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Abstract 

Design and Deployment of AMF Configurations in the Cloud 

Pradheba Chakrapani Rangarajan 

With the ever growing popularity of cloud computing, the trend of deploying applications 

in the cloud is increasing more than ever. Cloud offers computing resources that can be provisioned 

as required and scaled according to the workload demand. This feature attracts service providers 

to deploy their applications in the cloud. As users continue to rely more on the services provided 

by these applications, it is essential to keep the applications running with minimal service outage. 

Service Availability Forum (SA Forum) has defined a framework called Availability Management 

Framework (AMF) which can be used to manage service availability. AMF is agnostic to the 

services provided by the applications. However, it manages the service availability of applications 

by orchestrating the redundant entities through a configuration called AMF configuration. The 

design of AMF configurations for a physical cluster based on the functional and non-functional 

requirements, such as minimum level of service availability, has been proposed in the literature. 

In these solutions, the number of physical hosts required to deploy an application is given as input 

and the resource utilization is not taken into consideration. However, for deploying applications in 

the cloud the number of physical hosts is not fixed and should vary depending on the workload. 

Therefore, the issue of minimizing the number of physical hosts while meeting the requested level 

of service availability arises. In particular, the service availability depends not only on the entities 

involved in providing the service but also on the interferences caused by the collocation of entities. 

To minimize these interferences, the collocated entities can be grouped into fault isolation units 

such as VMs. This in turn may increase the number of resources required.    
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In this thesis, an approach to generate AMF configuration for the cloud is proposed. In this 

approach, a novel method is used to calculate the number of AMF entities that meets the 

availability and resource utilization requirements.  In addition, a method to estimate service 

availability is proposed. It aims to predict the availability of service by considering the potential 

factors that affect availability, including the interferences due to collocation. Furthermore, an 

approach to deploy AMF applications in the cloud is proposed. As a proof of concept, a prototype 

that demonstrates the generation and deployment of AMF configurations in an OpenStack cloud 

has been developed. This prototype includes the existing Monitoring and Elasticity Engine, 

previously developed in the MAGIC project. 
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Chapter 1 

Introduction 

In this chapter we will briefly introduce high availability and service continuity. We will also 

explain the motivations behind the thesis, its contributions and finally, its organization. 

1.1   High Availability and Service Continuity 

Service availability (SA) is defined as the percentage of time a system is ready to provide its 

service [1]. Highly available systems are those that can achieve at least 99.999% of service 

availability [1]. High availability (HA) is an essential and critical requirement for computer based 

systems that are expected to provide the service around the clock.  

Cloud computing is a new and popular paradigm where compute, network and storage 

resources can be rented and managed in an on-demand fashion over internet [2]. Ensuring 

availability of application services in the cloud is a challenging task [3]. This is because, failures 

are inevitable regardless of the reliability of the software components or the underlying 

infrastructure. The impact of these failures could be catastrophic in some cases. For example in 

2013, a major service outage occurred in Amazon’s east coast data center had led to a loss of 

$66,240 per minute [4]. 

Highly available systems are designed to avoid single point of failure. This is ensured by 

incorporating proper redundancy mechanisms [1]. Resources such as software, hardware or 

communication elements are replicated in the system. The basic way of organizing redundancy is 
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to have an active and a standby resource. The active resource provides the service and shares its 

state with the standby resource. If the active resource fails, the standby resource takes over the 

service and thus the service remains provided with continuity [1].     

1.2  Thesis motivations 

The notion of ubiquitous resources is realized with the advent of cloud computing [5]. By 

leveraging existing technologies like virtualization [6], infrastructure providers offer computing 

resources as a service in a pay-as-you-go manner. Service providers rent these resources to build 

SaaS (Software as a Service) applications and offer them as a service to their customers or end 

users [5]. As opposed to the traditional computing, cloud computing allows service providers to 

provision resources as needed during initial deployment of application and scale resources 

according to the needs. As a result, there is a window of opportunity to optimize and efficiently 

use resources in the cloud [7].  With the aforementioned advantages, the cloud is attracting more 

and more service providers. As end users rely more on the services provided by these applications, 

any unplanned service outage could result in loss of revenue for the service providers. To avoid 

paying penalties to the customers or end users, service providers design the SaaS applications 

considering both functional and non-functional requirements including availability requirements 

[9].      

The design of highly available applications is a challenging task. Using reliable application 

components does not guarantee high availability. One has to incorporate proper redundancy 

mechanisms depending on the type of the application and appropriate recovery mechanisms to 

minimize the service outage. More importantly, in the event of failure the coordination among the 

redundant entities is important to ensure service continuity. Traditionally, along with the 

application logics the availability mechanisms are also included by the application developers. 
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Service Availability Forum (SA Forum) [8] has defined the Availability Management Framework 

(AMF) [10], a middleware service that abstracts the availability mechanisms (i.e. managing the 

life cycle of application components, coordinating redundant entities and executing appropriate 

recovery mechanisms in the event of failure) into the framework [10]. To manage the availability 

of application services efficiently, AMF requires information about the application components 

and services in a configuration file called the AMF configuration [10].   

Designing an AMF configuration [9] [11] [12] can be generically viewed as building and 

dimensioning an application that is intended to provide specific service functionalities. Designing 

AMF configurations for a cluster based on the functional and non-functional requirements has 

been proposed in the literature [9]. This approach starts with analyzing the functional requirements 

(i.e. the type of the services the applications are intended to provide) and identifies the software 

components that can provide the service. Based on the non-functional requirements (such as the 

requested level of service availability) and the number of physical hosts required to deploy an 

AMF application (given as input), an AMF configuration is generated [9]. This approach is not 

suitable for the cloud, because the number of physical hosts required should not be fixed and this 

can change according to the workload variations. Therefore, designing AMF applications that can 

be deployed using a minimum number of physical hosts and meets the requested level of service 

availability remains an open question. This is a challenging task because, to minimize the number 

of physical hosts, the software components are collocated in the same environment (example a 

VM). The repeated failure of software components hosted on the same VM indicates the fault in 

the VM and requires a VM reboot. This recovery action may affect the availability of all the 

services provided by the VM (called as interference). To reduce this interference, software 
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components can be grouped into fault isolation units with more VMs. This in turn will increase 

the number of physical hosts.     

While deploying AMF applications (using the generated configurations) in the cloud, if the 

availability constraints (anti-collocation relation) between the entities is not respected, the service 

availability will be jeopardized. The anti-collocation relation between the software entities and the 

VMs are defined in the AMF configuration. However, the availability constraints at the physical 

host level is not defined in the configuration. To ensure service availability, this should also be 

taken into consideration.     

   In this thesis we aim to design, deploy and manage AMF applications in the cloud that meets 

both availability and resource utilization requirements. Using the existing Monitoring architecture 

[21] and Elasticity Engine [22], workload variations of the deployed applications can be effectively 

managed at run-time.      

1.3  Thesis contributions 

The contributions of this thesis are as follows:  

1) An availability estimate method that predicts the availability of a service by considering 

the potential factors that affect the availability including the interferences due to 

collocations.  

2) A method to calculate the number of AMF entities that satisfies both availability and 

resource utilization goals. From availability perspectives, the goal is to meet the requested 

availability and from resource utilization perspective, the goal is to deploy the applications 

using minimum number of physical hosts. This method is based on the aforementioned 

contribution on availability estimation taken into account interferences. 
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3) A method to deploy the generated configurations in the cloud has been devised. The 

purpose of this method is to define the anti-collocation constraints at physical host level 

based on the generated configurations and to deploy the applications in the cloud without 

jeopardizing availability.      

4) A prototype tool that illustrates the generation and deployment of AMF applications in the 

cloud has been developed. Also, the deployed application is integrated with the existing 

Monitoring architecture [21] and Elasticity Engine [22].   

5)  An application for the AMF configuration generation process in the domain of Network 

Function Virtualization (NFV) [45] has been developed. Using this process, configurations 

can be generated for AMF managed Virtual Network Functions (VNFs [44]). For this 

purpose, the appropriate mapping between both fields has been proposed.  

1.4  Thesis organizations 

Besides the introduction, the thesis is divided into six chapters. Chapter 2 introduces the 

necessary background on SA Forum’s AMF, cloud computing and also research works related 

to this thesis. Chapter 3 briefly explains the configuration generation process for a cluster [9] 

and highlights its limitations. Chapter 4 presents the generation and deployment of AMF 

configurations for the cloud. Chapter 5 discuss the prototype implementation of the 

aforementioned contributions and also the integration with the existing Elasticity Engine [22] 

and Monitoring architecture [21]. Chapter 6 depicts an application of the AMF configuration 

generation process for VNF [44]. Chapter 7 concludes this thesis and highlights potential future 

research directions.     
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Chapter 2 

Background and Related Work 

This chapter introduces SAF middleware specifications [13] and more importantly focuses 

on the main concepts involved in understanding the AMF [10]. Further, this chapter briefly 

introduces the general cloud computing concepts including its characteristics, service models and 

deployment models [14]. Finally, we review the research works related to this thesis. 

 2.1 SAF Middleware  

Traditionally, telecommunication companies developed their own proprietary HA 

solutions. Applications built using this solution have limited portability and reusability [13]. In 

order to address this issue, leading telecommunication and computing companies joined together 

to develop an open standard for SA [13].   

SA Forum [8] emerged to support and manage applications to provide highly available 

services. For this purpose, it defined two standardized interface specifications [13]: a) The 

Hardware Platform Interface (HPI) [13] and b) The Application Interface Specification (AIS) [13]. 

One of the main advantages of standardizing interfaces is that the applications can be ported easily 

and they can be deployed on any middleware that supports this interface [13]. 

As shown in Figure 2-1, AIS defined a set of services and management frameworks to 

support the development and management of highly available applications [13]. Among the 

frameworks, AMF [10] is used to manage the availability of application services. The next sub-
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section (Section 2.2) focuses on the necessary concepts required to understand the AMF, as this is 

the main context of the thesis. 

                  

 

 

 

 

 

 

 

Figure 2-1 Overview of HPI and AIS services [13] 

2.2 Availability Management Framework  

AMF is responsible for managing the availability of the services provided by the 

applications by coordinating and managing its redundant entities [10]. To manage the availability 

of services provided by the applications, AMF requires information about the components, 

services provided by the components, dependencies and their logical groupings. This information 

is described as a configuration called AMF configuration [10]. At runtime AMF reads the 

configuration to know about the current state of a system, applicable redundancy mechanism, error 

detection and error recovery policies [10]. Using this information, AMF dynamically assigns 

active or standby roles to the service provisioning entities. 
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2.2.1 AMF Entities and AMF Entity Types 

In an AMF configuration, there are two main entities such as service provider entities and 

the service entities [10]. Service provider entities includes components, service units (SUs), service 

groups (SGs), AMF nodes and AMF applications while service entities includes component 

service instances (CSIs) and service instances (SIs). The service provider entities and the service 

entities together called as AMF entities [10].        

To be able to understand AMF entities and their organization into a hierarchy of logical 

entities, let us consider an example where a user wants to access a video through a web-interface. 

The web-server software and the software that plays the video represents the component [10]. It is 

the smallest service provider entity and also the smallest fault-zone within a system [10]. For the 

video component to be able to play the video service, workload should be assigned to it. Therefore, 

CSI represents a unit of service workload that a component is able to provide [10]. One may have 

noticed that a web-server component and a video player component collaborate to provide the 

video service. It also implies that due to tight collaboration, fault propagation can also occur [1]. 

For these reasons, the components that are collaborating to provide a service functionality are 

grouped logically into SUs [10]. This is the next fault-zone identified by the AMF that can be 

isolated and repaired on its own [1]. It should also be noted that, respective CSIs assigned to web-

server components and video player components will compose a video SI [10]. AMF assigns SIs 

to SUs during run-time. To protect the service in spite of failures, redundant SUs work together 

and form a protection group called SG [10]. Typically, an AMF application consists of one or more 

SGs and also SIs that are protected by the SGs [10]. AMF nodes are logical entities that are used 

to deploy SGs [10]. This could be mapped to a physical hardware or a virtual machine (VM). SGs 

are deployed over a group of AMF nodes which forms the AMF cluster [10]. AMF entities are 
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typed, except for nodes and clusters. The common characteristics of AMF entities are captured in 

their respective types [10]. Figure 2-2 illustrates the AMF configuration for this example with 

service provider entities, service entities and their corresponding types. 

 

 

 

 

 

 

Figure 2-2 An example of AMF configuration 

 

In the event of failure of a component, AMF detects the failure through its health 

monitoring or error reporting functionalities [10]. Depending on the recovery related attributes 

specified in the configuration, it then automatically recovers the service by performing recovery 

action either at the component level (component restart or component failover) or SU level (SU 

restart or SU failover) or AMF node level (node fail fast or node failover or node switchover) or 

application level (application restart) or cluster level (cluster reset) [10]. The actual recovery of 

the components in the context of the configuration can be determined using [11].      

2.2.2 Redundancy models 

A SG follow one of the following redundancy models; no-redundancy redundancy model; 2N-

redundnacy model; N+M redundancy model; N-way active redundancy model; and N-way 
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redundancy model;  Each SI is characterized with a number of active and standby assignments that 

varies according to the redundancy model [10]. 

 No-redundancy redundancy model 

In this case, each SI has at most one assignment and each SU can take at most one 

active assignment [10]. In other words, a SU in this redundancy model will not be assigned 

any standby assignments. Since each SI has only one assignment, from the service 

perspective this redundancy model provides “no-redundancy” [1]. However, from the 

service provider perspective there are other SUs in a SG that can take over the service in 

the case of failure. From this standpoint, this does provides redundancy [10].  Let us 

consider a SG with two in-service SUs (SU 1 and SU 2) as shown in Figure 2-3. In-service 

SUs are those that are instantiated and ready to take assignments [10]. This SG is 

configured to protect one SI (SI 1). For example, at-run time if AMF assigns active role to 

SU1, then SU2 will be the spare SU.   

 

 

 

 

 

 

                               

 Figure 2-3 An example for No-redundancy redundancy model                                      

 2N redundancy model 

It is also called as 1+1 or active-standby redundancy model [10]. From service side, 

each SI has one active assignment and one standby assignment [10]. From service provider 
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perspective, each SG is characterized by at most one active SU, one standby SU and spare 

SUs depending on the configuration. Let us consider a SG with three SUs (SU1, SU2 and 

SU 3). This SG is configured to protect 2 SIs (SI 1 and SI 2) as shown in Figure 2-4. For 

example, at run-time AMF may assign active role to SU 1 and standby role to SU 2 and 

SU 3 is considered as the spare SU. In the event of failure of SU 1, SU 2 will take over the 

active role and start providing SI 1 and SI 2. Also, SU 3 will be assigned standby role to 

protect against failures.  

                                    

 

 

 

 

 

Figure 2-4 An example for 2N-redundancy model                                                                  

 N+M redundancy model 

From the service side, each SI has one active assignment and one standby 

assignment [10] and from the service provider side, a SG is characterized by N active SUs 

and M standby SUs [10].  Let us consider a SG with four SUs (SU 1, SU 2, SU 3 and SU 

4) and this SG is configured to protect 3 SIs (SI 1, SI 2 and SI 3) as shown in Figure 2-5. 

At run-time, AMF assigns active role to SU 1 and SU 2 (N=2), standby role to SU 3 (M=1) 

and SU 4 is considered as the spare SU. For example, in the event of failure of SU 1, the 

active assignment of SI 1 and SI 2 is failed over to SU 3. Also, SU 4 will take the standby 

role to protect the SIs against failures. 
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Figure 2-5 An example for N+M redundancy model 

 N-way redundancy model 

Each SI has one active and one or more standby assignments, depending on the 

configuration [10]. The SUs in a SG following N-way redundancy model can take active 

and/or standby role. The only constraint is that, a SU cannot be in the active and standby 

state for the same SI [10]. Let us consider a SG with four SUs (SU 1, SU 2, SU 3 and SU 

4) and this SG is configured to protect 3 SIs (SI 1, SI 2 and SI 3) as shown in Figure 2-6. 

Also, the number of standby assignments per SI is configured to be 3. At run-time, SU 1 

takes active assignment of SI 1 and standby assignments of SI 2 and SI 3. Similarly, SU 2 

and SU 3 takes active assignments of SI 2 and SI 3 also standby assignments of other SIs 

respectively. SU 4 is considered as the spare SU. Note, that the standby assignments are 

ranked. In the event of failure of SU 3, SU (SU 1 or SU 2) that is assigned the highest 

ranked standby assignment will provide the SI 3. 
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Figure 2-6 An example for N-way redundancy model 

 N-way active redundancy model  

Figure 2-7 An example for N-way active redundancy model 

Each SI is characterized by more than one active assignment [10]. This redundancy 

model does not support any standby assignments [10]. When active assignments are 

assigned to the SUs of a SG, it implies that all the service functionality is provided by all 

the active SUs.  Let us consider a SG with three SUs (SU 1, SU 2 and SU 3) and this SG 

is configured to protect 2 SIs (SI 1 and SI 2) as shown in Figure 2-7.  Each SI is configured 

to have two active assignments. At run-time, SU 1 and SU 2 are assigned active roles and 

SU 3 is considered as a spare SU. In the event of failure of SU 2, AMF will not consider 

this as a service interruption because, the service is provided by SU 1 [1]. However, AMF 

will failover the SIs provided by SU 2 to SU 3.       
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2.3 Entity Type File (ETF)      

The software vendors describe the software entities in terms of prototypes in an XML file 

called ETF [15]. Every prototype mentioned in the ETF possess a name, version and its specific 

characteristics. For example, each component prototype in ETF specifies the name, version and 

the type of service the component is intended to provide. In addition, it also includes other 

characteristics like capabilities of the component prototypes and whether the components of this 

type can restart or not during service recovery actions [15]. For example, if active and standby 

capabilities of component prototype are 2 and 4 respectively, then it implies that the component 

prototype cannot take more than 2 active and 4 standby assignments.   

It is mandatory to include the information about component prototypes and component 

service prototypes; however the information about the other AMF prototypes can be left optional 

in an ETF [15]. If the information about SU or App prototype is specified, then it implies that a 

vendor imposes restriction on how the component prototypes can be composed to collaborate. 

2.4 Cloud Computing 

With the recent advancement in the Internet technology, the need to rapidly deploy 

applications to meet the growing businesses has increased [5]. To support this growth, often 

systems are designed to handle maximum workloads. This overprovisioning of resources often 

results in underutilized server capacity and increases the total ownership cost [7]. Cloud computing 

reduces the upfront investment in purchasing and maintaining the resources and the total 

ownership is reduced considerably [5]. Resources can be provisioned as needed on a pay as you 

basis. This allows the systems to be designed to handle the minimum or average workload and the 
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application servers can be scaled up or down according to the workload demand. National Institute 

of Standards and Technology (NIST) [14] has proposed the following cloud computing definition: 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to 

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction” 

Taken further, NIST has also defined five key characteristics, three service models and four 

deployment models for the cloud [14]. 

2.4.1 Key characteristics 

The following are the important characteristics of a cloud system [14].  

 On-demand self-service – Without the need for any significant assistance, the cloud 

resources (compute, storage and network) can be automatically provisioned.  

 Broad network access – Heterogeneous client platforms such as mobile phones and laptops 

can be used to access the cloud resources. 

 Resource pooling – Compute, storage and network resources are pooled by virtualizing 

them. This allows the flexibility to allocate and manage resources in the cloud computing 

paradigm.  

 Rapid elasticity – Resource pooling gives the impression of infinite resources available to 

the customers. This allows rapidly allocating or reallocating resources to the customers 

based on their needs. 
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 Measured service – The resource pool is shared by multiple customers. Infrastructure 

provider monitors the resource usages for each customer and bills them according to their 

usage. 

2.4.2 Service models 

 Infrastructure as a Service (IaaS) - Typically a data center consists of heterogeneous physical 

servers, switches, storage elements etc. Infrastructure providers own and manage the physical 

and virtual resources in the data centers. These resources are virtualized and offered as a service 

to the customers. This allows the flexibility to choose the operating systems and other 

necessary software required to deploy the applications [5].  

 Platform as a Service (PaaS) — PaaS provider like Google App Engine offers the necessary 

built-in services like databases and Application Programming Interface (APIs) to develop 

applications [16]. This provides the flexibility to develop and deploy applications without 

having to deal with directly with the infrastructure including network, operating systems or 

storage [5].  

 Software as a Service (SaaS) — SaaS providers build SaaS applications (example Microsoft 

Office 365 [49]) and deploy it over the provider’s infrastructure. Users are allowed to access 

the application without the need to install, run and maintain the underlying infrastructure, 

application [49]. Therefore, the up-front cost required to invest in the infrastructure and also 

in the software licensing is reduced [17].  
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2.4.3 Deployment models 

 Private cloud  

 A cloud is said to be a private cloud when the services are offered through a private 

network. Generally it is owed by a single organization that deals with more secure data and 

requires a more flexible and scalable platform [5].        

 Public cloud  

A cloud is said to be public cloud when the services are offered through the internet 

(i.e. public network). This allows multiple organizations to share the resources and thereby 

reducing the total cost. [5]. Examples of public cloud includes, Google’s web based e-mail 

and file storage system like Dropbox.     

 Hybrid cloud  

A cloud is said to be hybrid cloud when it is a combination of both public and 

private cloud. The idea is to create a unified model employing both the clouds so that an 

organization can benefit from the best of both worlds [5].  

2.5 OpenStack 

OpenStack is a cloud operating system that dynamically manages the compute, network 

and storage resources in a data center [18]. It provides a cloud computing platform to build public 

or private cloud. OpenStack contains multiple components. Among these components, compute 

service is provided by nova [19]. It facilitates the provision of on-demand VM instances using the 

nova-scheduler service [20].  It is the responsibility of nova-scheduler to determine the mapping 

of VMs to physical hosts. For this purpose, the nova-scheduler uses the filtering and weighting 

mechanisms to determine the eligible physical hosts [20]. It allows the use of variety of filters 

including, but not limited to ram filter, core filter, disk filter, group affinity filter and group anti-
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affinity filter. With the help of these filters, nova-scheduler eliminates the physical hosts that are 

not capable of hosting VMs. Further, the nova-scheduler orders the valid list of physical hosts by 

applying weights to them. Finally, it selects the physical host that is more weighted [20].  Figure 

2-8 [20] illustrates the scheduler’s filtering and weighting mechanism. Let us suppose that 

scheduler applies the ram filter to the list of available hosts (Host 1 to Host 6). It rejects Host 2 

and Host 4 due to the presence of inadequate ram resource. It then applies weights to the Host 1, 

Host 3, Host 5 and Host 6 and ranks Host 5 as the most weighted host. Finally, Host 5 is selected 

to host a VM instance. 

 

 

 

 

Figure 2-8 Scheduling in OpenStack [20] 

2.6 Monitoring and Elasticity Engine 

Recently a Monitoring architecture [21] and an Elasticity Engine [22] for AMF managed 

applications has been proposed in the literature. Unlike the existing monitoring tools in the cloud, 

this tool monitors the service level workload changes for the AMF managed applications [21]. It 

then triggers the Elasticity Engine [22] to allocate or reallocate resources based on the workload 

changes. The Monitoring Engine follows the client-server architecture. Each AMF node in the 

cluster, runs a monitoring client to measure the service level workload of the components residing 

on it. The monitoring clients sends the workload to the monitoring server at regular intervals. The 

monitoring server aggregates the workloads from each component and calculates the associated SI 
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workload [21]. Further, the monitoring server sends the SI workload to the workload analyzer to 

trigger workload increase or decrease to the Elasticity Engine. For this purpose, workload analyzer 

checks the received SI workload with the pre-configured threshold value and generate triggers 

accordingly [21] (Figure 2-9). Elasticity Engine then reads the current configuration and makes 

the appropriate changes at the SG level or at the cluster level through the Information Model 

Management (IMM) [23] service. AMF then reacts to the configuration change by adjusting the 

CSI assignments or SIs in accordance with the modified configuration. Thereby, the service 

providers are scaled-out or scaled-in based on the service level workload [21].         

 

 

 

 

Figure 2-9 Monitoring Engine and Elasticity Engine architecture integrated with AMF [21] 

2.7 Related Work 

The following works [9] [11] [12] target the generation of AMF configurations. The author 

in [11] automated the AMF configuration generation process and generates multiple AMF 

configurations by taking into account various possible configuration options. The author in [12] 

takes into account the functional requirements and generates AMF configurations using a model 

driven approach [12]. Both the works [11] and [12] did not consider non-functional requirements 

such as availability requirements while generating AMF configurations. The author in [9] aims at 

generating configurations for a cluster that meets functional requirements and non-functional 
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availability requirements (i.e. requested level of service availability). More details on the AMF 

configuration generation process for a cluster [9] and its limitations are explained in Chapter 3.     

There are numerous works that discuss about deploying applications in the cloud. Most of 

them focus on optimizing the placement of VMs on physical hosts based on multiple constraints 

like resource based, performance and availability [24] [25] [26] [27]. The authors in [24] aim at 

improving the availability and performance of services in the IaaS cloud while placing VMs on 

physical hosts. For this purpose, a structural constraint-aware VM placement technique is 

proposed. This is a hierarchical placement approach that considers demand, communication and 

availability constraints while mapping VMs to physical hosts. Another attempt [25] proposes a 

highly available optimal placement by considering interdependencies between the application 

components, communication delay tolerance and resource utilization. The authors in [27] proposed 

a VM placement method that generates a minimum redundant VM configuration that can survive 

any k-physical host failures. The above mentioned works considered mapping an application to a 

VM and optimally placing VMs on physical hosts. In our approach, this application could be 

mapped to an AMF component.  

The authors in [28] presents a request aware VM placement approach to improve the 

availability of services by choosing the right deployment choices. This work is closely related 

because it not only considers the mapping application components to one or multiple VMs but also 

it considers the potential interference that may occur due to multi-tenancy of application 

components in a VM. However, this solution did not take the specificities of high availability 

middleware like AMF in to account.      

Recently deploying applications in multi-cloud environments is becoming popular [29] 

[30]. For example the authors in [30] proposes a multi-objective scheduling technique that aims to 
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achieve high availability of applications and also it aims to minimize the application cost (i.e. by 

optimally scheduling or rescheduling the application components to a node based on the workload 

demand) and maximize the resource usage. In addition to this, scalability of applications across 

different clouds is considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Chapter 3 

AMF Configuration Generation Process for a 

Cluster 

3.1 Introduction 

AMF configuration generation process for a cluster [9] requires two inputs; a) ETF model 

and b) configuration requirements (CR) as shown in Figure 3-1. As mentioned in Chapter 2, ETF 

is a software catalogue that is used to build AMF applications [15]. An ETF model may include 

ETFs from different software vendors [9]. CR captures the type of the service the application is 

intended to provide, the number of SIs of a service type, the number of CSIs of a component 

service type in each SI, optionally the redundancy model of a SG type, the number of active 

assignments (for N-way active redundancy model) and the number of standby assignments (for N-

way redundancy model). Deployment details such as the number of AMF nodes in a cluster, cluster 

startup time, time required by an AMF node to shutdown is also included. In addition, maximum 

number of attempts required by the AMF to instantiate a component, maximum number of attempts 

required by the AMF to instantiate a component with a delay between the instantiation attempts 

and the delay between the instantiation attempts is specified. Finally, the non-functional 

requirement such as requested level of service availability is also included in the CR [9].   AMF 

configuration generation process [9] [11] has four main steps: a) ETF prototype selection; b) AMF 

type creation; c) AMF entities creation; d) Distribute AMF entities for deployment. The authors in 

[9] applies four design patterns and two methods to enhance the service availability. 
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3.2 ETF Prototype Selection 

In this step, ETFs from different vendors are analyzed and the prototypes that can provide 

the requested service are selected. It is possible to create hierarchy of prototypes (from app types 

to component types) called type stack from different prototypes therefore, each type stack may 

lead to different AMF configurations [9].        

ETF prototypes from different software vendors are adjusted to improve the service 

availability. ETF prototypes specify multiple attributes available to configure the software from 

an availability perspective. Some of the recovery related attributes are altered to minimize the 

impact zone using the ETF prototype adjustment design pattern [9]. This step also intends to 

estimate the level of service availability using the availability estimate method [9] to check if a 

type stack can provide the requested level of service availability. If it is not met, then that type 

stack is discarded in the early stage of the configuration generation process [9]. Type stacks that 

meet the requested level of availability are considered for the next step.                      

 

Figure 3-1 AMF Configuration Generation Process for a Cluster [9] 
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3.3 AMF Type Creation 

AMF types are software entity types that are defined for the AMF management purposes 

[15]. These AMF types are created from their corresponding ETF prototypes in the type stacks. 

However, if the information about SU prototype or SG prototype or App prototype is not found, 

then they are created in this step [9]. ETF prototypes specify a range of available options and this 

allows the possibility to create multiple AMF types from the same ETF prototype [9]. Using 

separation of CSTs design pattern, AMF types are created in such a way that the failure of a 

component will affect only minimum number of SIs [9].  Also, if the system designer has not 

requested the redundancy model for SG type(s), then this step determines the appropriate 

redundancy model for a service type based on the active and/or standby capability of component 

types [9].      

3.4 AMF Entities Creation 

This step aims to create the number of AMF entities from their corresponding AMF types 

based on the requested level of service availability. For this purpose, availability estimate-based 

entities creation method [9] is used. Considering the availability requirement and the number of 

SIs, this method calculates the number of components, the number of SUs and SGs required and 

they are configured. Note that these AMF entities are created according to the number of AMF 

nodes specified in the CR [9].    

3.5 Distribute AMF Entities for Deployment 

Once the AMF entities are created, then the next step is to distribute the SUs over the AMF 

nodes and to set the deployment related attributes [9]. In this step, different deployment options 
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are possible. Using load-balanced distribution design pattern, this step aims to distribute SUs in an 

even manner for 2N-redundnacy model [9].  

3.6 Limitations 

The above mentioned AMF configuration generation process for a cluster [9] is not suitable for 

the cloud because of the following issues.  

1) This approach requires the system designer to specify the number of physical hosts (AMF 

nodes) as an input to generate the AMF configurations. These physical hosts are also 

considered to have infinite capacity. The issue is that the number of physical hosts specified 

by the system designer may not be minimum because the system designer may neither be 

aware of the effect of collocating entities nor be aware of the resource limitations. 

Furthermore, this number of physical hosts affects the AMF entities creation calculation.  

2) The availability estimate method used in the AMF configuration generator [9] considers 

only the availability of the components. However, in any system the availability of the 

underlying infrastructure (both virtual and physical infrastructure) is also an important 

factor to consider.  

3) This solution did not consider the effect of deploying these AMF entities together in a 

collocated manner. When entities are collocated in the same environment (e.g. VM), the 

collocated entities may fail and affect the availability of other SIs served by that 

environment. Note that collocated entities may interfere at the SU, VM and at the host level 

as well.
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Chapter 4 

AMF Configuration Generation, 

Deployment and Run-time Management in 

the Cloud 

4.1 Introduction  

This chapter presents an approach to generate, deploy and manage AMF applications in 

the cloud.  For this purpose, this chapter is divided into three main sections. The first section 

(Section 4.2) describes the AMF configuration generation process for the cloud. This process 

overcomes the limitations highlighted in Chapter 3. This section includes the proposed AMF 

entities creation and availability estimate methods. The second section (Section 4.3) depicts the 

proposed method to deploy AMF applications in the cloud. The third section (Section 4.4) 

describes the run-time management of AMF applications using the existing Monitoring 

architecture [21] and Elasticity Engine [22].  Figure 4-1 illustrates the overall picture of generation, 

deployment and integration of Monitoring architecture and Elasticity Engine with the deployed 

applications.   

 

 

 

  

Figure 4-1 AMF configuration generation, deployment and run-time management in the 

cloud 
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4.2 AMF configuration generation process for the cloud 

4.2.1 Introduction and overall view 

To design AMF configurations, one has to be aware of the services AMF applications 

intend to provide. This is abstracted as workload units called SIs and CSIs [10]. The configuration 

requirements captures the type of the service and the number of SIs and CSIs to be provided by 

the application with a minimum level of service availability [9]. Our aim while generating AMF 

configurations is to build applications that can provide the specified number of SIs and guarantee 

the requested level of service availability. Since these AMF applications are intended to be 

deployed in the cloud, it is important to use minimum resources (physical hosts). This considerably 

reduces the upfront investment on infrastructure and by using the existing Elasticity Engine [22], 

the number of resources can be increased in the future as needed. 

Our main goal is to design AMF applications/configurations that can: 

 provide and protect all the SIs specified number in the CR    

  meet the requested level of service availability 

 use minimum resources (physical hosts) for deployment   

 

 

 

 

 

 

 

Figure 4-2 Modified AMF configuration generation process for the cloud 
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For this purpose, the existing AMF configuration generation process proposed for a cluster 

environment [9] (explained in Chapter 3) has been revisited and extended. As shown in Figure 4-

2, inputs to the generation process, third and fourth steps of the generation process and availability 

estimate method used at the third step have been modified.  The rationale behind the changes are 

as follows: 

1) Inputs  

 ETF - Software vendor describes the characteristics of components in an ETF file 

according to the ETF model defined in [9]. While determining the number of entities, the 

resource needed for a component to provide a service is required. For this purpose, part of 

the ETF model is extended as shown in Figure 4-3. Here, CT represents the component 

type class and CST represents the component service type class. The properties of a 

component type providing a CST are defined in CTCST association class. The memory 

usage required by a component to provide a CSI is added to the CTCST association class. 

Note that for simplicity only the memory resource is considered. 

 

             Figure 4-3 Part of extended ETF domain model 

  CR – According to the CR model defined in [9], the system designer specifies the 

deployment information like the number of AMF nodes (i.e. physical hosts) along with the 

information about SIs (i.e. the number of SIs in a service type, the number of CSIs in each 
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SI and the requested level of service availability). As mentioned in Chapter 3, a system 

designer is not aware of the effect of collocation and resource limitations, therefore the 

number of physical hosts specified may not be accurate and minimum. For this purpose, 

the number of physical hosts is no longer specified as input and the CR model is modified 

accordingly.  

 Infrastructure file – In addition to the ETF and CR, deployment information such as 

capacity of the physical host, the number of available VM flavors, the capacity of  VM 

flavors, Mean Time to Fail (MTTF) of the infrastructure elements like physical hosts, VMs, 

guest OS, host OS and hypervisors are required while determining the number of entities. 

For this purpose, a third input called infrastructure file is added in the configuration 

generation process. This file is created according to the domain model shown in Figure 4-

4. 

 

     Figure 4-4 Infrastructure domain model   

2) Modifications to the third and fourth steps – It is important to mention the reason behind 

changing only the third and fourth step as opposed to changing entire steps of the generation 

process. The first two steps of the generation process is about building the application types 

(i.e. starting from app types to all the way to component types) that can provide the desired 

service functionality [9]. Note that in these steps the applications are designed at the type level 
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independent of the deployment environment. However, the later steps are deployment specific. 

The third step of the configuration generation process [9] calculates the number of instances 

of each AMF entities (components, SUs, SGs) that forms an application according to the 

number of physical hosts in the physical cluster. In contrast, while designing applications for 

the cloud, only the minimum number of physical hosts needs to be considered. Therefore, the 

third and fourth steps are modified and they are explained in detail in Section 4.2.2 and 4.2.3 

respectively.  

 

3) Modifications to the availability estimate method – The availability estimate method [9] 

considers only the availability of components providing a service (SI). Collocating AMF 

entities into the same environment also affects service availability. This should also be taken 

into account while estimating the service availability. Also, in any systems the availability of 

multiple elements like physical infrastructure and virtual infrastructure should also be 

considered. For the above mentioned reasons, the availability estimate method [9] used in the 

third step of the generation process is modified. 

4.2.2AMF Entities Creation step     

4.2.2.1 Factors influencing the number of physical hosts 

As shown in Figure 4-5, there are three factors that influence the number of physical hosts:  

1) Redundancy; 2) Interferences due to the collocated entities and 3) Capacity of VMs and 

physical hosts.     
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1) Redundancy  

Redundancy requires additional resources to protect the service against failures [1]. The 

number of SUs per SG determines the minimum number of physical hosts required. This is 

because, SGs are deployed over VMs in an anti-affinity group and eventually these VMs are hosted 

over physical hosts.  For example, in the case of 2N-redundancy model, a minimum of one active 

SU and one standby SU is required per SG. These SGs are deployed over a minimum of two VMs 

and these VMs are hosted in an anti-affinity group over a minimum of two physical hosts. Taking 

into account potential interferences between the collocated entities and the capacity of the physical 

host and the VM, the number of physical hosts required may be more than two. 

2) Interference between the collocated entities 

The rationale behind collocating SUs belonging to different SGs into a VM and collocating 

VMs protecting different services into a physical host is to minimize the number of physical hosts. 

However, when several entities are collocated they may fail and affect the other SIs hosted in that 

environment. To minimize the interference, components can be grouped into multiple fault 

isolation units such as VMs, but this may increase the number of physical hosts required. 
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Figure 4-5 Factors influencing number of physical hosts 
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3) Capacity of the resources  

Another factor influencing the number of physical hosts is the capacity of the host and the 

capacity of the VMs hosted on it. Physical hosts have finite resources in terms of RAM, disk, 

number of cores and so on. VMs are available in various pre-defined flavors such as tiny, medium, 

large etc. A limited number of VMs, with different flavors, can be hosted on a physical host. It is 

well known that virtualization introduces some overhead due to the presence of the hypervisor in 

the host and the guest OS in each of the VMs, and this will be taken into account in the calculation 

of collocated instances.  

4.2.2.2 Two phases of AMF entities creation step 

We identified two phases in the AMF entities creation step.  

1) Determining the number of SIs per VM flavor from the perspective of availability and 

resource utilization 

2) Selection of the VM flavor 

For each type stack, created in the step one and two of the configuration generation process, 

the above mentioned phases are repeated. The number of SIs per VM calculation is carried out for 

all the VM flavors in the infrastructure file. Next, in the second phase, an appropriate VM flavor 

that satisfies availability requirements and supports a minimum number of physical hosts is 

selected.   

1) Determining the number of SIs per VM flavor from the perspective of availability and 

resource utilization for a type stack 

Initially, the memory required by the components collaborating to provide an active SI 

assignment of the requested service type is calculated. It is the summation of the memory required 
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for all the CSIs of a SI as shown in the Equation (1). Here, Memory required per CST represents 

the memory required for all the CSIs per CST.  







mk

k kCSTper  requiredMemory   per SI requiredMemory 
1

                                                         (1) 

k iterates through the m component service types in the service type. Equation (2) determines the 

Memory required per CST by multiplying the Memory required per CSI and the No of CSIs per 

CST. The Memory required per CSI of a CST and the No of CSIs per CST are obtained from the 

extended ETF model and the CR respectively.                                                                                                       

CSTper  CSIs of No * CSIper  requiredMemory   CSTper  requiredMemory        (2)                                                                                                                                                                                                                                                      

  

The total guest memory (TGM) of a VM flavor is used by the guest OS and the components 

hosted by the VM. To determine the guest memory available (AGM) to host the components, the 

virtual memory required by the guest OS (GOSM) is excluded from the TGM as shown in Equation 

(3). 

GOSMTGMAGM                                                                                                                 (3)   

Next, based on the memory required to provide an active SI assignment and the AGM, the   

number of SIs per VM (No of SIs per VM) is determined using Equation (4).  











per SI requiredMemory 

AGM
floorVMper   SIsof No                                                                                      (4)   

 Once the No of SIs per VM is calculated, then the next step is to determine the capacity of the 

SU in terms of SIs and the number of SGs (No of SGs) and evaluate the effect of collocating 

components in a SU, collocating SUs in a VM and collocating VMs in a physical host. These 

collocated entities are those that are hosted in the same environment as the components providing 
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the SI, whose availability is being estimated using the availability estimate method in Section C. 

The failure of these collocated entities would require the recovery action to be performed in a bigger 

scope and this impacts the availability of the other SIs. For example, if the components in the 

collocated SUs are configured to recover with component restart fails repeatedly, then in order to 

capture the fault the recovery action may escalate from component level to the SU and VM levels 

thereby affecting the availability of other SIs.  

  Even though the capacity of the VM sets an upper limit for the number of SIs it can host, in 

reality it is limited due to the interference caused due to the collocated entities, the capacity of the 

SU and the No of SGs. As shown in Figure 4-6, min represents the minimum number of SI (which 

is actually one) a VM may provide while max represents the maximum number of SIs a VM can 

support based on its capacity, the SU capacity and the No of SGs. When the No of SIs per VM (i.e. 

the components providing these SIs) is increased gradually from min to max, the availability of the 

services decreases as the interference between the collocated components increases. On the other 

hand, the collocation of components in the VMs results in lesser number of VMs and physical hosts. 

Our aim is to determine the actual No of SIs per VM that meets the requested availability and results 

in minimum number of physical hosts.  

 

 

Figure 4-6 Number of SIs per VM 
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A. Estimate availability for various scenarios 

 In order to determine the No of SIs per VM flavor for a type stack, Algorithm-1 is used. It uses 

the two methods described in Section B and C to calculate the number of entities and to estimate 

the service availability for various scenarios. 

 

Algorithm-1 Calculate the number of SIs per VM flavor for a type stack 

Input: No of SIs per VM from Equation (4), RA from CR 

Output: No of SIs per VM 

1 Begin 

2     Initialize max to No of SIs per VM  

3     Initialize min to one 

4     Initialize RA from CR 

5     Calculate number of entities and number of collocated entities using Algorithm-2 for min 

6     Use availability estimate method from Section C to EA for the number of collocated entities 

7     if (EA = RA) then 

8          No of SIs per VM = min           

9     else if (EA>RA) 

10         No of SIs per VM = Call getNoOfSIsPerVM (max, min, RA)       

11     else      
12          Discard type stack for this current VM flavor  

13          Break 

14     end if 
15     return No of SIs per VM 

16 End 

17 getNoOfSIsPerVM (max, min, RA)  

18 Begin 
19     Calculate number of entities, No of SIs per VM and number of collocated entities using Algorithm-2 for max 

20     Update the max with No of SIs per VM 

21     Use availability estimate method from Section C to EA for the number of collocated entities 

22      if (EA < RA) then 

23         Initialize mean to (min + max)/2  

24         Calculate number of entities, No of SIs per VM and number of collocated entities using Algorithm-2 for  

         mean         

25         Update the mean with No of SIs per VM 

26         Use availability estimate method from Section C to EA for the number of collocated entities 

27         if (EA < RA) then 

28              max = mean 

29              Call getNoOfSIsPerVM (max, min, RA) 

30         else if (EA > RA)  then      

31               min = mean       

32                                       Call getNoOfSIsPerVM (max, min, RA) 

33          else                 
34                  return mean                 

35                                               end if       
36      else              
37             return max      

38      end if              
39 End         
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a. Best case scenario                                                                                         

  Initially, Algorithm-1 determines the number of entities such as the No of SGs, the number of 

VMs (No of VMs), the number of physical hosts (No of PHs) and the number of collocated entities 

for min using the Algorithm-2 (line 5). Here, min represents the best case scenario from the 

perspective of availability estimation because there is only one SU in a VM that is providing a SI 

and there are no collocated SUs in a VM. As a result, it provides the maximum level of service 

availability. While interference due to the collocation of VMs exists, this is less than the interference 

due to the collocation of SUs in a VM. This is because VMs provide better fault isolation compared 

to SUs. We estimate the availability provided by this best case scenario using the method described 

in Section C (line 6). If the estimated availability is equal to the requested availability, then min 

becomes the No of SIs per VM (lines 7-8). On the other hand, if the estimated availability is greater 

than the requested availability, then the availability is estimated for the worst case scenario because 

with respect to resource utilization this is the worst case (lines 9-10).    

 If the estimated availability is less than the requested availability even for the best case scenario 

then this type stack is discarded for this VM flavor (lines 11-13). The rationale behind this is that, 

if the type stack is not able to meet the requested availability for the best case scenario then, there 

is no way the requested availability will be met for any case for a given VM flavor. However, it is 

possible that estimated availability for the best case scenario may meet for the other available VM 

flavors. This is due to the varying Mean Time to Fail (MTTF) and the number of collocated VMs 

for each flavor. 

b. Worst case scenario  

 While determining the number of entities, the SIs are distributed vertically based on the capacity 

of the SU and horizontally to the SUs of the SG depending on the redundancy model. It is possible 
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that due to the limitation on the capacity of the SU and the No of SGs, the No of SIs per VM may be 

reduced. If reduced, this becomes the max and the number of collocated entities is calculated based 

on this (line 19-20).  Max represents the worst case scenario from the perspective of  availability 

estimation because, the interference between the collocated components is the maximum. However, 

this is the best case from the resource utilization perspective. If the estimated availability is greater 

than or equal to the requested availability then we select max to be the No of SIs per VM because 

the requested availability is met and also it infers the lowest number of VMs and physical hosts 

(line 36-37). If the worst case scenario is not satisfied but the best case scenario is satisfied then the 

solution lies between min and max. To converge faster to the solution, the number of entities is 

calculated next half way between them i.e. at floor (min + max)/2. Again, the No of SIs per VM may 

be reduced due to the distribution of SIs and this reduced SIs per VM, if any becomes the mean 

(lines 24-25).  

  When availability is estimated for this mean, three possible cases exist. They are:  

i. If the estimated availability is equal to requested availability, then the mean becomes 

the No of SIs per VM (line 33-34). 

ii. If the estimated availability is greater than requested availability, then the solution 

interval becomes [mean, max] and the value of min is updated to the mean (line 30-31).   

iii. If the estimated availability is lesser than the requested availability, then the solution 

interval becomes [min, mean] and the value of max is updated to the mean (line 27-28). 
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 When the case is either ii or iii (Figure 4-7 (a) & (b)), the above mentioned procedure is repeated 

until the estimated availability for the middle point of interval meets the requested availability. 

B. Number of entities creation method 

 

Figure 4-7 (a) Estimated availability is less than requested availability at max (b) Estimated availability is 

less than requested availability at (min + max)/2 

 

Alogorithm-2 Determine the number of entities and number of collocated entities for a type stack 

Input: SUT, No of SIs per VM, Set of actual rec of CTs determined using [11], Set of min no of comps 

determined using [9] and Set of max no of comps from ETF   

Output: No of SIs per VM, No of SGs, No of VMs, No of PHs, No of SIs per PH, No of coll comps per SU, No 

of coll SUs, No of coll VMs      

     

1 Begin 

2     Initialize Actual rec of CT to false 

3     if (SUT is provided by the vendor and max no of comps is specified) then    

4         if ( max no of comps in Set of max no of comps is lesser than min no of  comps in  

        Set of min no of  comps )then 

5             Discard type stack 

6             Break 

7         end if 

8     end if 

9     for each ct in Set of actual rec of CTs do 

10        if (ct.Actual recovery is not equal to Component restart or Component failover) then  

11             Actual rec of CT = true 

12        end if 
13     end for    

14     if (Actual rec of CT is equal to true OR redundancy model is equal to No-redundancy ) then   

15          No of SIs per SU = 1 

16     else   
17           Calculate No of SIs per SU using Equation (5) 

18     end if 

19     Calculate the No of comps per SU using Equation(6-7) 

20     for each ct in a SUT do   

21        Calculate ct.No of SGs using Equation (8-24) and add it to the Set of no of SGs 

22     end for 

23     Calculate No of SGs by considering the max (Set of no of SGs)        

24     Calculate the No of SIs per VM, No of VMs,No of PHs, No of SIs per PH,  

    No of coll comps per SU, No of coll SUs,  No of coll VMs using Equation (25-41)  

25     Return No of SIs per VM, No of SGs, No of VMs, No of  PHs, No of SIs per PH,  

    No of coll comps per SU and No of coll SUs,  No of coll VMs  

26 End 
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 Depending on the No of SI per VM, the number of entities and the number of collocated entities 

is determined. Initially, Algorithm-2 checks if a SU is able to provide at least one SI or limited by 

the SU type (lines 3-8), if given. A vendor delivering a SU type may restrict the number of 

components per component type (Max no of comps per CT) that can be put together in a SU. Min 

no of comps per CT denotes the minimum number of components per component type required to 

provide a SI [9]. It is calculated based on the No of CSIs per CST and  active and standby capability 

of the components. If the Min no of comps per CT is greater than the Max no of comps per CT, then 

a SU cannot be formed. Therefore, this type stack is discarded. Next, the No of SIs per SU and the 

number of components required to form a SU (No of comps per SU) is determined (lines 9-19). The 

No of SGs calculation is done per component type and the one that results in greater number of SGs 

is considered (lines 20-23) [9]. Finally, the No of SIs per VM, the number of VMs (No of VMs), the 

number of physical hosts (No of PHs) required to deploy the SGs and also the number of collocated 

entities is determined (line 24).  

a. Determine the number of SIs per SU 

 Since a SU can group components serving one or multiple SIs, we can group components in 

multiple ways to form a SU. There are two extremities: 1) the SU serving a single SI; 2) the SU 

serving the maximum number of SIs.  

i. The SU serving a single SI 

 A SU may contain components belonging to different types and each of them may recover 

based on their configured recovery action. The actual recovery of components in the context of 

configuration is determined using the actual recovery algorithm defined in [11]. When the actual 

recovery of any one of the components composing the SU is not component restart or component 

failover, then single SI per SU solution is preferred. For example, if a SU has two types of 
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components that recover with component restart and SU restart respectively. If many components 

that recover with component restart fail frequently, the impact is only at the component level. That 

is, component restart recovery action will not affect the availability of other SIs provided by that 

SU. On the other hand, if one component that recover with SU restart fails, then the entire SU will 

be restarted  and all SIs served by the SU would be impacted as shown in Figure 4-8. The number 

of impacted SIs can be reduced by reducing the number of SIs the SU serves. That is grouping into 

the SU only component(s) required for one SI. This is a cost-effective approach to minimize the 

interference between collocated components because SUs serve as a fault-isolation unit, but they 

are only logical groupings. They do not imply any overhead as opposed to VMs.  

 

Figure 4-8 Impact zone when actual recovery is SU restart 

If a SG type is following No-redundancy redundancy model, then SUs in that SG can take at 

most one SI assignment [10]. In this case also, the No of SIs per SU is one.  

ii. The SU serving the maximum number of SIs  

 This solution is preferred if the actual recovery of all the component types in a SU is at the 

component level. If the actual recovery of components is component failover, then the impact of 

the component failure will not affect the other SIs provided by a SU. If the actual recovery of the 

components in the SU is component restart, then there is only a small probability that the recovery 

action will escalate – due to repeated failures – from component restart to the SU and VM levels. 

As a result, in this case the maximum number of components that can be grouped together is 
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preferred. No of SIs per SU may be limited by the VM flavor, or by the SU type provided by the 

vendor or the No of SIs as shown in Equation (5).  
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Nj1                                                (5)                                                                                                                  

Next, depending on the No of SIs per SU, the number of components in a SU is calculated 

using Equation (6) and (7). Note that, in Equation (5) and (6) j iterates through the N 

component types in a SU. 







Nj

1j

jCTper  comps of No per SU comps of No                                                                   (6) 

CTper  comps of no Min*per SU  SIsof NoCTper  comps of No                                        (7)                         

b. Determine the number of SUs per SG and the number of SGs   

The No of SUs per SG and the No of SGs are determined based on the redundancy model of 

the SG type. Except for the No-redundancy redundancy model, in each redundancy model the 

redundancy is considered on the service side as well as on the service provider side [10]. The 

number of active and standby assignments per SI defines the redundancy on the service side and 

the number of SUs per SG defines the redundancy on the service provider side. The redundancy 

requirement from the service side dictates the number of redundant service providers. Note that 

Equations (11-18) and (20) are obtained from [9]. 

i. For the No-redundancy redundancy model, each SI has at most one active assignment and no 

standby assignments. This redundancy model does not have redundancy on the service side. 

The redundancy on the service provider side is ensured by having spare SUs in the SG. As 
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long as there are enough spare SUs to protect the SIs against failure, this redundancy model 

does not require all the SUs of a SG to be hosted on different VMs and physical hosts.  The No 

of SUs per SG required is determined using Equation (8). To provide the entire SIs specified 

in the CR, the No of SGs required is calculated using Equation (9). 

2* SIs)of NoVM,per   SIsof Noper SG  SUsof  No min(                                                    (8)                   

       










VMper   SIsof No

 SIsof No
ceil SGsof No                                                                                             (9)                                                                                

ii.  In the 2N redundancy model, each SI has at most one active assignment and one standby 

assignment [10]. At run-time, AMF assigns all the active assignments of all the SIs to one SU 

in the SG – which becomes the active SU – and all the standby assignment to another – the 

standby SU. In the event of a failure of the active SU, the standby SU takes over the active role 

and starts providing all the SIs [10]. This implies that, a minimum of two SUs is required in a 

SG to provide and protect a SI (Equation (10)). The next step is to analyze the maximum 

number of active and standby assignments a SU can handle (Equation (11) and (12)). The No 

of comps per CT used in Equations (11 and 12) represents the number of components per 

component type in a SU, calculated using Equation (7). Also, act cap per CST represents the 

active capability of a component type to provide a service and std cap per CST denotes the 

standby capability of a component type. The No of CSIs per CST represents the number of 

CSIs in a SI. The Max no of SIs per SG is calculated using Equation (13).  It is the minimum 

of Max no of SIs per act SU and Max no of SIs per std SU. Finally, using Equation (14), the No 

of SGs is calculated based on the No of SIs specified in the CR and Max no of SIs per SG.   

   2per SG  SUsof No                                                                                                                   (10)          
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iii. In the N+M redundancy model, each SI has an active assignment and a standby assignment 

[10]. As opposed to the 2N redundancy model, this model allows for N active SUs and M 

standby SUs in the SG [10]. Therefore, to determine the N and M numbers of active and 

standby SUs of a SG, initially the total number of active SUs and standby SUs are calculated 

using Equations (15) and (16). The Max no of SIs per act SU and Max no of SIs per std SU in 

Equation (15) and (16) are calculated using Equation (11) and (12) respectively. Equation (17) 

and (18) represents the active and standby SUs proportion that can be used to construct a SG. 

In [9], the No of SUs per SG is constructed in such a way that the Act proportion and Std 

proportion does not exceed the number of nodes (number of nodes is given as input [9]). In 

contrast, in our approach, since the number of nodes is not given as input, the No of SUs per 

SG is the sum of active and standby SUs proportion as shown in Equation (19). This represents 

the minimum number of redundant entities required i.e. the number of VMs in a VM group or 

the number of redundant physical hosts. Finally the No of SGs is calculated using Equation 

(20).  
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iv. In the N-way-active redundancy model, each SI has two or more active assignments and no 

standby assignments [10]. The required number of active assignments (No of active 

assignments) is specified in the CR and it is assumed that all the SIs have the same number of 

active assignments. At run-time, AMF assigns each active assignment of a SI to a different SU 

in the SG [10].  In the event of a failure of any one of the SUs, the service is not interrupted as 

the service – the SI – is still provided by the other SUs active for the SI in the SG [10]. 

Therefore, No of SUs per SG is equal to the No of active assignments as shown in Equation 

(21). The No of SGs is calculated using Equation (14). However, Max no of SIs per SG used in 

Equation (14) is calculated using Equation (22).  

   sassignment active of Noper SG  SUsof No                                                                    (21)  

   SIs)of No SU,actper   SIsof no (Max min per SG   SIsof no Max                                     (22)                                                                                                                                                                                                                        

v. For the N-way redundancy model, each SI has one active assignment and one or more standby 

assignments. The required number of standby assignments (No of std assignments) is specified 
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in the CR. It is assumed that each SI has the same number of standby assignments. The No of 

SUs per SG is equal to sum of the No of std assignments and one for the active assignment and 

one for the spare SU as shown in Equation (23). The No of SGs is calculated using Equation 

(14). However, the Max No of SIs per SG used in Equation (14) is calculated using Equation 

(24).        

    1 sassignment  stdof Noassignment active Oneper SG  SUsof No                  (23)   

      
 SIs)of No SU,per std  SIsof no Max                                   

 1),-per SG  SUsof (No* SUactper   SIsof no (Max minper SG  SIsno Max 
                              (24) 

c.   Determine the number of SUs per VM and the number of SIs per VM 

 The number of SUs per VM (No of SUs per VM) is the minimum of maximum number of 

SUs a VM can host based on its capacity and the No of SGs as shown in the Equation (25). For 

No-redundancy model, Equation (26) is used to calculate the No of SUs per VM. Based on the 

No of SUs per VM and the No of SIs per SU, the No of SIs per VM is calculated as shown in the 

Equation (27). It is important to recalculate the No of SIs per VM due to the distribution of SIs 

to the SUs in a VM vertically and also to the redundant SUs in SGs horizontally.   
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  SGsof No,

per SU  SIsof No

VMper   SIsof No
floorminVMper   SUsof No                                                  (25)                     

For No-redundancy model,    

 SIs)of NoVM,per   SIsof NoVMper   SUsof No min(                                                                         (26)                                                                                    

per SU  SIsof No*VMper   SUsof NoVMper   SIsof No                                                  (27)       
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d. Determine the number of VM groups, the number of VMs and the number of physical hosts 

 The total physical memory (TPM) of a host is used by the hypervisor, host OS and by the 

VMs residing on that host. Therefore, next to calculate the physical memory that is available 

(APM) to host the VMs, the memory required for the hypervisor and the host OS are excluded 

from the TPM as shown in the Equation (28). The number of VMs a physical host can host (No 

of VMs per PH) is calculated based on the APM, the TGM of the VM flavor and an overbooking 

factor using Equation (29). The overbooking factor indicates to what extent the number of VMs 

per physical host can be increased by serializing their execution [33]. The No of VM groups i.e. 

AMF node groups is calculated based on the No of SGs and the No of SUs per VM as shown in 

Equation (30). For No-redundancy model, Equation (31) is used to calculate the No of VM 

groups. 

      )( HMHOSMTPMAPM                                                                                              (28)                      

      




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


TGM

OBF*APM
floor   PHper  VMs of No                                                                                              (29) 


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
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VMper   SUsof No

 SGsof No
ceilgroups VM of No                                                                                          (30) 

For No-redundancy model, 

 









VMper   SIsof No

 SIsof No
ceilgroups VM of No                                                                                             (31) 

 The maximum number of VMs per physical host (Max no of VMs per PH) is the minimum 

of the No of VMs per PH required and the No of VM groups (Equation (32)). The No of SUs per 
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PH is the product of Max no of VMs per PH and the No of SUs per VM as shown in the Equation 

(33).     

groups} VM of No PH,per  VMs of {No minPHper  VMs of no Max                                 (32)                                                         

    VMper   SUsof No*PHper  VMs of no MaxPHper   SUsof No                                               (33)                                                                                                                                              

 By multiplying the Max no of VMs per PH and the No of SIs per VM, the No of SIs per PH 

determined (Equation (34)).  The total No of VMs and the total No of PHs required to deploy the 

SGs are calculated using Equations (35-37) respectively. K denotes the number of redundant 

entities i.e. redundant VMs per VM group and the number of redundant physical hosts. For No-

redundancy redundancy model, the number of redundant entities required is two (K=2). 

However, for the other redundancy models, the No of SUs per SG determines the number of 

redundant entities.  

    VMper   SIsof No * PHper  VMs of no MaxPHper   SIsof No                                                (34)     

    Kgroups VM of NoVMs of No *                                                                                          (35) 

    K
PHper   SUsof No

 SGsof No
ceilPHs of No *





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
                                                                                (36)    

      For No-redundancy redundancy model, 

       K
PHper   SIsof No

 SIsof No
ceilPHs of No *








                                                                             (37)                                                                                                                                                                          

e. Determine the number of collocated entities 

 A SU may host components serving one or multiple SIs. If availability is estimated for a SI 

in a SU, then components that provide other SIs but hosted in the same SU are called collocated 
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components. SUs that are serving other SIs but hosted in the same VM are called collocated SUs 

and VMs that are providing other SIs but collocated in the same physical host are called 

collocated VMs. The No of coll comps per SU is calculated using Equation (38). The number of 

collocated components for each component type in a SU is calculated by excluding the 

components that provides one SI from the components in a SU (Equation (39)). Using Equation 

(40), the number of collocated SUs in a VM (No of coll SUs) is calculated by excluding one SU 

whose SI’s availability is being estimated. Similarly, the number of collocated VMs (No of coll 

VMs) is determined by excluding one VM from the Max No of VMs per PH as shown in Equation 

(41). 







Nj

1j

jCTper  comps coll of No per SU comps coll of No                                                     (38)                   

      j iterates through the N component types in a SU 

     CTper  comps of no Min-CTper  comps of NoCTper  comps coll of No                       (39)                                    

    1VMper   SUsof No SUscoll of No                                                                                 (40)               

    1PHper  VMs of no MaxVMs coll of No                                                                        (41) 

C. Availability estimate method 

 The service availability is calculated per service instance (SI). The calculations we show are 

for estimating the availability for a SI of a given service type.  

entities collocatedtureinfrastruc*components A*AA SIofty Availabili                                                                          (42)                                                                        
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As shown in Equation (42), availability of the service broadly depends on the following 

factors: A) availability of the components providing the service; B) availability of virtual and 

physical infrastructure; C) interference caused by the collocated entities.  

 To calculate the availability of each entities in the system, two factors are required: MTTF and 

MTTR (Mean Time To Repair). From a service perspective, MTTF is the mean time that an element 

takes to fail while the MTTR is the mean time required to recover the service provided by the failed 

element [1]. Once the MTTF and MTTR are known, the availability of the service can be 

determined using Equation (43).  

MTTRMTTF

MTTF
tyAvailabili


                                                                                                                    (43)                                                                                                                                                                                                                                       

a. Availability of the components providing the service 

For availability due to the failure of components, it is assumed that software vendors provide 

the MTTF for each component type, which may be a result of benchmark analysis.  To calculate 

the time required to recover the service due to the failure of the components (MTTRcomponent), actual 

recovery actions of the components in the context of the configuration is analyzed [11].  Based on 

this actual recovery action, estimated time to recover the service is calculated [9]. Equation (44) is 

used to calculate the availability of components providing a SI.  

  
MTTRMTTF

MTTF
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jcomponentj component

j component
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


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









1

                                                                            (44)                                                                                                                        

j iterates through N component types in a SU type. MTTFcomponent and MTTRcomponent represents 

the mean time for a component type to fail and time required to recover the SI respectively. pj is 

the required number of components of a component type to provide one SI. 
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b.  Availability of the infrastructure   

As shown in Equation (45), the availability of the infrastructure is calculated as the product of 

availability of the virtual infrastructure (Avi) and availability of the physical infrastructure (Api).         

 pi        vitureinfrastruc A*AA                                                                                                                          (45)     

Avi is calculated as the product of availability of the VM (Avm) and availability of the guest 

OS (AguestOS) as shown in Equation (46). As mentioned before, MTTF of the VM and guest OS are 

obtained from the infrastructure file. While calculating MTTRinfra, it is assumed that the SIs are 

failed over to another healthy VM hosted on a redundant host. As shown in Equation (48), 

MTTRinfra is the time required to detect a VM failure (Detection time) and also to recover the 

service from the failed VM (Failover time). It should be noted that VM failure is detected by the 

Cluster Membership Service (CLM) [31] or by the failure detection mechanism in the 

infrastructure.  

 guestOSvmvi A*AA                                                                                                                    (46)                                             
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A *                                                                      (47) 

timeFailover  time  DetectionMTTRinfra                                                                                                    (48)                                            

)(1 jNj CSSMaxtimeFailover                                                                                                        (49)                                                                             

Here, failover is assumed to occur in parallel, therefore the failover time is the maximum 

time required to set HA state assignment to components (CSS). j iterates through N component 

types hosted per VM.  
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Api (Equation (50)) is calculated as the product of availability of the physical hardware 

(Aph), availability of the hypervisor (Ahypervisor) and availability of the host OS (AhostOS).When any 

of these (physical hardware, hypervisor or host OS) fail, it is assumed that each VM is failed over 

independently to another healthy VM hosted on a redundant host. MTTRinfra is the time required to 

detect the VM failure and the time required to failover the SIs from that failed VM as shown in 

the Equation (48). The MTTF values (MTTFph, MTTFhostOS and MTTFhypervisor) are obtained from 

infrastructure file. 

hostOS  hypervisorphpi A*A*AA                                                                                               (50)                                                                                                      
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                                                        (51)                                                           

c.  Availability of the service due to interferences of collocated entities   

 The failure of collocated components may affect the availability of other SIs provided in that 

environment. Considering the example illustrated in Figure 4-9, the availability of SI 1 is affected 

by the failure of collocated component C2 or SU2 or VM 2. The following sub-sections show the 

calculations of the availability for: the components collocated in a SU, the SUs collocated in a VM 

and for the VMs collocated in a physical host. 

 

 

 

 



52 
 

i. Availability due to collocated components interferences 

  When any one of the collocated components fails, there is a probability that the recovery 

action is escalated to SU restart or SU failover or VM failover or VM reboot. To calculate the 

availability of collocated components due to the interferences, the following probabilities are 

calculated. 

a) Probability of escalating the recovery action to SU restart 

b) Probability of escalating the recovery action to SU failover   

c) Probability of escalating recovery action to VM failover 

d) Probability of escalating recovery action to VM reboot   

a) Probability of escalating recovery action to SU restart 

  For the first time when a component fails, AMF performs component restart recovery 

action. When too many components of the SU need to be restarted it is unlikely that the 

components carry the fault. In order to capture the fault, along with the failed components, its 

 

Figure 4-9 Availability of a SI 
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siblings are also restarted (Level 1 escalation) [10]. Note that the level 1 escalation is applicable 

only if all the components in a SU are restartable. 

In particular, level 1 escalation is activated when the maximum number of allowed 

components restarts is reached in a time period. To calculate the probability of maximum number 

of component failures (x) occurring in a time period (t), Poisson distribution [32] can be used as 

shown in Equation (52). Since component restarts occur only after the components have failed, the 

probability of maximum number of component restarts occurring in a probation time can be 

calculated using Equation (53). 


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 For a SU with restartable components,  
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In Equation (53),  represents the failure rate of the components and x level 1 denotes the 

maximum number of allowed component restarts in a time period t level 1. If there are N component 

types in a SU type and pi represents the number of components per component type then the failure 

rates of the components are added up as shown in Equation (54). 
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b)  Probability of escalating recovery action to SU failover 

Since level 1 escalation does not guarantee the resolution of the fault, further escalation 

levels are considered: Once level 1 escalation has been activated for a SU, whenever one of its 
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components fails, the component is restarted along with its sibling components in that SU. If the 

components of a SU continue to fail and reach a second threshold within a second probation time 

period, then the SU restarts deemed to be futile and the recovery action is escalated to SU failover, 

i.e. level 2 escalation is reached [10]. Note that the level 2 escalation is applicable only if all the 

components in a SU are restartable. 

The probability of maximum number of allowed SU restarts occurring in a probation time 

P(x)level2 is calculated using Equation (55) where xlevel2 and tlevel2 parameters are used as defined for 

level 2 escalation. P (escalation to SU failover) is calculated by multiplying the P(x)level2 and the 

probability that the SU was already in level 1, P (escalation to SU restart) as shown in Equation 

(56).  

 For a SU with only restartable components, 
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restart)  SUto onP(escalati*P(x)failover)  SUto ionP(escalalt level2
                                      (56)    

c) Probability of escalating recovery action to VM failover                                                                                                                                                    

When a component of a SU on which level 2 escalation is active fails, then the SU is failed 

over. When the maximum number of permitted SU failovers (failover of SUs residing on the same 

VM) is reached within a time period tlevel 3, then AMF assumes that the VM is faulty and it will 

failover the VM [10]. The probability of maximum number of allowed SU failover P(x)level3 

occurring in a time period tlevel 3 is calculated using Equation (57). xlevel 3 and tlevel 3 parameters are 

used as defined for level 3 escalation.  



55 
 

 
















!x

te
xP

3level

x

3level

t

level

3level3level 

3)(                                                                                                        (57)                           

If a SU has only restartable components, P (escalation to VM failover) is calculated by 

multiplying P(x)level3 and P (escalation to SU failover). P (escalation to SU failover) is obtained 

from Equation (58).                              

failover)  SUto onP(escalati *P(x)ailover)on to VM fP(escalati level 3                                                            (58)           

If a SU has at least one non-restartable component, the failure of a component itself, 

triggers the SU-failover. In that case, P (escalation to VM failover) is calculated using Equation 

(59).                            

3 levelxPfailover toVM escalationP )()(                 (59)                                                     

d)  Probability of escalating recovery action  to VM reboot   

During component restart recovery action, AMF cleans up the faulty component and then 

it tries to re-instantiate the component. However, if the cleanup action is unsuccessful or if the all 

the allowed attempts of instantiation fail, then AMF assumes the fault is in the VM and escalates 

the recovery action to VM reboot [10] and the services provided by the VM are impacted.  In this 

case, the probability of escalating recovery action to VM reboot is calculated.  

The restart recovery action may fail either during cleanup or while instantiating a 

component with delay or while instantiating a component without delay [10]. In Equation (60), P 

(CF) represents the probability of cleanup failures occurring during the component restart recovery 

action. When the cleanup action fails, the recovery action is escalated to VM reboot. If the cleanup 

action is successful for the first time, but if the instantiation attempt fails, again the cleanup action 
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is performed before attempting to instantiate a component. Therefore, there is a probability that 

the cleanup actions may fail while attempting to instantiate components with delay i.e. P 

(CFIWOD), calculated using Equation (62) or without delay i.e. P (CFIWD), calculated using 

Equation (63). As shown in Equation (61), the total number of instantiation attempts nia is given 

by the sum of NIWOD (Number of instantiation attempts without delay) and NIWD (Number of 

instantiation attempts with delay). Note that part of the Equations (61-64) are taken from [9]. 

)()()( CFIWDPCFIWODPCFP                                                                                                        (60)                              
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PCS and PCNS represents the probability of cleanup successful and failure respectively. 

PINS and PINSD denotes the probability of instantiation not successful without and with delay 

respectively. 

Even though the cleanup is successful, there is a probability that all the instantiation 

attempts may fail and this is calculated using Equation (64).  The probability of escalating the 

recovery action to VM reboot due to instantiation or termination failure is calculated using 

Equation (65).  

NIWDNIWODnia PINSDPINSPCSIFP **)(                                   (64) 

)()()( IFPCFPreboot VM to escalationP                                                   (65)          
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Equation (66) calculates the MTTFint of comps for a component type based on the probability of 

escalating the recovery actions to SU level or VM level. 
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Once MTTFint of comps is calculated, then the next step is to calculate the time required to 

perform VM failover and VM reboot recovery actions. To failover the SIs from a VM, primarily 

the components are cleaned up and if the cleanup action is successful, then the failed component’s 

CSI is failed over and the healthy component’s CSI are switched over [10]. Switch over is a smooth 

transition of CSI. In Equation (67), the time required to perform VM failover is sum of the 

maximum time required to perform cleanup action and the maximum time required to perform 

failover action.  Since the cleanup action for all components are executed in parallel, the maximum 

time required is considered as the cleanup time. Similarly, the maximum time required to perform 

failover action is considered as the failover time [9]. Note that in the below Equation (67), j iterates 

through the N component types.  

time][Failover Max]time [CleanupMaxT NjjNjfailover VM   11                                           (67)                                                                           

In Equation (68), clt represents the time required for a component type to perform cleanup 

action. The cleanup probabilities and the cleanup time are described in the extended ETF [9]. Note 

that, if the cleanup action fails then the VM is rebooted. TVM reboot denotes the VM reboot time. It 

is calculated using Equation (69) [9]. NST represents the time required by a VM to shut down and 

it is described in the infrastructure file. CSS represents the time required to set the HA assignment 

state for a component belonging to a component type. Equation (70) gives the maximum failover 

time required by all the assignments provided by a VM. SOT represents the time required by 
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components to switch over the active assignments to healthy components hosted on another VM. 

It is calculated using Equation (71).  

 )]T(clt*[PCNSclt]*[PCS time Cleanup reboot VM                                       (68)       

)(1 jNjreboot VM CSSMaxNSTT                                                                                                   (69)   

)],(*[ 1 jjNjjNj1 SOTCSSMaxPCSMax timeFailover                                                         (70)                                 

CSSSOT *2                                                                                                                           (71)                        

For each component belonging to a component type, there is a probability that the recovery 

action is SU restart or SU failover or VM failover or VM reboot. Equation (72) is used to calculate 

the mean time to recover the service due to the interference of the collocated components MTTRint 

of comps. Time required to perform SU restart TSU restart, time required to perform SU failover TSU 

failover are calculated using [9]. Time required to perform VM failover TVM failover and the time 

required to perform VM reboot TVM reboot are calculated using Equations (67) and (69) respectively.                                                                                                                              
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Equation (73) is used to calculate the availability of collocated components in a SU. MTTFint 

of comps is calculated using Equation (66) and MTTRint of comps is calculated using Equation (72). j 

iterates through the N component types in a SU and nj represents the number of collocated 
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components per component type in a SU. If there are no collocated components in a SU, then the 

availability due to collocated components is one.  

ii. Availability due to collocated SUs interferences 

It is possible that availability of SI may be affected when recovery action is performed at the 

VM level due to collocated SUs in a VM. Here, MTTFint of SUs is calculated using Equation (74) 

and the mean time to recover the service due to the interference of the collocated SUs (MTTRint of 

SUs) is calculated using Equation (75). Equation (76) is used to calculate the availability of 

collocated SUs in a VM. N represents the number of component types in a SU type, pj denotes the 

required number of components per component type and r is the number of collocated SUs in a 

VM. Note that if there are no collocated SUs in a VM, then the availability due to collocated SUs 

interference is one. 
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iii. Availability due to collocated VMs interference 

A fault in the physical hardware, or in the host operating system, or in the hypervisor will affect 

all the services provided by the application components running on that host. Such faults may or 

may not cause the failure of the faulty entity itself. They may propagate to one of the hosted entities 

and cause it to fail. As a result when components fail due to one of the above mentioned faults, 
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AMF cannot identify the source of the failure, the faulty entity, it is not even aware of the fact that 

the node on which it manages the components are VMs deployed on physical hosts, but potentially 

collocated. AMF will failover services provided by components of the other VMs residing on that 

physical host. AMF considers these failures to be independent and therefore the recovery action is 

taken per VM. However these failures are dependent (e.g. due to physical hardware fault) and 

physical hardware reboot could solve this issue, but AMF performs VM failovers independently. 

To handle this issue, it is assumed that the same escalation is applied for the VMs as for the 

components. When the maximum number of permitted VM failovers or VM reboot is reached 

within a time period, physical hardware reboot is performed. As a result, a service is affected when 

the collocated VMs trigger reboot of the physical host it is hosted on. If N represents the number 

of component types in a SU, pj denotes the number of components of a component type, r+1 is the 

total number of SUs in a VM and s is the number of collocated VMs in a physical host then, 

Equation (77) is used to calculate AcollocatedVM’sinterference. Note that MTTFint of SUs is calculated using 

Equation (74) and MTTRint of SUs is calculated using Equation (75). Note that if there are no 

collocated VMs in a physical host, then the availability due to collocated VMs interference is one. 
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From (73), (76) and (77) 
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                 Finally substituting Equations (44), (45) and (78) in Equation (42) gives the estimated 

availability of a SI.  

D. Example illustrating the calculation of number of SIs per VM flavor from the perspectives 

of availability and resource utilization for a type stack 

 

Let us assume a service type ST A is composed of two component service types CST 1 and 

CST 2. The information related to the number of SIs of ST A, the number of CSIs per CST1 and 

CST 2 in each SI and the requested availability is obtained from the configuration requirements.  

Based on the ETF model and the configuration requirements the type stacks are formed using [9]. 

The following example, illustrates the first phase in the AMF entities creation step for a type stack.  

From configuration requirements 

 Number of SIs of ST A = 40 

o Number of CSIs of CST 1 = 2 

o Number of CSIs of CST 2 = 3 

 Requested availability = 0.999 

From ETF 

 Capability of components 

o Active capability of CT1 for CST1 = 2 

o Standby capability of CT1 for CST1 = 5 

o Active capability of CT2 for CST2 = 2 

o Standby capability of CT2 for CST2 = 3 

 

 Maximum number of components per SU 

o Max no of comps per CT1 = 80 

o Max no of comps per CT2 = 64 

 

 Memory requirement 

o Memory required per CST1 = 3 MB 

o Memory required per CST2 = 1 MB 

 

From infrastructure file 
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 Set of VM flavors = { small = 512 MB, medium = 2048 MB} 

 Memory used by the hypervisor = 256 MB 

 Memory used by the host OS = 72 MB 

 Memory used by the guest OS = 72 MB 

 Memory of the physical host = 4608 MB 

 Over booking factor = 1 

The following calculations are illustrated for the small VM flavor. Initially, the memory required 

for a SI is determined using Equations (1-2). 

Memory required per CST1= Memory required per CSI1 * No of CSIs per CST1 = 3*2 = 6 

Memory required per CST2= Memory required per CSI2 * No of CSIs per CST2 =1*3 = 3 

Memory required per SI= Memory required per CST1 + Memory required per CST2 = 9 MB 

Using Equation (3), the AGM is calculated for the small VM flavor. 

AGM =TGM – GOSM =512-72 =440MB 

Next, using Equation (4), the No of SIs per VM is calculated 

48
9

440


















 floor

per SI requiredMemory 

AGM
floor  VMper   SIsof No SIs 

The small VM flavor can at most host 48 SIs. Next, the availability is estimated for the best and the 

worst case scenarios using Algorithm-1. From the perspective of availability estimation, the best 

case scenario is when the No of SIs per VM is 1. Using the Algorithm-2 the number of entities and 

the number of collocated entities are determined. 

i.  Determine number of SIs per SU:  Initially, the actual recovery of the components and the 

minimum number of components per CT is determined using [11] and [9] respectively.  

 Actual recovery for both the component types (CT1 and CT2) is component restart. 
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 Minimum number of components per CT1 required to provide one SI = 1  

 Minimum number of components per CT2 required to provide one SI = 2 

Since the actual recovery of both the component types is at the component level, the SU 

serving maximum number of SIs is selected. 
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           140,1,
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1
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minmin 
















per SU  SIsof No      

           No of comps per CT1 =No of SIs per SU*Min no of comps per CT1 =1*1 =1 

 

           No of comps per CT2 =No of SIs per SU*Min no of comps per CT 2=1*2 =2 

 

ii.  Determine number of SUs per SG and number of SGs 

From the SG type, the redundancy model is inferred to be N+M. For each component 

type the No of SGs is calculated using Equations (11-12 and 15-20).  

 CT1 CT2 

Max no of act SIs per SU  1 1 

Max no of std SIs per SU 2 2 

No of act SUs 40 40 

No of std  SUs 20 20 

Act proportion 2 2 

Std proportion 1 1 

No of SUs per SG 3 3 

No of SGs 20 20 
Table 4-1 Calculation of No of SGs and No of SUs per SG 

iii. Determine the number of SUs per VM and the number of SIs per VM 
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
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VMper   SIsof No
floorminVMper   SUsof No = min (1, 20) =1 

    1per SU  SIsof No*VMper   SUsof NoVMper   SIsof No   

iv. Determine the number of VM groups, the number of VMs and the number of physical hosts 
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 ceilK
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v. Determine the number of collocated entities 

 

When the No of SIs per SU is one, the No of coll comps and the No of coll SUs is zero. 

 

No of coll comps per CT1 = No of comps per CT1- Min no of comps per CT1= 0 

No of coll comps per CT2 = No of comps per CT2- Min no of comps per CT2= 0 

 

No of coll SUs = No of SUs per VM -1 = 0 

No of coll VMs =8-1=7 

 

Using the availability estimate method, the availability of a SI for best case scenario is 

estimated. The information about the component types and the infrastructure elements are 

obtained from Table 4-2 and 4-3 respectively. 
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 CT 1 CT 2 

Clean up 

time (clt) in 

sec 

3 2 

CSS time in 

sec 

2 1 

Instantiation 

time (IT) in 

sec 

1 2 

PCS 0.4 0.6 

PCNS 0.6 0.4 

PINS 0.1 0.1 

PINSD 0.1 0.1 

MTTF 530000 780000 

NIWOD 2 2 

NIWD 1 1 

Table 4-2 Information about the component types 

 

 

Infrastructure 

elements 

MTTF (sec) 

Physical host 8300000 

Hypervisor 6200000 

Host OS 5400000 

VM 7100000 

Guest OS 5400000 

Table 4-3 Information about the infrastructure elements 
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a) Availability due to failure of components 

The MTTR calculated using [9] is 3.3 and 2.1 respectively. Using MTTF values from Table 

4-3, 
componentsA  is calculated using Equation (44). 
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b) Availability of the infrastructure 

The MTTF values for the virtual infrastructure elements and the physical infrastructure 

elements are obtained from Table 4-3.  

Using Equation (48), the MTTRinfra is calculated. 

MTTRinfra = Detection time +Failover time = 3.2 + 2 = 5.2  

2)1,2()(   MaxCSSMax  timeFailover jNj1   

Using Equation (47), the availability of the virtual infrastructure (Avi) is determined. 

9999982.0
2.55400000

5400000
*

2.57100000

7100000





















viA  

Using Equation (51), the availability of the physical infrastructure (Api) is determined. 
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c) Availability due to the collocated components interferences 

i.   Probability of escalation due to SU restart 

When the tlevel 1 = 10000 s and xlevel 1 = 1 
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Using Equation (54), the failure rate of the components is determined 

6

2211 10*45.4)780000/2()530000/1(  componentcomponentcomponentcomponent pp   

Using Equation (53), the probability of escalating the recovery action to SU restart is 

determined. 

04255.0
!1

)]10000)(10*45.4[(
)(

16)10000)(10*45.4( 6


 

e
restart  SUto escalationP  

ii. Probability of escalation due to SU failover 

When tlevel 2 = 10000 s and xlevel 2 = 1 

Using Equation (55), the P(x)level2  is determined. 

2)( levelxP  04255.0
!1

0445.0 10445.0


e   

Using Equation (56), the probability of escalating the recovery action to SU failover is 

determined. 

  32
10*81.104255.0)( failover  SUto escalationP  

iii. Probability of escalation due to VM failover 

When tlevel 3 = 10000 s and xlevel 3 = 1 

Using Equation (58), probability of escalating the recovery action to VM failover is 

determined. 

For restartable components, 

P (escalation to VM failover) = 7.70*10-5 
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iv. Probability of escalation to VM reboot 

For CT 1, 

nia =NIWOD+NIWD= 2+1=3 

P (CF) = P (CFIWOD) + P (CFIWD) 


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Using Equation (65), the probability of escalation to VM reboot for CT 1 is determined. 
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     For CT 2, 

nia = 2+1=3 
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Using Equation (66), the MTTF int of comps for CT 1 and CT 2 is determined. 
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For CT 1, 66.791681
66946.0

530000
comps of intMTTF  

For CT 2, 35.1663989
46875.0

780000
comps of intMTTF  

Using Equation (72), the MTTR int of comps for CT 1 and CT 2 is determined. 
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  TSU failover and TSU restart   calculated using [9] are 8.78 and 4.8 respectively. 
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If the number of collocated components of both the component types is zero, therefore the 

availability of collocated components in a SU’s interference is 1. 

][][ 11 jNjjNjfailover VM time FailoverMaxtime CleanupMaxT  
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Using Equation (74), 
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For the best case scenario, the number of collocated SUs in a VM is zero, therefore the 

availability of collocated SU’s interference is 1. 
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The number of collocated VMs in a physical host is 7 and there is one SU in a collocated 

VM and each SU has one and two components in each component type respectively, then 

the availability of collocated VM’s interference is 0.9999.   
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999940.0999940.0*1*1 entities collocatedA  

 SIofty Availabili  0.999990*0.9999957*0.999940=0.999925  

For the best case scenario, the estimated availability is greater than the requested 

availability. Next step is to estimate availability for the worst case scenario. Even though 

the maximum number of SIs provided by a VM is 48, due to the limitation on the number 

of SIs a SU can handle and the number of SGs, the No of SIs per VM is limited to 32.  
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Figure 4-10 Calculating number of SIs per VM 
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The number of entities and the number of collocated entities are calculated for 32 SIs per VM 

as shown in Table 4-4. When availability is estimated at this point, it is less than the requested 

availability. Again, when the availability is estimated at the middle point, the estimated availability 

is equal to the requested availability. Therefore, 16 represents the number of SIs per VM from the 

perspectives of availability and resource utilization. Figure 4-10 illustrates the various scenarios 

at which the availability is estimated and the number in the circle denotes the order in which they 

are estimated. 

2) VM flavor selection for a type stack 

A physical host has a finite capacity and the number of identical VMs it can host depends on 

the VM flavor, which among others specifies the total guest memory associated with the flavor. 

From the set of available VM flavors specified in the infrastructure file, the above mentioned 

procedure to determine the No of SIs per VM from the availability and resource perspective is 

repeated. During this process, the number of entities and the No of SIs per PH are determined for 

each VM flavor using Algorithm-1 and 2.  To select the VM flavor, the VM flavor with the highest 

No of SIs per PH is selected. This selection provides the highest utilization of the host as its 

No 

of 

SIs 

per 

VM 

Number of entities No of collocated 

entities 

Estimated 

availability 

No 

of 

SIs 

per 

SU 

No of 

SGs 

No 

of 

SUs 

per 

VM 

No 

of 

SUs 

per 

SG 

No of 

SIs 

per 

VM  

No of 

VM 

groups 

No of 

PHs 

No of coll 

comps in 

SU 

No of 

coll 

SUs 

No 

of 

coll 

VMs CT

1 

CT2 

1 1 20 1 3 1 20 9 0 0 0 7 0.9999 

48 32 1 1 3 32 1 3 31 62 0 0 0.99 

16 16 1 1 4 16 1 4 15 30 0 0 0.999 

Table 4-4 Number of SIs per VM with corresponding number of entities and the estimated availability 
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resources are mostly used by the SIs and it infers minimum number of physical hosts. However, if 

two or more VM flavors support maximum No of SIs per PH, then the VM flavor with the smallest 

TGM is selected based on the availability considerations. Namely, the smallest VM flavor provide 

better fault isolation compared to other VM flavors. 

4.2.3 Distribute AMF entities for deployment  

 While distributing the AMF entities for deployment, the affinity/anti-affinity relation between 

them is defined and they are configured. The relation between the SUs is defined by the SGs: SUs 

that are providing and protecting the same SIs, i.e. they are part of the same SG should not be 

hosted on the same VM or physical host. The relation between the VMs is defined by the VM 

group. While determining the number of entities, along with the No of VMs, the No of VM groups, 

the number of redundant VMs in a VM group is also defined. In addition to that, the number of 

SUs that can be hosted per VM is also determined, based on this the configuration attributes related 

to the distribution of SGs on the VM groups is set. Finally, an AMF configuration is generated for 

a type stack. 

4.2.4 Repeating the process for all the type stacks    

 As described in the flowchart Figure 4-11 (a) and 4-11 (b), for all the type stacks created 

for each prototype in the step one of the configuration generation process [9], the AMF type 

creation [9], AMF entities creation step and the distribution of AMF entities for deployment step 

are repeated. In the third step, if the best case scenario for all the VM flavors do not meet the 

requested availability, then the type stack is discarded. The other case where a type stack is 

discarded is when it is not able to provide a SI. For those prototypes that met the requested 

availability, AMF configurations are generated. Out of these, only the configuration that uses 

minimum number of physical hosts is selected for deployment. 
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Figure 4-11 (a) Repeating the process for all the type stacks 
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Figure 4-11(b) Repeating the process for all the type stacks 
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 4.3 Deployment in the cloud 

Deployment is the process involved in installing and running AMF applications in the cloud 

using the generated configuration. This process consists of three steps: a) deployment information 

file generation; b) VM image creation; c) initial deployment. The first two steps is about generating 

pre-requisite files required for the initial deployment. They can be executed in parallel as shown 

in Figure 4-12. The third step describes the automatic deployment of AMF applications. Note that 

the following deployment process is discussed with respect to the OpenStack [18] cloud and 

OpenSAF [34] is used as an open source AMF implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1 Deployment information file generation 

From the deployment perspective, AMF configuration defines the relation between SGs 

and VM groups (i.e. SGs are configured to VM groups).  This ensures that each SU of a SG will 

 

Figure 4-12 Deployment process in the cloud 
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be hosted on a VM in a VM group. In order to avoid single point of failure, each VM in a VM 

group should be hosted on a different physical host. This is because, VMs in a VM group provide 

and protect the same SIs. When these VMs are hosted on the same physical host the failure of the 

physical host will jeopardize the availability. However, this relation between VM groups and 

physical hosts (i.e. configuring VMs to physical host) is not defined in the AMF configuration. 

Anti-affinity VM groups defined in OpenStack cloud can be useful in this context. Therefore, VM 

groups (i.e. AMF node groups) defined in the configuration are mapped to anti-affinity groups in 

the OpenStack as shown in Figure 4-13.      

 

Figure 4-13 Mapping of AMF node group to anti-affinity group in the OpenStack 

To achieve this mapping, it is necessary to extract deployment information like the number 

of VM groups, the number of VMs in each group, name of the VM group and selected VM flavor 

from the generated configuration. These details are added to a deployment information file using 

a parser.     

4.3.2 VM image creation 

In this thesis, AMF applications are designed to be deployed over a cluster of identical 

VMs. For this purpose, a VM image that contains OS, OpenSAF [34], Monitoring [21] and 

Elasticity Engine stack [22] and the executable code of the components is created in this step as 

shown in Figure 4-14. Monitoring [21] and Elasticity Engine [22] stack contains monitoring server, 

monitoring client and elasticity engine which is used to manage the workload of applications at 

run-time. The main advantage of creating this VM image is that it reduces the effort of installing 
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the above mentioned entities into each VM separately and as a result, this VM image can be used 

as a template to boot VMs.  

 

                Figure 4-14 VM image 

4.3.3 Initial deployment  

Using the deployment information file and the created VM image, this step aims to deploy 

AMF applications in the cloud. Before creating VMs, it is important to create the required number 

of anti-affinity groups as specified in the deployment information file. Also, based on the number 

of VMs in each VM group, OpenStack Nova’s scheduler [20] is used to provision the required 

number of VM instances in each anti-affinity group.  

 OpenStack is responsible for managing VMs and physical hosts. However, it is agnostic to 

applications running inside the VMs. To have the cluster up and running, OpenSAF should be 

configured and all the AMF entities should be instantiated and workloads should be assigned to 

them. To achieve this, VMs are accessed remotely and deployment specific attributes in OpenSAF 

are configured also the generated configuration is loaded and finally the VMs are restarted to make 

the changes come into effect. Each VM joins the cluster and successful instantiation of AMF 

entities indicates that the AMF application is deployed in the cloud and AMF can manage the 

lifecycle of the entities.  
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4.4 Managing AMF applications in the cloud   

Applications deployed in the cloud can be scaled out/in based on the workload demand. 

For this purpose, the existing Monitoring architecture [21] and the Elasticity Engine [22] can be 

used. The reason for choosing these existing engines is that, the elasticity actions are performed 

based on the service level workload changes (i.e. SI level). Managing AMF applications based on 

the SI level workload provides finer granularity as opposed to managing applications based on 

VM level workload changes [21][22]. Many existing solutions in the cloud map an application to 

a VM and whenever there is an increase in workload of application, a new VM is spawned [35]. 

In contrast, if a SI workload increase is detected by Monitoring server, then the Elasticity Engine 

resolves to add a new VM only after attempting to adjust the SG or cluster to provide room for the 

increased workload [22]. 

4.4.1 Integration with Monitoring architecture and Elasticity Engine  

Figure 4-15 illustrates the integration of AMF application with Monitoring architecture and 

Elasticity Engine and the data flow between the entities. Each VM booted from the above created 

VM image contains monitoring server, monitoring client, workload analyzer and elasticity engine 

 

Figure 4-15 Integration of AMF applications with ME and EE 
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stack. However, only one of the VM (OpenSAF controller) is configured with monitoring server, 

workload analyzer and elasticity engine. Monitoring clients are configured on each VM to monitor 

the service level workload for all the components hosted on that VM and this monitoring data is 

sent to the monitoring server [21]. 

Monitoring data corresponding to each component that participates in providing a SI are 

aggregated by the monitoring server and sent to the workload analyzer [21]. Further, the monitored 

data is compared with pre-defined threshold values. In this case, two scenarios are possible:                    

a. If the monitored data is less than the pre-defined threshold values then over provisioned 

trigger is generated and sent to the Elasticity Engine [21]. Based on the policies defined in 

the Elasticity Engine, it modifies the configuration by moving assignments of a SI or 

removing the SG etc. However, it also ensures that the cluster will not be contracted beyond 

the minimum configuration [22].    

b. If the monitored data is greater than the pre-defined threshold values, then under 

provisioned trigger is generated and sent to the Elasticity Engine [21]. It is the 

responsibility of the Elasticity Engine to take necessary elasticity actions including 

swapping SIs to make room for the increased SI workload or adding assignments to the SI 

or adding SGs or to add new VM(s) [22]. To add a new VM, Elasticity Engine 

communicates with the OpenStack scheduler and boots up a new VM using the created 

VM image. Further, the newly added VM is remotely accessed to configure OpenSAF. 

Finally, this VM joins the cluster and starts providing the service. Figure 4-15 illustrates 

an example that Elasticity Engine requests for a new VM to OpenStack scheduler and VM 

4 is created and this VM is configured to join the cluster. 
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4.5 Summary  

This chapter discussed the three main contributions of the thesis, namely the availability 

estimate method, the AMF entities creation method and a method for deploying AMF 

applications in the cloud. Furthermore, in order to scale AMF applications in the cloud, their 

integration with the existing Monitoring architecture [21] and Elasticity Engine [22] is also 

described. 

a. The availability estimate method is used to evaluate the availability of a service (i.e. 

availability of a SI) considering the potential factors that could affect the service. This 

includes availability of components providing the service, availability of virtual and 

physical infrastructure and availability of service due to the interference of the 

collocated entities. This method is used in the AMF entities creation step to estimate 

the availability and to eliminate the type stacks that do not meet the requested level of 

service availability.    

b. The AMF entities creation method is responsible for calculating the number of AMF 

entities (i.e. components, SUs, SGs, VMs) that meets the requested level of service 

availability and they can be deployed using a minimum number of physical hosts. More 

specifically, this method calculates the number of entities by taking into account the 

minimum number of redundant entities, potential interference that may occur due to 

the effect of collocation and also the physical host and VM’s capacity limitation.    

c. The main goal of the deployment approach is to run AMF applications in the cloud 

using the generated configuration without jeopardizing the availability. The 

deployment takes place at two levels namely: the physical host level and the VM level. 

During the physical host level integration, the required number of VMs are created in 
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the appropriate VM groups. At VM level integration, the applications are installed and 

configured automatically so that the AMF application can provide the service 

functionality. Finally, the deployed application is integrated with the existing 

Monitoring architecture [21] and Elasticity Engine [22]. Thereby like any other 

application, AMF applications can also be scaled out/in accordingly in the cloud.     
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Chapter 5 

Prototype Tool 

5.1 Introduction 

 The main goal of this chapter is to describe a proof of concepts prototype tool for the 

generation and the deployment of AMF configurations in the cloud. This tool includes all the 

solutions proposed in the Chapter 4. Existing AMF configuration generation tool [9] is extended 

to generate configurations for the cloud. Further, the deployment modules (parser module, VM 

image creation module and initial deployment module) are developed to deploy the AMF 

applications in the OpenStack cloud. Finally, with the help of the Monitoring architecture [21] and 

the Elasticity Engine [22], applications can be managed (scaled in or out) accordingly.  

5.2 AMF configuration generation module 

 

 

Figure 5-1 Data flow in the configuration generation module [9] 

As shown in Figure 5-1, the configuration generation module [9] consists of four parts namely; 

1) The Graphical User Interface (GUI); 2) Object model; 3) The I/O module; 4) The configuration 

generation module. 
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1) Graphical User Interface (GUI)  

The system designer is responsible for providing the ETF XML files and specifying 

the configuration requirements like the number of SIs in a SI template, the number of CSIs 

per SI, minimum requested service availability and redundancy models [9]. Note that, 

templates are introduced to generically create entities that share common characteristics 

[9]. The GUI uses Eclipse Modelling Tools [36] and Java Swing [37] to input ETF XML 

file and other requirements [9].                               

2) The Object Model 

This object model is a repository for models that includes the AMF, ETF, CR and 

infrastructure models. These UML models are described as Ecore models [38] using 

Eclipse Modelling Framework (EMF) [39].  The AMF model is created according to the 

information model described in [10] and the infrastructure model is defined as explained 

in the Chapter 4 (Section 4.2.1). Also, ETF model is defined based on ETF schema 

described in [40] and the CR model is designed according to [9]. Note that the ETF and 

CR models also includes the modifications mentioned in Section 4.2. 

3) The I/O Module 

The input/output files are instances of the object model. Using this module, an input 

file is parsed against a model in the repository. Also, using this module, an output file (i.e. 

generated AMF configuration) is saved as a XML file [9] which conforms to the AMF 

model in the data repository.  

4) The Configuration Generation Module 

This module is responsible for generating AMF configurations. As shown in Figure 

5-2, the input wizard GUI takes ETF XML file and validates it against the ETF model [9]. 
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If the validation is successful, GUI expects configuration requirements. It then outputs a 

CR object model. The CR object model, infrastructure object model are given as input to 

the Generator wizard GUI. It validates both the models and if the validation is successful, 

then the configuration generation process starts by selecting the prototypes and creates 

AMF types [9]. Furthermore, using the AMF entities creation method and the distribute 

AMF entities for distribution methods explained in the Chapter 4, the number of AMF 

entities are created and they are configured for deployment. Finally, AMF configuration 

is generated and saved in an XML format.  

5.3 Deployment modules 

The deployment process consists of three modules namely parser, VM image creation 

and initial deployment module. 

 

 

Figure 5-2 Extended AMF configuration generation prototype 
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1) Parser module  

The purpose of the parser module is to generate a deployment information file from an 

AMF configuration. For this purpose, DOM4J parser [41] is used to extract the number of 

VMs, the number of VM groups and the number of VMs in each group, name of the VM group 

from the configuration and stores these data in a JSON file. In addition to that, OpenSAF 

specific parameters like node type (controller or payload) required to configure each VM are 

also added to the deployment information file. 

2) VM image creation module 

A VM image that contains OS, OpenSAF middleware, Monitoring and Elasticity Engine 

stack and the executable code of components is created. The created VM image captured the 

state and data of a VM at one point in time [42] that is used to create identical VMs with the 

above mentioned entities. 

3) Initial deployment module 

The initial deployment module requires the created VM image and the deployment file to 

boot VMs in the OpenStack cloud. It first requests the nova service to create the required 

number of anti-affinity groups. It then communicates with the OpenStack scheduler and 

specifies the VM image, flavor of the VMs, the number of VMs in an anti-affinity group, name 

of the anti-affinity group and name of the VMs. When scheduler receives this command, it 

automatically schedules and boot VMs from the VM image. Since the VMs are created from 

the same VM image, it is possible that they possess the same host name (host name is different 

from name of the VM during creation and host name is more specifically used by OpenSAF). 

The deployment module then remotely logs into each of the VM in the cluster, configures and 
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starts OpenSAF. Successful instantiation of application entities indicates that the initial 

deployment is complete and AMF applications are deployed in the cloud.   

5.4 Illustration with an application      

Let us consider a deployment of HTTP service in an OpenStack cloud with 4 SIs. In the first 

step, the system designer inputs the ETF file using the GUI module, which is validated against the 

ETF schema by the object model. The Figure 5-3 illustrates the conformance message that the ETF 

is parsed successfully. Using the input wizard GUI module, information about the SG types 

(redundancy model, number of active/standby assignments), SI types and CSI types is given in the 

form of templates [9].  

 

Figure 5-3 Providing ETF input 

As shown in Figure 5-4 (a), the system designer specifies N-way active redundancy model 

using SG template-Pattern-Based dialog box. Further, the system designer inputs the name of the 

SI template as HTTP_SI_template, type of service as HTTP service, the number of SIs to be 4, 

number of active assignments to be 3 and the requested level of availability to be 0.999 using 

Regular SI template-Pattern-Based dialog box (Figure 5-4 (b)). The system designer then inputs 

the HTTP_CSI template associated with the HTTP_SI_template using the CSI Template dialog 
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box (Figure 5-4 (c)). This process outputs the CR file. Finally, the infrastructure file and the 

outputted CR file are given as input to the Generator wizard GUI and they are validated against 

the infrastructure model and CR model respectively. Figure 5-4 (d) illustrates the conformance 

message that the infrastructure file has been parsed successfully. 

 

Figure 5-4 (a) SG template-Pattern based dialog box; (b) SI template pattern based dialog box; (c) CSI template; (d) Providing 

infrastructure file and CR file 

Using the first two steps of the configuration generation process, two type stack (SR-0 and 

SR-1) that can provide the HTTP service type with the requested level of service availability is 

created [9]. Figure 5-5, illustrates the number of SIs per VM calculation and the VM flavor 

selection for SR-0 type stack. The small VM flavor is not considered because the memory required 
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to provide one SI is greater than the available guest memory. For the large VM flavor, when the 

No of SIs per VM is one, to deploy 4 SIs the No of SGs required is 4 and the No of SIs per SU is 1. 

The number of active assignments specified in the configuration requirements is three therefore, 

the No of SUs per SG is three. To deploy 4 SGs, No of VM groups required is also 4. The No of 

VMs per VM group based on the No of SUs per SG is also 3. Based on the capacity of the physical 

host, the number of large VMs it can accommodate is 1. Therefore, the total No of PHs required is 

12. Based on this, the number of collocated entities are calculated and the availability is estimated. 

For the best case scenario, the estimated availability is greater than the requested availability. 

Therefore, the availability is estimated for the worst case scenario (i.e. 4 SIs per VM). Here, the 

estimated availability is less than the requested availability. Therefore, the availability is estimated 

for the midpoint interval i.e. at 2 SIs per VM, which satisfies the availability requirement. The 

large VM flavor is selected for this case and the No of SIs per PH is 2 and the No of PHs required 

is 6.            

 

Figure 5-5 No of SIs per VM determination and VM flavor selection for SR-0 type stack 
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For SR-1 type stack the same procedure to determine the number of SIs per VM is 

performed for small VM flavor (Figure 5-6) and large VM flavor (Figure 5-7). The No of SIs per 

PH for small VM flavor is 4 and the large flavor is 2. Therefore, the small VM flavor is selected 

for this type stack. Finally, the type stack SR-1 is selected because, the No of PHs required (i.e. 3) 

is minimum compared to the No of PHs (i.e. 6) required for SR-0. 

 

Figure 5-7 No of SIs per VM determination for large VM flavor and VM flavor selection for SR-1 type stack 

Figure 5-6 No of SIs per VM determination for small VM flavor and SR-1 type stack 



91 
 

As explained in the Section 5.3, based on the generated AMF configuration the deployment 

details are extracted and the VM image is created. Using the initial deployment module, two anti-

affinity groups (AntiAffinityServerGrp_0 and AntiAffinityServerGrp_1) and 6 VMs (AF_VM_1 to 

AF_VM_6) are created in an OpenStack cloud. Figure 5-8 shows the created VMs and grouping of 

VMs in each anti-affinity group. 

 

Figure 5-8 Created VMs and anti-affinity groups in OpenStack cloud    

The overall view of the deployed AMF application is shown using Monitoring GUI [21] 

(Figure 5-9). The first two SGs (Service_Group-00HTTP_server and Service_Group-

01HTTP_server) are deployed over the AntiAffinityServerGrp_0 (node 1, node 3 and node 5). The 

next two SGs (Service_Group-02HTTP_server and Service_Group-03HTTP_server) are deployed 

over AntiAffinityServerGroup_1 (node 2, node 4 and node 6). Note that node 1 to node 6 refer to 

the AMF nodes which are mapped to AF_VM_1 to AF_VM_6. Each SG provides one SI and the 

workload of each SI is monitored by the Monitoring Engine.              
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Figure 5-9 Monitoring GUI showing the deployed AMF applications in the cloud before scaling 

Consider a scenario where the workload of SI 1 provided by Service_Group-

01HTTP_server is increased using Apache JMeter [43]. The Monitoring Engine notices the 

increase in workload and sends the workload to workload analyzer. Further, the workload analyzer 

compares the increased workload with the pre-defined threshold and triggers the Elasticity Engine 

to take necessary elasticity actions [21]. The Elasticity Engine modifies the configuration by 

increasing the number of active assignment of SI 1 from 3 to 4 and requests OpenStack to create 

a new VM. Figure 5-10 depicts this scenario where a new VM (i.e. node 7) has joined the cluster 

and the SU hosted on it is assigned a new assignment.    



93 
 

 

Figure 5-10 Monitoring GUI showing the deployed application in the cloud after scaling 

5.5 Summary  

This chapter presented the prototype tool for the generation and the deployment of AMF 

configurations in the cloud. This tool implemented the proposed AMF entities creation method, 

availability estimate method and the method to deploy AMF applications in the OpenStack cloud.  

In addition, this chapter also presented an example to illustrate the prototype tool and also a case 

highlighting the usage of existing Monitoring [21] and Elasticity Engine [22] to scale the deployed 

application.    
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Chapter 6 
 

Application – Configuration Generation for 

AMF Managed VNFs 

6.1 Introduction 

 The main objective of this chapter is to illustrate an application of the proposed AMF 

configuration generation process in the domain of NFV [45]. This chapter introduces the necessary 

background on NFV and then discuss about the proposed mapping between NFV and AMF 

domain. It is followed by the configuration generation process for AMF managed VNFs.  

6.2 Background on NFV 

 

Figure 6-1 High-level NFV framework [45] 

   

 NFV is changing the way Network Services (NS) are designed, deployed and managed [45].  

It leverages virtualization technology and cloud technologies to roll out NS faster as opposed to 

traditional networks. For this purpose, NFV unveils a new set of concepts called VNFs, NFV 

Infrastructure (NFVI) and NFV Management and Orchestration (NFV-MANO) [46] as shown in 
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Figure 6-1. VNFs are network functions that are virtualized and can run over shared compute, 

storage and networks in NFVI. NFVI encompasses heterogeneous physical hardware, software and 

networking elements necessary to run VNFs. NFV-MANO is responsible for managing the life 

cycle of the NS and its constituent VNFs [46].  

 A VNF may consist of a single software component capable of providing the network 

function or several software components that collaborate to provide the network function. These 

software components are referred to as VNF Components (VNFCs) [44]. VNF Component Instance 

(VNFCI) represent the run-time instantiation of a VNFC [44].  

6.3 Mapping between NFV and AMF domain 

A VNF is deployed as a cluster of VMs in the NFVI [44]. These VNFs are expected to be 

highly available and provide the required functions with minimal downtime. AMF can manage the 

availability of any application through an AMF configuration. Therefore, managing VNF as an 

AMF application is not an exception to this. To be able to do this, we need to map the concepts in 

the NFV domain to the concepts in the AMF domain.  

 Each VNF exposing a specific network functionality is mapped to an AMF App type that 

provides a service type. A VNF may consist of one or more VNFCs and each VNFC provides a 

specific service type (i.e. sub-functionality of the network function) and it is packaged as a software 

image [50]. To be able to map a VNFC to the concepts in the AMF domain, a new concept called 

AMF node type is proposed. This AMF node type represents a collection of the software images 

necessary for the service unit type that provides the service type of a VNFC. Each VNFCI runs in 

a dedicated virtualization container (e.g. VM) [44]. In the AMF domain, each instance of AMF 



96 
 

node can be mapped against a VM. Thus the VNFCI can be mapped to the AMF node, and the 

VNFCIs of a given VNFC to an AMF node group.  

6.4 AMF configuration generation process for VNFs 

The AMF node groups for VNFCs are disjoint, we generate an AMF configuration for a 

service type i.e. the service type to be provided by a VNFC. We design a VNFC by grouping one 

or more AMF component types into a service unit type so that it can provide the service type. 

Based on the number of workload units (i.e. SIs) to be provided for the given service type (i.e. 

service capacity) and the requested level of service availability, we determine the number of AMF 

entities (i.e. SUs, SGs, VMs) so that the VNFCIs providing the service can be deployed using a 

minimum number of physical hosts. The affinity and anti-affinity relations between the AMF 

entities are defined by AMF and therefore are reflected in the AMF configuration. In particular, 

nodes of an AMF node group are redundant entities therefore cannot be collocated. During 

deployment, the required number of VNFCIs of a VNFC are deployed using the AMF 

configuration. The proposed AMF configuration generation approach in Chapter 4 is applied in 

the same manner for each of the service types the VNF to configure the VNFCIs of each VNFC. 

The information about the number of entities calculated can be used to deploy and 

configure a VNF in the NFVI. For example, the No of VMs represents the required number of 

VNFCIs of a VNFC. The number of VMs in a VM group represents the number of VNFCIs of a 

VNFC in anti-affinity relation. The selected VM flavor can be used to deploy a VNFCI and the 

Max no of VMs per PH represents the number of VM groups per physical host. The calculated 

number of physical hosts can be used to deploy the VNFCIs of a VNFC.    
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6.5 Conclusion 

 This chapter presented an application for AMF configuration generation process in the field 

of NFV. Here, we proposed to use AMF as middleware to manage the availability of the services 

provided by the VNFs. To achieve this, we proposed an approach for generating AMF 

configurations for VNFs. In this approach, we mapped the concepts in the NFV domain to the 

concepts in the AMF domain and we designed a VNFC by grouping one or more AMF component 

types to provide the service type. Next, we determined the number of AMF entities with a goal that 

the requested availability should be met and the VNFCIs of a VNFC should be deployed using a 

minimum number of physical hosts.       

For the configuration and deployment of VNFs in the NFVI, the information about concrete the 

number of VNFCIs, their colocation/anti-colocation relationship and the VM flavor is required. 

These information are reflected in the AMF configuration and they can be extracted to design a 

VNF configuration.  
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Chapter 7 
 

Conclusion and Future Work 

7.1 Conclusion 

In this thesis, an approach for generating AMF configurations for applications and 

deploying them in the cloud is proposed. The generation process is devised with an intention to 

generate configurations that can provide and protect the services with requested level of service 

availability and also to deploy them using a minimum number of physical hosts.  

 An availability estimate method is proposed to evaluate the availability of service by 

considering the availability of all the entities that participate in providing the service. In particular, 

this method takes into account the impact due to collocation. This method is used to eliminate the 

configurations that do not meet the requested level of service availability.         

An AMF entities creation method is proposed to determine the number of AMF entities 

that satisfies availability and resource utilization requirements. In particular, this method 

determines the number of AMF entities required to build an AMF application by taking into 

account the minimum number of redundant entities, the potential interference that may occur due 

to collocation and also the physical host and VM’s capacity limitation.   

A method to deploy AMF applications in the cloud is proposed. This deployment process 

is defined to install and run AMF applications in the cloud without jeopardizing the availability. 

Further, the deployed applications are integrated with the existing Monitoring architecture [21] 
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and Elasticity Engine [22], so that the workload of the applications can be managed effectively. 

Finally, as a proof of concepts of the above proposed solutions has been developed as a prototype 

tool.   

An application for the AMF configuration generation process in the domain of NFV [45] 

has been developed. Using this process, configurations can be generated for AMF managed VNFs 

[44]. For this purpose, the appropriate mapping between both fields has been proposed. The 

information about the number of entities calculated during this process can be used to configure 

and deploy VNFs in the NFVI. 

7.2 Potential future research direction  

There are few aspects that can be investigated further in this research. The AMF 

configuration generation and deployment process is designed for a service type. In future, one may 

consider to generate and deploy configurations for many service types. Also, while determining 

the number of entities, one may consider to deploy the applications over heterogeneous physical 

hosts. Furthermore, configuration management tools like Chef [47] and Puppet [48] can be 

considered to deploy AMF applications in the cloud.     
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