
Preserving Privacy in High-Dimensional Data Publishing

Khalil Al-Hussaeni

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

April 2017

c© Khalil Al-Hussaeni, 2017

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Khalil Al-Hussaeni

Entitled: Preserving Privacy in High-Dimensional Data Publishing

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair

Carson K.-S. Leung External Examiner

Todd Eavis Examiner

Lingyu Wang Examiner

Mohammad Mannan Examiner

Benjamin C. M. Fung Supervisor

Rachida Dssouli Supervisor

Approved by:

Chair of Department or Graduate Program Director

20

Amir Asif, Ph.D., Dean

Faculty of Engineering and Computer Science

Abstract

Preserving Privacy in High-Dimensional Data Publishing

Khalil Al-Hussaeni, Ph.D.

Concordia University, 2017

We are witnessing a continuous expansion of information technology that never

ceases to impress us with its computational power, storage capacity, and agile mo-

bility. Such technology is becoming more pervasive by the day and has enhanced

various aspects of our daily lives. GPS-equipped devices, smart card automated fare

collection systems, and sensory technology are but a few examples of advanced, yet

affordable, data-generating technologies that are an integral part of modern society.

To enhance user experience or provide better services, service providers rely on col-

lecting person-specific information from users. Thus, the collected data is studied

and analyzed in order to extract useful information. It is a common practice for

the collected data to be shared with a third-party, e.g., a data mining firm, for data

analysis. However, the shared data must not leak sensitive information about the

individuals to whom the data belongs or reveal their identity. In other words, indi-

viduals’ privacy must be protected in the published data. Privacy-preserving data

publishing is a research area that studies anonymizing person-specific data with-

out compromising its utility for future data analysis. This thesis studies and pro-

poses anonymization solutions for three types of high-dimensional data: trajectory

streams, static trajectories, and relational data. We demonstrate through theoretical

and experimental analysis that our proposed solutions, for the most part, outperform

state-of-the-art methods in terms of utility, efficiency, and scalability.

iii

Dedication

To my family, with love.

iv

Acknowledgments

This thesis is dedicated to my beloved family for all their support and unconditional

love. Mom, Dad, your emotional support throughout this journey of mine has been

truly unparalleled. You have shown me limitless love, and it has gotten me where

I am. To my dearest brothers, who stood by my side and lifted up my spirits

when things seemed far-fetched, I love you, and I will always be your caring brother

throughout your own journeys.

I would like to extend my sincere gratitude to my supervisor, Dr. Benjamin C.

M. Fung, who has been a constant source of inspiration to me. I learned a lot from

him, not just from his vast technical knowledge and stimulating discussions, but also

from his management skills, especially towards his students. Dr. Fung, I thank you

for your guidance, patience, kind words, constant respect, and never giving up on

me. Moreover, my utmost respect goes to my co-supervisor, Dr. Rachida Dssouli,

who never hesitated to extend her kindness to me and to support me in every way

she could.

Last, but not least, I would like to express my gratitude to Dr. Ibrahim

Kaka for his unwavering benevolence and for being the inspirational epitome of

selflessness.

v

Table of Contents

List of Figures . x

List of Tables . xii

1 Introduction 1

1.1 Motivation . 3

1.2 Privacy-Preserving Data Publishing 5

1.3 Contributions . 6

1.3.1 Anonymizing Trajectory Streams 6

1.3.2 Anonymizing Static Trajectories 7

1.3.3 Anonymizing Relational Data 8

1.4 Organization of the Thesis . 8

2 Background 10

2.1 Privacy Attacks . 10

2.1.1 Record Linkage . 11

2.1.2 Attribute Linkage . 12

2.1.3 Minimality Attack . 13

2.2 Privacy Models . 15

2.2.1 k-Anonymity . 15

2.2.2 �-Diversity . 16

2.2.3 Confidence Bounding . 17

2.2.4 m-Confidentiality . 18

2.2.5 Differential Privacy . 19

2.3 Anonymization Techniques . 21

2.3.1 Suppression . 22

2.3.2 Generalization . 23

2.3.3 Perturbation . 25

vi

3 Literature Review 27

3.1 Data Streams . 28

3.2 Trajectory Data . 31

3.3 Transaction Data . 35

3.4 Relational Data . 37

4 Anonymizing Trajectory Streams 43

4.1 Introduction . 43

4.2 Problem Definition . 48

4.2.1 Privacy Threats . 50

4.2.2 Privacy Model . 52

4.2.3 Problem Statement . 53

4.3 Anonymization Algorithm . 55

4.3.1 Incremental Identification of Violations 55

4.3.2 Sliding Window as a Tree . 61

4.3.3 Suppression . 64

4.3.4 Complexity Analysis of ITSA 65

4.3.5 Discussion . 66

4.4 Performance Analysis . 68

4.4.1 Metro Dataset . 70

4.4.2 MSNBC Dataset . 73

4.4.3 Oldenburg Dataset . 76

4.5 Summary . 78

5 Anonymizing Static Trajectories 79

5.1 Introduction . 79

5.2 Preliminaries . 83

5.2.1 Trajectories as Prefix Tree . 83

5.2.2 Problem Statement . 85

vii

5.3 Proposed Algorithm . 86

5.3.1 Overview . 86

5.3.2 Building the Noisy Prefix Tree 88

5.3.3 Constructing the Sanitized Trajectories 92

5.3.4 Theoretical Analysis . 95

5.4 Experimental Evaluation . 99

5.4.1 Utility and Efficiency . 100

5.4.2 Comparisons . 103

5.4.3 Scalability . 104

5.5 Summary . 106

6 Anonymizing Relational Data 108

6.1 Introduction . 108

6.1.1 Motivation . 110

6.1.2 Contributions . 113

6.2 Problem Definition . 114

6.2.1 Generalization . 114

6.2.2 Problem Statement . 116

6.3 Anonymization Algorithm . 117

6.3.1 Overview . 118

6.3.2 Choosing a Candidate . 120

6.3.3 Determining a Numerical Split Point 126

6.3.4 Publishing Record Counts . 128

6.3.5 Proposed Algorithm . 130

6.3.6 Discussion . 135

6.4 Experimental Evaluation . 136

6.4.1 Data Utility . 139

6.4.2 Efficiency . 143

6.4.3 Scalability . 144

viii

6.5 Summary . 145

7 Conclusion and Future Directions 147

Bibliography 150

ix

List of Figures

1.1 Data collection and publishing . 2

2.1 Taxonomy trees for patients data . 13

4.1 Mining trajectory stream over a sliding window 44

4.2 Raw window W2→4 in Table 4.1 structured as a trie 62

4.3 Anonymous window Ŵ2→4 in Table 4.2 structured as a trie 62

4.4 MetroData: the impact of L, K, C (N = 7) 71

4.5 MetroData: sliding window (L = 4, K = 40, C = 60%) 72

4.6 MetroData: scalability (L = 4, K = 120, C = 60%, N = 7) 72

4.7 MSNBC : distortion ratio vs. L, K, C 73

4.8 MSNBC : runtime vs. K, L, N . 73

4.9 k-Anonymity vs. LKC-privacy (C = 60%, L = 2, N = 5) 75

4.10 RFIDAnonymizer vs. ITSA (K = 20, C = 60%, L = 2, N = 10) 75

4.11 Oldenburg : Information Distortion 77

4.12 Oldenburg : runtime (sec) . 77

5.1 Taxonomy trees . 87

5.2 Noisy prefix tree of the trajectories in Table 5.1 90

5.3 Average relative error vs. taxonomy tree height 101

5.4 Runtime vs. taxonomy tree . 102

5.5 Average relative error vs. noisy prefix tree height 103

5.6 SafePath vs. SeqPT vs. LK-anonymity 105

5.7 Runtime vs. |T | and |D| . 106

6.1 Data publishing under the non-interactive setting 110

6.2 Taxonomy trees . 112

6.3 Spatial representations of Table 6.1 and its diff-priv generalizations . 112

6.4 Raw data records structured as tree of partitions 119

x

6.5 Comparing DiffMulti and DiffGen in terms of discernibility penalty . 139

6.6 Comparing DiffMulti and DiffGen in terms of NCP 139

6.7 DiffMulti : the impact of ε on classification accuracy 141

6.8 Comparing DiffMulti, DiffGen, and Mondrian in terms of classifica-

tion accuracy . 142

6.9 Comparing DiffMulti and PrivBayes in terms of classification accuracy142

6.10 Comparing DiffMulti and DiffGen in terms of runtime 144

6.11 Scalability of DiffMulti . 145

xi

List of Tables

2.1 Illustrating record and attribute linkage attacks on raw data 12

2.2 Illustrating minimality attack on anonymous data 13

2.3 2-anonymous version of Table 2.1(a) using suppression 22

4.1 Raw sliding windows, W1→3 and W2→4, on trajectory stream 45

4.2 Anonymous sliding window Ŵ2→4 for L = 2, K = 2, C = 40% 46

5.1 Raw trajectories of 7 passengers . 80

5.2 Summary statistics of the STM datasets 100

5.3 Summary statistics of sub-datasets 105

6.1 Raw data table . 111

xii

Chapter 1

Introduction

Recent years have witnessed a tremendous growth in data collection thanks to the

exponential development of information technology that not only facilitates our

daily life, but also generates extensive amounts of person-specific data. Data of

different types are generated on a daily basis, such as GPS data [92] [88], RFID

data [42] [55] [71] [124], moving objects or trajectory data [17] [1] [139] [51], health-

care data [82] [113], search queries [14], and customers’ purchases [18] [138]. There

has been a compelling demand in various sectors for collecting such data, whether

by government agencies, transportation authorities, medical centers, online service

providers, or retail corporations. This demand stems from the need to analyze the

collected data and extract useful information in order to construct a knowledge base

that helps in decision-making operations. Usually, the collected data is published

to a third party, e.g., a research center, in order to conduct the desired analysis.

We call the entity that collects, holds, and publishes the data a data holder

or a data publisher, the individuals from whom the data is collected record owners

(each record in a tabular database belongs to a unique individual), the entity that

receives the published data a data recipient, and data recipients who attempt to

perform a privacy attack adversaries or attackers. Figure 1.1 illustrates the primary

1

Figure 1.1: Data collection and publishing

participants in a data collection and publishing scenario. For example, a search en-

gine company (data holder) may want to publish queries submitted by users (data

owners) to the public (data recipients) in order to improve the company’s recom-

mendation system. The terms data publishing and data release refer to the same

process and will be used interchangeably in this thesis.

Publishing collected data can serve a variety of purposes and can be mutually

beneficial to both the data holder and data recipient. For example, experts mining

released road traffic data can extract interesting patterns, which in turn helps in

improving the city’s road network and, thus, reducing traffic jams. Another inter-

esting example is Netflix, the giant movie rental service, which released a dataset

containing movie ratings that belong to nearly 500,000 subscribers and offered an

enticing prize for anyone who could improve their recommendation service [57]. In

some cases, publishing data is mandated by law. For example, there is a regulation

in California that requires licensed hospitals to publish records of discharged pa-

tients [23]. Generally speaking, whether the published data is shared with a private

entity or is available for public access, it is significantly beneficial for researchers and

practitioners to test a proposed solution on real-life data, as opposed to computer-

generated, synthetic data.

In most cases, the collected data belongs to real-life individuals, and publishing

their data may lay their privacy on the line. The published data must not allow

2

individuals’ identities to be exposed, nor their private information to be linked to

them, whether accidentally or deliberately. A privacy attack is, thus, the ability

to perform such linkage. Therefore, before releasing the data, data holders tend to

anonymize their collected data by removing explicit identifiers such as Name, Date

of Birth, and SSN. The objective is to prevent linking sensitive information to an

individual. Though seemingly benign, such data anonymization has been proven

inadequate in protecting individuals’ privacy.

In the following section we will present some classical examples that show that

simply removing explicit identifiers fails to protect the privacy of individuals whose

data is being published.

1.1 Motivation

Among the most common examples of privacy attacks is the incident that took place

in the state of Massachusetts [114]. A government agency, Group Insurance Com-

mission (GIC), bought health insurance for state employees. For the sake of offering

real-life data for researchers, GIC then decided to publish a dataset composed of hos-

pital visits of every state employee. For privacy protection, GIC removed all names,

addresses, and other explicit identifiers from the published dataset. Sweeney [114], a

professor of computer science, purchased an unanonymous copy of the state’s voter

list for $20. From both the published dataset and voter list, Sweeney’s astonishing

finding was that 87% of the U.S. population can be uniquely identified using the

combination of date of birth, gender, and ZIP code. Based on this study, Sweeney

was able to identify from the published dataset the medical record of Governor

William Weld. Sweeney’s finding was based on the 1990 census data. A decade

after, Golle [54] recalculated the statistics based on the 2000 census data. Using the

same combination of quasi-identifier attributes (QID), i.e., date of birth, gender,

and ZIP code, Golle was able to uniquely identify 63% of the U.S. population.

3

In 2006, Netflix, the famous online movie rental service, offered a prize of

$1, 000, 000 to whoever could improve their movie recommendation system by 10% [57].

In order to facilitate the job for researchers, Netflix released a dataset containing

movie ratings that belong to nearly 500,000 subscribers, along with the movie ti-

tles and the rating of each movie [101]. In an attempt to protect users’ privacy,

all explicit identifiers were removed from the published dataset and replaced by

randomly-assigned IDs. However, the work in [101] suggests that knowing the dates

(±2weeks) of six movie ratings, 99% of the people in the published dataset are iden-

tifiable. Furthermore, knowing only two movies with their rating dates (±3days),

68% of the subscribers are identifiable from the dataset. The authors in [101] per-

formed their attack by using a publicly-available, unanonymous, external dataset of

movie reviews from the Internet Movie Database (IMDb) website.

The above two examples demonstrate a privacy attack facilitated by the pos-

sibility of collecting background knowledge from external data sources that contain

shared information about the same group of individuals in the published dataset.

The next example demonstrates the possibility of uniquely identifying an individual

in seemingly anonynmous data.

America Online (AOL) released a dataset containing 20 million search queries

of 650,000 users. The purpose behind this data release was “to embrace the vision

of an open research community”. AOL anonymized the data before publishing by

removing AOL usernames, IP addresses, and other identifiers. A random number

was given to each user and his/her searches. In the published dataset, one user

was unlucky enough to submit a set of queries, some of which include: “landscapers

in Lilburn, GA”, “several people with the last name Arnold”, and “homes sold in

shadow lake subdivision gwinnett county georgia”. Those queries turned out to be

so unique among all other submitted queries that two New York Times reporters

quickly identified who was looking for “homes sold in shadow lake subdivision gwin-

nett county georgia”; Ms. Thelma Arnold, a 62-year-old widow who lives in Lilburn,

4

Georgia [14]. In an interview, Ms. Thelma Arnold then acknowledged the searched

queries. This incident led to the retrieval of the published dataset and made data

holders reluctant to release their data, at least for the foreseeable future.

1.2 Privacy-Preserving Data Publishing

Privacy-preserving data publishing (PPDP) [44] is the study of applying adequate

anonymization measures to the data to be published, taking into consideration two

factors : protecting individuals’ privacy in the published data and maintaining high

data utility for accurate analysis of the anonymous data. Privacy protection is

achieved by transforming the raw data to another anonymous version that adheres

to some privacy requirements dictated by the applied privacy model; i.e., this process

is referred to as anonymizing the data. Preserving data utility concerns the cost, in

terms of data quality degradation, ensued due to anonymizing the raw data.

The importance of PPDP stems from the need to share real-life data with

researchers, data analysts, or the general public, while safeguarding individuals’ pri-

vacy in the published data. Moreover, we do not want data holders to hesitate when

publishing their data because such real-life data is crucial for obtaining meaningful

and accurate data mining results, e.g., when performing classification analysis [125].

Therefore, PPDP ensures that useful, yet privacy-preserving, data can be shared

and benefited from in various sectors.

In this thesis, raw data refers to the original collected data that includes

person-specific and sensitive pieces of information about some individuals and is

kept in the data holder’s possession. We assume that the data holder wishes to first

anonymize, then publish the collected data. The published data, which has been

anonymized before publishing, is described as being anonymous or sanitized. We

use these two terms interchangeably in this thesis.

5

1.3 Contributions

Due to the pervasiveness of information technology that constantly generates person-

specific data, and due to the compelling demand for sharing such data in various

sectors, we present a comprehensive study that spans different PPDP scenarios.

Particularly, this thesis explores publishing three types of high-dimensional data:

trajectory streams, static trajectory data, and relational data. The curse of high

dimensionality [3] describes a certain type of data containing a sufficiently large

number of QID attributes. Such data is characterized by being sparse in the high-

dimensional space, and anonymizing sparse data without compromising its utility is

a challenging problem. This is due to the fact that higher dimensionality results in

more unique data points in the high-dimensional space. Consequently, such unique-

ness has to be masked by completely removing or altering original data points in

order to provide sufficient privacy protection, rendering the anonymous data poor

in utility. The following is a summary of the primary contributions of this thesis.

1.3.1 Anonymizing Trajectory Streams

Recent advancement in mobile computing and sensory technology has facilitated the

possibility of continuously updating, monitoring, and detecting the latest location

and status of moving individuals. Spatio-temporal data generated and collected on

the fly is described as trajectory streams. This work is motivated by the concern

that publishing individuals’ trajectories on the fly may jeopardize their privacy.

In this thesis, we illustrate and formalize two types of privacy attacks against

moving individuals. We make three observations about trajectory streams and de-

vise a novel algorithm, called Incremental Trajectory Stream Anonymizer (ITSA),

for incrementally anonymizing a sequence of sliding windows, which are dynami-

cally updated with joining and leaving individuals. The update process is done by

employing an efficient data structure to accommodate large-volume streaming data.

6

We conduct extensive experiments on simulated and real-life datasets. When

compared with closely-related anonymization methods, experimental results demon-

strate that our method significantly lowers runtime and efficiently scales when han-

dling massive trajectory datasets. Moreover, experiments on real-life web logs sug-

gest that our method can seamlessly extend to high-dimensional transaction data.

To the best of our knowledge, this thesis presents the first work to anonymize high-

dimensional trajectory streams.

1.3.2 Anonymizing Static Trajectories

In recent years, the collection of spatio-temporal data that captures human move-

ments has increased tremendously due to advancements in hardware and software

systems capable of collecting user-specific data. The bulk of the data collected by

these systems has numerous applications, including general data analysis. Therefore,

publishing such data is greatly beneficial for data recipients. However, in its raw

form, the collected data contains sensitive information pertaining to the individuals

from whom it was collected and must be anonymized before publication.

In this thesis, we study the problem of privacy-preserving trajectory pub-

lishing and propose a solution under the rigorous differential privacy model [34].

Unlike sequential data, which describes sequentiality between data items, handling

spatio-temporal data is a challenging task due to the fact that introducing a tem-

poral dimension results in extreme sparseness. Our proposed solution introduces

an efficient algorithm, called SafePath, that models trajectories as a noisy prefix

tree and publishes ε-differentially-private trajectories while minimizing the impact

on data utility. Experimental evaluation on real-life transit data from the Société

de transport de Montréal (STM) suggests that SafePath significantly improves ef-

ficiency and scalability with respect to large and sparse datasets, while achieving

comparable results to existing solutions in terms of the utility of the sanitized data.

7

1.3.3 Anonymizing Relational Data

Various organizations collect data about individuals for various reasons, such as ser-

vice improvement. In order to mine the collected data for useful information, it has

become a common practice to share the collected data with data analysts, research

institutes, or simply the general public. The quality of published data significantly

affects the accuracy of the data analysis, and thus affects decision making at the

corporate level.

In this thesis, we propose DiffMulti, a workload-aware algorithm that employs

multidimensional generalization under differential privacy. We devise an efficient

implementation to the proposed algorithm and use a real-life dataset for experi-

mental analysis. We show that the computational cost of DiffMulti is bounded by

the number of records rather than by the number of attributes of an input dataset,

making our proposed method suitable for high-dimensional data. We evaluate the

performance of our method in terms of data utility, efficiency, and scalability. Ex-

perimental comparisons with related anonymization methods from the literature

suggest that DiffMulti is capable of improving data utility, in some cases, by orders

of magnitude, while performing comparably, at worst, in terms of efficiency and

scalability.

1.4 Organization of the Thesis

We divide the presentation of the problems in this thesis according to the applied

privacy model. We first present the problem of anonymizing trajectory streams

under a syntactic privacy model. We then proceed to present the second problem,

anonymizing static trajectories, and the third problem, anonymizing relational data,

under a semantic privacy model. The rest of the thesis is organized as follows:

• Chapter 2 demonstrates through examples some privacy attacks, introduces

8

some popular privacy models to counter such attacks, and examines widely-

used anonymization techniques.

• Chapter 3 explores prominent works that have been proposed for protecting

individuals’ privacy in the domain of privacy-preserving data publishing [44].

Particularly, we present in-depth literature review of existing anonymization

methods for four types of data: data streams, trajectory data, transaction

data, and relational data.

• Chapter 4 studies the problem of publishing data streams, particularly, trajec-

tory data streams. We identify and formalize three properties in a trajectory

stream, and we integrate these properties in building an efficient algorithm

that incrementally anonymizes the transient data over a sequence of sliding

windows. To the best of our knowledge, this chapter presents the first work

to anonymize high-dimensional trajectory streams. The results of this chapter

have been published in [6].

• Chapter 5 studies the problem of publishing high-dimensional and sparse static

trajectory data. We model trajectories in a noisy prefix tree structure, which

provides concise representation of the underlying sparse data. The results of

this chapter are currently under review in [7].

• Chapter 6 proposes a differentially-private method for anonymizing relational

data. Our method leverages the promising anonymization technique of multi-

dimensional generalization, which enhances the utility of the anonymous data

without compromising the computational cost. The work presented in this

chapter is currently under review in [8].

• Chapter 7 concludes this thesis.

9

Chapter 2

Background

In this chapter, we present some fundamental privacy concepts. First, we demon-

strate through examples some privacy attacks that rely on pre-existing knowledge

about the targeted individuals in the published data. Then, we introduce existing

privacy models that were proposed to thwart those attacks or mitigate their impact

on individuals’ privacy. Finally, we examine some widely used techniques that en-

force those models and transform the input data from its raw form to its anonymous

form under some given privacy requirements.

2.1 Privacy Attacks

When publishing data tables that contain information about a certain group of

individuals, it is equally important to protect the privacy of those individuals whose

data is being shared. The term privacy in this context is twofold: (1) the identity

of any individual in the published data should not be revealed, and (2) any piece of

information deemed sensitive should not be associated with its pertinent individual.

We present two types of privacy threats that jeopardize the privacy of individ-

uals whose data is being published. If the anonymization model does not account

for how much information can be gathered from external data sources about the

10

individuals in the published data, then the published data is susceptible to record

linkage and attribute linkage attacks. These attacks primarily target relational data

tables, where a row represents a unique individual and a column represents an at-

tribute that describes a certain type of information about the individuals in the

table. However, linkage attacks can be extended to other types of data, such as

transaction data [118] [119] [138] [50] and trajectory data [103] [1] [99].

2.1.1 Record Linkage

Record linkage refers to the type of privacy attacks that aim at uniquely identifying

a group of individuals in a published data table with the aid of previously-collected

information about those individuals. Sweeney [114] presented an attack scenario in

which a malicious data recipient gathers information about a group of individuals in

the published data table using some external data source. Such externally-acquired

knowledge, called the attacker’s background knowledge, is then used to single out (or

narrow down) a target victim’s record in the published data table. A combination

of certain attributes, known as quasi-identifiers (QID), in the published table can

potentially lead to the re-identification of a certain group of individuals. The QID

attributes are common attributes between the published data and the external data.

Example 2.1.1. Suppose a hospital is publishing its patients’ records to a research

center for data analysis. Table 2.1(a) shows the published raw table after removing

explicit identifiers. Let attributes Y oB (Year of Birth), Gender, and Job be the QID

attributes in this scenario. Suppose an attacker learned, through an unanonymous

external data table, that his neighbor, Bob, has the following values over the QID

attributes 〈1955,Male, Architect〉. Such a combination uniquely identifies the pa-

tient in record 1. Consequently, the attacker now knows that record 1 in Table 2.1(a)

belongs to Bob and that he has been diagnosed with HIV .

11

Table 2.1: Illustrating record and attribute linkage attacks on raw data

(a) Raw patients table

YoB Gender Job Disease
1 1955 Male Architect HIV
2 1953 Male Lawyer Flu
3 1955 Male Writer HIV
4 1951 Male Painter Flu
5 1961 Female Painter Flu
6 1965 Female Writer HIV
7 1965 Female Writer HIV

(b) 2-anonymous patients table

YoB Gender Job Disease
1 [1950-1960) Male Professional HIV
2 [1950-1960) Male Professional Flu
3 [1950-1960) Male Artist HIV
4 [1950-1960) Male Artist Flu
5 [1960-1970) Female Artist Flu
6 [1960-1970) Female Artist HIV
7 [1960-1970) Female Artist HIV

2.1.2 Attribute Linkage

Attribute linkage attacks aim at associating sensitive pieces of information with their

pertinent individuals. An attribute is deemed sensitive by the data publisher, de-

pending on the severity of the information described by that attribute. Examples

of sensitive attributes include salary, disease, and welfare. We note that not nec-

essarily all the domain values of a sensitive attribute are sensitive; it is possible to

specify only some domain values as being sensitive. Values deemed sensitive are not

to be associated with their corresponding individuals. For example, in Table 2.1(a),

attribute Disease = {HIV, F lu} is considered to be sensitive. However, in some

examples we will consider Flu to be non-sensitive. Even if a patient’s record is

not unique in the published table, it is possible for an attacker to deduce a target

victim’s disease. We call the degree of certainty of an attacker deducing a victim’s

sensitive value the inference confidence.

Example 2.1.2. Consider the patients’ records in Table 2.1(a). Suppose that an at-

tacker knows that the target patient’s record, Alice, contains 〈1965, F emale,Writer〉.

Despite the existence of two records with the same set of values over the QID at-

tributes, both of these records have HIV on the sensitive attribute Disease. There-

fore, the attacker is able to infer with 100% certainty that Alice has HIV , i.e., the

attacker’s inference confidence is 100%.

12

Table 2.2: Illustrating minimality attack on anonymous data

(a) Raw table

Gender Job Disease
1 Male Lawyer Flu
2 Male Lawyer Flu
3 Male Lawyer Flu
4 Female Writer HIV
5 Female Writer HIV

(b) Published anonymous table

Gender Job Disease
1 M-F Working Flu
2 M-F Working Flu
3 M-F Working Flu
4 M-F Working HIV
5 M-F Working HIV

Figure 2.1: Taxonomy trees for patients data

2.1.3 Minimality Attack

As demonstrated in the above two sections, if not enough care is taken to protect

individuals’ privacy, then their published data table is left vulnerable to linkage

attacks. As a result, the raw (original) data table is to be transformed to an anony-

mous version that satisfies some privacy requirements and, thus, prevents linkage

attacks. This process is called anonymization. Some privacy models and anonymiza-

tion techniques will be discussed in Chapters 2.2 and 2.3, respectively.

Wong et al. [126] discovered that even after anonymizing a data table, an

attacker can still associate sensitive values with their corresponding individual. We

illustrate Wong et al.’s attack in the following example.

Example 2.1.3. Let us consider a simple version of patients data in Table 2.2(a),

which has Gender and Job as the QID attributes. Let HIV be the only sensitive

13

value on Disease. Under attribute linkage attack, Table 2.2(a) in its raw version

reveals with 100% confidence that if the target victim is a 〈Female,Writer〉 then she

has HIV . Suppose we want to lower the inference confidence to 70%; consequently,

Table 2.2(a) is anonymized to Table 2.2(b) according to the set of taxonomy trees

in Figure 2.1. Table 2.2(b) contains the topmost general values on all the QID

attributes, and this results in having only one QID group 〈M − F,Working〉 in

which an attacker can infer that a patient has HIV with 40% confidence at most.

One might think that, since Table 2.2(b) contains very general information and

a relatively small inference confidence, the table is well-protected against attribute

linkage attacks. Wong et al. [126] argued that this might not necessarily be true.

Their reasoning justifiably extends the attacker’s knowledge not only to external

data tables containing the same QID attributes as the anonymous table, but also

to the anonymization algorithm, the imposed privacy requirements, and the set of

taxonomy trees. Thus, in this example the attacker possesses the following pieces

of information:

1. An external data table similar to Table 2.2(a) minus the Disease attribute

(for simplicity, assume the same record ordering).

2. The requirement of limiting the inference confidence of HIV to 70%, since it

is public knowledge.

3. The published anonymous table, Table 2.2(b).

4. The set of taxonomy trees, as depicted in Figure 2.1.

Given these four pieces of information, the attacker notices that the published

table, Table 2.2(b), has been anonymized. Thus, the attacker easily deduces that

either the group containing records 1-3 violates the imposed privacy requirement

or the group containing records 4-5 does. If the first group had two patients with

HIV , then the inference confidence from that group would be 2/3 = 66.67%, which

14

satisfies the privacy requirement; hence, no anonymization is necessary. However,

if the second group (records 4-5) contains the two HIV values, then the inference

confidence is 100%. The attacker deduces that the anonymization took place be-

cause records 4-5 must have patients with HIV ; otherwise, no anonymization is

necessary.

The above example describes a typical scenario of the minimality attack [126].

This type of attacks exploits the fact that existing anonymization algorithms follow

the minimality principle when transforming a data table [75]. Under the minimality

principle, a raw data table is transformed to its least anonymous version. This is

because anonymizing a data table imposes information loss on the original data

values; thus, to prevent further distortions, no extra anonymization is performed on

an already anonymous table that satisfies some given privacy requirements.

2.2 Privacy Models

2.2.1 k-Anonymity

To protect against record linkage attacks, Samarati and Sweeney [110] [115] proposed

k-anonymity. This privacy model states that every record in the published data

table must be indistinguishable from at least k − 1 other records over the QID

attributes. Consequently, the maximum probability of a successful record linkage

attack is bound to 1/k. A QID group is the set of records that share the same values

over the QID attributes. Thus, k-anonymity hides a unique record within a QID

group of size ≥ k. The strength of k-anonymity relies on k and the QID attributes:

higher values of k minimize the probability of a successful attack, and more QID

attributes provide better protection against a wider range of background knowledge.

Example 2.2.1. Table 2.1(b) is an anonymous version of Table 2.1(a) for k = 2.

In this case, we say that Table 2.1(b) is 2-anonymous because every record in its

15

entirety (over the QID attributes) appears at least 2 times in the table. We note

that Table 2.1(b) was achieved by generalizing some attribute values in Table 2.1(a)

according to the set of taxonomy trees in Figure 2.1.

2.2.2 �-Diversity

To thwart attribute linkage attacks, Machanavajjhala et al. [89] proposed the notion

of �-diversity. In an �-diverse table, every QID group is required to have at least

� “well-represented” records with respect to the sensitive values. �-Diversity is a

privacy concept that can be realized in more than one way. The simplest interpre-

tation of “well-represented” is for every QID group in a table to have a minimum

of � sensitive values. Let us look at Table 2.1(b), which is a 2-anonymous version of

Table 2.1(a). Table 2.1(b) contains 3 QID groups. Let us assume that all domain

values of the sensitive attribute Disease are sensitive and are not to be associated

with their pertinent patients. Since every QID group in Table 2.1(b) contains two

different sensitive values, Table 2.1(b) is said to be 2-diverse.

Another interpretation to the �-diversity model is entropy �-diversity, which

measures how evenly distributed sensitive values are in a table. A more evenly dis-

tributed sensitive attribute among table records implies more uncertainty in inferring

sensitive values about individuals. In contrast, a less evenly distributed sensitive at-

tribute implies that there are more occurring values in the table than others, thus

giving an attacker higher chance in inferring those frequent values. If the table is

divided into QID groups, then entropy �-diversity is applied to the sensitive values

within each QID group. Machanavajjhala et al. [89] stipulated that for a table to

be entropy �-diverse, log(�) should be at most equal to the sum of entropies of every

sensitive value sen val in each QID group. That is, given �, a table satisfies entropy

16

�-diversity if the following inequality holds for every QID group in the table:

−
∑

sen val∈SA
P (QID, sen val)log(P (QID, sen val)) ≥ log(�), (2.1)

where SA is the domain of the sensitive attribute and P (QID, sen val) is the frac-

tion of records containing the sensitive value sen val in theQID group. We illustrate

entropy �-diversity in the following example.

Example 2.2.2. Let us find the proper value of � that makes Table 2.1(b) satisfy

entropy �-diversity. The table contains 3 QID groups; therefore, we need to find the

sum of entropies of every value on the sensitive attributeDisease in each QID group.

The first group 〈[1950 − 1960),Male, Professional〉 gives an entropy sum = 2 ×

(−1
2
log(1

2
)) = log(2), the second group 〈[1950−1960),Male, Artist〉 gives an entropy

sum = 2× (−1
2
log(1

2
)) = log(2), and the last group 〈[1960− 1970), F emale, Artist〉

gives an entropy sum = −1
3
log(1

3
) − 2

3
log(2

3
) = log(1.89). The last group gives the

lowest entropy sum, implying that sensitive values are less evenly distributed than

in the other two groups. Hence, Table 2.1(b) is entropy �-diverse only if � ≤ 1.89.

A drawback in entropy �-diversity is that it does not provide an intuitive mea-

sure for the diversity of the sensitive values. Example 2.2.2 shows that Table 2.1(b)

satisfies entropy �-diversity if � ≤ 1.89. However, saying that Table 2.1(b) is entropy

1.89-diverse does not convey the fact that there exists a QID group with 2 out of

3 individuals having HIV . In other words, entropy 1.89-diverse does not point out

that an attribute linkage attack has a success probability of 66.67%, a considerably

high inference confidence for a disease as sensitive as HIV .

2.2.3 Confidence Bounding

Wang et al. [121] proposed confidence bounding, a more flexible and intuitive pri-

vacy model than �-diversity. The objective is to ensure that within any QID group

17

the confidence of inferring a sensitive value sen val ∈ SA does not exceed h, a

pre-defined confidence threshold determined by the data holder. The rule for every

sensitive value is given by a privacy template of the form 〈QIDgroup → sen val, h〉,

where QIDgroup → sen val represents the fraction of records containing the sen-

sitive value sen val in the provided QIDgroup. Let us revisit Table 2.1(b). Let

〈QIDgroup → HIV, 50%〉 be a privacy template defined for HIV . This privacy

template specifies that a record linkage attack on HIV should have a maximum

success probability of 50%. In both the first and second QID groups, the inference

confidence of sen val = HIV is 1/2 = 50%. However, the third QID group violates

this privacy template because the inference confidence of HIV is 2/3 = 66% > 50%.

Therefore, Table 2.1(b) does not satisfy the enforced privacy requirement for HIV .

2.2.4 m-Confidentiality

To thwart minimality attacks against published �-diverse tables, Wong et al. [126]

proposed m-confidentiality to limit the attacker’s inference confidence when associ-

ating a set of sensitive values with certain individuals in the table. To achieve an

m-confidential table, Wong et al. [126] devised an algorithm, called MASK, that first

transforms the raw data table to a k-anonymous version, where k is a user-defined

parameter. Some of the QID groups in the resultant k-anonymous table satisfy

the imposed �-diversity requirement, while other QID groups fail to do so. MASK

then changes the distribution of the sensitive values in the non-�-diverse QID groups

based on the distributions of the sensitive values in the �-diverse QID groups in the

table. This step results in all QID groups being �-diverse, and thus the entire table

satisfies �-diversity and is m-confidential.

Example 2.2.3. Continuing from Example 2.1.3, we showed that Table 2.2(b) is

susceptible to minimality attack. Under m-confidentiality, Table 2.2(a) does not

need to be anonymized because it already satisfies 2-anonymity. Moreover, the QID

group that contains records 4-5 has an inference confidence of 100%; therefore, one

18

HIV value will be replaced by a non-sensitive value in the distorted record. The

resultant table is now ready to be published.

m-Confidentiality achieves anonymity with respect to �-diversity by distorting

sensitive values. This practice results in less truthful, or even wrong at worst,

statistical results, which in turn adversely affect data analysis.

Cormode et al. [32] studied the minimality attack case and provided an in-

depth analysis of the algorithms that had been suggested by Wang et al. [121] to be

susceptible to such type of attacks. Cormode et al. [32] defined a set of criteria that,

if exists in an anonymization algorithm, makes it susceptible to minimality attacks.

Moreover, they showed that the attacker’s inference confidence does not grow signif-

icantly from anonymous data tables that are not m-confidential. Cormode et al.’s

study concluded that many anonymization algorithms are not, in fact, vulnerable to

minimality attacks, and minor modifications can be made to vulnerable algorithms

to mitigate the impact of such attacks.

2.2.5 Differential Privacy

All the above privacy models rely on estimating the attacker’s background knowl-

edge in order to thwart linkage attacks. Such type of privacy models is referred to

as syntactic-based models because the anonymous data must adhere to some syn-

tactic conditions. To eliminate the effect of any attacker’s power and avoid devising

privacy models with protective strength tied to such power, Dwork proposed differ-

ential privacy [34]. Differential privacy is a probabilistic privacy model that works

independently of any attacker’s background knowledge and computational power.

In this spirit, differential privacy bounds the probability of obtaining the same an-

swer from two different input datasets, D and D′, that differ by only one record.

Any privacy leak on the differentially-private dataset, denoted by D̂, will not be

conclusive, as D̂ could have been obtained from sanitizing either D or D′. This

19

gives incentive for individuals to participate in the dataset because a differentially-

private mechanism is impartial to the data contained in the input raw dataset. This

guarantee, however, is only given under the assumption that no dependencies exist

between data records, which is the assumption we adopt in this thesis. For methods

that incorporate the dependency assumption under differential privacy, we refer the

reader to [87] [28]. We provide the following formal definition:

Definition 2.1 (ε-Differential privacy). A randomized algorithmAg gives ε-differential

privacy if for any neighboring datasets D and D′ differing by at most one record,

and for any possible output dataset D̂,

Pr[Ag(D) = D̂] ≤ eε × Pr[Ag(D′) = D̂], (2.2)

where the probability is taken over the randomness of the Ag.

Differential privacy introduces the concept of a privacy budget, ε. The privacy

budget calibrates the utility of the anonymous data. Typically ranging 0 < ε ≤ 1,

lower values of ε cause more noise to be added to the true answer, and vice versa.

The literature has defined two settings whereby ε can be utilized: interactive and

non-interactive. In the interactive setting [37] [41], the raw data is kept in the data

holder’s possession, and a data miner/requester issues a set of queries to which the

data holder provides differentially-private answers. Each query would consume a

portion of ε. Once the entire budget has been consumed, the data holder can no

longer receive more queries, and the database has to shut down completely. Whereas

in the non-interactive setting [13] [130] [60], the data holder utilizes the entire privacy

budget to anonymize the entire raw dataset, and the ε-differentially-private version

is then published without restriction or limitation on data usage. In many real-

life data sharing scenarios, publishing the data is far more convenient due to the

flexibility given to data recipients in terms of analysis power. Hence, in this thesis

we focus on the non-interactive setting.

20

Differential privacy has two composition properties: sequential composition

and parallel composition. Sequential composition stipulates that if a sequence of

differentially-private computations takes place on the same set of data, then the

entire sequence guarantees the collective privacy guarantee of every computation in

the sequence. Whereas, parallel composition applies to situations where a sequence

of differentially-private computations is performed on disjoint sets of data. In this

case, the entire sequence gives the worst privacy guarantee, i.e., the highest privacy

budget among the parallel computations.

Lemma 2.1 (Sequential composition [93]). Let each computation Agi provide εi-

differential privacy. A sequence of Agi(D) over the dataset D provides (
∑

i εi)-

differential privacy.

Lemma 2.2 (Parallel composition [93]). Let each computation Agi provide εi-

differential privacy. A sequence of Agi(Di) over a set of disjoint datasets Di provides

(max{εi})-differential privacy.

2.3 Anonymization Techniques

Given a raw data table that contains various types of information about some group

of individuals, a data holder wishes to publish the table with the goal of benefiting

researchers and data analysts from the collected data. At the same time, the pri-

vacy of those individuals should not be compromised. We discussed in Chapter 2.2

some of the most prominent models that shield a published table, if it adheres to

a given privacy model, against privacy attacks. The act of transforming a data

table to another version that satisfies the requirements of a given (set of) privacy

model(s) is called anonymization. The literature has proposed several anonymiza-

tion techniques; in this section we focus on three primary techniques: suppression,

generalization, and perturbation.

21

Table 2.3: 2-anonymous version of Table 2.1(a) using suppression
YoB Gender Job Disease

1 1955 Male * HIV
3 1955 Male * HIV
4 * * Painter Flu
5 * * Painter Flu
6 1965 Female Writer HIV
7 1965 Female Writer HIV

2.3.1 Suppression

Suppression is a technique whereby some data values are removed from the table to

be published. When a data value is removed, it is either dropped from the record or

replaced by a character/symbol, such as “*”. For example, applying 2-anonymity

to Table 2.1(a) using suppression yields Table 2.3. Notice that record 2 has been

entirely suppressed because it fails to satisfy 2-anonymity. If we are to follow a strict

interpretation of k-anonymity, i.e., every record has to appear at least k times over

the entire set of QID attributes, then we are right to suppress the entire record 2

from Table 2.3. Although, if we are to follow a more relaxed interpretation, then we

can keep record 2 in the form 〈 *,Male,* 〉, where “*” indicates an empty cell.

Suppression is applied in different ways, depending on the desired balance be-

tween the utility of the anonymous data and the complexity of the applied algorithm.

Value suppression [121] removes all the instances of the value to be suppressed from

the data table. Local suppression [95] [27], also referred to as cell suppression, on

the other hand, may keep some of the instances of the value to be suppressed from

the data table. Intuitively, local suppression incurs less information loss than value

suppression; however, the former type comes at the cost of high computational

complexity. Lastly, record suppression [15] [68] [110] removes entire records, i.e.,

outliers.

22

2.3.2 Generalization

Unlike suppression, which removes data values from the data table, generalization

replaces violating values (those that do not meet the privacy requirement) by less

specific, yet semantically similar, values. Replacing a specific value in an attribute

by its more abstract version is done in accordance with a pre-defined generalization

hierarchy. For example, Figure 2.1 contains three taxonomy trees; each describes

the hierarchy of domain values in an attribute. This set of taxonomy trees is used

to generalize the violating data values in Table 2.1(a) to Table 2.1(b) in order to

satisfy 2-anonymity.

Several schemes were proposed in the literature to implement generalization.

In global recoding or global generalization, if a value is chosen to be generalized, then

all the instances of that value in the data table are generalized. Local recoding or

local generalization generalizes only some instances of the chosen value. Full-domain

generalization [75] [110] [115] is a global generalization approach whereby if a do-

main value is chosen to be generalized and is generalized to a certain tree level, then

all the other domain values of that attribute are generalized to the same tree level,

as well. For example, in Figure 2.1, if Writer is generalized to Artist, then (1) all

instances of Writer in the data table are generalized to Artist, and (2) all instances

of Architect and Lawyer are generalized to Professional. Although full-domain

generalization can achieve optimal solutions (e.g., Incognito [75]), it causes consid-

erable data distortion due to the fact that non-violating data values are generalized

along with violating values. In Subtree generalization [15], if a data value is chosen

to be generalized, then all its siblings in the taxonomy tree will be generalized to the

same parent value. For example, in Figure 2.1, if Writer is generalized to Artist,

then Painter is generalized to artist, and the rest of the domain values remain intact.

Sibling generalization [75], on the other hand, generalizes only the violating values

while their siblings remain intact. Consequently, the data table is less distorted, but

a (general) parent value in the output data table will not represent a child value

23

that was not generalized to the same parent value. For example, in Figure 2.1, if

Writer is generalized to Artist, then an instance of Artist in the output data table

does not cover Painter as its child value.

Cell generalization [75] [127] [135] is a local generalization approach that pro-

vides flexibility by generalizing some values in their records while keeping the other

values in the rest of the records ungeneralized. Local generalization achieves less

information loss than global generalization, yet the former method suffers from sig-

nificant limitations. Existing statistical tools, such as SAS and SPSS, are unable to

handle data anonymized by local generalization due to the complexity of performing

analysis on overlapping subdomains [131]. Furthermore, even though sibling nodes

are not affected by locally generalizing one value to another, e.g., Painter to Artist

in Figure 2.1, most standard data mining methods treat Painter and Artist as two

independent values, which is not the case [44]. For instance, mining classification

rules may create fuzzy rules; the following two rules make it ambiguous to classify

a new Painter: Painter → class1 and Artist → class2.

All the above generalization schemes choose a single value for generalization at

a time. This type of generalization can be described as single-dimensional. Multidi-

mensional generalization [76] [77], on the other hand, strives to reduce information

loss by considering a vector of values, instead. For example, in Table 2.1(a), Painter

in record 〈1951,Male, Painter〉 can be generalized to Artist, but Painter in record

〈1961, F emale, Painter〉 can be generalized to Working. This is different from local

generalization because the choice of generalizing Painter in the above example is

dependant upon the other values in the record, i.e., 〈Y oB,Male/Female〉.

The idea is to divide the multidimensional domain space of an input data

table into non-overlapping generalization regions. Every region contains a set of

generalized records from the table, where every raw record is uniquely mapped to

its corresponding region. By that intuition, a region can be considered as a QID

group because every region contains a disjoint subset of generalized records.

24

2.3.3 Perturbation

Perturbation [2] [91] is an anonymization technique that replaces original data with

synthetically generated data without significantly distorting the original statistical

information. Generally speaking, this method is useful for publishing anonymous

aggregate statistics. Next, we describe two perturbation techniques for publishing

differentially-private data.

Suppose there exists a function f that maps a dataset D to real values. The

sensitivity [37] of f is the maximum change in the true answer due to adding or

removing a single record in D. For example, suppose f answers to count queries

over D. The maximum change of a true query answer due to adding/removing one

record in D is 1. Therefore, the sensitivity of f in this case is 1. The sensitivity of

f , symbolized as Δf , is defined as follows:

Definition 2.2 (Sensitivity). For any function f : D → Rd, the sensitivity of f is

Δf = maxD,D′ ||f(D)− f(D′)||1 (2.3)

for all D,D′ differing by one and only one record.

The literature has defined two techniques to aid in realizing differential privacy:

the Laplace mechanism [37] and the exponential mechanism [94].

The Laplace mechanism first computes the true answer of a function f over

a dataset D, f(D), and then adds to f(D) a noise drawn from the Laplace distri-

bution. More formally, the Laplacian noisy answer given by the Laplace mechanism

is f(D̂) = f(D) + Lap(λ), where Lap(λ) is a noise drawn from the Laplace distribu-

tion with probability density function Pr(x|λ) = 1
2λ
exp(−|x|/λ) of variance 2λ2 and

mean 0.

Theorem 2.1. [37] Given any function f : D → Rd over an arbitrary domain

of database D with d attributes, an algorithm Ag that adds independently generated

25

noise with distribution Lap(Δf/ε) to each of the d outputs satisfies ε-differential

privacy.

For example, suppose f answers to count queries over D. Given a privacy

budget ε and the sensitivity of f , Δf , then according to Theorem 2.1, f(D̂) =

f(D) + Lap(1/ε) satisfies ε-differential privacy.

As for the exponential mechanism, it is used in situations where the true

answer is not a real value. In this case, the exponential mechanism assigns a proba-

bility to every candidate output o in the output domain O. The assigned probability

is based on a utility function u that gives real-valued scores to every candidate out-

put o ∈ O. Outputs with higher scores are exponentially more likely to be selected

by the exponential mechanism. This ensures that the selected output is close to the

true output.

Theorem 2.2. [94] Given any utility function u : (D × P) → R with sensitivity

Δu = max∀p,D,D′ |u(D, p)−u(D′, p)|, an algorithm Ag that chooses an output p with

probability proportional to exp(εu(D,p)
2Δu

) satisfies ε-differential privacy.

26

Chapter 3

Literature Review

In recent years, we have been witnessing a continuous expansion in information

technology that facilitates our daily lives. Smart phones, GPS-equipped devices,

smart card automated fare collection (SCAFC) systems, and sensory technology

are but few examples of how pervasive information technology has become. This

technological burst, albeit advantageous, requires collecting users’ information (e.g.,

name and date of birth for registration purposes) or data (e.g., current location in

order to establish daily habits for customized services). However, collecting data

about individuals comes at the cost of compromising their privacy, whether by poor

handling of such collected data or risking direct privacy attacks. Such risk stems

from the need to publish the collected data to third parties for various reasons

such as academic research, information extraction, or general analysis for service

improvement.

In this chapter, we explore prominent works that have been proposed for pro-

tecting individuals’ privacy in the domain of privacy-preserving data publishing [44].

Particularly, we present an in-depth literature review of existing anonymization

methods for four types of data: data streams, trajectory data, transaction data,

and relational data, each of which has shown to be susceptible to exposing individ-

uals’ sensitive information.

27

3.1 Data Streams

A data stream, or streaming data, can be described as a source of “live” data being

generated continuously and on the fly. Examples of data streams include live click

streams, sensory data, stock market data, and network traffic. The collected data

offers a tremendous opportunity for extracting interesting knowledge [46]. For in-

stance, mining network traffic can provide detection/prevention mechanisms against

network attacks. Moreover, a situation may arise, such as in military applications,

that demands analyzing streaming data on the fly in order to provide proper re-

sponses. Data streams can also be used for live monitoring of moving individuals

thanks to the pervasiveness of location-aware devices that constantly report spatio-

temporal data about the individuals carrying such devices.

Mining automatically-collected live data poses a potential privacy risk against

the individuals whose data is being streamed. For example, if a mailing company

decided to monitor its truck drivers’ driving routes for improving mail delivery

services, the employees may not want to expose certain sensitive locations that are

not related to their job, such as hospitals or pharmacies [92]. Consequently, there

is a dire need to anonymize data streams while preserving their utility for various

data mining tasks.

Anonymizing continuously generated data is a challenging task. Data streams

are characterized by being time-variant and potentially infinite; therefore, it is incon-

venient to store all the generated data in conventional databases. Another challenge

in mining such data is the computational complexity due to the fact that data

streams are continuous, transient, and time-variant [53]. This thesis presents the

first work to anonymize trajectory streams. We aim at achieving anonymous streams

that (1) preserve data truthfulness with comparison to the collected data in the raw

stream and (2) provide accurate data mining results. We next review some of the

prominent works in the area of anonymizing data streams.

Li et al. [81] targeted preserving individuals’ privacy in numerical data streams.

28

Dwork et al. [38] proposed a set of algorithms based on differential privacy, which

produces noisy answers, to address some specific counting tasks. Chan et al. [24]

addressed the problem of privacy-preserving aggregation on sensitive streams. In

this setting, an untrusted aggregator should not learn the exact points of the moving

individuals; but rather, only estimated aggregate statistics. This goal is different

from ours: the work in [24] achieves statistic aggregations while our work preserves

the exact whereabouts of each moving individual, allowing data collectors to provide

customized services, e.g., recommendations, tailored for each individual. Hence, we

aim at supporting a wider range of operations on the output anonymous data.

Zhou et al. [144] proposed a framework for k-anonymizing a stream of rela-

tional data. Clusters are created and filled with arriving data elements. Once a

cluster contains enough data elements that belong to at least k moving individuals,

the data is published at the same generalization level. To limit information loss due

to generalization, both [144] and [142] incorporate a prediction mechanism of fu-

ture data elements. Another approach targeting the same type of streaming data is

CASTLE [22], a cluster-based approach. It incorporates cluster merging and split-

ting mechanisms based on a maximum allowable delay parameter. In SANATOMY,

Wang et al. [123] employed anatomy to publish an �-diverse data stream. They

also assumed the arrival of a single data element in the stream at any given times-

tamp. Li et al. [83] proposed a method called SKY that allows a data owner to

determine how much an anonymous stream deviates from its raw version. All the

works in [22] [123] [83] enforce a pre-defined time constraint to limit the delay of

the published data. We argue that imposing time constraint damages data fresh-

ness in the stream. Furthermore, nearly-expiring data elements that do not yet

meet the privacy requirements are generalized to higher levels, adversely affecting

the utility of the anonymous data. Unlike the work presented in this thesis, which

anonymizes streams of trajectories, all the above works target streams of relational

data. Moreover, the imposed privacy models in the above works is heavily based on

29

the traditional k-anonymity model, which does not accommodate attribute linkage

attacks. Whereas, the work in this thesis thwarts both attribute and record linkage

attacks.

In a closely related research area, researchers have studied and proposed several

approaches for anonymizing continuous data. In the context of continuous data

release, updated versions of a data table are published on a regular basis, e.g., every

week [21] [129] [122]. Wang et al. [122] proposed a method for anonymizing temporal

data in relational format. Their method is based on temporal record relocation

within a window of multiple releases. Xiao and Tao [129] considered the problem of

re-publishing updated relational data tables. Their method, called m-invariance, is

the first to address the insertion and deletion of records in the updated data table.

If a record does not meet the imposed privacy requirement, counterfeit records are

created in order to achieve an m-invariant updated table. Applying m-invariance to

trajectory streams is not suitable due to the following reasons. First, m-invariance

anonymizes relational data. Trajectory data is high-dimensional by nature; thus,

applying methods based on QID attributes incurs significant data loss. Second, m-

invariance does not assume the existence of data streams, taking advantage of not

having a sharp time constraint for publishing the updated data table. In contrast,

our proposed method in this thesis maintains the transient nature of streams by

anonymizing and publishing newly-arrived data on the fly. Third, m-invariance

is achieved by adding counterfeit records to the data table. On the other hand,

our method maintains truthfulness because all published records belong to real-life

moving individuals. This property gives more credible results when analyzing the

anonymous data. In summary, continuous data release does not require publishing

the data table at the time of data collection since the table does not contain live

data. Algorithms for anonymizing continuous data are not suitable for potentially

infinite streams of transient and time-critical data because these properties require

dynamic and scalable processing with little time delay.

30

3.2 Trajectory Data

Trajectory data is a spatio-temporal data that contains a location dimension and a

time dimension. A single trajectory is the trace generated by a single individual (or

a moving object), where every visited location is coupled with a timestamp. Times-

tamps within a single trajectory are non-decreasing and are drawn from a timestamp

universe, whereas a location may appear multiple times and/or consecutively.

Mining trajectory data has various applications [51], such as traffic analysis,

city infrastructure planning, and customized services provided through analyzing hu-

man behavior [88]. Such significance has demanded publishing collected trajectories

for data analysis. However, publishing trajectory data without adequate anonymiza-

tion can put the privacy of the moving individuals at risk. For instance, if a target

victim takes the same path almost every morning, an attacker can infer that the

starting point is the victim’s home and the ending point is the victim’s workplace [1].

Trajectory data contains a time dimension that renders the data high-dimensional

and, in most cases, extremely sparse. Handling sparse data is a challenging problem

because data points are scattered in the high-dimensional space, causing excessive

data distortion by the anonymization algorithm, and, consequently, resulting in poor

data utility. There has been extensive work on privacy-preserving trajectory pub-

lishing under different assumptions and privacy models [17]. Next, we categorize

these works based on their privacy models, namely, syntactic and semantic.

Syntactic privacy models, such as k-anonymity [115] and �-diversity [90], stip-

ulate that the output dataset of an anonymization algorithm must adhere to some

syntactic conditions in order to protect data records and sensitive items. Nergiz et

al. [103] were the first to apply k-anonymity to trajectory data, whereby every tra-

jectory in its entirety must be indistinguishable from at least k−1 other trajectories.

Abul et al. [1] proposed (k, δ)-anonymity that enforces space translation, resulting in

having every trajectory coexisting with a minimum of k−1 other trajectories within

31

a proximity of δ. Monreale et al. [99] achieved k-anonymity by using spatial gener-

alization. The novelty of their method lies in dynamically generating geographical

areas based on the input dataset, as opposed to generating a fixed grid [139]. Hu

et al. [67] applied k-anonymity to a trajectory dataset with respect to a reference

dataset containing sensitive events. Particularly, they developed local enlargement

that transforms the trajectory dataset such that every sensitive event is shared by

at least k users. Pensa et al. [104] studied the problem of anonymizing sequential

data by preserving frequent sequential patterns. The authors consider temporal se-

quentiality, which can be considered a simpler form of trajectory data. To account

for high dimensionality in sequential data, the authors use a prefix tree to structure

sequences of temporal items. Their proposed method is based on k-anonymity and,

thus, thwarts only identity linkage attacks.

In addition to generalization [103] [99] [139] [112] and space translation [1]

[104], suppression-based techniques [117] [27] [30] have been proposed to achieve

k-anonymity-based privacy models. Terrovitis and Mamoulis [117] developed a pri-

vacy model that assumes different adversaries possess different background knowl-

edge, and, consequently, they modeled such knowledge as a set of projections over

a sequential (trajectory) dataset. Their anonymization method limits the inference

confidence of locations to a pre-defined threshold. Similarly, Cicek et al. [30] en-

sured location diversity by proposing p-confidentiality, which limits the probability

of visiting a sensitive location to p. Local suppression has been used in [27] [49]

to boost data utility. Under local suppression, only some instances of an item will

be removed from the dataset - as opposed to global suppression, which removes all

instances in the underlying dataset.

All of the above techniques incorporate syntactic privacy models, which have

been proven to be prone to several privacy attacks [126] [48] [72]. Moreover, due to

the curse of high dimensionality [3], applying anonymization methods that project

the concept of QID attributes [84] [89] onto trajectory data imposes significant

32

data loss because every doublet of location and timestamp in a trajectory is con-

sidered to be a distinct QID attribute. In other words, the notion of a fixed set

of QID attributes in trajectory data does not exist anymore because of the con-

tinuously changing reported locations and timestamps [139]. For this reason, this

thesis presents a trajectory sanitization algorithm under a semantic privacy model,

namely differential privacy.

Protecting trajectories under differential privacy [35] has been gaining increas-

ing attention in the past few years. Some of these works focus on publishing data

mining results, e.g., mining trajectories for frequent location patterns [64] [65],

whereas other works aim at publishing differentially-private trajectories. We focus

on the latter approach as it provides more analytical power to data recipients, and

it is more related to the work presented in this thesis. For more information on the

interactive setting, non-interactive setting, and recent works on differentially-private

data publishing, we refer the reader to [36] [79] [120], respectively.

Chen et al. [26] introduced the first differentially-private work to publish large-

volume sequential locations. Although their sanitization algorithm preserves count

queries and frequent sequential pattern mining [5] only, data recipients can perform

several other data mining tasks on the sanitized output dataset. In a more recent

study, He et al. [61] proposed to synthesize trajectories from a probabilistic model

based on the hierarchical reference system of the input dataset. Xiao and Xiong [132]

considered temporal correlation to protect true locations within a single trajectory,

as opposed to user-level privacy (adopted in the work presented in this thesis),

which protects the presence of an entire trajectory within a dataset. Xiao and

Xiong’s temporal correlation technique is achieved by hiding the true location within

a set of probable locations, called δ-location set. Works similar to [26] [61] [132]

define trajectories as sequential locations. We argue that in real-life trajectories

every location is paired with a timestamp that should also be accounted for by the

trajectory publishing mechanism. For example, it is important to know busy streets

33

when performing traffic analysis, but it is equally important to also know the time

period during which traffic jams peak. Therefore, this thesis defines trajectories as

a sequence of locations coupled with timestamps.

Jiang et al. [69] sampled distance and angle between true locations within a

trajectory in order to publish an ε-differentially private version of that trajectory.

However, their method publishes a single trajectory only, i.e., the entire privacy

budget ε is spent on sanitizing a single trajectory. Primault et al. [105] proposed to

hide moving individuals’ points of interest [47], such as home or work. While their

method protects against inference attacks, we argue that hiding points of interest

is harmful for applications that rely on such information, e.g., traffic analysis and

probabilistic flowgraph analysis. In this thesis, we present a trajectory sanitization

method that aims at maintaining the spatio-temporal characteristics of the raw

trajectories in order to support a wide range of data analysis tasks. Assam et al. [9]

presented a method whereby both spatial and temporal domains are sanitized and

published under differential privacy. In [9], trajectories are represented by a series

of GPS-like data points (x, y, t). Their method first creates temporal blocks (called

Running Windows) that average all the data points that fall in them. Every Running

Window is then represented by its average location and timestamp values, which are

further perturbed under the Laplace mechanism. The sequence of noisy averages

constitutes the sanitized trajectory. Assam et al.’s method is robust enough to

output a single trajectory with fairly good utility. However, it is unclear how their

method can handle multiple moving individuals since the output of their proposed

algorithm is always a single sequence of noisy averaged data points. In contrast,

this thesis presents a trajectory sanitization algorithm that outputs a multiset of

trajectories, each belonging to a unique moving individual.

34

3.3 Transaction Data

Transaction datasets organize a set of items pertaining to each individual in the

dataset [119] [63] [118]. Each record contains an arbitrary number of items drawn

from the dataset’s universe of items. Examples of transaction data include click

streams, query logs, and lists of purchases. Such data is considered a rich source

from which researchers can learn about individuals’ habits for various purposes, such

as advertising [58].

Even though this thesis does not present solutions for anonymizing transaction

data, per se, this type of data is high-dimensional by nature; each item can be con-

sidered an independent dimension and a potential piece of an attacker’s background

knowledge. In other words, each transaction item is considered a QID attribute,

making anonymizing high-dimensional transaction data a challenging problem that

may not be easily solved by applying traditional privacy models. This section dis-

cusses prominent existing techniques in the literature for anonymizing transaction

data. We broadly divide these techniques based on the type of their privacy model,

i.e., syntactic or semantic.

Terrovitis et al. [118] argued that an attacker requires an unrealistic effort

to acquire background knowledge covering the entire domain of items (QID at-

tributes) in a transaction dataset. Thus, they restricted the attacker’s knowledge

to a maximum of m items and proposed km-anonymity. This privacy model ex-

tends k-anonymity by hiding any transaction with at most m items in a group of at

least k− 1 other indistinguishable transactions. To achieve anonymity, Terrovitis et

al. [118] used global generalization, which maps all occurrences of the same value

in the dataset to a more general value according to a given domain hierarchy. Ter-

rovitis et al. [119] enforced km-anonymity using local (or cell) generalization, which

may not necessarily generalize all the occurrences of a value, thus improving the

anonymous data utility.

km-anonymity does not account for the existence of sensitive attributes in

35

transaction data. The works in [50] [137] [138] studied the case where the universe

of items is considered public knowledge, and a transaction dataset also includes ded-

icated attributes containing sensitive information about individuals in the dataset.

Xu et al. [138] proposed a flexible privacy model called (h, k, p)-coherence, which

restricts the attacker’s knowledge to a maximum of p items, the size of any indis-

tinguishable group of transactions (containing at most p items) to at least k, and

the probability of inferring a sensitive attribute from any group of indistinguish-

able transactions to at most h. Xu et al. [137] further explored preserving frequent

itemsets in an (h, k, p)-coherent dataset. Furthermore, they made a significant im-

provement on scalability by introducing a border-based representation of moles and

nuggets, which can grow exponentially in number. Both [137] and [138] use global

suppression to enforce (h, k, p)-coherence. In global suppression, if an item is chosen

for suppression, then all occurrences of that item in the dataset are suppressed (re-

moved), as well. Ghinita et al. [50] proposed a permutation-based method by which

transactions with similar items are grouped together, and inferring a sensitive item

is bound to a pre-defined threshold. In order to enhance the anonymous data util-

ity, the authors in [52] proposed a general framework that models the problem of

anonymizing transaction data as a clustering problem. To enhance data utility, the

authors further devised two algorithms by which both privacy and user-specified

utility requirements are met in the anonymous data, respectively.

Differential privacy has also been integrated in transaction data anonymiza-

tion algorithms [29] [66] [140] [85] [74]. Chen et al. [29] were the first to propose

a differentially-privacy solution in the context of publishing differentially-private

transaction data for data mining purposes. They proposed a top-down partitioning

approach based on a context-free taxonomy tree. Data utility is defined in terms

of count queries, which is the basis of various data mining tasks. Motivated by

the AOL data release incident [14] [58], Hong et al. [66] were the first to address

the problem of publishing anonymous search logs that maintain the same input

36

logs schema. Focusing on maximizing utility, they transformed the problem of find-

ing the maximum-utility differentially-private output into an optimization problem.

However, in a preprocessing step, there are two cases in which users’ logs are re-

moved from the input dataset: (1) users with unique queries, and (2) users with

logs that result in changing the optimal solution by more than some threshold. Ad-

ditionally, Hong et al.’s algorithm outputs synthetically-generated logs (as opposed

to perturbed input logs). We argue that, while data utility is maximized for aggre-

gate statistics, maintaining information at the log level is more beneficial to data

truthfulness.

3.4 Relational Data

Generally speaking, a relational data table consists of rows and columns: each row

represents a unique individual and each column represents an attribute that de-

scribes a certain type of information about individuals in the table. Some of these

attributes, known as quasi-identifiers (QID), can be used to re-identify individu-

als even in the absence of identifying pieces of information in the table. A decent

amount of work has been done towards anonymizing relational data. One notable

proposition is k-anonymity [110] [111] [115]. Initially proposed by Samarati and

Sweeny [111], k-anonymity stipulates that each record in a relational data table

must be indistinguishable from at least k− 1 other records over the QID attributes.

Hence, a successful record linkage attack is bound by 1/k.

Achieving optimal k-anonymity has been proven to be NP-hard [75]. Optimal

anonymity is achieved when the anonymous table has the least degree of anonymity

yet is most informative compared to all other possible anonymous tables produced

from enforcing the same privacy requirement. LeFevre et al. [75] proposed Incog-

nito to achieve optimality by enforcing full-domain generalization over the QID at-

tributes. Under full-domain generalization, if a certain value from a QID attribute

37

is generalized to a higher level in a given taxonomy tree, then all the other domain

values from the same attribute are generalized to the same hierarchical level, as well.

Incognito achieves optimal k-anonymity but runs exponentially with respect to the

number of QID attributes.

In the presence of attributes with sensitive information, a new type of privacy

attack arises that targets associating sensitive information with certain individuals.

This type of privacy attack is called attribute linkage, which k-anonymity fails to

prevent. To thwart attribute linkage attacks, Machanavajjhala et al. [89] introduced

the concept of �-diversity, which stipulates that every group of indistinguishable

records is required to have at least � “well-represented” records w.r.t. the sensi-

tive values. The simplest interpretation of “well-represented” is for every group to

have a minimum of � sensitive values. Wang et al. [121] proposed a more flexible

privacy notion called confidence bounding that defines a separate privacy template

(requirement) for each sensitive value. Given the set of templates, a sensitive value

within a group of indistinguishable records has a frequency that does not exceed the

confidence threshold defined by the associated template for that sensitive value. Li

et al. [84] proposed t-Closeness, which requires the distribution of a sensitive value

in a group of indistinguishable records to be close to the distribution of the same

sensitive value in the entire table. t-Closeness is particularly beneficial when some

sensitive values naturally occur more frequently than others. For example, in a pa-

tients’ data table, Allergy is more likely to appear in the Disease attribute than

Cancer. Wong et al. [127] combined both k-anonymity and confidence bounding in

their proposed (α, k)-Anonymity model, which requires every record to be shared

by at least k other records, and the confidence of inferring any sensitive value in a

group of indistinguishable records to be ≤ α.

Several privacy-preserving algorithms have been proposed for publishing anony-

mous relational data tables for the goal of classification analysis [125]. Iyengar [68]

was the first to address this issue by devising a genetic algorithm, which proved to be

38

costly. In his work, classification accuracy on training data was measured using his

proposed classification metric, which was later used by Bayardo and Agrawal [15].

Fung et al. [45] proposed Top-Down Specialization (TDS), a heuristic approach by

which a relatively accurate classifier can be built based on the anonymous data.

The approaches in [68] [15] [45] achieve anonymity by enforcing single-dimensional

generalization. LeFevre et al. [76] [78] noticed that it is possible to improve data

utility, and thus classification accuracy, by employing multidimensional generaliza-

tion, and thus they proposed their anonymization method Mondrian. This thesis

uses the latter generalization technique for anonymizing relational data.

All the aforementioned works use syntactic privacy models that extend k-

anonymity. Such privacy models rely on estimating the attacker’s background

knowledge and, thus, are susceptible to syntactic-based privacy attacks, such as

minimality attack [126], composition attack [48], and deFinetti attack [72]. There-

fore, we adopt differential privacy as the privacy model for anonymizing relational

data in this thesis.

ε-Differential privacy is a rigorous privacy notion that negates the impact of

the attacker’s background knowledge on privacy risks. Thus, the literature has

been shifting towards adopting this semantic privacy model for data publishing.

Differential privacy has two settings, namely interactive and non-interactive. Next,

we present some of the most relevant work in the literature to tackle publishing

relational data under differential privacy.

Releasing private histograms [25] [60] [80] [134] [133] is a related field of re-

search to privacy-preserving data publishing. A histogram is a set of disjoint regions

containing data points over the domain of a dataset. Hay et al. [60] proposed a

method for releasing more accurate private histograms under differential privacy;

however, their work is limited to single-dimensional histograms as in [16] [136]. Al-

though [60] and [130] provide noise optimization for range queries, Li et al. [80]

enhanced their work by achieving optimal noise variance for a variety of workload

39

queries. Xiao et al. [134] proposed a method by which multidimensional partitioning

was used to release differentially-private histograms.

All the techniques in [60] [130] [80] [128] [134] [133] are based on the interactive

setting that requires the queries to be provided in advance. It is worth noting that

in the interactive mode it is possible to synthesize a noisy contingency table of the

underlying dataset D by issuing a set of queries spanning all combinations of domain

values [133]. We argue that if D is sparse with a large domain, then performing

operations on the noisy contingency table results in poor data utility. This is because

sparse data points tend to be scattered over the domain space resulting in extremely

small counts in most subdomains. Thus, raw counts will be outweighed by the added

noise, rendering a query answer useless. This situation worsens when multiple users

query D with a common ε [134]. If a user is assigned a small fraction of ε, more noise

will be added to the true query answer. Once all ε is consumed by the queries, the

data holder has to shut down the database entirely. Therefore, the work presented

in this thesis employs differential privacy in the non-interactive setting.

Several methods have been proposed for publishing a private contingency ta-

ble [13] [33] [107] [130] [31]. Barak et al. [13] used linear programming to post-

process a differentially-private output in order to publish a set of consistently integral

marginals of a contingency table. Though it guarantees differential privacy, Barak et

al.’s work does not improve accuracy in the output data. A similar problem has also

been studied by Ding et al. [33] and Qardaji et al. [107]. Xiao et al. [130] succeeded

in improving the accuracy of a differentially-private contingency table by proposing

Privelet, a method based on wavelet transformation on the data attributes. On the

same note, Cormode et al. [31] proposed to optimize the computation required when

publishing a contingency table of a sparse dataset, in a differentially-private way.

They achieved that by utilizing compact summaries computed directly from the in-

put dataset, as opposed to computing a noisy contingency table first, which is costly

for sparse data. However, the utility of their private summaries is similar to that of

40

a generated contingency table. We argue that releasing a private contingency table

can be damaging to the accuracy of the analysis as the added noise grows larger for

sparse data. Instead, in this thesis we focus on publishing a generalized version of

the input data without compromising data utility.

To account for the inherent challenge of releasing sparse or high-dimensional

data in a differentially-private way, Zhang et al. [141] proposed a method called

PrivBayes. In PrivBayes, a Bayesian network is utilized to construct a set of low-

dimensional subcubes that approximate the joint distribution in order to release a

synthetic dataset that in turn approximates the distribution of the high-dimensional

input dataset.

In the non-interactive setting, the problem of publishing differentially-private

relational data has been studied in [96] [106]. The general idea in both works is to

partition the input dataset into smaller groups of “similar” records, then release a

noisy count of the records in each resultant partition/region. Mohammed et al. [96]

proposed an algorithm called DiffGen, a top-down specialization approach that aims

at producing a generalized version of the input data in a differentially-private set-

ting. DiffGen uses a single-dimensional partitioning strategy that greedily chooses

a split attribute that maximizes the utility of the output dataset, without violating

differential privacy. When an attribute is chosen, a split is performed in accordance

with the hierarchy of the domain values dictated by an input taxonomy tree. Mo-

hammed et al. improved classification accuracy when they experimentally compared

with DiffP-C4.5 [41], an interactive approach for classification analysis.

In [106], the authors proposed a general framework that can be instantiated

differently based on the desired implementation. They proposed a meta-algorithm,

called RPS, that takes into consideration the distribution of the data points (records)

in the multidimensional space R of the dataset. The meta-algorithm recursively per-

forms binary partitioning over R to achieve nearly balanced regions. A median point

is computed in a differentially-private way from the domain of the chosen attribute

41

to produce two non-overlapping regions. Noisy counts of data points in each resul-

tant region are then returned to compose the overall sanitized dataset. RPS has

two weaknesses. First, for the case of relational data, RPS randomly chooses a split

attribute [106], as opposed to carefully choosing a split attribute that would result in

better utility depending on the desired utility measure (adopted in this thesis). Sec-

ond, even though RPS is theoretically capable of choosing a split point that spans

across multiple dimensions (attributes), it does not scale for datasets with a large

number of dimensions because it inefficiently considers all combinations of values

across all dimensions [108]. More specifically, in every iteration, RPS chooses one

split point from Ω(A1)× . . .×Ω(Ad) possible combinations, where d is the number

of attributes and Ω(Ai) is the domain of attribute Ai in a given region.

42

Chapter 4

Anonymizing Trajectory Streams

4.1 Introduction

The improvement of information technology in the past years has facilitated sharing

data among organizations, firms, and to the public. Location-aware devices, such as

GPS and mobile phones, constantly report spatio-temporal data of a moving object

or the individual carrying this object. In many cases, it is important to publish the

automatically-collected data on the fly for various purposes, such as traffic analy-

sis, live monitoring of moving objects, and mining recent events in a data stream.

This process becomes of vital importance, especially when it is essential to take

immediate actions or follow certain detection or prevention measures. Nevertheless,

releasing the automatically-collected raw data by a data holder for analysis and

service improvement may compromise individuals’ privacy from whom the data is

being collected. We assume that part of the recipients of a published data stream

are untrustworthy, and they may attempt to identify target victims or infer their

sensitive information. In this chapter, we study the challenges in anonymizing a

stream of trajectories, and propose an efficient algorithm to anonymize a trajectory

stream with the goal of minimizing data distortion.

43

Figure 4.1: Mining trajectory stream over a sliding window

Figure 4.1 shows an overview of the trajectory stream environment. A trajec-

tory stream S is a continuous sequence of triples, in which each triple has the form

〈ID, loc, t〉, indicating that a moving individual ρ with identifier ID is at location

loc at timestamp t. A combination of loc and t is called a doublet. We assume that

the trajectory stream S is published for stream mining [46] or simply for the purpose

of displaying the trajectory paths on screen.

We propose a trajectory stream anonymization method based on a sliding

window [53] [11]. The literature has defined two types of sliding windows: count-

based and time-based [12] [53]. The former type defines a window that includes the

N most recent data elements, while the latter type defines a window that includes all

the elements that belong to the most recent N timestamps. We adopt a time-based

sliding window because it is a more general representation of a count-based window.

However, our method can seamlessly accommodate a count-based window with no

impact on the general approach. Hence, our approach models data stream as a

sequence of sliding windows in which the most recent window includes the triples

having the most recent N timestamps.

44

Table 4.1: Raw sliding windows, W1→3 and W2→4, on trajectory stream

ID
Timestamps

SA
1 2 3 4

1 b.2 c.3 d.4 sen val1
2 a.1 f.2 c.3 d.4 sen val2
3 b.2 c.3 d.4 sen val3
4 a.1 f.2 c.3 sen val4
5 b.2 c.3 sen val5
6 c.3 sen val2
7 f.2 d.4 sen val3
8 c.3 e.4 sen val1

W1→3

W2→4

The Copenhagen International Airport is testing a mechanism for monitoring

travelers’ movements in real-time by following their Wi-Fi trails with the goals of

improving airport design and security, directing the flow of travelers, and providing

customized services to travelers [102]. Yet, disclosing the raw trajectory stream

to some third-party service provider, such as an airline company or an outsourced

security firm, may compromise the travelers’ privacy.

The following example illustrates two types of privacy attacks that an adver-

sary can carry out by having access to the data stream. We clarify three points

about Example 4.1.1 and any of its continuations throughout the rest of this chap-

ter. First, Example 4.1.1 uses the English alphabet to represent locations, where

each letter represents a distinct location. No specific order exists between locations,

e.g., location b may appear before location a. Third, location symbols in this exam-

ple are not associated with any symbol or notation used outside the context of this

example or any of its continuations.

Example 4.1.1. Table 4.1 shows the trajectories of eight travelers sorted by their

IDs. Table 4.1 includes the raw data and Table 4.2 includes the anoynmous data.

45

Table 4.2: Anonymous sliding window Ŵ2→4 for L = 2, K = 2, C = 40%

ID
Timestamps

SA
2 3 4

1 c.3 d.4 sen val1
2 f.2 c.3 d.4 sen val2
3 c.3 d.4 sen val3
4 f.2 c.3 sen val4
5 c.3 sen val5
6 c.3 sen val2
7 f.2 d.4 sen val3
8 c.3 sen val1

For simplicity, this example considers timestamps 1-4; however, in reality, times-

tamps continue indefinitely. Let us assume that sensitive information is being col-

lected from travelers along with trajectories. The sensitive information is displayed

in the sensitive attribute SA. A potential sensitive attribute could be Disability

where travelers with Epilepsy, for instance, may require special attention to facili-

tate their journey. The data holder (the airport) can specify a set of sensitive values

from the sensitive attributes. Upon publishing the anonymous data, sensitive values

should not be associated with their corresponding travelers. Suppose sen val1 is the

only sensitive value in SA in this example.

Let the size of the sliding window be N = 3. The first window W1→3 includes

doublets with timestamps 1-3, as indicated by the dashed box in Table 4.1. As the

window slides with step size = 1, the second window W2→4 now includes doublets

with timestamps 2-4 with no traces of doublets having timestamp 1. We note

that the absence of doublets within a given window (the empty spots in Tables 4.1

and 4.2) indicates no change in a traveler’s location.

Suppose an adversary has access to the trajectory stream in the form of a

sliding window, as in Table 4.1. It is possible to identify a target victim’s trajectory

and/or sensitive value by performing the following privacy attacks.

Identity linkage, also called record linkage, takes place when the collected tra-

jectories contain a sequence of doublets with a rare appearance. This allows an

46

adversary to uniquely identify a target victim. For example, suppose that the cur-

rent window is W2→4, and that an adversary knows that a target victim has visited

location e at timestamp 4. W2→4 contains only one trajectory (ID = 8) with dou-

blet e.4. Hence, the adversary is able to learn the victim’s other visited locations

and sensitive value.

Attribute linkage takes place if there is a group of records, sharing the same

sequence of doublets, that contains infrequent sensitive values. These values can

be associated with their pertinent individuals with high confidence. This type of

privacy attacks is also known as homogeneity attack [84] [89]. Suppose that an

adversary knows that a target victim has visited locations b and d at timestamps 2

and 4, respectively. W2→4 shows that one of two records that contain 〈b.2 → d.4〉

has the sensitive value sen val1. Hence, the adversary is able to infer that the target

victim has sen val1 with 50% confidence.

Challenges. Data streams are characterized by being time-variant and poten-

tially infinite. Therefore, it is infeasible to first store the data and then anonymize

it. Rather, the streaming data has to be anonymized on the fly. Moreover, every

possible combination of location and timestamp in trajectory data forms a distinct

dimension [137]. This characteristic is referred to as the curse of high dimensional-

ity [3]. For example, if the airport in Example4.1.1 contains 200 hotspots (access

points), then monitoring travelers’ movements over the period of 60 minutes will

result in 12,000 dimensions. Consequently, applying anonymization methods based

on quasi-identifier attributes [115] will impose excessive data loss, rendering the

anonymous data useless for any data analysis.

Contributions. To the best of our knowledge, this is the first work to

anonymize high-dimensional trajectory stream [6]. We summarize our contributions

in this chapter as follows. First, to address the transient nature of trajectory streams,

we propose an anonymization method based on a dynamically updated sliding win-

dow, where trajectories are modeled as a prefix tree to ensure compactness and

47

efficient data retrieval. Second, a naive solution to anonymizing trajectory streams

is by simply anonymizing every single window independently. To avoid this redun-

dancy, we identify some important properties in trajectory streams, and utilize these

properties to efficiently anonymize trajectories in a sliding window by incrementally

updating the prefix tree. Third, our proposed method guarantees that the output

anonymous trajectory stream satisfies LKC-privacy [97] [98] [43]. LKC-privacy

is a flexible privacy model that has proven efficient in handling high-dimensional

data [98]. Fourth, our experimental evaluation on simulated and real-life datasets

demonstrates that our proposed algorithm is capable of handling large-volume tra-

jectory streams without compromising their utility.

4.2 Problem Definition

A data holder is constantly collecting the trajectories of some group of moving

individuals. A trajectory tr is a sequence of triples. A triple 〈IDρ, loc, t〉 that belongs

to individual ρ ∈ Popoulation reports ρ’s location loc ∈ L at timestamp t ∈ N,

where Popoulation is the universe of moving individuals generating trajectories and

L is the universe of all possible locations. We define a trajectory stream as follows.

Definition 4.1 (Trajectory stream). A trajectory stream S = {〈ID1, locID1 , tID1〉,

〈ID2, locID2 , tID2〉, . . . , 〈IDρ, locIDρ , tIDρ〉, . . . } is a continuous sequence of triples

generated by every moving individual ρ ∈ Population.

Assumptions. We assume that triples are being generated continuously;

therefore, it may not be feasible to store all the data in a conventional database.

Moreover, we assume that the data recipient is more concerned with recent data

rather than outdated data. In Example 4.1.1, the airport manager may want to

monitor the data in real-time by checking for congestions at any gate for the past

60 minutes and react by opening new gates or allocating additional staff. If the air-

port, however, is to store trajectories for later analysis, say on a weekly or monthly

48

basis, several anonymization solutions exist for this particular problem [17]. Fur-

thermore, in this work we assume that locations are not considered to be sensitive

information. For works related to sensitive locations, we refer the reader to existing

solutions [117]. Lastly, we make the assumption that there exists a set of sensitive

attributes SA1, . . . , SAm that contain sensitive pieces of information sen vali ∈ SAi

about each moving individuals.

For the aforementioned reasons, we use a time-based sliding window W to

represent the most recent data in a trajectory stream S. A data holder specifies the

size of W in terms of timestamps.

Definition 4.2 (Sliding window). Let N be the size of a sliding window W , x be the

starting timestamp, and y = x+N −1 be the ending timestamp. Wx→y = {triple ∈

S|x ≤ triple.t ≤ y}, where triple.t denotes the timestamp value in a triple.

Following Definition 4.2, Table 4.1 shows W1→3, which starts at timestamp 1

and has a size of N = 3.

When a window W contains all the proper triples, the next step would be

to anonymize this window then publish it - a data recipient has only a view over

stream S through a sequence of anonymous windows published one at a time, and

any mining operation is performed exclusively on the most recent window. After

that, the window slides, a process by which outdated triples are dropped out and

new triples are added. When a window slides, it shifts by a certain number of

timestamps determined by step size.

Definition 4.3 (Outdated and new triples). From Definition 4.2, given a window

size N , x+ = x + step size, and y+ = y + step size, we define outdated triples

O = {triple ∈ Wx→y|x ≤ triple.t < x+} and new triples E = {triple ∈ S|y <

triple.t ≤ y+}, where E ∪Wx→y = ∅.

Definition 4.4 (A slide). From Definition 4.3, when window Wx→y experiences a

single slide, it becomes Wx+→y+ = (Wx→y −O) ∪ E.

49

Example 4.2.1. Consider Table 4.1. Suppose that the first window isW1→3 (dashed

box), N = 3, step size = 1, and that timestamp 4 has not yet appeared. For W1→3,

x = 1 and y = 1 + 3 − 1 = 3. W1→3 is then anonymized and published. At this

point, timestamp 4 appears, and since step size = 1, O = {〈2, a, 1〉, 〈4, a, 1〉} and

E = {〈1, d, 4〉, 〈2, d, 4〉, 〈3, d, 4〉, 〈7, d, 4〉, 〈8, e, 4〉}. The new window is now W2→4. E

is now a subset of W2→4. However, a set union between E and W1→3 remains an

empty set because window W1→3 is unaware of any future data; therefore, E does

not exist in this particular window.

We assume that the data holder publishes the moving individuals’ sensitive

information along with their trajectories. Therefore, we define an object table in

which each record corresponds to a unique moving individual ρ and contains ρ’s

trajectory and sensitive information. More formally,

〈IDρ, trx→y, sen val1, . . . , sen valm〉,

where ID is a record identifier, trx→y is ρ’s trajectory of doublets corresponding

to Wx→y, and sen vali ∈ SAi are values from sensitive attributes SA1, . . . , SAm,

respectively, wherem is the number of sensitive attributes. For the sake of simplicity,

we consider m = 1 throughout our examples, i.e., object tables contain only one

sensitive attribute. Without loss of generality, our method can handle multiple

sensitive attributes. Recall a doublet is nothing but loc and t from the triple to

which it corresponds, we denoted a doublet by loc.t. We use this term whenever the

focus is rather on trajectories themselves, regardless to whom they belong.

4.2.1 Privacy Threats

A data recipient has access to the most recently updated sliding window W . The

published window includes recent moving individuals’ trajectories along with their

sensitive information. Adversaries are data recipients who attempt to identify a

50

target victim’s trajectory tr and/or sensitive value sen val. We assume that an

adversary possesses a subsequence of the victim’s trajectory. We denote this subse-

quence by κ, and we call it the adversary’s background knowledge. We also assume

that κ has a maximum size of L doublets, that is,

κ = 〈(loc1.t1) → . . . → (locz.tz)〉,

where z ≤ L. We note that given a sliding window with size N , L ≤ N . κ is a

subsequence of a victim’s trajectory tr if each and every doublet in κ also exists in

tr following the same order.

Obtaining the background knowledge κ from real-time trajectories is feasible

due to the following two reasons. First, a relatively long window allows a stalking

adversary to gather a considerable amount of data about a target victim. Second, an

adversary may learn a victim’s trends and habits (e.g., route from home to office),

which are highly likely to appear in several windows to come.

The concept of estimating the maximum length of adversary’s background

knowledge has been previously discussed in the literature [137] [119]. Those works

proposed privacy models that take into consideration the attacker’s “power”. The

“power” of any attacker is the maximum number of items known by the attacker

about any transaction, in the context of transaction data. We use a privacy model

that shares this same concept; i.e., we use L to denote the maximum number of

doublets known by the attacker about any moving individual.

It is possible for the data holder to estimate how much background knowledge

the attacker can acquire based on the effort needed to obtain such knowledge. If

acquiring background knowledge about target victims is deemed relatively easy,

then the data holder can increase L to its maximum value. We note that the worst

case about setting L is not the entire trajectory size; but rather, the window size N

because the size of real-time trajectories is unknown to our anonymization algorithm.

51

Given an object table T that contains the trajectories of some moving in-

dividuals including the target victim’s trajectory, κ could be found in a group of

trajectories in T . We denote the group of records containing κ by G(κ), and the

group size, i.e., number of records in G(κ), by |G(κ)|. κ may match only a few

records in T . That is, if |G(κ)| is very small, then the adversary might be able to

uniquely identify the victim’s record, thus, learning his/her other visited locations

and sensitive value.

Example 4.1.1 demonstrates that given W2→4 in Table 4.1, and given that

κ = 〈e.4〉, an adversary is able to uniquely identify the victim’s record (ID = 8)

since |G(〈e.4〉)| = 1. We refer to this type of attack as identity linkage.

If the sensitive values in G(κ) are not diverse enough, an adversary might be

able to infer the victim’s sensitive value sen val with high confidence. We denote

the probability of inferring the victim’s sensitive value sen val from G(κ) as follows:

Conf(sen val|G(κ)) = |G(κ
⋃

sen val)|
|G(κ)| ,

where G(κ
⋃
sen val) is the group of records within G(κ) containing both the sub-

sequence κ and the sensitive value sen val. In Example 4.1.1, if κ = 〈b.2 → d.4〉,

then Conf(sen val1|G(〈b.2 → d.4〉)) = 1/2 = 50%.

4.2.2 Privacy Model

We use LKC-privacy model [97] [98] [42] to transform raw window Wx→y sliding

over stream S to an anonymous version Ŵx→y such that the published object table T

thwarts identity and attribute linkage attacks. The reason for choosing LKC-privacy

is its flexibility, demonstrated as follows. (a) By changing the input parameters,

LKC-privacy can metamorphose into k-anonymity or an instance of �-diversity.

This property also implies that if no sensitive information is involved in the process

of data publishing, LKC-privacy can still function properly. (b) A larger L provides

more protection against adversaries with longer background knowledge.

52

We note that unlike the work in [62], LKC-privacy does not require the data

holder to specify a set of pre-defined subsequences in S. Rather, we explore the

entire domain of loc and t with no restrictions on the number of triples in any

window.

In a given window, LKC-privacy ensures that any subsequence of size up to

L appears at least K times and the probability of inferring any victim’s sensitive

values is at most C. We formalize this model as follows.

Definition 4.5 (LKC-privacy). Given a set of sensitive values Sen, a positive

integer L, an anonymity threshold K ≥ 1, and a confidence threshold 0 ≤ C ≤ 1,

a window Wx→y satisfies LKC-privacy iff for any subsequence q with |q| ≤ L,

|G(q)| ≥ K and Conf(sen val|G(q)) ≤ C for any sen val ∈ Sen.

Sen is defined by the data holder. In Example 4.1.1, sen val1 is the only

sensitive value in the sensitive attribute. If a stream does not contain any sensitive

values, then Sen = ∅. If a data holder wants to ignore the sensitive values alto-

gether, then assigning C = 100% would let any subsequence q satisfy the condition

Conf(sen val|G(q)) ≤ C. Furthermore, should certain locations be deemed sensi-

tive, the data holder can include such locations in Sen. This hallmark in our privacy

model gives the data holder further flexibility in terms of privacy requirements.

Given an anonymous window, denoted by Ŵx→y, that satisfies LKC-privacy,

the probabilities of successful identity and attribute linkage attacks are ≤ 1/K and

≤ C, respectively. We note that the same degree of data utility is achieved from

both Ŵx→y and its static version, i.e., static trajectories.

4.2.3 Problem Statement

Our proposed method achieves anonymity through suppression by efficiently remov-

ing selected doublets from raw window Wx→y with the goal of preserving its utility.

We perform global suppression: all instances of the selected doublet will be removed

53

from Wx→y. For example, the anonymous window Ŵ2→4 depicted in Table 4.2 is

the result of suppressing all instances of doublets b.2 and e.4 from the raw window

W2→4 in Table 4.1.

In the spirit of preserving data truthfulness, we aim at achieving anonymous

data that is a subset of the raw data. Suppression does not require a pre-defined

taxonomy tree, which is essential for performing generalization and may not be

conveniently available in real-life scenarios, especially if the location universe changes

dynamically.

Applying techniques based on local suppression is not feasible even though such

techniques may cause less information loss than global suppression. We use global

suppression because it takes advantage of the monotonicity property of Apriori. In

contrast, this property does not hold for local suppression because the number of

violations does not decrease monotonically with respect to local suppressions. For

example, suppose a trajectory table contains the sequence a.1 → b.2 with support

= 2. Let K = 2 and L = 2. a.1 → b.2 is not a violation. If b.2 was locally

suppressed from one record only, then the resulting sequence a.1 → b.2 becomes

a new violation. As a result, applying local suppression requires an extra step to

check for newly generated violations. The authors in [27] showed that such extra

step is computationally costly. Therefore, to accommodate the transient, real-time

nature of trajectory stream, we cannot afford local suppression.

Definition 4.6 (Anonymizing trajectory stream). Given a trajectory stream S, a

sliding windowWx→y, and an LKC-privacy requirement, the problem is to efficiently

publish a sequence of anonymous sliding windows over S such that suppressions are

minimized.

k-anonymity and confidence bounding are special cases of LKC-privacy [42].

According to [95] and [121], achieving optimal k-anonymity and optimal confidence

bounding is NP-hard. It follows that achieving optimal LKC-privacy, i.e., perform-

ing the least number of suppressions in any window, is also NP-hard. As a result,

54

anonymizing a sequence of windows over S with minimum number of suppressions

is NP-hard. In the next section we propose a greedy algorithm that obtains a sub-

optimal solution.

4.3 Anonymization Algorithm

In this section, we present Incremental Trajectory Stream Anonymizer (ITSA), our

algorithm for incrementally anonymizing every windowWx→y on trajectory stream S

by means of suppression. We identify all subsequences in Wx→y that violate a given

LKC-privacy requirement. A window is anonymous when it contains no violations.

We also present the dynamic tree structure of the window for efficient updates and

data retrieval.

4.3.1 Incremental Identification of Violations

In order to publish an anonymous window, we need to make sure it does not contain

any violation. We formally define a violation as follows.

Definition 4.7 (Violation). Assume a given LKC-privacy requirement and a sliding

window Wx→y over S. If any subsequence q in Wx→y, with 1 ≤ |q| ≤ L, has

1 ≤ |G(q)| < K and/or Conf(sen val|G(q)) > C, then q is a violation.

A violation can be any possible combination of doublets in Wx→y that does

not adhere to LKC-privacy. For example, 〈b.2 → d.4〉 in W2→4 (Table 4.1) is a vio-

lation, as Example 4.1.1 demonstrates. Eliminating all violations transforms Wx→y

to an anonymous version Ŵx→y that protects against privacy threats. Chapter 4.3.3

discusses how violations are efficiently suppressed.

If a window contains z distinct doublets, the total number of possible sequences

to be checked is 2z−1. Due to this exponential growth of candidate subsequences, we

adopt the monotonicity property of Apriori [4] and only identify critical violations

55

instead of exhaustively finding all violations in a window. A critical violation is

defined below.

Definition 4.8 (Critical violation). A sequence v is a critical violation iff v is a

violation and none of its subsequences is a violation.

If v has at least one subsequence v′ that violates a given LKC-privacy require-

ment, then v is a violation but not a critical violation.

Example 4.3.1. Given window W2→4 in Table 4.1, let L = 2, K = 2, C = 40%,

and sen val1 be a sensitive value. q1 = 〈b.2 → c.3〉 is not a violation because

|G(q1)| = 3 ≥ 2 and Conf(sen val1|G(q1)) = 33% ≤ 40%. q2 = 〈b.2 → c.3 → d.4〉 is

a violation because, although |G(q2)| = 2 ≥ 2, Conf(sen val1|G(q2)) = 50% > 40%.

On the other hand, q2 is not a critical violation because one of its subsequences,

q′2 = 〈b.2 → d.4〉, is a violation. q′2 itself, however, is a critical violation because

neither b.2 nor d.4 is a violation.

From Definition 4.8, we make the following observation about anonymizing a

raw window.

Observation 4.1. Removing all critical violations from a raw window Wx→y trans-

forms it to an anonymous version Ŵx→y, with respect to a given LKC-privacy

requirement, that contains no violations.

Proof. Let v1 be a critical violation due to |G(v1)| < K. Then any supersequence v′′1

of v1 is a violation because |G(v′′1)| ≤ |G(v1)| < K. However, any subsequence v′1 of

v1 is not a violation because |G(v′1)| ≥ |G(v1)|. Therefore, if v1 satisfies LKC-privacy

then v1 also satisfies L′KC-privacy, for L′ < L.

Let v2 be a critical violation due to Conf(sen val|G(v2)) > C. A superse-

quence v′′2 of v2 may or may not be a violation because there exists no relation

between Conf(sen val|G(v2)) and Conf(sen val|G(v′′2)). Therefore, according to

Definitions 4.5 and 4.8, v′′2 will not be in any Candi.

56

We iteratively generate the set of all i-size candidate subsequences, Candi, by

self-joining non-violating subsequences in Candi−1. Every subsequence q ∈ Candi

is checked against the given privacy requirement. If q is a (critical) violation, it is

removed from Candi. To mitigate information loss due to suppression, Chapter 4.3.3

shows that we do not actually need to remove all occurrences of a critical violation

v from Wx→y; rather, removing specific doublets in v is sufficient.

We identify below certain properties in a trajectory stream S and integrate

them in building an efficient algorithm for incrementally anonymizing a sliding win-

dow over S. Recall the subsequent window of Wx→y is denoted by Wx+→y+ (Defini-

tion 4.4).

Property 4.1. When anonymous window Ŵx→y slides, Ŵx→y −O incurs no viola-

tions.

Removing the set of outdated doublets O from anonymous window Ŵx→y does

not create violations. This is because: (a) all doublets in O are globally suppressed

from Ŵx→y, and (b) according to Definition 4.5, all subsequences of size up to L

satisfy the privacy requirement.

Property 4.2. If subsequence q in anonymous window Ŵx→y satisfies LKC-privacy,

then q also satisfies LKC-privacy in any subsequent window that contains q.

Let q be a non-violation in anonymous window Ŵx→y. If subsequent raw

window Wx+→y+ contains q, then q is still a non-violation.

Property 4.3. When anonymous window Ŵx→y slides,
⋃
E may create new viola-

tions.

Let q be a non-violation in anonymous window Ŵx→y. Adding the set of new

doublets E to the subsequent raw window Wx+→y+ creates new combinations of

doublets. Consequently, q ∪ η, where η is a subsequence from E, may or may not

be a violations.

57

Algorithm 4.1: Incremental Trajectory Stream Anonymizer (ITSA)

Input: Anonymous window Ŵx→y. Trajectory stream S
Input: Thresholds L, K, C, and sensitive values Sen
Input: Window size N and step size
Output: New anonymous window Ŵx+→y+

1: while S exists and L ≤ N do
2: slide Ŵx→y over S to get raw Wx+→y+ ;
3: obtain E;

/*Phase 1*/
4: Ê = AnonymizeNew(L, K, C, step size, E);
5: Cand1 = all unique doublets in Wx+→y+ . Cand1 ∩ Ê = ∅;
6: Cand2 = Cand1 �� Ê;
7: let V = ∅;
8: let i = 2;

/*Phase 2*/
9: repeat
10: for all q ∈ Candi do
11: if ∃v ∈ V s.t. v ⊆ q then
12: remove q from Candi and add q to V ;
13: else
14: if |G(q)| < K or Conf(sen val|G(q)) > C, ∀sen val ∈ Sen then
15: remove q from Candi and add q to V ;
16: end if
17: end if
18: end for
19: if i++ ≤ L then
20: Candi = Candi−1 �� Candi−1;
21: end if
22: until i > L or Candi = ∅

/*Phase 3*/
23: Win = findWinners(V);
24: for all w ∈ Win do
25: remove all instances of winner doublet w from Wx+→y+ ;
26: end for
27: Publish Ŵx+→y+ ;
28: end while

58

Algorithm 4.1 (ITSA). This algorithm runs every time the window slides

over a trajectory stream S. Suppose that anonymous window Ŵx→y of size N has

just been published. Line 2 slides the window by step size timestamps. Outdated

doublets O drop out and new doublets E arrive. The updated window, Wx+→y+ ,

contains raw data. Phase 1 anonymizes E, Phase 2 obtains all critical violations

V , and Phase 3 removes V from the raw window. Finally, anonymous Ŵx+→y+ is

published.

Phase 1. As a preprocessing step, we first anonymize E. Any subsequence

η from E is a special case to which Property 4.3 applies. Consequently, any sub-

sequence η with |η| ≤ L is checked. The maximum length of any η is equal to

step size, which is relatively small compared to window size N . Algorithm 4.2

applies LKC-privacy on raw E. Critical violations found in E are removed from

Wx+→y+ . Line 6 creates the 2-size candidate set Cand2 by self-joining Cand1 and

Ê. This process is demonstrated below.

Phase 2. We identify all critical violations V in Wx+→y+ . Thanks to Prop-

erties 4.2 and 4.3, we check only subsequences that contain at least one dou-

blet from E. This phase iteratively generates Candi (Line 20) to check for crit-

ical violations. The iteration is terminated when i exceeds L or Candi can not

be generated. Two subsequences, qy = 〈(locy1.t
y
1) → . . . → (locyi−1.t

y
i−1)〉 and

qz = 〈(locz1.tz1) → . . . → (loczi−1.t
z
i−1)〉, can be self-joined only if all doublets except

the last (the one having ti−1) are identical in both subsequences, and tyi−1 < tzi−1.

The resulting sequence is 〈(locy1.t
y
1) → . . . → (locyi−1.t

y
i−1) → (loczi−1.t

z
i−1)〉. Lines

10-12 ensure that a candidate subsequence q is not a supersequence of a violation

in V .

Phase 3. We remove all critical violations from Wx+→y+ . Line 23 calls Algo-

rithm 4.3 in order to suppress only selected doublets in V from Wx+→y+ . Finding

these doublets, referred to as winner doublets Win, for suppression is motivated

by the goal of incurring less impact on the data utility. This process is detailed in

59

Algorithm 4.2: AnonymizeNew

Input: New doublets E, and step size
Input: Thresholds L, K, C, and Sensitive values Sen
Output: Anonymous Ê

1: let V = ∅;
2: for (i = 1, i ≤ min(L, step size), ++i) do
3: Generate every possible i-size sequence η from E;
4: Scan E once to find |G(η)| and Conf(sen val|G(η)) for any sen val ∈ Sen;
5: if |G(η)| < K or Conf(sen val|G(η)) > C for any sen val ∈ Sen then
6: Add η to V ;
7: end if
8: end for
9: if V = ∅ then
10: return E as anonymous Ê;
11: else
12: Win = findWinners(V);
13: for all w ∈ Win do
14: Suppress w from E;
15: end for
16: return Ê as anonymous version of E;
17: end if

Chapter 4.3.3. Line 27 publishes the anonymous window Ŵx+→y+ after all winner

doublets have been removed.

Example 4.3.2. We continue from Example 4.3.1. As Ŵ1→3 slides, E = {〈1, d, 4〉,

〈2, d, 4〉, 〈3, d, 4〉, 〈7, d, 4〉, 〈8, e, 4〉}. First, Algorithm 4.2 in Phase 1 determines that

e.4 is a violation and, thus, suppresses e.4 from E resulting in Ê. Second, Phase 2

generates and tests every candidate subsequence q containing existing and new dou-

blets in W2→4. Cand2 = {〈b.2 → d.4〉, 〈c.3 → d.4〉, 〈f.2 → d.4〉}. q1 = 〈b.2 → d.4〉 is

a critical violation because Conf(sen val1|G(q1)) = 50% > 40%. To demonstrate

self-joining, let L = 3. Then, Cand3 = {〈f.2 → c.3 → d.4〉}. Note that Cand3 does

not include 〈b.2 → c.3 → d.4〉 because it is a supersequence of q1.

60

Algorithm 4.3: findWinners

Input: Critical violations V
Output: Winner doublets Win

1: Initialize score table;
2: Let Win = ∅;
3: repeat
4: Choose winner doublet w with the highest Score;
5: Add w to Win;
6: Remove w from score table and update it accordingly;
7: until Score table is empty
8: return Win;

4.3.2 Sliding Window as a Tree

When the sliding window moves, a relatively small fraction of the data is added/

dropped while the remaining larger portion does not change (overlapping data). Our

proposed method efficiently handles this transition. Moreover, our method allows

the sliding window to add/remove trajectories of joining/leaving individuals. ITSA

entails adding, removing, and searching sequences of doublets. We explain below

how our method facilitates these operations on the window.

We use a trie structure to implementing sliding window. A trie is a tree data

structure where each node is a prefix to all its descendants. The trie is created

once (first window) then is dynamically updated upon every window slide. Our tree

structure is reminiscent of the FP-tree structure introduced in FP-growth, a method

for mining frequent patterns [59].

Definition 4.9 (Trie). A trie, P = (Nodes, Edges, Root), of trajectories in Wx→y

consists of a collection of nodes, edges, and a Root node. Every node n ∈ Nodes

contains a doublet b from Wx→y and a prefix count, count. The count of node n

stores the number of distinct trajectories containing the prefix subsequence in the

unique Root− to−node path. The sequence of doublets on a Root− to− leaf path

constitutes a full trajectory. The Root node contains only a count, which is the

total number of trajectories.

61

Figure 4.2: Raw window W2→4 in Table 4.1 structured as a trie

Figure 4.3: Anonymous window Ŵ2→4 in Table 4.2 structured as a trie

The trie structure has a significant impact on storage space by allowing a

concise view over trajectories. Let us examine raw window W2→4 in Table 4.1.

W2→4 contains three instances of the sequence 〈b.2 → c.3〉. Figure 4.2 is a trie

representation of W2→4. We notice that only two nodes are used to represent all the

three instances of this sequence.

When the window slides, nodes containing new doublets from Ê are added as

leaves. Moreover, nodes on the higher levels are deleted if they contain doublets O.

Figure 4.3 shows anonymous window Ŵ2→4, where nodes containing a.1 ∈ O and

b.2, e.4 ∈ Win are removed.

When generating candidate subsequences from trie P, a subsequence q ∈ Candi

may appear in several branches in P. This is challenging when counting the total

number of trajectories containing q (i.e., the support of q). A naive way is exhaus-

tively search P. Instead, we use a virtual line, called Link, to connect all nodes

containing the same doublet in P. Figures 4.2 and 4.3 show Linke.4 and Linkd.4.

62

Definition 4.10 (Link). Given a trie P, Linkb is a sequence of positions that belong

to all the nodes containing doublet b in P.

Finding the support and confidence of a doublet b is achieved by traversing

Linkb. Simply adding up the counts of all the nodes on Linkb yields the support

of b, i.e., |G(b)|. To calculate Conf(sen val|G(b)), we use a separate sensitive

count for every unique sensitive value in Sen. Summing up the sensitive counts

pertaining to sensitive value sen val yields |G(b
⋃

sen val)|, which is used along

with the previously found support to calculate the confidence.

Example 4.3.3. Figure 4.2 shows the trie P of the raw window W2→4. New nodes

of d.4, e.4 ∈ E are added as leaves. The node of d.4 in the sequence q1 = 〈b.2 →

c.3 → d.4〉 has count = 2. This indicates that two instances of d.4 preceded by

〈b.2 → c.3〉 appear in two trajectories in W2→4. These two trajectories, as shown in

Table 4.1, are associated with sen val1 ∈ Sen and sen val3. Therefore, the node of

d.4 has sensitive count = 1. Hence, Conf(sen val1|G(q1)) = 1/2 = 50%.

From the above discussion, we can find the support of a given sequence q =

〈b1 → b2 → b3 → . . . → b|q|〉 in a given trie P as follows. Since every node in P

is a prefix to all its descendants, it follows that countbi ≤ countbj , where j < i.

This finding implies that countq = countb|q| . To find the support of q, we need to

trace Linkb|q| to check for other instance of q in other branches of P. The support

of q = |G(q)| =
∑

countb|q| , given q exists in these branches. Calculating the

confidence follows the same reasoning.

Example 4.3.4. Let us review q1 in Example 4.3.3. The leaf node of d.4 has count =

2. Consequently, any subsequence of q1 containing d.4 will have its count = 2. Let

q′1 = 〈c.3 → d.4〉 ⊆ q1. q′1 has two instances in two separate branches in P. The

support of q′1 =
∑

countd.4 = 2 + 1 = 3.

As we pointed out earlier, the trie is created once (in the first window). Only

at this one point does Algorithm 4.2 run on an entire window since all doublets in

63

the first window are new, where step size = N . Afterwards, the trie is adjusted

dynamically as new doublets arrive and outdated doublets drop out. Hence, only

new doublets E are read from S.

4.3.3 Suppression

After identifying all critical violations V in raw window Wx→y (Phase 2 in Algo-

rithm 4.1), we need to remove them from Wx→y. A naive approach is to remove

every instance of a critical violation v ∈ V . Although this approach will result in an

anonymous window that satisfies LKC-privacy, the incurred data loss (referred to it

as distortion) would be significantly high. Instead, we propose a greedy procedure

that selects certain winner doublets from V for suppression.

When a doublet w is chosen for suppression, w is globally suppressed. That

is, all instances of w are removed from Wx→y. Global suppression does not increase

the maximum probability of a successful attack (identity and attribute linkages)

because any proper subsequence in Ŵx→y still satisfies the imposed LKC-privacy

requirement.

Score(d) =
PrivGain(d)

InfoLoss(d)
(4.1)

Removing a violating sequence v implies that: (a) we are gaining privacy

by removing an attack channel, and (b) we are inflicting data distortion due to

permanently removing doublets from the original trajectories in Wx→y. Hence, we

adopt a greedy function that attempts at removing all violating sequences in V by

suppressing selected winner doublets, Win. We apply Equation 4.1 to every distinct

doublet b in V . PrivGain(b) is the number of critical violations containing b, and

InfoLoss(b) is the support of b in the current raw window. The doublet with the

highest Score is labeled a winner doublet w and is added to Win.

64

Algorithm 4.3 finds the winner doublets Win from the set of all critical viola-

tions V produced by Phase 2 in Algorithm 4.1. Line 1 creates the score table and fills

in the values of PrivGain(b) and InfoLoss(b) pertaining to every unique doublet b

in V . Lines 3-7 iterate the score table to find a winner doublet. The purpose is to

find a doublet that its removal would result in the removal of a maximum number

of critical violations yet causing least distortion. Therefore, Algorithm 4.3 selects

the doublet w that has the highest Score. Then, w is added to the set of winner

doublets Win. After that, Algorithm 4.3 updates the score table by removing w

and adjusting the value of PrivGain(b) of every doublet b that coexists with w in

the same critical violation. If b no longer exists in V , b’s entry is removed from the

score table. Line 8 returns Win containing all winner doublets to be suppressed

from raw Wx→y.

4.3.4 Complexity Analysis of ITSA

The algorithm starts by sliding the window over stream S (Line 2). This process

requires reading the set of new doublets E from S and inserting the new subsequences

into the window. The former step is proportional to the total number of individuals,

|P |. The latter step costs O(N.|L|.|η|), where L is the location universe, η is a new

subsequence from E, and |η| ≤ step size.

We explain the complexity of generating Candi (Phase 2). Let U be the set of

all distinct doublets in a given window, and let 2 ≤ i ≤ L. Candi is a set of i-size

combinations from U . The number of i-size combinations from a set of |U | doublets(|U |
i

)
= |U |(|U |−1)...(|U |−i+1)

i(i−1)...1
= O(|U |i). The worst-case scenario would be for i = L,

i.e., generating L-size sequences of doublets from U requires O(|U |L), where L ≤ N .

However, this exponential behavior is limited due to the following reasons. First,

Candi is achieved by self-joining the sequences in Candi−1 having the same prefix.

It is less likely, however, to find long sequences sharing the same prefix. Second, a

sequence q ∈ Candi is removed from Candi if q is a supersequence of a previous

65

critical violation. For these two reasons, increasing i does not have a significant

effect on the size of Candi.

Let η ∈ E ′ be a subsequence that exists in q ∈ Candi, and let |Linkη| denote

the number of branches containing the full sequence q ∈ Candi in the current trie.

Phase 2 is bounded by O(|U |L.|Linkη|).

Phase 1 of Algorithm 4.2 generates Candi in a similar fashion as described

above. However, for any sequence q in this case, |q| ≤ min(L, step size) ≤ N .

To search for a single winner doublet w (Phase 2) in a trie P, we only need to

follow Linkw. When updating P after deleting a single w node, the child nodes of

w go up by one level. Nodes containing the same doublet are merged. Any level e

contains at most (N − e+ 1)|L| nodes.

In summary, the most costly operation in ITSA is candidate set generation,

described in Phase 2. The complexity of ITSA is dominated by attacker’s knowledge

L, i.e., O(|U |L), where L ≤ N . Practically, however, Phase 2 is most likely to

terminate in early iterations due the aforementioned reasons.

4.3.5 Discussion

We discuss two types of privacy attacks on the published data. These attacks differ

from the privacy attacks we introduced in Chapter 4.1. Furthermore, we discuss the

situation where adversary’s knowledge covers more than one published window.

Attacks. The first attack is called the minimality attack [126]. It stems from

knowing that a certain anonymization method does not anonymize data beyond a

minimum point at which the data satisfy a given privacy requirement. Minimality

provides less data distortion, allowing for better data utility. This attack is based

on the ability of an adversary to reconstruct raw data from its anonymous version.

Data reconstruction is made possible when there exists a public dataset with match-

ing quasi-identifier attributes. From the reconstructed data, the adversary would

66

be able to narrow down to the portions of the data that contain potential viola-

tions. However, our method produces anonymous trajectories that are subsets of

their pertinent raw versions by a sequence of suppressions. By looking at an anony-

mous trajectory, it is impossible to conclude if suppression took place and on which

doublets. Also, we assume raw data only show doublets when a traveler changes

locations. For example, Record 8 in Table 4.2 contains only c.3. An adversary would

not be able to tell if two doublets at timestamps 2 and 4 were suppressed or the

traveler stayed at location c at timestamp 4.

The second attack is correlation attack. It takes place when a doublet is widely

known by data recipients to be highly associated with a sequence of other doublets.

As an example, most drivers in the downtown area taking the highway cross over

the bridge to get to the mall. If the sequence 〈downtown.1 → highway.2 → mall.4〉

exists in the published data, then an adversary will be able to deduce the missing

doublet of the target victim, bridge.3. We point out that if such association exists

(i.e., high confidence), it is unlikely that ITSA would suppress the recurring doublet

since it would have a high support. Moreover, this work does not treat locations

as sensitive information. If locations are sensitive, some methods already exist that

incorporate this assumption in their solution [117]. Alternatively, sensitive locations

can be added to the set of sensitive values with no effect on the performance of ITSA.

Adversary’s Knowledge. The sliding window contains recent whereabouts

of the moving individuals, since recent movements are most useful for data mining

tasks. However, if adversary’s knowledge spans multiple windows, the data holder

needs to adjust the window size so that a wider range of trajectories is anonymized.

This solution, though simple and practical, suffers from two limitations. First,

it is not always trivial to deduce the length of the adversary’s knowledge, L. Second,

from Chapter 4.3.4, we can see that larger L incurs higher complexity. To circumvent

these drawbacks, in a future work we will consider anonymizing sequential windows

so that recent windows are not published independently. In other words, ITSA will

67

still publish one anonymous window at a time, but recent windows will cover wider

adversary’s knowledge. One way to accomplish this goal is to maintain a buffer

containing count statistics from a certain number of recently published windows.

The algorithm would then anonymize the current window based on the information

available about the recently published anonymous windows.

4.4 Performance Analysis

We implemented our method in C++. All experiments run on an Intel Core i5

CPU with 2.4GHz and 4GB of RAM. We evaluate the performance of our method

in terms of data utility, efficiency, and scalability.

We carry out performance evaluation using three datasets. The first one is a

simulated dataset called MetroData1. The second one is a real-life dataset called

MSNBC, which is publicly available at the UCI machine learning repository [10].

The third dataset is generated using Brinkhoff’s network-based synthetic data gen-

erator [19] and is called Oldenburg. MetroData is a simulation of the traffic routes

of a large group of passengers using the public transit metro system in Montreal,

Canada. Routes are generated based on the information and statistics provided in

an annual report published by www.metrodemontreal.com. The generator that we

built takes into consideration the actual metro map and the passenger flow rate of

each station. According to the published statistics, a passenger passes through 8

stations on average.

MetroData contains trajectories generated for 100, 000 passengers who use

any of the metro’s 65 stations over a 60-minute time period. Therefore, MetroData

includes 100,000 records, each record belongs to a unique passenger. The total

dimensionality of the dataset is 65 × 60 = 3900 dimensions. We also assume the

existence of a sensitive attribute, namely social status. We note that a sensitive

1http://dmas.lab.mcgill.ca/fung/pub/MetroDataSet.txt

68

attribute could be any attribute chosen or imposed by the data holder; we choose

social status as an example. social status has five domain values, we choose On-

Welfare to be sensitive. In this case, the set of sensitive values Sen = {On −

Welfare}. All records are evenly assigned one value from the sensitive attribute.

The second dataset, MSNBC, is a real-life web log containing visited web

pages by nearly 1 million users, where every record belongs to a unique user. The

dataset contains 17 categories of web pages: News, Tech, Health, etc. Despite the

fact that this dataset contains no physical locations, it shares the same property of

high dimensionality with a typical trajectory dataset. Therefore, categories of web

pages are treated as unique locations visited by users at non-decreasing timestamps.

We also impose a sensitive attribute on the original data. The sensitive attribute

contains 10 domain values, each record is randomly assigned one value. We choose

two domain values to be sensitive.

The last dataset, Oldenburg, is generated using Brinkhoff’s network-based traf-

fic generator. Oldenburg contains 100,000 trajectories of objects moving throughout

the city of Oldenburg (Germany) over the course of 24 hours. The representation of

the generated trajectories has been modified to adhere to Definition 4.1. Hence, as

a preprocessing step, the road-network map of the city of Oldenburg was discretized

into 10 × 10 = 100 regions, and all X-Y coordinates of the generated trajectories

were replaced with their pertinent regions. In addition, a sensitive value is randomly

assigned to every trajectory in a similar setting as in MetroData.

To simulate a streaming environment, the window slides over trajectories read-

ing only doublets that fit within the window scope. Algorithm 4.1 runs only on the

data available in a given window. That is, any future or outdated doublets are

unknown to the algorithm. Without loss of generality, we set step size = 1 in all

experiments.

69

We compare our method ITSA with two other methods, namely RFIDAnonym-

izer [42] and Never Walk Alone (NWA) [1]. RFIDAnonymizer was previously pro-

posed for anonymizing a static RFID dataset. To apply this static anonymization

method on trajectory stream, we apply RFIDAnonymizer on every window indepen-

dently. We compare our method with RFIDAnonymizer only in terms of efficiency

and scalability, but not in terms of data utility, because both methods apply ex-

actly the same sequence of suppression operations, yielding the same result. The

contribution of ITSA over RFIDAnonymizer is on efficiency and scalability. We also

compare our method with another method called NWA that was proposed by Abul

et al. [1] to anonymize a static trajectory dataset. We carry out performance anal-

ysis with NWA in terms of data utility and efficiency. In addition, we compare the

impact of applying different privacy models, namely LKC-privacy and k-anonymity,

on the data utility.

Unless otherwise specified, a value on the distortion ratio and runtime reported

in any of the figures in this section reflects the average value of all the windows sliding

over the same dataset in one run.

4.4.1 Metro Dataset

First, we study the impact of the different parameters on data utility. Then, we

generate much larger datasets to test the scalability of our method.

Figure 4.4 (a). We fix N to 7 and the adversary’s background knowledge

L to 4. We vary the minimum anonymity threshold K from 20 to 100 and the

maximum inference confidence C from 20% to 100%. We see that increasing K

implies higher distortion ratio. This is because more trajectories must share any

subsequence q with |q| ≤ L, and it is unlikely that a large number of passengers

share longer journey routes. Therefore, more suppressions are needed to achieve

anonymity. We also notice that the distortion ratio is highest at C = 20%. We

attribute this odd jump to the random distribution of the sensitive values in each

70

(a) Dist. Ratio vs. K and C (b) Dist. Ratio vs. L and K

Figure 4.4: MetroData: the impact of L, K, C (N = 7)

record, 1 out of 5 = 20% = C. As a result, more doublets are suppressed to satisfy

the inference confidence requirement.

Figure 4.4 (b). We fix N to 7 and C to 60%. We vary L from 1 to 5 and K

from 20 to 60. For L ≥ 2, the distortion ratio experiences a steady behavior because

the values of K are relatively small compared to the total number of records in the

dataset. We note that in real-life datasets, the distortion ratio is expected to be

proportional to L. This is because in order to satisfy LKC-privacy, more trajecto-

ries must share longer subsequences; otherwise, further suppressions are required.

Figure 4.4 (b) also affirms that distortion ratio increases when K increases.

Figure 4.5 (a). We evaluate the impact of N . We fix L to 4, K to 40, and C

to 60%. We vary N from 5 to 9. Figure 4.5 (a) insinuates that larger window sizes

are likely to cause higher distortions. This is because a larger window size produces a

much larger Candi, resulting in increasing the number of potential critical violations.

Generally speaking, as the window slides, new data may or may not introduce

new critical violations (Property 4.3), and thus there is no formal approach for

systematically predicting an association between window size and distortion. This

reasoning is reflected in Figure 4.5 (a) when 5 ≤ N ≤ 7 where the distortion ratio

increases slowly. However, the distortion ratio experiences a sudden jump at N = 8,

but has a marginal increase at N = 9.

71

(a) Dist. Ratio vs. N (b) Dist. Ratio in Windows (N = 7)

Figure 4.5: MetroData: sliding window (L = 4, K = 40, C = 60%)

Figure 4.6: MetroData: scalability (L = 4, K = 120, C = 60%, N = 7)

Figure 4.5 (b). All previous figures were depicting the distortion ratio on

average for all windows. Figure 4.5 (a) presents the distortion ratio of every window

on MetroData. We set L = 4, K = 40, C = 60%, and N = 7. We see that the

distortion ratio exhibits mild fluctuation as the window slides.

Efficiency and Scalability. In all the experiments thus far, the runtime of

anonymizing a single window before it slides is less than 1 second. We now evaluate

the efficiency and scalability of our method in terms of handling datasets with a

huge number of records. Our method puts no restrictions on the amount of data

to be processed in a sliding window. The maximum number of doublet instances

in any window is equal to window size N× the number of records [83] [123] [144].

We use our generator to produce datasets with size ranging from 200 thousand to

72

(a) C = 20% (b) C = 60% (c) C = 100%

Figure 4.7: MSNBC : distortion ratio vs. L, K, C

(a) C = 60%, L = 2, N = 5 (b) K = 20, C = 60%, N = 5 (c) K = 20, C = 60%, L = 2

Figure 4.8: MSNBC : runtime vs. K, L, N

1 million records. We set L = 4, K = 120, C = 60%, and N = 7. Figure 4.6 shows

that a sliding window takes less than 1 second to anonymize 1 million records.

4.4.2 MSNBC Dataset

For our second dataset, we perform more in-depth analysis and observe the impact

of the different parameters on distortion ratio and runtime. All experiments consider

the first 10 windows sliding over the entire dataset.

Figure 4.7. We evaluate the impact of L, K, and C on distortion ratio.

Experiments are carried out for window size N = 5, anonymity threshold 5 ≤

K ≤ 25, maximum adversary’s background knowledge 1 ≤ L ≤ 3, and confidence

threshold C = 20%, 60%, 100%. Overall, distortion ratio increases as K increases.

At L = 1 (sequences of one doublet), the distortion ratio stays below 1% mainly

because MSNBC contains a very large number of records, and thus unique doublets

are bound to appear more frequently.

73

Figure 4.7 also shows that distortion ratio is proportional to L. Higher values

of L imply that longer sequences must exist more frequently. Since it is unlikely that

too many users would visit the same sequence of web pages, many doublets have to

be suppressed to satisfy the given privacy requirement. Setting L = 3 produces a

high distortion of ≥ 60% in Figures 4.7 (a)-(c).

Lastly, Figure 4.7 (a), where C = 20%, reports a higher distortion ratio at L =

2 (30% to 40%) than Figures 4.7 (b) and (c) (10% to 30%). This is justified by how

sensitive values are assigned to each record. Since the sensitive attribute contains

10 domain values, 2 of which are sensitive, each record has a probability of 20% to

be assigned a sensitive value, which is equal to the confidence threshold. Therefore,

more suppressions are performed. This observation is reflected in Figures 4.7 (b)

and (c) that report lower distortions.

Figure 4.8. We study the effect ofK, L, and N on the runtime of our method.

For every graph, we vary one parameter and fix the others (values are in caption).

In Figure 4.8 (a), for 20 ≤ K ≤ 100, runtime stays below 0.5 seconds. Moreover, we

note that runtime is insensitive to the change of K. This is because the number of

critical violations does not grow significantly as K increases, hence the time to find

winner doublets is not generally affected. This observation is depicted in Figure 4.7

(b) at L = 2 where the distortion ratio increases slowly as K goes higher. The same

reasoning can be applied to the inference confidence, C.

Figure 4.8 (b) depicts the impact of L on runtime. The maximum value that

can be assigned to L is the window size N . Therefore, we vary L between 1 and N .

In general, the runtime increases as L increases. For 1 ≤ L ≤ 5, 0.4 ≤ runtime ≤ 1.3

seconds. As L increases, more sequences are generated to be checked for potential

critical violations. This fact is also reflected in Figure 4.8 (c) where 10 ≤ N ≤ 50.

Larger values of N imply more unique sequences in any candidate set Candi, hence

more processing time.

74

Figure 4.9: k-Anonymity vs. LKC-privacy (C = 60%, L = 2, N = 5)

Figure 4.10: RFIDAnonymizer vs. ITSA (K = 20, C = 60%, L = 2, N = 10)

Figure 4.9. We compare the distortion ratios caused by applying the LKC-

privacy model and the traditional k-anonymity model, respectively, in our ITSA

method. By setting L = N and C = 100%, LKC-privacy turns into k-anonymity.

For LKC-privacy, we set C = 60%, L = 2, N = 5 and 10 ≤ K ≤ 50. Results in

Figure 4.9 show that k-anonymity maintains a minimum distortion ratio of 60%.

Applying LKC-privacy significantly lowers the distortion ratio over the different

values of K. This can be explained by the fact that k-anonymity requires every

record to be shared in its entirety by at least k − 1 other records. This strict

requirement is addressed in LKC-privacy by manipulating the parameter L.

Figure 4.10. We measure the efficiency and scalability of our method in terms

of runtime (in seconds), and compare the results with those achieved by using RFI-

DAnonymizer [42]. For this experiment, we measure the runtime of every individual

window when ITSA and RFIDAnonymizer are applied, independently. Figure 4.10

75

depicts the runtimes of 10 windows. It is evident that ITSA performs significantly

better than RFIDAnonymizer by maintaining an overall runtime of ≤ 1 second,

thanks to the properties that we identified in trajectory streams (Chapter 4.3.1)

and the compact and dynamic tree structure for representing trajectories (Chap-

ter 4.3.2). Moreover, when the window slides, ITSA reads only the new data in the

stream, while RFIDAnonymizer reads every window in its entirety.

4.4.3 Oldenburg Dataset

In this set of experiments, we compare the performance of our method ITSA with

another method called NWA that was proposed by Abul et al. [1] to anonymize

static trajectory data. We carry out performance analysis of both methods in terms

of data utility and efficiency using the Oldenburg dataset.

NWA applies anonymization through space translation, by which trajectory

points are either suppressed or dragged in space until every trajectory coexists with

at least k−1 other trajectories. A translated point is assigned a penalty equal to the

translation distance. If a point is suppressed, it is assigned a penalty equal to the

max point translation (a constant value corresponding to the maximal translation

distance in the entire experiment). This penalty metric is called Information Distor-

tion, and is used in our experiments to evaluate the utility of the output anonymous

dataset. Higher Information Distortion implies less data utility.

Our method ITSA applies anonymization through a sequence of suppressions.

To compute Information Distortion, every suppressed point is assigned a penalty

equal to themax point translation obtained from applying NWA on the same dataset.

Figure 4.11. We compare ITSA with NWA in terms of data utility by mea-

suring Information Distortion. For ITSA, we set C = 60%, L = 4, and N = 5. As

for NWA, we mostly use the default parameters values; specifically, we set δ = 200,

π = 5, δmax = 0.01, and trashmax = 10. For both methods, we set 10 ≤ K ≤ 50.

We observe that our method constantly achieves 20% less distortion than NWA.

76

Figure 4.11: Oldenburg : Information Distortion

Figure 4.12: Oldenburg : runtime (sec)

Figure 4.12. We compare ITSA with NWA in terms of efficiency by mea-

suring the average runtime (in seconds) of anonymizing a single window. The pa-

rameters of both methods are the same as those used in Figure 4.11, except that

in this experiment we set L to be equal to the window size, L = 5. Increasing L

requires processing longer sequences, causing our algorithm to run longer. However,

Figure 4.12 shows the following two observations. First, ITSA runs significantly

faster than NWA, which takes several minutes to anonymize a single window. Sec-

ond, the runtime of our method is insensitive to the minimum anonymity threshold

K (as also observed in Figure 4.8 (a)), steadily reporting a runtime of almost 1

second. These two observations suggest that our proposed method is suitable for

anonymizing a “live” stream of trajectories.

Overall. The distortion ratio caused by ITSA is dominated by the maximum

adversary’s background knowledge L and the window size N . This is because both of

these parameters incur larger candidate sets containing potential critical violations.

This finding validates our theoretical analysis of ITSA in Chapter 4.3.4. Changing

77

the minimum anonymity threshold K and the inference confidence C does not cause

a significant impact on distortion ratio.

4.5 Summary

Due to recent advancement in mobile technology, spatio-temporal data is being con-

tinuously generated. The data can be automatically collected by some data holder.

In this chapter, we propose a novel approach for anonymizing a stream of trajec-

tories generated by moving individuals. The anonymous trajectories are published

on the fly to maintain data freshness. We illustrate and formalize two types of

privacy threats. We also propose an algorithm for incrementally anonymizing a se-

quence of dynamically-updated sliding windows on the stream. We structure the

window in a way to accommodate a massive volume of transient data. We evaluate

the performance of our method on simulated and real-life datasets, and we compare

with other methods. Experimental evaluation demonstrates that our method is suit-

able for anonymizing real-life trajectory streams, and that it outperforms existing

methods.

78

Chapter 5

Anonymizing Static Trajectories

5.1 Introduction

Location-aware devices and systems capable of collecting user-specific data have

been implemented in many smart city infrastructures over the last several years.

For example, Société de transport de Montréal (STM), the public transport agency

in Montreal, has employed a smart card automated fare collection (SCAFC) system

to collect passenger transit data. The data collected by these systems has numerous

uses for data analysis and is crucial to enactment of administrative regulations and

generation of metrics to weigh business practices. However, the collected data in

its raw form contains sensitive information that is specific to individuals and must

be anonymized to protect their privacy before the data is shared by a certain third

party for data analysis.

In this chapter, we study the problem of publishing trajectories with spatio-

temporal information and propose a privacy-preserving trajectory publishing solu-

tion under the differential privacy model [34]. We assume that trajectories of moving

individuals have already been collected and stored in a database system.

Let us consider the spatio-temporal transit data collected by STM. For ev-

ery passenger, the collected data includes the passenger’s smart card number, the

79

Table 5.1: Raw trajectories of 7 passengers
TID Trajectory
tr1 a.1→ c.2
tr2 c.2→ b.4
tr3 a.2→ b.3→ c.4
tr4 c.3→ a.4
tr5 a.1→ b.2→ c.3
tr6 a.3→ c.4
tr7 a.3→ b.4

visited station ID, and a timestamp. Data is collected as passengers present their

unique smart cards to an automated reader for fare collection when boarding a bus

or entering a metro station. Once collected, the passenger’s data is stored in a

central database whereby the sequence of visited stations is arranged in a timely

order. Table 5.1 provides an abstract representation of the STM transit data in

its raw form. Identifying pieces of information such as names and card numbers

are omitted; instead, a trajectory ID has been added for ease of referencing. The

sequence of 〈location, timestamp〉 pairs forms a passenger’s path or trajectory. For

example, trajectory tr1 in Table 5.1 contains two pairs, a.1 and c.2, indicating that

the passenger has visited locations a and c at timestamps 1 and 2, respectively. We

note that the letters in Table 5.1 are used to represent locations, imply no order,

and are not to be associated with any symbol or notation in a context other than

this example or any of its continuations.

Trajectories collected by transit companies are periodically shared with inter-

nal and external organizations for various purposes, e.g., trajectory mining [116]

[143] and traffic management [20] [86]. Publishing or sharing raw trajectories raises

privacy concerns because the data is susceptible to attacks that rely on attacker’s

background knowledge about some target victims whose trajectories are included

in the published data. These privacy concerns cannot be ignored because, in addi-

tion to putting passengers’ privacy at risk, they can deter information sharing. We

illustrate these privacy attacks in the following example.

80

Example 5.1.1. Suppose that Alice is a passenger whose trajectory is in Table 5.1,

which is being released to the public. Possessing auxiliary knowledge about Alice,

an attacker can uniquely identify Alice’s full trajectory. For example, knowing that

Alice was at location b at timestamp 2, an attacker can use this knowledge to

associate Alice with trajectory tr5 with 100% certainty and determine that she has

traveled through location a at timestamp 1 and exited the transit system at location

c at timestamp 3. Further, suppose that an attacker knows that Bob was at location

b at timestamp 4. Hence, Bob’s trajectory is either tr2 or tr7. In other words, the

attacker is able to deduce that Bob was at c.3 with 50% confidence or at a.3 with

50% confidence, as well. The former attack is called record linkage and the latter is

called attribute linkage.

Previously, publishing trajectories has been explored through syntactic and

semantic privacy models. In Chapter 2.2, we discussed some syntactic privacy mod-

els, namely k-anonymity [115] and �-diversity [90]. Researchers have combined these

privacy models with spatial generalization, space translation, and suppression-based

techniques to anonymize trajectories. However, while retaining data utility, these

models, including our work in Chapter 4, are fundamentally prone to a number of

privacy attacks [126] [48] [72]. To avoid this type vulnerability, in this chapter we

propose an anonymization approach based on differential privacy [34].

Differential privacy is a semantic privacy model that provides provable privacy

guarantees. In this chapter, we utilize differential privacy to anonymize a set of

trajectories and output a sanitized version with an effective level of utility. There

have been several semantic models [64] [65] [26] [61] [39] developed by researchers

for achieving privacy-preserving trajectory publishing. Unlike existing approaches,

however, our approach preserves the time dimension in the sanitized trajectories,

allowing for more precise analysis, as opposed to preserving locations sequentiality.

Differential privacy works in two environments: the interactive setting [37]

and the non-interactive setting [13] [130]. The former setting allows the data holder

81

(e.g., the transit company) to receive a limited number of requests pertaining to

the underlying raw data, and sanitized answers are released. In the latter set-

ting the data holder sanitizes then releases the entire data. In both settings, the

differentially-private mechanism consumes at most ε budget, where ε is a pre-defined

privacy budget. In this chapter, we propose a solution that works under the non-

interactive setting as it gives extra flexibility in terms of analysis power, especially

when there is no specific data recipient for the released data. Subsequently, the

target data analysis task is unknown and can vary considerably depending on the

desired analysis task. Moreover, many specific data mining techniques rely on count

queries to accomplish their objective. Hence, we focus on preserving count queries

in the sanitized data to provide various data recipients with the freedom to perform

a wide variety of analysis tasks. It is worth noting that in our problem definition we

assume the presence of the entire trajectory of a moving individual before sanitizing

the complete set of trajectories.

Contributions. In this chapter, we investigate the problem of privacy-preser-

ving trajectory publishing. Unlike sequential data, trajectories are spatio-temporal

data that contains a time dimension. The existence of a temporal dimension renders

the problem challenging because extra care is required in the sanitization process to

handle the sparseness of data. We first formalize the problem of publishing trajec-

tories under the rigorous privacy model of differential privacy in the non-interactive

setting. We then propose an efficient and scalable sanitization algorithm, called

SafePath, that models trajectories in a prefix tree structure, which significantly con-

tributes to the ability of handling sparse and high-dimensional data [7]. The closest

work to ours is by Chen et al. [26]. They proposed to sanitize sequential data (e.g.,

sequences of locations) under differential privacy and further suggested that their

method could be extended to spatio-temporal data, i.e., sequences of locations cou-

pled with timestamps. We implemented Chen et al.’s extension and call it SeqPT.

Through theoretical and experimental analysis on real-life trajectory datasets, we

82

demonstrate that SafePath provides severalfold improvement over SeqPT with re-

spect to efficiency in terms of runtime and scalability in terms of both number of

records and dimensionality of the dataset.

5.2 Preliminaries

5.2.1 Trajectories as Prefix Tree

In this chapter, we assume that individuals are traveling from one location to an-

other on a geographical map. The map is discretized into unique spatial areas that

collectively form the location universe. A single trajectory is the trace left by a single

individual, where every visited location is coupled with a timestamp. Timestamps

within a single trajectory are non-decreasing and are drawn from the timestamp uni-

verse, whereas a location may appear multiple times and/or consecutively. Formally

speaking,

Definition 5.1 (Trajectory). A trajectory

tr = loc1.t1 → loc2.t2 → . . . loci.tj (5.1)

is a finite sequence of pairs consisting of a location loci ∈ L and a monotonically-

increasing timestamp tj ∈ T , where 1 ≤ i ≤ |L|, 1 ≤ j ≤ |T |, and tj ≤ tj+1.

|tr| denotes the trajectory length, which is the number of location and times-

tamp pairs in tr. For example, the first trajectory tr1 in Table 5.1 is of length

|tr1| = 2.

As opposed to sequential data [26], trajectory data contain a time dimen-

sion that renders the data high-dimensional and, in most cases, extremely sparse.

Handling sparse data is a challenging problem because processing time is an im-

portant aspect of sanitization and should be performed in a timely manner. For

83

this reason, we structure a set of trajectories D as a prefix tree, which provides the

desired compactness for achieving efficient processing. A prefix tree creates a node

for every unique pair of location and timestamp, such that the node is a prefix to

all its descendants. Moreover, a root − to − leaf path in a prefix tree represents

one unique trajectory trn ∈ D. Every node along a root − to − leaf path con-

tains all the trajectories in D to which the root − to − node path is considered a

prefix. Abusing notation, a trajectory trm = locm1 .t
m
1 → locm2 .t

m
2 → . . . locmi .t

m
j is

a prefix to another trajectory trn = locn1 .t
n
1 → locn2 .t

n
2 → . . . locni .t

n
j , denoted by

trm � trn, if and only if: (1) |trm| ≤ |trn|, and (2) ∀locmi .tmj ∈ trm, loc
m
i = locni and

tmj = tnj , where 1 ≤ i, j ≤ |trm|. For instance, let tr1 = loc1.t1 → loc2.t2 → loc3.t3,

tr2 = loc1.t1 → loc2.t2, tr3 = loc1.t1 → loc3.t3, and tr4 = loc1.t1 → loc1.t2. tr2 � tr1,

but tr3, tr4 � tr1.

Definition 5.2 (Prefix tree). A prefix tree P = (Nodes, Edges, Root) of a trajectory

dataset D is a collection of Nodes connected by Edges and rooted at the Root

node. ∀n ∈ Nodes, n(loc.t) = 〈tr(n), c(n)〉, where loc.t ∈ tr ∈ D is a unique pair

of location and timestamp representing n, tr(n) = {tr ∈ D | prefix(n) � tr} where

prefix(n) is the Root − to − n path, and c(n) = |tr(n)| + Lap(λ) is a noisy count.

The Root node is represented by the pair 0.0 and tr(Root) = D.

From Definition 5.2, given a node n in a prefix tree P, tr(n) ⊆ D is the set

of trajectories containing the prefix defined by the Root − to − n path, symbolized

as prefix(n). Going from a parent node p(loci.tj) at level e in P to a child node

n(loci+1.tj+1) at level e + 1 implies the transition loci.tj → loci+1.tj+1. We refer to

the set of nodes at level e by level(e). The Root node belongs to level(0), and the

set of Root’s child nodes belongs to level(1), etc.

84

5.2.2 Problem Statement

A trajectory dataset D = {tr1, tr2, . . . , tr|D|} is a multiset of trajectories where every

record in D is a trajectory that belongs to a single and unique record owner. |D|

denotes the size of the dataset, i.e., the number of individuals in D. A data holder

has access to D and wishes to publish a differentially-private version of D, denoted

by D̂, that can be used for various data analysis tasks. In Chapter 5.3 we propose

a differentially-private algorithm under the objective of maintaining count queries

over the sanitized trajectories D̂ with respect to the raw trajectories D.

Many data mining techniques rely on count queries to accomplish data analy-

sis. Stemming from the goal of providing data recipients with the freedom to perform

a wide variety of data analysis tasks on the sanitized trajectories, and given that the

target data analysis task is unknown at the sanitization stage, we aim at sanitizing

a set of raw trajectories without compromising its utility in terms of count queries.

A count query over a trajectory dataset returns the number of trajectories of

which the issued query is a subset. Query q is a subset of trajectory tr, denoted by

q ⊆ tr, if and only if: (1) |q| ≤ |tr|, and (2) ∀loci.tj ∈ q, loci.tj is also ∈ tr, where |q|

denotes the length of the query, i.e., the number of location and timestamp pairs in

q. In contrast to a prefix, a count query ignores sequentiality of pairs. For example,

suppose query q = loc1.t1 → loc5.t10 is issued over the dataset D = {loc1.t1 →

loc5.t10, loc1.t1 → loc2.t5 → loc5.t10}. Then, the returned answer q(D) = 2.

Definition 5.3 (Count query). Let q be a count query that contains a sequence of

location and timestamp pairs in accordance with Definition 5.1. A count query q

issued over a trajectory dataset D is defined as q(D) = |{tr ∈ D | q ⊆ tr}|.

The utility of a count query q over a sanitized data D̂ is computed by its

relative error [128] [130] [26], which measures how far the noisy answer q(D̂) is

from the true answer q(D). That is, relative error(q(D̂)) = |q(D̂)−q(D)|
q(D)

. However,

when q(D) returns a very small value, the computed error becomes very large. In

85

order to limit the impact of extremely small count queries, it is common to use

a sanity bound [128] [130]. This prevents the relative error from being excessively

dominated by extremely small fractions of the data [56]. Therefore, the relative

error is computed as follows:

relative error(q(D̂)) =
|q(D̂)− q(D)|

max{q(D), sanity bound} .

In Chapter 5.4, we choose sanity bound = 0.1% of the raw dataset as in [26] [130].

In this chapter, we tackle the problem of privacy-aware trajectory publishing.

We present the following definition:

Definition 5.4 (Privacy-aware trajectory publishing). Given a raw trajectory dataset

D, a privacy budget ε, and a set of taxonomy trees, we wish to publicly publish D̂, a

differentially-private version ofD, such that: (1) D̂ minimizes the distortion inflicted

on count queries due to sanitization, and (2) the sanitization process is efficient and

scalable to handle extremely sparse trajectories.

5.3 Proposed Algorithm

In this section we present SafePath, our proposed algorithm for publishing differentially-

private trajectories. Chapter 5.3.1 gives an overview of the entire algorithm. Chap-

ters 5.3.2 and 5.3.3 describe the algorithm in detail. We end with a theoretical

analysis of the proposed solution in Chapter 5.3.4.

5.3.1 Overview

Summary. We propose a sanitization algorithm primarily comprised of two phases:

(1) building the noisy prefix tree, and (2) constructing the sanitized dataset. Given

a raw trajectory dataset D, a privacy budget ε, location and timestamp taxonomy

trees Tloc and Ttime, respectively, and the height, h, of the noisy prefix tree, our

86

Figure 5.1: Taxonomy trees

proposed sanitization algorithm (presented in Algorithm 5.1) returns a differentially-

private trajectory dataset D̂. Algorithm 5.1 first builds the noisy prefix tree P, and

then feeds P to EnhanceConsistency that constructs D̂ by systematically traversing

P to ensure data consistency along trajectory paths. Lastly, Algorithm 5.1 releases

the sanitized trajectory dataset D̂.

Taxonomy Trees. A taxonomy tree consists of a generalization hierarchy in

which every node contains a unique range interval that is a subset of the domain

values. The range intervals of all the nodes that belong to the same generalization

level collectively constitute the entire domain. A taxonomy tree is defined by two

parameters on which we assume no restrictions: the taxonomy tree height and the

number of children. The former parameter defines the height of the generalization

hierarchy, and the latter parameter defines the maximum number of child nodes that

belong to the same parent node in the tree. An example of user-defined taxonomy

trees is given in Figure 5.1. The height of the timestamp taxonomy tree is 1 because

there exists one general level, and the number of children is 2, whereas the height

of the location taxonomy tree is 0 (hierarchies are ignored). In Chapter 5.4, we

experimentally evaluate the impact of different taxonomy trees on the performance

of our method by varying the taxonomy tree height and the number of children.

Privacy Budget Allocation. In order to satisfy ε-differential privacy, Algo-

rithm 5.1 effectively distributes the input parameter ε among its differentially-private

operations. ε is uniformly distributed among each level in the noisy prefix tree, i.e.,

87

every level e is allocated ε̇ = ε
h
. Upon construction, a level consists of two sub-

levels: location and timestamp. Each sublevel is assigned an equal portion of the

level’s privacy budget, i.e., ε̈ = ε̇
2
. Furthermore, each sublevel consists of a hierarchy

that generalizes location/timestamp domain values to multiple generalization levels.

Here, we employ non-uniform budget distribution, as follows. Abusing notation, a

general node at generalization level i in taxonomy tree T is allocated a privacy bud-

get εg = i×εu, where εu = 2ε̈
|U| is a unit budget defined as a function of the underlying

universe size |U|. A non-general node receives a privacy budget εng =
(|U|−2

∑i
x=1 x)ε̈

|U| .

We choose such an allocation scheme because less general nodes (at the lower levels

of a given hierarchy) contain smaller trajectory counts, thus it is fair to increase the

allocated budget portion as the nodes go deeper in the hierarchy. In Chapter 5.4,

we examine the effect of ε on data utility.

We note that only non-general nodes will be added to the prefix tree. The

sublevels in the noisy prefix tree, including general nodes, are only part of the

building process.

5.3.2 Building the Noisy Prefix Tree

Our proposed algorithm builds a noisy prefix tree whereby trajectories are dis-

tributed among tree nodes based on noisy counts and prefixes. The idea is to

construct tree level e by extending every node at level e − 1. In order to satisfy

differential privacy, a differentially-private operation should not depend on the un-

derlying dataset. Recall a node is represented by a unique pair of location and

timestamp; we extend every node by considering all possible combinations of loca-

tion and timestamp given their respective universes. In other words, any location

and timestamp pair that does not appear in the raw trajectories has a non-zero

probability of appearing in the sanitized trajectories.

Example 5.3.1. Figure 5.2 presents a running example of a noisy prefix tree P,

where the input dataset is the raw trajectories in Table 5.1. The Root of P is the

88

first node at the top of the tree. Any node in P consists of three pieces of information:

location and timestamp pair(s), a portion of the dataset trajectories, and a noisy

count (except the Root). The height of the tree is 2, and each level consists of two

sublevels separated by a dashed line.

A node is added to the noisy prefix tree, and thus qualifies for extension, if it

is considered to be non-general and non-empty. A non-general node is represented

by a specific location and a specific timestamp (as opposed to a general node as

described in Chapter 5.3.1). A decision whether a node is non-empty is rendered

based on the node’s noisy count. Recall a node n’s noisy count is stored in its own

c(n), a non-empty node is a node with c(n) ≥ θ, where θ is a pre-defined threshold

computed as follows. Let node n ∈ level(e), we define the noisy count threshold θ as

a function of level e’s allocated budget portion, ε̇. More specifically, we define θ to be

two times the standard deviation of the level’s noise. Recall from Chapter 2.3.3 that

the Laplace mechanism has variance 2λ2, where λ = 1
ε
for count queries as a utility

function. Therefore, θng = 2
√
2
ε̇
, where θng is defined for non-general nodes. The

same concept is applied to general nodes when building taxonomy trees. That is, a

general node is deemed non-empty, and thus can be extended within its taxonomy

tree, if its noisy count is not less than θg, where θg = 4
√
2
ε̇
.

Example 5.3.2. For the sake of simplicity, let θng = θg = 5 for the example in

Figure 5.2. Any node with noisy count < 5 (barred) is considered empty and is not

going to be extended. Grey nodes indicate the nodes that are added to the noisy

prefix tree.

The above filtering technique prunes the nodes with small true counts, albeit

with reasonable impact on data utility as suggested by the experiments performed

on real-life datasets in Chapter 5.4. On the other hand, nodes that contain no

trajectories (i.e., tr(n) = 0) get filtered out in the early stages of building the

noisy prefix tree. This significantly improves utility and efficiency by preventing

89

F
ig
u
re

5.
2:

N
oi
sy

p
re
fi
x
tr
ee

of
th
e
tr
a
je
ct
or
ie
s
in

T
ab

le
5.
1

90

Algorithm 5.1: SafePath

Input: Raw trajectory dataset D, privacy budget ε
Input: Taxonomy trees: Tloc and Ttime

Input: Height of the noisy prefix tree h
Output: Differentially-private trajectory dataset D̂

1: Create a prefix tree P with node Root;
2: tr(Root) ← all trajectories in D;
3: ε̇ = ε

h
;

4: Compute εg and εng for loc. and timestamp sublevels;
5: Compute θg and θng;
6: i = 1;
7: while i ≤ h do
8: for each non-general node in level(e− 1) do
9: W ← BuildSubLevel(Tloc, εg, εng, θg, θng);
10: for each non-general location node in W do
11: level(e) ← BuildSubLevel(Ttime, εg, εng, θg, θng);
12: end for
13: end for
14: i++;
15: end while
16: D̂ ← EnhanceConsistency(P);
17: return D̂;

building and processing false trajectories. We next describe our entire approach, as

summarized in Algorithm 5.1.

Algorithm 5.1 starts at Line 1 by creating a Root node under which the noisy

prefix tree P will be built. Line 2 assigns all the trajectories of the input dataset

D to tr(Root), and Line 3 computes the privacy budget portion dedicated for each

level. Lines 4 computes the privacy budget portions εg and εng for the general and

non-general nodes in both the location and timestamp sublevels. We note that the

location and timestamp sublevels have the same pair of budget portions εg and εng

if taxonomy trees Tloc and Tloc and Ttime are identical (see Chapter 5.3.1). Line 5

computes the noisy count thresholds θg and θng. Lines 7-12 build the noisy prefix

tree by iteratively constructing every level e ≤ h in a breadth-first manner. Under

every non-general node n ∈ level(e − 1), the algorithm attempts to extend n by

91

first building the location sublevel (Line 9), and then under every non-empty non-

general location node, the algorithm builds the timestamp sublevel (Line 10). A

non-general location node is a node that contains a specific location value but a

general timestamp value (range interval). In Line 9, BuildSubLevel builds the

location sublevel and returns the set of all the non-empty, non-general location

nodes, BuildSubLevel builds the timestamp sublevel and returns the set of all the

non-empty, non-general nodes. Note that only the nodes returned by BuildSubLevel

in Line 10 are added to the noisy prefix tree P.

Algorithm 5.2 describes BuildSubLevel. Line 2 calls BuildTaxonomy that

builds a generalization hierarchy according to a user-input taxonomy tree T, where T

is rooted at a non-general node from the previous prefix tree level. BuildTaxonomy

(presented in Algorithm 5.3) returns the set of non-empty leaf general nodes, C. Lines

3-8 of BuildSubLevel iterate through all the non-general nodes in C to determine if

they are non-empty. We note that if BuildSubLevel is building a location sublevel,

then prefix(n) � tr in Line 5 ignores the general timestamp information in the

non-general location node n because the timestamp at this point is a range interval

that is by default a prefix to any timestamp value that exists within the range.

5.3.3 Constructing the Sanitized Trajectories

In Chapter 5.3.2, we detailed the steps for building a noisy prefix tree P that contains

the differentially-private trajectories, as summarized in Lines 7-12 of Algorithm 5.1.

At this point, trajectories are sanitized and ready for release. Constructing the

sanitized trajectories from P is performed as follows. Starting from the Root node,

we traverse P such that each and every node n is visited exactly once. Upon visiting

node n, where n �= Root, we construct c(n) copies of prefix(n) (see Definition 5.2)

and append them to the output dataset D̂.

Since it is likely for a set of trajectories to terminate at a parent node, a parent

node’s true trajectory count is never less than the sum of its children’s true counts.

92

Algorithm 5.2: BuildSubLevel

Input: Taxonomy tree T
Input: Privacy budgets εg and εng
Input: Thresholds θg, and θng
Output: Set of non-general location or timestamp nodes W
1: W = ∅;
2: C ← BuildTaxonomy(T, εg, θg);
3: for each general node C ∈ C do
4: for each non-general node n in C’s children do
5: tr(n) = {tr ∈ C | prefix(n) � tr};
6: c(n) = |tr(n)|+ Lap(1/εng);
7: if c(n) ≥ θng then
8: W ← n;
9: end if
10: end for
11: end for
12: return W ;

Considering that noise is added to true trajectory counts, the above rule may not

hold for noisy counts. Hence, we need to make sure that c(n) is no less than the sum

of its children’s noisy counts. Let p be a parent node in P. We define a consistent

noisy prefix tree as follows:

Definition 5.5 (Consistent noisy prefix tree). Given a noisy prefix tree P, ∀p in P,

where p �= Root, it holds that c(p) ≥
∑

n∈children(p) c(n).

The objective of EnhanceConsistency in Line 13 of Algorithm 5.1 is to en-

force the above condition on the noisy prefix tree P before releasing the sanitized

trajectories. We introduce a post-processing step that modifies the noisy counts of

the nodes in P such that Definition 5.5 is satisfied. Post-processing noisy counts

has been applied in similar privacy problems whereby consistent estimates are com-

puted to achieve more accurate results [60] [26]. Consequently, the objective of

EnhanceConsistency is to find the consistent estimate for each node in the noisy

prefix tree P, except the Root node.

The consistent estimate, denoted by c̄(n), is described in terms of the noisy

93

Algorithm 5.3: BuildTaxonomy

Input: Taxonomy tree T
Input: Privacy budget εg
Input: Threshold θg
Output: Set of general location or timestamp nodes C
1: j = 1;
2: G = ∅;
3: while j ≤ height of T do
4: G ← set of general nodes in T at level j;
5: for each general node G ∈ G do
6: tr(G) = {tr ∈ parent | prefix(G) � tr};
7: c(G) = |tr(G)|+ Lap(1/εg);
8: if c(G) < θg then
9: Remove G and its descendants from T;
10: end if
11: end for
12: j ++;
13: end while
14: C = G; // Non-empty leaf general nodes
15: return C;

count c(n) for each node n in P. The consistent estimate is computed by traversing P

starting from the first level and going towards the leaves. Let p be the parent node of

n and s be a sibling of n; the idea is to lower each noisy count c(s) ∈ children(p) with

respect to c̄(p) such that the sum of all the children’s noisy counts does not exceed the

parent’s noisy count. The rationale behind decreasing the children’s noisy counts

(as opposed to increasing the parent’s noisy count) stems from the fact that the

sum of the children’s noisy counts results in a numeric value that has |children(p)|

times the Laplacian noise of the parent’s count. Intuitively, suppressing the extra

noise helps in achieving a more accurate noisy version of the raw trajectories. The

consistent estimate c̄(n) of node n is computed as follows:

c̄(n) =

⎧⎪⎨
⎪⎩
c(n), n ∈ level(1)

c(n) +min(0,
c̄(p)−

∑
s∈children(p)c̃(s)

|children(p)|), o.w.

94

Lastly, the differentially-private trajectories are ready to be released. Line 14

of Algorithm 5.1 traverses the consistent noisy prefix tree in a top-down fashion.

Each node n is visited exactly once, and c̄(n) copies of prefix(n) are appended to

the output dataset D̂.

5.3.4 Theoretical Analysis

Performance Improvement. Employing a simple prefix tree structure does achieve

a differentially-private trajectory dataset. Chen et al. [26] have suggested a simi-

lar approach towards publishing sanitized trajectories; we call it SeqPT. In this

approach, no hierarchies are imposed; rather, each node is extended by consider-

ing every possible combination of location and timestamp. In other words, if an

empty node passes threshold θ, then the subtree rooted at that node will consist

solely of empty nodes. On the other hand, our proposed solution (as described in

Algorithm 5.1) filters out empty nodes as early as possible, preventing false trajec-

tories from being constructed. Subsequently, runtime is significantly reduced while

data utility is greatly boosted. We present herein a formal analysis that estimates

the number of empty nodes that our solution averts processing, compared with the

simple prefix tree solution.

Lemma 5.1. Let p(x) = 1
2λ
exp(−x

λ
) be the probability density function of the

Laplace distribution. Given sensitivity Δf = 1 for a count queries-based function

f , and privacy budget portion ε̇, then λ = Δf
ε̇

= 1
ε̇
. Hence, p(x) = ε̇

2
exp(−xε̇).

Given threshold θ, the probability of an empty node having noisy count x ≥ θ is

Prθ = Pr[x ≥ θ] =

∫ ∞

θ

ε̇

2
exp(−xε̇)dx =

1

2
exp(−ε̇θ). (5.2)

Recall from Chapter 5.3.2 that θng = 2
√
2
ε̇

and θg = 4
√
2
ε̇
. From Equation 5.2,

the probabilities of an empty general node and an empty non-general node passing

their respective thresholds are Prθg = exp(−4
√
2)

2
and Prθng = exp(−2

√
2)

2
. Let empty

95

node n be at level e in a given prefix tree. In a simple prefix tree, the estimated

number of empty nodes descending from n is E1 = (|L||T |Prθng)
h−e, where L is the

location universe, T is the timestamp universe, and h is the height of the prefix tree.

In a noisy prefix tree, the estimated number of empty nodes descending from n, E2,

is evaluated as follows. For simplicity, let the location and timestamp taxonomy

trees be of the same height; i.e., hT1 = hT2 = hT. Further, let F denote the

maximum number of general child nodes in any taxonomy tree; thus, F hT is the

number of leaf general nodes. This estimates the number of empty location nodes

in one location sublevel to F hT(PrhT

θg
· |L|

Fh
T
Prθng) = F hTPrhT

θg
· |L|Prθng and the

number of empty timestamp nodes in one timestamp sublevel under one empty

location node to F hT(PrhT

θg
· |T |

Fh
T
Prθng) = F hTPrhT

θg
· |T |Prθng . Consequently, the

estimated number of empty non-general nodes in one level in the noisy prefix tree

is (F hTPrhT

θg
· |L|Prθng) · (F hTPrhT

θg
· |T |Prθng) = F 2hT |L||T |Pr2hT

θg
Pr2θng

. Hence, E2 =

(F 2hT |L||T |Pr2hT

θg
Pr2θng

)h−e. The number of empty nodes a noisy prefix tree averts

processing is estimated by the following equation:

E1

E2

=
(|L||T |Prθng)

h−e

(F 2hT |L||T |Pr2hT

θg
Pr2θng

)h−e

=
1

(F 2hTPr2hT

θg
Prθng)

h−e

=
1

(F 2hT · 1
22hTexp(−8hT

√
2)
· 1
2
exp(−2

√
2))h−e

=
1

(F 2h
T

22hT+1)h−i(exp(−2
√
2(4hT + 1)))h−e

= (
22hT+1

F 2hT

)h−eexp(2
√
2(4hT + 1)(h− e)).

(5.3)

Theorem 5.1. Given location and timestamp taxonomy trees, each having height

hT and fan-out F , a noisy prefix tree (as implemented in Algorithm 5.1) of height h

reduces the number of empty nodes generated under empty node n ∈ level(e) due to

n having adequately large noisy count by (2
2h

T
+1

F 2h
T
)h−eexp(2

√
2(4hT + 1)(h− e)).

96

Privacy Analysis. Algorithm 5.1 first builds a noisy prefix tree by accessing

the raw trajectories, and then invokes EnhanceConsistency to achieve a consistent

noisy prefix tree. Building a noisy prefix tree is performed by iteratively constructing

one level at a time. Each level is dedicated privacy budget portion ε̇ = ε
h
, where

h is the noisy prefix tree height. One prefix tree level consists of two sublevels:

location and timestamp, each is dedicated ε̈ = ε̇
2
. Within a sublevel, the collective

budget portions εng+
∑

εg dedicated for non-general and general nodes add to ε̈; i.e.,

(|U|−2
∑i

x=1 x)ε̈

|U| +
2ε̈

∑i
x=1 x

|U| = ε̈, where i ≤ taxonomy tree height. Thus, the algorithm

consumes a privacy budget that amounts to (2× ε̈)×h = ε. Such a budget allocation

scheme leverages sequential and parallel compositions (Lemmas 2.1 and 2.2). That

is, the total budget consumed along a Root− to− leaf path amounts to ε, whereas

the total budget needed for any group of sibling nodes is equal to the same budget

portion dedicated for a single node within the group.

EnhanceConsistency post-processes the differentially-private data (the noisy

counts in the noisy prefix tree) without accessing the underlying raw trajectories.

Consequently, EnhanceConsistency maintains the same differential privacy guaran-

tees because post-processing differentially-private data has no impact on the privacy

guarantees. We refer the reader to [60] for a proof.

Theorem 5.2. Given ε as a user-input privacy budget, Algorithm 5.1 is ε-differentially

private.

Complexity Analysis. We analyze the runtime of Algorithm 5.1 with respect

to its input parameters by first examining Lines 7-12, which build the noisy prefix

tree, followed by EnhanceConsistency. Building the noisy prefix tree starts by

building a taxonomy tree, requiring distributing trajectories from the parent node to

its children. At any level in the taxonomy tree1 there exists exactly |D| trajectories

in total. Therefore, a single level in the noisy prefix tree requires scanning the input

1Assuming the taxonomy tree is a perfect F-ary tree.

97

dataset O((hT1 + hT2)|D|) = O(hT|D|) times, where hT1 and hT2 are the heights of

the location and timestamp taxonomies, respectively, and hT = max{hT1 , hT2}.

Generating nodes is a costly operation. Generating general nodes does not

depend on the underlying data and is done in linear time with respect to the user-

defined taxonomy. We now estimate the number of non-general nodes in the noisy

prefix tree as follows. At worst, Algorithm 5.1 fails to filter out empty nodes through

general nodes; i.e., all general nodes are constructed according to their taxonomies.

Recall the timestamp sublevel extends the non-general location nodes in the location

sublevel. Intuitively, the number of non-general nodes in the timestamp sublevel is

much greater (no less at best) than that at the location sublevel. Therefore, we

estimate the number of generated nodes at the timestamp sublevel to be |D| + ν,

where ν represents the number of empty nodes from T that pass the noisy count

threshold θng. ν is a random variable that follows a binomial distribution and can

be estimated according to Theorem 5.3 [31].

Theorem 5.3. Let n denote the total number of empty nodes, each having a success

probability Prθ. The number of successes, ν, in a series of independent pass/fail

experiments on each node follows a binomial distribution Bin(n, Prθ), denoted by

ν ∼ Bin(n, Prθ).

Let ν ′
l ∼ Bin(|L| − |D|, P rθ), ν

′′
l ∼ Bin(|L|, P rθ), ν

′
t ∼ Bin(|T | − |D|, P rθ),

and ν ′′
t ∼ Bin(|T |, P rθ). The number of generated nodes at the timestamp sublevel

at level e ≤ h is estimated to be |D|(1 + ν ′
t + Z) + (ν ′

lν
′′
t · (ν ′′

l ν
′′
t)

e−1), where

Z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, e = 1
e−2∑
j=0

((ν ′′
l ν

′′
t)

j[ν ′
lν

′′
t + ν ′

tν
′′
l ν

′′
t]), e > 1.

Therefore, generating non-general nodes in a prefix tree of height h runs inO(|D|(ν ′′
l ν

′′
t)

h),

where ν ′′
l � L and ν ′′

t � T . Subsequently, building the noisy prefix tree runs in

98

O(hhT|D|+ |D|(ν ′′
l ν

′′
t)

h) = O(|D|(hhT + (ν ′′
l ν

′′
t)

h)).

EnhanceConsistency does not require scanning the input dataset; rather,

performs one operation, which is computing the consistent estimate for each node.

This is achieved by scanning the noisy prefix tree once in a top-down fashion whereby

each node is visited twice. Therefore, EnhanceConsistency is performed in linear

time. Lastly, Algorithm 5.1 scans the consistent noisy prefix tree once starting from

Root to release the sanitized trajectories.

In closing, Algorithm 5.1 runs in O(|D|(hhT + (ν ′′
l ν

′′
t)

h)) at worst. However,

this is a theoretical conclusion of the worst-case scenario. In real-life situations,

h is a fairly small integer and the number of generated empty nodes at level e is

much smaller than O(|D|(ν ′′
l ν

′′
t)

e) because general nodes attempt to filter out as

many empty nodes as possible. In the next section, experiments on real-life datasets

successfully sanitize extremely sparse trajectories within seconds.

5.4 Experimental Evaluation

In this section, we thoroughly evaluate our proposed differentially-private trajectory

sanitization method, SafePath, using real-life trajectories. Evaluation encompasses

three criteria: utility of the sanitized data, efficiency of SafePath in terms of runtime,

and scalability for handling large datasets. Two real-life trajectory datasets are used

for conducting experiments: Bus and Metro, each containing the paths of passengers

traveling through the Montreal STM bus and metro transit networks, respectively.

Table 5.2 contains summary statistics of each dataset, where |D| is the number of

records in D where each record represents a trajectory of a unique passenger, |L| is

the size of the location universe, |T | is the size of the time universe, max|tr| is the

maximum trajectory length, and avg|tr| is the average trajectory length.

SafePath is implemented in C++. All the experiments herein are performed

on a 64-bit Windows 7 running on an Intel Core 2 Due 2.13GHz PC with 8GB RAM.

99

Table 5.2: Summary statistics of the STM datasets
Dataset |D| |L| |T | max|tr| avg|tr|

Bus 773,296 893 168 121 4.69
Metro 847,668 68 168 90 3.22

5.4.1 Utility and Efficiency

We examine the impact of the different parameters of SafePath on utility and run-

time. Similar to the evaluation methodology of [26] and [130], we measure the utility

of a sanitized dataset by issuing a set of randomly generated count queries. Specifi-

cally, we issue 40,000 count queries that randomly draw values from the location and

timestamp universes following an even distribution. For every query issued over the

sanitized dataset, we compute its relative error, then we average all the errors and

report the latter value in the graphs herein. The length of a count query, denoted by

|q|, refers to the number of location and timestamp pairs in the query. For example,

q = loc1.t1 → loc2.t2 has length = 2. Finally, we set the sanity bound to 0.1% of

the underlying dataset.

Taxonomy Trees. We examine the impact of location and timestamp tax-

onomy trees on utility and runtime. A taxonomy tree is defined by two parameters:

taxonomy tree height, and number of child nodes (or simply children). The former

parameter defines the number of levels in the tree, whereas the latter parameter

refers to the maximum number of child nodes that belong to the same parent node.

Both parameters can either be public knowledge (e.g., a metro map) or user-defined.

Without loss of generality, one taxonomy tree setting will be applied to both location

and timestamp hierarchies.

To demonstrate the impact of taxonomy trees on relative error, Figure 5.3

reports the average relative errors on Bus and Metro. We set the query length |q| =

h = 2 and choose the taxonomy trees’ number of child nodes to be 2 and 6, denoted in

the graphs by Bus-2/Metro-2 and Bus-6/Metro-6, respectively. Figure 5.3 suggests

that the relative error decreases as taxonomy tree height increases and the number of

100

(a) Bus (b) Metro

Figure 5.3: Average relative error vs. taxonomy tree height

child nodes decreases. This is because fewer empty non-general nodes are generated

throughout the process of building the prefix tree, where empty nodes get filtered

out by the taxonomy trees. For taxonomy tree height ≥ 6 the relative error does not

exhibit significant change. Moreover, we observe that on both datasets no significant

drop in error results from decreasing the number of child nodes.

Figure 5.4 shows how runtime varies under different values of taxonomy tree

height and the number of child nodes. Figure 5.4(a) and Figure 5.4(b) study Bus

and Metro, respectively, where the noisy prefix tree height h = 2, the privacy budget

ε = 1, and the runtime axis is set on a logarithmic scale. Figure 5.4 suggests that

runtime increases as the number of children increases for all values of taxonomy tree

height. This is because larger values of children allow for more empty general nodes

to be mistakenly considered non-empty due to the added noise, resulting in a much

larger number of empty non-general nodes that require extra processing. Moreover,

we observe that runtime decreases non-monotonically as the taxonomy tree height

increases. More specifically, runtime decreases for a smaller number of children, less

than 4, after which it starts increasing up to a significant value at taxonomy tree

height = 9 and number of children = 6. The increase in runtime for a larger number

101

(a) Bus

(b) Metro

Figure 5.4: Runtime vs. taxonomy tree

of children can be noticed at taxonomy tree height ≥ 6. These observations are

shared by both Bus and Metro.

Figures 5.3 and 5.4 suggest that a certain range of taxonomy trees allows

for a major improvement in terms of runtime without compromising utility. Unless

otherwise mentioned, all our subsequent experiments will have taxonomy tree height

= 6 and children = 2.

Noisy Prefix Tree Height and Privacy Budget. Figure 5.5 examines the

effect of varying the noisy prefix tree height, h, and the privacy budget, ε, on the

relative error on both Bus andMetro. The parameters are set as follows: 6 ≤ h ≤ 26,

|q| = h/3, and ε = 0.5 and 1.25 denoted in the graph by Bus-0.5/Metro-0.5 and

102

(a) Bus (b) Metro

Figure 5.5: Average relative error vs. noisy prefix tree height

Bus-1.25/Metro-1.25, respectively. Figure 5.5 reports a general decrease in the

relative error when h increases. Increasing h allows us to retrieve and sanitize more

data from the raw trajectories, however, up until a certain threshold, after which the

added noise at each level of the noisy prefix tree becomes more dominant, causing

the relative error to increase. This is more evident in sparse datasets with low

privacy budget (Bus-0.5 in Figure 5.5 (a)) because more empty nodes are generated

upon building the noisy prefix tree to satisfy differential privacy. Lastly, increasing ε

successfully manages to reduce the relative error for all values of h. It is interesting

to see that our proposed method is capable of reducing the relative error below 1%

on both datasets, suggesting that SafePath maintains high utility even for extremely

sparse data.

5.4.2 Comparisons

In [26] Chen et al. proposed a prefix tree-based method for sanitizing sequential

locations under differential privacy. Further, they suggested that their method can

be extended to trajectories - series of locations coupled with timestamps. To do so,

we implemented their suggested extension that exhaustively considers every possible

103

combination of location and timestamp under every node throughout the process of

building the prefix tree. We call their extension SeqPT. Moreover, we implemented

LK-anonymity [49], a syntactic-based privacy approach that makes sure that every

L-sized sequence of location and timestamp pairs from the input dataset is shared

by at least K trajectories via means of suppression [117] [30].

We carry out performance evaluation with respect to average relative error

and runtime. SeqPT takes nearly 11 minutes to sanitize Metro when setting the

prefix tree height h = 2, and fails to complete a single run on Metro when h ≥ 3

and on Bus when h ≥ 2. This is because the number of generated nodes increases

exponentially as h increases. For this reason, we reduce the dimensionality of Bus to

a maximum of 20 locations and 24 timestamps. A pair that does not fall within the

shrunken universe will be excluded from the dataset. This results in a dataset with

200,000 records and a maximum trajectory length of 8. For this set of experiments

we generate 10,000 non-empty random queries of size 2, set the privacy budget ε = 1,

and vary the prefix tree height 2 ≤ h ≤ 5. For LK-anonymity, we choose L = 2

(because the average trajectory length is 1.5) and K = 5.

Figure 5.6 studies the performance of SafePath, SeqPT, and LK-anonymity in

terms of utility in Figure 5.6 (a) and runtime in Figure 5.6 (b), where the runtime

axis is set on a logarithmic scale. We notice that the utility achieved by SafePath

is comparable to that achieved by SeqPT and LK-anonymity for all values of h.

On the other hand, SafePath substantially lowers runtime from 2,400 seconds to 1

second at h = 5.

5.4.3 Scalability

We study the scalability of our approach by varying the size of the input dataset.

In this set of experiments, a dataset size is determined by both the universe size

and the number of records. We limit the timestamp universe T of Bus and Metro

to a threshold ≤ |T |, and only consider the portion of the trajectories that satisfy

104

(a) Average relative error vs. h (b) Runtime vs. h

Figure 5.6: SafePath vs. SeqPT vs. LK-anonymity

Table 5.3: Summary statistics of sub-datasets
|T | |D| max|tr| avg|tr|

Dataset Bus Metro Bus Metro Bus Metro Bus Metro
1 35 35 304,238 263,303 21 16 1.96 1.58
2 70 70 508,283 485,049 44 35 3.12 2.28
3 105 105 618,238 606,917 70 51 3.98 2.81
4 140 140 722,786 766,419 106 73 4.46 3.11
5 168 168 773,296 847,668 121 90 4.69 3.22

the timestamp limit. By varying the threshold, we achieve different datasets with

smaller timestamp universes and number of records than D. We consider limiting

only the timestamp universe because, unlike the location universe, the former defines

the length of trajectories in the dataset. Table 5.3 contains summary statistics of 5

datasets generated from Bus and 5 datasets generated fromMetro. All the scalability

experiments are reported in Figure 5.7, where h = 12 and ε = 1.

Figure 5.7 measures how runtime varies as we change the timestamp universe

size |T | and number of records |D| of the input raw dataset. Each value on the x-axis

in Figures 5.7 (a) and (b) represents a sub-dataset extracted from Bus and Metro,

respectively, as illustrated in Table 5.3. Runtime increases reasonably with the

increase of the input dataset size. We observe that sanitization time increases faster

105

(a) Bus (b) Metro

Figure 5.7: Runtime vs. |T | and |D|

on the Bus sub-datasets because Bus has a larger location universe size compared

with Metro; hence, more processing of empty nodes is required. In total, our method

takes 27 seconds to process the full Bus dataset and 15 seconds to process the full

Metro dataset.

Overall. Our proposed method achieves high data utility for count queries

and is robust to handle large-scale and extremely sparse trajectory data without

compromising runtime. Such robustness stems from the ability to fine-tune taxon-

omy trees according to the desired utility. In order to achieve a reasonable balance

between utility and runtime, experiments on taxonomy trees suggest minimizing the

number of children and choosing a moderate taxonomy tree height.

5.5 Summary

We study the problem of publishing sanitized trajectories under the rigorous model

of differential privacy. Trajectories are spatio-temporal data characterized by being

high-dimensional and sparse due to the existence of a time dimension; hence, extra

care is required in the sanitization process in order to handle such data efficiently.

106

We propose SafePath, an efficient and scalable sanitization method for publishing

differentially-private trajectories. SafePath structures trajectories as a noisy prefix

tree, then performs a post-processing step that enhances the utility of the sanitized

data. The authors of [26] proposed sanitizing sequential data and suggested that

their method can be extended to trajectories. We implement their method and

provide theoretical and experimental analysis on real-life trajectory datasets. Eval-

uation suggests that applying the above extension to trajectories fails to provide a

scalable solution, whereas our proposed method demonstrates significant improve-

ment in terms of efficiency and scalability with comparable data utility.

107

Chapter 6

Anonymizing Relational Data

6.1 Introduction

Data gathering has been witnessing an exponential growth thanks to modern ad-

vancement in information technology. The possession of collected data gives power

to the data holder by enhancing data analysis and aiding in decision making. Exam-

ples include government agencies collecting census data for demographic analysis to

provide better social services; transportation authorities collecting trajectories for

traffic analysis to enhance the city’s transportation network; hospitals collecting pa-

tients’ symptoms for better future diagnosis; and online service providers collecting

online surfing habits for building and enhancing recommendation systems.

As demonstrated in Chapter 1, there are cases where the data holder may not

always have the expertise to perform the required data analysis [57], or the collected

data must be published as mandated by the law [23]. Consequently, data publishing

has become a common practice for the mutual benefit of the data holder and the

data recipient. It is of no less importance that the privacy of individuals whose data

is being published should be safe-guarded. To bridge the gap between these two

seemingly conflicting requirements, several privacy models have been proposed in

the literature.

108

In Chapter 2, we discussed some widely-used syntactic privacy models, whereby

the output dataset has to comply with a syntactic privacy requirement. A prime

example is k-anonymity and its various extensions [115] [110] [84] [89] by which

every record in the output dataset has to be hidden within a group of k records.

Syntactic privacy, though effective, only reduces the possibility of privacy attacks by

making certain assumptions about an attacker’s background knowledge about the

individuals in the published data. Moreover, syntactic privacy is inherently prone

to certain attacks, such as minimality attack [126], composition attack [48], and

deFinetti attack [72].

Differential privacy [35] [36], presented in Chapter 2.2.5, is a probabilistic

privacy model that provides provable privacy guarantees and works independently

of any attacker’s background knowledge. Intuitively, differential privacy ensures

that the output of any analysis performed on the published data does not overly

depend on any single participant. Individuals’ privacy is protected in the sense

that an individual’s participation (or withdrawal) from the collected data would not

significantly change the outcome of the analysis. This indirectly removes the privacy

concerns of both the participants and the data holders. Therefore, in this chapter

we adopt differential privacy in the non-interactive setting as our privacy model.

Figure 6.1 illustrates an overview of a privacy-preserving data publishing sce-

nario under the non-interactive setting. In general, the data holder collects data

structured in a relational form from a group of individual and wants to release the

collected data to a third-party for data analysis without compromising the indi-

viduals’ privacy. The research problem studied in this chapter is summarized by

this question: how to convert the raw data to a differentially-private version via

multidimensional generalization while maintaining utility in the published data?

109

Figure 6.1: Data publishing under the non-interactive setting

6.1.1 Motivation

Methods based on the non-interactive setting mainly rely on publishing a noisy

version of the contingency table of the raw dataset [13] [33] [107] [130] [31]. In

other words, the true count of every possible combination of the domain values on

every attribute is first generated, and then a noise is added to the count to satisfy

differential privacy. Finally, all noisy counts are published. Although the published

data is differentially-private, we reason that this approach yields extremely distorted

data. If the collected data is high-dimensional, then the true counts diminish to very

small numbers, making the added noise very large in comparison. In this Chapter,

we do not adopt this approach as it yields highly distorted data that is far from

being useful for any further analysis. We further validate this observation when we

experimentally evaluate our method in Chapter 6.4.

In Chapter 2.3.2, we introduced generalization as a commonly-used anonymiza-

tion technique in the literature. We transform an input dataset by generalizing raw

values to less specific yet semantically consistent values, as dictated by a pre-defined

generalization hierarchy. The more the raw data is generalized, the higher distortion

the original data has experienced. The literature has defined two types of gener-

alization approaches: single-dimensional and multidimensional. In this Chapter,

we enforce multidimensional generalization, backed up by the study in [76] that

suggests multidimensional generalization significantly improves the utility of the

anonymous data over the single-dimensional approach. We note that the previous

110

Table 6.1: Raw data table
Continent YoB Class

North America 1947 Y
Australia 1953 Y

North America 1955 N
Europe 1957 N
Asia 1959 N

North America 1968 Y

work in [76] achieves multidimensional generalization by applying the k-anonymity

privacy model, whereas we adopt differential privacy as our privacy model. We

reason that it is possible to achieve high-quality generalized data using differential

privacy. The following is an illustrating example.

Example 6.1.1. The Population Data BC (PopData)1 is a not-for-profit organi-

zation that collects health-related data from a variety of sources with the hope of

harnessing such data for the advancement of human well-being. PopData does not

possess the means to conduct research on the collected data; therefore, it offers data

sharing among researchers upon request. Even though patient-specific identifiers,

such as Name and Address, are removed from the published data, data sharing is

a lengthy process heavily based on trusting the requester (i.e., data recipient). In

an attempt to increase the benefits of the collected data, we propose an alternative

data-sharing solution that is not based on trust, thus allowing for a wider range of

data recipients. Our proposed solution produces high-quality anonymous data and

guarantees patients’ privacy according to the differential privacy model.

Let Table 6.1 represent a group of patients’ raw data. The table has one

categorical attribute, Continent, and one numerical attribute, Y oB (Year of Birth).

Moreover, let the last attribute be a Class attribute with two domain values Y

and N that indicate whether a patient has a chronic disease. Figure 6.2 shows two

taxonomy trees that represent the domain hierarchy of attribute Continent and

1https://www.popdata.bc.ca/

111

Figure 6.2: Taxonomy trees

(a) Raw data (b) Single-dimensional (c) Multidimensional

Figure 6.3: Spatial representations of Table 6.1 and its diff-priv generalizations

Y oB, respectively. Figures 6.3 (a)-(c) depict a spatial representation of Table 6.1

and its two generalized versions, respectively. Figure 6.3 (c) is the result of applying

our anonymization method.

Every rectangle in Figures 6.3 (b) and (c) represents a generalization region in

the domain space, and every solid circle represents a record from Table 6.1. Without

loss of generality, let the added noise to every region due to differential privacy be

equal to 1 or 0. The added noise represents a synthetic record, and is indicated

by an empty circle. Under single-dimensional generalization, all the raw values

on the Continent attribute have been generalized to the topmost general value

Any Continent. On the other hand, the multidimensional approach generalizes

some of the raw values to Any Continent while other raw values have been replaced

with more specific hierarchical values, namely, New World and Old World. Thus,

the multidimensional approach inflicts less data distortion by producing less general

data than the single-dimensional approach.

112

6.1.2 Contributions

In this Chapter, we investigate a differentially-private multidimensional solution for

relational data release. To our knowledge, this is the first work to propose a concrete

differentially-private algorithm that employs multidimensional generalization for re-

lational data release in the non-interactive setting [8]. Previous related endeavors

have been proposed for publishing high-quality anonymous data [96] [76] [106] [141].

Single-dimensional generalization has been used in [96] to publish differentially-

private data. However, we reason that a multidimensional approach greatly in-

creases data utility, as suggested by [76]. Even though the proposed work in [76] is a

multidimensional partitioning approach, the guiding privacy model is k-anonymity,

which is susceptible to syntactic-based privacy attacks [126] [48] [72]. We argue

that stronger privacy guarantees, i.e., through differential privacy, can be achieved

without compromising data utility. The work in [106] proposed a partition-based

general framework capable of publishing differentially-private data; however, it does

not scale for datasets with a large number of dimensions [108]. Other techniques [141]

utilize Bayesian networks to release differentially-private data that approximate the

distribution of the high-dimensional input data. In this Chapter, we evaluate the

performance of our proposed algorithm in terms of data utility, efficiency, and scal-

ability. We experimentally compare between our proposed method and the afore-

mentioned techniques; results range from our method producing comparable results

at worst to performing by an order of magnitude better at best. We summarize our

contributions as follows:

1. We utilize a top-down specialization approach that provides efficient multidi-

mensional partitioning of regions in the domain space. Given a region to be

further partitioned, this approach provides direct access to the records in that

region without having to scan the entire data. This property adds a scalable

aspect to our method when anonymizing large datasets.

113

2. We argue that data records are unlikely to be evenly distributed across the

domain space. Hence, our proposed method gives more attention to dense

regions in order to yield less abstract data for more accurate analysis of the

output differentially-private data.

3. Our proposed method performs multidimensional specialization in a differentia-

lly-private way on both categorical and numerical attributes. Depending on

the target workload, a carefully-selected categorical value is split in accordance

with a pre-defined taxonomy tree, whereas a proper numerical split point is

dynamically determined for every multidimensional region throughout run-

time. This releases the data holder from the burden of performing extensive

preprocessing.

4. We carry out extensive experiments and compare with closely-related methods

from the literature. Results suggest that our proposed multidimensional algo-

rithm is capable of significantly improving data utility without compromising

the rigorous requirement of differential privacy.

6.2 Problem Definition

6.2.1 Generalization

Generalization is the act of replacing a data value with a less semantically specific

version according to a pre-defined generalization hierarchy. Let D be an input

dataset defined over a set of attributes A = {A1, . . . , Ad}, where d is the number

of attributes. We denote the domain of attribute Ai by Ω(Ai). Single-dimensional

generalization is defined by a function φi : a → g for each attribute Ai ∈ A, where

a ∈ Ω(Ai) and g is a value in the pre-defined generalization hierarchy. As a result,

if a value a is chosen for generalization, all instances of a in the dataset D will be

generalized as well.

114

To preserve more information, we employ multidimensional generalization. In

this setting, a vector of values is considered for generalization instead of considering

a single value at a time. The idea is to divide the d-dimensional domain space

of D into non-overlapping generalization regions. Every region Ri contains a set

of generalized records from D, where every raw record is uniquely mapped to its

corresponding region. By that intuition, a region can be considered as an equivalence

group (or a QID group as introduced in Chapter 2) because every region contains a

disjoint subset of generalized records from D.

Definition 6.1 (Multidimensional generalization). Given a raw dataset D defined

over a set of attributes A = {A1, . . . , Ad}, and a set of taxonomy trees {T1, . . . ,Td},

multidimensional generalization is defined by a single global function φ : Ω(A1) ×

. . .×Ω(Ad) → {R1, R2, . . . , Rm} that maps an entire record inD to its corresponding

generalization region Ri, where the d-dimensional domain space of D is divided into

disjoint generalization regions R1, R2, . . . , Rm.

According to the above definition, generalizing a raw value a in a given record

entails considering the entire vector of raw values in that record. In other words,

given a group of records that share a raw value a on attribute Ai, the combination of

raw values on every other attribute Aj, where i �= j, in a given record will determine

the value g to which a will be generalized.

Example 6.2.1. Consider Table 6.1 and its anonymous version under multidimen-

sional generalization, as spatially represented in Figure 6.3 (c). Under multidi-

mensional generalization, North America in records {North America, 1947} and

{North America, 1968} has been generalized to Any Continent, whereas North A-

merica in record {North America, 1955} has been generalized to a less general

value, i.e., New World.

Given any region Ri, each dimension represents a generalized value g of the un-

derlying subdomain. We propose an algorithm capable of handling both categorical

115

and numerical attributes. For categorical attributes, g is drawn from the general-

ization hierarchy as specified by the taxonomy trees. For numerical attributes, on

the other hand, the algorithm will adaptively select a binary split point by which a

division on the continuous domain results in two disjoint intervals. The process of

generating generalization regions is called partitioning. A good partitioning strat-

egy is essential for improving the utility of the anonymous data. More details are

discussed in Chapter 6.3.

We mentioned in Chapter 2.2.5 that all operations under ε-differential privacy

must be insensitive to the underlying data. In other words, given two neighbor-

ing datasets D and D′, where |D�D′| ≤ 1, a differentially-private algorithm must

bound the probability of obtaining the same output dataset in accordance with

Definition 2.1. At the same time, the algorithm must find a proper generalization

function φ : Ω(A1)× . . .×Ω(Ad) → Dd depending on the expected workload of the

published data. Using a unified φ for all data values still produces ε-differentially-

privacy outcome, however, the output data will not be tailored to the expected

analysis2. As a result, the data utility will drop significantly, rendering any analysis

on the output data useless. In Chapter 6.3, we present our algorithm for perform-

ing effective partitioning to maximize data utility without violating the rigorous

requirement of ε-differential privacy.

6.2.2 Problem Statement

We informally describe our problem as follows: a data holder is in possession of a

dataset D that contains a multiset of records, where each record belongs to a unique

individual. All identifiers, such as Name and SSN, have been removed. D is defined

over a set of d attributes A = {A1, . . . , Ad} that can also be found, partially or

2Unless performed randomly, having a fixed generalization function φ is a non-trivial task. The
domain space of φ is as large as the cardinality of the input dataset. Moreover, the codomain of φ is
a set of d-dimensional regions, each bounded by either an interval or a value from the generalization
hierarchy. Our proposed algorithm effectively partitions the regions to maintain data utility.

116

entirely, in a non-sanitized, publicly available dataset containing a group of records

that belong to the same individuals whose records are in D. In addition, D contains

a Class attribute Acls that is used for classification analysis. We assume that Ai ∈ A

is either categorical or numerical and Acls is categorical. Finally, we assume that

for each categorical attribute Ai, a taxonomy tree Ti is provided that defines the

hierarchy of values in Ω(Ai). We do not require a taxonomy tree for numerical

attributes as it requires an extensive preprocessing of D to determine appropriate

splitting values. Rather, our proposed algorithm performs this task adaptively upon

runtime.

A data holder wishes to publish D̂, an ε-differentially-private version of D,

for either general data analysis or classification analysis. We present the following

definition for the problem studied in this chapter.

Definition 6.2 (ε-Differentially-private multidimensional generalization). Given a

raw dataset D, a set of taxonomy trees, and a privacy budget ε, we wish to produce

an ε-differentially-private version of D, D̂, by means of multidimensional general-

ization in order to improve the utility of D̂.

We argue that finding an optimal solution is not possible mainly for the follow-

ing reason. The added Laplacian noise, which draws from the set of real numbers,

results in an infinite number of potential solutions, making the resulting output un-

verifiable [100]. Thus, in the next section we propose a heuristic based on a greedy

recursive splitting of domain space.

6.3 Anonymization Algorithm

We present DiffMulti, a diff erentially-private algorithm that employsmultidimensio-

nal generalization for relational data release. Our proposed algorithm is comprised of

two phases, as illustrated in Figure 6.1. We first provide an overview, then proceed

to discuss the major operations in each phase. Particularly, Chapters 6.3.2 and

117

6.3.3 detail Phase 1, and Chapter 6.3.4 details Phase 2. Our algorithm is outlined

in Chapter 6.3.5, followed by a discussion.

6.3.1 Overview

We propose an anonymization algorithm that consists of two phases. In Phase

1, all the records of the input dataset D are generalized over the set of attributes

A = {A1, . . . , Ad} in a differentially-private manner. When a group of records is gen-

eralized to the same set of values, they form a unique equivalence group. Then, Phase

1 recursively specializes every equivalence group. In Phase 2, our algorithm pub-

lishes noisy record counts pertaining to the final equivalence groups, where records

are least generalized. A straightforward way to implement this method is by scan-

ning the entire raw records to determine a split attribute, then scanning the entire

records again to specialize and split them into equivalence groups. We note that

in order to specialize the records of an equivalence group, it is sufficient to scan

those records apart from the rest of the dataset records. Performing specialization

by applying the straightforward solution gives rise to the scalability issue, wherein

scanning the entire data records becomes exhaustive for very large datasets. We uti-

lize an efficient tree data structure that provides data access on the granular level,

as illustrated in Figure 6.4. A node in this tree is referred to as a partition. For

every value in the Class attribute Acls, a partition Pi maintains a generalized record

and a pertinent Count that refers to the number of raw records generalized to the

same attribute values and that share the same Class value. Record scanning is,

thus, confined to the size of a single partition. The size of partition Pi is determined

by the number of records in the partition, i.e., |Pi| =
∑|Ω(Acls)|

x=1 Countx.

DiffMulti, detailed in Algorithm 6.1, performs a sequence of specializations on

the data records, as follows. The algorithm starts by creating a root partition, Pi,

that contains all raw records generalized to the topmost values in the domain hier-

archy on every attribute in A. At this point, publishing a Laplacian-noisy version of

118

Figure 6.4: Raw data records structured as tree of partitions

|Pi| guarantees ε-differential privacy; however, the data records are at a high level of

abstraction, and analysis on such general data is far from accurate. We reduce data

generality by specializing Pi. The maximum number of specializations is a user-

input parameter to our algorithm, h. When a specialization takes place, denoted by

g → child(g), a general value g gets replaced by its less general child values child(g)

from the domain hierarchy. In our tree data structure, every specialization creates

new disjoint child partitions, each holding a set of records that generalize to the

same values. A child partition Pcj ∈ {Pc1 , . . . , Pcv} represents a distinct region R in

the domain space of D. Unlike single-dimensional partitioning, which performs spe-

cializations globally among all data records, our method employs multidimensional

partitioning by which only a certain set of records are affected by g → child(g). In

other words, a single-dimensional partitioning strategy splits across all regions in

the domain space of D, while our method performs a split g → child(g) only within

one region. This step is advantageous for data utility because at the end of Phase 1

less generalization is imposed on the raw records.

Example 6.3.1. We continue from Example 6.1.1. The root partition in Figure 6.4

contains all the data records in Table 6.1 generalized to the topmost values, i.e.,

Any Continent and [1930− 1999), in addition to the true counts of records having

the same value on the Class attribute. For simplicity, let us assume that [1930−1999)

119

is chosen for specialization. Consequently, the root partition is specialized on the

Y oB attribute, i.e., [1930−1999) → {[1930−1960), [1960−1999)}. A child partition

is created for every child value of [1930−1999), and DiffMulti iteratively specializes

every new partition in the tree until a leaf partition is reached (Definition 6.3). Leaf

partitions are colored in grey for ease of presentation.

6.3.2 Choosing a Candidate

As mentioned in Chapter 6.3.1, a specialization g → child(g) replaces g with its child

values from the domain hierarchy associated with an attribute A. Our algorithm

greedily chooses a value g from a set of candidate values in a given partition Pi,

where each value belongs to a distinct attribute. The set of candidates includes only

the values in the generalized record that represents the partition. Hence, a single

specialization requires choosing a value from a maximum of d candidates, where d

is the number of attributes in the raw dataset D. Selecting a value for specializing

a partition is based on a real-valued score computed by a greedy utility function,

which varies depending on the target workload. For example, the root partition

in Figure 6.4 contains the candidate set {Any Continent, [1930 − 1999)}, where

[1930− 1999) has been chosen for specialization.

Depending on the purpose of the data release, the chosen candidate should

have either the highest or the lowest score. Scores give the sense of how much utility

(or loss) the data has maintained (or suffered) due to specializing a candidate. For

example if the released data is intended for classification analysis, then Max would

be the utility function, and the “best” candidate for specialization is the one with

the highest score.

Given a partition for specialization, DiffMulti computes the scores of the can-

didates in the partition. Then, DiffMulti makes use of the exponential mechanism,

presented in Theorem 2.2, to select a candidate. The exponential mechanism expo-

nentially favors higher scores while maintaining privacy. Scores are inverted for the

120

exponential mechanism in the cases where lower scores are more favorable. Herein,

we present three utility functions; the discernibility metric and the Normalized Cer-

tainty Penalty are two general-purpose metrics for when the target workload of the

released data is unknown, and the third utility metric is Max for a specific data

analysis task, namely, classification analysis.

The first utility function is the discernibility metric (DM), which is a general-

purpose quality metric that measures the amount of data loss the raw dataset has

suffered due to anonymization [15]. Every record r in the anonymous dataset is

assigned a penalty value equal to the size of the group of records that are indistin-

guishable from r. More specific to our method, a generalized record in a partition Pi

is given a numeric penalty equal to |Pi|. Given a candidate g, DM(D, g) is computed

as follows:

DM(D, g) =
∑

Pc∈child(Pg)

(|Pc|2), (6.1)

where Pg is g’s partition, and child(Pg) is the set of Pg’s child partitions. Lower

values of DM(D, g) imply that specializing on g inflicts less anonymization distortion

compared to other candidates. The discernibility penalty of the entire output dataset

D̂ can be computed as follows:

DM(D̂) =
∑

∀PiinD̂

(|Pi|2). (6.2)

The sensitivity ΔDM(D, g) = 2|D| + 1, where |D| denotes the number of records in

D. For simplicity, let us consider finding ΔDM = maxD,D′ ||DM(D)− DM(D′)||1, where

D and D′ are two datasets differing by 1 record. Assume that the output dataset

contains one partition. The square operation has a greater impact on a dataset D′

s.t. |D′| = |D| + 1 (as opposed to |D| − 1). Thus, ΔDM = |D′|2 − |D|2 = 2|D| + 1.

The same reasoning can be applied to find ΔDM(D, g).

121

The second utility function is the Normalized Certainty Penalty (NCP), de-

scribed in [135], which measures information loss due to generalization. Thus, lower

values imply better data utility. Given a generalization hierarchy represented as a

taxonomy tree T, let e denote a node in the taxonomy tree and let |T| denote the

number of leaf nodes in T, where a leaf node represents a raw value. If a raw value a

is generalized to node ea in the taxonomy tree, then the NCP value of a is computed

as follows:

NCP(a) =

⎧⎨
⎩

0, ea is leaf

|ea|/|T|, otherwise,
(6.3)

where |ea| is the number of leaf nodes of the subtree of the taxonomy tree rooted

at ea. For a numerical attribute Anum, |ea| would be the range of the generalization

interval and |T| would be the domain range of Anum. Hence, 0 ≤ NCP(i) ≤ 1. Given

a candidate g, NCP(D, g) is computed as follows:

NCP(D, g) =
∑

c∈child(g)

(suppc · NCP(D, c)), (6.4)

where suppc is the number of records that include a raw value generalized to c

in the taxonomy tree. To find the sensitivity of NCP(D, g) in Equation 6.4, let

NCP(D, c) = 1. suppc can change at most by 1. Therefore, ΔNCP(D, g) = 1. Lastly,

the NCP of a generalized dataset D̂ can be measured as follows:

NCP(D̂) =

∑
∀i∈D̂(suppi · NCP(i))∑

∀i∈D̂(suppi)
. (6.5)

Finally, our third utility function is Max, and it is used to publish an anonymous

dataset for classification analysis. Given a candidate g, Max(D, g) computes the score

of g by summing the highest class frequencies of g’s child values. In other words, if

g’s partition were to be specialized, the score of g would be equal to the result of

adding the largest count in every child partition. Max(D, g) helps to build a better

classifier by going for the favor of choosing partitions with purest class frequencies.

122

Intuitively, higher scores are more desirable.

Max(D, g) =
∑

c∈child(g)

(max
cls

(|Dcls
c |)). (6.6)

The absence or addition of 1 record in D would change Max(D, g) by at most 1.

Therefore, the sensitivity of Max(D, g) is 1.

Given a utility function u and a set of candidates Candi from partition Pi,

our algorithm utilizes the exponential mechanism to choose a candidate gi ∈ Candi

with the following probability:

exp(ε′
2Δu

u(D, gi))∑
g∈Candi

exp(ε′
2Δu

u(D, g))
, (6.7)

where u(D, gi) is a score computed from any of the aforementioned utility functions,

and Δu is the sensitivity of the utility function u. This step is outlined in Line 11

of Algorithm 6.1.

Theorem 6.1. Choosing a candidate for specialization in accordance with Equa-

tion 6.7 satisfies ε′-differential privacy.

In Chapter 6.2.2, we assumed that the input dataset D contains a categorical

Class attribute, Acls. In case Acls is numerical, we need to make two changes.

First, we replace the utility function Max, which is designed for a categorical Class

attribute, with a score function that targets a numerical Class attribute. Second,

in the evaluation process, we replace the classification model (e.g., C4.5) with a

regression tree.

Allocating the Number of Specializations. One of the input parameters

of Algorithm 6.1 is a positive integer that represents the maximum number of spe-

cializations, h ∈ N. Specializing a single partition, i.e., distributing the records of

the specialized partition among its newly created child partitions, decreases h by

1. The algorithm starts with one partition that includes the entire data records

123

generalized to the topmost level, followed by a series of specializations on each of

the child partitions. This process gives rise to the following question: what is the

maximum number of specializations that can be performed on each child partition?

Differently put, how can the unused portion of h be distributed among the child

partitions? For ease of presentation, let Pi.h
′ ∈ N refer to the maximum number of

specializations that can be performed starting at partition Pi, where 0 ≤ h′ < h.

A straightforward solution would be to evenly distribute the remaining of h among

the child partitions, as demonstrated by the following example.

Example 6.3.2. Let h = 21. Suppose partition P1 is specialized and two child

partitions, P2 and P3, are created. Initially, Pi.h
′ = h = 21. P1 → {P2, P3}

consumes 1 specialization from h. As a result, P2.h
′ = P3.h

′ = (21 − 1)/2 = 10.

Therefore, every child partition gets to be iteratively specialized 10 times at most.

The above method is simple and does not violate differential privacy because

the sensitivity of evenly distributing h′ − 1 among child partitions is 0. Having said

that, recall that every partition represents a region in the multidimensional space

of the input dataset D. It is unlikely that the data points (raw records) are evenly

distributed throughout the domain space. Indeed, some regions are denser than

others.

Example 6.3.3. In Example 6.3.2, we showed that if the remainder of h was evenly

distributed among the child partitions, then P2.h
′ = P3.h

′ = 10. Assume that

|P1| = 10, |P2| = 8, and |P3| = 2, where |Pi| is the number of records in Pi. This

means that a set of 2 records and a set of 8 records will be specialized equally.

Even distribution of the number of specializations does not take into consid-

eration dense regions in the domain space. Shifting specializations towards dense

regions has a positive impact on data utility because more records get specialized,

124

hence producing less abstract data. We make a contribution in this work by im-

posing a “fair” distribution of the number of specializations rather than an even

one, which causes more data distortion. Let Pi → {Pc1 , Pc2 , . . . , Pcv}, the number

of specializations assigned to a child partition Pci is proportional to its size. More

specifically,

Pci .h
′ =

⎧⎨
⎩

0, |Pci | = 0

� |Pci |
|Pi| · (Pi.h

′ − 1)�, otherwise,
(6.8)

where Pci .h
′ ∈ N. Applying the new distribution mechanism to Example 6.3.2, we

get P2.h
′ = (8/10) · (21− 1) = 16 and P3.h

′ = (2/10) · (21− 1) = 4.

Equation 6.8 does not respect the indeterministic nature of differential pri-

vacy. This is because, given a partition Px, Equation 6.8 calculates the exact record

count in that partition, |Px|, which may change for a neighboring input dataset

D′. Therefore, we use the Laplace mechanism (Theorem 2.1) to return noisy record

counts, instead. Given 1 as the sensitivity of a count query, a privacy budget ε′, and

a true record count |Px|, a differentially-private version of Equation 6.8 calculates

|Px|+ Lap(1/ε′). This step is outlined in Line 13 of Algorithm 6.1.

Theorem 6.2. Fair distribution of the number of specializations satisfies ε′-differential

privacy if Equation 6.8 adds Lap(1/ε′) to true record counts.

If the calculated value of Pci .h
′ contains a fraction, then the value is rounded

down to the nearest non-negative integer. If the summation of all fractions among

the child partitions is ≥ 1, then this remainder can be randomly distributed among

the child partitions to avoid losing portions of h. Note that this post-processing

step conforms with differential privacy because this step is a public rule and is not

dependent on the input dataset [73].

125

6.3.3 Determining a Numerical Split Point

Given a partition and its set of candidates, where each candidate has a real-valued

score, a specialization is performed on the value chosen by the exponential mecha-

nism. We refer to this value as the split value. A specialization g → child(g) replaces

the split value g with its child values. We perform a specialization as follows: in

a partition Pi, once a value g ∈ Pi is chosen for specialization, our algorithm cre-

ates a child partition Pcj for every child value cj ∈ child(g). Then, it distributes the

records in Pi among the child partitions where each record goes to its pertinent child

partition. A score is computed for the new values in every child partition. Finally,

the parent partition Pi is deleted as it contains no further useful information to the

specialization process. We note that the raw values of the records are maintained

throughout runtime in order to properly split the records among child partitions.

To satisfy differential privacy, any operation should be independent of the

underlying data. We project this rule on finding the split value for both categorical

and numerical attributes. We note that a categorical split value is a generalized

value drawn from a pre-defined generalization hierarchy (taxonomy tree), and a

numerical split value is an interval over the continuous domain. If the exponential

mechanism chooses a categorical split value, then adding or removing a record from

the input dataset will not affect how a split value is determined. As a result, having

a taxonomy tree induces sensitivity = 0 on determining a categorical split value.

On the other hand, if the exponential mechanism chooses a numerical split value,

then a numerical split point has to be found from the chosen interval. Due to the

inconvenience of defining a taxonomy tree for numerical attributes, our proposed

algorithm adaptively determines a numerical split point that divides an interval

over the attribute domain into two disjoint and successive subintervals. A simple

solution to finding a split point can be to pick a random point from the raw records

and split the records into two child partition accordingly. This solution suffers from

two shortcomings. First, the chosen point may not exist in a neighboring dataset

126

that differs by 1 record. Hence, choosing a point directly from the raw data records

violates differential privacy. Second, this solution does not pay attention to the

utility of the partitioned data. Next, we present a method for carefully choosing

a numerical split point that maximizes data utility without violating differential

privacy.

We compute a score for every value gi in the domain of the numerical attribute

Ω(Anum), then use the exponential mechanism to choose a value gi ∈ Ω(Anum) with

the following probability:

exp(ε′
2Δu

u(D, gi))∫
g∈Ω(Anum)

exp(ε′
2Δu

u(D, g)) dv
, (6.9)

where u(D, gi) is a score computed from a utility function u with sensitivity Δu.

Computing a score for every value in the domain can be exhaustive. We

observe that intervals of consecutive values along the attribute domain can have the

same score. More formally,

Observation 6.1. Given a utility function u and a numerical attribute Anum with

domain range Ω(Anum) = {I1, I2, . . . , Iv}, where Ii is an interval of consecutive

values. Then, ∀Ii ∈ {I1, I2, . . . , Iv}, we have u(D, gi) = u(D, gj) ∀gi, gj ∈ Ω(Ii).

Following this observation, we partition the domain range into successive in-

tervals {I1, I2, . . . , Iv}, where every two successive intervals are separated by a nu-

merical value from the input data. We generated a score for every interval and use

the exponential mechanism to choose an interval with the following probability:

exp(ε′
2Δu

u(D, gi))× |Ω(Ii)|∑v
j=1(exp(

ε′
2Δu

u(D, gj))× |Ω(Ij)|)
, (6.10)

where |Ω(Ii)| is the size of the interval. Once the exponential mechanism returns an

interval, we uniformly sample a value from the returned interval, since all its values

have the same score.

127

Example 6.3.4. Let us reexamine Figure 6.4. The numerical split value [1930 −

1999) is chosen for specialization at the root node. Therefore, we partition the do-

main of attribute Y oB into the set {[1930−1947), [1947−1953), [1953−1955), [1955−

1957), [1957− 1959), [1959− 1968), [1968− 1999)}. After that, a score is generated

for each interval. Let us assume that interval [1959 − 1968) has the highest score

among all the other candidate intervals in the set. Finally, a split point is randomly

picked from [1959− 1968), which is 1960 in this example.

As we mentioned in Chapter 6.3.2, the NCP of an interval Ii is computed from

the ratio |Ω(Ii)|
|Ω(Anum)| . This results in every value in the interval having a slightly

different score than the other. To avoid finding a score for every single value, we

choose the midpoint to represent the score and split point of an interval. The step

of determining a numerical split point is outlined in Line 9 of Algorithm 6.1.

Theorem 6.3. Choosing a numerical split point in accordance with Equation 6.10

satisfies ε′-differential privacy.

6.3.4 Publishing Record Counts

In Chapter 6.3.1, we mentioned that DiffMulti is comprised of two phases: iteratively

specializing records, followed by publishing generalized records. Phase 1 ends when

no further specializations can be performed. Phase 2 publishes record counts in

every leaf partition that resulted from Phase 1. However, as discussed earlier in

Chapter 6.3.2, publishing true counts violates differential privacy because counts

change depending on the underlying dataset. Again, we use the Laplace mechanism

to publish a noisy version of the true count. Figure 6.4 shows the added Laplacian

noise in a dashed ellipse in every leaf partition.

Recall from Chapter 6.3.1 that a partition holds |Ω(Acls)| groups of generalized

records, we wish to release noisy group counts that satisfy ε
2
-differential privacy.

Therefore, in Line 21, Algorithm 6.1 publishes Count+ Lap(2/ε) for every Pi ∈ PL,

128

where Count is the true group count in a leaf partition and PL denotes the set of

leaf partitions. Noisy record counts are rounded down to the nearest non-negative

integer, a step that does not violate differential privacy [73].

Theorem 6.4. Publishing record counts satisfies ε
2
-differential privacy.

Next, we will examine the properties of differential privacy to prove that Diff-

Multi is differentially-private.

Privacy Budget Allocation. To satisfy differential privacy, it is imperative

for any operation to be insensitive to the underlying dataset. In Chapters 6.3.2-

6.3.4, we investigated the main operations of DiffMulti and showed that each oper-

ation on its own is differentially-private. To prove that DiffMulti is differentially-

private as a whole, we will examine sequential composition (Lemma 2.1) and parallel

composition (Lemma 2.2) in order to carefully allocate a privacy budget 0 < ε′ ≤ ε

to each operation, where ε is an input parameter.

The algorithm exhibits two behaviors in which parallel composition can be

witnessed. In Phase 1, specializing a partition Pi → {Pc1 , . . . , Pcv} results in child

partitions containing disjoint sets of records. Hence, allocating a privacy budget = εx

to each child partition Pcj ∈ {Pc1 , . . . , Pcv} will result in a total budget consumption

= εx among {Pc1 , . . . , Pcv}. In Phase 2, a leaf partition contains |Ω(Acls)| groups of

disjoint records. Again, assigning εx to each group in the partition to publish noisy

counts will consume a total of εx.

Sequential composition manifests along a root-to-leaf path in the tree of par-

titions because the same set of records is being iteratively processed, starting from

the topmost-general root partition until a leaf partition is reached. Moreover, the

set of root-to-leaf paths falls under parallel composition, as we explained above.

Therefore, the privacy budget consumption is added along the longest root-to-leaf

path.

Let us start by examining the amount of privacy budget needed to process a

129

single partition. Lines 9, 11, and 13 of Algorithm 6.1 outline three ε′-differentially-

private operations. Therefore, a single partition requires 3×ε′ to complete a special-

ization in a differentially-private way. Line 9 is a special case for the topmost-general

root partition because we need to find a split point for all numerical attributes,

whereas any subsequent child partition contains at most one numerical value for

which we need to find a split point. Hence, Line 9 computes a split point |Anum|

times in the root partition, where |Anum| is the number of numerical attributes.

Given ε as the entire privacy budget for Algorithm 6.1, we dedicate ε
2
to specializing

partitions along a root-to-leaf path (Phase 1) and ε
2
for publishing record counts

(Phase 2). The Laplacian noise in Phase 2 is, therefore, Lap(2/ε). The budget for

each of the three differentially-private operations in Phase 1 ε′ = ε
2(|Anum|+3|n|) , where

|n| is the length of the longest path.

In conclusion, based on the above privacy analysis and Theorems 6.1- 6.4,

DiffMulti is ε-differentially private.

6.3.5 Proposed Algorithm

Algorithm 6.1 outlines the key steps of our proposed method, DiffMulti. Lines 1-20

describe Phase 1, and Line 21 describes Phase 2. The algorithm accepts three input

parameters: a raw dataset D, a privacy budget ε, and the maximum number of

specializations h. The output is an ε-differentially-private dataset D̂.

In Phase 1, DiffMulti performs a sequence of specializations on partitions. A

specialization is performed only if it is valid. A partition that does not incur a valid

specialization is considered a leaf partition, which is used in Phase 2 to publish noisy

record counts.

Definition 6.3 (A valid specialization). Given a partition Pi, we say that Pi incurs

a valid specialization (or a specialization on Pi is valid) iff all the following hold

true: (1) the number of specializations h′ assigned to Pi, Pi.h
′ > 0, (2) ∃g ∈ Pi

130

Algorithm 6.1: DiffMulti

Input: Raw dataset D, privacy budget ε, and number of specializations h
Output: Diff-private & multidim-generalized dataset D̂

1: Pi ← Initialize every value in D to the topmost value;
2: PT ← Pi; // Temporary partitions
3: PL ← ∅; // Leaf partitions

4: |n| =
∑|A| height of Ti;

5: ε′ ← ε
2(|Anum|+3|n|) ;

6: while PT != ∅ do
7: Pi ← PT .pop();
8: if Pi incurs a valid specialization then
9: Determine a split point for every new valid gnum ∈ Pi

with probability ∝ exp(ε′
2Δu

u(D, gnum));
10: Compute the score for every valid g ∈ Pi;
11: Select g ∈ Pi with probability ∝ exp(ε′

2Δu
u(D, g));

12: Specialize Pi → {Pc1 , . . . , Pcv};
13: Use Equation 6.8 to determine, with Lap(1/ε′), the number of

specializations h′ assigned to every Pcj ∈ {Pc1 , . . . , Pcv};
14: PT ← PT − Pi;
15: PT .push(Pcj) for every Pcj ∈ {Pc1 , . . . , Pcv};
16: else
17: PT ← PT − Pi;
18: PL ← PL ∪ Pi;
19: end if
20: end while
21: return each group in Pi ∈ PL with count (Count+ Lap(2/ε))

s.t. |child(g)| �= 0, and (3) the number of specializations from the root partition to

Pi ≤ |n|.

Line 1 generalizes all raw values in D to one root partition, Pi, that contains

the topmost values. Let PT be a list that structures data as a LIFO stack. Line 2

initializes the list of temporary partitions PT with Pi. At any given iteration, PT

holds the partitions to be later specialized. Line 3 initializes the set of leaf partitions

PL. Line 4 sets the length of the longest root-to-leaf path to the total number of

levels of all the taxonomy trees {T1, . . . ,T|A|, } that belong to all attributes A in

D except the Class attribute. We further elaborate on this point in Chapter 6.3.6.

131

Line 5 is executed once to initialize ε′, as per the discussion in Chapter 6.3.4. This

ε′ will be used for all the differentially-private operations in the algorithm. Lines

6-20 recursively perform specializations on the partitions in PT . Line 7 provides the

next partition to be specialized, Pi, and Line 8 checks its validity. If Pi does not

yield a valid specialization, it is removed from PT and added to PL in Lines 17 and

18. Otherwise, Line 9 chooses, in a differentially-private way, a split point for every

new numerical value gnum ∈ Pi. This step creates two child values for gnum with

non-overlapping intervals. Line 10 computes a score for every valid value g ∈ Pi. A

utility function is chosen beforehand depending on the target workload. Line 11 uses

the exponential mechanism to select a value g. Line 12 specializes g → child(g) and

creates a partition Pc for every child value c ∈ child(g). After that, Line 13 assigns

a noisy number of specializations h′ to each child partition Pc in proportion to the

number of records in Pc, where 0 ≤ h′ < h. Line 14 removes the parent partition

Pi from PT , whereas Line 15 pushes the set of child partitions {Pc1 , . . . , Pcv} onto

the beginning of PT . The recursion (Lines 6-20) stops when the list of temporary

partitions PT becomes empty, i.e., no further valid specialization can be performed

on any partition ∈ PT . The algorithm terminates when Line 21 synthesizes the ε-

differentially-private dataset D̂ by returning a Laplacian-noisy version of the counts

in all the partitions in PL.

Top-Down Specialization. Algorithm 6.1 uses a tree data structure (Fig-

ure 6.4) reminiscent of the one proposed in [45]. A significant difference between

both relies in the fact that our structure is not indexed. Rather, our technique works

on the node level due to the multidimensional aspect of our algorithm, where every

node in the tree represents a partition containing a unique set of records. Such struc-

turing of data records to generate a differentially-private and multidimensionally-

generalized version of a raw dataset provides the following advantages. First, the

exponential mechanism chooses from the set of candidates that exists in the same

132

partition. This avoids having to link other candidates by scanning other partitions.

Second, in any iteration, all records being specialized exist within the same partition,

which provides direct access to those records. This provides efficiency by avoiding

scanning the entire dataset when computing scores or splitting records from parent

to child partitions. Third, the tree structure allows Algorithm 6.1 to organize child

partitions in a LIFO stack so that the tree grows in a depth-first order. This pro-

vides space efficiency by performing a sequence of specializations on records that

exist within the same memory block, i.e., moving from parent to child, as opposed

to moving from parent to sibling. Fourth, Algorithm 6.1 does not need to complete

a full run to finish anonymizing the data; rather, the data is anonymous at the end

of any iteration, and a noisy version is ready to be published.

Complexity Analysis. We find the complexity of DiffMulti in terms of

the number of records in the input dataset, |D|. Algorithm 6.1 starts with a root

partition that contains all data records generalized to the topmost level over all

attributes (Line 1). Then, a split point has to be found for all numerical attributes

(Line 9). It is important to note that this step is performed at the root partition

solely as subsequent partitions will contain at most one new numerical candidate

for which a split point is to be found. Recall that every partition contains a set

of records generalized to the same hierarchical level. Given a numerical attribute

Anum, a split point is found by first sorting the partition records on Anum, and then

scanning them once to compute a score for every numerical value on Anum that

appears in the partition records. Sorting partition records on a single numerical

attribute costs O(|Pi| log |Pi|), where |Pi| is the number of records in Pi. If Pi is

the root partition, then |Pi| = |D|; otherwise, |Pi| is usually much smaller than |D|.

Thus, Line 9 costs O(|Anum| × |D| log |D|) for the root partition and O(|Pi| log |Pi|)

otherwise, where |Anum| is the number of numerical attributes.

In Line 10, a score is computed for every candidate in the current partition.

133

Again, the root partition is a special case in which data records are scanned once for

every attribute to determine the score. For all other partitions, no record scanning

is necessary because all the required pieces of information have been obtained in

an earlier iteration (Line 12); thus, this operation can be done in a constant time.

Therefore, given a set of attributes A, and assuming that all candidates in Pi are

valid, Line 10 costs O(|A| × |Pi|) for the root partition and O(1) otherwise.

After computing all scores, the exponential mechanism in Line 11 returns

a split value. The complexity of the exponential mechanism is proportional to

the number of selections from which the mechanism will choose. The exponential

mechanism appears twice in the algorithm. First, in Line 9 the purpose is to select

a split point from a given numerical attribute. This process requires partitioning

the numerical attribute into successive intervals {I1, I2, . . . , Iv} then choosing one

interval from the set (Example 6.3.4). Therefore, the cost of Line 9 is O(v). Second,

in Line 11 the purpose is to select a candidate from a set of candidates, which has

a maximum size equal to the number of attributes in D. Hence, the cost of Line 11

is O(|A|). |D| is usually much larger than the number of intervals and the number

of attributes. We, therefore, neglect the complexity of the exponential mechanism.

In Line 12, the current partition is specialized on the selected value g from

Line 11. The records in Pi are distributed among its child partitions, a step that

requires scanning those records to determine the child partition to which every

record belongs. Thanks to the tree structure, partition Pi gives direct access to

pertinent records in D. To boost the efficiency of our implementation, along with

record scanning, we collect pieces of information that will be used in computing the

scores in the child partitions in subsequent iterations (Line 10). Specifically, for each

c ∈ child(g) we collect |Dc|, |Dcls
c |, |Dz|, and |Dcls

z |, where cls is a value on the Class

attribute and z ∈ child(c). Thus, specializing a partition costs O(|Pi|). The rest of

the lines in Algorithm 6.1 are done in a constant time.

The most expensive operation in the algorithm is sorting partition records

134

(Line 9). Given that the algorithm performs at most h specializations, and given a

fixed number of attributes, the total cost of the algorithm is O(h×|Pi|× log|Pi|). In

order to express the time complexity in terms of the number of records in the input

dataset, |D|, we assume the worst case by which partitions are specialized according

to a binary tree structure where every leaf partition contains 1 record. Every level

collectively processes |D| records and the tree can have at most log|D| level. As a

result, DiffMulti has a worst-case runtime of O(|D| · log |D| · log |D|).

6.3.6 Discussion

In Chapter 6.3.4, we discussed privacy budget allocation and how to compute ε′

given that partitions are structured as a tree. In such tree, the length of a root-

to-leaf path refers to the number of specializations along that path. Thanks to the

parallel composition property, we only need to consider the length of the longest

root-to-leaf path, |n|, when computing ε′ because n performs the longest sequence of

differentially-private operations. For example, the length of the longest root-to-leaf

path in Figure 6.4 is 3.

Knowing |n| in advance is a challenging task because: (a) the depth of the

tree of partitions is indeterministic due to multidimensional generalization; and (b)

ε′ needs to be computed in advance so that DiffMulti can perform the differentially-

private operations in Phase 1 (Lines 9, 11, and 13). Herein, we provide theoretical

and practical estimations of |n|.

Every partition specialization in the tree decreases the number of specializa-

tions h by 1. We consider the following two cases of tree growth. If the tree fans

out, i.e., the upper levels contain a large number of partitions, then h will be mainly

consumed horizontally. With little h left, the tree will not grow deeper. However,

if the tree branches with small number of child partitions, then more h will be

available to allow for the tree to grow deeper. Our interest lies in the case where

the tree grows as deep as possible; therefore, we consider a perfect binary tree of

135

partitions where all leaf partitions are at the same level and every leaf partition

contains 1 record from D. With |D| leaf partitions, the hight of the tree would be

log2|D|. Hence, the length of the longest path is |n| = log2|D|. We note that this

is a theoretical estimate built on the assumption that all data records conform to

the perfect binary distribution of partitions. It is safe to say that real-life datasets

are unlikely to follow such tree structure as some child partitions are likely to be

empty causing the tree to grow deeper than log2|D| levels. An alternative, and more

practical, solution is to consider the number of specializations required to transform

a record from its topmost general version to its raw version. This is achieved by

summing the heights of all the taxonomy trees for a given dataset. The result is an

integer that represents the length of longest possible root-to-leaf path. For all the

experiments in the following section, we use the latter approach to estimate |n|.

6.4 Experimental Evaluation

We evaluate the performance of our proposed method, DiffMulti, with respect to the

utility of the output data, efficiency in terms of runtime, and scalability for handling

large datasets. The goal is to measure the impact of multidimensional generalization

achieved by means of differential privacy. We compare our proposed algorithm with

3 closely related ones: (1) DiffGen [96], a differentially-private algorithm that per-

forms single-dimensional (global) generalization; (2) Mondrian [76,78], an algorithm

that enforces multidimensional generalization to publish k-anonymous data; and (3)

PrivBayes [141], a differentially-private algorithm that utilizes Bayesian networks to

release high-dimensional data that approximate the distribution of the input data.

Furthermore, we report the data utility from our method and RPS [106], a general

framework for releasing relational data under differential privacy.

For all our evaluations, we use the widely employed and publicly available Adult

dataset [40]. Adult is a census dataset that contains 45,222 records and 15 attributes

136

comprising 8 categorical, 6 numerical, and 1 Class attribute that represents two

income values, “≤ 50K” and “> 50K”.

When comparing DiffMulti with DiffGen, we vary the number of specializa-

tions h in both methods and report the results. h is an integer and its maximum

limit is tied to the taxonomy trees. DiffGen employs single-dimensional generaliza-

tion, and thus h can be at most equal to the total of the number of non-leaf nodes

in all the taxonomy trees, whereas DiffMulti employs multidimensional generaliza-

tion resulting in h being massively greater than DiffGen’s h. More specifically, the

maximum number of specializations for DiffMulti is computed as follows:

h = 1 + Inter1

+ Leaves1 + (Leaves1 × Inter2)

+ (Leaves1 × Leaves2) + (Leaves1 × Leaves2 × Inter3)

+ . . .

+ (Leaves1 × Leaves2 × . . .× Leavesw−1)

+ (Leaves1 × Leaves2 × . . .× Leavesw−1 × Interw), (6.11)

which can be rearranged as follows:

h = 1 + Inter1

+ Leaves1(1 + Inter2)

+ (Leaves1 × Leaves2)(1 + Inter3)

+ . . .

+ (Leaves1 × Leaves2 × . . .× Leavesw−1)(1 + Interw). (6.12)

137

Thus, the maximum number of specializations for DiffMulti is:

h = 1 + Inter1 +
w−1∑
i=1

[(
i∏

j=1

Leavesj)(1 + Interi+1)], (6.13)

where Interi is the number of intermediate nodes in taxonomy tree i, Leavesi is the

number of leaf nodes in taxonomy tree i, and w is the total number of taxonomy

trees. Considering only the taxonomy trees of the categorical attributes of the

Adult dataset, h has a limit of nearly 50 for DiffGen, while for DiffMulti h is in

millions. Those numbers assume that every combination of raw values exists in the

raw datasets, which is not the case empirically. We reasonably vary the value of h

in order to maintain consistent results for both methods.

The settings and configurations of the experiments are as follows: We imple-

mented our method in C++. All experiments run on a PC with an Intel Core i5

CPU, 2.4GHz, and 8GB of RAM. Unless otherwise mentioned, we run each experi-

ment five times and report the average of the obtained results in the graphs herein.

Moreover, recall from Chapter 6.3.4 that ε′ = ε
2(|Anum|+3|n|) , where n is the longest

root-to-leaf path. Chapter 6.3.6 presented an estimation of |n| by summing the

heights of all the taxonomy trees. Adult has 8 distinct taxonomy trees pertaining

to 8 categorical attributes. Summing the heights of these taxonomy trees yields 21.

For the remaining 6 numerical attributes, no such hierarchy exists and so we assume

the height of each attribute’s taxonomy tree is 7 on average. Hence, the total sum

is 63, and thus we set |n| = 63 for all our experiments. Specialization stops when a

root-to-leaf path reaches length = |n| as the dedicated privacy budget would have

been consumed entirely. If the longest root-to-leaf path stopped before reaching |n|,

the unused portion of the privacy budget is added to the privacy budget dedicated

to the leaf partitions in order to preserve the entire budget ε. It is worth noting

that choosing a height for a numerical taxonomy tree is a loose assumption, and

reasonably varying this number has no significant impact on DiffMulti.

138

Figure 6.5: Comparing DiffMulti and DiffGen in terms of discernibility penalty

Figure 6.6: Comparing DiffMulti and DiffGen in terms of NCP

6.4.1 Data Utility

Figures 6.5 and 6.6 depict the utility of the output dataset where discernibility [15]

and NCP [135] are the utility functions, respectively. Recall from Chapter 6.3.2 that

both functions are general-purpose metrics that measure the amount of distortion

in the output dataset with comparison to its raw version. We compare our method

DiffMulti with DiffGen in order to showcase the impact of multidimensional gener-

alization over single-dimensional. In both figures, we vary the number of specializa-

tions of both methods and measure the distortion; higher reported values indicate

higher distortion. Figure 6.5 suggests that DiffMulti is able to significantly reduce

the discernibility penalty by at least one order of magnitude than DiffGen. Fig-

ure 6.6 reports the NCP values, where 0 ≤ NCP ≤ 1 and NCP = 1 means that the

139

output dataset is generalized to the topmost value in the taxonomy tree of every at-

tribute. Again, DiffMulti manages to maintain significantly less generalized output

data thanks to its multidimensional approach. Both figures suggest that DiffMulti

is robust with respect to the number of specializations as the incurred distortion

does not change significantly.

We also test our method on a specific target workload, i.e., classification ac-

curacy. The objective is to build a classification model that accurately predicts

the Class attribute in Adult ; particularly, if an individual has income “> 50K”. To

achieve this goal, first we use the training records to create generalization regions

in the multidimensional space. Then, we generalize the training and testing records

to those regions. Training records are used to build a classification model, which

in turn is used to predict the Class attribute in the testing records. For this set

of experiments, we used two widely deployed classifiers: C4.5 [109] and SVM [70].

C4.5 is trained with 2/3 of Adult records and tested with the remaining 1/3 records,

whereas SVM is trained with 4/5 of the records and tested with the remaining 1/5.

For both classifiers, we set Max to be the utility function.

Before applying any anonymization method on Adult, we first classify Adult as

a raw dataset to measure the Baseline Accuracy (BA), which is the best achieved

accuracy. We aspire to obtain results close to the BA when classifying the output

data of an anonymization method, which typically results in lower accuracies than

the BA. Moreover, we measure the Lower Bound Accuracy (LA), which considers

solely the Class attribute when training and testing the classifier. LA gives the

sense of having a worst-case accuracy that should be surpassed by the output of a

proposed anonymization method. Figures 6.7, 6.8, and 6.9 measure classification

accuracy in percentage where higher values imply better accuracy.

Figure 6.7 depicts the impact of differential privacy on classification accuracy

using C4.5 classifier. We test DiffMulti by varying the privacy budget 0.1 ≤ ε ≤ 1

and the number of specializations 300 ≤ h ≤ 1, 500. The privacy budget should not

140

Figure 6.7: DiffMulti : the impact of ε on classification accuracy

be set large, i.e., typically ≤ 1 [34, 36, 41]. Higher privacy budgets result in more

accurate classification because the differentially-private operations of the algorithm,

i.e., data partitioning and publishing record counts, incur less noisy outputs.

Figure 6.8 compares DiffMulti with both DiffGen and Mondrian in terms of

classification accuracy using C4.5 classifier. We set ε = 1 in both DiffMulti and

DiffGen and vary the number of specializations 1, 000 ≤ h ≤ 10, 000 and 2 ≤ h ≤ 20,

respectively. ForMondrian, we set k = 60. We observe that DiffMulti is dominant in

achieving higher accuracy, especially at lower numbers of specializations. However,

for higher values of h, Mondrian achieves up to 2% better accuracy than DiffMulti.

We note that the 2% improvement in accuracy when applying k-anonymity-based

Mondrian comes at the cost of releasing anonymous data that is vulnerable to

syntactic-based privacy attacks [126] [48] [72].

The authors of DiffGen conducted a similar experiment in [96] to compare the

classification accuracy of their non-interactive DiffGen with the interactive DiffP-

C4.5 [41], an algorithm that maintains differential privacy when building a classi-

fier. Although DiffP-C4.5 achieved promising results, DiffGen obtained improved

accuracy at ε = 1. However, the latter was constantly surpassed by DiffMulti, as

suggested by Figure 6.8.

Figures 6.7 and 6.8 show that as the number of specializations increases, the

141

Figure 6.8: Comparing DiffMulti, DiffGen, and Mondrian in terms of classification
accuracy

Figure 6.9: Comparing DiffMulti and PrivBayes in terms of classification accuracy

classification accuracy of DiffMulti decreases. This is due to the following two rea-

sons. First, a higher number of specializations results in longer root-to-leaf paths.

Consequently, the computed ε′ assigned to a single differentially-private operation

becomes very small compared to that of DiffGen, resulting in poor partitioning

decisions that contribute to building an inaccurate classifier. Second, a higher num-

ber of specializations yields a larger number of leaf partitions. Consequently, each

partition contains fewer records. As the number of records decreases, the effect of

the added Laplace noise in Phase 2 of Algorithm 6.1 increases. With a relatively

large noise, true record counts undergo severe distortion, which in turn adversely af-

fects building a proper decision tree. This finding confirms that for high-dimensional

142

data, publishing noisy counts of every possible combination of domain values greatly

degrades the quality of analysis.

Figure 6.9 depicts the performance of DiffMulti and PrivBayes using SVM

classifier. We set the number of specializations for DiffMulti h = 10, 000 and used

the default parameters for PrivBayes. We ran both methods over 5 different privacy

budgets 0.1 ≤ ε ≤ 1 and reported the resulting accuracy of each run. DiffMulti

constantly performs more accurate predictions than PrivBayes even at low privacy

budgets (noisy output data). We note that, unlike PrivBayes which outputs raw

data values, our solution performs a series of carefully selected generalizations which

contribute to improving classification accuracy, as suggested by Figure 6.8.

We carry out an additional experiment in which we compare DiffMulti with

the RPS framework [106] in terms of classification accuracy. The accuracy of RPS

was taken from the authors’ paper. The same settings of RPS experiments were

applied when conducting our experiment: Adult dataset of 30,162 records and 11

attributes (See [106]), and 5-fold cross validation for measuring the classification

accuracy. We fixed ε = 1 for both methods and obtained the following results. The

raw data BA = 82.96%. For RPS, 79% was the highest achieved accuracy, whereas

DiffMulti achieved 81.54% when the number of specializations was set to 1, 000.

While our method is able to achieve comparable classification accuracy to RPS, the

latter does not scale for high-dimensional datasets [108].

6.4.2 Efficiency

In this experiment, the objective is to measure the runtime of our method and

compare the results to those achieved by DiffGen. Figure 6.10 depicts the runtime

in seconds where the utility function is Max, ε = 1, and the number of specializations

is 10, 000 ≤ h ≤ 100, 000 for DiffMulti and 2 ≤ h ≤ 20 DiffGen. The runtime of

DiffMulti when performing 100, 000 specializations is nearly 30 seconds. Results

suggest that our method, though it runs a few seconds longer than DiffGen, is

143

Figure 6.10: Comparing DiffMulti and DiffGen in terms of runtime

insensitive to the number of specializations as the increase in runtime is insignificant.

For a clear visualization, we did not include Mondrian in Figure 6.10 because its

runtime varied from a few minutes to nearly an hour for 20 ≤ k ≤ 100. For the

experiments in Figure 6.9, our method took 1 seconds to complete compared to a few

minutes for PrivBayes, which was running on its default parameters. Particularly,

the parameter that specifies the degree of Bayesian network k was set to 3. As

k increases, the runtime of PrivBayes substantially increases; e.g., setting k = 5

causes PrivBayes to run for a few hours [141].

6.4.3 Scalability

The purpose of this experiment is to examine how our method scales to datasets

with large number of records. We generated 5 variations of the raw Adult dataset,

which has 45,222 records. For every record in Adult, we generate α−1 other records

that contain some values drawn randomly from their pertinent attribute domain.

By varying α we can generate a dataset with α × 45, 222 records. We generated 5

datasets with number of records ranging from 200,000 to 1 million. We run DiffMulti

once on each dataset, where the utility function is Max and ε = 1. Figure 6.11 depicts

144

Figure 6.11: Scalability of DiffMulti

the runtime in seconds for reading the records, anonymizing the entire dataset, and

writing the differentially-private multidimensionally-generalized records. Anonymiz-

ing an Adult-variant dataset with 1 million records finishes in less than 120 seconds.

Figure 6.11 suggests that the runtime of DiffMulti increases reasonably as the num-

ber of records increases.

Overall. The privacy budget has a direct impact on the utility of the output

data, and runtime is incremental with respect to the number of specializations and

the number of input records.

6.5 Summary

In this research work, we propose a differentially-private and multidimensional gen-

eralization algorithm for publishing relational data. Publishing anonymous data in

a non-interactive setting provides flexibility of usage to data recipients, as opposed

to providing anonymous answers tailored to specific queries. We adopt differential

privacy as our privacy model due to its independence of any attacker’s background

knowledge and insensitivity to the underlying data. Parallel to preserving privacy,

the utility of the anonymous data is equally essential. Therefore, we effectively

145

generalize the raw data into multidimensional regions to minimize information loss.

Experimental evaluation on a real-life dataset suggests that our proposed method is

able to reduce information loss by at least one order of magnitude when compared

with single-dimensional generalization, and improves data utility when compared

with state-of-the-art private data release methods.

146

Chapter 7

Conclusion and Future Directions

The rapid development of information technology has rendered data exchange a

compelling demand. Whether mandated by law or used for research purposes, data

publishing has been a common practice in various sectors, such as hospitals, ser-

vice providers, government agencies, and transportation authorities. However, the

privacy of the individuals whose data is being published must not be compromised.

The process of transforming person-specific data to an anonymous version is called

anonymization. This thesis is motivated by real-life data-publishing incidences

where individuals’ identities and their sensitive information were not adequately

protected in the released anonymous data.

Due to the emergence of new types of data mainly characterized by being

high-dimensional, classical privacy protection models, such as k-anonymity, fail to

accommodate such data types due to extreme data sparseness. Consequently, ap-

plying k-anonymity-based privacy models imposes high information loss, rendering

the anonymous data unsuitable for fruitful analysis.

This thesis tackles the problem of anonymizing high-dimensional data for use-

ful data mining, while simultaneously integrating different privacy concerns through-

out the anonymization process. Particularly, we propose to anonymize trajectory

streams, static trajectories, and relational data under rigorous privacy requirements.

147

Chapter 4 introduces us to the transient and time-varying data of trajectory streams.

To tackle this challenge, we identify certain properties in trajectory streams and pro-

pose a dynamic anonymization solution based on incremental sliding windows. To

our best knowledge, this is the first work to anonymize high-dimensional trajectory

streams. In Chapter 5, we assume that trajectories of moving individuals have been

collected and stored in advance. Hence, we study the problem of publishing tra-

jectories under the strict differential privacy model. This is a challenging problem

because trajectories are extremely sparse spatio-temporal data that requires spe-

cial care throughout the anonymization process in order to result in high-quality

anonymous data with reasonable computational cost. To overcome this obstacle,

our proposed algorithm structures trajectories as a noisy prefix tree, which provides

the desired compactness and data accessibility. Lastly, in Chapter 6, we observe

the ever-expanding number of attributes in relational data and propose an efficient

differentially-private solution that publishes anonymous relational data. We propose

a workload-aware anonymization algorithm that can be tailored for high-quality data

analysis, depending on the objective of the published data.

In conclusion, our extensive experimental evaluation suggests that, despite the

inherent trade-off between data anonymity and utility, it is feasible to anonymize

high-dimensional data, yet maintain high data utility for various analysis tasks.

We acknowledge the profound effort by researchers in the privacy-preserving data

publishing community, and this thesis is one step towards enhancing the quality of

anonymous data.

The findings presented in this thesis have opened the door for profound re-

search potential. A future data publishing problem could consider the practical case

where the data spans multiple data holders, e.g., a full trajectory is composed of

subtrajectories, each belongs to a different service provider, depending on the area

of coverage. Releasing integrated data, rather than each part at a time, is greatly

148

beneficial for data analysts because they can see interesting patterns that may, oth-

erwise, not have been discovered from analyzing only parts of the total integrated

data. Having said that, the challenge remains in performing such anonymization

without revealing detailed information about the data held by one data holder to

another data holder who is not authorized to acquire such information, albeit about

the same individual.

Another research direction could be to consider anonymizing data that con-

sists of multiple types, e.g., transactions, sensory data, and texts. This is desirable

because information about individuals is more likely to be collected from various

sources. However, such data would be characterized by having a much larger and

complex domain. Such complexity makes it challenging to impose a unified struc-

ture on the collected data and, consequently, requires non-trivial efforts in order to

propose efficient algorithms.

149

Bibliography

[1] O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty for

anonymity in moving objects databases. In Proceedings of the 24th IEEE

International Conference on Data Engineering (ICDE), pages 376–385, 2008.

[2] N. R. Adam and J. C. Worthmann. Security-control methods for statis-

tical databases: A comparative study. ACM Computing Surveys (CSUR),

21(4):515–556, 1989.

[3] C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In Proceed-

ings of the 31st International Conference on Very Large Data Bases (VLDB),

pages 901–909, 2005.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in

large databases. In Proceedings of the 20th International Conference on Very

Large Data Bases (VLDB), pages 487–499, 1994.

[5] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of

the 11th International Conference on Data Engineering (ICDE), pages 3–14,

1995.

[6] K. Al-Hussaeni, B. C. M. Fung, and W. K. Cheung. Privacy-preserving trajec-

tory stream publishing. Data & Knowledge Engineering (DKE), 94(A):89–109,

2014.

150

[7] K. Al-Hussaeni, B. C. M. Fung, G. Dagher, F. Iqbal, and E. G. Park. SafePath:

Differentially-private publishing of passengers’ trajectories. Under review.

[8] K. Al-Hussaeni, B. C. M. Fung, F. Iqbal, J. Liu, and P. C. K. Hung.

Differentially-private multidimensional data publishing. Under 2nd revision.

[9] R. Assam, M. Hassani, and T. Seidl. Differential private trajectory protection

of moving objects. In Proceedings of the 3rd ACM SIGSPATIAL International

Workshop on GeoStreaming (IWGS), pages 68–77, 2012.

[10] A. Asuncion and D. Newman. UCI machine learning repository, 2007.

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and

issues in data stream systems. In Proceedings of the 21st ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS),

pages 1–16, 2002.

[12] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over

streaming data. In Proceedings of the 13th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 633–634, 2002.

[13] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar.

Privacy, accuracy, and consistency too: A holistic solution to contingency

table release. In Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS), 2007.

[14] M. Barbaro and T. Zeller. A face is exposed for AOL searcher no. 4417749.

New York Times, August 9, 2006.

[15] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-

anonymization. In Proceedings of the 21st International Conference on Data

Engineering (ICDE), pages 217–228, 2005.

151

[16] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-

interactive database privacy. In Proceedings of the 40th Annual ACM Sympo-

sium on Theory of Computing (STOC), pages 609–618, 2008.

[17] F. Bonchi, L. V. Lakshmanan, and H. W. Wang. Trajectory anonymity in

publishing personal mobility data. ACM SIGKDD Explorations Newsletter,

13(1):30–42, 2011.

[18] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and

implication rules for market basket data. ACM SIGMOD Record, 26(2):255–

264, 1997.

[19] T. Brinkhoff. Generating traffic data. IEEE Data Engineering Bulletin,

26(2):19–25, 2003.

[20] M. Burger, M. van den Berg, A. Hegyi, B. D. Schutter, and J. Hellendoorn.

Considerations for model-based traffic control. Transportation Research Part

C: Emerging Technologies, 35:1–19, 2013.

[21] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li. Secure anonymization for incre-

mental datasets. In Proceedings of the 3rd VLDB International Conference on

Secure Data Management (SDM), pages 48–63, 2006.

[22] J. Cao, B. Carminati, E. Ferrari, and K. Lee Tan. Castle: A delay-constrained

scheme for ks-anonymizing data streams. In Proceedings of the 24th Interna-

tional Conference on Data Engineering (ICDE), pages 1376–1378, 2008.

[23] D. M. Carlisle, M. L. Rodrian, and C. L. Diamond. California inpatient data

reporting manual, medical information reporting for california (5th ed). Tech-

nical report, Office of Statewide Health Planning and Development, July 2007.

[24] T.-H. H. Chan, E. Shi, and D. Song. Privacy-Preserving Stream Aggregation

with Fault Tolerance, pages 200–214. Springer Berlin Heidelberg, 2012.

152

[25] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy

in public databases. In Proceedings of the 2nd International Conference on

Theory of Cryptography (TCC), pages 363–385, 2005.

[26] R. Chen, B. C. M. Fung, B. C. Desai, and N. M. Sossou. Differentially pri-

vate transit data publication: A case study on the montreal transportation

system. In Proceedings of the 18th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD), pages 213–221, 2012.

[27] R. Chen, B. C. M. Fung, N. Mohammed, and B. C. Desai. Privacy-preserving

trajectory data publishing by local suppression. Information Sciences: Special

Issue on Data Mining for Information Security, 231:83–97, 2013.

[28] R. Chen, B. C. M. Fung, P. S. Yu, and B. C. Desai. Correlated network data

publication via differential privacy. The VLDB Journal, 23(4):653–676, 2014.

[29] R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai, and L. Xiong. Publishing

set-valued data via differential privacy. Proceedings of the VLDB Endowment,

4(11):1087–1098, 2011.

[30] A. E. Cicek, M. E. Nergiz, and Y. Saygin. Ensuring location diversity

in privacy-preserving spatio-temporal data publishing. The VLDB Journal,

23(4):609–625, 2014.

[31] G. Cormode, C. Procopiuc, D. Srivastava, and T. T. L. Tran. Differentially

private summaries for sparse data. In Proceedings of the 15th International

Conference on Database Theory (ICDT), pages 299–311, 2012.

[32] G. Cormode, D. Srivastava, N. Li, and T. Li. Minimizing minimality and

maximizing utility: Analyzing method-based attacks on anonymized data.

Proceedings of the VLDB Endowment, 3(1-2):1045–1056, 2010.

153

[33] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data cubes:

Optimizing noise sources and consistency. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data (SIGMOD), pages

217–228, 2011.

[34] C. Dwork. Differential privacy. In Proceedings of the 33rd International Con-

ference on Automata, Languages and Programming - Volume Part II (ICALP),

pages 1–12, 2006.

[35] C. Dwork. Differential privacy: A survey of results. In Proceedings of the 5th

International Conference on Theory and Applications of Models of Computa-

tion (TAMC), pages 1–19, 2008.

[36] C. Dwork. A firm foundation for private data analysis. Communications of

the ACM, 54(1):86–95, 2011.

[37] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensi-

tivity in private data analysis. In Proceedings of the 3rd Conference on Theory

of Cryptography (TCC), pages 265–284, 2006.

[38] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-private

streaming algorithms. In Proceedings of the 1st Symposium on Innovations in

Computer Science (ICS), 2010.

[39] L. Fan, L. Xiong, and V. Sunderam. Differentially private multi-dimensional

time series release for traffic monitoring. In Proceedings of the 27th Annual

IFIP WG 11.3 Conference on Data and Applications Security and Privacy

XXVII - Volume 7964 (DBSec), pages 33–48, 2013.

[40] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

154

[41] A. Friedman and A. Schuster. Data mining with differential privacy. In Pro-

ceedings of the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), pages 493–502, 2010.

[42] B. C. M. Fung, K. Al-Hussaeni, and M. Cao. Preserving RFID data privacy.

In Proceedings of the IEEE International Conference on RFID, pages 200–207,

2009.

[43] B. C. M. Fung, T. Trojer, P. C. K. Hung, L. Xiong, K. Al-Hussaeni, and

R. Dssouli. Service-oriented architecture for high-dimensional private data

mashup. IEEE Transactions on Services Computing, 5(3):373–386, 2012.

[44] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data pub-

lishing: A survey of recent developments. ACM Computing Surveys (CSUR),

42(4):14:1–14:53, 2010.

[45] B. C. M. Fung, K. Wang, and P. S. Yu. Anonymizing classification data for

privacy preservation. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 19(5):711–725, 2007.

[46] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: A

review. ACM SIGMOD Record, 34:18–26, 2005.

[47] S. Gambs, M.-O. Killijian, and M. N. n. del Prado Cortez. Show me how

you move and i will tell you who you are. In Proceedings of the 3rd ACM

SIGSPATIAL International Workshop on Security and Privacy in GIS and

LBS, SPRINGL ’10, pages 34–41, 2010.

[48] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition attacks

and auxiliary information in data privacy. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD), pages 265–273, 2008.

155

[49] M. Ghasemzadeh, B. C. M. Fung, R. Chen, and A. Awasthi. Anonymizing

trajectory data for passenger flow analysis. Transportation Research Part C:

Emerging Technologies, 39:63–79, 2014.

[50] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse high-

dimensional data. In Proceedings of the 24th IEEE International Conference

on Data Engineering (ICDE), pages 715–724, 2008.

[51] G. Gidofalvi, X. Huang, and T. B. Pedersen. Privacy-preserving data mining

on moving object trajectories. In Proceedings of the International Conference

on Mobile Data Management (MDM), pages 60–68, 2007.

[52] A. Gkoulalas-Divanis and G. Loukides. Utility-guided clustering-based trans-

action data anonymization. Transactions on Data Privacy, 5(1):223–251, 2012.

[53] L. Golab and M. T. Özsu. Issues in data stream management. ACM SIGMOD

Record, 32(2):5–14, 2003.

[54] P. Golle. Revisiting the uniqueness of simple demographics in the us pop-

ulation. In Proceedings of the 5th ACM Workshop on Privacy in Electronic

Society (WPES), pages 77–80, 2006.

[55] H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and analyzing

massive RFID data sets. In Proceedings of the 22nd International Conference

on Data Engineering (ICDE), pages 83–92, 2006.

[56] P. J. Haas and A. N. Swami. Sequential sampling procedures for query size

estimation. In Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD), pages 341–350, 1992.

[57] K. Hafner. And if You Liked the Movie, a Netflix Contest May Reward You

Handsomely. New York Times, October 6, 2006.

156

[58] K. Hafner and T. Zeller. Researchers yearn to use AOL logs, but they hesitate.

New York Times, August 23, 2006.

[59] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gen-

eration. ACM SIGMOD Record, 29(2):1–12, 2000.

[60] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of

differentially private histograms through consistency. Proceedings of the VLDB

Endowment, 3(1-2):1021–1032, 2010.

[61] X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc, and D. Srivastava.

Dpt: Differentially private trajectory synthesis using hierarchical reference

systems. Proceedings of the VLDB Endowment, 8(11):1154–1165, 2015.

[62] Y. He, S. Barman, D. Wang, and J. F. Naughton. On the complexity of

privacy-preserving complex event processing. In Proceedings of the 30th ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems

(PODS), pages 165–174, 2011.

[63] Y. He and J. F. Naughton. Anonymization of set-valued data via top-down,

local generalization. Proceedings of the VLDB Endowment, 2(1):934–945, 2009.

[64] S.-S. Ho. Preserving privacy for moving objects data mining. In Proceedings of

the IEEE International Conference on Intelligence and Security Informatics

(ISI), pages 135–137, 2012.

[65] S.-S. Ho and S. Ruan. Preserving privacy for interesting location pattern

mining from trajectory data. Transactions on Data Privacy, 6(1):87–106,

2013.

[66] Y. Hong, J. Vaidya, H. Lu, and M. Wu. Differentially private search log sani-

tization with optimal output utility. In Proceedings of the 15th International

Conference on Extending Database Technology (EDBT), pages 50–61, 2012.

157

[67] H. Hu, J. Xu, S. T. On, J. Du, and J. K.-Y. Ng. Privacy-aware location data

publishing. ACM Transactions on Database Systems (TODS), 35:18:1–18:42,

2010.

[68] V. S. Iyengar. Transforming data to satisfy privacy constraints. In Proceedings

of the 8th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD), pages 279–288, 2002.

[69] K. Jiang, D. Shao, S. Bressan, T. Kister, and K.-L. Tan. Publishing trajec-

tories with differential privacy guarantees. In Proceedings of the 25th Inter-

national Conference on Scientific and Statistical Database Management (SS-

DBM), pages 12:1–12:12, 2013.

[70] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,

C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support

Vector Learning, chapter 11, pages 169–184. MIT Press, Cambridge, MA,

1999.

[71] A. Juels. RFID security and privacy: a research survey. IEEE Journal on

Selected Areas in Communications, 24(2):381–394, 2006.

[72] D. Kifer. Attacks on privacy and definetti’s theorem. In Proceedings of

the ACM SIGMOD International Conference on Management of Data (SIG-

MOD), pages 127–138, 2009.

[73] D. Kifer and B.-R. Lin. Towards an axiomatization of statistical privacy and

utility. In Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems (PODS), pages 147–158, 2010.

[74] J. Lee and C. W. Clifton. Top-k frequent itemsets via differentially private

fp-trees. In Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD), pages 931–940, 2014.

158

[75] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-

domain k-anonymity. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data (SIGMOD), pages 49–60, 2005.

[76] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional

k-anonymity. In Proceedings of the 22nd International Conference on Data

Engineering (ICDE), pages 25–35, 2006.

[77] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware anonymiza-

tion. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD), pages 277–286, 2006.

[78] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware anonymiza-

tion techniques for large-scale datasets. ACM Transactions on Database Sys-

tems (TODS), 33(3):17:1–17:47, 2008.

[79] D. Leoni. Non-interactive differential privacy: A survey. In Proceedings of the

1st International Workshop on Open Data (WOD), pages 40–52, 2012.

[80] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear

counting queries under differential privacy. In Proceedings of the 29th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems

(PODS), pages 123–134, 2010.

[81] F. Li, J. Sun, S. Papadimitriou, G. Mihaila, and I. Stanoi. Hiding in the

crowd: Privacy preservation on evolving streams through correlation tracking.

In Proceedings of the 23rd IEEE International Conference on Data Engineering

(ICDE), pages 686–695, 2007.

159

[82] J. Li, A. W.-C. Fu, H. He, J. Chen, H. Jin, D. McAullay, G. Williams,

R. Sparks, and C. Kelman. Mining risk patterns in medical data. In Pro-

ceedings of the 11th ACM SIGKDD International Conference on Knowledge

Discovery in Data Mining (KDD), pages 770–775, 2005.

[83] J. Li, B. C. Ooi, and W. Wang. Anonymizing streaming data for privacy

protection. In Proceedings of the 24th IEEE International Conference on Data

Engineering (ICDE), pages 1367–1369, 2008.

[84] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-

anonymity and l-diversity. In Proceedings of the 23rd IEEE International

Conference on Data Engineering (ICDE), pages 106–115, 2007.

[85] N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: Frequent itemset mining with

differential privacy. Proceedings of the VLDB Endowment, 5(11):1340–1351,

2012.

[86] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic density-based discovery of

hot routes in road networks. In Proceedings of the 10th International Confer-

ence on Advances in Spatial and Temporal Databases (SSTD), pages 441–459,

2007.

[87] C. Liu, S. Chakraborty, and P. Mittal. Dependence makes you vulnerable: Dif-

ferential privacy under dependent tuples. In Proceedings of the 23rd Network

and Distributed System Security Symposium (NDSS), 2016.

[88] D. Luper, D. Cameron, J. Miller, and H. R. Arabnia. Spatial and temporal

target association through semantic analysis and gps data mining. In Pro-

ceedings of the 5th International Conference on Information and Knowledge

Engineering (IKE), volume 7, pages 251–257, 2007.

160

[89] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. �-

diversity: Privacy beyond k-anonymity. In Proceedings of the 22nd IEEE

International Conference on Data Engineering (ICDE), pages 24–35, 2006.

[90] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-

diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge

Discovery from Data (TKDD), 1(1), 2007.

[91] J. M. Mateo-Sanz, A. Mart́ınez-Ballesté, and J. Domingo-Ferrer. Fast gener-

ation of accurate synthetic microdata. In Proceedings of Privacy in Statistical

Databases: CASC Project International Workshop (PSD), volume 3050 of Lec-

ture Notes in Computer Science, pages 298–306. Springer Berlin Heidelberg,

2004.

[92] T. McGhee. Gps technology tracks employees. The Denver Post, December

8, 2006.

[93] F. McSherry. Privacy integrated queries. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD), pages 19–30,

2009.

[94] F. McSherry and K. Talwar. Mechanism design via differential privacy. In

Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer

Science (FOCS), pages 94–103, 2007.

[95] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity.

In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS), pages 223–228, 2004.

161

[96] N. Mohammed, R. Chen, B. C. M. Fung, and P. S. Yu. Differentially private

data release for data mining. In Proceedings of the 17th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD), pages

493–501, 2011.

[97] N. Mohammed, B. C. M. Fung, and M. Debbabi. Walking in the crowd:

Anonymizing trajectory data for pattern analysis. In Proceedings of the 18th

ACM Conference on Information and Knowledge Management (CIKM), pages

1441–1444, 2009.

[98] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C.-k. Lee. Anonymizing

healthcare data: A case study on the blood transfusion service. In Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD), pages 1285–1294, 2009.

[99] A. Monreale, G. Andrienko, N. Andrienko, F. Giannotti, D. Pedreschi,

S. Rinzivillo, and S. Wrobel. Movement data anonymity through general-

ization. Transactions on Data Privacy, 3(2):91–121, 2010.

[100] A. Narayan, A. Feldman, A. Papadimitriou, and A. Haeberlen. Verifiable dif-

ferential privacy. In Proceedings of the 10th European Conference on Computer

Systems (EuroSys), pages 28:1–28:14, 2015.

[101] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse

datasets. In Proceedings of the IEEE Symposium on Security and Privacy

(SP), pages 111–125, 2008.

[102] C. Negroni. Tracking your wi-fi trail. New York Times, March 2011.

[103] M. E. Nergiz, M. Atzori, Y. Saygın, and B. Güç. Towards trajectory

anonymization: A generalization-based approach. Transactions on Data Pri-

vacy, 2(1):47–75, 2009.

162

[104] R. G. Pensa, A. Monreale, F. Pinelli, and D. Pedreschi. Pattern-preserving

k-anonymization of sequences and its application to mobility data mining. In

Proceedings of the 1st International Workshop on Privacy in Location-Based

Applications, 2008.

[105] V. Primault, S. B. Mokhtar, C. Lauradoux, and L. Brunie. Time distortion

anonymization for the publication of mobility data with high utility. In Pro-

ceedings of the 14th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications, pages 539–546, 2015.

[106] W. Qardaji and N. Li. Recursive partitioning and summarization: A practical

framework for differentially private data publishing. In Proceedings of the 7th

ACM Symposium on Information, Computer and Communications Security

(ASIACCS), pages 38–39, 2012.

[107] W. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods

for differentially private histograms. Proceedings of the VLDB Endowment,

6(14):1954–1965, 2013.

[108] W. Qardaji, W. Yang, and N. Li. Priview: Practical differentially private

release of marginal contingency tables. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD), pages 1435–

1446, 2014.

[109] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., 1993.

[110] P. Samarati. Protecting respondents’ identities in microdata release. IEEE

Transactions on Knowledge and Data Engineering (TKDE), 13(6):1010–1027,

2001.

163

[111] P. Samarati and L. Sweeney. Protecting privacy when disclosing informa-

tion: k-anonymity and its enforcement through generalization and suppres-

sion. Technical report, 1998.

[112] R. Sherkat, J. Li, and N. Mamoulis. Efficient time-stamped event sequence

anonymization. ACM Transactions on the Web (TWEB), 8(1):4:1–4:53, 2013.

[113] L. Sweeney. Datafly: A system for providing anonymity in medical data.

In Proceedings of the IFIP TC11 WG11.3 11th International Conference on

Database Securty XI: Status and Prospects, pages 356–381, 1998.

[114] L. Sweeney. Achieving k-anonymity privacy protection using generaliza-

tion and suppression. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 10(5):571–588, 2002.

[115] L. Sweeney. K-anonymity: A model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–

570, 2002.

[116] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, W.-C. Peng, and T. L. Porta.

A framework of traveling companion discovery on trajectory data streams.

ACM Transactions on Intelligent Systems and Technology (TIST), 5(1):3:1–

3:34, 2014.

[117] M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of

trajectories. In Proceedings of the 9th International Conference on Mobile

Data Management (MDM), pages 65–72, 2008.

[118] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving anonymization

of set-valued data. Proceedings of the VLDB Endowment, 1(1):115–125, 2008.

[119] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global recoding methods

for anonymizing set-valued data. The VLDB Journal, 20(1):83–106, 2011.

164

[120] J. Wang, S. Liu, and Y. Li. A review of differential privacy in individual data

release. International Journal of Distributed Sensor Networks, 2015:1:1–1:1,

2016.

[121] K. Wang, B. C. M. Fung, and P. S. Yu. Handicapping attacker’s confidence: An

alternative to k-anonymization. Knowledge and Information Systems (KAIS),

11(3):345–368, 2007.

[122] K. Wang, Y. Xu, R. C.-W. Wong, and A. W.-C. Fu. Anonymizing tempo-

ral data. In Proceedings of the 10th IEEE International Conference on Data

Mining (ICDM), pages 1109 –1114, 2010.

[123] P. Wang, L. Zhao, J. Lu, and J. Yang. Sanatomy: Privacy preserving pub-

lishing of data streams via anatomy. In Proceedings of the 3rd International

Symposium on Information Processing (ISIP), pages 54–57, 2010.

[124] S.-W. Wang, W.-H. Chen, C.-S. Ong, L. Liu, and Y.-W. Chuang. RFID

application in hospitals: A case study on a demonstration RFID project in

a taiwan hospital. In Proceedings of the 39th Annual Hawaii International

Conference on System Sciences (HICSS), volume 8, pages 184a–184a, 2006.

[125] S. M. Weiss and C. A. Kulikowski. Computer Systems That Learn: Classifica-

tion and Prediction Methods from Statistics, Neural Nets, Machine Learning,

and Expert Systems. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1991.

[126] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in

privacy preserving data publishing. In Proceedings of the 33rd International

Conference on Very Large Data Bases (VLDB), pages 543–554, 2007.

165

[127] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (α, k)-anonymity: An

enhanced k-anonymity model for privacy preserving data publishing. In Pro-

ceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), pages 754–759, 2006.

[128] X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct: Differential privacy with

reduced relative errors. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD), pages 229–240, 2011.

[129] X. Xiao and Y. Tao. M-invariance: Towards privacy preserving re-publication

of dynamic datasets. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data (SIGMOD), pages 689–700, 2007.

[130] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms.

IEEE Transactions on Knowledge and Data Engineering (TKDE), 23(8):1200–

1214, 2011.

[131] X. Xiao, K. Yi, and Y. Tao. The hardness and approximation algorithms for

l-diversity. In Proceedings of the 13th International Conference on Extending

Database Technology (EDBT), pages 135–146, 2010.

[132] Y. Xiao and L. Xiong. Protecting locations with differential privacy under

temporal correlations. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security (CCS), pages 1298–1309, 2015.

[133] Y. Xiao, L. Xiong, L. Fan, S. Goryczka, and H. Li. Dpcube: Differentially

private histogram release through multidimensional partitioning. Transactions

on Data Privacy, 7(3):195–222, 2014.

[134] Y. Xiao, L. Xiong, and C. Yuan. Differentially private data release through

multidimensional partitioning. In Proceedings of the 7th VLDB Conference on

Secure Data Management (SDM), pages 150–168, 2010.

166

[135] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu. Utility-based

anonymization using local recoding. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD),

pages 785–790, 2006.

[136] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett. Differentially

private histogram publication. The VLDB Journal, 22(6):797–822, 2013.

[137] Y. Xu, B. C. M. Fung, K. Wang, A. W. C. Fu, and J. Pei. Publishing sensitive

transactions for itemset utility. In Proceedings of the 8th IEEE International

Conference on Data Mining (ICDM), 2008.

[138] Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymizing transaction

databases for publication. In Proceedings of the 14th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD), pages

767–775, 2008.

[139] R. Yarovoy, F. Bonchi, L. V. S. Lakshmanan, and W. H. Wang. Anonymiz-

ing moving objects: how to hide a mob in a crowd? In Proceedings of the

12th International Conference on Extending Database Technology: Advances

in Database Technology (EDBT), pages 72–83, 2009.

[140] C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent

itemset mining. Proceedings of the VLDB Endowment, 6(1):25–36, 2012.

[141] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao.

Privbayes: Private data release via bayesian networks. In Proceedings of

the ACM SIGMOD International Conference on Management of Data (SIG-

MOD), pages 1423–1434, 2014.

[142] J. Zhang, J. Yang, J. Zhang, and Y. Yuan. Kids:k-anonymization data stream

base on sliding window. In Proceedings of the 2nd International Conference

167

on Future Computer and Communication (ICFCC), volume 2, pages V2–311–

V2–316, 2010.

[143] Y. Zheng, N. J. Yuan, K. Zheng, and S. Shang. On discovery of gathering pat-

terns from trajectories. In Proceedings of the IEEE International Conference

on Data Engineering (ICDE), pages 242–253, 2013.

[144] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia. Continuous privacy

preserving publishing of data streams. In Proceedings of the 12th Interna-

tional Conference on Extending Database Technology: Advances in Database

Technology (EDBT), pages 648–659, 2009.

168

