

Design and Deployment of AMF Configurations in the

Cloud

Pradheba Chakrapani Rangarajan

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical and Computer

Engineering) at Concordia University

Montreal, Quebec, Canada

April, 2017

© Pradheba Chakrapani Rangarajan, 2017

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Pradheba Chakrapani Rangarajan

Entitled: Design and Deployment of AMF Configurations in the Cloud

and submitted in partial fulfillment of the requirements for the degree of

 Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. R. Raut

 __ External Examiner

 Dr. R. Glitho

 __ Internal Examiner

 Dr. A. Agarwal

 __ Co-Supervisor

 Dr. F. Khendek

 __ Co-Supervisor

 Dr. M. Toeroe

Approved by: ___________________________________

 Dr. W.E. Lynch, Chair

 Department of Electrical and Computer Engineering

_______________ 2017___ __________________________________

 Dr. Amir Asif, Dean,

 Faculty of Engineering and Computer Science

iii

Abstract

Design and Deployment of AMF Configurations in the Cloud

Pradheba Chakrapani Rangarajan

With the ever growing popularity of cloud computing, the trend of deploying applications

in the cloud is increasing more than ever. Cloud offers computing resources that can be provisioned

as required and scaled according to the workload demand. This feature attracts service providers

to deploy their applications in the cloud. As users continue to rely more on the services provided

by these applications, it is essential to keep the applications running with minimal service outage.

Service Availability Forum (SA Forum) has defined a framework called Availability Management

Framework (AMF) which can be used to manage service availability. AMF is agnostic to the

services provided by the applications. However, it manages the service availability of applications

by orchestrating the redundant entities through a configuration called AMF configuration. The

design of AMF configurations for a physical cluster based on the functional and non-functional

requirements, such as minimum level of service availability, has been proposed in the literature.

In these solutions, the number of physical hosts required to deploy an application is given as input

and the resource utilization is not taken into consideration. However, for deploying applications in

the cloud the number of physical hosts is not fixed and should vary depending on the workload.

Therefore, the issue of minimizing the number of physical hosts while meeting the requested level

of service availability arises. In particular, the service availability depends not only on the entities

involved in providing the service but also on the interferences caused by the collocation of entities.

To minimize these interferences, the collocated entities can be grouped into fault isolation units

such as VMs. This in turn may increase the number of resources required.

iv

In this thesis, an approach to generate AMF configuration for the cloud is proposed. In this

approach, a novel method is used to calculate the number of AMF entities that meets the

availability and resource utilization requirements. In addition, a method to estimate service

availability is proposed. It aims to predict the availability of service by considering the potential

factors that affect availability, including the interferences due to collocation. Furthermore, an

approach to deploy AMF applications in the cloud is proposed. As a proof of concept, a prototype

that demonstrates the generation and deployment of AMF configurations in an OpenStack cloud

has been developed. This prototype includes the existing Monitoring and Elasticity Engine,

previously developed in the MAGIC project.

Acknowledgements

Foremost, I would like to express my heartfelt thanks to my supervisor Dr. Ferhat Khendek

for providing me the opportunity to do academic research under his supervision. His expertise,

encouragement and continuous support helped me throughout the learning process of this thesis.

I would like to offer my profound gratitude to Dr. Maria Toeroe for her insightful

comments, remarks and immense knowledge which steered me in the right direction during all

time of the research.

I would like to acknowledge all my MAGIC colleagues for their friendship and assistance.

Especially I would like to thank Mehran Khan for helping me during the final stages of this thesis.

I must also thank my family and friends for all their endless love and faithful support. I am

especially grateful to my parents who encouraged me in all of my pursuits and inspiring me to

follow my dreams.

This work is partially supported by Natural Sciences and Engineering Research Council of

Canada (NSERC), Ericsson Research and Concordia University.

Table of Contents

List of Figures .. viii

List of Tables ... ix

List of abbreviations ... x

Introduction ... 1

1.1 HIGH AVAILABILITY AND SERVICE CONTINUITY .. 1
1.2 THESIS MOTIVATIONS ... 2
1.3 THESIS CONTRIBUTIONS .. 4
1.4 THESIS ORGANIZATIONS.. 5

Background and Related Work ... 6

2.1 SAF MIDDLEWARE .. 6
2.2 AVAILABILITY MANAGEMENT FRAMEWORK ... 7

2.2.1 AMF Entities and AMF Entity Types .. 8
2.2.2 Redundancy models ... 9

2.3 ENTITY TYPE FILE (ETF) ... 14
2.4 CLOUD COMPUTING ... 14

2.4.1 Key characteristics ... 15
2.4.2 Service models ... 16
2.4.3 Deployment models ... 17

2.5 OPENSTACK ... 17
2.6 MONITORING AND ELASTICITY ENGINE ... 18
2.7 RELATED WORK ... 19

AMF Configuration Generation Process for a Cluster ... 22

3.1 INTRODUCTION ... 22
3.2 ETF PROTOTYPE SELECTION .. 23
3.3 AMF TYPE CREATION .. 24
3.4 AMF ENTITIES CREATION .. 24
3.5 DISTRIBUTE AMF ENTITIES FOR DEPLOYMENT ... 24
3.6 LIMITATIONS .. 25

AMF Configuration Generation, Deployment and Run-time Management in the Cloud ... 26

4.1 INTRODUCTION ... 26
4.2 AMF CONFIGURATION GENERATION PROCESS FOR THE CLOUD .. 27

4.2.1 Introduction and overall view .. 27
4.2.2AMF Entities Creation step... 30
4.2.3 Distribute AMF entities for deployment .. 73
4.2.4 Repeating the process for all the type stacks .. 73

4.3 DEPLOYMENT IN THE CLOUD .. 76
4.3.1 Deployment information file generation .. 76
4.3.2 VM image creation .. 77
4.3.3 Initial deployment .. 78

vii

4.4 MANAGING AMF APPLICATIONS IN THE CLOUD ... 79
4.4.1 Integration with Monitoring architecture and Elasticity Engine .. 79

4.5 SUMMARY .. 81

Prototype Tool ... 83

5.1 INTRODUCTION ... 83
5.2 AMF CONFIGURATION GENERATION MODULE .. 83
5.3 DEPLOYMENT MODULES ... 85
5.4 ILLUSTRATION WITH AN APPLICATION .. 87
5.5 SUMMARY .. 93

Application – Configuration Generation for AMF Managed VNFs 94

6.1 INTRODUCTION ... 94
6.2 BACKGROUND ON NFV .. 94
6.3 MAPPING BETWEEN NFV AND AMF DOMAIN .. 95
6.4 AMF CONFIGURATION GENERATION PROCESS FOR VNFS .. 96
6.5 CONCLUSION .. 97

Conclusion and Future Work .. 98

7.1 CONCLUSION .. 98
7.2 POTENTIAL FUTURE RESEARCH DIRECTION .. 99

References .. 100

List of Figures
Figure 2-1 Overview of HPI and AIS services [13] .. 7

Figure 2-2 An example of AMF configuration ... 9

Figure 2-3 An example for No-redundancy redundancy model ... 10

Figure 2-4 An example for 2N-redundancy model ... 11

Figure 2-5 An example for N+M redundancy model ... 12

Figure 2-6 An example for N-way redundancy model ... 13

Figure 2-7 An example for N-way active redundancy model ... 13

Figure 2-8 Scheduling in OpenStack [20] ... 18

Figure 2-9 Monitoring Engine and Elasticity Engine architecture integrated with AMF [21] 19

Figure 3-1 AMF Configuration Generation Process for a Cluster [9] .. 23

Figure 4-1 AMF configuration generation, deployment and run-time management in the cloud 26

Figure 4-2 Modified AMF configuration generation process for the cloud .. 27

Figure 4-3 Part of extended ETF domain model ... 28

Figure 4-4 Infrastructure domain model ... 29

Figure 4-5 Factors influencing number of physical hosts ... 31

Figure 4-6 Number of SIs per VM .. 34

Figure 4-7 (a) Estimated availability is less than requested availability at max (b) Estimated availability is

less than requested availability at (min + max)/2 ... 38

Figure 4-8 Impact zone when actual recovery is SU restart ... 40

Figure 4-9 Availability of a SI .. 52

Figure 4-10 Calculating number of SIs per VM ... 71

Figure 4-11 (a) Repeating the process for all the type stacks ... 74

Figure 4-11(b) Repeating the process for all the type stacks .. 75

Figure 4-12 Deployment process in the cloud .. 76

Figure 4-13 Mapping of AMF node group to anti-affinity group in the OpenStack 77

Figure 4-14 VM image .. 78

Figure 4-15 Integration of AMF applications with ME and EE ... 79

Figure 5-1 Data flow in the configuration generation module [9] .. 83

Figure 5-2 Extended AMF configuration generation prototype ... 85

Figure 5-3 Providing ETF input .. 87

Figure 5-4 (a) SG template-Pattern based dialog box; (b) SI template pattern based dialog box; (c) CSI

template; (d) Providing infrastructure file and CR file ... 88

Figure 5-5 No of SIs per VM determination and VM flavor selection for SR-0 type stack 89

Figure 5-6 No of SIs per VM determination for small VM flavor and SR-1 type stack 90

Figure 5-7 No of SIs per VM determination for large VM flavor and VM flavor selection for SR-1 type

stack .. 90

Figure 5-8 Created VMs and anti-affinity groups in OpenStack cloud .. 91

Figure 5-9 Monitoring GUI showing the deployed AMF applications in the cloud before scaling 92

Figure 5-10 Monitoring GUI showing the deployed application in the cloud after scaling 93

Figure 6-1 High-level NFV framework [45] ... 94

file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279556
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279557
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279558
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279561
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279562
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279563
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279563
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279565
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279569
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279571
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279572
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279573
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279576
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279578
file:///C:/Users/pradheba/Desktop/Thesis/Sent_versions/First_submission0final/Apr-16-Final-submission/Apr-18-For_spectrum/ChakrapaniRangarajan_MASc_S2014.docx%23_Toc480279582

List of Tables

Table 4-1 Calculation of No of SGs and No of SUs per SG ... 63

Table 4-2 Information about the component types ... 65

Table 4-3 Information about the infrastructure elements .. 65

Table 4-4 Number of SIs per VM with corresponding number of entities and the estimated availability . 72

file:///C:/Users/pradheba/Desktop/Thesis-submitted/Final/test-3.docx%23_Toc477280551
file:///C:/Users/pradheba/Desktop/Thesis-submitted/Final/test-3.docx%23_Toc477280551

List of abbreviations

 Act cap per CST Active capability of components per CST

 Act proportion Proportion of active SUs in a SG

AGM Available guest memory

APM Available physical memory

CF Clean up failure

CFIWD Clean up action failing while attempting to instantiate a component
with delay

CFIWOD Clean up action failing while attempting to instantiate a component

without delay

Clt Time required to perform clean up action for a component

CR Configuration requirements

CSS Time required to set HA assignment for a component

ct Component type

EA Estimated availability

ETF Entity type file

GOSM Memory used by guest OS from infrastructure file

HA High availability

HM Memory used by hypervisor from infrastructure file

HOSM Memory used by host OS from infrastructure file

IF Instantiation failure

K Minimum number of redundant entities

Max Maximum number of SIs per VM

Max no of comps per CT Maximum number of components per CT based on the SU type

Max no of SIs per act SU Maximum number of active SIs per SU

Max no of SIs per SG Maximum number of SIs per SG

Max no of SIs per std SU Maximum number of standby SIs per SU

Max no of VMs per PH Maximum number of VMs per physical host based on capacity or SIs

Memory required per CSI Memory required by one component to provide a CSI

Memory required per CST Memory required by collaborating components to provide all CSIs of
a CST

xi

Memory required per SI Memory required by all collaborating components to provide an active
SI assignment

Min Minimum number of SIs per VM

Min no of comps Minimum number of components required per component type
determined using [9]

MTTF Mean time to failure

MTTR Mean time to repair

NFV Network function virtualization

NFVI Network function virtualization infrastructure

NFV-MANO Network function virtualization Management and Orchestration

nia Number of instantiation attempts

NIWD Number of instantiation attempts with delay

NIWOD Number of instantiation attempts without delay

No of act SUs Number of active SUs

No of coll comp per CT Number of collocated components per component type in a SU

No of coll SUs Number of collocated SUs in a VM

No of coll VMs Number of collocated VMs in a PH

No of comps per CT Number of components per CT in a SU

No of CSIs per CST Number of CSIs per CST in a SI

No of PHs Number of physical hosts

No of SGs Number of SGs

No of SIs Number of SIs from CR

No of SIs per PH Number of SIs per physical host

No of SIs per SU Number of SIs provided by a SU

No of SIs per VM Number of SIs provided by a SUs hosted in a VM

No of std SUs Number of standby SUs

No of SUs per SG Number of SUs per SG

No of SUs per VM Number of SUs hosted per VM

No of VM grps Number of VM groups

No of VMs Total number of VMs to deploy all SIs

No of VMs per PH Number of VMs per physical host based on the capacity of a physical
host

NS Network service

NST Node shut down time

xii

OBF Overbooking factor from the infrastructure provider

PCNS Probability of clean up not successful

PCS Probability of clean up successful

PINS Probability of instantiation not successful without delay

PINSD Probability of instantiation not successful with delay

PH Physical host

RA Requested availability from CR

SA Service Availability

Set of actual rec of CTs A set having actual recovery of components of a SU, determined using
[11]

Set of SGs A set having SGs determined for each CT

SOT Switch over time

std cap per CST Standby capability of components per CST

Std proportion Proportion of standby SUs in a SG

SUT Service unit type

TGM Total guest memory

TPM Total physical host’s memory from infrastructure file

VM Virtual machine

VNF Virtualized network function

VNFC Virtualized network function component

VNFCI Virtualized network function component instance

1

Chapter 1

Introduction

In this chapter we will briefly introduce high availability and service continuity. We will also

explain the motivations behind the thesis, its contributions and finally, its organization.

1.1 High Availability and Service Continuity

Service availability (SA) is defined as the percentage of time a system is ready to provide its

service [1]. Highly available systems are those that can achieve at least 99.999% of service

availability [1]. High availability (HA) is an essential and critical requirement for computer based

systems that are expected to provide the service around the clock.

Cloud computing is a new and popular paradigm where compute, network and storage

resources can be rented and managed in an on-demand fashion over internet [2]. Ensuring

availability of application services in the cloud is a challenging task [3]. This is because, failures

are inevitable regardless of the reliability of the software components or the underlying

infrastructure. The impact of these failures could be catastrophic in some cases. For example in

2013, a major service outage occurred in Amazon’s east coast data center had led to a loss of

$66,240 per minute [4].

Highly available systems are designed to avoid single point of failure. This is ensured by

incorporating proper redundancy mechanisms [1]. Resources such as software, hardware or

communication elements are replicated in the system. The basic way of organizing redundancy is

2

to have an active and a standby resource. The active resource provides the service and shares its

state with the standby resource. If the active resource fails, the standby resource takes over the

service and thus the service remains provided with continuity [1].

1.2 Thesis motivations

The notion of ubiquitous resources is realized with the advent of cloud computing [5]. By

leveraging existing technologies like virtualization [6], infrastructure providers offer computing

resources as a service in a pay-as-you-go manner. Service providers rent these resources to build

SaaS (Software as a Service) applications and offer them as a service to their customers or end

users [5]. As opposed to the traditional computing, cloud computing allows service providers to

provision resources as needed during initial deployment of application and scale resources

according to the needs. As a result, there is a window of opportunity to optimize and efficiently

use resources in the cloud [7]. With the aforementioned advantages, the cloud is attracting more

and more service providers. As end users rely more on the services provided by these applications,

any unplanned service outage could result in loss of revenue for the service providers. To avoid

paying penalties to the customers or end users, service providers design the SaaS applications

considering both functional and non-functional requirements including availability requirements

[9].

The design of highly available applications is a challenging task. Using reliable application

components does not guarantee high availability. One has to incorporate proper redundancy

mechanisms depending on the type of the application and appropriate recovery mechanisms to

minimize the service outage. More importantly, in the event of failure the coordination among the

redundant entities is important to ensure service continuity. Traditionally, along with the

application logics the availability mechanisms are also included by the application developers.

3

Service Availability Forum (SA Forum) [8] has defined the Availability Management Framework

(AMF) [10], a middleware service that abstracts the availability mechanisms (i.e. managing the

life cycle of application components, coordinating redundant entities and executing appropriate

recovery mechanisms in the event of failure) into the framework [10]. To manage the availability

of application services efficiently, AMF requires information about the application components

and services in a configuration file called the AMF configuration [10].

Designing an AMF configuration [9] [11] [12] can be generically viewed as building and

dimensioning an application that is intended to provide specific service functionalities. Designing

AMF configurations for a cluster based on the functional and non-functional requirements has

been proposed in the literature [9]. This approach starts with analyzing the functional requirements

(i.e. the type of the services the applications are intended to provide) and identifies the software

components that can provide the service. Based on the non-functional requirements (such as the

requested level of service availability) and the number of physical hosts required to deploy an

AMF application (given as input), an AMF configuration is generated [9]. This approach is not

suitable for the cloud, because the number of physical hosts required should not be fixed and this

can change according to the workload variations. Therefore, designing AMF applications that can

be deployed using a minimum number of physical hosts and meets the requested level of service

availability remains an open question. This is a challenging task because, to minimize the number

of physical hosts, the software components are collocated in the same environment (example a

VM). The repeated failure of software components hosted on the same VM indicates the fault in

the VM and requires a VM reboot. This recovery action may affect the availability of all the

services provided by the VM (called as interference). To reduce this interference, software

4

components can be grouped into fault isolation units with more VMs. This in turn will increase

the number of physical hosts.

While deploying AMF applications (using the generated configurations) in the cloud, if the

availability constraints (anti-collocation relation) between the entities is not respected, the service

availability will be jeopardized. The anti-collocation relation between the software entities and the

VMs are defined in the AMF configuration. However, the availability constraints at the physical

host level is not defined in the configuration. To ensure service availability, this should also be

taken into consideration.

 In this thesis we aim to design, deploy and manage AMF applications in the cloud that meets

both availability and resource utilization requirements. Using the existing Monitoring architecture

[21] and Elasticity Engine [22], workload variations of the deployed applications can be effectively

managed at run-time.

1.3 Thesis contributions

The contributions of this thesis are as follows:

1) An availability estimate method that predicts the availability of a service by considering

the potential factors that affect the availability including the interferences due to

collocations.

2) A method to calculate the number of AMF entities that satisfies both availability and

resource utilization goals. From availability perspectives, the goal is to meet the requested

availability and from resource utilization perspective, the goal is to deploy the applications

using minimum number of physical hosts. This method is based on the aforementioned

contribution on availability estimation taken into account interferences.

5

3) A method to deploy the generated configurations in the cloud has been devised. The

purpose of this method is to define the anti-collocation constraints at physical host level

based on the generated configurations and to deploy the applications in the cloud without

jeopardizing availability.

4) A prototype tool that illustrates the generation and deployment of AMF applications in the

cloud has been developed. Also, the deployed application is integrated with the existing

Monitoring architecture [21] and Elasticity Engine [22].

5) An application for the AMF configuration generation process in the domain of Network

Function Virtualization (NFV) [45] has been developed. Using this process, configurations

can be generated for AMF managed Virtual Network Functions (VNFs [44]). For this

purpose, the appropriate mapping between both fields has been proposed.

1.4 Thesis organizations

Besides the introduction, the thesis is divided into six chapters. Chapter 2 introduces the

necessary background on SA Forum’s AMF, cloud computing and also research works related

to this thesis. Chapter 3 briefly explains the configuration generation process for a cluster [9]

and highlights its limitations. Chapter 4 presents the generation and deployment of AMF

configurations for the cloud. Chapter 5 discuss the prototype implementation of the

aforementioned contributions and also the integration with the existing Elasticity Engine [22]

and Monitoring architecture [21]. Chapter 6 depicts an application of the AMF configuration

generation process for VNF [44]. Chapter 7 concludes this thesis and highlights potential future

research directions.

6

Chapter 2

Background and Related Work

This chapter introduces SAF middleware specifications [13] and more importantly focuses

on the main concepts involved in understanding the AMF [10]. Further, this chapter briefly

introduces the general cloud computing concepts including its characteristics, service models and

deployment models [14]. Finally, we review the research works related to this thesis.

 2.1 SAF Middleware

Traditionally, telecommunication companies developed their own proprietary HA

solutions. Applications built using this solution have limited portability and reusability [13]. In

order to address this issue, leading telecommunication and computing companies joined together

to develop an open standard for SA [13].

SA Forum [8] emerged to support and manage applications to provide highly available

services. For this purpose, it defined two standardized interface specifications [13]: a) The

Hardware Platform Interface (HPI) [13] and b) The Application Interface Specification (AIS) [13].

One of the main advantages of standardizing interfaces is that the applications can be ported easily

and they can be deployed on any middleware that supports this interface [13].

As shown in Figure 2-1, AIS defined a set of services and management frameworks to

support the development and management of highly available applications [13]. Among the

frameworks, AMF [10] is used to manage the availability of application services. The next sub-

7

section (Section 2.2) focuses on the necessary concepts required to understand the AMF, as this is

the main context of the thesis.

Figure 2-1 Overview of HPI and AIS services [13]

2.2 Availability Management Framework

AMF is responsible for managing the availability of the services provided by the

applications by coordinating and managing its redundant entities [10]. To manage the availability

of services provided by the applications, AMF requires information about the components,

services provided by the components, dependencies and their logical groupings. This information

is described as a configuration called AMF configuration [10]. At runtime AMF reads the

configuration to know about the current state of a system, applicable redundancy mechanism, error

detection and error recovery policies [10]. Using this information, AMF dynamically assigns

active or standby roles to the service provisioning entities.

8

2.2.1 AMF Entities and AMF Entity Types

In an AMF configuration, there are two main entities such as service provider entities and

the service entities [10]. Service provider entities includes components, service units (SUs), service

groups (SGs), AMF nodes and AMF applications while service entities includes component

service instances (CSIs) and service instances (SIs). The service provider entities and the service

entities together called as AMF entities [10].

To be able to understand AMF entities and their organization into a hierarchy of logical

entities, let us consider an example where a user wants to access a video through a web-interface.

The web-server software and the software that plays the video represents the component [10]. It is

the smallest service provider entity and also the smallest fault-zone within a system [10]. For the

video component to be able to play the video service, workload should be assigned to it. Therefore,

CSI represents a unit of service workload that a component is able to provide [10]. One may have

noticed that a web-server component and a video player component collaborate to provide the

video service. It also implies that due to tight collaboration, fault propagation can also occur [1].

For these reasons, the components that are collaborating to provide a service functionality are

grouped logically into SUs [10]. This is the next fault-zone identified by the AMF that can be

isolated and repaired on its own [1]. It should also be noted that, respective CSIs assigned to web-

server components and video player components will compose a video SI [10]. AMF assigns SIs

to SUs during run-time. To protect the service in spite of failures, redundant SUs work together

and form a protection group called SG [10]. Typically, an AMF application consists of one or more

SGs and also SIs that are protected by the SGs [10]. AMF nodes are logical entities that are used

to deploy SGs [10]. This could be mapped to a physical hardware or a virtual machine (VM). SGs

are deployed over a group of AMF nodes which forms the AMF cluster [10]. AMF entities are

9

typed, except for nodes and clusters. The common characteristics of AMF entities are captured in

their respective types [10]. Figure 2-2 illustrates the AMF configuration for this example with

service provider entities, service entities and their corresponding types.

Figure 2-2 An example of AMF configuration

In the event of failure of a component, AMF detects the failure through its health

monitoring or error reporting functionalities [10]. Depending on the recovery related attributes

specified in the configuration, it then automatically recovers the service by performing recovery

action either at the component level (component restart or component failover) or SU level (SU

restart or SU failover) or AMF node level (node fail fast or node failover or node switchover) or

application level (application restart) or cluster level (cluster reset) [10]. The actual recovery of

the components in the context of the configuration can be determined using [11].

2.2.2 Redundancy models

A SG follow one of the following redundancy models; no-redundancy redundancy model; 2N-

redundnacy model; N+M redundancy model; N-way active redundancy model; and N-way

AMF Node 1 AMF Node 2

Service Instance

Web CSI

Video CSI

SU 1

Web server

component 1

Video

Component 1

SU 2
Web server

component 2

Video

Component 2

SG Application

Active assignment

Standby assignment

Web server

component type

Video component

type

SU type

SG type

App type

Service provider types

Service types

Web CSI type

Video CSI type

SI type

10

redundancy model; Each SI is characterized with a number of active and standby assignments that

varies according to the redundancy model [10].

 No-redundancy redundancy model

In this case, each SI has at most one assignment and each SU can take at most one

active assignment [10]. In other words, a SU in this redundancy model will not be assigned

any standby assignments. Since each SI has only one assignment, from the service

perspective this redundancy model provides “no-redundancy” [1]. However, from the

service provider perspective there are other SUs in a SG that can take over the service in

the case of failure. From this standpoint, this does provides redundancy [10]. Let us

consider a SG with two in-service SUs (SU 1 and SU 2) as shown in Figure 2-3. In-service

SUs are those that are instantiated and ready to take assignments [10]. This SG is

configured to protect one SI (SI 1). For example, at-run time if AMF assigns active role to

SU1, then SU2 will be the spare SU.

 Figure 2-3 An example for No-redundancy redundancy model

 2N redundancy model

It is also called as 1+1 or active-standby redundancy model [10]. From service side,

each SI has one active assignment and one standby assignment [10]. From service provider

AMF Node 1 AMF Node 2

SU 1

C1

C2

SU 2

C3

C4

SG

Active assignmentSI 1

CSI 1

CSI 2

11

perspective, each SG is characterized by at most one active SU, one standby SU and spare

SUs depending on the configuration. Let us consider a SG with three SUs (SU1, SU2 and

SU 3). This SG is configured to protect 2 SIs (SI 1 and SI 2) as shown in Figure 2-4. For

example, at run-time AMF may assign active role to SU 1 and standby role to SU 2 and

SU 3 is considered as the spare SU. In the event of failure of SU 1, SU 2 will take over the

active role and start providing SI 1 and SI 2. Also, SU 3 will be assigned standby role to

protect against failures.

Figure 2-4 An example for 2N-redundancy model

 N+M redundancy model

From the service side, each SI has one active assignment and one standby

assignment [10] and from the service provider side, a SG is characterized by N active SUs

and M standby SUs [10]. Let us consider a SG with four SUs (SU 1, SU 2, SU 3 and SU

4) and this SG is configured to protect 3 SIs (SI 1, SI 2 and SI 3) as shown in Figure 2-5.

At run-time, AMF assigns active role to SU 1 and SU 2 (N=2), standby role to SU 3 (M=1)

and SU 4 is considered as the spare SU. For example, in the event of failure of SU 1, the

active assignment of SI 1 and SI 2 is failed over to SU 3. Also, SU 4 will take the standby

role to protect the SIs against failures.

AMF Node 1 AMF Node 2

SI 2

CSI 3

CSI 4

SU 1

C1

C2

SU 2

C3

C4

SG

Active

assignment

Standby

assignment

SI 1

CSI 1

CSI 2

SU 3

C5

C6

AMF Node 3

12

Figure 2-5 An example for N+M redundancy model

 N-way redundancy model

Each SI has one active and one or more standby assignments, depending on the

configuration [10]. The SUs in a SG following N-way redundancy model can take active

and/or standby role. The only constraint is that, a SU cannot be in the active and standby

state for the same SI [10]. Let us consider a SG with four SUs (SU 1, SU 2, SU 3 and SU

4) and this SG is configured to protect 3 SIs (SI 1, SI 2 and SI 3) as shown in Figure 2-6.

Also, the number of standby assignments per SI is configured to be 3. At run-time, SU 1

takes active assignment of SI 1 and standby assignments of SI 2 and SI 3. Similarly, SU 2

and SU 3 takes active assignments of SI 2 and SI 3 also standby assignments of other SIs

respectively. SU 4 is considered as the spare SU. Note, that the standby assignments are

ranked. In the event of failure of SU 3, SU (SU 1 or SU 2) that is assigned the highest

ranked standby assignment will provide the SI 3.

AMF Node 1 AMF Node 2

SI 2

CSI 3

CSI 4

SU 1

C1

C2

SU 2

C3

C4

SG

Active assignment

Standby

assignment

SI 1

CSI 1

CSI 2

SU 3

C5

C6

AMF Node 3

SU 4

C7

C8

AMF Node 4

SI 3

CSI 5

CSI 6

13

Figure 2-6 An example for N-way redundancy model

 N-way active redundancy model

Figure 2-7 An example for N-way active redundancy model

Each SI is characterized by more than one active assignment [10]. This redundancy

model does not support any standby assignments [10]. When active assignments are

assigned to the SUs of a SG, it implies that all the service functionality is provided by all

the active SUs. Let us consider a SG with three SUs (SU 1, SU 2 and SU 3) and this SG

is configured to protect 2 SIs (SI 1 and SI 2) as shown in Figure 2-7. Each SI is configured

to have two active assignments. At run-time, SU 1 and SU 2 are assigned active roles and

SU 3 is considered as a spare SU. In the event of failure of SU 2, AMF will not consider

this as a service interruption because, the service is provided by SU 1 [1]. However, AMF

will failover the SIs provided by SU 2 to SU 3.

AMF Node 1 AMF Node 2

SI 2

CSI 3

CSI 4

SU 1

C1

C2

SU 2

C3

C4

SG

Active

assignment

Standby

assignment

SI 1

CSI 1

CSI 2

SU 3

C5

C6

AMF Node 3

SI 3

CSI 5

CSI 6

AMF Node 4

SU 4

C7

C8

AMF Node 3AMF Node 1 AMF Node 2

SI 2

CSI 3

CSI 4

SU 1

C1

C2

SU 2

C3

C4

SG

Active assignment

SI 1

CSI 1

CSI 2

SU 3

C5

C6

14

2.3 Entity Type File (ETF)

The software vendors describe the software entities in terms of prototypes in an XML file

called ETF [15]. Every prototype mentioned in the ETF possess a name, version and its specific

characteristics. For example, each component prototype in ETF specifies the name, version and

the type of service the component is intended to provide. In addition, it also includes other

characteristics like capabilities of the component prototypes and whether the components of this

type can restart or not during service recovery actions [15]. For example, if active and standby

capabilities of component prototype are 2 and 4 respectively, then it implies that the component

prototype cannot take more than 2 active and 4 standby assignments.

It is mandatory to include the information about component prototypes and component

service prototypes; however the information about the other AMF prototypes can be left optional

in an ETF [15]. If the information about SU or App prototype is specified, then it implies that a

vendor imposes restriction on how the component prototypes can be composed to collaborate.

2.4 Cloud Computing

With the recent advancement in the Internet technology, the need to rapidly deploy

applications to meet the growing businesses has increased [5]. To support this growth, often

systems are designed to handle maximum workloads. This overprovisioning of resources often

results in underutilized server capacity and increases the total ownership cost [7]. Cloud computing

reduces the upfront investment in purchasing and maintaining the resources and the total

ownership is reduced considerably [5]. Resources can be provisioned as needed on a pay as you

basis. This allows the systems to be designed to handle the minimum or average workload and the

15

application servers can be scaled up or down according to the workload demand. National Institute

of Standards and Technology (NIST) [14] has proposed the following cloud computing definition:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction”

Taken further, NIST has also defined five key characteristics, three service models and four

deployment models for the cloud [14].

2.4.1 Key characteristics

The following are the important characteristics of a cloud system [14].

 On-demand self-service – Without the need for any significant assistance, the cloud

resources (compute, storage and network) can be automatically provisioned.

 Broad network access – Heterogeneous client platforms such as mobile phones and laptops

can be used to access the cloud resources.

 Resource pooling – Compute, storage and network resources are pooled by virtualizing

them. This allows the flexibility to allocate and manage resources in the cloud computing

paradigm.

 Rapid elasticity – Resource pooling gives the impression of infinite resources available to

the customers. This allows rapidly allocating or reallocating resources to the customers

based on their needs.

16

 Measured service – The resource pool is shared by multiple customers. Infrastructure

provider monitors the resource usages for each customer and bills them according to their

usage.

2.4.2 Service models

 Infrastructure as a Service (IaaS) - Typically a data center consists of heterogeneous physical

servers, switches, storage elements etc. Infrastructure providers own and manage the physical

and virtual resources in the data centers. These resources are virtualized and offered as a service

to the customers. This allows the flexibility to choose the operating systems and other

necessary software required to deploy the applications [5].

 Platform as a Service (PaaS) — PaaS provider like Google App Engine offers the necessary

built-in services like databases and Application Programming Interface (APIs) to develop

applications [16]. This provides the flexibility to develop and deploy applications without

having to deal with directly with the infrastructure including network, operating systems or

storage [5].

 Software as a Service (SaaS) — SaaS providers build SaaS applications (example Microsoft

Office 365 [49]) and deploy it over the provider’s infrastructure. Users are allowed to access

the application without the need to install, run and maintain the underlying infrastructure,

application [49]. Therefore, the up-front cost required to invest in the infrastructure and also

in the software licensing is reduced [17].

17

2.4.3 Deployment models

 Private cloud

 A cloud is said to be a private cloud when the services are offered through a private

network. Generally it is owed by a single organization that deals with more secure data and

requires a more flexible and scalable platform [5].

 Public cloud

A cloud is said to be public cloud when the services are offered through the internet

(i.e. public network). This allows multiple organizations to share the resources and thereby

reducing the total cost. [5]. Examples of public cloud includes, Google’s web based e-mail

and file storage system like Dropbox.

 Hybrid cloud

A cloud is said to be hybrid cloud when it is a combination of both public and

private cloud. The idea is to create a unified model employing both the clouds so that an

organization can benefit from the best of both worlds [5].

2.5 OpenStack

OpenStack is a cloud operating system that dynamically manages the compute, network

and storage resources in a data center [18]. It provides a cloud computing platform to build public

or private cloud. OpenStack contains multiple components. Among these components, compute

service is provided by nova [19]. It facilitates the provision of on-demand VM instances using the

nova-scheduler service [20]. It is the responsibility of nova-scheduler to determine the mapping

of VMs to physical hosts. For this purpose, the nova-scheduler uses the filtering and weighting

mechanisms to determine the eligible physical hosts [20]. It allows the use of variety of filters

including, but not limited to ram filter, core filter, disk filter, group affinity filter and group anti-

18

affinity filter. With the help of these filters, nova-scheduler eliminates the physical hosts that are

not capable of hosting VMs. Further, the nova-scheduler orders the valid list of physical hosts by

applying weights to them. Finally, it selects the physical host that is more weighted [20]. Figure

2-8 [20] illustrates the scheduler’s filtering and weighting mechanism. Let us suppose that

scheduler applies the ram filter to the list of available hosts (Host 1 to Host 6). It rejects Host 2

and Host 4 due to the presence of inadequate ram resource. It then applies weights to the Host 1,

Host 3, Host 5 and Host 6 and ranks Host 5 as the most weighted host. Finally, Host 5 is selected

to host a VM instance.

Figure 2-8 Scheduling in OpenStack [20]

2.6 Monitoring and Elasticity Engine

Recently a Monitoring architecture [21] and an Elasticity Engine [22] for AMF managed

applications has been proposed in the literature. Unlike the existing monitoring tools in the cloud,

this tool monitors the service level workload changes for the AMF managed applications [21]. It

then triggers the Elasticity Engine [22] to allocate or reallocate resources based on the workload

changes. The Monitoring Engine follows the client-server architecture. Each AMF node in the

cluster, runs a monitoring client to measure the service level workload of the components residing

on it. The monitoring clients sends the workload to the monitoring server at regular intervals. The

monitoring server aggregates the workloads from each component and calculates the associated SI

19

workload [21]. Further, the monitoring server sends the SI workload to the workload analyzer to

trigger workload increase or decrease to the Elasticity Engine. For this purpose, workload analyzer

checks the received SI workload with the pre-configured threshold value and generate triggers

accordingly [21] (Figure 2-9). Elasticity Engine then reads the current configuration and makes

the appropriate changes at the SG level or at the cluster level through the Information Model

Management (IMM) [23] service. AMF then reacts to the configuration change by adjusting the

CSI assignments or SIs in accordance with the modified configuration. Thereby, the service

providers are scaled-out or scaled-in based on the service level workload [21].

Figure 2-9 Monitoring Engine and Elasticity Engine architecture integrated with AMF [21]

2.7 Related Work

The following works [9] [11] [12] target the generation of AMF configurations. The author

in [11] automated the AMF configuration generation process and generates multiple AMF

configurations by taking into account various possible configuration options. The author in [12]

takes into account the functional requirements and generates AMF configurations using a model

driven approach [12]. Both the works [11] and [12] did not consider non-functional requirements

such as availability requirements while generating AMF configurations. The author in [9] aims at

generating configurations for a cluster that meets functional requirements and non-functional

Instrumented
Components

Monitoring Client

Aggregation
Module

Monitoring Server

Workload Analyzer

AMF

IMM

Elasticity Engine

Dispatched callback(s)
to assign/(re)assign

CSI(s)

Component Workload/
CSI assignments

SI Workload

SI-Workload
Change

Read IM/Configuration Change

Configuration Change

20

availability requirements (i.e. requested level of service availability). More details on the AMF

configuration generation process for a cluster [9] and its limitations are explained in Chapter 3.

There are numerous works that discuss about deploying applications in the cloud. Most of

them focus on optimizing the placement of VMs on physical hosts based on multiple constraints

like resource based, performance and availability [24] [25] [26] [27]. The authors in [24] aim at

improving the availability and performance of services in the IaaS cloud while placing VMs on

physical hosts. For this purpose, a structural constraint-aware VM placement technique is

proposed. This is a hierarchical placement approach that considers demand, communication and

availability constraints while mapping VMs to physical hosts. Another attempt [25] proposes a

highly available optimal placement by considering interdependencies between the application

components, communication delay tolerance and resource utilization. The authors in [27] proposed

a VM placement method that generates a minimum redundant VM configuration that can survive

any k-physical host failures. The above mentioned works considered mapping an application to a

VM and optimally placing VMs on physical hosts. In our approach, this application could be

mapped to an AMF component.

The authors in [28] presents a request aware VM placement approach to improve the

availability of services by choosing the right deployment choices. This work is closely related

because it not only considers the mapping application components to one or multiple VMs but also

it considers the potential interference that may occur due to multi-tenancy of application

components in a VM. However, this solution did not take the specificities of high availability

middleware like AMF in to account.

Recently deploying applications in multi-cloud environments is becoming popular [29]

[30]. For example the authors in [30] proposes a multi-objective scheduling technique that aims to

21

achieve high availability of applications and also it aims to minimize the application cost (i.e. by

optimally scheduling or rescheduling the application components to a node based on the workload

demand) and maximize the resource usage. In addition to this, scalability of applications across

different clouds is considered.

22

Chapter 3

AMF Configuration Generation Process for a

Cluster

3.1 Introduction

AMF configuration generation process for a cluster [9] requires two inputs; a) ETF model

and b) configuration requirements (CR) as shown in Figure 3-1. As mentioned in Chapter 2, ETF

is a software catalogue that is used to build AMF applications [15]. An ETF model may include

ETFs from different software vendors [9]. CR captures the type of the service the application is

intended to provide, the number of SIs of a service type, the number of CSIs of a component

service type in each SI, optionally the redundancy model of a SG type, the number of active

assignments (for N-way active redundancy model) and the number of standby assignments (for N-

way redundancy model). Deployment details such as the number of AMF nodes in a cluster, cluster

startup time, time required by an AMF node to shutdown is also included. In addition, maximum

number of attempts required by the AMF to instantiate a component, maximum number of attempts

required by the AMF to instantiate a component with a delay between the instantiation attempts

and the delay between the instantiation attempts is specified. Finally, the non-functional

requirement such as requested level of service availability is also included in the CR [9]. AMF

configuration generation process [9] [11] has four main steps: a) ETF prototype selection; b) AMF

type creation; c) AMF entities creation; d) Distribute AMF entities for deployment. The authors in

[9] applies four design patterns and two methods to enhance the service availability.

23

3.2 ETF Prototype Selection

In this step, ETFs from different vendors are analyzed and the prototypes that can provide

the requested service are selected. It is possible to create hierarchy of prototypes (from app types

to component types) called type stack from different prototypes therefore, each type stack may

lead to different AMF configurations [9].

ETF prototypes from different software vendors are adjusted to improve the service

availability. ETF prototypes specify multiple attributes available to configure the software from

an availability perspective. Some of the recovery related attributes are altered to minimize the

impact zone using the ETF prototype adjustment design pattern [9]. This step also intends to

estimate the level of service availability using the availability estimate method [9] to check if a

type stack can provide the requested level of service availability. If it is not met, then that type

stack is discarded in the early stage of the configuration generation process [9]. Type stacks that

meet the requested level of availability are considered for the next step.

Figure 3-1 AMF Configuration Generation Process for a Cluster [9]

24

3.3 AMF Type Creation

AMF types are software entity types that are defined for the AMF management purposes

[15]. These AMF types are created from their corresponding ETF prototypes in the type stacks.

However, if the information about SU prototype or SG prototype or App prototype is not found,

then they are created in this step [9]. ETF prototypes specify a range of available options and this

allows the possibility to create multiple AMF types from the same ETF prototype [9]. Using

separation of CSTs design pattern, AMF types are created in such a way that the failure of a

component will affect only minimum number of SIs [9]. Also, if the system designer has not

requested the redundancy model for SG type(s), then this step determines the appropriate

redundancy model for a service type based on the active and/or standby capability of component

types [9].

3.4 AMF Entities Creation

This step aims to create the number of AMF entities from their corresponding AMF types

based on the requested level of service availability. For this purpose, availability estimate-based

entities creation method [9] is used. Considering the availability requirement and the number of

SIs, this method calculates the number of components, the number of SUs and SGs required and

they are configured. Note that these AMF entities are created according to the number of AMF

nodes specified in the CR [9].

3.5 Distribute AMF Entities for Deployment

Once the AMF entities are created, then the next step is to distribute the SUs over the AMF

nodes and to set the deployment related attributes [9]. In this step, different deployment options

25

are possible. Using load-balanced distribution design pattern, this step aims to distribute SUs in an

even manner for 2N-redundnacy model [9].

3.6 Limitations

The above mentioned AMF configuration generation process for a cluster [9] is not suitable for

the cloud because of the following issues.

1) This approach requires the system designer to specify the number of physical hosts (AMF

nodes) as an input to generate the AMF configurations. These physical hosts are also

considered to have infinite capacity. The issue is that the number of physical hosts specified

by the system designer may not be minimum because the system designer may neither be

aware of the effect of collocating entities nor be aware of the resource limitations.

Furthermore, this number of physical hosts affects the AMF entities creation calculation.

2) The availability estimate method used in the AMF configuration generator [9] considers

only the availability of the components. However, in any system the availability of the

underlying infrastructure (both virtual and physical infrastructure) is also an important

factor to consider.

3) This solution did not consider the effect of deploying these AMF entities together in a

collocated manner. When entities are collocated in the same environment (e.g. VM), the

collocated entities may fail and affect the availability of other SIs served by that

environment. Note that collocated entities may interfere at the SU, VM and at the host level

as well.

26

Chapter 4

AMF Configuration Generation,

Deployment and Run-time Management in

the Cloud

4.1 Introduction

This chapter presents an approach to generate, deploy and manage AMF applications in

the cloud. For this purpose, this chapter is divided into three main sections. The first section

(Section 4.2) describes the AMF configuration generation process for the cloud. This process

overcomes the limitations highlighted in Chapter 3. This section includes the proposed AMF

entities creation and availability estimate methods. The second section (Section 4.3) depicts the

proposed method to deploy AMF applications in the cloud. The third section (Section 4.4)

describes the run-time management of AMF applications using the existing Monitoring

architecture [21] and Elasticity Engine [22]. Figure 4-1 illustrates the overall picture of generation,

deployment and integration of Monitoring architecture and Elasticity Engine with the deployed

applications.

Figure 4-1 AMF configuration generation, deployment and run-time management in the

cloud

27

4.2 AMF configuration generation process for the cloud

4.2.1 Introduction and overall view

To design AMF configurations, one has to be aware of the services AMF applications

intend to provide. This is abstracted as workload units called SIs and CSIs [10]. The configuration

requirements captures the type of the service and the number of SIs and CSIs to be provided by

the application with a minimum level of service availability [9]. Our aim while generating AMF

configurations is to build applications that can provide the specified number of SIs and guarantee

the requested level of service availability. Since these AMF applications are intended to be

deployed in the cloud, it is important to use minimum resources (physical hosts). This considerably

reduces the upfront investment on infrastructure and by using the existing Elasticity Engine [22],

the number of resources can be increased in the future as needed.

Our main goal is to design AMF applications/configurations that can:

 provide and protect all the SIs specified number in the CR

 meet the requested level of service availability

 use minimum resources (physical hosts) for deployment

Figure 4-2 Modified AMF configuration generation process for the cloud

28

For this purpose, the existing AMF configuration generation process proposed for a cluster

environment [9] (explained in Chapter 3) has been revisited and extended. As shown in Figure 4-

2, inputs to the generation process, third and fourth steps of the generation process and availability

estimate method used at the third step have been modified. The rationale behind the changes are

as follows:

1) Inputs

 ETF - Software vendor describes the characteristics of components in an ETF file

according to the ETF model defined in [9]. While determining the number of entities, the

resource needed for a component to provide a service is required. For this purpose, part of

the ETF model is extended as shown in Figure 4-3. Here, CT represents the component

type class and CST represents the component service type class. The properties of a

component type providing a CST are defined in CTCST association class. The memory

usage required by a component to provide a CSI is added to the CTCST association class.

Note that for simplicity only the memory resource is considered.

 Figure 4-3 Part of extended ETF domain model

 CR – According to the CR model defined in [9], the system designer specifies the

deployment information like the number of AMF nodes (i.e. physical hosts) along with the

information about SIs (i.e. the number of SIs in a service type, the number of CSIs in each

CT CST

CTCST

1..*1..*

componentCapabilityModel: String

defaultNumStandbyCsi :Integer

maxNumStandbyCsi: Integer

defaultNumActiveCsi:Integer

maxNumActiveCsi:Integer

memoryUsageCsi: Integer

29

SI and the requested level of service availability). As mentioned in Chapter 3, a system

designer is not aware of the effect of collocation and resource limitations, therefore the

number of physical hosts specified may not be accurate and minimum. For this purpose,

the number of physical hosts is no longer specified as input and the CR model is modified

accordingly.

 Infrastructure file – In addition to the ETF and CR, deployment information such as

capacity of the physical host, the number of available VM flavors, the capacity of VM

flavors, Mean Time to Fail (MTTF) of the infrastructure elements like physical hosts, VMs,

guest OS, host OS and hypervisors are required while determining the number of entities.

For this purpose, a third input called infrastructure file is added in the configuration

generation process. This file is created according to the domain model shown in Figure 4-

4.

 Figure 4-4 Infrastructure domain model

2) Modifications to the third and fourth steps – It is important to mention the reason behind

changing only the third and fourth step as opposed to changing entire steps of the generation

process. The first two steps of the generation process is about building the application types

(i.e. starting from app types to all the way to component types) that can provide the desired

service functionality [9]. Note that in these steps the applications are designed at the type level

30

independent of the deployment environment. However, the later steps are deployment specific.

The third step of the configuration generation process [9] calculates the number of instances

of each AMF entities (components, SUs, SGs) that forms an application according to the

number of physical hosts in the physical cluster. In contrast, while designing applications for

the cloud, only the minimum number of physical hosts needs to be considered. Therefore, the

third and fourth steps are modified and they are explained in detail in Section 4.2.2 and 4.2.3

respectively.

3) Modifications to the availability estimate method – The availability estimate method [9]

considers only the availability of components providing a service (SI). Collocating AMF

entities into the same environment also affects service availability. This should also be taken

into account while estimating the service availability. Also, in any systems the availability of

multiple elements like physical infrastructure and virtual infrastructure should also be

considered. For the above mentioned reasons, the availability estimate method [9] used in the

third step of the generation process is modified.

4.2.2AMF Entities Creation step

4.2.2.1 Factors influencing the number of physical hosts

As shown in Figure 4-5, there are three factors that influence the number of physical hosts:

1) Redundancy; 2) Interferences due to the collocated entities and 3) Capacity of VMs and

physical hosts.

31

1) Redundancy

Redundancy requires additional resources to protect the service against failures [1]. The

number of SUs per SG determines the minimum number of physical hosts required. This is

because, SGs are deployed over VMs in an anti-affinity group and eventually these VMs are hosted

over physical hosts. For example, in the case of 2N-redundancy model, a minimum of one active

SU and one standby SU is required per SG. These SGs are deployed over a minimum of two VMs

and these VMs are hosted in an anti-affinity group over a minimum of two physical hosts. Taking

into account potential interferences between the collocated entities and the capacity of the physical

host and the VM, the number of physical hosts required may be more than two.

2) Interference between the collocated entities

The rationale behind collocating SUs belonging to different SGs into a VM and collocating

VMs protecting different services into a physical host is to minimize the number of physical hosts.

However, when several entities are collocated they may fail and affect the other SIs hosted in that

environment. To minimize the interference, components can be grouped into multiple fault

isolation units such as VMs, but this may increase the number of physical hosts required.

Interference between

the collocated entities

Physical host 1 Physical host 2

Redundancy

C
a
p

a
ci

ty
 o

f
th

e
p

h
y

si
ca

l
h

o
st

 a
n

d
 V

M
s

VM 1 VM 2

Anti-affinity VM group 1

SG1

C1
SU1

C2

C3
SU2

C4

VM 3 VM 4

C5
SU3

SG2C6

C7
SU4

C8

Anti-affinity VM group 2

Figure 4-5 Factors influencing number of physical hosts

32

3) Capacity of the resources

Another factor influencing the number of physical hosts is the capacity of the host and the

capacity of the VMs hosted on it. Physical hosts have finite resources in terms of RAM, disk,

number of cores and so on. VMs are available in various pre-defined flavors such as tiny, medium,

large etc. A limited number of VMs, with different flavors, can be hosted on a physical host. It is

well known that virtualization introduces some overhead due to the presence of the hypervisor in

the host and the guest OS in each of the VMs, and this will be taken into account in the calculation

of collocated instances.

4.2.2.2 Two phases of AMF entities creation step

We identified two phases in the AMF entities creation step.

1) Determining the number of SIs per VM flavor from the perspective of availability and

resource utilization

2) Selection of the VM flavor

For each type stack, created in the step one and two of the configuration generation process,

the above mentioned phases are repeated. The number of SIs per VM calculation is carried out for

all the VM flavors in the infrastructure file. Next, in the second phase, an appropriate VM flavor

that satisfies availability requirements and supports a minimum number of physical hosts is

selected.

1) Determining the number of SIs per VM flavor from the perspective of availability and

resource utilization for a type stack

Initially, the memory required by the components collaborating to provide an active SI

assignment of the requested service type is calculated. It is the summation of the memory required

33

for all the CSIs of a SI as shown in the Equation (1). Here, Memory required per CST represents

the memory required for all the CSIs per CST.







mk

k kCSTper requiredMemory per SI requiredMemory
1

 (1)

k iterates through the m component service types in the service type. Equation (2) determines the

Memory required per CST by multiplying the Memory required per CSI and the No of CSIs per

CST. The Memory required per CSI of a CST and the No of CSIs per CST are obtained from the

extended ETF model and the CR respectively.

CSTper CSIs of No * CSIper requiredMemory CSTper requiredMemory  (2)

The total guest memory (TGM) of a VM flavor is used by the guest OS and the components

hosted by the VM. To determine the guest memory available (AGM) to host the components, the

virtual memory required by the guest OS (GOSM) is excluded from the TGM as shown in Equation

(3).

GOSMTGMAGM  (3)

Next, based on the memory required to provide an active SI assignment and the AGM, the

number of SIs per VM (No of SIs per VM) is determined using Equation (4).











per SI requiredMemory

AGM
floorVMper SIsof No (4)

 Once the No of SIs per VM is calculated, then the next step is to determine the capacity of the

SU in terms of SIs and the number of SGs (No of SGs) and evaluate the effect of collocating

components in a SU, collocating SUs in a VM and collocating VMs in a physical host. These

collocated entities are those that are hosted in the same environment as the components providing

34

the SI, whose availability is being estimated using the availability estimate method in Section C.

The failure of these collocated entities would require the recovery action to be performed in a bigger

scope and this impacts the availability of the other SIs. For example, if the components in the

collocated SUs are configured to recover with component restart fails repeatedly, then in order to

capture the fault the recovery action may escalate from component level to the SU and VM levels

thereby affecting the availability of other SIs.

 Even though the capacity of the VM sets an upper limit for the number of SIs it can host, in

reality it is limited due to the interference caused due to the collocated entities, the capacity of the

SU and the No of SGs. As shown in Figure 4-6, min represents the minimum number of SI (which

is actually one) a VM may provide while max represents the maximum number of SIs a VM can

support based on its capacity, the SU capacity and the No of SGs. When the No of SIs per VM (i.e.

the components providing these SIs) is increased gradually from min to max, the availability of the

services decreases as the interference between the collocated components increases. On the other

hand, the collocation of components in the VMs results in lesser number of VMs and physical hosts.

Our aim is to determine the actual No of SIs per VM that meets the requested availability and results

in minimum number of physical hosts.

Figure 4-6 Number of SIs per VM

35

A. Estimate availability for various scenarios

 In order to determine the No of SIs per VM flavor for a type stack, Algorithm-1 is used. It uses

the two methods described in Section B and C to calculate the number of entities and to estimate

the service availability for various scenarios.

Algorithm-1 Calculate the number of SIs per VM flavor for a type stack

Input: No of SIs per VM from Equation (4), RA from CR

Output: No of SIs per VM

1 Begin

2 Initialize max to No of SIs per VM

3 Initialize min to one

4 Initialize RA from CR

5 Calculate number of entities and number of collocated entities using Algorithm-2 for min

6 Use availability estimate method from Section C to EA for the number of collocated entities

7 if (EA = RA) then

8 No of SIs per VM = min

9 else if (EA>RA)

10 No of SIs per VM = Call getNoOfSIsPerVM (max, min, RA)

11 else
12 Discard type stack for this current VM flavor

13 Break

14 end if
15 return No of SIs per VM

16 End

17 getNoOfSIsPerVM (max, min, RA)

18 Begin
19 Calculate number of entities, No of SIs per VM and number of collocated entities using Algorithm-2 for max

20 Update the max with No of SIs per VM

21 Use availability estimate method from Section C to EA for the number of collocated entities

22 if (EA < RA) then

23 Initialize mean to (min + max)/2

24 Calculate number of entities, No of SIs per VM and number of collocated entities using Algorithm-2 for

 mean

25 Update the mean with No of SIs per VM

26 Use availability estimate method from Section C to EA for the number of collocated entities

27 if (EA < RA) then

28 max = mean

29 Call getNoOfSIsPerVM (max, min, RA)

30 else if (EA > RA) then

31 min = mean

32 Call getNoOfSIsPerVM (max, min, RA)

33 else
34 return mean

35 end if
36 else
37 return max

38 end if
39 End

36

a. Best case scenario

 Initially, Algorithm-1 determines the number of entities such as the No of SGs, the number of

VMs (No of VMs), the number of physical hosts (No of PHs) and the number of collocated entities

for min using the Algorithm-2 (line 5). Here, min represents the best case scenario from the

perspective of availability estimation because there is only one SU in a VM that is providing a SI

and there are no collocated SUs in a VM. As a result, it provides the maximum level of service

availability. While interference due to the collocation of VMs exists, this is less than the interference

due to the collocation of SUs in a VM. This is because VMs provide better fault isolation compared

to SUs. We estimate the availability provided by this best case scenario using the method described

in Section C (line 6). If the estimated availability is equal to the requested availability, then min

becomes the No of SIs per VM (lines 7-8). On the other hand, if the estimated availability is greater

than the requested availability, then the availability is estimated for the worst case scenario because

with respect to resource utilization this is the worst case (lines 9-10).

 If the estimated availability is less than the requested availability even for the best case scenario

then this type stack is discarded for this VM flavor (lines 11-13). The rationale behind this is that,

if the type stack is not able to meet the requested availability for the best case scenario then, there

is no way the requested availability will be met for any case for a given VM flavor. However, it is

possible that estimated availability for the best case scenario may meet for the other available VM

flavors. This is due to the varying Mean Time to Fail (MTTF) and the number of collocated VMs

for each flavor.

b. Worst case scenario

 While determining the number of entities, the SIs are distributed vertically based on the capacity

of the SU and horizontally to the SUs of the SG depending on the redundancy model. It is possible

37

that due to the limitation on the capacity of the SU and the No of SGs, the No of SIs per VM may be

reduced. If reduced, this becomes the max and the number of collocated entities is calculated based

on this (line 19-20). Max represents the worst case scenario from the perspective of availability

estimation because, the interference between the collocated components is the maximum. However,

this is the best case from the resource utilization perspective. If the estimated availability is greater

than or equal to the requested availability then we select max to be the No of SIs per VM because

the requested availability is met and also it infers the lowest number of VMs and physical hosts

(line 36-37). If the worst case scenario is not satisfied but the best case scenario is satisfied then the

solution lies between min and max. To converge faster to the solution, the number of entities is

calculated next half way between them i.e. at floor (min + max)/2. Again, the No of SIs per VM may

be reduced due to the distribution of SIs and this reduced SIs per VM, if any becomes the mean

(lines 24-25).

 When availability is estimated for this mean, three possible cases exist. They are:

i. If the estimated availability is equal to requested availability, then the mean becomes

the No of SIs per VM (line 33-34).

ii. If the estimated availability is greater than requested availability, then the solution

interval becomes [mean, max] and the value of min is updated to the mean (line 30-31).

iii. If the estimated availability is lesser than the requested availability, then the solution

interval becomes [min, mean] and the value of max is updated to the mean (line 27-28).

38

 When the case is either ii or iii (Figure 4-7 (a) & (b)), the above mentioned procedure is repeated

until the estimated availability for the middle point of interval meets the requested availability.

B. Number of entities creation method

Figure 4-7 (a) Estimated availability is less than requested availability at max (b) Estimated availability is

less than requested availability at (min + max)/2

Alogorithm-2 Determine the number of entities and number of collocated entities for a type stack

Input: SUT, No of SIs per VM, Set of actual rec of CTs determined using [11], Set of min no of comps

determined using [9] and Set of max no of comps from ETF

Output: No of SIs per VM, No of SGs, No of VMs, No of PHs, No of SIs per PH, No of coll comps per SU, No

of coll SUs, No of coll VMs

1 Begin

2 Initialize Actual rec of CT to false

3 if (SUT is provided by the vendor and max no of comps is specified) then

4 if (max no of comps in Set of max no of comps is lesser than min no of comps in

 Set of min no of comps)then

5 Discard type stack

6 Break

7 end if

8 end if

9 for each ct in Set of actual rec of CTs do

10 if (ct.Actual recovery is not equal to Component restart or Component failover) then

11 Actual rec of CT = true

12 end if
13 end for

14 if (Actual rec of CT is equal to true OR redundancy model is equal to No-redundancy) then

15 No of SIs per SU = 1

16 else
17 Calculate No of SIs per SU using Equation (5)

18 end if

19 Calculate the No of comps per SU using Equation(6-7)

20 for each ct in a SUT do

21 Calculate ct.No of SGs using Equation (8-24) and add it to the Set of no of SGs

22 end for

23 Calculate No of SGs by considering the max (Set of no of SGs)

24 Calculate the No of SIs per VM, No of VMs,No of PHs, No of SIs per PH,

 No of coll comps per SU, No of coll SUs, No of coll VMs using Equation (25-41)

25 Return No of SIs per VM, No of SGs, No of VMs, No of PHs, No of SIs per PH,

 No of coll comps per SU and No of coll SUs, No of coll VMs

26 End

39

 Depending on the No of SI per VM, the number of entities and the number of collocated entities

is determined. Initially, Algorithm-2 checks if a SU is able to provide at least one SI or limited by

the SU type (lines 3-8), if given. A vendor delivering a SU type may restrict the number of

components per component type (Max no of comps per CT) that can be put together in a SU. Min

no of comps per CT denotes the minimum number of components per component type required to

provide a SI [9]. It is calculated based on the No of CSIs per CST and active and standby capability

of the components. If the Min no of comps per CT is greater than the Max no of comps per CT, then

a SU cannot be formed. Therefore, this type stack is discarded. Next, the No of SIs per SU and the

number of components required to form a SU (No of comps per SU) is determined (lines 9-19). The

No of SGs calculation is done per component type and the one that results in greater number of SGs

is considered (lines 20-23) [9]. Finally, the No of SIs per VM, the number of VMs (No of VMs), the

number of physical hosts (No of PHs) required to deploy the SGs and also the number of collocated

entities is determined (line 24).

a. Determine the number of SIs per SU

 Since a SU can group components serving one or multiple SIs, we can group components in

multiple ways to form a SU. There are two extremities: 1) the SU serving a single SI; 2) the SU

serving the maximum number of SIs.

i. The SU serving a single SI

 A SU may contain components belonging to different types and each of them may recover

based on their configured recovery action. The actual recovery of components in the context of

configuration is determined using the actual recovery algorithm defined in [11]. When the actual

recovery of any one of the components composing the SU is not component restart or component

failover, then single SI per SU solution is preferred. For example, if a SU has two types of

40

components that recover with component restart and SU restart respectively. If many components

that recover with component restart fail frequently, the impact is only at the component level. That

is, component restart recovery action will not affect the availability of other SIs provided by that

SU. On the other hand, if one component that recover with SU restart fails, then the entire SU will

be restarted and all SIs served by the SU would be impacted as shown in Figure 4-8. The number

of impacted SIs can be reduced by reducing the number of SIs the SU serves. That is grouping into

the SU only component(s) required for one SI. This is a cost-effective approach to minimize the

interference between collocated components because SUs serve as a fault-isolation unit, but they

are only logical groupings. They do not imply any overhead as opposed to VMs.

Figure 4-8 Impact zone when actual recovery is SU restart

If a SG type is following No-redundancy redundancy model, then SUs in that SG can take at

most one SI assignment [10]. In this case also, the No of SIs per SU is one.

ii. The SU serving the maximum number of SIs

 This solution is preferred if the actual recovery of all the component types in a SU is at the

component level. If the actual recovery of components is component failover, then the impact of

the component failure will not affect the other SIs provided by a SU. If the actual recovery of the

components in the SU is component restart, then there is only a small probability that the recovery

action will escalate – due to repeated failures – from component restart to the SU and VM levels.

As a result, in this case the maximum number of components that can be grouped together is

41

preferred. No of SIs per SU may be limited by the VM flavor, or by the SU type provided by the

vendor or the No of SIs as shown in Equation (5).


































 SIsof No VM,per SIsof No

,
CTper comps of no Min

CTper comps of no Max
floormin

 minper SU SIsof No
j

j

Nj1 (5)

Next, depending on the No of SIs per SU, the number of components in a SU is calculated

using Equation (6) and (7). Note that, in Equation (5) and (6) j iterates through the N

component types in a SU.







Nj

1j

jCTper comps of No per SU comps of No (6)

CTper comps of no Min*per SU SIsof NoCTper comps of No  (7)

b. Determine the number of SUs per SG and the number of SGs

The No of SUs per SG and the No of SGs are determined based on the redundancy model of

the SG type. Except for the No-redundancy redundancy model, in each redundancy model the

redundancy is considered on the service side as well as on the service provider side [10]. The

number of active and standby assignments per SI defines the redundancy on the service side and

the number of SUs per SG defines the redundancy on the service provider side. The redundancy

requirement from the service side dictates the number of redundant service providers. Note that

Equations (11-18) and (20) are obtained from [9].

i. For the No-redundancy redundancy model, each SI has at most one active assignment and no

standby assignments. This redundancy model does not have redundancy on the service side.

The redundancy on the service provider side is ensured by having spare SUs in the SG. As

42

long as there are enough spare SUs to protect the SIs against failure, this redundancy model

does not require all the SUs of a SG to be hosted on different VMs and physical hosts. The No

of SUs per SG required is determined using Equation (8). To provide the entire SIs specified

in the CR, the No of SGs required is calculated using Equation (9).

2* SIs)of NoVM,per SIsof Noper SG SUsof No min( (8)











VMper SIsof No

 SIsof No
ceil SGsof No (9)

ii. In the 2N redundancy model, each SI has at most one active assignment and one standby

assignment [10]. At run-time, AMF assigns all the active assignments of all the SIs to one SU

in the SG – which becomes the active SU – and all the standby assignment to another – the

standby SU. In the event of a failure of the active SU, the standby SU takes over the active role

and starts providing all the SIs [10]. This implies that, a minimum of two SUs is required in a

SG to provide and protect a SI (Equation (10)). The next step is to analyze the maximum

number of active and standby assignments a SU can handle (Equation (11) and (12)). The No

of comps per CT used in Equations (11 and 12) represents the number of components per

component type in a SU, calculated using Equation (7). Also, act cap per CST represents the

active capability of a component type to provide a service and std cap per CST denotes the

standby capability of a component type. The No of CSIs per CST represents the number of

CSIs in a SI. The Max no of SIs per SG is calculated using Equation (13). It is the minimum

of Max no of SIs per act SU and Max no of SIs per std SU. Finally, using Equation (14), the No

of SGs is calculated based on the No of SIs specified in the CR and Max no of SIs per SG.

 2per SG SUsof No  (10)

43











CSTper CSIs of No

CSTper cap act*CTper comps of No
floor SUactper SIsof no Max (11)











CSTper CSIs of No

CSTper cap std*CTper comps of No
floor SUper std SIsof no Max (12)

 SU)per std SIsof no Max SU,actper SIsof no Min(Maxper SG SIsof no Max  (13)

per SG SIsof no Max

 SIsof No
ceil SGsof No 








 (14)

iii. In the N+M redundancy model, each SI has an active assignment and a standby assignment

[10]. As opposed to the 2N redundancy model, this model allows for N active SUs and M

standby SUs in the SG [10]. Therefore, to determine the N and M numbers of active and

standby SUs of a SG, initially the total number of active SUs and standby SUs are calculated

using Equations (15) and (16). The Max no of SIs per act SU and Max no of SIs per std SU in

Equation (15) and (16) are calculated using Equation (11) and (12) respectively. Equation (17)

and (18) represents the active and standby SUs proportion that can be used to construct a SG.

In [9], the No of SUs per SG is constructed in such a way that the Act proportion and Std

proportion does not exceed the number of nodes (number of nodes is given as input [9]). In

contrast, in our approach, since the number of nodes is not given as input, the No of SUs per

SG is the sum of active and standby SUs proportion as shown in Equation (19). This represents

the minimum number of redundant entities required i.e. the number of VMs in a VM group or

the number of redundant physical hosts. Finally the No of SGs is calculated using Equation

(20).











 SUactper SIsof no Max

 SIsof No
 ceil SUsact of No (15)

44











 SUper std SIsof no Max

 SIsof No
 ceil SUs stdof No (16)











) SUs stdof No SUs,act of min(No

 SUsact of No
proportion Act (17)

 









) SUs stdof No SUs,act of min(No

 SUs stdof No
 proportion Std (18)

 proportion Std proportion Act per SG SUsof No  (19)

per SG SUsof No

 SUs stdof No SUsact of No
ceil SGsof No 







 
 (20)

iv. In the N-way-active redundancy model, each SI has two or more active assignments and no

standby assignments [10]. The required number of active assignments (No of active

assignments) is specified in the CR and it is assumed that all the SIs have the same number of

active assignments. At run-time, AMF assigns each active assignment of a SI to a different SU

in the SG [10]. In the event of a failure of any one of the SUs, the service is not interrupted as

the service – the SI – is still provided by the other SUs active for the SI in the SG [10].

Therefore, No of SUs per SG is equal to the No of active assignments as shown in Equation

(21). The No of SGs is calculated using Equation (14). However, Max no of SIs per SG used in

Equation (14) is calculated using Equation (22).

 sassignment active of Noper SG SUsof No  (21)

 SIs)of No SU,actper SIsof no (Max min per SG SIsof no Max  (22)

v. For the N-way redundancy model, each SI has one active assignment and one or more standby

assignments. The required number of standby assignments (No of std assignments) is specified

45

in the CR. It is assumed that each SI has the same number of standby assignments. The No of

SUs per SG is equal to sum of the No of std assignments and one for the active assignment and

one for the spare SU as shown in Equation (23). The No of SGs is calculated using Equation

(14). However, the Max No of SIs per SG used in Equation (14) is calculated using Equation

(24).

 1 sassignment stdof Noassignment active Oneper SG SUsof No  (23)

 SIs)of No SU,per std SIsof no Max

 1),-per SG SUsof (No* SUactper SIsof no (Max minper SG SIsno Max 
 (24)

c. Determine the number of SUs per VM and the number of SIs per VM

 The number of SUs per VM (No of SUs per VM) is the minimum of maximum number of

SUs a VM can host based on its capacity and the No of SGs as shown in the Equation (25). For

No-redundancy model, Equation (26) is used to calculate the No of SUs per VM. Based on the

No of SUs per VM and the No of SIs per SU, the No of SIs per VM is calculated as shown in the

Equation (27). It is important to recalculate the No of SIs per VM due to the distribution of SIs

to the SUs in a VM vertically and also to the redundant SUs in SGs horizontally.






















 SGsof No,

per SU SIsof No

VMper SIsof No
floorminVMper SUsof No (25)

For No-redundancy model,

 SIs)of NoVM,per SIsof NoVMper SUsof No min( (26)

per SU SIsof No*VMper SUsof NoVMper SIsof No  (27)

46

d. Determine the number of VM groups, the number of VMs and the number of physical hosts

 The total physical memory (TPM) of a host is used by the hypervisor, host OS and by the

VMs residing on that host. Therefore, next to calculate the physical memory that is available

(APM) to host the VMs, the memory required for the hypervisor and the host OS are excluded

from the TPM as shown in the Equation (28). The number of VMs a physical host can host (No

of VMs per PH) is calculated based on the APM, the TGM of the VM flavor and an overbooking

factor using Equation (29). The overbooking factor indicates to what extent the number of VMs

per physical host can be increased by serializing their execution [33]. The No of VM groups i.e.

AMF node groups is calculated based on the No of SGs and the No of SUs per VM as shown in

Equation (30). For No-redundancy model, Equation (31) is used to calculate the No of VM

groups.

)(HMHOSMTPMAPM  (28)

 









TGM

OBF*APM
floor PHper VMs of No (29)











VMper SUsof No

 SGsof No
ceilgroups VM of No (30)

For No-redundancy model,

 









VMper SIsof No

 SIsof No
ceilgroups VM of No (31)

 The maximum number of VMs per physical host (Max no of VMs per PH) is the minimum

of the No of VMs per PH required and the No of VM groups (Equation (32)). The No of SUs per

47

PH is the product of Max no of VMs per PH and the No of SUs per VM as shown in the Equation

(33).

groups} VM of No PH,per VMs of {No minPHper VMs of no Max  (32)

 VMper SUsof No*PHper VMs of no MaxPHper SUsof No  (33)

 By multiplying the Max no of VMs per PH and the No of SIs per VM, the No of SIs per PH

determined (Equation (34)). The total No of VMs and the total No of PHs required to deploy the

SGs are calculated using Equations (35-37) respectively. K denotes the number of redundant

entities i.e. redundant VMs per VM group and the number of redundant physical hosts. For No-

redundancy redundancy model, the number of redundant entities required is two (K=2).

However, for the other redundancy models, the No of SUs per SG determines the number of

redundant entities.

 VMper SIsof No * PHper VMs of no MaxPHper SIsof No  (34)

 Kgroups VM of NoVMs of No * (35)

 K
PHper SUsof No

 SGsof No
ceilPHs of No *








 (36)

 For No-redundancy redundancy model,

 K
PHper SIsof No

 SIsof No
ceilPHs of No *








 (37)

e. Determine the number of collocated entities

 A SU may host components serving one or multiple SIs. If availability is estimated for a SI

in a SU, then components that provide other SIs but hosted in the same SU are called collocated

48

components. SUs that are serving other SIs but hosted in the same VM are called collocated SUs

and VMs that are providing other SIs but collocated in the same physical host are called

collocated VMs. The No of coll comps per SU is calculated using Equation (38). The number of

collocated components for each component type in a SU is calculated by excluding the

components that provides one SI from the components in a SU (Equation (39)). Using Equation

(40), the number of collocated SUs in a VM (No of coll SUs) is calculated by excluding one SU

whose SI’s availability is being estimated. Similarly, the number of collocated VMs (No of coll

VMs) is determined by excluding one VM from the Max No of VMs per PH as shown in Equation

(41).







Nj

1j

jCTper comps coll of No per SU comps coll of No (38)

 j iterates through the N component types in a SU

 CTper comps of no Min-CTper comps of NoCTper comps coll of No  (39)

 1VMper SUsof No SUscoll of No  (40)

 1PHper VMs of no MaxVMs coll of No  (41)

C. Availability estimate method

 The service availability is calculated per service instance (SI). The calculations we show are

for estimating the availability for a SI of a given service type.

entities collocatedtureinfrastruc*components A*AA SIofty Availabili  (42)

49

As shown in Equation (42), availability of the service broadly depends on the following

factors: A) availability of the components providing the service; B) availability of virtual and

physical infrastructure; C) interference caused by the collocated entities.

 To calculate the availability of each entities in the system, two factors are required: MTTF and

MTTR (Mean Time To Repair). From a service perspective, MTTF is the mean time that an element

takes to fail while the MTTR is the mean time required to recover the service provided by the failed

element [1]. Once the MTTF and MTTR are known, the availability of the service can be

determined using Equation (43).

MTTRMTTF

MTTF
tyAvailabili


 (43)

a. Availability of the components providing the service

For availability due to the failure of components, it is assumed that software vendors provide

the MTTF for each component type, which may be a result of benchmark analysis. To calculate

the time required to recover the service due to the failure of the components (MTTRcomponent), actual

recovery actions of the components in the context of the configuration is analyzed [11]. Based on

this actual recovery action, estimated time to recover the service is calculated [9]. Equation (44) is

used to calculate the availability of components providing a SI.

MTTRMTTF

MTTF
A

Nj

j

p

jcomponentj component

j component
components

j






















1

 (44)

j iterates through N component types in a SU type. MTTFcomponent and MTTRcomponent represents

the mean time for a component type to fail and time required to recover the SI respectively. pj is

the required number of components of a component type to provide one SI.

50

b. Availability of the infrastructure

As shown in Equation (45), the availability of the infrastructure is calculated as the product of

availability of the virtual infrastructure (Avi) and availability of the physical infrastructure (Api).

 pi vitureinfrastruc A*AA  (45)

Avi is calculated as the product of availability of the VM (Avm) and availability of the guest

OS (AguestOS) as shown in Equation (46). As mentioned before, MTTF of the VM and guest OS are

obtained from the infrastructure file. While calculating MTTRinfra, it is assumed that the SIs are

failed over to another healthy VM hosted on a redundant host. As shown in Equation (48),

MTTRinfra is the time required to detect a VM failure (Detection time) and also to recover the

service from the failed VM (Failover time). It should be noted that VM failure is detected by the

Cluster Membership Service (CLM) [31] or by the failure detection mechanism in the

infrastructure.

 guestOSvmvi A*AA  (46)














































infraguestOS

guestOS

infravm

vm
vi

MTTRMTTF

MTTF

MTTRMTTF

MTTF
A * (47)

timeFailover time DetectionMTTRinfra  (48)

)(1 jNj CSSMaxtimeFailover  (49)

Here, failover is assumed to occur in parallel, therefore the failover time is the maximum

time required to set HA state assignment to components (CSS). j iterates through N component

types hosted per VM.

51

Api (Equation (50)) is calculated as the product of availability of the physical hardware

(Aph), availability of the hypervisor (Ahypervisor) and availability of the host OS (AhostOS).When any

of these (physical hardware, hypervisor or host OS) fail, it is assumed that each VM is failed over

independently to another healthy VM hosted on a redundant host. MTTRinfra is the time required to

detect the VM failure and the time required to failover the SIs from that failed VM as shown in

the Equation (48). The MTTF values (MTTFph, MTTFhostOS and MTTFhypervisor) are obtained from

infrastructure file.

hostOS hypervisorphpi A*A*AA  (50)




































































infrahypervisor

hypervisor

infrahostOS

hostOS

infraph

ph

pi

MTTRMTTF

MTTF

MTTRMTTF

MTTF

MTTRMTTF

MTTF

A

*

*

 (51)

c. Availability of the service due to interferences of collocated entities

 The failure of collocated components may affect the availability of other SIs provided in that

environment. Considering the example illustrated in Figure 4-9, the availability of SI 1 is affected

by the failure of collocated component C2 or SU2 or VM 2. The following sub-sections show the

calculations of the availability for: the components collocated in a SU, the SUs collocated in a VM

and for the VMs collocated in a physical host.

52

i. Availability due to collocated components interferences

 When any one of the collocated components fails, there is a probability that the recovery

action is escalated to SU restart or SU failover or VM failover or VM reboot. To calculate the

availability of collocated components due to the interferences, the following probabilities are

calculated.

a) Probability of escalating the recovery action to SU restart

b) Probability of escalating the recovery action to SU failover

c) Probability of escalating recovery action to VM failover

d) Probability of escalating recovery action to VM reboot

a) Probability of escalating recovery action to SU restart

 For the first time when a component fails, AMF performs component restart recovery

action. When too many components of the SU need to be restarted it is unlikely that the

components carry the fault. In order to capture the fault, along with the failed components, its

Figure 4-9 Availability of a SI

53

siblings are also restarted (Level 1 escalation) [10]. Note that the level 1 escalation is applicable

only if all the components in a SU are restartable.

In particular, level 1 escalation is activated when the maximum number of allowed

components restarts is reached in a time period. To calculate the probability of maximum number

of component failures (x) occurring in a time period (t), Poisson distribution [32] can be used as

shown in Equation (52). Since component restarts occur only after the components have failed, the

probability of maximum number of component restarts occurring in a probation time can be

calculated using Equation (53).


















x!

te
xP

xt

)((52)

 For a SU with restartable components,


















!x

te
xPrestart SUto escalationP

1level

x

1level

t

1level

1level1level 

)()((53)

In Equation (53),  represents the failure rate of the components and x level 1 denotes the

maximum number of allowed component restarts in a time period t level 1. If there are N component

types in a SU type and pi represents the number of components per component type then the failure

rates of the components are added up as shown in Equation (54).

 






















Ni

i icomponent

i

Ni

i

ii
MTTF

pp
11

1
* (54)

b) Probability of escalating recovery action to SU failover

Since level 1 escalation does not guarantee the resolution of the fault, further escalation

levels are considered: Once level 1 escalation has been activated for a SU, whenever one of its

54

components fails, the component is restarted along with its sibling components in that SU. If the

components of a SU continue to fail and reach a second threshold within a second probation time

period, then the SU restarts deemed to be futile and the recovery action is escalated to SU failover,

i.e. level 2 escalation is reached [10]. Note that the level 2 escalation is applicable only if all the

components in a SU are restartable.

The probability of maximum number of allowed SU restarts occurring in a probation time

P(x)level2 is calculated using Equation (55) where xlevel2 and tlevel2 parameters are used as defined for

level 2 escalation. P (escalation to SU failover) is calculated by multiplying the P(x)level2 and the

probability that the SU was already in level 1, P (escalation to SU restart) as shown in Equation

(56).

 For a SU with only restartable components,


















!x

te
xP

2level

x

2level

t

level

2level2level 

2)((55)

restart) SUto onP(escalati*P(x)failover) SUto ionP(escalalt level2
 (56)

c) Probability of escalating recovery action to VM failover

When a component of a SU on which level 2 escalation is active fails, then the SU is failed

over. When the maximum number of permitted SU failovers (failover of SUs residing on the same

VM) is reached within a time period tlevel 3, then AMF assumes that the VM is faulty and it will

failover the VM [10]. The probability of maximum number of allowed SU failover P(x)level3

occurring in a time period tlevel 3 is calculated using Equation (57). xlevel 3 and tlevel 3 parameters are

used as defined for level 3 escalation.

55

 
















!x

te
xP

3level

x

3level

t

level

3level3level 

3)((57)

If a SU has only restartable components, P (escalation to VM failover) is calculated by

multiplying P(x)level3 and P (escalation to SU failover). P (escalation to SU failover) is obtained

from Equation (58).

failover) SUto onP(escalati *P(x)ailover)on to VM fP(escalati level 3 (58)

If a SU has at least one non-restartable component, the failure of a component itself,

triggers the SU-failover. In that case, P (escalation to VM failover) is calculated using Equation

(59).

3 levelxPfailover toVM escalationP)()( (59)

d) Probability of escalating recovery action to VM reboot

During component restart recovery action, AMF cleans up the faulty component and then

it tries to re-instantiate the component. However, if the cleanup action is unsuccessful or if the all

the allowed attempts of instantiation fail, then AMF assumes the fault is in the VM and escalates

the recovery action to VM reboot [10] and the services provided by the VM are impacted. In this

case, the probability of escalating recovery action to VM reboot is calculated.

The restart recovery action may fail either during cleanup or while instantiating a

component with delay or while instantiating a component without delay [10]. In Equation (60), P

(CF) represents the probability of cleanup failures occurring during the component restart recovery

action. When the cleanup action fails, the recovery action is escalated to VM reboot. If the cleanup

action is successful for the first time, but if the instantiation attempt fails, again the cleanup action

56

is performed before attempting to instantiate a component. Therefore, there is a probability that

the cleanup actions may fail while attempting to instantiate components with delay i.e. P

(CFIWOD), calculated using Equation (62) or without delay i.e. P (CFIWD), calculated using

Equation (63). As shown in Equation (61), the total number of instantiation attempts nia is given

by the sum of NIWOD (Number of instantiation attempts without delay) and NIWD (Number of

instantiation attempts with delay). Note that part of the Equations (61-64) are taken from [9].

)()()(CFIWDPCFIWODPCFP  (60)

NIWDNIWODnia  (61)





NIWOD

i

ii PCNSPINSPCSCFIWODP
1

11 **)((62)









 




nia

NIWODi

NIWODiiNIWOD PCNSPINSDPCSPINSCFIWDP
1

)1(1 ***)((63)

PCS and PCNS represents the probability of cleanup successful and failure respectively.

PINS and PINSD denotes the probability of instantiation not successful without and with delay

respectively.

Even though the cleanup is successful, there is a probability that all the instantiation

attempts may fail and this is calculated using Equation (64). The probability of escalating the

recovery action to VM reboot due to instantiation or termination failure is calculated using

Equation (65).

NIWDNIWODnia PINSDPINSPCSIFP **)( (64)

)()()(IFPCFPreboot VM to escalationP  (65)

57

Equation (66) calculates the MTTFint of comps for a component type based on the probability of

escalating the recovery actions to SU level or VM level.















reboot) VM to onP(escalatifailover) VM to onP(escalati

failover SUto escalationPrestart SUto escalationP

MTTF
MTTF

component

comps of int
)()(

 (66)

Once MTTFint of comps is calculated, then the next step is to calculate the time required to

perform VM failover and VM reboot recovery actions. To failover the SIs from a VM, primarily

the components are cleaned up and if the cleanup action is successful, then the failed component’s

CSI is failed over and the healthy component’s CSI are switched over [10]. Switch over is a smooth

transition of CSI. In Equation (67), the time required to perform VM failover is sum of the

maximum time required to perform cleanup action and the maximum time required to perform

failover action. Since the cleanup action for all components are executed in parallel, the maximum

time required is considered as the cleanup time. Similarly, the maximum time required to perform

failover action is considered as the failover time [9]. Note that in the below Equation (67), j iterates

through the N component types.

time][Failover Max]time [CleanupMaxT NjjNjfailover VM   11 (67)

In Equation (68), clt represents the time required for a component type to perform cleanup

action. The cleanup probabilities and the cleanup time are described in the extended ETF [9]. Note

that, if the cleanup action fails then the VM is rebooted. TVM reboot denotes the VM reboot time. It

is calculated using Equation (69) [9]. NST represents the time required by a VM to shut down and

it is described in the infrastructure file. CSS represents the time required to set the HA assignment

state for a component belonging to a component type. Equation (70) gives the maximum failover

time required by all the assignments provided by a VM. SOT represents the time required by

58

components to switch over the active assignments to healthy components hosted on another VM.

It is calculated using Equation (71).

)]T(clt*[PCNSclt]*[PCS time Cleanup reboot VM (68)

)(1 jNjreboot VM CSSMaxNSTT  (69)

)],(*[1 jjNjjNj1 SOTCSSMaxPCSMax timeFailover  (70)

CSSSOT *2 (71)

For each component belonging to a component type, there is a probability that the recovery

action is SU restart or SU failover or VM failover or VM reboot. Equation (72) is used to calculate

the mean time to recover the service due to the interference of the collocated components MTTRint

of comps. Time required to perform SU restart TSU restart, time required to perform SU failover TSU

failover are calculated using [9]. Time required to perform VM failover TVM failover and the time

required to perform VM reboot TVM reboot are calculated using Equations (67) and (69) respectively.

 

 
 
  




























reboot VM

failover VM

failover SU

restart SU

comps of int

Treboot VM to escalationP

Tfailover VM to escalationP

Tfailover SUto escalationP

Trestart SUto escalationP

MTTR

*)(

*)(

*)(

*)(

 (72)

jn
Nj

j j comps of intj comps of int

j comps of int

terferenceaSUcomponentcollocated
MTTRMTTF

MTTF
A 





















1

'sinsin
 (73)

Equation (73) is used to calculate the availability of collocated components in a SU. MTTFint

of comps is calculated using Equation (66) and MTTRint of comps is calculated using Equation (72). j

iterates through the N component types in a SU and nj represents the number of collocated

59

components per component type in a SU. If there are no collocated components in a SU, then the

availability due to collocated components is one.

ii. Availability due to collocated SUs interferences

It is possible that availability of SI may be affected when recovery action is performed at the

VM level due to collocated SUs in a VM. Here, MTTFint of SUs is calculated using Equation (74)

and the mean time to recover the service due to the interference of the collocated SUs (MTTRint of

SUs) is calculated using Equation (75). Equation (76) is used to calculate the availability of

collocated SUs in a VM. N represents the number of component types in a SU type, pj denotes the

required number of components per component type and r is the number of collocated SUs in a

VM. Note that if there are no collocated SUs in a VM, then the availability due to collocated SUs

interference is one.

reboot) VM to onP(escalatifailover) VM to onP(escalati

MTTF
MTTF

component

 SUsof int


 (74)

 
  












 


reboot VM

failover VM

 SUsof int
Treboot VM to escalationP

Tfailover VM to escalationP
MTTR

*)(

*)(
 (75)

r

Nj

1j

p

j SUsof intj SUsof int

j SUsof int

ceinterferen svm'a in SUscollocated

j

MTTRMTTF

MTTF
A






























 





 (76)

iii. Availability due to collocated VMs interference

A fault in the physical hardware, or in the host operating system, or in the hypervisor will affect

all the services provided by the application components running on that host. Such faults may or

may not cause the failure of the faulty entity itself. They may propagate to one of the hosted entities

and cause it to fail. As a result when components fail due to one of the above mentioned faults,

60

AMF cannot identify the source of the failure, the faulty entity, it is not even aware of the fact that

the node on which it manages the components are VMs deployed on physical hosts, but potentially

collocated. AMF will failover services provided by components of the other VMs residing on that

physical host. AMF considers these failures to be independent and therefore the recovery action is

taken per VM. However these failures are dependent (e.g. due to physical hardware fault) and

physical hardware reboot could solve this issue, but AMF performs VM failovers independently.

To handle this issue, it is assumed that the same escalation is applied for the VMs as for the

components. When the maximum number of permitted VM failovers or VM reboot is reached

within a time period, physical hardware reboot is performed. As a result, a service is affected when

the collocated VMs trigger reboot of the physical host it is hosted on. If N represents the number

of component types in a SU, pj denotes the number of components of a component type, r+1 is the

total number of SUs in a VM and s is the number of collocated VMs in a physical host then,

Equation (77) is used to calculate AcollocatedVM’sinterference. Note that MTTFint of SUs is calculated using

Equation (74) and MTTRint of SUs is calculated using Equation (75). Note that if there are no

collocated VMs in a physical host, then the availability due to collocated VMs interference is one.

s

r
p

j SUsof intj SUsof int

j SUsof int
Nj

j

ceinterferen sph'a in VMs collocated

j

 MTTRMTTF

MTTF

A
























































1

1

 (77)

From (73), (76) and (77)



















ceinterferen sph'a in VMs collocated

ceinterferen svm'a in SUscollocated

ceinterferen sa SU' in components collocated

entities collocated

A

A

A

A

*

* (78)

61

 Finally substituting Equations (44), (45) and (78) in Equation (42) gives the estimated

availability of a SI.

D. Example illustrating the calculation of number of SIs per VM flavor from the perspectives

of availability and resource utilization for a type stack

Let us assume a service type ST A is composed of two component service types CST 1 and

CST 2. The information related to the number of SIs of ST A, the number of CSIs per CST1 and

CST 2 in each SI and the requested availability is obtained from the configuration requirements.

Based on the ETF model and the configuration requirements the type stacks are formed using [9].

The following example, illustrates the first phase in the AMF entities creation step for a type stack.

From configuration requirements

 Number of SIs of ST A = 40

o Number of CSIs of CST 1 = 2

o Number of CSIs of CST 2 = 3

 Requested availability = 0.999

From ETF

 Capability of components

o Active capability of CT1 for CST1 = 2

o Standby capability of CT1 for CST1 = 5

o Active capability of CT2 for CST2 = 2

o Standby capability of CT2 for CST2 = 3

 Maximum number of components per SU

o Max no of comps per CT1 = 80

o Max no of comps per CT2 = 64

 Memory requirement

o Memory required per CST1 = 3 MB

o Memory required per CST2 = 1 MB

From infrastructure file

62

 Set of VM flavors = { small = 512 MB, medium = 2048 MB}

 Memory used by the hypervisor = 256 MB

 Memory used by the host OS = 72 MB

 Memory used by the guest OS = 72 MB

 Memory of the physical host = 4608 MB

 Over booking factor = 1

The following calculations are illustrated for the small VM flavor. Initially, the memory required

for a SI is determined using Equations (1-2).

Memory required per CST1= Memory required per CSI1 * No of CSIs per CST1 = 3*2 = 6

Memory required per CST2= Memory required per CSI2 * No of CSIs per CST2 =1*3 = 3

Memory required per SI= Memory required per CST1 + Memory required per CST2 = 9 MB

Using Equation (3), the AGM is calculated for the small VM flavor.

AGM =TGM – GOSM =512-72 =440MB

Next, using Equation (4), the No of SIs per VM is calculated

48
9

440


















 floor

per SI requiredMemory

AGM
floor VMper SIsof No SIs

The small VM flavor can at most host 48 SIs. Next, the availability is estimated for the best and the

worst case scenarios using Algorithm-1. From the perspective of availability estimation, the best

case scenario is when the No of SIs per VM is 1. Using the Algorithm-2 the number of entities and

the number of collocated entities are determined.

i. Determine number of SIs per SU: Initially, the actual recovery of the components and the

minimum number of components per CT is determined using [11] and [9] respectively.

 Actual recovery for both the component types (CT1 and CT2) is component restart.

63

 Minimum number of components per CT1 required to provide one SI = 1

 Minimum number of components per CT2 required to provide one SI = 2

Since the actual recovery of both the component types is at the component level, the SU

serving maximum number of SIs is selected.


































































 SIsof NoVM,per SIsof No

CT2per comps of no Min

CT2per comps of no Max
floor

CT1per comps of no Min

CT1per comps of no Max
floor

per SU SIsof No
Nj ,

,

min
min

1

 140,1,
2

64
,

1

80
minmin 
















per SU SIsof No

 No of comps per CT1 =No of SIs per SU*Min no of comps per CT1 =1*1 =1

 No of comps per CT2 =No of SIs per SU*Min no of comps per CT 2=1*2 =2

ii. Determine number of SUs per SG and number of SGs

From the SG type, the redundancy model is inferred to be N+M. For each component

type the No of SGs is calculated using Equations (11-12 and 15-20).

 CT1 CT2

Max no of act SIs per SU 1 1

Max no of std SIs per SU 2 2

No of act SUs 40 40

No of std SUs 20 20

Act proportion 2 2

Std proportion 1 1

No of SUs per SG 3 3

No of SGs 20 20
Table 4-1 Calculation of No of SGs and No of SUs per SG

iii. Determine the number of SUs per VM and the number of SIs per VM

64






















 SGsof No,

per SU SIsof No

VMper SIsof No
floorminVMper SUsof No = min (1, 20) =1

 1per SU SIsof No*VMper SUsof NoVMper SIsof No 

iv. Determine the number of VM groups, the number of VMs and the number of physical hosts

42803284608)( HMHOSMTPMAPM MB

 8=
512

1*4280
floor

TGM

OBF*APM
floor PHper VMs of No 



















 20
1

20


















 ceil

VMper SUsof No

 SGsof No
ceilgroups VM of No

 groups} VM of No PH,per VMs of {No minPHper VMs of no Max  =min (8, 20) = 8

 81*8VMper SUsof No*PHper VMs of no MaxPHper SUsof No 

 603*20*  Kgroups VM of NoVMs of No

 93*
8

20
* 

















 ceilK

PHper SUsof No

 SGsof No
ceilPHs of No

v. Determine the number of collocated entities

When the No of SIs per SU is one, the No of coll comps and the No of coll SUs is zero.

No of coll comps per CT1 = No of comps per CT1- Min no of comps per CT1= 0

No of coll comps per CT2 = No of comps per CT2- Min no of comps per CT2= 0

No of coll SUs = No of SUs per VM -1 = 0

No of coll VMs =8-1=7

Using the availability estimate method, the availability of a SI for best case scenario is

estimated. The information about the component types and the infrastructure elements are

obtained from Table 4-2 and 4-3 respectively.

65

 CT 1 CT 2

Clean up

time (clt) in

sec

3 2

CSS time in

sec

2 1

Instantiation

time (IT) in

sec

1 2

PCS 0.4 0.6

PCNS 0.6 0.4

PINS 0.1 0.1

PINSD 0.1 0.1

MTTF 530000 780000

NIWOD 2 2

NIWD 1 1

Table 4-2 Information about the component types

Infrastructure

elements

MTTF (sec)

Physical host 8300000

Hypervisor 6200000

Host OS 5400000

VM 7100000

Guest OS 5400000

Table 4-3 Information about the infrastructure elements

66

a) Availability due to failure of components

The MTTR calculated using [9] is 3.3 and 2.1 respectively. Using MTTF values from Table

4-3,
componentsA is calculated using Equation (44).

999990.0
1.2780000

780000
*

3.3530000

530000
21

1












































Nj

j

p

j componentj Component

j Component

components

j

MTTRMTTF

MTTF
A

b) Availability of the infrastructure

The MTTF values for the virtual infrastructure elements and the physical infrastructure

elements are obtained from Table 4-3.

Using Equation (48), the MTTRinfra is calculated.

MTTRinfra = Detection time +Failover time = 3.2 + 2 = 5.2

2)1,2()(  MaxCSSMax timeFailover jNj1

Using Equation (47), the availability of the virtual infrastructure (Avi) is determined.

9999982.0
2.55400000

5400000
*

2.57100000

7100000





















viA

Using Equation (51), the availability of the physical infrastructure (Api) is determined.

9999974.0
2.56200000

6200000
*

2.55400000

5400000
*

2.58300000

8300000































piA

9999957.09999974.0*9999982.0*  pivitureinfrastruc AAA

c) Availability due to the collocated components interferences

i. Probability of escalation due to SU restart

When the tlevel 1 = 10000 s and xlevel 1 = 1

67

Using Equation (54), the failure rate of the components is determined

6

2211 10*45.4)780000/2()530000/1( componentcomponentcomponentcomponent pp 

Using Equation (53), the probability of escalating the recovery action to SU restart is

determined.

04255.0
!1

)]10000)(10*45.4[(
)(

16)10000)(10*45.4(6


 

e
restart SUto escalationP

ii. Probability of escalation due to SU failover

When tlevel 2 = 10000 s and xlevel 2 = 1

Using Equation (55), the P(x)level2 is determined.

2)(levelxP 04255.0
!1

0445.0 10445.0


e

Using Equation (56), the probability of escalating the recovery action to SU failover is

determined.

  32
10*81.104255.0)(failover SUto escalationP

iii. Probability of escalation due to VM failover

When tlevel 3 = 10000 s and xlevel 3 = 1

Using Equation (58), probability of escalating the recovery action to VM failover is

determined.

For restartable components,

P (escalation to VM failover) = 7.70*10-5

68

iv. Probability of escalation to VM reboot

For CT 1,

nia =NIWOD+NIWD= 2+1=3

P (CF) = P (CFIWOD) + P (CFIWD)





NIWOD

i

ii PCNSPINSPCSCFIWODP
1

11 **)(= 624.0)6.0(*)1.0(*)4.0(
2

1

11 




i

ii




 
3

12

1212 00096.0)6.0(*)1.0(*)4.0(*1.0)(
i

iiCFIWDP

62496.000096.0624.0)(CFP

5123 10*4.6)1.0(*)1.0(*)4.0(**)( NIWDNIWODnia PINSDPINSPCSIFP

Using Equation (65), the probability of escalation to VM reboot for CT 1 is determined.

625024.010*4.662496.0)(5

1  

CTreboot VM to escalationP

 For CT 2,

nia = 2+1=3




 
2

1

11 424.0)4.0(*)1.0(*)6.0()(
i

iiCFIWODP

42
3

12

112 10*44.10144.0*1.0)4.0(*)1.0(*)6.0(*1.0)(



  
i

iiCFIWDP

4241.010*44.1424.0)(4  CFP

423 10*16.2)1.0(*)1.0(*)6.0()(IFP

424316.010*16.24241.0)(4

2  

CTreboot VM to escalationP

Using Equation (66), the MTTF int of comps for CT 1 and CT 2 is determined.

69

For CT 1, 66.791681
66946.0

530000
comps of intMTTF

For CT 2, 35.1663989
46875.0

780000
comps of intMTTF

Using Equation (72), the MTTR int of comps for CT 1 and CT 2 is determined.

7]1,2[5][1   jNjVMreboot CSSMaxNSTT

2.7)]73(*6.0[]3*4.0[ time Cleanup CT1

6.1)]4,2(*4.0[ MaxtimeFailover 1 CT

8.4)]72(*4.0[]2*6.0[CT2time Cleanup

 2.1)]2,1(*6.0[ MaxtimeFailover 2 CT

8.8]2.1,6.1[]8.4,2.7[ MaxMaxT failover VM

 TSU failover and TSU restart calculated using [9] are 8.78 and 4.8 respectively.

59.4























7*(0.625024)8.8*)10*(7.70

 8.7*)10*(1.814.8*(0.04255)
MTTR

5

3

CT1 comps of int

1.3
7*)42431.0(8.8*)10*70.7(

7.8*)10*81.1(8.4*)0

5

3























.04255(
MTTR

CT2 comps of int

If the number of collocated components of both the component types is zero, therefore the

availability of collocated components in a SU’s interference is 1.

][][11 jNjjNjfailover VM time FailoverMaxtime CleanupMaxT  

70

1
1.335.1663989

35.1663989
*

59.466.791681

66.791681
00

'sinsin 



















terferenceaSUcomponentcollocatedA

Using Equation (74),

For CT 1,

98.847862
625101.0

530000





reboot) VM to onP(escalatifailover) VM to onP(escalati

MTTF
MTTF

component

 SUsof int

    37.47*625024.08.8*10*70.7 5  

 SUsof intMTTR

For CT 2,

091.1837932
42439.0

780000
 SUsof intMTTF

    97.27*424316.08.8*10*70.7 5  

 SUsof intMTTR

For the best case scenario, the number of collocated SUs in a VM is zero, therefore the

availability of collocated SU’s interference is 1.

1
97.2091.1837932

091.1837932
*

37.498.847862

98.847862
0

21

'sin 

































terferenceSUcollocatedA

The number of collocated VMs in a physical host is 7 and there is one SU in a collocated

VM and each SU has one and two components in each component type respectively, then

the availability of collocated VM’s interference is 0.9999.

999940.0
97.2091.1837932

091.1837932
*

37.498.847862

98.847862

7
1

21

'sin 















































terferenceVMcollocatedA

71

999940.0999940.0*1*1 entities collocatedA

 SIofty Availabili 0.999990*0.9999957*0.999940=0.999925

For the best case scenario, the estimated availability is greater than the requested

availability. Next step is to estimate availability for the worst case scenario. Even though

the maximum number of SIs provided by a VM is 48, due to the limitation on the number

of SIs a SU can handle and the number of SGs, the No of SIs per VM is limited to 32.

3240,48,
2

64
,

1

80
minmin 
















per SU SIsof No

 11,
32

48
min 






































 floor SGsof No,

per SU SIsof No

VMper SIsof No
floorminVMper SUsof No

321*2  3per SU SIsof No*VMper SUsof NoVMper SIsof No

Figure 4-10 Calculating number of SIs per VM

72

The number of entities and the number of collocated entities are calculated for 32 SIs per VM

as shown in Table 4-4. When availability is estimated at this point, it is less than the requested

availability. Again, when the availability is estimated at the middle point, the estimated availability

is equal to the requested availability. Therefore, 16 represents the number of SIs per VM from the

perspectives of availability and resource utilization. Figure 4-10 illustrates the various scenarios

at which the availability is estimated and the number in the circle denotes the order in which they

are estimated.

2) VM flavor selection for a type stack

A physical host has a finite capacity and the number of identical VMs it can host depends on

the VM flavor, which among others specifies the total guest memory associated with the flavor.

From the set of available VM flavors specified in the infrastructure file, the above mentioned

procedure to determine the No of SIs per VM from the availability and resource perspective is

repeated. During this process, the number of entities and the No of SIs per PH are determined for

each VM flavor using Algorithm-1 and 2. To select the VM flavor, the VM flavor with the highest

No of SIs per PH is selected. This selection provides the highest utilization of the host as its

No

of

SIs

per

VM

Number of entities No of collocated

entities

Estimated

availability

No

of

SIs

per

SU

No of

SGs

No

of

SUs

per

VM

No

of

SUs

per

SG

No of

SIs

per

VM

No of

VM

groups

No of

PHs

No of coll

comps in

SU

No of

coll

SUs

No

of

coll

VMs CT

1

CT2

1 1 20 1 3 1 20 9 0 0 0 7 0.9999

48 32 1 1 3 32 1 3 31 62 0 0 0.99

16 16 1 1 4 16 1 4 15 30 0 0 0.999

Table 4-4 Number of SIs per VM with corresponding number of entities and the estimated availability

73

resources are mostly used by the SIs and it infers minimum number of physical hosts. However, if

two or more VM flavors support maximum No of SIs per PH, then the VM flavor with the smallest

TGM is selected based on the availability considerations. Namely, the smallest VM flavor provide

better fault isolation compared to other VM flavors.

4.2.3 Distribute AMF entities for deployment

 While distributing the AMF entities for deployment, the affinity/anti-affinity relation between

them is defined and they are configured. The relation between the SUs is defined by the SGs: SUs

that are providing and protecting the same SIs, i.e. they are part of the same SG should not be

hosted on the same VM or physical host. The relation between the VMs is defined by the VM

group. While determining the number of entities, along with the No of VMs, the No of VM groups,

the number of redundant VMs in a VM group is also defined. In addition to that, the number of

SUs that can be hosted per VM is also determined, based on this the configuration attributes related

to the distribution of SGs on the VM groups is set. Finally, an AMF configuration is generated for

a type stack.

4.2.4 Repeating the process for all the type stacks

 As described in the flowchart Figure 4-11 (a) and 4-11 (b), for all the type stacks created

for each prototype in the step one of the configuration generation process [9], the AMF type

creation [9], AMF entities creation step and the distribution of AMF entities for deployment step

are repeated. In the third step, if the best case scenario for all the VM flavors do not meet the

requested availability, then the type stack is discarded. The other case where a type stack is

discarded is when it is not able to provide a SI. For those prototypes that met the requested

availability, AMF configurations are generated. Out of these, only the configuration that uses

minimum number of physical hosts is selected for deployment.

74

Figure 4-11 (a) Repeating the process for all the type stacks

Start

Read ETF model, CR and
infrastructure file

SetOfTypeStacks = { }
SetOfAMFConfigurations = { }

CurrentTypeStack = null
CurrentVMFlavor = null

SetOfVMFlavors = VM flavors from infrastructure file
SetOfNoOfEntities = { }

Create type stacks based on the selected ETF prototype
and add it to the SetOfTypeStacks

Is SetOfTypeStacks not empty ?

Initialize CurrentTypeStack to the first element in
SetOfTypeStacks

Create AMF types for the CurrentTypeStack

Initialize CurrentVMFlavor to the first element in the
SetOfVMFlavors

Use Algorithm-1 and 2 to determine the No of entities
(No of SGs, No of VMs, No of PHs, No of SIs per PH)for

the CurrentTypeStack and the CurrentVMFlavor

Yes

Is CurrentTypeStack
discarded in Algorithm-2

?

AMF entities creation for the CurrentTypeStack

No

Yes

NoYes

No

Is CurrentTypeStack
discarded for the

CurrentVMFlavor in
Algorithm-1 ?

No

A B C
D E F

75

Figure 4-11(b) Repeating the process for all the type stacks

A B F

AMF entities creation for the CurrentTypeStack

Distribute AMF entities for deployment for the
CurrentTypeStack

Generate configuration for the CurrentTypeStack and
add it to the SetOfAMFConfigurations

Is CurrentTypeStack the
last element in the
SetOfTypeStacks?

Increment
CurrentTypeStack to the

next type stack in the
SetOfTypeStacks

Yes

 Choose AMF configuration from the
SetOfAMFConfiguration such that the
number of physical hosts is minimum

Stop

Add the CurrentVMFlavor and the No of
entities to the SetOfNoOfEntities

Is CurrentVMFlavor is
the last element in the

SetOfVMFlavors?

Increment CurrentVMFlavor to
the next VM flavor in the

SetOfVMFlavors

Yes

Yes

No

Among the VM flavors whose
No of SIs per PH is maximum,
select the smallest VM flavor

If two or more VM
flavors have maximum
No of SIs per PH in the

SetOfNoOfEntities?

Select a VM flavor such that
No of SIs per PH is maximum

No

No

Is SetOfNoOfEntities
not empty?

Yes

No

C D
E

76

 4.3 Deployment in the cloud

Deployment is the process involved in installing and running AMF applications in the cloud

using the generated configuration. This process consists of three steps: a) deployment information

file generation; b) VM image creation; c) initial deployment. The first two steps is about generating

pre-requisite files required for the initial deployment. They can be executed in parallel as shown

in Figure 4-12. The third step describes the automatic deployment of AMF applications. Note that

the following deployment process is discussed with respect to the OpenStack [18] cloud and

OpenSAF [34] is used as an open source AMF implementation.

4.3.1 Deployment information file generation

From the deployment perspective, AMF configuration defines the relation between SGs

and VM groups (i.e. SGs are configured to VM groups). This ensures that each SU of a SG will

Figure 4-12 Deployment process in the cloud

77

be hosted on a VM in a VM group. In order to avoid single point of failure, each VM in a VM

group should be hosted on a different physical host. This is because, VMs in a VM group provide

and protect the same SIs. When these VMs are hosted on the same physical host the failure of the

physical host will jeopardize the availability. However, this relation between VM groups and

physical hosts (i.e. configuring VMs to physical host) is not defined in the AMF configuration.

Anti-affinity VM groups defined in OpenStack cloud can be useful in this context. Therefore, VM

groups (i.e. AMF node groups) defined in the configuration are mapped to anti-affinity groups in

the OpenStack as shown in Figure 4-13.

Figure 4-13 Mapping of AMF node group to anti-affinity group in the OpenStack

To achieve this mapping, it is necessary to extract deployment information like the number

of VM groups, the number of VMs in each group, name of the VM group and selected VM flavor

from the generated configuration. These details are added to a deployment information file using

a parser.

4.3.2 VM image creation

In this thesis, AMF applications are designed to be deployed over a cluster of identical

VMs. For this purpose, a VM image that contains OS, OpenSAF [34], Monitoring [21] and

Elasticity Engine stack [22] and the executable code of the components is created in this step as

shown in Figure 4-14. Monitoring [21] and Elasticity Engine [22] stack contains monitoring server,

monitoring client and elasticity engine which is used to manage the workload of applications at

run-time. The main advantage of creating this VM image is that it reduces the effort of installing

VM 1 VM 2 VM 3

AMF Node Group

Mapped VM 1 VM 2 VM 3

Anti-affinity Group

OpenStack cloud

78

the above mentioned entities into each VM separately and as a result, this VM image can be used

as a template to boot VMs.

 Figure 4-14 VM image

4.3.3 Initial deployment

Using the deployment information file and the created VM image, this step aims to deploy

AMF applications in the cloud. Before creating VMs, it is important to create the required number

of anti-affinity groups as specified in the deployment information file. Also, based on the number

of VMs in each VM group, OpenStack Nova’s scheduler [20] is used to provision the required

number of VM instances in each anti-affinity group.

 OpenStack is responsible for managing VMs and physical hosts. However, it is agnostic to

applications running inside the VMs. To have the cluster up and running, OpenSAF should be

configured and all the AMF entities should be instantiated and workloads should be assigned to

them. To achieve this, VMs are accessed remotely and deployment specific attributes in OpenSAF

are configured also the generated configuration is loaded and finally the VMs are restarted to make

the changes come into effect. Each VM joins the cluster and successful instantiation of AMF

entities indicates that the AMF application is deployed in the cloud and AMF can manage the

lifecycle of the entities.

VM image

OpenSAF

Components

OS

ME and EE stack

79

4.4 Managing AMF applications in the cloud

Applications deployed in the cloud can be scaled out/in based on the workload demand.

For this purpose, the existing Monitoring architecture [21] and the Elasticity Engine [22] can be

used. The reason for choosing these existing engines is that, the elasticity actions are performed

based on the service level workload changes (i.e. SI level). Managing AMF applications based on

the SI level workload provides finer granularity as opposed to managing applications based on

VM level workload changes [21][22]. Many existing solutions in the cloud map an application to

a VM and whenever there is an increase in workload of application, a new VM is spawned [35].

In contrast, if a SI workload increase is detected by Monitoring server, then the Elasticity Engine

resolves to add a new VM only after attempting to adjust the SG or cluster to provide room for the

increased workload [22].

4.4.1 Integration with Monitoring architecture and Elasticity Engine

Figure 4-15 illustrates the integration of AMF application with Monitoring architecture and

Elasticity Engine and the data flow between the entities. Each VM booted from the above created

VM image contains monitoring server, monitoring client, workload analyzer and elasticity engine

Figure 4-15 Integration of AMF applications with ME and EE

80

stack. However, only one of the VM (OpenSAF controller) is configured with monitoring server,

workload analyzer and elasticity engine. Monitoring clients are configured on each VM to monitor

the service level workload for all the components hosted on that VM and this monitoring data is

sent to the monitoring server [21].

Monitoring data corresponding to each component that participates in providing a SI are

aggregated by the monitoring server and sent to the workload analyzer [21]. Further, the monitored

data is compared with pre-defined threshold values. In this case, two scenarios are possible:

a. If the monitored data is less than the pre-defined threshold values then over provisioned

trigger is generated and sent to the Elasticity Engine [21]. Based on the policies defined in

the Elasticity Engine, it modifies the configuration by moving assignments of a SI or

removing the SG etc. However, it also ensures that the cluster will not be contracted beyond

the minimum configuration [22].

b. If the monitored data is greater than the pre-defined threshold values, then under

provisioned trigger is generated and sent to the Elasticity Engine [21]. It is the

responsibility of the Elasticity Engine to take necessary elasticity actions including

swapping SIs to make room for the increased SI workload or adding assignments to the SI

or adding SGs or to add new VM(s) [22]. To add a new VM, Elasticity Engine

communicates with the OpenStack scheduler and boots up a new VM using the created

VM image. Further, the newly added VM is remotely accessed to configure OpenSAF.

Finally, this VM joins the cluster and starts providing the service. Figure 4-15 illustrates

an example that Elasticity Engine requests for a new VM to OpenStack scheduler and VM

4 is created and this VM is configured to join the cluster.

81

4.5 Summary

This chapter discussed the three main contributions of the thesis, namely the availability

estimate method, the AMF entities creation method and a method for deploying AMF

applications in the cloud. Furthermore, in order to scale AMF applications in the cloud, their

integration with the existing Monitoring architecture [21] and Elasticity Engine [22] is also

described.

a. The availability estimate method is used to evaluate the availability of a service (i.e.

availability of a SI) considering the potential factors that could affect the service. This

includes availability of components providing the service, availability of virtual and

physical infrastructure and availability of service due to the interference of the

collocated entities. This method is used in the AMF entities creation step to estimate

the availability and to eliminate the type stacks that do not meet the requested level of

service availability.

b. The AMF entities creation method is responsible for calculating the number of AMF

entities (i.e. components, SUs, SGs, VMs) that meets the requested level of service

availability and they can be deployed using a minimum number of physical hosts. More

specifically, this method calculates the number of entities by taking into account the

minimum number of redundant entities, potential interference that may occur due to

the effect of collocation and also the physical host and VM’s capacity limitation.

c. The main goal of the deployment approach is to run AMF applications in the cloud

using the generated configuration without jeopardizing the availability. The

deployment takes place at two levels namely: the physical host level and the VM level.

During the physical host level integration, the required number of VMs are created in

82

the appropriate VM groups. At VM level integration, the applications are installed and

configured automatically so that the AMF application can provide the service

functionality. Finally, the deployed application is integrated with the existing

Monitoring architecture [21] and Elasticity Engine [22]. Thereby like any other

application, AMF applications can also be scaled out/in accordingly in the cloud.

83

Chapter 5

Prototype Tool

5.1 Introduction

 The main goal of this chapter is to describe a proof of concepts prototype tool for the

generation and the deployment of AMF configurations in the cloud. This tool includes all the

solutions proposed in the Chapter 4. Existing AMF configuration generation tool [9] is extended

to generate configurations for the cloud. Further, the deployment modules (parser module, VM

image creation module and initial deployment module) are developed to deploy the AMF

applications in the OpenStack cloud. Finally, with the help of the Monitoring architecture [21] and

the Elasticity Engine [22], applications can be managed (scaled in or out) accordingly.

5.2 AMF configuration generation module

Figure 5-1 Data flow in the configuration generation module [9]

As shown in Figure 5-1, the configuration generation module [9] consists of four parts namely;

1) The Graphical User Interface (GUI); 2) Object model; 3) The I/O module; 4) The configuration

generation module.

84

1) Graphical User Interface (GUI)

The system designer is responsible for providing the ETF XML files and specifying

the configuration requirements like the number of SIs in a SI template, the number of CSIs

per SI, minimum requested service availability and redundancy models [9]. Note that,

templates are introduced to generically create entities that share common characteristics

[9]. The GUI uses Eclipse Modelling Tools [36] and Java Swing [37] to input ETF XML

file and other requirements [9].

2) The Object Model

This object model is a repository for models that includes the AMF, ETF, CR and

infrastructure models. These UML models are described as Ecore models [38] using

Eclipse Modelling Framework (EMF) [39]. The AMF model is created according to the

information model described in [10] and the infrastructure model is defined as explained

in the Chapter 4 (Section 4.2.1). Also, ETF model is defined based on ETF schema

described in [40] and the CR model is designed according to [9]. Note that the ETF and

CR models also includes the modifications mentioned in Section 4.2.

3) The I/O Module

The input/output files are instances of the object model. Using this module, an input

file is parsed against a model in the repository. Also, using this module, an output file (i.e.

generated AMF configuration) is saved as a XML file [9] which conforms to the AMF

model in the data repository.

4) The Configuration Generation Module

This module is responsible for generating AMF configurations. As shown in Figure

5-2, the input wizard GUI takes ETF XML file and validates it against the ETF model [9].

85

If the validation is successful, GUI expects configuration requirements. It then outputs a

CR object model. The CR object model, infrastructure object model are given as input to

the Generator wizard GUI. It validates both the models and if the validation is successful,

then the configuration generation process starts by selecting the prototypes and creates

AMF types [9]. Furthermore, using the AMF entities creation method and the distribute

AMF entities for distribution methods explained in the Chapter 4, the number of AMF

entities are created and they are configured for deployment. Finally, AMF configuration

is generated and saved in an XML format.

5.3 Deployment modules

The deployment process consists of three modules namely parser, VM image creation

and initial deployment module.

Figure 5-2 Extended AMF configuration generation prototype

86

1) Parser module

The purpose of the parser module is to generate a deployment information file from an

AMF configuration. For this purpose, DOM4J parser [41] is used to extract the number of

VMs, the number of VM groups and the number of VMs in each group, name of the VM group

from the configuration and stores these data in a JSON file. In addition to that, OpenSAF

specific parameters like node type (controller or payload) required to configure each VM are

also added to the deployment information file.

2) VM image creation module

A VM image that contains OS, OpenSAF middleware, Monitoring and Elasticity Engine

stack and the executable code of components is created. The created VM image captured the

state and data of a VM at one point in time [42] that is used to create identical VMs with the

above mentioned entities.

3) Initial deployment module

The initial deployment module requires the created VM image and the deployment file to

boot VMs in the OpenStack cloud. It first requests the nova service to create the required

number of anti-affinity groups. It then communicates with the OpenStack scheduler and

specifies the VM image, flavor of the VMs, the number of VMs in an anti-affinity group, name

of the anti-affinity group and name of the VMs. When scheduler receives this command, it

automatically schedules and boot VMs from the VM image. Since the VMs are created from

the same VM image, it is possible that they possess the same host name (host name is different

from name of the VM during creation and host name is more specifically used by OpenSAF).

The deployment module then remotely logs into each of the VM in the cluster, configures and

87

starts OpenSAF. Successful instantiation of application entities indicates that the initial

deployment is complete and AMF applications are deployed in the cloud.

5.4 Illustration with an application

Let us consider a deployment of HTTP service in an OpenStack cloud with 4 SIs. In the first

step, the system designer inputs the ETF file using the GUI module, which is validated against the

ETF schema by the object model. The Figure 5-3 illustrates the conformance message that the ETF

is parsed successfully. Using the input wizard GUI module, information about the SG types

(redundancy model, number of active/standby assignments), SI types and CSI types is given in the

form of templates [9].

Figure 5-3 Providing ETF input

As shown in Figure 5-4 (a), the system designer specifies N-way active redundancy model

using SG template-Pattern-Based dialog box. Further, the system designer inputs the name of the

SI template as HTTP_SI_template, type of service as HTTP service, the number of SIs to be 4,

number of active assignments to be 3 and the requested level of availability to be 0.999 using

Regular SI template-Pattern-Based dialog box (Figure 5-4 (b)). The system designer then inputs

the HTTP_CSI template associated with the HTTP_SI_template using the CSI Template dialog

88

box (Figure 5-4 (c)). This process outputs the CR file. Finally, the infrastructure file and the

outputted CR file are given as input to the Generator wizard GUI and they are validated against

the infrastructure model and CR model respectively. Figure 5-4 (d) illustrates the conformance

message that the infrastructure file has been parsed successfully.

Figure 5-4 (a) SG template-Pattern based dialog box; (b) SI template pattern based dialog box; (c) CSI template; (d) Providing

infrastructure file and CR file

Using the first two steps of the configuration generation process, two type stack (SR-0 and

SR-1) that can provide the HTTP service type with the requested level of service availability is

created [9]. Figure 5-5, illustrates the number of SIs per VM calculation and the VM flavor

selection for SR-0 type stack. The small VM flavor is not considered because the memory required

89

to provide one SI is greater than the available guest memory. For the large VM flavor, when the

No of SIs per VM is one, to deploy 4 SIs the No of SGs required is 4 and the No of SIs per SU is 1.

The number of active assignments specified in the configuration requirements is three therefore,

the No of SUs per SG is three. To deploy 4 SGs, No of VM groups required is also 4. The No of

VMs per VM group based on the No of SUs per SG is also 3. Based on the capacity of the physical

host, the number of large VMs it can accommodate is 1. Therefore, the total No of PHs required is

12. Based on this, the number of collocated entities are calculated and the availability is estimated.

For the best case scenario, the estimated availability is greater than the requested availability.

Therefore, the availability is estimated for the worst case scenario (i.e. 4 SIs per VM). Here, the

estimated availability is less than the requested availability. Therefore, the availability is estimated

for the midpoint interval i.e. at 2 SIs per VM, which satisfies the availability requirement. The

large VM flavor is selected for this case and the No of SIs per PH is 2 and the No of PHs required

is 6.

Figure 5-5 No of SIs per VM determination and VM flavor selection for SR-0 type stack

90

For SR-1 type stack the same procedure to determine the number of SIs per VM is

performed for small VM flavor (Figure 5-6) and large VM flavor (Figure 5-7). The No of SIs per

PH for small VM flavor is 4 and the large flavor is 2. Therefore, the small VM flavor is selected

for this type stack. Finally, the type stack SR-1 is selected because, the No of PHs required (i.e. 3)

is minimum compared to the No of PHs (i.e. 6) required for SR-0.

Figure 5-7 No of SIs per VM determination for large VM flavor and VM flavor selection for SR-1 type stack

Figure 5-6 No of SIs per VM determination for small VM flavor and SR-1 type stack

91

As explained in the Section 5.3, based on the generated AMF configuration the deployment

details are extracted and the VM image is created. Using the initial deployment module, two anti-

affinity groups (AntiAffinityServerGrp_0 and AntiAffinityServerGrp_1) and 6 VMs (AF_VM_1 to

AF_VM_6) are created in an OpenStack cloud. Figure 5-8 shows the created VMs and grouping of

VMs in each anti-affinity group.

Figure 5-8 Created VMs and anti-affinity groups in OpenStack cloud

The overall view of the deployed AMF application is shown using Monitoring GUI [21]

(Figure 5-9). The first two SGs (Service_Group-00HTTP_server and Service_Group-

01HTTP_server) are deployed over the AntiAffinityServerGrp_0 (node 1, node 3 and node 5). The

next two SGs (Service_Group-02HTTP_server and Service_Group-03HTTP_server) are deployed

over AntiAffinityServerGroup_1 (node 2, node 4 and node 6). Note that node 1 to node 6 refer to

the AMF nodes which are mapped to AF_VM_1 to AF_VM_6. Each SG provides one SI and the

workload of each SI is monitored by the Monitoring Engine.

92

Figure 5-9 Monitoring GUI showing the deployed AMF applications in the cloud before scaling

Consider a scenario where the workload of SI 1 provided by Service_Group-

01HTTP_server is increased using Apache JMeter [43]. The Monitoring Engine notices the

increase in workload and sends the workload to workload analyzer. Further, the workload analyzer

compares the increased workload with the pre-defined threshold and triggers the Elasticity Engine

to take necessary elasticity actions [21]. The Elasticity Engine modifies the configuration by

increasing the number of active assignment of SI 1 from 3 to 4 and requests OpenStack to create

a new VM. Figure 5-10 depicts this scenario where a new VM (i.e. node 7) has joined the cluster

and the SU hosted on it is assigned a new assignment.

93

Figure 5-10 Monitoring GUI showing the deployed application in the cloud after scaling

5.5 Summary

This chapter presented the prototype tool for the generation and the deployment of AMF

configurations in the cloud. This tool implemented the proposed AMF entities creation method,

availability estimate method and the method to deploy AMF applications in the OpenStack cloud.

In addition, this chapter also presented an example to illustrate the prototype tool and also a case

highlighting the usage of existing Monitoring [21] and Elasticity Engine [22] to scale the deployed

application.

94

Chapter 6

Application – Configuration Generation for

AMF Managed VNFs

6.1 Introduction

 The main objective of this chapter is to illustrate an application of the proposed AMF

configuration generation process in the domain of NFV [45]. This chapter introduces the necessary

background on NFV and then discuss about the proposed mapping between NFV and AMF

domain. It is followed by the configuration generation process for AMF managed VNFs.

6.2 Background on NFV

Figure 6-1 High-level NFV framework [45]

 NFV is changing the way Network Services (NS) are designed, deployed and managed [45].

It leverages virtualization technology and cloud technologies to roll out NS faster as opposed to

traditional networks. For this purpose, NFV unveils a new set of concepts called VNFs, NFV

Infrastructure (NFVI) and NFV Management and Orchestration (NFV-MANO) [46] as shown in

VNF VNF VNF VNF

Virtualized Network Functions (VNFs)

Virtualization Layer

Virtual

Compute

Virtual

Storage

Virtual

Network

NFV Infrastructure (NFVI)

Compute Storage Network

Hardware resources

NFV

Management

and

Orchestration

95

Figure 6-1. VNFs are network functions that are virtualized and can run over shared compute,

storage and networks in NFVI. NFVI encompasses heterogeneous physical hardware, software and

networking elements necessary to run VNFs. NFV-MANO is responsible for managing the life

cycle of the NS and its constituent VNFs [46].

 A VNF may consist of a single software component capable of providing the network

function or several software components that collaborate to provide the network function. These

software components are referred to as VNF Components (VNFCs) [44]. VNF Component Instance

(VNFCI) represent the run-time instantiation of a VNFC [44].

6.3 Mapping between NFV and AMF domain

A VNF is deployed as a cluster of VMs in the NFVI [44]. These VNFs are expected to be

highly available and provide the required functions with minimal downtime. AMF can manage the

availability of any application through an AMF configuration. Therefore, managing VNF as an

AMF application is not an exception to this. To be able to do this, we need to map the concepts in

the NFV domain to the concepts in the AMF domain.

 Each VNF exposing a specific network functionality is mapped to an AMF App type that

provides a service type. A VNF may consist of one or more VNFCs and each VNFC provides a

specific service type (i.e. sub-functionality of the network function) and it is packaged as a software

image [50]. To be able to map a VNFC to the concepts in the AMF domain, a new concept called

AMF node type is proposed. This AMF node type represents a collection of the software images

necessary for the service unit type that provides the service type of a VNFC. Each VNFCI runs in

a dedicated virtualization container (e.g. VM) [44]. In the AMF domain, each instance of AMF

96

node can be mapped against a VM. Thus the VNFCI can be mapped to the AMF node, and the

VNFCIs of a given VNFC to an AMF node group.

6.4 AMF configuration generation process for VNFs

The AMF node groups for VNFCs are disjoint, we generate an AMF configuration for a

service type i.e. the service type to be provided by a VNFC. We design a VNFC by grouping one

or more AMF component types into a service unit type so that it can provide the service type.

Based on the number of workload units (i.e. SIs) to be provided for the given service type (i.e.

service capacity) and the requested level of service availability, we determine the number of AMF

entities (i.e. SUs, SGs, VMs) so that the VNFCIs providing the service can be deployed using a

minimum number of physical hosts. The affinity and anti-affinity relations between the AMF

entities are defined by AMF and therefore are reflected in the AMF configuration. In particular,

nodes of an AMF node group are redundant entities therefore cannot be collocated. During

deployment, the required number of VNFCIs of a VNFC are deployed using the AMF

configuration. The proposed AMF configuration generation approach in Chapter 4 is applied in

the same manner for each of the service types the VNF to configure the VNFCIs of each VNFC.

The information about the number of entities calculated can be used to deploy and

configure a VNF in the NFVI. For example, the No of VMs represents the required number of

VNFCIs of a VNFC. The number of VMs in a VM group represents the number of VNFCIs of a

VNFC in anti-affinity relation. The selected VM flavor can be used to deploy a VNFCI and the

Max no of VMs per PH represents the number of VM groups per physical host. The calculated

number of physical hosts can be used to deploy the VNFCIs of a VNFC.

97

6.5 Conclusion

 This chapter presented an application for AMF configuration generation process in the field

of NFV. Here, we proposed to use AMF as middleware to manage the availability of the services

provided by the VNFs. To achieve this, we proposed an approach for generating AMF

configurations for VNFs. In this approach, we mapped the concepts in the NFV domain to the

concepts in the AMF domain and we designed a VNFC by grouping one or more AMF component

types to provide the service type. Next, we determined the number of AMF entities with a goal that

the requested availability should be met and the VNFCIs of a VNFC should be deployed using a

minimum number of physical hosts.

For the configuration and deployment of VNFs in the NFVI, the information about concrete the

number of VNFCIs, their colocation/anti-colocation relationship and the VM flavor is required.

These information are reflected in the AMF configuration and they can be extracted to design a

VNF configuration.

98

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, an approach for generating AMF configurations for applications and

deploying them in the cloud is proposed. The generation process is devised with an intention to

generate configurations that can provide and protect the services with requested level of service

availability and also to deploy them using a minimum number of physical hosts.

 An availability estimate method is proposed to evaluate the availability of service by

considering the availability of all the entities that participate in providing the service. In particular,

this method takes into account the impact due to collocation. This method is used to eliminate the

configurations that do not meet the requested level of service availability.

An AMF entities creation method is proposed to determine the number of AMF entities

that satisfies availability and resource utilization requirements. In particular, this method

determines the number of AMF entities required to build an AMF application by taking into

account the minimum number of redundant entities, the potential interference that may occur due

to collocation and also the physical host and VM’s capacity limitation.

A method to deploy AMF applications in the cloud is proposed. This deployment process

is defined to install and run AMF applications in the cloud without jeopardizing the availability.

Further, the deployed applications are integrated with the existing Monitoring architecture [21]

99

and Elasticity Engine [22], so that the workload of the applications can be managed effectively.

Finally, as a proof of concepts of the above proposed solutions has been developed as a prototype

tool.

An application for the AMF configuration generation process in the domain of NFV [45]

has been developed. Using this process, configurations can be generated for AMF managed VNFs

[44]. For this purpose, the appropriate mapping between both fields has been proposed. The

information about the number of entities calculated during this process can be used to configure

and deploy VNFs in the NFVI.

7.2 Potential future research direction

There are few aspects that can be investigated further in this research. The AMF

configuration generation and deployment process is designed for a service type. In future, one may

consider to generate and deploy configurations for many service types. Also, while determining

the number of entities, one may consider to deploy the applications over heterogeneous physical

hosts. Furthermore, configuration management tools like Chef [47] and Puppet [48] can be

considered to deploy AMF applications in the cloud.

100

References

[1] M.Toeroe and F.Tam, Service Availability: Principles and Practice, 1st edition, Wiley 2012

[2] L.M.Vaquero, L.Rodero-Merino, J.Caceres, M.Linder, ”A Break in the Clouds: Towards a Cloud

Definition”, Volume 39, Number 1, January 2009

[3] M.Armbust, A.Fox, R.Griffith, A.D.Joseph, R.Katz, A.Konwinski, G.Lee, D.Patterson, A.Rabkin,

I.Stoica and M.Zaharia, “A View of Cloud Computing”, DOI: 10.1145/ 1721654 .1721672

[4] K.Clay,“Amazon.com Goes Down, Loses $66,240 Per Minute”,[Online] Available:

http://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-

minute/#693b4d7a3c2a, [Accessed 19th September 2016]

[5] Q.Zhang, L.Cheng,R.Boutaba “Cloud computing: state-of-the-art and research challenges ”

J Internet Serv Appl (2010) 1:7-18

[6] M.Pearce, S.Zeadally, R.Hunt, “Virtualization: Issues, Security Threats and Solutions”, ACM

Computing Society, Vol. 45, No.2, Article 17.

[7] P.T.Endo,A.V.A.Palhares,N.N.Pereira,G.E.Goncalves,D.Sadok,J.Kelner,B.Melander and J.Mangs

“Resource Allocation for Distributed Cloud: Concepts and Research Challenges”, IEEE Network,

July/August 2011

[8] “Service Availability Forum” [Online] Available: www.saforum.org, [Accessed 19th September

2016]

[9] P.Pourali, “Pattern-based Generation of AMF Configurations”, Master Thesis, Concordia

University, 2014

[10] Service Availability Forum, Application Interface Specification. Availability Management

Framework SAI-AIS-AMF-B.04.01.,” 2011.

[11] A. Kanso, “Automated Configuration Design and Analysis for Service High-Availability,” PhD

Thesis, Concordia University, 2012.

[12] P. Salehi, “A Model Based Framework for Service Availability Management,” PhD Thesis,

Concordia University, 2012.

[13] SAForum, “Service Availability Forum, Service Availability Interface Overview,” 2011.

[14] National Institute of Standards and Technology, “The NIST definition of Cloud computing”,

Special publication 800-145, 2011 pg-2-3

[15] SA Forum, “Service Availability Forum, Application Interface Specification. Software

Management Framework SAI-AIS-SMF-A.01.02.AL.,” 2011

[16] Google App Engine, [Online] Available: https://cloud.google.com/appengine/ [Accessed: 19th

September 2016]

[17] A. Kumawat, “Cloud Service Models (IaaS, SaaS, PaaS)+How Microsoft Office 365 Azure Fit

In”[Online] Available: http://www.cmswire.com/cms/information-management/cloud-service-

models-iaas-saas-paas-how-microsoft-office-365-azure-fit-in-021672.php [Accessed: 19th

September 2016]

[18] OpenStack , [Online] Available: https://www.openstack.org/ [Accessed: 19th September 2016]

http://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#693b4d7a3c2a
http://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#693b4d7a3c2a
http://www.saforum.org/
https://cloud.google.com/appengine/
http://www.cmswire.com/cms/information-management/cloud-service-models-iaas-saas-paas-how-microsoft-office-365-azure-fit-in-021672.php
http://www.cmswire.com/cms/information-management/cloud-service-models-iaas-saas-paas-how-microsoft-office-365-azure-fit-in-021672.php
https://www.openstack.org/

101

[19] Nova System Architecture, [Online] Available: http://docs.openstack.org/developer/

nova/architecture.html [Accessed: 19th September 2016]

[20] OpenStack compute Scheduler, [Online] Available: http://docs.openstack.org/kilo/config-

reference/content/section_compute-scheduler.html [Accessed: 19th September 2016]

[21] M.N.A.Khan, “Monitoring Service Level Workload of Highly Available Applications,” Master

Thesis, Concordia University, 2015.

[22] N.Pawar, “Managing High-Availability and Elasticity in a Cluster Environment”, Master Thesis,

Concordia University, 2014

[23] SAForum, “Service Availability Forum, Information Model Management Service”

[24] D.Jayasinghe, C.Pu, T.Eilam, M.Steinder, I.Whalley,E.Snible,”Improving Performance and

Availablity of Services Hosted on IaaS Clouds with Structural Constraint-aware Virtual Machine

Placement” 2011 International Conference on Services Computing.

[25] E.Bin,O.Biran,O.Boni,E.Hadad,E.K.Kolodner,Y.Moatti,D.H.Lorenz,”Guaranteeing High

Availability Goals for Virtual Machine Placement” 2013 31st International Conference on

Distributed Computing Systems.

[26] M.Jammal,A.Kanso,A.Shami,”High Availability-Aware Optimization Digest for Applications

Deployment in Cloud” IEEE ICC 2015-Communications Software, Services and Multimedia

Applications Symposium

[27] F.Machida, M.Kawato and Y.Maeno,”Redundant Virtual machine Placement for Fault-tolerant

Consolidated Server Clusters” 2010 IEEE/IFIP Network Operations and Management

Sysmposium- NOMs 2010:Mini-Conference.

[28] J.Li,Q.Lu,L.Zhu,L.Bass,X.Xu,S.Sakr,P.L.Bannerman,A.Liu,“Improving Availability of Cloud-

Based Applications through deployment Choices”2013 IEEE Sixth International Conference on

Cloud Computing.

[29] A.Abouzamazem, P.Ezhilchelvan,”Efficient Inter-Cloud Replication for High Availability

Services” 2013 IEEE International Conference on Cloud Engineering.

[30] M.E.Frincu,C.Cracium,”Multi-objective Meta-heuristics for Scheduling Applications with High-

Availability Requirements and Cost Constraints in Multi-Cloud Environments” 2011 Fourth IEEE

International Conference on Utility and Cloud Computing.

[31] SA Forum, “Service Availability Forum, Application Interface Specification. Cluster Membership

Service, SAI-AIS-CLM-B.04.01” 2011

[32] M.J de Smith, Statistical Analysis Handbook [Online].Available: http://www.statsref.com

/HTML/index.html?poisson.html (accessed September 11, 2016).

[33] J.Heo,X.Zhu,P.Padala,Z.Wang, “Memory Overbooking and Dynamic Control of Xen Virtual

Machines in Consolidated Environments”, IFIP/IEEE International Symposium on Integrated

Network Management, 2009.

[34] OpenSAF [Online]. Available: http://devel.opensaf.org/

[35] Amazon auto scaling [Online].Available: https://aws.amazon.com/autoscaling/

[36] Eclipse Modelling tools [Online]. Available: https://eclipse.org/downloads/ packages/release

/Luna/SR2

[37] Java Swing [Online]. Available: http://docs.oracle.com/javase/6/docs/technotes/guides/swing/

http://docs.openstack.org/developer/%20nova/architecture.html
http://docs.openstack.org/developer/%20nova/architecture.html
http://docs.openstack.org/kilo/config-reference/content/section_compute-scheduler.html
http://docs.openstack.org/kilo/config-reference/content/section_compute-scheduler.html
http://devel.opensaf.org/
https://aws.amazon.com/autoscaling/
https://eclipse.org/downloads/%20packages/release%20/Luna/SR2
https://eclipse.org/downloads/%20packages/release%20/Luna/SR2
http://docs.oracle.com/javase/6/docs/technotes/guides/swing/

102

[38] Eclipse Modeling Framework Core (Ecore) [Online]. Available:

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-

summary.html

[39] Eclipse Modeling Framework (EMF) [Online]. Available: http://www.eclipse.org/modeling/emf/

[40] Service Availability Forum, Application Interface Specification (ETF schema describing the

software bundle and the entity types’ relations and features) SAI-AIS-SMF-ETF-A.01.02.xsd,”

2011.

[41] DOM4J parser [Online]. Available: http://dom4j.sourceforge.net/dom4j-1.6.1/guide.html

[42] VMware – Using the snapshot [Online]. Available:

https://www.vmware.com/support/ws4/doc/preserve_snapshot_ws.html

[43] Apache JMeter [Online]. Available: http://jmeter.apache.org/usermanual/

[44] Network Functions Virtualization (NFV); Virtual Network Functions Architecture ETSI GS NFV-

SWA 001 V1.1.1 (2014-12).

[45] Network Functions Virtualization (NFV); Architectural Framework, ETSI GS NFV 002 V1.2.1

(2014-12)

[46] Network Functions Virtualization (NFV); Management and Orchestration ETSI GS NFV-MAN

001 V1.1.1 (2014-12)

[47] Chef configuration management [Online]. Available: https://www.chef.io/solutions/infrastructure-

automation/

[48] Puppet configuration management [Online].Available: https://puppet.com/solutions/cloud-

management

[49] Microsoft Office 365 [Online]. Available: https://technet.microsoft.com/en-

us/cloud/gg697163.aspx

[50] Network Functions Virtualization (NFV); Management and Orchestration; VNF Packaging

Specification, ETSI GS NFV-IFA 011 V2.1.1 (2016-10)

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://www.eclipse.org/modeling/emf/
http://dom4j.sourceforge.net/dom4j-1.6.1/guide.html
https://www.vmware.com/support/ws4/doc/preserve_snapshot_ws.html
http://jmeter.apache.org/usermanual/
https://www.chef.io/solutions/infrastructure-automation/
https://www.chef.io/solutions/infrastructure-automation/
https://puppet.com/solutions/cloud-management
https://puppet.com/solutions/cloud-management

