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ABSTRACT

Enhancing Variation-aware Analog Circuits Sizing

Ons Lahiouel

Concordia University, 2017

Today’s analog design and verification face significant challenges due to circuit com-

plexity and short time-to-market windows. Moreover, variations in design parameters

have an adversely impact on the correctness and performance of analog circuits. Cir-

cuit sizing consists in determining the device sizes and biasing voltages and currents

such that the circuit satisfies its specifications. Traditionally, analog circuit sizing has

been carried out by optimization-based methods, which of course will still be impor-

tant in the future. Unfortunately, these techniques cannot guarantee an exhaustive

coverage of the design search space and hence, are not able to ensure the non-existence

of higher quality design solutions. The sizing problem becomes more complicated

and computationally expensive under design parameters fluctuation. Indeed, existing

yield analysis methods are computationally expensive and still encounter issues in

problems with a high-dimensional process parameter space. In this thesis, we present

new approaches for enhancing variation-aware analog circuit sizing. The circuit sizing

problem is encoded using nonlinear constraints. A new algorithm using Satisfiability

Modulo Theory (SMT) solving techniques exhaustively explores the analog design

space and computes a continuous set of feasible sizing solutions. Next, a yield opti-

mization stage aims to select the candidate design solution with the highest yield rate

in the presence of process parameters variation. For this purpose, a novel method for
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the computation of parametric yield is proposed. The method combines the advan-

tages of sparse regression and SMT solving techniques. The key idea is to characterize

the failure regions as a collection of hyperrectangles in the parameters space. The yield

estimation is based on a geometric calculation of probabilistic volumes subtended by

the located hyperrectangles. The method can provide very large speed-up over Monte

Carlo methods, when a high prediction accuracy is required. A new approach for

improving analog yield optimization is also proposed. The optimization is performed

in two steps. First, a global optimization phase samples the most potential optimal

sub-regions of the feasible design space. The global search locates a design point near

the optimal solution. Second, a local optimization phase uses the near optimal solu-

tion as a starting point. Also, it constructs linear interpolating models of the yield to

explore the basin of convergence and to reach the global optimum. We illustrate the

efficiency of the proposed methods on various analog circuits. The application of the

yield analysis method on an integrated ring oscillator and a 6T static RAM proves

that it is suitable for handling problems with tens of process parameters and can pro-

vide speedup of 5X-2000X over Monte Carlo methods. Furthermore, the application

of our yield optimization methodology on the examples of a two-stage amplifier and a

cascode amplifier shows that our approach can achieve higher quality in analog syn-

thesis and unrivaled coverage of the analog design space when compared to traditional

optimization techniques.
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Chapter 1

Introduction

1.1 Motivation

Over the last decade, CMOS (Complementary Metal Oxide Semiconductor) technol-

ogy scaling has been a primary driver of the electronics industry [3]. This scaling trend

is a natural response to the continuously increasing demand for high performance and

multi function consumer electronics (smart phones, wearable devices, autonomous

robots, etc.). Most electronic products rely on System-on-Chip (SoC) solutions, where

one integrated circuit contains the whole system function. Modern SoC designs inte-

grate billions of transistors and contain various interactive system components, from

analog/RF circuits to digital signal processing and memory blocks [4]. Apart from

generating system reference clock (e.g., a phase locked loop (PLL)), increasing the

power of a signal (e.g., operational amplifier) and ensuring the correct operation of

the chip (e.g., biasing circuits), the analog part is indispensable for all electronic

devices [4]. For example, no matter how digital our electronic devices get, they al-

ways require analog and mixed signal (AMS) interfaces that translate signals from
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the physical world into the digital world of electronics. Although the analog part is

a small fraction of the entire integrated circuit [5], its design is usually much more

time consuming and error prone than the relatively larger digital portion. It often

becomes the major bottleneck that limits system performance, product yield, and

time to market.

A large analog system with many transistors and passive components is not

designed as a whole, but is decomposed into sub-blocks. Each sub-block will be further

decomposed down to the cell level [6]. An analog cell is a small circuit having a certain

basic function, such as an amplifier, a mixer, a filter, etc. Given a set of specifications

and the technology used, the design flow of an analog cell is mainly composed of

topology selection, circuit sizing, layout and fabrication. The parameter-level analog

design flow (i.e., circuit sizing) is the process through which the biasing and sizing

of all devices (transistors, capacitors, resistors, etc.) are determined such that the

circuit meets its specifications. The goal of this step is to make the parameterized

circuit topology satisfy the specifications as verified by circuit simulation.

Most analog circuit sizing problems can naturally be expressed as a single- or

multi-objective constrained optimization problem, where the goal is to determine the

sizing solution that optimizes one or multiple performance metrics, e.g., power con-

sumption, area, etc. Despite the tremendous growth in computer-aided design (CAD)

tools for circuit synthesis and optimization, the design of analog cells is still being

handcrafted using a schematic capture software (usually SPICE circuit simulator [7]),

and the circuit sizes are determined manually or with little automation.

One of the main reasons for this lack of automation and complexity is the limited

capabilities of the optimization techniques. Although modern numerical optimizations
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have been introduced to analog integrated circuit (IC) sizing, the objective optimiza-

tion and constraint handling abilities of most of the existing methods are still not

good enough for high-performances analog circuit sizing. The large design search

space and the complexity of analog characteristics make the circuit optimization pro-

cess complex. Even worse, driven by the market demands and advances in fabrication

technologies, the specifications of modern analog circuits are becoming increasingly

stringent and consequently result in a more complicated optimization problem. Ow-

ing to this, there is a real need for a more powerful search process able to explore a

large range of design variables towards improving sizing solution.

The design task becomes more difficult with the aggressive down-scaling of silicon

technology, owing to the increasing process-induced variability [8]. In fact, process

variation has become a major concern for today’s analog circuits, due to significantly

increased circuit failures and parametric yield (i.e., the probability that the circuit

meets the performances constraints) loss [9]. Indeed, the variations in device size and

operating point [10] are the main factors that deviate the performance of an ana-

log circuit from its desired property [8]. For example, nanoscale transistors exhibit

more mismatches, leading to random offset errors and poor gain performance [11].

Indeed, analog IC components must be designed with sufficiently high yield in light

of large-scale process variations. For these reasons, it becomes important to esti-

mate and optimize the yield both efficiently and accurately within the analog design

flow [12].

This thesis is largely motivated by the powerful and new solving techniques in

modern Satisfiability (SAT) Modulo Theory (SMT) [13] solvers. These solvers check

the satisfiability of first-order formulas containing operations from various theories

such as real numbers and integers. They are built upon a tight integration of modern

3



Conflict-Driven Clause Learning (CDCL)-style SAT solving techniques with interval-

based arithmetic constraint solving within an SMT framework. They are capable

of handling constraints containing nonlinear functions over a very large number of

variables [14], which is one of the inherent characteristics of analog circuits opera-

tion/performances models. Most importantly, they can be leveraged to exhaustively

explore the search space of a constraint-satisfaction system, making them a poten-

tially appealing choice for parameters space exploration strategies of analog circuits.

Though, they should be properly employed.

In this thesis, we propose new techniques that tackle several limitations of the

analog circuit sizing procedure. Our ultimate goal is to ensure an exhaustive coverage

of the design space using SMT solving technique. The search strategy should relieve

the sizing solution from the uncertainty inherited from optimization-based methods.

Once a complete set of feasible design solutions is determined, the second objective

of our research is to propose a new method that estimates the circuit robustness (i.e.,

parametric yield) in light of process variation. The method should keep a reasonable

computational cost and guarantee a good accuracy. Our third objective is to propose

a new optimization technique for yield-aware circuit sizing that efficiently selects the

best design solution in terms of robustness.

4



1.2 State-of-the-Art

In this section, we briefly review the status of existing circuit sizing, yield estimation

as well as yield optimization techniques closely related to this thesis.

1.2.1 Analog Circuit Sizing

Given a circuit schematic and a set of specifications, circuit sizing denotes the task of

determining the sizes and biasing of all devices such that the circuit meets the speci-

fications. Generally, it is an optimization engine that determines these values, while

the evaluation engine assesses the circuit performances [15]. Techniques that have

been employed as optimization routines for analog circuits can broadly be classified

into two main categories: deterministic optimization algorithms (Newton methods,

Levenberg-Marquardt method, etc.) and stochastic search algorithms (evolutionary

computation algorithms [2], simulated annealing [16], etc.). The main contributions

for analog design techniques are surveyed in [6].

The disadvantages of deterministic algorithms, such as the requirement of a good

starting point, the high probability of getting trapped into local optima, and the con-

ditions of continuous and differentiable objective function, limit their applicability in

analog design methodologies [6]. In general, the differentiability condition is satisfied,

however, a large number of simulations is needed to obtain and evaluate the gradi-

ents, which becomes the bottleneck of the circuit optimization process [17]. Besides,

the optimization needs to start from a good initial point and there is no guarantee

that it will reach the global optimum, particularly for non-convex optimization prob-

lems [18]. Convex optimization is another deterministic approach that uses geometric

programming (GP) operating on posynomial functions [19]. However, this method

too, has met challenges, primarily because extensive studies have demonstrated that
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posynomials fail to produce accurate models for large circuits [20].

Recent advances in polynomial optimization show that the general polynomial

optimization problem can be transformed to a convex problem by Semi definite-

Programming (SDP) relaxations, which makes it possible to find the global optimum

of the circuit optimization [20]. Unfortunately, the problem of the SDP-based poly-

nomial optimization method is that the polynomial approximations cannot guarantee

the modeling accuracy over the whole design space.

Multiple starting point optimization algorithm has also been proposed for analog

circuit optimization [17] [21]. From a set of starting points, the corresponding local

optima are reached by a local optimization method. The global optimum is then se-

lected from these local optima. If one starting point is located in a valley, it converges

to the local optimum by the local search. As the number of starting points increases,

the multiple starting point optimization has a higher probability to find the global

optimum, but at the cost of the computational time. Besides, local optimization tech-

niques, such as the conjugate gradient optimization method [21] and the Sequential

Quadratic Programming (SQP) [17] need the gradients to drive the optimization. The

computation of the gradient requires a large number of simulations. Also, for non-

smooth objective functions, the traditional gradient based local search methods may

stuck at non-smooth points.

Alternatively to deterministic optimization, researchers mainly used evolution-

ary computation algorithms (genetic algorithms, differential evolution, etc) for analog

circuit optimization. Evolutionary Computation (EC) for global optimization mimic

the biological mechanisms of evolution to approximate the global optimal solution of

a problem [6]. In [22], a parallel genetic algorithm method is utilized for performance

exploration. A global search explores a discretized version of the initial performance
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search space using a parallel genetic algorithm and generates a set of feasible perfor-

mances. Each possible performance value represents a set of design variables. The

proposed method suffers from a trade-off between the timing complexity and the

accuracy of the search algorithm output. A non-uniform stochastic simulation using

simulated annealing-based search is then employed to find the optimal sizing solution.

In [1], the authors employ a genetic algorithm for simultaneous optimization of multi-

ple performance parameters. The performances were evaluated using Support Vector

Machine (SVM) [23] based models. However, SVM are black-box models. Thus, they

are unable to reveal any qualitative aspects of the circuit behavior. In [2], the authors

introduce the so-called Memetic Single-Objective Evolutionary Algorithm (MSOEA).

The latter combines operators from the differential evolution and the genetic algo-

rithm. It is specialized in handling large sizing problems with severe constraints. The

sizing result of the mentioned works is very sensitive to various search parameters.

It may often not meet the designer specifications. Also, the designer is frequently

burdened with the task of tuning the optimizer parameters. Indeed, these techniques

do not guarantee the non-existence of other possible good candidates of design pa-

rameters that satisfy the circuit specification.

An early attempt to use formal techniques in analog circuit sizing has been made

in [24]. Using affine arithmetic, the authors calculate guaranteed bounds on the worst

case behavior of the analog circuit and deterministically find the global optimum of

the sizing problem by means of branch and bound optimization. Nevertheless, the

feasibility of the method was demonstrated only on a small circuit.

Table 1.1 summarizes the above mentioned methods for analog circuits sizing. It

describes the used evaluation techniques, the adopted optimization methods and the

sized circuits.
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Table 1.1: Summary of circuit sizing techniques

Optimization Performance Applications
Technique Evaluation

[25]
Parallel genetic algorithm Posynomial design RF distributed amplifier
and simulated annealing equations and simulation Folded cascode amplifier

[26] Convex optimization Posynomial design RF distributed amplifier
equations and simulation

[17] Sequential Quadratic Design equations and Ring operational amplifier
Programming simulation Three-stage amplifier

[27] [19] Convex optimization Posynomial design equations Two-stage amplifier

[20] Polynomial optimization Polynomial design equations Two-stage amplifier
Voltage controlled oscillator

[1] Genetic algorithm SVM-based models Two-stage amplifier
Cascode amplifier

[2] [28] Genetic algorithm, Simulation Folded cascode amplifier
differential evolution Telescopic cascode amplifier

[17] Conjugate gradient Simulation 6T SRAM cell
optimization

Traditionally, analog circuit sizing methods use the width and length parame-

ters of the transistors as design variables. In operating point driven (OPD) formu-

lation [25], the circuit operating point is first selected then converted to transistor

dimensions. In following, we briefly introduce the main techniques for OPD formula-

tion and its advantages.

Operating Point Driven Circuit Sizing

The circuit operating point is a set of nodes voltages and the currents in the branches

when the inputs to the circuit remain indefinitely at their quiescent values [29]. It is

also known as bias point or quiescent point. Identifying the operating point is crucial

because it directly affects the performance and yield of the circuit. In OPD circuit

sizing, the circuit operating point is determined for a fixed transistor length value and
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the device sizes are computed out of it. When using this method, convergence prob-

lems often encountered in numerical simulation are avoided. Also, the design space

is considerably reduced, as a proper choice of the device terminal voltages and cur-

rent, ensures the correct operating region for the circuit. However, new analog sizing

algorithms using the OPD technique have seldom been reported in recent years. One

of the main reasons is that with the scaling down of the technologies, the transistor

models are more complex. Consequently, available techniques for the conversion from

currents and voltages to transistor sizes, such as DC root solving algorithms [30], local

optimization [30], interpolation [31] and look-up table [32] based methods, face sig-

nificant challenges on accuracy, efficiency and memory requirements. In this thesis,

a novel approach for enabling the conversion from the bias to the size variables is

proposed.

1.2.2 Yield Estimation

The standard approach to estimate the yield rate is the brute force Monte Carlo

(MC) [33], which repeatedly draws samples from a predefined distribution of the

process parameters and evaluates circuit performances with transistor-level SPICE

simulation. MC has the advantages of simplicity and extremely general applicability.

However, it can require very large numbers of expensive simulations for accurate

yield estimation. MC is inefficient especially for circuits with rare failure events (e.g.,

static random access memories (SRAM)), because most of the samples fall into the

feasible region, and only an extremely small fraction of samples are in the failure

region [34].

Advanced State of the art MC for circuit yield analysis methods can be roughly
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divided into two categories: variance reduction techniques (e.g., Latin Hypercube

Sampling (LHS) [35], Importance Sampling (IS) [36]) and low-discrepancy sequence-

based methods (e.g., Quasi Monte Carlo (QMC) [37]). LHS partitions the range of

each variable into non-overlapping intervals of equal probability and selects random

values within each grid for every coordinate. By randomly combining the coordi-

nate values, a set of latin hypercubes is constructed. Because of this stratification

technique, the LHS method is capable of providing variance reduction of the yield

estimation. However, it does not work much better than the conventional MC, espe-

cially for some problems that are difficult to be decomposed into a sum of univariate

functions [37].

The key idea of IS based-methods is to shift the original probability density func-

tion (PDF) of the process parameters towards the most likely failure region. They

have achieved remarkable speed-up when applied for the yield analysis of circuits

characterized by rare failure event. However, IS lacks generality as it is designed

for circuits with very high/low yield rate. Furthermore, generating the shifted/dis-

torted PDF is often challenging and circuit specific, since this depends on the actual

distribution of the circuit performance which is unknown beforehand.

Another critical issue of IS is that the proposed (i.e., shifted) sampling distribu-

tion may not cover effectively all failed samples when the circuit presents multiple dis-

joint failure regions induced by conflicting or multiple specification requirements [34].

Besides the multiple specication requirements, high-dimensional process variables also

induce the multiple failure regions since the process parameters may have opposite

influence on the performance metrics [36]. Only a few attempts have tackled the

multiple failure regions case [38] [36]. In spite of that, while the method in [38] is

applicable only to rare failure rate estimation in a very high-dimensional variation
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space (i.e., few hundreds), the authors in [36] reported that reduction techniques

are required before applying their method for problems with more than 24 process

parameters.

QMC is a popular approach that generates quasi-random numbers rather than

purely-random samplings. It utilizes sample sets called Low Discrepancy Sequences

(LDS), in which deterministically generated samples are uniformly distributed on the

parameter space [37]. QMC methods are able to provide an improved integration error

compared to LHS [37]. Yet, its convergence rate is found to be asymptotically superior

to MC only for circuits with a moderate number of process parameters [35].

Other existing methods try to construct a surface boundary which separates the

success and failure regions [39]. Once the boundary is constructed, the yield can be

obtained by computing the volume of the failure region without circuit simulation.

For low dimensional problems, this method can be efficient. However, such methods

cannot handle high-dimensional problems with no more than three process variables.

Even when considering only three process parameters, searching the whole failure

boundaries in the parameters space is extremely complicated. The high-dimensional

analysis (18∼24 process variables) is common and necessary in practical applications.

Though, it makes the discrimination between failure and success regions by hypersur-

faces very hard to achieve.

While above cited approaches present a variety of techniques to speed up and

enhance the convergence of the traditional MC method, they fall short in addressing

critical issues that can be summarized as follows:

- Optimally exploring the variational space that guarantees an acceptable accu-

racy and minimum computational time (i.e., a small number of transistor-level
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simulations).

- Scalability with respect to the process parameters size.

- Generality of application (i.e., handling different levels of yield rate, multiple

performances metrics and multiple failure regions).

1.2.3 Yield Optimization

Yield optimization consists in finding the design point that has the largest margin

from violating the specifications (i.e., maximum yield), when the circuit is subject to

parameters variation. The search techniques reported in Section 1.2.1 (i.e., determin-

istic and stochastic search algorithms) can also be applied as optimization routines

for yield optimization. In following, we discuss other available approaches that have

been proposed particularly for yield optimization.

Most of the yield optimization methodologies are based on evolutionary compu-

tation algorithms. In [40] and [41], the authors employ Ordinal Optimization (OO) to

allocate the simulation effort for each design point. At each optimization iteration, a

sufficient computational budget is allocated for promising design points and a limited

number of circuit simulation is employed to calculate the yield of non-critical solu-

tions that have little effect on identifying the optimal design. In [40], OO is integrated

with a two stage optimization strategy. The proposed algorithm uses differential evo-

lution for global search and a random scale mutation operator for fine tunings to

enhance the convergence speed of the yield optimization. In [41], OO is employed

with multiple objective evolutionary algorithms. The optimization problem considers

the yield, but it also ensures a trade-off between the yield and some other quality
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performance metrics. Both [40] and [41] present promising results in terms of com-

putational cost and convergence speed. However, the accuracy of OO often cannot

satisfy the requirement for objective optimization [6]. Furthermore, both cited meth-

ods require the fine tuning of numerous starting conditions. Also, they have to be

run repeatedly due to their stochastic nature. In this thesis, we propose a determin-

istic optimization framework. The method does not require sophisticated knowledge

for parameters fine-tuning. Also, a local optimization algorithm is incorporated to

speedup the convergence.

Yield optimization methods include also device model corner-based methods and

performance-specific worst-case design (PSWCD) methods. Device model corners-

based methods check if the specifications are met at the extreme values of the process

parameters. While computationally efficient due to the limited number of simulations

required, different approaches have different choices to model corners which can be

inaccurate or not realistic [6]. Also, the worst-case performance values are too pes-

simistic, as the corners correspond to the tails of the joint probability density function

of the process parameters. Besides, corner-based methods account for global variation

of the process parameters and do not include local variation effects which is critical

in analog sizing. If the local variation is also considered, the number of simulations

can be extremely large.

Worst-case optimization [42] denotes the task of finding the design point that

minimizes the worst-case deviation of the performance from its nominal value. To

do so, the lower and upper bounds of worst-case performances values as well as the

corresponding design parameters are computed. This task is challenging and error

prone as it is based on the linearization of the performances at the worst case design

points, which is inaccurate especially in nanometer technologies [42].
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Based on the above discussion and the stated limitations of the state-of-the-art,

we propose in the next section a framework for yield-aware analog circuits sizing that

tries to mitigate existing inefficiency issues.

1.3 Proposed Methodology

The main objective of this thesis is to develop a means to size robust analog circuits

under process variation, for a given circuit topology. In particular, we target the siz-

ing of analog cells (i.e., small to medium circuits having a basic operation). The first

task towards our main goal is to determine a feasible subset of the design variables for

which the circuit satisfies the specifications in nominal condition. Second, the best

design solution in terms of robustness in light of parameters variation is selected. To

do so, a yield estimation technique should efficiently evaluate the probability to sat-

isfy the specification property, despite process variations. Moreover, an optimization

engine selects the sizing solution with the highest yield rate. The framework for the

proposed nominal circuit sizing and yield estimation and optimization is depicted in

Figure 3.2. The proposed framework provides several novel techniques that address

the limitations of existing yield-aware analog circuits sizing methods. It is composed

of three complementary contributions: (1) a nominal circuit sizing approach based on

SMT solving techniques; (2) an accelerated and reliable surrogate-based yield estima-

tion; and (3) a yield optimization strategy. The three components of the methodology

can be connected to produce the most robust sizing solution in light of process vari-

ation. However, each block can also be employed independently to perform its main

functionality.

Given a set of circuit specification, a technology library and a circuit topology,
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Figure 1.1: Overview of the Proposed Methodology

the nominal circuit sizing component computes a continuous set of validated feasible

design solutions. The design solutions are guaranteed to satisfy the specification with

high confidence in nominal condition. We use SMT solving techniques coupled with

interval arithmetic to perform an exhaustive search of the design space. In order to

efficiently use SMT technology, we employ a search space sampling approach and a

parallel exploration to accelerate the sizing procedure.

Given the specification property and the technology library, the surrogate-based

yield estimation block computes the yield rate of a design point under the effect of

process variation. The design point can originate from the optimization process. How-

ever, the technique can also be applied independently to estimate the robustness of

a given design point in the form of a SPICE netlist. The yield estimation technique

combines the advantages of sparse regression and Satisfiability Modulo Theory (SMT)

solving techniques. The method characterizes the failure regions as a collection of hy-

perrectangles in the parameters space. The yield computation is based on a geometric

calculation of probabilistic volumes subtended by the located hyperrectangles.
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The yield optimization stage takes as input the validated feasible design solutions

and determines the most robust feasible design. The robust design maximizes the yield

rate, despite process parameters variations. At each optimization iteration, a feasible

design point is selected by the yield optimization engine and forwarded to the yield

estimation block. The performances and yield rate are computed and fed back to the

optimization engine. The optimization employs a two step exploration strategy. A

global optimization phase locates a design point near the optimal solution that is used

as a starting point by a local optimization phase. The local search constructs and

optimizes local linear interpolating models of the yield to reach the global optimum

with the highest yield rate.

We illustrate the application of each part of our methodology on various ana-

log circuits to prove its effectiveness. We provide an in-depth analysis of our results

and justify the use of various techniques proposed in this methodology. The nomi-

nal sizing stage and the surrogate-based yield analysis have been implemented via a

link between MATLAB [43] and the SMT solver iSAT [14]. The optimization block

is implemented in MATLAB. All simulations were performed using an 8-core Intel

CPU i7- 860 processor running at 2.8 GHz with 32 GB memory and Linux operating

system.

1.4 Thesis Contributions

The main objective of this thesis is the development of a methodology for enhancing

analog circuit sizing in the presence of process variation. The pieces of this method-

ology can be integrated together in different ways to achieve the goal of sizing robust

analog circuits. However, each of them has been used independently to perform its
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main functions and can also be adapted to any other related work. In the following, we

list the main contributions of this work along with references to related publications

provided in the Biography section that is given at the end of the thesis.

• Elaboration of a nominal circuit sizing methodology that computes a rough

approximation of the design solution ranges as well as the space of feasible

performances. The method is able to ensure an exhaustive coverage of the

design search space and outputs guaranteed bounds on the feasible performance

range [Bio-Cf2].

• Development of a novel method for fast and reliable computation of analog

circuit yield that combines the advantages of sparse regression and Satisfiability

Modulo Theory (SMT) solving techniques, and avoids issues in both. The yield

estimation method is able to provide a guarantee on an exhaustive coverage

of the circuit failure regions and hence tries to achieve reliable yield results

[Bio-Jr1].

• Implementation of a novel method for analog yield optimization using a partition-

based global search algorithm, which samples the most potential region of the

feasible design space. A model-based local search is then integrated to highly

speedup the convergence. Its efficiency is elevated by the reuse of existing sim-

ulation data of the global search phase [Bio-Cf1].

• The application of the proposed nominal circuit sizing and yield estimation and

optimization techniques on various analog circuits including: a two-stage am-

plifier, an integrated ring oscillator, a 6T static RAM cell and a multi-stage

fully-differential amplifier. These applications clearly demonstrate the feasibili-

ties and the advantages of the diverse proposed methodologies.
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1.5 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we detail our nominal

circuit sizing methodology. We explain the formulation of the circuit sizing problem

as a satisfiability problem and we describe the proposed SMT-based solving strat-

egy that computes a continuous set of feasible design solutions. The usefulness of

the proposed sizing technique is demonstrated with two analog circuits: a two-stage

amplifier and a folded cascode amplifier for which we identify sets of continuous siz-

ing solutions. After that, in Chapter 3, we describe the proposed surrogate-based

yield estimation methodology in detail. We explain how we characterize the failure

regions as a collection of hyperrectangles in the parameters space and how the yield

estimation is based upon a geometric calculation of probabilistic volumes subtended

by the located hyperrectangles. We also provide application results which prove that

the proposed method is suitable for handling problems with tens of process parame-

ters. Also, we demonstrate its effectiveness in handling circuits that usually require

expensive run-time simulation during yield evaluation. In addition, in Chapter 4, we

explain our new optimization technique applied for yield optimization. and show its

effectiveness through the analysis of two CMOS amplifiers under the effect of process

variations. Finally, Chapter 5 provides concluding remarks and several directions for

future research.
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Chapter 2

SMT-based Nominal Circuit

Sizing

In this chapter, we focus on analog circuit sizing in nominal condition. We present

an approach for enhancing the sizing procedure using Satisfiability Modulo Theory

(SMT). The circuit sizing problem is encoded using nonlinear constraints. An SMT-

based algorithm exhaustively explores the design space, where the biasing-level design

variables are conservatively tracked using a collection of hyperrectangles. The device

dimensions are then determined by accurately modeling the geometry-level design

parameters as a function of the biasing-level design parameters. We demonstrate the

feasibility and efficiency of the proposed methodology on a two-stage amplifier and a

folded cascode amplifier.
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2.1 Circuit Sizing Methodology

Given a set of specifications, a circuit topology and a technology library, design con-

straints are derived and input to an SMT-based circuit sizing step. During this stage,

technology information are first collected in order to characterize transistor parame-

ters. For this purpose, we use extensive circuit simulations to infer polynomials that

approximate the small signal parameters of n-MOS and p-MOS transistors as a func-

tion of biasing voltages and currents. The analytical-based performance expressions

are formulated using the constructed models. Given a well-defined set of specifica-

tions and the circuit topology, the design constraints are derived and input to an

SMT-based design space exploration algorithm. This step uses interval arithmetics

with SMT solving techniques to ensure a complete coverage of the design space. The

output of this block is an over-approximation of each device operating points as well

as the feasible performance space.

The next step consists in converting the continuous ranges of operating point of

each device into interval-valued transistor dimensions. For that, we use simulation

and clustering to fit a piecewise polynomial approximation that relates the transistor

width parameter to the biasing voltages and currents. The model efficiently captures

the nonlinear function that relates multidimensional scattered data generated using

analog simulation.

The goal of the last step is to verify if the circuit satisfies the feasible performance

space given the generated ranges of devices sizes. For that, Monte Carlo simulation

is performed at the circuit level. If the requirement in terms of accuracy is met, the

method outputs continuous ranges of validated feasible sizing solutions. Otherwise,

the design constraints can be further investigated and the SMT solver parameters
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adjusted. Figure 2.1 summarizes our analog circuit sizing method using satisfiability

modulo theory (SMT) techniques.
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Figure 2.1: Circuit sizing methodology

2.1.1 Design Constraints Extraction

At the beginning of our circuit sizing methodology, a characterization of the transis-

tor small signal parameters is performed. For this purpose, a relational model that

relates each small signal parameter (gm, gds) to the biasing-level design variables of

the transistor (Ids, Vg, Vd, Vs) is constructed (Figure 2.2). First, small signal param-

eters and biasing-level design variables of n-MOS and p-MOS transistors are swept

during Monte Carlo simulation in SPICE [7] using the Latin Hypercube Sampling

(LHS) [44]. Then, only feasible variables ensuring that the transistors are biased in
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saturation or in triode are retained. All training pairs of transistor operating points

and small signal parameters are then formulated as a least square error problem and

fed into a third order polynomial regression step to determine the fitting parameters.

High degree polynomials are avoided to prevent prohibited complex equations and

ill-conditioning. The extracted models can be reused multiple times for a given tech-

nology which ensures the generality of our approach. The problem formulation can

be written as follows:

min
α

N∑
n=1

(yn − f(xn, α))
2

where y is the transistor small signal parameter and x is the set of biasing variables

values obtained from circuit level simulation, f(x, α) represents the regression model,

α the fitting parameters and N the number of data samples.
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Figure 2.2: Mapping small signal parameters to biasing-level variables of MOS

The performance equations are expressed as a function of biasing-level transistor

variables and/or small signal parameters. The SMT problem is a conjunction of the

initial space of each design variable, the performance equations, the specifications

and other design constraints, such as restricting the transistors to operate in the

saturation/triode region, symmetry constraints and Kirchhoff’s Current Law (KCL).
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In general, the problem formulation can be written as follows:

Xmin ≤ X ≤ Xmax

Ymin ≤ Y ≤ Ymax

Zmin ≤ Z ≤ Zmax (2.1)

yj = fj(X, αj)

zp = g(k)
p (X,Y)

k(X) ⊕ 0

• X = {xi, i = 1 . . . l} are the biasing-level design variables.

• Y = {yj, j = 1 . . .m} are the transistors small signal parameters.

• [Xmin,Xmax] are the ranges of the biasing-level design variables.

• [Ymin,Ymax] are the ranges of the small signal parameters.

• yj = fj(X, αj), j = 1 . . .m, are the mapping equations from X to Y and αj the
fitting parameters.

• Z = {zp, p = 1 . . . P} are the performance metrics, (e.g., gain, bandwidth, etc.)
and P is the number of performance metrics.

• [Zmin,Zmax]p, p = 1 . . . P , are the boundary values specifications of the perfor-
mance metrics zp.

• zp = g
(
pX,Y) are the performance equations of the pth performance metric.

• k(X)⊕ 0 are the set of device matching constraints and transistor operation
conditions, KCL, where ⊕ stands for =,≤,≥, <, or >.

2.1.2 Design Space Exploration

The aim of the design space exploration is to determine the feasible performance as

well as the transistors operating points ranges given the sizing constraints constr and
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a set of specifications [Zmin, Zmax]p. Our approach, which we explain in the sequel, is

summarized in Algorithm 2.1.

Alg. 2.1. SMT-based design space exploration

Require: S, P, constr, [Zmin, Zmax]p
1: Xf = ∅, Zf = ∅, NS = SP

2: for all ind = 1 → NS do in parallel
3: zp ⊆ [zpmin, zpmax]ind
4: repeat
5: Invoke iSAT(constr)
6: if a candidate is found then
7: Invoke INTLAB(constr, candidate)
8: if Locate box then
9: Xf ← Xf ∪Xbox
10: Zf ← Zf ∪ Zbox
11: Update(zp, Zbox)
12: end if
13: end if
14: until Unsatisfiable
15: end for
16: return Zf : Feasible performance space

Xf : Biasing-level design variable space

The cost of solving nonlinear SMT problems increases exponentially with the

problem dimension. It would be then infeasible to run the search over a large ini-

tial space of performance. For these reasons, we propose first to split the problem

into NS = SP subproblems that we solve simultaneously (Line 2). Each subprob-

lem is limited to a possible combination of performance boundaries. That is, for

each subproblem, a possible combination of the performance metrics is traversed

zp ⊆ [zpmin, zpmax]ind, p = 1 . . . P (Line 3). For example, if the circuit requires two

performance metrics (P = 2) with S = 5 descritazation steps (i.e., sampling density),

then the overall combinations of performance space to be explored is NS = SP = 52.

Obviously, we can observe that the complexity increases with more specs and greater
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precision in sampling. However, a parallel enhancement is adopted to reduce the tim-

ing complexity. Figure 2.3 summarizes our proposed design space exploration scheme.
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Figure 2.3: Parallel design space exploration

The SMT solver [14] returns a set of continuous ranges (candidate) of each

variable (Line 6). However, the set of interval solutions is only an over-approximation

that can be devoid of any real solution to the constraints. The uncertainty can

be alleviated by setting a high resolution of the returned candidate. Still, this will

dramatically increase the computation time. Owing to this, the size of the interval

solution (resolution) is adjusted on the fly for a trade-off between computational cost

and over-approximation. Also, for each set of intervals proposed by the SMT solver,

we use the MATLAB toolbox for interval arithmetic INTLAB [45] to further refine

the solution (Line 7). Given the candidate solution as interval initial condition and

the sizing equations, INTLAB either refutes the existence of any solution or produces

a hyperbox that is contained in the candidate region and guaranteed to contain the

solution (Line 8). Though, INTLAB may also fail to either confirm or refute the

existence of a solution. One possible reason of this non-determinism case is that the

candidate returned by the SMT solver may contain multiple roots. In this case, the

hyperrectangle can be returned to the solver to be further analyzed.

The feasible performance space Zbox and the devices operating points Xbox are
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then merged into Zf and Xf , respectively (Lines 9 and 10). The function Update

removes Zbox from the search space by adding the constraint Zbox � zp. This

will force the solver to search for new solutions [46]. Finally, when all reachable

hypercubes are found, the solver will return Unsatisfiable, providing a guarantee on

complete coverage of the search space. In fact, the SMT solver provides a guarantee

on unsatisfiability. An unsatisfiable result means that there is no additional candidate

solution to the sizing problem constraints.

2.1.3 Conversion from Bias to Size

The aim of this step is to allow the conversion from device operating point to device

size. For this purpose, we first propose to construct a model f̂w of the transistor

width parameter as a function of the branch current and the node voltage for n-

MOS and p-MOS transistors. We next present an approach that approximates the

width parameter as piecewise polynomial model over a number of regions, which is

illustrated in Figure 2.4.
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Figure 2.4: Clustered polynomial regression

We use k-means clustering to subdivide the multidimensional scattered data of

branch current, node voltage and width data samples, generated using Monte Carlo

simulation in SPICE, into R regions. The number of clusters is set to an initial

guess as the first and is updated after that to guarantee the accuracy of the model
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and a practical time required to generate it. The result of the clustering procedure

is a discrete version of the data. Each region is represented by its centroid xr. A

polynomial model of third order is then generated at each region using multivariate

nonlinear regression. The regression problem for each region r = 1 . . . R, can be

written as a least square minimization problem as shown in Equation 2.2.

min
βr

N∑
n=1

(w(n)
r − f̂r(x

(n), βr))
2 (2.2)

where wr and x are, respectively, the set of width and bias voltage and current values

obtained from circuit level simulation, N the number of samples, f̂r(x, βr) represents

the regression model that approximates wr and βr is a set of fitting parameters. To

avoid overfitting even more, a weighted model evaluation is proposed. The value of

the weight function weightr should be close to one when the vector of bias values

x approaches the centroid xr, and should attenuate to zero when x leaves xr. We

propose to choose a Gaussian function [47] where σ = 0.01 is a predefined constant

as given in Equation 2.3.

f̂w =
R∑

r=1

weightr ∗ f̂r (2.3)

weightr = e
−(xr−x)

σ

Once the macromodel f̂w is generated, the next step consists in determining the

transistor size ranges [wmin, wmax], given the set of transistor operating points Xf .

Algorithm 2.2 provides a description of the global optimization (GO) based approach.

For each transistor (i from 1 to n), the algorithm calculates, using f̂w, the minimum

and the maximum of the transistor width [wimin, wimax], when its bias voltages and
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current xi are constrained to [X i
f(min), X

i
f(max)], as well as, the transistor operating

in the appropriate operation region. The search algorithm alg is the interior-point

method [48] and x0 is a well-defined starting point.

Alg. 2.2. Transistor width range computation

Require: f̂w, w0, Xf , n, alg
1: for i ∈ 1 to n do
2: x0 = (Xi

f (max)−Xi
f (min))/2

3: [wimin, wimax] = GO(f̂w(x), x0, alg)subject to xi ∈ [Xi
f(max), X

i
f(min)]

4: end for
5: return [wmin, wmax]

2.1.4 Validation

The goal of this step is to verify wether the circuit performances, when fed to the

circuit simulator, are within the performance space Zf or close with an acceptable

level of error. Then, Monte Carlo simulation is performed over the ranges of sizes

[wimin, wimax] to compute the reachable performances. In case the level of accuracy is

not acceptable, we refine the discretization resolution (i.e., solution size). However,

the timing complexity is sacrificed as trade-off. The inaccuracy can also raise from

the fitting error. This can be targeted by increasing the data samples or the order of

the polynomials models.

2.2 Applications

In this section, we present the application of our circuit sizing technique on the ex-

ample of a two-stage amplifier [49] and a cascode amplifier [6]. In what follows, all

the used circuits are in 0.18μm technology based on BSIM3 models [50]. The lengths
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of all transistors are kept constant and set to 0.36μm. However, the small signal

parameters models and the width parameter model can be constructed for different

constant values of transistor length. Therefore, it is possible to set different values of

the transistors lengths. The transistors widths are allowed to vary from 1μm to 40μm

and the current from 1μA to 8.4mA. The approach has been implemented via a link

between MATLAB and the SMT solver iSAT.

2.2.1 Modeling Evaluation

In this part, we evaluate our modeling technique explained in Section 2.1.3. The

performance of the proposed clustered polynomial regression is compared to four

multidimensional regression approaches [51] available in MATLAB, for the same

n-dimensional test case as shown in Table 2.1. In this comparison, we consider

10000 Monte Carlo data samples of transistor channel width, currents and voltages,

75% of them for training and 25% for testing. We model the channel width as a

function of the transistor operating points for n-MOS and p-MOS. The prediction

ability of each regressor is tested by calculating the normalized mean square error

(NMSE=
‖f̂−w‖22
‖w‖22 ).

Table 2.1: Test Error (NMSE) Comparison

MOS CPR PR NN SVM MARS

n-MOS 0.48 10−2 9.3 10−2 2.2 - 7.1 10−2

p-MOS 0.37 10−2 9.6 10−2 2.5 - 6.2 10−2

While the least-squares Support Vector Machines (SVM) was not able to con-

verge to an exact solution and were running indefinitely, the Neural Networks (NN)

are too inaccurate (test error > 200%) and hence are not a suitable regressor for high-

dimensional test case. With the Multivariate Adaptive Regression Splines (MARS)

using piecewise cubic sampling, the error is less than 10%, while for our clustered
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polynomial regression (CPR) approach, it is below 1% and 10 times less than using

polynomial regression (PR) without clustering. Combining data clustering with local

multivariate polynomial approximation is a robust means of approximating the non-

linear function that relates multidimensional scattered data. The model takes a few

seconds to be constructed and can be reused multiple times for the same technology

and MOS model. In general, the modeling error should be less than 2×10−2 to ensure

the accuracy of the sizing result.

2.2.2 Two-stage Operational Amplifier

We consider a two-stage amplifier [49] as shown in Figure 2.5. The load capacitance is

set to 10pF . In order to guarantee the stability of the amplifier, we set the constraint

Cc >
gm1

gm6
1.7CL [49]. Appropriate operating regions are ensured by imposing saturation

constraints on each transistor. Matching relations were also imposed: Vd2 = Vd1,

I1 = I2 = 0.5I5, I5 = I8. The analytical expression of the performance metrics can be

approximately expressed as given in Equation 2.4.

Av =
gm1gm6

(gds2 + gds4)(gds6 + gds7)

PDC = vdd(I8 + I5 + I6)

GBW =
gm1

2πCc

(2.4)

gmi = ĝmi(Vdi, Vgi, Vsi, Ii, αi), i = 1, 6

gdsi = ĝdsi(Vdi, Vgi, Vsi, Ii, βi), i = 2, 4, 6, 7

where Vdi, Vgi, Vdi, Ii refer to the operating point of of the transistor Mi, ĝmi and ĝdsi

its small signal parameters and αi, βi the fitting parameters. Column 2 of Table 2.3
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Figure 2.5: Two-stage amplifier

reports the performance specifications on the gain Av, gainbandwidth GBW , power

PDC , phase margin PM and the input common mode range ICMR. Our aim is

to study the feasibility of the specification and determine the reachable performance

space and devices sizes.

In order to show the effectiveness of our approach in speeding up the search

process, we divide the SMT search problem into different numbers of subproblems

and compare their run-times as shown in Table 2.2. In fact, the run-time tends to

decrease linearly when the number of subproblems increases. A minimum run-time can

be reached with a sampling density S equal to 4. In this case, the three performance

boundaries (P = 3) related to the gain, gainbandwidth and power constraints are

subdivided into SP = 43 = 64 possible combinations of performance boundaries. The

total combinations are explored and a speedup of ×10 is achieved. The speedup comes

from: (1) the reduction of the search space allowed by the problem subdivision; and

(2) the capability of producing multiple satisfiable solutions simultaneously thanks to

the parallel implementation.

31



Table 2.2: Two-stage amplifier experimental results

Samples Run-time [s]
# Candidate

# Solutions
# Spurious

regions regions

S=1 660 226 205 21
S=2 340 220 206 14
S=3 290 216 201 15
S=4 61 221 205 16

We report the number of candidate regions computed by iSAT in Column 3 of

Table 2.2. The number of solutions confirmed by INTLAB is shown in Column 4. The

spurious regions are those reported by iSAT but not confirmed by INTLAB. That is,

the solver cannot derive any contradictions within the reported candidate regions,

with respect to the constraints and the adopted resolution (i.e., solution size). It does

not mean, however, that the box actually contains a solution. Thus, the presence

of spurious regions is explained. The number of these regions is simply the total

number of reported candidate regions minus the number of solutions confirmed by

INTLAB.

Table 2.3: Specification and results of our method

Perf metrics Specifications Our method MC

Av(dB) [60, 70] [60, 66.5] [59.7, 66]
GBW (MHz) [2, 6] [2.05, 3.62] [2.5, 3.6]
PDC(mW ) [0.09, 0.17] [0.12, 0.17] [0.12, 0.18]
ICMR(V ) [0.8, 1.6] [0.8, 1.3] -

PM(◦) ≥ 60 - [128, 135]

The performance space computed by our SMT design space exploration method

is reported in Column 3 of Table 2.3. The proposed methodology outputs continuous

ranges of design variables, as shown in Table 2.4. In order to evaluate the accuracy

of our results, Monte Carlo (MC) simulation has been run with 1000 trials where the

design variables are uniformly distributed over the computed sizing ranges shown in

Table 2.4. Not surprisingly, our sizing results are guaranteed to fulfill the generated
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feasible performance with a small violation as the device models used in the formula-

tion of the constraints do not totally match the sophisticated models utilized in the

validation step. Still, the violation is very small owing to the accuracy of the extracted

models.

Table 2.4: Design variables ranges of the two-stage amplifier

Design variables Ranges

w1 = w2(μm) [7.1, 8.95]
w3 = w4(μm) [2.9, 3.15]
w5 = w8(μm) [9.4, 9.6]

w6(μm) [5.4, 5.6]
w7(μm) [7.12, 8.1]

I8(μA) [25.3, 35.2]
Cc(pF ) [7.5, 8.1]

We compare our results with an optimization-based method using Genetic Al-

gorithm (GA) [1] applied for the sizing of the two-stage amplifier circuit in 0.18μm

technology. The goal of GA is to simultaneously optimize Av, GBW and the cir-

cuit phase margin (PM) and to search for the candidate solution that achieves the

best trade-off. The achieved performances are reported in Table 2.5 and the total

computation time is 437.63 sec.

Table 2.5: Specification and results of GA [1]

Perf metrics Specification GA SPICE

Av(dB) maximize 61.8 61.7
GBW (MHz) maximize 3.21 2.75

PM(◦) maximize 145 122

The performances of the optimized circuit are verified using SPICE simulation.

Our method is able to locate higher performances when compared to the optimal

design solution computed by GA. The search ability of our SMT-based approach

obviously outperforms the GA-based method thanks to an exhaustive and complete
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coverage of the large design space, as well as, an accurate modeling of the circuit

characteristics. Another strength of our method is the computation of a continuous

safe subset of design variables for which the circuit satisfies the specifications, while

the optimization based-method GA does not have this ability, as it only targets a

nominal design point. We offer valuable information about the performances bounds

when the design variables are subject to variation.

2.2.3 Folded Cascode Amplifier

We consider a folded cascode amplifier circuit [49] as shown in Figure 2.6. The in-

puts voltages (Vin−, Vin+) are set to 0.9V and the load capacitance is fixed to 5pF .

Appropriate saturation constraints are imposed on each transistor. The symmetry

constraints are applied as follows: Vd2 = Vd1, Vd7 = Vout, Vd6 = Vd13, I1 = I2 = 0.5I3,

I10 = I9, I13 = I6 and I3 = I4. The expressions of the performance metrics are given

in Equation 2.5. The design specifications are shown in Column 2 of Table 2.7.

PDC = vdd(I6 + I13 + I3 + I4)

GBW =
gm2

2πCL

SR =
I3
CL

Av = gm2Rout (2.5)

Rout =
gm11

gds11
(

1

gds2 + gds10
) ‖ 1

gds13
+

1

gds12
(1 +

gm12

gds13
))

gmi = ĝmi(Vdi, Vgi, Vsi, Ii, αi), i = 2, 11, 12

gdsi = ĝdsi(Vdi, Vgi, Vsi, Ii, βi), i = 10, 11, 12, 13

The run-time for determining the performance space and the continuous range
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Figure 2.6: Folded cascode amplifier

of operating points with different sampling density is reported in Table 2.6. In fact, a

minimum run-time of 90s is reached with S = 4 showing significant speedup of ×10

when compared to the naive approach (S = 1). This result indicates the capability

of our approach in reducing the design space exploration computational time and

improving the efficiency in solving the SMT problem.

Table 2.6: Cascode amplifier experimental results

Samples Run-time [s]
#Candidate

#Solutions
#Spurious

regions regions

S=1 960 186 176 10
S=2 440 181 175 6
S=3 290 188 176 12
S=4 90 190 174 16

The circuit sizing methodology computes continuous ranges of design variables,

as shown in Table 2.8. The reported ranges are the validated feasible design solutions.
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The cascode amplifier satisfies its specifications, with high guarantee of accuracy, for

any sizing solution included in these ranges. The reachable performance space is

reported in Column 3 of Table 2.7. These performance boundaries are computed

by the SMT-based design exploration stage. They represent an approximation of

all possible performance values that can be reached when the design variables are

constrained to the validated feasible design solutions. We also include the results of

1000 Monte Carlo (MC) simulations (Column 4) where the design variables are uni-

formly distributed over the computed sizing ranges shown in Table 2.8. Our method

successfully identifies the true feasible design solutions with high confidence.

Table 2.7: Specification and results of our method

Perf metrics Specification Our method MC

Av(dB) [60, 70] [60, 65] [61.3, 67.5]
GBW (MHz) [80, 90] [80, 83] [79, 84]
PDC(mW ) [1, 1.29] [1.25, 1.28] [1.24, 1.27]
SR(V/μs) [60, 75] [64, 65.6] [61.2, 63]

Table 2.8: Design variables ranges of the folded cascode amplifier

Design variables Ranges

w1 = w2(μm) [30.1, 39.9]
w9 = w10(μm) [11.15, 11.21]
w8 = w11(μm) [16.41, 16.53]
w7 = w12(μm) [2.9, 5.8]
w6 = w13(μm) [3.1, 5.75]
w3 = w4(μm) [13.4, 13.51]

w5(μm) [18.2, 18.31]

I4(μA) [320, 328]
Vcm(V ) [0.750, 0.751]

We compare our experimental results with high-ability optimization algorithms

including Genetic Algorithm with penalty function (GA), Differential Evolution (DE)

algorithm and Memetic Single Objective Evolutionary Algorithm (MSOEA), which
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were employed to size the cascode amplifier circuit in 0.18μm technology. The results

are summarized in Table 2.9. For the above three methods, the objective is to minimize

the power while satisfying the constraints in Column 2 of Table 2.9. The evaluation of

the performances is accomplished in the circuit simulator HSPICE [2]. While GA and

DE fail to find feasible solutions even with multiple different sets of search parameters

and initial conditions [2], our method is guaranteed to determine a range of continuous

design parameters when they exist. Indeed, less power consumption PDC is achieved

while better quality of gain Av, slew rate SR and GBW are successfully located

when compared to MSEOA. This result is accomplished thanks to an exhaustive

parallel design space exploration and a good coverage of the design space. We also

ensure minimal area occupation which may vary from 61.2μm2 to 72μm2 while it is

426.34μm2 for MSEOA.

Table 2.9: Specification and results of [2]

Perf metrics Specification GA DE MSOEA

Av(dB) ≥ 60 61.89 60 60.12
GBW (MHz) ≥ 80 3.13 51.13 80
PDC(mW ) minimize 0.03 0.74 1.29
SR(V/μs) ≥ 60 1.56 33.97 60.03

Run-time (s) - 173 161 185

Unlike these search algorithms that return one local solution to the sizing prob-

lem, our approach determines a continuous safe subset of the design parameters that is

guaranteed to comply with the specifications while it is often computationally expen-

sive and time consuming to size a circuit such that it obeys properties over a range of

design parameters. Moreover, our SMT-based search technique highly relieves the siz-

ing solution from the uncertainty inherited from optimization-based method. Besides,

it can be applied to any circuit and does not require special problem formulation.
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2.3 Summary

In this chapter, we presented a methodology for characterizing a feasible region of the

sizing solution space. Given the circuit topology and the specification properties, we

compute a rough approximation of the design solutions in nominal condition. The

proposed scheme is an alternative approach to the existing analog sizing techniques

(optimization-based) with additional trust and better coverage of the search space.

However, in real designs, we are facing inevitable variations in the parameters of the

manufacturing process such as thickness of the oxide layer and threshold voltage. The

next chapter presents a method that evaluates the robustness of a design solution in

the presence of parameters variation.

38



Chapter 3

Surrogate-based Yield

Estimation

In this chapter, we propose a new method for accelerated and reliable computation of

parametric yield that combines the advantages of sparse regression and Satisfiability

Modulo Theory (SMT) solving techniques, and avoids issues in both. The key idea is

to characterize the failure regions as a collection of hyperrectangles in the parameters

space. Towards this goal, the method constructs a sparse polynomial models based

on adaptive LASSO (Least Absolute Shrinkage and Selection Operator) [52] to find

low degree approximations of the circuit performances. A procedure inspired by sta-

tistical model checking is then introduced to assess the model accuracy. Given the

constructed models, an SMT-based solving algorithm is employed to locate the failure

hyperrectangles in the parameters space. The yield estimation is based on a geomet-

ric calculation of probabilistic volumes subtended by the located hyperrectangles. We

demonstrate the effectiveness of our method using circuits that require expensive run-

time simulation during yield evaluation. They include: an integrated ring oscillator,
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a 6T static RAM cell and a multi-stage fully-differential amplifier.

3.1 Yield Rate Estimation Methodology

Before presenting the proposed methodology for surrogate-based yield estimation, we

briefly explain our main objective and define terms that will be used in the rest of

the chapter. Suppose that p = [p1, p2, . . . , pl] is a l-dimensional continuous random

variable modeling process variations. Such random variables include the variations of

gate length ΔL, oxide thickness Δtox and threshold voltage ΔVth, etc., associated with

each circuit device. Without loss of generality, we further assume that the random

variables in the vector p are mutually independent and follow a truncated normal

distribution with ±3σ and zero mean. We define the parameters (i.e., variation)

space P as the set of all possible combinations of the random variables. In general,

the yield rate can be mathematically represented as:

Y∗ = 1− Pf = 1−
∫
Ω

pdf(p)dp (3.1)

where pdf(p) is the joint probability density function of p and Ω denotes the failure

region, i.e., the region of the parameters space where the performances are not sat-

isfied (can be a single region or multiple disjoint regions). We denote the integral in

Equation 3.1 to be the probabilistic hypervolume of Ω [53]. Figure 3.1 is a geometrical

illustration in two dimensions.

In general, the multidimensional integral in Equation 3.1 cannot be directly com-

puted since the failure region Ω usually establishes a complex nonlinear integration
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Figure 3.1: 2-D parameters space

boundary. In our method, we propose to characterize Ω as a collection of high di-

mensional sub-regions (i.e., hyperrectangles). The probabilistic hypervolume of each

sub-region is then evaluated and employed to estimate the total yield. Obviously, the

accuracy of the yield estimation depends strongly on how well the sub-regions are

approximated. In this chapter, we will mainly focus on this characterization problem

and develop novel algorithms to make it tractable and computationally efficient.

The methodology in Figure 3.2 details the proposed approach for yield estima-

tion. The technique takes as input a design point derived from a yield optimization

block, as described in the proposed framework in Chapter 1. It can also be ap-

plied independently to estimate yield rate of a design point described as a SPICE

netlist.

First, an adaptive sparse regression technique is applied to extract surrogate

models of the circuit performances. In order to optimize the modeling step, a dimen-

sion reduction technique keeps the most significant process parameters. The proposed

algorithm sorts the process parameters by weight assignment and prunes the unim-

portant parameters. Then, a low-degree and sparse polynomial model of each circuit

performance is constructed based on adaptive LASSO. The LASSO method assigns

adaptive weights for penalizing the coefficients of the polynomial terms and yields a

consistent estimate of the model coefficients. The model is iteratively built until the
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Figure 3.2: Yield estimation methodology

requirement in terms of accuracy is met. A procedure inspired by statistical model

checking is then introduced to verify the model accuracy for a chosen confidence level.

The resulting model can be viewed as a statistically guaranteed approximation of the

circuit behavior. The subset of the circuit response space where each performance

of interest does not meet the specification is conservatively characterized as a set of

intervals. Based on the extracted models, SMT solving is not employed to compute

the exact failure sub-regions in the parameters space. Instead, it is used to find only

an over-approximation of them. The integration of interval arithmetics to remove the

undesirable over-approximation, trades off between the computational cost and the

conservativeness of SMT. A parallel exploration of the failure performance space al-

lows the simultaneous finding of multiple satisfiable solutions and significantly speeds

up the search process. Finally, the yield is estimated based on the probabilistic hy-

pervolumes of the failure sub-regions. The methodology outputs an estimation of the

circuit yield rate (or its equivalent percentage) that is the probability that it satisfies

its specification under the effect of process variation.
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3.1.1 Adaptive Sparse Regression

In this section, we seek to produce an accurate surrogate model using polynomials with

structured sparsity. The modeling technique should be performed with a minimum

number of circuit simulations. Besides, the model must be computationally efficient

(i.e., not complex) and hence tractable for the subsequent SMT solving stage.

Pre-sampling and dimension reduction

The goal of pre-sampling is to approximately sketch the circuit behavior. We use the

LHS method in the parameters space to generate a set of training samples. Given n

training samples, we denote X = [x1, x2, . . . , xn] an l × n matrix, where each sample

xi = [pi1, pi2, . . . , pil] is an l-dimensional vector. Next, transistor level SPICE simula-

tion is performed to evaluate the performance metric using these samples. We denote

Y = [y1, y2, . . . , yn] the n observations of the property, i.e., the value of the circuit

response we seek to fit.

The parameters reduction maps the high dimensional process parameters space

to a lower-dimensional space. We leverage the Regressional ReliefF (RReliefF) [54]

algorithm to prune the process parameters and to select a smaller number of fea-

tures. The algorithm uses samples based learning to assign a relevance weight to each

parameter. Each feature weight reflects its ability to perturb the circuit response.

The quality estimate ranges in [−1, 1]. Equation 3.2 [54] shows the weight updating
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formula for each feature of the process parameter vector p.

V(p) = W(p) +
NdCdp

NdC

− (Ndp −NdCdp)

n−NdC

(3.2)

Ndp =
|value(p,xi)− value(p,xj)|

max(p)−min(p)
d(i, j)

NdC = |yi − yj|d(i, j)

NdCdp = |yi − yj||value(p,xi)− value(p,xj)|d(i, j)

RReliefF starts with a l-long weight vector, V , of zeros, and iteratively updates V

for all features in p. This process is repeated for the total number of instances n.

In each iteration, the algorithm randomly selects a sample xi and finds all k nearest

samples xj around xi, in terms of Euclidean distance. The relevance level of each

feature is then assigned by approximating the terms in Equation 3.2, where Ndp is

a normalized difference between the values of parameters in the vector p for the two

instances xi and xj. The quantity d(i, j) [54] takes into account the distance between

samples by assigning greater weight to closer samples, and NdC corresponds to the

difference between the performances of the two samples. The term NdCdp quantifies

the probability that two nearest samples have different performances and different

values of parameter. The weight increases if the circuit responses of nearest samples

differ and decrease in the reverse case. In practice, a feature is relevant when the

weight is strictly positive and irrelevant in the opposite case [55]. The algorithm only

requires O(lnlog(n)) time, and is noise-tolerant and robust to feature interactions.

Besides, in difference to the partial-derivative based sensitivity analysis, RReliefF is

more robust as it avoids the instability of numerical methods.
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Adaptive least-squares regression using LASSO

Once the most relevant process parameters are captured, we seek to construct a sur-

rogate model of each performance metric involved in the circuit specification. The

performance function is a local perturbation around its nominal value. We use polyno-

mial basis which are very often used to approximate such a local variation [56]:

f(p) �
M∑

m=1

cmgm(p) (3.3)

where f is a smooth circuit performance approximated as a linear combination of M

basis functions, cm are the model coefficients and gm(p) is a basis functions (linear,

quadratic or cubic polynomials). The unknown model coefficients cm are determined

by solving a set of linear equations at a number of sampling points (training data),

which is usually solved as a least squares problem:

min
cm,m∈[1,M]

‖f(p)− q(p)‖22, q(p) =
M∑

m=1

cmgm(p) (3.4)

In fact, the number of process parameters is often large, while the number of training

samples is greatly limited by the computational cost. Given the limited computational

budget, the underlying system is rank deficient. Therefore, the solution cm (i.e., the

vector containing unknown model coefficients) is not unique and impossible to identify

without additional constraints. To solve this problem, we propose to employ adaptive

LASSO as a weighted regularization technique for simultaneous consistent estimation

and variable selection [52]:

min
cm,m∈[1,M]

‖f(p)− q(p)‖22 + α

M∑
m=1

‖ cm
wm

‖1 (3.5)
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where α is a nonnegative regularization parameter. ‖‖1 stands for the l1-norm of a

vector which denotes the sum of the absolute values of all elements in the vector.

The weighted penalty function α
M∑

m=1

‖ cm
wm

‖1 is an additional constraint that forces

the coefficients cm to behave regularly by shrinking the coefficients towards 0 as α

increases. Data-dependent weights w are employed for penalizing different coefficients

in the l1 penalty. By allowing relatively higher penalty function (higher weight) for

small coefficients and lower penalty function (lower weight) for larger coefficients,

the adaptive LASSO neutralizes the influence of the coefficient magnitude on the l1

penalty function. Thus, it reduces the coefficient estimation bias compared with the

standard LASSO. Furthermore, the adaptive LASSO shrinkage retains the attractive

convexity property of the standard LASSO [52]. Most importantly, it is proved to

be near-minimax optimal [57]. The weight w can be any consistent estimate of cm.

Here, we select w = (XTX)−1XTY to be the ordinary least square estimate of cm [57],

where XT denotes the vector transpose of X.

An overview of our proposed surrogate modeling scheme is shown in Figure 3.3.

In particular, our implementation starts by selecting the most important predictors

and applies adaptive sparse regression in a stepwise fashion. The idea is that higher

degree terms are included only when necessary to avoid high order model. As long as

the model accuracy satisfies the convergence condition, the training process stops so

that the model is easier to interpret and more efficient to evaluate.

Algorithm 3.1 provides a simplified description of the adaptive sparse regression

algorithm. This algorithm is applied to construct a surrogate model q(p̃) of each

performance metric intervening in the circuit specification. It requires as inputs a

set of training X and test samples X t and their corresponding circuit responses Y

and Y t, respectively. Typically, the number of training samples can be selected from
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Figure 3.3: Surrogate model training

200 to 500 while the test samples from 100 to 300. In Line 1, we use the RReliefF

algorithm to select a smaller number of features p̃ and filter out features that hardly

have contributions to the circuit response.

Alg. 3.1. Response surface-based surrogate model training

Require: X, Xt: Data samples, Y , Y t : Circuit response,
D = 3: Maximum degree, d = 0, k = 15, Rth: Accuracy threshold

1: p̃ ←RReliefF(X,Y, k),
2: Xp̃ ← select(X, p̃), Xt

p̃ ← select(Xt, p̃)
3: while d < D and ε > Rth do
4: d ← d+ 1
5: X̃f ← expand polynomial basis (Xp̃, p̃, d)

6: w ← compute weight(X̃f , Y )

7: q(p̃) ← adaptive lasso(w, X̃f , Y )
8: ε ← verify(q,Xt

p̃, Y
t)

9: end while
10: if ε ≤ Rth then
11: Return (Accuracy model met!)
12: else
13: Generate fresh samples and go to 5
14: end if

The parameter k is the number of nearest instance considered by RReliefF [43].

In all experiments conducted in this chapter (cf. Section 3.2), we find that k = 15
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provides stable and reliable reduction results. In Line 2, the function select extracts

the observation Xp̃ and X t
p̃ corresponding to the reduced process parameters space

p̃ from the original set X and X t, respectively. Then, the algorithm operates in an

iterative fashion. At each iteration, the polynomial degree is incremented (Line 4).

The idea is that higher degree terms are included only when necessary to avoid high

order models. In Line 5, we construct a set of polynomial basis gm(p̃) of degree d.

The polynomial terms of gm(p̃) are obtained by expanding all the terms in the d-

degree polynomial (1 + p1 + · · · )d. Then, X̃f maps the reduced data matrix Xp̃ to

each expansion terms of gm(p̃). In Lines 6 and 7, the weights w are computed and

the adaptive LASSO problem in Equation 3.6 is solved using the coordinate descent

algorithm [43].

min
cm,m∈[1,M]

‖Y − X̃fcm‖22 + α‖ cm
wm

‖1 (3.6)

The coordinate descent iterations terminate when the relative change in the size of the

estimated coefficients drops below 1e−9. It is important to note that cm are computed

each time the degree d is incremented. This re-calculation is required because the new

basis function constructed at the current iteration step may change the model coeffi-

cient values calculated at previous iteration steps. The regularization parameter α is

chosen during the training process. It is selected such that it minimizes an estimate

of expected prediction error based on 10 fold cross-validation applied to the training

samples. In Line 8, the test samples X t
p̃ are used to verify the accuracy of the current

trained model. The prediction ability of the model is tested by calculating the nor-

malized mean square error (NMSE=
‖q(Xt

p̃)−Y t‖22
‖Y t‖22 ). When the error of the performance

model ε is less than a given threshold, named Rth, or the degree d reaches the limit

D, the iteration stops.
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If the desired accuracy is not met and d reached the maximum degree D, then

fresh samples are generated and added incrementally to the training sample set as

long as the model accuracy does not satisfy the convergence condition (Line 13). The

generation of the fresh samples uses a triangulation approach as explained in [36].

How to select the parameter Rth will be discussed in Section 3.2.4.

Compared with previous techniques for modeling analog performances using

LASSO [56], our proposed method has two main advantages: (1) It has two levels

of reduction that makes the modeling problem tractable. First, it identifies signifi-

cant parameters. Then, selects the appropriate basis functions from a large pool of

possible polynomial candidates; (2) it tackled the issue of dependence on magnitude

of LASSO by penalizing more heavily larger coefficients in the l1 norm; and (3) the

training scheme is designed to extract a low degree polynomial that can be efficiently

handled in the SMT solving step.

In practice, the number of samples required to compute ε cannot be fixed in

advance. If a very large evaluation set is employed to evaluate the error ε, then the

resulting model accuracy can be trusted. However, this would prohibitively increase

the computational cost. Next, we propose to employ statistics to provide a certain

confidence level on the model accuracy with a probability of error which can be pre-

specified.

3.1.2 Accuracy Generalization and Verification

While the surrogate model error ε can never be totally eliminated, its accuracy verifi-

cation is primordial to prove the reliability of the yield estimation methodology. The
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surrogate model accuracy (1− ε) can be considered ϕ-guaranteed if :

∀p, p̃ ∈ P, Pr((err(f(p),q(p̃)) ≤ ε) ≥ ϕ (3.7)

where Pr and err stand for probability and model error, respectively. In other words,

the model error is at most ε for at least ϕ portion of the parameter space. Clearly, at

this stage there is no guarantee on the model accuracy (1 − ε). The purpose of this

step is to determine a generalized accuracy under the process parameter space, given

a probability/level of confidence ϕ.

To do so, we employ and extend the statistical procedure proposed by Younes [58]

that regards the model checking of a system as a hypothesis testing problem and solves

it using Walds sequential probability ratio test (SPRT) [59]. The idea is to check the

accuracy property in Equation 3.7 on a samples set of simulations and to decide

whether the model q(p̃) satisfies the property based on the number of executions for

which the property holds compared to the total number of executions. With such an

approach, we do not need to explore and test all possible values of process parameters.

We rather answer the question of whether the model satisfies the property with a

probability greater than or equal to a value ϕ ∈ [0, 1]. Furthermore, we propose

a simple, yet elegant modification to the SPRT test which allows the computation

of a generalized model accuracy ε. The problem is treated based on two exclusive

hypothesis testing given as follows:

H0 = Pr(err(f(p),q(p̃)) ≤ ε) ≥ ϕ+ δ = ϕ2 (3.8)

H1 = Pr(err(f(p),q(p̃)) ≤ ε) < ϕ− δ = ϕ1

where H0 and H1 are known as the null and the alternative hypothesis and 2δ forms
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a small region called the indifference region [58], on both sides of the cutting point ϕ.

If the probability is between ϕ1 and ϕ1 (the indifference region), then we say that the

probability is sufficiently close to ϕ so that we are indifferent with respect to which

of the two hypotheses is accepted. The method determines on the fly the number of

simulations needed to achieve a desired accuracy and provides a convenient way to

control the trade-off between precision and computational cost. To decide between

the two hypothesis, the test proceeds by computing at the nth stage of the test, i.e.,

after making n observations, a log likelihood ratio given as [59]:

Λn = log

∏n
i=1 zϕ1(bi)∏n
i=1 zϕ2(bi)

= log

∫ ϕ1

0

∏n
i=1 z

bi(1− z)1−bidz∫ 1

ϕ2

∏n
i=1 z

bi(1− z)1−bidz
(3.9)

where n represents the total number of samples or the test length, b1, b2, · · · , bn is a

collection of Bernouilli random variables denoting the outcome of the accuracy prop-

erty (Equation 3.7) with random samples x1, x2, · · · , xn drawn from the parameters

space. zϕ1(bi) and zϕ2(bi) are the probability mass function of the Bernouilli distri-

bution parameterized by ϕ1 and ϕ2, respectively. The quantity Λn is finally given

as:

Λn = log
Bϕ1(k + 1, n− k + 1)

A− Bϕ2(k + 1, n− k + 1)
(3.10)

where 0 ≤ k ≤ n is the number of successful inequality test, A = 1
(n+1)Cn

k
and Bϕ1 and

Bϕ2 are the incomplete Beta functions. H0 is accepted if Λn ≤ a and H1 is accepted

if Λn ≥ b, where a = log( α
1−β ) [59] and b = log(1−α

β
) [59]. α and β are two decision

error rates that determine the strength of the test, where α is the type I error rate or

false positive and β is the type II error rate or false negative.

The procedure is summarized in Algorithm 3.2. It repeatedly checks the accuracy

51



Alg. 3.2. Verification and generalization of the model accuracy

Require: q: Surrogate model, ε: model error, p̃,p: Process parameters, ϕ1, ϕ2: Probabilities, α, β:
Error rates.

1: a = log( α
1−β ); b = log( 1−α

β ), Xt
p̃, Y

t

2: n = 0; k = 0;
3: while a < Λn < b do
4: n ← n+ 1
5: xn ← Sample the parameters space P
6: f ← Simulate the circuit at the parameters xn and measure f
7: Xt

p̃, Y
t ←Update(Xt

p̃, Y
t, xn, f)

8: if err(q(Xt
p̃), Y

t)> ε then
9: ε ← err(q(Xt

p̃), Y
t)

10: else
11: k ← k + 1
12: end if
13: Evaluate Λn(n, k, ϕ1, ϕ2)
14: end while
15: if Λn ≤ a then
16: Accept H0

17: else
18: Accept H1

19: end if

property with fresh samples xn drawn from the parameters space p (Line 5). After

measuring the sample response f (Line 6), we add the fresh observation (xn, f) to

the testing samples (X t
p̃, Y

t) (Line 7) and we compute the normalized mean square

error (Line 8). We say that the inequality test is a success if the property holds,

and a failure otherwise. Upon each success, we increment the counter k (Line 11)

and continue with fresh samples until a failure occurs. In this case, we update and

generalize the error ε (Line 9). We can therefore characterize the required number

of observations as inf{n,Λn /∈]a, b[}. Clearly, this number increases if α and β are

smaller but also if ϕ is very close to one. We provide in Section 3.2.4 a discussion

concerning these parameters.
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3.1.3 SMT-based Parameters Space Exploration

The objective of this stage of the methodology is to exhaustively probe the parameters

space and to determine failure hyperrectangles, i.e., regions where the circuit fails

to satisfy the design specification. Our approach is summarized in Algorithm 3.3.

In order to conservatively find the reachable parameters values, we formulate the

SMT problem constr as a conjunction of the space of the process parameters, the

constructed surrogate models and the specification violation constraints. In general,

the problem can be formulated as:

pmin ≤ p ≤ pmax (3.11)

fk(p̃k) = qk(p̃k)

fmin
K ≤ fK ≤ fmax

K ,K = 1
K∨

k=1

fmin
k ≤ fk ≤ fmax

k ,K > 1

where fk(p̃k), k = 1 . . . K, are the performance equations, K is the total number of

performance metrics involved in the design specification, p̃k is the reduced process

parameters set associated to the kth performance metric. [pmin, pmax] are the ranges

of the process parameters determined from their probabilities distributions, where

p = [p1, p2, . . . , pr] and r = dim(∪k
1 p̃k) is the dimension of the reduced parameters

space. As mentioned before, we use a truncated normal shape to model the process

parameters. If ±3σ variation is considered then, the upper and lower bounds of the

process parameters pmin and pmax, respectively, are defined as:

pmin = pnom − 3σ;pmax = pnom + 3σ (3.12)
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where pnom is a vector of nominal values. [fmin
k , fmax

k ] are the bounds that approximate

the failure region of the circuit operation in the performance space. For example, if we

are given an oscillator circuit designed at a nominal frequency fnom and the maximum

allowed frequency deviation is
�

f , then the failure frequency region is defined as:

[f l, fnom − �
f [∪]fnom +

�
f, fu], where f l and fu are the minimum and maximum

performances values reached by the circuit. It is important to set a conservative

approximation of f l and fu in order to let the solver discover any possible failure of

the circuit response under the defined parameters variation. The over-conservativeness

is especially necessary for circuits with rare failure event where the circuit simulation

in the initial pre-sampling cannot be sufficient to sketch the performance bound. We

provide in Section 3.2.4 a discussion concerning the setting of the failure bound.

In case of multiple performance metrics, the specification violation is mathemat-

ically formulated as a disjunction of failure performance bounds, as given in Line 4 of

Equation 3.11, where
∨

denotes the logical OR operator. In fact, a high dimensional

region in the parameters space is considered as a failure region if any performance

metric involved in the specification is not satisfied.

Alg. 3.3. SMT-based parameters space exploration

Require: S,K, constr, NS = SK

1: for all ind = 1 → NS do in parallel
2: fk ⊆ [fmin

k , fmax
k ]ind

3: repeat
4: Invoke iSAT3(constr)
5: if a candidate is found then
6: Invoke INTLAB(constr, candidate)
7: if Locate pbox then
8: Return(Perf box, pbox)
9: Update(Perf box, fk)
10: end if
11: end if
12: until Unsatisfiable
13: end for
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The SMT solver iSAT3 is known to attempt to solve NP-complete problems.

Solving these problems, in their worst case, would take time which is exponential in

the number of variables to solve. It would be then infeasible to run the search over

a large initial space of failure performance bounds [fmin
k , fmax

k ]. For these reasons,

we propose first to split the SMT problem constr into NS = SK subproblems that we

solve simultaneously (Line 1 of Algorithm 3.3). For example, if the circuit requires

two performance metrics (K = 2) with S = 5 uniform descretazation steps, then

the overall combinations of the performance space to be explored is NS = SK = 52.

Each subproblem is limited to a possible combination of performance boundaries.

More precisely, for each subproblem, a possible combination of the failure regions

in the performance space is traversed and the specification violation constraint is

formulated as:
∨K

k=1 fk ⊆ [fmin
k , fmax

k ]ind, k = 1 . . . K. Also, it is important to note

that all subproblems have the same SMT constraints and the same process parameters

variables. Based on this, solving all subproblems is completely equivalent to solving

the original SMT problem.

Obviously, we can observe that the complexity increases with more performance

metrics and greater precision in sampling. For this reason, the SMT subproblems

are solved in parallel to reduce the timing complexity. The solver returns a set of

continuous ranges of each variable (i.e., a hyperectangle) in the SMT constraints (Line

5). However, the set of interval solutions is only an over-approximation (candidate)

that can be devoid of any real solution to the constraints. The uncertainty can

be alleviated by setting a high resolution of the returned candidate. Still, this will

dramatically increase the computation time. Owing to this, the size of the interval

solution (resolution) is adjusted for a trade-off between computational cost and over-

approximation.
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We only use the SMT solver to refine the initial search space towards a candidate

solution and to discard the infeasible solution. Afterwards, for each set of intervals

proposed by iSAT3, we employ INTLAB to further refine the candidate solution (Line

6). Given the candidate solution as interval initial condition and the performance

equations, INTLAB either refutes the existence of any solution in the candidate solu-

tion returned by the SMT solver or produces a hyperrectangle pbox that is contained in

the candidate region and guaranteed to contain the solution (Line 7). The widths of

the interval solution pbox returned by INTLAB are smaller than the candidate region

proposed by the SMT solver.

The result of the refinement process is a set of interval process parameters

pbox and its corresponding reachable performances Perf box (Line 8). The function

Update in Line 9 removes Perf box from the search space by adding the constraint

Perf box � fk. This will force the solver to search for new solutions. Finally, when all

reachable hyperrectangles are found, the solver will return Unsatisfiable, providing a

guarantee on a complete coverage of the search space (i.e., the failure region). In fact,

Algorithm 3.3 exploits the strength of the SMT solver (i.e., its search space coverage

capabilities) while avoiding its disadvantages.

3.1.4 Yield Estimation

In the previous stage of the methodology, we have characterized Ω as a set of high

dimensional sub-regions in the parameters space: Ω � {pbox}1−→nf
, where nf is the

total number of located sub-regions. A failure sub-region is a hyperrectangle that is

modeled as a cartesian product of orthogonal intervals pbox = ([pl1, p
u
1 ]× . . .× [plr, p

u
r ]]).

We recall that the parameters p are assumed independent and continuous random

variables. The probability that the process parameters fall into a single sub-region
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pbox is estimated in two dimensions (for illustrative purposes) as:

P (p1, p2 ∈ pbox) =

∫
pbox

pdf(p)dp =
2∏

i=1

P (pli ≤ pi ≤ pui )

=
2∏

i=1

CDF (pui )− CDF (pli) (3.13)

where P stands for probability, pu1 , p
l
1, p

u
2 , p

l
2 are the coordinates of the sub-region in

two dimension (as shown in Figure 3.4), and CDF (pi) [43] represents the cumulative

distribution function of pi.
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Figure 3.4: Illustration of the coordinates of a failure sub-region in 2-D parameters space

For the total nf failure sub-regions in r-dimensional parameters space, the prob-

ability that the design constraints are satisfied in the presence of parameters variation

is generalized as:

Y∗ = 1− Pf = 1−
nf∑
j=1

∫
{pbox}j

pdf(p)dp (3.14)

= 1−
nf∑
j=1

[
r∏

i=1

CDF (pui )− CDF (pli)]j
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The multidimensional integral in Equation 3.14 is the probabilistic hypervolume of a

single sub-region. Obviously, the contribution of a located sub-region to the failure

probability Pf is higher when the coordinates of the hyperectangles are closer to the

center of the process parameters space. The circuit yield is computed according to

Algorithm 3.4.

Alg. 3.4. Yield rate computation

Require: {pbox}1−→nf

Pf = [
∏r

i=1CDF (pui )− CDF (pli)]1
1: for all j = 2 → nf do
2: pboxj ← pboxj −⋂

(pboxj , pbox1→j−1)
3: Pf ← Pf + [

∏r
i=1CDF (pui )− CDF (pli)]j

4: end for
5: Y∗ ← 1− Pf

In Line 2, the hyperrectangle is refined for more precision and accuracy. The

term
⋂
(pboxj , pbox1→j−1) is the region resulting from the overlapping between the located

boxes. The overlay may occur if some hyperrectangles share the same values of process

parameters or due to the conservativeness of interval arithmetic computation.

3.2 Applications

In this section, we present the application of the yield rate estimation methodology

described in the previous section on the examples of a three-stage ring oscillator, a

six transistor SRAM cell and a three-stage operational amplifier (op-amp). In the ex-

periments, the circuits are designed in a commercial TSMC (Taiwan Semiconductor

Manufacturing Company) 65 nm process [60] and simulated in HSPICE with BSIM4

transistor models. The local mismatch variables are considered as the process pa-

rameters including the oxide thickness �tox, threshold voltage under zero bias �Vth,
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channel width �w and channel length �L. We assume that each process parameter

follows a truncated normal distribution. We use the statistical device models offered

by the IC foundry TSMC. We use the transistor mismatch model [60] with V dd = 1V

and standard threshold voltage. The mismatch model uses principal component anal-

ysis (PCA) [52] to model the process parameters as a set of independent random

variables. Given a set of correlated random variables p
′
, PCA is applied to find a

set of independent random variables p that represent the original correlated random

variables p
′
: p = Tp

′
. The linear transformation matrix T is determined such that p is

modeled as a function of mutually independent and standard Normal (i.e., zero mean

and unit variance) random variables. The random variables in p are called principal

components. The essence of PCA can be interpreted as a coordinate rotation of the

space defined by the correlated random variables in p
′
.

The algorithms parameters are selected as follows. The value of the convergence

condition Rth in Algorithm 3.1 is selected as 2. 10−2. We also choose a degree limit

D of 3 for all performances models. For the model verification step, we use ϕ = 0.95,

a symmetric test strength α = β = 0.01 and an indifference region of size 10−3,

indicating that the statistical test covers at least 95% of the parameter space with

a high statistical condence. The choice of these parameters values is discussed in

Subsection 3.2.4.

3.2.1 Three-stage Ring Oscillator

We consider a three-stage ring oscillator [49] as shown in Figure 3.5. The lengths of

all transistors are fixed to 65nm. The width of all p-MOS transistors is 3μm. The

width of all n-MOS transistors is 2.5μm. The oscillation frequency is chosen to be the
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performance metric of interest. The nominal frequency fnom is 3.207 GHz calculated

via periodical steady state (PSS) simulation. The design specification requires that the

variation of the frequency should be within 2.5% of fnom. The oscillation frequency

is affected by various process parameters in the transistors. The local mismatch

variables of each transistor are considered as the process parameters, which results in

a 24-dimensional problem. In this example, a 3 sigma variation is considered for each

process parameter.
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Figure 3.5: A Three-stage Ring Oscillator

Firstly, we consider 400 LHS data samples with 300 of them for training and 100

for testing. On this 24-dim problem, RReliefF is performed to reduce the dimension

before constructing the frequency model. For each process parameter, the weight

is evaluated and ranked as illustrated in Figure 3.6. The process parameters with

negative weight are discarded and 12 parameters are kept.
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Figure 3.6: Weight of all 24 process variations for the frequency oscillation perfor-
mance
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Wemeasure the oscillation frequency under the effect of the reduced set of process

parameters, in order to check the accuracy of the reduction process. Figure 3.7 shows

the frequency performance of 300 LHS data samples when considering the total num-

ber of process parameters (Original 24-dim) and the reduced one (Reduced 12-dim).

The frequency responses are evaluated using the circuit simulator HSPICE. As it can

be observed in Figure 3.7, the frequency response with the reduced set exhibits some

deviation as expected. The reduction error is checked by calculating the normalized

mean square error (NMSE), which is given as: (
‖freq(12−dim)−freq(24−dim)‖22

‖freq(24−dim)‖22 =0.0245%).

The actual error is less than 0.1% which is considered excellent in practice [61].
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Figure 3.7: Ring Oscillator frequency responses under the original and reduced process
parameters variational space

After applying the proposed adaptive LASSO scheme for surrogate modeling, we

extract a frequency model of degree 3. The ability of the proposed adaptive sparse

regression (ASR) modeling technique is compared to the generic sparse regression (SR)

using the standard LASSO method, applied without the parameters pruning stage.

The frequency of the test samples are calculated by both the constructed frequency

model and HSPICE simulation. The modeling results are summarized in Table 3.1.
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Table 3.1: Frequency modeling result

ASR SR
Fitting time (s) 85 160

Model accuracy (1-NMSE)(%) 98.65 65.61
� of training samples 300
� of testing samples 100

First, the ASR method appropriately selects a small subset of important mono-

mial polynomial basis when compared to SR. Second, ASR achieves 33% better fitting

accuracy than the standard LASSO. This in turn demonstrates the advantage of the

weighted regression approach to consistently approximate the frequency model coeffi-

cients so that the results are not over-fitted due to the limited training set. Third, the

fitting time (i.e., the cost of solving all model coefficients from the sampling points)

is almost two times less than the generic SR. The fitting time reduction has been

achieved thanks to the process parameters pruning.

Algorithm 3.2 computes 160 circuit simulations required to generalize and verify

the frequency model accuracy. Figure 3.8 shows a graphical representation of the

statistical test. The line a is the acceptance line. Similarly, the line b is the rejection

line for the test. The curve intersects the line a at the observation number 160. The

test is achieved at this point with a high generalized accuracy of 98.1%. At the 80th

and 82th circuit simulation, the accuracy test has failed and the model error has been

updated (i.e., generalized).
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Figure 3.8: Generalization and verification of the frequency model accuracy
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Table 3.2: Yield results for the ring oscillator with 24 process parameters.

Method
Total (�) of HB Time Cost

Yield (%) Speed-up
Relative

sim. runs (h) Error(%)

Brute-force MC 10000 4.79 73.57 1X −
Brute-force MC 5000 2.38 71.80 2X 2.41

Quasi MC 4619 2.2125 73.57 2.16X 0.001
MC+LHS 6475 3.1015 73.88 1.54X 0.42

Our method 560 0.45 73.51 11X 0.081

In Table 3.2, we compare our results with different sampling methods including

the brute-force Monte Carlo (MC), Quasi Monte Carlo (QMC) and Latin Hypercube

Sampling (MC+LHS), implemented in HSPICE. Column 2 of Table 3.2 shows the

number of harmonic balance (HB) circuit simulations and “Time Cost” is the time

spent on simulation. The brute force Monte Carlo with 10000 is able to compute a

highly accurate result of the yield rate with an estimated error < 1% at a 99% level

of confidence. It is used as the golden result to assess the accuracy and efficiency of

all others methods in this experiment.

For our yield estimation method, the number of HB simulations includes the

number of simulations performed in the model fitting and accuracy verification phases.

The 560 HB simulation runs correspond to 300 training samples, 100 testing samples

and 160 samples for accuracy verification. The column “Time Cost” includes the

time for all stages in the proposed methodology (i.e., the surrogate model fitting and

verification, the parameter space exploration and the yield calculation). During the

SMT-based parameters exploration stage, we define the full fail performance intervals

as [2.5Ghz, fnom−fnom2.5%[∪]fnom+fnom2.5%, 4Ghz]. The ring oscillator has two fail

performance boundaries (P=2) and we choose a decretization step S equal to 5. In

this case, SP = 52 = 25 combinations of performance boundaries have been explored

in parallel.
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The SMT solver [14] has reported 2820 candidate regions. 2643 regions were

confirmed by INTLAB during the solution refinement step. The regions found by the

SMT solver and not confirmed during the refinement step are spurious. In this case,

INTLAB refuted the existence of any solutions within the candidate regions.

On the basis of Table 3.2, it can be observed that the performance of the MC

variants do not achieve significant improvement when compared to the brute-force

Monte Carlo analysis engine. QMC is able to reach the MC golden result with around

2.16X speedup, while the MC+LHS method is 1.54X times faster than MC with

approximately the same yield rate. Collecting extra random samples for MC+LHS

does not help to converge exactly to the MC golden estimation. This observation can

be explained by a bad exploration of the parameters space and a moderate uniformity

properties of MC+LHS in this 24-dimensional problem.

Since the proposed method attempts to ensure an exhaustive coverage of the

failure regions in the parameters space, it tends to under-estimate the yield. It ex-

plains why the predicted yield from our procedure is slightly lower than the sampling

yield from MC simulations. However, the computed yield rate is almost identical

to that estimated by the brute-force Monte Carlo engine with 10000 samples. Algo-

rithm 3.3 completed the search for the failure sub-regions in 0.16h, which is affordable

and clearly demonstrates the scalability of the proposed method. In fact, the SMT

problem subdivision allowed the reduction of the search space (i.e., failure perfor-

mance space), and when coupled with the parallel implementation, it highly relieves

the computational cost of the SMT solver.

Our method can achieve 11X speedup over the MC method while it adopts a

more exhaustive approach for the yield estimation. The achieved speedup can be

explained by: (1) the process parameters reduction step; (2) the employment of a
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surrogate model of the frequency model to replace time consuming transistor-level HB

simulation; and (3) the tracking of a complete hyperrectangle in the parameters space

rather than one sample point which allows a faster coverage of the failure regions.

Table 3.3: Yield results for the ring oscillator with 3 process parameters.

Method
Total (�) of HB Time Cost

Yield (%) Speed-up
Relative

sim. runs (h) Error(%)

Brute-force MC 10000 4.79 89.95 1X −
Our method 380 0.1813 90.02 26.42X 0.077

In order to illustrate the capability of our method in handling multiple and dis-

tinct failure regions, we use a simplified process variational space, which only considers

the threshold voltages of the n-MOS transistors M1, M3 and M5 as the sources of

process variations. In this experiment, we apply the proposed surrogate modeling

scheme without the parameters pruning stage and we formulate the SMT constraints

to locate the failure regions in this 3-dimensional problem. The results are summa-

rized in Table 3.3. As less process variables are taken into account, the time cost

has significantly decreased compared with the 24-dimensional problem and the yield

rate has also increased. The failure sub-regions located by our method and the fail

samples of the brute-force MC engine can be clearly visualized on a 3-dimensional

parameters space as shown in Figures 3.9(a) and 3.9(b), respectively. The data is

projected on the three directions (VthM1, VthM3, VthM5) of the 3-dimensional space,

where VthMi = Vth0Mi +ΔVthMi, i = 1, 3, 5.

Figure 3.9(b) shows that, similarly to the MC method, the proposed method

locates two failure regions. The two regions result from the interval specification of

the frequency performance metric which can be equivalently expressed as two con-

flicting specifications. For both methods, the frequency specification is violated for

high and low threshold voltage variations of the n-MOS transistors of M1, M3 and
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M5. However, while the MC method randomly samples the process parameters prob-

ability distribution pdf(p) towards locating the failure operation, our method directly

locates three dimensional failure sub-regions in the parameters space. Also, during

the SMT-based parameters space exploration, the process parameters are modeled

as a set of intervals in the SMT constraints. It explains why the located failure

sub-regions cover the complete parameters space in Figure 3.9(b) and differ from the

failure characterization of the brute-force MC method in Figure 3.9(a). It is only at

the yield calculation step that the pdf(p) of the process parameters are taken into

consideration to estimate the probabilistic hypervolume of each single sub-region as

given in Equation 3.14.
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Figure 3.9: (a) Fail samples of the brute-force MC method (b) 3-dimensional failure sub-
regions probed by the proposed method.

Although the proposed approach may miss some failure sub-regions due to the

modeling error, the probabilistic hypervolume of the located sub-regions still can be
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employed to estimate the yield with 0.077% relative error when compared with the

MC method. Based on this example, the ability of the proposed method in solving

problems with multiple failure regions is verified.

3.2.2 6-Transistor SRAM Cell

In this section, a standard 6-T SRAM cell [62], shown in Figure 3.10, is used to

validate the proposed method on a circuit with extremely high yield probability (i.e.,

very low failure rate (Pf )). In this example, a larger number of sigma variation (6σ)

is considered. We also suppose that the brute-force MC method converges when the

relative standard deviation of the failure probability (std(Pf )/Pf ) is equal to 0.1, (i.e.,

90% accuracy with 90% confidence) [63]. The SRAM cell is used to store one memory

bit: the four transistors M1, M2, M3 and M4 have two stable states, i.e., either a

logic 0 or 1, and the two additional access transistors M5 and M6 serve to control the

access to the cell during read and write operations. All transistors lengths are set to

65nm. The width of both access transistors M5 and M6 is 0.3μm. The width of the

p-MOS transistors M3 and M4 is 0.2μm. The width of the n-MOS transistors M1

and M2 is 0.4μm.
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Figure 3.10: Schematic of a 6-T SRAM cell

The circuit performance is chosen as the read static noise margin (SNM) to

evaluate the stability of the SRAM cell during read operation. To measure the SNM
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in the read operation, the word lineWL is enabled and both bit lines BL and BLB are

pre-charged high. The SNM is defined as the maximum value of DC noise voltage that

can be tolerated by the SRAM cell without changing the stored bit [62]. A positive

value of SNM represents a stable read operation while a zero or negative value of

SNM signifies that the read operation will cause the cell to lose its state, resulting

in the read stability failure. We measure the SNM using a graphical technique that

is based on the voltage transfer curves (VTC) characteristic of the two cell inverters.

The method is explained in details in [62].
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Figure 3.11: Weight of all 24 process parameters for the SNM performance

The local mismatch variables Δtox, ΔVth, Δw and ΔL of each transistor are

considered as the process variables, which results in 24 process parameters. On this 24

dimensional problem, RReliefF is applied to reduce the dimension before constructing

the SNM performance model. For each process variation parameter, the weight is

evaluated based on 300 training samples. The reduction process discarded 8 process

parameters as it can be observed in Figure 3.11. Figure 3.12 plots the SNM responses

simulated by HSPICE, under the effect of the full and reduced process parameters

set. We evaluate the NMSE to estimate the responses deviation. The computed error

is 0.5% which is low and can be considered as negligible.

We apply the adaptive LASSO scheme for modeling the SNM surrogate model.
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We extract a polynomial model of degree 2 and we use 100 test samples to evaluate

its accuracy. We verify and generalize the SNM model accuracy. The accuracy veri-

fication result is shown in Figure 3.13. Algorithm 3.2 computes a generalized model

accuracy equal to 98.7% based on 128 simulation runs.
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Figure 3.12: SNM responses under the original and reduced process parameters space
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Figure 3.13: Generalization of the SNM model accuracy

The experimental results are summarized in Table 3.4. We define the full SNM

fail interval as: [−0.3V, 0V [ and we subdivide the SMT problem into 5 sub-problems

that we solve in parallel according to Algorithm 3.3. Column 2 of Table 3.4 reports the

number of simulations performed in the SNM model fitting and accuracy verification

phases. The column “Time Cost” shows the time for the total stages in the proposed

methodology.

The MC method tries to randomly select samples to cover the entire parameters

space, so it needs a huge number of samplings to achieve the target 90% level of

accuracy as shown in Figure 3.14. QMC is able to reduce the number of samplings
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Table 3.4: Yield results for the SRAM with 24 process parameters.

Method
Total (�) of DC sim. runs

Time Cost Pf Speed-up
Relative

runs Error

Brute-force MC 4.146090e+6 19.1951 Days 7.2357e−5 1X -
Quasi MC 2.093045e+6 9.6903 Days 7.2144e−5 1.9809X 0.29%

Our method 528 0.2484 hours 7.2468e−5 1855X 0.15%

by covering the entire space with deterministic sequences. It can be observed that

the QMC method achieves around 2X speedup over the MC method with very close

failure rate estimation. The method we propose in this work achieves a speedup of

approximately 2000X compared with the MC method.
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Figure 3.14: Evolution of the failure rate estimation as function of samples for the
brute-force MC and the Quasi MC method
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Figure 3.15: Evolution of failure rate estimation as function of tracked failure sub-
regions for the proposed method

As shown in Figure 3.15, the proposed algorithm covers the failure region in the
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parameters space within 2205 located regions, which explains the relief in terms of

computational cost. The first 400 refined regions had more contribution to the failure

rate estimation in terms of probabilistic hypervolumes. The method also reaches a

higher failure probability (Pf ) compared to the MC method. This can be explained

by the approach adopted in the proposed methodology that concentrates on the local-

ization of only the failure regions in the parameters space. Meanwhile, the sampling

methods waste a large number of samples that are far from the failure region.
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Figure 3.16: (a) Fail samples drawn from the simulation of the brute-force MC (b)
Failure sub-regions located by the proposed method

Fail samples of the MC simulation result are drawn in Figure 3.16(a) which

clearly shows two regions with rare failure samples. The failure occurs for asymmet-

rical local Vth variation affecting the adjacent pulling-down transistors M1 and M2.

A similar localization of the failure region is reached by the proposed yield analysis
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scheme as it can be observed in Figure 3.16(b). In both figures, the simulation data

is projected on the three directions (VthM1, VthM2, VthM5) for visualization purposes.

The proposed failure regions localization technique neutralizes the rare failure event

issue of the SRAM circuit. Based on this example, the advantage of the proposed

method in locating very rare failure regions has been demonstrated.

3.2.3 Three-stage Operational Amplifier

In this section, we will verify that the proposed yield estimation method is suitable for

solving problems with multiple performances specifications as well as high dimensional

parameters space. We consider a three-stage amplifier (op-amp) [64] as shown in

Figure 4.5. The width to length ratio of all unlabeled n-MOS and p-MOS is 10
2
and

22
2
, respectively.
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Figure 3.17: A Three-stage operational amplifier

We select Δtox, ΔVth, Δw and ΔL as the process variables. The local mismatch

in each transistor pair is considered. It leads to a total of 56 process parameters.

In this example, a 3 sigma variation is considered for each process parameter. The

performance of the circuit is characterized by many properties, such as voltage gain
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(Av), phase margin (PM), the gainbandwidth (GBW) and the DC offset voltage

(DCOffset). The op-amp is designed to satisfy the list of specifications shown in

Table 3.5.

Table 3.5: The set of specifications for the three-stage op-amp

Perf metrics Simulation Specification

Av(dB) AC ≥ 40
GBW (MHz) AC ≥ 80
DCOffset(mV) DC ≤ 50

PM(◦) AC ≥ 60

Firstly, 300 initial LHS simulations are used to build a surrogate model of for all

properties. 200 of them are employed for model training and 100 for subsequent model

testing. Each property is measured using a specific type of simulation. Note that even

though we analyze and model each performance metric individually, these performance

metrics are not necessarily independent as they are sharing the transistor-level simu-

lations of the pre-sampling stage. In fact, by evaluating all performance metrics for

each individual sample drawn from the process parameters space, we substantially

reduce the total number of simulation runs and, hence, the computational cost.

Table 3.6: Result of the process parameters reduction stage

Perf metrics Reduced Set (�) Reduction Error

Av(dB) 32 0.79%

GBW (MHz) 24 0.95%

DCOffset(mV) 40 0.85%

PM(◦) 44 0.95%

On this 56-dim problem, RReliefF is performed to reduce the dimension of the

process parameters. The experimental results of the reduction process are summarized

in Table 3.6. It can be observed that in this example the dimension of the original

set of process parameters for each performance metric did not largely decrease. This
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can be explained by the consideration of multiple performance metrics that depend

on most of the process variables. Furthermore, the accuracy of the circuit response

under the reduced set of process parameters is maintained.

Table 3.7: Surrogate models degree and accuracy (1-NMSE)%

Perf metrics Degree Model Accuracy Gen-Accuracy

Av 3 98.0% 97.8%

GBW 1 98.1% 98.05%

DCOffset 1 98.8% 98.3%

PM 3 98.7% 98.2%

We evaluate the accuracy of the models trained using the adaptive LASSO

scheme. We report the final degree of the approximations and the models accuracies

in Table 3.7. In the “Degree” column of Table 3.7, we see that for some properties, we

are able to construct polynomial models with a degree lower than the limitD = 3. The

accuracy generalization step statistically verifies the op-amp properties model with

respect to the reduced set of process parameters. In the column “Gen-Accuracy”, we

report the result of the accuracy generalization stage. We can find that the accuracy

is more than 97% for all models.

We apply the brute-force MC, Quasi MC and MC+LHS to estimate the yield of

the op-amp. The results are reported in Table 3.8. The brute-force MC method is

run with a target accuracy of 99% and a confidence level of 95%. For the sampling

methods, “Time Cost” is the circuit simulation time and “Sim(	)” refers to the num-

ber of samples. The column “Sim(	)” in our method includes the number of circuit

simulations performed in the surrogate model fitting and accuracy verification phases.

“Sim Time” shows the total circuit simulation time and “Fitting/Verif Time” indi-

cates the time spent in the model fitting and verification stages excluding the circuit

simulation time. “Time” is the time spent in the parameter space exploration and
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the yield calculation. Finally, “Time Cost” is the total computational time.

Table 3.8: Yield results for the Op-amp with 56 process parameters

Perf metrics
Brute-force MC MC+LHS Quasi MC Our method

Sim(�) Sim(�) Sim(�) Sim(�)
Sim Fitting/

Time
Time Verif Time

Av 8740 6650 6420 300/135 96s/3s
GBW 8740 6650 6420 300/119 0.28h 5s/4s 0.26h

DCOffset 8740 6650 6420 300/69 6s/3s
PM 8740 6650 6420 300/201 91s/6s

Time Cost 2.97h 2.26h 2.18h 0.60h
Speedup 1X 1.32X 1.37X 5X
Yield (%) 81.61 79.60 81.6 80.53

Relative Error - 2.46% 1.24% 1.32%

As in the previous experiments, we observe that the predicted yield from our ap-

proach closely matches the yield estimation of the MC method. Our method requires

fewer simulations and finishes faster with a speedup of almost 5X. This application

shows again the benefits of a model building approach rather than direct yield estima-

tion from a circuit simulator. Also, the column “Fitting/Verif Time” in our method

shows that even though the reduction result was not very significant, the proposed

adaptive sparse regression algorithm still renders the fitting time quite affordable.

This result further demonstrates the scalability of the proposed technique to handle

larger problems. The regression time of the model performance with a degree lower

than the degree limit (i.e., GBW and DCOffset) is significantly smaller. In fact, the

major cost in regression lies in the computation of the LASSO coefficients. The former

can be easily parallelized, leading to further performance improvements.

3.2.4 Parameters Discussion

The surrogate-based yield estimation requires the setting of several parameters. These

parameters can have a large effect of the accuracy of the computed yield rate. In this
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section, the key parameters in the proposed method are discussed. The parameters

values that in practice lead to reliable results are reported.

Parameter Rth in Algorithm 3.1

We construct the frequency model of the Ring Oscillator example in Section 3.2.1

with different Rth from 9.10−2 to 1.10−2. Figure 3.18 shows the error of the yield rate

with respect to the model accuracy defined as (1 − Rth)%. The error of the yield is

computed relatively to the yield result of 10000 MC simulations run. We can find

that when the accuracy is smaller than 97%, the relative error resulting primarily

from the fitting error of the frequency model increases signicantly. To ensure the

viability of the proposed method, we must ensure that the accuracy is high enough at

the modeling stage. So, in practice, the value of Rth should be selected from 3.10−2

to 1.10−2.
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Figure 3.18: Relative error with respect to Rth
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Parameters (α, β, ϕ) in Algorithm 3.2

We applied Algorithm 3.2 to verify and generalize the frequency model accuracy

freq(p̃) of the Ring Oscillator example in Section 3.2.1. We checked the prop-

erty:

∀p, p̃ ∈ P Pr((err(f(p), freq(p̃)) ≤ ε) ≥ ϕ (3.15)

where ε = 0.0135 (i.e., 98.65% accuracy). We applied the algorithm for different values

of ϕ and equal error rates (α, β). We used an indifference region [ϕ− δ, ϕ+ δ] where

δ = 0.001. The results are summarized in Table 3.9. Increasing ϕ and decreasing

(α, β) requires a larger number of simulations, leading to a model verification with

better statistical guarantee. The model accuracy has been verified and generalized to

0.019 (i.e., 98.1% accuracy). In practice, we find that ϕ = 0.95 and α = β = 0.01

often provide a good trade-off between statistical guarantee and computational cost.

Table 3.9: Run length for common values of ϕ and (α, β)

α(= β) 0.02 0.01 10−3

ϕ=0.9 37 44 65
0.95 75 160 214
0.99 683 762 1015

Tolerance margin in failure performance bounds of Equation 3.11

If the circuit specification includes a performance metric f that should be greater

than a limit flimit (i.e., f > flimit), then the failure performance region is defined as

f ∈ [f l, flimit]. If the value f
l is over-approximated (i.e., it is below the value that can
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be reached in reality), it will not affect the result of the yield estimation and it will

slightly affect the computation time. In fact, the SMT solver rapidly discards parts

from the search space that contains no solutions. However, if it is under-approximated

(i.e., it is greater than the value that can be reached in reality), it will prevent the

SMT solver from locating failure regions in the parameters space and affect the final

yield estimation. In practice, we firstly set fl = fmin−Δf , where Δf = |fmin−fnom|,
fnom is the nominal value of f and fmin is the minimum value of f discovered during

the initial pre-sampling and circuit simulation step. If the SMT solver discovers failure

regions in the parameters space with performance values f in the neighborhood of fl,

that is f ∈ [fl, fl+3ε], where ε is the model error, then fl should be further decreased

by Δf . Otherwise, the user can be highly assured that the failure performance bounds

have been conservatively characterized.

3.3 Summary

This chapter presented a methodology for analog circuits yield analysis. Different

techniques such as parameters pruning, adaptive sparse regression and sequential

probability ratio test were used to build performance models and verify their accuracy.

We then employed an SMT solving technique and interval arithmetic to exhaustively

probe the parameters space and to locate the failure regions of the circuit operation.

The yield is calculated based on the probabilistic volume of the located failure regions.

Compared with existing methods, the surrogate-based yield estimation method tried

to handle yield problems with: (1) many process parameters; (2) multiple and dis-

tinct failure regions; (3) multiple performances specification; and (4) extremely high

yield rate. The experimental results on several analog circuits show that the method
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is reliable while leading to a simulation speedup when compared to the brute-force

MC.

We enhanced the run-time and scalability of SMT solving techniques by adopt-

ing multiple strategies including: (1) reduction of the SMT problem variables; (2)

building low complex performances models; (3) reduction of the SMT problem search

space; and (4) adjustment of the SMT solver resolution and solution refinement. Fur-

thermore, the computational cost of the proposed surrogate modeling algorithm has

been enhanced by reducing the number of process parameters and avoiding a high

polynomial degree. The run time of the adaptive sparse regression may largely in-

crease if more aggressive process variation and a larger number of process parameters

are considered. Efficient and more advanced modeling and parallelization techniques

may tackle this limitation.

The proposed methodology can be integrated with an optimization technique

which aims at finding a circuit design that has a maximum yield, considering the

performance specifications and the manufacturing variation. The efficiency of the

optimization process in terms of computational cost and search space coverage is

critical. In the next chapter, we present an optimization process which can ensure

a good coverage of the feasible design space while minimizing the computational

cost.
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Chapter 4

A Two-Phase Yield Optimization

Method

This chapter presents a novel approach for improving analog yield optimization. The

optimization is performed in two steps. A parallelized global optimization phase uses

a modified Lipschitizian optimization method to locate the basin of convergence of

the optimum solution. The search ensures that potentially optimal regions of the

design space are not overlooked. Once a good approximation of the global optimum

is located, it is exploited by a local optimization phase. The local search uses the

located near optimal solution as a starting point. Also, the local optimization phase

is integrated to remedy to the limitation of the Lipschitizian method by accelerating its

convergence speed. The method builds interpolating models using linear combinations

of Radial Basis Functions (RBF) that approximates locally the objective function

and conducts a local refinement. Its efficiency is further elevated by the reuse of

existing simulation data of the global search phase. We demonstrate the advantages

of the proposed methodology on a folded cascode amplifier, a two-stage operational
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amplifier and a three-stage operational amplifier. We optimize the yield of these

circuits under the effect of device mismatch and compare our method with stochastic

search optimizations in terms of solution optimality and run time.

4.1 Preliminaries

Before presenting the proposed methodology, we briefly explain our main objective

and define terms that will be used in the rest of the chapter.

4.1.1 Problem Definition

The problem of finding the design point x∗ that maximizes a yield function g, can be

formulated as a nonlinear optimization problem with bound constraints [6], as given

in Equation 4.1.

x∗ = max
x∈D0

g(x) = min
x∈D0

f(x) (4.1)

g(x) = E{δ(x,p)|pdf(p)}

where x ∈ Rn is the vector of design variables, which can be composed of transistor

widths and lengths, bias voltages and currents, etc. Each design variable xi is limited

in a range [xl
i, x

u
i ]. D0 = {x ∈ Rn, xl ≤ x ≤ xu} is an n-dimensional Euclidean search

space (also called a hyperrectangle), g : D0 −→ R+ is a positive real-valued yield

function and f = −g. We assume that f is smooth and continuous over D0. p is

a vector of continuous random variable modeling process parameters variations, e.g.,

gate length ΔL and oxide thickness Δtox. 
p is the joint probability density function

of p. E denotes the expectation value. δ(x, p) = 1 if the design point x meets all
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specifications under process fluctuation. Otherwise, δ(x, p) = 0.

4.1.2 Lipschitizian Optimization

In our yield optimization method, we propose to use Lipschitizian optimization to

find a design point near the global optimum of the problem in Equation 4.1. Let f be

Lipschitz continuous on D0 = [a, b], with constant K. Lipschitz optimization employs

the Lipschitz property to construct an iterative algorithm that seeks the minimum of

f [65]. In fact, for any x ∈ [a, b], f satisfies [65]:

f(x) ≥ f(a)−K(x− a) (4.2)

f(x) ≥ f(b) +K(x− b)

The two inequalities in Equation 4.2 form a V-shape below f , as shown in Fig-

ure 4.1(1). The point of intersection for the two lines provides the first estimate

C1 of the lower bound of f . The method performs the same operation on [a, x1] and

[x1, b] and iteratively continues dividing the interval with the smallest lower bound

(Figures 4.1(2) and 4.1(3)). The V-shape of all intervals form a piecewise linear

function f̂ that approximates f , where, f̂(x) ≤ f(x), ∀x ∈ [a, b] (Figure 4.1(4)). The

process continues until the difference between the best function value, f(x∗), and the

value of the smallest lower bound found after n iterations, mini∈[1,n] Ci, is smaller than

or equal to a precision parameter θ > 0.

Lipschitz optimization is globally θ-convergent [65]. In fact, it returns in a finite

number of iterations x∗ that satisfy:

f(x∗) ≤ min
i∈[1,n]

Ci + θ ≤ f(x∗) + θ, x∗ = min
x∈[a,b]

f(x) (4.3)
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Figure 4.1: Univariate Lipschitz optimization iterations

The method usually needs a few function evaluations to find the area near the global

optimal point. However, it requires knowledge of the Lipschitz constant and is com-

putationally complex in higher dimensions. In this chapter, we will mainly focus on

this optimization technique and develop a novel algorithm to make it tractable and

computationally efficient for analog yield optimization.

4.2 Yield Optimization Methodology

The methodology in Figure 4.2 details our proposed yield optimization approach. The

optimization takes as input a continuous set of interval-valued sizing solutions that

characterizes the feasible design space D0. The feasible design space is computed

using the nominal circuit sizing methodology proposed in Chapter 2. The focus of

this chapter is to find the most robust design x∗ ∈ D0 that maximizes the yield, where

x∗ is a vector of design variables, which can be composed of transistor widths, bias

voltages and currents, etc. At each iteration, the global and local yield optimization

phases require the yield computation of some selected design points. Various yield

estimation techniques can be employed (e.g., the surrogate-based method proposed in

Chapter 3, the Monte Carlo (MC) method and its variants, etc.).

The proposed yield optimization strategy is composed of a global and a local
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Figure 4.2: Yield optimization methodology

optimization phases. The global optimization step determines a design point close to

the optimal solution that is used as a starting point by a local optimization phase.

The global search uses a modified Lipschitizian algorithm to reach the area near the

global optimum. The process iteratively locates and partitions potentially optimal

subregions of the feasible design space D0. The potentially optimal subregions are

the largest subregions with the best yield rate at their centers. In order to ensure the

computational efficiency of this stage, the global optimization stops the search when

the subregion with the highest yield rate is sufficiently small. The stopping criteria

trades off between the computational cost and the solution optimality. Besides, the

search is subdivided into a number of subproblems that are run in parallel.

The local search mechanism is used to rapidly reach the optimal design point

starting from the best solution computed by the global search. To do so, it iteratively

constructs local models (i.e., around a current iterate) of the yield function using
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linear radial basis function (RBF). The method employs previously evaluated points

(i.e., the global optimization simulation data) to accelerate the modeling stage. If

the number of available points is not enough to uniquely define the models, new data

points (i.e., design points and their corresponding yield rate) in the neighborhood of

of the current iterate are generated. An approximated solution is computed by locally

optimizing the yield model. The process is repeated until the yield model gradient is

sufficiently small.

4.2.1 Parallel Global Optimization

The aim of the global search is to locate a design point x∗ near the optimal solution x∗

of the problem in Equation 4.1. The approach is summarized in Algorithm 4.1.

Alg. 4.1. Parallel global optimization

Require: D0: Design search space, f : Objective function
1: D1→S

0 ← Divide(D0)
2: for all ind = 1 → S do in parallel

3: Dind
0 ← normalize(Dind

0 )
4: Initialize: x∗ind ← center(Dind

0 ), fmin
ind ← f(x∗ind), c0 ← x∗ind, f(c0) ← fmin

ind , Γind ←
{c0, f(c0)}

5: while stopping criteria is unsatisfied do
6: Identify S: all potential optimal hyperrectangles Hj

7: for all Hj ∈ S do
8: Identify M : the dimensions with max. side length d,
9: Evaluate in parallel f(cj ± αem), m ∈ M , α = d/3
10: Γind ← Γind ∪ {cj ± αem, f(cj ± αem)}
11: Update x∗ind, f

min
ind

12: Evaluate wm and divide Hj according to wm

13: end for
14: end while
15: end for
16: return x∗=minx∗ind,f

min
ind

(fmin
ind ), Γ =

⋃S
ind=1 Γind

Algorithm 4.1 is based on the the DIRECT method [66] that is a variant of Lips-

chitzian optimization. Hence, it is effective in finding the basin of convergence. Also,
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it eliminates the need to specify a Lipschitz constant. Instead, it uses all possible val-

ues to determine if a region of the search domain D0 should be broken into sub-regions

and explored. Also, it can operate in high-dimensional space as it uses a partitioning

strategy of the search spaces into hyperrectangles that requires the sampling of their

center points only.

In order to decrease the optimization running time and to conduct a refined

exploration of the search space, we start by subdividing the yield optimization process

into S subproblems that we invoke simultaneously (Line 1). Each subproblem is

limited to a sub-region of D0 that is transformed into the unit hypercube (Line 3).

The near optimal point is initialized by sampling the center of the search space (Line

4). Then, the set of potentially optimal hyperrectangles S is identified (Line 6). A

hyperrectangle Hj is said to be potentially optimal if there exists a rate of change

constant K > 0 such that:

f(cj)−Kdj ≤ f(ci)−Kdi, ∀i ∈ I (4.4)

f(cj)−Kdj ≤ fmin
ind − γ|fmin

ind |

where I is the set of all indices of all hypererctangles, cj is the center of Hj and dj

is the size of Hj defined as the distance from the center to the vertices of Hj [66].

The mathematical formula of dj can be found in [66]. fmin
ind is the current best func-

tion value. The first inequality in Equation 4.4 expresses the decision to choose the

hyperrectangle which promises the best improvement (i.e., decrease) in the objective

function. It also ensures that as soon as a larger hyperrectangle with a lower function

value at its center exists, the algorithm switches the search to that more promising

(i.e., potential) region. Also, it is not required to specify the value of K. Instead,
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the algorithm searches for any possible strictly positive value. The parameter γ in

the second inequality guarantees that there is a sufficient decrease in the objective

function. Once Hj is identified as potentially optimal, it is divided into smaller hyper-

rectangles (Lines 7 to 13). The divisions are performed only along its longest sides. It

starts by determining the set M of all dimensions of maximal length (Line 8). Then,

the function f is evaluated in parallel at cj ±αem, where α is one-third the maximum

side-length, and em, m ∈ M is the mth unit vector (i.e., a vector with a one in the mth

position and zeros elsewhere) (Line 9). The first division is performed perpendicular

to the side with the lowest wm, where:

wm = min{f(cj + αem), f(cj − αem)}, m ∈ M (4.5)

The new hyperrectangle that has center cj is divided perpendicular to the direction

of the second lowest wm. The process is repeated until Hj is divided in all directions

m ∈ M . The subdivision ensures that previous function evaluations are at the center

of the new hyperrectangles (Figure 4.3).
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Figure 4.3: Two global optimization iterations

The global convergence of Algorithm 4.1 may come at the cost of a slow op-

timization at the final phase. In fact, the complexity escalates as the number of

subdivided subregions increases. We overcome this limitation by stopping the search

when the hyperrectangle with the lowest objective function is sufficiently small. At
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this stage, the subdivisions become clustered near the global solution and the algo-

rithm enters a refinement stage. The stopping criteria is given as dj < σd0. It stops

the search when the size (i.e., dj) of the hyperrectangle Hj with the best objective

function at its center cj reaches a certain percentage of the original unit hypercube

size d0. 0 < σ < 1 is adjusted for a trade-off between computational cost and the

solution optimality. It should ensure that no region is omitted and minimizes the risk

of a premature termination.

The outputs of of Algorithm 4.1 are the best solution x∗ reached by the subprob-

lems and the simulation data Γ (Line 16), where Γ is composed of all sampled center

points and their function evaluations.

4.2.2 Local Optimization

After a design point x∗ in the basin of convergence is identified, a local search is invoked

to speed up the convergence. The local search iteratively builds and optimizes a linear

and non expensive RBF model of the objective function within a neighborhood of a

current iterate. At each iteration, it solves the subproblem of the form [67]:

min mk(xk + s), xk + s ∈ Bk

Bk = {xk + s, s ∈ Rn : ‖s‖2 ≤ �k}

mk(xk + s) =

|Ψ|∑
i=1

λiφ(‖s− yi‖2) + p(s) (4.6)

f(yi) = mk(yi), ∀yi ∈ Ψ

where xk is the current state, Bk is the so called trust region for an implied (center,

radius) pair (xk, �k > 0) and ‖.‖2 is the l2 norm. The model mk approximates f
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within a neighborhood of the current trust region Bk. It is a linear combination of

RBFs (Line 3 in Equation 4.6). φ : R+ → R is a univariate RBF. λi are the linear

model coefficients, which are determined by requiring that the model mk interpolates

the function f at a set of linearly independent data points Ψ = {yi, f(yi)} (Line 4

in Equation 4.6) at which the values of f are known, including the current iterate

xk. The interpolation results in a system of linear equations [67]. p(s) is a low order

polynomial tail. |Ψ| is the cardinality of Ψ. Algorithm 4.2 illustrates the method at

each iteration.

Alg. 4.2. Local optimization

Require: Γ: Available simulation data points, x0 = x∗: Starting point, f : Objective
function

1: while ‖∇mk(xk)‖ ≥ ε do
2: Select Ψ ∈ Γ in the neighborhood of Bk.
3: Build mk interpolating f at Ψ
4: minimize mk within Bk and compte sk
5: Evaluate f(xk + sk) and update Γ
6: Compute ρk and adjust Bk

7: end while
8: return x∗: optimal solution

The current iterate xk is usually surrounded by several neighbored points which

have been evaluated previously in Algorithm 4.1. These simulation data points are

reused to accelerate the local optimization phase. That is, at each iteration, the

algorithm selects a set of data points Ψ ∈ Γ within a neighborhood of the trust

region Bk (Line 2). If the neighboring points are not enough for linear interpolation

(i.e., they do not guarantee the non singularity of the interpolation problem and the

uniqueness of the model unknown coefficients λi), new points in the neighborhood of

xk are properly generated [67]. Then, the model mk that interpolates f is built (Line

3) and the unknown model coefficients λi are determined. The model mk is assumed

to approximate the objective function sufficiently well in the current trust region Bk.
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The approximated solution sk (i.e., the step) is computed by optimizing mk over the

trust region Bk (Line 4). The yield is evaluated at xk + sk and the set Γ is updated

(Line 5). In fact, any evaluated design point is saved in Γ, which allows the algorithm

to gain additional insight into the function in the next iterations.

The pair (xk, �k) of the trust region Bk is adjusted according to the ratio of the

achieved versus the predicted improvement (i.e., decrease of the objective function

f), ρk = f(xk)−f(xk+sk)
mk(xk)−mk(xk+sk)

(Line 6). If ρk is sufficiently positive, then the iteration is

successful; the next iteration point xk+1 = xk + sk will be taken and the trust-region

radius �k is enlarged. If ρk is not sufficiently positive, then the iteration was not suc-

cessful; the current xk will be kept and the trust-region radius is reduced. The process

is repeated until the model gradient ‖∇mk(xk)‖ is smaller than a threshold parame-

ter ε. That is, the sequence of xk converges to a stationary point. The convergence

criteria proof can be found in [67].

4.3 Applications

In this section, we present the results of the application of our yield optimization

technique on three standard amplifier circuits. In the experiments, the circuits are

designed in a commercial TSMC 65 nm process and simulated in HSPICE with BSIM4

transistor models. The local mismatch variables are considered as the process parame-

ters including the oxide thickness �tox, threshold voltage under zero bias �Vth, chan-

nel width �w and channel length �L. We use the TSMC 65 nm transistor mismatch

model with V dd = 1V and standard threshold voltage. Each process parameter fol-

lows a truncated normal distribution. We compare our method with stochastic search
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algorithms including: Genetic Algorithm (GA), Differential Evolution (DE) and Sim-

ulated Annealing (SA). These optimization routines are linked to the circuit simulator

HSPICE to evaluate the yield of a design point. The yield evaluation uses MC analysis

with the LHS technique and 2000 samples. This number provides a relatively accurate

result when compared to the result of 70000 simulations run. The application of our

yield optimization methodology on the the first two amplifier circuits uses HSPICE

for yield evaluation. For the third circuit, it uses the surrogate-based yield estimation

method presented in Chapter 3. In Algorithm 4.1, we set γ = 10−3 and we subdivide

the optimization into S = 4 subproblems. Algorithm 4.2 uses sequential quadratic

programming (SQP) and cubic RBF models.

4.3.1 Folded Cascode Amplifier

We consider a folded cascode amplifier [6] circuit as shown in Figure 4.4. Table 4.1

provides the specifications for the gain Av, gainbandwidth GBW , power PDC , slew

rate SR and DC offset voltage DCOffset.

Table 4.1: Set of specifications for the folded cascode amplifier

Perf metrics Spec

Av(dB) ≥ 20
GBW (MHz) ≥ 5
PDC(mW ) ≤ 0.6
SR(V/μs) ≥ 30

DCOffset(mV) ≤ 40

The length of all transistors is fixed to 130nm. After applying the symmetry

constraints, the number of independent design variables is 9. The nominal sizing so-

lutions that correspond to the optimization search space D0 are reported in Table 4.2.
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Figure 4.4: Fully differential folded cascode amplifier

The local mismatch variables of each transistor pair are considered, which results

in 24 process parameters. The results of the proposed yield optimization approach

are reported in Table 4.3. PGOpt refers to the parallel global optimization (i.e.,

Algorithm 4.1) and LOpt refers to the local optimization (i.e., Algorithm 4.2). The

number of yield evaluations and the yield values reached by each phase are reported

in Columns 2 and 3, respectively.

Table 4.2: Design variables ranges of the folded cascode amplifier

Design variables Ranges

w1 = w2(μm) [2.63, 8.9]
w9 = w10(μm) [3.04, 5.04]
w8 = w11(μm) [4.85, 8.95]
w7 = w12(μm) [0.61, 2.64]
w6 = w13(μm) [0.62, 2.61]
w3 = w4(μm) [4.2, 5.6]

w5(μm) [6.1, 7.8]

I1(μA) [252, 268]
Vcm(V ) [0.450, 0.451]
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We also perform the optimization with different stopping criteria parameter val-

ues σ of the global optimization step. The relative error of the yield estimation at the

optimized design point x∗ is computed by evaluating its relative deviation to the yield

provided by 70000 MC simulations in HSPICE at the same design point and given as

Rel Err = |Y ield(70000−sim)−Y ield(2000−sim)|
|Y ield(70000−sim)| × 100.

Table 4.3: Experimental results for the folded cascode amplifier

σ
Yield Eval (#) Yield (%)

Rel Err (%)
PGOpt LOpt Total PGOpt LOpt

0.2 176 47 223 83.45 85.12 0.21
0.1 220 21 241 91.23 98.44 0.21
0.005 442 9 451 93.64 98.44 0.20

Using σ = 0.1, the proposed method locates the best yield solution. In this

case, PGOpt reaches a near optimal solution with 220 yield evaluations. The local

optimization needs to perform only 21 yield evaluations to converge to a higher quality

design point. A close solution is reached with σ = 0.005. However, it requires 2X

more yield evaluations. In fact, the value σ = 0.1 (i.e., 10% of the original search

space size) offers a good trade-off between the solution optimality and the required

number of yield estimations.

The proposed method finds a lower yield percentage with σ = 0.2. In this case,

the sampling and subdivision strategy did not accurately locate the basin of conver-

gence. Consequently, LOpt fails to locate a high yield solution. In fact, the result

of the local refinement requires a good starting point. However, in all experiments,

it uses a small number of yield evaluation. Its low computational cost is achieved

thanks to the optimization of a non-expensive and local model of the yield and the

simulation data reuse strategy.
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Table 4.4: Experimental results of PGOpt applied solely on the folded cascode am-
plifier

σ Yield Eval (#) Yield (%) Rel Err (%)

0.0001 656 98.43 0.20
0.0003 552 94.02 0.21

We apply PGOpt solely to locate the most robust design point with the optimum

yield. The results are reported in Table 4.4. PGOpt applied with a low σ value

succeeds in locating a good solution. However, it requires almost 3X higher number

of yield evaluations, when compared to our approach with σ = 0.1. This observation

confirms the slow convergence of the modified Lipschitiz optimization, despite its good

search ability. The integration of a local refinement phase significantly decreases the

number of yield evaluations and accelerates the optimization.

We compare our experimental results with high-ability algorithms including Ge-

netic Algorithm (GA), Differential Evolution (DE) algorithm and GA-SA (Genetic

Algorithm-Simulated Annealing), employed to optimize the yield for the cascode am-

plifier circuit. GA-SA uses GA as the global exploration mechanism and the simulated

annealing (SA) algorithm to perform a local refinement. For all three methods, the

feasible design space D0 (i.e., the search space) is the same as the one used in the pro-

posed yield optimization method. The evaluation of the yield is accomplished using

MC simulations in HSPICE. For both GA and DE, the population size is 80 and the

crossover rate is 0.8 [6]. The population is initialized by randomly selecting values of

the design variables within D0.

We executed 20 runs of each algorithm starting from 20 different initializations.

Table 4.5 shows the best results in terms of yield quality among the 20 runs. We also

include the result of the proposed method with σ = 0.1.
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Table 4.5: Comparison with simulation-based stochastic search methods for the folded
cascode amplifier

Method Yield Eval (#) Yield (%) Rel Err (%) Time [h]

Our method 241 98.44 0.19 2.65

GA 295 65.61 0.20 3.78

DE 275 70.98 0.20 3.75

GA-SA 319 83.11 0.19 3.83

The proposed optimization strategy is able to locate a higher yield rate with less

computational time. The reduced computational time comes from: (1) the reduction

of the search space allowed by the problem subdivision and the parallel computation;

and (2) alleviating the slow convergence problem of the global search by the inte-

gration of a non expensive and linear local model-based optimization. Furthermore,

the search ability of our approach obviously outperforms the stochastic optimization-

based method thanks to an exhaustive exploration of potentially optimal regions. It

can also be observed that neither DE nor the hybrid approach GA-SA is able to

perform a reliable optimization, even though multiple runs were tried and the best

optimization result is presented.

4.3.2 Two-stage Operational Amplifier

We consider a two-stage amplifier (op-amp) as shown in Figure 4.5. The length of all

transistors is set to 130 nm. The number of independent design variables is 7 after

applying the symmetry relations. The circuit specifications are shown in Table 4.6.

The optimization search space is reported in Table 4.7. Any design point in the search

space is guaranteed to satisfy the specification in nominal condition.
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Figure 4.5: A Two-stage operational amplifier

Table 4.6: Set of specifications for the two-stage op-amp circuit

Perf metrics Specification

Av(dB) ≥ 20
GBW (MHz) ≥ 3
PDC(mW ) ≤ 0.3
PM(◦) ≥ 60

DCOffset(mV) ≤ 50

The local mismatch in each transistor pair is considered. It leads to a total of

12 process parameters. As shown in Table 4.8, the value σ = 0.1 is also offering

the best trade-off in terms of solution quality and number of yield evaluation in

this experiment. We notice again the dependence of the local optimization on the

starting point. However, it always uses a very small number of yield evaluations.

Also, our method is able to reach the same solution located by PGOpt applied with

σ = 0.0001 (Table 4.9), but with 2X less yield evaluations. The relative error of

the yield estimation at the optimized design point x∗ is computed by evaluating its

relative deviation to the yield provided by 70000 MC simulations in HSPICE at the

same design point and given as Rel Err = |Y ield(70000−sim)−Y ield(2000−sim)|
|Y ield(70000−sim)| × 100.

96



Table 4.7: Design variables ranges of the two-stage op-amp circuit

Design variables Ranges

w1 = w2(μm) [1.5, 3.95]
w3 = w4(μm) [1.02, 1.51]
w5 = w8(μm) [3.1, 4.2]

w6(μm) [1.1, 2.3]
w7(μm) [2.13, 3.7]

I1(μA) [70, 80]
Cc(pF ) [7.5, 8.1]

Table 4.8: Experimental results for the two-stage op-amp circuit

σ
Yield Eval (#) Yield (%)

Rel Err (%)
PGOpt LOpt Total PGOpt LOpt

0.2 178 5 183 78.05 80.02 0.19

0.1 219 8 227 94.03 98.34 0.18

0.005 395 9 404 95.64 98.34 0.18

We compare our experimental results with high-ability stochastic algorithms,

including the Genetic Algorithm (GA), the Differential Evolution (DE) algorithm, the

GA-SA and particle swarm optimization (PSO), employed to optimize the yield of the

two stage op-amp circuit. For all four methods, we execute 30 runs of each algorithm

starting from 30 different initializations. We include the experimental results of the

highest yield quality results. The yield estimation is conducted in HSPICE and the

results are summarized in Table 4.10. We also include the result of the current method

with σ = 0.1.

Table 4.9: Experimental results of PGOpt applied solely on the two-stage op-amp

σ Yield Eval (#) Yield (%) Rel Err (%)

0.0001 527 98.34 0.17

0.0003 486 96.90 0.18

The proposed method does not significantly reduce the number of yield evalua-

tion compared with the stochastic search methods. However, it locates ∼ 10% better
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Table 4.10: Comparison with stochastic search methods for the two-stage op-amp

Method Yield Eval (#) Yield (%) Rel Err (%) Time [h]

Our method 227 98.34 0.18 0.91

GA 230 76.84 0.17 2.83

DE 211 85.27 0.16 2.76

GA-SA 252 87.98 0.19 2.91

PSO 103 61.98 0.18 2.37

quality of optimized yield rate and achieves ∼3X speedup when compared to the GA-

SA. Indeed, GA-SA is the most efficient technique in terms of solution quality among

the various search methods. We also noticed that the PSO method has a fast conver-

gence ability but its search ability is very weak. Meanwhile, the proposed method is

able to guarantee an acceptable level of error.

4.3.3 Three-stage Operational Amplifier

In this section, we apply the framework proposed in this thesis for variation-aware

circuit sizing on a three-stage operational amplifier, shown in Figure 4.6 [64]. We

also demonstrate that the method is capable of solving sizing problems with multiple

conflicting performances specifications as well as high dimensional parameters space.

Table 4.11 provides the specifications for the gain Av, gainbandwidth GBW , power

PDC , slew rate SR and DC offset voltage DCOffset.

Table 4.11: Set of specifications for the three-stage op-amp circuit

Perf metrics Specification

Av(dB) ≥ 20
GBW (MHz) ≥ 3
PDC(mW ) ≤ 0.6
SR(V/μs) ≥ 30

DCOffset(mV) ≤ 40
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Figure 4.6: A Three-stage operational amplifier

The length of all transistors is fixed to 130nm. After applying the symmetry

constraints, the number of independent design variables is 10. The nominal sizing

procedure computes a continuous set of validated feasible design solutions that cor-

responds to the optimization search space D0. The proposed two-phase optimization

engine is applied to select the sizing solution with the highest yield rate. The global

optimization phase stops the search when the size of the region with the best ob-

jective function at its center cj reaches 10% of the original search space size. The

local mismatch variables of each transistor pair are considered, which results in 56

process parameters. At each optimization iteration, surrogate models of the circuit

performances are extracted and employed to estimate the yield rate.

We compare our experimental results with stochastic search optimization meth-

ods applied to size and optimize the yield of the three stage op-amp. The results are

reported in Table 4.12. For our method, the column “Time Cost” is the run-time

for all components in the proposed framework, including the nominal circuit sizing,

the yield estimation and optimization. For all three stochastic search algorithms, we
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execute 10 runs starting from 10 different initializations. The crossover rate was man-

ually improved through six runs. At each new run, the crossover rate was updated,

trying to increase the yield rate when compared to the previous run. We include the

results of the highest yield quality results. We also consider the design space defined

by the technology library.

Table 4.12: Comparison with stochastic search methods for the three-stage op-amp
circuit

Method Yield Eval (#) Yield (%) Rel Err (%) Time Cost [h]

Our method 291 98.97 0.23 5.35

GA 885 75.61 0.19 11.34

DE 825 78.98 0.19 11.25

GA-SA 975 87.88 0.19 11.49

According to Table 4.12, the yield result of the proposed method exhibits a small

violation when compared to the yield estimation of 70000 MC runs in HSPICE as the

performance models used in the yield evaluation do not totally match the circuit

simulator-based performances evaluations. Still, the violation is small owing to the

accuracy of the extracted sparse models.

Our method is able to locate higher quality of yield rate with less computational

time. In fact, the nominal circuit sizing step decreases the design search space defined

by the technology library. The restriction of the yield optimization to the space of

feasible solutions avoids unnecessary yield evaluations and reduces the computational

time. The model-based estimation of the yield rate also reduces the run-time at the

cost of a slight increase in the relative error.

Despite being recognized as an effective evolutionary search engine for global

optimization, the DE algorithm reaches a sub-optimal solution. On the other hand,
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the GA-SA method uses the SA method to perform a local optimization starting from

the best design point located by the GA. However, the yield of the located design

point is 10% less than the optimized yield reached by our method.

4.4 Summary

The aim of yield optimization is to find the design point that has the maximum

yield, considering the manufacturing variation. The search space which is determined

by the technological process is very large. Conducting the yield optimization on the

complete search space would be inefficient and time consuming, as many design points

cannot satisfy the specifications even for nominal values of process parameters. In this

chapter, we have employed the SMT-based circuit sizing methodology presented in

Chapter 2 to characterize the feasible design solutions. Then, we proposed a novel

method for analog yield optimization that aim at selecting the most robust design

point. The technique samples the most potential region of the feasible design space

and locates a design point near the optimal solution. A local model-based local

search is then integrated to highly speedup the convergence. Its efficiency is elevated

by the reuse of existing simulation data of the global search phase. Compared with

simulation-based stochastic optimization, our method identifies more robust design

points (i.e., with higher yield rate) within less run-time and without largely affecting

the accuracy. Furthermore, it does not require multiple runs and less parameters need

to be set.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Analog circuit sizing consists in determining the device sizes and biasing voltages

and currents such that the circuit meets its specifications. Yield analysis estimates

the probability that the circuit meets its specification under parameters fluctuation.

Available methodologies for variation-aware analog circuit sizing are based on the

integration of a performance and yield estimator with an optimization technique.

Despite the huge progress made in analog design automation and research area, circuit

sizing is not trivial and many challenges still exist. For example, available optimization

techniques cannot guarantee an exhaustive coverage of the design search space and

hence, are not able to ensure high quality design solutions. Furthermore, existing

yield analysis methods can be computationally expensive.

In this thesis, we proposed a framework for analog circuits sizing in nominal con-

dition, yield estimation and yield optimization. We proposed several new techniques
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and algorithms to tackle specific limitations of existing methods. The first contribu-

tion of this thesis is the development of a nominal sizing procedure that ensures an

exhaustive coverage of the design space and outputs guaranteed bounds on the feasi-

ble design solutions. To do so, we characterized transistor small signal parameters as

a function of transistor biases (voltage and current) using simulation data and poly-

nomial regression. Given the circuit topology and the specification properties, the

sizing problem is encoded using nonlinear constraints. We employed an SMT solver

and interval arithmetic techniques to track a conservative approximation of the cir-

cuit operating point and to determine all possible reachable performances. A search

space subdivision approach and a parallel exploration efficiently accelerate our pro-

posed solution scheme. The SMT-based approach ensures a complete coverage of the

design space and is able to locate higher quality solutions when compared to existing

methods. A continuous range of each device dimension is determined out of the set

of operating point using efficient modeling and global optimization approaches. Our

method is able to characterize continuous sets of transistor sizing variables for which

the circuit meets the target specifications with high confidence.

The second contribution is the development of a new method for fast and efficient

computation of parametric yield that combines the advantages of sparse regression and

SMT solving techniques. The method constructs sparse polynomial surrogate mod-

els based on LASSO to find a low degree polynomial approximations of the circuit

performances. A procedure inspired by statistical model checking is then introduced

to verify the model accuracy. The resulting model can be viewed as a statistically

guaranteed model of the circuit behavior. An SMT-based solving technique is then

employed to find all likely failure regions in the parameters space. The yield calcu-

lation is based upon a geometric calculation of probabilistic hypervolumes subtended
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by the fail regions in the parameters space. The proposed method is computationally

efficient and is suitable for handling problems with tens of process parameters.

The third contribution of this thesis is the elaboration of a new search strat-

egy for yield optimization. First, a parallelized global optimization phase uses the

modified Lipshitizian optimization method to locate the basin of convergence of the

optimum solution. The search ensures that potentially optimal regions of the feasible

design space are not omitted. The guarantee is obtained by ensuring that the largest

unexplored regions in the search space are small enough. Once a good approxima-

tion of the global optimum is located, it is exploited by the local optimization phase.

The local search is integrated to remedy to the limitation of the Lipshitizian method

by accelerating its convergence speed. It builds interpolating models using a linear

combinations of Radial Basis Functions that approximates locally the objective func-

tion and conducts a local refinement. Its efficiency is further elevated by the reuse of

existing simulation data of the global search phase.

We applied the developed methods for the analysis of various analog circuits

and compared the results of the proposed methods to the existing approaches. The

application of the SMT-based nominal circuit sizing method on a two-stage ampli-

fier and a folded cascode amplifier shows its high ability to guarantee an exhaustive

coverage of the search space design and to meet the performance constraints, when

compared with high-ability optimization algorithms. The proposed method provides

the first steps towards the integration of formal techniques for analog synthesis. The

experimental results are very promising. However, they can be further enhanced by

automating the extraction of the performance constraints and extending it to handle

larger circuits. Furthermore, compared with existing methods, the application of the

surrogate-based yield estimation method on various analog circuits shows that it is
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able to handle yield problems with many process parameters and extremely high yield

rate. However, efficient heuristics and parallelization techniques should be considered

because the computational cost of the surrogate modeling algorithm may increase if

the number of process parameters and the number of performance metrics largely

increase. Besides, the application of the yield optimization strategy shows that the

method is able to minimize the risk of missing potentially optimal design points and

does not require multiple runs when compared to stochastic optimization techniques.

The optimization strategy can be further enhanced by making it tractable for larger

circuits and including more aggressive process variation. Some of the mentioned future

enhancements and directions of further research are detailed in the next section.

5.2 Future Work

Based on the work presented in this thesis, several enhancements and directions of

further research can be pursued.

In our nominal circuit sizing methodology, we employed an operating point driven

circuit sizing technique. That is, the circuit operating point is first selected for a fixed

transistor length, then converted to transistors widths. Indeed, the circuit perfor-

mances are modeled as a function of transistor biases (voltage and current) and for

fixed transistors length (e.g., minimum length, twice the minimum length, etc.). How-

ever, fixing the transistors length in our sizing constraints may have a large effect on

the performances of the circuit. This limitation may be solved by using advanced

modeling techniques for large scale problems that allow the inclusion of the length as

a design variable. In fact, the length parameter has a large range that is allowed by the

technology. Using conventional techniques for regression alike least square polynomial
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regression may easily lead to over fitting. It is possible to combine sparse regression

with powerful machine learning techniques such as random forests and bootstrap ag-

gregating to learn piecewise approximations and ovoid over fitting. In this case, the

circuit performances can be modeled as a function of the device biases and length.

Consequently, the length is considered as a design variable and higher performances

can be reached.

Accurate and not complex surrogate models can replace transistor-level simula-

tion and significantly fasten the performances assessment and consequently the yield

estimation. However, the computational cost for polynomial regression-based per-

formance modeling increases with: (1) the number of process parameters (i.e., the

number of variables); and (2) the order of the trained polynomial model. In the case

where the dimensionality is extremely high, the proposed adaptive regression tech-

nique must choose a set of important polynomial terms from numerous (e.g., millions

of) possible candidates; and hence, the surrogate model training algorithm described

in this thesis may become computationally unaffordable. We believe that this limita-

tion can be addressed by the integration of efficient heuristics and parallel computing.

For example, MATLAB offers parallel computing features that can solve computa-

tionally and data-intensive problems using multicore processors, computer clusters

and parallel for loops.

The proposed method for nominal circuit sizing is efficient in the sense that it

ensures an exhaustive coverage of the design search space. However, it is designed to

handle circuits with a small to medium number of transistors. It is possible to handle

larger circuits by developing a hierarchical sizing technique. First, the analog circuit is

decomposed into a set of smaller sub-circuits which decreases the number of variables

involved in the SMT problems. In this case, we need to handle the correlations
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between the partitioned sub-circuits. Second, each SMT problem associated with a

sub-circuit can be further decomposed into a set of sub-problems with less constraints

to further improve the efficiency.

For the yield optimization, we have to apply the optimization strategy in the

presence of more severe process variations. Global process variation can be considered

with local mismatch. The IC foundry TSMC offers variational device libraries that

model global variation. It would be interesting to verify the circuits under both

types of variations. However, the computational cost of the yield optimization will

largely increase. Also, for instance, the global optimization problem is divided into

subproblems that are solved independently and in parallel. It is possible to set a global

communication strategy between the different subproblems in order to minimize the

computational cost and to avoid unnecessary optimizations iterations. Moreover,

the stopping criteria of the global optimization phase is set manually by the user.

The criteria should balance between the computational cost and the nearness of the

solution to the optimal one. This part can be enhanced by dynamically varying the

stopping criteria and by adding a constraint related to the computational cost and

defined in terms of the number of yield evaluations.
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