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Abstract

Heuristic Algorithms for Broadcasting in Cactus Graphs

Neil Conlan

Broadcasting is an information dissemination problem in a connected network, in which one node,

called the originator, disseminates a message to all other nodes by placing a series of calls along the

communication lines of the network. Once informed, the nodes aid the originator in distributing the

message. Finding the broadcast time of a vertex in an arbitrary graph is NP-complete. The problem

is solved polynomially only for a few classes of graphs. In this thesis, we study the broadcast problem

in a class of graph called a Cactus Graph. A cactus graph is a connected graph in which any two

simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which

every edge belongs to at most one simple cycle. We review broadcasting on subclasses of cactus

graphs such as, the unicyclic graphs, necklace graphs, k-cycle graphs, 2-restricted cactus graphs and

k-restricted cactus graphs. We then provide four heuristic algorithms that solves broadcasting on

a k-cycle graph. A k-cycle graph is a collection of k cycles of arbitrary lengths all connected to a

central vertex. Finally, we run simulations of these heuristic algorithms on different sized k-cycle

graphs to compare and discuss the results.
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Chapter 1

Introduction

Since the early days of computing, computers have been used to solve certain problems in speeds

that are unattainable by humans. Initially digital computers where designed using a single processor.

While software executing using a single processor was great at solving problems in a sequential way,

the need for higher speeds was needed.

Multi-computer and multi-processor systems (often called distributed computing) was a solution

to this speed problem. While designing software to run on a distributed system introduced more

complexity to the software, thus making it more difficult to design software, the speedup of solving

problems this way was substantial enough to accept the increase in complexity.

Distributed computing works by breaking down a large problem that’s needs to be solved into

smaller independent problems which can be solved in parallel and then merging the results to obtain

the final solution to the large problem. In some cases, the processors of the distributed system

need to share information with each other. This can be accomplished using shared memory that all

processors have access to or each processor can have its own local memory (distributed memory).

Shared memory systems have limitations on the number of processors that can be connected, which

makes it not practical for very large problems that require a large amount of processors.
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Solving problems using distributed memory systems have some advantages over the shared mem-

ory model. One advantage is that there is theoretically no limitation on the number of processors

that can be used to solve a problem. Another advantage is that each processor has its own memory

pool which can be used to fit the data of the smaller problem it is tasked to solve fully inside memory.

Since each processor has its own memory the total amount of memory can be larger than the shared

memory model.

Processors of the interconnected network often have to share information with each other. This

is accomplished by sending data over the network. It turns out that not only the power of the

individual processors is important to solve a given problem but also the speed at which processors

can disseminate information over the network. In recent years a lot of work has gone into studying

properties of interconnected networks in order to find the best network structures for communication

between processors of a network.

1.1 Broadcasting

There are different types of communication primitives a network can use when data needs dissemi-

nated to other processors. These communication primitives are:

• Routing or one-to-one communication.

• Broadcasting or one-to-all communication.

• Multicasting or one-to-many communication.

• Gossiping or all-to-all communication.

One of the most fundamental and interesting dissemination problems is broadcasting. The study

of broadcasting was introduced by Slater, Cockayne and Hedetniemi in 1977 [24]. This problem

has also been studied a lot in survey articles [14], [26] and a relatively recent book dedicated to

information dissemination in networks [27].
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Broadcasting is when one node of a network, called the originator, has data that it wants to

share with all other nodes of that network. This is accomplished by placing a series of calls over

the communication lines of the given network. Once a node is informed, the informed node can

help the originator in distributing the data. These calls are assumed be be performed in discrete

time units. The broadcasting of this data should be finished as quickly as possible, subject to the

following constraints:

• Each call involves one of the informed nodes with one of its uninformed neighboring nodes.

• Each call requires one unit of time.

• A node can only participate in one call per unit of time.

• In one unit of time each informed node can work in parallel.

Formally, any network can be modelled as a connected graph G = (V,E), where V is the set of

vertices (or nodes) and E is the set of edges (or communication lines) between the vertices of the

graph G. Two vertices u, v ∈ V are said to be adjacent (or neighbors) if there is an edge e ∈ E,

such that e = (u, v). The degree of a vertex u, d(u) or deg(u), is defined as the number of incident

vertices of the vertex u. The maximum degree of a graph G, denoted by Δ(G), and the minimum

degree of a graph, denoted by δ(G), are the maximum and minimum degree of its vertices. The

shortest path between a vertex u and a vertex v is called the distance between u and v, and is

denoted by dist(u, v). The diameter of a graph G is the maximum distance between two vertices of

the graph, max{dist(u, v) | u ∈ V, v ∈ V )}.

A broadcast scheme of a graph with originating vertex u is defined as the set of calls performed to

complete the broadcasting in the network. The broadcast time from originating vertex u, b(u,G) or

just b(u), is the minimum number of time units (or rounds) required to complete the broadcast from

vertex u. From any originating vertex u it is clear that the minimum number of rounds required to

complete the broadcast is b(u) ≥ �log n� since at best the number of informed nodes each round can

double. The maximum number of rounds required to broadcast on a network is b(u) = n − 1 since
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in the worst case there will be only one newly informed vertex. The broadcast time of a graph G,

is defined as max{b(u) | u ∈ V }. For any connected graph G we can represent a broadcast scheme

from a vertex u as a spanning tree. Figure 1 shows a broadcast schemes spanning tree that ends in

5 rounds.

Figure 1: Broadcast Tree

Determining b(u,G) for a vertex u of an arbitrary graph G is NP -Complete [28]. The proof of

this is presented in [40]. Therefore there have been a lot of research into finding approximation

algorithms or heuristic algorithms to determine the broadcast time of a vertex u in G, b(u,G). ([1],

[8], [7], [9], [12], [13], [33], [39]).

Since broadcasting in an arbitrary graph is NP -Complete a lot of research has gone into studying

certain classes of graphs to design polynomial time algorithms that solves b(u,G). One of the first

graphs to be shown to have a linear time solution O(|V |) was the tree [40].

1.2 Review of Commonly Used Topologies

In this section, we will review some commonly used topologies and give their broadcast times.
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1.2.1 Path Pn

Figure 2: Path

A path Pn with length n is a sequence of vertices such that each vertex is connected to the next

by an edge. For n vertices numbered v1 to vn there exists a total of n−1 edges in Pn. The broadcast

time of b(Pn) is n − 1 because the maximum broadcast time for Pn is when the originating vertex

u is one of the end vertices, v1 or vn. In Figure 2, b(P6) = 5.

1.2.2 Cycle Cn

Figure 3: Cycle

A cycle Cn with n vertices is a path Pn where the first vertex v1 and the end vertex vn are

connected by an edge (v1, vn) ∈ E. The broadcast time of a cycle is b(Cn) = �n
2 �. In Figure 3,

b(C6) = 3.

1.2.3 Tree T

The tree Tn is a connected graph with n vertices and n− 1 edges. Trees have a good property such

that there is exactly one path between any two vertices. The broadcast time of a tree b(Tn) has

been shown to have a linear time O(|V |) [40]. In Figure 4, b(T13) = 5.
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Figure 4: Tree

1.2.4 Complete Graph Kn

Figure 5: Complete Graph

The complete graph Kn with n vertices is a connected graph such that each vertex has an edge

to each of the other vertices of the graph. This means that the number of edges in kn is n(n−1)
2 .

The broadcast time b(Kn) = �log n� because at every round, except the last round, the number of

informed vertices can double. In Figure 5, b(K6) = 3.
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Figure 6: Hypercube

1.2.5 Hypercube Hn

The n-dimensional hypercube, Hn, is defined to be a graph on 2n vertices. Each vertex is represented

with a n-bit binary string, and two vertices are linked with an edge if and only if their binary strings

differ in precisely one bit. For example, the vertices v1 and v5 in H3 are neighbors because their

binary representations 001 and 101 differ only in the third position. The hypercube is one of the

few infinite family of graphs where the broadcast time is equal to log n, i.e. b(Hn) = n. Figure 6,

b(H3) = 3.

1.2.6 2d Grid Network Gm,n

Figure 7: Grid

The 2 dimensional grid network Gm,n (or mesh) is a graph with mn vertices. Each vertex is

represented as a tuple (i, j) and can be connected to a maximum of 4 vertices denoted by (i−1, j),

(i, j−1), (i+1, j), (i+1, j+1) for 1 < i < m and 1 < j < n. The corner vertices are connected to 2

neighboring vertices, for example (0, 0) is connected to (0, 1), (1, 0). The side vertices which are not

corner vertices are connected to 3 neighboring vertices, for example (0, j) is connected to (0, j−1),
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(0, j + 1), (1, j). The broadcast time has been shown to be b(Gm,n) = m + n−2 [24]. Figure 7,

b(G4,3) = 5.

1.2.7 d-Torus Graph

Figure 8: 2-Torus graph with 12 vertices

A d-Torus graph is a d-grid graph with both ends of rows and columns connected. Figure 8

shows a 2-Torus graph.

1.2.8 DeBruijn Graph DBm

The DBm is a graph where the vertices are represented by binary strings of length m and whose

edges connect each string αa, where α is a binary string of length m− 1 and a is in {0, 1}, with the

string αb, where b is a symbol in {0, 1}. Figure 9 shows a 3-dimensional DeBruijn graph.

1.2.9 The Shuffle-Exchange SEm

The SEm is a graph where the vertices are represented by binary strings of length m and whose

edges connect each string αa, where α is a binary string of length m − 1 and a is in {0, 1}, with

the string αc and with the string αa, where c is the binary complement of a. Figure 10 shows a

3-dimensional shuffle-exchange graph.
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Figure 9: DeBruijn graph DB3

1.2.10 The Butterfly BFm

The m-dimensional butterfly network, BFm is a graph with vertex-set Vm = {0, 1, ...,m − 1} x

{0, 1}m, where {0, 1}m denotes a set of binary strings of length m. For each vertex v = (i, j) ∈ Vm,

i ∈ {0, 1, ...,m − 1}, j ∈ {0, 1}m, i is the level and j the position within level of v. There are two

types of edges in BFm : for each i ∈ {0, 1, ...,m− 1} and each j = a0a1...am−1 ∈ {0, 1}m, the vertex

(i, j) on level i is connected by a straight-edge with vertex ((i + 1) mod m, j) and by a cross-edge

with vertex ((i+1) mod m, j(i)) on level (i+1) mod m. Here j(i) = a0a1...ai−1ciai+1...am−1, where

ci denotes the binary complement of ai. Figure 11 shows a 3-dimensional butterfly network.

1.2.11 The Cube-Connected Cycles CCCm

The CCCm is similar to the hypercube except that each vertex is replaced by a cycle of m nodes.

The ith dimension edge incident to a node of the hypercube is then connected to the ith node of the

corresponding cycle of the CCCm. This CCCm has m2m vertices, diameter
⌊
5m
2

⌋−1 and maximum

degree 3. It has been shown that b(CCCm) =
⌈
5m
2

⌉−1 (see [34]). Figure 12 shows a 3-dimensional

cube-connected cycle.
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Figure 10: Shuffle-Exchange graph SE3

1.2.12 Other Topologies

There has been a lot of research into other types of graph topologies besides the ones mentioned

above. The Knödel graphs have been studied extensively in these papers [3], [10], [11], [16], [17],

[31]. A unicyclic graph is a connected graph containing exactly one cycle [18]. The broadcast time

of a bipartite double loop graph is d+2 where d is the diameter of the graph [19]. Polynomial time

broadcasting solutions has been researched in necklace graphs [21] and fully connected trees [20].

Optimal broadcasting in a 2-dimensional Manhattan graph is shown in [6].

1.3 Thesis Contribution

The rest of this thesis is organized as follows. In chapter 2 we will define the cactus graph and

talk about broadcasting on some subclasses of the cactus graph. In chapter 3 we will present four

heuristic algorithms that perform broadcasting on a k-cycle graph. In chapter 4 we will talk about

the implementation details of the algorithms and show results of running these algorithms on many

different sized k-cycle graphs. In chapter 5 we will conclude the thesis and talk about some future

work that can be done.
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Figure 11: Butterfly graph BF3

Figure 12: Cube-Connected Cycle CCC3

11



Chapter 2

Cactus Graphs

In this section, we introduce the Cactus graph. First, we will define the cactus graph topology

followed by a brief discussion on broadcasting on subclasses of the cactus graph.

2.1 Model Definition

A cactus graph is a connected graph in which any two simple cycles have at most one vertex in

common. Equivalently, it is a connected graph in which every edge belongs to at most one simple

cycle. Historically cacti where studied under the name of Husimi trees by Frank Harary and George

Eugene Uhlenbeck in honor of previous work on these graphs by Kôdi Husimi [15], [23]. A cactus

graph can be constructed from a tree by replacing some set of edges with cycles of arbitrary size.

Note that every pseudo-tree (i.e., a graph containing exactly one cycle Cn for some n ≥ 3) is a cactus

graph.

There has been a lot of interesting research that use cacti. For example, the facility location

problem which is a branch of operations research and computational geometry concerned with the

optimal placement of facilities to minimize transportation costs while considering factors like avoiding

placing hazardous materials near housing, and competitors’ facilities. This problem is NP-Hard for

general graphs but can be solved in polynomial time for cacti [2], [42]. Cacti are special cases
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Figure 13: Cactus Graph

of outerplanar graphs, several combinatorial optimization problems on graphs may be solved for

them in polynomial time [32]. Another application of Cacti is in comparative genomics as a way of

representing the relationship between different genomes or parts of genomes [38].

There are also a lot of well-known problems in graph theory that have linear or polynomial

time solutions on cacti. For example, all-pair shortest path problem [35], domination problem [25]

coloring problem [30] and labeling problem [29].

Cacti are also used in the study of combinatorial optimization because a lot of efficient solutions

to many problems can be generalized to cactus graphs, often within the same time complexity [37],

[42].
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2.2 Broadcasting in Cactus Graphs

In this section, we will discuss broadcasting in cactus graphs. Broadcasting in an arbitrary cactus

graph is not easy, therefore we will look at algorithms that solves broadcasting in different subclasses

of cacti.

2.2.1 Unicyclic Graphs

Figure 14: Unicyclic Graph

A unicyclic graph (Figure 14) is a connected graph with only one cycle. You can also say that

it is a tree with only one extra edge. It can also be seen as a cycle where every vertex on the cycle

is the root of a tree. In the paper [18] a linear O(|V |) algorithm is presented that determines the

broadcast time from any vertex u in an arbitrary unicyclic graph G = (V,E).

2.2.2 Necklace Graphs

A necklace graph is a collection of cycles, where each consecutive pair of cycles is connected by

one vertex. In other words, a necklace graph is a chain of cycles (see figure 15). In [21] a linear

O(|V |) algorithm is presented that determines the broadcast time of an arbitrary necklace graph

G = (V,E).
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Figure 15: Necklace Graph

2.2.3 k-Cycle Graphs

Figure 16: k-cycle Graph (where k = 4)

A k-cycle graph is a collection of k cycles of arbitrary lengths all connected to a central vertex

(see figure 16). In [4] a constant approximation algorithm to find the broadcast time of an arbitrary

k-cycle graph is given. They also show the optimality of the algorithm on some subclasses of the

k-cycle graph.
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Figure 17: 2-Restricted Cactus Graph

2.2.4 2-Restricted Cactus Graphs

Cactus graphs are defined to be connected graphs where no two cycles have more than one vertex

in common. In a cactus graph it is possible to have a vertex that belongs to more than two cycles.

A 2-restricted cactus graph is a cactus graph such that a vertex can belong to at most 2 cycles (see

figure 17). Broadcasting in a 2-restricted cactus graph is not as easy as it seems. In [36] a partial

solution to broadcasting in a 2-restricted cactus graph is given along with an explanation of why it

is difficult.

2.2.5 k-Restricted Cactus Graphs

A k-restricted cactus graph is a cactus graph where no more than k cycles can have more than one

vertex in common, or equivalently, a cactus graph in which every vertex is on at most k cycles (see

figure 18). In [5] a O(n logΔ) algorithm for broadcasting on a k-restricted cactus graph from any

originating vertex is given, where Δ is defined as the maximum degree of all vertices of the graph.

Another algorithm that calculates the broadcast time for all vertices in a k-restricted cactus graph

with the same time complexity is given. The algorithm also provides an optimal broadcast scheme
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Figure 18: k-restricted Cactus Graph (where k = 3)

for every vertex. They also compute the broadcast center of a k-restricted cactus graph.
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Chapter 3

Heuristic Algorithms for Cactus

Graph Broadcasting

In this chapter, we will present some heuristic algorithms for broadcasting in a subclass of the cactus

graph CG called a k-cycle graph Gk. A k-cycle graph is a collection of k cycles of arbitrary lengths

all connected to a central vertex (see figure 19). Given a graph G there is a way to determine if

the graph is a k-cycle graph. Algorithm 1 will return the sizes of the cycles of the k-cycle graph

or false if the given graph G is not a k-cycle graph. It will perform a depth-first search starting

from an arbitrary vertex v and check the degree of each vertex. The degree of each vertex must be

2 except for one vertex which is the common vertex to all cycles that must have an even degree.

This central vertex will be saved and used in another depth-first search right after the first one. The

second depth-first seach starts from the central vertex and counts the sizes of each cycle. The sizes

are added to a list and will be returned by the algorithm. This return value is a list with the sizes

of the cycles which is the input for other algorithms defined in this chapter.

Each cycle of the k-cycle graph will be assigned values to the edges incident to the originator

vertex u. These values correspond to the broadcast round that we visit those edges. From originator

vertex u we can visit two edges of each cycle. For example, the ith cycle Ci will get values assigned
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Algorithm 1 iskcyclegraph: Procedure to determine if a given graph G is a k-cycle graph. Returns
a list with the size of the cycles of the k-cycle graph or false if the given graph is not a k-cycle
graph.

1: procedure isKCycleGraph(G, v)
2: cycleSizeList � Will hold the sizes of the cycles
3: centralV ertex ← false � used to track if the cental vertex has been found
4: S is a stack
5: S.push(v)
6: while S is not empty do
7: u ← S.pop()
8: if u is not labeled as discovered then
9: deg ← degree of vertex u

10: if deg > 2 then
11: if deg mod 2 = 0 and centralV ertex = false then
12: centralV ertex ← u � we found the central vertex
13: else
14: return false � degree is odd or the central vertex has already been found
15: end if
16: else if deg < 2 then
17: return false � cannot have vertex with degree < 2
18: end if
19: set u as discovered
20: for all edges from u to w in G.adjacentEdges(u) do
21: if w is not labeled as discovered then
22: S.push(w)
23: end if
24: end for
25: end if
26: end while
27: S.push(centralV ertex)
28: cycleSize = 0
29: while S is not empty do
30: u ← S.pop()
31: if u is not labeled as discovered then
32: set u as discovered
33: foundUndiscovered ← false
34: cycleSize ← cycleSize+ 1
35: for all edges from u to w in G.adjacentEdges(u) do
36: if w is not labeled as discovered then
37: S.push(w)
38: foundUndiscovered ← true
39: end if
40: end for
41: if foundUndiscovered = false then
42: cycleSizeList ← cycleSizeList+ {cycleSize}
43: cycleSize ← 1 � Reset cycle size to 1 (central vertex)
44: end if
45: end if
46: end while
47: return cycleSizeList � Return the sizes of the cycles
48: end procedure
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to each of it’s edges, ei,1 and ei,2, that represent which broadcast round we will visit those edges.

The optimal broadcast time of Gk is when the assignment of rounds to each incident edge of u

results in the minimal broadcast time. Determining these assignments is the problem that needs to

be solved. The following algorithms will assign the rounds to these edges and calculate the total

broadcast time b(Gk). Depending on the sizes of the cycles in Gk certain algorithms will perform

better than others.

Figure 19: k-cycle graph to use for Algorithms

3.1 Lower Bounds on Broadcast Time for k-cycle Graph

In this section, we will give lower bounds on the broadcast time of a k-cycle graph Gk from an

arbitrary vertex u. A lower bound on the broadcast time means that broadcasting will take at least

that amount of time to complete. These lower bounds were presented in the paper [4] with proofs.

The paper gives lower bounds on when the originating vertex u is the central vertex and when it is

a vertex on a cycle.
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Definition 1. Let l1 ≥ l2 ≥ ... ≥ lk ≥ 2, where li is the number of vertices in cycle Ci (excluding

vertex u) for all 1 ≤ i ≤ k.

3.1.1 Lower Bounds When Originator is the Central Vertex

In this section, we will give lower bounds on the broadcast time of a k-cycle graph when the originator

is the central vertex.

Lemma 1. Let Gk be a k-cycle graph where the originator is the central vertex u. Then (i) b(u) ≥

k + 1. (ii) b(u) ≥
⌈
lj+2j−1

2

⌉
for j, 1 ≤ j ≤ k. (iii) b(u) ≥

⌈
2k+lj+2j+1

4

⌉
. for j, 1 ≤ j ≤ k.

Proof. (i): Under any minimum time broadcast scheme, k time units are necessary to inform at least

one vertex in each of the k cycles from vertex u. Since lj ≥ 2 for any j, where 1 ≤ j ≤ k, at least

one more time unit is required to inform the second vertex on the cycle which initially receives the

message from u at time unit k. So, b(u) ≥ k + 1.

(ii): We consider any cycle Cj where 1 ≤ j ≤ k. Under any minimum time broadcast scheme

all vertices in Cj must be informed. u informs the k cycles in some order and assume it initially

informs Cj at time unit j or later. Then u informs its second neighboring vertex in Cj no sooner

than time unit j + 1. At time unit j there are at least lj − 1 uniformed vertices in Cj . Starting at

time j + 1 onwards, Cj receives the message from both directions from u. At each time unit two

new vertices on Cj will get informed. So, b(u) ≥ j+
⌈
lj
2

⌉
=

⌈
lj+2j−1

2

⌉
. Suppose, by contradiction u

initially calls path Cj before time j. Then by the pigeonhole principle these exists m, 1 ≤ m ≤ j−1

such that u initially calls Cm at time j. Similarly at time unit j there are at least lm − 1 uniformed

vertices in Cm. If, starting at time j + 1 onwanrds, Cm receives the message from both directions

from u, then b(u) ≥ ⌈
lm−1

2

⌉
=

⌈
lm+2j−1

2

⌉
≥

⌈
lj+2j−1

2

⌉
as lm ≥ lj . Hence, b(u) ≥

⌈
lj+2j−1

2

⌉
.

For the proof of (iii), we combine the inequalities in (i) and (ii). We get 2b(u) ≥ k+1+
⌈
lj+2j−1

2

⌉
≥

⌈
lj+2j+2k+1

2

⌉
. Hence, b(u) ≥

⌈
lj+2j+2k+1

2

⌉
for any j, 1 ≤ j ≤ k.

Lemma 2. Let Gk be a k-cycle graph where the originator is the central vertex u and n is the total

number of vertices in Gk. Then (i) b(u) ≥ ⌈
n−1
2k + k − 1

2

⌉
if b(u) ≥ 2k. (ii) b(u) ≥

⌈√
(2n− 7

4 )− 1
2

⌉
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if k + 1 ≤ b(u) ≤ 2k − 1.

Proof. (i): Since b(u) ≥ 2k, then u will be busy informing its adjacent vertices in k different cycles at

time units 1, 2, ..., 2k. By b(u) time units, u can inform at most b(u), b(u)−1, ..., b(u)−(2k−1) vertices

in these k different cycles. So, n ≤ b(u)+b(u)−1+...+b(u)−(2k−1)+1 ⇒ n ≤ 2kb(u)−k(2k−1)+1.

Hence, b(u) ≥ ⌈
n−1
2k + k − 1

2

⌉
.

(ii): Since k+1 ≤ b(u) ≤ 2k−1, then u can inform its adjacent vertices in k different cycles at time

units 1, 2, ..., b(u), where b(u) ≤ 2k− 1. By b(u) time units, u can inform at most b(u), b(u)− 1, ..., 1

vertices in these k different cycles. So, n ≤ b(u) + b(u) − 1 + ... + 1 + 1 ⇒ n ≤ b(u)(b(u)+1)
2 + 1 ⇒

b(u)2 + b(u)− (2n− 2) ≥ 0. Roots of b(u) are −1±√8n−7
2 . Considering the positive root of b(u), we

get b(u) ≥
⌈√

(2n− 7
4 )− 1

2

⌉
.

Lemma 3. There is a minimum time broadcast scheme from w in Gk in which w first sends the

information along the shortest path towards vertex u.

Proof. Let S1 be a minimum broadcast scheme, bS1(w) = b(w,Gk) under which w first informs

its adjacent vertex along the longer path towards vertex u. We will construct a new broadcast

scheme S2 under which w first sends information towards the shorter path. We will show that

bS2(w) ≤ bS1(w) = b(w,Gk).

According to scheme S1, w informs its adjacent vertex along the shorter path at time two. Now

we construct a new broadcast scheme S2 where w informs its adjacent vertex along the shorter

path at time one. The order in which u broadcasts along the remaining k − 1 cycles is the same in

both schemes. However, under S2, every vertex along the longer path towards vertex u from w will

receive the message exactly one time unit later compared to S1. To prove that bS2
(w) = b(w,Gk)

we consider two cases:

Case 1: under S1, u is informed along the shorter path at time b1 ≤ b(w,Gk): Under S2 all the

vertices along the shorter path will be informed exactly one time unit earlier. So, u is informed at

time b11. u has exactly one free time unit immediately after b1 − 1 to inform its adjacent vertex

along the longer path towards w. Since the broadcast time in the remaining k − 1 paths remains
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the same, bS2(w) ≤ bS1(w).

Case 2: under S1, u is informed along the longer path from w: Recall the length of the shorter

path is d and the length of the longer path is lj + 1 − d. Under S1, u is informed along the longer

path from w when either d = lj +1− d or d+1 = lj +1− d. When d = lj +1− d, it is quite trivial

that bS2
(w) ≤ bS1

(w) since the broadcast time in the remaining k−1 paths remains the same. When

d + 1 = lj + 1 − d: Recall that under S2 all the vertices along the shorter path will be informed

exactly one time unit earlier. So u is informed at time unit d instead of time unit lj +1− d = d+1

under scheme S1. u has exactly one free time unit immediately after d to inform its adjacent vertex

along the longer path towards w. Since the broadcast time in the remaining k − 1 paths remains

the same, bS2
(w) ≤ bS1

(w).

3.1.2 Lower Bounds when Originator is Not the Central Vertex

In this section, we will give lower bounds on the broadcast time of a k-cycle graph when the originator

is not the central vertex.

Lemma 4. Let Gk be a k-cycle graph where the originator is any vertex w on a cycle Cm and the

length of the shortest path from w to vertex u is d. Then (i) b(w) ≥ d+ k. (ii) b(w) ≥ d+ � lj+2j−2
2 �

for any j, 1 ≤ j ≤ k. (iii) b(w) ≥ d+ � 2k+lj+2j−2
4 � for any j, 1 ≤ j ≤ k.

Proof. (i): By Lemma 3 there is a minimum time broadcast scheme from originator w in Gk in which

w first sends the information along the shorter path towards vertex u. Considering this minimum

broadcast scheme, u is informed no earlier than d time units. It takes another k − 1 time units to

inform at least one vertex in each of the remaining k − 1 cycles from u. Recall that lj ≥ 2 for any

j, where 1 ≤ j ≤ k. So, at least one more time unit is required to inform the second vertex on the

cycle which initially receives the message from u at time unit d+ k − 1. So, b(w) ≥ d+ k.

(ii): Similarly, at least d time units are necessary for u to receive the message from w .Now, we

consider any cycle Cj where 1 ≤ j ≤ k and j 
= m. Under any minimum time broadcast scheme all

vertices in Cj must be informed. u informs the remaining k − 1 cycles in some order and assume
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it initially informs Cj at time unit d + j or later. Then u informs Cj along the second branch no

sooner than time unit d+j+1. At time unit d+j there are at least lj −1 uninformed vertices in Cj .

Similar to the argument given in Lemma 1(ii), we car write b(w) ≥ d+ j+
⌈
lj−1
2

⌉
= d+

⌈
lj+2j−1

2

⌉
≥

d+
⌈
lj+2j−2

2

⌉
.

When j = m, the number of uninformed vertices in Cm at time d, denoted as Γ(m) = l−(2d−1).

Considering j = 1 and l = Γ(m) for the cycle Cm, we get b(w) ≥ d+
⌈
lj+2j−2

2

⌉
for any j, 1 ≤ j ≤ k

included m.

For the proof of (iii), we combine the inequalities in (i) and (ii). We get 2b(u) ≥ d + k + d +

⌈
lj+2j−2

2

⌉
≥ 2d+

⌈
lj+2j+2k−2

2

⌉
. Hence, b(w) ≥ d+

⌈
lj+2j+2k−2

4

⌉
for any j, 1 ≤ j ≤ k.

3.2 Algorithm BroadcastBucket

The BroadcastBucket algorithm (See Algorithm 2) will determine if it is possible to broadcast in a

given k-cycle graph Gk within a given time t. To determine which edges to visit during each round

we first sort the cycles from largest to smallest. We make an assumption that we want to visit the

first edge of the largest cycle during round 1. We can now calculate which round we will visit the

second edge of the largest cycle. This can be determined by performing a calculation based on what

values are already given. For example, let’s take a cycle Ci. We are given the time t, which is the

target broadcast time for the k-cycle graph Gk. We know the size of the cycle Ci, denoted by |Ci|,

and we are given the round in which to visit the first edge ei,1 of cycle Ci. In target time t we know

we can visit t−(ei,1−1) vertices through edge ei,1 and t−(ei,2−1) vertices through edge ei,2 (Figure

20), where ei,1 and ei,2 are the rounds in which those edges are visited. Therefore, if broadcasting

is possible in time t, we know t− (ei,1 − 1) + t− (ei,1 − 1) + 1 ≥ |Ci|. After some simple arithmetic,

we get ei,1 + ei,2 ≤ 2t+3− |Ci| = ai. This gives these inequalities, e1,1 + e1,2 ≤ a1, e2,1 + e2,2 ≤ a2,

... , ek,1+ ek,2 ≤ ak where k is the number of cycles. We can now calculate the latest possible round

we need to visit the second edge ei,2 of cycle Ci so that broadcasting on the cycle Ci will finish in

time t. We denote this by bi = ai − ei,1 = 2t+ 3− |Ci| − ei,1. From the inequalities above we know
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ei,2 ≤ bi. This means the latest round in which we can visit ei,2 of cycle Ci and finish broadcasting

in time t is bi.

Figure 20: Cycle Broadcast

This algorithm uses a bucket B of size 2k where k is the number of cycles in Gk. This bucket

is used to hold the edge assignments, for example, the edge e1,1 is the first edge of the largest cycle

and will be assigned to B[1]. This means that we will visit edge e1,1 during the first round. As per

our calculations above we assign the second edge e1,2 of the largest cycle to bucket B[bi]. Then we

need to get the lowest empty bucket and assign that value to e2,1 and use that when we calculate

the bucket assignment of the second to largest cycle C2. We continue to do this until all edges are

assigned to a bucket. Bucket assignments are not necessarily unique. We can have more than one

edge assigned to the same bucket. After assigning all edges to a bucket there may be some buckets

that have more than one edge assigned to it. We can attempt to move these edges to a smaller empty

bucket, this is essentially visiting the second edge ei,2 of cycle Ci at an earlier round than what we

calculated. Which is not a problem because the bucket assignment is the latest possible round for

the second edges ei,2. We also know that all first edges will be assigned to an empty bucket. On

line 19 we perform a quick check to make sure that the first edge visited on the cycle Ci does not

finish broadcasting on the cycle before the second edge starts broadcasting on this cycle. If this is

the case we can assign the second edge ei,2 to the last bucket.

After all edges have been assigned to a bucket, we need to make sure that we have room to
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uniquely assign values to all edges (e1,1, e1,2), (e2,1, e2,2), ..., (ei,1, ei,2), ..., (ek,1, ek,2). This can be

calculated easily by keeping a count of the number of edges assigned to each bucket B[i] starting

from the first bucket. If at some point, we count that there are more edges assigned to the buckets

we checked compared to the total number of buckets checked then we know we won’t be able to

broadcast in the given time t. For example, if we counted 5 edges that are assigned to the first 4

buckets then we know broadcasting of Gk in time t is not possible with this bucket assignment. If on

the other hand the total number of edges counted does not exceed the count of the buckets checked

then we can uniquely assign the edges to the buckets (if they are not already uniquely assigned) and

finish broadcasting in time t. See Figure 21 for example bucket edge assignments. The first example

is perfect, the second is not perfect but there is enough room to move edges in the last bucket to

earlier empty buckets. The last bucket edge assignment tells us that it is not possible to broadcast

in the time t. The BroadcastBucket algorithms will return a boolean value depending on it if is

possible to broadcast in the given time t.

Figure 21: Example bucket edge assignments

To analyze the runtime of the BroadcastBucket algorithm we must look at different parts of

the algorithm. The first is sorting the cycles from largest to smallest on line 10. Sorting takes

O(k log k) where k is the number of cycles in Gk. We build a min heap from an array containing

the values 1, 2, ..., 2k. These values represent the indexes of the buckets and we want to keep track

of the smallest empty bucket. Building a min heap takes O(k). Next on line 13 we loop k times.
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Inside this loop on line 14 we have to search for the smallest empty bucket. We extract the index

of the smallest empty bucket from the smallestEmptyBucketHeap heap. Extracting a value from

a min heap takes O(log k). In total this loop takes O(k log k). Finally, on line 13 we loop another k

times which results in O(k). The final runtime will be O(k log k) +O(k log k) +O(k) = O(k log k).

The BroadcastBucket algorithm expects a broadcast time t as a parameter. We know that the

minimum number of rounds to finish broadcasting in any graph G is b(G) ≥ �log |V |�, where |V | is

the total number of vertices in the graph. We also know that the maximum number of rounds to

broadcast in a graph G is b(G) = |V |−1, since in the worst case there will be only one newly informed

vertex each round. Therefore, we can perform a binary search between the minimum and maximum

broadcast rounds and call BroadcastBucket until we find the lowest possible broadcast rounds for

the given k-cycle graph Gk. This algorithm is called BroadcastGuess because it’s basically taking

a guess at the possible broadcast time (See Algorithm 3).

The BroadcastGuess algorithm performs a binary search of size n, where n is the number of ver-

tices in the graph Gk. Inside the while loop on line 8 is calls the BroadcastBucket algorithm. Since

the runtime of BroadcastBucket is O(k log k) the runtime of BroadcastGuess is O(k log k log n),

where k is the number of cycles in the k-cycle graph Gk and n is the number of vertices in the

k-cycle graph Gk.

Let’s take the simple example of a k-cycle graph with 3 cycles of sizes 8, 7, and 3 with broadT ime =

6 and run it through the BroadcastBucket algorithm. The largest cycle is size 8, and the first edge

of this cycle will be e1,1 = x = 1, this means it will get assigned to the first bucket. Then we

calculate which bucket the second edge of the cycle of size 8 will be assigned to. From the calcula-

tions we get a = 2 ∗ 6 + 3 − 8 = 7, then e1,2 = b = a − x = 7 − 1 = 6, this means we assign the

second edge of the cycle of size 8 to bucket 6. The next largest cycle is size 7 and its first edge gets

assigned the lowest empty bucket which is e2,1 = x = 2 and its second edge to a = 2 ∗ 6+ 3− 7 = 8,

e2,2 = b = a−x = 8− 2 = 6. The second edge also gets assigned to bucket 6, which is fine. The last

cycle of size 3. The first edge gets assigned to the lowest empty bucket of e3,1 = x = 3. Then the
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Algorithm 2 BroadcastBucket: This procedure will determine if broadcasting on a given k-cycle
graph Gk from a central vertex u is possible in a given time broadT ime.

1: procedure BroadcastBucket(Gk, u, broadT ime)
2: k ← The number of cycles in Gk

3: C ← The set of all cycles in Gk

4: B ← A set of size 2k (buckets)
5: smallestEmptyBucketHeap ← build a min heap from an array with values 1, 2, ..., 2k
6: E ← The set of all edges incident to originator vertex u
7: {|E| is size 2k}
8: {ei,1 is the first edge of the ith cycle}
9: {ei,2 is the second edge of the ith cycle}

10: {Sort cycles from largest to smallest size, C1 ≥ C2 ≥ C3 ≥ Ck−1 ≥ Ck}
11: i ← 1
12: x ← 1
13: while i ≤ k do
14: x ← extract root of smallestEmptyBucketHeap � Index of smallest empty bucket
15: B[x] ← e(i,1)
16: a ← 2× broadT ime+ 3− |Ci|
17: b ← a− x
18: y ← min(b, 2k)
19: if y − x ≥ |Ci| − 1 then
20: y ← 2k
21: end if
22: B[y] ← e(i,2)
23: i ← i+ 1
24: end while
25: {Determine if there are enough room in B for all edges}
26: count ← 0
27: i ← 1
28: while i ≤ 2k do
29: num ← number of edges in B[i]
30: if num ≥ 0 then
31: count ← count+ num
32: if count > i+ 1 then
33: return false � broadcasting in broadT ime is impossible
34: end if
35: end if
36: i ← i+ 1
37: end while
38: return true � broadcasting in broadT ime is possible
39: end procedure
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Algorithm 3 BroadcastGuess: This procedure will generate possible broadcast times of a k-cycle
graph Gk by performing a binary search between the theoretical minimum and maximum possible
broadcast times. It will call BroadcastBucket to determine if broadcasting is possible in the given
time.

1: procedure BroadcastGuess(Gk, u)
2: numV ert ← |V | � |V | is the number of vertices in Gk

3: left ← log �numV ert� � Minimum possible broadcast time
4: right ← numV ert−1 � Maximum possible broadcast time
5: broadT ime ← numV ert−1 � The current broadcast time
6: while left ≤ right do � We have the answer if r is 0

7: middle ← � (left+right)
2 �

8: isBroadcastPossible ←BroadcastBucket(Gk, u,middle)
9: if isBroadcastPossible 
= false then

10: broadT ime ← middle
11: right ← middle−1
12: else
13: left ← middle+ 1
14: end if
15: end while
16: return broadT ime � The minimum broadcast time for Gk from vertex u
17: end procedure

second edge a = 2 ∗ 6 + 3− 3 = 12, and e3,2 = a− x = 12− 3 = 9. Since we got a value higher than

the number of buckets we can just assign this to the last bucket, therefore e3,2 = 6. Now we have

three values assigned to the last bucket we can move two down to the free buckets 4 and 5 and not

affect the broadcast time of 6 (see figure 23 for the bucket assignments of this example).

In the BroadcastBucket algorithm we make the assumption that the largest cycle is visited first.

This seems to be an obvious assumption to get the best broadcast time, but as it turns out this is

not always the case. A simple counterexample is shown in figure 22, where the optiomal broadcast

time is actually when you visit the second to largest cycle first.

Proposition 1. If li = li+1 for all 1 ≤ i ≤ k, where li is the length of cycle Ci, then the

BroadcastBucket algorithm finds the optimal broadcast time, bB(Gk) = b(Gk) =
⌈
l
2

⌉
+ k − 1.

Proof. Since all the cycles are the same size we will denote the length of each cycle by l. We must

show that bB(Gk) =
⌈
l
2

⌉
+ k− 1, where k is the number of cycles in the k-cycle graph Gk. We must

prove that the BroadcastBucket algorithm will generate the broadcast scheme in figure 24 when

the given time is broadT ime =
⌈
l
2

⌉
+ k − 1.
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Figure 22: Showing that BroadcastGuess/BroadcastBucket is not optimal

Figure 23: Bucket assignments from example 8 7 3

Starting at the first cycle C1 we assign e1,1 = x = 1, which means we will visit the first edge of

cycle C1 at round 1. Then we calculate the latest possible round we can visit the second edge of

cycle C1 so that broadcasting on this cycle finishes at time
⌈
l
2

⌉
+ k− 1. Following the algorithm we

get a = 2
(⌈

l
2

⌉
+ k − 1

)
+3− l. When l is even this results in (l+2k−2)+3− l = 2k+1, and when l

is odd ((l+1)+2k−2)+3− l = 2k+2. Now calculating e1,2 = b = a−1, when l is even 2k and when

l is odd 2k + 1. When the algorithm calculates a bucket larger than the total number of buckets it

will just place this edge is the last bucket 2k. Now let’s look at cycle C2. Edge e2,1 = x = 2 because

this is the lowest empty bucket. Now calculating the the second edge of this cycle we get the same

value for a since the cycle size is the same, but for e2,2 = b = a − x = 2k + 1 − 2 = 2k − 1 when l

is even, and e2,2 = b = a − x = 2k + 2 − 2 = 2k when l is odd. From C1 we know that bucket 2k

is already assigned, then when l is odd we can just move the edge to bucket 2k − 1 and the total
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Figure 24: Optimal bucket assignment when li = li+1 for all 1 ≤ i ≤ k

broadcasting time will not change.

We must now show that if for cycle Cj , where 1 ≤ j ≤ k, that edge ej,1 = j and ej,2 = 2k− j+1,

then the edges of cycle Cj+1 will be ej+1,1 = j + 1 and ej+1,2 = 2k − (j + 1) + 1.

Since by our inductive hypothesis we know that Cj is true for all 1, 2, ..., j, then buckets 1, 2, ..., j

and 2k, 2k−1, ..., 2k−j+1 are occupied. We must show that the BroadcastBucket algorithm assigns

edge ej+1,1 = j + 1 and ej+1,2 = 2k − (j + 1) + 1. Since bucket j + 1 is empty, ej+1,1 = x = j + 1.

Then calculating the second edge we get, ej+1,2 = b = a− x = 2
⌈
l
2

⌉
+ 2k + 1− l− (j + 1). When l

is even ej+1,2 = 2k − (j + 1) + 1, and when l is odd ej+1,2 = 2k − (j + 1) + 2. From the inductive

hypothesis we know that bucket 2k − (j + 1) + 2 is not free, but we know that bucket 2k − j + 1

is free because the occupied buckets are 1, 2, ..., j and 2k, 2k − 1, ..., 2k − (j + 1) + 2. Therefore the

BroadcastBucket algorithm assigns ej+1,2 = b = 2k − (j + 1) + 1. In summary, at each iteration

i the BroadcastBucket algorithm assigns the buckets i and 2k − i + 1. The lower bound gives

b(Gk) ≥
⌈
l
2

⌉
+ k − 1, since bB(Gk) ≥ b(Gk) ≥

⌈
l
2

⌉
+ 1.

3.3 Algorithm CycleBroadcastTimeHelper

To calculate the broadcast time of a cycle we created a helper algorithm called CycleBroadcastT imeHelper

(See Algorithm 4). This algorithm will be used in the next three algorithms in this chapter.

This algorithm takes as parameters the size of a cycle Ci, the rounds the first edge of the cycle

was visited ei,1 from a start vertex, and the round the second edge of the cycle was visited ei,2 from

the start vertex. When the second edge is visited, we know that there has already been ei,2 − ei,1

vertices visited through edge ei,1. To calculate the total broadcast time of the cycle we can split the

calculation into two separate calculations and add the results together for the total broadcast time.

31



Algorithm 4 CycleBroadcastTimeHelper: This procedure will determine the end broadcast time
of a given cycle depending on which rounds we visit the first and second edges of the cycle.

1: procedure CycleBroadcastTimeHelper(CycleSize, Edge1Round, Edge2Round)
2: t1 ← Edge2Round− Edge1Round
3: if t1 < CycleSize− 1 then
4: t2 ← �CycleSize−t1+1

2 � − 1
5: return Edge1Round+ t1 + t2− 1
6: else
7: return Edge1Round+ (CycleSize− 1)− 1
8: end if
9: end procedure

The first part we will call t1 = ei,2 − ei,1. The time t1 is the number of rounds that is visited from

edge ei,1 before edge ei,2 starts helping with the broadcast. Once the second edge starts broadcasting

both sided of the graph will help in broadcasting. Let’s call this t2 = �CycleSize−t1+1
2 �−1. The time

t2 is the same as broadcasting on a path where each end of the the path is informed at the beginning

and can both broadcast to a neighbor vertex at the same time. The total number of rounds needed

to broadcast in a cycle is b(Ci) = t1 + t2 (See figure 25).

Figure 25: Cycle Broadcast Figure

This algorithm will return the round that is finishes broadcasting based on the value of ei,1

which is the round when the first edge was visited. We just add the value of ei,1 to the total number

of rounds, b(Ci) = ei,1 + t1 + t2 − 1. If the broadcasting of the cycle is finished before we start

broadcasting on the second edge ei,2 then the end time will be b(Ci) = ei,1 + (|Ci| − 1) − 1. The
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CycleBroadcastT imeHelper algorithm runs in constant O(1) time.

3.4 Algorithm BroadcastGreedyMinMax

The BroadcastGreedyMinMax algorithm (See Algorithm 5) is a greedy algorithm for assigning

the edges to each cycle of the k-cycle graph Gk and calculating the end broadcast round of each

cycle. It depends on the cycles of Gk to be sorted from largest to smallest. The greedy choice of

this algorithm is visiting cycle Ci in round i and in round 2k + 1 − i where k is the number of

cycles in Gk. This algorithm gives unique edge assignments for all cycles ((1, 2k + 1 − 1), (2, 2k +

1− 2), ..., (i, 2k + 1− i), ..., (k, 2k + 1− k)).

Algorithm 5 BroadcastGreedyMinMax: This procedure determines the broadcast time of a given
k-cycle graph Gk. It uses a greedy approach when assigning the first and second edges to each cycle
Ci of the graph Gk.

1: procedure BroadcastGreedyMinMax(Gk, u)
2: {Sort cycles from largest to smallest size, C1 ≥ C2 ≥ C3 ≥ Ck−1 ≥ Ck}
3: broadT ime ← 0 � Will hold the worst broadcast time
4: k ← number of cycles in Gk

5: i ← 1 � Used in loop
6: while i ≤ k do
7: cycleSize ← size of ith cycle of Gk

8: edge1Round ← i
9: edge2Round ← (2 ∗ k) + 1− i

10: cycleBroadT ime ←CycleBroadcastTimeHelper(cycleSize, edge1Round, edge2Round)
11: if cycleBroadT ime > broadT ime then
12: broadT ime ← cycleBroadT ime
13: end if
14: end while
15: return broadT ime
16: end procedure

The cycles in theBroadcastGreedyMinMax algorithm have to be sorted from largest to smallest.

There are k cycles inGk, therefore sorting takesO(k log k). This algorithm also loops k times on line 6

and calls CycleBroadcastT imeHelper inside the loop. The runtime of CycleBroadcastT imeHelper

is constant. Therefore the total runtime of BroadcastGreedyMinMax is O(k log k) + O(k) =

O(k log k).
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3.5 Algorithm BroadcastGreedyEven

The BroadcastGreedyEven algorithm (See Algorithm 6) is a greedy algorithm for assigning the

edges to each cycle of the k-cycle graph Gk and calculating the end broadcast round of each cycle.

It depends on the cycles of Gk to be sorted from largest to smallest. The greedy choice of this

algorithm is visiting cycle Ci in round i and in round k+i where k is the number of cycles in Gk. This

algorithm gives unique edge assignments for all cycles ((1, k+1), (2, k+2), ..., (i, k+ i), ..., (k, k+k)).

This algorithm will also use the CycleBroadcastT imeHelper algorithm for determining the end

broadcast round for each cycle. It will return the largest broadcast round calculated from each cycle

which will be the broadcast time of the graph Gk.

Algorithm 6 BroadcastGreedyEven: This procedure determines the broadcast time of a given k-
cycle graph Gk. It uses a greedy approach when assigning the first and second edges to each cycle
Ci of the graph Gk.

1: procedure BroadcastGreedyEven(Gk)
2: {Sort cycles from largest to smallest size, C1 ≥ C2 ≥ C3 ≥ Ck−1 ≥ Ck}
3: broadT ime ← 0 � Will hold the worst broadcast time
4: k ← number of cycles in Gk

5: i ← 1 � Used in loop
6: while i ≤ k do
7: cycleSize ← size of ith cycle of Gk

8: edge1Round ← i
9: edge2Round ← k + i

10: cycleBroadT ime ←CycleBroadcastTimeHelper(cycleSize, edge1Round, edge2Round)
11: if cycleBroadT ime > broadT ime then
12: broadT ime ← cycleBroadT ime
13: end if
14: end while
15: return broadT ime
16: end procedure

The cycles in the BroadcastGreedyEven algorithm have to be sorted from largest to smallest.

There are k cycles inGk, therefore sorting takesO(k log k). This algorithm also loops k times on line 6

and calls CycleBroadcastT imeHelper inside the loop. The runtime of CycleBroadcastT imeHelper

is constant. Therefore the total runtime of BroadcastGreedyMinMax is O(k log k) + O(k) =

O(k log k).
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3.6 Algorithm BroadcastRandom

The BroadcastRandom algorithm (See Algorithm 7) is an algorithm for assigning the edges to each

cycle of the k-cycle graph Gk at random and calculating the end broadcast round of each cycle. This

algorithm will create an array edgeRounds of size 2k containing the values 0 to 2k − 1. It will then

randomize the array and use this when assigning values to the edges of each cycle. For example,

the first entry of edgeRounds will be assigned to the first edge of the first cycle and the second

value of edgeRounds will be the second edge of the first cycle. Since this algorithm also uses the

CycleBroadcastT imeHelper algorithm to calculate the end broadcast time of each cycle it makes

sure that the first edge is less than the second edge of each cycle. It will return the largest broadcast

round calculated from each cycle which will be the broadcast time of the graph Gk.

Algorithm 7 BroadcastRandom: This procedure will determine the broadcast time of a k-cycle
graph by randomly assigning the rounds to visit each edge of each cycle.

1: procedure BroadcastRandom(Gk)
2: broadT ime ← 0 � Will hold the worst broadcast time
3: k ← number of cycles in Gk

4: edgeRounds ← array of size 2k
5: j ← 0 � Used in loop
6: while j < 2k do � Initialize edgeRounds array
7: edgeRounds[j] = j + 1
8: end while
9: {Randomize edgeRounds array}

10: i ← 1 � Used in loop
11: while i ≤ k do
12: cycleSize ← size of ith cycle of Gk

13: edge1Round ← edgeRounds[2 ∗ (i− 1)]
14: edge2Round ← edgeRounds[2 ∗ (i− 1) + 1]
15: if edge1Round > edge2Round then � We want edge1Round to less than edge2Round
16: tmp ← edge1Round
17: edge1Index ← edge2Index
18: edge2Index ← tmp
19: end if
20: cycleBroadT ime ←CycleBroadcastTimeHelper(cycleSize, edge1Round, edge2Round)
21: if cycleBroadT ime > broadT ime then
22: broadT ime ← cycleBroadT ime
23: end if
24: end while
25: return broadT ime
26: end procedure

The difference between the BroadcastRandom algorithm and the other algorithms in the chapter

35



is that the cycles in BroadcastRandom do not have to be sorted. Instead of sorting k cycles it has

to randomize an array of size 2k on line 9. The best runtime for randomizing an array of size 2k is

O(k) by using the Fisher−Yates shuffle algorithm [41]. This algorithm also loops k times on line 11.

Therefore, the total runtime of BroadcastRandom is O(k) +O(k) = O(k).

3.7 Algorithm SCycle

The algorithm SCycle (See Algorithm 8) is an algorithm that was defined in this paper [4]. It is

an algorithm for broadcasting on a k-cycle graph. It starts by broadcasting on the largest cycle.

This algorithm splits up the cycles into 3 sets. The set X0 consists of the cycles where there are

no informed vertices. Let there be r cycles such that l10 ≥ l20 ≥ l30 ≥ lr0, where lj,0 is the length

of the cycle Cj0 in X0 and 1 ≤ j ≤ r. C10, C20, C30, ..., Cr0 is a combination of r cycles from

C1, C2, C3, ..., Ck. The set X1 consists of cycles where at least one vertex has been informed along

one branch from the central vertex u. There are m cycles such that l11 ≥ l21 ≥ l31, ..., lm1, where

lj1 is the number of uninformed vertices in the cycle Cj1 in X1 at time i and 1 ≤ j ≤ m. The cycles

C11, C21, C31, ..., Cm1 is a combination of m cycles from C1, C3, C3, ..., Ck that are not in X0. The

set X2 consists of the cycles which have been informed from u along both directions. Let there be

p such cycles and r +m+ p = k.

At the start of each round the algorithm checks the largest cycle in X0 with a cycle containing

the most uninformed vertices in X1. If the number of uninformed vertices in X1 is larger than the

largest cycle in X0 is will broadcast on X1 and move the cycle to X2. If the cycle in X0 is larger

it will broadcast on that cycle and move it to X1. It does this until there are no more cycles in

X0. After each round, it also has to sort the cycles in X1 by the number of uninformed vertices.

It will continue to broadcast on X1 until all cycles are in X2 and the total broadcast time can be

calculated. This algorithm will return the broadcast time of this k-cycle graph.

To order the cycles in sorted order this will take O(k log k). To move the cycles from one graph

to another it will take O(k) and the actual broadcasting will take O(|V |). Therefore the complexity
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Algorithm 8 SCycle: This procedure will determine the broadcast time of a k-cycle graph by
adding cycles into sets and moving them to different sets when the cycle is broadcasted on.

1: procedure SCycle(Gk, x)
2: if x is not the central vertex of the k-cycle graph then
3: x broadcasts on the shorter path towards u � This takes d time units
4: end if
5: X0 ← cycles C1, C2, C3, ..., Ck

6: X1 ← empty set
7: X2 ← empty set
8: while X0 is not empty do
9: if X1 is not empty then

10: if l10 ≥ l11 − 1 then
11: u broadcasts along C10

12: else
13: u broadcasts along C11

14: end if
15: else
16: u broadcasts along C10

17: end if
18: if u informed C10 then
19: X0 ← X0 − C10

20: X1 ← X1 + C10

21: else
22: X1 ← X1 − C11

23: X2 ← X2 + C11

24: end if
25: for every cycle in X1 do
26: lj1 ← lj1 − 1
27: end for
28: if u informed along C10 then
29: Sort cycles in X1 in decending order of the number of uninformed vertices.
30: end if
31: end while
32: X1 cycles will be in order of highest to lower uninformed vertices
33: while X1 is not empty do
34: u broadcasts along C11

35: X1 ← X1 − C11

36: X2 ← X2 + C11

37: end while
38: return highest broadcast time out of cycles in X2

39: end procedure
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of this algorithm is O(|V |+ k log k).
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Chapter 4

Heuristic Algorithm

Implementation Details and

Results

In this section, we will briefly discuss the implementation details of the algorithms. We will also

show a table of results on many different sized k-cycle graphs and discuss how certain sized k-cycle

graphs perform better than others for each algorithm.

4.1 Implementation Details

The algorithms in the previous chapter have been implemented in the Java programming language

to run simulations on different sized k-cycle graphs. The input to the algorithms are stored in a

text file, one test case per line. Each test case is a list of numbers that represent the cycle size of

the graph. For example, 13 42 5 3 show a cactus graph with 4 cycles of of sizes 13, 42, 5 and 3. A

method called solveCases will loop through the text file containing all the test cases line per line

and run the algorithms defined in chapter 3 on each test case. The BroadcastRandom algorithm is
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run 1000000 times per test case and the best broadcast time is used as output for this algorithm.

We want to see how good the results of the simulations are when compared to the theoretical

lower bounds that we described in chapter 3 (See Lemma 1). By comparing the simulation results

with these lower bounds we can determine if the simulation result for each test case is an optimal

broadcast time. The lower bounds are indicated in bold text and any algorithm that resulted in

a lower bound for that test case in also in bold. We also implemented the algorithm SCycle (See

Algorithm 8) to compare the results of the four Heuristic algorithms with it.

4.2 Simulation Results

Table 1: Heuristic Algorithm Simulation Results

Heuristic Algorithms Simulation Results

k-cycle Graph cycle

sizes

Lower

Bound

Bucket GreedyMinMax GreedyEven Random SCycle

1000 cycles of size 8 1003 1003 1003 1006 1884 1003

1000 cycles of size

1000

1499 1499 1499 1998 2405 1499

100 cycles of ran-

dom size between 3

and 100

101 107 109 109 201 120

500 cycles of ran-

dom size between 3

and 100

501 501 501 501 948 501

1000 cycles of ran-

dom size between 3

and 100

1001 1001 1001 1001 1930 1001
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100 cycles of ran-

dom size between 3

and 10000

4936 4936 5035 4985 5001 4936

500 cycles of ran-

dom size between 3

and 10000

4976 5188 5475 5225 5463 4976

1000 cycles of ran-

dom size between 3

and 10000

4999 5436 5998 5498 6450 4999

100 cycles of ran-

dom size between

100 and 1000

491 496 590 541 567 491

500 cycles of ran-

dom size between

100 and 1000

551 777 999 777 1319 994

1000 cycles of ran-

dom size between

100 and 1000

1049 1091 1094 1102 2286 1199

100 cycles of ran-

dom size between

10000 and 100000

49958 49958 50057 50008 49971 49958

500 cycles of ran-

dom size between

10000 and 100000

49904 49904 50403 50153 50260 49904
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1000 cycles of ran-

dom size between

10000 and 100000

49987 49987 50986 50486 50921 49987

1000 cycles starting

at 3 increments of 1

1001 1001 1001 1001 2244 1001

1000 cycles starting

at 3 increments of 2

1001 1500 2000 1500 2691 1957

1000 cycles starting

at 3 increments of 3

1500 1750 2499 2000 3105 2000

1000 cycles starting

at 3 increments of 4

2000 2000 2999 2499 3613 2000

1000 cycles starting

at 3 increments of

1000

499502 499502 500501 500001 499860 499502

1000 cycles starting

at 1000 increments

of 1

1499 1998 1998 1998 2784 1998

1000 cycles starting

at 1000 increments

of 2

1499 1999 2498 1999 3206 2476

1000 cycles starting

at 1000 increments

of 3

1999 2249 2998 2498 3664 2498
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1000 cycles starting

at 1000 increments

of 4

2498 2498 3497 2998 4136 2498

1000 cycles starting

at 1000 increments

of 1000

500000 500000 500999 500500 500254 500000

500 cycles of size

100000 and 500 cy-

cles of size 10

50499 50499 50999 50999 51854 50499

7 8 3 5 6 6 6 5 6

10 20 30 15 15 17 16 15 15

100 91 89 87 85 83

81

50 50 56 53 53 52

93 91 89 87 85 83 81 47 50 53 50 51 51

4.2.1 BroadcastBucket Results

The BroadcastBucket algorithm is by far the best performing algorithm out of the four described

in chapter 3. The only test case where it did not have the best result was the test case 7 8 3, where

the best result came from the BroadcastRandom algorithm. The reason why BroadcastRandom

gave a better broadcast time than the BroadcastBucket algorithm is because in this test case the

optimal broadcast time comes from visiting the second to largest cycle of the k-cycle graph first.

The BroadcastBucket algorithm always visits the largest uninformed cycle first, which would be

the best choice most of the time.

The BroadcastBucket algorithm performs better than any other algorithm because of the way

it decides which round to visit each edge of each cycle of the k-cycle graph. It makes that greedy
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choice of visiting the largest uninformed cycle first, but also is decides the latest possible round it

will visit the second edge of the cycle so that the cycle will finish broadcasting in the given time.

That is why the algorithm gives very good broadcast times but as seen from the test case 7 8 3 it

does not necessarily give the optimal bradcast time.

Comparing the results from the BroadcastBucket algorithm with the theoretical lower bounds

described in chapter 3 we actually see that BroadcastBucket generates optimal broadcast times for

some test cases. For example, if lj ≥ lj+1 + 4 for all 1 ≤ j ≤ k−1, then the BroadcastBucket

algorithm generates optimal results when we compare the results with the lower bounds. If lj =

lj+1 +2 or lj = lj+1 +3 for all 1 ≤ j ≤ k−1, the BroadcastBucket algorithm does not generate the

optimal broadcast time. When all cycles of the k-cycle graph are the same length, lj = lj+1 for all

1 ≤ j ≤ k−1 the BroadcastBucket algorithm generates the optimal broadcast time.

An interesting result we observed is when lj = lj+1 + 1 for all 1 ≤ j ≤ k−1. For the test case,

1000 cycles starting at 3 increments of 1, we see that the BroadcastBucket algorithm generates an

optimal broadcast time. But for this test case, 1000 cycles starting at 1000 increments of 1, it does

not generate the optimal broadcast time. The reason for this is because of the sizes of the cycles.

When we have 1000 cycles starting at 3 and increment each cycle by one then most of the cycles

will finish broadcasting before it’s second edge starts broadcasting. When we increase the minimum

sized cycle to 1000 then it obviously takes longer to broadcast because most cycles will have both

of it’s edges incident to the originator help in broadcasting for that cycle.

Another interesting result is when one of the cycles is larger than all the others by a certain

amount. For example, this test case 100 91 89 87 85 83 81, gives an optimal broadcast time when

comparing the broadcast time of the BroadcastBucket algorithm with the lower bound even though

we know this algorithm does not perform optimally when cycles are separated by 2. The reason

this test case returned an optimal result is because the first cycle is large enough to dominate the

broadcast time for the graph, which makes all other cycles irrelevant for the total broadcast time.

If we take the same test case but modify the 100 for a 93 we see that all cycles are separated by two
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and it does not produce an optimal broadcast time.

4.2.2 BroadcastGreedyMinMax Results

The BroadcastGreedyMinMax algorithm performs well on some test cases and poorly on others.

When all cycles of the k-cycle graph are the same size then this algorithm gives optimal broadcast

times. The reason for this is in the way it visits the edges of the cycles that are incident to the central

originator vertex. Cycle Ci is visited on round i and on round 2k + 1 − i. Take two consecutive

cycles of the same size, the first cycle will start broadcasting on the first edge at time i and at time

2k + 1 − i, and the second cycle will start broadcasting on its first edge at time i + 1 and on the

second edge at time 2k+1− (i+1). This means that cycle Ci+1 will be visited on it’s first edge one

round after cycle Ci, but its second edge will be visited one round before the second edge of cycle

Ci. This means that when all the cycles of the k-cycle graph are the same size they will all finish

broadcasting at the same time.

This algorithm performs poorly when the cycles differ in size. The larger the cycles differ in size

the worse the algorithm performs. Let’s take for example the test case, 1000 cycles starting at 3

increments of 4. This test case resulted in a poor total broadcast time when compared to the lower

bound. Take the cycle Ci and Ci+1, instead of visiting the cycle Ci at round i and round 2k+ 1− i

then cycle Ci+1 at round i+1 and round 2k+1− (i+1), it would give a better broadcast time when

visiting the cycle Ci at round i and 2k + 1− i then cycle Ci+1 at round i+ 1 and round 2k + 1− i.

This way the larger cycle will finish it’s broadcasting at a closer time to the smaller cycle.

We observed some interesting results from the simulations for this algorithm. From the three

test cases, 100 cycles of random size between 3 and 100, 500 cycles of random size between 3 and

100, and 1000 cycles of random size between 3 and 100 we see optimal results when compared with

the lower bound for when the number of cycles is 500 or 1000. The reason for this is because due to

the pigeonhole principle. The difference between the sizes of the cycles are very small and a lot of

them in fact are the same size. As the number of cycles increases there will be more cycles of the
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same size due to the bounds on the possible sizes of the cycles. In fact, when there are 500 or 1000

cycles it resulted in optimal broadcast times when we compare to the lower bound. This is because

a lot of the cycles are the same size which is the strength of this algorithm.

As the cycle sizes increases the possible difference between consecutive cycles increases and the

total broadcast time of the algorithm gets worse compared to the lower bound. Let’s take for

example, 100 cycles of random size between 10000 and 100000. The difference between the possible

sizes of the cycles are much higher than the total number of cycles for this k-cycle graph. This

spaces out the cycle sizes more which is the weakness of this algorithm.

Another interesting result comes from the test cases, 1000 cycles starting at 3 increments of 1

and 1000 cycles starting at 1000 increments of 1. When the cycle size starts at 3 and then increments

by 1 for each consecutive cycle this algorithms actually results in an optimal broadcast time when

we compare to the lower bound. When the cycle size starts at 1000 and increments by one for each

consecutive cycle this algorithm does not result in optimal broadcast times. The reason for this is

because of the sizes of the cycles. When starting at 3 and incrementing by 1 for 1000 cycles the

largest cycle will be size 1002. As the first and second edge are assigned to each cycle when the

cycle size gets small enough the round that we will start broadcasting on the second edge of a small

cycle does not matter because the broadcasting on that cycle will finish from the first edge before

we start broadcasting on the second edge. But when the cycle sizes start at 1000 and increment

by 1 for each consecutive cycles the second edge does matter for the broadcast times of the smaller

cycles.

4.2.3 BroadcastGreedyEven Results

Just like the BroadcastGreedyMinMax, the BroadcastGreedyEven algorithm performs well on

some test cases and poorly on others. This is because of the sizes of the cycles of the k-cycle graph

and the rounds it assigns to visit the first and second edges of each cycle that are incident to the

central originating vertex. Cycle Ci is visited on round i and on rounds k+ i. Take two consecutive
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cycles of the same size, Ci and Ci+1. Cycle Ci will start broadcasting on the first edge at time i and

at time k+ i, and cycle Ci+1 will start broadcasting on it’s first edge at time i+1 and on the second

edge at time k+ (i+1). The first edge of cycle Ci will be visited before the first edge of cycle Ci+1,

and the second edge of cycle Ci will be visited before the second edge of Ci+1. This results in cycle

Ci finish its broadcasting before cycle Ci+1. The more cycles of the same size there are the higher

the broadcast time of the k-cycle graph will be.

This algorithm gives better broadcast times than the BroadcastGreedyMinMax algorithm when

the cycle sizes are different because of the way it visits the edges of the cycles. Because the first

edge of cycle Ci will be visited before the first edge of cycle Ci+1, and the second edge of cycle Ci

will be visited before the second edge of Ci+1, this gives more time for the larger cycles to finish

broadcasting when compared to the smaller cycles.

We observed some interesting results from the simulation of this algorithm. Just like the

BroadcastGreedyMinMax algorithm, these two test cases, 500 cycles of random size between 3

and 100, and 1000 cycles of random size between 3 and 100, gave optimal results when compared to

the lower bound. Since the cycles sizes are relatively small compared to the number of cycles, the

broadcast time is dominated by the larger cycles and eventually when it gets to the smaller sized

cycles the broadcasting is finished before the second edge of these cycles is visited. In the test case

100 cycles of random size between 3 and 100 the broadcast time is not optimal for this algorithm

because the number of cycles is not large enough for the same results as when there are 500 or 1000

cycles. As we increase the size of the cycles the results are not optimal but are better than the

BroadcastGreedyMinMax algorithm which is what we expected.

This test case, 500 cycles of size 100000 and 500 cycles of size 10 resulted in the same broadcast

time as the BroadcastGreedyMinMax algorithm. The reason for this is because half of the cycles

are a very large size compared to the other half of the cycles which are relatively small. The total

broadcast time is dominated by the 500 cycles of size 100000. The BroadcastGreedyEven algo-

rithm does not give good broadcast times when all cycles are the same size. But in this test case
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half the cycles are size 100000 and the other half are size 10. So if we compare the edge assignments

for BroadcastGreedyMinMax and BroadcastGreedyEven on cycle k
2 which would be the highest

broadcast time for the BroadcastGreedyEven algorithm we see why they result in the same broad-

cast time. For cycle k
2 , BroadcastGreedyMinMax will have edge assignments (k2 , 2k + 1− k

2 ), and

BroadcastGreedyEven will have edge assignments (k2 , k + k
2 ). Pluging in the value of k = 1000 we

get for BroadcastGreedyMinMax (500, 1501) and for BroadcastGreedyEven we get (500, 1500).

These edge assignments when used with CycleBroadcastT imeHelper give the same result. If in-

stead of 500 cycles of size 100000, we set 502 cycles of sie 100000 and 498 cycles of size 10, the

BroadcastGreedyMinMax algorithm gets a better broadcast time that the BroadcastGreedyEven

algorithm with times of 50999 and 51000 respectively.

4.2.4 BroadcastRandom Results

The BroadcastRandom algorithm resulted in very poor broadcast times compared with the lower

bound and all other algorithms for most of the test cases. This algorithm works by randomly

selecting the rounds that we visit each edge incident to the central vertex for each cycle of the

k-cycle graph. This means if we are lucky we may get a good or even optimal broadcast time when

we compare with the lower bound. We ran this algorithm 100000 times for each test case and keep

the best broadcast time.

This algorithm actually gave an optimal broadcast time for this test case 7 8 3, when all other

algorithms did not produce the optimal broadcast time. The reason is that all the algorithms make

a greedy choice of visiting the largest cycle first, which seems to be the logical choice. But in this

test case we actually get an optimal time when we visit the second to larges cycle first. This is a

surprising result.

The problem with this random approach is that as the number of cycles increases the number

of possible edge round assignments grows very fast. In fact there are 2k! possible edge assignments,

where k is the number of cycles. Even when k = 5 this gives a total of 3628800 possible edge round
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assignments for the cycles. So even running this algorithm 100000 there is a small chance of finding

the optimal broadcast time. This is the reason for the poor performance of the algorithm.
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Chapter 5

Conclusions and Future Work

In this thesis, we reviewed broadcasting in cactus graphs and subclasses of cactus graphs such as the

unicyclic graphs, necklace graphs, k-cycle graphs, 2-restricted cactus graphs and k-restricted cactus

graphs. We then defined four heuristic algorithms that solve broadcasting on a subclass of the cactus

graph called the k-cycle graph. After running simulations on the four algorithms, BroadcastBucket,

BroadcastGreedyMinMax, BroadcastGreedyEven and BroadcastRandom we concluded that the

BroadcastBucket algorithm gives the best broadcast times out of all the algorithms on nearly all

sized k-cycle graphs. It actually gives optimal broadcast times for them the cycles are the same

size or when consecutive cycles differ by 4 or more. The BroadcastGreedyMinMax algorithm

gives optimal broadcast times when the cycles of the k-cycle graph are the same size and good

broadcast times when the cycles are very close to the same size. When the cycles are different sizes

on the k-cycle graph the BroadcastGreedyEven algorithm gives better broadcast times that the

BroadcastGreedyMinMax algorithm but still not as good as the BroadcastBucket algorithm. We

also showed from the simulations that the BroadcastRandom algorithm will give bad broadcast

times when the number of cycles of the k-cycle graph is large. In the simulation results we compared

the resulting broadcast times of each algorithm with the theoretical lower bound for broadcasting

on a k-cycle graph and saw that for some test cases on certain algorithms we did get an optimal
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broadcast time.

In the future, we can extend the BroadcastBucket algorithm to create a new polynomial algo-

rithm that can not only give good broadcast times for the k-cycle graph but can give good broadcast

times for a general cactus graph. We can also refactor the BroadcastBucket algorithm to give better

broadcast times when consecutive cycle sizes differ by 1, 2 or 3. An approximation algorithm can

be created to figure out how well the BroadcastBucket algorithm is performing compared to the

optimal broadcast time for a general k-cycle graph.
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of modified knödel graphs. In IJFCS: International Journal of Foundations of Computer Science,

volume 8, pages 109117, 1997.

[4] P. Bhabak, H.A. Harutyunyan. Constant Approximation for Broadcasting in k-cycle Graph. CAL-

DAM 2015: 21-32

[5] M. C̆evnik, J. Z̆erovnik. Broadcasting on Cactus Graphs, Journal of Combinatorial Optimization,

January 2017, Volume 33, Issue 1, pp 292316

[6] F. Comellas, C. Dalfo. Optimal broadcasting in 2-dimensional manhattan street networks. J.

Parallel and Distributed Computing and Networks, 4:3751, 2003.

[7] M. Elkin, G. Kortsarz. Sublogarithmic approximation for telephone multicast: path out of jungle.

Proc. of Symposium on Discrete Algorithms, SODA03, Baltimore, Maryland, pp. 7685, 2003.

52



[8] M. Elkin, G. Kortsarz. A combinatorial logarithmic approximation algorithm for the directed tele-

phone broadcast problem. Proc. of ACM Symp. on Theory of Computing, STOC02, pp. 438447,

2002

[9] U. Feige, D. Peleg, P. Raghavan, E. Upfal. Randomized broadcast in networks. Proc. of Interna-

tional Symposium on Algorithms, SIGAL90, pp. 128137, 1990.
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