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ABSTRACT 

Many lakes are receiving large volumes of contaminants from agricultural 

discharges, industrial emissions and municipal wastewater, which causes significant 

surface water pollution. The adverse environmental and health effects of lake 

contamination are a primary concern in environmental management. Water quality 

assessment methods and pollution control planning models are useful tools for 

researchers and decision-makers to protect ecological environments and develop local 

economies. Also spatial information technologies such as Geographic Information 

Systems (GIS) make it possible to manage water bodies with more detailed location-

based information.  

The goal of this thesis is to develop a GIS-based water quality assessment and 

pollution control planning approach for lake management (WQAPCP), which includes 

the following components: (1) evaluation of water quality based on four index methods 

with inter-comparisons; (2) pollution control planning for a lake system based on an 

integration of pollutant distribution simulation and optimization models along with water 

quality index measures; (3) GIS technology to help implementing water quality 

assessment and lake contamination control optimization by creating displayed maps of 

the study results to provide spatial support for decisions. 

Several water quality evaluation methods are first presented in this thesis within 

the GIS framework to examine water quality index models, including the US Oregon 

water quality index (OWQI), the Canadian water quality index (CWQI), the Chinese 
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single-factor water quality index (CNWQI-S) and the Chinese comprehensive water 

quality index (CNWQI-C) methods. These index methods are applied to assess the water 

quality of a real case. The assessment results are presented in the form of GIS maps 

containing the spatial distribution of the water quality levels and their ranking. Through 

an example of sensitivity analysis and comparison of four sets of water quality 

assessment results, the parameters with the most significant influence on lake water 

quality are identified and the most suitable method of water quality evaluation is put 

forward to support future lake management. 

Subsequently, this thesis develops a simulation-optimization approach by 

integrating lake water quality simulation and lake pollution control optimization. A 

contaminant dispersion simulation is first conducted to provide input for the optimization 

study. Particularly, a single-objective programming (SOP) model and a multi-objective 

programming (MOP) model are developed, applied, and compared to support effective 

lake water contamination control planning under different lake management scenarios. 

Three periods and a set of significant levels are considered in the real case study to 

provide a comprehensive dynamic modeling and optimization analysis of lake pollution 

control through the simulation-optimization approach. Based on the developed 

optimization method and the case study results, the OWQI and CNWQI-C methods are 

utilized to help formulating the effective measures for lake water quality management.  

GIS technology is employed in this study to link the water quality assessment 

approaches and the lake pollution control optimization. By integrating the relevant data 

and creating visualized maps of the study results, GIS plays an important role in 
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extending the modeling and assessment results for the lake water quality management 

with spatial geo-references.  
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CHAPTER 1 INTRODUCTION` 

1.1 Problem Statement 

In recent decades, aquatic ecological deterioration and the degradation of surface 

water have turned into primary environmental concerns all over the world (Sánchez-

Avila et al., 2009). Out of the various types of water bodies, lakes are facing a 

particularly significant challenge because their water quality is descending along with the 

growth of human populations while industry and agriculture are advancing rapidly 

(United Nations, 2014). Lakes inevitably receive large volumes of agricultural discharge, 

industrial sewage, and municipal wastewater which cause water body pollution at 

different levels (Jing et al., 2008). Moreover, the quantity of contaminants discharged 

into lakes has significantly increased, especially in developing nations (Zhao et al., 2006). 

These pollutants include microbiological organisms, suspended matter, biodegradable 

organic compounds, heavy metals, nitrates, nutrients, salts, and organic micropollutants 

(Helmer and Hespanhol, 2011). The degradation of lake water quality is consequently 

turning into an urgent issue in most countries (United Nations, 2014). Lake 

eutrophication, for example, has become a major pollution problem worldwide, 

especially in areas with high-density populations and intensive agricultural activities 

(Anders, 2012). 
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Surface water quality evaluation through multi-parameter indices plays a significant 

role in environmental control and management. Decision-makers can make effective 

policies to manage water bodies based on the results for water quality assessments. Since 

the last century, environmental researchers have studied and produced several water 

quality evaluation methods worldwide (Hurley et al., 2012). A water quality index model 

called the National Sanitation Foundation Water Quality Index model (NSF WQI, later 

named AWQI) was first proposed (Horton, 1965; Lumb et al., 2011). Brown et al. (1973) 

then put forward a version of NSF WQI modified using the multiplicative method 

(hereafter named MWQI). The Oregon Department of Environmental Quality later 

presented the well-known Oregon water quality index (OWQI) (Cude, 2001). This was 

followed by a new water quality index (CCME-WQI, abbr. CWQI) developed by the 

Canadian Council of Ministers of the Environment (CCME) (CCME, 2001). Finally, 

based on the Chinese 5-level water quality standard (GB3838, 2002), water quality 

evaluation approaches in China were developed including the single-factor water quality 

index (CNWQI-S) and comprehensive water quality index (CNWQI-C) assessment 

methods (Zhu et al., 2010; Li et al., 2012). 

During the same period, several optimization programming techniques were also 

used for water contamination management and decision-making. A plant aggregation 

approach was presented by Zhao et al. (2009) to balance local industry and wastewater 

discharge. An integrated programming model was developed by Ham et al. (2010) in 

planning the scale of constructed wetlands to improve water quality. By the single 

objective method, Liu et al. (2008) proposed a linear programming model with inexact 
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chance-constraints to optimize water pollution management. Cheng and Chang (2010) 

proposed a multi-objective, fuzzy genetic algorithm-based programming model to control 

water contamination in river basins. 

The measures mentioned above have advantages and limitations as water quality 

assessment methods and approaches to pollution control planning. In the traditional water 

quality index (WQI) evaluation methods, AWQI and MWQI are arbitrary since their 

most significant parameters and weights were derived from the opinions of water experts 

based on field-test data. Due to its data requirements, CWQI is not usable for most 

projects. CNWQI-S is also too one-sided because of its negation of all the other better 

data. Both the OWQI and CNWQI-C models have more advantages and are thus 

employed to a greater degree in the following chapters of this thesis. In lake water quality 

management, there is a series of issues regarding inter-effects among the parameters such 

that if only a single sector is considered, the relevant results will be inexact or even 

incorrect, and the related conclusions will not provide useful guidance to decision-makers. 

Most previous optimization techniques faced difficulty in clearly illuminating the inter-

reactions between all relevant elements due to the large amounts of data, competing 

objectives, unquantifiable factors and uncertainty during parameterization (Cheng and 

Chang, 2010). Researchers have to seriously consider multiple procedures with complex 

interrelationships.  

In summary, all existing water management measures have limitations and little 

related research toward integrating: 1) water quality assessment methods; 2) pollution 
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control planning models; and 3) convenient and direct methods of showing the scale of 

contamination of water bodies.  

Accordingly, this research presents a GIS-based water quality assessment and 

pollution control planning approach for lake management (WQAPCP). This measure is 

effective for managing lake-related data, facilitating the application of water quality 

index methods and contamination control optimization models, and helping to 

communicate complex information, including indices of examined results and 

optimization data, to a wide range of groups through map-oriented visualizations. In this 

thesis, there are comparisons based on the four traditional water quality evaluation 

methods and SOP and MOP models as well as further comparisons of two index-

assessment measures based on the same planning results. GIS technology shows strong 

advantages in its recent application to environmental projects to integrate water 

management measures through the efficient handling of pollutant distribution, water 

quality parameters, socioeconomic data and geophysical features. With powerful 

functions for visualizing data and analyzing results, GIS can help decision-makers 

achieve a better balance between water pollution control and economic development 

(Debaine and Robin, 2012). The integration of GIS, water quality assessment and 

contamination control optimization synthesizes their functions and advantages and makes 

conclusions more acceptable to a variety of stakeholders. To validate the practicability of 

this study, a real case, named Huang Jia Hu Lake (abbr. HJH Lake) and located in 

Central China, was employed in the research. 
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1.2 Research Objectives  

This thesis aims to develop a GIS-based water quality assessment and pollution 

control planning approach for lake management (WQAPCP) which includes water 

quality assessment methods, pollution control planning models, and GIS technology. The 

results for water quality evaluation and lake optimization are presented in maps which 

clearly show the differences between a diversity of compared approaches. Moreover, 

WQAPCP is performed in detail according to the following steps: 

(1) To evaluate water quality assessment methods based on comparison and analysis 

using OWQI, CWQI, CNWQI-S and CNWQI-C index models, where key water 

quality parameters are considered. 

(2) To develop a modeling approach for lake pollution control planning based on 

certain objectives and a number of environmental, social and economic 

constraints with a comparison between SOP and MOP models. Based on the 

same planning results, OWQI and CNWQI-C methods are respectively applied 

in a real case study to identify a better method of index evaluation of water 

quality. 

(3) To propose a new lake management approach integrating water quality 

assessment, lake contamination control optimization models and a GIS 

framework. The case studies are all conducted on the same real case. 
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(4) To evaluate trade-offs between economic benefits, lake water quality and other 

factors and provide feasible options to decision-makers through the integrated 

approach. 

1.3 Thesis Organization  

Six chapters are organized in this thesis: 

Chapter 1 shows the research background, states the research problems, specifies the 

research objectives and briefly presents the research methodologies. 

Chapter 2 provides an extensive literature review regarding water quality assessment, 

optimization modeling, and the integration of Geographical Information Systems. 

Chapter 3 describes the theories and methodologies regarding the development of a 

lake management approach, including water quality assessment methods and lake 

pollution control optimization models. The evaluation and planning models are integrated 

with the ArcGIS Engine and databases. 

Chapter 4 provides a real case study wherein four water quality assessment methods 

are applied within a GIS framework. Based on widely-used index measures (OWQI, 

CWQI, CNWQI-S, and CNWQI-C), the water quality results for the evaluation clearly 

present the diversity of results obtained by using these evaluation methods in different 
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water areas. Additionally, an example of sensitivity analysis is presented to discover the 

controlling parameters which exert a significant influence on lake water quality. 

Chapter 5 depicts the same case, wherein water quality simulation and lake pollution 

control planning are applied based on GIS technology. Firstly, contaminant dispersion 

simulation plays a significant role in validating the probability of the following lake 

optimization. Then, two planning approaches for modeling lake systems, the SOP model 

and the MOP model, are presented and compared in order to identify a more acceptable 

approach for lake planning. Finally, there is a modeling comparison between the OWQI 

and CNWQI-C methods based on MOP optimization under two probabilities and two 

periods.  

Chapter 6 exhibits the conclusions and research contributions as well as 

recommendations for future work. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter provides an overview of several water quality assessment methods, 

water pollution control optimization models, and water quality management-based 

geographical information systems. These evaluation measures, planning models, and 

spatial data techniques are partly used in this thesis to validate their feasibility and put 

forwards thoughtful options regarding lake protection and contamination control to 

decision-makers. 

2.1 Water Quality Assessment 

2.1.1 Water quality index methods 

In 1848, German experts proposed the concept of water quality to classify water 

levels based on grades of pureness or contamination (Sladecek, 1973; Dojlido and Best, 

1993). Meanwhile, the significance of the connection between human health and water 

quality was discovered in Britain and Snow identified poor water quality as the cause of 

the spread of cholera (Snow, 1854).  

Since the introduction of the concept of water quality, scientists have spent more 

than 100 years advancing the technology used to evaluate it. In 1965, Horton applied the 

measure of digital indices to assess water quality in the Ohio River, and a numerical 

system for the water quality index (WQI) was used to categorize water quality through 
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the selection and integration of relevant physical, chemical and biological water 

parameters based on certain proportions. An improved water quality index model called 

the National Sanitation Foundation Water Quality Index (NSF WQI, later named AWQI) 

model was used. The sub-index ranges from 0 to 100, the weighting factors have a range 

of 0-1, and the results rise from the sum of the relative values. Although the AWQI 

model was easy to use and calculate, it had the limitation of sensitivity insufficiency in 

the case of a single parameter overpassing its guideline on the WQI. Therefore, Brown et 

al. (1973) presented a multiplicative model based on the NSF WQI (later called MWQI). 

These two measures were widely verified at dozens of stations in several American states 

(McClelland, 1976a, 1976b; Steinhart et al., 1981). Afterwards, the models and concepts 

derived from the NSF were adjusted or modified for use in rating the quality of surface 

water all across the USA (Dunnette, 1979; Steinhart et al., 1982). 

In the past couple of decades, the Oregon Water Quality Index (OWQI) method was 

used extensively to evaluate surface water quality worldwide. In the OWQI model, 

aggregate amounts are integrated to build a score representing different quality 

graduations to assess water quality (Cude, 2001). The employment of the OWQI measure 

markedly developed the technology of water quality evaluation in the 1970s (Dunnette, 

1979). Subsequently, the advanced OWQI was used in 1995 to show the status and 

tendency of water quality to policy makers and the public 

(http://www.deq.state.or.us/lab/WQM/WQI/wqimain.htm). The OWQI model integrated 

into a large number of environmental indicators has become a tool for providing 

traditional reports including water quality status descriptions and water quality 

http://www.deq.state.or.us/
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assessment analysis (Cude, 1999). Moreover, the OWQI approach was also used and 

amended to build other water quality indices in Australia (Richard, 1997). Until now, the 

OWQI method has been accepted worldwide for application in surface water 

management and extensively adopted in daily environmental communications on water 

quality. 

A new measure was proposed in the late 1990s in the form of the Canadian Council 

of Ministers of the Environment (CCME) Water Quality Index (CWQI). It was entirely 

different from the index based the NSF concept. The CWQI model is a necessary tool to 

guide users in collecting sufficient water quality data from sampling stations and putting 

them into index values. According to a series of technical reports across Canada, the 

index was improved to be the ultimate measure after the study was completed in the 

province of British Columbia (Rocchini and Swain, 1995; B.C. Ministry of Environment, 

1996). The CWQI has been employed to determine the water quality status in the 

provinces of British Columbia, Newfoundland and Alberta (Newfoundland Department 

of Environment, 2001), as well as in the city of Edmonton and the Toronto Region 

Conservation Authority (City of Edmonton, 2003; Forester, 2000). In the city of Halifax, 

a workshop was established to help researchers obtain practical experience with the 

CWQI in 2003 (Environment Canada, 2003). This index measure was employed in the 

workshop as an available tool to share water quality results arising from a large amount 

of complex sampling data. Using the CWQI model, the Canadian government created the 

Canadian Environmental Sustainability Indicators (CESI) for reporting on environmental 

information including air quality, water quality, and greenhouse gas emissions (CESI, 
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2008). Furthermore, the CWQI method was able to show the distribution of nutrients, 

pesticides, bacteria and metals in water bodies through sub-indices (AEP, 2016). The 

United Nations Environmental Program regards the CWQI model as a valuable measure 

for evaluating the quality of drinking water worldwide (Rickwood and Carr, 2009).  

As one of the most advanced Asian countries, China has unique measures to water 

quality assessment. In most of central and southern China, the primary source of drinking 

water is surface water because of its low cost and convenience. Based on the Chinese 

secure guarantee plan for public drinking water resources, some concepts were defined to 

present a security assessment of municipal drinking water resources. By using a method 

integrating water quality, water quantity, risk resistance capability and the security 

assessment indicator system, Zhu et al. (2010) conducted a safety assessment of general 

drinking water resources in China. Based on the results for the water quality security 

evaluation, the water quantity and risk-resistance capability of water resources in cities 

were assessed in their research. Water quality assessment was the first step toward the 

protection and management of water bodies. On the basis of "Chinese Surface Water 

Environment Quality Standard" (GB3838, 2002), the water quality evaluation index was 

classified into five levels, 1 to 5, respectively representing 5 types of water quality classes: 

excellent, good, medium, poor, and very poor. There are two methods for evaluating the 

quality of surface water resources, namely the single-factor assessment (abbr. CNWQI-S) 

method and the comprehensive assessment (abbr. CNWQI-C) method. For CNWQI-S, 

the maximum individual index is treated as the water quality assessment index for the 

relevant projects. The results for CNWQI-C need to be computed based on the relevant 
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equations and requirements (Li et al., 2012). 

2.1.2 Other water quality assessment studies 

In addition to the above index assessment methods to assess water quality 

management, there are several other evaluation methods in water-focused environmental 

fields. They include the fuzzy-set method, Multi-variate statistical techniques, the 

biological-indicator measure, etc. 

Examining many types of uncertainties and vagueness in the studies of water quality 

assessment, Lotfi A. Zadeh established fuzzy logic as a perfect measure to tackle these 

problems (Zadeh, 1999). Since then, the risk evaluation connected with environmental 

issues has been discussed in many reports according to the fuzzy set theory. In 1995, 

Smith presented a fuzzy aggregation method for the assessment of environmental quality. 

A method integrating fuzzy risk evaluation was proposed by Chen et al. (1998) to assess 

environmental risk from petroleum-polluted stations. They (2003) then advanced a fuzzy 

random risk-evaluation method to examine uncertainties regarding water quality 

requirements and assessment regulations for groundwater systems. Rehana and 

Mujumdar (2009) provided a fuzzy-set-based model for waste load distribution to deal 

with uncertainties due to the lack of data regarding hydrological parameters. The fuzzy 

synthetic assessment approach was employed by Zheng et al. (2007) in a waste-dumping 

area where the classification of the sea water quality was based on the maximum 

membership principle. A developed fuzzy system assessment method was presented by 
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Liu et al. (2012) to evaluate the water quality in the Three Gorges region. The researchers 

achieved more reliable results by using the weighted average principle to replace the 

maximum membership policy. 

Multivariate statistical techniques have been used in recent decades to assess the 

unique temporal variations in water quality. As space and time often change, water 

quality is difficult to interpret precisely in a sampling program. Representativeness and 

reliability are needed to present the water quality assessment of water bodies (Dixon and 

Chiswell, 1996). Several techniques including cluser analysis, primary ingredient analysis, 

and element analysis are applied to easily describe the water quality and environmental 

states of the researched systems, to identify the probable factors which impact water 

bodies and to provide a suitable tool for pollution control and water management (Vega 

et al., 1998; Lee et al., 2001; Wunderlin et al., 2001; Reghunath et al., 2002). In 2009, 

Pejman et al. provided a method using multivariate statistical techniques to assess the 

variations of water quality across various spaces and seasons. They collected water 

quality data from 8 monitoring sites in the Haraz River Basin across four seasons from 

2007 to 2008. Based on cluster analysis, primary ingredient analysis, and element 

analysis, these researchers drew the conclusion that the consideration of the temporal 

changes of parameters is necessary for the quality evaluation of surface water ( Pejman et 

al., 2009). 

The biological indicator method is often used in water quality assessment due to the 

information organisms reveal about their environment. While the indicator concept has a 
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long history dating back as far as the time of Aristotle, it has increasingly become the 

focus of modern environmental study. Not only can it describe and classify ecosystems 

and express the impact of human activities, it can also show the status of environmental 

recovery (Johnson, 1995). In 2010, Resende et al. used macroinvertebrates and periphytic 

diatoms as biological indicators to evaluate the water quality of the UI River in Portugal. 

Based on the assessment results, they concluded that the river did not have the ideal 

requirements for establishing a fluvial beach. Macroinvertebrates and periphytic diatoms 

were suitably applied as biological indicators to assess the water quality in the UI River 

(Resende et al., 2010). 

2.2 Modeling for Lake Water Management  

2.2.1 Lake water quality modeling  

The method of employing digital simulations for water quality assessment, 

prediction and management is popularly accepted due to its positive effects. At present, 

many researchers use the modeling method to attain promising results regarding water 

quality, hydrodynamics, sediments, toxicants and heavy metal loads in surface water. 

Moreover, decision-makers also rely on the results for numerical modeling to establish 

environmental policies and plans (Gong, 2016). Although water bodies provide human 

beings with pleasant environments, there has not yet been wide academic attention paid 

to levels of water quality due to the lack of real simulation case studies. Compared with 

other types of surface water, lakes are more vulnerable due to their particular 
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geographical locations and the difficulties in preserving their ecological environments 

and implementing restoration measures. Lake ecosystems are often impacted by human 

activities. They are easily destroyed by accepting large volumes of pollutants from 

agricultural discharge, industrial sewage, and municipal wastewater. In recent years, lake 

water has been facing a major challenge. Its water quality is descending along with the 

growth of human populations and the rapid advance of industry and agriculture (United 

Nations, 2014). For example, Lake East in the city of Wuhan, Lake Kunminghu in the 

city of Beijing and Lake Dianchi in the province of Yunnan (Gao et al., 2005; Jing et al., 

2008; Yang et al., 2007) all suffer contamination problems which are likely to affect the 

functions of the lake water.  

Currently, there are a few studies which focus on the changes undergone by lake 

water systems under the influence of industry, agriculture, rearing and climate (Miller et 

al., 2014). David (2000) provided a near-shore mixing model to simulate pollutant 

dispersion in great water bodies. Silva et al. (2011) employed zero-dimensional and one-

dimensional models to describe the status of lakes as a part of a regional water system. In 

some studies, arguments arose about the establishment of more elaborate numerical 

modeling for lakes to resolve ecosystem issues including the interactions between water 

quality parameters, the availability and demand for hydrodynamic procedures, and the 

environmental heterogeneity of the ecosystems (Missaghi et al., 2013). 

2.2 .2 Optimization for water quality management 
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Over recent decades, several optimization programming techniques have been 

employed for water quality management and related decision-making. For example, an 

aggregation approach for plants was presented by Zhao et al. (2009) to assess the spatial 

arrangement of local industry development and the relevant pollutant-laden wastewater 

discharge. In planning the scale of constructed wetlands, an aggregated programming 

model was developed by Ham and al. (2010) to control contaminant loads and improve 

water quality. Aiming to minimize the total cost, Liu and al. (2008) proposed an inexact 

chance-constrained linear programming model to optimize water quality management at 

the watershed scale. Based on optimal environmental and economic conditions, Zhang et 

al. (2013) discussed a particular risk interval linear programming model in the lake Fuxin 

watershed. In another Chinese lake named Qionghai, Liu and al. (2011) presented a 

similar programming model for reducing nutrient load in the aquatic ecosystem. Spanou 

and Chen (2001) discussed an objective orientation method to control point-source 

contamination in river ecosystems. In a planning system, Cheng and al. (2003) proposed 

the approach of improving local water quality to support decision-making. Chen and 

Chang (1998) addressed a multi-objective fuzzy genetic algorithm-based programming 

model to treat water pollution in the river basin. 

The previous researchers presented various problems related to water bodies and 

provided several measures to manage them and control their level of pollution. However, 

it is difficult for most of them to clearly illuminate the interrelations between all the 

relevant elements due to the large amounts of data, applicable sub-models, competing 

objectives, unquantifiable factors and uncertainty during parameterization (Chen and 
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Chang, 1998). Imperatively, the aquatic environment provides a clean water supply and 

various habitats for marine life, wildlife, and human beings (Zedler and Kercher, 2005). 

Therefore, when beginning to select the parameters of the optimization programming 

model, researchers should seriously consider multiple procedures with complicated and 

real interrelationships. In each water-based ecological environment, one or more of the 

most significant objectives, such as total net benefits, direct and indirect costs of water 

pollution control, water quality improvement and the effective utilization of water 

resources should be chosen and taken into account after elaborative comparisons. 

Simultaneously, a larger number of constraints need to be incorporated into programming 

models due to the uncertainties and complications based on data availability, 

programming simulation, and calculation processes in the system (Liu et al., 2012). For 

example, the net benefit of agricultural cultivation always varies according to the price of 

crop products and the cost of investment, including labor and fertilizer, and the amount of 

available water resources is greatly impacted by weather conditions such as drought or 

waterlog seasons. Although the system’s factors create many uncertainties and 

complexities by themselves or in tandem with each other, a probability distribution can 

be proposed in programming models to resolve the above problems (Huang et al., 1992). 

In the optimization process, the first step is always the selection of objectives within 

the parameters, such as maximum net benefits, minimum cost, maximum reality and 

minimum risk, etc. There are often two important methods to choose from, such as the 

single-objective programming (SOP) model and the multi-objective programming (MOP) 

model. The SOP model uses the most significant parameter as a single objective or lumps 
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several objectives into a single one. However, it can hardly present a series of accurate 

solutions with these diverse objectives under inter-reaction and restriction. On the other 

hand, the MOP model provides a set of selectively integrated solutions due to the 

consideration of conflicting goals. During the period of model design or stage planning, 

the MPO model shows three primary developments in the optimization process to help 

make decisions (Cohon, 1978; Bandyopadhyay and Saha, 2013): 

 The MOP model provides a bigger scope of alternatives to support more 

reasonable suggestions. 

 During the period of MOP-based model planning, the researchers and 

decision-makers play roles in their respective working ranges. The former 

builds alternative solutions while the latter has the responsibility of making 

decisions according to the generated solutions. 

 When considering many objectives, the procedure and the results for the 

MOP model are more acceptable for the different relevant groups, 

particularly the public. 

The main characteristic of the SOP model is its ability to ascertain an optimal single 

goal. It can also be utilized in the MOP process except in a situation where various 

objectives are merged into a single one. One target among all the considered parameters 

is regarded as the single goal, while the others are listed in the constraints in the planning 

procedure. Although these limitations are allocated as constraints with specific 

requirements, they all play their objective roles with different degrees of acquirement (e.g. 
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maximum reliability levels) or run to gain results satisfying several areas of the public. 

Nevertheless, most real case studies meet these alternatives, which are difficult to classify 

into precise values. Therefore, in most cases the MOP model is more useful in dealing 

with complex problems due to its wider scope of alternatives. In optimization projects, 

there are usually many actors and stakeholders. If the opinions and suggestions of all 

participants are considered, the whole procedure becomes complicated, potentially even 

to the point that it cannot be carried out. Thus, the process of planning models needs to be 

simplified so that it simply involves two primary actors: modelers and decision-makers. 

Modelers have the professional capability to present technical information about an issue 

to decision-makers. The techniques of optimization modeling are applied by these experts 

to show the processes and results for planning models to the managers in detail. In the 

MOP model, all designed objectives are agreed upon by both modelers and decision-

makers so that the responsibilities of both participants are balanced. However, the SOP 

model places too great a burden on the shoulders of the model runners due to its single-

objective format (Dragan, 2008). 

2.3 GIS-Based Water Quality Management 

The GIS plays a significant role in water quality management, including water 

quality assessment and pollution control, due to its powerful capacity for analyzing and 

displaying a large amount of spatial data. It shows data and analysis results to researchers 

and decision-makers via clear visualization (Debaine and Robin, 2012). In the field of 

water management, many scientists have discussed and analyzed relevant measures based 
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on GIS (Huang and Jiang, 2002; Halls, 2003; Jiang et al., 2012; McKinney and Cai, 

2002). Within the GIS framework, two extreme types of matching, loose and tight, were 

studied. Loose matching is conducted to transmit the database between the GIS platform 

and the modeling program. It helps to exploit the cartographic abilities of GIS and allows 

model researchers to flexibly select the most suitable models. The principal disadvantage 

of loose matching is the requirement of further implements for the proper formation of 

data files (Santini et al., 2010). In tight matching, analytic functions and a macro 

language are employed to develop the models entirely within the GIS framework. 

However, strong computer programming skills are necessary for the application of this 

approach due to its complexity (Al-Sabhan et al., 2003). In addition, several common 

methods were used in the employment of GIS. A five-class pyramid approach was 

provided by Brandmeyer and Karimi (2000) to represent the gradually advancing classes 

with integration. The five levels are one-way transfer, loose coupling, share coupling, 

joined coupling and tool coupling respectively. Based on a shared database, this measure 

presents functions and tools to calculate data and manage sources within multiple models. 

2.4 Summary 

In recent decades, water quality assessment methods and water pollution control 

planning models have been widely employed and improved in the realm of surface water 

management. The majority of the methods used in previous studies can be improved in 

terms of WQI-based management, effective lake pollution control based on optimization, 

spatial information management, and practicability. Moreover, the evaluation of water 
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quality and contamination control planning for water resources were limited when 

studied in isolation as water systems are complex due to the interrelation of their 

hydraulic, physical, chemical and biological factors. The results generated by water 

quality assessment methods and pollution control optimization modeling of water bodies 

contain limited spatial distribution information, which may be insufficient to use for the 

protection and management of surface water. Spatial data management, lake water 

quality assessment methods, and pollution control planning models can be extended by 

using GIS. It would have a powerful capacity for water quality evaluation, pollution 

control planning and visualization of data results. The results would be clear and easy to 

compare, and better decisions would likely follow. This thesis plans to build a practical 

approach for integrating lake quality index methods and pollution control planning 

models with GIS technology to manage lake water. The details of the GIS-based lake 

management approach will be elaborated upon in the next chapter.  
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CHAPTER 3 METHODOLOGY 

3.1 Methodology Overview  

The major methodologies of the GIS-based water quality assessment and pollution 

control planning approach for lake management (WQAPCP) applied in this thesis are 

shown in Figure 3-1. These methods included three components as follows: 

 Water quality assessment using four index methods, such as OWQI, CWQI, 

CNWQI-S and CNWQI-C, to describe the water quality status in the real case 

shown in Chapter 4. 

 Pollution control planning based on the simulation and validation of pollutant 

distribution, the first comparison between the single-objective programming 

model and the multi-objective programming model, and the further comparisons 

between the OWQI and CNWQI-C methods according to the same planning 

results. A more acceptable approach to lake optimization is provided in Chapter 

5. 

 The use of GIS technology to create visual maps of the study results and integrate 

water quality evaluation and contamination control optimization for lake 

management to provide recommendations for local administration.
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Figure 3-1 Overview of the proposed approach of WQAPCP
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3.2 Water Quality Assessment Methods 

3.2.1 US Oregon water quality index (OWQI) method 

The OQWI method is based on the AWQI and MWQI models and overcomes their 

respective disadvantages by processing the theory of equal weights (=1/n) for each sub-

index (Lumb et al., 2011). The core equation is shown as: 

    2 2 2 2
1 2 3[( ) ( ) / 1/ 1/ 1/ 1/  ( ) ( ) ]nOWQI n S S S S                                    (3-1) 

where OWQI is the Oregon water quality index, n is the number of sampled parameters, 

S1,2,3,……n is the result of a single sub-index of the parameters, respectively. 

The first step in applying the index formulae was to calculate the sub-index value Si 

for each parameter by using the following equations: 

Sub-index for phosphorus (P), SP (Cude, 2001) 

20.25 / :  100 299.5 0.1384PP mg l S P P   － － ; 

0.25 / :  10PP mg l S                                                                                (3-2)                                                                       

where P is phosphorus in ppm (or mg/l) and SP is the result of sub-index of phosphorus. 
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Sub-index for ammonium nitrogen (NH3-N), SNH3-N (Wepener et al., 1992) 

33 0.02: 100NH NNH N S    ;     

33 30.02 0.062: 500 110NH NNH N S NH N     ＜ ＋ ; 

3

2
3 30.062 0.5 :  40 /  .( )0 65NH NNH N S NH N   ＜ ＋ ;         

33 30.5:  5.8 32.5NH NNH N S NH N    ＞ ＋ .                                         (3-3)                                                                    

where NH3-N is ammonium nitrogen in ppm (or mg/l) and SNH3-N is the result of sub-

index of NH3-N. 

Sub-index for nitrate-nitrogen (NO3-N), SNO3-N (Dinius, 1987) 

            
3

0.2718
3125NO NS NO N 

                                                                           (3-4)                                                                                                  

where NO3-N is nitrate-nitrogen in ppm (or mg/l) and SNO3-N is the result of the sub-index 

of nitrate-nitrogen. 

Sub-index for 5-day Biochemical Oxygen Demand ( BOD5), SBOD5 (Cude, 2001) 

  
55 58 / :  100 0.1993BODBOD mg l S exp BOD      ;  

                
558 / :  10BODmg l BOD S  .                                                                                        (3-5)                                                                                                   
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where BOD5 is 5-day Biochemical Oxygen Demand in ppm (or mg/l) and SBOD5 is the 

result of the sub-index of 5-day Biochemical Oxygen Demand. 

Sub-index for Dissolved Oxygen (DO), SDO (Cude, 2001) 

    100% :  DO saturation Dos   

          ( ) 3.3 / : 10C DODO concentration DO mg l S  ; 

              23.3 / 10.5 / :  80.29 31.88 1.401C DO C Cmg l DO mg l S DO DO    ＜ ＋ － ; 

              10.5 / :  100C DOmg l DO S  . 

100% 275%:  100 100  ( 1.197 2) )(( )DODOs S exp DOs E     ＜ － . 

275% :  10DODOs S  .                                                                                        (3-6)                                                                                                               

where DO is Dissolved Oxygen in ppm (or mg/l) and SDO is the result of the sub-index of 

Dissolved Oxygen. 

Sub-index for Total Suspended Solids (TSS), STSS (Cude, 2001) 

40 / :  100TSSTSS mg l S  ; 

    40 / 220 / :  142.6  8.862 3TSSmg l TSS mg l S exp TSS E     ＜ ; 

220 / :  10TSSmg l TSS S ＜ .                                                                                         (3-7)                                                                                                 

where TSS is Total Suspended Solids in ppm (or mg/l) and STSS is the result of the sub-

index of Total Suspended Solids. 
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Sub-index for pH, SpH (Cude, 2001) 

4:  10pHpH S  ;  

 4 7 :  2.628 0.5200pHpH S exp pH  ＜ ; 

7 8:  100pHpH S ＜ ; 

8 11:  100 0.5188( 8( ))pHpH S exp pH   ＜ － ; 

11:  10pHpH S ＞ .                                                                                      (3-8)                                                                                                                  

where pH is a numeric scale to specify the acidity or basicity of a solution and SpH is the 

result of the sub-index of pH. 

Sub-index for Turbidity, STur (Wepener et al., 1992) 

 220 0.00( )1 30 689TurS ln ln Tur    ＋ －                                                   (3-9)                                                                  

where NTU is the unit of Turbidity and STur is the result of the sub-index of Turbidity. 

Sub-index for temperature, ST (Cude, 2001) 

11 : 100TT C S   ; 
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2 311 29 : 76.54 4.172 0.1623 0.0020557TC CT S T T T      ＜ ＋ － ; 

29 : 10TT SC ＞ .                                                                                        (3-10)                                                                                                                 

where T is temperature in ℃ andST is the result of the sub-index of temperature. 

3.2.2 Canadian water quality index (CWQI) method 

In the CWQI model, three factors for evaluating the water quality index are 

established by the Canadian Council of Ministers of the Environment (CCME, 2001). 

The details are shown as follows: 

Scope (F1): the number of parameters with which objective limits are not met, or, in 

other words, the frequency, expressed as a percent value, with which variables fail to 

fulfill their goals at least once within a limited time. Such variables are referred to as 

“failed variables”. The relative equation is presented in (3-11): 

   1     /       100F number of failed variables total number of variables               (3-11)   

Frequency (F2):  the frequency with which objectives are not met, which shows 

the percentage of individual tests not meeting objectives (“failed tests”). The equation is 

expressed in (3-12): 



 
29 

 

 2      /       10F number of failed tests total number of tests  0                   (3-12)                                    

Amplitude (F3): the amount by which the objectives are not met, which represents 

the value of the tests which did not meet their targets. The computation has three steps: 

The number of times by which individual concentration is greater than (or less than 

when the objective is a minimum) the goal is referred to as an "excursion" which can be 

expressed as follows. The test value must not exceed the aim.  

              / 1i i iexcursion Failed Test Value Objective -                                  (3-13)               

For cases in which the test value must not fall below the objective: 

                   /    1i i iexcursion Objective Failed Test Value                                    (3-14)                    

By integrating the computation of the excursions of individual tests with the total 

number of tests which do and do not meet their goals, the total amount by which 

individual tests are not within the range can be determined. The calculation of the 

normalized sum of the excursions (nse) is defined as  

          1 /  #  n
i inse excursion of tests                                                                 (3-15)                                 
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F3 is computed by nse with a range between 0 and 100.  

                 3   / 0.01 0. 1)]0[ (F nse nse ＋                                                               (3-16)                                             

The CWQI is finally expressed as: 

                2 2 2
1 2 3  100  /  1.73( ) 2CWQI F F F － ＋ ＋                                           (3-17) 

3.2.3 Chinese water quality index (CNWQI) methods 

When using the "Chinese Surface Water Environment Quality Standard" (GB3838, 

2002) to evaluate lake water quality, the particular water quality assessment index is 

converted into 5 levels, 1 to 5, which correspond respectively to excellent, good, medium, 

poor and very poor water quality. In traditional Chinese water resource management, 

there are two methods of water quality index assessment: the comprehensive evaluation 

approach (abbr. CNWQI-C) and the single-factor evaluation method (abbr. CNWQI-S). 

In the CNWQI-S method, the individual maximum index is directly taken and used as the 

water quality assessment index for small and low-requirement case (Zhu et al., 2010). 

However, the CNWQI-C approach requires computing steps to obtain the water quality 

index results for big or high-requirement projects, which are described as follows (Li et 

al., 2012): 

The calculation of the individual index (I):  
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                    1   /  [ ( ) ( )]o o o oI C C C C I － ＋ ＋                                                     (3-18)                                      

where C is the measured concentration for evaluation items I, Co is the O-grade standard 

concentration for the assessed parameter, which is lower than C, and C o+1 is the (O + 1)-

grade standard concentration of the factor, which is higher than C. 

The calculation of the comprehensive index (WQI): 

                       1 2(1 )( ....../ )nCNWQI C In I I                                              (3-19) 

where n is the number of the evaluated index parameters involved in the project. 

3. 3 Modeling on Contaminant Distribution and Pollution Control Planning for the 

Lake System 

3.3.1 Lake water quality modeling 

For modeling lake water quality, the near-shore mixing model was selected as the 

simulating method in this thesis. For the pollutant dispersion modeling, the horizontal 

currents were neglected and the water status was assumed to be steady. The formula of 

the advection distribution with first order decay is thus presented as (David, 2000): 
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                     2 2 2 2 2 2( / / ) 0D c x c y kc                                                         (3-20)                                         

where D denotes the distribution coefficient, c is the pollutant concentration, and k is the 

constant of the first order decay within the XY coordinate system. Based on polar (r, θ) 

coordinates, Equation (3-20) can be provided as  

           2 2 2 2 2 2/ (1/ ) / (1/ ) / ( / ) 0c r r c r r c k D c                                      (3-21)                 

As the concentration dispersion is radially homogeneous ( 2 2/ 0c    ) we then 

have 

                   2 2 2/ (1/ ) / ( / ) 0c r r c r k D c                                                               (3-22)                                 

From Equation (3-22), the following general solution is shown as 

              2 2
0 0( ) ( / ) ( / )c r AI kr D BK kr D                                                      (3-23) 

Where A and B are constants, I0 is revised as a Bessel function of the first kind, and K0  is 

a modified Bessel function of the second kind. 

Since                0 0( )C r C                                                                                          (3-24)                                                                                                            

( ) 0C                                                                                              (3-25)                                                             



 
33 

The concentration dispersion in the lake can be expressed as (O’Connor, 1962) 

                     2 2
0 0 0 0[ ( ( / )) / ( ( / ))]C K kr D K kr D c                                        (3-26) 

3.3.2 Optimization for lake water quality management 

3.3.2.1 Model formulation 

An optimization programming model can be formulated as follows: 

                                min , 1,2,...,k kf C X k p                                                    (3-27)                                                                                     

                              max , 1, 2,...,l lf C X l p p q                                           (3-28)                                                                                                  

                                                . . ,   1,2,...,i is t A X b i m                                                      (3-29)                                                                                                                         

                                        0X                                                                                    (3-30)                                                                                                                                                                                     

where X Rt×1, Ck R1×t t, ClR 1×t, Ai R1×t, R, t, k, l and i all express a series of 

numbers. Each of the variables is regarded as a deterministic number in the above 

formulae. When some variables on the right-hand side of the constraints are uncertain, 

the uncertainties can be denoted by probabilities by employing a chance-constrained 

programming model. Such a model includes setting a level of probability pi [0, 1] for 

each constraint i and fixing the condition of the restriction i which is met with one or 
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more chances of 1 - pi. The feasible solution set is then satisfied by the following 

constraints: 

                     Pr[ ] 1 , 1,2,...,i i iA X b p i n                                                          (3-31)                                                                     

In formula (3-31), since the constraints are usually nonlinear, the set of possible 

constraints is convex for situations where (a) Ai are deterministic, but bi are random, (b) 

both Ai and bi are discontinuous parameters, and (c) Ai and bi have Gaussian 

distributions. Thus, when Ai are deterministic and bi are random, the necessary 

information about uncertainty is pi for the unconditional distribution of bi, and the 

constraint (3-31) becomes linear: 

                                        ( ) , , 1,2,...,ipAiX bi i i n                                             (3-32)                                                                                                                                                           

where bi(pi)= Fi-1(pi), given the cumulative distribution function of bi (i.e.,Fi(bi)), and the 

probability of violating constraint (pi). 

3.3.2.2 Model parameters  

Economic development and environmental protection are always the two most 

important factors in optimization projects. Accordingly, the total net benefits and water 

pollution control are considered the key parameters of lake system planning. The issues 

of water supply and demand, agricultural development, raising of livestock and 
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aquaculture and the residential population are also taken account as parameters in the 

lake system. Meanwhile, this study details distribution information for available water 

sources and water quality requirements (including the discharge of TP, NH3-N and BOD5) 

for different periods and various significant levels. The reasoning behind why the three 

factors are only considered in the optimization models is described in Section 3.3.2.4. 

3.3.2.3 Single-objective programming (SOP) model 

Economic development is usually taken for granted to be the first target. Thus, a 

maximum total net benefit is selected as the objective in the single-objective 

programming (SOP) model (Zhang et al., 2013). The selection of constraints in planning 

the model is essential for obtaining feasible and efficient trade-offs. In this study, a series 

of economic, social and ecological factors related to environmental concerns are taken 

into account in the system. These factors are water resources, land area for agriculture, 

livestock population, water area for aquaculture, the discharge limitation of TP, NH3-N 

and BOD5, population and other technical constraints. 

Objective: total net benefit, which is derived from three parts, namely agriculture, the 

raising of livestock and aquaculture.  

The constraints are as follows: 

a. Water resource availability constraints                                                                                                                                                                                                      

b. Land area for agriculture availability constraint 
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c. Livestock population availability constraint                                                                                                                            

d. Water area for aquaculture availability constraint                                                                                                                          

e. TP discharge limitation constraint                                                                                                                                                                      

f. NH3-N discharge limitation constraint 

g. BOD5 discharge limitation constraint 

h. population constraint                                                                                                                       

i. non-negativity and technical constraint                                                                                                                      

3.3.2.4 Multi-objective programming (MOP) model 

In the multi-objective programming model, total net benefit and water quality were 

selected as the two objectives in this research. Although maximum total net benefit was 

the principal objective due to concerns about local economic development, it was also 

imperative to attain the highest possible water quality. Water quality thus became the 

other primary objective in the MOP model.  

There were three major polluting sources in HJH Lake as seen in Chapter 4. They 

were Total Phosphorus (TP), Ammonia Nitrogen (NH3-N) and Five-Day Biological 

Oxygen demand (BOD5). Thus, if the values of the three pollutants were well-controlled, 

the lake water quality could also be managed effectively. Therefore, the lake water 

quality results were derived from the full calculation of TP, NH3-N, and BOD5 through 

the employment of the proper approach. Based on the integral analysis, the Chinese 

Water Quality Index Comprehensive (CNWQI-C) method was selected for use in the 
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study as the case was located in China and the Chinese relative method was acceptable to 

all stockholders in the local area.  

Multiple objectives: 

a. Total net benefit objective, which consisted of three parts: agriculture, the raising 

of livestock, and aquaculture.  

b. Water quality objective, which was obtained through calculation by using 

Equation 3-18 and 3-19.                                                                                       

The constraints were the same as the constraints in SOP model. 

3.4 Integration of Simulation and Optimization  

A simulation-optimization approach is developed in this thesis by integrating lake 

water quality simulation and lake pollution control optimization. A contaminant 

dispersion simulation is conducted to provide input for the optimization study. Two 

models including SOP model and MOP model are developed, applied, and compared to 

support effective lake water contamination control planning under single-objective and 

multi-objective lake management scenarios.  

According to the methodology described in Section 3.3.1, original simulation is the 

first step of the lake pollution control planning optimization to assess the feasibility of 

contamination control planning. For the given emission source locations and emission 
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rates, a simulation of lake water quality is established and validated using the monitoring 

data. More importantly, the established simulation tool is used to identify the lake water 

quality based on different emission scenarios with consideration of water quality 

standards. Therefore, the reduction targets of source emissions can be determined for the 

next phrase lake pollution control planning. On the other hand, the pollution control 

planning with optimized emission reduction results can be examined by the established 

simulation tool and the GIS to present and visualize the pollution control planning results, 

which incorporates water quality index methods.  

The distribution of the relevant pollutants, the margin of error between the modeling 

results of contaminant concentration and the real sampling data at each monitoring site 

would meet the related simulation requirements, then, this verification method is thus 

usable to simulate the pollutant concentration dispersion in real cases. The following 

flowchart shows the presented procedure: 

 

              

Figure 3-2 Flowchart of the simulation process 

Both single- (SOP) and multiple- (MOP) objective programming methods are 

examined and developed for the study lake. Results from SOP and MOP models will be 
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compared and discussed in this study. The optimization method with better lake pollution 

control planning will be integrated further with OWQI and CNWQI-C index methods to 

evaluate the planning results based on local standards for different pollution control 

scenarios.  

3.5 GIS-Based Lake Water Management 

With their capacity for capturing, storing, analyzing and displaying geographically 

referenced information, Geographic information systems (GIS) are extremely useful with 

regards to water quality control. GIS tools for spatial data management and analysis are 

currently experiencing rapid development, and the application of these tools tends to 

improve evaluations and analyses (Lynn, 2007). This study integrated GIS analysis 

functions, applicable water quality index methods and lake pollution control planning 

models, providing an extensive capacity for examining different water quality assessment 

methods and lake optimization models. It was intended to process a broad range of lake 

information and geo-referenced datasets, which in turn supplied the required input data 

for the water quality evaluation approaches and system planning. The relevant results 

were then displayed on the GIS maps for the lake case study. By using the ArcGIS engine 

9.3 in this study, GIS was able to play a significant role in extending the traditional 

numerical results for the water quality assessment and lake pollution control optimization 

by delivering results with spatial references. By integrating GIS as the communication 

tool, this study enabled researchers and lake managers to better understand the spatial 
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distribution of water quality statuses and relevant lake information as well as provide 

recommendations to decision-makers with supporting information. 

3.6 Summary 

This chapter presented the major components and working procedure of the 

integrated lake management approach referred to as WQAPCP in this thesis. The 

methods for water quality assessment addressed here include four index models: OWQI, 

CWQI, CNWQI-S and CNWQI-C. The following optimization models depicted an 

acceptable approach to lake pollution control planning which would protect the whole 

lake system. In the two above parts of this study, GIS technology acted as an integrator 

for the display of the relative results and provided reasonable suggestions to decision-

makers through clear comparison. 
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CHAPTER 4 GIS-BASED WATER QUALITY ASSESSMENT  

—A Case Study of HJH Lake 

4.1 Study Area 

 

Figure 4-1 Study area and the sampling stations  

This study focuses on HJH Lake, which is located in the Wuhan City of China as 

shown in Figure 4-1. It is important as a supply of fresh drinking water for the Wuhan 

metropolitan area. However, there has been an increase in adverse impacts on its water 

quality due to the generation of a significant amount of waste solids and liquids (Wang, 



 
42 

2004). The lake has a water area of 8.18 square kilometers, a depth ranging from 1.2 to 

3.1 m, and a lakeshore line of more than 24 kilometers. Although the lake’s water quality 

was classified as Level 3 (GB3838, 2002), it has been continuously observed at Level 5 

since the end of the last century. The criteria for surface water quality are shown in Table 

4-1 as follows: 

Table 4-1 Environmental quality standards for surface water 
 in China (GB3838, 2002) 

Factors Criteria of Surface water quality grades 

 
1 2 3 4 5 

Temperature △T ≤ 3℃ per week 
pH 6-9 

Dissolved Oxygen (mg/l) 7 6 5 3 2 
Five-Day Biochemical 
Oxygen Demand (mg/l) 3 3 4 6 10 

Ammonium Nitrogen (mg/l) 0.15 0.50 1.00 1.50 2.00 
Total Phosphorus (mg/l)) 0.01 0.03 0.05 0.10 0.20 

4.2 Data Collection 

In this study, all monitored data regarding the water quality assessment were 

reported by the Huazhong University of Science and Technology (HUST). Nine water 

quality parameters were considered in this thesis as follows: Total Phosphorus (TP), 

Ammonium Nitrogen (NH3-N), Nitrate Nitrogen (NO3-N), Five-Day Biochemical 

Oxygen Demand (BOD5), Dissolved Oxygen (DO), Total Suspended Solids (TSS), pH, 

Turbidity and Temperature.  
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A field monitoring study was conducted in 2013 by HUST with many trips for 

sampling and analysis. Representative sampling locations were selected across the lake 

water area as shown in Figure 4-1, and a large set of data, including parameters, was 

listed in Table 4-2, 3 and 4. The monitoring data for heavy metals such as Cr (+6), Pb (II) 

and Zn (II) were lower than the maximum permitted by local water quality standards and 

thus were not considered in this thesis. Three sets of valid monitoring data were obtained 

from multiple field sampling and analysis trips between August and October 2013. Data 

concerning TP, NH3-N, NO3-N, BOD5, DO, and pH were sampled once per month. 

However, the values of TSS, Tur and T were the average amounts based on samples 

taken twice per week, totaling 8 samples per month. For each week, the difference in 

value met the following requirements: △TSS ≤ 25mg/L, △Tur ≤8 NTU, △T ≤3 ℃ (Lumb 

et al., 2001). The monitoring data details are shown in Table 4-2, 4-3 and 4-4. 

Table 4-2 Water quality monitoring data in August 2013 (HUST, 2013)  

Sampling 
sites 

TP NH3-N NO3-N BOD5 
(mg/L) 

DO TSS 
pH 

Turbidity T 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (NTU) (°C) 
1 0.79 1.11 0.27 35.20 6.83 176.50 7.00 26.92 25.10 
2 0.36 1.59 0.39 10.88 4.28 16.00 8.80 22.50 25.50 
3 0.31 0.94 0.14 25.60 6.53 39.50 8.00 29.42 25.40 
4 0.22 0.96 0.11 25.60 3.80 33.50 7.50 27.31 26.10 
5 0.45 0.52 0.29 22.40 6.59 60.50 8.50 28.27 25.80 
6 0.48 0.72 0.08 16.00 6.10 91.00 6.80 32.88 25.40 
7 0.16 0.33 0.10 12.80 3.36 78.00 7.20 32.88 24.90 
8 0.28 0.96 0.04 28.80 5.53 38.50 7.50 25.58 25.20 
9 0.22 0.69 0.09 18.40 5.73 29.50 7.20 19.81 25.50 

10 0.33 0.90 0.13 41.60 6.84 95.50 7.50 54.42 25.40 
11 0.65 1.03 0.17 44.80 3.35 37.00 7.50 30.00 25.10 
12 0.95 1.42 0.29 38.40 8.49 208.00 7.20 43.45 24.90 
13 0.97 1.46 0.55 38.80 5.15 306.50 7.50 61.92 24.80 
14 0.58 0.50 1.42 41.60 7.15 127.00 7.20 23.46 25.00 
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Table 4-3 Water quality monitoring data in September 2013 (HUST, 2013)  

Sampling 
sites 

TP NH3-N NO3-N BOD5 

(mg/L) 

DO TSS 
pH 

Turbidity T 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (NTU) (°C) 
1 0.36 1.11 0.97 29.25 4.34 60.00 6.80 5.98 21.00 
2 0.34 1.40 0.35 19.10 6.10 119.00 7.00 55.37 20.70 
3 0.35 1.30 0.81 19.10 6.80 94.00 7.50 26.72 20.50 
4 0.35 0.71 0.40 27.46 5.30 111.00 6.80 39.00 21.10 
5 0.34 0.79 0.59 28.06 6.22 140.00 6.80 15.86 22.90 
6 0.31 0.81 0.42 13.13 4.58 58.00 7.20 20.00 21.00 
7 0.38 0.92 0.64 18.51 6.52 80.00 7.20 8.94 20.90 
8 0.37 1.91 0.54 25.07 7.32 123.00 7.00 43.00 21.10 
9 0.34 1.29 0.19 19.10 6.89 118.00 6.80 25.00 21.50 

10 0.30 0.98 0.14 22.09 7.23 66.00 7.20 1.04 21.20 
11 0.56 1.19 0.10 18.51 7.83 73.00 7.00 28.00 21.10 
12 0.49 4.01 1.11 17.31 5.34 73.00 7.20 18.00 21.90 
13 0.28 1.26 1.47 12.54 6.58 77.00 7.80 27.00 21.90 
14 0.58 5.79 1.65 2.39 5.82 63.00 7.50 13.00 21.00 

 

Table 4-4 Water quality monitoring data in October 2013 (HUST, 2013) 

Sampling 
sites 

TP NH3-N NO3-N BOD5 

(mg/L) 

DO TSS 
pH 

Turbidity T 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (NTU) (°C) 
1 0.30 1.17 0.15 19.41 6.74 112.00 6.80 12.84 18.80 
2 0.30 0.64 0.10 11.51 5.92 87.00 7.20 9.15 18.90 
3 0.32 1.22 0.21 11.00 6.88 105.00 7.30 9.54 18.50 
4 0.36 0.38 0.08 10.56 6.93 78.00 6.50 9.15 19.30 
5 0.33 1.01 0.44 8.35 6.36 95.00 6.80 6.43 19.40 
6 0.30 0.80 0.37 11.00 6.88 88.00 6.70 7.98 19.10 
7 0.28 0.75 0.10 12.39 7.61 63.00 7.20 7.60 18.20 
8 0.30 0.14 0.54 19.60 6.50 103.00 7.20 5.85 18.30 
9 0.31 0.54 0.20 21.63 7.85 80.00 7.50 5.26 17.90 

10 0.32 0.48 0.49 19.73 6.85 98.00 6.80 7.98 18.00 
11 0.36 0.38 0.30 13.72 6.74 83.00 6.30 9.15 17.70 
12 0.38 1.38 0.23 6.44 4.86 97.00 7.00 12.64 18.50 
13 0.51 1.69 0.16 11.44 4.95 85.00 6.80 4.10 19.60 
14 0.30 0.90 0.24 6.26 5.94 35.00 6.80 7.21 19.10 
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4.3 Method Implementation 

According to the data collected during each survey and the formulae (3-1 to 3-19) 

presented in Section 3.2, OWQI, CWQI, CNWQI-S and CNWQI-C were able to be used 

to obtain the lake water quality evaluation results. 

      During the employment of the OWQI method, the first step was to select the proper 

equations based on the various contaminant concentrations at each monitoring site. 

Secondly, the sub-index value Si for each parameter was obtained via calculation. The 

final results for the OQWI method were then determined. The assessment gradation of 

water quality based on OWQI regulations is as follows: Excellent: 90–100; Good: 85–89; 

Fair: 80–84; Poor: 60–79; Very poor: 10–59 (Cude, 2001). 

      For the CWQI approach, the basic procedure was the computation of the role factors 

Scope (F1), Frequency (F2) and Amplitude (F3). By using these data and the index 

equation, the CWQI results were obtained. The CWQI values for water quality fall into 

five different grades: Excellent (95–100), Good (80–95), Fair (65–79), Marginal (45–64) 

and Poor (0–44). In the present thesis, the objectives used for the CWQI method were as 

follows: TP = 0.05mg/L, NH3-N = 2.20mg/L, NO3-N = 2.93mg/L, BOD5 = 20mg/L, DO 

= 5.00mg/L, △TSS ≤ 25mg/L, pH = 6.5-9, △Tur ≤ 8NTU, △T ≤ 3 ℃ (Lumb et al., 2001). 

      The CNWQI approach features two methods, CNWQI-C and CNWQI-S, each with 

different calculation procedures. The single maximum index was used as the project 
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assessment index of the water quality for the CNWQI-S method. However, the CNWQI-

C method required the computation of the sub-index for each parameter at each sampling 

location by employing the relevant formulae (Zhu, 2010). Moreover, it necessitated the 

application of the following regulations to determine the classes of water quality 

assessment: 

      When 0 < WQI results ≤ 1, the water quality level is 1; when 1 < WQI results ≤ 2, the 

water quality level is 2; when 2 < WQI results ≤ 3, the water quality level is 3; 3 < WQI 

results ≤ 4, the water quality level is 4; and when 4 < WQI results ≤ 5, the water quality 

level is 5. 

The dissolved oxygen index differs from the other indices in that the lower it is, the 

better the resulting water quality becomes. When Ci > Cio5, the water is the inferior 

gradation, and the single index should be counted as Ii = 5 (identically suitable for the 

single factor assessment method) (Li et al., 2012). 

4.4 Results 

The assessment results were exported from the database to an Excel file. The index 

results, including OWQI, CWQI, CNWQI-C, and CNWQI-S at the 14 sampling stations 

across three months, are presented in Table 4-5. Using GIS, Figure 4-2 displays the 

distribution of water quality during the research period according to these evaluation 

measures. 
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4.4.1 Results for water quality index  

Table 4-5 Water quality index results for OWQI, CWQI, CNWQI-C 
and CNWQI-S in August, September, and October 2013 

 

Sampling 
sites 

OWQI results CWQI results CNWQI-C results CNWQI -S 
results Aug Sep Oct Aug Sep Oct Aug Sep Oct 

1 21.49 25.30 29.12 43.34 50.75 58.39 4.82 4.58 3.79 5 

2 21.84 25.69 29.53 48.97 57.38 65.79 4.63 4.42 3.71 5 

3 25.21 29.31 33.90 53.33 62.50 71.68 4.36 4.25 3.57 5 

4 26.49 28.79 34.52 45.35 52.13 59.91 4.22 4.00 3.42 5 

5 26.15 31.03 34.95 55.15 65.00 74.76 3.95 3.87 3.34 5 

6 22.26 26.17 30.12 49.45 58.23 66.76 3.89 3.72 3.23 5 

7 23.61 27.81 31.93 55.36 65.12 74.82 3.74 3.58 3.06 5 

8 22.11 26.05 29.95 50.12 59.04 67.94 4.02 3.95 3.47 5 

9 25.09 31.85 32.65 50.49 59.64 68.52 4.47 4.25 3.43 5 

10 22.28 26.09 30.13 49.91 58.77 67.54 4.33 4.17 3.54 5 

11 22.19 26.07 29.88 48.75 57.35 65.75 4.56 4.33 3.68 5 

12 19.85 23.33 26.73 37.04 45.54 50.17 4.37 4.33 3.52 5 

13 18.39 21.64 24.81 41.17 48.67 55.87 4.71 4.50 3.81 5 

14 20.72 24.35 28.24 39.68 46.50 54.13 4.45 4.19 3.55 5 
 

Firstly, the values for OWQI in Table 4-5 were small and varied across a small 

range from 18.39 to 34.95. In August, the hottest month studied, the WQI results ranged 

between 18.39 and 26.49. In September, the values were a bit larger, ranging from 21.64 

to 31.85. Finally, the results for the amounts at each of the 14 sampling stations were at 

their largest in October. Out of all the monitoring sites, Station 13 produced the smallest 

figures for each month. However, the largest amounts were not always measured at the 

same location. In August, the OWQI result at Station 4 was 26.49, which was the greatest 

value measured at any of the 14 sites that month. During the other two months Station 5 
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showed the best water quality results, with 31.85 in September and 34.95 in October. The 

three groups of values became larger and larger from August to October. 

Secondly, the total figures for CWQI were much greater than those for OWQI in 

Table 4-5, and they showed a larger range of variation (from 37.04 to 74.82). In August, 

the WQI results ranged between 37.04 and 55.36. The values in September were larger 

(from 45.54 to 65.12). In October, the results for CWQI were similar to those for OWQI 

since the amounts at each of the 14 sampling stations were the largest seen within the 

entire period of study. Out of all the monitoring sites, Site 12 had the smallest values 

during each month. The highest values were located at Site 7, where the OWQI results 

for August, September, and October were 55.36, 65.12 and 74.82 respectively. 

Consequently, the three groups of values for CWQI displayed the same trend as in OWQI 

across the three months. The values for CWQI grew larger and larger during the studied 

period. 

As for the Chinese methods, it was easily observed when using the CNWQI-S 

method that the water quality class was 5 at every time across every monitoring station 

(seen in Table 4-5). However, the CNWQI-C method had more complex water quality 

results than CNWQI-S due to the existence of abundant variations. Based on the 

difference between the water quality result standards of the OWQI and CWQI methods, 

the smaller values of CNWQI-C represented better water quality. During the three 

months of study, the results for CNWQI-C varied across the small range of 3.06 to 4.82. 

In the first month, the WQI figures ranged between 3.74 and 4.82. Afterwards, in 
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September, the amounts changed from 3.58 to 4.58. The results were the best in October 

as the quantities at each of the 14 sampling stations were the smallest recorded within the 

entire monitoring period. Out of all the monitoring stations, Site 7 displayed the lowest 

values in each month (3.74 in August, 3.58 in September, and 3.06 in October). However, 

the largest figures were not consistently observed at the same station, with the CNWQI-C 

result at Site 1 being 4.82 in August and 4.58 in September. In October, the largest 

recorded amount was 3.81 at Site 13. It can thus be seen that the results for CNWQI-C 

became smaller and smaller from August to September and from September to October. 

4.4.2 Index result visualization based on GIS 

Figure 4-2 describes the distribution of and the changes in the water quality of HJH 

Lake in August, September and October 2013. In the map for the OWQI method, the 

water area including Sites 3, 4 and 5 showed the best water quality during the entire 

monitoring period. However, the water quality around Site 12, 13 and 14 reached the 

worst level during the three months. The CWQI method displayed a similar level of water 

quality in the water area of Sites 12, 13 and 14 during the same period, but the best water 

quality was seen in Sites 6, 7 and 11. In using different standards of computation 

processes and classification levels, the CNWQI-C method reached distinctly different 

results from the OWQI and CWQI methods. The area of lowest-grade water quality 

moved southwards, from the region including Sites 1, 12 and 13 to the area of Sites 2, 10 

and 14. However, the best water quality level appeared at the southeast of HJH Lake 

around Sites 5, 6 and 7, where it occupied a part of the best water quality seen with the 
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OWQI method at Site 5 and some of the area of the highest water quality level seen with 

CWQI approach (Sites 6 and 7). Although the four water quality index methods obtained 

differing results, a common phenomenon was observed, namely that the water quality 

improved from August to September and from September to October due to the cooler 

weather. 
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 OWQI (Aug)                                                     OWQI (Sep)                                                 OWQI(Oct)   
 

 

Figure 4-2 OWQI-based water quality assessment for August, September, and October 2013 
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  CWQI (Aug)                                                       CWQI (Sep)                                                      CWQI(Oct)   
 

 

Figure 4-3 CWQI-based water quality assessment for August, September, and October 2013 
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CNWQI-C (Aug)                                          CNWQI-C (Sep)                                              CNWQI-C (Oct)   
 

 

Figure 4-4 CNWQI-C-based water quality assessment for August, September, and October 2013 
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4.5 Discussion  

4.5.1 Water quality classes for OWQI, CWQI, and CNWQI 

Table 4-6 Water quality categories based on OWQI, CWQI, and CNWQI 

(Cude, 2001; CCME, 2001; GB3838, 2002) 

Classification 
OWQI CWQI CNWQI 

Grades Results Grades Results Grades Results 
A Excellent 90-100 Excellent 95-100 Excellent 1 
B Good 85-89 Good 80-95 Good 2 
C Fair 80-84 Fair 65-79 Medium 3 
D Poor 60-79 Marginal 45-64 Poor 4 
E Very Poor 0-59 Poor 0-44 Very Poor 5 

 

To explicitly compare the OWQI, CWQI and CNWQI methods, it was necessary to 

begin with the same water quality levels. Since each of the methods used five water 

quality classes, their grades could be unified from best to worst as A, B, C, D and E, with 

the relevant details being provided in Table 4-6 (Cude, 2001; CCME, 2001; GB3838, 

2002). Based on the relevant water quality standards in the US, Canada, and China, the 

water quality classification levels for OWQI, CWQI and CNWQI were presented in 

Table 4-6. 

4.5.2 Comparison of the final assessment results based on classification levels 
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  Drawn from Table 4-5, 4-6, and Figure 4-2, the final results for the water quality 

evaluation were shown in Table 4-7 as grades and in Figure 4-5 as maps.  

Table 4-7 Final assessment results 

(Defined in Table 4-6) 

Sampling 
Sites 

OWQI Levels CWQI Levels CNWQI-C Levels CNWQI -S 
Levels Aug Sep Oct Aug Sep Oct Aug Sep Oct 

1 E E E E D D E E D E 

2 E E E E D C E E D E 

3 E E E D D C E E D E 

4 E E E D D D E D D E 

5 E E E D C C D D D E 

6 E E E D D C D D D E 

7 E E E D C C D D D E 

8 E E E D D C E D D E 

9 E E E D D C E E D E 

10 E E E D D C E E D E 

11 E E E D D C E E D E 

12 E E E E E D E E D E 

13 E E E E D D E E D E 

14 E E E E D D E E D E 

 

As seen in Table 4-7, there were two situations describing the status of the water 

quality in HJH Lake. Firstly, the classes of water quality seen in OWQI were quite 

similar to the results from CNWQI-S. The worst water quality during the sampling period 

was Level E. With the other two methods, CWQI and CNWQI-C, these grades ranged 

from C to E. In the CWQI method, Levels D and E were observed in August. The classes 

changed to Level C, D and E in the second month, as well as in October, with the 

appearance of Levels C and D showing that the overall water quality had changed for the 

better. In the results from the CNWQI-C method, the grades of water quality in the first 
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two months were similar to the results from CWQI. However, the water quality in 

October was observed at Level D with the CNWQI-C method, which was was an obvious 

improvement over the previous two months.  

Figure 4-5 described the comparison among the four methods. The lake was 

observed at E, the lowest level of water quality, when using the OWQI and CNWQI-S 

assessment approaches. Nevertheless, the evaluation results improved with the CWQI 

and CNWQI-C methods, with the lake quality being observed across a range of three 

classes, Levels C, D and E. In the CWQI results, the water quality changed for the better 

from northwest to southeast during the three- month period. Two grades were observed 

during August, Levels D and E, which both took up nearly half the water area. In 

September, three classes of water quality, Levels C, D and E, were observed with the lake 

area mainly recorded at Level D. The water quality was observed at its best in October as 

approximately half the total lake area was seen to be at Level C. In the results for the 

CNWQI-C method, the water quality in August was the worst out of the entire three-

month period, with the majority of the water area being recorded at Level E and only a 

small part at the southeast belonging to Level D. In September, the water quality 

improved as seen in the increasing area of Level D. The water quality, at Level D, was 

the best across the entire lake in the final month. 

After comparison, the similarities and differences of the various evaluation 

approaches were found to be as follows: 
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(a) Due to its detailed sub-index, stringent computation process, exact values and 

related classification system, the OQWI model tended to be the most 

comprehensive model of the four for lake water quality assessment. 

(b)  Because of its lack of data, CWQI was not the most useful model in this study 

although the values and the categories for water quality seemed exciting. 

 

Figure 4-5 Lake water quality assessment results  

based on four index methods 
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(c) The CNWQI models are flexible for use in different projects. However, the 

CNWQI-S method is too arbitrary due to its negation of all the better data. 

Although the amounts observed with the CNWQI-C model are not conclusive due 

to its use of only a few directional ranges for the primary parameters, it is a much 

better method than CNWQI-S based on its overall consideration of water quality 

parameters. It is thus of greater use to Chinese researchers and decision-makers in 

local water pollution control and water body management. 

4.5.3 Sensitivity analysis  

This thesis aimed to discover an integrated approach to controlling lake 

contamination and managing the lake system. Therefore, sensitivity analysis was made to 

try to find suitable methods. OWQI was employed in this study to explore the various 

scenarios by which lake water quality might be improved.  

As seen in Tables 4-5 and 4-7, the OWQI results showed the worst levels of water 

quality: “very poor” (E) with values between 18.39 and 34.52 from August to October. 

However, if the concentrations of TP, NH3-N and BOD5 were reduced by controlling 

runoff discharge into the lake, the water quality index would improve greatly. There was 

an obvious example in Sampling Site 3 which was very close to the main discharge point 

from a residential area. If the concentrations of TP, NH3-N and BOD5 in August 

remained constant, the original amount of OWQI was calculated as follows:   
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     2 2 2
39 / 1/  1/  1/    25.21( ( ) )TP NH N TOWQI SQRT S S S  ＋ ＋ ＋  

Thus, the water quality level based on OWQI at Site 3 in August is “Very Poor” (0-59, E). 

If the concentrations of TP and NH3-N were reduced greatly, STP and SNH3-N would 

not need to be considered in the computation of theOWQ result. Thus:         

   2 2 2
37 / 1/  1/( ( ( ) ) 1/  58.06)NO N pH TOWQI SQRT S S S  ＋ ＋ ＋  

Therefore, the water quality level observed at Site 3 using the OWQI method was “Very 

poor” (0-59, E), but the value approached 60 (D). 

If the concentrations of TP, NH3-N and BOD5 were controlled and greatly reduced, 

STP, SNH3-N and SBOD5 would not need to be considered in the calculation process. Thus:    

   2 2 2
36 / 1/  1( (( ) ) )/  1/    69.27

 
NO N pH TOWQI SQRT S S S  ＋ ＋ ＋

 

The level of water quality observed at this station using the OWQI method was “Poor” 

(60-79, D). 
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      The aforementioned sensitivity analysis showed that TP, NH3-N and BOD5 exerted a 

huge influence on the lake water quality. They were the most significant parameters in 

controlling the water contamination of HJH Lake. 

4.6 Summary 

These OQWI, CWQI, CNWQI-C and CNWQI-S water quality indexing methods 

were applied to assess the water quality of HJH Lake. The assessment results were 

displayed in the form of GIS maps which described the spatial distribution of the 

evaluation results including the water quality assessment results and the levels of water 

quality. Through sensitivity analysis and the comparison of the four models, the most 

suitable method of water quality assessment for lake management was identified in this 

chapter. The results showed that TP, NH3-N and BOD5 played significant roles in the 

influence on the water quality of HJH Lake as the most important parameters. 
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CHAPTER 5 LAKE POLLUTION CONTROL PLANNING FOR HJH 

LAKE 

5.1 Study Site and Data 

 As seen in Section 4.1, HJH Lake is surrounded by agricultural land, a residential 

area, a hoggery and a fishery. The relevant information is presented in the following 

sections. 

All the data used in this chapter were obtained from HUST. After a detailed analysis 

of the researched system, several major factors were considered when modeling this 

system to achieve the expected results. These parameters included total net benefits, the 

supply and demand of water resources, pollutant discharge limitations, agricultural 

development, aquaculture and the rearing of livestock. The distribution information 

regarding available water resources and water quality requirements is expressed in Table 

5-1. In addition, system parameters including net benefits, water demand and the 

discharge of pollutants (TP, NH3-N, and BOD5) are given in Tables 5-2 and 5-3. As seen 

in the discussion of Chapter 4, these three types of contaminant paramters (TP, NH3-N 

and BOD5) play the most significant roles in the lake management of HJH Lake. TP, 

NH3-N, and BOD5 are thus taken into account in this study’s lake pollution control 

planning. 
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Table 5-1 Water resources and water quality requirements  

with distribution information (HUST, 2013) 

Parameters 
Period     

k=1 k=2 k=3 

 Maximum available water resource (106m3) 
pi =0.01 1.83 1.92 2.07 
pi =0.05 2.07 2.15 2.26 
pi =0.10 2.14 2.31 2.48 

 Maximum available TP discharge (103kg) 
pi =0.01 4.63 2.28 1.17 
pi =0.05 4.75 2.52 1.26 
pi =0.10 5.08 2.78 1.35 

 Maximum available NH3-N discharge (104kg) 
pi =0.01 3.10 2.10 1.05 
pi =0.05 3.15 2.15 1.10 
pi =0.10 3.20 2.30 1.20 

 Maximum available BOD5 discharge (105kg) 
pi =0.01 1.25 0.83 0.63 
pi =0.05 1.30 0.90 0.67 
pi =0.10 1.35 0.95 0.70 

  

 

Table 5-2 Optimization model parameters of net benefit, water demand and contaminant  

discharge (TP, NH3-N, and BOD5) (HUST, 2013) 

Parameters Net benefit Water demand TP discharge NH3-N discharge BOD5 discharge 

unit value unit value unit value unit value unit value 
Agriculture 

activities 106 $/km2 3.52 105 m3/km2 7.5 kg/km2 60 kg/km2 150 103 kg/km2 4.9 
Livestock 

rearing $/head 520 m3/head 3.6 kg/head 3.15 kg/head 4 kg/head 8 
Fishing 
farming 106 $/km2 2.85 

m3/km2 

 50 kg/km2 95 kg/km2 160 103 kg/km2 6 
Residential 
population   m3/people 102 kg/people 0.02 kg/people 0.14 kg/people 0.35 

 

In Table 5-1, the factor k represents one of three periods, 1, 2 or 3, which 

respectively represent 2016-2020, 2021-2025 and 2026-2030. The other parameter i 

describes a set of significant levels, 0.01, 0.05 or 0.10, which were selected for use in this 
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study according to the risk tolerance level of decision makers. The pi levels mean that the 

constraints would be satisfied with a probability of at least 99, 95 or 90 %. 

Table 5-3 Other optimization model parameters (HUST, 2013) 

Parameters Periods 
k=1 k=2 k=3 

αkl (%) 75 85 95 

αkp (%) 70 80 90 

βkl (%) 85 90 95 

βkp (%) 70 75 85 

θkl (%) 70 75 85 

θkp (%) 70 75 85 

EWDk (105m3) 4.00 4.50 5.00 
ILAk (km2) 2.00 2.00 2.00 

ALAk (km2) 1.80 1.80 1.80 

ILSk (head) 80 80 80 
ALSk (head) 1500 1500 1500 
IWFk (km2) 0.80 0.80 0.80 
AWFk (km2) 1.50 1.50 1.50 

IPk (104people) 0.70 0.50 0.40 

APk (104people) 1.00 0.85 0.70 

The percentage parameters αlk, αpk, βlk, βpl, θlk and θpk present the average treatment 

efficiency for diverse pollutants in different periods. ALAk and ALAk respectively 

represent the maximum and minimum allowable areas of land for agriculture during the 

period k. The other factors are similar. 

5.2 Coupled Simulation-Optimization Process 
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There are four steps in this chapter which comprise the entire planning system. They 

are as follows: 

(1) Modeling the real monitoring data to support the possibility of optimization 

implementation; 

(2) Model application including comparison of the SOP model and the MOP model to 

recommend the better method of the two to decision-makers; 

(3) Water quality result comparison with the OWQI method and the CNWQI-C method 

based on the MOP optimization results; 

(4) Modeling comparison between OWQI and CNWQI-C based on the MOP model 

results under two probabilities and two periods. 

5.3 Water Quality Simulation 

 In order to give evidence for the possibility of optimization implementation, it is 

preferable that the first step in the planning system study be the selection of the 

monitoring value simulation method. The modeling approach used in this study was 

chosen based on the contaminant distribution theory described in Section 3.3.1 with the 

aim of imitating the real pollutant concentration diffusion situation in HJH Lake as 

accurately as possible. It was then used to validate the feasibility of the planning scheme 
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and predict the future status of the water quality to support suggestions to decision-

makers. 

5.3.1 Emission sources and distribution 

 

Figure 5-1 Locations of monitoring stations and emission sources  

There were five contaminant discharging sources around the lake which were 

designated A, B, C, D and E as shown in Figure 5-1. It was assumed that the total 

quantity of each emission at each point remained unchanged during the entire simulation 

period. The discharge of TP, NH3-N and BOD5 per year was 7.45×103kg, 3.10×104kg and 

3.73×105kg respectively (HUST, 2013). Table 5-4 provides the coordinates and the 

pollutant values of the discharge sources for TP, NH3-N and BOD5. 
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Table 5-4 Emission sources and locations for TP, NH3-N, and BOD5 

Discharge 
sources X (longitude) Y (latitude) 

 
TP (103kg) 

 
NH3-N (104kg) BOD5 (105kg) 

A 114.286941 30.467259 3.14 1.57 1.76 
B 114.278459 30.440375 1.21 0.58 0.97 
C 114.278143 30.423206 1.05 0.34 0.37 
D 114.293392 30.441937 0.94 0.25 0.31 
E 114.294861 30.450748 1.11 0.36 0.32 

 

5.3.2 Results and analysis 

Based on Table 5-4 and the key equation for the pollutant concentration distribution 

(3-26) shown in Section 3.3.1 (O’Connor, 1962), the concentrations of the contaminants 

TP, NH3-N and BOD5 at the 14 sites in HJH Lake were computed using Excel. This is 

shown in Tables 5-5, 6 and 7. Comparisons were done between the monitoring data 

(expressed as -0) and modeling data (shown as -1) for these contaminants in order to 

validate their errors of difference and determine whether they meet the requirements of 

the simulation method.           
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Table 5-5 Comparison between the monitoring and 
modeling data for TP at 14 sampling stations 

Sampling 
stations X (longitude) Y (latitude) 

 
TP-0 (mg/l) 

 
TP-1 (mg/l) Error (%) 

1 114.280196 30.444079 0.36 0.29 19.44 
2 114.277618 30.435002 0.34 0.26 23.53 
3 114.276324 30.427965 0.35 0.28 20.00 
4 114.280205 30.429647 0.35 0.25 28.57 
5 114.282433 30.425225 0.34 0.25 26.47 
6 114.293545 30.442211 0.31 0.24 22.58 
7 114.293257 30.442148 0.38 0.30 21.05 
8 114.288874 30.442461 0.37 0.28 24.32 
9 114.291604 30.446694 0.34 0.24 29.41 

10 114.291748 30.452983 0.3 0.24 20.00 
11 114.295773 30.452236 0.56 0.42 25.00 
12 114.283358 30.461699 0.49 0.37 24.49 
13 114.281364 30.453792 0.28 0.20 28.57 
14 114.289718 30.469917 0.58 0.43 25.86 

 

According to US standards, the margin of error between the sampling data and the 

simulation values should be less than 30 percent (USEPA, 2011). Although some errors 

can be seen in Tables 5-5 to 5-7, they are all smaller than 30 percent. They meet the 

requirements of the simulation. This verification method is thus usable to model the 

pollutant concentration dispersion in HJH Lake. 
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Table 5-6 Comparison between the monitoring and modeling 

data for NH3-N at 14 sampling stations 

Sampling 
stations X (longitude) Y (latitude) 

 
NH3-N-0 (mg/l) 

 
NH3-N-1 (mg/l) Error (%) 

1 114.A280196 30.444079 1.40 1.12 20.00 
2 114.277618 30.435002 1.11 0.94 15.32 
3 114.276324 30.427965 1.30 1.03 20.77 
4 114.280205 30.429647 0.71 0.67 5.63 
5 114.282433 30.425225 0.79 0.83 -5.06 
6 114.293545 30.442211 1.31 1.35 -3.05 
7 114.293257 30.442148 1.82 1.70 6.59 
8 114.288874 30.442461 1.52 1.43 5.92 
9 114.291604 30.446694 1.29 0.94 27.13 

10 114.291748 30.452983 0.98 1.06 -8.16 
11 114.295773 30.452236 1.19 1.14 4.20 
12 114.283358 30.461699 4.01 2.97 25.94 
13 114.281364 30.453792 1.26 1.61 -27.78 
14 114.289718 30.469917 5.79 4.23 26.94 

 
 

Table 5-7 Comparison between the monitoring and modeling 

data for BOD5 at 14 sampling stations 

Sampling 
stations X (longitude) Y (latitude) 

BOD5-0 
(mg/l) 

BOD5-1 
(mg/l) Error (%) 

1 114.280196 30.444079 25.25 19.74 21.82 
2 114.277618 30.435002 19.10 14.33 24.97 
3 114.276324 30.427965 19.10 18.52 3.04 
4 114.280205 30.429647 17.46 17.32 0.80 
5 114.282433 30.425225 18.06 18.05 0.06 
6 114.293545 30.442211 17.13 16.54 3.44 
7 114.293257 30.442148 23.51 19.25 18.12 
8 114.288874 30.442461 21.07 17.05 19.08 
9 114.291604 30.446694 19.10 16.90 11.52 

10 114.291748 30.452983 18.09 18.35 -1.44 
11 114.295773 30.452236 22.51 20.07 10.84 
12 114.283358 30.461699 17.31 16.46 4.91 
13 114.281364 30.453792 12.54 8.91 28.95 
14 114.289718 30.469917 22.39 23.57 -5.27 
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5.4 Optimization Models for HJH Lake 

All optimization projects must first attain a few objectives, such as maximal benefit, 

minimal risks, minimal negative influence, minimal cost, etc. Researchers must often 

thus face a choice between single-objective and multi-objective. Single-objective is 

usually considered to be comparatively simple. Its primary goal is to find the "best" 

solution, which sometimes simply corresponds to the most important objective and other 

times corresponds to the minimum or maximum value of a single objective function that 

integrates each different goal into a single one. This type of optimization is useful as a 

tool with which to provide decision makers with insights into the nature of the problem 

faced. However, it usually cannot provide a set of alternative solutions that weigh 

different objectives against each other. On the other hand, in multi-objective optimization 

with conflicting objectives, there is no single optimization approach and the interaction 

among the various objectives results in a suite of compromised methods (Dragon, 2008). 

The present study therefore focuses on finding a method, based on a comparison between 

the SOP model and the MOP model, which is more suitable for lake water contamination 

control in order to provide sound recommendations to decision-makers for optimal lake 

water pollution management.  

“What's Best! 14.0” was employed in the following modeling approach. It is a piece 

of Excel add-in software which can build large-scale planning models within a 

spreadsheet. “What's Best! 14.0” has the capacity to integrate Linear, Nonlinear, 

Stochastic and other types of optimization with Microsoft Excel. “What's Best! 14.0” is 



 
70 

the newest version which comprises several stronger functions with a much wider range 

of utilization. (http://www.hearne.software/Software/What-s-Best!/Editions). 

5.4.1 SOP model 

Economic development is usually taken for granted to be the the first target. 

Maximum total net benefit is thus selected as the objective for the SOP model (shown as 

Equation 5-1). The selection of constraints in planning the model is essential for 

obtaining feasible and efficient trade-offs. In this study, a series of economic, social and 

ecological factors related to environmental concerns are considered in the system, such as 

water resources, agricultural land area, livestock number, water area used for aquaculture, 

the discharge limitations of TP, NH3-N and BOD5, the local residential population and 

other technical constraints (Equation 5-1 to 5-10). 

Total benefit objective 

           
1 1 1 1 1 1

max * * *
I K I K I K

ik k ik k ik k
i k i k i k

f AX ANB LX LNB FX FNB
     

                     (5-1) 

where AXik is the area of agricultural land planted with a probability level of pi during the 

period k (km2/year), ANBk is the net benefit from the agricultural plantation in period k 

($/km2), LXik is the number of livestock farmed in the system with a probability level of 

pi during period k (head/year), LNBk is the net benefit from farmed animals during period 

http://www.hearne.software/Software/What-s-Best!/Editions
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k ($/head), FXik is the aquaculture area in the system with a probability level of pi in 

period k (km2/year) and FNBk is the net benefit from the aquaculture in period k ($/km2). 

Constraints: 

a. Water resource availability constraints 

1 1 1 1 1 1 1 1
* * * * , ,

I K I K I K I K

ik k ik k ik k ik k k ik
i k i k i k i k

AX AWD LX LWD FX FWD PX PWD EWD TW i k
       

        

                                                                                                                                                                                                                                    

(5-2) 

where AWDk, LWDk, FWDk and PWDk are the water demand during period k for 

agricultural land, the raising of livestock, aquaculture and people, respectively (m3/km2). 

EWDk  is the water demand for ecological protection in the system during period k (m3), 

and TWik  is the maximum allowable amount of water resources available with a 

probability level of pi in period k (m3). 

b. Agricultural land area availability constraint 

    
1 1

, ,
I K

k ik k
i k

ILA AX ALA i k
 

                                                                                   (5-3)                                                                         
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where ILAk and ALAk are the minimum and maximum allowable areas of land for 

agriculture during period k (km2), respectively. 

c. Livestock rearing availability constraint 

   
1 1

, ,
I K

k ik k
i k

ILS LX ALS i k
 

                                                                                     (5-4)                                                                         

where ILSk and ALSk are the minimum and maximum allowable number of livestock in 

period k (head), respectively. 

d. Water area for aquaculture availability constraint 

    
1 1

, ,
I K

k ik k
i k

IWF FX AWF i k
 

                                                                                 (5-5)                                                                  

where IWFk and AWFk are the minimum and maximum allowable areas of water for 

aquaculture during period k (km2), respectively. 

e. TP discharge limitation constraint 

1 1 1 1 1 1 1 1
* * *(1 ) * * *(1 )

I K I K I K I K

ik k ik k lk ik k ik k pk
i k i k i k i k

AX AP LX LP FX FP PX PP
       

         
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, ,kTP i k                                                                                                                       (5-6)                                                                                                                    

where APk  is the amount of phosphorus generated by agricultural activities in period k 

(kg/ km2), LPk is the amount of phosphorus generated by livestock in period k (kg/head), 

FPk is the amount of phosphorus generated by fish in period k (kg/ km2), PPk is the 

amount of phosphorus generated by human activities in period k (kg/people), TPk is the 

maximum allowable amount of phosphorus in the system during period k (kg) and αlk and 

αpk are the average treatment efficiencies for phosphorus discharged respectively by 

livestock and residents in period k (%). 

f. NH3-N discharge limitation constraint 

) ) )
1 1 1 1 1 1

*( 3 *( 3 *(1 ) *( 3
I K I K I K

ik k ik k lk ik k
i k i k i k

AX ANH N LX LNH N FX FNH N
     

          

)
1 1

*( 3 *(1 ) 3 , ,
I K

ik k pk k
i k

PX PNH N NH N i k
 

                                                       (5-7)                                                       

where ANH3-Nk is the value of ammonia nitrogen generated by agricultural activities in 

period k (kg/ km2), LNH3-Nk is the value of ammonia nitrogen generated by livestock in 

period k (kg/head), FNH3-Nk is the amount of ammonia nitrogen generated by fish in 

period k (kg/ km2), PNH3-Nk is the value of ammonia nitrogen generated by human 

activities in period k (kg/people), NH3-Nk is the maximum allowable value of ammonia 

nitrogen in the system during period k (kg) and βlk and  βpk are the average treatment 
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efficiencies for ammonia nitrogen discharged respectively by livestock and residents in 

period k (%). 

g. BOD5 discharge limitation constraint 

1 1 1 1 1 1 1 1
* * *(1 ) * *

I K I K I K I K

ik k ik k lk ik k ik k
i k i k i k i k

AX ABOD LX LBOD FX FBOD PX PBOD
       

      

 

*(1 ) , ,pk kBOD i k                                                                                                     (5-8)                                                                                            

where ABODk is the amount of BOD5 generated by agricultural activities in period k (kg/ 

km2), LBODk is the amount of BOD5 generated by livestock in period k (kg/head), 

FBODk is the amount of BOD5 generated by fish in period k (kg/ km2), PBODk is the 

amount of BOD5 generated from human activities in period k (kg/people), BODk is the 

maximum allowable amount of BOD5 in the system during period k (kg) and θlk and θpk 

are the average treatment efficiencies for BOD5 discharged respectively from livestock 

and residents in period k (%).  

h. Population constraint 

   
1

, ,
K

k k k
k

IP PX AP i k


                                                                                               (5-9)                                                                                        



 
75 

where IPk and APk are respectively the initial and maximum allowable number of 

residents in the system during period k (people). 

i.  Non-negativity and technical constraint 

    , , , 0, ,ik ik ik kAX LX FX PX i k                                                                                    (5-10)                                                                                      

5.4.2 MOP model 

        In the multi-objective programming model, the two objectives for this study were 

chosen to be total net benefit and water quality. Although the key aim was for the 

principal objective to be maximum total net profit due to concerns for local economic 

development, it was also imperative to have the best possible water quality. As shown in 

chapter 4, the three primary polluting paramters in HJH Lake were TP, NH3-N and BOD5. 

If the values of these three pollutants were controlled, the lake water quality could thus 

also be managed quite effectively. Therefore, the lake water quality results are obtained 

from the full calculation of TP, NH3-N, and BOD5 through the employment of the proper 

approach. Based on the integral analysis, the CNWQI-C method is considered to apply to 

the study as the case is located in China and the Chinese relative method is acceptable to 

all stockholders in the local area. The second objective of the MOP model is shown in 

Equations 5-11, while Equations 5-12 to 5-14 are for the computation of water quality 

index. 
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Multiple objectives 

a. Total benefit objective 

  the equation is the same as Equation 5-1.               

b.Water quality objective (based on Equations 3-18 and 19) (Zhu, 2010) 

 3 5

1 1
mi  3)n ( ( )1/

I K

TP ik NH N ik BOD ik
i k

CNW I I IQI C    

 

                                 (5-11)                     

where CNWQI-C is the Chinese comprehensive water quality index and ITP-ik, INH3-N-ik and 

IBOD5-ik are the indices of TP, NH3-N and BOD5 respectively with a probability level of pi 

during period k. 

1 1 1 1 1 1 1 1
[ * * *(1 ) * * *(1 )]

I K I K I K I K

TP ik k ik k lk ik k ik k pk
i k i k i k i k

C AX AP LX LP FX FP PX PP
       

          

/ , ,V i k                                                                                                                        (5-12)                                                                                                                

3 ) )
1 1 1 1 1 1

[ *( 3 *( 3 *(1 ) *( 3
I K I K I K

NH N ik k ik k lk ik
i k i k i k

C AX ANH N LX LNH N FX FNH

     

        
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3
1 1

) *( )*(1 )] / , ,
I K

k ik k pk
i k

N PX PNH N V i k
 

                                                         (5-13)                                                          

5 5 5 5

1 1 1 1 1 1 1 1
[ * * *(1 ) * *

I K I K I K I K

BOD ik k ik k kl ik k ik
i k i k i k i k

C AX ABOD LX LBOD FX FBOD PX
       

       

 

5 *(1 )] / , ,k kpPBOD V i k                                                                                           (5-14)                                                                                  

where CTP, CNH3-N and CBOD5 are the concentrations of TP, NH3-N and BOD5 in HJH 

Lake and V is the volume of HJH Lake (m3). 

Constraints: they are the same as the constraints from Equations 5-2 to 5-10 in Section 

5.4.1. 

5.4.3 Results 

Based on the "Chinese Surface Water Environment Quality Standard" (GB3838, 

2002) with the use of the “What's Best! 14.0” software, the results for the SOP and MOP 

models were obtained. 

5.4.3.1 SOP model results 
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     Figure 5-2(a) shows the optimization results for the agricultural planning area under 

three different pi levels during the different three periods. In period 1, the area was 1.03, 

1.15 and 1.21 km2 where pi equaled 0.01, 0.05 and 0.10, respectively. In period 2, the 

agricultural area increased to 1.32, 1.44 and 1.46 km2 under the three pi levels. In period 3, 

the area changed to 1.61, 1.68 and 1.74 km2 under the three pi respectively. Similarly, 

under pi = 0.01, the area was 1.03, 1.32 and 1.61 km2 when k equaled 1, 2 and 3 

respectively. Under pi = 0.05 it increased to 1.15, 1.44 and 1.68 km2 over the three 

periods. When pi equaled 0.10, it changed to 1.21, 1.46 and 1.74 km2 in the three periods 

respectively. In Figure 5-3 (a), two growths show the change of the agricultural area, one 

being that every value of the agricultural area grew larger and larger from k = 1 to k = 2 

and to k = 3 when pi equaled 0.01, 0.05 and 0.10, respectively, and the other being that 

the planning result for each period increased under the three different pi levels. 

Figure 5-2(b) provides the results for livestock development under the three pi levels 

over the three periods. In period 1, the number of livestock was 1321, 1407 and 1471 

where pi equaled 0.01, 0.05 and 0.10 respectively. In period 2, the livestock number 

increased from 586, 645 and 731 under the three pi levels. In the last period, it changed to 

253, 262 and 296 under the three pi respectively. Similarly, under pi = 0.01, it was 1321, 

586 and 253 when k equaled 1, 2 and 3, respectively. Under pi = 0.05, it increased from 

1407, 645 and 262 over the three periods. Finally, where pi equaled 0.10, it changed to 

1471, 731 and 296 in the three periods respectively. For the raising of livestock, two 

different changes were observed. Firstly, every result for the cattle number greatly 

decreased from k = 1 to k = 2 and k = 3 under each level among pi = 0.01, pi = 0.05, and 
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pi = 0.10. However, every optimized result increased in the same period from pi =0.01 to 

pi = 0.05 and pi = 0.10, although the growths were small. 

Figure 5-2(c) presents the optimization solutions for the aquaculture area in the 

entire optimization period under the three pi levels. When pi equaled 0.01, the aquaculture 

area grew from 1.26 to 1.38 and then to 1.43 k m2 where k equaled 1, 2 and 3 respectively. 

When pi equaled 0.05, the area increased from 1.15 to 1.23 and then to 1.27 km2 in the 

three periods. When pi equaled 0.10, the optimization area became 0.96, 1.02 and 1.11 

km2 when k equaled 1, 2 and 3 respectively. Conversely, in period 1, the area decreased 

from 1.26 to 1.15 and then to 0.96 where pi equaled 0.01, 0.05 and 0.10 respectively. In 

period 2, the aquaculture area also diminished, going from 1.38 to 1.23 and then 1.02 

under the three pi levels. In the last period, it changed to 1.43, 1.27 and 1.11 under the 

three pi respectively. This group of data shows that the aquaculture area decreased within 

the optimization period under the same pi level. Meanwhile, the results indicated that 

fishery has provided more profitless devotion into lake water contamination. 

Nevertheless, it’s readily acceptable that the aquaculture area increased when pi equaled 

0.01, 0.05 and 0.10, since the three pi levels indicate the three various satisfactory degrees 

for the constraints with a possibility of at least 99, 95 and 90%. 
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Legend    k = 1            k = 2           k = 3 

Figure 5-2 Results for SOP model for (a) agricultural area, (b) livestock number, (c) 

aquaculture area and (d) residential population under three pi levels and three periods 

Figure 5-2(d) shows the planning results for the residential population under the 

three pi levels over the three periods. When pi equaled 0.01, the number of inhabitants 

was 9227, 7143 and 5238 when k equaled 1, 2 and 3 respectively. Where pi equaled 0.05, 
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it decreased from 9587 to 7645 and 6375 over the three periods. Finally, where pi equaled 

0.10, it changed to 9986, 8132 and 6782 in the three periods respectively. In period 1, the 

residential population was 9227, 9587 and 9986 where pi equaled 0.01, 0.05 and 0.10 

respectively. In period 2, it changed to 7143, 7645 and 8132 under the three pi levels. In 

the last period, it changed to 5238, 6375 and 6782 under the three pi respectively. For the 

inhabitants, there are two approximate directions, as with livestock rearing and fish 

farming, from k = 1 to k = 2 and k = 3 under each level among pi = 0.01, pi = 0.05 and pi 

= 0.10. 

Tables 5-8 to 5-10 show the optimization results for the total net benefit and water 

demand pollutant discharge over the three pi levels in the three periods. It can be 

observed that the total net benefit as the single objective varied under the different pi 

levels. In detail, when pi equaled 0.01, the total net benefits were 7.90×106, 8.23×106 and 

8.53×106 $ in the three periods. Where pi = 0.05, they changed to 8.20×106, 8.63×106, and 

8.96×106 $ when k equaled 1, 2 and 3 respectively. Under the last pi level, the total net 

benefits became 9.10×106, 9.14×106 and 9.44×106 $ over the three periods. To clearly 

compare the water quality results between the SOP and MOP models, this section 

provides water quality details including the discharge, the concentration of TP, NH3-N 

and BOD5, the WQI results, CNWQI-C and the gradation of water quality. When pi 

equaled 0.01, the TP release values were 4.53×103, 2.18×103, and 1.09×103 kg in the 

three periods. Where pi = 0.05, they turned to 4.67×103, 2.38×103 and1.15×103 kg when k 

equaled 1, 2 and 3 respectively. Under the last pi level, the TP discharge values 

corresponded to 5.04×103, 2.67×103 and 1.26×103 kg over the three periods. The TP 
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values, including concentration and sub-index, were respectively computed according to 

Equations 5-12 and 3-18 and presented in Tables 5-8 and 9. The related data about NH3-

N and BOD5 is also provided in Tables 5-8 and 9. WQI results were calculated based on 

Equation 3-19 and shown in Table 5-10. Finally, each lake water quality gradation for 

CNWQI was indicated in Table 5-10 under different pi levels in each period. Altogether, 

this last set of results shows that a high pi level led to less satisfactory lake water quality 

but a higher total net benefit. Conversely, these final values reflect that a lower pi level 

produced more satisfactory lake water quality but resulted in a lower total net benefit. 

Table 5-8 SOP model optimization results for total net benefit, water demand and 

pollutant discharge under three pi levels and three periods 

Optimized results 

Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

Total net benefit (106$) 7.90 8.23 8.53 8.20 8.63 8.96 9.10 9.14 9.44 
Water demand (106m3) 1.71 1.72 1.74 1.79 1.80 1.91 1.93 1.94 2.00 
TP discharge (103kg) 4.53 2.18 1.09 4.67 2.38 1.15 5.04 2.67 1.26 

NH3-N discharge (103kg) 5.81 3.77 2.14 7.16 4.05 2.36 7.69 4.48 2.55 

BOD5 discharge (104kg) 2.36 2.02 1.75 2.74 2.19 1.87 2.98 2.35 1.99 
 
 

Table 5-9 SOP model optimization results for concentration of TP,  

NH3-N, and BOD5 under three pi levels and three periods 

Concentration 
Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

TP (mg/l) 0.219 0.105 0.053 0.226 0.115 0.056 0.243 0.129 0.061 
NH3-N (mg/l) 0.281 0.182 0.103 0.346 0.196 0.114 0.371 0.216 0.123 
BOD5(mg/l) 1.140 0.976 0.845 1.324 1.058 0.903 1.440 1.135 0.961 
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Table 5-10 SOP model optimization results for water quality details 
under three pi levels and three periods 

Water quality 
Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

WQI results 
CNWQI-C 

3.33 
4 

3.00 
3 

2.33 
3 

3.33 
4 

3.00 
3 

2.33 
3 

3.33 
4 

3.00 
3 

2.33 
3 

Gradation of CNWQI-C Poor Fair Fair Poor Fair Fair Poor Fair Fair 

5.4.3.2 MOP model results 

Figure 5-3(a) presents the planning solutions for the optimized agricultural area in 

the three different periods under the three different pi levels. In Figure 5-3(a), there are 

two growth tendencies for the farming area. The first is that each result for the 

agricultural area increased from k = 1 to k = 2 and k = 3 under each level when pi = 0.01, 

pi = 0.05, and pi = 0.10. Secondly, each optimized result increased from pi = 0.01 to pi = 

0.05 and pi = 0.10 in each period. In period 1, the result was 0.95, 1.01 and 1.12 km2 

where pi equaled 0.01, 0.05 and 0.10 respectively. Subsequently, in period 2, the 

agricultural area increased from 1.18 to 1.31 and 1.43 km2 under the three pi levels. 

Finally, in period 3, it changed to 1.43, 1.52 and 1.66 km2 under the three pi respectively. 

Similarly, under pi = 0.01, the result was 0.95, 1.18 and 1.43 km2 when k equaled 1, 2 and 

3 respectively. Under pi = 0.05, it increased from 1.01, 1.31 and 1.52 km2 over the three 

periods. Eventually, where pi equaed 0.1, the result changed to 1.12, 1.43 and 1.66 km2 in 

the three periods respectively. Although agricultural activities unavoidably create 

contaminants, the demands of population growth and economic development need as as 

much land area as possible devoted to agriculture to plant more crops. Meanwhile, on the 
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basis of a proper planning method, it is possible to obtain both more agricultural land area 

and higher net benefits under the satisfaction of many kinds of constraints. 

Figure 5-3(b) provides the optimization solutions for the development of livestock 

rearing over the three periods under the three pi levels. For the case of livestock rearing, 

one decreasing tendency and one increasing tendency were observed. Firstly, every result 

for the number of livestock decreased from k = 1 to k= 2, and k = 3 under each level 

among pi = 0.01, pi = 0.05 and pi = 0.10, while every optimized result grew from pi = 

0.01 to pi = 0.05 and pi = 0.10 over the three periods. In period 1, the result was 549, 557 

and 571 where pi equaled 0.01, 0.05 and 0.10 respectively. In period 2, the livestock 

number increased from 235 to 251 and 275 under the three pi levels. In the last period, it 

changed to 85, 88 and 93 under the three pi respectively. Under pi = 0.01, the result was 

549, 235 and 85 when k equaled 1, 2 and 3 respectively. Under pi = 0.05, it changed to 

557, 251 and 88 over the three periods. Finally, where pi equaled 0.10, the number 

changed to 571, 275 and 93 in the three periods respectively. These results make it clear 

that the number of livestock would decrease steadily during the entire planning period 

under each level with the aim of producing greater water quality as a contribution to lake 

management. 
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Legend    k = 1            k = 2          k = 3 

 
Figure 5-3 Results of MOP model for (a) agriculture area, (b) livestock number, (c) 

aquaculture area and (d)residential population under three pi levels and three periods 

Figure 5-3(c) describes the optimization results for the aquaculture area under the 

three pi levels across the entire optimization period. The aquaculture area showed the 

same situation as the livestock number, with two opposite tendencies as follows: the 
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aquaculture area decreased in the three periods under the same pi level. However, it 

increased under the three pi degrees in the same period. When pi equaled 0.01, the 

aquaculture area declined from 1.23 to 1.07 and then to 0.85 km2 where k equaled 1, 2 

and 3 respectively. When pi equaled 0.05, the area changed from 1.31 to 1.19 and then to 

0.97 km2 in the three periods, and when pi equaled 0.10, the optimization area became 

1.38, 1.24 and 1.08 km2 when k equaled 1, 2 and 3 respectively. Conversely, in period 1, 

the area was 1.23, 1.31 and 1.38 km2 when pi equaled 0.01, 0.05 and 0.10 respectively. In 

period 2, the aquaculture area increased from 1.07 to 1.19 and 1.24 km2 under the three pi 

levels. In the last period, it changed to 0.85, 0.97 and 1.08 km2 under the three pi 

respectively. This group of data shows that the aquaculture area would decrease within 

the optimization period under a constant pi level. Meanwhile, the results indicate that 

fishery has provided more profitless devotion into lake water contamination. 

Nevertheless, it is readily acceptable that the aquaculture area increased when pi equaled 

0.01, 0.05 and 0.10, since the three pi levels indicate the three various satisfactory 

degrees for the constraints with a possibility of at least 99, 95 and 90%. 

Figure 5-3(d) shows the optimization solutions for the residential population over 

the three periods under the three pi levels. For the inhabitants, as with livestock rearing 

and fish farming, there were two approximate directions of growth from k = 1 to k = 2 

and k = 3 under pi = 0.01, pi = 0.05, and pi = 0.10. In period 1, the residential population 

was 7650, 7872 and 8126 where pi equaled 0.01, 0.05 and 0.10, respectively. In period 2, 

it decreased from 5620, 5848 and 6109 under the three pi levels. In the last period, it 

changed to 4159, 4336 and 4891 under the three pi respectively. Similarly, under pi = 
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0.01, the population was 7650, 5620 and 4159 when k equaled 1, 2 and 3 respectively. 

Under pi = 0.05, it decreased from 7872 to 5848 and 4336 over the three periods. Finally, 

where pi equaled 0.10, the population changed to 8126, 6109 and 4891 in the three 

periods respectively. The above data shows that the number of residents was maintained 

or reduced within the optimization process regardless of any levels due to its negative 

influence on water quality. 

Table 5-11 MOP model optimization results for total net benefit, water  

demand and Water quality under three pi levels and three periods 

Optimized results 
Different pi levels 

pi = 0.01   pi = 0.05   pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

Total net benefit (106$) 7.13 7.33 7.50 7.58 8.13 8.16 8.17 8.71 8.97 

Water demand (106m3) 1.49 1.46 1.50 1.56 1.57 1.58 1.67 1.70 1.74 
WQI results 2.33 1.67 1.33 2.67 2.00 1.67 2.67 2.00 1.67 
CNWQI-C  3 2 2 3 2 2 3 2 2 

Gradation of CNWQI-C Fair Good Good Fair Good Good Fair Good Good 

Table 5-11 shows the optimization results for total net benefit, water demand and water 

quality under the three pi levels across the three periods. It can be observed that the two 

objectives of total net benefit and CNWQI-c results changed under the different pi levels. 

Firstly, when pi equaled 0.01, the total net benefits were 7.13×106, 7.33×106 and 

7.50×106 $ in the three periods. Where pi = 0.05, they changed to 7.58×106, 8.13×106 and 

8.16×106 $ when k equaled 1, 2 and 3 respectively. Under the last pi level, the total net 

benefits became 8.17×106, 8.71×106 and 8.97×106 $ over the three periods. Secondly, 

when pi equaled 0.01, the WQI results were 2.33, 1.67 and 1.33 in the three periods. 
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Where pi = 0.05, they changed to 2.67, 2.00 and 1.67 when k equaled 1, 2 and 3 

respectively. Finally, under the last pi level, the WQI results became 2.67, 2.00 and 1.67 

over the three periods. Based on the same reason for comparing the results for water 

quality between the SOP and MOP models, Tables 5-12 and 5-13 similarly present 

detailed water quality information from the discharge, the concentration and the sub-

index of TP, NH3-N, and BOD5. When pi equaled 0.01, the TP release values were 

2.06×103, 1.03×103 and 0.52×103 kg in the three periods. Where pi = 0.05, they changed 

to 2.09×103, 1.09×103 and 0.54×103 kg when k equaled 1, 2 and 3 respectively. Under the 

last pi level, the values of TP discharge correspond to 2.15×103, 1.19×103 and 0.59 ×103 

kg over the three periods. The related data concerning NH3-N and BOD5 is also provided 

in Table 5-12 and 5-13. Similarly, the last set of values implies that a high pi level 

produced less satisfactory lake water quality but a higher total net benefit, while on the 

other hand a lower pi level would result in more satisfactory lake water quality but a 

lower total net benefit.  

To compare the results for the SOP and MOP models in detail, Tables 5-12 and 5-13 

show the discharge and average concentration of TP, NH3-N and BOD5 under the 

conditions of different levels and periods. 
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Table 5-12 MOP model optimization results for emissions of TP,  

NH3-N and BOD5 under three pi levels and three periods 

Discharge 
Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

TP discharge (103kg) 2.06 1.03 0.52 2.09 1.09 0.54 2.15 1.19 0.59 
NH3-N discharge (103kg) 3.61 2.08 1.27 3.69 2.21 1.34 3.81 2.37 1.48 

BOD5 discharge (104kg) 1.91 1.60 1.42 2.00 1.76 1.55 2.12 1.88 1.71 
 

 

Table 5-13 MOP model optimization results for concentration of TP, NH3-N, and BOD5 

emissions under three pi levels and three periods 

Concentration 
Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

TP (mg/l) 0.099 0.049 0.025 0.101 0.053 0.026 0.104 0.057 0.029 
NH3-N (mg/l) 0.174 0.100 0.061 0.178 0.107 0.065 0.184 0.114 0.071 

BOD5 (mg/l) 0.923 0.773 0.686 0.966 0.850 0.749 1.024 0.908 0.826 

 
 

5.4.4 Comparison and analysis 

This section focuses on the comparison between the SOP model and the MOP model. 

It attempts to discover the similarities and differences between the two models and which 

is preferable for lake management and pollution control. The analysis of the relationship 

between the SOP and MOP models, based on Figures 5-1 to 5-5 and Tables 5-1 to 5-16, 

is presented as follows: 
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     k=1     k=2         k=3      k=1       k=2       k=3       k=1      k=2       k=3 

                           pi = 0.01                            p i= 0.05                        pi = 0.10 
Legend    SOP            MOP 

 
Figure 5-4 Comparison for total net benefit between SOP and MOP models 

(each left one is for SOP model, and each right one is for MOP model) 

 

 
  k=1        k=2      k=3      k=1     k=2       k=3       k=1     k=2       k=3 

                               pi = 0.01                       pi = 0.05                        pi = 0.10 
Legend    SOP            MOP 

 

Figure 5-5 WQI results based on SOP and MOP optimization   

(each left one is for SOP model, and each right one is for MOP model) 
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Table 5-14 Comparison of total net benefit resulted from SOP and  

MOP models under three pi levels and three periods 

Total net benefit (106$) 
Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

SOP model 7.90 8.23 8.53 8.20 8.63 8.96 9.10 9.14 9.44 
MOP model 7.13 7.33 7.50 7.58 8.13 8.16 8.17 8.71 8.97 

 
 

Table 5-15 Comparison of water demand resulted from SOP and  

MOP models under three pi levels and three periods 

Water demand (106m3) 
Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

SOP model 1.71 1.72 1.74 1.79 1.80 1.91 1.93 1.94 2.00 
MOP model 1.49 1.46 1.50 1.56 1.57 1.58 1.67 1.70 1.74 

 
 

Table 5-16 Comparison of water quality resulted from SOP and  

MOP models under three pi levels and three periods 

Water quality 
Different pi levels 

pi = 0.01 pi = 0.05 pi =0 .1 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

WQI results for SOP 3.33 3.00 2.33 3.33 3.00 2.33 3.33 3.00 2.33 
WQI results for 

MOP 2.33 1.67 1.33 2.67 2.00 1.67 2.67 2.00 1.67 

CNWQI-C of SOP 4 3 3 4 3 3 4 3 3 
CNWQI-C of MOP 3 2 2 3 2 2 3 2 2 
Gradation of SOP Poor Fair Fair Poor Fair Fair Poor Fair Fair 
Gradation of MOP Fair Good Good Fair Good Good Fair Good Good 

 
        

(1) The similar results: 

a. In the two proposed models, optimization values of total net benefits and agricultural 
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area became progressively larger under each pi level across the three periods. 

Although the WQI results became smaller under the same conditions, their variations 

mean that every optimized lake water quality result became better and better from k = 

1 to k = 2 and k = 3. The water demand results for the SOP and MOP models had a 

slightly larger variation from pi = 0.01 to 0.10 and from k = 1 to 3 except where pi = 

0.01 in the period of 2. 

b. The series of optimization data for the livestock number, aquaculture area and 

residential population vary similarly with each pi level. Within both the SOP model 

and the MOP model, the values gradually became smaller over the three periods 

under each pi and the amounts grew larger and larger under the three probabilities in 

each period. 

c. Whether in the SOP model or the MOP model, this last set of results shows that at a 

higher pi level, the lake water quality decreased, but the total net benefit was higher, 

while at a lower pi level the lake water quality increased but the total net benefit was 

lower. 

 

(2) The differences: 

a. The values for the total net benefit, water demand, agriculture area, livestock number, 

aquaculture area and residential population were larger when using the SOP model 

than when using the MOP model under the three pi levels and acoss the three periods; 

b. All the results for the concentrations of TP, NH3-N and BOD5 based on the SOP 

model were also larger than the corresponding values obtained from the SOP model 

under the three Pi levels and three periods; 
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c. All the WQI results under different pi levesl and periods based on the SOP model 

were smaller than the corresponding values from the MOP model. In addition, the 

relevant gradation of WQI was worse and became one class lower. 

 

With the SOP model, so long as the constraints were met, particularly the limitations 

of TP, NH3-N and BOD5 discharge, the single objective of total net benefit saw a better 

result based on the loose restrictions for water quality. However, the MOP model had to 

meet more rigorous requirements for lake water quality as the second objective. On one 

hand, it not only needed to comply with all the constraints, but was also interrelated with 

the first objective (total net benefit). On the other hand, the residential population did not 

contribute to the total net benefit. Nevertheless, the people living in the residential area 

continued to generate contaminants including TP, NH3-N and BOD5 and discharge them 

into HJH Lake. Although each result for the total net benefit in the SOP model was larger 

than the corresponding value in the MOP model due to the addition of the figures for the 

agriculture, livestock rearing and aquaculture areas, the relevant gradation of WQI in the 

SOP model was worse and dropped one class lower than MOP under the corresponding pi 

levels and periods due to the greater discharge of TP, NH3-N and BOD5. 

5.5 Discussion  

5.5.1 OWQI and CNWQI-C water quality results based on MOP optimization 
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      Since HJH Lake is located in China, the relevant Chinese regulations and methods are 

more acceptable for all interest groups. However, as discussed in the aforesaid section 

concerning the comparison of water quality assessment methods between US-OQWI, 

CWQI, CNWQI-S and CNWQI-C, this study aims to determine the best approach to lake 

system management. This section thus features a comparison of water quality between 

the OWQI and CNWQI-C methods based on the MOP optimization results and average 

concentration. 

Using the MOP model pollutant concentration results in Table 5-13 and the relevant 

equation shown in Section 3.2.1, the water quality indices were calculated employing the 

OWQI method and shown in Table 5-17 under each level and each period: 

Table 5-17 OWQI analysis based on MOP optimization  

under three pi levels and three periods 

Index 
Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

STP 70.35 85.08 92.51 69.75 84.13 92.21 68.85 82.93 91.31 
SNH3-N 58.91 71.11 79.13 58.34 69.80 78.24 57.51 68.53 76.95 

SB0B5 83.20 85.72 87.22 82.49 84.42 86.13 81.54 83.45 84.82 

 

Table 5-18 provides the OWQI results and levels of water quality according to the 

values in Tables 5-11 and 5-17 and Equation 3-1. Meanwhile, the following table 

presents a comparison between the CNWQI-C and OWQI methods. 
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Table 5-18 Water quality assessment results based on MOP optimization 

Water quality 

Different pi levels 

pi = 0.01 pi = 0.05 pi = 0.10 

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

WQI results for CNWQI-C 2.33 1.67 1.33 2.67 2.00 1.67 2.67 2.00 1.67 
Gradation of CNWQI-C Fair Good Good Fair Good Good Fair Good Good 
WQI results for OQWI 68.75 79.73 85.75 68.13 78.50 84.95 67.23 77.31 83.74 

Gradation of OQWI Poor Poor Good Poor Poor Fair Poor Poor Fair 

 

Table 5-18 shows the comparison of the water quality results between the OWQI 

and CNWQI-C methods based on the results for the MOP model under the three pi levels 

and three periods. Firstly, when pi equaled 0.01, the OWQI results were 68.75, 79.73 and 

85.75 in the three periods. Where pi = 0.05, they changed to 68.13, 78.50 and 84.95 when 

k equaled 1, 2 and 3 respectively. Under the last pi level, they became 67.23, 77.31 and 

83.74 over the three periods. Secondly, when pi equaled 0.01, the gradations of OWQI 

were Poor, Poor and Good across the three periods, and where pi = 0.05, they changed to 

Poor, Poor and Fair when k equaled 1, 2 and 3 respectively. Under the last pi level, the 

gradations of OWQI were also Poor, Poor and Fair over the three periods. It can be 

observed that the two WQI methods displayed a similar change wherein the water quality 

results for both became better and better as the value of k increased from 1 to 2 and 3 and 

pi changed from 0.01 to 0.05 and 0.10. However, the OQWI method showed worse water 

quality, implying the results were more believable. 

5.5.2 OWQI and CNWQI-C based MOP model results under two probabilities and 

two periods  
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As the comparisons in Section 5.5.1 are all based on the average concentration of TP, 

NH3-N and BOD5, the related results are so theoretical that either big or small deviation 

exist unavoidably. Thus, the following study focuses on simulating the optimization data 

to testify the reality of the planning measure under the comparison of OWQI method and 

CNWQI-C method.  

5.5.2.1 Integration of Simulation and optimization  

Based on the simulation approach to contaminant distribution presented in Section 

5.3 and the results from Table 5-12, two situations were chosen for this study, namely 

where pi equals 0.10 in the period of 1 and pi equals 0.01 in the third period of 3. The first 

group of discharge values for TP, NH3-N and BOD5 into the lake is 2.15 ×103kg, 3.81 

×103kg and 2.12 ×104 kg per year respectively. The second group of discharge results for 

TP, NH3-N and BOD5 into the lake is 0.52 ×103kg, 1.27 ×103kg and 1.42 ×104 kg per 

year respectively. The corresponding data would be received as in the above part as 

showed in Tables 5-19 to 5-22: 

Table 5-19 Emission sources and locations for 

TP, NH3-N and BOD5 under pi =0.10 and k= 1 

Discharge 
sources X(longitude) Y (latitude) TP (103kg) NH3-N (103kg) BOD5 (103kg) 

A 114.286941 30.467259 0.92 1.98 9.99 
B 114.278459 30.440375 0.37 0.72 5.53 
C 114.278143 30.423206 0.30 0.39 2.12 
D 114.293392 30.441937 0.25 0.30 1.74 
E 114.296439 30.451748 0.31 0.42 1.82 
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Table 5-20 Emission sources and locations for 

TP, NH3-N and BOD5 under pi =0.01 and k= 3 

Discharge 
sources X(longitude) Y (latitude) TP (103kg) NH3-N (103kg) BOD5 (103kg) 

A 114.286941 30.467259 0.22 0.66 6.71 
B 114.278459 30.440375 0.09 0.24 3.69 
C 114.278143 30.423206 0.07 0.13 1.41 
D 114.293392 30.441937 0.06 0.10 1.17 
E 114.296439 30.451748 0.08 0.14 1.22 

 
 
 

Table 5-21 Coupled simulation-optimization results for TP, NH3-N  

 and BOD5  at 14 sampling stations under pi =0.10 and k= 1 

Sampling stations TP (mg/l) NH3-N (mg/l) BOD5 (mg/l) 

1 0.087 0.138 1.080 
2 0.075 0.116 0.780 
3 0.087 0.127 1.012 
4 0.075 0.086 0.944 
5 0.075 0.101 0.985 
6 0.069 0.168 0.903 
7 0.087 0.213 1.053 
8 0.075 0.179 0.930 
9 0.069 0.116 0.930 

10 0.069 0.134 0.998 
11 0.126 0.142 1.094 
12 0.121 0.370 0.903 
13 0.057 0.202 0.492 
14 0.133 0.527 1.286 
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Table 5-22 Coupled simulation-optimization results for TP, NH3-N  

and BOD5 14 sampling stations under pi = 0.01 and k = 3 

Sampling stations TP (mg/l) NH3-N (mg/l) BOD5 (mg/l) 

1 0.021 0.046 0.724 
2 0.018 0.039 0.522 
3 0.021 0.042 0.678 
4 0.018 0.029 0.632 
5 0.018 0.034 0.660 
6 0.017 0.056 0.605 
7 0.021 0.071 0.705 
8 0.018 0.060 0.623 
9 0.017 0.039 0.623 

10 0.017 0.045 0.669 
11 0.030 0.047 0.733 
12 0.029 0.123 0.605 
13 0.014 0.067 0.330 
14 0.032 0.176 0.861 

 

5.5.2.2 Water quality assessment based on OWQI and CNWQI-C  

 Using the relevant equations and the data from Tables 5-19 to 5-22, the water 

quality sub-index, results and graduations using the OWQI method and the CNWQI-C 

method are shown in Table 5-23, 24, 25 and 26 under the two described levels and 

periods. 
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Table 5-23 OWQI-based water quality assessment results 

at 14 sampling stations under pi = 0.10 and k = 1 

Sampling 
stations STP SNH3-N SBOD5 

OWQI 
results 

Water quality 
classes 

1 73.97 64.39 80.63 72.06 Poor 
2 77.40 68.21 85.61 76.08 Poor 
3 73.97 66.26 81.73 73.18 Poor 
4 77.40 73.86 82.85 77.78 Poor 
5 77.40 70.95 82.18 76.42 Poor 
6 79.45 59.77 83.53 71.82 Poor 
7 73.97 53.72 81.07 66.35 Poor 
8 77.40 58.16 83.08 70.28 Poor 
9 79.45 68.21 83.08 76.09 Poor 

10 79.45 65.00 81.96 74.26 Poor 
11 62.33 63.78 80.41 67.53 Poor 
12 63.70 38.46 83.53 53.06 Very Poor 
13 82.88 55.14 90.65 70.94 Poor 
14 60.27 29.45 77.40 43.36 Very Poor 

 

For OWQI, Tables 5-23 and 5-24 describe diverse changes at 14 sampling stations 

under three periods and three probabilities. When pi = 0.10 and k = 1, the sub-indices of 

TP were from 60.27 to 82.88 at these sampling stations. For INH3-N in Table 23, the group 

of data ranged between 29.45 and 73.86. The set amounts of IBOD5 changed to around 80 

at 14 sampling stations. In Table 24, which shows the details of water quality where pi = 

0.01 and k = 3, all the figures, including ITP, INH3-N, and IBOD5 apparently become larger 

than the relevant digits above from each monitoring site presented in Table 5-23. In both 

conditions, two main water quality graduations were observed at 14 sampling stations, 

with all of them being Poor class except for two stations with Very Poor class when pi 

=0.10 and k = 1, and all of them being graded as Good except two for sites with an 

Excellent grade and two sites with a Fair grade under pi = 0.01 and k = 3. At both Stations 
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12 and 14, the water quality levels were one to two classes lower than at the other 

monitoring points under both conditions. 

Through the result analysis of Tables 5-18, 5-23 and 5-24, this study shows the very 

similar water quality results between the MOP model with average pollutant 

concentration and the simulation method with the modeled contaminant concentration 

under the two probabilities and periods. When pi = 0.10 and k = 1, the OQWI results 

described in Table 5-23 ranged from 43.36 to 77.78 and the relevant amount using the 

MOP model was 67.23, which is within the range of the simulated data. Where pi equaled 

0.01 in the period of 3, the OWQI results provided in Table 5-24 changed between 73.61 

and 91.72, while the relative score based on the MOP model under the same 

concentration was 85.75, which is also in the range of 73.61-91.72. 

Table 5-24 OWQI-based water quality assessment results  

at 14 sampling stations under pi = 0.01 and k = 3 

Sampling 
stations STP SNH3-N SBOD5 

OWQI 
results 

Water quality 
classes 

1 93.71 86.97 86.57 88.91 Good 
2 94.53 90.70 90.12 91.72 Excellent 
3 93.71 88.84 87.36 89.85 Good 
4 94.53 95.68 88.16 92.61 Good 
5 94.53 93.19 87.68 91.66 Good 
6 95.03 81.99 88.65 88.07 Good 
7 93.71 76.95 86.89 85.00 Good 
8 94.53 80.12 88.33 87.05 Good 
9 95.03 90.70 88.33 91.23 Excellent 

10 95.03 87.59 87.52 89.85 Good 
11 90.89 86.35 86.41 87.81 Good 
12 91.22 66.90 88.65 79.82 Fair 
13 95.86 77.76 93.64 87.90 Good 
14 90.39 58.69 84.23 73.61 Fair 
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Table 5-25 and 5-26 respectively presents Sub-index, WQI results and water 

quality class under two periods and two probabilities by CNWQI-C measure. Under pi = 

0.10 and k = 1, Table 25 shows a group of noticeably big values among the values of ITP 

with a range of 3.05 to 4.11 at the sampling stations. To INH3-N, a series of data become 

quite stable, and most of them are 1.00 except several values changing from 1.03 to 2.04; 

as the last index, IBOD5 has the same amount such as 2.00 at each sampling station. Table 

26 provide the details of water quality where pi = 0.01 and k = 3, and the figures of ITP 

vary in a small range from 1.11 to 2.00 at 14 sampling stations. Similarly, INH3-N data 

turns more coincident as 1.00 except Station 14 with the amount of 1.04; as the last index, 

the set of IBOD5 values are entirely unchanged as 2.0 and the same as the above provided 

index of BOD5 in Table 5-25 at each monitoring site. In the two situations, there are just 

two kinds of water quality graduations at 14 sampling stations, such as Fair class when pi 

= 0.10 and k = 1, and as Good level under pi = 0.01 and k = 3.  

Through the analysis of the results in Tables 5-18, 5-25 and 5-26, this study also 

shows the exact same consequences on observed water quality between the MOP model 

with average pollutant concentration and the simulation method with the modeled 

contaminant concentration under the two probabilities and periods. When pi = 0.10 and k 

= 1, the CNWQI-C results described in Table 5-25 ranged from 2.04 to 2.72 and the 

corresponding amount using the MOP model was 2.67, which is within the range of the 

simulated data. Where pi equaled 0.01 in period 3, the CNWQI-C results provided in 

Table 5-26 changed  between 1.40  and 1.68, while  the  relative score based on the  MOP  
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Table 5-25 CNWQI-C-based water quality assessment results 

at 14 sampling stations under pi = 0.10 and k = 1 

Sampling 
stations ITP INH3-N IBOD5 

CNWQI-C 
scores 

Water quality 
classes 

1 3.25 1.00 2.00 2.08 Fair 
2 3.17 1.00 2.00 2.06 Fair 
3 3.25 1.00 2.00 2.08 Fair 
4 3.17 1.00 2.00 2.06 Fair 
5 3.17 1.00 2.00 2.06 Fair 
6 3.12 1.03 2.00 2.05 Fair 
7 3.25 1.10 2.00 2.11 Fair 
8 3.17 1.00 2.00 2.06 Fair 
9 3.12 1.00 2.00 2.04 Fair 

10 3.12 1.00 2.00 2.04 Fair 
11 4.09 1.00 2.00 2.36 Fair 
12 3.47 1.34 2.00 2.27 Fair 
13 3.05 1.08 2.00 2.04 Fair 
14 4.11 2.04 2.00 2.72 Fair 

 

 

 

Table 5-26 CNWQI-C-based water quality assessment results  

at 14 sampling stations under pi = 0.01 and k = 3 

Sampling 
stations ITP INH3-N IBOD5 

CNWQI-C 
results 

Water quality 
classes 

1 1.31 1.00 2.00 1.44 Good 
2 1.24 1.00 2.00 1.41 Good 
3 1.31 1.00 2.00 1.44 Good 
4 1.24 1.00 2.00 1.41 Good 
5 1.24 1.00 2.00 1.41 Good 
6 1.19 1.00 2.00 1.40 Good 
7 1.31 1.00 2.00 1.44 Good 
8 1.24 1.00 2.00 1.41 Good 
9 1.19 1.00 2.00 1.40 Good 

10 1.19 1.00 2.00 1.40 Good 
11 2.00 1.00 2.00 1.67 Good 
12 2.00 1.00 2.00 1.67 Good 
13 1.11 1.00 2.00 1.37 Good 
14 2.00 1.04 2.00 1.68 Good 
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model under the same concentration was 1.33, which is closer to the simulated range 

(1.40-1.68). 

Within the GIS platform, the data from Tables 5-23 to 5-26 are used in the following 

Figure 5-6 to show the water quality in the entire lake based on the US-WQI and 

CNWQI-C methods under pi = 0.10, k = 1 and pi = 0.01, k = 3. 

5.5.2.3 Comparison of water quality assessment based on OWQI and CNWQI-C  

Within the comparison of the water quality results from the CNWQI-C and OWQI 

methods, there are several notable similarities and differences: 

 

(1) The similar points: 

a. The two proposed methods both show that the water quality changed for the better 

from k = 1 to k = 3 and from pi = 0.01 to pi = 0.10; 

b. In the north of the lake, especially around modeling stations 12 and 14, the water 

quality was the worst in the lake in both presented approaches. Towards the south, the 

water quality became better and better whether using the CNWQI-C method or the 

OWQI method. 

 

(2) The differences: 

c. The water quality at each sampling site employing the CNWQI-C method under k = 1 

and pi = 0.10 was better than  the  corresponding  results  using  OWQI.  The  level  at  
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(a) OWQI (pi =0.10 and k= 1)                  (b) OWQI (pi =0.01 and k=3) 

      

(c)CNWQI-C (pi =0.10 and k= 1)           (d) CNWQI-C (pi =0.01 and k= 3) 

 

Figure 5-6 Water quality visualization based on OWQI and CNWQI-C 
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most of them was one class higher, including at Sites 12 and 14 where the water 

quality grades obtained with OWQI were two levels lower than those obtained with 

CNWQI-C; 

d. Each group of WQI results under a certain pi level and period based on CNWQI-C 

was quite stable around 1 or 2. However, the relative values of OWQI varied within a 

large digital range, such as between 43 and 78 or 73 and 92. 

5.6 Summary 

A real case study was conducted by employing lake pollution control planning in the 

optimization of HJH Lake. A comparison and analysis between the SOP and MOP 

models showed that the MOP model is undoubtedly the better planning approach due its 

greater consideration, especially towards total net benefit and water quality. After a 

discussion and comparison of CNWQI-C and OWQI based on the MOP optimization 

results, it was clear that the more detailed procedure and acceptable results for the OWQI 

method support more useful suggestions to lake managers. 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This thesis was presented to develop an approach, named WQAPCP, which 

includes water quality assessment, pollution control planning and GIS technology 

integrating water quality evaluation and lake optimization.  

A series of study tasks were conducted in this thesis: 

GIS-based water quality assessment methods were developed though the use of GIS 

and a database made up of four groups of evaluated data including the OWQI, CWQI, 

CNWQI-S and CNWQI-C methods. These approaches to the water quality index were 

applied to assess the water quality of a real case named HJH Lake. The assessment results 

were displayed in the form of maps which described the spatial distribution of the 

evaluation results including the water quality evaluation results and the levels of water 

quality. Through scenario analysis, it was clearly determined that TP, NH3-N and BOD5 

exerted a huge influence on the lake water quality. They were the most significant 

parameters for controlling lake water contamination. The four evaluation methods have a 

few similar points, but a greater number of differences which are due to their detailed 

sub-indices, stringent computation processes, exact values and related classification 

systems. Of the four aforementioned models, the OQWI model appeared to be the most 

comprehensive model for lake water quality assessment. Because there were not enough 

data in the study, CWQI was not the most usable model even though the values and the 
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water quality categories it generated seemed exciting. The CNWQI models are flexible 

for use in different projects, but CNWQI-S method seemed too arbitrary because of its 

negation of the better data. The values obtained by the CNWQI-C model, including the 

processing values and the assessed results, were not convictive due to the use of only a 

few directional ranges for the primary parameters, but it is a much better method than 

CNWQI-S based on its overall consideration of water quality parameters. Based on the 

comparison of these methods, the most suitable method of water quality assessment for 

lake management was determined to be the OWQI method.  

This thesis presented several approaches to lake pollution control planning through 

the simulation of contaminant dispersion and the optimization of lake management. In 

order to provide evidence for the possibility of optimization implementation, the 

simulation method of the monitoring values was employed as the first step of the entire 

planning system study. Using the relevant contaminant distribution theory, the modeling 

approach was determined to be suitable for use in this study to imitate the real pollutant 

concentration diffusion situation in HJH Lake. A comparison between the SOP model 

and the MOP model was then addressed in the research to support water contamination 

control planning in a continual lake management system. Through the selection and 

confirmation of objectives and constraints, this study utilized both different methods in 

order to discover the strengths and deficiencies of the SOP and MOP models. By 

performing a comparison of the two kinds of programming models, this thesis showed 

some shortcomings of the use of the SOP model for lake water management and pollution 

control. It determined that the MOP model produced more efficient results for the 

relevant stakeholders. Three periods and a set of significant levels were considered in this 
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study to determine the development and the probability of realization of the lake 

management system. Another comparison of the OWQI and CNWQI-C methods was 

conducted according to the MOP optimization results in order to discover a more 

acceptable approach to lake optimization. It comprised the above water quality evaluation 

methods. It was found that the OWQI method produced a more detailed procedure and 

more acceptable results which would support stronger decision-making. 

GIS technology was employed in this study to integrate the water quality 

assessment methods and the optimization methods for pollution control and lake 

management. Due to its ability to compound the relevant data and create visual maps of 

the study results, GIS played a significant role in extending the traditional numerical 

results for the assessment methods and lake planning by producing results with spatial 

references. By integrating GIS as a communication tool, this study enables researchers 

and lake managers to better understand the spatial distribution of water quality risks and 

supports better recommendations for local administration. 

In conclusion, the research work presented in this thesis demonstrated that it is 

useful to apply spatial information technology in effective water quality assessment and 

lake optimization. The research results indicated that the GIS-based integrated approach 

(WQAPCP) developed in this thesis provides practical support for water quality 

management and lake contamination control. The developed methods and modeling tools 

can also be applied in the management of other lakes in other areas. 

6.2 Contributions 



 
111 

This thesis study contains the following contributions:  

(1). Proposed a GIS-based lake water quality assessment method by based on the 

integrated application of surface water quality index assessment, the ArcGIS, and 

evaluation databases. Four water quality assessment index methods are examined and 

compared based on a real case study to provide reliable and intuitive results regarding the 

spatial distribution of water quality levels. This provides to basis of selecting the most 

suitable assessment method for lake water quality control.  

(2). Developed a GIS-based lake pollution control planning approach (WQAPCP) 

that integrates lake water quality assessment, simulation, and pollution control 

optimization. GIS is coupled with the integrated approach to visualize the assessment, 

simulation, and pollution control planning results with location based GIS database. Both 

SOP and MOP optimization models are examined and developed for a real lake area. The 

developed approach helps to provide scientific basis and support to systematically control 

lake water pollution.   

(3). Conducted a field scale case study based on the validated water quality 

simulation and integrated simulation-optimization. The study lake is first assessed based 

four quality index methods, the study lake is found being polluted by both point and 

nonpoint emissions of TP, NH3-N and BOD5. Therefore, the proposed simulation-

optimization approach is formulated and applied to deliver the systematic and lake 

pollution control strategies for direct implementation of the control measures.  The 

emission reductions are identified based on the developed WQAPCP and the expected 
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lake water quality improvements are quantified based on different strategies of 

implementations.  

6.3 Recommendations for Future Work 

Future studies may focus on: 

1. The further development of the data computation functions of water quality 

assessment and lake pollution control planning within GIS to make the use of 

the method more convenient. 

2. In the current study, three major water quality parameters were included in the 

optimization of HJH Lake. More parameters could be considered in the future, 

if applicable, to produce more comprehensive lake control planning in HJH 

Lake. 

3. The graphical user interface will need to be built and the application will be 

continuously improved for new case studies. 
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