) of ungiven one(s) using 

the additive consistency property. This method is suitable to complete any incomplete preference 

relation that has at least 𝑛 − 1 non-diagonal preference degrees. In the case that only 𝑛 − 1 non-

diagonal preference degrees are given, this method guarantees a complete preference relation with 

perfect consistency. Nevertheless, even if more than 𝑛 − 1 non-diagonal preference degrees are 

given, the method provides an estimation of the missing preference degrees with better consistency 

than the existing methods. The second method, which also has the ability to match the first 

method’s performance, is based on a goal programming model. This method was developed to 

handle ignorance situations, when the decision-makers are not able to provide their preferences for 

at least one alternative. To our knowledge, very few papers have worked on this situation. Unlike 

these papers, our approach does not require a modification to the decision-makers’ preferences nor 

does it violate the reciprocal rule. Moreover, our comparison of these methods showed that our 

methods excel in terms of generation estimations with a better consistency level.  

For the second problem, we proposed a novel method to measure consensus among the group 

during the consensus process. This process is a very important stage in any group decision-making, 

since attaining an agreeable solution by the group is very important. The consensus process is an 
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iterative process where rounds of discussion need to be done until the group reaches an acceptable 

state of agreement about their preferences. Usually, this is conducted by a facilitator or a 

moderator. Our method, differs from the usual consensus measure trend in the literature, and relies 

on Spearman’s rank correlation to measure the consensus among the decision-makers. Most of the 

consensus measures in the literature are based on similarity or distance functions, while our method 

takes advantage of Spearman’s correlation ability to measure the monotonic degree to measure it 

between the members of the group. Thus, this method does not rely directly on similarity/distance 

functions, which sometimes might not reflect the actual consensus. Moreover, we proposed a 

feedback mechanism that acts as a moderator to guide the group members to the consensus level. 

With this feedback mechanism, the group could seek consensus without relying directly on the 

collective preference relation every time, unlike other methods, which require an update to the 

collective preference relation after each round of adjustments. The proposed method can guide the 

group members to the consensus either by using collective preference and decision-maker’s 

preference relation or measuring the consensus directly from the decision-maker’s preference 

relations. The feedback mechanism provides the decision-maker with a range of values based on 

their ranked preferences to the others that they need to choose from to improve the consensus. The 

method has been validated by applying it to several problems, and it shows good performance in 

terms of the results.  

For the third problem, we investigated the rank reversal phenomena in additive preference relation. 

Many researchers have discussed this phenomenon; some claim that it is a legitimate outcome and 

others criticized the methods that allow it. Despite this division, our goal was to study what causes 

it to occur in preference relations and how to prevent it when it is not desirable. To the best of our 



Chapter 5: Conclusions and Future works 

124 | P a g e  

  

knowledge, only Leskinen and Kangas (2005) have studied the inconsistency of preference 

relations based on a regression model. There is no study that investigates the three possible causes 

behind rank reversal. In Chapter 4, we investigated these three possible causes: inconsistency, 

preference relation aggregation, and score aggregation. Our investigation was based on examining 

the additive consistency in the preference relation. We have concluded that inconsistency is the 

main cause of this phenomenon. If the preference relation is perfectly consistent, then no rank 

reversal would happen. The problem with inconsistent information is that some alternatives are 

sometimes the outbalanced ones that have the largest intensities, which differentiate between two 

other alternatives. When they are eliminated or added, they create the difference between the 

alternatives when their scores are aggregated. The consistency drives by the transitivity control 

when the preference relation is perfectly consistent. Thus, no rank reversal occurred. With regards 

to aggregating the preference relations into the collective relation, we proved that this process does 

not incorporate directly into this phenomenon. Both the arithmetic mean operator and the weighted 

averaging operator maintain the mean of the individuals’ preference relations consistency degrees 

or the weighted averaging of the individuals’ preference relations consistency degrees, 

respectively. Basically, they just transfer the consistency degrees of the decision-makers’ relations 

into the collective preference relation, whereas, a score aggregation method, namely, the sum 

normalization method, does incorporate preference relations in generating rank reversal. Since 

attaining a perfect consistency is hard, especially after the consensus process, we proposed two 

score aggregation methods to be used when any change happens to the set of alternatives. The first 

score aggregation method is used when a new alternative is introduced or when an existing one is 

replaced by a new one. We proved that this aggregation performs better than the sum normalization 

method in avoiding rank reversal. The second score aggregation method is used when an 
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alternative is removed from consideration. We also guarantee that this method will not allow any 

rank reversal from occurring.  

5.2. Future Works 

The consensus work has been done under the assumption of cooperative environment, where the 

members of the group are willing to modify or adjust some of their assessments to get to the 

consensus state. For future work, we would like to test the new consensus measure on real group 

decision-making problems to validate it. 

Also, we would like to extend our current work in incomplete preference relation to be based on 

multiplicative consistency. Multiplicative transitivity is considered as important as additive 

transitivity in the literature. Multiplicative consistency was introduced by Saaty in 1980 when he 

introduced the AHP method. We would like to develop a method based on this transitivity for 

ignorance situations. 

Moreover, recently, a new extension of fuzzy sets called hesitant fuzzy sets has gained the attention 

of researchers. It has been introduced to deal with hesitant situations, where the decision-maker is 

undecided about their preferences. In this case, a hesitant fuzzy preference relation can be a 

preference relation where a preference degree could have more than one value because the 

decision-maker is not certain about which intensity value is the right one. It would be interesting 

to see how incomplete information in hesitant fuzzy preference relation would be completed or 

estimated.  
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In addition, it would be interesting to work on an approach that can detect the most inconsistent 

preference degree(s) within a preference relation and suggest a better estimation to it to improve 

the overall consistency. Sometimes, few inconsistent preference degrees can contribute heavily in 

reducing a preference relation consistency degree. Thus, knowing the most effective values and 

adjusting them will improve the consistency of the preference relation significantly. 

It is known that consistency level and consensus level are moving in opposite directions in group 

decision-making; when one of them increases, the other one benefits. Nevertheless, both are 

important in any group decision-making decision problem. Most of the existing methods focus 

mainly on either one of them and less, if not neglecting, the other. Thus, incorporating a 

consistency measure within the consensus process will strengthen the output of this process, in 

addition to making the results robust for the next process, the selection process. There are some 

works in this direction; however, they are based on favoring one over the other. In our case, we 

are thinking of guiding the consensus process simultaneously toward consistency and consensus.  
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