Street Network Morphologies: On the Characterization and Quantification of Street Systems. A Case Study in Montréal.

Juan Buzzetti

A Thesis in the Department of

Geography, Planning and Environment

Presented in Partial Fulfillment of the Requirements for the Degree of Master Of Science in Geography, Urban and Environmental Studies

Concordia University

Montréal, Québec, Canada

April, 2017

© Juan Buzzetti, 2017

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Juan Buzzetti

Entitled: Street network morphologies: On the characterization and quantification of street systems. A Case Study in

Montréal.

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Geography, Urban and Environmental Studies)

complies with the regulations of this University and meets the accepted standards with respect to originality and quality.

Signed by the Final Examining Committee:

Approved by

Dr. Norma Rantisi	Chair
Dr. François Dufaux	External Examiner
Dr. Zachary Patterson	Examiner
Dr. Pierre Gauthier	Supervisor
Norma Rantisi, Graduate Program Director Department of Geography, Planning and Environment	
2017	

Dean of Faculty

Abstract

Street network morphologies: On the characterization and quantification of street systems. A Case Study in Montréal.

Juan Buzzetti

This study aims at understanding the spatial dynamics of the street system in residential sectors of Montréal. Different periods of development have produced street networks displaying a diversity of characteristics and configurations. Yet all these different pieces are spatially interconnected implying that they are part of a functional whole. In the course of the historical evolution of the city the new pieces of the network are connected to preexisting rural roads from which they often stem. However, while responding to a set of internal functional rules and technical requirements, the street system does not deploy in autarchy. Rather, it is integrated within a broader spatial framework comprised of natural and human-made features such as the hydrographic system, the topography, the agricultural allotment system and in more recent times, of components of technical systems such as canals, railroads and high-capacity transportation infrastructure. By delving into the differing street networks geometries as well as into the barriers and boundaries that spatial discontinuities, the project sets about identifying the "*parts*" in order to understand their inner characteristics as well as the modalities of their articulation to the "whole." We hence define neighbourhoods as areas predominantly residential which exhibit some degree of internal homogeneity in regards to block geometry, street network configuration and refer to these areas as "morphological neighbourhood areas," or simply, MNAs. A variety of quantitativea and qualitative methods are mobilized with the purpose of delimiting MNAs in the Island of Montréal. Subsequently, with MNAs as our unit of reference, a classification of urban neighbourhoods is proposed based on quantifiable spatial properties of the urban tissue, which include attributes pertaining local street network geometries, and part-to-whole topological relationships.

Acknowledgments

I would first like to thank my thesis supervisor, Dr. Pierre Gauthier for his patience, motivation, enthusiasm, and immense knowledge. I would also like to thank the staff of the Geography, Planning and Environment department, Marco Burelli, Annie Pollock, Mae-Anne Burridge and Marilyn Malofy for their very much appreciated support throughout these years. Special thanks to Dr. Jochen Jaeger and Dr. Zachary Patterson for their very valuable comments on my proposal.

Table of Contents

Ta	able o	of Contents	iv
Li	st of	Figures	vii
Li	st of	Tables	xi
1	Intr	oduction	1
	1.1	On Neighbourhood Dynamics	1
	1.2	Rationale and Research Objectives	7
	1.3	Thesis Structure and Organization	9
2	$\operatorname{Lit}\epsilon$	erature Review	11
	2.1	Introduction	11
	2.2	Urban Morphology	12
		The British School	15
		The French School	17
		The Italian School	18
		Space Syntax	25

	2.3	The Urban Landscape Mosaic	31
		Landscape Fragmentation	31
		Urban Barriers	33
		Urban Boundaries	35
3	Met	thodological Framework	38
	3.1	Introduction	38
	3.2	Data Collection	39
		Data Preparation	39
	3.3	Producing Fragmentation Geometry One	41
	3.4	Fragmentation Geometry Two	43
	3.5	Clustering and Principal Component Analysis	46
		Cluster Analysis	47
		Principal Component Analysis	50
4	Ide	ntifying and Delineating MNAs	52
	4.1	Introduction	52
	4.2	FG1: Urban Barriers, a Morphological Matrix	53
	4.3	Building FG2	55
		Assessing Street Network Geometries	56
		Clustering of City Blocks	59
		Space Syntax Analysis	68
		Assessing Spatial Discontinuities	71
		The Question of Thoroughfares	71

		Old Agricultural Allotment System and Road System	72
		Bringing About FG2	73
		Conclusion	83
5	Tax	onomy of Morphological Neighbourhood Areas	84
	5.1	Introduction	84
	5.2	Variables	85
		Data Sample and Table	88
	5.3	Hierarchical Clustering on Principal Components	90
		Correlation Matrix	90
		Data Preparation	91
		Principal Component Analysis	92
		Interpretation of PCA Results	100
	5.4	Conclusion	113
6	Dis	cussion and Conclusion	116
R	efere	nces	121
Aj	openc	lix A Reference Map	127
Aj	opend	lix B Thirty-two Indicators for 341 MNAs	129

List of Figures

1.1	Study Area, Island of Montréal	6
1.1	Agricultural subdivision of land and country side roads in 1890 and major	
	roads in 2015	9
2.1	Contributions to the study of the urban form. A classification scheme. Gau-	
	thier & Gilliland (2005). \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	14
2.2	Burgage blind-back housing, High Street, Huntingdon, England. Whitehand,	
	J. W. R., et al (2014)	16
2.3	Components of the Urban Tissue. Gauthier (2016)	22
2.4	Urban Tissue Formation Process (Simplified). Adapted from Caniggia $\&$	
	Maffei (2001)	23
2.5	Model of street specialization. Adapted from Caniggia & Maffei (2001)	24
2.6	From left to right, people move in lines; interact in convex spaces; and expe-	
	rience changing visuals as they move around in the space. Hillier & Vaughan	
	(2007)	27
2.7	Same spatial layout looks and it is different when it is seen or perceived from	
	different spaces within it. Hillier & Vaughan (2007)	27

2.8	From left to right, fictitious urban layout; axial map ; and dual graph. Jiang	
	et al., (2000)	28
2.1	Nesting of arterial networks. a) Road network; b) and c) Road sub-networks	
	possessing arteriality; d) Arterial network. Marshall (2005)	36
3.1	Residential tissues and first-order urban barriers.	42
3.1	Flowchart for the creation of the fragmentation geometry of urban barriers	
	and boundaries.	45
3.1	Dendrogram. Source: Legendre & Legendre (2012)	49
3.2	Principal component analysis. Source: Ringnér (2008).	51
4.1	Fragmentation geometry (FG1) of residential patchworks.	54
4.2	FG1. Patches delimited by first-order urban barriers as per natural break-	
	down of surface area	55
4.1	Sample of Residential Aggregates from FG1.	58
4.2	Minimum bounding rectangles, Orthogonality and Orientation of blocks. $\ .$.	60
4.3	Compactness index measured on three shapes of the same area but differing	
	spatial configurations.	61
4.4	Optimal number of clusters	63
4.5	City Blocks by Type (clusters).	65
4.6	Spatial Distribution of City Blocks by Cluster Membership and Samples.	66
4.7	Cluster Analysis of City Blocks	67
4.8	Local Integration Measures	70
4.9	Island of Montréal, 1890. Source: BANQ (2015)	73

4.10	Patches of FG1 requiring treatment or not.	75
4.11	FG1 - Patch 87	76
4.12	FG1 - Patch 19	77
4.13	FG1 - Patch 33	78
4.14	FG1 - Patch 10	80
4.15	Correction of MNAs Boundaries.	81
4.16	Morphological Neighbourhood Areas (2016)	82
5.1	Space syntax local integration measures at three scales of analysis. \ldots	87
5.1	Correlation matrix of MNA indicators	91
5.2	Boxplot of MNA indicators	92
5.3	Outliers	93
5.4	Hierarchical clustering on the factor map	95
5.5	Contribution of variables to principal components.	97
5.6	MNAs clusters.	98
5.7	Hierarchical clustering of MNAs mapped representing eight clusters	99
5.8	Biplot of Variables and Individuals	101
5.9	Cluster 1	102
5.10	Sample of cluster 1	102
5.11	Cluster 2	103
5.12	Sample of cluster 2	104
5.13	Cluster 3	105
5.14	Sample of cluster 3	105

5.15	Cluster 4	106
5.16	Sample of cluster 4	107
5.17	Cluster 5	108
5.18	Sample of cluster 5	108
5.19	Cluster 6	109
5.20	Sample of cluster 6	110
5.21	Cluster 7	111
5.22	Sample of cluster 7	111
5.23	Cluster 8	112
5.24	Sample of cluster 8	113
5.1	Clusters of MNAs with average values per indicator.	115

List of Tables

4.1	Block geometry variables.	59
4.2	Statistics of city blocks metrics.	62
5.1	List of Variables for Morphological Neighbourhood Areas.	89
5.2	List of Variables for Morphological Neighbourhood Areas.	91
5.3	Importance of principal components.	94
5.4	Importance of principal components.	98

Chapter 1

Introduction

1.1 On Neighbourhood Dynamics

Conceptualizing and defining what an urban neighbourhood is has been a recurrent issue in the urban planning literature, ever since the 19th century. Ranging from Clarence Perry's *Neighbourhood Unit* to *New Urbanism* and more recently to space syntax's *Virtual Community* the planning community has always sought to find a way to circumscribe the neighbourhood as a spatial and/or social entity. Some scholars, such as Lynch (1960), have given preponderance to physical aspects arguing that barriers allow for some sort of organization of the built environment. Rofe (2010), on the other hand, reduces the neighbourhood to the scale of the face-block, "the two sides of one street between intersecting streets," in line with Caniggia & Maffei's (2001) "contrada." Hanson and Hillier (1986) brought the idea of neighbourhood defined by the topological properties of the street layout. They argue that the extent to which the space is accessible may create the conditions for the development of "virtual communities" which is the potential for encounters and interactions allowed by the configurational properties of the space alone.

This study aims at understanding the spatial dynamics of the street system in residential sectors of Montréal. Different periods of development have produced street networks displaying a diversity of characteristics and configurations. Yet all these different pieces are spatially interconnected implying that they are part of a functional whole. In the course of the historical evolution of the city, for instance, the new pieces of the network are connected to pre-existing rural roads from which they often stem. However, while responding to a set of internal functional rules and technical requirements, the street system does not deploy in autarchy. Rather, it is integrated within a broader spatial framework comprised of natural and human-made features such as the hydrographic system, the topography, the agricultural allotment system and in more recent times, of components of technical systems such as canals, railroads and high-capacity transportation infrastructure.

By devising a method to identify and map urban areas based on the geometrical and topological characteristics of their street networks, which distinguish the latter from the surrounding areas of which they are separated by barriers and other spatial discontinuities, this research tackles a significant issue in many studies of the urban form. When such studies use geographical areas of reference defined based on administrative criteria such as "census tracks," or "dissemination areas." – a highly common occurrence – the zones often encompass highly contrasted physical and spatial realities. Hence, the results of analyses focused on the built environment or on the relationship between the latter and social of environmental conditions, are inevitably suffering. The proposed framework allows for more accurate depiction and measurement of the built environment, while allowing for deeper analyses of the articulations between physical and spatial features and the broader social life that the built landscape supports and enables.

Among an handful of other authors, Jean-Claude Marsan (1974) has unveiled how previous agricultural subdivision practices in the Island of Montréal – a system known as the " $C \delta tes$ " – informed the later development phases, and in particular the urbanization patterns. Montréal inner city neighbourhoods' orthogonal grid for instance is not the result of master planning, but stems rather from the agricultural allotment system, which has acted as a matrix (Marsan, 1974). This study is not morphogenetic in nature: it focuses on the current conditions. Historical circumstances, however, have left "traces" that are still perceptible in the inherited fabric. Some are readily recognizable, such as with the orthogonal street network and some are more elusive, as is the case when more subtle spatial discontinuities are the consequence of previous property subdivision. Chapter 4 of this thesis offers a case in point. A historical map illustrating the agricultural allotment is requisitioned to help mapping boundaries within the urban tissue system.

It is hence posited that a deep understanding of the spatial logics at play in the various residential sectors of Montréal requires that one consider both the local and the global realities of the street system. Such an approach would shed light on the varying local realities, while allowing for comparative analyses. It would also unveil how local portions of the system are articulated between each other and to the whole. The latter aspects will finally contribute to a better understanding of the said *"whole,"* i.e. of the properties, articulations, and configuration of the network in its entirety.

Although street systems are extensively studied by some urban planners, geographers and transportation engineers, studies that address simultaneously both the local and the global scales (i.e. a city as a whole) are relatively rare. It could be argued also that studies that look at the street system at both scales while considering as well the broader urban spatial framework are even less common.

Urban morphologists, for instance, are concerned with space and the material fabric of the city. They conceptualize the built environment as a complex, dynamic, spatial and physical system, which could be analyzed, or "read" at different scales and levels of spatial resolution. In that context the road and street system, though considered highly important, constitutes only one of many sub-systems that can only receive limited attention. Transportation engineers study roads networks extensively relying on quantitative methods and graph theory, for instance, while usually eschewing the broader urban physical and spatial context. Urban planners and geographers have spent enormous research efforts in studying the links between street systems, land-uses, the built environment, human activities and social practices in order to understand the particular the conditions that favor or deter active transportation in urban settings. When such studies investigate carefully the impacts of physical and spatial forms on transportation behavior, they tend to focus on a single area, such as a neighborhood, or on a limited sample of urban areas. When attempts are made to consider behavioral patterns or spatial conditions in the city as a whole, the latter is broken down in zones that are generally dictated by administrative subdivisions such as census tracts. Such a strategy can be considered as a limitation since these zones do not necessarily correspond to the morphological reality on the ground, i.e. to areas delineated according to some level of internal spatial homogeneity. Developments in geospatial technologies have facilitated the quantitative analysis of road networks as complex systems particularly allowing for the quantification of their topologies.

Each of the aforementioned approaches has obvious merits. But in spite of their richness

and diversity, there remain gaps. Approaches that aim at characterizing and quantifying the street system at the global, or city-wide level, almost never consider the relationships between the said street system and other urban spatial systems that have an impact on its spatial deployment and development (e.g. the geo-morphological systems, or the technical infrastructure and other inherited anthropogenic settings). Moreover, most studies focusing on the street system do not analyze in a systematic way the relations of the local conditions to the citywide system or the relations of the local sectors between themselves. A case in point can be the issue of the urban barriers. Although numerous authors have discussed the impacts of urban barriers on city living, including in some of the most canonical texts in urban planning (Jacobs 1961, Lynch 1960, Mumford 1961, 1962), scientific research on the matter remained surprisingly scarce (Héran, 2011).

This study aims at filling some of these gaps by developing an analytical approach that borrows from urban morphology tradition, while mobilizing an array of quantitative methods to describe, measure and characterize neighbourhoods in regards to the street system within the broader urban physical and spatial system. It seeks to investigate, in particular, how and to what extent urban barriers affect the morphological structure of residential neighbourhoods. Our aim is to analyze the internal configuration of residential neighbourhoods by exploring and assessing the influence that barriers and connections, or lack thereof, have on properties of the street network such as connectivity and integration.

This is a case study set up in the Island of Montreal, although it also includes Ile-Bizard and Île des Soeurs since they form part of the municipality of Montréal (Figure 1.1.1). It consists in analyzing the built environment at two levels of spatial resolution: citywide and neighbourhood scale. Drawing from urban morphological studies and space syntax, this project explores how intrinsic characteristics as well as topological and geometrical attributes of barriers impact on some qualities of the urban form. Urban morphology, i.e., the study of the urban form or "the spatial pattern of large, inert permanent objects in the city" (Lynch, 1981) provides the theoretical foundation for the understanding of the city as a complex system comprised of interrelated elements. Specifically, the discipline known as "typomorphology" or "typomorphological studies," focuses on material objects and spatial configurations in the built environment as well as their evolution over time. Moudon (1994) argues that the study of the urban form is both typological and morphological because it subjects the analysis of urban objects to elaborated classifications of buildings and open spaces by type. Urban morphology conceives the human habitat as a dynamic system in which different objects come to play; this research looks specifically at three categories of such objects: the urban barriers, the "neighbourhoods", and the road system.

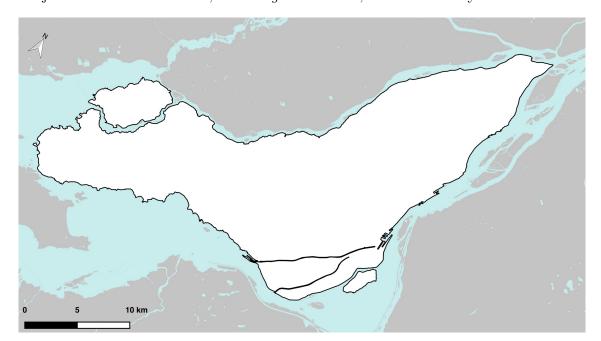


Figure 1.1: Study Area, Island of Montréal.

The urban morphology approach here is primarily informed by the theories of urban

form that originated in the Italian School of urban morphology and by Space Syntax. Saverio Muratori, founder of the Italian School, postulated that the urban form can only be understood through historical processes (Moudon 1994). Muratori's doctrine was further developed by Gianfranco Caniggia, who along with Gian Luigi Maffei, compiled and published the book *Composizione Architettonica e Tipologia Edilizia* (1979), later translated to English (Caniggia and Maffei, 2001).

Caniggia & Maffei provide a theoretical framework for the classification of the arterial system as part of their conceptualization of the *'urban tissue formation process'* and *'model of hierarchical structure'* whereas Bill Hillier, founder of the *space syntax* approach along with Julienne Hanson, contributes with both a theoretical ground for the conceptualization of urban neighbourhoods and a methodological approach that allows for the quantification of some properties of the urban form.

This research project develops an analytical approach based on urban morphology tradition while mobilizing an array of quantitative methods to describe, measure and characterize residential urban neighbourhoods.

1.2 Rationale and Research Objectives

The objective of this research project is to explore how and to what extent topological properties of the street network, geometrical characteristics of the urban fabric, and elements acting as barriers or boundaries affect the internal morphological structure of residential neighbourhoods keeping in mind how, by extension, the spatial distribution of human activities and patterns of movement are deeply informed by such morphological conditions. The project consists in analysing the built environment at two levels of spatial resolution: global scale and local scale. At the global or citywide scale, we first create a morphological matrix of residential tissues. Borrowing from MacDougall's (2011), we propose a fragmentation geometry defined as residential tissues delineated by barriers. A fragmentation geometry is defined as 'the set of particular fragmenting elements of the environment that are appropriate for the investigation of the system affected" (Jaeger, 2000).

At the local, or neighbourhood scale, we analyze the urban fabric not only in regards to physical barriers but also in relation to some topological properties revealed by space syntax, allotment system, and early subdivisions of land. While MacDougall's fragmentation geometry method is quite satisfying for defining patches of residential land use, urban neighbourhoods are not all made equal. Some residential patches may be very homogeneous in regards to their internal street pattern configuration. However, other patches may display a variety of street network conditions that point to the presence of different neighbourhoods. In consequence, we propose a second morphological matrix. The idea is to delineate areas that display common characteristics that distinguish them from surrounding areas. This matrix is based, on the one hand, on quantitative properties the urban tissue, such as intersection density and type; block orthogonality, compactness, and orientation; and indicators of connectivity and integration derived from space syntax. In addition, we use an 1890-map of Montréal (Figure 1.2.1) that shows ancient roads and old agricultural subdivisions of land in conjunction with Montréal's 2014 allotment system and space syntax to achieve a finer delineation of morphological units.

This research project, thus, mobilizes urban morphology theory, space syntax, and geometrical indicators for defining neighbourhood morphological areas (MNA). MNAs are

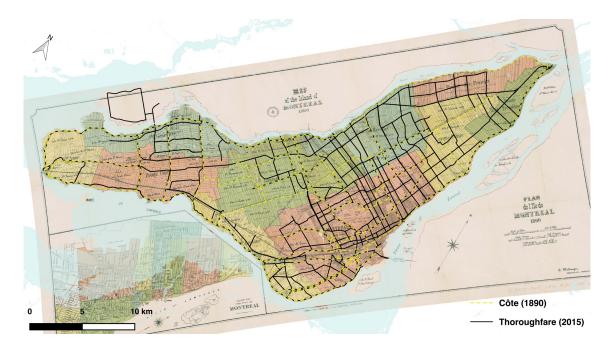


Figure 1.1: Agricultural subdivision of land and country side roads in 1890 and major roads in 2015.

subsequently subjected to a principal component analysis (PCA) and are classified using hierarchical clustering. The contribution of the thesis is two-fold. First, as transpires from the preceding paragraphs, it makes an original methodological contribution by devising an approach that allows for the characterisation, quantification, and from there, the delineation and classification of *morphological neighbourhood areas* based on street patterning. Secondly, in doing so, this research produces original knowledge on Montréal's island urban form. Such knowledge, we argue, could be of great interest for urban and transportation planners.

1.3 Thesis Structure and Organization

This thesis is organized in 6 chapters. Chapter 1 provides an introduction to the research topic, and presents rationale and objectives. Chapter 2 provides a review of some pertinent literature on urban morphology, space syntax, and landscape fragmentation. Following, chapter 3 introduces the general methodological approach while chapter 4 delves into the morphological analyses carried out to delineate MNAs. Chapter 5 presents a taxonomy of MNAs in Montréal as well as the detail of the methods developed to achieve such results. Chapter 6 provides a brief discussion of the results and conclusion.

Chapter 2

Literature Review

2.1 Introduction

The theoretical framework of this project is primarily informed by the urban morphological principles developed by Saverio Muratori, and continued later by Gianfranco Caniggia and Luigi Maffei from the Italian School of urban morphology. However, the British as well as the French schools contribute some important ideas to our study of the urban form and for that reason they are briefly reviewed in this section. Additionally, this chapter exposes the reader to space syntax theory, highlighting its main principles and methods applied in this project. Following, a section briefly introduces landscape fragmentation theory and the chapter closes with a comprehensive discussion on urban barriers.

2.2 Urban Morphology

Urban morphology refers to the study of the urban form. The Italian approach is usually referred to as "typomorphological analysis," and more rarely as "process typology." Typomorphological analyses seek to unveil the system of the built environment by seizing the spatial and physical structure of cities using detailed typifications of buildings and open spaces to describe the urban form. Typomorphological analyses take into account all scales of the built landscape working at different levels of spatial resolution: from rooms within buildings to the urban region. Typomorphology considers the built environment as a dynamic process stemming from a dialectical relationship between producers and inhabitants that takes place over time (Moudon 1994). From a typomorphological perspective, the concept of "type" refers to the built landscape, i.e., buildings and open spaces and their relationship to the lot; to the subdivision of land; and to the study of the urban form in a morphogenetic manner, rather than morphological, since its proponents argue that the study of the city can only be understood historically (Moudon, 1994).

The study of the urban form has given place to the development of several schools of thought, among which are those that have emerged in England, Italy, and later on in France. The most prominent figures of the English and Italian schools were, respectively, M.R.G. Conzen, a German geographer who immigrated to the United Kingdom before WWII, and Saverio Muratori, an Italian architect and scholar. Gauthier & Gilliland (2006) point that, regardless their disciplinary and geographical situation, the different schools of urban morphology share a common ground in that they explore the spatial form of the city and the built environment as a dynamic, and relatively autonomous system.

The authors propose a classification scheme for understanding contributions from different theoretical approaches to the study of urban form, making a first distinction between cognitive and normative approaches. Cognitive stances, they posit, involve the production of knowledge or else the formulation of methods and techniques aimed at sustaining the production of such knowledge. Normative approaches, on the other hand, seek to develop or expose doctrines and rules acting as prescriptions for future practice. They further differentiate the urban morphology between what they deem internalist and externalist approaches. The former understands the built environment as a rather independent system, while the latter considers it as the result of a process essentially driven by historical, geographical, economic, political, anthropological, and perceptual agents. Researches in the British, Italian and French schools, particularly, seem resolved in their attempt to capture "the empirical reality of the city," i.e. the form of the urban fabric, and in investigating the complex characteristics of these forms (Gauthier & Gilliland, 2005). Gauthier & Gilliland synthesize and graphically map the different contributions to the study of the urban form by means of a Cartesian grid (Figure 2.2.1), in which they expose how theoretical approaches seemingly different in their treatment of the urban form as an object of inquiry are equivalent from an epistemological perspective.

In the recent decades a new discipline termed Space Syntax has emerged in the urban morphology field. Bill Hillier and Julienne Hanson laid out the fundamentals of their new theory of space in the book *The Social Logic of Space* (1984). Bill Hillier further developed these ideas in *Space is the Machine* (1996). Space syntax establishes a series of principles and quantitative techniques based on interpretation of derived maps as a method for understanding social relations and urban form. Space syntax allows for the quantification of

Hillier (1996) Hillier & Hanson (1984) Cataldi (1977) Maretto (1984) Caniggia (1963)	Muratori (1960) Caniggia & Maffei (1979)	Cognitive	Orniggia & Marconi (1980) V	5)
Boudon et al. (1977)	Moudon (1986)		Conzen (1975) Spigai (1980)	Duany et al. (1999)
Castex <i>et al.</i> (1980) Conzen (1968) Conzen (1960) Internalist appre	Habraken (1998)	Levy	els & Pattacini (1997) & Spigai (1992) & Spigai (1989) Davoli & Zaf	Calthorpe (1993) al. (1981) fagnini (1993) Kropf (1996)
Externalist appr Slater (1978) Whitehand (1972a) Whitehand (1974)	roach		Larkham (1996) Whitehand (1981)	
Kostof (1991)	Rapoport (1982)		Rapoport (1977)	
Çelik (1997) King (1984) Vance (1977)	Lynch (1960) Mumford (1961) Benevolo (1980)		Lynch (1981)	

Figure 2.1: Contributions to the study of the urban form. A classification scheme. Gauthier & Gilliland (2005).

structural properties of the urban form using spatial analyses and statistical methods. It is an innovative concept that brings together a theoretical ground towards the study of space and a computer-based approach to investigate elements of the city that had been thus far examined only in qualitative or systemic terms (Sima & Zhang, 2009).

In accordance with Gauthier & Gilliland's (2005) classification scheme, the theoretical approaches of reference for this study, namely, from the so-called English, French, and Italian schools of urban morphology, as well as Space Syntax, fall within the cognitive/internalist category. In other words, the concepts and methods mobilized aim at explaining aspects of

the built environment considered as a system of its own. The following sections discuss all three schools of urban morphology; however, a major emphasis is put on the Italian School, since its formulations, along with those from space syntax, inform the theoretical core of this research project.

The British School

The British school is primarily dominated by scholars interested in understanding morphogenetic processes. Its major figure was M.R.G. Conzen, a German geographer established in Great Britain who was highly concerned by the effects that modernist town planning was having on pre-modern urban landscapes. Such interest led him to develop a theoretical framework and methodology intended for research purposes, which consisted in describing and explaining how landscapes evolve through time (Moudon, 1994). His work primarily focused on the study of three elements of the city that he identified in the city landscape, which he termed, the *"townscape:"*

- 1. The town plan, a two-dimensional cartographic representation of the city consisting of a town's physical layout.
- 2. The building fabric, which is composed by the buildings and open spaces that make up the city.
- 3. Patterns of land and building utilization (Conzen, 1960, p. 4).

Conzen referred to this method as "town-plan analysis." It consisted in surveying how towns change over time through the analysis of cartographic representations of the built fabric (town plans) at different periods of development (Moudon, 1994). More specifically, his work focused on the analysis of streets, plots and buildings in medieval towns, with special emphasis put on the burgage (Figure 2.2.2), a type of plot of land that is deep and narrow. Conzen describes the town plan a compound of several plan units distinguishable from one another in terms of road configuration, allotment system, and built forms and volumes (Conzen, 1968). Scholars such as Moudon (1994) and Whitehand (2003) posit that the Conzenian methodology ignores individual buildings and focus, rather, in building fabrics.

Figure 2.2: Burgage blind-back housing, High Street, Huntingdon, England. Whitehand, J. W. R., et al (2014)

In 1980, historical geographers at the University of Birmingham formed the Urban Morphology Research group following the Conzenean approach. Among this group was T.R. Slater, who in line with M.R.G. Conzen, centred his research on the town-plan of medieval towns, and J.W.R. Whitehand, who focused his investigation on urban economics by exploring relationships and dynamics between the urban form and the industrial aspects of the city. Moudon (1994) claims that his development of methods of analysis for the actual city allowed Conzen to produce "the most thorough, detailed, and systematic typomorphological method of the three schools."

The French School

The French school emerged in Versailles in the late 1960s. Following the Muratorian tradition, French scholars believed that modernism had created an irreparable rupture with the past that needed to be amended by rediscovering the essence of architecture in past traditions. The Versailles School fostered a multi-disciplinary cooperative approach seeking to improve the understanding of the city, that brought together sociologists, historians, geographers, planners, and architects. In consequence, its typomorphological approach involved literary and social science stances rather than being exclusively dedicated to geography and design issues (Moudon, 1994).

The development of the French School is in part due to the influence that the ideas of sociologist and philosopher Henri Lefevre had on students, and particularly, on future architects and urbanists among them. Lefevre claimed that the focus of post-World War II house production was destroying French social practices. He argued that the ultimate goal of social life, appropriation, was being threatened by contemporary methods of house production, undermining the relationship between the society and the environment. The postulates of the French School promoted a more interdisciplinary approach and a reconciliation with the social sciences pushing for a more socially responsive and responsible architecture (Moudon, 1994). Unlike the British and Italian schools, the French School took a more interdisciplinary stance in relation to the study of the urban environment by investigating the relationships between urban form and social phenomena. Yet the French and Italian schools concur in the need to consider different levels of spatial resolution. Though largely informed by the Italian theories and methods, French morphologists' work moved away from the Italian focus on the type. They assert that the study of the urban environment requires of a more flexible system of varying criteria chosen on a trial and error basis that will be dependent on the nature of the phenomena under investigation involving a critical assessment of design theory (Moudon, 1994).

The Italian School

The Italian School of urban morphology and building typology was founded and developed during the 1950s and 1960s by Italian architect and researcher Saverio Muratori while he was working at University of Venice and University of Rome. He believed that the architectural and planning crisis of the time was caused by Modernism, which had produced a rupture from traditional building and planning practices. Muratori observed that under modernist principles the study of the city was carried out by dismembering it and isolating its components from context (Pinho and Oliveira, 2009). Muratori conceptualized the city as a complex living organism which was under constant transformation, and that could only be understood by analyzing its urban and architectural elements from a historical perspective (Menghini, 2002).

The centerpiece of Muratori's approach is the study of the building type or "process

typology." Muratori argued that type is linked to a specific time, a historical moment, and a place, that inform how the different objects that make up the urban fabric relate to each other. Muratori discovered that there was a spatial dynamic linking the urban fabric and the natural landscape. He identified this spatial dynamic in regards to the adjustments that buildings construction underwent in regards to topography; but this dynamic was also revealed by the existence of typical land forms, such as valleys or escarpments, accompanied by typical modes of human intervention (Menghini, 2002).

Muratori's work was further developed by Gianfranco Caniggia who turned it into the investigation of building type as the nucleus of the urban form (Moudon, 1997). Caniggia laid out his and Muratori's theories on typology and urban morphology in the book *Composizione* architettonica e tipologia edilizia (1982), written conjointly with architect and urbanist Gian Luigi Maffei. Caniggia focused his analysis on the built environment as a complex system in which there are four discernible levels of spatial resolution: the building, the urban tissue, the city, and the region (Larochelle and Gauthier, 2002). The built environment presents itself as an intricate system comprised of simple components and subsystems. Depending upon the scale of the analysis, an object such as a house, for instance, would be considered as a complex system (comprised of multiple components and subsystems) or as a simple component of the urban tissue (Caniggia & Maffei, 2001). One key argument by Caniggia and Maffei is that recognizable configurations denote the fact that the built environment is not a collection of discrete objects. Rather, in their spatial arrangement, objects conform to rules. Such rules are obeyed to unconsciously for the most part by the social agents. They enact cultural models, i.e. "types", similarly to the rules that govern language that are enacted in the act of speaking (Gauthier and Gilliland, 2005). Recognizable sets of characters and configurations allow the researcher to identify building types. Similarly, recognizable patterns in the urban fabric reveal typical tissues (i.e., urban tissue types) (Caniggia & Maffei, 2001).

Caniggia and Maffei (2001) argue that the urban tissue is a system comprised of objects that belong to three subsystems: the buildings (and the built fabric); the lots (and the allotment system); and the streets (as a part of the street system). Routes are not only structures aimed at providing connection between places but also at providing access to construction sites. Buildings, even if isolated, require routes to connect them to other buildings or places. Along a route, buildings' fronts reveal the "conformation modularity of the aggregate," consisting of the built lot, which includes the built structure itself plus the "pertinent area." Pertinent area refers to the open space associated with each building on its lot and the term "pertinent strip" applies to the area facing and served by each route that contains the built lots (Caniggia & Maffei, 2001) (Figure 2.2.3).

Empirical analyses allowed morphologists in the Italian school to identify four categories of streets: the matrix route; the planned building route or settling route; the connecting route and the break-through route (Caniggia & Maffei, 2001). A matrix route is a route that preexists building development. It emerges as a route running in the countryside connecting two poles (two urban centers, for example) while minimizing the distance. However, topography or other obstacles may confer it a curvilinear shape. As a part of the initial stage of the urbanization process, building lots emerge on both sides of the road creating two parallel and continuous pertinent strips. Typically, the pertinent strips are symmetrical as long as the course of the matrix route is not interrupted by the natural elements, such as rivers or escarpments.

Planned building routes, in second place, are roads that develop perpendicularly to matrix

routes usually following a rectilinear path in order to accommodate building lots developed orthogonally. Pertinent strips typically emerge at both sides of the road beginning at the limit of the matrix route's pertinent strip. Connecting routes emerge as joining planned building routes. The most important outcome of the connecting route for the urban form is that it allows for the delineation of the city block. Between intersections, pertinent strips on both sides of the road tend to be more cohesive and consistent since buildings are likely to go appear in synchrony and undergo similar changes throughout time. Caniggia & Maffei (2010) argue that this feature constitutes the basic unit of the urban tissue. To refer to this phenomenon the authors use the term "contrada," which translates to "face-block." A "contrada" is formed by a street segment between intersections and its adjacent lots (Figure 2.2.3).

Finally, a break-through route is a route that overlaps the existing building tissue providing a more direct link between two poles within the urbanized area (Figure 2.2.4) (Caniggia & Maffei, 2001).

A classical example of a break-through route is the creation of an urban boulevard cutting through existing urban fabrics such as in Haussman's Paris. The concept of urban tissue is central to our work. Though this research focuses on one the tissue's sub-systems, the street network, it acknowledges that urban streets cannot be fully understood without considering the built lots that they support. In other words, the street network's geometry and configuration are in direct relationship with the tissue form. For instance, when delineating urban blocks, the street's geometry of the said blocks is determined by pertinent strips requirements, i.e., by built lots requirementes informed themselves by the architectural types requirements, etc..

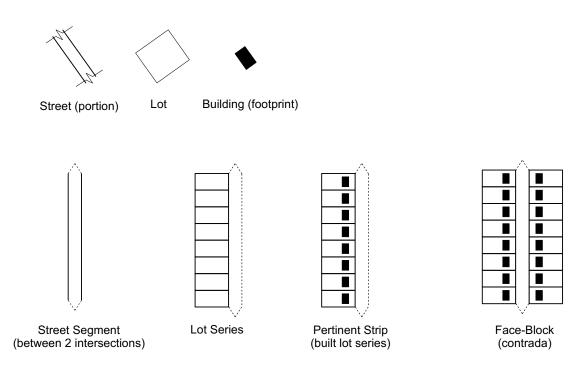


Figure 2.3: Components of the Urban Tissue. Gauthier (2016).

Caniggia and Maffei (2001) stress that though most routes are "basic streets," i.e. regular residential streets, some do assume a specialized function. They argue that the specialization of a street's function depend upon its relative position within the arterial system. They refer to this scheme as "model of hierarchical structure." In this model, specialized urban roads fall in two broad categories: centralizing nodal axis, and anti-nodal dividing axis. The former represents a street segment which is centrally located and tends to specialize in commercial activities while the latter corresponds to a road specialized in traffic movement that may as well constitute a morphological boundary as we will further discuss later. The adjacent to specialized roads often assume a supportive function.

Accordingly, in Caniggia and Maffei's model, change in function from the centralizing nodal axis to the anti-nodal dividing axis does respond to a form 4, 3, 2 ... 2, 3, 1, 3, 2 ... 2, 3, 4, where #4 represents an anti-nodal dividing axis and #1 a centralizing nodal

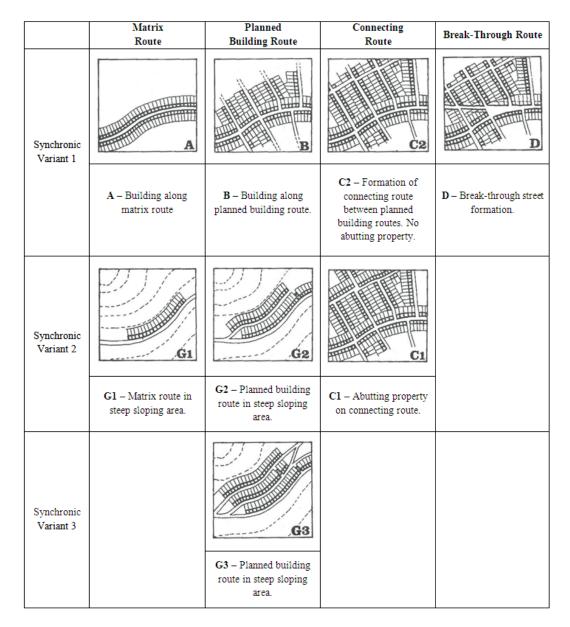


Figure 2.4: Urban Tissue Formation Process (Simplified). Adapted from Caniggia & Maffei (2001).

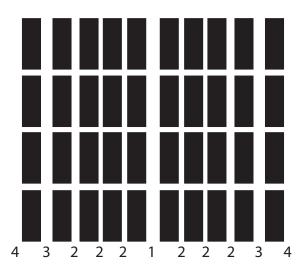


Figure 2.5: Model of street specialization. Adapted from Caniggia & Maffei (2001).

axis. Number 2 accommodates regular residential streets and #3 a supporting function to specialized streets #1 (commercial) and #4 (heavy traffic, parking).

Caniggia and Maffei's model of hierarchical structure displays similarities with the concept of centrality in Bill Hillier's theory of Space Syntax, which assumes that streets centrally located (and better connected to the road network) attract more movement than peripheral streets.

This section has introduced the concept of urban tissue and has discussed the generative process of which the said tissues are the results. Tissues do not exist in isolation obviously; when considered at another level of spatial resolution, for instance, city-wide scale, they are inscribed within a broader morphological matrix. At the city scale, the spatial deployment of basic tissues, i.e., predominantly residential tissues, as well as specialized tissues, that is, non-residential fabrics such as industrial parks or heavy commercial sectors, is informed by other structures either natural or anthropic. As such, the tissues are enmeshed in a nexus of barriers such as cliffs, rivers, railroads, etc.. The tissue formation and spatial layout is also informed by the pre-existing matrix that the agricultural allotment system constitutes. A following section will discuss at greater length the question of urban barriers.

Space Syntax

Space syntax is a theoretical and methodological approach that investigates the relationship between human behaviour and space. It was initially developed by Bill Hillier in the 1970s at the Bartlett School of Architecture of University College London. In 1984 Bill Hillier and Julienne Hanson formalise their theories in the book *The Social Logic of Space* in which they introduce space syntax as both a theory of space and as a set of quantitative methods for the analysis of the space.

Space syntax seeks to explain human behaviour and social activities by looking at the configuration of spatial structures (Jiang et al., 2000). The theory attempts to unveil the extent to which some social realities are conditioned by spatial patterns by analyzing the spatial configuration of the city. The theory adopts common measures of relationality in graphs, projects their potential as vectors for social ideas, and then using geometric representations of the space, transform them into measures of spatial structure (Hillier & Vaughan, 2007). Hillier & Vaughan argue that space syntax metrics basically are "formal interpretations of the notion of spatial integration and segregation" and they provide a quantification method that allows to explore the space statistically. The theory posits that trough the structural analysis of the city, architects and planners may derive a better understanding of the city and bring forth more sustainable urban layouts (Jiang & Claramunt, 2002).

According to Space Syntax theory, the spatial configuration of cities and street func-

tion are determined by patterns of movement and street connectivity (Hillier, 1996). Bill Hillier argues that street segments enjoying of higher levels of connectivity naturally attract movement regardless of the presence or absence of so-called "attractors"- i.e. amenities that accommodate well-attended activities. Connectivity is defined as the number of intersections, or one-step choices of a given road segment. The theory claims that it is not the location of activities that generates movement of people. Rather, it is the structural qualities of the network which determine the movement of people, and therefore, the spatial distribution of human activities and, therefore, movement of people. Bill Hillier (1996) defines this relationship between street layout and human behaviour as "principle of natural movement" and describes it as "... the proportion of movement on each line [i.e., street segment] that is determined by the structure of the urban grid itself rather than by the presence of specific attractor or magnets." Natural movement provides the conditions for the creation of "virtual communities" which is the field for potential encounters that are generated by the spatial layout alone. Virtual communities emerge from patterns of co-presence and co-awareness and from the effects of spatial design on movement and on the use of space (Hillier, 1996). Klarqvist (1997) argues that virtual communities are the result of a "latent solidarity" that depends upon to the extent to which urban barriers affect the urban fabric.

Space syntax provides a set of techniques for the representation, quantification, and interpretation of patterns of movement in space at both the urban scale and building scale. It is an objective approach for the assessment of the relationships between the morphological configuration of human-made environments and social structures (Hillier, 1996). The rationale behind space syntax lies on two fundamental ideas: First, the theory posits that space shall not be seen as the passive background for human activity; rather, the space must be

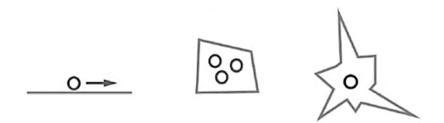


Figure 2.6: From left to right, people move in lines; interact in convex spaces; and experience changing visuals as they move around in the space. Hillier & Vaughan (2007).

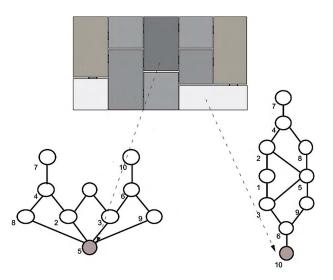


Figure 2.7: Same spatial layout looks and it is different when it is seen or perceived from different spaces within it. Hillier & Vaughan (2007).

taken as "an intrinsic aspect of what humans do" acknowledging that as people move in lines and interact in convex spaces, their perception of space varies from point to point as they move in space (Figure 2.2.6) (Hillier & Vaughan, 2007).

The second idea refers to the configuration of the space. Hillier and Vaughan refer to this as "the interrelations between the many spaces that make up the spatial layout of a building or city." They argue that the configuration of a given spatial layout not only looks different; it is also differing from different points of view (Figure 2.2.7) (Hillier & Vaughan, 2007).

As shown in figure 2.2.7, for instance, we see that each graph captures a different reality

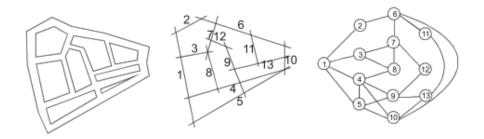


Figure 2.8: From left to right, fictitious urban layout; axial map; and dual graph. Jiang et al., (2000).

expressing real properties of the same spatial configuration. This is a property of space that, from a graph theory approach, allows for quantification in terms of integration; that is, the cost of moving from one particular space to all other spaces. Integration will, thus, be in function to the shape of the graph. Shallow graphs (left) will be indicative of good integration while deep graphs (right) will reveal poor integration. Space syntax facilitates the indexation of the measures of integration and segregation of each individual space and estimates an average degree of integration for the whole spatial layout in relation to its parts.

In space syntax theory, street segments of uninterrupted view are referred to as "axial lines." Axiality, therefore, refers to the longest and fewest straight lines covering an entire urban system. A set of axial lines that mutually intersect and cover all free space in an area is called an "axial map" (Figure 2.2.8) (Jiang & Claramunt, 2002).

Yet the rationale behind space syntax studies is not the production of axial maps but rather the investigation of relationships between lines and spaces using dual graphs. The axial map is a graphical representation that describes the topological characteristics of a given urban space Hillier & Hanson (1984) define the axial map as *"the least set of lines* which pass through each convex space and makes all axial links." Space syntax follows a dual approach for the representation of street networks. Here, the system is transformed into a dual graph, which, unlike in traditional network analysis, lines representing streets are transformed into nodes and intersections between each pair of lines are transformed into edges (Crucitti et al., 2006). This graph-theoretic model permits the computation of a series of indicators revealing hidden properties of the street network. Some scholars, such as Ratti (2004), have highly criticized space syntax methods for an apparent lack of objectivity. This author argues that the axial map is highly dependent upon the researcher interpretation of the axial line, which may result in different axial maps derived from a same street configuration.

In this research project we stumble upon this problem when attempting to automatically generate Montréal's axial map. The automated process we use for generating axial lines produced significant distortions to Montréal's street network; in consequence, we opted for an alternative approach based rather on 'natural roads.' Under this method, axial lines are generated from street centerlines. Segments are joined following the Gestalt principle for a good continuation producing self-organized natural roads (Jiang, Zhao & Yin, 2008). Here, a road segment is joined to an adjacent segment only if a pre-set deflection angle falls within certain threshold; in our case, 45 degrees, which is the default value proposed by Axwoman 5.0, the ArcGIS extension for space syntax analysis. Axwoman computes 7 space syntax metrics. Such metrics, namely, connectivity, total depth, mean depth, local depth, global integration and local integration are defined by Hillier & Hanson (1984) as follows:

• *Connectivity* is the number of axial lines intersecting a given axial line. It is a measure of the status of an axial line.

- *Control* is a local measure that estimates how significant an axial line is for all other axial lines linked to it.
- Depth is an estimation of the number of steps needed to move from one axial line to all other. There are three measures of depth:
 - Total depth (TD) is the aggregate of all depths in a given system; it indicates the distance to go from a given axial to all others lines in the system.
 - Mean depth (MD) is the average of all depths in a given system; it indicates the average distance to go from an axial to all others axial lines.
 - Local depth (LD) it is the average of all depths within a radius; in this study, radius = 3.
- *Global integration (GI)*: it is a normalised measure based on total depth developed to allow for comparisons between systems with differing numbers of axial lines.
- Local integration (LI), as in the case of GI, is a normalised indicator based on local depth; in consequence, its computation is restricted to a given radius so as to reveal the local properties of a given system (Ratti, 2004).
- *Intelligibility* is a ratio between connectivity and global integration; it is a metric that provides a general understanding of the global structure of a system by looking at its local characteristics. This last metric is not included in Axwoman's output.

Space syntax provides an approach to the study of the urban form that differs from what other schools of urban morphology are proposing, as space syntax incorporates an analytical framework that focuses on the understanding of space from a cognitive point of view. Space syntax intends to provide an understanding of the city and of the way in which people use space by looking at its topological properties.

2.3 The Urban Landscape Mosaic

In his work on urban barriers in Montréal, MacDougall (2011) develops a method for analyzing the built environment, and in particular, the spatial distribution of predominantly residential areas otherwise delineated by barriers and boundaries . He proposes a taxonomy of urban barriers that is based on their degree of permeability, which leads him to identify two main types: barriers and boundaries. Barriers and boundaries, he argues, fragment the landscape while defining a mosaic of patches where human activity occurs. Drawing from landscape fragmentation theory, MacDougall develops a method that identifies two levels of fragmentation. Fragmentation geometry one, based strictly on urban barriers, and fragmentation geometry two, in which urban boundaries are taken into account. The following section covers the main aspects of landscape fragmentation theory and describe in detail the concepts of urban barriers and urban boundaries.

Landscape Fragmentation

Landscape fragmentation emerged as a theory centered on natural environments. However, though still a rare occurrence, principles are increasingly being applied to urban contexts Zipperer et al.'s (2000) work, "The Application of Ecological Principles to Urban and Urbanizing Landscapes," which focuses on patch dynamics offers a case in point; and so does MacDougall's (2011) "The Urban Landscape Mosaic, Assessing Barriers and Their Impact on the Quality of Urban Form: A Montréal Case Study.", which integrates urban morphology methods with landscape fragmentation for investigating the effects of anthropogenic and geogenic fragmentation on the quality of the urban form. This study incorporates landscape fragmentation in an early stage of the research as it provides a solid foundation for analyzing the landscape in terms of non-fragmented patches, that is, areas in which movement is not restricted by any sort of barrier. In landscape fragmentation theory, non-fragmented areas of the landscape are called "patchworks" or "patches." In this study they are termed "morphological neighbourhood areas (MNA)."

Girvetz et al. (2008) argue that for quantifying the degree of fragmentation that some elements exert on the landscape, it is first necessary to establish a "fragmentation geometry," that is, the set of particular fragmenting elements of the environment that are appropriate for the investigation of the system affected by such fragmentation. Commonly, fragmenting elements are transportation infrastructure, rivers and canals, topography, and intensive land uses. Jaeger (2000) makes distinction between anthropogenic and geogenic fragmentation to refer to either human-made or natural fragmenting elements respectively. Following Jaeger's and Girvetz formulations, MacDougall (2011) identified and grouped urban artifacts acting as barriers in two categories: first-order urban barriers and second-order urban boundaries. First order barriers are represented by topographic objects or areal tracts of land in the landscape that fragment the urban tissue. They are highly impermeable and their impacts can be appreciated at both regional and local scales. These barriers criss-cross and fragment the landscape creating a meshing that delineates zones or patches of land of different sizes and configurations in which human activity occur, such as dwelling, working or leisure. Second-order boundaries, on the other hand, are more permeable components of the built landscape, less physically intrusive, which in most instances constitute rather a boundary conceding varying degrees of permeability. As will be discussed below, boundaries may constitute a "seam" in some circumstances (Lynch, 1960) as they bring together parts of the city otherwise disconnected. Arterial boundaries, such as urban thoroughfares, act as such seams. The divisive character of the boundary is not, strictly speaking, the product of its physical properties or dimensions, for instance. But it relates rather on the level of difficulty of crossing it. As such, barriers and boundaries are spatial discontinuities interfering with the residential tissue of street networks.

Urban Barriers

Natural and human-made barriers constitute a morphological matrix, as they organize the space by delineating zones that can accommodate residential and other associated urban functions. Barriers, by definition, are obstacles that impede or restrain movement. Drawing from urban morphology theory MacDougall (2011) builds a taxonomy of urban barriers; that is, "a classification of types that cannot be further reduced" based on the morphological and functional characteristics of barriers.

Larochelle and Gauthier (2002) define urban barriers as "extended zones of the built landscape that are affected by discontinuities produced by natural or human-made elements, where pedestrian crossing is tiresome, difficult, impossible, dangerous, or forbidden." Urban barriers can be manifested in linear or areal forms. The extent to which they impede or restrain movement depends upon two sets of factors. The first set is determined by the nature of the barrier itself, as well as their associated physical and spatial properties, whether they are natural barriers, such as rivers or escarpments, or human-made, such as railroads or urban highways. The second set of factors refers to the presence and number of crossings as well as their relative position along the said barrier, which allows for interconnections between patches, i.e., barriers' crossings.

In The Death and Life of Great American Cities (1961), Jane Jacobs argues that streets that are in proximity to a border receive little or no use. In consequence, as they fail in facilitating circulation beyond, their character of dead ends is further reinforced. Under these circumstances, adjoining streets are as well affected, echoing in entire area next to the border. Jacobs (1961) claims that "borders can thus tend to form vacuums of use adjoining them." She refers to this phenomenon as "border vacuum" and points to components of the urban fabric, that are not necessarily linear nor usually not perceived as edges, that can represent a barrier under certain conditions. Such is the case of large monofunctional zones that accommodate activities other than residential. A large park or university campus could constitute such a barrier, for instance. The idea of border vacuums is somewhat explored as well by MacDougall (2011) and Gauthier (2014) when referring to "relatively impassable barriers." They argue that the barrier effect of some elements of the urban landscape will depend upon the level of spatial resolution to which the object is considered a barrier. For instance, a large mono-functional zones may not be considered barrier at a regional scale, although it may act as a barrier at a higher level of spatial resolution, as it happens with inner city airports, rail yards, or large urban parks.

Urban Boundaries

The notion that a certain element of the urban landscape constitutes a barrier is also evident in the work of Kevin Lynch. He coined the term "edges." In The Image of the City (1960), Lynch refers to as "edges" to those elements of the city that, while not constituting paths, act as boundaries between zones. His work, however, suggests that edges do not always translate into restriction of movement. Lynch argues that "if some visual or motion penetration is allowed" an edge may become a "seam." This is typical on fragmenting elements such as urban thoroughfares, i.e., routes specialized in transportation. These routes exert, to some degree, a barrier effect; however, as they are connected to the street network they may also act as "seams" that link two neighbourhoods together. Caniggia and Maffei's (2001) also allude to this barrier effect on their discussion on "anti-nodal dividing axes", which in their work, are represented by peripheral routes specialized in transportation and that span through different zones in a city.

Inner-city boundaries are often made of roads specialized in transportation such as thoroughfares. Contrarily to controlled-access highways, thoroughfares are integrated into the street network. Unlike highways, thoroughfares possess at-grade regular intersections, and are at the top of the hierarchical structure of the arterial road network as busy streets. Their 'divisive' character does not arise only from the difficulty in crossing and uneasiness induced in pedestrians, but also from their distinctive morphological properties such as arteriality, relative length, and relative position in the system (Gauthier, 2016). Arteriality implies that these roads are part of a hierarchical structure in which different networks manifest: a 'foreground' network comprised by controlled-access highways and thoroughfares, and a *'background'* network constituted by residential and streets (Gauthier, 2016). In a road system one can identify different networks: local, city-wide, regional or national. According to Marshall (2004), these networks are characterized by a *"strategic contiguity"* that can be divided up in different contiguous tiers. Upper level tiers tend to form a contiguous network while lower tiers tend to form separate sub-networks (Figure 2.3.1) (Marshall, 2004).

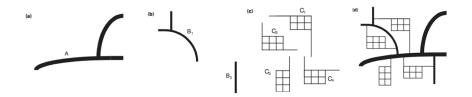


Figure 2.1: Nesting of arterial networks. a) Road network; b) and c) Road sub-networks possessing arteriality; d) Arterial network. Marshall (2005).

In his discussion about urban thoroughfares, Gauthier (2016), proposes an operational definition: "a component of the street network such as boulevard or a functional expressway, which assumes the role of a thoroughfare and that: 1. is characterised by arteriality; 2. Spans over the length of several neighbourhood units that it serves; and 3. Tends to be located at the periphery of morphological units, where it acts as a dividing axis." When the latter condition is met, he terms such a thoroughfare an "arterial boundary." Gauthier (2016) asserts that, unlike controlled-access highways, "they [thoroughfares] are a manifestation of the cultural model of the street," by which he implies that thoroughfares serve lots and buildings that have an address on them. Contrarily to controlled-access highways, thoroughfares are part of the urban tissue. Caniggia and Maffei (2001) assert that urban thoroughfares generally constitute "anti-nodal dividing axes", that is, streets located at the periphery of neighbourhoods whose purpose is to provide for accessibility through different areas of the city.

Together, urban barriers and urban boundaries form a morphological matrix that delin-

eates of non-fragmented land. MacDougall proposes a method for identifying these areas in relation to first-order urban barriers and second-order urban boundaries, and develops a taxonomy of urban barriers. In MacDougall's work, fragmentation geometry one is produced based on first order barriers and fragmentation geometry two is produced by considering systematically thoroughfares as boundaries. In this project, we resort to MacDougall's methods for defining two fragmentation geometries as well. However, our approach is slightly different. More specifically, we develop further MacDougall's methods in assessing spatial discontinuities that constitute boundaries. Our fragmentation geometry two is then produced by a combination of methods aimed at identifying more subtle spatial discontinuities induced by differing street network patterning. According to this approach, not all thoroughfares constitute boundaries and some boundaries are not thoroughfares. Our main objective is then to delineate a morphological matrix that identifies residential zones depicting an cohesive internal structure. As a consequence, we denominate these zones morphological neighbourhood areas (MNAs). As mentioned, one of the outcomes of this refined method is to identify thoroughfares, or portions of thoroughfares that actually act as boundaries from those that do not assume such a role in the system, i.e., those that do not manifest the third characteristic of Gauthier's (2016) operational definition.

Chapter 3

Methodological Framework

3.1 Introduction

The methodological framework of this study consists in a series of spatial analyses carried out in GIS that aim at identifying and quantifying some properties of the urban tissue. It involves, first, the creation of a fragmentation geometry, for delineating predominantly residential sectors interspersed with spatial discontinuities caused by major natural and humanmade barriers following MacDougall's *"fragmentation geometry one"* methodology. In this project we are proposing a second geometry for characterizing neighbourhood morphological areas (MNAs). MNAs are built upon the first fragmentation geometry; however, based on an array of spatial and historical data, a second fragmentation geometry is proposed by performing some intermediary analyses that include k-means clustering of city blocks, space syntax, and georeferencing and digitizing.

This chapter is organized as follows: first, we introduce the spatial datasets utilized to carry out the analysis and describe data preparation. Following, we describe the processes for the creation of both fragmentation geometries. And finally, we provide a concise description of the statistical methods mobilized for categorising urban blocks and MNAs.

3.2 Data Collection

Our methodology and analysis rely on several sources of secondary data on natural and built environments on the Island of Montréal. Among secondary sources, we make use of data from GeoGratis.ca (2015) which includes an ArcGIS-shapefile polygon layer for hydrography, and polyline layers for rail infrastructure and high power lines. Also, we incorporate data from OpenStreetMap (2015) for deriving road categories and performing the space syntax analysis. We employ as well CAD data from the City of Montréal (2008) for extracting city blocks and land use data from *Communauté Métropolitaine de Montréal* (2014). Lastly, we make use of cadastral data from *Ministère de l'Énergie et des Ressources naturelles du Québec* (2009) containing the allotment system for the Island of Montréal.

In terms of software applications, our main resources are Esri's ArcGIS v.10.0/10.2.1 as well as QGIS for spatial analyses and cartographic representations. We use Axwoman 9.2, which is an ArcGIS 10.0 extension for space syntax analysis. Statistical analyses, including clustering and principal component analysis are run on the RStudio platform.

Data Preparation

Considering that our case of study is constrained to the Island of Montréal, our first task consisted in clipping all spatial layers to the extent of our study area. Layers such as residential land use and controlled-access highways required simple SQL querying to derive them from the original data. The process required for extracting urban blocks from the Montréal CAD files implied multiple processes of querying, geoprocessing, conversions and manual editing. Similarly, the preparation of the street network layer for space syntax analysis was highly time-consuming as both datasets available to us DMTI (2008) and OSM (2015) had numerous topological errors that required intensive and prolonged manual fixing. In particular, the DMTI dataset presented some characteristics that proved problematic for operationalizing space syntax procedures, which are highly sensitive to topological relationships. More specifically, we found that the way in which two-way roads are represented in the DMTI dataset (two lines for a single road - representing one way each) affected significantly the measurement of connectivity, and by extension, the levels of integration of the street network. Finally, our analysis required the georeferencing of a 1890-map of Montréal followed by the digitizing of historical roads and agricultural allotment system.

Morphological neighbourhood areas are zones of residential land use exhibiting a certain level of homogeneity in regards to the street configuration. MNAs are delimited by discontinuities in the urban tissue caused by either barriers or boundaries. In the latter case, changes of orientation in the street layout or differing topological features denote the existence of a boundary. Gauthier (2015) defines MNAs as: "geographical unit of reference for the analysis. They consist of internally cohesive (predominantly) residential areas delineated by a combination of first order spatial discontinuities induced by natural and artificial barriers and second order boundary discontinuities induced by differing street network geometrical and topological patterning." Gauthier's definition implies that areas of predominantly residential land use are morphologically distinguishable based on coherent internal properties and that they can be delineated based on spatial discontinuities referred to as barriers or boundaries. MacDougall (2011) has conducted an empirical work in Montréal in order to produce a taxonomy of urban barriers which includes natural elements such as rivers and steep slopes, and human-made works such as fortifications, canals, railroads, highways and high-tension power lines. He also identifies a category of areal barriers comprised of large non-residential mon-functional zones such as railyards, airports, or industrial or commercial clusters (a topic covered as well by Jane Jacobs (1961); she refers to *"border vacuums."*) Further, MacDougall proposes two fragmentation geometries, FG1 and FG2. FG1 is based on first-order urban barriers, generally impassable or quasi-impassable by foot in the absence of engineering works such as bridges or tunnels. FG2, on the other hand is built upon FG1 but incorporating more permeable second-order urban boundaries; i.e., urban thoroughfares.

Our intention, however, is not to replicate or put under scrutiny MacDougall's work but rather to produce our own analysis based on his methodology with the objective of producing two morphological matrices. Geometry one delineates areas of contiguous residential land uses that are fragmented by barriers, while geometry two that lays out neighbourhood morphological areas (MNAs). As illustrated in the following sections, MNAs are constructed in a two-pronged approach that builds upon geometry one with the addition of space syntax indicators, urban blocks metrics as well as analyses of the allotment system and historical cartographic data.

3.3 Producing Fragmentation Geometry One

Barriers and boundaries fragment the urban landscape, hence, unveiling morphological mosaics (MacDougall, 2011). In this project, these mosaics are areas of residential land use delineated by spatial discontinuities. Our first fragmentation geometry is based on physical barriers alone and it is denominated "fragmentation geometry one" (Figure 3.3.1) while the second morphological mosaic is referred to as "fragmentation geometry two" and is built upon 'geometry one' while incorporating spatial discontinuities induced by differing street network patterning.

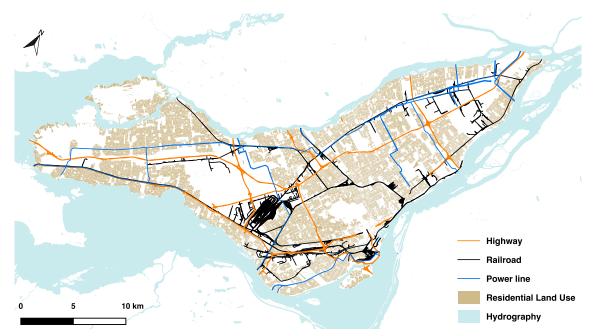


Figure 3.1: Residential tissues and first-order urban barriers.

In our analysis we first replicate MacDougall's "fragmentation geometry one" method for building our morphological matrix of urban barriers. Unlike MacDougall's work though, our analysis, is exclusively based on residential land uses and excludes topography, as we do not consider it as having a significant impact on the fragmentation of the landscape in the Island of Montréal. For building our first fragmentation geometry we use a set of spatial data in ArcGIS-shapefile format which includes hydrography, controlled-access highways above ground, railroad infrastructure above ground, high-tension power lines, and residential land use The analytical sequence for producing geometry 1 is as follows:

- Identification of all city blocks with a residential land use denomination data provided by *Communauté Métropolitaine de Montréal* from 2014.
- 2. Identification, classification and delineation of linear and areal discontinuities consisting of specialized tissues, infrastructure, and water bodies.
- 3. Filter contiguous residential aggregates larger than 2.5 hectares. Residential aggregates may include non-residential areas smaller than 2.5 hectares or mixed-used areas, e.g. lots occupied by residential buildings with retail on the ground floor.

3.4 Fragmentation Geometry Two

The production of geometry two aims at identifying and delineating neighbourhood morphological areas (MNAs). These are areas that display coherent street network configurations and are different from surrounding areas in terms of streets pattern and configuration. Here we identify residential zones that are internally coherent in regards to both first-order urban barriers and second-order urban boundaries; yet we define the latter in a method that differs from MacDougall's.

The said method unfolds as follows. First by running a cluster analysis on predominantly residential blocks as identified in the course of production of fragmentation geometry one. Here the urban blocks geometrical properties are used as a proxy for the geometrical properties of the street network. The urban fabric manifests a "meshing," where streets act as threads delineating urban block "meshes." Conzen (1960, 5) defines an urban block, which he terms a "street-block" as "the areas within the town plan unoccupied by streets and bounded wholly or in part by street-lines are street-blocks. Each street-block represents a group of contiguous land parcels or else a single land parcel." In this research, we consider a block as an area bounded by street-lines or by a first-order urban barrier. It is the fact that blocks are delineated by streets (in the vast majority of cases) that justifies that blocks are used as a proxy for street networks.

The set of block metrics include morphometric characteristics (shape), metrological properties (dimensional) and compositional variables (topological); all deemed appropriate for capturing similarities or dissimilarities in the urban tissue. As we will discuss further in Chapter Four, the variables used to capture the geometrical properties of the blocks were: *area, perimeter, ratio area perimeter, compactness, orientation, orthogonality* and *number of neighbours*. Following, space syntax analysis helps to identify the status of certain streets in regards to their degree of integration in the system. By colour-coding block clusters and space syntax indicators we are able to identify and delineate internally cohesive zones constituting neighbourhood morphological areas. The process is validated and further refined using historical agricultural data and the current allotment system, in particular, when boundaries coincide with allotment parting lines (Gauthier, 2016). A workflow scheme describing the process for building geometries 1 and 2 is presented in figure 3.4.1 and the following section describes the process in detail.

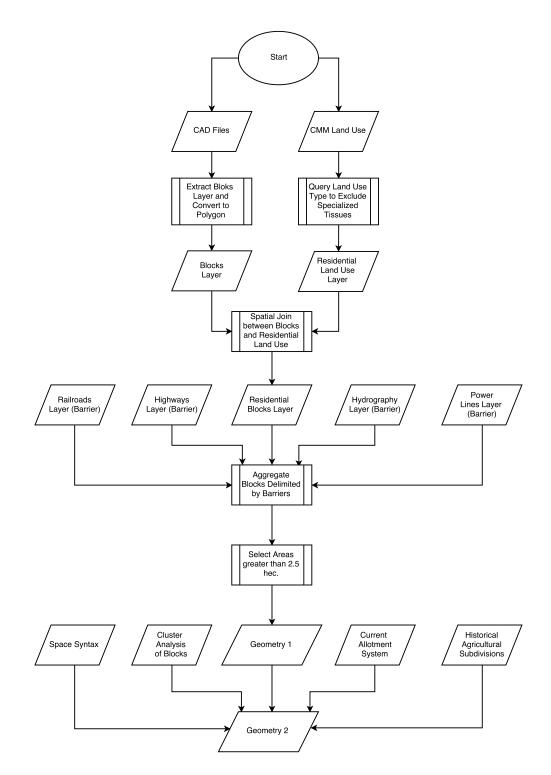


Figure 3.1: Flowchart for the creation of the fragmentation geometry of urban barriers and boundaries.

3.5 Clustering and Principal Component Analysis

This research makes use of clustering procedures in two instances. Firstly, clustering is used to to analyze variables aimed at capturing geometrical properties of urban blocks as part of the effort to identify and delineate MNAs. Here, establishing categories of blocks, or clusters, allows for mapping their spatial distribution. Such mapping then allows to identify aggregates of blocks either characterized by their homogeneity (i.e., comprised of blocks from the same clusters), or by some level of heterogeneity, yet displaying a *'recognizable mix'* of block types that distinguishes such aggregates from surrounding areas. The detailed procedure is discussed and performed in Chapter Four.

Secondly, clustering is performed again in Chapter Five. This time, to group MNAs according to their internal morphological characteristics (i.e., specific street network patterning) as well as the ways in which these MNA's street networks relate to surrounding street networks and to the street system of the island as a whole (i.e., assessing part-to-whole topological relationships). The details of the latter procedure are discussed in Chapter Five, as are its results.

Cluster analysis is a very effective method for handling multivariate data. The clustering procedure allows to classify and group objects by identifying patterns in the data. Clustering methods and algorithms can be broadly classified in non-hierarchical (k-means) and hierarchical. In non-hierarchical clustering the number of groups desired must be specified prior to the analysis while hierarchical methods allow for a more exploratory approach where groups can be identified by analyzing a dendrogram plot. Principal component analysis, on the other hand, is a statistical method aimed at reducing the dimensionality of multivariate data. PCA transforms the data into a new subspace in which only principal components retaining most of the variability in the data are retained. We use PCA in combination with hierarchical clustering in order to identify the most significant variables in our data.

Cluster Analysis

Classification mechanisms are an effective way of organizing data and detecting patterns. Classes provide a better understanding of the data structure and allow for extracting information more effectively. A categorization facilitates the description of patterns of similarity and dissimilarity in datasets thence reduced to a smaller number of groups of individuals (Everitt et al. et al., 2001).

Cluster analysis is a statistical method that consists in partitioning group of observations in a multivariate dataset into different subsets. Given a set of variables of interest, observations in a particular cluster are very similar to each other and share many attributes while being very different to observations in other clusters (Legendre & Legendre, 2012).

Carrying out a cluster analysis requires making three important choices in advance. First, deciding on the set of variables suitable for detecting differences in the data is crucial for determining the number of partitions and the cluster membership of every individual in the dataset. In second place, it is necessary to select a clustering algorithm. Some of the most common clustering approaches include k-means partitioning, hierarchical clustering, and two-step clustering (Mooi & Sarstedt, 2010). Last, a decision must be made in regards to the number of partitions sought in the data. In k-means clustering, for instance, the number of partitions has to be determined prior to the analysis. Such number may be already known by the researchers based on their understanding or familiarity with the data. Alternatively, some techniques exist for finding the optimal number of partitions in a dataset include: *Rule of Thumb, Information Criterion Approach, Information Theoretic Approach, Silhouette, Cross-validation,* and the *Elbow Method* (Kodinariya & Makwana, 2013).

Below, we expand on k-means partitioning and hierarchical clustering since these are the methods selected for our analysis. However, it is worth mentioning that the literature on cluster analysis includes a vast collection of varying procedures and algorithms that go beyond the scope of this study.

K-means clustering is the method of our choice for the classification of city blocks. This method is a non-hierarchical unsupervised algorithm that minimizes the total error sum of squares (SSE). It is unsupervised because there is no pre-existing class value attached to the data. Legendre & Legendre (2012) describe this method as "the sum, over the k groups, of the sums of the squared distances among the objects in the groups, each divided by the number of objects in the group." However, as mentioned previously, this method requires deciding on a number of partitions prior to the analysis. This method consists in plotting the sum of squares errors starting at k = 2 and subsequently incrementing the number of partitions by 1 in each iteration. The optimal number of clusters is identified at the point where the curve bends implying that k has reached a plateau and that there is no marginal gain in the sum of square error, therefore, no gain in adding a new cluster (Kodinariya & Makwana, 2013).

Similar to k-means clustering, hierarchical clustering (HC) also seeks to detect partitions of similar observations in multidimensional spaces. This method does not require a precise number of clusters. HC consists in starting with each observation in the dataset in a separate cluster and then progressively combine them into larger clusters (Everitt et al., 2001). This method produces a dendrogram, a tree-like chart (Figure 3.5.1) that permits to explore the data visually by showing how observations cluster from the bottom up and distribute among the branches of the tree (Mooi & Sarstedt, 2010).

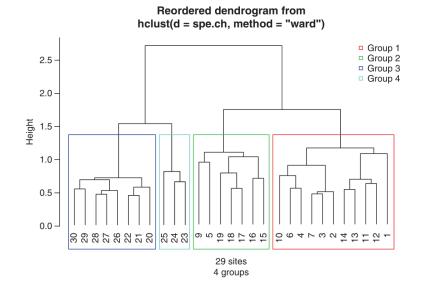


Figure 3.1: Dendrogram. Source: Legendre & Legendre (2012)

In this study, we find k-means simplicity and responsiveness appropriate for conducting the cluster analysis of city blocks, a rather large dataset comprised of 10576 observations and 7 variables. On the other hand, we resort to hierarchical clustering (HC) for the partitioning of our dataset of morphological neighbourhood areas (MNAs), consisting of 341 MNAs and 32 variables or dimensions. Hierarchical clustering, here, is used in combination with principal component analysis (PCA). PCA is a multivariate data mining technique that is most often used to reduce the number of variables in a dataset to a fewer number of *'principal components'* while retaining most of the information in the data (Husson, Josse & Pages, 2010). We elaborate on this procedure on the following section.

Analytical sequence for clustering city blocks:

- 1. Identify variables and compute capturing properties that allow for categorization;
- 2. Select clustering method and decide on the number of groups to retrieve from the data;
- 3. Subject the dataset to k-means clustering analysis;
- 4. Identified groups of blocks to be used for delineating MNAs.

Principal Component Analysis

Principal component analysis is a mathematical algorithm commonly used for reducing the number of variables, or dimensions, in a dataset. The method reorganizes the data identifying new, and fewer, variables called principal components. Principal components are linear combinations of the original variables that seek to capture most of the variability in the dataset. The first axis (PC1) captures most of the variability (Figure 3.5.2) while each of the following components (PC2, PC3, etc.), which are orthogonal to each other, account for the rest of the variability (Legendre & Legendre, 2012).

Principal component analysis is used to reveal patterns in the data, emphasizing variation. For identifying patterns in our dataset of morphological neighbourhood areas we use a combination of principal component analysis and hierarchical clustering. PCA is used to reduce the dimensionality of our data, which consists of 32 variables, to a smaller number of components that capture most of the information. Subsequently, we carry out a hierarchical clustering analysis on the main principal components for identifying groups observations sharing similar attributes.

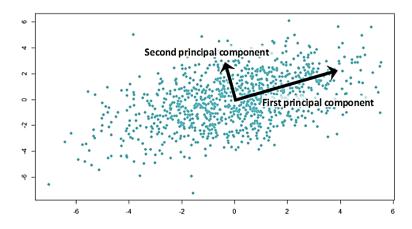


Figure 3.2: Principal component analysis. Source: Ringnér (2008).

Analytical Sequence for clustering MNAs:

- 1. Identify variables capturing properties that allow for categorization;
- 2. Remove highly correlated variables;
- 3. Identify and remove outliers;
- 4. Perform principal component analysis;
- 5. Identify most significant indicators;
- 6. Perform PCA on most significant variables;
- 7. Carry out hierarchical clustering on PCA results;
- 8. Test PCA results using multinomial logistic regression.

This chapter has broadly described our approach to defining and categorising morphological neighbourhood areas using a set of spatial and statistical methods. Additional details regarding these processes and results are presented in the following chapter.

Chapter 4

Identifying and Delineating MNAs

4.1 Introduction

As previously mentioned, one of the key objectives and by extension, a key contribution of this research is to devise a method to delineate and map morphological neighbourhood areas (MNAs), defined as predominantly residential environments displaying internally cohesive street network - and urban blocks geometries. An MNA is, hence, defined by its internal characteristics, which can distinguish it from surrounding areas, but also by "spatial discontinuities" that are either produced by physical or spatial barriers or by differing street patterning (in the latter case, we talk of boundaries) (Gauthier, 2016).

As per the methods briefly introduced in chapter 3, the identification and mapping of physical barriers allows determining first-tier spatial discontinuities in order to produce what MacDougall termed "fragmentation geometry one" (FG1). The identification of second-tier spatial discontinuities, i.e. boundaries leads to the production of a fragmentation geometry two when the latter are mapped in addition to FG1. The predominantly residential tissues, hence, delineated are what we term MNAs.

This chapter details at greater length the methods developed to delineate MNAs and presents the results of the said analyses. The first section centers on fragmentation geometry one, while the following sections concern fragmentation geometry two.

4.2 FG1: Urban Barriers, a Morphological Matrix

The first fragmentation geometry is comprised of threads; i.e., first order barriers and of meshes, which are the space delineated by the former, and that is occupied by contiguous predominantly residential tissues. The process of creating geometry one is carried out in ArcGIS using the 'Aggregate polygons' tool and involves the following steps:

- 1. Filter urban blocks layer from CAD files from the City of Montréal.
- 2. Convert blocks to polygons;
- 3. Using land use data from *CMM* (2014), filter residential land use and intersect with block polygons;
- 4. Aggregate residential city blocks delimited by barriers:
 - a) Controlled-access highways;
 - b) Railroads;
 - c) Hydrography
 - d) High-tension power lines;
 - e) Specialized tissue aggregates greater than 2.5 hectares;

- 5. Include in residential tissues non-residential land use lots smaller than one hectare such as schools, small parks, or commercial strips that, due to their small scale, do not constitute a barrier or generate boundary effects;
- 6. Remove patches smaller than 2.5 hectares.

The delineation of residential aggregates produces a map depicting fragmentation geometry one (Figure 4.2.1).

Figure 4.1: Fragmentation geometry (FG1) of residential patchworks.

The resulting layer contains 132 patches of varying size ranging from 2.7 to 2424 hectares (Figure 4.2.1). As shown in the inset map in the figure, these zones display contrasting internal realities, evident in the street pattern configuration and block orientation, that depend on factors other than first-order urban barriers (Figure 4.2.2). In consequence, for building geometry two we need to bring into the analysis indicators that allow for a finer

delineation of differing street networks. Here, we resort primarily on properties of the urban blocks and on space syntax.



Figure 4.2: FG1. Patches delimited by first-order urban barriers as per natural break-down of surface area.

4.3 Building FG2

This chapter outlines the process for identifying morphological neighbourhood areas (MNAs). The process involves a semi-automated phase that includes a classification of urban blocks using cluster analysis so as to clearly identify discontinuities in the urban tussie. Following, we perform a detailled analysis that involves parameters of space syntax, allotment system, and historical information. Our goal here is to expose latent patterns in the urban tissue that allow for outlining morphological zones. Finally, we refine our morphological neighbourhood areas by eliminating noise in fringe areas and by pairing their perimeter to the allotment system.

Assessing Street Network Geometries

The following sections illustrate the method devised to produce fragmentation geometry two (FG2), which constitutes the second step necessary to delineate and map the morphological neighbourhood areas (MNAs). FG2 builds upon FG1, as first order barriers are integral part of the second mosaic. The method for creating FG2 can be described as an iterative process. Through the various steps of the process, second-tier spatial discontinuities (i.e. boundaries) are gradually revealed, validated and precisely traced. The MNAs hence correspond to the "meshes" delineated by barriers and boundaries that act as threads. An important aspect to consider is that the identification and mapping of each MNA is based both on their 'internal' coherence, i.e. their recognizable street network geometry, and on spatial discontinuities that mark their contour. As a consequence, the analysis is focused both on identifying differing street patterning, and on spatial disconnects in the street network (see in particular Gauthier, 2016).

Building upon FG1, the analytical sequence for producing fragmentation geometry two unfolds as follows:

- Using the urban blocks as a proxy for street network geometry, a cluster analysis of the blocks is conducted based on morphometric (shape), metrological (dimensional) and compositional (topological) variables in order to produce a representation of the spatial distribution of blocks belonging to the different clusters.
- 2. Using a Space Syntax metrics, a quantitative analysis of street integration is conducted and represented spatially.

- 3. Spatial representations of blocks (colour-coded by cluster), and of streets (colour-coded according to level of integration) allow for triangulation, in order to distinguish and delineate the contours of internally coherent residential aggregates.
- 4. The precise mapping of local discontinuities is validated and further refined by taking into consideration the thoroughfares, the historical agricultural plotting, and current allotment system (in particular when boundaries coincide with allotment parting lines).

An urban block is typically a piece of land accommodating some sort of activity and delineated by roads. In the context of this study, we define the urban block as the aggregate of primarily residential lots delimited either by first order barriers including specialized tissues greater than 2.5 hectares. By specialized tissue, we are referring to land uses other than residential. Here, the urban blocks are used as a proxy a for revealing properties of the street network since blocks are delineated by streets, the blocks' shape and size, for instance, reflect some of the geometric properties of the street network in which they are enmeshed (Figure 4.3.1).

Urban Blocks Used as a Proxy for the Street Network Geometry.

Figure 4.1: Sample of Residential Aggregates from FG1.

Type of Indicator	Variable
Metrological	Area
	Perimeter
	Ratio Area-Perimeter
Morphometric	Compactness
	Orientation
	Orthogonality
Compositional	Number of Neighbours

Table 4.1: Block geometry variables.

Clustering of City Blocks

Urban Blocks Geometry

We quantify urban blocks based on morphometric characteristics, metrological features, and compositional patterns. Our goal is to group the city blocks using k-means clustering so as to expose patterns or spatial discontinuities which may contribute to the delineation of neighbourhood morphological areas. We have identified seven variables pertinent to this objective (Table 4.1):

Metrological variables are easily computed in GIS and do not require any preparation. The computation of the rest of the indicators, on the other hand, demands some additional geoprocessing operations. *Orientation* and *Orthogonality*, for instance, both pertaining to the morphometric variables, are based on properties of the minimum bounding rectangle (MBR), which is the smallest bounding rectangle that envelops a shape. The process of generating the MBR is carried out in ArcGIS. Its output produces an additional polygon layer with values for main orientation, length, width, and area, all attached to its attribute table. The data on this layer is re-introduced into the original block layer and appended to its attribute table for performing the estimations.

The indicator *orhogonality* is a ratio between the area of the block and the area of the MBR with values ranging from 0 to 1; higher values reveal more regular, rectangular blocks. Following, *orientation* is based on the *main orientation* of the minimum bounding rectangle. Therefore, in that latter case, values computed do not belong to the block polygon per se but rather to the MBR; however, in orthogonal blocks, these coincide. *Orientation* values range from 90 degrees at geographical north to -90 degrees at the geographical south. Figure 4.3.2 presents MBR, orthogonality and orientation values for a select group of blocks in the west of Montréal.

Figure 4.2: Minimum bounding rectangles, Orthogonality and Orientation of blocks.

Our third morphometric indicator, the *Compactness Index*, requires several geoprocessing steps that include buffering, querying, spatial joins, and intermediate calculations. *The compactness index* is a measure for differentiating between elongated and circular geometries. We based our method on the "*exchange index*", an indicator developed by Angel, Parent, & Civco (2010) for detecting gerrymandering in U.S. congressional districts. This metric computes the proportion of the total area of a shape, i.e., a city block, that falls inside a circle of the same area; both aligned to their centroids. Figure 4.3.3 shows three different shapes of the same area displaying varying degrees of compactness. *Compactness* values range from 0 to 1 with values closer to 1 being indicative of more compact, rounded, shapes.

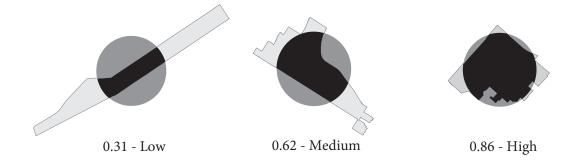


Figure 4.3: Compactness index measured on three shapes of the same area but differing spatial configurations.

Finally, the computation of our single compositional indicator, *number of neighbours*, is a rather simple process carried out in ArcGIS using the tool polygon neighbors, which computes the number of neighbouring features of a given polygon, blocks in this case. This variable provides a good understanding of the topological properties of an area by estimating how blocks are laid out. In a typical grid configuration, blocks are usually surrounded by 8 neighbouring blocks while in areas showing irregular layouts the number of neighbours varies greatly.

Blocks Statistics	Area	Perimeter	Ratio Area Perimeter	Orthogonality	Angularity	Number of Neighbours	Compactness
Min. :	901.20	112.10	3.54	0.12	-90.00	0.00	0.14
1st Qu.:	9384.20	421.40	21.66	0.79	-25.00	4.00	0.53
Median :	14296.70	566.30	25.17	0.95	26.00	5.00	0.62
Mean :	18400.80	656.40	25.44	0.86	13.30	5.21	0.63
3rd Qu.:	20694.40	731.10	28.78	0.99	41.00	7.00	0.73
Max. :	497386.70	12861.20	78.90	1.00	90.00	27.00	1.00

Table 4.2: Statistics of city blocks metrics.

In Table 4.2 below we present some basic statistics for the set of metrics just described. From there we can make some inferences about Montréal's block configuration. For the purpose of the illustration, we can argue that a hypothetical, average Montréal block is around 1.6 hectares, it is oriented NW, it is fairly rectangular, elongated, and it is surrounded by 6 blocks.

This select group of indicators captures well-defined properties of the urban blocks and, by extension, of the street network, that we deem *significant* and *discriminative*, i.e., apt at capturing characters of the form, particularly in the Montréal context, that differentiate dissimilar environments. Such a method allows to identify homogenous sub-groups in the dataset. Our goal is, hence, to subject these metrics to a k-means cluster analysis in order to find clusters of blocks sharing similar characteristics. The following section revisits cluster analysis and describes the process for creating clusters of city blocks.

Clustering Procedure

Cluster analysis is convenient method that allows for classifying observations into groups. Elements in a particular group, or cluster, share similar characteristics in regards to their attributes or variables. For identifying discontinuities in the urban tissue, we perform a k-means clustering aimed at categorizing urban blocks in regards to the set of indicators described in section 3.4. K-means is an unsupervised algorithm which assumes no preexisting labels in the data observations; therefore, the number of clusters sought must be specified beforehand. We use a common method called *'the elbow method'* for finding the optimal number of categories. In figure 4.3.4, we see that the curve bends around the sixth iteration, indicating that at that point there is no gain in adding a new cluster (Kodinariya & Makwana, 2013).

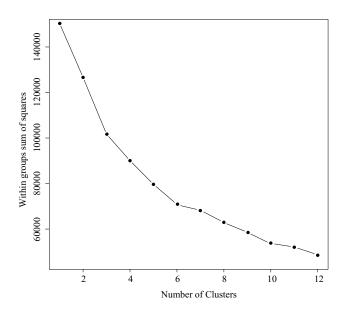


Figure 4.4: Optimal number of clusters.

We perform the cluster analysis in QGIS using the 'Attribute based cluster' plugin. Results are satisfactory and we can easily identify 6 categories exposing properties of the indicators of our choice. For instance, we see how similar patterns are placed in different groups because of a change of orientation in blocks; or how large irregular blocks on the shores get clustered together. Figure 4.3.5, below, summarizes the results of the k-means clustering, displaying as well a sample of each block type, their spatial distribution across the Island of Montréal, and averages. It is important to note that the goal of this process is not to perform a thorough classification of urban blocks but rather to identify patterns that would help in delineating MNAs.

Once mapped and colour-coded according to cluster membership, the spatial distribution of blocks is revealed: some areas are characterized by aggregated blocks of the same category (i.e., characterized by their homogeneity), while other areas manifest heterogeneity, displaying a recognizable mix of block types that distinguish them from surrounding areas that are either internally homogeneous or that present a different mix.

In consequence, we can argue that in the Island of Montréal there exist two types of blocks aggregates: internally homogenous and heterogenous. Internally homogenous aggregates are constituted by blocks belonging to the same cluster, typically of block types 2, 3, or 4, while heterogenous aggregates are formed by a mix of blocks generally associated with block types 1, 5 and 6. The figure 4.3.6 below presents the results of the cluster analysis of city blocks while figure 4.3.7 displays all clusters combined.

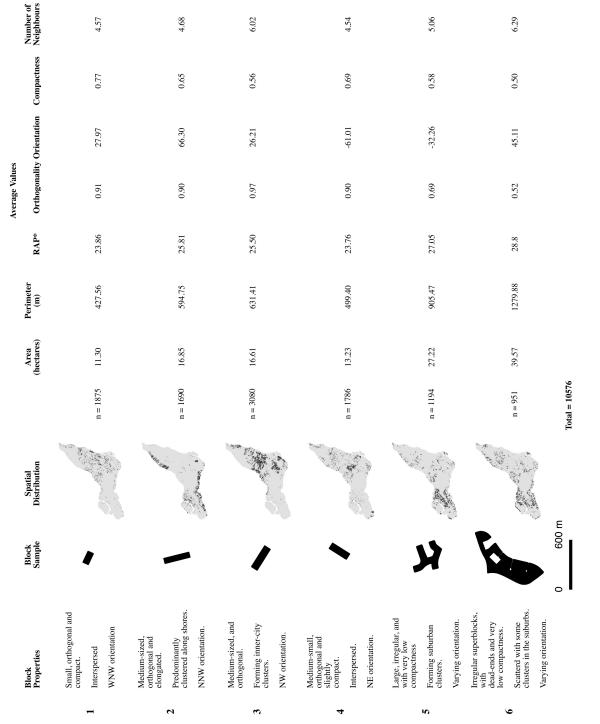
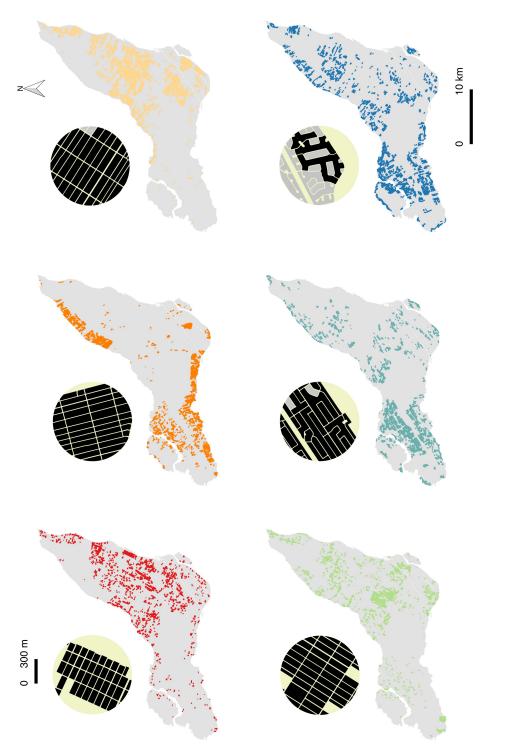
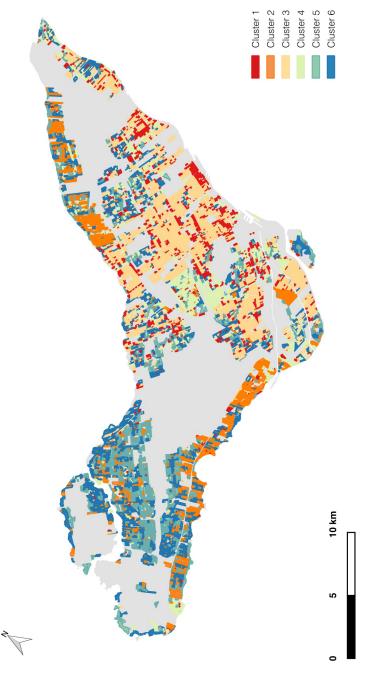
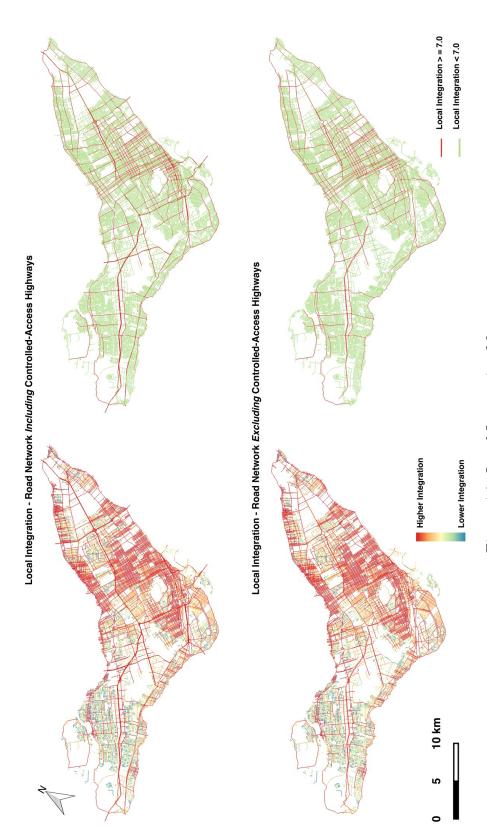




Figure 4.5: City Blocks by Type (clusters).

Space Syntax Analysis


Space syntax consists of a set of tools for analysing the configurational properties of the space (see section 3.6). In morphological analyses, space syntax provides a series of parameters pertaining to the road network, which are derived from a connectivity graph (Figure 2.2.7). Space syntax is, in essence, a measure of the accessibility of every street in relation to all other streets in the system using planar graphs (Kofi, 2010).

Prior to running space syntax analysis, it is necessary to generate axial lines for the whole street system in the Island of Montreal. Here, we rely on an automated process performed using the ArcGIS extension Axwoman based on "*natural roads*." Axial lines are generated from street centerlines using OpenStreetMap data. Street segments forming axial lines are joined following the Gestalt principle for a good continuation. Thus, a road segment is joined to an adjacent segment only if a pre-set deflection angle falls within certain threshold; in our case, 45 degrees, which is the default value proposed by Axwoman (Jiang, Zhao & Yin, 2008). Nevertheless, the outcome of this automated process was not perfect and many inconsistencies were found, which required extensive manual editing, a procedure that is not unusual for this type of analysis.

Once the street layer is transformed into a set of axial lines, we carry out the space syntax analysis. Axwoman's algorythm estimates 8 parameters: *Connectivity, Control, Total Depth, Global Depth, Local Depth, Mean Depth, Global Integration, and Local Integration.* We add the variable Intelligibility, which is the ratio between connectivity and local integration (this parameter is not computed by the software). The analysis is performed twice for whole street network including and excluding controlled-access highways.

The following section will address specifically the question of urban thoroughfares and the fact, in particular, that some of these act as boundaries. Let it just be mentioned for that that space syntax analysis can help identify thoroughfares. Integration is an estimate of how accessibility a given axial is from all other axial lines in the system (global integration) or at a given radius (local integration). Gkanidou et al. (2015) argue that integration is measure of a street's potential as an attractor of movement. Thoroughfares give access to large sectors of a city. They also have a high arteriality level. As a consequence of such conditions, they have a high integration value and they appear as such when mapped. Figure 4.3.8 shows local integration values and compares the results of the analysis considering both, controlledaccess highways as a part of the arterial system, and as a first-order urban barrier, in which case are excluded from the space syntax analysis.

The integration map highlights spatial patterns in the street system, as tightly meshed networks, for instance, will be comprised of highly integrated streets, contrarily to sectors where "loops and lolipops" prevail. The said map can also reveal spatial disconnects in the network that denote the presence of boundaries between aggregates. Used in combination with mapping of various clusters, the integration map allows for triangulation as following sections will illustrate.

Assessing Spatial Discontinuities

This section sets about identifying boundaries, or second-tier spatial discontinuities. Thoroughfares, or segments of those often mark spatial discontinuities when they are at the limit of differing street patterns. Cadastral boundary lines can similarly denote shifts in street network patterning or poor connection between adjacent zones. We will see as well that the historical agricultural allotment system often informs current conditions of the urban tissue.

The Question of Thoroughfares

Caniggia & Maffei (2001) suggest that street specializing as heavy transportation routes are often located at the periphery of tissues, where they act as anti-nodal dividing axes. By their nature, what Gauthier & MacDougall (2014) have termed thoroughfares, often assume such a function in the street network and such a position and role in the built landscape. This is the reason why MacDougall (2011) has used thoroughfares as boundaries in constructing his fragmentation geometry two. In this research, geometry two is constructed on different grounds. Preliminary empirical work conducted on the street network of the Island of Montréal pointed to the fact that thoroughfares, or some portion of these, do not always assume the function of boundary. Further, spatial discontinuities were revealed that are not associated with thoroughfares. As a consequence, the identification of thoroughfares is still very useful for the analysis, but is not sufficient when aiming at apprehending secondtier spatial discontinuities.

Gauthier coined an operational definition of thoroughfare, in which the latter is depicted as "a component of the street network such as a boulevard or an expressway, that is granted with a high level of arteriality (connected to street of similar topological level or to a controlledaccess highway); which spans over the length of several morphological neighbourhood areas that it provides access to; which often crosses first order barriers (such as railways, canals, etc.), and which tend to be located at the periphery of morphological neighbourhood units where it acts as an anti-nodal dividing axis." (Gauthier, 2015, not paginated). Based on such criteria, a map of thoroughfares on the Island of Montréal was produced, which was also triangulated with the results of space syntax integration analysis, as well as with the georeferenced cartographic representation of the old agricultural road network of 1890. The map in Figure 4.3.9. presents the results of that analysis.

Old Agricultural Allotment System and Road System

We resort to historical data to achieve a more accurate delineation of MNAs. In order to do this, we use a 1890-map of the Island of Montréal showing early subdivisions of land as well as the first roads traced on the island (Figure 4.3.9). The information provided by this single map is very useful as we can see how historical roads are often associated with current highly integrated streets (Figure 4.3.8); how in some neighbourhoods the configuration or orientation of the street network is informed by the former agricultural allotment, and finally; how old agricultural parcels dividing lines inform current spatial discontinuities in residential tissues and street network.

So far his chapter has covered the approaches and methods, and has presented partial results of the preliminary analyses carried out to support the outlining of morphological neighbourhood areas (MNAs). The following sections move onto the process of creating FG2 per se, and in so doing, of delineating MNAs.

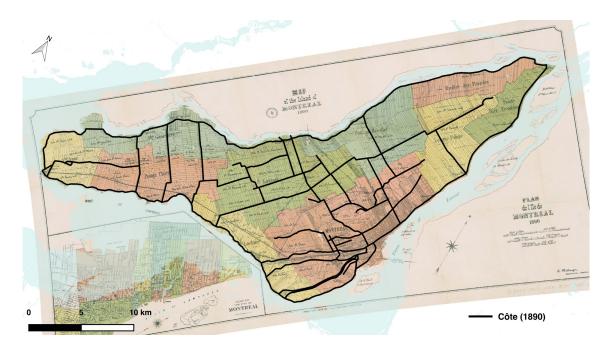


Figure 4.9: Island of Montréal, 1890. Source: BANQ (2015)

Bringing About FG2

This section describes and expands on the procedures performed for outlining morphological neighbourhood areas in geometry one. As previously discussed, an MNA is a zone comprised of predominantly residential tissues that display street network and block geometrical patterns that distinguish it from surrounding residential tissues, from which it is separated either by first-order urban barriers or by second-order urban boundaries. As a consequence, the creation of FG2 can be described as a two-fold exercise, which entails pattern recognition of street network and block geometries as well as the identification of spatial discontinuities. The work mobilizes both qualitative methods (for the identification of morphological features and the assessment of spatial relationships between these), and quantitative methods for the analysis of geometrical and topological properties of street networks and urban blocks. The last steps in the process involves morphological interpretation to decipher significant spatial relationships. This operation is facilitated by the preceding work, which consisted in: mapping urban blocks by type (according to geometrical properties); mapping streets according to their topological status the system (i.e., their level of integration); mapping urban thoroughfares; and finally, mapping old the agricultural allotment system (since it has informed later urbanization patterns).

In section 4.3, page 63, we introduced seven indicators describing properties of the city blocks which we classified as metrological, morphometric and compositional. Metrological parameters capture dimensions, morphometric variables refer to their configuration, and lastly, compositional indicators capture topological characteristics. Using those parameters we proceeded to create a taxonomy of city blocks applicable to Montréal. This categorization, along with the results of space syntax analysis, serve as the basis for the delineation of MNAs. Outlining MNAs, however, is not a straightforward or automatic process. Here, we face some difficulties while carrying out the task as in some circumstances there is no apparent contrasting elements within a patch revealing distinctiveness; it is in such cases when we resort to bringing into the analysis the historical allotment system and the "contrada" structure.

For delineating MNAs, we first proceed to to examine all 132 patches from geometry one. We identify 89 patches requiring no treatment whatsoever, as they are internally cohesive, and 43 large patches demanding further examination (Figure 4.3.10).

Following, with a map displaying clusters of city blocks and roads whose local integration value is higher than 7.00, which can be indicative of a thoroughfare, we proceed to explore patches requiring treatment in geometry one. After having isolated urban blocks (with their respective cluster membership), within the 43 patches to further examine, we notice that

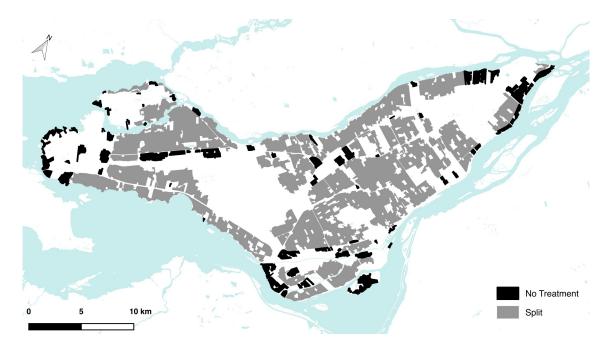


Figure 4.10: Patches of FG1 requiring treatment or not.

spatial discontinuities are most often marked by a change in orientation in the street layout followed by arterial roads acting as boundaries. Below, we present some illustrative cases:

• Case 1: Differing Block Geometries. Here we present a residential patch displaying a predominantly orthogonal grid in the area of Verdun. Change of orientation in the street layout indicates the presence of two morphological areas. However, a small sector on a side of a highly integrated road shows as well a different street pattern configuration, evident in the indicators of orthogonality and compactness. As a result, this urban patch is split in 3 morphological areas (Figure 4.3.11).

Figure 4.11: FG1 - Patch 87.

• Case 2: Differing Street Networks - Topological Properties. As seen in Figure 4.3.12, this patch does not seem to display any internal homogeneity in regards to the configuration of its urban tissue. Different types of blocks are interspersed across the patch making it difficult to delineate cohesive zones, although different 'mixes' of block types can be observed in different areas (e.g., some sectors are characterized by orthogonality, some area not, etc.. The block geometry alone does not allow for a proper delineation. Here, local integration provides further evidences of differing street patterning; in particular when combined with the urban thoroughfares map. In the latter case, thoroughfares assume the status of "anti-nodal dividing axis" as

per Cannigia & Maffei (2001) formulation. The subdivision of this patch results in 9 MNAs.

Figure 4.12: FG1 - Patch 19.

• Case 3: Street Network Topology and Contrada Structure. Again, block geometry alone is not enough to distinguish zones within patch 33 in geometry one (Figure 4.7.4). This is a large patch in the West Island sector of Montréal exhibiting a pattern in which irregular blocks, with low orthogonality and compactness, are predominant. Major thoroughfares helpto delineate morphological areas within this FG1 patch. Further evidence of spatial discontinuities are also revealed by the allotment system, and in particular, by the contrada structure. In the inset figures in 4.3.13 we observe long back-to-back pertinent strips denoting little or no direct connections between adjacent zones and hence acting as boundaries. Twenty morphological areas were found within this patch.

Figure 4.13: FG1 - Patch 33.

• Case 4: Spatial Discontinuities Informed by Former Agricultural Allotment. This area in particular is characterized by large irregular blocks. A certain level uniformity is evident in the street layout, though modest changes in orientation and configuration of blocks denote variation of patterns. Outlining morphological zones is not straightforward. To examine this patch further we included the 1890-agricultural allotment system. We noticed that the different configurations within this patch are informed by the old agricultural system of the Island of Montréal. The seemingly subtle shifts in blocks and street network patterning appeared more clearly hence enabling for identifying five morphological zones within this FG1 patch.

Figure 4.14: FG1 - Patch 10.

Fine Tuning MNAs Boundaries

The procedures described in the previous section were applied, alone or in combination, to the 43 patches in FG1 requiring examination. This resulted in

252 patches, which, added to the 89 original patches that did not need treatment sums up to 341 morphological areas larger than 2 hectares in the Island of Montréal. It is worth mentioning that, since here we make use of a more sophisticated approach for outlining MNAs, our results somewhat differ from those obtained by MacDougall (2011) in his analysis and delineation of *"fragmentation geometry two"* as he identified 296 urban patches based on first-order barriers and thoroughfares.

The final steps for delineating MNAs involved a meticulous refinement of the patch boundary using satellite imagery and the allotment system in order to:

- Make MNAs boundary match the allotment system;
- Remove residual, fringe, unoccupied areas;
- Slightly overlap MNAs when the dividing factor is a road. Overlapping is aimed at capturing properties of interconnectivity among morphological zones. Figure 4.3.15 shows the results of this refining process and Figure 4.3.16 presents the results of the cluster analysis carried out on MNAs.

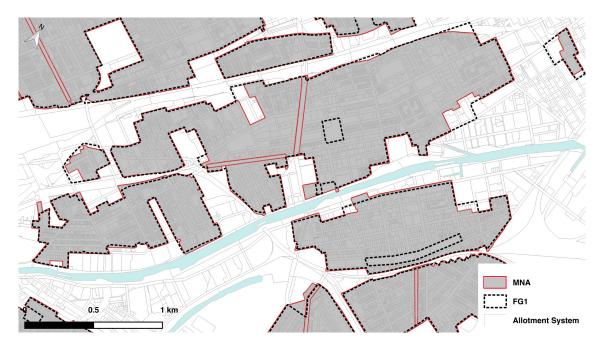


Figure 4.15: Correction of MNAs Boundaries.

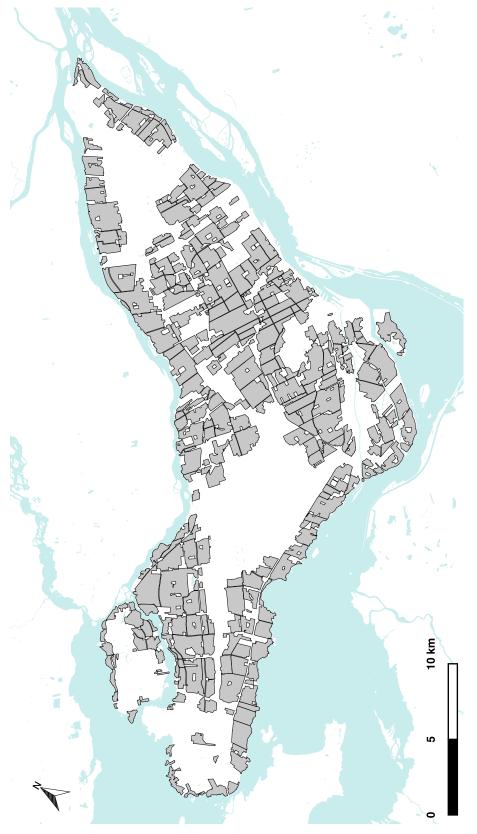


Figure 4.16: Morphological Neighbourhood Areas (2016).

Conclusion

This chapter has outlined the process for identifying morphological units within the urban tissue. The process involved a semi-automated phase built around spatial indicators pertaining to urban blocks which allowed to clearly identify discontinuities by means of clusters of blocks sharing similar properties. Subsequently, we carried out a meticulous procedure, involving parameters of space syntax, allotment system, and historical information to expose latent patterns in the urban tissue and find morphological zones. Last, we perfected the morphological neighbourhood areas by eliminating noise in fringe areas and by pairing their perimeter to the allotment system.

Chapter 5

Taxonomy of Morphological Neighbourhood Areas

5.1 Introduction

With neighbourhood morphological areas already outlined, we then proceed to identify and compute parameters aimed at capturing their internal properties. Here, we differentiate between local and global indicators. Some of theses are derived from urban blocks and space syntax analyses while others are specifically estimated for MNAs. Following, we perform the statistical analysis, which involves, first, a principal component analysis (PCA) aimed at reducing the dimension of the dataset in order to identify the most significant variables. Finally, we run a hierarchical clustering analysis (HC) to categorize MNAs in groups.

5.2 Variables

For creating our taxonomy of MNAs we resort to a series of variables aimed at capturing properties of MNAs and/or 'part-to-whole' relationships. Our indicators include measures of the MNAs themselves while others bring into the classification topological attributes of the street network and geometrical properties of urban blocks.

Global Variables

For global, or pan-island indicators we resort primarily in space syntax metrics. Space syntax indicators for the whole system, including and excluding controlled-access highways, are averaged by morphological neighbourhood area. The process results in 16 variables that are appended to the MNA dataset.

Our second global indicator is a measure of MNA interconnectivity. Here, we identified all roads segments linking at least two MNAs, computed the percentage of such links crossing a first-order urban barrier and add the to the MNAs dataset.

Local Variables

We select a group of variables from which we seek to reveal internal properties of the neighbourhood morphological areas. Here, we find primarily compositional/topological indicators derived from urban blocks and space syntax analysis. Nonetheless, we add as well two compositional and one morphometric parameters pertaining to MNAs.

Properties of the Urban Block

Using the urban block for identifying patterns in the urban tissue proved to be a very effective method for clustering blocks. In section 4.3.1, page 63, we identified 7 block variables. Three of these indicators do not play a significant role in determining types of MNAs and may even add noise to the data analysis; therefore, they were excluded from this analysis. We select 4 blocks geometry variables: *Ratio Area-Perimeter, Compactness, Orthogonality,* and *Number of Neighbours.* These indicators are averaged by morphological neighbourhood area and appended to the MNAs dataset.

Local Measures for Space Syntax

Here, we run space syntax analysis for every neighbourhood morphological area. This process requires clipping the street network to MNAs and then carrying out the process independently for all 341 MNAs. The outcome of this analysis, along with those obtained in section 4.5 are averaged by MNA and appended to the MNAs dataset, which, including global parameters, results in 27 space syntax variables: *Connectivity, Control, Total Depth, Global Depth, Local Depth, Mean Depth, Global Integration, Local Integration, and Intelligibility,* each measured at global scale with highways, global scale without highways, and MNA scale. Figure 5.2.1 shows how the results of the analyses vary depending on the scale.

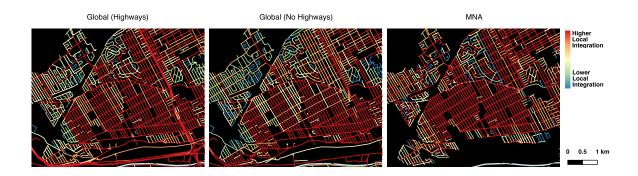


Figure 5.1: Space syntax local integration measures at three scales of analysis.

Internal Meshing

For quantifying MNAs internal connectivity we compute the link-to-node ratio which refers to the number of street segments between intersections and intersections. Higher link-tonode values are indicative of tighter meshing and therefore of greater internal connectivity within the street system.

Compactness

The existing literature provides a wide range of methods for measuring the compactness of a circle (Angel et al., 2010). Here, we have selected two indicators for assessing the compactness of morphological neighbourhood areas. The first estimation is based on t the ratio between the area of the MNA and its perimeter. In addition, we include as well the Are Exchange index, a measure of compactness developed by Angel & Parent (2010) intended for differentiating between elongated and circular geometries. This metric was already applied to urban blocks and explained in detail in section 4.3.

Data Sample and Table

Figure 5.1 below presents a list of 32 variables computed for quantifying the internal properties of morphological neighbourhood areas and their respective classification by type and extent.

	Indicator	Description	Туре	Extent
1	Node_Ha	Nodes per hectare	Compositional	Local
2	Conn_Id	Link-to-node ratio	Compositional	Local
3	MNA_comp	MNA compactness	Morphometric	Local
4	B_con_pe	MNA connections per perimeter	Compositional	Local
5	B_avcmp	Block average compactness	Morphometric	Local
6	B_avnei	Block average number of neighbours	Compositional	Local
7	B_avor	Block average orthogonality	Morphometric	Local
8	B_avrap	Block average ratio area perimeter	Metrological	Local
9	PP_conn	Connectivity - SSX - Local	Compositional	Local
10	PP_cont	Control - SSX - Local	Compositional	Local
11	PP_MD	Mean depth - SSX - Local	Compositional	Local
12	PP_GI	Global integration - SSX - Local	Compositional	Local
13	PP_LI	Local integration - SSX - Local	Compositional	Local
14	PP_TD	Total depth - Local	Compositional	Local
15	PP_LD	Local depth - SSX - Local	Compositional	Local
16	PP_Inte	Intelligibility - SSX - Local	Compositional	Local
17	AR_Conn	Connectivity - SSX - All roads	Compositional	Global
18	AR_Cont	Control - SSX - Global	Compositional	Global
19	AR_MD	Mean depth - SSX - Global	Compositional	Global
20	AR_GI	Global integration - SSX - Global	Compositional	Global
21	AR_LI	Local integration - SSX - Global	Compositional	Global
22	AR_TD	Total depth - SSXC - Global	Compositional	Global
23	AR_LD	Local depth - SSX - Global	Compositional	Global
24	AR_Inte	Intelligibility - SSX - Global	Compositional	Global
25	NH_Conn	Connectivity - SSX - Global (no highways)	Compositional	Global
26	NH_Cont	Control - SSX - Global (no highways)	Compositional	Global
27	NH_MD	Mean depth - SSX - Global (no highways)	Compositional	Global
28	NH_GI	Global integration - SSX - Global (no highways)	Compositional	Global
29	NH_LI	Local integration - SSX - Global (no highways)	Compositional	Global
30	NH_TD	Total depth - Global (no highways)	Compositional	Global
31	NH_LD	Local depth - SSX - Global (no highways)	Compositional	Global
32	NH_inte	Intelligibility - SSX - Global (no highways)	Compositional	Global

Table 5.1: List of Variables for Morphological Neighbourhood Areas.

5.3 Hierarchical Clustering on Principal Components

For developing our taxonomy of morphological neighbourhood areas, we implement a principal component analysis (PCA) followed by a hierarchical clustering (HC). PCA is a statistical method widely used for reducing large datasets to a fewer number of uncorrelated variables called "*principal components*." PCA is used to reveal patterns in the data emphasizing variation. Our aim here is to identify the smaller number of component explaining most of the variability in our data. The principal components are clustered using hierarchical clustering; the entire statistical process is performed in RStudio.

Correlation Matrix

Before performing the principal component analysis we need to carry out an exploratory analysis of our variables. Highly correlated variables may affect PCA results as tend to overemphasize the contribution of certain components. For that reason, our first step is to produce the correlation matrix of all 32 variables and remove all variables whose significance values are above 0.49 or below -0.49 (Figure 5.3.1).

Upon examination of the correlation matrix we retain 11 indicators; however, two additional variables are removed: *MNA connections per perimeter* and *Control -SSX - Local* due to a significant number of outliers and to a quasi-categorical distribution, respectively. Table 5.2 presents summary statistics for the 9 remaining MNAs variables.

	Node_Ha	Conn_Id	MNA_comp	B_avcmp	B_avnei	B_avor	AR_GI	NH_LI	PP_MD
Min.	0.00	0.00	0.32	0.37	0.00	0.43	1.58	1.34	1.00
1st Qu.	0.71	1.47	0.63	0.59	3.86	0.74	2.27	3.19	2.13
Median	0.85	1.62	0.75	0.62	4.94	0.82	2.57	4.07	2.64
Mean	0.87	1.65	0.72	0.62	4.54	0.81	2.53	4.14	2.68
3rd Qu.	1.02	1.82	0.82	0.66	5.65	0.91	2.82	5.07	3.13
Max.	1.97	3.00	0.92	0.80	7.46	0.99	3.54	7.22	5.55

Table 5.2: List of Variables for Morphological Neighbourhood Areas.

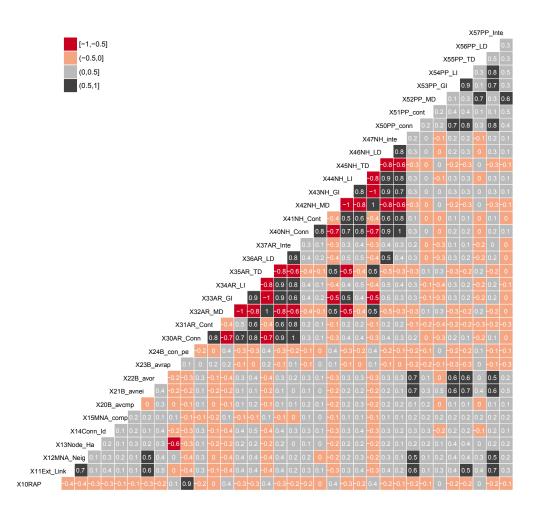
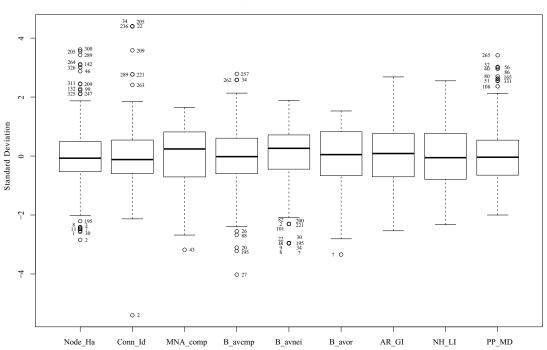



Figure 5.1: Correlation matrix of MNA indicators.

Data Preparation

The process of data preparation involves, first, normalizing the variables. Normalization adjusts the values of variables measures at different scales to make them comparable. Figure 5.3.2 presents a boxplot of MNA indicators. We observe that all 9 variables' means are close to zero. In addition, this graph also identifies 43 observations acting as outliers. Upon further examination, we established that 19 MNAs, given their dimensions and characteristics, did not qualify as outliers and were not excluded from the MNAs dataset (Figure 5.3.3). Finally, we performed a logarithmic transformation to the MNAs dataset to lessen the influence of the remaining outliers or any other extreme values.

Boxplot of MNA Indicators

Figure 5.2: Boxplot of MNA indicators

Principal Component Analysis

PCA is an heuristic approach that seeks to explain the most significant characteristics of the data in a reduced number of axes, or principal components, without much loss of the

Figure 5.3: Outliers

information (Legendre & Legendre, 2012). The decision in regards to how many components to retain is usually arbitrary and can be based on the percentage of the explained variance. Here, we look at the eigenvalues. Eigenvalues are an estimate of the significance of the axes (Legendre & Legendre, 2012). Eigenvalues values of less than 1.00 imply that the component accounts for less variability than a single variable and, therefore, are not retained in the analysis (Girden and Kabakoff, 2010).

Our first iteration of the principal component analysis is run on a matrix composed of 9 variables and 317 observations. As seen in figure 5.3.4, the first 3 principal components account for most of the variability in the data (eigenvalues > 1.00); in consequence, we proceed to perform the first iteration of the PCA retaining 3 components.

At this point we need as well to specify the number of clusters we are seeking in the data. We tested, compared, and analyzed different results of the dendrogram in GIS. We run iterations ranging from 2 to 12 clusters. Classifying the MNAs in two groups (clusters)

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9
Standard Deviation	1.62	1.30	1.04	0.94	0.84	0.81	0.76	0.68	0.54
Eigenvalues	2.62	1.70	1.09	0.89	0.71	0.65	0.58	0.46	0.30
Proportion of Variance	0.29	0.19	0.12	0.10	0.08	0.07	0.06	0.05	0.03
Cumulative Proportion	0.29	0.48	0.60	0.70	0.78	0.85	0.92	0.97	1.00

Table 5.3: Importance of principal components.

implies that seemingly quite different MNAs fall in the same category. On the contrary, classifying MNAs in twelve groups might imply that distinctions are made between groups that differ only marginally. We determined that 8 groups seem to capture internal properties deemed appropriate for creating a taxonomy of morphological neighbourhood areas in the Island of Montréal.

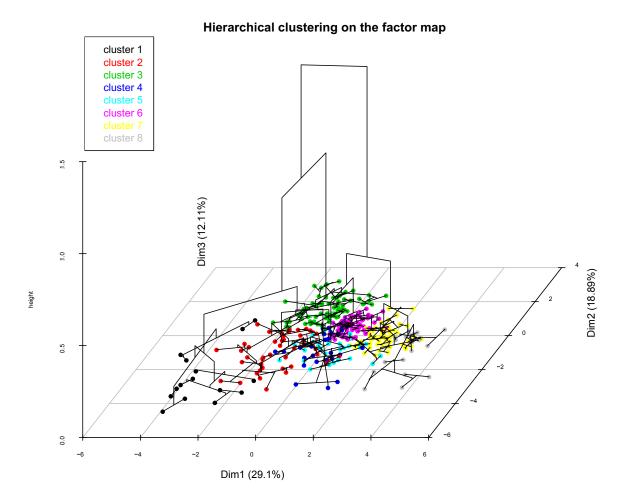


Figure 5.4: Hierarchical clustering on the factor map

As shown in table 5.3, the first 3 principal components capture a only 60% of the variability in the data (29.1% in Dim1, 18.89% in Dim2 and 12.11% in Dim3), which represents a rather weak figure. In consequence, we proceed to identify and isolate the most contributing variables in the PCA for re-running the algorithm.

For finding the most contributing variables we resort to the *sum of the cos2*. The *cos2* is used to test the quality of the representation. The closer the *cos2* is to 1.00 the more represented the variable is in the principal components. In figure 5.3.5, we present all 9 variables and observations plotted and colour-coded by their *cos2* contribution. The longer the arrow (cos2) the more the variable contributes to the principal components. The most important variables are those that are correlated with the first and second principal components. Variables with a lower contribution may be removed to simplify and optimize the analysis. In our case, we observe that MD_PP (Mean Depth - SSX - Local), B_avnei (Block average number of neighbours) and B_avor (Block average orthogonality) are the most significant variables. In consequence, in our second iteration, we retain these three variables, dismiss the remaining 6 variables, and proceed to re-run the principal component analysis.

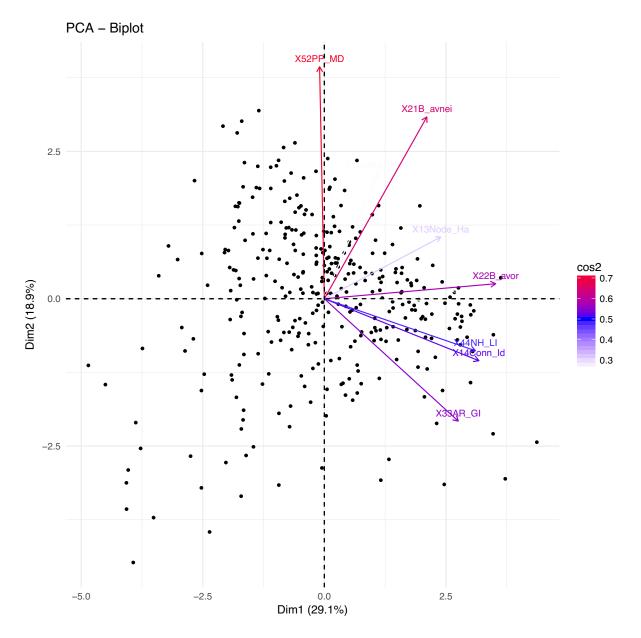


Figure 5.5: Contribution of variables to principal components.

For running the second iteration of the PCA, again, we first determine the number of components to retain indicated by eigenvalues > 1.00. As shown in table 5.4, we retain the two first principal components and then proceed to run the principal component analysis and the hierarchical clustering with an eight-group partition. The cumulative proportion increases to a high 86.2%, meaning that these two components, comprehending 3 MNA

	PC1	PC2	PC3
Standard Deviation	1.16690	1.10660	0.64330
Eigenvalues	1.36156	1.22464	0.41379
Proportion of Variance	0.45380	0.40820	0.13790
Cumulative Proportion	0.45380	0.86210	1.00000

Table 5.4: Importance of principal components.

indicators, are extracting most of the information in the data. The results of the hierarchical clustering subsequent to the PCA are shown in figure 5.3.6 and mapped in Figure 5.3.7.

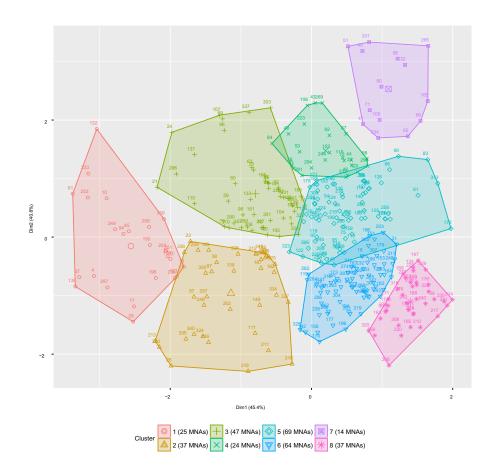


Figure 5.6: MNAs clusters.

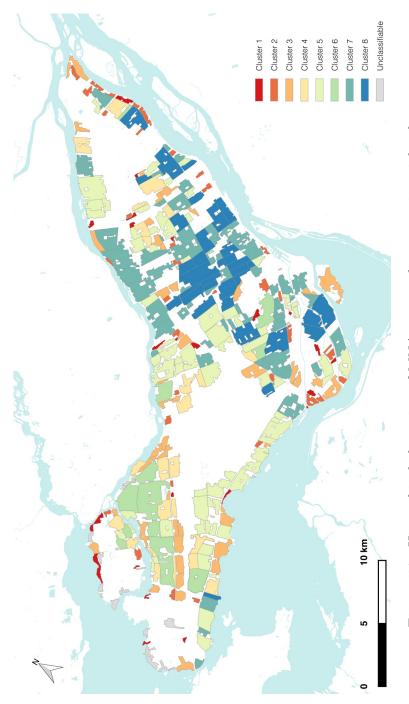


Figure 5.7: Hierarchical clustering of MNAs mapped representing eight clusters.

Interpretation of PCA Results

For interpreting the results of the PCA and the hierarchical clustering we need to look at the biplot (Figure 5.3.8). This figure shows variables and individuals colour-coded by cluster membership. The figure includes as well the loadings (contribution) of each variable to every dimension. We see that the first principal component is strongly correlated with B_avnei (the vector representing this variable is almost parallel to the Dim1 axis). This means that the average number of neighbours per block is a significant factor for MNAs along the Dim1 axis, where most of the variability occurs.

The second principal component, on the other, hand, is explained by both PP_MD and B_avor with the former on the positive quadrant and the latter in the negative quadrant. The distances among observations in the biplot are approximations of their euclidean distances in multidimensional space; closer observations are more similar to each other than distant observations. We can proceed now to describe how these indicators explain the clustering using the biplot in combination with radar graphs.

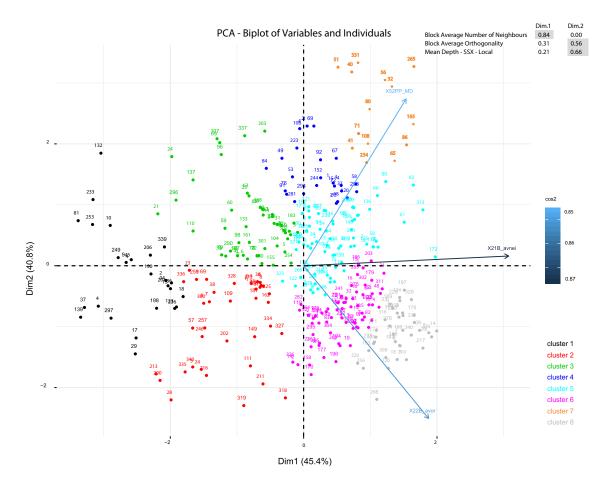


Figure 5.8: Biplot of Variables and Individuals

Cluster 1: this cluster (n=25) characterizes by a set of MNAs which principally are on the opposite end of the B_avnei vector, meaning these patches are constituted mainly by few, and potentially large and isolated blocks. We see as well that neither the vectors or opposites of PP_MD and B_Avor seem to affect this group. MNAs in this cluster are interspersed across the island, are predominantly small and elongated, and present a cul-de-sac street pattern. Another important characteristic of this cluster is that all 25 MNAs in this group are next to a first-order urban barrier, be it either natural, as those along the shore or specialized tissues (Figures 5.3.9 and 5.3.10).

Figure 5.9: Cluster 1.

Figure 5.10: Sample of cluster 1.

opposite end of PP_MD , meaning that MNAs in this group have a rather low mean depth, indicative good internal connectivity. Also, we see that some MNAs are clustered along the Dim1 axis, opposite to the B_avnei vector, denotative of isolated blocks or blocks with very few neighbours. These are small and predominantly compact patches, scattered, with a rather orthogonal but interrupted grid. Here we also see that all 37 patches in this group are bordering a first-order urban barrier (Figure 5.3.11 and 5.3.12).

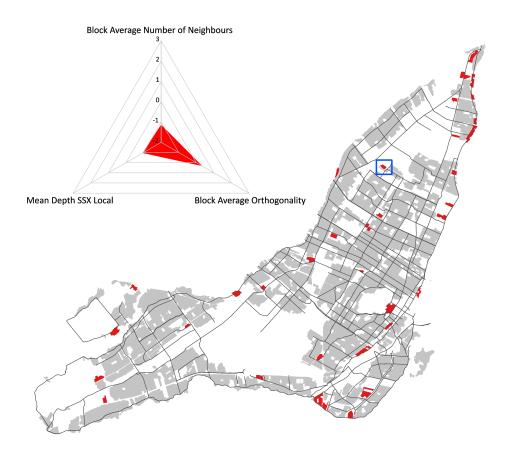


Figure 5.11: Cluster 2

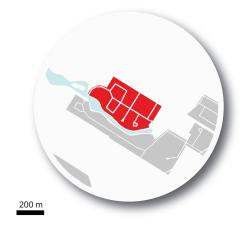


Figure 5.12: Sample of cluster 2

Cluster 3: this group (n=47) is composed by medium-sized patches scattered across the island. In the biplot this group can bee located on the opposite end of B_avor, suggesting that these MNAs have a very low block orthogonality, therefore, displaying a rather curvilinear street layout. Likewise, there is a concentration of patches along the Dim1 axis, also on the opposite side of the vector, indicative of blocks with few neighbours. Here we se as well most of the 47 MNAs next to first-order urban barriers and are enlongaged, hence, located at peripheral, or anti-polar locations in the system (Figures 5.3.13 and 5.3.14).

Figure 5.13: Cluster 3

Figure 5.14: Sample of cluster 3

Cluster 4: here we find large MNAs (n=24) located on the mid to high-end of the PP_MD

vector, indicative of poor internal meshing, and to the opposite side of the B_avor vector, which may denote an irregular, curvilinear, street pattern. B_avnei does not seem to have much of an impact on the internal structure of these MNAs Here. we see a split with some of the 24 MNAs in the group bordering other MNAs and some next to first-order urban barriers (Figure 5.4.15 and 5.4.16).

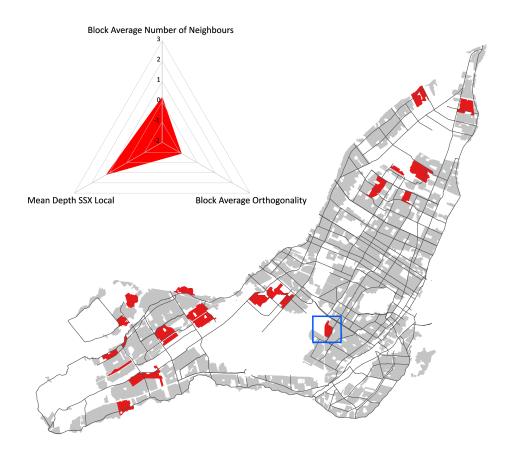


Figure 5.15: Cluster 4

Figure 5.16: Sample of cluster 4

Cluster 5: this cluster (n=69) is comprised of predominantly medium-size patches scattered across the island. We see this group at the origin of the Dim1 and Dim2 axes. Here, all three indicators seem to influence the internal configuration of the patch. Most notably it is PP_MD , with medium to somewhat high values which reveals low internal connectivity. We notice that some observations are located along the B_avnei , close to the origin. From this, we can assume that blocks within this MNA are not isolated. In regards to B_avor , the group is found close the origin and even on the opposite side of the vector which may denote an rather irregular or interrupted grid street configuration. Here we start to see how as block orthogonality increases, evidencing predominantly gridiron patterns, MNAs are less likely to be adjacent to first-order and tend rather to be in close proximity to other MNAs (Figures 5.4.17 and 5.4.18).

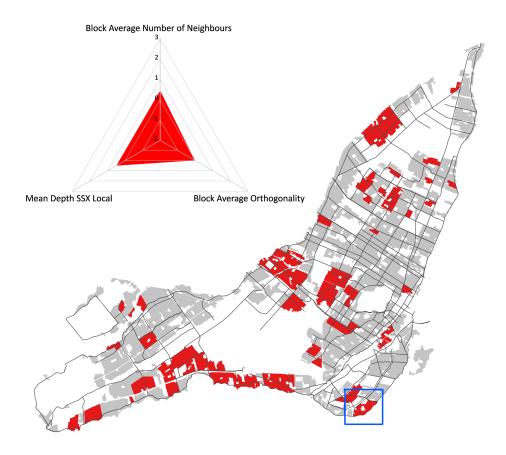


Figure 5.17: Cluster 5

Figure 5.18: Sample of cluster 5

Cluster 6: we see this group of MNAs (n=64) clustered along he mid-end of the B_avor

vector. This may be denotative of an internal configuration predominantly orthogonal although with some interruptions or few non-orthogonal blocks. B_avnei , influence here seems medium-low and being the group located at other end of PP_MD suggest a good internal connectivity. MNAs in this groups exhibit some degree of compactness, with very few exceptions. Likewise, they are systematically neighbouring other residential areas (Figures 5.3.19 and 5.3.20).

Figure 5.19: Cluster 6

Figure 5.20: Sample of cluster 6

Cluster 7: here we found MNAs (n=14) clustered along the higher of PP_MD , denoting a very low internal connectivity. Block orthogonality in this group also seems very low, which suggests that we are in the presence of a non-orthogonal street configuration. B_avnei , is low but does not seem to have a significant impact on this partition Residential patches in this group do not seem quite in proximity of first-order urban barriers and neighbour other MNAs. (Figures 5.3.21 and 5.3.22).

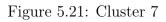


Figure 5.22: Sample of cluster 7

Cluster 8: we see that observations in this group (n=37)are located predominantly at the

higher end of B_avor , indicating that blocks are predominantly orthogonal, therefore, so is the street pattern. The groups is also found at the other end of PP_MD , suggesting a good internal connectivity and meshing. B_avnei is found at the mid-end of the vector from which we can assume that blocks are not isolated. Patches are from medium to large in size, generally compact, and mostly clustered in the center of the island where they are neighbouring other residential areas (Figure 5.3.23 and 5.3.24).

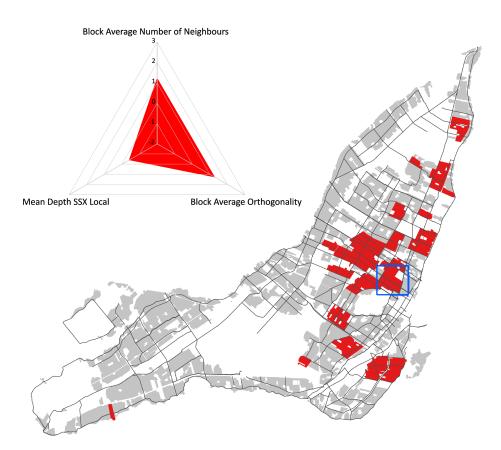


Figure 5.23: Cluster 8

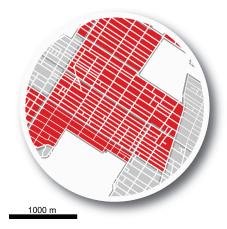


Figure 5.24: Sample of cluster 8

5.4 Conclusion

We have characterized morphological neighbourhood areas using a statistical approach that combines principal component analysis and hierarchical clustering. We began our analysis with 32 indicators; all aimed at capturing different geometrical and topological properties of MNA's street systems (including 'part-to-whole' spatial relationships). At an early stage in the analysis we found out that only 9 of such variables where significant for the analysis, as many variables were highly correlated, thus, measuring the same or redundant characteristics of the form. During our study, we also detected outliers. From a total of 341 initial MNAs, the algorithm identified 43 observations as outliers. Upon verification, we determined that only 24 MNAs were true outliers, that were then excluded from the analysis. This does not entail that these MNAs are irrelevant; rather, their geometrical properties are so capricious that carrying out the analysis with them would have skewed the results significantly. In order words, these are too singular to be integrated in the statistical classification procedure. We conclude that in the Island of Montréal we can find 8 types of neighbourhoods as per compositional (B_avnei, PP_MD) and morphometric (B_avor) indicators. Figure 5.4.1 summarizes the results of the hierarchical clustering of morphological neighbourhood areas.

Cluster Sample	Type of Configuration	Mean Depth	Block Average # of Neighbours	Block Average Orthogonality
R	Small and irregular with a cul-de-sac street pattern and loose meshing n = 25	1.85	2.40	0.70
	Small and compact with interrupted grid pattern and somewhat tight meshing n = 37	2.02	3.37	0.85
	Medium size and irregula with curvilinear street pattern with very loose meshing n = 47	r 2.88	4.19	0.72
	Medium size and compac with curvilinear street pattern and loose meshing n = 24	3.68	5.05	0.73
	Medium size with irregular grid pattern with a somewhat tight meshing = 69	3.15	5.30	0.82
	Large with orthogonal street pattern with a very tight meshing = 64	2.51	5.25	0.91
	Large and compact with non-orthogonal street patterns with a loose meshing = 14	4.78	5.56	0.72
	Large, predominantly compact with orthogonal street pattern with a tight meshing = 37	2.45	6.27	0.96
0 100	0 m Total = 317			

Figure 5.1: Clusters of MNAs with average values per indicator.

Chapter 6

Discussion and Conclusion

Mobilizing and combining methods from several disciplines and theoretical approaches – namely, typo-morphology, space syntax, landscape fragmentation, geographical information science, and statistics – this research's objectives were two-fold. First, it aimed at making a methodological contribution to the study of residential built environments centered on their street networks and tissues forms. Secondly, it wished to produce useful knowledge on Montréal's Island built landscape per se.

Building upon the work of MacDougall (2011) and Gauthier (2015, 2016), the methodological contribution entailed devising a method for identifying and spatially delineating residential areas based on morphological criteria (Chapter 4). More specifically, morphological areas are analytically defined based on *"internal"* geometrical and topological characteristics that distinguish them from surrounding residential areas from which they are separated by either first-tier of second-tier spatial discontinuities (respectively manifested as first order barriers or boundaries). The work entailed exploring and developing further the notion of boundaries, in order to distinguish between arterial boundaries (of the thoroughfare variety), and cadastral bisecting line boundaries. Hence defined, what we termed morphological neighbourhood areas after Gauthier (2015), can serve as geographical unit of reference for comparative morphological analysis, or other types of enquiries that investigates the relationship between urban form and social of environmental conditions for instance. We posit that such spatial/geographical unit of reference is more opportune and potent for certain types of analysis than administrative subdivision zones such as census tracts or dissemination areas that are routinely used in urban studies and urban planning studies. A second methodological contribution of the research (Chapter 5) consisted in developing a set of morphological, including geometrical and specific topological indicators (each consisting in a variable) to be used for quantitative analysis resulting in the characterization, the classification, and then the mapping in GIS, of differing urban residential tissues types (though excluding the building fabrics for the moment).

Beyond, the strict methodological considerations, our work allowed us to engage the reflection on some theoretical conceptualizations from typomorphology and space syntax. Caniggia & Maffei's theoretical models of street hierarchy, nodality, and tissue formation processes proved complementary with the formulations of connectivity and integration developed by Bill Hillier and Julienne Hanson. Our approach has allowed to see to which extent these theories complement each other and/or to which extent quantifiable attributes of street networks, most notably those developed by Hillier and Hanson, can capture properties of the road system that are the result of long-term morphogenetic processes.

Our research has produced interesting findings on Montréal's urban form. The Chapter 4 has demonstrated that there exist 341 morphological neighbourhood areas in the Island of Montréal. Chapter 5 has demonstrated those can be clustered in 8 types of MNA's based on the morphological, geometrical and topological properties of their street networks and blocks by using the variables *block average number of neighbours*, *block average orthogonality*, and space syntax's *mean depth* measured at MNA level, which explain 86.2% of the clustering. A detailed analysis of each cluster has allowed us to stress their intrinsic characteristics, the characteristics that distinguish clusters from each other, as well as to map the spatial distribution of the MNAs that belong to each of the clusters.

Those analyses trace a contrasted portrait in the Island of Montréal. Furthermore, we can start appreciating how such a portrait of the city fabrics based on the morphological, geometrical and topological properties of their street networks and blocks can lead to a more profound interpretation of the inherent conditions of the tissues and of the implications in terms of potential and constraints to support social life in general and sustainable living more broadly. Though this study did not touch on the third sub-system of the tissue, i.e. the buildings' fabric, it could be argued that it focused on the most vital (there cannot be lots and buildings without a route giving access to it) and resilient sub-system by centering on the street system. In addition, by delving into the geometrical properties of the street network that are directly linked to the block geometrical properties, the analysis "captures" and partially accounts for some important morphometric, metrological conditions of the subsystem of the allotment. In doing so, the results of the analysis already leads to interesting interpretations, while pointing to fascinating future research.

We can argue, for instance, that the topology of the street network alone has a significant impact on the urban neighbourhoods spatial make-up and functioning; not only in regards to measures of accessibility, as those provided by space syntax, but also in relation to transportation and housing. For instance, in residential areas characterized by irregular and elongated configurations it is practically impossible to deploy a grid system. Thus, when lots are created and housing is developed it follows a logic compatible with the patch configuration. Here, we most often see curvilinear residential roads, where the only type of housing possible is detached houses.

However, in the case of Montréal, curvilinear configurations are also found in large, more compact, suburban neighbourhoods, at both east- and west-ends of the island developed in the automobile era after WWII. As shown by our measures of Mean Depth, MNAs responding to curvilinear configuration may hinder the possibility for the development of virtual communities or places for social interaction since the configuration of the street alone makes any attempt of internal exploration by foot tiresome or impossible. We can argue that status of MNAs in this group in the system is condemned to poor accessibility and low densities. The arrangement of the street layout in a hierarchical structure with very few points of entry/exit makes any attempt of increasing their accessibility, and perhaps their density, extremely costly and maybe even trivial.

On the other side of the spectrum we find orthogonal grids. These are neighbourhoods developed in the early 1920s and 1930s. A predominantly rectilinear street configuration allows for the optimization of the use of the lot. Several stories buildings, infill developments, and attached properties provide a dense and very accessible urban environment which allows for the emergence of local commercial streets which act as cores to their respective neighbourhoods.

In this project, we have introduced a method for finding a *'morphological signature'* of the street system in morphological neighbourhood areas in the Island of Montréal, which is based on quantitative indicators. We believe that our approach is applicable to other urban areas. However, we acknowledge that our methodology is highly sensitive to our definition of neighbourhood. There remains to see if our methodology, applied to geographical units such as census tracts, dissemination areas, or administrative boundaries, produces similar results.

References

Angel, S., Parent, J., and Civco, D. L. (2010). Ten compactness properties of circles: measuring shape in geography. *The Canadian Geographer/Le Géographe canadien*, 54(4):441– 461.

Caniggia, G. and Maffei, G. L. (1979). *Lettura dell'edilizia di base*, volume 215. Firenze: Alinea Editrice.

Caniggia, G. and Maffei, G. L. (1982). Composizione architettonica e tipologia edilizia. Venezia: Marsilio.

Caniggia, G. and Maffei, G. L. (2001). Architectural composition and building typology: interpreting basic building, volume 176. Firenze: Alinea Editrice.

Conzen, M. (1968). *The study of urban history*, chapter in The use of town plans in the study of urban history. Edward Arnold, London. 113-30.

Conzen, M. R. G. (1969). Alnwick, Northumberland: a study in town-plan analysis. London: Institute of British Geographers.

Crucitti, P., Latora, V., and Porta, S. (2006). Centrality measures in spatial networks of urban streets. *Physical Review E*, 73(3):036125.

Everitt, B., Landau, S., Leese, M., and Stahl, D. (2001). *Cluster analysis 4th.* London: Arnold.

Gauthier, P. (2015). On street networks, spatial configurations and morphogenesis: A case study in the greater montreal region. *ISUF 2015 XXII international Conference: City as organism. New Visions for Urban Life, Rome.*

Gauthier, P. (2016). The atlas of residential built environments of montreal, introduction. Draft version - unpublished.

Gauthier, P. and Gilliland, J. (2006). Mapping urban morphology: a classification scheme for interpreting contributions to the study of urban form. *Urban Morphology*, 10(1).

Gauthier, P. and MacDougall, K. (2015). On urban barriers and boundaries: An overlooked morphological matrix?. *Unpublished Research Report*.

Girden, E. R. and Kabacoff, R. (2010). Evaluating research articles from start to finish. Thousand Oaks, United States: Sage.

Girvetz, E. H., Thorne, J. H., Berry, A. M., and Jaeger, J. A. (2008). Integration of landscape fragmentation analysis into regional planning: A statewide multi-scale case study from california, usa. *Landscape and Urban Planning*, 86(3):205–218.

Gkanidou, P., Austwick, M., and Hanna, S. (2015). Classification of areas through quantifiable spatial attributes. Space Syntax Symposium 10.

Héran, F. (2011). Pour une approche systémique des nuisances liées aux transports en milieu urbain. Les cahiers scientifiques du transport, 59:83–112.

Hillier, B. (2007). Space is the machine: a configurational theory of architecture. London:Space Syntax.

Hillier, B. and Hanson, J. (1989). *The social logic of space*. Cambridge: Cambridge University Press.

Hillier, B. and Vaughan, L. (2007). The city as one thing. *Progress in Planning*, 67(3):205–230.

Husson, F., Josse, J., and Pages, J. (2010). Principal component methods-hierarchical clustering-partitional clustering: why would we need to choose for visualizing data. *Applied Mathematics Department*.

Jacobs, J. (1961). The death and life of great American cities. New York: Vintage.

Jaeger, J. A. (2000). Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. *Landscape Ecology*, 15(2):115–130.

Jiang, B. and Claramunt, C. (2002). Integration of space syntax into gis: new perspectives for urban morphology. *Transactions in GIS*, 6(3):295–309.

Jiang, B., Claramunt, C., and Klarqvist, B. (2000). Integration of space syntax into gis for modelling urban spaces. *International Journal of Applied Earth Observation and Geoinformation*, 2(3-4):161–171.

Jiang, B., Zhao, S., and Yin, J. (2008). Self-organized natural roads for predicting traffic flow: a sensitivity study. *Journal of Statistical Mechanics: Theory and Experiment*, 2008(07):P07008. Klarqvist, B. (1997). Spatial properties of urban barriers. *Proceedings from Space Syntax First International Symposium*.

Kodinariya, T. M. and Makwana, P. R. (2013). Review on determining number of cluster in k-means clustering. *International Journal*, 1(6):90–95.

Kofi, G. E. (2010). Network Based Indicators for Prioritizing the Location of a New Urban Transport Connection: Case Study Istanbul, Turkey. PhD thesis, Master Thesis, Department of Urban and Regional Planning and Geo-Information Management, International Institute for Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands.

Larochelle, P.-P. and Gauthier, P. (2002). Les voies d'accès à la Capitale nationale du Québec et la qualité de la forme urbaine. Quebec: Commission de la Capitale nationale.

Legendre, P. and Legendre, L. F. (2012). Numerical ecology, volume 24. Elsevier.

Lynch, K. (1960). *The image of the city*, volume 11. Cambridge, Mass., United States: MIT Press.

Lynch, K. (1981). A theory of good urban form.

MacDougall, K. (2011). The urban landscape mosaic, assessing barriers and their impact on the quality of urban form: A Montreal case study. *Unpublished Master Thesis. Concordia University*.

Marsan, J.-C. (1974). *Montreal in Evolution*. Kingston and Montreal: McGill-Queen's Press.

Marshall, S. (2004). Streets and patterns. London: Routledge.

Menghini, A. B. (2002). The city as form and structure: the urban project in italy from the 1920s to the 1980s. *Urban Morphology*, 6(2):75–94.

Mooi, E. and Sarstedt, M. (2010). *Cluster analysis*. Heidelberg: Springer-Verlag Berlin Heidelberg.

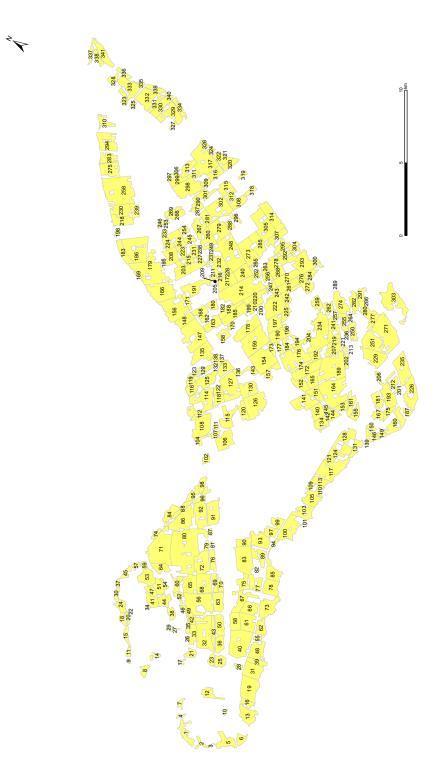
Moudon, A. V. (1994). Getting to know the built landscape: typomorphology. Ordering space: types in architecture and design, pages 289–311.

Moudon, A. V. (1997). Urban morphology as an emerging interdisciplinary field. Urban Morphology, 1(1):3–10.

Pinho, P. and Oliveira, V. (2009). Cartographic analysis in urban morphology. *Environment* and Planning B: Planning and Design, 36(1):107–127.

Ratti, C. (2004). Space syntax: some inconsistencies. *Environment and Planning B: Planning and Design*, 31(4):487–499.

Ringnér, M. (2008). What is principal component analysis? *Nature biotechnology*, 26(3):303.


Rofe, Y. (1995). Space and community-the spatial foundations of urban neighborhoods: An evaluation of three theories of urban form and social structure and their relevance to the issue of neighborhoods. *Berkeley Planning Journal*, 10(1).

Sima, Y. and Zhang, D. (2009). Comparative precedents on the study of urban morphology. In *Proceedings of the 7th International Space Syntax Symposium, Stockholm: KTH*, pages 103–1. Whitehand, J. (2003). From Como to Alnwick: in pursuit of Caniggia and Conzen. International Seminar on Urban Form. Versailles, France.

Zipperer, W. C., Wu, J., Pouyat, R. V., and Pickett, S. T. (2000). The application of ecological principles to urban and urbanizing landscapes. *Ecological Applications*, 10(3):685–688.

Appendix A

Reference Map

Appendix B

Thirty-two Indicators for 341 MNAs

R_Cont	8.443	32.239	10.298	767.01	1.638	16.128	0.895	16.972	2.513	9.031	0.998	3 120	0.12U 6.505	3 411	8.731	7.431	3.995	1.359	2.863	1.635	1.419	3.901	1.390	5.417	0.921	1.042	12 797	6 666	1.325	3.970	2.203	5.676	1.604	12./9/	11 075	1.257	2.023	6.732	1.096	2.868	4.655	6.693	1.879	5.254	7.026	2.361	2.482	3.039	2.040	18.397
R_Conn A	16.250	61.000	32.000	21.000 8.375	6.870	31.000	1.667	32.000	7.750	14.333	3.000	0.030	10.875	12 000	16.500	12.636	11.750	3.167	7.381	4.333	3.571	6.824	3.941	12.429	1./50	10.000	20 500	19 452	4.698	11.114	6.000	12.273	4.390	20.500	30,826	4.192	5.660	18.182	3.182	7.450	8.417	14.296	5.447	14.760	17.606	6.655	5.643	7.022	4.571	48.727
PP_Inte	2.813	-1.000	000.1-	2.015 2.008	2.427	-1.000	2.813	-1.000	2.628	000.1-	2.2/0	1 538	1.000	2.304	2.400	1.400	1.937	1.722	2.101	-1.000	1.261	2.227	2.143	2.286	062.2	2.813	-1 000	2 059	2.819	2.291	-1.000	1.029	1.922	2.813	1 256	2.770	2.244	1.995	3.282	2.375	1.047	0.901	1.672	2.105	1.357	2.170	267.2	2.165	1.458	2.493
PP_LD	2.667	1.000	733 0	17 750	21.417	1.000	2.667	1.000	5.429	1.000	1002.00	00000	9.000 10.286	10.667	4.500	8.250	25.458	4.800	13.579	1.000	12.727	7.846	14.400	4.000	3.500	7 667	1 000	27 190	20.037	15.189	1.000	23.111	16.944	2.007	15.077	17.960	16.000	13.091	9.222	16.600	15.818	19.688	18.400	20.681	17.227	15.481	11.508	16.381	15.571	8.909
PP_TD	2.667	1.000	1.000 7 2 2 C	41 583	55.167	1.000	2.667	1.000	12.000	000.1	44.333	100.21	10.286	36,800	4.500	14.250	193.085	7.200	47.263	1.000	20.545	34.769	/5.440	4.000	000.c	7 667	1 000	118 190	558.315	128.703	1.000	36.444	111.056	24.000	34.000 25.231	514.580	185.458	58.364	66.667	139.300	18.000	29.250	66.160	157.021	49.455	77.630	308.923	144.286	32.429	25.636
PP_LI	0.474	-1.000	-1.000	0.4/4 1 978	2.335	-1.000	0.474	-1.000	1.524	-1.000	1./14	1 306	1 016	1 474	0.625	1.208	1.992	0.876	1.640	-1.000	1.735	1.087	1.592	0.875	CU0.U	0.474	-1 000	2 216	1.898	1.658	-1.000	2.263	1./05	0.4/4	120.1	1.806	1.611	1.567	1.480	1.778	2.959	2.148	1.803	1.858	1.600	1.710	1.628	1.735	2.359	1.326
PP_GI	0.474	-1.000	000.1-	1 487	1.751	-1.000	0.474	-1.000	0.979	000.1-	1.2/3	1 300	9101	1 157	0.625	1.250	1.557	0.929	1.352	-1.000	1.730	0.898	1.195	0.875	/99.0	0.474	-1 000	1 688	1.104	1.156	-1.000	2.159	1.358	0.4/4	1 714	1.054	1.151	1.276	0.711	1.179	2.604	2.151	1.435	1.375	1.507	1.331	1.00/	1.276	1.274	0.948
DM_44	1.333	1.000	1.000	2 678	2.399	1.000	1.333	1.000	2.000	000.1	2.600	2.030	1 714	2.629	1.500	2.036	3.329	1.800	2.626	1.000	2.055	2.897	3.143	1.333	100.1	1.333	1 000	2 883	5.218	3.575	1.000	2.144	3.1/3	1.333	2.429	5.198	3.946	2.779	3.922	3.572	1.800	2.100	2.757	3.414	2.524	2.986	4.827	3.519	2.495	2.564
PP_cont	1.000	0.000	0.000	1 000	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1 000	1 000	1 000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	000 F	1.000	1 000	1 000	1.000	1.000	1.000	1.000	1.000	1.000	1 000	1.000	1.000	1.000	1.000	1.000	1.000	0.946	1.000	1.000	0.977	1.000	1.000	1.113	1.000	1.000
PP_conn	1.333	1.000	1.000	3.417	4.250	1.000	1.333	1.000	2.571	000.1	2.889	0000	2.000	2.667	1.500	1.750	3.017	1.600	2.842	1.000	2.182	2.000	2.560	2.000	1.200	1.333	1 000	3.476	3.111	2.649	1.000	2.222	2.611	1.333	2.000	2.920	2.583	2.545	2.333	2.800	2.727	1.938	2.400	2.894	2.045	2.889	2.308	2.762	1.857	2.364
B_avrap	44.816	54.323	23.092	20.301	18.554	48.822	51.793	30.050	22.489	970.010	24.818	34.000 22.675	37 521	32.052	16.706	33.143	35.710	27.145	22.766	15.313	20.788	34.601	24.770	18.553	14.148 00.055	33.055	67 182	30.030	26.247	25.709	35.859	23.281	23.696	49.704	23.400	29.753	23.357	24.031	23.165	22.439	23.326	16.121	24.940	26.002	40.918	25.454	24.953	24.104	19.320	21.333
B_avor	0.604	0.638	0.543	0.771	0.867	0.428	0.503	0.575	0.587	00.00	0.003	0.832	200.U	0.857	0.803	0.780	0.759	0.489	0.652	0.633	0.717	0.548	0.691	0.620	0.842	0.939	0.579	0.866	0.727	0.752	0.862	0.759	0./31	0.096	0 004	0.682	0.697	0.687	0.633	0.737	0.647	0.789	0.698	0.755	0.513	0.772	0.616	0.702	0.693	0.672
B_avnei	1.333	1.000	0.000	4 769	5.706	0.000	0.000	0.000	2.500	0.000	4.700	1 500	2 250	5 769	2.000	2.833	5.925	2.000	2.667	0.000	3.400	3.500	4.118	4.800	1.333	000.2	0.000	6 268	5.586	5.526	0.000	6.267	4.136	1.667	7 455	4.970	5.862	6.231	5.273	5.621	2.727	7.400	5.789	5.538	6.615	4.655	5.400	0.040	6.286	7.250
B_avcmp	0.498	0.581	0.471	0.594	0.725	0.686	0.716	0.581	0.649	BC/.U	0.7 0	0.754	0.581	0.607	0.707	0.528	0.641	0.426	0.596	0.531	0.627	0.551	0.642	0.461	0.367	110.0	0.542	0.627	0.588	0.574	0.789	0.574	0.626	0.638	0.044	0.626	0.580	0.593	0.561	0.577	0.542	0.555	0.643	0.635	0.535	0.517	0.586	0.684	0.540	0.526
B_con_pe	4182.513	1635.598	0CU./UUT	931.330 1940 487	1061.802	2521.644	0.000	1157.188	1372.557	1040.101	128.0.084	C/C/10/	2004.222 1870 564	437.125	2228.600	719.564	1109.817	1035.155	992.882	478.133	853.145	897.747	1038.795	332.290	0.000	1850.138	1199 150	945.019	982.434	188.805	395.526	417.103	/11.233	842.532	1010-010101 8010-058	1917.163	366.399	222.473	995.028	540.461	1588.543	331.576	384.709	1061.504	258.119	710.323	559.832	1557.421	475.258	437.986
ANA_Comp	0.450	0.502	0.418	110.0	0.846	0.682	0.714	0.602	0.790	0.727	00000	0.620	0.537	0.719	0.618	0.683	0.870	0.562	0.833	0.580	0.718	0.820	0.924	0.809	0.380	0.620	20.0	0.878	0.676	0.640	0.825	0.512	0.748	67.7.0 202.0	0.750	0.844	0.832	0.851	0.317	0.877	0.607	0.430	0.792	0.847	0.503	0.689	0.821	0.870	0.466	0.743
Conn_Id_1	1.333	0.000	1.000	1 413	1.612	1.500	1.000	1.000	1.444	2.000	1.3/9	1 176	1 300	1 833	1.167	1.500	1.614	1.625	1.296	3.000	1.611	1.368	1.600	1.500	191.1	1.200	1 500	1 542	1.344	1.750	3.000	1.500	1.441	1.250	1 522	1.440	1.550	1.619	1.333	1.373	1.211	1.304	1.659	1.456	1.833	1.609	1.6.1	1.357	1.444	1.583
Node_Ha	0.082	0.000	0.133	0.533	1.251	0.112	0.127	0.693	1.076	0.11/	410.0	0.473	0.322	0.303	0.650	0.401	0.501	0.543	0.737	0.550	0.642	0.394	0.823	1.111	0.824	0.312	0.005	0.589	0.779	0.812	0.270	1.079	0.965	GUE.U	0.1.0	0.684	0.908	0.907	0.693	0.963	0.653	1.750	1.086	0.721	0.973	0.562	1.353	0.723	1.003	0.791
MNA	-	0 0	<u>ہ</u> ن	4 v.	9 9	2	8	6	10	= ;	2 5	0 7	- ,	16	17	18	19	20	21	22	23	24	25	26	17	87	30	31	32	33	34	35	36	37	000	40	41	42	43	44	45	46	47	48	49	50	51	53	54	55

AR_Cont	1.505	3.338	4.68U 6.441	6.966	1.698	7.437	1.232	6.954	1.747	1.930	3.799	2.003	0 110	2.410	1.750	5.386	3.719	3.920	1.098	2.116	5.546	1.612	11C.1	2.138	2 188	6.540	4.404	2.984	2.078	12.871	1.136	1.51/	1 508	1.762	10.299	10.334	1.859	10CU.2	0.303	1.31U 2.546	21.841	7.875	4.425	13.772	5.729	3.296	6.077 5 769	6 742	24.683
AR_Conn A	5.255	6.333 40.405	13.721	22.421	5.963	20.484	3.966	21.649	5.714 6 736	0./30	14.655	1.348	7 167	1.101	6.280	15.388	15.750	15.969	3.680	8.833	15.239	3.769	0.471	982.1	9.000 8.618	20.425	13.024	10.213	7.667	40.321	4.708	4.632	4.036	6.500	32.556	31.750	5.579	8.129	000.02	4.064 0.001	57 333	24.800	13.048	43.000	17.404	12.952	23.923 18.957	28.333	64.625
$ \rightarrow $	2.856	1.235	1 005	2.359	2.328	2.005	1.884	1.937	2.351	2.300	2.480	2.16/	2/0/2	004.2	2.176	1.989	2.286	1.951	2.795	2.079	100.2	1.691	791.7	1./3/	000.1-	2.232	1.869	3.319	2.164	1.555	2.262	2.963	2.010	2.580	1.757	1.916	2.519	203 F	050.1	0.130	2 000	2.101	2.096	2.446	2.400	2.463	2.779 2.688	1 924	1.664
PP_LD	18.860	10.667	20.130	12.000	18.383	18.897	24.667	21.483	20.086	000.11	16.039	19.00/	13.385	90 c 20 c	17.017	25.500	4.000	16.280	12.400	22.647	002.71	10.7 /8	24.038	1000 0	10.003	13 172	20.154	20.000	10.000	20.240	15.040	13.212	17 806	19.649	7.750	14.609	11.778	10.00/	100.00	32,857	2.000	14.800	20.375	10.143	27.238	16.719	10.200 24.857	5 286	9.667
PP_TD	546.991	14.667	760	51.263	166.213	84.000	179.741	90.690	283.543 161 600	101.009	199./65	102.112	60.000	20.000	209.483	145.042	4.000	69.000	83.600	91.824	096.721	22.1/8	1128.302	0001	357 460	102 966	122.974	341.343	19.000	63.280	71.920	122.667	201 387	191.947	15.500	64.261	63.222	740.17	100.00	190.667	2000	34.267	93.219	36.286	129.167	266.469	70.700 452 286	68 429	11.667
PP_LI	1.910	2.297	1.792	1.608	1.823	1.831	1.959	1.947	1.848	1.//4	1.690	1.806	1.012	400.1	1.708	2.124	0.875	1.729	1.653	2.066	1.704	1./19	1.927	CLC.1	1 780	1 823	1.770	1.992	2.152	1.800	1.710	1.696	1.011	1.914	1.397	1.581	1.537	2.03/	1.00/	2.241	1 000	2.011	1.934	1.503	2.295	1.724	1.448 2.059	1.501	1.863
PP GI	1.080	2.158	1.308	1.160	1.280	1.376	1.494	1.584	1.227	1.20/	1.154	020	1.0/0	+CO7 F	1.310	1.634	0.875	1.455	1.002	1.613	1.365	1.248	1.440	1.343	000.1-	0.989	1.399	0.999	1.294	1.595	1.273	1 264	1 287	1.292	0.996	1.271	0.970	404. I	7/C-1	1.720	1 000	1.333	1.521	0.993	1.667	1.155	0.792	1 263	1.803
DM_44	5.160	1.833	3.370	2.848	3.613	3.000	3.391	2.834	4.109	190.0	3.995	1.500.0	3.303	1 200	3.731	3.086	1.333	2.760	3.483	2.783	3.281	2.278	4.884	1./33	700.1	3.677	3.236	4.947	2.111	2.637	2.997	3.833	2.001	3.693	2.214	2.921	3.327	70/77	610.2	3.075	1 000	2.448	2.913	2.791	2.995	4.230	3.721 4.663	2.498	1.667
PP_cont	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.033	1.000	1.000	1.000	1.000	1.000	1.000	0.994	1.000	1.000	1.036	1.000	1.000	000.1	1.040	000.1	000 1		1 000	1.000	1.000	1.000	1.000	1.000	1.000	000.1	1.001	1.000	1.000	1.056	0.999	1.000	1.000	1 000	1.000	1.025	1.000	1.062	1.000	1.000	0.976	1.267
PP_conn	3.084	2.667	2.113	2.737	2.979	2.759	2.815	3.069	2.886	2.913	2.863	3.06/	3.077	731.0	2.850	3.250	2.000	2.840	2.800	3.353	2.800	2.111	3.121	2.333	0001	2 828	2.615	3.314	2.800	2.480	2.880	2.909	2.023	3.333	1.750	2.435	2.444	3.4.17	100.2	3.220	000 0	2.800	3.188	2.429	4.000	2.844	3.306	2.429	3.000
B_avrap	25.302	24.413	28.002	23.905	30.102	27.107	24.702	28.779	25.564	200.02	26.299	20.385	071.12	21.243	28.317	29.825	21.668	28.212	23.001	24.752	32.035	19.898	797.07	11.042	28.642	26.029	27.819	27.174	20.081	25.471	27.632	23.407	25.040	24.871	28.179	24.416	22.158 or 200	20.339	000.02	21.200	22.02	25.871	22.648	24.053	24.995	29.527	24.054 24.785	40.941	20.336
B_avor	0.701	0.832	0.707	0.683	0.843	0.721	0.719	0.765	0.758	0.770	0.728	0.815	0.000	0.010	0.760	0.781	0.745	0.828	0.731	0.800	108.0	0./14	0.734	0.033	100.0	0.690	0.741	0.837	0.807	0.670	0.799	0.77.0	0.710	0.810	0.712	0.757	0.610	0.830	020.0	0.8/0	0.683	0.824	0.798	0.771	0.811	0.682	0.629	0.863	0.564
B_avnei	5.645	2.857	0.333	4.000	6.325	4.571	3.690	5.750	6.306	0770	5.235	5.472	9.671	1 / 0.0	5.176	4.674	2.500	5.500	4.421	5.613	4.556	4.000	8/7.9	2.333	6 005	4 045	4.036	5.373	3.200	5.000	4.964	4 000	4.030 7.104	5.300	1.833	4.688	3.889	4.821	4.1/0	5.429	1 000	4.000	5.000	4.500	5.786	4.515	3.375	3 000	4.857
B_avcmp	0.583	0.741	8/0.0	0.672	0.665	0.604	0.682	0.620	0.593	0.600	C8C.U	0.550	0.472	100.0	0.605	0.627	0.661	0.579	0.597	0.622	0.648	0.601	286.0	0.487	0.007	0.552	0.586	0.637	0.709	0.453	0.579	0.609	0.030	0.595	0.583	0.539	0.614	0.039	0.595	0.630	0.637	0.658	0.651	0.654	0.734	0.583	0.592	0.741	0.607
B_con_pe	1598.748	1181.862	1002 043	977.336	984.005	1135.543	586.686	1200.450	345.665 644.666	044.000	1109.946	587.613	002.001	120.0001	437.384	2184.159	2912.070	627.251	928.930	1372.558	1085.280	4/4.306	866.100	202.212	712 ADE	647.587	2003.027	606.034	448.069	386.302	1046.083	619.270	858.018	468.169	640.453	431.656	961.044 ror oor	200.300	300.400	12033.398	496.079	1235.521	1036.724	1236.570	1299.144	940.998	554.763 638.484	66.1.956	841.846
INA_Comp	0.796	0.687	0.182	0.615	0.877	0.795	0.757	0.772	0.885	0.000	0.564	0.835	0000	1000	0.833	0.821	0.621	0.768	0.545	0.792	188.0	0.645	0.786	0.800	108.0	0.645	0.769	0.762	0.727	0.426	0.737	0.725	0.687	0.842	0.407	0.618	0.533	0.840	0.0/0	102.0	0.753	0.847	0.767	0.555	0.861	0.854	0.75/	0.759	0.780
Conn_Id_N	1.517	1.313	1.523	1.406	1.530	1.467	1.442	1.472	1.454	1.403	1.45/	1.410	C4C.1	1.444	1.515	1.464	1.000	1.615	1.475	1.484	1.333	1.600	1.400	C/2.1	1.700	1 532	1.217	1.480	1.692	1.690	1.514	1.314	1 308	1.570	2.167	1.667	1.433	10C.1	004.1	1.342	1.500	1.333	1.612	1.381	1.449	1.529	1.385	1 600	1.455
Node_Ha	0.769	0.920	0./33	0.653	0.690	0.661	1.073	0.806	1.037	0.070	0.770	0.170	0.820	00/00	0.701	0.642	0.313	0.574	0.754	0.830	0.678	GUE.U	0.829	1.132	0.640	0.602	0.729	0.711	1.234	0.627	0.485	868.0	0.683	606.0	0.335	0.725	0.649	0.780	10.101	0.853	0.973	0.959	0.752	0.671	0.784	0.698	1.213	0.253	0.822
MNA	26	57	204	60	61	62	63	64	65	0 0	/9	200	80	0.7	72	73	74	75	76	27	× 1	6/	Do 2		202	548	85	86	87	88	89	90		93	94	95	96	200	000	99	101	102	103	104	105	106	107	109	110

R_Cont	2.488	13.251	9.000	3.979	1.582	7.693	4.082	002.4	0.500	2.500	2002	6.562	12.343	2.346	3.289	2.147	2.442	1624	2000	6 544	2.527	1.930	2.646	8.618	7.239	2.916	1.942	10.559	2.213	1.621	2.931	1.098	2.331	3.15/	11 085	14 214	3.932	2.647	2.967	3.241	7.068	1.872	2.861	9.011	2.064	2.707	1.846	1.504	1.966	1.254	1.1.1	3.541
R_Conn AR	9.429	43.684	28.133	13.949	6.206	27.725	13.654	000.12	49.200	9.488	600.1	28.482	39.900	9.455	14.964	9.155	060.21	0.000	15 074	21 700	11 200	8.033	11.136	34.375	31.100	13.966	9.444	43.000	8.028	5.723	15.250	4.421	10.595	0 100	3.100	56 280	17.600	11.556	16.961	19.196	36.955	10.489	11.760	37.546	12.714	16.952	10.167	6.250	7.575	5.818	13.5/1	21.403
PP_Inte A	2.281	2.026	2.366	2.398	3.125	2.311	2.366	1.923	006.1	2.628	706.7	2.176	1.748	2.572	2.886	2.252	2.479	2.232	000.2	2.442 2.061	3 273	2.417	2.411	2.358	1.731	2.300	2.352	2.000	1.989	2.096	1.833	2.866	2.107	2.138	2.230	2.326	2.145	1.467	1.863	2.294	2.567	2.401	2.067	2.506	2.490	2.045	2.209	2.350	1.941	1.912	2.402	3.080
				29.605		_											30.548																20.727										20.261			24.632	51.837	22.847	25.421	8.909	002.02	19.909
PP_TD	12.000	52.737	63.762	332.171	250.407	125.128	280.976	FCC 3C	20.231	74 600	/4.600	41.368	16.800	81.280	219.480	394.269	238.192	070.111	10.001	73 813	23 778	80.000	68.154	127.404	14.000	47.765	28.923	2.000	130.810	155.375	6.400	45.556	91.091	18,000	163.436	209.605	17.800	15.556	134.432	124.179	55.455	261.224	58.000	170.047	114.944	36.316	255.605	200.915	105.947	23.091	180.400	389.977
PP_LI	1.224	1.413	2.191	2.237	2.109	1.884	2.554	2.020	1.900	1.663	1.342	2.170	1.880	1.574	2.258	2.171	2.483	1 701	0 577	3 046	1 179	1.947	2.195	2.556	1.178	1.496	1.880	1.000	1.831	1.869	1.145	2.210	1.966	1./80	2 956	2.226	1.705	1.559	2.255	1.876	2.023	2.702	2.198	3.105	1.919	2.928	2.816	2.071	2.126	1.337	2.608	1.978
PP_GI	1.002	1.091	1.670	1.460	1.123	1.354	1.691	1.039	5/C.1	312.0	C+1.U	1.645	1.602	1.058	1.428	1.571	1./24	120.1	5.0	0.67	0.611	1.359	1.563	1.931	1.155	1.023	1.243	1.000	1.484	1.471	1.091	1.240	1.553	1.470	2 100	1 709	1.399	1.515	1.732	1.297	1.452	1.960	1.473	2.307	1.316	2.161	2.095	1.471	1.654	1.236	2.098	1.077
PP_MD	2.000	2.930	2.550	3.862	4.244	3.293	3.469	2.140	2.103	4.180 2.076	3.920	2.298	1.867	3.387	3.598	3.828	3.308	2 502	002.0	2.1.35 2.81	2 972	2.963	2.726	2.770	2.000	2.985	2.410	1.000	3.190	3.306	1.600	2.680	2.847	2.231	020-2 724	2.747	1.978	1.944	2.922	3.331	2.641	3.110	2.636	2.657	3.284	2.018	3.007	3.464	2.863	2.309	2.233	4.875
PP_cont	1.000	1.000	1.205	0.918	1.016	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.057	1.000	1.000	1 000	1 000	1 000	1 000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.004	1 008	1.000	1.000	0.781	0.996	1.000	1.000	1.000	0.957	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.157
PP_conn	2.286	2.211	3.952	3.500	3.508	3.128	4.000	201.0	3.077	2.667	2.200	3.579	2.800	2.720	4.120	3.538	4.2.4	4.100	1 7 20	4.733	2 000	3.286	3.769	4.553	2.000	2.353	2.923	2.000	2.952	3.083	2.000	3.556	3.273	3.143	5,873	3.974	3.000	2.222	3.227	2.974	3.727	4.706	3.043	5.781	3.278	4.421	4.628	3.458	3.211	2.364	5.040	3.318
B_avrap	20.056	26.104	22.964	23.287	21.564	22.319	26.293	011.42	24.412	28.2//	11.914	23.144	19.912	23.865	22.248	24.785	24.311	20.000	20.000	10 543	12 904	28.364	22.412	24.644	51.046	21.786	20.249	12.495	22.555	29.394	16.178	22.869	20.927	20.161	26.574 26.574	23 150	19.851	28.394	22.192	26.019	21.342	27.599	21.533	24.078	22.856	22.429	26.932	22.082	21.526	24.959	24.211	27.870
B_avor	0.958	0.774	0.808	0.868	0.825	0.786	0.882	0.019	0.030	0.855	0.83/	0.805	0.781	0.823	0.892	0.837	808.0	705.0		0.920	0.541	0.743	0.907	0.919	0.753	0.622	0.807	0.673	0.796	0.769	0.904	0.943	0.783	0.822	0.051	0.894	0.882	0.706	0.856	0.681	0.882	0.831	0.797	0.918	0.784	0.966	0.852	0.828	0.769	0.844	108.0	0.776
B_avnei	3.200	4.615	6.000	4.744	4.294	5.294	5.553	4.344	0.100	4.464	3.889	5.083	2.800	4.810	5.121	5.392	5.732	0.20.0	0.000	0.130 A R64	1 833	3.833	6.476	5.088	2.750	3.417	4.154	2.000	5.757	4.000	5.000	4.667	5.091	3 000	5 344	4 804	3.846	2.667	5.822	5.719	6.074	6.090	4.348	5.106	5.838	4.519	5.283	3.741	3.806	4.167	1.21.0	6.018
B_avcmp	0.737	0.637	0.586	0.610	0.650	0.624	0.641	100.0	10010	0.250	8C/.0	0.670	0.586	0.613	0.650	0.637	0.601	0.00	00000	0.674	0.566	0.671	0.559	0.585	0.706	0.520	0.645	0.655	0.576	0.626	0.616	0.645	0.660	0.625	0.626	0.680	0.645	0.673	0.626	0.578	0.569	0.706	0.622	0.626	0.657	0.561	0.670	0.608	0.639	0.584	CLO.U	0.632
B_con_pe	552.501	192.201	489.227	965.272	1782.176	342.621	599.572	303.033	110.011	424.892	408.300	247.033	1005.246	345.936	462.805	445.064	330.779	100.6411	200.100	514 568	188 274	1822.753	831.711	901.670	347.951	281.935	433.215	351.109	593.840	1645.865	145.297	0.000	481.240	440.914 1108 547	506 584	237.038	657.719	490.314	269.960	487.763	647.694	429.710	1336.971	720.755	530.826	2015.748	1091.654	1703.633	967.388	593.931	COF. 1 01	228.936
INA_Comp	0.893	0.559	0.667	0.685	0.668	0.870	0.779	620.0	0.031	0.699	187.0	0.840	0.440	0.755	0.750	0.863	0.784	0.0450	0.10	0.033	0 787	0.803	0.854	0.793	0.798	0.753	0.802	0.846	0.880	0.767	0.879	0.655	0.820	00//0	0.747	0.727	0.787	0.793	0.791	0.787	0.781	0.915	0.681	0.847	0.427	0.832	0.829	0.634	0.518	0.792	0.1/29	0.790
Conn_Id N	1.800	1.929	1.600	1.507	1.450	1.586	1.573	1./41	CUS.1	1.440	100.1	1.794	1.375	1.550	1.627	1.610	CC/.1	1 77 1	1 017	1 880	1 125	1.468	1.528	1.685	1.556	1.192	1.500	1.667	1.533	1.387	1.833	1.486	1.462	1.42	1 705	1 609	1.526	1.364	1.639	1.525	1.575	1.703	1.634	1.714	1.796	1.775	1.649	1.551	1.552	1.375	1.//8	1.741
Node_Ha	0.786	0.871	0.718	0.767	0.968	1.012	0.830	10.0	0.824	0./44	001.1	1.064	0.777	0.919	1.015	0.963	0.814	0100	10.0	1.000	1 566	0.668	0.762	0.783	0.383	1.394	0.929	1.289	0.741	0.586	1.822	1.095	1.296	0 708	0.680	0.882	0.940	0.517	1.016	0.826	0.859	0.906	0.937	0.818	1.021	0.803	0.804	0.938	1.122	0.858	0.650	0.874
MNA	111	112	113	114	115	116	117	10	5	120	171	122	123	124	125	126	121	120	120	131	132	133	134	135	136	137	138	139	140	141	142	143	144	G41	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	16.4	165

R_Cont	9.438	2.049	5 179	1.978	1.026	3.634	1.957	3.757	1.526	3 506	2.090 2.657	6.758	1.532	1.542	3.005	7.611	6.668	4.996	3.19U	3.572	3.944	2.831	1.601	2.816	1.252	4.214	0.020	2.359	11 710	4 908	2.116	1.620	2.781	2.268	3.454	0.090 2.251	8.329	3.086	11.452	6.209	5.628	7 020	1.000	010.0	6.412	4.531	10.899	9.535	0.000
AR_Conn AR_	39.113	8.160	8.000	14.500	5.042	23.357	10.739	25.700	6.622 25 354	10,000	17 212	27.080	8.421	6.567	20.217	27.966	35./50	37.200	100.01	27.500	22.410	16.390	8.979	15.972	5.455	22.111	1.000	12.121	007.01	30.200	10.000	5.875	11.059	10.647	16.824	9 222	40.957	14.544	52.250	43.571	30.000	4.400 20.022	11 241	14 617	35.071	32.307	40.359	48.714 68 543	00.00
PP_Inte A	2.777	2.575	2.302	1.879	1.754	3.070	2.035	2.255	2.200	001.2	2 744	2.256	2.219	2.479	1.955	1.982	2.405	2.001	730 1	2.132	2.702	1.943	2.596	2.124	2.354	1.919	-1.000	7.637	1 005	1 035	2.003	1.757	1.251	2.033	1.676	2 324	2.172	2.261	2.000	2.365	1.288	2.340 1 2.35	070.1 207 C	0.400 2.013	1.770	2.657	2.488	1.556 2.206	1002.2
PP_LD	39.793	13.818	75 375	11.455	27.455	35.526	21.952	22.455	17.590 35.224	11 400	32 545	52.777	14.600	20.400	16.750			31.786				24.263					1.000		1000 0	00000	7.143	8.250	24.706	35.294	10.923	4.000 6 444	21.300	20.033	4.000	25.130	10.750	10.2.01	000 97	19.655	9.333	30.621	21.643	28.526 18.125	10.120
PP_TD	165.034	62.455	750	20.000	48.273	254.947	49.429	49.909	136.205	100.101	73.333	385.289	50.800	81.400	33.125	122.585	58.750	259.929	021.002	70.839	154.862	117.237	123.727	75.407	201.379	48.087	-1.000	38.526	12.141	62.000	11.714	13.500	30.706	275.247	29.385	20,000	51.750	212.633	4.000	47.304	11.500	48.300	000.0	76 207	15.556	60.897	71.143	34.421	010.02
PP_LI	2.762	1.774	1.84b 3.618	1.812	2.933	2.607	2.312	2.639	1.763 2.770	1 0/3	2 954	2.729	1.725	2.159	2.118	2.014	2.013	3.145	2 100	2.888	3.018	2.071	2.448	1.832	2.153	2.407	-1.000	2.426	1 424	2 050	1.156	1.342	2.742	2.345	1.438	0.0/0	2.252	1.928	1.000	2.783	2.488	1 470	0.410	1 073	1.576	2.972	2.255	3.56U	2000.4
PP_GI	1.962	1.200	3.356	1.645	1.866	1.406	1.755	1.734	1.189	1 656	2.319	2.103	1.352	1.506	1.662	1.551	1.455	1 000	1 006	2.058	2.195	1.544	1.751	1.360	1.435	2.130	-1.000	1.929	1 252	1.530	666.0	1.281	2.633	1.806	1.193	0.861	1.795	1.400	1.000	2.169	2.134	1.440	0.4.0	1 541	1.507	2.336	1.637	2.504	1000.2
PP_MD	2.895	2.974	1012	2.000	2.299	3.805	2.354	2.377	3.584	1 800	000.1	3.211	2.674	2.807	2.208	3.065	2.670	2.0/1	01010	2.361	2.717	3.006	2.877	2.900	3.533	2.186	1.000	2.140	1 000	7 583	1.952	1.929	1.919	3.277	2.449	2.500	2.352	3.604	1.333	2.150	1.643	240.2	7 567	200.2	1.944	2.175	2.635	1.912 1.958	1002.1
	1.000	1.000	1.000	1.000	1.000	0.915	1.044	1.000	1.000	1 000	1 000	1.000	1.000	1.000	1.000	1.000	1.026	1.000	1 000	1.000	1.000	1.021	1.000	1.000	1.000	1.000	0.000	1.000	000	1 000	1.000	1.000	1.000	1.000	1.000	1 000	1.063	1.000	1.000	1.000	1.000	1.000	0001	1 000	1.000	1.000	1.000	1.000	20071
PP_conn	5.448	3.091	3.111	3.091	3.273	4.316	3.571	3.909	2.615	0.101	0.400	4.744	3.000	3.733	3.250	3.073	3.500	0.780	0.2.4	4.387	5.931	3.000	4.545	2.889	3.379	4.087	1.000	3.158	0.101	3 040	2.000	2.250	3.294	3.671	2.000	2 000	3.900	3.167	2.000	5.130	2.750	3.400	7 062	3 103	2.667	6.207	4.071	3.895	1.040.4
B_avrap	22.571	23.599	27.004	23.994	18.578	29.217	21.007	19.352	21.868 27 801	27 600	21 992	23.541	22.437	22.529	19.379	24.027	27.046	24.512	24.0/0	22.910	26.327	29.835	19.957	29.665	23.546	25.357	29.320	27.459 26.065	700.10	27.558	29.079	23.980	24.261	22.185	25.581	14.U03 24.486	23.206	25.088	26.801	20.004	20.120	10 704	13.704	25.081	27.346	24.549	25.205	21.515	100.00
B_avor	0.919	0.817	0.723 0723	0.988	0.901	0.962	0.874	0.954	0.805	210.0 0 010	0.910	0.929	0.797	0.973	0.888	0.754	298.0	0.9/0	10.034	0.938	0.921	0.822	0.924	0.702	0.800	0.939	0.833	0.978	902.0	0.1.00	0.976	0.729	0.881	0.889	0.795	0 737	0.925	0.799	0.951	0.983	0.954	1.00 0	00.0	797.0	0.969	0.960	0.837	0.907	0.21.0
B_avnei	5.395	3.111	3 875	4.417	4.808	6.079	5.316	5.864	4.227 6.261	5 357	6.375	5.290	4.056	4.065	6.364	4.795	5.276	6.494	7 20 100	6.621	6.159	5.095	4.986	5.632	4.684	5.250	0.000	4.952 6.085	0.000	5 136	1.000	3.000	3.250	5.500	2.000	2 000	5.667	5.460	1.500	6.560	3.800	3./00	2.000	5 757	2.143	7.091	5.410	5.962 6 342	145.0
2	0.573	0.604	0.606 0.606	0.533	0.567	0.668	0.722	0.668	0.640	0.023	0.530	0.614	0.638	0.556	0.639	0.593	0.658	260.0	0.900	0.0.0	0.616	0.620	0.521	0.595	0.600	0.685	0.418	0.664	0.737	0.664	0.561	0.557	0.653	0.628	0.744	0.553	0.576	0.580	0.652	0.647	0.587	347.0	0.600	0.621	0.657	0.622	0.615	0.715	000.0
B_con_pe	434.813	592.904	706 105	548.972	451.763	184.330	465.842	146.939	301.275	254 687	883 263	454.781	559.502	568.805	218.364	373.829	215.434	222.4/1	492.409	168.959	415.257	147.316	1017.731	243.711	403.860	215.242	1242.286	280.615	10010101	210.1201 210.308	307.126	360.627	1373.988	423.226	336.883	886 108	283.962	304.424	107.618	184.026	191.474	705.453	200.002	173 793	178.887	155.823	500.296	310.742 186.876	10.001
MNA_Comp	0.860	0.804	0.567	0.846	0.644	0.563	0.606	0.411	0.685	0.508	0.605	797.0	0.865	0.774	0.623	0.537	0.6/1	0.041	0.041	0.475	0.848	0.840	0.601	0.840	0.725	0.699	0.444	0.642	0.040	0.730	0.753	0.710	0.567	0.626	0.672	0.608	0.691	0.874	0.704	0.636	0.834	0.003	0.004	0.703	0.862	0.790	0.703	0.601	DFD: D
Conn_Id MI	1.860	1.595	1.590	2.059	1.513	1.845	1.667	2.061	1.535	000 6	1 907	1.851	1.618	1.603	1.781	1.586	1.914	2.087	CCA 1	1.875	1.858	1.759	1.615	1.600	1.579	1.927	1.000	1.759	1 447	1.4.17	1.857	1.500	1.313	1.669	1.588	3.UUU 1.889	1.806	1.448	2.750	1.983	1.692	1.00/	1 000	1 818	2.000	1.926	1.621	1.659 2.216	012.2
Node_Ha	0.780	0.752	0.749	0.903	1.032	0.729	1.219	1.248	1.125	0.000	0.838	0.875	0.857	1.005	1.348	0.870	0.814	0./03	0.030	1.146	0.641	0.651	0.876	0.847	0.802	1.003	0.194	1.000	0.756	1 303	1.073	0.956	1.053	1.019	0.621	0 413	0.587	0.898	1.617	1.119	1.294	0.752	767.0	1 005	1.219	0.900	0.708	1.231	200.0
MNA	166	167	168	170	171	172	173	174	175	177	178	179	180	181	182	183	181	185	107	188	189	190	191	192	193	194	195	196	1001	100	200	201	202	203	204	502 902	207	208	209	210	211	212	212	215	216	217	218	219	722

Cont	3.622	3.166	3.123	3.449	3.001	2.170	4.431 5.500	1 307	0.520	3.574	2.599	6.074	3.177	2.897	1.077	1.685	2.188	3.053	5.435	4.687	3.792	3.543	3.112	1./81	1./4/	3.027	3.043	3 514	1 272	4.512	3.099	2.943	7.108	2.853	2.460	3.494	8.309 2 E47	3.592	0.003	3.243	4.333	5.754	2.949	3.465	3.710	1.508	5.854	2.355	7.717	5.4UZ	5.933
AR	23	5	27	0																																			Ì									8	a 33	0 1	
AR_Conn	16.33	21.30	14.12	14.6C	16.53	8.81	20.90	20.14 8.53	26.01	16.800	17.83	22.57	16.43	13.02	7.00	9.23	6.92	12.48	38.87	24.84	27.85	25.82	12.95	0.90	5.71	23.14	20.33	10.01	8 43	33.02	11.75	10.92	25.56	24.84	12.81	13.68	41.0U	27.6F	51.14	26.64	15.35	37.95	11.03	18.05	31.97	5.61	37.06	13.818	45.05 26.11	76 96	22.539
PP_Inte	2.813	2.621	2.300	2.260	1.669	2.008	2.191	0 331	215 0	1.940	2.244	2.074	2.380	2.369	2.525	1.264	1.481	3.125	2.303	1.588	2.145	2.164	2.107	2.209	2.096	2.408	2.248	212.2	2.2.14	1.421	2.622	2.143	2.449	1.810	1.428	1 905	012.1	2.313	2.393	2.254	1.722	4.024	2.154	2.576	1.821	3.127	2.397	2.266	2.227	100.2	2.368
PP_LD				16.727								7.750														19.840				33.923						40.934		31 824					_		19.571	11.100	33.146	53.216	17 951	78 905	24.632
DT	2.667	123.708	118.686	101.212	130.885	210.435	20.03	101 653	157 506	66.296	154.500	14.250	551.708	114.170	8.000	14.000	15.556	131.714	75.758	163.133	69.800	64.000	195.492	61.304	6.400	02.360	230.722	102 162	130 010	52.923	10.333	50.500	148.783	30.125	20.000	423.361	167.76/	85.883	44.952	32.533	32.125	160.923	61.364	147.500	19.571	133.833	137.333	118.471	75.355	110.08	105.684
PP_LI	0.474	2.754	1.658	1.801	2.197	2.363	1.881	2 596	1 041	2.000	2.737	1.351	2.127	2.914	0.696	2.361	1.659	1.921	2.710	2.535	2.441	2.124	2.031	0///0	0.763	2.1/8	3.090	0.304	2 023	2.769	1.081	1.685	2.261	2.268	1.855	2.470	2.120	2 898	2.487	1.977	2.162	1.314	1.786	2.026	3.530	1.502	2.522	3.256	2.347	2.002	2.240
₽.			-		-		1.400					-				2.285	_		_								0/1/2			2.544		-	1.438			1.862			1 -			0		Ì		0.799	1.921	2.648	1.883	1 845	
ā										2.550						1.750												000.1 858 C				2.658			2.222	3.499		2.120			2.142				1.505	4.461	2.803	2.369	2.512	000.2	2.856
PP_cont	1.000	1.000	1.000	1.000	1.000	1.000	1.200	1 000	0001	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.034	1.000	000.1	1.000	000 F	0001	1.000	1 000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1 054	1.000	1.000	1.000	1.096	1.000	1.000	1.000	1.017	1.000	1.000	1.000	1.000	1.000
PP_conn	1.333	5.458	2.686	3.030	2.711	3.739	3.067	4 565	2007	3.259	4.464	2.250	3.446	5.404	1.600	2.889	2.222	3.257	4.909	3.300	4.267	3.560	3.220	3.043	1.600	4.000	4.8/8	2.000	5.057	3.615	2.000	2.900	3.522	3.750	1.800	4.246	208.2	6.059	4.571	3.333	3.000	2.385	2.636	3.455	6.429	2.500	4.604	6.000	4.194 6.008	0.030	3.895
B_avrap	15.694	26.071	25.638	24.944	27.961	22.988	22.469	24 910	26.425	27.840	21.900	26.446	25.735	23.547	17.999	20.608	16.215	21.424	27.902	28.217	23.207	22.492	25.406	21.964	20.651	18.449	20.013	17 044	23,658	19.993	22.153	24.878	19.683	27.411	25.993	25.363	28.101	19.303	24.722	20.572	16.692	20.425	22.715	24.141	26.670	19.065	23.086	26.649	24.555	24.431	22.918
B_avor	0.939	0.959	0.626	0.818	0.740	0.779	0.702	0 912	210.0	0.686	0.916	0.525	0.782	0.907	0.804	0.730	0.910	0.876	0.953	0.902	0.954	0.955	0.706	0.846	0.822	0.937	0.924	080.0	0.020	0.878	0.592	0.797	0.874	0.979	0.888	278.0	0 807	0.972	0.944	0.964	0.858	0.726	0.872	0.778	0.988	0.710	0.967	0.936	0.936	0.9/9	0.906
B_avnei	1.000	6.535	5.419	4.806	4.500	4.894	4.938 F 654	6.463	1 015	5.385	5.250	2.500	5.347	5.788	2.500	5.111	5.000	4.229	6.716	5.118	6.254	5.545	5.424	4.864	3.333	292.2	000 0	3.000	6 242	6.086	2.000	4.750	4.724	5.690	2.444	5.563	2./UD 5.776	6 990	4.719	5.000	5.143	5.846	4.250	5.047	6.340	4.471	5.979	6.009	5.400 6.243	5,000	5.368
B_avcmp	0.760	0.671	0.560	0.566	0.664	0.631	0.589	0.500	0.000	0.600	0.634	0.506	0.644	0.594	0.760	0.651	0.594	0.639	0.646	0.699	0.692	0.673	0.576	0.638	0.707	0.710	0.610	715 0	0.652	0.699	0.614	0.593	0.711	0.697	0.802	0.603	0.628	0.646	0.789	0.722	0.716	0.685	0.673	0.612	0.664	0.565	0.657	0.544	0.706	000.0	0.620
B_con_pe	747.523	213.325	215.760	216.489	264.459	804.283	162.977	377 954	010.735	238.631	209.479	520.366	394.804	1008.007	529.465	325.402	290.166	397.714	112.385	209.749	170.542	201.797	202.282	4/2.603	717.713	189.802	209.28/	302.4U3 1166.620	454 428	138.747	475.381	436.228	293.244	174.733	288.272	1059.833	230.014	121.946	278.071	148.511	230.048	206.629	440.231	469.574	163.304	588.613	143.829	426.910	241.697 112 755	142.133	528.951
A_Comp	0.735	0.865	0.810	0.773	0.632	0.653	U.859 0 719	0.795		0.821	0.846	0.854	0.663	0.714	0.853	0.786	0.607	0.714	0.873	0.676	0.550	0.714	0.778	0./95	0.805	0.747	11/.0	0.567	0.200	0.713	0.401	0.875	0.523	0.847	0.571	0.898	0.744	0.632	0.832	0.879	0.810	0.574	0.636	0.771	0.850	0.545	0.584	0.738	0.888	0.712	0.821
NM p	8	52	40	62	4	27	00 88	3 6	1 5	30	32	37	55	38	00	86	8	64	6	95	8 :	8	88 2		8 9	20	5 0	27	36	9 60	00	13	53	33	53		100	200	86	91	32	38	15	30	82	05	7	17	19	10	18
Conn	2.5(1.8	1.6	1.679	1.7(1.5	1.9	- T	ο ù	1.65	1.85	1.66	1.55	1.68	3.0(1.78	2.0	1.5(2.0	1.7	2.0(2.0	1.7	Ω. Γ	1.5	ю́ т	1.0	1 V. V	17.0	1.90	2.00	1.6	1.76	2.0	1.3	0.1	1.7	- 0°	1.8	2.36	1.65	2.18	1.6	1.58	2.1	1.4(1.9,	1.8	0,1 0,0	ν. τ α	1.718
Node_Ha			1.039				1.008			0.937																																			-			-			0.685
MNA	221	222	223	224	225	226	122	022	220	231	232	233	234	235	236	237	238	239	240	241	242	243	244	242	246	241	248	243	251	252	253	254	255	256	257	258	607	261	262	263	264	265	266	267	268	269	270	271	272	012	275

AR_Cont	7.737	3.558 6 728	0.120	2.506	4.211	2.735	8.680	680.01	2.018 2.019	4.039	2.004	13.281	4.866	1.652	6.325 6.325	4.141	9.391	7.506	3.196	1.599	2.803	0.000	5.590	1.070	3.585	4.092	1.332	9.125	7.616	3.815 12 437	2.073	4.686	2.086	2.767	8.581 5.242	3.602	10.151	14.660	10.010	8.375	2.576	11.908	1.088	6.094	1.143 3.675	1 660	2.976
	44.681	18.327	28.000	13.036	22.631	14.960	32.435	077.00	10.831	26.125	10.849	45.429	28.400	8.536	36.327	14.526	54.800	38.167	14.500	290.7	915.01	23.200	27,888	3.525	23.711	28.520	4.846	54.406	39.615	17.444 43.733	14.048	23.357	11.831	20.730	41.594 27.604	21.624	33.222	46.500	33.600	26.618	10.267	39.000	4.000	20.875	6.800 16.667	9.325	15.735
⊢	2.161	2.070	2.256	1.498	2.068	2.407	2.500	2.471	2.172	2.306	1.536	1.762	2.046	2.140	797 C	2.532	2.450	2.994	2.000	2.3/1	2.201	0 180	2.291	2.271	2.136	2.052	2.424	2.811	2.551	2.262	2.134	2.642	3.141	2.104	2.230	2.685	1.634	1.763	2.217	1.910 2.106	1.750	1.844	2.002	2.052	1.967	2 816	2.741
PP_LD	17.565	37.179	32.653	20.917	20.333	26.000	27.0.22	24.1.22	29.00/ 14.167	13.867	16.769	6.571	11.067	20.091	46.027	18.807	17.895	5.500	2.000	38.579	33.31/	16.957	35,359	20.949	23.556	50.760	6.000	23.038	35.391	12.267	34.806	14.040	18.213	55.275	24.188 27.784	53.579	11.333	8.286	18.133	17.652	13.538	9.250	13.429	19.000	8.000	31 136	25.455
PP_TD	57.217	77.179	137.796	51.125	161.000	74.452	52.261	100.00/	20.167	31.867	72.000	11.714	37.600	48.545	01.200 217 733	208.246	40.632	18.500	2.000	623.843	200.970	01 6.7C	210.564	320.923	63.926	97.160	13.143	61.077	61.130	33,600	266.194	90.000	201.064	117.800	83.188 99.351	213.421	12.667	9.143	25.333	59.739 52.201	26.769	11.500	29.571	31.067	13.500	135 045	84.606
PP_LI	1.924	2.816	2.447	1.963	1.836	2.467	2.536	2.320	2.244	1.947	1.558	1.152	1.646	2.194	2.130	1.936	2.329	1.036	1.000	2.355	2.393	1 842	2 476	1.781	2.268	3.445	1.136	2.529	3.213	1.580	2.451	1.650	1.866	3.239	2.242	3.066	2.384	1.871	2.665	1.794 2.162	1.832	1.874	1.822	2.632	1.416	2 602	2.524
		2.363 1 008				- 1			1.054	(1.403	-			CZ0.1						1.8/9			-						1.372		ì	1.030		1.746		2.311	`	2.285	1.411	1.407	1.762	1.427	1.852	1.271	1 598	1.901
PP_MD	2.601	2.270	2.871	2.362	3.426	2.482	2.375	2.019	3.129 1.833	2.276	2.880	1.952	2.686	2.312	00007	3.719	2.257	2.643	1.000	47.025	2.893	2.032	3.147	4.168	2.459	2.313	2.190	2.482	2.108	3.399	2.874	3.462	4.371	2.356	2.760	2.846	1.583	1.524	1.810	2.715	2.231	1.643	2.275	2.071	1.929	3 141	2.644
	1.000	1.138	1.000	0.872	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1 000	1.000	1.000	1.000	1.000	1.041	0.941	1 000	0.952	1.000	1.000	0.921	1.000	1.182	1.162	0.965	0.952	1.026	1.000	0.980	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.057	1.000	1 000	1.000
PP_conn	3.304	4.893 5 1 2 5	0.120 4.163	2.583	2.917	4.581	4.435	4.000	3,833	3.467	2.154	2.000	2.267	3.909	5.120	3.298	4.421	2.000	2.000	3.950	4.140	3 000	4 077	2.897	3.852	5.160	2.000	5.038	6.348	2.409	3.861	2.840	3.234	5.575	3.813	5.947	3.778	3.143	5.067	2.696	2.462	3.250	2.857	3.800	2.500	4 500	5.212
B_avrap	21.736	25.509	25.277	26.854	23.135	22.190	19.939	24.04/	21.855	21.187	29.259	17.961	27.625	21.861	21.81/	24.117	20.701	35.257	19.843	24.660	21.83/	75 285	24.005	26.887	20.463	27.920	20.538	23.138	20.856	21.010	20.657	23.239	23.502	23.701	23.26/ 22.528	23.819	22.707	26.837	21.307	23.384	24.082	22.407	17.922	16.802	23.463	24.123	21.345
B_avor	0.960	0.911	0.954	0.730	0.751	0.878	0.910	188.0	0.891	0.867	0.884	606.0	0.763	0.875	0.938	0.774	0.923	0.622	0.679	0.819	0.970	0.704	0.931	0.675	0.950	0.961	0.715	0.924	0.969	0.735	0.904	0.875	0.922	0.977	0.966	0.970	0.984	066.0	0.938	0.772	0.781	0.910	0.818	0.964	0.870	C70 0	0.988
B_avnei	5.974	5.796	5.870	4.333	4.548	4.561	220.6	4.442	5.400	5.647	4.538	1.333	3.545	5.306	5.349	4.370	4.703	3.286	2.667	5.058	0.976	3 057	5.170	3.795	4.769	5.813	4.667	5.674	6.207	3.857	5.972	5.053	5.623	6.294	5.698	6.023	4.167	3.200	6.000	5.000	5.000	2.667	4.400	4.095	4.600	5 971	6.662
B_avcmp_E	0.707	0.663	0.589	0.669	0.604	0.695	0.606	0.734	0.623	0.586	0.669	0.759	0.633	0.652	0.688	0.591	0.608	0.638	0.492	0.641	77G-0	0.647	0.614	0.646	0.731	0.614	0.653	0.650	0.671	0.608	0.660	0.606	0.623	0.703	0.660	0.683	0.503	0.484	0.585	0.652	0.603	0.618	0.665	0.720	0.591	0.592	0.654
B_con_pe	85.435	280.437	208.481	305.461	236.439	951.472	621.415	194.317	311.596	521.038	174.706	855.833	366.784	444.351	235.386	2034.320	287.021	351.538	671.161	998.1969	212.012	643 817	352.247	10535.288	430.801	237.785	362.521	387.206	276.773	341.361 2731.717	130.007	292.076	188.790	275.113	287.288	304.675	1297.619	633.324	461.920	304.738 250.622	896.028	321.879	882.695	490.980	567.465	684 935	276.931
MNA_Comp	0.899	0.713	0.730	0.596	0.760	0.581	0.010	0.810	0.892	0.689	0.824	0.613	0.734	0.774	0.813	0.829	0.712	0.570	0.802	0.796	0.124	152.0	0 793	0.744	0.747	0.677	0.800	0.520	0.722	0.612	0.528	0.754	0.669	0.562	00Z.0	0.805	0.602	0.634	0.628	0.759	0.562	0.891	0.799	0.741	0.528	0.664	0.613
	2.054	1.821 2.086	2.000 1.881	1.607	1.652	1.875	1./82	1.900	1.955	1.667	1.759	2.500	1.824	1.646	1877	1.373	2.000	2.000	2.000	1.454	1.82/	1.3/2	1.681	1.408	1.875	2.053	1.500	1.852	1.921	1./60	1.786	1.528	1.756	1.789	1.800	1.822	1.632	1.727	1.784	1.618	1.682	1.571	1.300	1.545	2.091	1.471	1.934
Node_Ha (1.415	0.964	0.749	0.920	1.100	0.976	0.796	1.041	1.041	0.789	0.962	1.919	0.555	1.116	1 083	0.743	0.785	0.300	0.404	1.090	0.883	1.97.0	0.928	0.631	1.305	0.577	0.958	0.742	0.930	0.505	1.620	1.111	1.099	0.919	1.138	0.955	0.747	0.678	0.767	0.970	0.586	0.918	1.513	1.791	0.945	0 737	0.892
MNA	276	277	279	280	281	282	283	204	285	287	288	289	290	291	282	294	295	296	297	867	667	200	302	303	304	305	306	307	308	310	311	312	313	314	315 316	317	318	319	320	321	323	324	325	326	327 328	320	330

_	_		_		_	_	_	_	_		_
Cont	2.633	2.722	2.449	3.948	.028	1.679	3.964	1.087	5.056	9.912	2.581
	2.633										
uuo	.875	.281	2.500	14.071	.000	.500	.308	.154	.790	31.889	.245
AR_O	12.875	1	12	7	53	4	28		5		ω
nte	602	.235	2.114	.311	960	903	3.853	209	108	997	.877
PP_Inte A	ë	2	5	÷	2	ö	ė.	÷-	.	ö	÷.
Ъ	.083	21.333	36.526	40.643	.400	.118	7.000	.615	.706	.889	30.683
		_									
PP_TD	10.75	03.404	93.789	56.857	6.400	32.7C	53.286	22.46	36.23	12.88	15.756
		~			n	0	2	4	0	Σ	4
Ъ	1.37	1.874	2.747	3.381	0.763	2.599	1.247	2.334	1.780	3.121	2.444
PP_G	.625	1.381	2.041	2.671	.763	2.474	0.556	2.053	1.805	3.121	1.689
	15 0	ì									Ì
Δ	4.815	3.632	2.535	2.106	1.600	2.044	4.099	1.872	2.265	1.6	2.894
ont	000	000.	000.	1.000	1.000	1.000	000.	000.	000	000.1	000
PP_cont	-	-	-	-	-	-	-	-	-	-	-
uuo	.250	3.088	4.316	3.500	1.600	2.235	2.143	3.692	2.000	3.111	3.171
PP	2.250	e	4	m	-	~	~	e	2		e
rap	.425	25.214	24.109	.058	.337	.415	19.965	.707	.732	24.847	24.054
B	18	25								24	24
avor	0.606	0.790	0.895	0.875	0.908	0.744	0.674	0.741	0.685	0.898	0.750
e B	0		_								
_avcmp B_avnei B_avor B_avrap	5.95	5.093	5.730	4.161	2.333	3.091	3.385	5.111	2.875	2.571	4.848
du	582	0.603	0.612	0.654	0.542	0.681	0.689	0.674	0.549	0.691	0.638
m		Ö	0	Ö	0	Ö	o	0	0	Ö	0
be	363	438	760	0.000	037	740	796	517	555	157	265
con	239.363	530.	678.097	o.	732.	1129.	1675.796	832.	1044.555	565.157	3245.265
mp	0.452	0.845	0.706	0.479	518	439	0.405	556	485	0.724	0.561
NA_Comp	<u>۲</u> .0	0	0.1	٩. 0	9.0	٩. 10	<u>۲</u> .0	0.5	4. 0	0.1	
ŃМ	-	-		-							
pl_nn	1.552	1.522	1.648	1.508	1.375	1.265	1.450	1.667	1.226	1.429	1.364
ŝ	•		~	-	~	•	0	_	0		0
de_Ha	0.807	0.662	0.708	1.284	0.593	1.227	0.859	0.691	0.810	1.001	0.939
Noc		<u>.</u>	~					a ²	-	Ē	
MNA	331	332	333	334	335	336	337	338	339	340	341
L	_										

Cluster	0	0	0	، م	9	0	0	0	- 0	0 0	0 4	00	7 C	- u	C	۲	5	0	n	0 0	NC	00	n c	0	2	-	0	9	7	4	0 4	0 0	~	2	8	~ ~	~ Y	04	4	-	0	5	4.	4 (3	· r	4	22
Outlier	S	S	s			S	SS	SS		S	S	0	S			0	0	SS	0	S		-		6 S			S	0	0	0	S			0	0			ss/Reintroduced	2.823 No	0	S							
NH_inte	2.569 Y€	8.124 Y€	6.145 Ye	2.636 No	3.014 No	6.090 Yes	6.258 Yes	8.353 Yes	14.828 No	6.258 Yes	8.479 Yes	ON 101.11	3./64 YE	3 848 NO	1.772 No	4.327 No	7.293 No	2.523 Yes	6.462 No	3.733 Ye	0 000 000 000	1.4/2 N	2 332 Vac		4.166 No	3.596 No	7.006 Yes	2.922 No	1.778 No	4.574 No	7.323 Ye	3 183 No	6.974 No	3.034 No		3.688 No	3.031 NO	3.535 Ye	2.823 No	11.101 No	4.613 Ye	2.344 No	9.227 No	5.109 No	7 448 No	2.494 No	7.318 No	6.199 No 5.460 No
NH_LD	42.927	447.263	195.741	123.297 202 786	63.552	428.364	254.520	88.333	224.667	95.375	361.324	130.500	130./50	542.15	18.000	58.000	508.172	95.000	258.750	81.222	280.000	100.00	77 286	39.667	143.216	88.700	107.909	71.426	38.364	263.143	437.000	459.030 86.586	271.500	69.871	141.000	209.989	0047121 238.046	133.143	78.059	130.500	239.939	99.905	384.891	315.444	126.500	97.491	108.462	109.467 636.000
NH_TD	67324.463	45539.790	53503.469	60090.234 50461 857	61512.310	44525.030	51970.520	65958.667	53957.667	64824.625	49148.405	61420.500	51065 222	63197.667	66873.389	71792.588	44990.483	65918.667	49988.750	65958.667	4//21.000	00100.429	58971 135	63110.667	55552.112	59781.500	62643.000	59706.213	64465.136	45950.714	47864.177	56204 793	54145.125	62121.671	61379.500	53017.337	0008 364	58901.381	60262.471	61420.500	47098.394	58786.524	48284.327	45914.778	53509 026	56298.091	63919.846	63015.467 43694.000
NH_LI			4.017				4.410					4.804	2./96	2.570	1.815	2.354	4.562	2.297			3.020	4.007	2510	1.522	3.158			2.566	2.017	4.426	4.779	4.304 2 720	4.559	2.616	.,		3.2793	2.518	2.715	4.864	4.038	3.102	5.112	4.280	3 037	2.659	3.443	3.343 5.060
NH_G				3 1.986	1		t 2.269						1.993			1.577							0011		3 2.134			3 1.959	_		_	10.2 0				9 2.276							_	2.646		1		0 1.850 2 2.808
DM_HN	7.415	5.015	5.893	6.618 5.558	6.775	4.904							C/0.0					7.260	5.505	7.264	00270	700.0	6.495	6.951	6.118	6.584	6.899	6.576	7.100	5.061	5.271	4.940 6 190	5.963	6.842	6.760	5.839	5 396	6.487	6.637	6.764	5.187	6.474	5.318	5.057	5,893	6.200	7.040	6.940 4.812
NH_Cont	1.609		4.105		1.555				-			12.797		800.1 950.8	0.998	3.901	4.626	1.635		3.338				0.895	2.161							0.030				2.224			2.283	12.797	5.625				022.1	1.505	6.441	3.430 3.584
NH_Conn	4.390	22.000	13.617	5.234 12 786	5.621	16.788	14.200	14.333	32.000	10.8/5	21.216	20.500	731.0	7.022	3.000	6.824	19.897	4.333	15.750	6.333	10.000	10.429	4.608	1.667	8.888	6.900	12.636	5.723	3.182	12.000	18.412	6.655	15.000	5.643	6.000	8.393	004.7 000 01	7.238	5.353	20.500	11.818	4.571	22.818	13.519	5.447	5.255	13.231	11.467 15.333
AR_Inte	5.927	17.240	9.606	7.123	2.944	10.014	0.913	14.472	3.619	8.18/	1.672	2.123	3.51/	0. 1.34 5.503	6.324	6.863	5.748	1.996	3.437	2.473	1.938	4.240	4417	1.007	2.093	9.058	10.869	8.179	2.228	4.247	3.179	4.470 2.433	10.869	2.763	12.489	2.081	2.030 6.207	1.688	3.547	4.795	5.027	2.387	6.629	5.987	3.UTI 2 969	11.417	3.766	2.293 19.557
AR_LD		-	830.000	499.667 185 375	129.739		39.667	224.667	179.250	88.333	18.222	13.621	88./UU	`	347.500	_			`	_	29.280	100.00	318 143	31.250	56.750	141.667	130.500	280.167	_	266.068	141.000		ì	78.059	344.826	70.712	94.18U 557 394	39.818	121.850	90.417	404.593	127.342	212.040	519.909	69.739 69.871	793.412	64.267	99.905 451.636
AR_TD	46539.000	37226.000	39075.500	43435.333 49594 708	52662.348	41883.000	63815.333	54427.333	59145.750	66/41.66/	655/6.333	5/432.310	60400.000	57.295 933	48865.500	63340.546	59526.650	72905.000	58398.810	66701.667	64095.428	12121.041	44748 000	66917.000	53823.000	57608.667	62086.000	52489.095	58451.319	48226.591	62045.000	40910.010 66.319.415	62086.000	60893.412	51029.000	60472.048	7405454667	63568.318	57206.675	65965.000	44685.630	53958.079	55902.060	435/9.333	198.828.691 62800.600	42094.824	63902.333	59379.286 51957.273
AR_LI				3 322				5.961				121.2									2.01/				2.249					3.831						2.254								4./82				3.102 4.640
ARG	2.742	3.538	3.331	2.948									1.962	- (100.1	- (2.617	1.888			Ľ	2	2.015	2.148					0			1 901			1.994 2.492
AR_MD	4.996	3.996	4.195	4.663	5.654	4.496	6.851	5.843	6.350	7.045	7.040	0.100	0.484 7 040	6 151	5.246	6.800	6.390	7.827	6.269	7.161	0.001	000.1	4 804	7.184	5.778	6.185	6.665	5.635	6.275	5.177	6.661	7 120	6.665	6.537	5.478	6.492	100.0	6.824	6.141	7.082	4.797	5.793	6.001	4.6/8	5.94U 6 742	4.519	6.860	6.375 5.578
MNA2	1	2	e	4 u	0 0	7	œ	6	10	11	12	51	4 4	10	17	18	19	20	21	22	23	44	26	27	28	29	30	31	32	33	34	36	37	38	39	40	41	43	44	45	46	47	48	4 d	00 7	52	53	54 55

	~	2	4 (າ ຕ	5	e	e	5	7	S	4	S	ო	က၊		r m	0	5	4	5	Ω C	ו מ	` •		s ic) 4	ŝ	7	2	ო	n U	04	4	5	-	n c	s rc	აო	5	5	0	2	5	n ι	Ω <	t c	~	2	e
Cluster																																																	
Outlier																														11.593 Yes/Reintroduced									7.152 Yes/Reintroduced										
6	No L	2 V	2 Z		No N	No No	3 No	°N C	4 No	S No	3 No	° S	°N N	2 Z	3 370 NO		8.066 Yes	7 No	No S	No No	N N	on i	NO NO	3.524 NO	2 314 NO	2 No	2 No	° N	2.271 No	3 Yes	3.312 No	2 418 NO	No No	2.341 No	4.669 No	9.040 No	4 801 NO	9.273 No	2 Yes	6.870 No	3 Yes	2 ∠	8.600 No	7.751 No		NON	No 2	0N 0	No 1
NH_inte	10.301	4.89	2.17	9.24	8.014	ì			-				1.960 No			-				3.047 No						-				Ì						9.04					-	16.587	÷		12.33	5 111	14.74	5.73	5.60
NH_LD	511.500	90.417	55.827	700.412	295.912	739.793	125.500	228.850	908.000	234.764	267.031	116.154	37.920	73.482	5/4./5U	592.333	437.625	100.259	104.714	145.755	93.625	500.08 00 700	39.769	705 500	86.526	841.464	24.295	123.486	76.225	533.750	390.000	162.842	177.360	61.208	152.053	551.367 270.222	317 017	141.667	263.619	455.609	793.800	556.647	933.067	300.936	823.987 101 052	148.682	732.842	246.289	462.612
NH_TD	43182.500	65201.583	61542.615	48608.067 42648.941	57689.491	43612.138	58118.389	52060.170	38643.000	52440.327	52161.406	58424.945	61685.280	59748.074	42205.750 55388 301	47550.333	50840.700	58311.870	54372.857	58022.113	6/8////29	58/20.293	63914.615 54465 555	731 000.000	59262 921	41328.357	91688.897	57547.206	58218.571	46539.278	44962.500	52053 947				44973.200 44605.667	49684 068	57060.667	52437.905	45582.087	43602.659	50546.647	42875.567	51257.766	41907.610 58685.068	53913.636	43135.579	51647.688	49995.306
NH_LI	5.352	3.862	2.214	4.44Z	3.302	5.274	2.552	2.976	7.222	2.771	3.100	2.613	2.059	2.242	4.533 2.748	6.230	4.014	2.554	2.866	2.512	2.832	2007.2	2.107	0.404	2 597	5.954	1.921	2.550	2.337	4.175	4.160	2 841	2.864	2.814	3.744	4.221	3.946	3.586	2.929	4.736	6.240	3.987	6.281	3.379	5.858 767	4 125	5.217	3.370	3.844
NH_GI	2.864	1.721	1.895	2.931	2.148	2.856	2.035	2.336	3.245	2.299	2.318	2.041	1.877	1.981	2.944	2.519	2.483	2.045	2.165	2.062	1.810			0/1.7	2 002	3.029			2.022	2.681	2.717	2 308	2.206			2.762	2 4 2 2	2.049				2.536			2.979	2 179	2.898	2.342	2.470
NH_MD	4.756	7.181	6.778 r or o	2.333 4.697	6.354	4.803	6.401	5.734	4.256	5.775	5.745	6.435	6.794	6.580	4.648 6.100	5.237						0.408	7.039	5004	6.527	4.552	10.098	6.338	6.412	5.126	4.952	5 733				4.953	5.472	6.284	5.775	5.020	4.802	5.567	4.722	5.645	4.615 6.462	5 938	4.751	5.688	5.506
NH_Cont	15.957	4.655	1.265	13.190	4.571	4.915	2.428	2.637	31.896	3.736	3.979	1.762	1.099	1.314	3.747	10.668	6.542	1.664	2.138	1.859	1.620	1./68	1.612	2.075	1.518	12.875	1.066	1.522	1.527	10.337	2.533	1 860	2.988	1.136	2.019	8.368	2 075	8.941	3.678	2.825	5.587	13.776	9.368	5.784	8.989	2 647	13.320	3.469	3.133
NH_Conn	29.500	8.417	4.115	24.207	17.211	31.035	7.167	8.458	58.000	14.146	15.469	5.670	3.680	4.222	7 232	41.000	20.025	5.741	7.286	6.283	6/8.G	0.221	3.769	100.1	4 632	39.464	3.218	5.393	4.592	31.083	9.000	5.579	10.000	4.708	10.684	24.967	11 627	19.000	16.381	18.391	40.459	42.059	53.933	18.553	36.740	0.079	42.737	13.430	13.837
AR_Inte	2.392	3.661	7.903	col./	2.745	8.340	1.835	8.387	2.690	3.075	6.116	3.282	2.047	3.352	3.562	6.161	4.977	6.569	1.871	3.789	0.283	2.030	2.526	3.194	3.625	7.962	5.173	4.428	3.335	12.821	2.231	2.12.2	2.580	3.076	10.681	11.444	3 201	8.916	2.315	3.904	19.647	9.129	5.791	16.241	1.129 5.627	9.460	7.584	11.739	22.885
AR_LD	99.327	81.222	371.018	108.462	122.926	329.258	71.793	386.405	123.297	188.472	271.382	170.449	74.370	128.944	240.954	327.225	713.750	314.969	38.240	250.333	220.002	39.709	135.284	1000000	236.236	463.625	330.024	198.800	128.111	895.179	61.542 01.105	78.265	141.734	133.307	923.000	573.139 160.047	176.323	585.500	53.158	214.455	678.667	584.000	191.191	607.471	200.930	419.385	325.957	171.000	641.375
AR_TD	55986.982	66741.667	56667.070	04040.015 45581 421	57311.241	51622.548	56644.879	49416.703	58289.615	57066.283	52351.509	55197.957	59444.741	57453.611	52/295.948 58/107 803	50465.225	41120.000	51788.625	61133.440	53669.389	519//.413	6346U.UUU	5/254.039	00000000000000000000000000000000000000	52795 124	51092.450	50290.881	54630.827	53397.333	41333.357	57249.833	58130.612	59702.297	59114.532	42703.222	46689.139 52311 211	49474 548	45072.200	59044.000	53109.530	43771.667	48801.067	54558.167	50212.588	50/62.1/U	50704 115	50969.926	51201.833	45709.500
AR_LI	2.665	3.198	3.372	3.928	2.585	3.799	2.562	3.489	2.619	2.556	2.802	2.759	2.244	2.566	2.985	3.924	4.671	3.128	2.061	3.143	3.205	701.2	2.560	2.80/ 4.17E	3 070	4.027	3.624	2.881	3.447	5.976	2.814 2.606	2.345	2.271	2.659	6.016	4.187 2.061	3.368	4.237	2.623	3.254	6.278	4.458	3.211	3.998	3.908	3 499	3.403	4.611	5.523
AR_GI	2.197	1.730	2.291	7.847	2.172	2.456	2.161	2.581	2.124	2.190	2.396	2.239	2.063	2.138	2.411	2.498	3.165	2.431	1.967	2.331	2.426	/027.1	2.166	2.201	2 378	2.565	2.518	2.307	2.299	3.145	2.110	2 099	2.077	2.113	3.048	2.774	2.302	2.860	2.023	2.329	2.918	2.717	2.253	2.648	2.441	2.529	2.500	2.414	2.824
INA2 AR_MD	6.010	7.165	6.083	6.94U 4.893	6.153	5.542	6.081	5.305	6.258	6.126	5.620	5.926	6.382	6.168	5.614 6.237	5.418	4.414	5.560	6.563	5.762	080.0	0.813	6.146	1.07.0	5 668	5.485	5.399	5.865	5.732	4.437	6.146 6.200	6 241	6.409	6.346	4.584	5.012 5.616	5.311	4.839	6.339	5.702	4.699	5.239	5.857	5.391	5.450	5 443	5.472	5.497	4.907
MNA2	56	57	58	60	61	62	63	64	65	99	67	68	69	20	1/	73	74	75	76	22	/ 8	6/	80	- 0 0	83.62	84	85	86	87	88	68	0.0	92	93	94	95	20	686	66	100	101	102	103	104	401 901	107	108	109	110

Cluster	2	° C	5	5	4 r	o ư	о и	9	. 4	5	5	1	5	5	5	9		99	9	1	e	8	9	-	e	2	- u	00	n u	с С	5	2	2	9	5	N 7	- ແ	9 4	9	5	e	9	5	9	5	e d	00	N 00	9 9	7
Outlier	0	. 0	0	0	No	No.				0	0	No	0	0	٥	No			0	3.521 Yes/Reintroduced	0	0	0	0	0	No	0 0	0 0	0.341 NU A 383 Vec/Paintroduced		0.0	0	0	0	0	0	0 0	0.0	0	0	0	0	0	0	0	0	0 (2 0	0
NH_inte	9.611 No	5.387 N	-	10.032 N	4.321 N	N 800.01	2 367 No		14.240 No	2.754	8.677	6.164 N	11.500 No	3.749 No	10.910 No	2.533 NO	6 152		10.180 No	3.521 Y	11.730 No	4.010 No	14.912 No	4.982 N	3.677 No	5.004 N	4.286 No	ON C/4/0	0.341 N	6 004 No	14.778 No	5.170 No	7.755 No		3.334 No	4.859 No	0.020 NO	8.578 No	8.739 N	13.038 No	6.976 No	12.885 No	5.089 No	11.851 N	6.571 N	5.784 N	2 535 No	20.123 N	3.104 N	6.778 No
NH_LD	386.000	368.654	724.615	475.575	166.805	473 879	405 714	473.900	926.250	70.710	393.171	115.850	485.000	470.333	469.889	790.62	254.218	52 750	430.167	286.222	403.700	64.417	876.515	294.056	125.069	388.704	149.400 258.405	204.02	106.075	296.541	471.227	155.405	228.100	784.400	227.429	186.333	301.674	376.299	477.781	296.565	396.726	745.817	176.565	618.304	343.612	218.889	260.000	662.000	204.000	199.360
NH_TD	50876.500	48222.500	43246.923	45913.050	55726.585	40210330	46190 143	47165.200	43644.714	58450.355	50485.122	61725.750	49829.750	46891.111	48016.667	0/920.16/ 48034 147	51759.018	54904 000	47959.875	50950.500	48524.800	58059.917	41622.838	49111.371	57157.207	48968.333	56788.950	100.02020	51360 086	48976 787	50362.182	57745.214	54840.800	43322.880	51425.179	56044.222	53037 804	49115.657	47949.463	51844.087	49892.157	42038.606	56297.957	44086.679	49341.020	55432.302	49152.125 51876.474	43337.000	51950.600	55460.480
NH_LI	3.484	4.026	5.728	4.397	3.360	3 003	4 175	3.662	6.153	2.353	4.177	2.942	4.661	4.125	4.618	2.405	3 602	2 234	4.419	3.445	4.876	3.031	6.014	4.303	2.771	3.852	3.186	4.002	3.401	4 390	4.469	3.086	4.051	5.589	3.115	3.424	3 800	4.658	5.160	3.833	4.624	5.689	3.452	5.046	4.456	2.912	4.0/4 2 747	6.286	3.414	3.177
ID_HN	2.425	2.549	2.853	2.679	2.150	3.031	2635	2.624	2.842	1.991	2.429	1.890	2.452	2.638	2.556	7.640	2.329	2 136	2.521	2.398	2.515	2.002	3.013	2.442	2.073	2.524	2.053	017.7 012.2	2.070	2 460	2.451	2.022	2.128	2.904	2.357	2.081	2.042	2.443	2.526	2.331	2.403	2.977	2.093	2.819	2.475	2.185	2.446	2.323	2.319	2.166
DM_HN	5.603	5.311	4.763	5.057	6.137	4.031	5.087			6.437	5.560	6.798	5.488	5.164		7.48U	5 700	6.047	5.282	5.611	5.344	6.394	4.584	5.409	6.295	5.393	6.254	212.0	0.1/1/ 5.656	5 394	5.547				5.664	6.172	0.235	5.409	5.281	5.710	5.495	4.630	6.200	4.855	5.434	6.105	5.413	4.773	5.721	6.108
NH_Cont	6.021	3.988	6.494	7.715	2.504	13.832 2 006	2.000	12.347	8.388	1.522	4.932	4.023	4.889	2.632	6.509	901.1 2 078	3 297	1.665	8.091	1.985	7.258	2.213	11.046	2.440	1.958	3.030	2.271	0./ 14	3. ID3 1 R64	3 045	7.073	2.335	3.885	14.186	1.422	2.728	3.240	3.539	4.009	Ē	2.971		1.971	8.594	2.713	3.273	2.824	21.967	1.970	5.284
NH_Conn	23.308	13.731	33.385	26.875	9.293	47.50U	8 857	39.100	40.464	5.484	21.073	11.650	28.200	9.889	27.889	4.222	14.327	4 750	25.667	8.444	29.500	8.028	44.927	12.169	7.621	12.630	8.800	19.310	14.412	14 771	36.227	10.452	16.500	54.920	7.857	10.111	13.923	20.955	22.073	30.391	16.765	38.352	10.652	33.411	16.265	12.635	10.417 8 211	57.333	7.200	14.680
AR_Inte	3.373	14.499	11.338	5.302	2.953	5 0 77	8 405	15.486	4.175	4.139	10.648	14.736	4.294	6.176	4.023	3.660	7.360	5 7 12	8.330	4.028	3.661	4.966	11.701	11.511	5.202	3.772	15.202	3.931	6.461	2 2 1 2	4.892	6.591	4.036	14.714	18.633	7.447	4.107	8.062	14.506	4.143	4.601	12.142	4.866	6.178	4.312	3.095	3.161		8.433	
AR_LD	466.000	784.947	303.267	385.333	115.825	022.810	421 430	1028.700	184.366	67.696	503.815	517.100	151.879	283.000	161.845	326.191 178 663	550 793	337 339	408.833	536.000	156.367	150.591	676.054	486.900	465.069	328.222	665.667	70 400	790 750	49.263	166.643	188.765	163.200	961.618	861.600	259.400	011.022 0114.686	325.196	504.409	227.553	327.280	880.507	274.524	456.286	186.189	91.083	C12.222	548.731	504.610	408.716
AR_TD	45369.000	43095.421	50409.500	48447.513	58135.683	40908.400 5352 815	40554 683	41041.500	55009.195	70079.304	47633.296	47425.100	57177.636	51622.273	54375.526	4/ 84/ 438 53503 015	45094 000	47155 113	47985.000	46310.200	56536.733	54161.864	43961.339	47287.300	48031.690	50725.500	44638.000 50042.200	20042.309 60526766	51675 125	60.317.263	56143.024	54803.294	54145.400	41449.118	43305.560	51900.000	100.1 10UC	52408.283	50484.818	49155.872	48850.600	41908.078	47876.143	46528.762	52403.611	59426.817	51963.400 55505.636	42800.346	46999.244	48069.567
AR_LI	4.264	5.238	4.737	4.039	2.779	4.430	4 201	6.379	3.389	2.624	4.630	3.666	3.467	3.638	3.202	4.350 2 063					2.898		5.084			3.545	6.293	3.U31	00C.2	2,605	3.093	3.490	3.229	6.059	5.609	4.194	3.0U3	3.850	4.487	3.945				4.113	3.681	2.771	3.460	5.006	5.189	4.704
AR_GI	2.796	3.013	2.481	2.631	2.102	2.118	2 568	3.177	2.273	1.838	2.675	2.708	2.202	2.423	2.276	2.614	2.825	2.674	2.605	2.780	2.194	2.243	2.938	2.702	2.685	2.504	2.829	2.039	1.995	1 999	2.166	2.222	2.255	3.144	3.020	2.363	2.429	2.381	2.548	2.532	2.556	3.092	2.613	2.744	2.358	2.019	2.396	2.243	2.675	2.602
AR_MD	4.871	4.627	5.412	5.201	6.241	4.935	5 320	4.406	5.905	7.523	5.114	5.091	6.138	5.542	5.837	5.13/ 5.75/	4 841	5 062	5.151	4.972	6.069	5.815	4.719	5.077	5.156	5.446	4.792	0.317	5 548	6 475	6.027	5.883	5.813	4.450	4.649	5.572	5, 286	5.626	5.420	5.277	5.244	4.499	5.140	4.995	5.626	6.380	5.5/9 5.068	4.595	5.046	5.160
MNA2	111	112	113	114	115	110	118	119	120	121	122	123	124	125	126	121	129	130	131	132	133	134	135	136	137	138	139	140	141	143	144	145	146	147	148	149	151	152	153	154	155	156	157	158	159	160	161	163	164	165

	9	З	e	2	9	5	9	œ	S	ω 1	9	8	9	n c	0 0	c	5	8	9	2 0	oα	2 10	9	S	5	9	0	9	× 0	- 4	0 0	1	2	6	- 0	> ←	6	5	0	œ	0 0	ч с	1 00	n c	2	ωı	ç, a	οœ
Cluster																																																
Outlier																															No Yes/Reintroduced																	
NH_inte	9.332 No	6.539 No	2.661 No	9.701 No		8.487 No	4.618 No	9.506 No	3.228 No	13.333 No	1.027 No	4.018 No	5.704 No	4.766 No	5.412 No	5.351 No	6.942 No	8.909 No	4.799 No	4.764 No	2 807 No	7.859 No	2.097 No	9.759 No	3.101 No	6.310 No	5.844 Yes	8.178 No	8.529 No	4.000 NO	0.110 NO 20.061 Yes	4.631 No	9.259 No	8.369 No	4.610 No	3.910 No	17.544 No	0.406 No	11.920 Yes	1.709 No	3.618 No	5 134 NO	22 463 ND	6.506 No	13.340 No	12.875 No	3.583 No	6.518 No 8.143 No
NH_LD NH		230.544		689.627 254 790											372.643			_	_	119.960			01		01			_	305.774		~			_	481.273	-			-	-	226.936			4	-		` 	328.167 613.732
TD NF	01											_		`					_				~	~	~	_	0	~ ,					-				_	_	_	~	+ 0		· ·					
-I NH	•			16 44275.203 35 48725.503							-	_			79 47237.786		36 50970.966		_	10 62665.413								_		04 40012.02	_			_	91 46080.727						95 49157.234				94 44317.679		1	00 50999.556
GI NH_I				2.820 4.716							1.703 1.338				2.600 4.179		Ľ			7 2 2 0 2 1 0		2.350 4.434		<u> </u>		`			2.379 3.779	2.030 4.004			۳,		2.642 4.591				2.784 6.026	_	2.458 3.395	•••			~	Ű		2.361 4.250 2.765 5.417
NH_MD NH_G				4.876 2.8 5.366 2.4				- 0					4.438 3.0		5.202 2.6					6.902 1.8						_			5.656 2.5						5.075 2.6						5.414 2.4							5.617 2.5 4.879 2.7
_		_		7.592 4 1.676 F		_			1.500 6				5.181 4		1.973					2.168 6				3.799 5					1.441		3.131			4.527			9.543 5				1.614				5.532		_	3.003
nn NH_Cont	0	15.022																																	Ì								-					22.512
NH_Conn				3 27.356									17.609		14.071			24.768		9 8.707					6.297			21.083									1									~		
AR_Inte	-			5.619											7.081		-	11.747		6.329								4.914	1.49/						10.060		-	5.901	16.389	14.264	10.275	0.956	3.000	5.315	11.555	10.988	14.551	21.292
AR_LD	797.845	183.280	247.857	930.826	155.375	434.321	186.044	496.300	153.054	536.722	479.353	409.750	697.944	288.842	520.304	734.441	670.375	980.982	370.191	219.308	557 181	294.322	242.851	365.694	106.509	533.500	000.66	255.152	318.984	429.000	376.571	95.375	333.294	283.667	478.941	189.000	724.696	520.721	1032.750	874.000	934.154	717 833	200.111 264.682	493.809	775.500	700.436	630.462	/30.371 1236.714
AR_TD	42145.916	52691.560	51545.107	40366.174	49916.250	46843.250	55363.783	45014.850	56022.865	45283.405	46349.882	46828.865	43965.272	51982.105	01/42.133 44531.261	44418.593	45135.719	41000.455	48265.695	54196.769	45302.77	49667.915	49350.872	49726.806	59345.291	45033.222	45424.000	49854.636	49585.307	02334.300	49837.571	61027.000	46349.177	48434.461	45480.647	56882.556	43473.957	52432.029	40332.250	42113.714	44303.154	17780 833	42498.859	46309.021	42351.643	43347.210	46795.256	44897.486 40251.800
AR_LI				6.330									5.183		3.04z 4.854					3.972								_	4.462						4.686						6.005							5.503 7.293
AR_GI		2		3.196							2.715		0	2.406						2.249			2		2	2		~ ~	2.502	N C		-	2	0	2.1/6						2.920	Ì						3.219
MNA2 AR_MD				4.334										5.581			Ĺ			5.818					-				5.323						4.883	1 W			Ì		4.756				Ľ			4.321
MNA2	166	167	168	169	171	172	173	174	175	176	177	178	179	180	161	183	184	185	186	187	180	190	191	192	193	194	195	196	197	100	200	201	202	203	204	205	207	208	209	210	211	212	212	215	216	217	218	219

Cluster	0	8	4	5	ο κ	n N	5	8	5	3	9	-	7	9 1	- 0	9	5	8	9	8	9	4 1	ى م		99		- 5	0	9	-	3	5	ω,	2	0 0	1.0	8	9	9	9	7	ßı	ñœ	4	~ ∞	8	9	8	999
Outlier	fes	10	40	9		No	No Vocine di con	res/Keintroauced	9	No	No No	Yes/Keintroduced	No	N	No	No	No	No	No	07	6.253 Yes/Reintroduced		No	No	Yes/Reintroduced	Yes/Reintroduced	Yes/Reintroduced	9	No			0	07	07	40	99													
NH inte	14.202	9.575	6.052	8.580	1 000.0		6.301		5.381	3.872	3.763	5.198	3.160	3.601	3 852 0	23.434 No	12.174	11.875	6.724 N	14.561	14.974	3.141	4.812		1007.01	7 324 4	2 593 0	6.055	13.616	2.389	4.380	9.052	9.355 No	6.253	ON 004-0	3.426	14.654	3.557		8.744	12.746	12.764	1 020.8	4 614 1	11.409	7.902	6.821	6.203	15.500 1
NH_LD	646.261	736.250	474.603	537.000	223.010 213.896	438.447	606.720	132.136	229.769	237.308	271.353	365.589	82.913	167.440	335,429	622.625	160.667	632.883	414.014	1078.698	802.476	135.241	229.923	2/8./6/	015.900	000.105 ADT 706	423.000	247.800	626.619	215.714	382.500	528.188	767.360	291.102	4/0.00/ 660.871	262.469	998.872	77.900	796.196	525.113	740.468	777.786	976 000	218.962	683.162	236.769	300.319	754.857	645.286 671.130
NH_TD	44712.652	43738.033	52485.794	47033.214	55359 542	48781.936	45675.463	54302.364	53556.077	49318.923	49448.000	49656.329	57238.609	54216.360	46408.826 46358.429	45225.875	51242.833	45388.433	51546.636	41914.163	43223.214	53200.621	53412.192	50833.667	44945.000	50501.185	48464 000			52115.857	48908.125	45089.417	43576.040	50346.020	44572 300	51875.694	42238.213	61910.567	44672.130	44755.793	43399.935	44227.102	40393.741	52847 654	44233.432	52787.577	50493.830	46125.974	44731.000 43669.826
NH	5.530	5.691	3.744	4.936	1 320	4.344	5.241	3.846	3.830	4.229	4.295	3.876	2.929	3.508	0.140 4.549	5.532	4.614	5.880	4.163	6.061	6.106	3.316	3.337	4.637	110.0	3 060	4 075	4.671	5.667	2.635	3.907	5.122	6.003	3.870	220.4	3.529	6.089	3.038	5.996	5.193	5.780	5.541	0.004 6.385	3 083	5.995	4.604	4.535	5.329	5.557 5.557
NH GI	2.749	2.829	2.355	2.581	2.204	2.488	2.677	2.140	2.263	2.404	2.423	2.441	2.023	2.155	2.603	2.758	2.327	2.679	2.380	3.000	2.865	2.218	2.238	2.3/1	2.1.20	212.2	2 507	2.219	2.766	2.272	2.454	2.704	2.822	2.409	2.001	2.306	2.960	1.846	2.735	2.725	2.843	2.791	0192	2 243	2.779	2.215	2.367	2.671	2.737 2.846
DM_HN	4.924	4.817	5.780	5.180	711.0	5.373	5.030	5.980	5.898	5.432	5.446	5.469	6.304	5.971		4.981		4.999	5.677	4.616	4.760	5.859	5.882	5.598	4.950	5 562	5.337	5.796	4.874	5.740	5.386	4.966	4.799	5.545	012.C	5.713	4.652	6.818	4.920	4.929	4.780	4.871	0.109 4.693	5 820	4.872	5.814	5.561	5.080	4.926 4.810
NH Cont	8.304	3.768	3.098	6.087	2.307	2.910	2.577	1.306	2.990	2.132	1.724	3.120	1.644	2.075	4.311 1 R62	24.826	6.831	4.583	3.193	7.699	6.234	1.801	2.969	9.089	2.883	3.112	1 125	2.360	5.756	1.748	3.080	6.766	3.271	5.408	709.C	2.565	7.723	1.546	4.523	7.087	5.847	6.347	3.032 6 753	2 866	3.742	3.583	2.986	2.006	13.186 8.650
NH_Conn	39.044	27.083	14.250	22.143	12.11	14.277	16.866	8.167	12.180	9.308	9.118	12.685	6.391	7.760	14.000	64.625	28.333	31.817	16.000	43.674	42.905	6.966	10.769	21.967	24.594	17 796	6.500	13.436	37.667	5.429	10.750	24.479	26.400	15.061	061 22	7.898	43.383	6.567	32.717	23.830	36.234	35.622	42.000	10.346	31.703	17.500	16.149	16.571	42.429 31.739
AR Inte	5.653	7.863		5.687	4 526	7.757	12.647	3.601	13.495	6.266	6.068	8.000	6.506	5.733	3 360	3.755	5.373	13.441	8.646	9.370	8.758	5.048	3.060	27.7.7	1.891	3.610	5 100	3.458	11.398	4.208	4.582	9.022	8.739	4.644 5 602	0.090 13 746	7.805	9.269	16.813	9.051	5.702	13.151	4.566	11 0.38	2 629	12.322	5.772	14.312	8.954	9.246 8.368
AR LD	677.667	539.229	508.000	443.489	324.915 126.307	488.500	957.286	147.870	533.707	513.850	687.084	601.429	443.063	225.646	296.647	292.077	236.897	781.122	699.300	801.150	738.578	400.603	139.931	108.802	020 744 020	341 714	381353	161.551	840.370	466.500	255.769	589.302	655.031	522.636	202.002	645.169	805.041	996.071	809.920	531.652	656.238	249.346	725.487	76.581	811.377	271.273	1176.209	907.930	593.229 503.667
AR_TD	43967.667	46865.627	49646.571	49595.622	43 107.000 61371 120	47509.000	42877.250	51397.870	48377.948	47572.925	43513.482	45341.500	50581.462	53398.542	41,048.250	47321.308	53999.923	43888.905	44278.357	43310.550	43634.844	49203.480	53617.828	48668.429	45024.295	45312714	47.981.618	50310.580	43909.348	45533.000	52555.308	44663.793	44757.063	458/8.182	42685350	46562.985	43198.554	42556.429	43403.720	46347.130	44084.762	51441.962	44058 081	56785.677	42778.935	51002.418	41559.140	43703.372	44590.271 47560.590
AR_LI	5.167	4.982	3.872	4.013	3 217	4.511	5.858	3.767	4.360	4.392	5.394	4.986	4.208	4.338	4.188	4.406	3.853	6.170	5.592	5.742	5.548	3.905	3.333	2.714	5.479	4 566	4 155	4.005	6.028	4.063	3.363	5.311	5.642	4.657	0.0.0 6 202	4.792	5.746	6.110	6.031	5.220	5.680	3.141	5.332 6.019	2.387	5.837	4.725	6.120	6.242	5.237 4.539
AR GI	2.890	2.709	2.597	2.567	740 1	2.695	3.016	2.371	2.669	2.681	2.938	2.822	2.526	2.271	169.2	2.642	2.324	2.893	2.874	2.972	2.948	2.567	2.2/6	2.90.2	2.931	2.024 2.770	2 607	2.435	2.897	2.793	2.384	2.834	2.843	2.760	3 027	2.740	2.985	3.042	2.943	2.699	2.886	2.418	798.2	2 135	3.008	2.394	3.151	2.917	2.841 2.693
AR MD	4.720	5.031	5.330	5.324	0/7.C	5.100	4.603	5.518	5.194	5.107	4.671	4.868	5.430	5.733	1 CU.C	5.080	5.797	4.712	4.753	4.650	4.684	5.282	5./56	GZZ. G	4.003	4 865	5 151	5.401	4.714	4.888	5.642	4.795	4.805	4.925	0.583	4.999	4.638	4.569	4.660	4.976	4.733	5.523 r 070	4 730	6 096	4.593	5.475	4.462	4.692	4.787 5.106
MNA2	221	222	223	224	922	227	228	229	230	231	232	233	234	235	230	238	239	240	241	242	243	244	245	240	241	240	243	251	252	253	254	255	256	257	027	260	261	262	263	264	265	266	268	269	270	271	272	273	275

r	ω (0 00) co	З	4	90	0 4	0 4	9 9	9	5	0	З	99	o c	94	9	S		4 0	0 0	4 63	9	З	9	œ	ς α	0 0	0 10	3	9	5	5	ν α	0 00	80	2	2	ωı	ດ	o un	5	2	9	0 0	να	200
Cluster																																															
Outlier	07	0	No	No	No	No	No		No	No	N 8	res (40	No	N	9	No	40	No	0	No Vac/Daintraduand		9	3.938 Yes/Reintroduced	No	No	10	0		Yes/Reintroduced	20	9	0	No	No	10	No	No	No	8.329 Yes/Keintroduced		9	4.148 Yes/Reintroduced	0.790 Yes/Reintroduced	07		9 9
NH_inte	8.927	1 92C.C	8.203	3.447 h			1 0/1/0		3.949	4.711	13.547	11.077 Yes	9.455 No	8.805 No		14.471 No	16.702	8.734	2.388	0N 828.0	3.109 NU	3 326 No	13.438 No	3.938	14.351 No	7.640		4.03U NO	0NI 000.8	4.267	7.134 No	15.168 No	5.900 No	11.8/4 NO		2.615 No	15.660	10.943 No	10.733	8.329 Yes	17.706 No	7.667 No	4.148	10.790	3.648 No	1 90.2 1 913 N	5.566
NH_LD	662.044	186.381	600.062	134.333	623.551	300.190	249.203	101.001	9629.CUUT	68.969	841.500	776.667	334.975	665.875	860.837	820.800	906.250	580.815	71.308	188.500	1010 202	120.644	913.154	31.286	735.176	729.432	482.167	020.00	396,000	254.588	451.269	653.406	342.304	908.000 6.47.222	510.000	402.800	750.333	359.750	266.353	392.333 601.126	800.000	508.938	338.133	443.981	323.325	513.709 588 803	79.025
NH_TD	43975.178	54421 262	47656.308	51636.208	47294.854	50493.830	52/13.U/U	43433.000	43100.030 56158.321	64449.094	45836.917	43907.667	53317.550	44174.125	44410.407	42558.467	43729.636	47895.939	57572.308	49892.500	20029.022	57913 583	43249.923	94661.714	45442.635	45469.338	46071.143	800.10001	49288 150	49724.284	50162.923	45797.219	48387.109	38643.000	46948.059	46440.500	44043.167	50690.000	51549.500	4/493.96/	43773.600	47011.750	50942.467	47776.231	48075.300	48094.692	51304.225
NH_LI	5.495	3 205			4.677	4.535	2.841	0.090	6.349 3.257	3.167	4.726	5.507	3.521	5.433	6 208	5.072	6.102	4.651	2.590	4.121	C +0.7	2 925	5.613	2.446	6.117	5.625	5.087	1 00 0	4 584	3.839	4.018	5.035	4.716	1.222 5.48.4	5.131	4.561	5.795	4.415	3.428	5.261	6.292	4.954	3.634	4.510	4.221	5.404	3.853
NH_GI	2.808	2.204				_	2.301	100.2	2.86/	1.811				2.778	2 759	2.949		2.567	2.030									010.1			2.453	_		3.245					2.318	2.545		2.584			2.515	2.5US	2.313
DM_HN	4.843	5.843 5.994	5.249	5.687	5.209	5.561	CU3.C	4.764	4.754 6.185	7.098	5.048	4.836	5.872	4.865	4 891	4.687	4.816	5.275	6.341	0.490	100.0	6.378	4.763	10.425	5.005	5.008	5.074	0.129	5 428	5.476	5.525	5.044	5.329	4.256	5.171	5.115	4.851	5.583	5.677	5.231	4.821	5.178	5.610	5.262	5.295	182.0	5.650
NH_Cont		2.533	3.566	2.830	5.607	2.986	4.129	010.0	4.083	2.266	7.525	10.389	4.732	6.497	3.385	12.393	8.443		1.340		10.616	1 605	7.621					2.090			3.956				3.595		-			6.568	Ì	6.046	2.564	5.333	1.662		2.635
NH_Conn	25.067	12.179	21.077	7.917	27.438	16.149	74.211	20.902	28.026	8.531	37.333	31.556	21.375	24.458	25.721	42.667	47.386	22.415	4.846	14.000	0.37	6 796	38.846	4.429	38.446	20.568	13.548	1.4/0	31 500	10.353	17.500	40.656	14.609	24 222	21.318	6.800	43.667	26.125	24.882	21.200	49.600	19.813	10.000	27.404	9.175	13 301	12.875
AR_Inte	14.352	14 075	9.944	5.217	8.428	6.025	10.985	E 070	5.978 4.685	10.500	4.188	15.544	10.776	3.853	12 408	6.109	18.201	13.221	5.222	5.18/	1.1.1	8 912	10.052	2.225	8.570	9.582	2.220	10.040	6 824	14.318	4.973	9.322	4.689	11 605	10.501	8.047	11.843	16.158	13.046	11.040	4.094	14.143	1.864	7.847	2.506	3 552	6.058
AR_LD	1089.447	2/3.981	747.263	274.964	618.600	294.240	195.397	0000 0001	176.895	368.250	450.364	734.000	522.900	115.250	832 306	270.526	974.067	911.667	270.000	000.951	106.000	365,225	663.056	32.700	629.395	1059.403	77.462	901.044	460.630	881.200	529.714	349.429	333.220	600.406	459.604	530.682	704.111	824.167	443.800	301.206	365.733	646.000	141.143	549.625	414.800	2/5.143 353.475	281.382
AR_TD	41811.192	20086.846 42457.645	45509.566	49241.929	47601.754	49727.240	696.11754	41034.204	45436.039 50903.000	50516.875	48355.546	43648.429	48242.100	54671.036	43914.918	52898.456	42877.067	45707.083	45147.000	068.80000	4244040	51117 700	46196.214	74632.238	45666.842	43201.416	55861.692	42300.034	49846 482	42662.067	44661.619	50240.643	49441.475	45641.378	47844.868	46987.235	45027.444	44235.167	48633.650	51395.971	50876.400	45796.875	57246.429	47309.438	46151.300	006.00020	48135.088
AR_LI	_	4.094 6.413					0.080		5.304 3.783					3.300						3.020						-		101.0				_		5.651 6.068						3.486					4.576		
AR_GI	3.113	2.424 3.035	2.816			2.483	206.2					2.923		2.215				2.887		2.213				1.584				010.0 100.0	2.556	3.054	2.825	2		287.2 7 831		2.687		2		2.411	2.508	2.758			2.714	2.309	
MNA2 AR_MD		5.441 4.558				÷.	4.693		4.8/8 5.465					5.869	4.005	5.679	4.603	4.907	4.847	0.018	210.0	5 488	4.959	8.012	4.903	4.638		010.4	1 4		Ì			4.900			Ì	Ì	5.221	5.518	5.462	4.917	6.146	5.079	4.955	5.044 5.138	5.168
MNA2	276	278	279	280	281	282	282	204	C87	287	288	289	290	291	262	294	295	296	297	282	200	301	302	303	304	305	306	100	309	310	311	312	313	314	316	317	318	319	320	321	323	324	325	326	327	320	330

_	_	_	_	_	_	_	_	_	_	_	_
Cluster	2	4	9	2	2	2	e	2	-	2	e
NH_LD NH_inte Outlier	Yes/Reintroduced	No	No	No	No	No	N	No	No	No	No
NH_inte	5.576	5.819	3.331		5.315 No		10.378 No	9.931 No	1.911	3.936 No	
NH_LD	183.895	472.895	155.548			52.421			137.571	163.234	
GINH_LINH_TD	54916.246	47261.105	50160.645	44609.889	46984.600	59283.342	46061.934	44735.000	56723.286	55832.511	50494.950
NH_LI	3.275	4.225	3.338	5.768	4.484	2.621	5.458	4.452	2.764	3.842	3.937
NH_GI	2.183	2.560	2.402	2.731	2.568	1.944	2.6	2.7	2.0	2.1	2.377
DN_HN	6.048	5.205	5.524	4.913	5.175	6.529			6.247		5.561
NH_Cont	2.724	5.016	2.081	9.826	4.641	1.335			1.088		
AR_LD AR_Inte NH_Conn NH_Cont NH_MD NH_GI	12.175	14.895	8.000	30.000	13.650	4.684	27.737	27.692	4.000	8.298	12.350
AR_Inte	5.394	5.446	5.086	4.994	18.273	5.473	9.769	1.993	5.976	11.310	3.477
AR_LD	80.225	190.140	304.350	648.929	886.200	501.000					282.000
AR_TD	51494.575	55140.965	50621.600	14739.893	13839.600	17167.200	44719.000	48348.923	47438.211	44773.111	52220.980
AR_LI	3.847	3.276	3.947	5.497	6.382	4.553	4.467	3.823	4.285	5.845	3.565
2 AR_MD AR_GI AR_LI	2.387	2.255	2.458	2.818	2.901	2.650	2.898	2.586	2.642	2.820	2.371
AR_MD	5.528	5.920	5.434	4.803	4.706	5.064	4.801	5.190	5.093	4.807	5.606
MNA2	331	332	333	334	335	336	337	338	339	340	341