
An Optimal Control Approach to Flight Management

Systems for Unmanned Aerial Vehicles

Michael Di Perna

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical Engineering) at

Concordia University

Montréal, Québec, Canada

April 2017

c© Michael Di Perna, 2017

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Michael Di Perna

Entitled: An Optimal Control Approach to Flight Management Systems for Un-

manned Aerial Vehicles

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Rabin Raut

External Examiner
Dr. Walter Lucia

Examiner
Dr. Amir Aghdam

Supervisor
Dr. Luis Rodrigues

Approved by
William E. Lynch, Chair
Department of Electrical and Computer Engineering

2017
Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

An Optimal Control Approach to Flight Management Systems for Unmanned Aerial
Vehicles

Michael Di Perna

With unmanned aerial vehicles (UAVs) becoming increasingly present in military and com-

mercial applications, the flight path efficiency and integration with current manned aircraft become

important research topics to address in the coming years. This thesis considers three problems re-

lating to UAVs: the optimal control of a single quadrotor UAV, a multi-agent coverage problem, and

a software flight management system which can be used on UAVs.

The optimal control problem for a quadrotor UAV is considered with a tuning parameter, the

cost index, used in flight management systems to trade-off between time and energy costs. A

state-feedback control law is developed and simulation results are presented. A software flight

management system (SFMS) using aerospace standard communication protocols is developed and

validated with an industry flight simulator. The SFMS allows for the testing of algorithms which

can be used on real aircraft (manned or unmanned) without requiring access to a costly commercial

flight management system. An energy efficient coverage problem from previous work is consid-

ered and extended to include agents with second order dynamics using the backstepping technique.

The extension to second order dynamics requires the analysis of the dynamics of Voronoi cells. A

geometric interpretation is presented for the change in area and change in position of the center of

mass for Voronoi cells. Simulation results are presented comparing the first order and second order

agents.

iii

Acknowledgments

I would like to direct a special acknowledgement to my supervisor Dr. Luis Rodrigues, who

has provided me with not only the tools and guidance to complete this thesis, but also with many

opportunities to work with industry. I thank him for his continuous patience and dedication towards

myself as a person and my work.

Thank you to all my colleagues in the Hybrid Control Systems (HYCONS) lab for their support:

Michael El-Jiz, Jesus, Miad, Manuel, Alex, Maxim, Emily, and Reza.

A special thanks to my family and girlfriend for their support and encouragement throughout

my degree.

iv

Contents

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Literature Review . 2

1.3.1 Optimal Control of Quadrotors . 2

1.3.2 Flight Management Systems for UAVs . 4

1.3.3 Multi-agent Coverage Problems . 5

1.4 Contributions . 6

1.5 Structure of the Thesis . 7

2 Optimal Control Framework for UAV Flight Management Systems 8

2.1 Preliminaries . 8

2.1.1 Quadrotor Mathematical Model . 8

2.1.2 Review of Optimal Control . 13

2.2 Optimal Trajectory of a Single Quadrotor . 16

2.2.1 Time-dependent Optimal Control . 16

2.2.2 State-feedback Optimal Control . 22

2.3 Fixed-wing Path Following . 30

v

3 Software Flight Management System 38

3.1 Software Flight Management System Overview 38

3.2 Preliminaries . 41

3.2.1 Longitudinal Equations of Motion of an Aircraft 41

3.2.2 Aircraft Navigation . 44

3.2.3 Optimal Cruise Speed . 48

3.3 The ARINC 429 Communication Protocol . 50

3.4 The ARINC 834 STAP Communication Protocol 52

3.5 Constructing a Flight Plan . 54

3.6 Experimental Results Using a Flight Simulator 56

4 Multi-agent Coverage Problems and Voronoi Cell Dynamics 60

4.1 Preliminaries . 60

4.1.1 Voronoi Diagram . 61

4.1.2 Reynolds Transport Theorem . 62

4.2 Analysis of the Change in Voronoi Cell Area for Moving Generators 63

4.2.1 Geometric Analysis of Change in Area 63

4.2.2 Reynolds Transport Theorem Analysis of Change in Area 66

4.3 Analysis of the Change in the Center of Mass of a Voronoi Cell for Moving Generators 70

4.3.1 Geometric Analysis of the Change in Center of Mass 71

4.3.2 Reynolds Transport Theorem Analysis of Change in Center of Mass 73

4.4 Voronoi Dynamics in Multi-agent Coverage Problems 76

4.4.1 Coverage Problem Preliminaries . 76

4.4.2 Energy-Efficient Coverage Optimal Control Problem 78

4.4.3 Coverage Problem with Second Order Dynamics 78

4.5 Simulation Results . 82

5 Conclusions 87

Bibliography 89

vi

List of Figures

Figure 2.1 Reference frame attached to a tangent plane on Earth. 9

Figure 2.2 Quadrotor body axes and motors. 10

Figure 2.3 Longitudinal axes of a quadrotor. 13

Figure 2.4 Position of the quadrotor as a function of time. 20

Figure 2.5 Velocity of the quadrotor as a function of time. 20

Figure 2.6 Pitch angle of the quadrotor as a function of time. 21

Figure 2.7 Position of the quadrotor as a function of time. 22

Figure 2.8 Velocity of the quadrotor as a function of time. 22

Figure 2.9 Position of the quadrotor as a function of time. 27

Figure 2.10 Velocity of the quadrotor as a function of time. 28

Figure 2.11 Pitch angle of the quadrotor as a function of time. 28

Figure 2.12 Pitch angle of the quadrotor for different values of CI 29

Figure 2.13 Pareto curve illustrating the trade-off between the accrued cost of control

effort (
∫ tf
0

1
2 tan

2 θ dt) and the final time (tf) when varying CI 30

Figure 2.14 Illustration of lateral guidance variables. 32

Figure 2.15 Horizontal component of the lift providing the centripetal acceleration during

a turn. 34

Figure 2.16 The desired path is along the xc axis, with ψ being the relative heading

between the aircraft and the xc axis. The value of yac represents the cross-track error. 35

Figure 2.17 Profile of the sigmoid function for various gains kδ. 37

Figure 3.1 FMS block diagram with highlighted blocks relating to the software FMS [1]. 39

vii

Figure 3.2 Sofware FMS module block diagram. 40

Figure 3.3 The software FMS high level program flow chart. 41

Figure 3.4 Coordinate systems in longitudinal plane [2]. 42

Figure 3.5 ECEF, ECI, Geodetic, and local tangent plane reference frames [3]. 45

Figure 3.6 A spherical triangle created by intersecting geodesics. 46

Figure 3.7 A spherical triangle created by intersecting geodesics and applying the geode-

tic coordinates. 47

Figure 3.8 ARINC 429 connection topologies [4]. 51

Figure 3.9 ARINC 429 word format [4]. 52

Figure 3.10 ARINC 834 syntax to add a subscription [5]. 52

Figure 3.11 ARINC 834 syntax to transmit data [5]. 53

Figure 3.12 ARINC 429 wrapped in ARINC 834 [4][5]. 53

Figure 3.13 Aircraft states are displayed by the software FMS in real time using the

ARINC 429/834 Specifications. 54

Figure 3.14 Fly over and fly by turn maneuvers for an aircraft traveling from waypoint A

to C, passing through waypoint B. The black line is the aircraft path and the orange

line is the direct path between waypoints. 55

Figure 3.15 Upon adding the three waypoints and pressing the ”Load Flight Plan” button,

the distance (nautical miles) and track (degrees East) for each pair of waypoints are

computed and displayed for the user. 56

Figure 3.16 The trajectory of the aircraft is denoted by the pink line, from CYHU to

CYUL to CYMX. 57

Figure 3.17 The first leg of the flight plan with the dashed line denoting the straight line

trajectory between the waypoints. 58

Figure 3.18 The second leg of the flight plan with the dashed line denoting the straight

line trajectory between the waypoints. 59

Figure 4.1 Voronoi diagram of a finite convex area. 61

Figure 4.2 Voronoi boundary shift due to a displacment of generator xj tangential to the

boundary. 64

viii

Figure 4.3 Voronoi boundary shift due to a displacment of generator xj normal to the

boundary. 65

Figure 4.4 A convex combination of the boundary vertices to represent the boundary

between xi and xj . 67

Figure 4.5 The Voronoi diagram at the final time of the simulation of agents with second

order dynamics. The trajectories of the three agents are denoted by the black lines,

ending at the black dot. 83

Figure 4.6 The Voronoi diagram at the final time of the simulation of agents with first

order dynamics. The trajectories of the three agents are denoted by the black lines,

ending at the black dot. 84

Figure 4.7 The speed of each agent with second order dynamics. 85

Figure 4.8 The speed of each agent with first order dynamics. 86

ix

List of Tables

Table 3.1 Initial conditions used for the experimental results. 57

x

Chapter 1

Introduction

1.1 Motivation

One of the greatest challenges facing humanity in the upcoming century is global warming. This

is the conclusion of a study that was done by the World Health Organization in [6]. It is generally

agreed that emissions from burning fossil fuels have had a large impact on global warming. The

aviation industry has been steadily growing and has reached over 100,000 daily commercial flights

[7]. Aircraft are estimated to account for 2% of the global greenhouse emissions, and the amount of

carbon emissions is expected to grow by 3-4 % per year [8]. Meanwhile, UAVs (unmanned aerial

vehicles) is a growing industry [9] and can be found in a variety of different applications such as

package delivery (Amazon), surveillance for rescue, security, and defense, and providing internet

coverage (Google and Facebook). NASA has also been investigating autonomous aircraft for cargo

delivery and perhaps even passenger aircraft. Although many UAVs utilize alternate energy sources,

such as hydrogen cells and batteries, their efficiency will ultimately determine their usefulness and

their cost-effectiveness. To increase the flight time and cost-effectiveness of UAVs one may either

improve the powerplant (i.e. higher energy density batteries) or one may reduce the amount of fuel

or energy consumed during flight. Current commercial aircraft utilize a measure called the cost

index, CI , which denotes a trade-off between time and fuel. The speed of the aircraft is dictated

by the value of CI chosen before the flight. The cost index allows airlines to determine the optimal

trajectories of their aircraft to reduce overall cost of the flight (i.e. time related costs and fuel cost).

1

The concept of using a cost index for cost-effective flights will be extended to UAVs in this thesis.

This thesis will also address a multi-agent system by solving a coverage problem with considerations

for energy-efficient deployment of agents with second order dynamics. The multi-agent result can

then be used in the aforementioned applications, such as search and rescue.

1.2 Objectives

The objectives of this thesis are as follows:

• To develop an analytic state-feedback control law for the optimal control of UAVs in the

context of a flight management system.

• To develop a state-feedback control law for agents with second order dynamics in a multi-

agent coverage problem using the dynamics of Voronoi cells.

• To develop a software flight management system as a research platform for testing and vali-

dating future research.

1.3 Literature Review

1.3.1 Optimal Control of Quadrotors

The field of optimal control provides tools which allow engineers to perform optimization on the

control of dynamic systems. We are specifically interested in generating control laws for quadrotors

which optimize its energy consumed while still providing sufficient performance.

The work in [10] presents an LQT (linear quadratic tracking) controller for quadrotors. They

assume a fixed final time with an unconstrained final state, this leads to time-varying gains that

are computed offline. The authors in [11] propose a novel backstepping technique for the optimal

control of a nonlinear quadrotor model. This technique requires the cost function to have an infinite

horizon, and does not allow the direct use of a cost index in the cost function. Reference [12] devel-

ops a detailed model of the quadrotor and applies an LQR controller after linearizing the dynamics

about the operating point. Numerical methods for solving optimal control problems for quadrotors

2

are considered in [13]. It was shown that the methods were effective at producing trajectories for

obstacle avoidance and aggressive maneuvers. The authors claim that it may take a few seconds to

generate a trajectory while using an Intel Xeon processor at 3.4 GHz. Although this would be ac-

ceptable for offline calculations, we suspect that in real-time the hardware aboard a modestly priced

quadrotor (or low cost quadrotor) would struggle to generate real-time trajectories in a reasonable

amount of time. The work in [14] presents a model for the DC motors and battery charge to deter-

mine minimum energy paths for a quadrotor. The authors also include a formulation which includes

a tuning parameter to apply a trade-off between time and energy. The optimal control problems are

solved numerically and can take over one minute to compute, which is suited for offline calculation.

Reference [15] provides a higher level approach to energy management and looks at predicting the

battery life for mission planning. The authors employ a multi-model predictive controller (MMPC)

which switches among a bank of models. A particle filter was used to predict the end-of-discharge

time for the battery. The work presented in [16] looks at the time dependent optimal trajectories of

a quadrotor by using Pontryagin’s Maximum Principle. The authors present the findings in the con-

text of a benchmark against which controllers can be compared. The solutions found are computed

numerically using a boundary value problem (BVP) solver in Matlab. Reference [17] focuses on the

trajectory generation and guidance of a quadrotor for implementation in an UAV FMS. The authors

consider the nonlinear dynamics of a quadrotor and a cost function which penalizes the length of

the trajectory. A quasi-optimal trajectory is found using the nonlinear programming optimization

”fmincon”. Backstepping is used to synthesize control laws for the quadrotor’s attitude and position.

Similarly, the work in [18] describes a trajectory generation technique for quadrotors which mini-

mizes a cost function that penalizes the square of angular and translational velocities. The trajectory

is solved numerically using ”fmincon”. The authors also describe a collision detection algorithm for

trajectory generation. The authors of [19] consider UAV trajectory planning for obstacle avoidance

for shared airspace. Mixed integer linear programming (MILP) is employed to numerically solve

the trajectory optimization problem. The authors consider fuel consumption, energy, and a penalty

on the final time in the cost function. Reference [20] describes a numerical method to produce mini-

mum time trajectories for quadrotors while considering constraints on the quadrotor’s configuration,

actuator velocities and torques, and obstacle avoidance. Nonlinear dynamics are considered for the

3

quadrotor model but the trajectory generation technique may not be suitable for on-board use as

it requires a numerical solution. The work in [21] describes a computationally efficient algorithm

for trajectory generation of quadrotors. The paper considers generating trajectories of a quadrotor

with a given final time using Pontryagin’s Maximum Principle and considers the feasibility of each

trajectory generated. The algorithm proposed allows for the computation of many trajectories to

meet the physical constraints of the quadrotor (i.e. thrust limit). The trajectories generated are a

function of time and a motion capture system is used to provide the closed-loop trajectory tracking.

1.3.2 Flight Management Systems for UAVs

One can find a number of simulated FMSs for consumer flight simulators (i.e. Microsoft Flight

Simulator and X-Plane) which try to replicate the interface and functionality of currently available

flight management systems. One can take this further by building a flight management system in

software which can interface with real aircraft and UAVs using industry standard protocols.

The survey performed in [22] anaylzes the capabilities of available low-cost simulated FMS

plugins for Microsoft Flight Simulator (MSFS), in terms of their research potential, in comparison

to a General Electric FMS. Although some discrepancies were found in the continous descent arrival

(CDA) ground speeds (which were estimated for the MSFS plugins), the lateral and vertical profiles

were found to be within acceptable bounds. The use of an external device in the cockpit has been

examined in [23] to introduce a low-cost flight data recorder which also has the capability to estimate

some aircraft states and provide reports from flights. In contrast to the work presented in this chapter,

the external device does not provide any interactions with the aircraft’s avionics. In [24], a design

methodology for UAV system design is proposed and a simulated example is used to illustrate

the procedure. The paper considers the safety-critical components and verification that would be

required for use on UAVs. Using more recent technology, [25] proposes an FMS for UAVs which

includes intent sharing and communication with ground systems. The intention of the research is

to provide the basis for UAVs to function within current aircraft airspace. The authors look at pre-

emptively integrating safety measures which may be required for UAV flights in the future. The

Sparrow flight management system [26] is a commercially available cloud based web tool FMS

for fleets of UAVs which provides scheduling and tracking among other features. Sparrow focuses

4

on flight management in terms of tracking and collecting analytics of UAV(s) flights. This macro

approach to flight management system provides tools for studying the costs incurred by flights, but

does not allow for the usage of a cost index for a particular flight. The certification and verification

of software for UAVs is studied in [27] through the ARTIS project. The paper addresses the need

to rethink software development for UAVs when attempting to meet standards for aircraft software

certification, such as the standards from the Radio Technical Commission for Aeronautics. The lack

of a pilot present in a UAV requires more safety critical code and generally increases the complexity

of the code. An FMS performs calculations to provide optimal trajectories dependent on a parameter

entered by the pilot called the cost index (CI). There has been recent research on the cost index

to provide analytic solutions for the optimal target airspeed during cruise, climb, and descent [28].

Improvements to the FMS can allow for more fuel efficient flights with the current aircraft in use, but

most FMSs are a black-box device which researchers cannot easily access. With the introduction of

aircraft interface devices (AIDs) it is possible to connect a tablet or laptop to an aircraft’s systems,

allowing the development of an external flight management system.

1.3.3 Multi-agent Coverage Problems

Voronoi diagrams can be found in many different fields [29] such as astronomy, geography,

chemistry, physics, marketing, and engineering. We can find applications for Voronoi diagrams in

engineering for topics such as fluid dynamics, image processing, and coverage problems in multi-

agent systems. It is of particular interest in coverage problems to analyze the dynamics of Voronoi

cells as generators move because the optimal coverage is obtained when generators lie at the center

of mass of their respective Voronoi cell.

The change in volume, which in 2D corresponds to area, of a Voronoi cell due to moving gen-

erators is determined by Espanol et al. in [30]. Du et al. [31] use a geometric property, the per-

pendicular bisector property of Voronoi diagrams, to develop a result which can be used to solve

the boundary integral of a Voronoi cell. Cortes et al. [32] solve the boundary integral of a Voronoi

cell for scalar functions in the context of a coverage problem. A time-varying density function for

a coverage problem is considered by Diaz-Mercade et al. in [33]. They also obtain an expression

5

for the change in the position of the center of mass with respect to agents, but it is left in an inte-

gral form and is not developed any further. The work in [34] formulates the multi-agent coverage

problem as an optimal control problem and looks to providing an energy efficient control scheme

by introducing tuning parameters in the optimization.

The work in [35] describes a coverage problem with the usage of Power Diagrams. Each agent

is assigned a weight that describes its coverage range. The agents have first order dynamics and

the weight variable is also considered to have first order dynamics. Each region in the partition is

assigned a workload which is application dependent and can be described by a stochastic function

if desired. A continuation of this work is presented in [36] where equitable partitions (based on a

measure function) of a region are computed using Power Diagrams. The results are then used in

application examples such as dynamic vehicle routing for mobile robotic networks and wireless ad

hoc networks. Reference [37] describes a coverage problem involving agents which have limited-

range communications and anisotropic sensing (directional sensors). The solution presented uses

an approximation to achieve a distributed solution to the problem proposed. Both the agents and

their sensors have first order dynamics.

1.4 Contributions

The contributions of this thesis are as follows:

• An optimal control problem is solved for a quadrotor UAV flight using a cost index to trade-

off between energy and time. A state-feedback law is obtained for the quadrotor’s flight in

2D, the trade off between control effort and time is presented in a Pareto trade-off curve, and

the maximum velocity of the quadrotor can be used to determine a range of allowable cost

indices.

• A distributed control law for a multi-agent coverage problem is obtained using the backstep-

ping technique. Geometric derivations for the change of mass and change of center of mass

for Voronoi cells are found to enable the implementation of the control law.

6

• An implementation of a FMS in software is developed using aerospace communication stan-

dards and validated using an industry flight simulator.

1.5 Structure of the Thesis

Chapter 2 begins by providing the preliminaries for quadrotor dynamics and optimal control.

This is followed by a time-dependent control law and then a state-feedback law for quadrotors

which includes a cost index term as a tuning parameter. Simulation results are presented for both

time-dependent and state-feedback control schemes and a Pareto trade-off curve is illustrated for the

state-feedback simulation. Path following for fixed-wing UAVs in the lateral plane is also discussed

and a control law is developed. Next, Chapter 3 covers preliminaries on aircraft dynamics, spherical

trigonometry for aircraft navigation, and the optimal cruise speed for aircraft. These topics are then

used in a software flight management system framework for UAVs. The design and functionality of

the software FMS is presented along with experimental results obtained by interfacing the software

FMS with an industry flight simulator. Chapter 4 covers Voronoi diagrams and Reynolds Transport

Theorem and applies these concepts to an optimal control multi-agent coverage problem with agents

possessing second order dynamics. The change in area and the change in the position of the center

of mass of Voronoi cells are considered when developing a control law for the agents. Chapter 5

concludes the work presented in the thesis.

7

Chapter 2

Optimal Control Framework for UAV

Flight Management Systems

This chapter will consider the control of a quadrotor UAV which is determined by providing

a cost index, as found in aircraft flight management systems. We will also consider the trajectory

generation for the lateral movement of a fixed-wing UAV. Although a flight management system is

a very complex system (see chapter 3), we will consider the performance function of the FMS as it

relates to energy and cost effectiveness.

In this chapter we will present a time-dependent control law that provides a reference trajectory

when considering both the kinetic and potential energy of the quadrotor. We will also present a

state-feedback control law which is obtained analytically and does not require an infinite horizon.

The state-feedback controller allows the determination of a range of tuning parameters based on the

maximum velocity of the quadrotor.

2.1 Preliminaries

2.1.1 Quadrotor Mathematical Model

A quadrotor is an aerial vehicle which rotates by producing differentials in thrust between it’s

four motors. The following section presents the mathematical model of the quadrotor.

8

Reference Frames

An inertial reference frame will be considered attached to the center of a tangent plane on the

surface of the Earth 1. For a local area around the center of the tangent plane, the Earth can be

considered flat. The inertial coordinates are x, y, and z, where ex × ey = ez . Let ex be the unit

vector in the direction of the north pole and ez be the upwards unit normal vector to the tangent

plane.

Figure 2.1: Reference frame attached to a tangent plane on Earth.

The quadrotor’s orientation, between the body frame B and a reference frame F , can be rep-

resented through three rotations using Z-Y-X Euler angles roll, pitch, and yaw. The body axes are

fixed to the center of the quadrotor’s body and are illustrated in Fig. 2.2. The orientation of the body

frame B relative to the reference frame F is

F
BR(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ) (1)

1Although the Earth is not an inertial reference frame due to its rotation and movement, we can accurately approximate
it as an inertial reference frame for the applications considered in this thesis due to the relatively small magnitude of the
accelerations experienced by the Earth

9

where

Rx(φ) =

⎡
⎢⎢⎢⎢⎣
1 0 0

0 cosφ − sinφ

0 sinφ cosφ

⎤
⎥⎥⎥⎥⎦

Ry(θ) =

⎡
⎢⎢⎢⎢⎣
cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤
⎥⎥⎥⎥⎦

Rz(ψ) =

⎡
⎢⎢⎢⎢⎣
cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎤
⎥⎥⎥⎥⎦

(2)

and φ is the roll angle, θ is the pitch angle, and ψ is the yaw angle.

Figure 2.2: Quadrotor body axes and motors.

Quadrotor Dynamics

The following section presents the quadrotor’s dynamics using Newton-Euler’s equations. We

will consider the following assumptions:

Assumption 1. The quadrotor is a rigid body.

10

Assumption 2. The quadrotor flies at low speeds such that drag can be neglected.

Assumption 3. The quadrotor is symmetrical relative to the longitudinal x-z plane.

Assumption 4. The quadrotor will operate near hover conditions.

The quadrotor has four motors which generate forces along the body’s zb direction. Each motor

generates a force proportional to the square of the propeller’s angular velocity. The force can be

expressed as follows [38]:

Fi = kfω
2
i

(3)

where i denotes the index of the motor, kf is the thrust coefficient of the propeller, and ωi is the

angular velocity of motor i. Let us define U = [U1, U2, U3, U4]
T to be the control input vector

which describes the force U1 along the zb axis and the torques U2, U3, and U4 around xb, yb, and zb

respectively. The control input force and torques are [39]:

U1 = F1 + F2 + F3 + F4

U2 = l(F3 + F4 − F1 − F2)

U3 = l(F1 + F4 − F2 − F3)

U4 = cτ (ω
2
1 + ω2

3 − ω2
2 − ω2

4)

(4)

where l is the distance from the center of mass of the quadrotor to the center of a motor and cτ is

the reaction torque coefficient which can be experimentally determined. The translational dynamics

in the inertial frame are [40]:

ẍ = (sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(φ))
U1

m

ÿ = (sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ))
U1

m

z̈ = −g + (cos(θ) cos(φ))
U1

m

(5)

where m is the mass of the quadrotor in kilograms and g is the acceleration due to gravity (9.81m/s2).

The translational dynamics of the quadrotor in the longitudinal plane, for constant height, can be

11

derived from equation (5) by letting φ = 0, ψ = 0, and z̈ = 0, and is expressed as follows:

mg = T cos θ

mv̇ = T sin θ

(6)

where T is the total thrust generated by the quadrotor (equivalent to U1). The rotational dynamics

are described by [41]:

φ̈ =
Iyy − Izz

Ixx
θ̇ψ̇ − JTP

Ixx
θ̇Ω+

U2

Ixx

θ̈ =
Izz − Ixx

Iyy
φ̇ψ̇ +

JTP

Iyy
φ̇Ω+

U3

Iyy

ψ̈ =
Ixx − Iyy

Izz
φ̇θ̇ +

U4

Izz

Ω = −ω1 + ω2 − ω3 + ω4

(7)

where JTP is the rotational moment of inertia about the propeller axis. In equation (7), we have

used assumption 3 leading to the simplification Ixy = Iyz = 0. Since Ixz is much smaller than Ixx,

Iyy and Izz , it can be neglected. Assumption 4 allows the following approximations to be made:

φ ≈ 0, θ ≈ 0, and ψ ≈ ψ0, resulting in the following simplified translational dynamics:

ẍ = (sin(ψ0)φ+ cos(ψ0)θ)
U1

m

ÿ = (sin(ψ0)θ − cos(ψ0)φ)
U1

m

z̈ = −g +
U1

m

(8)

where ψ0 is a constant yaw angle. Linearizing equation (7) about the hovering state, with φ̇ ≈ 0

and θ̇ ≈ 0 yields the following attitude dynamics

φ̈ =
U2

Ixx

θ̈ =
U3

Iyy

ψ̈ =
U4

Izz

(9)

12

Figure 2.3: Longitudinal axes of a quadrotor.

2.1.2 Review of Optimal Control

There are many instances when a control engineer must face the trade-off between performance

and control effort when designing a controller for a system. The optimal control framework provides

a tool for engineers to weight parameters representing the performance of the system and determine

the ”optimal” control input to provide the best performance. In it’s simplest form, we can define

a function L(u) that we wish to minimize by selecting the appropriate control input vector u =

[u1, u2, ..., um]T [42][43]. Assuming there are no constraints on the control input vector and the first

and second partial derivatives of L(u) exist, the necessary conditions for a minimum are

∂L(u)

∂ui
= 0, i = 1, ...,m (10)

and
∂2L(u)

∂u2
≥ 0 (11)

13

Equation (11) is verified when the eigenvalues of the Hessian are greater than or equal to zero,

where the Hessian matrix is defined as

H =
∂2L(u)

∂u2
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2L(u)
∂u2

1

∂2L(u)
∂u1∂u2

... ∂2L(u)
∂u1∂um

∂2L(u)
∂u2∂u1

∂2L(u)
∂u2

2
... ∂2L(u)

∂u2∂um

...

∂2L(u)
∂um∂u1

∂2L(u)
∂um∂u2

... ∂2L(u)
∂u2

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The sufficient condition for a minimum is satisfied when the Hessian matrix is positive definite

(strictly positive eigenvalues)
∂2L(u)

∂u2
> 0 (13)

In engineering applications, we are often interested in dynamic systems, i.e. systems that have inter-

nal states and differential equations which govern the evolution of the those states. Let x represent

the vector of states for a given system. The dynamics of the system are expressed as follows:

ẋi = fi(x, u, t) (14)

where i = 1...N , N is the number of states in the state vector x = [x1, x2...xN]T , u is the vector of

control inputs, and t is time. Let us now consider the following scalar valued cost function

J = Φ(x(tf), tf) +

∫ tf

0
L(x(t), u(t), t) dt (15)

where L(x(t), u(t), t) is known as the running cost and Φ(x(tf), tf) is a scalar valued penalty on

the final state and final time tf . Let us consider the final time tf to be unspecified. We may also

consider that the states of the system have initial values x0 and some specified final values denoted

by the terminal constraint function Ψ(x(tf), tf) = 0. The optimal control problem can then be

14

formulated as follows:

J∗ = inf
u(t)

(
Φ(x(tf), tf) +

∫ tf

0
L(x(t), u(t), t) dt

)

s.t.

ẋi(t) = fi(x, u, t), i = 1...N

x(0) = x0

Ψ(x(tf), tf) = 0

(16)

where J∗ denotes the optimal cost.

Pontryagin’s Maximum Principle (PMP)

Pontryagin’s Maximum principle provides the necessary conditions to find the optimal control

law u∗(t) to minimize the cost function in equation (16). We can append the terminal constraints

and dynamics to the cost function as follows

J = (Φ + νTΨ)t=tf +

∫ tf

0
L(x(t), u(t), t) +

N∑
i=1

λT
i (fi − ẋi) dt (17)

where λi is a Lagrange multiplier for the dynamic constraint ẋi = fi and ν is a vector of Lagrange

multipliers for the terminal constraints in Ψ. The Hamiltonian is defined as

H = L(x(t), u(t), t) +

N∑
i=1

λT
i fi (18)

Using variational calculus for the case when the final time is unspecified, the following equations

are obtained as necessary conditions for optimality [43]

∂H

∂u
= 0 (19a)

λ̇i = −∂H

∂xi
(19b)

λT (tf) = (Φx + νTΨx)t=tf (19c)

Ω = (Φt + νTΨt + (Φx + νTΨx)f + L)t=tf = 0 (19d)

15

The Lagrange multiplier λi will henceforth be referred to as the co-state to state xi. For the case of

free final time and if the running cost L is not an explicit function of time, the Hamiltonian along

the optimal trajectory is zero [42]:

H∗ = 0 (20)

2.2 Optimal Trajectory of a Single Quadrotor

2.2.1 Time-dependent Optimal Control

Let us consider a quadrotor moving along a single axis while maintaining a constant height (see

Figure 2.3). Using (6) the quadrotor can be modeled as a nonlinear, second order system:

ẋ = v

v̇ = g tan(θ)

(21)

where x is the quadrotor’s position, v is it’s velocity, θ is the pitch angle, and g is the acceleration

due to gravity. The pitch angle will be considered as the control input. Let us assume that the

quadrotor will operate near hover conditions, which allows the following approximation to be used:

tan(θ) ≈ θ. The linearized dynamics are

ẋ = v

v̇ = gθ

(22)

The specified initial and final conditions are as follows

x(0) = x0

v(0) = v0

x(tf) = xf

v(tf) = vf

(23)

16

Consider the following cost function to be minimized:

J =

∫ tf

0

1

2
αv2 +

1

2
rθ2 + CI dt (24)

where α is the weighting parameter on the velocity of the quadrotor, CI is the cost index (a penalty

on the final time), and r is a weighting parameter on the square of the control input. If we select

α = m and CI = mgh0 then the cost function in (24) considers the kinetic energy, potential energy,

and the square of the control input. Although we are considering constant height, the term mgh0

can be seen as a penalty on the cruise height of the quadrotor. A larger height results in a higher

time penalty. This was chosen to provide consideration for the time it may take for the quadrotor

to ascend and descend to its target height h0 without incorporating it directly into the problem.

Substituting the cost function and dynamics into equation (18) yields the following Hamiltonian

H =
1

2
αv2 +

1

2
rθ2 + λ1v + λ2gθ + CI (25)

Taking the partial derivative of the Hamiltonian with respect to the control input yields the following

necessary condition for optimality (10):

∂H

∂θ
= λ2g + rθ = 0 (26)

Solving equation (26) for θ:

θ∗ = −g

r
λ2 (27)

where θ∗ represents the optimal control input. We also obtain the following property of r from the

sufficient condition (13):
∂2H

∂θ2
= r > 0 (28)

The time derivatives of the co-states from (19b) are as follows:

λ̇1 = −∂H

∂x
= 0

λ̇2 = −∂H

∂v
= −αv − λ1

(29)

17

From equation (29) we can note that λ1 does not vary as a function of time. Taking the second time

derivative of λ2 in (29) yields

λ̈2 = −αv̇ = −αgθ (30)

Substituting the optimal control input from (27) into equation (30) yields

λ̈2 = −g2
α

r
λ2 (31)

The solution of the second order differential equation is of the form:

λ2(t) = Aeg
√

α
r
(tf−t) +Be−g

√
α
r
(tf−t) (32)

where A and B are constants. Let us consider the linearized dynamics

ẋ = v

v̇ = gθ = −g2

r
λ2

(33)

and substitute equation (32) for λ2 yielding

v̇ = −g2

r

(
Aeg

√
α
r
(tf−t) +Be−g

√
α
r
(tf−t)

)
(34)

Integrating equation (34) yields the following expressions for the position and velocity of the

quadrotor

v(t) =
g√
rα

Aeg
√

α
r
(tf−t) − g√

rα
Be−g

√
α
r
(tf−t) + C

x(t) = − 1

α
Aeg

√
α
r
(tf−t) − 1

α
Be−g

√
α
r
(tf−t) + Ct+D

(35)

18

Using the initial and final conditions, the following five equations are obtained

x(0) = − 1

α
Aeg

√
α
r
tf − 1

α
Be−g

√
α
r
tf +D = x0 (36a)

v(0) =
g√
rα

Aeg
√

α
r
tf − g√

rα
Be−g

√
α
r
tf + C = v0 (36b)

x(tf) = − 1

α
A− 1

α
B + Ctf +D = xf (36c)

v(tf) =
g√
rα

A− g√
rα

B + C = vf (36d)

0 =
1

2
αv2f + CI − g2

2r
(A+B)2 + λ1vf (36e)

where (36e) is obtained from (19d). The constants (A, B, C, and D) and tf can be solved nu-

merically. One can also specify a final time and obtain an analytic solution for the constants. The

optimal control law is then

θ∗(t) = −g

r

(
Aeg

√
m
r
(tf−t) +Be−g

√
m
r
(tf−t)

)
(37)

Let us consider a flight with CI = mgh0, h0 = 1, m = 1, α = m, r = 100, v0 = vf = 0,

x0 = −100, and xf = 0. Solving (36) yields the following values:

A = −1.471193373 · 10−10

B = 4.515236410

C = 4.429446919

D = −104.5152364

tf = 24.61491803

(38)

19

Figure 2.4: Position of the quadrotor as a function of time.

Figure 2.5: Velocity of the quadrotor as a function of time.

20

Figure 2.6: Pitch angle of the quadrotor as a function of time.

Figures 2.4, 2.5, and 2.6 illustrate the optimal trajectory the quadrotor should follow if the

dynamics were indeed linear. The position and velocity of the quadrotor at the final time are zero as

desired. The pitch angle of the quadrotor is sufficiently small for the small angle approximation to

apply, although one could use the tuning parameters to trade-off a smaller pitch angle for a longer

final time. Applying the optimal control law in (37) to a quadrotor model with nonlinear dynamics,

equation (21), results in the trajectories shown in Figures 2.7 and 2.8. Most notably, one can see that

the position of the quadrotor does not end at zero as desired due to the error caused by linearization

and the control law is time-dependent or open-loop instead of a more robust state-feedback law.

This control law would not be suitable for implementation in a real system. The next section will

address this issue.

21

Figure 2.7: Position of the quadrotor as a function of time.

Figure 2.8: Velocity of the quadrotor as a function of time.

2.2.2 State-feedback Optimal Control

Let us again consider the problem of a quadrotor moving from one point to another, at a constant

height. We will consider the longitudinal dynamics of the quadrotor as illustrated in Fig. 2.3 and

will consider that the final time to reach the desired state is unspecified. Consider the cost function

J =

∫ tf

0

1

2
tan2 θ + CI dt (39)

22

where CI is a tuning parameter known as the cost-index, analogous to the parameter in commercial

aircraft (see chapter 3). Note that in many practical applications, quadrotors should not reach large

pitch angles since they may lose altitude due to limitations on the total thrust that can be generated.

To maintain a constant height as θ → π/2, the thrust must approach ∞. By using tan θ in the

cost function, we can discourage the use of large pitch angles since | tan θ| → |∞| as |θ| → |π/2|.
Using equation (6), and solving for T , the dynamics can be re-written as:

v̇ = g tan θ (40)

Let us make the substitution u = tan θ. We can now formulate the optimal control problem as

follows:

J∗ = min
u,tf

∫ tf

0

1

2
u2 + CI dt

s.t. ẋ = v

v̇ = gu

x(0) = x0, v(0) = 0

x(tf) = 0, v(tf) = 0

(41)

where we assume that x0 < 0 without loss of generality. The Hamiltonian for this OCP is

H =
1

2
u2 + CI + λ1v + λ2gu (42)

The necessary conditions is
∂H

∂u
= u+ λ2g = 0 (43)

which yields

u∗ = −gλ2 (44)

and the sufficient condition is satisfied:

∂2H

∂u2
= 1 > 0 (45)

23

Since the final time tf is free, and the running cost is not an explicit function of time we can use

the property from equation (20). Substituting the optimal control law from (44) into (42) yields the

Hamiltonian along the optimal trajectory:

H∗ = −g2

2
λ2
2 + CI + λ1v = 0 (46)

Solving equation (46) for λ2 yields:

λ2 = ±1

g

√
2(CI + λ1v) (47)

where, for a real solution, CI +λ1v ≥ 0. From Pontryagin’s Maximum Principle (19b), the co-state

dynamics are as follows:

λ̇1(t) = −∂H

∂x
= 0

λ̇2(t) = −∂H

∂v
= −λ1(t)

(48)

Integrating (48) from t to tf yields that λ1 is an unknown constant and

λ2(t) = λ2(tf) + λ1 · (tf − t) (49)

Taking the second time derivative of v, from the dynamics in (41), yields:

v̈ = gu̇ = g2λ1 (50)

Integrating equation (50):

v̇(t) = g2λ1t+A

v(t) =
g2

2
λ1t

2 +At+B

x(t) =
g2

6
λ1t

3 +
1

2
At2 +Bt+ C

(51)

24

where C = x0, B = v0, and A = −g2λ2(0), with final position and velocity equal to zero.

Applying the initial and final conditions of the velocity v in equation (47) yields:

λ2(0) = ±1

g

√
2CI

λ2(tf) = ±1

g

√
2CI

(52)

To accelerate forwards, the pitch angle θ must be greater than 0 at t = 0 and θ must be less than

zero at t = tf to deccelerate such that v(tf) = 0. Therefore (52) now becomes:

λ2(0) = −1

g

√
2CI

λ2(tf) = +
1

g

√
2CI

(53)

Let us consider equation (49) at t = 0 and substitute the expressions for λ2 from (53)

−1

g

√
2CI =

1

g

√
2CI + λ1 · tf (54)

and solving for the final time yields:

tf = − 2

λ1
·
√
2CI

g
(55)

Note that the final time must be positive and therefore λ1 < 0. Applying the final condition for x(t)

as given by equation (51) yields

0 =
g2

6
λ1t

3
f +

g

2

√
2CIt

2
f + v0tf + x0 (56)

and then substituting the expression for the final time in (55) allows us to solve for λ1 as

λ1 =

√
2CI

2gx0
± 2

√√√√−
√
2C3

I

3gx0

(57)

25

Selecting the positive sign in equation (57) ensures that the final time will be positive for all CI > 0

and x0 < 0. Substituting (57) into (47) yields

λ2 = ±1

g

√√√√√√√2CI + v

⎛
⎜⎜⎝
√
2CI

gx0
+ 4

√√√√−
√
2C3

I

3gx0

⎞
⎟⎟⎠ (58)

Which yields the optimal control input from (44):

u∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√2CI + 2v

(
√
2CI

2gx0
+

√
−4
√

2C3
I

3gx0

)
, x < x0

2

−
√√√√2CI + 2v

(
√
2CI

2gx0
+

√
−4
√

2C3
I

3gx0

)
, x > x0

2

0, x = x0
2

(59)

The switching law for u∗ can be found by examining the change in sign of λ2 in equation (47). The

switching time will occur at the maximum velocity which corresponds to the position of the quad

being at the midpoint x0/2, due to the symmetry of the problem. This symmetry can be seen in the

trajectory of the time dependent results of the previous section (see figures 2.4, 2.5, and 2.6) when

the initial and final velocity are selected to be 0. The maximum velocity, vmax, can be found as

follows:

λ2 = ±1

g

√
2(CI + λ1vmax) = 0

vmax = −CI

λ1

(60)

Substituting (57) into (60) yields:

vmax = − 6gx0
√
CI

3
√
2 +

√
−48g

√
2CIx0

(61)

Note that equation (61) allows for the selection of CI dependent on a restricted value of vmax. This

will enable a range of CI ’s to be determined such that the maximum velocity is not exceeded. A

vmax can be selected according to limitations in the thrust and pitch angle that a quadrotor can

generate or attain respectively. One may also consider the maximum allowable pitch angle of the

26

quadrotor, and select the appropriate CI according to equation (53) considering that u = gλ2 =

tan θ (the largest pitch angles occur at t = 0 and t = tf). As the value of CI increases to very large

values, the proposed problem will approach a minimum time problem and the commanded pitch

angle will therefor approach 90 degrees.

λ1

√
2CI

2gx0
+ 2

√
−
√

2C3
I

3gx0

λ2 ±1
g

√
2CI + v

(√
2CI
gx0

+ 4

√
−
√

2C3
I

3gx0

)

tf − 2
λ1

·
√
2CI
g

u∗ ∓
√
2CI + 2v

(√
2CI

2gx0
+

√
−4
√

2C3
I

3gx0

)

vmax − 6gx0
√
CI

3
√
2+
√

−48g
√
2CIx0

Figure 2.9: Position of the quadrotor as a function of time.

27

Figure 2.10: Velocity of the quadrotor as a function of time.

Figure 2.11: Pitch angle of the quadrotor as a function of time.

Figures 2.9, 2.10, and 2.11 illustrate the trajectory and pitch angle of a simulation of a quadrotor

travelling 100 meters with a cost index (CI) of 1. The quadrotor’s position and velocity both have

terminal values of zero and the quadrotor’s velocity is symmetric about tf/2 as expected.

28

Figure 2.12: Pitch angle of the quadrotor for different values of CI .

Figure 2.12 illustrates that smaller values of CI lead to a smaller magnitude in the pitch angle

and a longer final time tf .

29

Figure 2.13: Pareto curve illustrating the trade-off between the accrued cost of control effort

(
∫ tf
0

1
2 tan

2 θ dt) and the final time (tf) when varying CI .

Figure 2.13 presents the trade-off between accrued control effort and final time. The plot gives

insight into the benefit for choosing different values of CI when considering both the accrued control

effort and final time. Although terminal controllers (those which direct a dynamic system to a spec-

ified terminal state) have been present for many years, the terminal controllers presented in chapter

5 of [43] are restricted to quadratic cost functions and terminal penalties on the state, whereas the

problem studied in this section has a penalty on the final time not the final state. Therefore we cannot

directly use the results of the terminal controller section from [43] to solve the problem presented

in this section.

2.3 Fixed-wing Path Following

Let us now consider a path for a fixed-wing UAV. We expect that a larger fixed-wing aircraft

will be subject to similiar airspace restrictions as current commercial airliners. Although chapter

3 describes a flight management system in more detail for a fixed-wing UAV, let us consider a

30

simplified case where a path between two points is given and the goal is to follow the given path.

Pilots in commercial aircraft will often use the LNAV (lateral navigation) and VNAV (vertical

navigation) FMS capabilities to provide references to the auto-pilot. The lateral navigation com-

ponent of an FMS provides guidance in the lateral plane according to the flight plan. To construct

the LNAV module in the software FMS, we must first define a few navigational terms which are

used in the lateral guidance of the aircraft. The cross-track error is the shortest distance between the

aircraft and the active leg. The along-track distance is the distance along the track of the aircraft if

the cross-track error was zero (see Figure 2.3). There are many terms that describe different angles

in the lateral plane, these include: course, track, bearing and heading. The desired track, or course,

is the angle measured clockwise from true north to the path and is independent of the aircraft. Bear-

ing is measured clockwise from true north to the vector which starts at the aircraft and ends at the

desired waypoint. Heading is the clockwise angle formed between true north and the nose of the

aircraft. Figure 2.3 illustrates these angles. Note that pilots will generally use the angles measured

from magnetic north, not true north, therefore the magnetic declination (also known as magnetic

variation) must be used to convert between true and magnetic north:

MN = TN +D (62)

where MN is magnetic north, TN is true north, and D is the declination in degrees West.

31

Figure 2.14: Illustration of lateral guidance variables.

To guide the aircraft in the lateral plane along the active leg, we must develop a controller which

provides a desired roll angle to the auto-pilot. Reference [44] provides a general form for the desired

roll angle as follows:

φdes = kxtrkextrk + ktrketrk + φo (63)

where kxtrk is the cross-track error gain, extrk is the cross-track error, ktrk is the track error gain,

etrk is the track error, and φo is the nominal roll angle (i.e. turn angle). We will consider an

alternative control law for the desired roll angle under the assumption that we are interested in

tracking the path locally. With this assumption, the equations of motion in the horizontal plane over

32

a flat Earth are given by [45]

ẋ = v cosψ

ẏ = v sinψ

v̇ =
g

W
(T cosα−D)

ψ̇ =
g

Wv
(T sinα+ L) sinμ

γ̇ =
g

Wv
(T sinα cosμ+ L cosμ−W) = 0

Ẇ = −SFCT

(64)

where ψ is the heading angle, μ is the bank angle, assuming that there is no sideslip. Let us also

assume that the angle of attack α is small, the bank angle μ is small, the term T sinα is much smaller

than the lift L and weight W, and the aircraft is flying at a constant speed (v̇ = 0). These assumptions

are considered reasonable for commercial aircraft and lead to a simplification of equation (64) as

ẋ = v cosψ

ẏ = v sinψ

T = D

ψ̇ =
g

Wv
L sinμ

L = W

Ẇ = −SFCT

(65)

The centripetal force during a turn is caused by the component of the lift in the horizontal plane, as

illustrated in Fig. 2.3, providing the following constraint

L sinμ =
W

g

v2

r
(66)

where r is the radius of the turn.

33

Figure 2.15: Horizontal component of the lift providing the centripetal acceleration during a turn.

Without loss of generality, we can represent the lateral guidance of the aircraft to the desired

path as the convergence of the aircraft to the xc axis, where the xc axis aligns with the desired path

(see Fig. 2.3). We desire that yac = 0 and that the aircraft’s heading tracks the desired heading

(ψ = ψd). We now present the control law stated as a theorem following closely the work of [46].

34

Figure 2.16: The desired path is along the xc axis, with ψ being the relative heading between the

aircraft and the xc axis. The value of yac represents the cross-track error.

Theorem 1. Consider a desired heading ψd = −gδ(yac) where yac is the yc coordinate of the air-

craft, gδ is class C1, the aircraft dynamics in equation (65) and the following bank angle command

sinμ =
Wv

gL

(
∂ψd

∂yac
v sinψ − λψyacv

sinψ − sinψd

ψ − ψd
− kλψv(ψ − ψd)

)
(67)

where λψ > 0 and k > 0 are constant parameters, and with the constraints gδ(0) = 0 and

yac sin(gδ(yac)) > 0, ∀yac
= 0, yac sin(gδ(yac)) = 0 for yac = 0. Then yac and ψ converge to zero

asymptotically.

Proof. Let us consider the following candidate Lyapunov function from [46]

V =
1

2
y2ac +

1

2λψ

(
ψ − ψd

)2

(68)

where yac is the y-coordinate of the aircraft in the course axes, λψ > 0, ψ is the relative heading of

the aircraft to the xc axis and ψd is the relative desired heading as a function of yac. Both ψ and ψd

are measured from the xc axis in the clockwise direction. For V to be a Lyapunov function, with

35

state vector x =

[
yac ψ

]T
, the following conditions must be satisfied [47]:

1. V (x) > 0, ∀x
= 0

2. V (x) = 0, x = 0

3. V̇ (x) < 0, ∀x
= 0

4. V̇ (x) = 0, x = 0

(69)

The function V in (68) is positive, and zero when yac = 0 and ψ = ψd. If we enforce that ψd(0) = 0

(as stated in the theorem: ψd = −gδ(yac) and gδ(0) = 0) then V meets the requirements of the first

two conditions in (69). The time derivative of equation (68), yields

V̇ = yacẏac +
1

λψ
(ψ − ψd)(ψ̇ − ψ̇d) (70)

Substituting the dynamics from (65) into (70)

V̇ = yacv sinψ +
1

λψ
(ψ − ψd)(

g

Wv
L sinμ− ψ̇d) (71)

We must now select a control input, sinμ, to ensure V̇ is negative definite as required in (69). Using

the control input proposed in the theorem and substituting it into equation (71) yields

V̇ = yacv sinψd − kv(ψ − ψd)
2 (72)

which requires that the speed of the aircraft v > 0, yac sinψd > 0, ∀yac
= 0 and yac sinψd =

0, yac | yac = 0, and k > 0 for V to be a Lyapunov function.

Let us consider the sigmoid function presented in [46] which satisfies the conditions of the

theorem:

gδ(yac) = ψa
e2kδyac − 1

e2kδyac + 1
, 0 ≤ ψa < π (73)

where kδ > 0 and the profile of the desired heading with respect to yac can be tuned using kδ.

Figure 2.3 illustrates the profile of equation (73) for a few values of kδ, where yac is the cross-track

36

error and the relative heading is the desired heading ψd. As yac increases in magnitude, |gδ| → ψa.

With ψd = −gδ, we can select ψa = π/2 to provide a desired heading that is perpendicular to the

course when the aircraft is relatively ”far” from the desired track.

Figure 2.17: Profile of the sigmoid function for various gains kδ.

The work presented in [46] provides trajectory tracking for wheeled robots, whereas this section

has used the technique from [46] to apply similar trajectory tracking for fixed-wing UAVs and

aircraft.

37

Chapter 3

Software Flight Management System

Most large commercial aircraft have a flight management system (FMS) which performs many

critical functions, such as [44]:

• Estimating states of the aircraft (i.e. position, speed, etc.)

• Constructing a flight plan

• Trajectory prediction

• Lateral and vertical guidance

• Performance functions (i.e. optimal cruise speed)

Commercial flight management systems are required to adhere to strict requirements (such as those

presented in [48]). We aim at replicating some functionality, as listed in the requirements below,

which may be extended in future work. For the prototype developed in this thesis, we do not impose

any restrictions or regulations upon the software FMS (SFMS). For example, we do not consider

the software certification and we do not consider airspace restrictions for the lateral navigation and

guidance.

3.1 Software Flight Management System Overview

The SFMS must provide the following functionality:

38

• Interface with the Marinvent Piaggio Avanti flight simulator housed at Concordia University

using ARINC 429 and 834 protocols

• Compute and display the optimal target airspeed for cruise

• Perform lateral navigation and guidance to follow a given flight plan

• The user must be able to create a flight plan from a navigation database

To address these requirements the software will be programmed in a modular architecture, with a

clear mapping of a real FMS to the software FMS. Fig. 3.1 indicates the block diagram components

of an FMS that will be addressed in the software FMS.

Figure 3.1: FMS block diagram with highlighted blocks relating to the software FMS [1].

Let us first examine how each component will be translated to a software module. Using the

diagram in Fig. 3.1 as reference, the central display unit (CDU) will be the user interface (UI) on a

tablet or laptop. The flight plan management will construct a flight plan from the navigational way-

points entered by the user. The cost index entered by the user will be utilized in the ”performance”

module to determine the airspeed during cruise (which is highlighted as the airspeed target). The

lateral navigation will handle the lateral path determined by the waypoints in the flight plan and

output a desired roll command to the pilot or autopilot. The software FMS is divided into modules

39

as illustrated in Fig. 3.2. The navigation module is divided into two sub-modules, one to parse the

navigation database and the other to perform lateral navigation and guidance, labelled as ”Parser”

and ”Lateral” respectively.

Figure 3.2: Sofware FMS module block diagram.

The communication module will perform the encoding/decoding according to the ARINC 429

and 834 protocols, as well as setup the network connection with the AID. The flow chart represent-

ing the program flow is illustrated in Fig. 3.3. Upon launching the SFMS, the waypoints from the

navigation database are loaded into memory along with the aircraft parameters. A communication

thread creates the network connection and requests/sends data using the ARINC 429/834 protocol.

In parallel with the communication, the user can enter a flight plan. Note that the lateral guidance

does not engage until the user has loaded the flight plan. A roll angle of 0 degrees is sent as a

reference until the lateral guidance is activated. The user will also be able to specifiy a cost index

and the optimal target indicated airspeed will be displayed as determined by equation (93).

40

Figure 3.3: The software FMS high level program flow chart.

The rest of this chapter describes the prototype software flight management system that was

developed as a research platform in further detail.

3.2 Preliminaries

3.2.1 Longitudinal Equations of Motion of an Aircraft

The material in this section is based on [45], [49], and [2]. An aircraft is subject to aerodynamic

forces during flight due to the flow of air around the body of the aircraft. To derive the equations of

motion in the longitudinal plane, a few assumptions must be made:

41

• The Earth is flat and non-rotating.

• The atmosphere is at rest relative to the Earth.

• The aircraft has a right-left plane of symmetry and is modeled as a variable-mass particle.

• The forces acting on the aircraft act at its center of gravity.

We can now define four coordinate systems using these assumptions. The ground axes are fixed on

the ground plane at mean sea level with the xz plane as the vertical plane. The horizon coordinate

system is positioned at the aircraft center of gravity and is parallel to the ground axes (i.e. it does

not rotate with the aircraft body). The wind coordinate system is also located at the center of gravity

of the aircraft, with the xw axis pointing in the direction of the velocity of the aircraft. The body

axes are fixed to the center of gravity of the aircraft and will rotate with the body.

Figure 3.4: Coordinate systems in longitudinal plane [2].

The flight path angle γ is the angle between the wind axes and the horizon axes as illustrated

in Fig. 3.2.1. The angle between the body axes and the wind axes is the angle of attack α. The

longitudinal equations of motion of an aircraft, with speed v and weight W , in the ground coordinate

42

frame are

ẋ = v cos γ

ḣ = v sin γ

v̇ =
g

W
(T cosα−D −W sin γ)

γ̇ =
g

Wv
(T sinα+ L−W cos γ)

Ẇ = −SFCT

(74)

Note that we are assuming that the thrust vector generated from the propulsion is aligned with the

body axis xb. The forces due to the lift and drag are expressed as follows:

L =
1

2
CL(α,Re,M)ρSv2

D =
1

2
CD(α,Re,M)ρSv2

(75)

where the coefficients CL and CD are functions of the angle of attack α, Reynolds number Re, and

the Mach number M. The lift and drag coefficients can be further expanded as

CL = CL0 + CLαα

CD = CD0 + CDiC
2
L

(76)

where CL0 is the incompressible lift coefficient, CLα is the angle of attack lift coefficient , CD0 is

the profile drag coefficient, and CDi is the induced drag coefficient due to lift. Let us now consider

some assumptions that can be made for an aircraft in quasi-steady flight during cruise:

• γ = 0

• γ̇ = 0

• v̇ = 0

• ḣ = 0

• α is small

• |T sinα| << W

43

Applying these assumptions to equation (74) results in the following simplified longitudinal equa-

tions of motion:

ẋ = v

T = D

L = W

Ẇ = −SFCT

(77)

3.2.2 Aircraft Navigation

This section is based on the material in [50][51][52][53]. The primary reference frames used

in aircraft navigation are Earth Centered Inertial (ECI), Earth Centered Earth Fixed (ECEF), the

Geodetic reference frame, and the local tangent plane (see Fig. 3.2.2). The ECI reference frame

is considered fixed, with the origin at the center of the Earth aligned with the equatorial plane,

relative to the distant stars with xi aligning with a celestial reference point, zi aligned with the axis

of rotation in the direction of North, and yi chosen such that xi × yi = zi. ECEF is aligned with

the ECI reference frame along the zi axis but rotates with the Earth, where the xe axis connects

the center of the Earth with the intersection between the Greenwich meridian and the equator. The

Geodetic reference frame also rotates with the Earth and has its origin at the center of the equatorial

plane. The Geodetic coordinates are defined by two angles, latitude φ and longitude λ, and a height

above the Earth h. Latitude is measured from the equator and is considered positive in the northern

hemisphere and negative in the southern hemisphere. Longitude is measured from the Greenwich

Meridian and is positive in the eastern direction and negative in the western direction. Latitude is

constrained between −90 and 90 degrees, while longitude is in the range of −180 and 180 degrees.

The heading of an aircraft is considered relative to true north and is increasing in the clockwise

direction.

44

Figure 3.5: ECEF, ECI, Geodetic, and local tangent plane reference frames [3].

Although we considered a flat Earth when deriving the longitudinal dynamics of an aircraft

locally, we must consider a spherical Earth for the purpose of generating the path between points on

the Earth. Using the approximation of the Earth as a sphere allows us to simplify the calculations

required for navigation and provides sufficient accuracy for the prototype software FMS. We will

consider flight paths which do not come close to the poles of the Earth.

The distance between two points and the departure course are of particular interest to aircraft

navigation. The shortest path between two points on a sphere is a geodesic, which is a path that lies

on a great circle. A great circle is defined as a circle with the same radius as the Earth and partitions

the sphere into two equal parts. To derive the equations for the distance and course, one creates a

spherical triangle on the surface of the Earth (see Fig. 3.6).

45

Figure 3.6: A spherical triangle created by intersecting geodesics.

Using spherical geometry [53], the relationship between the length of the sides and angles of a

spherical triangle is given by Napier’s rules as follows:

cos a = cos b cos c+ sin b sin c cosA

cos b = cos a cos c+ sin a sin c cosB

cos c = cos a cos b+ sin a sin b cosC

(78)

Note that the length of the sides of a spherical triangle are in radians since the equations are derived

on a unit sphere and therefore the distance of the arc length will be equal to angle created by the

arc. To extend the results to navigation on a spherical model of the Earth, the arc lengths can be

represented in distance units by multiplying the arc length by the radius of the Earth. Equation (78)

can be further manipulated, under the assumption that the six angles a, b, c, A, B, and C lie in the

range [0, π], to yield the law of sines:

sin a

sinA
=

sin b

sinB
=

sin c

sinC
(79)

Let us consider the two points A and B, with geodetic coordinates (λ1, φ1) and (λ2, φ2), using the

spherical model of the Earth. We will consider both points to have the same height (i.e. on the

surface of the Earth). Assigning point C in Fig. 3.6 to be the North Pole and points A and B as the

46

two points of interest, we can make the following substitutions

C = φ2 − φ1 (80)

and

a =
π

2
− λ2

b =
π

2
− λ1

(81)

The arc length c is the distance between the two points of interest, which will be denoted as d (see

Fig. 3.7).

Figure 3.7: A spherical triangle created by intersecting geodesics and applying the geodetic coordi-

nates.

Applying equation (78) to the spherical triangle illustrated in Fig. 3.7 and solving for arc length

d yields

d = cos−1

(
cos(

π

2
− λ2) cos(

π

2
− λ1) + sin(

π

2
− λ2) sin(

π

2
− λ1) cos(φ2 − φ1)

)
(82)

To find the true course at which to depart from (λ1, φ1) to (λ2, φ2), we apply equation (79) and

solve for the angle A:

A = sin−1

(
sin(π2 − λ2) sin(φ2 − φ1)

sin d

)
(83)

Note that (83) is not well defined for d = nπ where n is any integer, and that the true course will

47

vary along the geodesic. The literature addresses implementation details such as the prevention

of inaccuracies near the poles when performing certain computations. However, these will not be

discussed in the work presented here.

3.2.3 Optimal Cruise Speed

We cannot determine the optimal cruise speed without first defining the functional to be opti-

mized. From the perspective of a commercial airline, it would likely be in terms of the cost of the

flight. The cost of a flight can be divided into time-related costs (wages, maintenance, etc.) and the

cost of burned fuel. The cost index (CI) represents the ratio of the time-related costs and the cost

of fuel. Therefore a large CI will put more emphasis on the time-related costs and a small CI will

put more emphasis on the cost of fuel. A value of CI = 0 considers only the cost of fuel with no

consideration for the time of flight and as CI → ∞ the opposite is true. The work in [28] has found

an analytic expression for the cruise speed for a given aircraft and a given cost index, by formulating

the problem as an optimal control problem. The performance measure to be minimized in [28] is

J =

∫ td

tc

ff + CI dt (84)

where tc is the time when the aircraft begins to cruise (top of climb), td is the unspecified time when

the aircraft ends cruise (top of descent), and ff is the fuel flow rate. Let us consider the simplified

longitunidal equations of motion from (77). Using the condition in steady flight that L = W and

equation (76), the lift coefficient CL can be expressed as follows:

CL =
2W

ρSv2
(85)

and is substituted into the expression for the drag coefficient in equation (76) to yield

CD = CD0 + CDi

(
2W

ρSv2

)2

(86)

48

Equation (86) can then be substituted into (75) to yield the following force due to drag

D =
1

2
CD0ρSv

2 + 2CDi

W 2

ρSv2
(87)

assuming that the aircraft is flying below the drag divergence Mach number. With the constraint

T = D we can reduce the longitudinal dynamics in (77) as follows

ẋ = v

Ẇ = −SFCD

(88)

The optimal FMS control problem can now be expressed as [28]

J∗ =min
v, td

∫ td

tc

SFCD + CI dt

s.t.

ẋ = v

Ẇ = −SFCD

x(tc) = xc, x(td) = xd

W (tc) = Wc

(89)

where Wc is the weight of the aircraft at the top of climb, xc is the position of the aircraft at the

top of climb, and xd is the position of the aircraft at the top of descent. The solution to the optimal

control problem in (89) is found to be [28]

v =

√√√√CI +
√
C2
I + 12(1− J∗

W)2S2
FCCd0CdiW 2

(1− J∗
W)SFCCd0ρS

(90)

where the dynamics of J∗
W are

J̇∗
W = (J∗

W − 1)
4SFCCdiW

ρSv2
(91)

49

with the following known final value

J∗
W (td) = 0 (92)

In [28], it is shown that 0 ≤ J∗
W < 1 and can be approximated as zero for all time. This approx-

imation becomes less accurate for longer flights. With the substitution of J∗
W = 0 into (90), the

sub-optimal solution is

v ≈

√√√√CI +
√
C2
I + 12S2

FCCd0CdiW 2

SFCCd0ρS
(93)

The sub-optimal speed in (93) will be used in the software FMS as the reference speed for the pilot.

3.3 The ARINC 429 Communication Protocol

The ARINC 429 Specification [54][4] describes how avionics systems should interact with one

another, i.e. the electrical characteristics and the bit structure. The avionics devices (such as a

GPS) are designated as line replaceable units, or LRUs. The LRUs are connected using a shielded

twisted pair wire and only support uni-directional communication. Each transmitter supports up to

20 receivers on a single twisted pair wire. For bi-directional communication, such as serial receive

and transmit, a second twisted pair wire is required. Fig. 3.8 presents the different topologies found

in ARINC 429, with the ”Star” and ”Bus-Drop” topologies being the most commonly used.

50

Figure 3.8: ARINC 429 connection topologies [4].

A message in ARINC 429 commonly consists of a single 32 bit word, although multiple 32 bit

words are possible in a single message (see Fig. 3.9). The label and the parity bit are the only neces-

sary overhead bits for each 32 bit word, while the sign/status matrix (SSM) and source/desitnation

identifier (SDI) bits can be used to provide extra precision. The use of the SSM and SDI bits are

specific to the label being used and the documentation (see [54]) should be referenced for the use of

the labels. The data word can be coded in either binary, binary coded decimal, or alphanumeric data

according to ISO (International Organization for Standardization) alphabet No. 5 [54]. The label is

decoded into octal format to match the standard.

51

Figure 3.9: ARINC 429 word format [4].

3.4 The ARINC 834 STAP Communication Protocol

The ARINC 834 Specification [5] describes how to interface with an aircraft network using

commercially available technology (i.e. laptop, tablet, etc). The ARINC 834 Specification pro-

vides three aircraft interface services: Generic Aircraft Parameter Service (GAPS), Simple Text

Avionics Protocol (STAP) and Avionics Data Broadcast Protocol (ADBP). Currently only STAP

provides both read and write access to avionics devices, and is therefore the only viable choice for

the software FMS.

Marinvent Corporation has supplied a STAP program, Stapify, which the software FMS can

connect to. Using Stapify, we are able to request data from the avionics (longitude, latitude, altitude,

etc.), as well as send data (roll and pitch commands, and a target speed). The process of requesting

data from the avionics functions as a subscription service. By subscribing to a particular label, the

software FMS will receive the desired data periodically. Fig. 3.10 describes the syntax to request

a subscription where the receiver number is the ID of the avionics component we would like to

request the specified label from.

Figure 3.10: ARINC 834 syntax to add a subscription [5].

52

To transmit data one must first encode the data in ARINC 429 according to Fig. 3.11 and then

wrap that data in ARINC 834 according to Fig. 3.11. This process is illustrated in Fig. 3.12.

Figure 3.11: ARINC 834 syntax to transmit data [5].

Figure 3.12: ARINC 429 wrapped in ARINC 834 [4][5].

Using the protocol described above, the software FMS is able to receive latitude, longitude,

track, altitude and the fuel flow rate, as well as send a roll command, pitch command, and a target

airspeed, in real time (as illustrated in Fig. 3.13).

53

Figure 3.13: Aircraft states are displayed by the software FMS in real time using the ARINC

429/834 Specifications.

3.5 Constructing a Flight Plan

A flight plan can be defined as the route an aircraft will take from a departure airport to a

destination airport [44]. It may contain a variety of different waypoints and procedures, such as:

• SID (standard instrument departure) and STAR (standard arrival) procedures

• Airways

• Pre-defined routes

• Fixes (en route waypoints, navaids, nondirectional beacons, terminal waypoints, airport ref-

erence points, runway thresholds)

• Crew-defined fixes (i.e. lat/lon waypoints)

SID and STAR are procedures for taking-off and landing, respectively. These procedures are stored

in a database that can be accessed by the FMS. While the aircraft is stationary at the airport gate

before take-off, the pilot will usually enter the flight plan into the FMS. The pilot will be required

to provide the departure procedure and enter the identifiers for the waypoints along the flight. The

54

software FMS will be restricted to a database of navigational waypoints taken from X-Plane ignoring

SIDs, STARs, airways, and restricted airspace, to reduce the complexity of the flight plan software

module. The user of the SFMS can enter the identifier for an airport or navigational waypoint,

and the software FMS will then compute great circles connecting navigational waypoints from the

database to provide the departure course from each waypoint and distance between them.

Figure 3.14: Fly over and fly by turn maneuvers for an aircraft traveling from waypoint A to C,

passing through waypoint B. The black line is the aircraft path and the orange line is the direct path

between waypoints.

The path between two waypoints will be defined as a ”leg”. A flight plan is generally made up

of many legs and the FMS must compute the transitions between adjoining legs. As stated by the

FAA [48]: ”If the course outbound from a fix differs from the course inbound to the fix (courses

measured at the fix), a turn is indicated”. Constructing a turn requires the consideration of a pilot’s

reaction time as well as the delay in the roll response of the aircraft. Although the construction

of a turn is a complex procedure, we will consider a simplified case for the software FMS. Two

common turn types will be considered, the ”fly over” and ”fly by” turn maneuvers. The fly over

turn maneuver only initiates a turn once the aircraft has flown over the target waypoint. This causes

an overshoot of the next lateral path (see Fig. 3.14). The fly by turn maneuver anticipates the next

turn and will by-pass the waypoint to perform a turn which prevents any overshoot of the next leg

(see Fig. 3.14). The fly by turn maneuver is the prefered method when possible since it provides

the shortest path when transistioning between legs. Note that the turn maneuver is dependent on

many variables, such as airspace restrictions and the magnitude of the change in heading required.

55

Reference [48] describes in detail many of the different situations that can be encountered.

3.6 Experimental Results Using a Flight Simulator

Using Marinvent Corporation’s flight simulator, we were able to validate the prototype software

FMS. Let us consider a flight in the Montreal area of Quebec, Canada. The test flight will consist

of three waypoints to test the fly-by and fly-over turn maneuvers, as well as the lateral guidance

for tracking a path between two waypoints. The flight plan will consist of the following waypoints:

Saint-Hubert Longeuil Airport (CYHU), Pierre-Elliot Trudeau International Airport (CYUL), and

Mirabel International Airport (CYMX). Fig. 3.6 shows the interface that the user will use to add

waypoints, via the identifier code, and to load the flight plan.

Figure 3.15: Upon adding the three waypoints and pressing the ”Load Flight Plan” button, the

distance (nautical miles) and track (degrees East) for each pair of waypoints are computed and

displayed for the user.

The aircraft used for the simulator test flights is the Piaggio Avanti, with the model parameters

provided by Marinvent. The initial conditions can be seen in Table 3.6. The aircraft is purposely

initiated away from the first leg, and with a different heading to that of the course, to emphasize

the transient response. Figure 3.6 illustrates the trajectory of the aircraft. The aircraft begins near

56

Initial Conditions
Parameter Value Units
Latitude 45.4928 degrees N
Longitude 73.4400 degrees E
Altitude 10,000 feet
True Heading 15.66 degrees E
TAS 212 knots

Table 3.1: Initial conditions used for the experimental results.

St. Hubert and turns west to track the leg from CYHU to CYUL. As the aircraft approaches CYUL

(marked by the red dot in Figure 3.6), the aircraft performs a fly by turn maneuver and transitions

from the first leg (CYHU to CYUL) to the second leg (CYUL to CYMX). Figures 3.6 and 3.6 show

the tracking of the desired path.

Figure 3.16: The trajectory of the aircraft is denoted by the pink line, from CYHU to CYUL to

CYMX.

57

Figure 3.17: The first leg of the flight plan with the dashed line denoting the straight line trajectory

between the waypoints.

58

Figure 3.18: The second leg of the flight plan with the dashed line denoting the straight line trajec-

tory between the waypoints.

The results of this section validate the prototype software FMS and meets the proposed func-

tionality stated in section 3.1.

59

Chapter 4

Multi-agent Coverage Problems and

Voronoi Cell Dynamics

This chapter will address multi-agent coverage problems involving agents with second order

dynamics. We will consider a partitioned region for which the agents must provide coverage. These

problems can be related to many real-life applications such as search and rescue, deployment of

mobile network access points, and surveillance. To develop a control law for the agents we will

require a property of Voronoi cells, that is derived in this chapter, which is not presently available

in the literature to the best of the author’s knowledge. This chapter is structured as follows. The

preliminaries on Voronoi diagrams and Reynolds Transport Theorem are reviewed in Section 4.1.

The dynamics of the area of a Voronoi cell is derived geometrically, and using Reynolds Transport

Theorem, in Section 4.2. Section 4.3 derives the dynamics of a Voronoi cell’s center of mass using

geometry and Reynolds Transport Theorem. Finally, a coverage problem is addressed using the

results on Voronoi cells in Section 4.4.

4.1 Preliminaries

This section presents the required background on Voronoi diagrams based on references [29]

and [55], and Reynolds Transport Theorem based on [56] and [57].

60

4.1.1 Voronoi Diagram

Let Q be a bounded convex polytope in �N and X = (x1, ..., xn) be a set of n distinct points,

where the set X is known as the generator set of the Voronoi diagram. Consider the partition of Q

into n subsets, such that they only overlap on sets of measure zero. Let the partitioning of Q be the

Voronoi diagram V(P) = {V1, ..., Vn}, where Vi = {q ∈ Q | ‖q − xi‖ ≤ ‖q − xj‖, ∀j
= i} is

defined as the Voronoi cell of generator xi. Voronoi partitions Vi and Vj are considered neighbouring

partitions if Vi ∩ Vj
= ∅, i.e. the Voronoi partitions share a boundary. Let N (i) be the set of all

generators that are neighbours of generator xi. Let φ : Q → �+ be a density function that is

measurable and bounded.

Figure 4.1: Voronoi diagram of a finite convex area.

The mass of Voronoi cell Vi is

MVi =

∫
Vi

φ(q) dq (94)

and the center of mass, also known as the centroid, is

CMVi =
1

MVi

∫
Vi

qφ(q) dq (95)

61

4.1.2 Reynolds Transport Theorem

The Reynolds transport theorem (RTT) provides a generalization of the Leibniz rule in �3 [58]

and has applications in both fluid mechanics and continuum mechanics, among other fields. Con-

sider a non-deforming control volume cv bounded by a control surface cs in a rectangular Cartesian

coordinate system. Given the function A, which is continuous with respect to time, (which may

yield a scalar, vector, or tensor) and ρ being a continuous function representing the mass density,

then
d

dt

∫
cv
Aρ dV =

∫
cv

∂

∂t
(Aρ) dV +

∫
cs
Aρv · n dA (96)

where v is the rate at which the quantity defined by A crosses the control surface and n is the outward

normal unit vector to the control surface. See [56] for more details on the use of RTT in continuum

mechanics. Let us also consider Reynold’s transport theorem application to fluid mechanics [57] as

follows: Let cv be a control volume, in which the change of properties of the fluid will be observed.

Let B represent a property of the fluid (such as kinetic energy) and b represent the fluid property per

unit mass (i.e. B/m). The RTT formulation for non-deforming control volumes in fluid mechanics

is
dBsys

dt
=

∂

∂t

∫
cv
ρb dV +

∫
cs
ρbv · n dA (97)

where ρ is the density of the fluid, cs is the control surface, v is the velocity of the fluid, and n is

the outwards unit normal vector along the control surface. The result of v · n is positive for outflow

and negative for inflow of the control volume under consideration. For example, let us consider the

conservation of mass law using RTT (B = m and b = 1):

ṁsys = 0 =
∂

∂t

∫
cv
ρ dV +

∫
cs
ρv · n dA (98)

Since mass can be neither destroyed nor created, equation (98) states that the change in mass in the

control volume must be due to the net flow across its control surface.

62

4.2 Analysis of the Change in Voronoi Cell Area for Moving Genera-

tors

This section uses geometry to derive how the area of a Voronoi cell changes with respect to

neighbouring generators. The analysis in this section is restricted to 2D Voronoi diagrams. Although

a formua for the change in area of a Voronoi cell as a function of the dynamics of its generator is

already known (see [30]), this section provides an alternative geometric derivation in 2D that adds

considerable insight into the problem. We also provide a formula for the change in center of mass

which is new to the best of our knowledge. These results are then proved for general n using

Reynolds Transport Theorem.

4.2.1 Geometric Analysis of Change in Area

Let there be n generators in a convex polytope Q ∈ �2 and assume φ(q) = 1, ∀q ∈ Q (which

states that the mass of a Voronoi cell is equal to its area). Let xi be the generator of Voronoi cell Vi,

where i = 1, ..., n. Consider the 1D boundary ∂Vij between generators xi and xj , where j ∈ N (i).

Let Rij be the vector from generator xi to xj with norm Rij , nij be the unit vector along Rij , and

cij be the vector from the point of intersection of Rij and the boundary, to the center of mass of the

boundary ∂Vij (see Fig. 4.2). The unit vector along cij is defined as bij . Let the boundary have a

finite length, lij .

Theorem 2. Given a Voronoi cell Vi, with generator xi, area AVi , and neighbouring generator xj

where j ∈ N (i), the following result holds [30]

∂AVi

∂xj
= −lij

(
cijbij
Rij

− nij

2

)
(99)

Proof. Let a local coordinate system be chosen with first axis along the tangential direction to

the boundary between cells i and j (bij) and second axis along the normal to that direction (nij).

Consider a small displacement δxj of xj , where δxj can be decomposed into a component that is

63

parallel to the boundary and a component that is normal to the boundary ∂Vij as follows

δxj =

[
δx1j δx2j

]T

Fig. 4.2 illustrates the change in the Voronoi cell due to the displacement δxj which is parallel to

the boundary. It is clear from Fig. 4.2 that

tan(φ) =
δx1j
Rij

(100)

Furthermore, we can partition the area lost and gained by each Voronoi cell as illustrated in Fig. 4.2.

Figure 4.2: Voronoi boundary shift due to a displacment of generator xj tangential to the boundary.

The partitioned areas are calculated geometrically as follows.

A1 =
1

2

(
lij
2

− cij

)2 δx1j
Rij

A2 =
1

2
c2ij

δx1j
Rij

A3 =
1

2
lijcij

δx1j
Rij

A4 =
1

2

l2ij
4

δx1j
Rij

(101)

64

Using equation (101), the change in area for Vi is calculated as follows.

δAVi = A1 −A2 −A3 −A4 = −δx1j lij
cij
Rij

(102)

Dividing both sides by δx1j , and taking the limit as δx1j → 0, yields the first term on the right hand

side of equation (99)
∂AVi

∂x1j
= lim

δx1
j→0

δAVi

δx1j
= −lij

cij
Rij

(103)

Now let us consider a displacement in the direction normal to the boundary, as presented in Fig.

4.3. The intersection point of Rij and the boundary is (xi + xj)/2, therefore a displacement of δx2j

results in a displacement of the boundary by 1
2δx

2
j as illustrated in Fig. 4.3.

Figure 4.3: Voronoi boundary shift due to a displacment of generator xj normal to the boundary.

The change in area is simply

δAVi = lij
δx2j
2

∂AVi

∂x2j
= lim

δx2
j→0

δAVi

δx2j
=

lij
2

(104)

which is equivalent to the second term in equation (99).

One can also analyze how the area of a Voronoi cell changes due to its own generator moving,

65

i.e.
∂AVi
∂xi

. The expression can be found in [30] as follows

∂AVi

∂xi
=

∑
j∈N (i)

lij

(
cijbij

Rij
+

nij

2

)
(105)

Let us consider a displacement of xi by δxi, following the same procedure as described in the proof

above. According to Fig. 4.2, if xi is displaced instead of xj in the direction of bij , one can clearly

see that Voronoi cell Vi will lose area A1 and gain areas A2, A3, and A4. This can be expressed

using equation (103) as follows

∂AVi

∂x1i
=

∑
j∈N (i)

−∂AVi

∂x1j
=

∑
j∈N (i)

lij
cij
Rij

(106)

Now consider a displacement of xi along the normal direction to the boundary as illustrated in

Fig. 4.3. One can clearly see that a displacement of xi will result in the same displacement of the

boundary, and therefore the same change in area as found in (104).

∂AVi

∂x2i
=

∑
j∈N (i)

∂AVi

∂x2j
=

∑
j∈N (i)

lij
2 (107)

Coalescing the results from (106) and (107) yields the expression in (105).

4.2.2 Reynolds Transport Theorem Analysis of Change in Area

We will now use Reynolds Transport Theorem in the following proof for Theorem 1 to verify

our geometric results. This section presents an alternative method by using Reynolds Transport

Theorem to determine the change in area. The results are then compared to those of the previous

section.

Theorem 3. The following formula is true for Voronoi cells of dimension n

(
∂γ

∂xnj

)
· (xj − xi) =

1

2
en · (xj − xi)− en ·

(
γ − xi + xj

2

)
(108)

66

Proof. The perpendicular bisector property of Voronoi diagrams [31] is:

(∑
l≥1

λlul − xi + xj

2

)
· (xj − xi) = 0 (109)

where l is the integer index of boundary vertices, ul is the lth vertex, and λl ∈ [0, 1], where
∑

λl =

1. The sum of λlul is the convex combination representing vectors on the boundary (see Fig. 4.4).

Figure 4.4: A convex combination of the boundary vertices to represent the boundary between xi

and xj .

Let en be the unit vector in the nth direction of space, xni be the nth component of the vector xi,

and γ =
∑

λlul, which is a parameterization of the boundary ∂Vij . Differentiating equation (109)

relative to xnj yields [31]

(
∂γ

∂xnj
− 1

2
en

)
· (xj − xi) +

(
γ − xi + xj

2

)
· en = 0 (110)

Expanding and re-arranging (110) yields

(
∂γ

∂xnj

)
· (xj − xi) =

1

2
en · (xj − xi)− en ·

(
γ − xi + xj

2

)

67

Let us now consider another proof for the result in Theorem 2.

Proof. The area of a Voronoi cell can be expressed as follows.

AVi =

∫
Vi

1 dq (111)

Taking the partial derivative with respect to xj of equation (111) and applying Reynolds transport

theorem [57] yields
∂AVi

∂xj
=

∂

∂xj

∫
Vi

1 dq =

∫
∂Vi

∂γ

∂xj
n(γ) dγ1 (112)

where the coordinate system is such that γ1 is the component of the boundary parameterization γ

tangent to the boundary. Comparing equation (112) to (96), we have considered A = 1, ρ = 1, and

v = ∂γ
∂xj

is the velocity of the boundary. Note that we can consider the partial derivative of AVi with

respect to xj to be equivalent to its total derivative with respect to xj since the area of the Voronoi

cell does not vary according to other variables, hence it can be treated as holding all other variables

constant. Let us split equation (112) into two components

∂

∂x1j

∫
Vi

1 dq =

∫
∂Vi

∂γ

∂x1j
· n(γ) dγ1

∂

∂x2j

∫
Vi

1 dq =

∫
∂Vi

∂γ

∂x2j
· n(γ) dγ1

(113)

Now we will use the results presented in equation (110), divide by the norm Rij , and substitute it

into equation (112) which yields

∂AVi

∂x1j
=

∫
∂Vi

1

2Rij
e1 · (xj − xi)− e1

Rij
·
(
γ − xi + xj

2

)
dγ1

∂AVi

∂x2j
=

∫
∂Vi

1

2Rij
e2 · (xj − xi)− e2

Rij
·
(
γ − xi + xj

2

)
dγ1

(114)

Expanding equation (114) yields

∂AVi

∂x1j
=

∫
∂Vi

1

2Rij
e1 · (xj − xi)− e1

Rij
· γ +

e1

Rij
·
(

xi + xj

2

)
dγ1

∂AVi

∂x2j
=

∫
∂Vi

1

2Rij
e2 · (xj − xi)− e2

Rij
· γ +

e2

Rij
·
(

xi + xj

2

)
dγ1

(115)

68

Let us consider the coordinate system described by unit vectors bij and nij , as defined in section

4.2.1, where the origin of the coordinate system lies on the boundary at the midpoint between

the two generators xj and xi. We can now simplify equation (115) using the following geometric

properties,

bij · (xj − xi) = 0

xi + xj

2
= 0

nij · γ = 0

(116)

where e1 has been replaced by bij and e2 has been replaced by nij , which yields

∂AVi

∂x1j
= − 1

Rij

∫
∂Vi

γ1 dγ1

∂AVi

∂x2j
=

∫
∂Vi

1

2
dγ1

(117)

Evaluating the integral along the boundary from − lij
2 + cij to lij

2 + cij yields

∂AVi

∂xj
= −lij

(
cij
Rij

bij − 1

2
nij

)
(118)

which is the result obtained in [30] and the geometric approach presented in section 4.2.1.

Now let us consider the change in area of Voronoi cell Vi due to generator xi

∂AVi

∂xi
=

∂

∂xi

∫
Vi

1 dq =
∑

j∈N (i)

∫
∂Vij

∂γ

∂xi
n(γ) dγ1 (119)

Following the same procedure as shown in the proof above, the partial derivative of (109) with

respect to xi yields

(
∂γ

∂xni
− 1

2
en

)
· (xj − xi)−

(
γ − xi + xj

2

)
· en = 0 (120)

where γ =
∑

λlul. Expanding and re-arranging (120) yields

(
∂γ

∂xni

)
· (xj − xi) =

1

2
en · (xj − xi) + en ·

(
γ − xi + xj

2

)
(121)

69

Dividing (120) by Rij and substituting it into equation (119) yields

∂AVi

∂x1i
=

∑
j∈N (i)

∫
∂Vij

1

2Rij
e1 · (xj − xi) +

e1

Rij
·
(
γ − xi + xj

2

)
dγ1

∂AVi

∂x2i
=

∑
j∈N (i)

∫
∂Vij

1

2Rij
e2 · (xj − xi) +

e2

Rij
·
(
γ − xi + xj

2

)
dγ1

(122)

where ∂Vij is the boundary formed between Voronoi cells Vi and Vj . Expanding equation (122)

yields
∂AVi

∂x1i
=

∑
j∈N (i)

∫
∂Vij

1

2Rij
e1 · (xj − xi) +

e1

Rij
· γ − e1

Rij
·
(

xi + xj

2

)
dγ1

∂AVi

∂x2i
=

∑
j∈N (i)

∫
∂Vij

1

2Rij
e2 · (xj − xi) +

e2

Rij
· γ − e2

Rij
·
(

xi + xj

2

)
dγ1

(123)

Simplifying equation (123) according to the geometric properties in (116), where e1 has been re-

placed by bij and e2 has been replaced by nij , yields

∂AVi

∂x1i
=

∑
j∈N (i)

1

Rij

∫
∂Vij

γ1 dγ1

∂AVi

∂x2i
=

∑
j∈N (i)

∫
∂Vij

1

2
dγ1

(124)

Evaluating the integral along the boundary from − lij
2 + cij to lij

2 + cij yields

∂AVi

∂xi
=

∑
j∈N (i)

lij

(
cij
Rij

bij +
1

2
nij

)
(125)

Equation (125) matches the geometric result in (105) and the work in [30].

4.3 Analysis of the Change in the Center of Mass of a Voronoi Cell for

Moving Generators

The center of mass of a Voronoi cell is of great importance to coverage problems, where the

optimal coverage is obtained by having agents (generators) located at the center of mass of their re-

spective Voronoi cell [59]. This configuration is defined as a centroidal Voronoi tessellation (CVT).

70

Lloyd’s algorithm [60] [31] provides a method to find CVTs. The algorithm is performed itera-

tively, by computing the Voronoi diagram and moving each generator towards the center of mass of

their respective Voronoi cell. Knowledge of the movement of the center of mass of Voronoi cells

may prove useful in future research into coverage problems, for example the movement of the cen-

ter of mass of Voronoi cells will be needed in section 4.4 of this thesis. This section will present

the change in position of the center of mass of a Voronoi cell using both geometric analysis and

Reynolds Transport Theorem.

4.3.1 Geometric Analysis of the Change in Center of Mass

This section will apply geometric techniques to analyze the change in position of the center of

mass of a given Voronoi cell due to displacements of neighbouring generators in 2D.

Theorem 4. Given a Voronoi cell Vi, with area AVi , center of mass CMVi having vector components

CM1
Vi

and CM2
Vi

, and neighbouring generator xj where j ∈ N (i), the following result holds:

∂CMVi

∂xj
=

lij
AVi

⎡
⎢⎣ 1

Rij
(cijCM1

Vi
− l2ij

12 − c2ij)
1
2(cij − CM1

Vi
)

cij
Rij

CM2
Vi

−1
2CM2

Vi

⎤
⎥⎦ (126)

Proof. The same local coordinate system used in the proof of the change in area will be used here.

Consider the displacement of the boundary illustrated in Figure 4.2 due to a displacement of the

neighbouring generator along the parallel direction to the boundary. Assume a uniform density of 1

over the Voronoi diagram (i.e. φ(q) = 1, ∀q ∈ Q). One can substitute the mass of the Voronoi cells

for its area. The change in the position of the center of mass of Vi is then

δCMVi = CMVi+δVi
− CMVi

(127)

where CMVi+δVi
is the new center of mass after the boundary displacement, which can be expressed

as

CMVi+δVi
=

CMViAVi + CMδVi
δAVi

AVi + δAVi

(128)

where CMδVi
is the center of mass of the change in area and δAVi is defined in equation (102).

71

Substituting (128) into (127) and simplifying yields

δCMVi =
CMδVi

δAVi − CMViδAVi

AVi + δAVi

(129)

where for displacements in the direction parallel to the boundary CMδVi
can be expressed as

CMδVi
=

A1CMA1 −A2CMA2 −A3CMA3 −A4CMA4

δAVi

=
A1CMA1 −A2CMA2 −A3CMA3 −A4CMA4

A1 −A2 −A3 −A4

(130)

Using the geometry of Fig. 4.2, the center of mass for each area is:

CMA1 =
1

3
(−lij + 2cij)bij +

1

3

δx1j
Rij

(
lij
2

− cij)nij

CMA2 =
1

3
2cijbij − 1

3

δx1j
Rij

cijnij

CMA3 = (
lij
4

+ cij)bij − 1

2

δx1j
Rij

cijnij

CMA4 =
1

3
(lij + 3cij)bij − 1

3

δx1j
Rij

(3cij +
1

2
lij)nij

(131)

Substituting equations (131), (101), and (130) into equation (129) yields:

∂CMVi

∂x1j
= lim

δx1
j→0

δCMVi

δx1j
=

lij
RijAVi

(
cijCMVi −

(1

12
l2ij + c2ij

)
bij

)
(132)

If one now considers a displacement of generator xj along the normal direction of the boundary (see

Fig. 4.3) the result from equation (129) can be used to yield

δCMVi =
δx2j lij

2

(⎡
⎢⎣ cij

δx2
j

4

⎤
⎥⎦− CMVi

)
1

AVi +
δx2

j

2 lij

(133)

72

Dividing both sides of equation (133) by δx2j and taking the limit as δx2j approaches 0 yields

∂CMVi

∂x2j
= lim

δx2
j→0

δCMVi

δx2j
=

lij
2AVi

(⎡
⎢⎣cij
0

⎤
⎥⎦− CMVi

)

=
lij

2AVi

(
cijbij − CMVi

) (134)

Coalescing the results in equations (132) and (134) yields the following Jacobian matrix

∂CMVi

∂xj
=

lij
AVi

⎡
⎢⎣ 1

Rij
(cijCM1

Vi
− l2ij

12 − c2ij)
1
2(cij − CM1

Vi
)

cij
Rij

CM2
Vi

−1
2CM2

Vi

⎤
⎥⎦

4.3.2 Reynolds Transport Theorem Analysis of Change in Center of Mass

The following section presents an alternate proof to Theorem 4 by applying Reynolds Transport

Theorem.

Proof. The center of mass of Voronoi cell Vi, using uniform density, is

CMVi =
1

AVi

∫
Vi

q dq (135)

Taking the partial derivative of equation (135) considered as a product of two terms, applying RTT

to the second term, and taking into account that the dynamics of the agents only affect the position

of the boundary between cells yields

∂CMVi

∂xj
= − 1

AVi

CMVi

(
∂AVi

∂xj

)T

+
1

AVi

∫
∂Vi

γ
∂γ

∂xj
n(γ) dγ1 (136)

where, as before, γ1 is the component of the boundary parameterization along the tangent direction

to the boundary (i.e, the direction of bij). Splitting the integral into two components, and using the

73

result of equation (108) divided by Rij yields

∫
∂Vi

γ
∂γ

∂x1j
· n(γ) dγ1 =

∫
∂Vi

γ

(
1

2
bij · xj − xi

Rij
− bij

Rij
·
(
γ − xi + xj

2

))
dγ1∫

∂Vi

γ
∂γ

∂x2j
· n(γ) dγ1 =

∫
∂Vi

γ

(
1

2
nij · xj − xi

Rij
− nij

Rij
·
(
γ − xi + xj

2

))
dγ1

(137)

Applying the properties in equation (116), we can further simplify equation (137) to

∫
∂Vi

γ
∂γ

∂x1j
· n(γ) dγ1 = −

∫
∂Vi

1

Rij
γγ1 dγ1

∫
∂Vi

γ
∂γ

∂x2j
· n(γ) dγ1 =

∫
∂Vi

1

2
γ dγ1

(138)

Substituting γ = γ1bij into (138) and integrating between the limits [− lij
2 + cij ,

lij
2 + cij] yields

∫
∂Vi

γ
∂γ

∂x1j
· n(γ) dγ1 = −

[
(γ1)3

3Rij

] lij
2
+cij

− lij
2
+cij

bij (139)

∫
∂Vi

1

2
γ1bij dγ

1 =

[
(γ1)2

4

] lij
2
+cij

− lij
2
+cij

bij (140)

Evaluating this result yields

∫
∂Vi

γ
∂γ

∂x1j
· n(γ) dγ1 = − lij

Rij

⎡
⎢⎣
(

l2ij
12 + c2ij

)

0

⎤
⎥⎦

∫
∂Vi

1

2
γ1bij dγ

1 =

⎡
⎢⎣ lijcij

2

0

⎤
⎥⎦

(141)

Substituting equation (118) and (141) into equation (136)

∂CMVi

∂xj
=

lij
AVi

CMVi

[
cij
Rij

−1
2

]
+

lij
AVi

⎡
⎢⎣ 1

Rij

(
− l2ij

12 − c2ij

)
cij
2

0 0

⎤
⎥⎦ (142)

74

and then expanding yields

∂CMVi

∂xj
=

lij
AVi

⎡
⎢⎣ 1

Rij

(
cijCM1

Vi
− l2ij

12 − c2ij

)
1
2

(
cij − CM1

Vi

)
cij
Rij

CM2
Vi

−1
2CM2

Vi

⎤
⎥⎦ (143)

Note that equation (143) matches the results that were determined geometrically in equation (126).

Using the same procedure as shown in the proof above, one can determine the change in the

position of the center of mass CMVi with respect to its own Voronoi cell generator xi as follows.

∂CMVi

∂xi
= − 1

AVi

CMVi

(
∂AVi

∂xi

)T

+
1

AVi

∑
j∈N (i)

∫
∂Vij

γ
∂γ

∂xi
n(γ) dγ1 (144)

where ∂Vij is the boundary between Voronoi cells Vi and Vj . Splitting the integral into two compo-

nents, and dividing equation (121) by Rij yields

∑
j∈N (i)

∫
∂Vij

γ
∂γ

∂x1i
· n(γ) dγ1 =

∑
j∈N (i)

∫
∂Vij

γ

(
1

2
bij · xj − xi

Rij
+

bij

Rij
·
(
γ − xi + xj

2

))
dγ1

∑
j∈N (i)

∫
∂Vij

γ
∂γ

∂x2i
· n(γ) dγ1 =

∑
j∈N (i)

∫
∂Vij

γ

(
1

2
nij · xj − xi

Rij
+

nij

Rij
·
(
γ − xi + xj

2

))
dγ1

(145)

Applying the properties in equation (116), we can further simplify equation (145) to

∑
j∈N (i)

∫
∂Vij

γ
∂γ

∂x1i
· n(γ) dγ1 =

∑
j∈N (i)

∫
∂Vij

1

Rij
γγ1 dγ1

∑
j∈N (i)

∫
∂Vij

γ
∂γ

∂x2i
· n(γ) dγ1 =

∫
∂Vij

1

2
γ dγ1

(146)

75

Substituting γ = γ1bij into (138) and integrating between the limits [− lij
2 + cij ,

lij
2 + cij] yields

∑
j∈N (i)

∫
∂Vij

γ
∂γ

∂x1i
· n(γ) dγ1 =

∑
j∈N (i)

lij
Rij

⎡
⎢⎣
(

l2ij
12 + c2ij

)

0

⎤
⎥⎦

∑
j∈N (i)

∫
∂Vij

1

2
γ1bij dγ

1 =

⎡
⎢⎣ lijcij

2

0

⎤
⎥⎦

(147)

Substituting equation (125) and (147) into equation (144)

∂CMVi

∂xi
=

∑
j∈N (i)

lij
AVi

CMVi

[
cij
Rij

1
2

]
+

lij
AVi

⎡
⎢⎣ 1

Rij

(
l2ij
12 + c2ij

)
cij
2

0 0

⎤
⎥⎦ (148)

and then expanding yields

∂CMVi

∂xi
=

∑
j∈N (i)

lij
AVi

⎡
⎢⎣ 1

Rij

(
cijCM1

Vi
+

l2ij
12 + c2ij

)
1
2

(
cij + CM1

Vi

)
cij
Rij

CM2
Vi

1
2CM2

Vi

⎤
⎥⎦ (149)

4.4 Voronoi Dynamics in Multi-agent Coverage Problems

The following section will illustrate the applications of Voronoi cell dynamics to multi-agent

coverage problems.

4.4.1 Coverage Problem Preliminaries

This section will be focused on reviewing the work presented in [59] and [34]. Let there be n

agents in a region of space in �2 and assume that each agent, i = 1, .., n, has dynamics of the form

ẋi = ui (150)

where xi is the position of agent i and ui is the corresponding control input. Let Q be a convex

polytope in �2 and x = [x1, ..., xn]
T be the vector of the locations of the agents. Consider the

partition of Q into i subsets, such that they only overlap on sets of measure zero. Let the agent’s

76

positions x be the generators for a Voronoi diagram, where the Voronoi diagram is defined in section

4.1.1. One aims at providing the ”best” or ”optimal” coverage when solving a coverage problem for

a given region. Let the function f(‖xi − q‖) = ‖xi − q‖2 represent how poor the coverage is for a

given point q ∈ Q [59] (i.e. the smaller the value of f(‖xi − q‖), the better the coverage). Consider

the density function φ(q), as defined in section 4.1.1, which provides a weight on the importance

of the coverage at the point q. Let each agent be responsible for the coverage in its corresponding

Voronoi partition. Consider the candidate Lyapunov function

V (x) =
n∑

i=1

∫
Vi

||xi − q||2φ(q) dq (151)

Taking the partial derivative with respect to the agent’s position xi yields [59]

∂

∂xi
V (x) = 2

∫
Vi

(xi − q)φ(q) dq

= 2

(∫
Vi

φ(q) dq

)(
xi −

∫
Vi

qφ(q) dq∫
Vi
φ(q) dq

) (152)

Substituting (94) and (95) into (152) yields

∂

∂xi
V (x) = 2MVi(xi − CMVi) (153)

and taking the second partial derivative yields

∂2

∂x2i
V (x) = 2MVi > 0 (154)

Equations (153) and (154) demonstrate that a local minimum is achieved when xi = CMVi , this

configuration is known as the Centroidal Voronoi Configuration (CVC).

77

4.4.2 Energy-Efficient Coverage Optimal Control Problem

The work in [34] formulates the coverage problem as an optimal control problem. The optimal

coverage control problem is described by the following cost function

J =

∫ ∞

0

n∑
i=1

si||
∫
Vi

(xi − q)φ(q) dq||2 + riu
T
i ui dτ (155)

where n is the number of agents, si ≥ 0, ri > 0, Vi is the Voronoi cell corresponding to the ith

agent, and xi the position of the ith agent. Reference [34] proves that the optimal control input that

minimizes the cost function in (155) subject to the dynamics in (150) and is spatially distributed

over Delaunay graphs is

ui = −
√

si
ri

∫
Vi

(xi − q)φ(q) dq (156)

If siri = 1, ∀i ∈ {1, ..., n} then it is proven in [34] that the value function (which is also a Lyapunov

function) is

V (x) =
n∑

i=1

∫
Vi

||(xi − q)||2φ(q) dq (157)

which is the same as the one in (151). The system therefore converges to a Centroidal Voronoi

Configuration. It is important to note that the optimal control input only depends on each agent

being able to compute its own Voronoi cell, which means the control input for each agent is only

dependent on its own position and the position of its neighbouring agents. This allows for a scalable

solution in practice as the number of agents increase. It is important to note that although the

coverage criterion being minimized in (155) differs from (151), the value function that is obtained

as the spatially distributed solution to the optimal control problem coincides with (151). This offers

an important additional interpretation of the function (151).

4.4.3 Coverage Problem with Second Order Dynamics

We now use the velocity as a virtual control input that should be steered to the optimal value

of the velocity obtained in the previous section. It will also be assumed that the density function is

uniform, i.e, φ(q) = 1, ∀q ∈ Q. A backstepping controller will be designed to control agents with

78

second order dynamics of the form

ẋi = vi

v̇i = ūi

(158)

where xi is the position, vi is the velocity, and ūi is the control input of the ith agent.

Theorem 5. . Assume uniform density φ(q) = 1, ∀q ∈ Q and consider agents with second order

dynamics (158). Then a control law which guarantees the convergence of the position of the agents

to a centroidal Voronoi configuration is

ūi = −
√

si
ri

d

dt

∫
Vi

viφ(q) dq − 2

∫
Vi

(xi − q)φ(q) dq (159)

where si > 0, ri > 0.

Proof. According to the result in (156), let ṽi be the desired velocity

ṽi = −
√

si
ri

∫
Vi

(xi − q)φ(q) dq (160)

Let zi be the tracking error between the velocity and the desired velocity

zi = vi − ṽi (161)

We can express the dynamics in (158) in terms of zi and ṽi using (161) as

ẋi = zi + ṽi (162)

The dynamics of the tracking error are

żi = ūi +

√
si
ri

d

dt

∫
Vi

(xi − q)φ(q) dq (163)

79

Let us consider the value function (157) from [34] as an initial candidate Lyapunov function

V1(x) =
n∑

i=1

∫
Vi

||xi − q||2φ(q) dq (164)

We can augment the candidate Lyapunov function in equation (164) by adding a term on the tracking

error V2 =
∑n

i=1
1
2zTi zi, yielding

V (x, z) =

n∑
i=1

∫
Vi

||xi − q||2φ(q) dq +
1

2
zTi zi (165)

Taking the time derivative of (165) yields

V̇ (x, z) =
n∑

i=1

ẋTi
∂

∂xi

∫
Vi

||xi − q||2φ(q) dq + zTi żi (166)

which is obtained using chain rule. Using the result of the partial derivative from (152), substituting

ẋi = vi = zi + ṽi and the dynamics of the tracking error from (163), (166) can be expanded as

follows

V̇ (x, z) =− 2

n∑
i=1

√
si
ri
||
∫
Vi

(xi − q)φ(q) dq||2

+ 2zTi

∫
Vi

(xi − q)φ(q) dq

+ zTi

(
ūi +

√
si
ri

d

dt

∫
Vi

(xi − q)φ(q) dq

)
(167)

For V (x, z) to be a Lyapunov function, the following conditions must be satisfied [61]

1. V (X) > 0, ∀X
= 0

2. V (X) = 0, X = 0

3. V̇ (X) < 0, ∀X
= 0

4. V̇ (X) = 0, X = 0

(168)

where X = [x z]T . Note that the function (165) is always non-negative and it is only zero when X

is such that the agents are located at the center of mass of their respective Voronoi cells (i.e, xi =

CMVi) and the velocity tracking error is zero. Let us define X = {x : xi = CMVi , i = 1, . . . , n}

80

and S = X×{0}. For V to be a control Lyapunov function one must select ūi such that V is positive

and its derivative is negative unless X ∈ S . The claim that V is positive unless X ∈ S is trivial to

prove and does not depend on ūi. Therefore, ūi will now be selected to ensure that V̇ is negative

unless X ∈ S . Let the control input be

ūi = −
√

si
ri

d

dt

∫
Vi

(xi − q)φ(q) dq − 2

∫
Vi

(xi − q)φ(q) dq (169)

Substituting (169) into (167) yields

V̇aug(x, z) =− 2
n∑

i=1

√
si
ri
||
∫
Vi

(xi − q)φ(q) dq||2 (170)

which is always non-positive since ri > 0 and si > 0. The set where V̇ = 0 is M = {(x, z) : x ∈
X}. For trajectories on this set we can see from the dynamics and the definition of the control input

(159) that both vi = 0 and ṽi = 0, which makes zi = 0. Therefore, using a LaSalle’s argument

[47] one can show that the largest invariant set contained in M is the set of positions of the agents

corresponding to the centroids of the respective Voronoi cell and xi = ṽi, i = 1, . . . , n, which

finishes the proof.

It is important to note that one must be consider the robustness of the backstepping technique

when applying it to real systems. Due to the cancellation in terms, any uncertainty in system param-

eters can potentially lead to instability, and therefor it is prudent to first check within simulation. To

implement the control input in (169), we must evaluate the time derivative in the expression. The

term can be re-arranged as illustrated in (153)

d

dt

∫
Vi

(xi − q)φ(q) dq =
d

dt

(
MVi(xi − CMVi)

)

= ṀVi(xi − CMVi) +MVi(vi − ˙CMVi)

(171)

The time derivatives for the mass and the center of mass of the Voronoi cell can be expressed as

81

follows

ṀVi =
∂MVi

∂t
+

∂MVi

∂xi
ẋi +

∑
j∈N (i)

∂MVi

∂xj
ẋj

˙CMVi =
∂CMVi

∂t
+

∂CMVi

∂xi
ẋi +

∑
j∈N (i)

∂CMVi

∂xj
ẋj

(172)

The mass and center of mass will not be explicit functions of time so we can simplify (172) as

follows:

ṀVi =
∂MVi

∂xi
ẋi +

∑
j∈N (i)

∂MVi

∂xj
ẋj

˙CMVi =
∂CMVi

∂xi
ẋi +

∑
j∈N (i)

∂CMVi

∂xj
ẋj

(173)

The assumption of constant uniform density (φ(q) = 1, ∀q ∈ Q), AVi = MVi , allows the substitu-

tion of (118), (107), (142), and (149) into (173)

ṀVi =
∑

j∈N (i)

lij

(
cij
Rij

bij +
1

2
nij

)
ẋi +

∑
j∈N (i)

−lij

(
cij
Rij

bij − 1

2
nij

)
ẋj

˙CMVi =
∑

j∈N (i)

(
lij
MVi

CMVi

[
cij
Rij

1
2

]
+

lij
MVi

⎡
⎢⎣ 1

Rij

(
l2ij
12 + c2ij

)
cij
2

0 0

⎤
⎥⎦)

ẋi

+
∑

j∈N (i)

(
lij
MVi

CMVi

[
cij
Rij

−1
2

]
+

lij
MVi

⎡
⎢⎣ 1

Rij

(
− l2ij

12 − c2ij

)
cij
2

0 0

⎤
⎥⎦)

ẋj

(174)

Substituting (171) into (169) yields the following control law

ūi = −
√

si
ri

(
ṀVi(xi − CMVi) +MVi(vi − ˙CMVi)

)
− 2MVi(xi − CMVi) (175)

where ṀVi and ˙CMVi are defined in (174).

4.5 Simulation Results

This section shows the results of a Matlab simulation of the multi-agent coverage problem using

the derived result for agents with second order dynamics, and provides a comparison of the results

of the previous work described in section 4.4.2. Consider five agents, with zero initial velocity,

82

placed randomly in a convex area to provide coverage. The agents will use the following control

input from equation (175):

ūi = −
√

si
ri

(
ṀVi(xi − CMVi) +MVi(vi − ˙CMVi)

)
− 2MVi(xi − CMVi)

Figures 4.5 and 4.6 illustrate the paths each agent has taken, ending at the center of mass of their

Voronoi cells, for agents with second order and first order dynamics (as covered in section 4.4.2)

respectively. Figures 4.7 and 4.8 are plots of the speed of each agent, for agents of second order and

first order dynamics respectively. In both control schemes the Voronoi diagrams converge to the

Figure 4.5: The Voronoi diagram at the final time of the simulation of agents with second order
dynamics. The trajectories of the three agents are denoted by the black lines, ending at the black
dot.

83

Figure 4.6: The Voronoi diagram at the final time of the simulation of agents with first order dy-
namics. The trajectories of the three agents are denoted by the black lines, ending at the black
dot.

same CVC, as is expected for agents beginning in the same position between the two simulations.

The speeds of the agent’s (see figures 4.7 and 4.8) are very different between the first and second

order control schemes. Using the first order controller, the initial speeds are very high due to the

error between each agent and its Voronoi cell’s center of mass. As expected the agents with second

order dynamics converge at a much slower rate than the first order agents. The difference in trajec-

tories of the agents between the two simulations can be attributed to the terms in the control law

based on the relative velocity between an agent and its cell’s center of mass, as well as the time rate

of change of the mass of its cell. It is of particular interest to note the term MVi(vi− ˙CMVi) which

is a tracking error between the velocities of the agent and center of mass, weighted by the mass of

84

Figure 4.7: The speed of each agent with second order dynamics.

the Voronoi cell.

85

Figure 4.8: The speed of each agent with first order dynamics.

86

Chapter 5

Conclusions

This thesis has presented solutions to UAV flight system problems in the form of an optimal

control problem for a single quadrotor UAV, a prototype software FMS as a research platform using

industry standard communication protocols, and a multi-agent coverage problem using agents with

second order dynamics.

The quadrotor optimal control problem considers a cost index, as found in commercial flight

management systems, to provide a trade-off between time and a measure of control effort. The use

of a cost index allows operators of UAVs to minimize the cost of their flight operations much like

many commercial airlines currently do. The proposed formulation allows a range of cost indices

to be chosen according to the maximum velocity attainable by the quadrotor. The solution to the

proposed problem yields an analytic state-feedback control law.

A software FMS implementation has been presented with experimental results using an industry

flight simulator. The SFMS provides some standard functionality found in commercial FMSs such

as flight plan creation, lateral navigation, and a performance page (the usage of a cost index). The

SFMS uses aerospace standard communication protocols ARINC 429 and ARINC 834 to interface

with an aircraft/simulator. The SFMS was verified by interfacing the SFMS with an industry flight

simulator to perform a simulated flight.

A multi-agent coverage problem using agents with second order dynamics has been considered.

Backstepping was used to extend the result of an optimal control formulation of a previously solved

coverage problem to agents with second order dynamics. To compute the resultant control law, the

87

change in area and change in position of the center of mass of Voronoi cells due to moving agents is

required. A geometric solution has been presented for both the change in area and change in position

of the center of mass of Voronoi cells. Furthermore, the change in position of the center of mass

has also been solved using Reynolds Transport Theorem. Simulated results have been presented,

showing the comparison between the first order agents and second order agents.

The work in this thesis has outlined some important upcoming topics for UAVs, from the op-

timization of a quadrotor’s trajectory for package delivery to the usage of multiple UAVs in multi-

agent systems for search and rescue or surveillance. We have considered an SFMS implementation

which can be used aboard a UAV to provide similar functionality as found for manned aircraft. Us-

ing aerospace standard communication protocols for the SFMS allows for easier future integration

of UAVs and aircraft in shared airspace.

With UAVs set to begin operating in larger numbers in the coming years, we have found that

more attention must be focused on the efficiency and cost of operating UAVs in both single and

multi-agent systems. One can look to current manned aircraft for inspiration, such as the use of a

cost index to minimize operating costs. The widespread usage of UAVs in commercial applications

(i.e. package delivery and unmanned passenger transport) will encourage researchers to address

problems involving both manned and unmanned aerial vehicles operating within not only a shared

physical airspace, but also within the same communication network. One can imagine a fully au-

tonomous system in the future in which all aerial vehicles are part of a single network that will lead

to the formulation of new cost problems.

88

Bibliography

[1] J. Villarroel, “An optimal control framework for flight management systems,” Master’s thesis,

Concordia University, 1455 De Maisonneuve Blvd. W. Montreal, QC, Canada, 2 2015.

[2] R. S. Shevell, Fundamentals of Flight. Prentice Hall, 2 ed., 1988.

[3] V. Dobrokhodov, Handbook of Unmanned Aerial Vehicles, ch. 14, pp. 243–277. Springer

Netherlands, 2015.

[4] “Arinc 429 specification tutorial,” tech. rep., AIM GmbH, 2010.

[5] Aircraft Data Interface Function: ARINC Specification 834-1, 2009.

[6] World Health Organization, “Climate change and human health - risks and responses. Sum-

mary.”

[7] Air Transport Action Group, “Aviation benefits beyond borders.”

[8] Internation Civil Aviation Organization, “Aircraft engine emissions.”

[9] BI Intelligence, “The drones report: Market forecasts, regulatory barriers, top vendors, and

leading commercial applications,” June 2016. [Online; posted June-2016].

[10] E. C. Suicmez and A. T. Kutay, “Optimal path tracking control of a quadrotor uav,” in Un-

manned Aircraft Systems (ICUAS), 2014 International Conference on, pp. 115–125, May

2014.

89

[11] W. Hadjadj-Aoul, A. Mokhtari, and A. Benallegue, “Optimal control using backstepping tech-

nique of a quadrotor helicopter,” in Robotics and Biomimetics (ROBIO), 2014 IEEE Interna-

tional Conference on, pp. 1542–1547, Dec 2014.

[12] R. Zawiski and M. Bachuta, “Model development and optimal control of quadrotor aerial

robot,” in Methods and Models in Automation and Robotics (MMAR), 2012 17th International

Conference on, pp. 475–480, Aug 2012.

[13] M. Geisert and N. Mansard, “Trajectory generation for quadrotor based systems using numer-

ical optimal control,” in 2016 IEEE International Conference on Robotics and Automation

(ICRA), pp. 2958–2964, May 2016.

[14] F. Morbidi, R. Cano, and D. Lara, “Minimum-energy path generation for a quadrotor uav,”

in 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1492–1498,

May 2016.

[15] A. de Souza Cndido, R. K. H. Galvo, and T. Yoneyama, “Control and energy management for

quadrotor,” in Control (CONTROL), 2014 UKACC International Conference on, pp. 343–348,

July 2014.

[16] R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea, “Quadrocopter performance benchmarking

using optimal control,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 5179–5186, Sept 2011.

[17] K. Eliker, H. Bouadi, and M. Haddad, “Flight planning and guidance features for an uav flight

management computer,” in 2016 IEEE 21st International Conference on Emerging Technolo-

gies and Factory Automation (ETFA), pp. 1–6, Sept 2016.

[18] J. Jamieson and J. Biggs, “Path planning using concatenated analytically-defined trajectories

for quadrotor uavs,” Aerospace, vol. 2, no. 2, pp. 155–170, 2015.

[19] M. Radmanesh, M. Kumar, A. Nemati, and M. Sarim, “Dynamic optimal uav trajectory plan-

ning in the national airspace system via mixed integer linear programming,” Proceedings of

90

the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 230,

no. 9, pp. 1668–1682, 2016.

[20] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory planning for a quadrotor helicopter,” in

2008 16th Mediterranean Conference on Control and Automation, pp. 1258–1263, June 2008.

[21] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient algorithm for state-

to-state quadrocopter trajectory generation and feasibility verification,” in 2013 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pp. 3480–3486, Nov 2013.

[22] K. A. Klein, H. Eckberg, and R. H. Dean, “An analysis of low-cost simulated flight man-

agement systems for aviation research,” in 2009 IEEE/AIAA 28th Digital Avionics Systems

Conference, pp. 1.C.3–1–1.C.3–9, Oct 2009.

[23] J. W. Adams and C. G. Merrett, “Combined flight management system and flight data recorder

for general aviation using tablet computers,” in AIAA Infotech @ Aerospace, AIAA SciTech,

2016.

[24] T. J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry, “A formal approach to re-

active system design: unmanned aerial vehicle flight management system design example,” in

Computer Aided Control System Design, 1999. Proceedings of the 1999 IEEE International

Symposium on, pp. 522–527, 1999.

[25] A. F. Tarhan, E. Koyuncu, M. Hasanzade, U. Ozdemir, and G. Inalhan, “Formal intent based

flight management system design for unmanned aerial vehicles,” in Unmanned Aircraft Sys-

tems (ICUAS), 2014 International Conference on, pp. 984–992, May 2014.

[26] J. U. Inc., “Sparrow flight management system,” 2017.

[27] C. Torens, F.-M. Adolf, and L. Goormann, “Certification and software verification considera-

tions for autonomous unmanned aircraft,” Journal of Aerospace Information Systems, vol. 11,

pp. 649–664, 2014.

91

[28] J. Villarroel and L. Rodrigues, “Optimal control framework for cruise economy mode of flight

management systems,” Journal of Guidance, Control, and Dynamics, vol. 39, no. 5, pp. 1022–

1033, 2016.

[29] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of

Voronoi Diagrams. New York, NY, USA: John Wiley & Sons, Inc., 1992.

[30] P. Español and M. Serrano, “Voronoi fluid particles & tessellation fluid dynamics.” Unpub-

lished, 2009.

[31] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations: Applications and

algorithms,” SIAM REV, vol. 41, no. 4, pp. 637–676, 1999.

[32] J. Cortes, S. Martinez, and F. Bullo, “Spatially-distributed coverage optimization and control

with limited-range interactions,” ArXiv Mathematics e-prints, Jan. 2004.

[33] Y. Diaz-Mercado, S. G. Lee, and M. Egerstedt, “Distributed dynamic density coverage for

human-swarm interactions,” in 2015 American Control Conference (ACC), pp. 353–358, July

2015.

[34] M. Moarref and L. Rodrigues, “An optimal control approach to decentralized energy-efficient

coverage problems,” {IFAC} Proceedings Volumes, vol. 47, no. 3, pp. 6038 – 6043, 2014. 19th

{IFAC} World Congress.

[35] M. Pavone, E. Frazzoli, and F. Bullo, “Distributed policies for equitable partitioning: Theory

and applications,” in 2008 47th IEEE Conference on Decision and Control, pp. 4191–4197,

Dec 2008.

[36] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Distributed algorithms for environment

partitioning in mobile robotic networks,” IEEE Transactions on Automatic Control, vol. 56,

pp. 1834–1848, Aug 2011.

[37] K. Laventall and J. Cortes, “Coverage control by robotic networks with limited-range

anisotropic sensory,” in 2008 American Control Conference, pp. 2666–2671, June 2008.

92

[38] T. Hamel, R. Mahony, R. Lozano, and J. Ostrowski, “Dynamic modelling and configuration

stabilization for an x4-flyer,” in 2002 International Federation of Automatic Control (IFAC),

vol. 35, pp. 217–222, 2002.

[39] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and

control of quadrotor,” IEEE Robotics Automation Magazine, vol. 19, pp. 20–32, Sept 2012.

[40] E. Altug, J. P. Ostrowski, and R. Mahony, “Control of a quadrotor helicopter using visual

feedback,” in Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE International

Conference on, vol. 1, pp. 72–77 vol.1, 2002.

[41] I. C. Dikmen, A. Arisoy, and H. Temeltas, “Attitude control of a quadrotor,” in Recent Ad-

vances in Space Technologies, 2009. RAST ’09. 4th International Conference on, pp. 722–727,

June 2009.

[42] D. E. Kirk, Optimal Control Theory: An Introduction. Englewood Cliffs, NJ: Prentice-Hall

Inc., 1970.

[43] A. Bryson and Y. Ho, Applied Optimal Control. New York, NY: Talyor & Francis Group,

1975.

[44] R. Walter, The Avionics Handbook, ch. 15. CRC Press, 2001.

[45] D. G. Hull, Fundamentals of Airplane Flight Mechanics. Springer, 2007.

[46] A. Micaelli, C. Samson, and P. Icare, “Trajectory tracking for unicycle-type and two-steering-

wheels mobile robots,” 1993.

[47] H. K. Khalil, Nonlinear Systems, ch. 4. Upper Saddle Rivier, New Jersey: Prentice Hall, 3 ed.,

2002.

[48] Order 8260.54A, 2007.

[49] T. R. Yechout et al., Introduction to Aircraft Flight Mechanics. Reston, Virginia: AIAA, 2003.

[50] J. A. Farrell, Aided Navigation: GPS with High Rate Sensors, ch. 2. McGraw-Hill, 2008.

93

[51] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems,

ch. 2. Artech House, 2008.

[52] M. Kayton, Avionics Navigation Systems, ch. 2. John Wiley & Sons, Inc., 2 ed., 1997.

[53] I. Todhunter, Spherical Trigonometry. Macmillan and Co., 5 ed., 1886.

[54] ARINC 429: General Aviation Subset, 2009.

[55] F. Bullo, J. Cortes, and S. Martinez, Distributed Control of Robotic Networks: A Mathemati-

cal Approach to Motion Coordination Algorithms. Princeton, NJ, USA: Princeton University

Press, 2009.

[56] M. Gurtin, “Kinematics,” in An Introduction to Continuum Mechanics, pp. 78 – 79, New York:

Academic Press, 1 ed., 1981.

[57] B. Munson, D. Young, and T. Okiishi, Fundamentals of Fluid Mechanics. Hoboken: John

Wiley, 6 ed., 2009.

[58] C. Truesdell and R. Toupin, The Classical Field Theories, pp. 226–858. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1960.

[59] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing net-

works,” IEEE Transactions on Robotics and Automation, vol. 20, pp. 243–255, April 2004.

[60] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Information Theory,

vol. 28, pp. 129–137, Mar 1982.

[61] H. K. Khalil, Nonlinear systems. Upper Saddle River, (N.J.): Prentice Hall, 2 ed., 1995.

94

