
CROSS-DOCK DOOR ASSIGNMENTS:
MODELS, ALGORITHMS AND EXTENSIONS

WAEL NASSIEF

A THESIS

IN

THE DEPARTMENT

OF

MECHANICAL AND INDUSTRIAL ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (INDUSTRIAL ENGINEERING)

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

MAY, 2017

c©WAEL NASSIEF, 2017

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Wael Nassief

Entitled: Cross-dock door assignments: models, algorithms & extensions

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Industrial Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Dr. Charalambos Poullis Chair

Dr. Iris F. A. Vis External Examiner

Dr. Ali Akgunduz Examiner

Dr. Jia Yuan Yu Examiner

Dr. Lata Narayanan Examiner

Dr. Ivan Contreras Supervisor

Dr. Brigitte Jaumard Supervisor

Approved by

(Chair of Department or Graduate Program Director)

May 2017

(Dean of Engineering and Computer Science Faculty)

ABSTRACT

Cross-dock door assignments:
models, algorithms and extensions

WAEL NASSIEF

DOCTOR OF PHILOSOPHY IN INDUSTRIAL ENGINEERING

CONCORDIA UNIVERSITY, 2017

In a cross-dock, goods coming from numerous origins get unloaded from incoming trucks, consol-

idated according to their destinations, and then loaded into outgoing trucks with little or no storage

in between. We study a class of cross-dock door assignment problems where the assignments of

origins (or incoming trucks) to inbound doors, and destinations (or outgoing trucks) to outbound

doors are determined with the objective of minimizing the handling cost. Cross-dock door assign-

ment problems are a fundamental class of optimization problems in cross-docking as they arise in

more complex operational problems incorporating other decisions such as scheduling, routing, and

workforce allocation.

We first introduce several linear mixed integer programming formulations with Lagrangean

relaxation and column generation algorithms based on some of these formulations. We then the-

oretically and computationally compare these formulations in terms of their linear, Lagrangean

and combinatorial relaxations. Finally, we integrate the assignments with sequencing and selection

decisions, based on our observations on a large cross-dock company in the USA, and introduce

two new integer programming formulations. Where possible, our work is compared with existing

ones, and new sets of instances are generated to either vary or enlarge the current data sets in the

literature.

iii

Acknowledgments

I am grateful to all the people who have been part of my PhD journey throughout the last 4 years.

First and foremost, my supervisors Dr. Ivan Contreras and Dr. Brigitte Jaumard for their continuous

advices, support, teaching and training throughout these years. I have very much enjoyed working

with you two and learned a great deal of knowledge and experience during this time. I am so

thankful and grateful to Ivan. Thank you for being patient, wise and endlessly giving during this

journey. I would not have imagined completing my PhD without your support. My gratitude also

goes to Brigitte for your teaching and support year after year. I am so happy to have met you and

worked with you in this journey. I am so grateful to all the tips and experiences you have taught

me. Special thanks to Dr. Rami As’ad for introducing me to Ivan in the first year of my PhD and

to help me start this journey.

I am forever grateful to Dr. Monique Guignard and Dr. Peter Hahn along with the department

of Operations, Information and Decisions at Wharton School in Philadelphia for their generosity in

hosting me for four months during my research visit. Monique, thank you for your warm welcome,

and care, and knowledge during my visit. Peter, thank you for your support and guidance in facil-

itating the visits and meetings with the Cross-dock facility in the USA. I have learned a lot from

both of you and enjoyed working with you two.

To all my friends, thank you for your love and support during these years. Special gratitudes

towards my friends Christian, Sonia, Furkan and my mentor and dear friend Jerry, and of course,

my beloved partner whom has given me an endless, unconditional love through these years. You

are my family. My colleagues and lab mates, thank you for putting up with me throughout these

years. Thank you for the great support and discussions that we have had on the white board of

our lab. It has been a pleasure working with you all day after day. To all my Saudi and Moroccan

families: thank you for your prayers.

Finally, I am grateful to the Higher Education Ministry in Saudi Arabia for their financial sup-

port and funding of my PhD.

iv

Contribution of Authors

This dissertation is presented in a manuscript-style. It contains three articles that have been ei-

ther accepted for publication or are currently under revision in different journals. They are pre-

sented here as follows. The first article entitled "A mixed-integer programming formulation and

Lagrangean relaxation for the cross-dock door assignment problem" was published in February

2016 in the International Journal of Production Research and co-authored with Dr. Ivan Contreras

and Dr. Rami As’ad. The second article entitled "A comparison of formulations and relaxations for

the cross-dock door assignment problems" was submitted in March 2017 to the journal of Comput-

ers and Operations Research, and is co-authored with Dr. Ivan Contreras and Dr. Brigitte Jaumard.

The third article entitled "The container scheduling and cross-dock door selection problem" was

submitted in March 2017 to the International Journal of Production Research, and is co-authored

with Dr. Ivan Contreras, Dr. Monique Guignard, Dr. Peter Hahn, and Dr. Brigitte Jaumard.

The author of this thesis acted as the principal researcher with the corresponding duties of

developing mathematical formulations, proofs, developing and implementing the algorithms and

analysis of computational experiments along with the writing of the first drafts of all articles.

v

Contents

1 Introduction 1

2 A Mixed-Integer Programming Formulation and Lagrangean Relaxation for the

Cross-dock Door Assignment Problem 4

2.1 Introduction . 5

2.2 Definition and Formulations of the Problem . 9

2.2.1 A Nonlinear Integer Programming Formulation 10

2.2.2 A Linear Mixed Integer Programming Formulation 11

2.3 Lagrangean Relaxation . 13

2.3.1 Solution to Subproblem Lz(µ, ν, λ, γ) . 15

2.3.2 Solution to Subproblems Lx(µ, λ) and Ly(ν, γ) 15

2.3.3 The Solution of the Lagrangean Dual . 16

2.4 Primal Heuristic . 17

2.4.1 Constructive Phase . 18

2.4.2 Local Search Phase . 19

2.5 Computational Experiments . 20

2.6 Conclusions . 29

3 A Comparison of Formulations and Relaxations for the Cross-dock Door Assign-

ment Problems 30

3.1 Introduction . 31

3.2 Problem Statement . 33

3.3 Mixed-integer Programming Formulations . 35

vi

3.3.1 Path-based Formulations . 36

3.3.2 A Flow-based Formulation . 37

3.3.3 A Configuration-based Formulation . 38

3.4 A Comparison of Relaxations . 39

3.5 A Column Generation Algorithm . 46

3.5.1 The Restricted Master Problem . 46

3.5.2 The Pricing Problem . 47

3.5.3 Initial Columns . 49

3.5.4 Termination Criterion . 49

3.6 Computational Experiments . 49

3.6.1 Data Set Generation . 50

3.6.2 Tuning and Termination Criteria of the Algorithms 51

3.6.3 Comparisons of Formulations and Relaxations 51

3.6.4 Sensitivity Analysis . 54

3.7 Conclusions . 58

4 The Container Scheduling and Cross-dock Door Selection Problem 59

4.1 Introduction . 60

4.2 The Container Scheduling Problem . 64

4.3 The Static Container Scheduling and Dock Door Selection Problem 65

4.4 The Dynamic Container Scheduling and Dock Door Selection Problem 68

4.5 Computational Experiments . 69

4.5.1 Data Generation . 69

4.5.2 A Comparison Between the Static CSDSs 71

4.5.3 The Dynamic CSDS . 74

4.5.4 Summary of results . 79

4.5.5 Cost Parametric Analysis . 79

4.6 Conclusion . 80

5 Conclusions and Future Work 82

5.1 Conclusions . 82

vii

5.2 Future Work . 83

Bibliography 84

viii

List of Figures

1.1 Suitability of Cross-docking Apte and Viswanathan [7]. 2

ix

List of Tables

2.1 Comparison of Results for P2 and P3 Formulations and Lagrangean Relaxation. . . 23

2.2 Comparison of Results for P2 and P3 Formulations and Lagrangean Relaxation. . . 24

2.3 Results for Instances with 25% Density in Flow Matrix 26

2.4 Results for Instances with 50% Density in Flow Matrix 27

2.5 Results for Instances with 75% Density in Flow Matrix 28

3.1 Computational Comparisons - CDAP . 52

3.2 Computational Comparisons - CDAP . 53

3.3 Computational Comparisons - Standard CDAP . 55

3.4 Computational Comparisons - Standard CDAP . 56

3.5 Impact of Travel Times on %LP - CDAP . 57

3.6 Impact of Travel Times on %LP - Standard CDAP 58

4.1 Static CSDSs - SetA from Cao et al. [15]: N1 vs. M1 71

4.2 Static CSDSs - SetB: N1 vs. M1 . 72

4.3 Static CSDSs - SetB: N1 vs. M1 . 73

4.4 Dynamic CSDS - SetB Scattered Due Dates: M2 75

4.5 Dynamic CSDS - SetB Scattered Due Dates: M2 76

4.6 Dynamic CSDS - SetC Common Due Dates: M2 77

4.7 Dynamic CSDS - SetC Common Due Dates: M2 78

4.8 Cost Parametric Analysis on the Dynamic CSDS with Scattered Due Dates 81

x

Chapter 1

Introduction

Distribution plays an important role, in any supply chain network, by transferring products

from origins to destinations, directly or passing through consolidation centers, while adopting some

form of logistics strategies throughout the whole chain. One of these strategies is cross-docking,

where goods are unloaded from incoming trucks, consolidated according to their destinations, and

then, loaded into outgoing trucks with little or no storage in between. This process takes place

at cross-docking facilities that consist of strip doors for unloading, stack doors for loading and a

sorting area in between allowing for an appropriate transshipment that is normally carried out by

employees and material handling equipment. Cross-docking, in its best practice, aims to reduce

or ultimately eliminate two major functions of a traditional warehouse: storage and order picking,

assuming that relevant environmental settings are met. Cross-docking was first introduced during

the 1930s by the US trucking industry according to Arnaout et al. [8], and then in the retailing

industry by Wal-Mart since the 1980s (Stalk et al. [54]).

As of today, cross-docking has gained global recognition by companies and researchers. This

strategy has been reportedly used in the retailing, manufacturing, automotive, and photographic

industries. For examples of successful cross-docking implementations, the interested reader is re-

ferred to Forger [25], Kinnear [31], Witt [60], Chen and Song [16], and Napolitano [41]. Research-

wise, more than 85% of total publications in cross-docking have appeared after 2004. Given the

inherent complexity of designing and operating cross-docks, several classes of decision problems

have been studied in the literature. Agustina et al. [2], Boysen [10], Shuib and Fatthi [53], Van Belle

et al. [58], and Buijs et al. [14] provide reviews of decision problems arising in cross-docking.

1

Moreover, a recent review by Ladier and Alpan [32] proposes a framework that highlights the gaps

between the literature and some cross-docking practices in France.

Cross-docking works effectively only for products with specific features. Apte and Viswanathan

[7] consider product demand rate and unit stock-out cost as the most important factors that con-

tribute to a suitable application of cross docking. The former, when stable, makes it easier to

predict and coordinate the products flow in cross-docking while the latter is preferable when it

is low because the possibility of running out of products is higher due to cross-docking nature.

Figure 1.1 illustrates the suitability of cross-docking as found in Van Belle et al. [58]. These two

Figure 1.1: Suitability of Cross-docking Apte and Viswanathan [7].

guidelines lead to a range of suitable products that are reported in the literature, which are: durable

products, high value and high security, perishable, and temperature-controlled products (Van Belle

et al. [58], Apte and Viswanathan [7], Saddle Creek Corporation [50]). Generally, fast moving

goods with fairly constant demands are the best candidates for cross-docking as seen in Ross and

Jayaraman [49].

From an operations research point of view, there is a vast array of challenging optimization

problems that need to be solved in cross-docking, ranging from strategic, tactical to operational

decision problems, and more importantly, there is a spacious room for improvement. These opti-

mization problems can be classified, according to Van Belle et al. [58], in seven general categories.

The location of cross-docks and their layout optimization are two classes of strategic decision prob-

lems. Tactically, network design problems focus on determining the optimal flow of goods through

a single or multiple cross-docks. Operational decision problems include vehicle routing, dock door

assignment, truck scheduling, and temporary storage problems.

In this thesis we study a fundamental class of cross-docking operational problems referred to

as cross-dock door assignment problems (CDAPs), where the assignments of incoming trucks to

2

inbound doors and outgoing trucks to outbound door is determined with the objective of minimizing

the total handling cost. We then integrate the assignments with the decisions of sequencing trucks

and selecting dock doors to process the trucks in a given planning period. The introduction of these

interdependent decisions are practically driven from our observations on a large cross-dock facility

in the USA. The objectives of this thesis can be summarized as follows:

• To introduce new mathematical formulations for the CDAP.

• To introduce new combinatorial, linear and Lagrangean relaxations for the CDAP.

• To compare these formulations and relaxations computationally and theoretically.

• To design approximate and exact algorithms that act as bounding procedures on the CDAP.

• To extend the CDAP by integrating its assignment decisions with sequencing and selection

decisions, and introduce mathematical programming formulations for these extensions.

This thesis is composed of four more chapters, three of which correspond to manuscripts

that have been either published or submitted for revisions in operations research related journals.

The final chapter lays out the conclusions and future research directions. Since this thesis has a

manuscript-style, each chapter is self contained. The remaining of this thesis is organized as fol-

lows. In Chapter 2, we introduce a linear mixed integer programming formulation, Lagrangean

relaxation and primal heuristic for the CDAP. We use the sub-gradient optimization method to

solve the Lagrangean dual problem, and compare our heuristics with existing ones in the literature.

New instances are introduced to further test our solution algorithms. In Chapter 3, we introduce

two more formulations for the CDAP, along with linear, combinatorial and Lagrangean relaxations

that are computationally and theoretically compared. One of these formulations has an exponential

number of variables, and so, we introduce a column generation algorithm to obtain the optimal

solution of its linear programming relaxation. In Chapter 4, we introduce a container scheduling

and cross-dock door selection problem where the assignments are integrated with sequencing and

selection decisions. We then introduce two integer programming formulations that cater for static

and dynamic environments. New set of instances are generated to test the performance of these

formulations. Finally, Chapter 5 lays out conclusions and future research directions.

3

Chapter 2

A Mixed-Integer Programming Formulation

and Lagrangean Relaxation for the

Cross-dock Door Assignment Problem

In a cross-dock, goods are unloaded from incoming trucks, consolidated according to their

destinations, and then, loaded into outgoing trucks with little or no storage in between. In this paper,

we address the cross-dock door assignment problem in which the assignment of incoming trucks

to strip doors, and outgoing trucks to stack doors is determined, with the objective of minimizing

the total material handling cost. We present a mixed integer programming formulation which is

embedded into a Lagrangean relaxation that exploits the special structure of the problem to obtain

bounds on the optimal solution value. A primal heuristic is used at every iteration of the Lagrangean

relaxation to obtain high quality feasible solutions. Computational results obtained on benchmark

instances (with up to 20 origins and destinations, and 10 strip and stack doors) and on a new and

more difficult set of instances (with up to 50 origins and destinations, and 30 strip and stack doors)

confirm the efficiency of the algorithm.

The following paper was published in the International Journal of Production Research 54.2

(2016): 494-508. Nassief et al. [42].

4

2.1 Introduction
A recent trend nowadays is seen in the surging number of companies adopting cross-docking

techniques towards optimizing their supply chain operations. In fact, the emergence of cost-cutting,

efficiency-improving philosophies such as just-in-time and lean systems has been a key factor con-

tributing to the increasing popularity of cross-docking. In reality, cross-dock terminals are de-

signed to facilitate rapid movements of materials, which eventually leads to a better service level

and quicker response across the supply chain at a reduced cost. More specifically, once the in-

coming trucks arrive to their designated strip doors, the goods get unloaded, consolidated in a

sorting/staging area according to their destinations, and then loaded through stack doors into the

outgoing trucks with minimal storage in between. The amount of time goods spend at a cross-dock

ranges from virtually none to 24 hours. This poses as one of the main differences between tra-

ditional warehouses and the more contemporary cross-dock terminals. Cross-docking, in its best

practice, aims to reduce or, where possible, eliminate two major functions of a traditional ware-

house: storage and order picking, assuming that relevant product and environmental settings are

met. The various advantages of cross-docking as compared to the different practices of traditional

warehouses and point-to-point deliveries are listed in Van Belle et al. [58].

According to Arnaout et al. [8], the US trucking industry was the first to cross-dock commodi-

ties back in the 1930s. However, it was Walmart who set the trend when it realized tremendous

success in applying such strategy in the retail industry in the 1980s. The use of cross-dock terminals

enabled Walmart to introduce every-day low price strategies and to virtually eliminate all inventory

holding costs Chen et al. [17]. Since then, the use of cross-docks has become a standard prac-

tice among companies in several industries including the automobile industry, air transportation,

less-than-truckload (LTL) carriers, and mail service and parcel delivery providers, among others.

One application of cross docking can be seen in a mail distribution centre where letters and parcels

are collected from various mail aggregation centres before being sorted and routed to their proper

destinations. For express delivery companies, where speed is a key distinguishing business charac-

teristic, parcel is kept on the move all the time and would typically spend a maximum of a couple

of hours at their hub facility before it is sent out for delivery. Another application can be seen in an

airport, where transit passengers spend typically a couple of hours since arriving at the designated

5

gate (i.e. strip door) in a transit area before they board the outbound flight through the designated

gate (i.e. stack door). The baggage is also transferred using material handling equipments from

the arrival gates to a temporary internal waiting area before being routed to the different departure

gates. For examples of successful cross-docking implementations, the interested reader is referred

to Forger [25], Kinnear [31], Witt [60], Cook et al. [22], Chen and Song [16], and Napolitano [41].

Given the inherent complexity of designing and operating cross-docking terminals, several

classes of decision problems have been studied in the literature. Van Belle et al. [58] provide a

comprehensive review and classification of decision problems arising in cross-docking. Some of

these problems deal with strategic decisions such as determining the optimal location of cross-

docks and figuring out their best layout design. Other problems are concerned with rather tactical

decisions such as determining the optimal flow of commodities through a network of cross-docks.

Operational decision problems are abundant and they arise in a wide variety of contexts such as the

assignment of trucks to dock doors, truck scheduling, vehicle routing for pick-up and delivery op-

erations, and the location of products in the temporary storage area. For other reviews of decision

problems arising in cross-docking, we refer to Agustina et al. [2], Boysen [10], Shuib and Fatthi

[53], and Buijs et al. [14].

This paper focuses on the so-called cross-dock door assignment problems (CDAPs). On a

daily basis, incoming trucks arriving to cross-dock terminals from several origins, each of which

carrying a family of similar products, are assigned to strip doors. When docked, they are unloaded

by employees who inspect and sort the products according to their destinations. Using material

handling equipments such as forklifts or a system of conveyors, these products are transferred to

some stack doors ready for loading on outgoing trucks that are assigned to their destinations. These

forklifts keep traveling between the strip and stack doors till all products are transferred to their

designated stack doors. Employees, then load these consolidated products into the outgoing trucks.

Whenever an outgoing truck is filled with all needed products for its assigned destination, it leaves

the terminal carrying those mixed products. CDAPs seek to optimally decide on the assignment of

both incoming trucks to strip doors and outgoing trucks to stack doors so that the material handling

cost inside the cross-dock is minimized. The assignment patterns affect the performance inside the

terminal in terms of traveling distance by forklifts, labor’s utilization, and traveling time. The cost

is commonly represented as traveling distance between doors.

6

Peck [46] seems to be the first work addressing the assignment of inbound and outbound trucks

to dock doors. The author develops a simulation model to represent the activities at an LTL terminal

and uses the concept of full floating dock to allocate trucks to dock doors on a continuous basis as

new shipments arrive on a short-term horizon. The considered CDAP includes capacity constraints

to limit the total freight transfer time inside the LTL terminal and the objective is to minimize the

total time to transfer the goods internally from inbound to outbound trucks. This problem is first

formulated as a bilinear integer program and a linearized mixed integer programming (MIP) formu-

lation is then proposed. A greedy heuristic is also presented to solve the problem. Tsui and Chang

[55] study a CDAP on a mid-term horizon in which each inbound (outbound) door is assigned to

only one origin (destination) point. It is assumed that the number of inbound (outbound) doors is

equal to the number of origins (destinations) and the goal is to minimize the total material handling

cost, stated in terms of the weighted distance traveled by forklifts. This problem is formulated as

a bilinear integer program and solved by means of a simple local improvement algorithm. In a

related work, Tsui and Chang [56] present a branch and bound method for this problem in which

the solution of assignment problems are used to obtain lower bounds at nodes of the enumeration

tree. Oh et al. [45] address a CDAP arising in a mail distribution center in which destinations have

to be clustered into groups to be assigned to specific outbound doors. This problem assumes that

there is only one inbound door in which all shipments are received and the objective is to minimize

the travel distance of goods in the center. The authors present a nonlinear integer program to model

the problem and two heuristics to solve it.

Bozer and Carlo [13] study a CDAP in which it is assumed that the number of inbound (out-

bound) trucks is equal to the number of inbound (outbound) doors and the objective is to minimize

the total material handling cost. The authors consider two different variants of the problem: static

and dynamic. In the static version, the assignment of outbound doors is assumed to be fixed while

the inbound doors are assigned every night. The dynamic version, however, considers that both

inbound and outbound doors have to be assigned every night. The static CDAP is solved using a

simulated annealing algorithm whereas the dynamic problem is modeled as a quadratic assignment

problem with rectilinear distances. Cohen and Keren [21] consider a short-term horizon to deal

with the assignment of trucks to doors while considering capacity limitations on the weight of each

truck. Commodities with a common destination can be shipped using more than one truck assigned

7

to different outbound doors. This implies that a destination point can be assigned to several out-

bound doors. The authors model the problem as a nonlinear integer program and solve it using a

heuristic algorithm. Zhu et al. [62] study a CDAP over a mid-term horizon where they extend the

model of Tsui and Chang [55, 56] by considering the more realistic case in which there is a larger

number of origins and destinations than that of inbound and outbound doors at a cross-dock. This

model allows more than one origin (destination) to be allocated to the same inbound (outbound)

door and imposes a capacity constraint on the amount of products that can be processed at each

door. The problem is formulated as a nonlinear integer program and transformed into a special

case of the generalized quadratic 3-dimensional assignment problem to use the branch-and-bound

algorithm presented in Hahn et al. [29] to solve it. Guignard et al. [28] present two different heuris-

tic algorithms to solve the same problem. The first approach is a local search method in which

generalized assignment problems are iteratively solved to determine the best assignment of origins

or destinations to dock doors. The second, however, is an adaptation of the convex hull heuris-

tic introduced in Ahlafçioglu et al. [3]. We refer to Luo and Noble [37] and Choy et al. [20] for

other CDAPs that incorporate additional features of real applications such as a limited capacity on

storage and staging areas and random arrivals of inbound trucks.

Given the inherent complexity of the non-linearities that naturally arise in the formulation of

CDAPs, most of the literature has resorted to heuristic algorithms for their solution. However, very

little work has been done for the development of mathematical programming formulations that can

be used with general purpose optimization solvers and with decomposition techniques to efficiently

solve them and to provide performance guaranties on the quality of the obtained solutions. In this

paper we study the CDAP considered in Zhu et al. [62] and Guignard et al. [28]. From now on, we

refer to this problem as the CDAP.

We present a new linear MIP formulation for the CDAP that uses path-based variables to charac-

terize the possible paths that commodities can use between origins and destinations passing through

inbound and outbound doors. Given the large number of variables and constraints in the formu-

lation, we propose a Lagrangean relaxation (LR) algorithm that is able to exploit the structure of

the problem to obtain bounds on the optimal solution value. A primal heuristic is also developed

to provide feasible solutions. In order to evaluate the efficiency and limitations of our MIP formu-

lation and LR, computational experiments were performed on benchmark instances with up to 20

8

origins and destinations and 10 inbound and outbound doors.

The results show that our MIP formulation can optimally solve most of the considered instances

when used with a general purpose solver. In particular, it is able to provide the optimal solution

to five benchmark instances for which the optimal solution was not known before. Moreover, the

LR algorithm is capable of providing better solutions on average than the ones obtained with the

heuristics of Guignard et al. [28] in small CPU times with a performance guarantee. Additional

experiments were also performed on a new challenging set of instances with up to 50 origins and

destinations and 30 inbound and outbound doors. The LR is able to obtain on average better

optimality gaps than CPLEX in two hours of CPU time, specially for the largest-size instances

with 50 origins and destinations.

The remainder of this paper is structured as follows. Section 2 provides a formal definition of

the problem along with the proposed mathematical programming formulation. In Sections 3 and 4

we describe the LR algorithm and the primal heuristic, respectively. The data generation technique

and the computational experiments for existing benchmark instances and for the newly developed

set of instances are presented in Section 5. Conclusions follow in Section 6.

2.2 Definition and Formulations of the Problem
Let M , N , I , and J denote the set of origins, destinations, inbound doors and outbound doors,

respectively. Let dij denote the distance (or travel time) between inbound door i and outbound door

j. Let wmn be the amount of commodity originated atm with destination n. The values wmn can be

standardized so as to be stated in terms of the number of times the material handling equipment (i.e.

forklift, pallet jack, etc) needs to be used to transfer all the flow originated at m with destination

n between inbound and outbound doors. Let sm =
∑

n∈N wmn denote the total flow going out of

an origin while rn =
∑

m∈M wmn the total flow coming into a destination. We denote as Si and Rj

the capacity for inbound door i ∈ I and outbound door j ∈ J , respectively. This capacity denotes

the limit on the amount of commodities the material handling equipment designated to each door

can process in the considered period of time. For each origin/destination pair, the material handling

cost when commodity wmn is received at inbound door i and shipped from outbound door j is given

by wmndij .

The CDAP consists of assigning each origin and each destination to exactly one inbound door

9

and one outbound door, respectively, in such a way that the capacity constraints of dock doors are

satisfied and the total material handling cost inside the cross-dock is minimum.

2.2.1 A Nonlinear Integer Programming Formulation

A natural way to formulate the CDAP is to use two sets of binary decision variables to determine

the assignment pattern of origins and destinations to dock doors. For each pair m ∈ M , i ∈ I , we

define

xmi =

 1 if origin m is assigned to inbound door i;

0 otherwise.

Similarly, for each pair n ∈ N , j ∈ J , we define

ynj =

 1 if destination n is assigned to outbound door j;

0 otherwise.

Using these sets of variables, Zhu et al. [62] formulate the CDAP as the following bilinear integer

program:

(P1) minimize
∑
m∈M

∑
i∈I

∑
j∈J

∑
n∈N

wmndijxmiynj (2.1)

subject to
∑
i∈I

xmi = 1 m ∈M (2.2)

∑
j∈J

ynj = 1 n ∈ N (2.3)

∑
m∈M

smxmi ≤ Si i ∈ I (2.4)

∑
n∈N

rnynj ≤ Rj j ∈ J (2.5)

xmi ∈ {0, 1} m ∈M, i ∈ I (2.6)

ynj ∈ {0, 1} n ∈ N, j ∈ J. (2.7)

The objective function seeks to minimize the total weighted distance traveled by the material

handling equipment. Constraints (2.2) and (2.3) guarantee that every origin (destination) is as-

signed to exactly one inbound (outbound) door. Constraints (2.4) and (2.5) ensure that the capacity

constraints on the inbound and outbound doors, respectively, are satisfied. Constraints (2.6) and

10

(2.7) are the classical integrality conditions on the decision variables. Note that constraints (2.2)-

(2.7) define the set of feasible solutions of two independent generalized assignment problems and

the quadratic term of the objective (2.1) links them.

2.2.2 A Linear Mixed Integer Programming Formulation

We next provide a new linear MIP formulation that exploits the structure of the problem and that

can be efficiently adapted to use in decomposition techniques. LetK represent the set of commodi-

ties whose origin and destination points belong to M and N , respectively. For each commodity

k ∈ K, define as wk the amount of commodity k to be routed from the origin o(k) ∈ M to the

destination d(k) ∈ N . We use the following set of binary decision variables to characterize the

possible paths that commodities can follow at the cross-dock. For each k ∈ K, i ∈ I , j ∈ J let

zkij =

 1 if commodity k transits via inbound door i and outbound door j;

0 otherwise.

Using this set of variables and the xmi and ynj variables previously defined, the CDAP can be

modeled as the following linear MIP program:

(P2) minimize
∑
k∈K

∑
i∈I

∑
j∈J

wkdijzkij

subject to
∑
i∈I

∑
j∈J

zkij = 1 k ∈ K (2.8)

∑
j∈J

zkij = xo(k)i k ∈ K, i ∈ I (2.9)

∑
i∈I

zkij = yd(k)j k ∈ K, j ∈ J (2.10)

∑
m∈M

smxmi ≤ Si i ∈ I (2.11)

∑
n∈N

rnynj ≤ Rj j ∈ J (2.12)

xmi ∈ {0, 1} m ∈M, i ∈ I (2.13)

ynj ∈ {0, 1} n ∈ N, j ∈ J (2.14)

zkij ≥ 0 k ∈ K, i ∈ I, j ∈ J. (2.15)

Constraints (2.8) ensures that there must be a single path connecting the origin and destination

nodes of each commodity with a pair of inbound and outbound doors. Constraints (2.9) state

11

that if the origin of commodity k is assigned to inbound door i, then it must be routed through

inbound door i and some outbound door j. In a similar fashion, (2.10) state that if the destination

of commodity k is assigned to an outbound door j then it must be routed through outbound door

j and some inbound door i. Constraints (2.11) and (2.12) make sure the capacity of inbound and

outbound doors are not exceeded, respectively. Finally, constraints (2.13)-(2.15) are the standard

integrality and nonnegativity conditions on the decision variables.

Note that in formulation P2 the assignment constraints (2.2)-(2.3) are not required to guarantee

the single allocation pattern of origins and destinations to inbound and outbound doors, respec-

tively. Constraints (2.8) and (2.9), together with the integrality conditions of the xmi variables,

ensure that all commodities originated at m are routed via a single inbound door i. Similarly,

constraints (2.8) and (2.10), together with the integrality conditions of the ynj variables, guarantee

that all commodities with destination n are routed via a single outbound door j. Moreover, there

is no need to explicitly state the integrality conditions on the zkij variables given that equations

(2.8)-(2.10) have no feasible fractional solutions whenever the xmi and ynj variables take a binary

value.

Capacity constraints (2.11) use assignment variables xmi to directly compute the total incoming

flow at inbound door i coming from a set of origin nodes to ensure the capacity Si is not violated.

The zkij and ynj variables can also be used to indirectly impose the capacity constraints at inbound

door i. In particular, for each door pair (i, j) ∈ I × J and destination node n ∈ N , we use the zkij

variables to compute the amount of flow with destination n ∈ N entering to inbound door i coming

from any origin m ∈M as∑
k∈K:d(k)=n

wkzkij ≤ Siynj n ∈ N, j ∈ J, i ∈ I.

Contrary to (2.11), these constraints have the capacities Si being multiplied by the ynj variables,

which can cause the lower bounds associated with the linear programming (LP) relaxation of P2

to improve. These constraints can be further strengthened by lifting the coefficients of the zkij

variables using the fact that origins nodes can only be assigned to one inbound door. That is, if a

commodity originated at node m with destination n is being routed through inbound door i, then

all the commodities originated at the same origin have to be routed trough the same inbound door

regardless of their destination. Therefore, the following inequalities are valid for the set of feasible

12

integer solutions of P2: ∑
k∈K:d(k)=n

so(k)zkij ≤ Siynj n ∈ N, j ∈ J, i ∈ I. (2.16)

Similarly, we can use the zkij and xmi variables to indirectly impose the capacity constraints at

outbound doors. In particular, for each door pair (i, j) ∈ I × J and origin node m ∈ M , we use

the zkij variables to compute the amount of flow with origin m ∈ M entering to outbound door j

and having as destination any node n ∈ N as∑
k∈K:o(k)=m

rd(k)zkij ≤ Rjxmi m ∈M, i ∈ I, j ∈ J. (2.17)

Note that constraints (2.16)-(2.17) are redundant to formulation P2. However, as we show in Sec-

tion 2.5, these constraints can improve the LP bounds of P2 at the expense of considerably in-

creasing the number of constraints. We denote by P3 the extended MIP formulation obtained by

adding (2.16)-(2.17) into P2. We next show how we can use a decomposition method to exploit the

structure of formulation P3 to efficiently obtain lower and upper bounds on the optimal solution

value.

2.3 Lagrangean Relaxation
LR is a well-known method for solving large-scale combinatorial optimization problems Ge-

offrion [27]. It exploits the inherent structure of the problems to compute lower bounds on the

value of the optimal solution. In the case of formulation P3, if we relax the constraints (2.9)-(2.10)

together with (2.16)-(2.17) in a Lagrangean fashion, weighting their violations with a multiplier

13

vector (µ, ν, λ, γ) of appropriate dimension, we obtain the following Lagrangean function:

L(µ, ν, λ, γ) = minimize
∑
k∈K

∑
i∈I

∑
j∈J

wkdijzkij

+
∑
k∈K

∑
i∈I

µki

(∑
j∈J

zkij − xo(k)i

)

+
∑
k∈K

∑
j∈J

νkj

(∑
i∈I

zkij − yd(k)j

)

+
∑
m∈M

∑
i∈I

∑
j∈J

λmij

 ∑
k∈K:o(k)=m

rd(k)zkij −Rjxmi


+
∑
n∈N

∑
j∈J

∑
i∈I

γnji

 ∑
k∈K:d(k)=n

so(k)zkij − Siynj


subject to (2.8), (2.11)− (2.15).

Note that L(µ, ν, λ, γ) can be decomposed into three subproblems: (1) a problem in the space of z

variables, (2) a problem in the space of x variables, and (3) a problem in the space of y variables.

After some algebra, the first subproblem can be expressed as

Lz(µ, ν, λ, γ) = minimize
∑
k∈K

∑
i∈I

∑
j∈J

Qkijzkij

subject to (2.8) and (2.15),

where Qkij =
(
wkdij + µki + νkj + rd(k)λo(k)ij + so(k)γd(k)ji

)
. The second subproblem can be

expressed as

Lx(µ, λ) = maximize
∑
m∈M

∑
i∈I

 ∑
k∈K:o(k)=m

µki +
∑
j∈J

Rjλmij

xmi

subject to (2.11) and (2.13),

and the third subproblem can be expressed as

Ly(ν, γ) = maximize
∑
n∈N

∑
j∈J

 ∑
k∈K:d(k)=n

νkj +
∑
i∈I

Siγnji

 ynj

subject to (2.12) and (2.14).

14

Therefore, we have:

L(µ, ν, λ, γ) = Lz(µ, ν, λ, γ) + Lx(µ, λ) + Ly(ν, γ).

2.3.1 Solution to Subproblem Lz(µ, ν, λ, γ)

Subproblem Lz(µ, ν, λ, γ) is a semi-assignment problem that, in turn, can be decomposed into

|K| independent semi-assignment problems, corresponding to each commodity k ∈ K, of the form

(SAPk) minimize
∑
i∈I

∑
j∈J

Qkijzkij

subject to
∑
i∈I

∑
j∈J

zkij = 1

zkij ≥ 0 i ∈ I, j ∈ J.

Each SAPk problem can be easily solved by choosing exactly one door pair, denoted as (i(k), j(k)) ∈

I × J , among those with minimum material handling cost. For a given k, an optimal solution of

SAPk, denoted by z(µ, ν, λ, γ), can be obtained by setting exactly one zkij variable to one and the

rest to zero, i.e., zki(k)j(k) = 1 for one element (i(k), j(k)) ∈ arg min {Qkij : (i, j) ∈ I × J} and

zkij = 0, for (i, j) ∈ I × J \ {(i(k), j(k))}. The optimal solution value of SAPk can thus be

expressed as

Lz(µ, ν, λ, γ) =
∑
k∈K

Qki(k)j(k) =
∑
k∈K

min {Qkij : (i, j) ∈ I × J} .

2.3.2 Solution to Subproblems Lx(µ, λ) and Ly(ν, γ)

Subproblems Lx(µ, λ) and Ly(ν, γ) can be further decomposed into |I| and |J | independent

binary knapsack problems, respectively. For each inbound door i ∈ I , we have

(KPi) = maximize
∑
m∈M

 ∑
k∈K:o(k)=m

µki +
∑
j∈J

Rjλmij

xmi

subject to
∑
m∈M

smxmi ≤ Si (2.18)

xmi ∈ {0, 1} m ∈M, (2.19)

15

and for each outbound door j ∈ J , we have

(KPj) = maximize
∑
n∈N

 ∑
k∈K:d(k)=n

νkj +
∑
i∈I

Siγnji

 ynj

subject to
∑
n∈N

rnynj ≤ Rj (2.20)

ynj ∈ {0, 1} n ∈ N. (2.21)

Each KPi and KPj problem evaluates the benefit of assigning one or more origins to an in-

bound door and one or more destinations to an outbound door, respectively. Although knapsack

problems are known to belong to the class of NP-hard problems, they can be solved efficiently

using the algorithm of Martello et al. [39].

2.3.3 The Solution of the Lagrangean Dual

In order to obtain the best lower bound, one must solve the following Lagrangean dual problem

(D) zD = max
λ,γ≥0

L(µ, ν, λ, γ)

We apply the subgradient optimization method to solve problem D. Now, for a given vector

(µ, ν, λ, γ), let z(µ, ν, λ, γ), x(µ, λ) and y(ν, γ) denote the optimal solution to L(µ, ν, λ, γ). Then,

a subgradient of L(µ, ν, λ, γ) is given by:

δ(µ, ν, λ, γ) =

(∑
j∈J

zkij(µ, ν, λ, γ)− xo(k)i(µ, λ)

)
ki

,

(∑
i∈I

zkij(µ, ν, λ, γ)− yd(k)j(ν, γ)

)
kj

,

 ∑
k∈K

o(k)=m

rd(k)zkij(µ, ν, λ, γ)−Rjxmi(µ, λ)


mij

,

 ∑
k∈K
d(k)=n

so(k)zkij(µ, ν, λ, γ)− Siynj(ν, γ)


nji

 .

We use the following standard formula to update the dual multipliers at every iteration t of the

subgradient algorithm:

(µ, ν, λ, γ)t+1 = (µ, ν, λ, γ)t + εt
(η̄ − L ((µ, ν, λ, γ)t))

‖δ((µ, ν, λ, γ)t)‖2
δ((µ, ν, λ, γ)t),

16

where η̄ denotes an upper bound on the optimal value of P3 and 0 < εt < 2 is a parameter to control

the step length used at every iteration.

A scheme of the subgradient algorithm is depicted in Algorithm 1. The output of the algorithm

is a lower bound zD.

Algorithm 1 Subgradient Method

Iteration 0

Initialize zD ← −∞ ; (µ, ν, λ, γ)0 ← 0 ; ε0 ← 2.

Let η̄ be a known upper bound on the optimal solution value

Iteration t

Solve the Lagrangean function L((µ, ν, λ, γ)t)

if (L((µ, ν, λ, γ)t) > zD) then

zD ← L((µ, ν, λ, γ)t)

end if

Evaluate the subgradient δ((µ, ν, λ, γ)t)

Calculate the step length φt ← εt
(η̄−L((µ,ν,λ,γ)t))
‖δ((µ,ν,λ,γ)t)‖2

(µ, ν, λ, γ)t+1 ← (µ, ν, λ, γ)t + φtδ((µ, ν, λ, γ)t)

t← t+ 1

2.4 Primal Heuristic
We next propose a primal heuristic that is applied at every iteration of the subgradient opti-

mization algorithm to obtain feasible solutions for the CDAP. It uses information generated by

the evaluation of the Lagrangean function to obtain an initial feasible solution, which is later im-

proved by a local search procedure. In what follows, solutions are represented by pairs of the form

s = (a, b), where a : M → I and b : N → J denote the assignment mapping of origins and

destinations to inbound and outbound doors, respectively. That is, a(m) = i if origin m is assigned

to inbound door i and b(n) = j if destination n is assigned to outbound door j. For any assignment,

hi and qj denote the available capacity at inbound door i and outbound door j, respectively. That

is, hi = Si−
∑

m:a(m)=i sm and qj = Rj−
∑

n:b(n)=j rn. From now on, we drop the reference to the

vector of dual multipliers (µ, ν, λ, γ) and thus, we write Lx, Ly, xmi, and ynj instead of Lx(µ, λ),

17

Ly(ν, γ), xmi(µ, λ), and ynj(ν, γ).

2.4.1 Constructive Phase

The solution to each KPi and KPj subproblem provides a feasible assignment with respect

to the capacity constraints of inbound and outbound doors. However, these problems are solved

independently and thus, solutions may be infeasible for the CDAP for two reasons. First, an ori-

gin (destination) can be assigned to more than one inbound (outbound) door. Second, an origin

(destination) may not be assigned to any inbound (outbound) door. Therefore, exactly one of the

following three scenarios occurs for each origin and each destination in any solution of Lx and Ly:

i) it is assigned to exactly one door, ii) it is assigned to more than one door, and iii) it is not assigned

to any door.

We construct an initial solution as follows. We first consider the sets of origins and destinations

assigned to exactly one door, i.e.

ASM1 =

{
m ∈M :

∑
i∈I

xmi = 1

}
and ASN1 =

{
n ∈ N :

∑
j∈J

ynj = 1

}
,

and fix these assignments. That is, a(m) = i(m) for every m ∈ ASM1 , where ami(m) = 1, and

b(n) = j(n) for every n ∈ ASN1 , where ynj(n) = 1. We then consider the sets of origins and

destinations assigned to more than one door, i.e.

ASM2 =

{
m ∈M :

∑
i∈I

xmi > 1

}
and ASN2 =

{
n ∈ N :

∑
j∈J

ynj > 1

}
,

and assign each one to an arbitrary door that was allocated to that satisfies the capacity constraints.

That is, when feasible we set a(m) = i∗ for m ∈ ASM2 , where i∗ ∈ {i : xmi = 1, hi − sm ≥ 0}

and b(n) = j∗ for n ∈ ASN2 , where j∗ ∈ {j : ynj = 1, qj − rn ≥ 0}. Note that all origins and

destinations in ASM2 and ASN2 respect the capacity constraints as a result of the knapsack solution.

Finally, we order the remaining unassigned origins and destinations in a decreasing order with

respect to their total outgoing and incoming flow sm and rn, respectively, and assign them, one

at a time, to an arbitrarily door that satisfies its capacity constraint after the assignment is made.

Whenever we obtain an initial feasible solution with this constructive procedure, we try to improve

it with the following local search procedure.

18

2.4.2 Local Search Phase

The proposed local search procedure uses two classes of neighborhoods to improve the initial

solution obtained with the constructive phase. The first class modifies the assignments of either

origins or destinations independently by using the classical swap and shift neighborhoods. The

shift neighborhood considers all solutions that can be reached from the current one by changing

the assignment of exactly one origin (or destination), whereas the swap neighborhood considers all

solutions that differ from the current one in the assignment of two origins (or destinations). Let

s = (a, b) be the current solution, then the shift neighborhood associated with the origins is defined

as

NM
shift(s) =

{
s
′
= (a′, b) : ∃!m ∈M,a′(m) 6= a(m)

}
,

and the shift neighborhood associated with the destinations as

NN
shift(s) =

{
s
′
= (a, b′) : ∃!n ∈ N, b′(n) 6= b(n)

}
.

For exploring NM
shift(s) we consider all pairs (m, i) ∈M × I , such that hi− sm ≥ 0 and, similarly,

for NN
shift(s) we consider all pairs (n, j) ∈ N × J , such that qj − rn ≥ 0. The swap neighborhood

associated with the origins is defined as

NM
swap(s) =

{
s
′
= (a′, b) : ∃m1,m2 ∈M,a′(m1) = a(m2), a′(m2) = a(m1),

a′(m) = a(m)∀m 6= m1,m2} ,

and the swap neighborhood associated with the destinations as

NN
swap(s) =

{
s
′
= (a, b′) : ∃n1, n2 ∈ N, b′(n1) = b(n2), b′(n2) = b(n1),

b′(n) = b(n), ∀n 6= n1, n2} .

For exploring NM
swap(s) we consider all pairs (m1,m2) ∈ M × M , such that a(m1) 6= a(m2),

ha(m1) +sm1−sm2 ≥ 0 and ha(m2) +sm2−sm1 ≥ 0. Similarly, for exploring NN
swap(s) we consider

all pairs (n1, n2) ∈ N×N , such that b(n1) 6= b(n2), qb(n1)+rn1−rn2 ≥ 0 and qb(n2)+rn2−rn1 ≥ 0.

The second class of neighborhoods modifies the assignment of origins and destinations at the

same time. In particular, the double shift neighborhood considers all solutions that can be reached

19

from the current one by changing the assignment of exactly one origin and one destination at the

same time and is defined as

NMN
shift =

{
s
′
= (a′, b′) : ∃!(m,n) ∈M ×N, a′(m) 6= a(m), b′(n) 6= b(n)

}
.

For exploring NMN
shift we consider all (m, i) ∈ M × I and (n, j) ∈ N × J , such that hi − sm ≥ 0

and qj − rn ≥ 0. In the first four neighborhoods we use a best improvement strategy while in the

last one we use a first improvement strategy.

Algorithm 2 describes a summary of the proposed local search procedure.

Algorithm 2 Local Search

while solution is improved do

Explore NM
shift(s) ∪NN

shift(s) ∪NM
swap(s) ∪NN

swap(s)

if no improvement then

Explore NMN
shift

end if

end while

2.5 Computational Experiments
We next present the results of extensive computational experiments performed to assess the

behavior of the MIP formulations and Lagrangean relaxation for the CDAP. All algorithms were

coded in C and run on an Intel Xeon E3 1240 V2 processor with 3.40 GHz and 24GB of RAM

memory under a Windows environment. The MIP formulation was implemented using the callable

library of CPLEX 12.5.2. The knapsack problems were solved with the exact algorithm described

in Martello et al. [39]. In all the LR experiments, the subgradient optimization algorithm terminates

when one of the following criteria is met:

i) The difference between the upper and lower bounds is below a threshold value, i.e. z∗−ztD ≤

χ;

ii) The maximum number of iterations Itermax is reached;

iii) The CPU time limit Timemax is reached.

20

After some tuning, we set the following parameters values: χ = 10−7, Itermax = 30, 000, and

Timemax = 7, 200 seconds. Moreover, the parameter εt is multiplied by 0.1 every 5,000 consecutive

iterations without improvement in the lower bound and is reset to 2 whenever εt < 10−7.

We have used two sets of benchmark instances in our computational experiments: the data set

introduced by Guignard et al. [28] and a new challenging set of instances generated by us. In

Guignard et al. [28], the authors generate the flow matrix with integer numbers between [10, 50]

until 25% of the matrix is full. They ensure that each destination receives some flow from at least

one origin and each origin sends some flow to at least one destination. The distance matrix is

generated with numbers from the interval [8, 8 + I − 1] indicating that a direct distance between

two doors (i.e. two doors facing each other) is 8, and then an increment of 1 unit is added for the

next indirect door. All instances are generated with |I| = |J | for a rectangular shaped cross-dock.

Lastly, capacities are identical and calculated by dividing the total flow coming from all origins by

the total number of inbound doors, and then adding a capacity slackness of 5%, 10%, 15%, %20 and

%30. The number of considered origins/destinations is {8, 9, 10, 11, 12, 15, 20} and the number of

considered inbound/outbound doors is {4, 5, 6, 7, 10}. A total of 50 instances are considered from

the possible combinations of these parameters and are denoted as 00x00S00, where the first position

refers to the number of origins/destinations, the second position to the number of inbound/outbound

doors, and the last position to the capacity slackness. That is, 20x10S15 denotes an instance with

20 origins, 20 destinations, 10 inbound doors, 10 outbound doors, and a capacity slackness of 15%.

In the first part of the experiments, we compare the results obtained with formulations P2 and P3

when used with a general purpose solver, our Lagrangean relaxation algorithm, and the heuristics

presented in Guignard et al. [28]. The detailed results of this comparison using the first set of

benchmark instances are given in Tables 2.1 and 2.2. The first column gives the name of the

instance. The next six columns under the heading CPLEX provide the following results: i) the

duality gap %LPP2 and % LPP3 relative to the LP relaxation bound obtained with formulations P2

and P3, respectively, ii) the remaining optimality gap, denoted as %gap, after CPU time limit with

formulation P2, iii) the deviation between the best solution obtained by CPLEX with formulation

P2 and the optimal (or best known) solution, denoted as %dev, and iv) the number of branch and

bound nodes and the CPU time to reach the optimal solution with formulation P2. The LP deviation

is calculated as %LP = 100(OPT − LP)/(OPT), where OPT is the optimal value and LP is

21

the optimal solution for the LP relaxation of each formulation. The deviation is calculated as

%dev = 100(UB − OPT)/(OPT), where UB is the best upper bound obtained by CPLEX and

OPT is the optimal (or best known) solution obtained by any method. Preliminary computational

experiments showed that, in all considered instances, the required CPU time to solve formulation

P3 with CPLEX was considerably larger than the time required to solve formulation P2. Therefore,

we do not include the results associated with the optimal solution of CDAP with formulation P3

in this or subsequent tables. The next three columns under the heading Lagrangean relaxation

provide the following results: i) the duality gap, denoted as %gap, relative to the LR bound and the

best upper bound obtained by the primal heuristic, ii) the deviation %dev between the best solution

obtained by the primal heuristic and the best known solution, and iii) the CPU time in seconds for

the overall LR algorithm. For comparative purposes, the last three columns show the deviation

between the solutions obtained with three different heuristics presented in Guignard et al. [28] and

the best known solutions. We set the CPU time limit to 7,200 seconds (2 hours). Whenever CPLEX

is unable to solve an instance within the CPU time limit, we indicate time in the corresponding entry

of the table.

The results presented in Tables 2.1 and 2.2 appear to be promising. As can be seen, formu-

lation P2 used with CPLEX is able to prove the optimality of the obtained solutions in 45 out of

50 considered instances. The results given in Guignard et al. [28] show that the branch-and-bound

algorithm described in Hahn et al. [29] can only solve 40 instances. That is, formulation P2 proves

optimality for five instances for which the optimal solution was not known. The columns under the

heading %LPP2 and % LPP3 indicate that constraints (2.16)-(2.17), although redundant to formu-

lation P2, have a positive impact on improving the LP bounds. For the considered instances, the

average optimality gap is 8.54% and 5.30% for formulations P2 and P3, respectively. However,

preliminary computational experiments showed that the improvement of the LP bounds does not

compensate the increase of the CPU time required to solve much larger LPs at the nodes of the

enumeration tree.

In terms of our LR algorithm, it is able to obtain an average optimality gap of 6.39%, which

is better than formulation P2 and slightly worse than P3. This is partially explained by the slow

convergence of the subgradient method. Preliminary experiments showed that when the maximum

number of iterations is increased, the LR can slightly improve the lower bounds at the expense of

22

Table 2.1: Comparison of Results for P2 and P3 Formulations and Lagrangean Relaxation.

CPLEX Lagrangean Relaxation Heuristics

Instance % LPP2 % LPP3 % gap % dev nodes time % LR % dev time % LS1 % LS2 % CHR

8x4S5 6.76 3.26 0.00 0.00 256 0.34 3.51 0.00 4.62 0.00 0.00 0.00

8x4S10 6.67 3.39 0.00 0.00 222 0.29 3.63 0.00 5.19 0.00 0.00 0.00

8x4S15 5.63 2.53 0.00 0.00 235 0.26 2.87 0.00 5.38 0.00 0.00 0.00

8x4S20 5.15 2.24 0.00 0.00 97 0.47 2.49 0.00 5.47 0.00 0.00 0.00

8x4S30 4.72 2.16 0.00 0.00 170 0.45 3.62 0.00 7.12 0.00 0.00 0.00

9x4S5 7.66 3.71 0.00 0.00 255 0.41 4.19 0.00 6.45 0.00 0.00 0.00

9x4S10 7.35 3.69 0.00 0.00 197 0.56 4.17 0.00 6.16 0.00 0.00 0.00

9x4S15 6.56 3.16 0.00 0.00 171 0.30 3.54 0.00 14.04 0.00 0.00 0.00

9x4S20 5.95 2.75 0.00 0.00 115 0.38 3.34 0.00 14.69 0.00 0.00 0.00

9x4S30 5.42 2.63 0.00 0.00 247 0.40 4.41 0.00 11.32 0.00 0.00 0.00

10x4S5 8.56 6.31 0.00 0.00 1432 0.63 6.69 0.00 9.90 0.00 0.00 0.00

10x4S10 5.77 3.67 0.00 0.00 368 0.53 4.62 0.00 10.16 0.00 0.00 0.00

10x4S15 5.34 3.45 0.00 0.00 309 0.61 4.56 0.00 12.17 0.00 0.00 0.00

10x4S20 4.90 3.19 0.00 0.00 353 0.50 4.49 0.00 12.61 0.00 0.00 0.00

10x4S30 3.76 2.35 0.00 0.00 57 0.47 3.66 0.00 13.40 0.00 0.00 0.00

10x5S5 9.79 6.48 0.00 0.00 5409 1.11 7.20 0.00 9.24 0.00 0.00 0.00

10x5S10 7.84 4.78 0.00 0.00 2796 1.27 5.71 0.00 11.96 0.00 0.00 0.00

10x5S15 6.71 3.87 0.00 0.00 1090 0.88 5.18 0.00 12.18 0.00 0.00 0.00

10x5S20 5.90 3.31 0.00 0.00 803 0.63 4.56 0.00 12.86 0.50 0.33 0.19

10x5S30 5.39 3.17 0.00 0.00 729 0.76 4.32 0.00 12.69 0.25 0.40 0.40

11x5S5 10.80 7.33 0.00 0.00 48676 9.08 8.36 0.00 14.91 0.00 0.00 0.00

11x5S10 7.98 4.77 0.00 0.00 3661 1.95 6.02 0.00 16.51 0.00 0.00 0.00

11x5S15 7.52 4.59 0.00 0.00 2068 1.79 5.97 0.00 14.09 0.09 0.09 0.09

11x5S20 6.33 3.61 0.00 0.00 246 0.83 5.00 0.00 17.60 0.35 0.35 0.52

11x5S30 6.09 3.76 0.00 0.00 1863 1.53 5.32 0.00 19.48 0.11 0.05 0.00

23

Table 2.2: Comparison of Results for P2 and P3 Formulations and Lagrangean Relaxation.

CPLEX Lagrangean Relaxation Heuristics

Instance % LPP2 % LPP3 % gap % dev nodes time % LR % dev time % LS1 % LS2 % CHR

12x5S5 8.23 5.28 0.00 0.00 3774 2.52 6.06 0.00 12.24 0.00 0.00 0.00

12x5S10 7.14 4.45 0.00 0.00 1160 0.96 5.58 0.00 15.62 0.00 0.13 0.16

12x5S15 6.69 4.21 0.00 0.00 521 0.86 5.44 0.00 15.31 0.00 0.00 0.00

12x5S20 6.69 4.46 0.00 0.00 2329 1.31 5.77 0.00 18.90 0.00 0.00 0.00

12x5S30 6.50 4.61 0.00 0.00 6620 5.46 6.29 0.00 17.26 0.24 0.03 0.03

12x6S10 9.41 6.06 0.00 0.00 4332 3.41 6.57 0.00 17.72 0.18 0.38 0.23

12x6S15 8.59 5.42 0.00 0.00 3352 2.28 6.36 0.00 19.65 0.32 0.56 0.12

12x6S20 8.15 5.19 0.00 0.00 6727 3.27 6.33 0.00 23.16 0.18 0.26 0.11

12x6S30 7.39 4.82 0.00 0.00 12086 5.03 6.51 0.00 29.26 0.00 0.00 0.48

15x6S5 9.93 6.14 0.00 0.00 30450 17.56 7.05 0.01 30.87 0.24 0.00 0.40

15x6S10 9.12 5.65 0.00 0.00 14573 10.84 6.66 0.00 32.87 0.38 0.35 0.50

15x6S15 8.87 5.66 0.00 0.00 26773 18.64 6.97 0.00 35.63 0.03 0.25 0.00

15x6S20 8.57 5.61 0.00 0.00 53847 30.33 7.19 0.00 29.57 0.36 0.25 0.00

15x6S30 7.54 4.98 0.00 0.00 13430 8.43 6.77 0.00 31.36 0.00 0.00 0.43

15x7S5 13.70 8.51 0.00 0.00 226374 195.87 9.97 0.51 21.54 0.00 0.00 0.28

15x7S10 12.28 7.44 0.00 0.00 88481 83.08 8.64 0.03 24.28 0.21 0.05 0.00

15x7S15 11.36 6.80 0.00 0.00 53092 46.47 8.13 0.00 25.45 0.14 0.16 0.14

15x7S20 10.49 6.19 0.00 0.00 22803 21.22 7.81 0.00 34.73 0.56 0.13 0.13

15x7S30 9.83 6.06 0.00 0.00 55572 47.58 7.90 0.01 42.17 0.04 0.10 0.03

20x10S5 17.98 12.16 14.99 0.25 373813 time 13.40 0.51 63.76 0.04 0.33 0.00

20x10S10 16.16 10.67 11.82 0.18 231224 time 11.72 0.15 69.21 0.00 0.00 0.72

20x10S15 15.73 10.61 12.74 0.00 529189 time 11.72 0.67 79.04 0.49 0.17 1.35

20x10S20 15.23 10.47 9.68 0.00 461003 time 11.82 0.00 82.69 0.57 0.10 0.43

20x10S30 13.98 9.73 9.60 0.04 435737 time 11.38 0.03 98.46 0.91 0.00 0.11

Average 8.54 5.30 1.18 0.01 6.39 0.04 0.12 0.09 0.14

24

increasing the CPU time. The primal heuristic is able to find the optimal solution in 41 out of the 45

instances for which the optimal solution is known. When compared with the heuristics of Guignard

et al. [28], it can obtain the optimal solution for 11 instances for which none of these heuristics is

able to. Moreover, among all the 50 instances, the LR is able to provide the best known solution

in 41 instances, as compared to 29 in LS1, 29 in LS2, and 28 in CHR. Finally, the LR average

deviation is 0.04%, as compared to 0.12% for LS1, 0.09% for LS2, and 0.14% for CHR.

In the second part of the experiments, we compare the results obtained with formulations P2

and P3 when used with CPLEX and our LR algorithm with a new data set containing larger-size

instances. We randomly generate a total of 60 instances which are divided into three sets containing

20 instances each. The three sets of instances differ in terms of the density of the flow matrix, which

is considered to be 25%, 50%, and 75%, respectively. We use the same cardinality for the number

of inbound and outbound doors as well as for the number of origins and destinations, respectively.

The number of considered origins/destinations is {10, 15, 20, 25, 50} and the number of considered

inbound/outbound doors is {4, 6, 10, 20, 30}. The capacities and distances are generated in the

same way as in Guignard et al. [28]. The considered values for the capacity slackness are 10%,

%20 and %30. The flow matrix is generated using the procedure described in Boysen et al. [11].

In particular, the flow is randomly distributed according to a discrete uniform distribution and

generated as sm ∈ [min,max] for each m ∈ M and rn ∈ [min,max], for each n ∈ N such that∑
m∈M sm =

∑
n∈N rn. The parameters are defined as min = 10|M | and max = min× density.

The detailed results of the comparison using these three sets are given in Tables 2.3, 2.4 and

2.5, respectively. As in the previous table, the columns under the headings %gap, %dev, nodes and

time present the results obtained based on formulation P2. Whenever CPLEX cannot solve the LP

relaxation of a formulation or cannot find a feasible solution, we write NA in the corresponding

entry. The symbol - denotes that an optimality gap cannot be computed with the information

obtained by CPLEX within the CPU time limit.

The results from Tables 2.3, 2.4 and 2.5 show the limitations of using formulation P2 with

CPLEX when solving larger instances. In particular, P2 is able to prove the optimality of the

obtained solutions in 14 out of the 60 considered instances. In 14 instances CPLEX is not able to

find a feasible solution within the CPU time limit and the average optimality gaps for the rest of

the instances in each of the three sets are 9.81%, 10.70%, and 13.65%, respectively. As can be

25

Table 2.3: Results for Instances with 25% Density in Flow Matrix

CPLEX Lagrangean Relaxation

Instance % LPP2 % LPP3 % gap % dev nodes time % LR % dev time

10x4S10 4.61 3.09 0.00 0.00 1027 0.54 3.84 0.00 5.34

10x4S20 4.78 3.44 0.00 0.00 1752 1.24 4.44 0.00 6.38

10x4S30 3.76 3.27 0.00 0.00 867 0.24 3.76 0.00 6.36

15x6S10 6.75 4.92 0.00 0.00 388173 151.64 6.02 0.00 12.84

15x6S20 7.50 5.19 0.00 0.00 67858 35.30 6.52 0.00 18.46

15x6S30 6.16 4.51 0.00 0.00 38843 16.57 6.06 0.00 18.89

20x10S10 13.16 9.44 4.96 0.00 1870717 time 10.55 0.45 40.57

20x10S20 12.03 7.93 7.49 0.00 1777173 time 9.38 0.02 57.37

20x10S30 13.16 9.14 6.48 0.01 1731294 time 10.81 0.00 62.85

25x10S10 14.94 10.99 11.87 0.00 780843 time 12.07 0.23 78.39

25x10S20 13.34 9.45 11.92 0.00 671246 time 11.46 0.65 94.44

25x10S30 12.59 9.23 10.88 0.00 644769 time 10.92 0.02 115.33

50x10S10 18.77 14.97 18.02 2.54 49168 time 16.00 0.00 1013.89

50x10S20 16.63 13.79 16.01 2.54 55498 time 15.26 0.00 901.72

50x10S30 19.95 15.83 19.20 4.15 49380 time 16.54 0.00 705.01

50x20S10 32.17 NA 31.97 8.70 2671 time 26.52 0.00 1457.44

50x20S20 29.04 23.76 28.02 6.72 3590 time 24.87 0.00 1789.39

50x20S30 35.02 28.87 - NA 0 time 27.88 0.00 858.13

50x30S20 44.29 NA - NA 0 time 36.12 0.00 1869.10

50x30S30 41.14 37.25 - NA 0 time 34.37 0.00 2147.20

Average 17.49 11.95 9.81 1.45 14.67 0.07

26

seen, the instances with larger densities in the flow matrix tend to have weaker LP bounds and thus,

require more exploration in the branch-and-bound tree, increasing the required CPU time.

Table 2.4: Results for Instances with 50% Density in Flow Matrix

CPLEX Lagrangean Relaxation

Instance % LPP2 % LPP3 % gap % dev nodes time % LR % dev time

10x4S10 8.41 4.03 0.00 0.00 10060 6.30 5.05 0.00 9.74

10x4S20 5.98 3.66 0.00 0.00 761 0.63 4.86 0.00 13.05

10x4S30 6.60 3.85 0.00 0.00 2329 0.95 5.21 0.00 14.53

15x6S10 12.33 6.48 0.58 0.00 4287454 time 7.63 0.00 31.36

15x6S20 11.71 6.43 0.00 0.00 3456192 4432.88 8.30 0.00 34.23

15x6S30 10.39 6.05 0.00 0.00 731055 882.51 7.91 0.00 37.27

20x10S10 21.52 11.67 19.31 0.80 397942 time 13.43 0.00 90.02

20x10S20 19.03 10.26 16.74 1.80 401218 time 12.56 0.00 118.29

20x10S30 18.02 10.59 15.54 0.20 474253 time 13.35 0.00 134.51

25x10S10 21.70 12.10 20.15 1.77 203796 time 14.16 0.00 168.93

25x10S20 20.16 11.55 18.83 1.24 202228 time 13.88 0.00 204.44

25x10S30 17.93 10.88 16.20 0.53 219206 time 13.61 0.00 219.72

50x10S10 22.67 13.93 22.02 2.67 11296 time 15.94 0.00 1777.02

50x10S20 21.05 13.75 20.36 3.24 15020 time 15.82 0.00 2067.30

50x10S30 19.86 12.48 - NA 0 time 15.05 0.00 2323.33

50x20S10 37.96 32.97 - NA 0 time 26.48 0.00 2783.06

50x20S20 35.79 31.04 - NA 0 time 25.56 0.00 3436.90

50x20S30 33.90 29.51 - NA 0 time 25.40 0.00 4489.52

50x30S20 46.56 43.52 - NA 0 time 33.47 0.00 5014.49

50x30S30 43.51 40.79 - NA 0 time 32.86 0.00 6390.98

Average 21.75 15.78 10.70 0.87 15.53 0.00

In terms of the LR, the primal heuristic is able to obtain a solution that is at least as good or

better than the one obtained by CPLEX in 55 out of the 60 considered instances. Only in 5 instances

from the first set with 25% density in the flow matrix CPLEX is able to obtain a better solution than

LR. In 38 out of the 60 considered instances the LR is able to obtain a strictly better solution than

CPLEX. The primal heuristic can obtain high quality solutions for the three sets of considered

27

Table 2.5: Results for Instances with 75% Density in Flow Matrix

CPLEX Lagrangean Relaxation

Instance % LP1 % LP2 % gap UB % dev nodes time % LR % H dev time

10x4S10 9.96 2.98 0.00 0.00 10517 7.98 4.51 0.00 11.51

10x4S20 9.20 4.06 0.00 0.00 8621 4.30 5.56 0.00 11.95

10x4S30 8.10 4.04 0.00 0.00 10495 5.38 6.03 0.00 14.12

15x6S10 14.87 4.89 5.07 0.06 4260595 time 7.12 0.00 30.44

15x6S20 13.64 4.77 7.95 0.00 3352373 time 7.39 0.00 26.64

15x6S30 12.09 5.28 3.04 0.00 3692989 time 7.83 0.00 46.69

20x10S10 23.81 9.23 20.47 0.44 267733 time 11.81 0.00 118.62

20x10S20 21.68 8.63 19.22 0.38 263216 time 12.85 0.00 146.29

20x10S30 20.89 9.12 19.49 1.17 341228 time 12.90 0.00 190.58

25x10S10 24.04 9.52 22.80 0.76 97156 time 12.79 0.00 225.95

25x10S20 22.36 8.54 21.06 1.39 97444 time 12.78 0.00 269.14

25x10S30 20.30 8.17 19.09 2.31 75710 time 12.63 0.00 292.09

50x10S10 24.44 10.15 23.75 2.88 3781 time 14.03 0.00 1733.01

50x10S20 22.68 9.89 21.87 2.50 3813 time 14.43 0.00 2424.74

50x10S30 21.61 NA 20.86 1.64 4054 time 14.24 0.00 3440.63

50x20S10 26.84 NA - NA 0 time 13.69 0.00 1181.36

50x20S20 37.54 34.13 - NA 0 time 22.92 0.00 2615.49

50x20S30 35.94 NA - NA 0 time 23.16 0.00 3373.11

50x30S20 48.31 NA - NA 0 time 29.44 0.00 3925.52

50x30S30 46.43 NA - NA 0 time 28.72 0.00 6095.02

Average 23.24 8.89 13.65 0.90 13.74 0.00

28

instances with an average deviation of 0.07%, 0.00% and 0.00%, respectively. Moreover, the LR

algorithm always obtains a % LR gap smaller than the % gap of CPLEX in considerable less CPU

time for the larger instances with 50 origins and destinations.

2.6 Conclusions
In this paper we have presented a linear MIP formulation for the cross-dock door assignment

problem. Given the large number of variables and constraints in this formulation, we developed

a Lagrangean relaxation algorithm that exploits the structure of the problem to obtain lower and

upper bounds on the optimal solution value. Computational results confirm the efficiency and scal-

ability of the proposed MIP formulation and solution approach. In particular, the MIP formulation

can prove optimality of the obtained solutions of five benchmark instances for which the optimal

solution was not known before. In addition, the LR algorithm provides high quality solutions for

all the considered instances with up to 50 origins and destinations and 30 inbound and outbound

doors in small CPU times with a performance guarantee. Given the inherent complexity of the

non-linearities arising in the objective function of cross-dock door assignment problems, the opti-

mal solution of larger-size instances of realistic size remains challenging. The authors are currently

investigating the use of more sophisticated methodologies, such as column generation and bun-

dle methods, for solving the Lagrangean dual problem and for improving the linear programming

relaxation bounds.

29

Chapter 3

A Comparison of Formulations and

Relaxations for the Cross-dock Door

Assignment Problems

This paper deals with cross-dock door assignment problems in which the assignments of incom-

ing trucks to strip doors, and outgoing trucks to stack doors are determined, with the objective of

minimizing the total handling cost. We present two new mixed integer programming formulations

which are theoretically and computationally compared with existing ones. One of such requires

a column generation algorithm to solve its associated linear relaxation. We present the results of

a series of computational experiments to evaluate the performance of the formulations on a set of

benchmark instances. We also analyze the impact of the input-data on the quality of the associated

linear programming relaxation bounds.

The following paper was submitted to Computers and Operations Research in March 2017.

Nassief et al. [44].

30

3.1 Introduction
Cross-docking is a logistics strategy that facilitates rapid movement of consolidated products

between suppliers and retailers within a supply chain. It is also a warehousing strategy that aims

to reduce or ultimately eliminate storage and order picking, two of which are known to be major

costly operations of any typical warehouse. This strategy has been used in the retailing, manufac-

turing, automotive, and photographic industries, and has been successfully implemented by several

companies such as Walmart and Toyota. For examples of successful cross-docking implementa-

tions, the interested reader is referred to Forger [25], Kinnear [31], Witt [60], Chen and Song [16],

and Napolitano [41].

Cross-dock facilities (or cross-docks) are designed to expedite the movement of highly and

constantly demanded materials, which eventually lead to a better service level and quicker response

across the supply chain at a reduced cost. Particularly, once incoming and outgoing trucks are

assigned to their designated doors, the goods get unloaded from the incoming trucks, consolidated

in a staging area according to their destinations, and loaded into the outgoing trucks with minimal

storage in between. In practice, minimal storage is possible, and so, it comes in different forms that

can range from temporary buffers in front of the doors to even a designated temporary storage area.

Typically, the amount of time goods spend at a cross-dock ranges from virtually none to about 24

hours. The various advantages of cross-docking as compared to the different practices of traditional

warehouses and point-to-point deliveries are listed in Van Belle et al. [58].

Given the inherent complexity of designing and operating cross-docks, several classes of de-

cision problems have been studied in the literature. Agustina et al. [2], Boysen [10], Shuib and

Fatthi [53], Van Belle et al. [58], and Buijs et al. [14] provide reviews of decision problems arising

in cross-docking. Moreover, a recent review by Ladier and Alpan [32] proposes a framework that

highlights the gaps between the literature and some cross-docking practices in France.

In this paper we focus on a class of operational problems referred to as cross-dock door assign-

ment problems (CDAPs). On a daily basis, fully loaded incoming trucks arrive to the cross-dock

facility. When docked (or assigned) to strip (inbound) doors, they get unloaded by employees who

inspect and sort the shipments according to their destinations. Using material handling equipment

such as carts, forklifts or a system of conveyors, these shipments are transferred to some stack

31

(outbound) doors ready for loading into outgoing trucks, which are assigned according to their

destinations. The material handling equipment keep traveling between strip and stack doors till all

products are transferred to their designated stack doors. Then, employees load them into outgoing

trucks. Whenever an outgoing truck is filled with all needed products for its designated destination,

it leaves the facility carrying the consolidated products. CDAPs seek to optimally decide on the

assignment of both incoming trucks to strip doors and outgoing trucks to stack doors such that the

total handling cost inside the cross-dock is minimized. The assignment decisions affect the total

time of getting shipments unloaded, traveled across the facility, and loaded. The cost is commonly

measured as traveling distance between doors and thus, the objective needs only to focus on the

weighted travel time between doors. Tsui and Chang [55, 56], Oh et al. [45], Bozer and Carlo [13],

Cohen and Keren [21], Zhu et al. [62], Guignard et al. [28], and Nassief et al. [42] study CDAPs

with this type of objective. However, in practice unloading and loading times do need to be taken

into account, specially when these depend on the number and skill-level of workers assigned to

each door. This is particularly relevant in applications where turnovers are very high Amini et al.

[see, for instance 5] and thus, there is learning curve to be taken into account when unloading and

loading. To the best of our knowledge, there are only two works explicitly considering unloading

and loading times at doors. Peck [46] incorporates unloading and loading times along with travel

times as capacity constraints. Zhang et al. [61] introduce these terms in one objective function in

the context of truck scheduling. The authors report on the impact of considering one term at a time

versus all terms in a single objective function. We refer to Nassief et al. [42] for a detailed literature

review on CDAPs and Gelareh et al. [26] and Enderer et al. [23] for recent extensions of CDAPs in

which additional operational decisions are considered.

In this paper we study the standard CDAP considered in Zhu et al. [62], Guignard et al. [28],

and Nassief et al. [42] and show how door-dependent unloading and loading costs can be easily

integrated in the objective, in addition to the transfer costs between doors. We assume workforce

assignment decisions to be exogenous, i.e., these are not part of the decision process. From now on,

we refer to this problem as the cross-dock door assignment problem (CDAP). Given the inherent

complexity of the quadratic nature of CDAPs, most of the previous studies have resorted to heuristic

algorithms for their solution. However, little work has been done for the study and development

of mathematical programming formulations that can be solved with general purpose solvers or

32

embedded into decomposition techniques. The main contribution of this work is to study several

mixed integer programming (MIP) formulations for the CDAP and to report on their performance.

In particular, we present two new MIP formulations which are theoretically and computationally

compared with existing formulations of the CDAP. The formulations are compared with respect to

the quality of their linear programming (LP) relaxation bounds and with respect to the Lagrangean

relaxation introduced in Nassief et al. [42]. Due to the huge number of variables involved in one the

new formulations, we implement a column generation algorithm to solve its LP relaxation. Finally,

we present the results of a series of computational experiments to evaluate the relative performance

of the proposed and existing formulations and of the decomposition algorithms. As will be shown,

although some formulations provide the same theoretical bound, the convergence of their solution

scheme may vary significantly.

The remainder of this paper is structured as follows. Section 3.2 provides a formal definition

of the CDAP. In Section 3.3, we introduce several linear MIP formulations. Section 3.4 presents

the theoretical comparisons of the bounds provided by their LP relaxations and the Lagrangean

relaxation of Nassief et al. [42]. In Section 3.5, we introduce the column generation algorithm

used to solve one of the MIP formulations. Computational experiments using a set of benchmark

instances are presented in Section 3.6. Conclusions follow in Section 3.7.

3.2 Problem Statement
LetM , N , I , and J denote the set of origins, destinations, inbound and outbound doors, respec-

tively. The traveling time (or distance) between strip door i and stack door j is denoted by tij . Let

ui and `j denote the per unit unloading and loading times for inbound door i and outbound door j,

respectively. Let wmn be the amount of commodity originated at m and destined to n. Without loss

of generality, the values wmn can be stated in terms of the number of times the material handling

equipment (i.e., forklift, pallet jack, etc) needs to be used to transfer all the flow originated at m

with destination n between a pair of strip/stack doors. For each m ∈ M , let sm =
∑

n∈N wmn > 0

denote the total supplied flow from an origin whereas for each n ∈ N , let rn =
∑

m∈M wmn > 0

be the total sent flow towards a destination. We denote by Si and Rj the capacity for inbound door

i ∈ I and outbound door j ∈ J , respectively. This capacity represents the limit on the amount

of commodities that the workforce and material handling equipment designated to each door can

33

process in a given shift. The CDAP consists of assigning each origin and each destination to ex-

actly one inbound door and one outbound door, respectively, such that the capacity restrictions on

dock doors are satisfied and the total handling cost (unloading, transfer and loading) inside the

cross-dock is minimum.

Given that each commodity has to pass through exactly one inbound and one outbound door,

origin/destination paths are of the form (m, i, j, n), where m is the origin, i, j the door pair, and

n the destination. The handling cost of path (m, i, j, n) for routing wmn is then computed as

wmn (ui + tij + `j). We would like to highlight that previous papers dealing with the CDAP do

not consider explicitly the unloading and loading times and only focus on the transfer time between

doors. That is, the handling cost is computed as wmntij .

A natural way to formulate the CDAP is to consider it as two generalized assignment problems

linked by a quadratic cost associated with the interaction of inbound and outbound doors. For each

pairm ∈M , i ∈ I , we define inbound assignment variables xmi equal to 1 if and only if originm is

assigned to inbound door i. Similarly, for each pair n ∈ N , j ∈ J , we define outbound assignment

variables ynj equal to 1 if and only if destination n is assigned to outbound door j. Using these sets

of variables, the CDAP can be formulated as the following bilinear integer program Zhu et al. [62]:

[P0] minimize
∑
m∈M

∑
n∈N

∑
i∈I

∑
j∈J

wmn (ui + tij + `j) xmiynj (3.1)

subject to
∑
i∈I

xmi = 1 m ∈M (3.2)

∑
j∈J

ynj = 1 n ∈ N (3.3)

∑
m∈M

smxmi ≤ Si i ∈ I (3.4)

∑
n∈N

rnynj ≤ Rj j ∈ J (3.5)

xmi ∈ {0, 1} m ∈M, i ∈ I (3.6)

ynj ∈ {0, 1} n ∈ N, j ∈ J. (3.7)

The objective function minimizes the total unloading time of incoming shipment, weighted time

traveled by the material handling equipment, and loading time of outgoing shipment. Constraints

(3.2) and (3.3) guarantee that every origin (destination) is assigned to exactly one inbound (out-

34

bound) door. Constraints (3.4) and (3.5) ensure that the capacity constraints on the inbound and

outbound doors, respectively, are satisfied. Constraints (3.6) and (3.7) are the classical integrality

conditions on the decision variables. Observe that constraints (3.2)-(3.7) define the set of feasible

solutions of two independent generalized assignment problems and the quadratic term in (3.1) links

them.

The objective function (3.1) can be alternatively written as

minimize
∑
m∈M

∑
i∈I

smuixmi +
∑
m∈M

∑
n∈N

∑
i∈I

∑
j∈J

wmntijxmiynj +
∑
n∈N

∑
j∈J

rn`jynj. (3.8)

The first and last term compute the unloading and loading costs, respectively, independently of the

transfer cost. Even though both objective functions always provide the same evaluation at integer

feasible solutions, this may not be the case for fractional solutions. Specially, when linearizing

or substituting the nonlinear term for the objective (3.1) using additional decision variables. It is

known that, for the closely related quadratic assignment problem, lower bounds can be tightened

by moving as much information as possible form the quadratic term to the linear term Li et al. [34].

Therefore, from now on we will use objective (3.8) instead of (3.1).

3.3 Mixed-integer Programming Formulations
The objective of CDAP is to minimize the total handling cost of unloading, transferring between

pairs of doors, and loading commodities inside the cross-dock. From P0, we note that knowing the

assignment pattern of origins and destinations to inbound and outbound doors, respectively, is suf-

ficient to evaluate the quadratic term in objective function. However, in order to state the objective

as a linear function additional decision variables are needed to model the paths that commodities

follow. We next present new and existing linear MIP formulations based on different approaches

to model such O/D paths. The existing formulations of the CDAP rely on the use of binary vari-

ables to model the set of paths between origins and destinations. One of the new formulations use

continuous variables to compute the amount of flow transversing each door pair. Finally, the third

one uses a compact definition of variables to model assignment configurations between origins and

inbound doors and destinations and outbound doors.

35

3.3.1 Path-based Formulations

One way to model the O/D paths at cross-docks is to define path-based variables commonly

used in multi-commodity network design problems. To simplify the notation, we denote by K

the set of commodities whose origin and destination points belong to M and N , respectively. For

each commodity k ∈ K, wk is the amount of commodity k to be routed from origin o(k) ∈ M to

destination d(k) ∈ N .

The following formulation was originally introduced in Nassief et al. [42] for the CDAP. For

each k ∈ K, i ∈ I , j ∈ J , we define binary variables zkij equal to 1 if and only if commodity

k transits via inbound door i and outbound door j. Using the zkij variables and the xmi and ynj

variables previously defined, the CDAP can be formulated as:

[P1] minimize
∑
m∈M

∑
i∈I

smuixmi +
∑
k∈K

∑
i∈I

∑
j∈J

wktijzkij +
∑
n∈N

∑
j∈J

rn`jynj

subject to (3.4)− (3.7),∑
i∈I

∑
j∈J

zkij = 1 k ∈ K (3.9)

∑
j∈J

zkij = xo(k)i k ∈ K, i ∈ I (3.10)

∑
i∈I

zkij = yd(k)j k ∈ K, j ∈ J (3.11)

zkij ≥ 0 k ∈ K, i ∈ I, j ∈ J. (3.12)

Constraints (3.9) ensure that each commodity k must go through one unique pair of doors i − j.

Constraints (3.10) state that if the origin of commodity k is assigned to inbound door i, then it must

be routed through inbound door i and some outbound door j. Similarly, constraints (3.11) state

that if the destination of commodity k is assigned to an outbound door j then it must be routed

through outbound door j and some inbound door i. Finally, constraints (3.12) are the standard

nonnegativity conditions on the decision variables. Note that there is no need to explicitly state

the integrality conditions on the zkij variables given that equalities (3.10)–(3.11) have no feasible

fractional solution whenever xmi and ynj variables take a binary value.

A slightly different path-based formulation can be obtained by replacing constraints (3.9) in P1

36

with constraints (3.2)–(3.3) of P0. It can be written as follows:

[P2] minimize
∑
m∈M

∑
i∈I

smuixmi +
∑
k∈K

∑
i∈I

∑
j∈J

wktijzkij +
∑
n∈N

∑
j∈J

rn`jynj

subject to (3.2)− (3.7), (3.10)− (3.12).

Both P1 and P2 can be strengthened by adding the following sets of valid inequalities:∑
k∈K:d(k)=n

so(k)zkij ≤ Siynj n ∈ N, j ∈ J, i ∈ I (3.13)

∑
k∈K:o(k)=m

rd(k)zkij ≤ Rjxmi m ∈M, i ∈ I, j ∈ J. (3.14)

Constraints (3.13) state that if a commodity originated at node m with destination n is be-

ing routed through inbound door i, then all commodities originated at the same origin have to be

routed trough the same inbound door regardless of their destination. Similarly, (3.14) state that if

a commodity destined at node n with origin m is being routed through outbound door j, then all

commodities destined at the same destination have to be routed trough the same outbound door re-

gardless of their origin. From now on, we refer to the extended path-based formulations of P1 and

P2 that include constraints (3.13) and (3.14) as P1′ and P2′, respectively. Nassief et al. [42] show

that these inequalities, although redundant for P1, play an important role in improving its linear

programming (LP) relaxation bound. Finally, we note that these inequalities can also be derived by

using the reformulation linearization technique of Sherali and Adams [52].

3.3.2 A Flow-based Formulation

The CDAP can be seen as a particular case of a multi-commodity network design problem.

Thus, it can be modeled using the so-called flow-based variables to compute the amount of flow

originated at m routed between i − j doors. For each m ∈ M , i ∈ I , j ∈ J we define continuous

variables z′mij equal to the amount of flow originated at m routed from inbound door i to outbound

door j. Using these variables, we introduce a flow-based formulation of the CDAP problem as

37

follows:

[F1] minimize
∑
m∈M

∑
i∈I

smuixmi +
∑
m∈M

∑
i∈I

∑
j∈J

tijz
′
mij +

∑
n∈N

∑
j∈J

rn`jynj

subject to (3.2)− (3.7) (3.15)∑
j∈J

z′mij = smxmi m ∈M, i ∈ I (3.16)

∑
i∈I

z′mij =
∑
n∈N

wmnynj m ∈M, j ∈ J (3.17)

z′mij ≥ 0 m ∈M, i ∈ I, j ∈ J. (3.18)

Constraints (3.16) and (3.17) are the flow conservation constraints for inbound and outbound doors.

In particular, constraints (3.16) ensure that if an origin m is assigned to inbound door i, then the

total flow coming from origin m must be exactly the same as the total flow split through all out-

bound doors j. Similarly, (3.17) guarantee that for a given origin m and outbound door j, the total

outgoing flow to destinations that are assigned to outbound door j is equal to the total incoming

flow at outbound door j. Finally, constraints (3.18) are the standard nonnegativity conditions. It is

easy to see that a symmetrically identical flow based formulation can be derived by redefining the

flow-based variables to compute the amount of flow destined at n and routed between i− j doors,

and thus is omitted.

3.3.3 A Configuration-based Formulation

We next present a formulation for the CDAP which uses configuration-based variables to char-

acterize the feasible subsets of origins and destinations that can be assigned to inbound and out-

bound doors, respectively.

Let Ci denote the set of origins’ subsets, which are assigned to strip door i and satisfy the

capacity constraints, i.e., Ci =
{
M

′ ⊆M :
∑

m∈M ′ sm ≤ Si
}

. Similarly, let Hj denote the set of

destinations’ subsets, which are assigned to stack door j and satisfy the capacity constraints, i.e.,

Hj =
{
N

′ ⊆ N :
∑

n∈N ′ rn ≤ Rj

}
. For each i ∈ I and c ∈ Ci, we define binary variables xci

equal to 1 if and only if configuration c is selected for door i. For each j ∈ J and h ∈ Hj , we

define binary variables yhj equal to 1 if and only if configuration h is selected for door j. Using

these two sets of configuration-based variables together with the zkij variables defined in Section

38

3.3.1, the configuration-based formulation can be written as follows:

[DC] minimize
∑

c∈Ci:o(k)∈c

∑
m∈M

∑
i∈I

smuix
c
i +
∑
i∈I

∑
j∈J

wktijzkij +
∑

h∈Hj :d(k)∈h

∑
n∈N

∑
j∈J

rn`jy
h
j

subject to (3.9), (3.12)∑
j∈J

zkij =
∑

c∈Ci:o(k)∈c

xci k ∈ K, i ∈ I (3.19)

∑
i∈I

zkij =
∑

h∈Hj :d(k)∈h

yhj k ∈ K, j ∈ J (3.20)

∑
c∈Ci

xci = 1 i ∈ I (3.21)

∑
h∈Hj

yhj = 1 j ∈ J (3.22)

xci ∈ {0, 1} i ∈ I, c ∈ Ci (3.23)

yhj ∈ {0, 1} j ∈ J, h ∈ Hj. (3.24)

Constraints (3.19) and (3.20) link the configuration-based variables with the path-based variables

to ensure that commodities are properly routed. Constraints (3.21) and (3.22) state that exactly

one configuration is selected for each inbound and outbound door, respectively. Finally, constraints

(3.23) and (3.24) are the integrality restrictions on the configuration variables.

DC can be strengthened by adapting constraints (3.13) and (3.14), used in P1′ and P2′, as

follows: ∑
k∈K:d(k)=n

so(k)zkij ≤ Si
∑

h∈Hj :n∈h

yhj n ∈ N, j ∈ J, i ∈ I (3.25)

∑
k∈K:o(k)=m

rd(k)zkij ≤ Rj

∑
c∈Ci:m∈c

xci m ∈M, i ∈ I, j ∈ J. (3.26)

As in P1′ and P2′, these valid inequalities, although redundant for DC, play an important role in

improving its LP relaxation bound. Hence, we refer to DC ′ as the configuration-based formulation

with the addition of these inequalities.

3.4 A Comparison of Relaxations
In this section, we analytically compare the quality of the lower bounds yielded by the LP

relaxations of the MIP formulations presented in Section 3.3. We provide dominance or equivalence

39

relationships between them. The LP relaxations of P1, P2, and F1, denoted as LP1, LP2, LF1,

are obtained when removing the integrality conditions on the xmi and ynj variables. In the case

of DC the LP relaxation is obtained when eliminating the integrality conditions on the xci nd ycj

variables. Respectively, we denote by zP , zF and zDC the optimal values of the LP relaxations of

formulations P , F and DC.

Proposition 1. zP1 = zP2.

Proof. Given that the objective in P1 and P2 are the same, we only need to show that every feasible

solution (x̂, ŷ, ẑ) of LP1 is also a feasible solution of LP2, and vice versa. We first assume that

(x̂, ŷ, ẑ) is a feasible solution of LP1. For each k ∈ K, summing up (3.10) over all i ∈ I and

(3.11) over all j ∈ J , we obtain ∑
i∈I

∑
j∈J

ẑkij =
∑
i∈I

x̂o(k)i (3.27)

∑
i∈I

∑
j∈J

ẑkij =
∑
j∈J

ŷd(k)j. (3.28)

Now, substituting constraint
∑
i∈I

∑
j∈J

ẑkij = 1 in (3.27) and (3.28), leads to

1 =
∑
i∈I

x̂o(k)i k ∈ K

1 =
∑
j∈J

ŷd(k)j. k ∈ K.

Then we have ∑
i∈I

x̂mi = 1 m ∈M

∑
j∈J

ŷnj = 1 n ∈ N.

Similarly, assume now that (x̂, ŷ, ẑ) is a feasible solution of LP2. For each k ∈ K, substituting∑
i∈I
x̂o(k)i = 1 and

∑
j∈J

ŷd(k)j = 1 in (3.27) and (3.28), leads to

∑
i∈I

∑
j∈J

ẑkij = 1,

and the result follows.

40

A very similar proof can be done to show that zP1′ = zP2′ and it is thus omitted.

Proposition 2. zF1 ≤ zP2.

Proof. We will show that every feasible solution (x̂, ŷ, ẑ) of LP2 is also a feasible solution of LF1.

Summing up (3.10) over k ∈ K such that o(k) = m and multiplying by wk, we obtain∑
k∈K:o(k)=m

∑
j∈J

wkẑkij =
∑

k∈K:o(k)=m

wkx̂mi = smxmi (3.29)

for each m ∈ M , i ∈ I , where the second equality follows from
∑

k∈K:o(k)=mwk = sm for each

m ∈M . Let

z′mij =
∑

k∈K:o(k)=m

wkẑkij. (3.30)

Summing over j in (3.30) and using (3.29) leads to:∑
j∈J

z′mij =
∑
j∈J

∑
k∈K:o(k)=m

wkẑkij = smx̂mi m ∈M, i ∈ I,

which corresponds to constraints (3.16).

We now sum up (3.11) over k ∈ K such that o(k) = m. Multiplying by wk, we obtain∑
k∈K:o(k)=m

∑
i∈I

wkẑkij =
∑

k∈K:o(k)=m

wkŷd(k)j =
∑
n∈N

wmnŷnj, (3.31)

for each m ∈M , j ∈ J . Summing over j in (3.30) and using (3.31) leads to:∑
i∈I

z′mij =
∑
n∈N

wmnŷnj m ∈M, j ∈ J,

which corresponds to constraints (3.17) and the result follows.

Proposition 3. zP1 ≤ zDC .

Proof. In P1, if we relax constraints (3.10) and (3.11) using Lagrangean relaxation, weighting

their violations with a multiplier vector (µ, ν) of appropriate dimension, we obtain the following

Lagrangean function:

41

L(µ, ν) = min
(z,x,y)

{∑
m∈M

∑
i∈I

smuixmi +
∑
k∈K

∑
i∈I

∑
j∈J

wktijzkij +
∑
n∈N

∑
j∈J

rn`jynj

+
∑
k∈K

∑
i∈I

µki

(∑
j∈J

zkij − xo(k)i

)

+
∑
k∈K

∑
j∈J

νkj

(∑
i∈I

zkij − yd(k)j

)
: (3.4)− (3.9), (3.12)

}
,

and its associated Lagrangean dual problem

zLD = max
µ,ν

L(µ, ν).

It is then equivalent to the following linear program Geoffrion [27]:

[PR] minimize
∑
m∈M

∑
i∈I

smuixmi +
∑
k∈K

∑
i∈I

∑
j∈J

wktijzkij +
∑
n∈N

∑
j∈J

rn`jynj

subject to:
∑
j∈J

zkij = xo(k)i k ∈ K, i ∈ I (3.10)

∑
i∈I

zkij = yd(k)j k ∈ K, j ∈ J (3.11)

(x, y, z) ∈ Co
{

(x, y, z) ∈ B|M ||I| × B|N ||J | ×R|K||I||J |+ :∑
i∈I

∑
j∈J

zkij = 1, k ∈ K,

∑
m∈M

smxmi ≤ Si, i ∈ I,
∑
n∈N

rnynj ≤ Rj, j ∈ J

}
, (3.32)

where Co {X} denotes the convex hull of X .

Taking into account that the convex hull in (3.32) is the intersection of several independent

polytopes Z ∪X ∪ Y , where Z =
⋃
k∈K Zk, X =

⋃
i∈I Xi, Y =

⋃
j∈J Yj , and

Zk = Co

{
zk ∈ R|I||J |+ :

∑
i∈I

∑
j∈J

zkij = 1

}
,

Xi = Co

{
xi ∈ B|M | :

∑
m∈M

smxmi ≤ Si

}
,

Yj = Co

{
yj ∈ B|N | :

∑
n∈N

rnynj ≤ Rj

}
,

42

Note that Zk =

{
zk ∈ R|I||J |+ :

∑
i∈I

∑
j∈J

zkij = 1

}
because of total unimodularity. PR is then equiv-

alent to the linear program:

[PR′] minimize
∑
m∈M

∑
i∈I

smuixmi +
∑
k∈K

∑
i∈I

∑
j∈J

wktijzkij +
∑
n∈N

∑
j∈J

rn`jynj

subject to:
∑
i∈I

∑
j∈J

zkij = 1 k ∈ K (3.9)

∑
j∈J

zkij = xo(k)i k ∈ K, i ∈ I (3.10)

∑
i∈I

zkij = yd(k)j k ∈ K, j ∈ J (3.11)

xi ∈ Co

{
xi ∈ B|M | :

∑
m∈M

smxmi ≤ Si

}
i ∈ I

yj ∈ Co

{
yj ∈ B|N | :

∑
n∈N

rnynj ≤ Rj

}
j ∈ J

zkij ≥ 0 k ∈ K, i ∈ I, j ∈ J.

(3.12)

For each i ∈ I , j ∈ J , let E(Xi) and E(Yj) denote the set of extreme points of Xi and Yj ,

respectively. Given that any point in a polytope can be written as a convex combination of its

extreme points, PR′ can be restated as the following linear program:

[PR′′] minimize
∑

c∈E(Xi):o(k)∈c

∑
m∈M

∑
i∈I

smuix
c
i +

∑
k∈K

∑
i∈I

∑
j∈J

wktijzkij +
∑

h∈E(Yj):d(k)∈h

∑
n∈N

∑
j∈J

rn`jy
h
j

43

subject to
∑
i∈I

∑
j∈J

zkij = 1 k ∈ K

∑
j∈J

zkij =
∑

c∈E(Xi):o(k)∈c

xci k ∈ K, i ∈ I

∑
i∈I

zkij =
∑

h∈E(Yj):d(k)∈h

yhj k ∈ K, j ∈ J

∑
c∈E(Xi)

xci = 1 i ∈ I

∑
h∈E(Yj)

yhj = 1 j ∈ J

xci ≥ 0 i ∈ I, c ∈ E(Xi)

yhj ≥ 0 j ∈ J, h ∈ E(Yj)

zkij ≥ 0 k ∈ K, i ∈ I, j ∈ J.

Finally, given that the set of extreme points E(Xi) and E(Yj) are contained in the set of feasible

configurations Ci =
{
M

′ ⊆M :
∑

m∈M ′ sm ≤ Si
}

and Lj =
{
N

′ ⊆ N :
∑

n∈N ′ rn ≤ Rj

}
, re-

spectively, and that every configuration c ∈ Ci and h ∈ Hj can be written as a convex combination

of points in E(Xi) and E(Yj), respectively, then PR′′ is equivalent to the LP relaxation of DC and

thus, we have zP1 ≤ zLD = zDC , and the result follows. As will be shown in Section 3.6, zP1 is

often smaller than zDC . This is explained by the fact that the Lagrangean dual problem does not

have the integrality property, it follows that zP1 ≤ zLD.

We now present a simple combinatorial bound for the CDAP which can be obtained by using

the information on the minimum handling cost of unloading, loading and transferring commodities

between door pairs for every k ∈ K. In particular, when relaxing the linking constraints (3.10),

(3.11) and the capacity constraints (3.5), (3.4) from P2 and adding constraints (3.9), we obtain the

44

following combinatorial relaxation:

(COMB) zCOMB = minimize
∑
m∈M

∑
i∈I

smuixmi+
∑
k∈K

∑
i∈I

∑
j∈J

wktijzkij +
∑
n∈N

∑
j∈J

rn`jynj

subject to
∑
i∈I

∑
j∈J

zkij = 1 k ∈ K

∑
i∈I

xmi = 1 m ∈M

∑
j∈J

ynj = 1 n ∈ N

xmi ∈ {0, 1} m ∈M, i ∈ I

ynj ∈ {0, 1} n ∈ N, j ∈ J

zkij ≥ 0 k ∈ K, i ∈ I, j ∈ J.

Proposition 4. zCOMB ≤ zF1.

Proof. COMB can be decomposed into three independent subproblems, one for each set of x,

y, and z variables, respectively. The subproblems in the space of the x and y variables can be

further decomposed into several independent semi-assignment problems which can be solved by

inspection. Given that the cost tij does not depend on commodity k, the optimal solution of the

third subproblem is given by the path having the shortest cost. Therefore, we have

zCOMB =
∑
m∈M

smu
min
i +

∑
k∈K

wkt
min
ij +

∑
n∈N

rn`
min
j ,

where umini = min {ui : i ∈ I}, tminij = min {tij : i ∈ I, j ∈ J}, and `minj = min {`j : j ∈ J}.

Consider now a relaxation of F1, denoted as RF1, where all constraints but (3.2), (3.3), and (3.16)

are relaxed. Summing up (3.16) over i ∈ I , we obtain∑
i∈I

∑
j∈J

z′mij = sm
∑
i∈I

xmi = sm,

where the last equality follows from (3.2). Thus, an optimal solution to RF1 is given by routing

the flow originated at each origin m ∈ M through the door pair having the smallest unloading and

transfer cost, i.e.,

zRF1 =
∑
m∈M

sm min
i∈I,j∈J

{ui + tij}+
∑
n∈N

rn`
min
j .

Therefore, we have zCOMB ≤ zRF1 ≤ zF1, and the result follows.

45

The following corollary summarizes the results from this section.

Corollary 1. zCOMB ≤ zF1 ≤ zP1 = zP2 ≤ zDC ≤ zDC′ .

This means that in terms of the LP relaxation bounds, the best theoretical bound is based (DC ′),

whereas the flow-based formulation (F1), has the weakest lower bound. In Section 3.6, we present

the results of computational experiments to compare the quality of the LP bounds of all formula-

tions along with the combinatorial and Lagrangean bounds.

3.5 A Column Generation Algorithm
Column generation (CG) is a decomposition method used to solve linear programs with an

enormous number of variables. The main idea of the method is to divide the original linear pro-

gram, denoted as the master problem (MP), into two interrelated subproblems: a restricted master

problem (RMP) and a set of pricing problems (PPs). The RMP contains only a small subset of the

columns (or variables) of the original MP. At every iteration, the RMP is solved to optimality and

additional columns are added on the fly. The PPs are solved to determine whether the current solu-

tion of the RMP is optimal for the MP or to identify additional columns with negative reduced costs

to be added to the RMP. This process is repeated as long as new columns with negative reduced

costs can be identified or terminates when an ε-optimal solution for the MP has been identified.

We next present a CG algorithm to solve the LP relaxation of the configuration-based formula-

tion DC ′. In addition, initial columns and termination criterion are explained briefly.

3.5.1 The Restricted Master Problem

Let Ct
i denote the subset of configurations for inbound door i at iteration t, H t

j denote the subset

of feasible configurations for outbound door j at iteration t, and Dt
k the subset of available door

pairs for commodity k at iteration t. The RPM at iteration t can be stated as follows:

[RMP t] minimize
∑
c∈Ct

i

∑
m∈M

∑
i∈I

smuiacxc +
∑
k∈K

∑
(i,j)∈Dt

k

wkdijzkij +
∑
h∈Ht

j

∑
n∈N

∑
j∈J

rn`ibhyh

46

subject to:
∑

(i,j)∈Dt
k

zkij = 1 k ∈ K (3.33)

∑
(i,j)∈Dt

k

zkij =
∑
c∈Ct

i

acxc k ∈ K, i ∈ I (3.34)

∑
(i,j)∈Dt

k

zkij =
∑
h∈Ht

j

bhyh k ∈ K, j ∈ J (3.35)

∑
k∈K

∑
(i,j)∈Dt

k

so(k)zkij ≤ Si
∑

h∈Ht
j :n∈h

yh n ∈ N, j ∈ J, i ∈ I (3.36)

∑
k∈K

∑
(i,j)∈Dt

k

rd(k)zkij ≤ Rj

∑
c∈Ct

i :m∈c

xc m ∈M, i ∈ I, j ∈ J (3.37)

∑
c∈Ct

i

xc = 1 i ∈ I (3.38)

∑
h∈Ht

j

yh = 1 j ∈ J (3.39)

xc ≥ 0 c ∈ Ct
i (3.40)

yh ≥ 0 h ∈ H t
j (3.41)

zkij ≥ 0 k ∈ K, (i, j) ∈ Dt
k. (3.42)

Note that, although there is a polynomial number of routing variables zkij , we do not add all of

them as very few of them will be used in an optimal solution of the LP relaxation of DC ′.

3.5.2 The Pricing Problem

Let µ(3.33)
k , µ(3.34)

ki , µ(3.35)
kj , µ(3.36)

nji , µ(3.37)
mij , µ(3.38)

i , and µ(3.39)
j be the dual variables associated with

constraints (3.33), (3.34), (3.35), (3.36), (3.37), (3.38), and (3.39), respectively. Given that theMP

contains three sets of decision variables x, y, and z, there are three pricing problems, one for each

type of the variables. In each CG iteration, we solve optimally all the three pricing problems, and

add all columns with negative reduced costs.

The first pricing problem is associated with the configuration of inbound doors. It can be further

47

decomposed into |I| independent subproblems, one for each door:

[PPX
i] minimize

∑
m∈M

(
smui + µ(3.34)

ki:o(k)=m +
∑
j∈J

Rjµ
(3.37)
mij

)
xmi − µ(3.38)

i

subject to:
∑
m∈M

smxmi ≤ Si (3.43)

xmi ∈ {0, 1} m ∈M, (3.44)

where xmi are the binary decision variables equal to 1 if and only if origin m is assigned to inbound

door i. Note that the objective function implicitly evaluates the reduced cost of all feasible config-

urations in Ci. The optimal solution to PPX
i is thus an inbound door configuration for i having the

smallest reduced cost coefficient. PPX
i is a 0-1 knapsack problem which is known to be NP-hard.

However, it can be efficiently solved using the 0-1 knapsack algorithm given in Martello et al. [39].

The second pricing problem is associated with the configuration of outbound doors. It can also

be further decomposed into |J | independent subproblems, one for each door:

[PP Y
j] minimize

∑
n∈N

(
rn`i + µ(3.35)

kj:d(k)=n +
∑
i∈I

Siµ
(3.36)
nji

)
ynj − µ(3.39)

j

subject to:
∑
n∈N

rnynj ≤ Rj (3.45)

ynj ∈ {0, 1} n ∈ N, (3.46)

where ynj are the binary decision variables equal to 1 if and only if destination n is assigned

to outbound door j. Similarly to PPX
i , the objective function implicitly evaluates the reduced

cost of all feasible configurations in Hj . The optimal solution to PP Y
j is thus an outbound door

configuration for j having the smallest reduced cost coefficient. PP Y
j also corresponds to a 0-1

knapsack problem ans can be solved in the same way as PPX
i .

Finally, the third pricing problem is associated with the routing variables zkij . It can also be

decomposed into |K| independent subproblems which in turn, can be solved by inspection. In

particular, for each commodity k, we simply identify the door pair (i, j) ∈ I × J with the smallest

reduced cost coefficient:

48

[PPZ
k] (ik, jk) ∈ arg min

{
(i, j) ∈ I × J :

∑
i∈I

∑
j∈J

wkdij − µ(3.34)
ki − µ(3.35)

kj

−rd(k)µ
(3.37)
mij − so(k)µ

(3.36)
nji

}
− µ(3.33)

k

This leads to a O(|K||I||J |) complexity for solving all PPZ
k pricing problems.

3.5.3 Initial Columns

Initial columns are generated by solving two independent Generalized Assignment Problems

(GAPs). Each GAP provides feasible assignments on an inbound (outbound) side of the cross-

dock. Whenever the assignments, xmi and ynj are generated, we use that information to calculate

the path based variables as pkij = xo(k)iyd(k)j . Moreover, the algorithm starts with a few zkij

variables that satisfy: |i − j| ≤ 1. The rest of these variables is generated using the third pricing

problem.

3.5.4 Termination Criterion

A valid lower bound v(LB) on the master problem MP can be obtained as seen in Amor et al.

[6], and then be used in a termination criterion. Such a valid lower bound is calculated iteratively

via solving relaxations of the RMP . At each CG iteration, whenever we price out new variables

or columns from the pricing problems, PPX
i , PP Y

j and PPZ
k , their incorporation will decrease the

current optimal value associated with the RMP , i.e., v(RMP t). For simplicity, we restate PPX
i ,

PP Y
j and PPZ

k as PPi, PPj and PPk, respectively. The valid lower bound for a given iteration t

can be stated as follows:

v(LBt) = v(RMP t) +
∑
i∈I

v(PP t
i)− µ

(3.38)
i +

∑
j∈J

v(PP t
j)− µ

(3.39)
j +

∑
k∈K

v(PP t
k)− µ

(3.33)
k

The dual variables µ(3.38)
i , µ(3.39)

j and µ(3.33)
k are associated with the convexity constraints (3.38),

(3.39) and (3.33), respectively. Hence, they are singled out.

Finally, we use this computation to terminate CG whenever: v(LBt)− v(RMP t) ≤ 10−6

3.6 Computational Experiments
In this section, we present the results of computational experiments performed to assess the

behavior of the MIP formulations, combinatorial, linear and Lagrangean relaxations for the CDAP.

49

All algorithms were coded in C and run on an Intel Xeon E3 1240 V2 processor with 3.40 GHz

and 24GB of RAM memory under a Windows environment. The MIP formulations and CG al-

gorithm were implemented using the callable library of CPLEX 12.6.2. We first explain the data

set generation, then the tuning of the parameters and finally, the computational comparisons and

analysis.

3.6.1 Data Set Generation

We use the benchmark data set introduced by Guignard et al. [28] for the CDAP with only

transfer times, and then, we extend it to include unloading/loading times.

Guignard et al. [28] generate the flow matrix with integer numbers between [10, 50] until 25% of

the matrix is full. The distance (or travel time) matrix is generated within the interval [τ, τ + I − 1],

where τ = 8 indicates the distance between two doors facing each other, and then an increment of

1 unit is added for the next closest door. All instances are generated with |I| = |J | for a rectangular

shaped cross-dock. Capacities are identical and calculated by dividing the total flow coming from

all origins by the total number of inbound doors, and then adding some capacity slackness. A

total of 50 instances are considered from the possible combinations of these parameters and are

denoted as 00x00S00. The first position refers to the number of origins/destinations, taken in

{8, 9, 10, 11, 12, 15, 20}. The second position refers to the number of inbound/outbound doors,

taken in {4, 5, 6, 7, 10}. The third position refers to the capacity slackness which are drawn from

{5%, 10%, 15%,%20,%30}.

We generate the additional parameters of unloading/loading times as follows. Using a private

communication with a large cross-dock company1, and based on their data, we find out that it

is generally assumed that the total handling time of shipments inside the cross-dock is divided

approximately into 22% for unloading, %43 for traveling, and 35% for loading. We observe that

traveling time takes the largest portion of handling time inside the cross-dock, while loading is 1.5

to 2 times longer than unloading as mentioned in Zhang et al. [61]. As mentioned in Bartholdi and

Hackman [9], loading is more difficult than unloading as the loader employee has to make sure

the truck is fully packed and that usually requires double handling. Therefore, using a uniform

distribution, we generate the unloading and loading times with the above distribution with respect

1The company does not want to be identified

50

to the previously generated traveling time matrix. That is for i ∈ I , ui = 50%RANDOM[τ, τ+I−3]

where about 50% ≈ 22
43

100, and for j ∈ J , `j = 80%RANDOM[τ, τ + I − 3] where 80% ≈ 35
43

100.

The expression τ+I−3 was obtained after some fine tuning so that the 20%, 34%, 35% percentages

are observed at optimal solution values.

3.6.2 Tuning and Termination Criteria of the Algorithms

The following parameters were fine tuned with preliminary experiments so as to offer the best

compromise between the quality of the solutions and computational times. For the MIP formu-

lations, we use the deterministic parallel branch-and-cut algorithm of CPLEX with 6 threads and

the central processing unit (CPU) time limit was set to 7,200 seconds (i.e., 2 hours). The remain-

ing CPLEX parameters were kept to their default value. For the standard CDAP, the sub-gradient

method was implemented as explained in Nassief et al. [42], reporting only lower bounds and CPU

times. For the CDAP with unloading/loading times, the LR was adapted to incorporate the addi-

tional linear terms and the subgradient method was also used to solve the associated Lagrangean

dual problem. The maximum number of iterations was set to 300,000, the step length parameter ε

was multiplied by 0.9 every 2,000 consecutive iterations without improvement of the lower bound

and reset to 2 whenever ε < 10−7.

3.6.3 Comparisons of Formulations and Relaxations

In the following experiments, we compare the results obtained with the MIP formulations, the

combinatorial relaxation, and lower bounds obtained by CG and LR. The detailed and summarized

results of these comparisons are given in Tables 3.1 and 3.2, respectively, for the CDAP with

unloading/loading times, and in Tables 3.3 and 3.4, respectively, for the standard CDAP. In both

tables, the first column gives the name of the instance. Under each formulation, we report its %LP

deviation with the respect to the optimal solution, the remaining optimality %gap when terminating,

the number of explored branch and bound (B&B) nodes, and the CPU time in seconds. The LP

deviation is calculated as %LP = 100(OPT −LP)/(OPT), where OPT is the optimal value and

LP is the optimal solution for the LP relaxation of each formulation. For P1 and P2, we show

the LP deviation with and without the valid inequalities (3.13) and (3.14), that is %LP ′ and %LP ,

respectively. The combinatorial bounds are obtained in less than a second for all instances, and

so we report only on the quality of their bounds. For the LR, we report the deviation of the best

51

obtained lower bound and CPU time after termination. For theDC ′ formulation, we report its %LP

using CG algorithm and the CPU time. Finally, we use P1 and P2 instead of P1′ and P2′ to obtain

optimal solutions in CPLEX as the former outperform the latter with respect to the required CPU

time and remaining %gap for unsolved instances.

Table 3.1: Computational Comparisons - CDAP

Instances Path-based (P1) Path-based (P2) Flow-based (F1) COMB LR’ DC’

%LP %LP’ %gap B&B CPU %LP %LP’ %gap B&B CPU %LP %gap B&B CPU %LB %LB CPU %LB CPU

8x4S5 3.12 1.56 0.00 42 0.20 3.12 1.56 0.00 0 0.07 3.12 0.00 0 0.07 5.20 1.50 28.58 1.14 0.15

8x4S10 2.95 1.53 0.00 100 0.10 2.95 1.53 0.00 89 0.13 2.95 0.00 172 0.14 4.08 3.22 24.76 1.32 0.14

8x4S15 3.11 1.73 0.00 63 0.11 3.11 1.73 0.00 0 0.09 3.11 0.00 0 0.11 5.92 4.86 27.34 1.25 0.14

8x4S20 2.77 1.27 0.00 0 0.07 2.77 1.27 0.00 0 0.12 2.77 0.00 0 0.12 4.68 7.15 26.05 0.87 0.09

8x4S30 2.39 1.17 0.00 127 0.21 2.39 1.17 0.00 74 0.11 2.39 0.00 0 0.11 6.04 11.30 26.46 1.05 0.11

9x4S5 3.36 1.65 0.00 187 0.17 3.36 1.65 0.00 116 0.12 3.36 0.00 0 0.09 8.14 2.32 28.39 1.45 0.16

9x4S10 3.35 1.63 0.00 126 0.13 3.35 1.63 0.00 156 0.09 3.35 0.00 0 0.23 7.40 4.36 27.91 1.52 0.12

9x4S15 3.33 1.62 0.00 107 0.09 3.33 1.62 0.00 64 0.08 3.33 0.00 66 0.10 5.71 6.90 28.29 1.36 0.11

9x4S20 3.13 1.58 0.00 57 0.09 3.13 1.58 0.00 0 0.04 3.13 0.00 128 0.11 3.53 9.78 29.58 1.27 0.11

9x4S30 3.34 1.52 0.00 100 0.11 3.34 1.52 0.00 92 0.08 3.34 0.00 114 0.10 4.85 14.30 30.83 1.48 0.12

10x4S5 3.92 2.89 0.00 399 0.22 3.92 2.89 0.00 417 0.26 3.92 0.00 1,411 0.26 5.14 4.15 33.10 2.82 0.18

10x4S10 2.52 1.59 0.00 219 0.14 2.52 1.59 0.00 160 0.12 2.52 0.00 350 0.16 5.77 4.28 34.25 1.58 0.17

10x4S15 2.53 1.60 0.00 133 0.15 2.53 1.60 0.00 249 0.20 2.53 0.00 327 0.13 6.49 7.28 37.56 1.54 0.13

10x4S20 2.54 1.64 0.00 276 0.13 2.54 1.64 0.00 185 0.13 2.54 0.00 405 0.16 5.66 9.75 33.89 1.60 0.16

10x4S30 1.50 0.91 0.00 0 0.06 1.50 0.91 0.00 52 0.08 1.50 0.00 161 0.18 5.12 13.13 36.54 0.88 0.15

10x5S5 4.24 2.87 0.00 750 0.45 4.24 2.87 0.00 519 0.39 4.24 0.00 1,304 0.78 11.13 3.14 39.64 2.60 0.19

10x5S10 3.54 2.29 0.00 638 0.31 3.54 2.29 0.00 619 0.28 3.54 0.00 1,414 0.54 8.84 4.89 40.67 2.06 0.18

10x5S15 3.04 1.92 0.00 502 0.36 3.04 1.92 0.00 508 0.28 3.04 0.00 873 0.47 10.56 5.07 42.11 1.77 0.21

10x5S20 2.97 1.88 0.00 194 0.29 2.97 1.88 0.00 183 0.21 2.97 0.00 648 0.39 9.58 7.20 42.83 1.43 0.22

10x5S30 3.15 2.21 0.00 460 0.30 3.15 2.21 0.00 530 0.27 3.15 0.00 1,531 0.53 8.94 10.90 42.16 1.95 0.23

11x5S5 4.88 3.37 0.00 1,911 0.88 4.88 3.37 0.00 2,162 0.75 4.88 0.00 1,701 0.95 8.60 4.02 46.88 3.11 0.35

11x5S10 3.59 2.07 0.00 552 0.37 3.59 2.07 0.00 822 0.41 3.59 0.00 3,458 1.22 10.45 5.00 47.92 1.91 0.32

11x5S15 3.36 2.13 0.00 436 0.36 3.36 2.13 0.00 760 0.42 3.36 0.00 3,308 1.26 9.07 7.30 47.11 1.99 0.23

11x5S20 3.21 2.05 0.00 394 0.28 3.21 2.05 0.00 387 0.25 3.21 0.00 3,360 1.41 10.90 8.11 49.84 1.83 0.28

11x5S30 2.87 1.83 0.00 459 0.33 2.87 1.83 0.00 302 0.44 2.87 0.00 1,404 0.57 6.37 12.33 59.85 1.77 0.28

The CDAP with Unloading/Loading Times

In terms of MIP formulations, the computational experiments in Tables 3.1 and 3.2 show that

both path-based formulations P1 and P2, and the flow-based formulation F1 are able to obtain

the optimal solutions of 45 out of 50 instances within the time limit of 2 hours. For the remaining

52

Table 3.2: Computational Comparisons - CDAP

Instances Path-based (P1) Path-based (P2) Flow-based (F1) COMB LR’ DC’

%LP %LP’ %gap B&B CPU %LP %LP’ %gap B&B CPU %LP %gap B&B CPU %LB %LB CPU %LB CPU

12x5S5 3.81 2.53 0.00 876 0.81 3.81 2.53 0.00 711 0.58 3.81 0.00 1,084 0.80 7.97 3.26 65.46 2.12 0.40

12x5S10 3.15 2.02 0.00 878 0.62 3.15 2.02 0.00 956 0.61 3.15 0.00 3,027 1.31 7.26 5.44 65.96 1.96 0.34

12x5S15 3.14 2.10 0.00 697 0.57 3.14 2.10 0.00 770 0.63 3.14 0.00 1,754 0.87 7.46 6.74 66.51 1.98 0.33

12x5S20 3.20 2.28 0.00 1,301 0.78 3.20 2.28 0.00 1,369 0.65 3.20 0.00 5,585 2.04 7.46 8.33 70.18 2.14 0.33

12x5S30 3.18 2.36 0.00 4,874 2.52 3.18 2.36 0.00 2,989 1.34 3.18 0.00 3,076 1.33 6.67 12.56 75.20 2.28 0.36

12x6S5 5.92 4.50 0.00 5,298 4.19 5.92 4.50 0.00 3,863 2.86 5.92 0.00 2,525 2.09 12.09 4.54 72.47 4.03 0.97

12x6S10 4.36 2.82 0.00 1,704 1.55 4.36 2.82 0.00 2,865 1.75 4.36 0.00 3,227 2.11 10.15 4.97 75.19 2.48 0.64

12x6S15 4.46 3.02 0.00 1,845 1.51 4.46 3.02 0.00 1,883 1.33 4.46 0.00 2,844 2.25 8.49 7.14 74.56 2.63 0.61

12x6S20 3.93 2.58 0.00 3,643 2.36 3.93 2.58 0.00 3,993 2.21 3.93 0.00 4,441 3.02 12.66 8.17 71.36 2.36 0.50

12x6S30 3.83 2.70 0.00 5,288 2.59 3.83 2.70 0.00 2,902 1.62 3.83 0.00 7,012 3.51 8.73 11.75 70.89 2.48 0.54

15x6S5 4.18 2.57 0.00 24,105 29.36 4.18 2.57 0.00 18,627 18.69 4.18 0.00 57,844 52.27 15.17 4.24 99.75 2.53 1.79

15x6S10 4.10 2.53 0.00 9,397 10.30 4.10 2.53 0.00 9,903 8.98 4.10 0.00 94,988 61.39 10.14 6.51 98.04 2.48 1.70

15x6S15 3.86 2.52 0.00 19,195 20.59 3.86 2.52 0.00 18,192 16.48 3.86 0.00 135,875 81.87 12.12 7.61 100.94 2.48 1.51

15x6S20 3.92 2.66 0.00 38,414 33.57 3.92 2.66 0.00 22,273 16.87 3.92 0.00 134,754 75.27 8.31 9.72 101.89 2.63 1.52

15x6S30 3.45 2.21 0.00 13,203 8.61 3.45 2.21 0.00 10,972 6.43 3.45 0.00 99,867 64.19 12.16 12.91 105.19 2.20 1.44

15x7S5 5.77 3.58 0.00 29,282 67.59 5.77 3.58 0.00 47,041 69.74 5.77 0.00 274,350 249.63 19.44 4.34 110.26 3.40 2.76

15x7S10 5.51 3.33 0.00 31,911 52.83 5.51 3.33 0.00 19,626 29.84 5.51 0.00 481,906 387.24 17.41 5.29 115.07 3.03 3.17

15x7S15 5.96 3.56 0.00 16,870 27.98 5.96 3.56 0.00 18,970 24.99 5.96 0.00 275,122 244.73 13.88 7.19 114.69 3.26 3.14

15x7S20 5.23 3.30 0.00 35,980 59.75 5.23 3.30 0.00 40,073 58.00 5.23 0.00 361,863 300.70 10.42 9.09 115.56 3.06 2.65

15x7S30 4.21 2.62 0.00 61,949 72.24 4.21 2.62 0.00 63,788 60.13 4.21 0.00 454,743 337.91 12.11 10.25 122.10 2.51 2.14

20x10S5 7.96 5.41 2.19 329,564 time 7.96 5.41 2.56 457,147 time 7.96 2.57 982,088 time 19.37 6.19 288.61 4.99 39.59

20x10S10 6.81 4.63 2.15 411,539 time 6.81 4.63 1.51 438,959 time 6.81 2.14 1,054,134 time 25.31 6.00 285.62 3.98 41.84

20x10S15 6.90 4.77 3.29 455,900 time 6.90 4.77 3.56 521,212 time 6.90 3.74 1,184,303 time 22.13 6.72 293.04 4.43 38.33

20x10S20 7.04 5.00 3.65 460,859 time 7.04 5.00 2.84 473,477 time 7.04 3.67 1,276,100 time 19.01 8.28 293.18 4.64 35.50

20x10S30 7.47 5.05 2.83 474,231 time 7.47 5.05 3.15 547,790 time 7.47 3.45 1,416,406 time 19.90 9.44 303.20 4.78 34.36

Average 4.00 2.54 0.28 48,941 728.12 4.00 2.54 0.27 54,776 726.58 4.00 0.31 166,821 757.69 10.08 7.18 83.35 2.33 4.42

53

instances where the optimal solution is not found within 2 hours, the tightest remaining average

%gap of 2.72 is obtained by P2 as opposed to 2.82 and 3.11 in P1 and F1, respectively. While

both path-based formulations have the same theoretical bounds in terms of their LP relaxations, P2,

on average, slightly outperforms P1 in terms of required CPU time in the largest set of instances.

In terms of relaxations, we demonstrate in this set of instances the dominance of this new

configuration-based formulation DC ′ over all other formulations, P2, and F1 that we introduce in

this paper, as well as the P1 of Nassief et al. [42]. We highlight that while both DC ′ and LR have

the same theoretical bounds as shown in Section 3.4, the CG algorithm obtains strictly better lower

bounds as compared to LR given the slow convergence of the subgradient method. Moreover, as

the capacities looses for each block of instances, CG maintains its dominance by far as opposed to

the subgradient method.

The Standard CDAP

In terms of MIP formulations, the computational experiments in Tables 3.3 and 3.4 show also

that both path-based formulations P1 and P2, and the flow-based formulation F1 are able to obtain

the optimal solutions of 45 out of 50 instances within the time limit of 2 hours. For the remaining

instances where the optimal solution is not found within 2 hours, the tightest remaining average

%gap of 4.68, this time, is obtained by P1 as opposed to 5.58 and 7.74 in P2 and F1, respectively.

Contrary to the CDAP with unloading/loading times, formulation P1 seems to be slightly better

than P2 in terms of the CPU time and remaining %gap.

In terms of relaxations, we demonstrate in this set of instances, again, the dominance of this

new configuration-based formulationDC ′ over all other formulations. We highlight that while both

DC ′ and LR have the same theoretical bounds as shown in Section 3.4, CG algorithm outperforms

the LR in terms of the quality of the bounds as well as the CPU time. However, we observe from

Tables 3.3 and 3.4 that the subgradient method has a more stable convergence regardless of the

capacity slackness, as opposed to the case in Tables 3.1 and 3.2. Moreover, we notice that for

the standard CDAP as seen in Tables 3.3 and 3.4, all %LP of P1, P2, and F1 coincide with the

combinatorial bounds even though theoretically they are better.

3.6.4 Sensitivity Analysis

In these experiments, we would like to highlight the impact that the parameter τ used in the

54

Table 3.3: Computational Comparisons - Standard CDAP

Instances Path-based (P1) Path-based (P2) Flow-based (F1) COMB LR’ DC’

%LP %LP’ %gap B&B CPU %LP %LP’ %gap B&B CPU %LP %gap B&B CPU %LB %LB CPU %LB CPU

8x4S5 6.76 3.26 0.00 0 0.08 6.76 3.26 0.00 0 0.07 6.76 0.00 0 0.06 6.76 3.51 4.62 2.80 0.20

8x4S10 6.67 3.39 0.00 45 0.12 6.67 3.39 0.00 0 0.10 6.67 0.00 229 0.26 6.67 3.63 5.19 3.10 0.16

8x4S15 5.63 2.53 0.00 0 0.08 5.63 2.53 0.00 0 0.13 5.63 0.00 0 0.05 5.63 2.87 5.38 2.24 0.11

8x4S20 5.15 2.24 0.00 0 0.18 5.15 2.24 0.00 19 0.08 5.15 0.00 0 0.14 5.15 2.49 5.47 1.97 0.09

8x4S30 4.72 2.16 0.00 61 0.08 4.72 2.16 0.00 48 0.06 4.72 0.00 0 0.11 4.72 3.62 7.12 2.16 0.07

9x4S5 7.66 3.71 0.00 100 0.13 7.66 3.71 0.00 0 0.08 7.66 0.00 0 0.18 7.66 4.19 6.45 3.44 0.14

9x4S10 7.35 3.69 0.00 77 0.09 7.35 3.69 0.00 94 0.12 7.35 0.00 235 0.09 7.35 4.17 6.16 3.47 0.13

9x4S15 6.56 3.16 0.00 75 0.21 6.56 3.16 0.00 0 0.13 6.56 0.00 0 0.05 6.56 3.54 14.04 3.05 0.14

9x4S20 5.95 2.75 0.00 0 0.09 5.95 2.75 0.00 58 0.09 5.95 0.00 132 0.08 5.95 3.34 14.69 2.72 0.10

9x4S30 5.42 2.63 0.00 0 0.04 5.42 2.63 0.00 75 0.09 5.42 0.00 222 0.08 5.42 4.41 11.32 2.63 0.07

10x4S5 8.56 6.31 0.00 384 0.16 8.56 6.31 0.00 304 0.16 8.56 0.00 1,176 0.30 8.56 6.69 9.90 6.27 0.15

10x4S10 5.77 3.67 0.00 253 0.18 5.77 3.67 0.00 179 0.12 5.77 0.00 0 0.09 5.77 4.62 10.16 3.67 0.12

10x4S15 5.34 3.45 0.00 164 0.12 5.34 3.45 0.00 71 0.10 5.34 0.00 856 0.21 5.34 4.56 12.17 3.45 0.10

10x4S20 4.90 3.19 0.00 230 0.10 4.90 3.19 0.00 131 0.18 4.90 0.00 763 0.17 4.90 4.49 12.61 3.19 0.11

10x4S30 3.76 2.35 0.00 0 0.06 3.76 2.35 0.00 0 0.06 3.76 0.00 417 0.11 3.76 3.66 13.40 2.35 0.08

10x5S5 9.79 6.48 0.00 521 0.29 9.79 6.48 0.00 510 0.29 9.79 0.00 1,242 0.67 9.79 7.20 9.24 6.32 0.17

10x5S10 7.84 4.78 0.00 515 0.24 7.84 4.78 0.00 387 0.25 7.84 0.00 1,377 0.49 7.84 5.71 11.96 4.66 0.14

10x5S15 6.71 3.87 0.00 346 0.26 6.71 3.87 0.00 334 0.22 6.71 0.00 1,530 0.46 6.71 5.18 12.18 3.76 0.15

10x5S20 5.90 3.31 0.00 77 0.19 5.90 3.31 0.00 164 0.18 5.90 0.00 1,382 0.52 5.90 4.56 12.86 3.18 0.13

10x5S30 5.39 3.17 0.00 350 0.20 5.39 3.17 0.00 414 0.20 5.39 0.00 1,937 0.59 5.39 4.32 12.69 3.17 0.17

11x5S5 10.80 7.33 0.00 1,440 0.68 10.80 7.33 0.00 1,657 0.54 10.80 0.00 2,613 1.15 10.80 8.36 14.91 6.96 0.22

11x5S10 7.98 4.77 0.00 840 0.35 7.98 4.77 0.00 663 0.36 7.98 0.00 4,156 1.17 7.98 6.02 16.51 4.68 0.22

11x5S15 7.52 4.59 0.00 529 0.28 7.52 4.59 0.00 493 0.23 7.52 0.00 5,388 1.60 7.52 5.97 14.09 4.55 0.20

11x5S20 6.33 3.61 0.00 226 0.23 6.33 3.61 0.00 82 0.27 6.33 0.00 3,435 1.04 6.33 5.00 17.60 3.59 0.19

11x5S30 6.09 3.76 0.00 251 0.22 6.09 3.76 0.00 334 0.23 6.09 0.00 4,462 1.40 6.09 5.32 19.48 3.76 0.21

55

Table 3.4: Computational Comparisons - Standard CDAP

Instances Path-based (P1) Path-based (P2) Flow-based (F1) COMB LR’ DC’

%LP %LP’ %gap B&B CPU %LP %LP’ %gap B&B CPU %LP %gap B&B CPU %LB %LB CPU %LB CPU

12x5S5 8.23 5.28 0.00 601 0.60 8.23 5.28 0.00 494 0.49 8.23 0.00 2,133 0.89 8.23 6.06 12.24 5.19 0.36

12x5S10 7.14 4.45 0.00 296 0.33 7.14 4.45 0.00 395 0.34 7.14 0.00 3,425 1.20 7.14 5.58 15.62 4.41 0.30

12x5S15 6.69 4.21 0.00 379 0.42 6.69 4.21 0.00 352 0.36 6.69 0.00 2,122 0.58 6.69 5.44 15.31 4.17 0.27

12x5S20 6.69 4.46 0.00 708 0.49 6.69 4.46 0.00 834 0.47 6.69 0.00 3,451 0.97 6.69 5.77 18.90 4.42 0.28

12x5S30 6.50 4.61 0.00 1,437 0.64 6.50 4.61 0.00 1,468 0.64 6.50 0.00 6,455 2.15 6.50 6.29 17.26 4.61 0.24

12x6S5 13.03 9.53 0.00 4,663 3.47 13.03 9.53 0.00 5,553 3.41 13.03 0.00 15,850 8.26 13.03 10.16 15.63 9.34 0.62

12x6S10 9.41 6.06 0.00 1,395 1.01 9.41 6.06 0.00 1,214 0.88 9.41 0.00 9,452 5.04 9.41 6.57 17.72 5.99 0.44

12x6S15 8.59 5.42 0.00 1,461 1.18 8.59 5.42 0.00 873 0.89 8.59 0.00 6,413 3.25 8.59 6.36 19.65 5.41 0.47

12x6S20 8.15 5.19 0.00 1,522 1.28 8.15 5.19 0.00 1,073 0.85 8.15 0.00 15,478 7.06 8.15 6.33 23.16 5.18 0.38

12x6S30 7.39 4.82 0.00 2,120 1.20 7.39 4.82 0.00 986 0.60 7.39 0.00 10,558 4.39 7.39 6.51 29.26 4.81 0.43

15x6S5 9.93 6.14 0.00 7,304 7.85 9.93 6.14 0.00 8,525 7.03 9.93 0.00 116,161 83.31 9.93 7.04 30.87 6.10 1.73

15x6S10 9.12 5.65 0.00 7,375 7.30 9.12 5.65 0.00 4,628 4.41 9.12 0.00 232,918 135.83 9.12 6.66 32.87 5.64 1.49

15x6S15 8.87 5.66 0.00 11,507 11.25 8.87 5.66 0.00 5,777 5.30 8.87 0.00 175,697 103.78 8.87 6.97 35.63 5.66 1.37

15x6S20 8.57 5.61 0.00 9,956 8.81 8.57 5.61 0.00 10,384 7.54 8.57 0.00 219,771 109.26 8.57 7.19 29.57 5.61 1.40

15x6S30 7.54 4.98 0.00 5,262 4.91 7.54 4.98 0.00 9,127 5.93 7.54 0.00 154,866 73.06 7.54 6.77 31.36 4.98 1.37

15x7S5 13.70 8.51 0.00 25,022 43.08 13.70 8.51 0.00 61,186 84.45 13.70 0.00 411,518 350.38 13.70 9.51 21.54 8.30 2.49

15x7S10 12.28 7.44 0.00 23,452 34.56 12.28 7.44 0.00 24,173 28.17 12.28 0.00 1,719,101 1003.13 12.28 8.62 24.28 7.35 2.45

15x7S15 11.36 6.80 0.00 17,484 20.57 11.36 6.80 0.00 14,603 17.77 11.36 0.00 1,700,274 1003.46 11.36 8.13 25.45 6.77 2.30

15x7S20 10.49 6.19 0.00 11,166 13.35 10.49 6.19 0.00 7,781 9.00 10.49 0.00 603,824 396.60 10.49 7.81 34.73 6.17 2.00

15x7S30 9.83 6.06 0.00 11,864 15.06 9.83 6.06 0.00 16,646 16.63 9.83 0.00 597,416 369.92 9.83 7.90 42.17 6.05 1.95

20x10S5 17.98 12.16 2.82 429,752 time 17.98 12.16 6.71 522,011 time 17.98 7.39 986,768 time 17.98 12.96 63.76 11.99 37.15

20x10S10 16.02 10.52 2.69 476,365 time 16.02 10.52 2.04 494,121 time 16.02 6.56 1,185,087 time 16.02 11.43 69.21 10.31 32.29

20x10S15 15.73 10.61 7.23 440,472 time 15.73 10.61 5.65 419,329 time 15.73 7.21 1,428,785 time 15.73 11.13 79.04 10.53 33.95

20x10S20 15.18 10.41 5.61 407,833 time 15.18 10.41 7.65 446,603 time 15.18 9.30 1,409,018 time 15.18 11.76 82.69 10.36 30.97

20x10S30 13.98 9.73 5.07 504,245 time 13.98 9.73 5.87 497,148 time 13.98 8.22 1,846,914 time 13.98 11.35 98.46 9.71 29.90

Average 8.54 5.29 0.47 48,203 723.64 8.54 5.29 0.56 51,226 723.99 8.54 0.77 257,900 793.47 8.54 6.35 23.33 5.20 3.80

56

generation of travel times (or distances) tij has in the perceived quality of the obtained LP bounds.

We note that due to the fact that τ appears in every single tij and that each commodity is routed

exactly via one pair of doors (i, j), the constant term τ |K| can be removed from the objective

function. That is, the set of optimal solutions remain the same regardless of the τ value used in the

experiments. As mentioned earlier, this data was generated on the assumption that a direct distance

between two doors is assumed τ = 8 as in Guignard et al. [28]. However, changing this parameter

and updating the matrix accordingly, will provide different %LP deviations while maintaining the

same difficulty for solving CDAP. In Tables 3.5 and 3.6, we assign different values to τ in the

interval [0, 1, 000] using P1 and P1’ for the both CDAPs.

Whenever τ = 8, the %LPs clearly match the ones we reported in previous tables. However,

these deviations significantly decrease(increase) as τ increases(decrease). It is thus important to

keep in mind the impact of the parameter τ when computing the %LP deviations and using them to

determine how tight or good an MIP formulation might be for the CDAPs.

Table 3.5: Impact of Travel Times on %LP - CDAP

%LP with different τ values %LP’ with different τ values

instances 0 1 8 20 50 100 1000 0 1 8 20 50 100 1000

8x4S5 60.05 18.32 3.12 1.29 0.52 0.26 0.03 30.05 9.17 1.56 0.65 0.26 0.13 0.01

8x4S10 36.59 15.10 2.95 1.24 0.51 0.26 0.03 19.00 7.84 1.53 0.64 0.26 0.13 0.01

8x4S15 52.49 17.57 3.11 1.29 0.52 0.26 0.03 29.18 9.77 1.73 0.72 0.29 0.15 0.01

8x4S20 59.10 16.66 2.77 1.14 0.46 0.23 0.02 27.16 7.66 1.27 0.52 0.21 0.11 0.01

8x4S30 39.55 13.43 2.39 0.99 0.40 0.20 0.02 19.43 6.60 1.17 0.49 0.20 0.10 0.01

Average 49.56 16.22 2.87 1.19 0.48 0.24 0.03 24.96 8.21 1.45 0.60 0.24 0.12 0.01

57

Table 3.6: Impact of Travel Times on %LP - Standard CDAP

%LP with different τ values %LP’ with different τ values

instances 0 1 8 20 50 100 1000 0 1 8 20 50 100 1000

8x4S5 100 36.73 6.76 2.82 1.15 0.58 0.06 48.16 17.69 3.26 1.36 0.55 0.28 0.03

8x4S10 100 36.39 6.67 2.78 1.13 0.57 0.06 50.81 18.49 3.39 1.41 0.57 0.29 0.03

8x4S15 100 32.32 5.63 2.33 0.95 0.48 0.05 44.95 14.53 2.53 1.05 0.43 0.21 0.02

8x4S20 100 30.29 5.15 2.13 0.86 0.43 0.04 43.39 13.14 2.24 0.92 0.37 0.19 0.02

8x4S30 100 28.38 4.72 1.94 0.79 0.39 0.04 45.78 12.99 2.16 0.89 0.36 0.18 0.02

Average 100 32.82 5.79 2.40 0.98 0.49 0.05 46.62 15.37 2.72 1.13 0.46 0.23 0.02

3.7 Conclusions
In this paper we studied cross-dock door assignment problems with and without loading/unloading

times. We presented two new mathematical programming formulations which were analytically

and computationally compared with existing ones. In particular, we compared them with respect to

the quality of their linear programming relaxation bounds and with respect to Lagrangean bounds

presented in Nassief et al. [42]. We showed than the LP relaxation of the configuration based

formulation is equivalent to the Lagrangean Dual problem of the LR given in Nassief et al. [42].

However, the results of computational experiments indicate that, when using a column generation

algorithm instead of a subgradient optimization algorithm, better bounds can be obtained in prac-

tice. This behavior is mainly attributed to the slow convergence of the subgradient algorithm as

compared to a CG for this particular class of problems. We also pointed out the impact of param-

eters used in the generation of travel times (or distances) between doors and the perceived quality

of the LP bounds obtained with the formulations.

58

Chapter 4

The Container Scheduling and Cross-dock

Door Selection Problem

In this paper, we introduce an integrated scheduling and selection problem that is motivated

by a cross-docking application. The daily decisions of scheduling containers and selecting dock

doors to unload these containers are carried out simultaneously. The objective is to minimize the

total weighted tardiness cost resulting from scheduling containers plus the total labor cost resulting

from selecting dock doors to unload containers. We introduce two integer programming models for

static and dynamic environments. Computational experiments show that our new static model sig-

nificantly outperforms the best existing one, and the dynamic one is able to solve real life instances

optimally in a reasonable time.

The following paper was submitted to the International Journal of Production Research in

March 2017. Nassief et al. [43].

59

4.1 Introduction
Cross-docking now plays a vital distribution role in supply chain networks around the world. It

is a modern logistics strategy that has been increasingly and successfully adopted by companies in

North America, Europe and Asia. Due to the increasing demand for a wide variety of manufactured

goods, storage and order picking functions of warehouses are nearly eliminated in the delivery

chain. For examples of successful cross-docking implementations, the interested reader is referred

to Forger [25], Kinnear [31], Witt [60], Chen and Song [16], and Napolitano [41].

Cross-docks are designed to facilitate the rapid transshipment of highly and consistently de-

manded materials, resulting in better service level and quicker response across the supply chain at

reduced cost. On a daily basis, incoming and outgoing trucks arrive at cross-dock facilities and

are intelligently assigned to doors. Goods are unloaded from the incoming vehicles, consolidated

in a staging area according to their destinations, and then loaded onto outgoing trailers, with only

a few hours storage in between. Daily operational decisions are made on the fly. This includes

assigning and sequencing incoming and outgoing trailers over doors, selecting dock doors for un-

loading/loading, assigning workforces, and even routing trucks that pick up and deliver the vast

array of goods. While each daily operational decision plays an important managerial role indepen-

dently, the interaction between these decisions is crucial to effectively coordinate the incoming and

outgoing flows. Assigning trucks to dock doors is a classical cross-dock door assignment problem,

and is usually carried out over a midterm planning horizon where the origins and destinations of

the trucks are assigned to inbound and outbound doors, respectively, as seen in Zhu et al. [62],

Guignard et al. [28] and Nassief et al. [42]. However, in a short term planning horizon, there are

more incoming and outgoing trucks than the number of available doors, and hence, sequencing and

assignment decisions are integrated to provide daily schedules, as seen in Miao et al. [40], Boysen

et al. [11] and Gelareh et al. [26]. The selection of dock doors to unload or load trucks in a given

day or shift has an impact on workforce (i.e., labor cost), and has also been integrated with other

decisions such as the assignment of trucks to dock doors as seen in Rosales et al. [48]. Other inte-

grated decisions such as the assignment and routing of trucks are reported in the literature as seen

in Enderer et al. [23]. The more these interdependent decisions are made simultaneously, the more

added value is achieved in terms of minimizing the total operational cost. This may increase the

60

complexity of modeling, so care should be taken to avoid optimizations goals that would result in

little benefit.

In this paper, we start by presenting a fundamental container scheduling problem that involves

the assignment and sequencing of arriving containers over inbound dock doors with the objective

of minimizing the total weighted tardiness. Then, we introduce a new integrated cross-docking

problem of scheduling incoming containers and selecting dock doors to unload these containers in

order to minimize the total weighted tardiness and labor costs. Both problems, scheduling and the

integration of dock door selection, are driven from our observations on a cross-dock facility in the

USA. We study this problem and provide models for both static and dynamic environments where

the decisions maker is able to plan over several shifts/days.

Two to three times a week, vessels carrying shipping containers from different overseas man-

ufacturers arrive at a coastal port. On weekdays, tractor trucks arrive at the port, pick up a certain

amount of containers and deliver them to the cross-dock facility’s yard, and return other empty ones

(i.e., empties) to the port. Each container must be transported to the cross-dock facility, parked in

its receiving yard, scheduled to arrive at a selected strip door, unloaded by one worker, then after

being emptied, returned to the port before its due date to avoid penalty.

The quantity of arriving full containers at the port terminal ranges from hundreds to thousands a

week, while the quantity of containers arriving at the receiving yard on a given day are about a hun-

dred. The cross-dock facility has an I-shaped layout with a 150 dock doors for unloading/loading.

The company can operate a maximum of two shifts a day, each of which is a net of eight working

hours. Yet, there are a few thousand late containers every year that costs the company a great deal.

While tardiness is costly, labor cost is also another concern. Intelligent selection of incoming

dock doors can significantly reduce labor costs. The company tends to over or under estimate

the amount of dock doors to select, which in turn, increases their labor costs. The company ends

up either paying for unneeded labor by overestimating labor need, or paying tardiness cost from

underestimating labor need.

Despite their current efforts on managing their operations, it is still challenging to handle the

large amount of daily containers over limited resources, let alone trading off between the costs re-

sulting from interdependent decisions such as scheduling and selection. Their annual cost resulting

from both scheduling and selection is in the six figures. Therefore, providing a scheduling and se-

61

lection decision tool is essential to saving a portion of the annual operational cost, not to mention,

the insights this tool can provide on a daily basis supporting other operational decisions.

Scheduling vehicles (e.g., trucks, containers or trailers) has been studied in the context of cross-

docking in terms of scheduling over single inbound/outbound doors, multiple dock doors and in-

bound doors only. Wang and Regan [59] study the problem of scheduling incoming trailers over

inbound dock doors to reduce the time goods spend inside the cross-dock. They introduce dynamic

simulation models and solve the problem using two time-based algorithms. Rosales et al. [48] study

the problem of assigning incoming trucks to inbound dock doors and selecting dock doors for pro-

cessing incoming trucks with the objective of minimizing the operational cost. Their operational

cost consists of traveling distance and labor costs. Since one worker is allowed per dock door,

minimizing the number of dock doors helps with minimizing the labor cost. They develop a mixed-

integer programming (MIP) model that minimizes the operational cost and provides a balanced

workload to all workers in one shift for a large cross-dock in Georgetown. Chmielewski et al. [19]

present a MIP model that minimizes travel distance and solve the problem using decomposition and

column-generation approaches. The authors also obtain Pareto-optimal solutions that reduce wait-

ing time optimally. Liao et al. [35] study the problem of scheduling incoming trucks over inbound

dock doors. They present a model that focuses on the minimization of the total weighted tardiness

by simultaneously assigning and sequencing incoming trucks. The authors use simulated anneal-

ing, Tabu search, ant colony optimization, decomposition evolution, and two hybrid decomposition

evolution algorithms to solve the problem. Boysen et al. [12] consider an incoming truck schedul-

ing problem that arises in the postal industry with predetermined departures of outgoing trucks to

minimize the total lost profit resulting from unfulfilled/late shipments. They introduce a MIP model

along with decomposition procedures and simulated annealing heuristics. However, none of this

work has considered the selection of inbound dock doors simultaneously with the scheduling (i.e.,

simultaneous assignment and sequencing) decisions. Van Belle et al. [58] provide a comprehensive

review on operational problems arise in cross-docking including scheduling problems, while Boy-

sen [10] provide a detailed literature review on cross-dock scheduling problems. Other reviews on

cross-docking are provided by Agustina et al. [2], Shuib and Fatthi [53], and Buijs et al. [14]. Re-

cently, Ladier and Alpan [32] proposed a framework that highlights the gaps between the literature

and some cross-docking practices in France.

62

The container scheduling and dock door selection problems arise in other applications apart

from cross-docking. First, the fundamental container scheduling problem is equivalent to a classi-

cal parallel machine scheduling problem, where jobs get assigned and sequenced over parallel ma-

chines to minimize some performance criterion such as tardiness, earliness, lateness or completion

time (Pinedo [47]). Second, the integration of dock door selection with container scheduling has

been studied in the context of machine availability constraints with the assumption that machines

are subject to maintenance periods or unexpected breakdowns. The former is modeled determin-

istically and largely with the assumption that the predetermined maintenance periods are known

beforehand, without being part of the decision process as seen in Ma et al. [38], Lee et al. [33], and

Sanlaville and Schmidt [51]. The latter is modeled stochastically as seen in Adiri et al. [1] and Liu

and Sanlaville [36]. To the best of our knowledge, the only work that takes into account scheduling

and selection simultaneously, in a machine environment, is carried out by Cao et al. [15], Fanjul-

Peyro and Ruiz [24] and Alidaee and Li [4]. Among these studies, only Cao et al. [15] consider

the selection of machines and schedule of jobs with the objective of minimizing the total weighted

tardiness and machine setup/usage cost. The authors introduce the problem of scheduling jobs and

selecting machines to process these jobs in order to minimize the total weighted tardiness cost of

late jobs and the setup cost of using the machines. They present a network based model that solves

small size instances optimally, and a Tabu search heuristic that solves instances up to 60 jobs and

6 machines. However, they only consider a static problem of scheduling and selecting in a single

period time horizon.

The main contribution of this paper is in introducing two new integer programming (IP) models

that accommodate for static and dynamic environments of the container scheduling and dock door

selection problem (CSDS). First, although the static CSDS has been modeled before by Cao et al.

[15] in terms of machine scheduling, our newly introduced CSDS model outperforms the existing

one in terms of CPU time, branch and bound nodes, and solving larger set of instances optimally.

Second, we introduce a dynamic CSDS that takes into account scheduling containers and selecting

doors over multiple periods of time that involve shifts or days. Such a dynamic modeling reflects

real life applications of cross-docking as it provides resource planning that spans over multiple

periods instead of just one. We introduce new sets of instances, based on our observations on a

large cross-dock, with up to 100 incoming containers and 40 inbound dock doors at a given day.

63

Our static CSDS significantly outperforms the existing one, and our dynamic CSDS is able to solve

almost all the instances optimally in a reasonable time.

The rest of this paper is organized as follows: In Section 4.2, we formally define the basic

container scheduling problem and its associated IP model. In Section 4.3, we introduce the static

CSDS, present the existing MIP model by Cao et al. [15], and introduce a new IP model for the same

problem. In Section 4.4, we introduce the dynamic CSDS along with a new IP model that takes

into account scheduling containers and selecting dock doors over several shifts along the planning

time horizon. Finally, computational experiments are reported in Section 4.5, and conclusions with

future research directions are provided in Section 4.6.

4.2 The Container Scheduling Problem
In order to lay out our integrated container scheduling models, we first define formally the basic

container scheduling problem with all its mathematical notations and an existing model. Then, in

the following sections, we introduce the integration of selection decisions and notation.

Let N and K denote the sets of incoming containers and inbound doors, respectively. Let pik

denote the processing time to unload container i ∈ N at door k ∈ K, and di denote the due date of

returning empties i to the port. Each container i has a weight reflecting its importance or priority

and is denoted by wi. All containers are available at the yard for scheduling at the beginning of

the day, and hence, the ready time is always zero. The completion time is a continuous variable

denoted asCi, while tardiness Ti is an integer variable that indicates by how many hours a container

is late. The container scheduling problem is defined as the assignment and sequencing of each

incoming container over exactly one inbound dock door at a given time such that containers do not

overlap over the same dock door and the same time and the total weighted tardiness is minimized.

The weighted tardiness of each container is computed as: wiTi = wi max {Ci − di, 0}, where wi

represents the weight of container i.

Unlu and Mason [57] evaluate empirically four existing MIP models for parallel machine

scheduling problems. They demonstrate that a time index model is the best in terms of provid-

ing tight LP bounds and optimal solutions for larger instances as compared to all the other three

models. The time indexed model relies on the discretization of the time horizon into time periods

with an upper bound on the last job’s completion time. Denote by T the set of discretized time

64

horizon. For every i ∈ N , k ∈ K, and t ∈ T , we define the following decision variables

xikt =


1, if container i starts processing on inbound door k at time t

0, otherwise.

Instead of explicitly calculating the completion time of a container and its tardiness, the time in-

dexed model allows to pre-process such information, reducing the number of constraints and vari-

ables needed as well as strengthening the LP bounds. For every i ∈ N , k ∈ K, and t ∈ T , the total

weighted tardiness of a container can be stated as αikt = wi max {0, t+ pik − di}. The container

scheduling problem can be stated as:

[M0] minimize
∑
i∈N

∑
k∈K

∑
t∈T

αiktxikt (4.1)

subject to:
∑
k∈K

∑
t∈T

xikt = 1 i ∈ N (4.2)

∑
i∈N

t−1∑
h=max{0,t−pik}

xikh ≤ 1 k ∈ K, t ∈ T (4.3)

xikt ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T. (4.4)

The objective function (4.1) seeks to minimize the total weighted tardiness. Constraints (4.2)

make sure that each container is assigned exactly to one inbound dock door at a unique time.

Constraints (4.3) make sure that each door at a given time can handle at most one container. Finally,

constraints (4.4) impose binary conditions on the time indexed variables. We use this model as the

foundation to integrate the container scheduling with the dock door selection decisions in Sections

4.3 and 4.4.

4.3 The Static Container Scheduling and Dock Door Selection

Problem
In order to integrate container scheduling with dock door selection decisions, we introduce the

following notation. Let βk denote the fixed labor cost associated with dock door k. The static CSDS

problem is defined as the assignment and sequencing of each container i to exactly one inbound

dock door k at a given time t such that the containers do not overlap over the same dock door and

65

time, and dock door k is selected for processing containers, with the objective of minimizing the

total operational cost. The total operational cost consists of total weighted tardiness and labor costs,

resulting from the simultaneous scheduling and selection decisions. For every dock door k ∈ K,

we introduce the following selection decision variable

zk =


1, if inbound dock door k is selected

0, otherwise.

The static CSDS can be stated as

[M1] minimize
∑
i∈N

∑
k∈K

∑
t∈T

αiktxikt +
∑
k∈K

βkzk (4.5)

subject to:
∑
k∈K

∑
t∈T

xikt = 1 i ∈ N (4.2)

∑
i∈N

t−1∑
h=max{0,t−pik}

xikh ≤ zk k ∈ K, t ∈ T (4.6)

xikt ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (4.4)

zk ∈ {0, 1} k ∈ K. (4.7)

The objective function (4.5) seeks to minimize the total operational cost: tardiness and labor

costs. The right hand side of resource constraints (4.6) is modified by the new selection decision

variables as opposed to constraints (4.3). Finally, constraints (4.7) impose integrality conditions on

the dock door selection variables.

Alternatively, Cao et al. [15] introduce a network-based model, and define the following vari-

ables in the context of machine scheduling. Without loss of generality, we modify their notations

and model in accordance with a cross-docking context. Let x′ijk = 1 if container j immediately

follows container i on door k, 0 otherwise. Let yjk = 1 if container j is assigned to door k, 0

otherwise. Using the network-based model presented in Cao et al. [15], the static CSDS model can

thus be formulated as

[N1] minimize
∑
i∈N

wi max {0, Ci − di}+
∑
k∈K

βkzk (4.8)

subject to
∑

i∈N :i 6=j

∑
k∈K

x′ijk = 1 j ∈ N (4.9)

66

∑
i∈N :i 6=j

x′ijk = yjk j ∈ N, k ∈ K (4.10)

∑
j∈N :j 6=i

x′ijk ≤ yik i ∈ N, k ∈ K (4.11)

∑
j∈N

x′0jk ≤ zk k ∈ K (4.12)

Cj +M
(
1− x′ijk

)
≥ Ci + pjk j ∈ N, i ∈ N, k ∈ K (4.13)

x′ijk ∈ {0, 1} (i, j) ∈ N, k ∈ K (4.14)

yjk ∈ {0, 1} j ∈ N, k ∈ K (4.15)

zk ∈ {0, 1} k ∈ K (4.7)

Ci ≥ 0 i ∈ N. (4.16)

The objective (4.8) seeks to minimize the total weighted tardiness cost and the cost of selecting

doors. Constraints (4.9) ensure that each container must be processed at one machine in one posi-

tion. Constraints (4.10) state that container j should immediately follow another container on door

k if it is placed on this door. Constraints (4.11) state that if container i is processed on door k, it will

be immediately followed by at most one another container assigned to the same door. Constraints

(4.12) make sure that only one container can follow the dummy container on any selected door k.

The completion time is calculated via constraints (4.13), where big M is introduced as a very large

positive number. Constraints (4.14), (4.15),(4.7) impose binary restrictions on the variables, while

constraints (4.16) define the positive continuous range of the completion time variables.

The models M1 and N1 differ from M0 by adding decision variables of selecting dock doors to

be open or closed in the whole planning time horizon. This has an impact on trading off between

tardiness and labor cost. In M0, we assume that all dock doors are selected and available for

unloading containers, which is not the case in practice as companies tend to close some dock doors

when the flow can be managed with less labor cost. M1 is thus a generalization of M0.

Finally, one important difference between the time index model,M1, and network-based model,

N1, is that the former assumes integer values when it comes to processing times, while the latter can

take integer and real numbers for its processing times. In Section 4.5, we compare the performances

of both static CSDS models, M1 and N1, using the set of instances introduced by Cao et al. [15],

by slightly modifying their processing times to be integer. We also introduce a new larger set of

67

instances to test both models.

4.4 The Dynamic Container Scheduling and Dock Door Selec-

tion Problem
We next introduce a time indexed model for the dynamic CSDS. The dynamic model is a gener-

alization of the static one (i.e., M1) introduced in the previous section. In a dynamic time horizon,

containers get scheduled over several shifts, and dock doors get selected over several shifts too. Let

S denote the set of shifts in which the time horizon T is partitioned, and let T (s) ⊆ T denote the

set of times t ∈ T that belong to shift s. An interesting and challenging feature of the dynamic

CSDS is that, depending on the starting processing time of a container, its processing may span

more than one shift and thus, the model needs to ensure that the required shifts are selected. We

modify the variables zk to become zks to indicate whether door k is selected or not in shift s, and

similarly, βk becomes βks for the labor cost. The dynamic CSDS problem can thus be stated as

[M2] minimize
∑
i∈N

∑
k∈K

∑
t∈T

αiktxikt +
∑
k∈K

∑
s∈S

βkszks (4.17)

subject to:
∑
k∈K

∑
t∈T

xikt = 1 i ∈ N (4.2)

∑
i∈N

t−1∑
h=max{0,t−pik}

xikh ≤ zks k ∈ K, s ∈ S, t ∈ T (s)

(4.18)∑
t∈

⋃s
r=1 T (r):t+pik−1∈

⋃|S|
r=s T (r)

xikt ≤ zks i ∈ N, k ∈ K, s ∈ S

(4.19)

xikt ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (4.4)

zks ∈ {0, 1} k ∈ K, s ∈ S. (4.20)

The objective function (4.17) is a generalization of (4.5) to include the selection decisions for

each shift in the time horizon and the labor cost associated with selecting a dock door in a given

shift. Constraints (4.18) generalize constraints (4.6) to include the shifts, and the time periods

associated with each shift, T (s). We introduce constraints (4.19) to make sure that a container can

68

only be assigned to a door if selected at a given shift, and if that same door stays open throughout a

number of shifts until a container is completely processed. Finally, binary conditions are imposed

on the generalized selection variables in (4.20).

4.5 Computational Experiments
We next present the results of computational experiments performed to assess the behavior of

the static and dynamic CSDSs introduced in this paper. All models are implemented using the

callable library of CPLEX 12.7.0 with four threads. We first explain the data generation mecha-

nism of three different sets of instances. We then computationally compare the static CSDS models

introduced in this paper, M1, and the one introduced by Cao et al. [15], N1. Detailed computa-

tional experiments are then reported on the dynamic CSDS, M2, with scattered and common due

dates, respectively. Finally, a cost parametric analysis is provided to demonstrate how the objective

function trades off between both tardiness and labor costs based on the priority given to each.

4.5.1 Data Generation

The first data set (i.e., SetA) consists of six examples provided by Cao et al. [15]. The authors

generate instances with 20 containers scheduled over three doors with various processing times,

due dates, variant weights and labor costs. Whenever a processing time value is fractional, we

round it to the closest integer value in order to test our static time index model as well. The second

data set (i.e., SetB) is introduced in this paper and generated as follows:

• processing time: based on the data provided by the company, processing times of containers

follow a log-normal distribution pik ∼ dLOGNORMAL (µ, σ) /`kc with µ = 1.25 and σ =

0.76, bounded by 24 as the maximum number of hours a container can take to be unloaded.

The parameter `k ∼ UNIFORM (1, 3) indicates the laborer skill level for each dock door.

These skill levels are needed to calculate each container’s processing time, based upon the

dock door to which it is assigned. Furthermore, we round all processing times to the closest

integer value.

• due date: we adopt the data generation mechanism in Chen and Powell [18] and Ho and

Chang [30]. The due date of a container is stated as di = max {ai, bq}, where ai = min
k∈K

pik,

and bq is an integer uniformly distributed in the interval [1, 6r/q] with r = |N |/|K| and q

69

being a controllable parameter. The larger the q the tighter the due dates are. We consider

q = 1, 2, 3, 4, 5 for each group of instances.

• weight: the weight or importance of each container can be classified as rush, hot or normal.

Hence, it is generated as wi ∼ UNIFORM (1, 2, 3).

• labor cost: we assume that the cost βks = βk for all shifts, and only differ by doors.

That is βk = [b+ γk] s, where b is the basic labor cost added to the skill level γk ∼

UNIFORM {1, 2, 3}. Since each shift consists of 8 hours, i.e., s = 8, we multiply the term by

8 to estimate the labor cost per shift. All time units are measured in hours and the tardiness

is counted in days, where each day consists of one shift. Since each day consists of one shift

of 8 hours, the objective term associated with tardiness is multiplied by 1/8. This way the

cost of tardy container per day, $50, is only considered when a container is late by number

of days/shifts.

In the following, we consider groups of 9 sets of instances, each of which considers different due

dates based on the parameter q with a total of 45 instances per set. The third set of instances (i.e.

SetC) is generated the same way except for two common due dates assumed for each instance. In

all subsequent tables, we use the following performance measurements:

• %LP: refers to the LP deviation from the optimal value. That is %LP = |OPT−LP |
OPT

100.

• %gap: refers to the optimality gap upon termination. That is %gap = |OPT−LB|
OPT

100. Where

LB is the best lower bound obtained.

• %tardy: it is the percentage of the tardiness cost from the total operational cost. This cost is

a result of the optimal/best schedule found.

• %labor: it is the percentage of the labor cost from the total operational cost. This cost is a

result of the optimal/best selection found.

• %nodes: it is the number of branch-and-bound nodes CPLEX takes to reach at the opti-

mal/best solution found.

• time: it is measured in seconds. The time limit varies from one table to another. We will

refer to those limits as we proceed.

70

• selected: indicates the number of dock door selected to unload containers in a given opti-

mal/incumbent solution.

Other specific performance measurements are reported whenever they show up as they differ from

one experiment to another.

4.5.2 A Comparison Between the Static CSDSs

Tables 4.1, 4.2 and 4.3 compare the performance of both static CSDSs, N1 introduced by Cao

et al. [15], and M1 introduced in this paper using SetA and SetB, respectively. In addition to

the aforementioned performance measurements, we add %UB = |OPT−UB|
OPT

100 to indicate the

percentage deviation of the upper bounds found with respect to the optimal/incumbent value.

Table 4.1: Static CSDSs - SetA from Cao et al. [15]: N1 vs. M1

N1 M1

Examples %LP %gap %UB %tardy %labor nodes time selected %LP %gap %UB %tardy %labor nodes time selected

6x3E1 100 0.00 0.00 14.29 85.71 4,420 0.98 2/3 2.22 0.00 0.00 14.29 85.71 0 0.44 2/3

6x3E2 100 0.00 0.00 14.29 85.71 4,489 0.91 2/3 2.04 0.00 0.00 14.29 85.71 0 0.44 2/3

6x3E3 100 0.00 0.00 27.45 72.55 3,753 0.82 1/3 6.98 0.00 0.00 27.45 72.55 0 0.77 1/3

6x3E4 100 100 22.73 0.00 100 127,703,926 day 2/3 5.40 0.00 0.00 0.00 100 62 9.23 2/3

6x3E5 100 100 22.73 0.00 100 126,984,070 day 2/3 3.75 0.00 0.00 0.00 100 0 6.35 2/3

6x3E6 100 100 0.00 0.00 100 140,496,755 day 3/3 22.11 0.00 0.00 0.00 100 0 5.89 3/3

average 100 50.00 7.58 9.34 90.66 65,866,236 0.90 2/5 7.08 0.00 0.00 9.34 90.66 10 3.85 2/5

Table 4.1 shows clearly that modelM1 outperformsN1 of Cao et al. [15] among all performance

measurements, even after allowing a time limit of a day. This is mostly due to the strong LP bounds

provided by the time indexed models. Moreover, the last three instances indicate a tardiness cost

of zero, indicating ample due dates. We mitigate such behavior in the next table by introducing the

data SetB that ranges from tight to ample due dates, reflecting a better balance between tardiness

and labor costs.

Tables 4.2 and 4.3 compare again our static model M1 to the one introduced by Cao et al. [15],

i.e., N1 in a larger and varied set of instances. The %LP shows consistently a cost of zero in all

the instances when it comes to N1, whereas an average %LP of %1.43 for M1. We limit the run

time here to 2 hours after several experiments that show no significant improvement, when run on

71

Table 4.2: Static CSDSs - SetB: N1 vs. M1

N1 M1

instance q %LP %gap %UB %tardy %labor nodes time selected %LP %gap %UB %tardy %labor nodes time selected

20x5

1 100 100 2.01 0.00 100 13,148,001 2 hours 2/5 20.44 0.00 0.00 3.36 96.64 102 2.76 2/5

2 100 89.55 3.48 48.82 51.18 8,795,695 2 hours 2/5 2.06 0.00 0.00 47.04 52.96 2,652 3.98 2/5

3 100 99.98 7.67 27.51 72.49 6,031,201 2 hours 3/5 1.74 0.00 0.00 47.04 52.96 0 0.80 2/5

4 100 94.68 0.00 46.10 53.90 7,032,164 2 hours 2/5 1.10 0.00 0.00 46.10 53.90 0 0.48 2/5

5 100 92.58 1.48 55.56 44.44 7,690,996 2 hours 2/5 0.39 0.00 0.00 54.90 45.10 0 0.53 2/5

30x5

1 100 100 69.41 0.00 100 6,281,298 2 hours 4/5 2.90 0.00 0.00 5.88 94.12 0 2.33 2/5

2 100 100 18.87 15.32 84.68 3,738,900 2 hours 4/5 1.75 0.00 0.00 23.18 76.82 195 3.21 3/5

3 100 100 12.83 31.32 68.68 3,837,000 2 hours 4/5 0.74 0.00 0.00 39.27 60.73 0 2.64 3/5

4 100 100 14.18 33.77 66.23 4,051,907 2 hours 4/5 1.66 0.00 0.00 42.29 57.71 1,868 8.74 3/5

5 100 100 16.35 39.71 60.29 4,268,201 2 hours 4/5 1.00 0.00 0.00 45.02 54.98 32 2.88 3/5

40x5

1 100 100 41.14 6.07 93.93 5,105,400 2 hours 3/5 0.98 0.00 0.00 8.57 91.43 64 5.50 2/5

2 100 100 10.77 11.11 88.89 5,535,764 2 hours 4/5 3.31 0.00 0.00 26.15 73.85 71,608 210.32 3/5

3 100 100 8.31 25.58 74.42 4,037,739 2 hours 4/5 1.14 0.00 0.00 21.41 78.59 1,052 11.11 4/5

4 100 100 10.07 20.33 79.67 4,455,100 2 hours 5/5 1.28 0.00 0.00 30.20 69.80 11,570 41.82 4/5

5 100 100 15.40 44.48 55.52 3,749,000 2 hours 4/5 0.75 0.00 0.00 35.93 64.07 3,559 15.94 4/5

50x10

1 100 100 42.46 3.24 96.76 1,075,684 2 hours 6/10 6.86 0.00 0.00 1.54 98.46 120,709 2335.78 4/10

2 100 100 20.11 29.95 70.05 1,283,279 2 hours 6/10 0.80 0.00 0.00 27.68 72.32 33,321 511.38 5/10

3 100 100 22.32 26.46 73.54 621,647 2 hours 7/10 1.36 0.00 0.00 33.22 66.78 133,595 2194.90 5/10

4 100 100 24.61 35.00 65.00 610,407 2 hours 7/10 0.47 0.00 0.00 38.94 61.06 48 21.94 5/10

5 100 100 19.17 36.61 63.39 456,503 2 hours 7/10 0.43 0.00 0.00 45.06 54.94 164 32.16 5/10

60x15

1 100 100 45.08 1.58 98.42 337,374 2 hours 8/15 1.41 0.76 0.00 10.30 89.70 711,944 2 hours 5/15

2 100 100 19.79 21.90 78.10 378,042 2 hours 8/15 0.75 0.00 0.00 29.24 70.76 1,682 134.92 6/15

3 100 100 17.40 27.94 72.06 277,587 2 hours 8/15 0.69 0.00 0.00 36.81 63.19 14,270 635.86 6/15

4 100 100 17.73 27.20 72.80 356,597 2 hours 9/15 0.65 0.31 0.00 41.87 58.13 566,098 2 hours 6/15

5 100 100 18.02 42.96 57.04 249,551 2 hours 8/15 1.01 0.27 0.00 49.08 50.92 602,180 2 hours 6/15

72

Table 4.3: Static CSDSs - SetB: N1 vs. M1

N1 M1

instance q %LP %gap %UB %tardy %labor nodes time selected %LP %gap %UB %tardy %labor nodes time selected

60x20

1 100 100 39.83 9.09 90.91 285,649 2 hours 8/20 0.53 0.00 0.00 16.95 83.05 13 200.40 5/20

2 100 100 28.01 28.28 71.72 268,901 2 hours 9/20 0.64 0.00 0.00 35.52 64.48 6,572 559.94 6/20

3 100 100 29.17 34.93 65.07 168,005 2 hours 9/20 0.64 0.00 0.00 42.65 57.35 14,749 1120.74 6/20

4 100 100 22.55 45.77 54.23 159,077 2 hours 8/20 0.34 0.00 0.00 49.08 50.92 920 189.38 6/20

5 100 100 17.41 47.27 52.73 117,628 2 hours 8/20 0.41 0.00 0.00 51.93 48.07 57,240 3021.23 6/20

70x20

1 100 100 43.93 18.07 81.93 69,044 2 hours 11/20 0.31 0.00 0.00 20.23 79.77 404 282.63 7/20

2 100 100 31.16 32.95 67.05 115,784 2 hours 11/20 0.64 0.00 0.00 41.09 58.91 7,195 830.50 7/20

3 100 100 29.12 38.69 61.31 70,116 2 hours 11/20 0.84 0.00 0.00 41.39 58.61 12,212 1275.27 8/20

4 100 100 24.77 45.09 54.91 55,402 2 hours 11/20 0.54 0.00 0.00 48.28 51.72 289,287 2 hours 8/20

5 100 100 23.62 51.81 48.19 61,613 2 hours 10/20 0.45 0.20 0.00 50.04 49.96 369,693 2 hours 8/20

80x30

1 100 100 1065.06 98.38 1.62 11,431 2 hours 2/30 0.49 0.00 0.00 31.60 68.40 632 708.14 7/30

2 100 100 804.70 98.45 1.55 11,970 2 hours 2/30 0.51 0.15 0.00 42.44 57.56 191,064 2 hours 8/30

3 100 100 368.56 94.87 5.13 15,757 2 hours 4/30 0.31 0.00 0.00 47.96 52.04 143,721 2 hours 8/30

4 100 100 723.85 98.56 1.44 9,715 2 hours 2/30 0.02 0.00 0.00 51.21 48.79 0 460.30 8/30

5 100 100 468.02 98.23 1.77 13,208 2 hours 2/30 0.36 0.00 0.00 53.91 46.09 2,682 1290.02 8/30

100x40

1 100 100 1174.33 95.09 4.91 1,306 2 hours 10/40 0.21 0.20 0.00 31.08 68.92 65,272 2 hours 10/40

2 100 100 1110.68 98.33 1.67 1,520 2 hours 4/40 0.25 0.16 0.00 44.01 55.99 50,641 2 hours 10/40

3 100 100 976.65 98.32 1.68 720 2 hours 4/40 0.47 0.37 0.00 49.81 50.19 58,220 2 hours 10/40

4 100 NA NA NA NA 3,714 2 hours 0/40 0.39 0.12 0.00 48.94 51.06 67,760 2 hours 11/40

5 100 100 854.67 98.34 1.66 1,654 2 hours 4/40 0.13 0.00 0.00 52.41 47.59 2,891 4720.72 11/40

average 100 99.47 188.97 42.93 57.07 2,107,717 2 hours 6 1.43 0.06 0.00 36.46 63.54 80,397 612.92 6

73

a 24 hour period. The optimality gap %gap is close to zero on average for M1, while rarely any

improvement found in the gap, when it comes to N1. The previous two tables are strong indicators

of the good performance of the time index model M1, when compared with N1.

4.5.3 The Dynamic CSDS

We next use the data and SetC to investigate the performance of the dynamic CSDS using

scattered due dates and common due dates, respectively. Unlike the static CSDS, here the CPU time

limit is set to one day, since our experiments show the benefit of adding more time than just two

hours. The CPU times are reported in seconds, unless they are as long as a day. In addition to the

performance measurements we introduced in Section 4.5.1, we introduce three new measurements,

because we are now evaluating a dynamic model, where more statistical data can provide insights

on the solutions. We report on the maximum completion time among all containers in hours, Cmax,

as well as the associated last shift used where the last container was unloaded, Smax. We also report

on the percentage of shifts used to unload containers, %shifts.

Tables 4.4 and 4.5 provide the results associated with SetB. We note that 42 out 45 instances

of the dynamic CSDS problem using M2 were solved to optimality. The %LP gets tighter as the

size of instances increases, while the optimality %gap is 0.16 on average. It is clear that the %tardy

increases as the q parameter increases, indicating tighter due dates on containers. It is interesting

to mention that only in one instance 40x5 : q = 5 where the third shift is not fully utilized. In other

words, the last container was emptied one hour before the end of the last shift. However, our model

is not intended to optimize such metric. In Section 4.5.5, we demonstrate how the cost functions

vary depending on the priority given to the tardiness and labor costs, respectively.

We next report on a data SetC with common due dates in Table 4.6. We observe that 33 out 45

instances were solved optimally for the dynamic CSDS problem usingM2. We notice that generally

the looser the due dates, the more difficult to obtain optimal solutions in the given time limit. This

behavior could be because of the quality of feasible solutions obtained during the branch-and-bound

tree. When due dates are loose, there is more symmetry and many possible feasible solutions that

are considered, are not useful. Of course, this could be improved by some add-hock heuristics

embedded during the branching process. However, this is not within the scope of this paper.

74

Table 4.4: Dynamic CSDS - SetB Scattered Due Dates: M2

instance q %LP %gap %tardy %labor nodes time Cmax Smax %shifts selected

20x5

1 6.05 0.00 0.00 100 12,899 27.68 24 3 34 2/5

2 7.58 0.00 12.20 87.80 4,139 13.45 16 2 60 5/5

3 7.72 0.00 21.47 78.53 1,714 8.90 24 3 34 3/5

4 7.72 0.00 13.08 86.92 1,156 7.39 16 2 60 5/5

5 7.39 0.00 30.50 69.50 4,950 16.04 16 2 9 4/5

30x5

1 5.17 0.00 0.00 100 38,471 261.06 32 4 45 4/5

2 1.52 0.00 6.07 93.93 386 7.72 24 3 60 4/5

3 1.39 0.00 14.71 85.29 3,614 23.66 24 3 60 4/5

4 1.27 0.00 15.23 84.77 96 5.28 24 3 60 4/5

5 0.64 0.00 17.73 82.27 213 5.63 24 3 60 4/5

40x5

1 2.39 0.00 12.53 87.47 5,267,372 44053.26 40 5 14 5/5

2 4.57 0.00 15.28 84.72 47,571 448.50 23 3 13 5/5

3 2.60 0.00 16.51 83.49 4,268 64.30 16 2 14 5/5

4 3.24 0.00 21.13 78.87 152 9.74 16 2 14 5/5

5 2.64 0.00 23.06 76.94 5,846 46.21 16 2 14 5/5

50x10

1 1.28 0.00 0.00 100 84,404 2363.73 24 3 40 7/10

2 0.46 0.00 10.94 89.06 3,757 152.80 24 3 40 7/10

3 0.69 0.00 12.61 87.39 486 44.98 24 3 40 7/10

4 0.71 0.00 16.87 83.13 1,420 68.50 24 3 40 7/10

5 0.24 0.00 20.75 79.25 0 18.16 24 3 40 7/10

60x15

1 3.81 3.51 0.00 100 2,508,127 day 24 3 38 10/15

2 2.60 1.62 5.75 94.25 4,353,896 day 16 2 57 10/15

3 2.54 1.98 9.95 90.05 3,100,429 day 16 2 57 10/15

4 1.87 0.00 13.16 86.84 2,001,383 day 16 2 57 10/15

5 1.88 0.00 19.11 80.89 301,387 28263.97 16 2 57 10/15

75

Table 4.5: Dynamic CSDS - SetB Scattered Due Dates: M2

instance q %LP %gap %tardy %labor nodes time Cmax Smax %shifts selected

60x20

1 1.55 0.00 0.00 100 401,887 36371.11 16 2 38 9/20

2 1.01 0.00 9.43 90.57 41,812 3013.42 16 2 38 11/20

3 0.93 0.00 14.79 85.21 1,127,246 71988.10 16 2 38 11/20

4 1.48 0.00 16.29 83.71 65,637 5901.06 16 2 40 13/20

5 1.13 0.00 19.63 80.37 17,297 1815.20 16 2 40 13/20

70x20

1 0.97 0.00 3.42 96.58 129,149 17416.27 24 3 34 10/20

2 0.41 0.00 13.63 86.37 75,303 10555.84 24 3 34 10/20

3 0.50 0.00 18.62 81.38 20,118 3262.76 24 3 34 10/20

4 0.80 0.00 24.18 75.82 138,758 15752.81 24 3 34 10/20

5 0.58 0.00 26.34 73.66 175,510 27117.38 24 3 34 10/20

80x30

1 0.56 0.00 7.11 92.89 161,710 45097.69 24 3 24 12/30

2 0.32 0.00 14.23 85.77 57,167 11319.32 24 3 25 15/30

3 0.55 0.00 17.38 82.62 389,889 84619.61 24 3 25 15/30

4 0.44 0.00 21.05 78.95 85,223 20519.91 24 3 25 15/30

5 0.20 0.00 23.20 76.80 15,609 4601.72 24 3 25 15/30

100x40

1 0.13 0.00 3.03 96.97 707 1870.29 16 2 34 22/40

2 0.24 0.00 9.96 90.04 240,314 day 16 2 34 22/40

3 0.47 0.00 12.13 87.87 290,544 day 16 2 35 25/40

4 0.43 0.00 16.27 83.73 74,497 46813.68 16 2 35 25/40

5 0.52 0.00 19.88 80.12 31,465 26408.68 16 2 35 25/40

average 2.03 0.16 13.76 86.24 473,066 22861.24 21 3 37 10

76

Table 4.6: Dynamic CSDS - SetC Common Due Dates: M2

instance q %LP %gap %tardy %labor nodes time Cmax Smax %shifts selected

20x5

1 0.42 0.00 0.00 100 0 1.53 16 2 60 4/5

2 0.00 0.00 4.07 95.93 0 0.94 16 2 60 4/5

3 0.00 0.00 8.70 91.30 0 0.41 16 2 60 4/5

4 0.00 0.00 12.92 87.08 0 0.97 16 2 60 4/5

5 0.00 0.00 14.49 85.51 0 1.16 16 2 60 4/5

30x5

1 3.13 0.00 0.00 100 338 7.04 32 4 40 2/5

2 2.78 0.00 11.11 88.89 2,057 10.37 32 4 40 2/5

3 3.15 0.00 12.13 87.87 92,225 385.80 32 4 45 4/5

4 3.32 0.00 16.91 83.09 549,916 2111.69 32 4 45 4/5

5 1.70 0.00 21.64 78.36 893 10.17 31 4 47 4/5

40x5

1 2.02 0.00 5.55 94.45 162,711 1519.45 72 9 27 2/5

2 1.59 0.00 11.49 88.51 99,789 952.13 56 7 40 3/5

3 1.56 0.00 20.00 80.00 220,489 1814.24 56 7 40 4/5

4 1.30 0.00 24.09 75.91 18,598 268.94 56 7 40 4/5

5 1.18 0.00 23.68 76.32 48,674 392.03 48 6 50 5/5

50x10

1 0.39 0.00 0.00 100 19 34.71 24 3 44 6/10

2 1.34 0.00 2.40 97.60 52,324 1493.78 24 3 44 6/10

3 3.04 0.23 4.06 95.94 12,516,921 day 16 2 70 10/10

4 2.60 0.15 5.34 94.66 4,788,088 day 16 2 70 10/10

5 2.60 0.00 5.34 94.66 36,077 990.38 16 2 70 10/10

60x15

1 0.00 0.00 0.00 100 0 29.63 24 3 34 7/15

2 0.00 0.00 6.03 93.97 0 35.01 24 3 34 7/15

3 0.00 0.00 13.67 86.33 0 29.28 24 3 34 7/15

4 0.03 0.00 20.44 79.56 0 47.87 24 3 34 7/15

5 0.00 0.00 25.75 74.25 0 30.51 24 3 34 7/15

77

Table 4.7: Dynamic CSDS - SetC Common Due Dates: M2

instance q %LP %gap %tardy %labor nodes time Cmax Smax %shifts selected

2 0.00 0.00 6.03 93.97 0 35.01 24 3 34 7/15

3 0.00 0.00 13.67 86.33 0 29.28 24 3 34 7/15

4 0.03 0.00 20.44 79.56 0 47.87 24 3 34 7/15

5 0.00 0.00 25.75 74.25 0 30.51 24 3 34 7/15

60x20

1 2.24 2.07 0.00 100 1,390,449 day 16 2 38 12/20

2 1.03 0.32 2.52 97.48 2,264,198 day 16 2 38 12/20

3 0.66 0.26 8.66 91.34 4,181,407 day 16 2 38 12/20

4 0.51 0.00 9.02 90.98 2,529,273 day 16 2 38 12/20

5 0.27 0.00 12.12 87.88 27,247 2636.27 16 2 38 12/20

70x20

1 0.85 0.36 0.00 100 1,422,118 day 16 2 45 12/20

2 0.22 0.00 3.43 96.57 551 312.06 16 2 45 13/20

3 0.14 0.00 10.20 89.80 7,380 941.37 16 2 45 13/20

4 0.14 0.00 10.20 89.80 2,351 548.11 16 2 45 13/20

5 0.19 0.00 10.49 89.51 3,536 893.07 16 2 45 13/20

80x30

1 0.50 0.06 2.66 97.34 1,418,010 day 16 2 35 14/30

2 1.06 0.07 3.14 96.86 1,096,231 day 16 2 37 18/30

3 0.23 0.13 8.37 91.63 1,772,804 day 16 2 37 18/30

4 0.52 0.13 10.31 89.69 1,291,893 day 16 2 37 18/30

5 0.26 0.00 10.31 89.69 181,005 43760.71 16 2 37 18/30

100x40

1 0.81 0.39 1.75 98.25 467,034 day 16 2 37 21/40

2 0.00 0.00 4.48 95.52 0 848.88 16 2 37 21/40

3 0.11 0.00 4.88 95.12 122,427 69552.32 16 2 37 21/40

4 0.11 0.00 4.88 95.12 650,842 day 16 2 37 21/40

5 0.06 0.04 4.88 95.12 646,893 day 16 2 37 21/40

average 0.93 0.09 8.71 91.29 845,884 29761.35 24 3 44 10

78

4.5.4 Summary of results

Our computational experiments can be summarized as follows. First, in terms of the static

CSDS:

• the time indexed model we introduce significantly outperforms the one introduced by [15] in

terms of the LP relaxation (i.e., the solution at the root node before branching), the optimality

gap after terminating the branch and bound in CPLEX, and the cpu time.

• In Table 4.1, we are able to solve optimally, within few seconds, the benchmark instances

that were not solved before in the literature.

• In Tables 4.2 and 4.2, we demonstrate the capabilities of this model in solving larger set of

instances optimally within 2 hours of processing time as opposed to the model introduced by

[15], where not of these instance were solve optimally.

• The time index model we introduced obtain on average a %0.06 optimality gap when CPLEX

terminates after two hours whereas [15]’s model provides an average of %99.47. Most of the

instances are solved optimally using our static CSDS model.

Second, in terms of the dynamic CSDS:

• the dynamic CSDS is shown to be more difficult to solve optimally than the static one due to

the increment in the number of variables and constraints.

• the optimal solution was not found after one day of processing time for a few instances.

However, the average optimality gap is still tight, i.e., %0.09.

4.5.5 Cost Parametric Analysis

As seen in this paper, the objective function in our CSDS models consists of two terms: tardi-

ness and labor costs. In this section, we show via small instances how this cost changes, depending

on the priority given to each term. We define two new parameters {a, b}, where a is the multiplier

associated with the tardiness term and b is associated with the labor cost term. In all our previous

experiments, we assumed {0.1, 1}. We demonstrate a variation of these parameters in Table 4.8.

We test this parametric change on the instance 20x5 with q = {1, 2, 3, 4, 5}. For each block we

79

provide six combinations of the parameters {a, b}. Moreover, we additionally depict the change in

cost between tardiness and labor in the last column of Table 4.8.

The first block of instances 20x5 [q = 1] indicates no change in the cost composition between

both objective terms. The reason is due to the looseness in the due dates. The remaining instances

show an expected behavior of tardiness increments versus labor decrement as more weight is put

on the tardiness while less is put on the labor. It is also important to mention the %LP gets tighter

as more priority is given to the tardiness cost. In fact, we observe that some of the LP solutions are

optimal.

4.6 Conclusion
In this paper, we have studied a cross-dock scheduling problem that integrates the assignment

and sequencing of arriving containers with the selection of inbound dock doors to unload the con-

tainers. We have introduced a static IP model, CSDS1, that outperforms the one introduced by Cao

et al. [15], i.e., N1, in terms of the %LP bounds, the speed at which it obtains optimal solutions,

and the number of optimal solutions obtained.

Another contribution of this paper is the introduction of the dynamic CSDS with an associated

MIP model that can solve most of the instances optimally, especially when due dates are scattered.

These instances are a replication of the practice we have observed in a large crossdock on the East

Coast of the US. To the best of our knowledge, the dynamic CSDS model introduced in this paper

is the first dynamic model in the literature of cross-docking and can be extended for the machine

scheduling and job selection environment as well. This paper opens a window for further research

to be carried out for the development of decomposition methods to exploit the structure of the

problem. Finally, we are considering the integration of other important goals, such as scheduling

outgoing trailers in order to minimize the lateness of deliveries.

80

Table 4.8: Cost Parametric Analysis on the Dynamic CSDS with Scattered Due Dates

instance {a,b} %LP %tardy %labor nodes time Cmax Smax %shifts selected Depiction of cost change in %

20x5 [q=1]

{0.1,1} 6.05 0.00 100 12,899 27.80 24 3 33 2/5

{0.1,0.9} 6.05 0.00 100 3,343 10.80 24 3 33 2/5

{0.3,0.7} 6.05 0.00 100 2,678 6.69 24 3 33 2/5

{0.5,0.5} 6.05 0.00 100 15,084 25.36 24 3 33 2/5

{0.7,0.3} 6.05 0.00 100 15,286 27.31 24 3 33 2/5

{1,0.1} 6.05 0.00 100 12,936 19.66 24 3 33 2/5

20x5 [q=2]

{0.1,1} 7.58 12.20 87.80 4,139 13.35 16 2 60 5/5

{0.1,0.9} 7.20 13.37 86.63 983 7.12 16 2 60 5/5

{0.3,0.7} 1.39 37.31 62.69 0 0.54 16 2 60 5/5

{0.5,0.5} 1.94 58.14 41.86 6 1.47 16 2 60 5/5

{0.7,0.3} 2.64 66.95 33.05 0 0.69 11 2 116 5/5

{1,0.1} 0.82 89.67 10.33 0 0.94 11 2 116 5/5

20x5 [q=3]

{0.1,1} 7.72 21.47 78.53 1,714 8.83 24 3 33 3/5

{0.1,0.9} 8.03 13.37 86.63 30,557 62.91 16 2 60 5/5

{0.3,0.7} 2.17 34.88 65.12 0 0.63 14 2 69 5/5

{0.5,0.5} 1.85 55.56 44.44 0 0.60 16 2 60 5/5

{0.7,0.3} 1.68 69.83 30.17 0 0.57 14 2 80 5/5

{1,0.1} 0.51 90.84 9.16 0 0.74 14 2 80 5/5

20x5 [q=4]

{0.1,1} 7.72 13.08 86.92 1,156 7.44 16 2 60 5/5

{0.1,0.9} 7.32 14.32 85.68 3,127 10.42 16 2 60 5/5

{0.3,0.7} 0.55 36.47 63.53 0 0.55 14 2 69 4/5

{0.5,0.5} 0.00 49.80 50.20 0 0.30 14 2 80 5/5

{0.7,0.3} 0.00 69.83 30.17 0 0.31 14 2 80 5/5

{1,0.1} 0.00 90.84 9.16 0 0.30 14 2 80 5/5

20x5 [q=5]

{0.1,1} 7.39 30.50 69.50 4,950 15.56 16 2 9 4/5

{0.1,0.9} 7.60 20.96 79.04 1,066 6.99 16 2 60 5/5

{0.3,0.7} 1.73 50.56 49.44 0 0.61 16 2 60 5/5

{0.5,0.5} 0.00 64.98 35.02 0 0.37 12 2 93 5/5

{0.7,0.3} 0.00 81.24 18.76 0 0.53 12 2 93 5/5

{1,0.1} 0.00 94.89 5.11 0 0.53 12 2 93 5/5

81

Chapter 5

Conclusions and Future Work

5.1 Conclusions
This thesis studied a fundamental class of optimization problems in cross-docking called cross-

dock door assignment problems (CDAPs). We explored the structure of this basic problem theo-

retically and computationally, providing new mathematical formulations that allowed us to explore

the structure further via decomposition techniques. For the last few years, the CDAP had been

mostly formulated as a bilinear integer program causing difficulties in obtaining the optimal so-

lutions for existing instances, and exploring the structure of the problem in depth. Hence, many

researchers had resorted to heuristics. However, in this thesis we successfully introduced several

new linear mixed-integer formulations for the CDAP. Not only did this allow for new instances to

be solved optimally, but provided insights in utilizing the linear structure of these models. With

this in mind, several linear, combinatorial and Lagrangean relaxations were introduced, explored,

and where possible, obtained via well designed algorithms such as column generation and subgra-

dient. We further were able to provide a methodology that provided lower and upper bounds on

the CDAP, when solving the Lagrangian dual problem. A partial information was passed from the

Lagrangian dual space to construct a complete feasible solution in the primal space, which resulted

in feasible solutions that outperformed all existing heuristics in the literature. This should highlight

one importance of all the lower bound procedures that we have developed as they generally should

provide insights on the construction of feasible solutions. We also demonstrated how two bounds

that are theoretically equivalent do not necessarily coincide in practice.

82

This thesis then extended the CDAP, only in its inbound side, by introducing sequencing and

selection decisions, resulting in what we called the Container Scheduling and cross-dock Door

Selection problem (CSDS). The integration of the assignments and sequencing decisions provided

schedules, allowing for a practical realization of the CDAP in the short term horizon, with the

objective of minimizing tardiness. The capacity constraints in the CDAP were no longer needed in

the CSDS as they were replaced by the more realistic time constraints. Recall, the time constraints

were reinterpreted by capacities on the dock doors for the CDAP. Then, came the introduction

of the selection variables. We saw in the literature that the handling cost in most CDAPs was

modeled with the assumption that it is the traveling distance between pair of doors at cross-dock

facilities. We even saw that this handling cost had been interpreted as traveling time between

doors, with unloading/loading times as well. So, what is "handling" after all? Is it time, distance,

labor intensity, or congestion, or maybe a combination of some or all of these? The answer to this

question could indeed rely on the specific cross-dock facility, and the operational handling cost

it seeks to minimize. From our observation at the cross-dock facility in the USA, their concern

when it comes to handling, was labor. In particular, the receivers who are in charge of unloading

the containers. Therefore, in our efforts to integrate a CDAP into a CSDS, we also introduced the

decision of selecting a dock door to be opened or closed as it reflected directly the associated labor

cost. Finally, the integration of both scheduling and selection decisions would allow the cross-dock

facility to trade off between their most important operational costs: tardiness and labor costs.

5.2 Future Work
The work of this thesis opens a new window of research for the CDAP and its extension CSDS.

For instance, a flow based formulation with variables that characterize the amount of commodities

between a pair of doors could be introduced for the CDAP to study its performance in terms of a

branch and cut algorithm. Another aspect is in the utilization of column generation algorithm to

be embedded into a branch and price algorithm to obtain the optimal solution for new instances

that have not been solved yet, especially for the CDAP with loading/unloading times where the

optimality gap is within %2. Stabilizing CG, however, for efficiency purposes could be of a priority

than a branch and price algorithm. We also observed that when removing the linking assignment

constraints (3.10) and (3.11), and relaxing the integrality on the assignment variables, x and y

83

in (3.6) and (3.7) in the path-based formulation, P1′ in Chapter 3, we obtained a relaxed linear

program that had a nice dual structure to explore. A heuristic algorithm could be easily developed

to obtain feasible solutions on the dual problem, and hence, obtain lower bounds on P1′. We also

noticed that many of the relaxed solutions obtained from either column generation or subgradient

method, when used for constructing feasible solutions could impose some difficulty especially

when the slackness of capacity constraints were tight. One way to mitigate this is by allowing

for the construction of solutions that are not necessarily feasible (e.g., by enlarging the slackness)

while penalizing their violations in the objective function. Such a strategy is known as oscillation

and is known to be integrated in Tabu search for similar problems.

When it comes to the CSDS, the integration of sequencing and selection decisions was just one

aspect of what we had observed in practice. Other important decisions include, for instance, the

scheduling of departing trailers to minimize the lateness or late deliveries to customers. This could

be integrated in our CSDS models if the departure time was fixed as seen in the postal industry as

reported by Boysen et al. [12] and others. Alternatively, if the departure time was flexible, new

decisions could be included to choose what and when a trailer may leave the cross-dock to meet

delivery deadlines.

84

Bibliography

[1] I. Adiri, J. Bruno, E. Frostig, and A.R. Kan. Single machine flow-time scheduling with a

single breakdown. Acta Informatica, 26(7):679 – 696, 1989.

[2] D. Agustina, C.K.M. Lee, and R. Piplani. A review: Mathematical models for cross docking

planning. International Journal of Engineering Business Management, 2(2):47 – 54, 2010.

[3] A. Ahlafçioglu, M. Bussieck, M. Esen, M. Guignard, J. Jagla, and A. Meeraus. Combining

QCR and CHR for convex quadratic pure 0-1 programming problems with linear constraints.

Annals of Operations Research, 199:33 – 49, 2012.

[4] B. Alidaee and H. Li. Parallel machine selection and job scheduling to minimize sum of

machine holding cost, total machine time costs, and total tardiness costs. IEEE Transactions

on Automation Science and Engineering, 11(1):294 – 301, 2014.

[5] A. Amini, R. Tavakkoli-Moghaddam, and A. Omidvar. Cross-docking truck scheduling with

the arrival times for inbound trucks and the learning effect for unloading/loading processes.

Production & Manufacturing Research, 2(1):784 – 804, 2014.

[6] H.M.B. Amor, J. Desrosiers, and A. Frangioni. On the choice of explicit stabilizing terms in

column generation. Discrete Applied Mathematics, 157(6):1167 – 1184, 2009.

[7] U.M. Apte and S. Viswanathan. Effective cross docking for improving distribution efficien-

cies. International Journal of Logistics, 3(3):291 – 302, 2000.

[8] G. Arnaout, E. Rodriguez-Velasquez, G. Rabadi, and R. Musa. Modeling cross-docking op-

erations using discrete event simulation. In Proceedings of the 6th International Workshop on

Enterprise & Organizational Modeling and Simulation, pages 113 – 120, 2010.

85

[9] J.J. Bartholdi and S.T. Hackman. Warehouse & distribution science: release 0.96. http://

www2.isye.gatech.edu/~jjb/wh/book/editions/wh-sci-0.96.pdf, 2014. [Online;

accessed 18-March-2017].

[10] N. Boysen. Cross dock scheduling: Classification, literature review and research agenda.

Omega, 38(6):413 – 422, 2010.

[11] N. Boysen, M. Fliedner, and A. Scholl. Scheduling inbound and outbound trucks at cross

docking terminals. OR Spectrum, 32(1):135 – 161, 2010.

[12] N. Boysen, D. Briskorn, and M. Tschöke. Truck scheduling in cross-docking terminals with

fixed outbound departures. OR Spectrum, 35(2):479 – 504, 2013.

[13] Y.A. Bozer and H.J. Carlo. Optimizing inbound and outbound door assignments in less-than-

truckload crossdocks. IIE Transactions, 40(11):1007 – 1018, 2008.

[14] P. Buijs, I.F.A. Vis, and H.J. Carlo. Synchronization in cross-docking networks: A research

classification and framework. European Journal of Operational Research, 239(3):593 – 608,

2014.

[15] D. Cao, M. Chen, and G. Wan. Parallel machine selection and job scheduling to minimize

machine cost and job tardiness. Computers & Operations Research, 32(8):1995 – 2012, 2005.

[16] F. Chen and K. Song. Minimizing makespan in two-stage hybrid cross docking scheduling

problem. Computers & Operations Research, 36(6):2066 – 2073, 2009.

[17] R. Chen, B. Fan, and G. Tang. Scheduling problems in cross docking. In Combinatorial

Optimization and Applications, volume 5573, pages 421 – 429. Springer, Berlin, 2009.

[18] Z.L. Chen and W.B. Powell. Solving parallel machine scheduling problems by column gen-

eration. INFORMS Journal on Computing, 11(1):78 – 94, 1999.

[19] A. Chmielewski, B. Naujoks, M. Janas, and U Clausen. Optimizing the door assignment in

ltl-terminals. Transportation Science, 43(2):198 – 210, 2009.

86

[20] K.L. Choy, H.K.H. Chow, T.C. Poon, and G.T.S. Ho. Cross-dock job assignment problem in

space-constrained industrial logistics distribution hubs with a single docking zone. Interna-

tional Journal of Production Research, 50(9):2439 – 2450, 2012.

[21] Y. Cohen and B. Keren. Trailer to door assignment in a synchronous cross-dock operation.

International Journal of Logistics Systems and Management, 5(5):574 – 590, 2009.

[22] R.L. Cook, B. Gibson, and D. MacCurdy. A lean approach to cross docking. Supply Chain

Management Review, 9(2):54 – 59, 2005.

[23] F. Enderer, C. Contardo, and I. Contreras. Integrating dock-door assignment and vehicle

routing in cross-docking. Manuscript submitted for publication, 2015.

[24] L. Fanjul-Peyro and R. Ruiz. Scheduling unrelated parallel machines with optional machines

and jobs selection. Computers & Operations Research, 39(7):1745 – 1753, 2012.

[25] G. Forger. UPS starts world’s premiere cross-docking operation. Modern Material Handling,

36(8):36 – 38, 1995.

[26] S. Gelareh, R.N. Monemi, F. Semet, and G. Goncalves. A branch-and-cut algorithm for

the truck dock assignment problem with operational time constraints. European Journal of

Operational Research, 249(3):1144 – 1152, 2016.

[27] A. M. Geoffrion. Lagrangian relaxation for integer programming. Mathematical Program-

ming Study, 2:82 – 114, 1974.

[28] M. Guignard, P.M. Hahn, A.A Pessoa, and D.C da Silva. Algorithms for the crossdock door

assignment problem. In Proceedings of the Fourth International Workshop on Model-Based

Metaheuristics. Brazil., 2012.

[29] P. Hahn, J.M. Smith, and Y.-R. Zhu. The multi-story space assignment problem. Annals of

Operations Research, 179:77 – 103, 2010.

[30] J.C. Ho and Y.L. Chang. Heuristics for minimizing mean tardiness for m parallel machines.

Naval Research Logistics, 38(3):367 – 381, 1991.

87

[31] E. Kinnear. Is there any magic in cross-docking? Supply Chain Management: An Interna-

tional Journal, 2(2):49 – 52, 1997.

[32] A.L. Ladier and G. Alpan. Cross-docking operations: Current research versus industry prac-

tice. Omega, 62:145 – 162, 2016.

[33] C.Y. Lee, L. Lei, and M. Pinedo. Current trends in deterministic scheduling. Annals of

Operations Research, 70:1 – 41, 1997.

[34] Y. Li, P. Pardalos, K. Ramakrishnan, and M. Resende. Lower bounds for the quadratic assign-

ment problem. Annals of Operations Research, 50(1):387 – 410, 1994.

[35] T.W. Liao, P.J. Egbelu, and P.C. Chang. Simultaneous dock assignment and sequencing of

inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations.

International Journal of Production Economics, 141(1):212 – 229, 2013.

[36] Z. Liu and E. Sanlaville. Stochastic scheduling with variable profile and precedence con-

straints. SIAM Journal on Computing, 26(1):173 – 187, 1997.

[37] G. Luo and J.S. Noble. An integrated model for crossdock operations including staging.

International Journal of Production Research, 50(9):2451 – 2464, 2012.

[38] Y. Ma, C. Chu, and C. Zuo. A survey of scheduling with deterministic machine availability

constraints. Computers & Industrial Engineering, 58(2):199 – 211, 2010.

[39] S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms for the 0–1 knapsack

problem. European Journal of Operational Research, 123(2):325 – 332, 2000.

[40] Z. Miao, A. Lim, and H. Ma. Truck dock assignment problem with operational time constraint

within crossdocks. European Journal of Operational Research, 192(1):105 – 115, 2009.

[41] M. Napolitano. Cross dock fuels growth at dots. Logistics Management, 50(2):30 – 34, 2011.

[42] W. Nassief, I. Contreras, and R. As’ad. A mixed-integer programming formulation and la-

grangean relaxation for the cross-dock door assignment problem. International Journal of

Production Research, 54:494 – 508, 2016.

88

[43] W. Nassief, I. Contreras, M. Guignard, P. Hahn, and B. Jaumard. The container scheduling

and cross-dock door selection problem. Manuscript submitted for publication, 2017.

[44] W. Nassief, I. Contreras, and B. Jaumard. A comparison of formulations and relaxations for

the cross-dock door assignment problems. Manuscript submitted for publication, 2017.

[45] Y. Oh, H. Hwang, C.N. Cha, and S. Lee. A dock-door assignment problem for the korean

mail distribution center. Computers & Industrial Engineering, 51(2):288 – 296, 2006.

[46] K.E. Peck. Operational Analysis of Freight Terminals Handling Less than Container Load

Shipments. PhD thesis, University of Illinois, Urbana-Champaign, IL, United States, 1983.

[47] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Springer, New York, 2012.

[48] C.R. Rosales, M.J. Fry, and R. Radhakrishnan. Transfreight reduces costs and balances work-

load at georgetown crossdock. Interfaces, 39(4):316 – 328, 2009.

[49] A. Ross and V. Jayaraman. An evaluation of new heuristics for the location of cross-docks

distribution centers in supply chain network design. Computers & Industrial Engineering, 55

(1):64 – 79, 2008.

[50] Saddle Creek Corporation. 2011 Cross-Docking Trends Report. http://www.thomasnet.

com/white-papers/abstract/101631/2011-crossdocking-trends-report.html,

2011. [Online; accessed 14-March-2017].

[51] E. Sanlaville and G. Schmidt. Machine scheduling with availability constraints. Acta Infor-

matica, 35(9):795 – 811, 1998.

[52] H.D. Sherali and W.P. Adams. Reformulation–linearization techniques for discrete optimiza-

tion problems. In Handbook of Combinatorial Optimization, pages 2849 – 2896. Springer,

New York, 2013.

[53] A. Shuib and W.N.A.W.A. Fatthi. A review on quantitative approaches for dock door as-

signment in cross-docking. International Journal on Advanced Science, Engineering and

Information Technology, 2(5):30 – 34, 2012.

89

[54] G. Stalk, P. Evans, and L.E. Shulman. Competing on capabilities: the new rules of corporate

strategy, volume 63. Harvard Business Review, 1992.

[55] L.Y. Tsui and C.-H. Chang. A microcomputer based decision support tool for assigning dock

doors in freight yards. Computers & Industrial Engineering, 19(1):309 – 312, 1990.

[56] L.Y. Tsui and C.-H. Chang. An optimal solution to a dock door assignment problem. Com-

puters & Industrial Engineering, 23(1):283 – 286, 1992.

[57] Y. Unlu and S.J. Mason. Evaluation of mixed integer programming formulations for non-

preemptive parallel machine scheduling problems. Computers & Industrial Engineering, 58

(4):785 – 800, 2010.

[58] J. Van Belle, P. Valckenaers, and D. Cattrysse. Cross-docking: State of the art. Omega, 40(6):

827 – 846, 2012.

[59] J.F. Wang and A. Regan. Real-time trailer scheduling for crossdock operations. Transporta-

tion Journal, pages 5 – 20, 2008.

[60] C.E. Witt. Crossdocking: Concepts demand choice. Material Handling Engineering, 53(7):

44 – 49, 1998.

[61] T. Zhang, G.K.D. Saharidis, S. Theofanis, and M. Boile. Scheduling of inbound and outbound

trucks at cross-docks: Modeling and analysis. Transportation Research Record: Journal of

the Transportation Research Board, 2162:9 – 16, 2010.

[62] Y.-R. Zhu, P. Hahn, Y. Liu, and M. Guignard. New approach for the cross-dock door as-

signment problem. In Anais do XLI Simposio de Pesquisa Operacional, Porto Seguro, Bahia,

Brazil, 2009.

90

