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ABSTRACT

Analytical Structure of Stationary Flows of an Ideal Incompressible Fluid

Aleksander Danielski

Concordia University, 2017

The Euler equations describing the flow of an incompressible, inviscid fluid of uniform

density were first published by Euler in 1757. One of the recent results of mathematical

fluid dynamics was the discovery that the particle trajectories of such flows are real analytic

curves, despite limited regularity of the initial flow (Serfati, Shnirelman, and others). Hence,

the flow lines of stationary solutions to the Euler equations are real analytic curves. In

this work we consider a two-dimensional stationary flow in a periodic strip. Our goal is to

incorporate the analytic structure of the flow lines into the solution of the problem. The

equation for the stream function is transformed to new variables, more appropriate for the

further analysis. New classes of functions are introduced to take into account the partial

analytic structure of solutions. This makes it possible to regard the problem as an analytic

operator equation in a complex Banach space. The Implicit Function theorem for complex

Banach spaces is applied to establish existence of unique solutions to the problem and the

analytic dependence of these solutions on the parameters. Our approach avoids working in

the Fréchet spaces and using the Nash-Moser-Hamilton Implicit Function Theorem used by

the previous authors (Šverák&Choffrut), and provides stronger results.
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Chapter 1

Background

We start with a brief derivation of the equation of study, and introduce some relevant

concepts and terminology. Consider some fluid filling a domain in Rn, with mass density

ρ(x, t), velocity field u(x, t) and pressure p(x, t). We pick some arbitrary blob of fluid (a

fixed collection of fluid particles), then the blob will move around and deform as the fluid

flows. At any moment in time it occupies a closed region Ω(t). Let b be some quantity B per

unit volume that is carried by the flow. Then the total quantity of B in the blob is given by

B(t) =

∫
Ω(t)

b(x, t)dV.

On the other hand, the rate of change of B carried by the blob is given by

dB(t)

dt
=

∫
Ω(t)

∂b(x, t)

∂t
dV +

∫
∂Ω(t)

b(x, t)u · ndS

where n is the outward pointing normal of the surface ∂Ω. The above is known as Reynolds

transport theorem for a material element. It can be understood in the following sense: at

any moment in time, the rate of change of B in the blob is equal to the rate of change of B

inside the volume it momentarily occupies plus the net flow rate of the quantity out of this

volume. Applying the divergence theorem to the right most term we get

dB(t)

dt
=

∫
Ω(t)

∂b

∂t
+∇ · (bu)dV. (1.1)

Now we are ready to apply the conservation laws of physics to obtain the governing

equations of a fluid flow. Conservation of mass tells us the mass of the blob is constant.
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Hence
dm(t)

dt
=

∫
Ω(t)

∂ρ

∂t
+∇ · (ρu)dV = 0.

Note that our selection of blob was arbitrary, so the above equality must hold pointwise. We

thus obtain the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0.

Newton’s second law of motion tells us that for any system (the blob), the rate of change

of momentum is equal to the force acting on it. We denote the momentum components of the

blob by qi. Let us suppose there is no friction between the fluid particles. This corresponds

to an inviscid fluid. In the absence of any external forces (such as gravity) acting on the

fluid, the only force acting on the blob is the pressure from the surrounding fluid. Therefore

the force acting on the blob is

F = −
∫
∂Ω(t)

pndS = −
∫

Ω(t)

∇pdV.

Newton’s second law thus gives us∫
Ω(t)

∂(ρui)

∂t
+∇ · (ρuiu) + ∂ipdV = 0.

As before the equality must hold pointwise, and together with the continuity equation we

get the general Euler Equations
∂(ρui)

∂t
+∇ · (ρuiu) + ∂ip = 0

∂ρ

∂t
+∇ · (ρu) = 0.

Let us suppose that the fluid is incompressible and has uniform density. We can take

ρ ≡ 1. We thus obtain the incompressible Euler equation, which can be written in vector

notation as 
∂u

∂t
+ u · ∇u+∇p = 0

∇ · u = 0.

(1.2)

The first equation is known as the momentum equation, the second as the incompressibility

condition. Together they govern the flow of a homogeneous, ideal (inviscid), incompressible
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fluid. For the rest of this work, by ‘flow’ we will always mean the flow of such a fluid, ie a

solution to 1.2.

We will restrict ourselves to the study of stationary (steady state) flows of a two-

dimensional fluid. By ‘stationary’ flows, we mean solutions of 1.2 which are time-independent:

u(x, t) = u(x). Two-dimensional flows have a particularly useful formulation in terms of

the stream function and vorticity, which we now introduce. We can regard such a flow in

three-dimension as u(x, y, z, t) = (u(x, y, t), v(x, y, t), 0). From vector calculus we know that

a divergence free vector field can be written as the curl of some vector potential. Thus we

can write u = ∇×ψ where ψ = (0, 0, ψ). The scalar ψ(x, y, t) is called the stream function

and it satisfies (u, v) = (ψy,−ψx) = ∇⊥ψ. Thus it is defined uniquely, up to an additive

constant. We define the streamlines (or flow lines) of u as its integral curves at any moment

in time.

Remark 1.1. The stream function is so called because its level lines correspond with stream

lines. To see this, suppose at some fixed moment in time, the curve α(s) is a level line of ψ,

ie ψ(α(s)) = c. Then
dψ(α(s))

ds
= ψx

dα1

ds
+ ψy

dα2

ds
= 0

Therefore ∇ψ is perpendicular to dα
ds

. But ∇ψ = (−v, u) is perpendicular to (u, v), thus

u(α(s)) and dα(s)
ds

are parallel. Hence the flow points along α(s). Note that for a stationary

flow, the flow lines coincide with the particle trajectories. Also note that the critical points

of the stream function (∇ψ = 0) correspond to stagnation points of the flow (points at which

velocity is zero).

We define the vorticity ω = ∇× u. For two-dimensional flows, only the z component is

nonzero, thus vorticity can be regarded as a scalar defined by

ω = −∆ψ. (1.3)

Physically, ω(x, y, t) represents the angular velocity of an infinitesimal blob centered on

(x, y). By taking the curl of 1.2 we obtain the vorticity formulation of the two-dimensional

Euler equation
∂ω

∂t
+ u · ∇ω = 0. (1.4)

3



We notice the following property, a flow is stationary if and only if u · ∇ω = 0. In other

words, when ω is constant along flow lines. From 1.3, we see then that a stream function ψ

defines a stationary flow if and only if it satisfies for some function F the equation

∆ψ = F (ψ). (1.5)

We call this the equation of the stream function for a two-dimensional stationary flow, and

it will be the main equation of study in this work.

The equations for the flow of an ideal, incompressible fluid were first published by Euler

in 1757. To this day, they remain an active field of study, with many important questions

still unanswered. The main problem of interest is to solve 1.2 for the flow u given an initial

flow u0, keeping in mind the pressure p is also an unknown. Existence and uniqueness of

solutions that are local in time, and as regular as the initial data goes back to classical

works of Liechtenstein, Gunter, and later works of Ebin&Marsden, etc (see [6], [3], [7]). For

two-dimensional flows, existence and uniqueness of global in time solutions was shown by

Wolibner, Yudovich, etc (see [16], [17]). Existence and uniqueness of global in time solutions

in three-dimensions remains an open problem. Starting with the works of Arnold (see [1],

[4]) the Euler equations were shown to have an inherent geometric structure, by interpreting

their solutions as geodesic flows on the group of volume preserving diffeomorphisms. One of

the outstanding achievements in the study of ideal, incompressible flows was the discovery

that despite limited regularity of initial flows, the particle trajectories are real analytic curves

(Serfati [12], Shnirelman [13], and others). Hence, the flow lines of steady state solutions of

the Euler equation are real analytic curves.

In the work of Šverák&Choffrut [14], they establish ‘a geometric picture of the structure

of the set of steady-states of Euler’s equations’. They consider a two-dimensional flow

on an annulus and find a local parametrization for the set of stationary solutions to the

Euler equations. The main difficulty here is the fact that the set of stationary solutions

in the Sobolev space is not a smooth manifold. It becomes smooth only in C∞ which is a

Fréchet space. Therefore, they were forced to use the Nash-Moser-Hamilton implicit function

theorem for Fréchet spaces. This makes their results less natural and less complete.
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Chapter 2

Introduction

In this work we seek to improve on the results of Šverák&Choffrut [14]. We consider the

equation for the stream function for a stationary flow 1.5, along a periodic strip. Our goal

is two-fold, to incorporate the analytic structure of the flow lines into the solution and to

form a Banach space for the solutions. This will allow us to locally solve the equation using

the Implicit Function Theorem in Banach spaces, thus avoiding the Nash-Moser Implicit

Function Theorem in Fréchet spaces.

Consider a two-dimensional stationary flow along a periodic strip. The flow lines (which

are analytic curves) correspond to the level lines of the stream function ψ(x, y) = c. In

the case when the stream function has no critical points (∇ψ 6= 0), the flow lines have no

stagnation points, never intersect and thus may be seen as graphs of some periodic functions

y = a(x, ψ) which are analytic in x for each fixed ψ = c. Consider the domain between two

flow lines, say ψ = 0 and ψ = 1. Suppose these boundary flow lines correspond to graphs of

some analytic functions y = f(x) = a(x, 0) and y = g(x) = a(x, 1) respectively. Then the

stream function satisfies the following boundary value equation
∆ψ(x, y) = F (ψ)

ψ(x, f(x)) = 0

ψ(x, g(x)) = 1

(2.1)

on the domain {(x, y) : x ∈ T, f(x) ≤ y ≤ g(x)}. Notice that there is a trivial solution when

F = 0 given by ψ(x, y) = y, f(x) = 0 and g(x) = 1. Such a solution corresponds to a
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constant flow along the strip, and every flow line between ψ = 0 and ψ = 1 is given by

y = a(x, ψ) = ψ. We expect that when F is close enough to zero, no critical points of ψ

are introduced, and therefore the flow lines remain graphs of functions y = a(x, ψ). In our

work, we will seek such solutions to 2.1. To incorporate the analytic structure of the flow

lines, we face the problem that functions whose level lines are real analytic curves do not

form a linear space. Thus the stream function ψ itself is not an appropriate object for our

study. Instead we will consider the flow lines themselves. To do this we must transform the

equation 2.1 from coordinates (x, y) to (x, ψ).

For clarity let’s introduce new coordinates (ξ, η). Now consider the coordinate transfor-

mation

(x, y)→ (ξ, η) = (x, ψ(x, y)).

The inverse transformation is given by

(ξ, η)→ (x, y) = (x, a(ξ, η)).

Computing the Jacobian of the transformation we get

∂(x, y)

∂(ξ, η)
=

∂x∂ξ ∂x
∂η

∂y
∂ξ

∂y
∂η

 =

 1 0

aξ aη

 .
Taking the inverse, we find the Jacobian of the inverse transformation

∂(x, y)

∂(ξ, η)
=

 ∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

 =

 1 0

− aξ
aη

1
aη

 .
We thus obtain equations for the partial derivatives

∂

∂x
=

∂

∂ξ
− aξ
aη

∂

∂η
and

∂

∂y
=

1

aη

∂

∂η
.

Taking second derivatives we get the expressions

∂2

∂x2
=

∂2

∂ξ2
− 2aξ

aη

∂2

∂ξ∂η
+

(
aξ
aη

)2
∂2

∂η2
+

[
aξ
aη

(
aηaξη − aξaηη

a2
η

)
−
(
aηaξξ − aξaξη

a2
η

)]
∂

∂η

∂2

∂y2
=

1

a2
η

∂2

∂η2
− aηη

a3
η

∂

∂η
.
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Applying the Laplacian to ψ(x, y) = η and writing our coordinates as (ξ, η) = (x, ψ) we get

∆ψ =
−axx
aψ

+
2axaxψ
a2
ψ

− (a2
x + 1) aψψ
a3
ψ

= Φ(a). (2.2)

Thus we have transformed 2.1, the equation of the stream function between two flow lines

to the following boundary value problem
Φ (a(x, ψ)) = F (ψ)

a(x, 0) = f(x)

a(x, 1) = g(x)

(2.3)

on the domain Ω = T× (0, 1). Φ(a) is a second order nonlinear differential operator, defined

by a rational function of partial derivatives of a.

In this work, we consider the following problem. Suppose F (ψ) ∈ Hs−2(0, 1). We seek to

construct a Banach space for the flow lines a(x, ψ) that incorporates the ‘partial analyticity’

(analytic in x) of a(x, ψ). We will do this using partial complex extensions of a, thus ob-

taining a complex Banach space for our solutions. Likewise we will construct an appropriate

complex Banach space for the boundary data f(x) and g(x). It will be shown that in such

a formulation, 2.3 becomes an analytic operator equation on complex Banach spaces. A

local solution can be found by the Analytic Implicit Function theorem on complex Banach

spaces, whose proof can be found in most text books of Nonlinear Functional Analysis (for

example see [18], [10]):

Theorem 2.1 (Implicit Function Theorem on Banach Spaces). Let X, Y and Z be Banach

spaces, and A : X × Y → Z be a Ck mapping (k times continuously Fréchet differentiable).

Suppose (x0, y0) ∈ X × Y such that A(x0, y0) = 0 and furthermore, ∂A(x0,y0)
∂y

: Y → Z is a

Banach space isomorphism. Then there exists neighbourhoods U ⊂ X, V ⊂ Y of x0 and y0

respectively, and a Ck map φ : U → V such that A(x, φ(x)) = 0 and A(x, y) = 0 if and only

if y = φ(x) for all (x, y) ∈ U × V . If X, Y and Z are complex Banach spaces and A is an

analytic map, then φ is analytic.

Let us briefly sketch our main result. We will construct a complex Banach space Y s
σ of

solutions a(x, ψ) and space X
s−1/2
σ for boundary functions f(x) and g(x). We define operators
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γ0 and γ1 which restrict a to the boundary, ie γ0a(x, ψ) = a(x, 0) and γ1a(x, ψ) = a(x, 1).

We then consider the map

A : Xs−1/2
σ ×Xs−1/2

σ ×Hs−2(0, 1)× Y s
σ → Y s−2

σ ×Xs−1/2
σ ×Xs−1/2

σ (2.4)

defined by

A (f, g, F, a) = (Φ(a)− F, γ0a− f, γ1a− g) . (2.5)

By noticing that Φ(a) = 0 when a(x, ψ) = ψ, we see that

A(0, 1, 0, ψ) = 0. (2.6)

In other words, a(x, ψ) = ψ is a solution to 2.3 for f(x) = 0, g(x) = 1 and F (ψ) = 0. This

solution corresponds to a constant flow in a region of zero vorticity when the boundary flows

are straight lines. After evaluating the derivative of Φ with respect to a at a(x, ψ) = ψ we

find that
∂A(0, 1, 0, ψ)

∂a
: Y s

σ → Y s−2
σ ×Xs−1/2

σ ×Xs−1/2
σ (2.7)

is defined by

a(x, ψ)→ (−∆a(x, ψ), γ0a, γ1a). (2.8)

In order to apply 2.1, we have to show this map is an isomorphism. The body of this thesis

will be devoted to constructing the spaces Y s
σ and X

s−1/2
σ , showing that A is well defined

and an analytic operator on these spaces and showing that ∂A(0,1,0,ψ)
∂a

is a Banach space

isomorphism. This last step corresponds to solving the Dirichlet problem for the Poisson

equation in our constructed spaces. The main result can then be obtained as an immediate

application of the implicit function theorem 2.1.
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Chapter 3

Partially Analytic Sobolev Spaces

In this chapter we introduce new spaces of functions, which we will use as the space of flow

lines in our problem. These spaces should incorporate the analyticity of flow lines, have well

behaved differential operators on them and have a Banach structure so that we may later

use the implicit function theorem on Banach spaces to obtain our solution. The problem

we face is the fact that real analytic functions do not form Banach spaces. Instead we will

consider Sobolev functions that extend analytically to a chosen complex domain. The result

will be a sort of complex Hardy space. The main tool of this chapter will be some variations

of the Paley-Wiener theorem. We start be forming a space of single flow lines.

Let us remind of the Paley-Wiener theorems, which tell us that L2 functions on the

real line (or circle) can be complex analytically extended to various domains if their Fourier

transforms satisfy some appropriate growth condition. The Paley-Wiener theorems then

characterize the complex Hardy spaces, which are Banach spaces of complex analytic func-

tions. We can adapt these well known results to include a Sobolev structure in such spaces.

We define the complex periodic strip as follows:

Tσ = {z = x+ it : x ∈ T, |t| < σ} (3.1)

where σ > 0. T can be identified with the interval [0, 2π]. Given a function u(x) on the

circle, we can write it as the Fourier series

u(x) =
∞∑

k=−∞

ûke
ikx.
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The following version of the Paley-Wiener theorem uses the Fourier series to characterize the

subset of Hs(T) that extends analytically to Tσ. It will be useful to first prove the following

lemmas.

Lemma 3.1. There is a one-to-one correspondence between holomorphic functions (possibly

taking values in a complex Banach space) on the periodic strip and holomorphic functions

on the annulus.

Proof. The map z → w = eiz defines a holomorphic bijection between the periodic strip

Tσ and the annulus Aσ = {e−σ < |w| < eσ}. Note dw/dz 6= 0 for any w ∈ Aσ. By

the holomorphic inverse function theorem, at any w there exists an analytic map such that

z = F (w) in a neighbourhood of w. If v(w) is holomorphic on the annulus, then the function

u(z) defined by u(z) = v(eiz) is clearly holomorphic on Tσ. On the other hand, suppose

we are given u(z) holomorphic on Tσ. Then the map v(w) defined by v(w) = u(F (w))

is holomorphic in the annulus. The result holds for functions taking values in a complex

Banach space.

Lemma 3.2. If u(z) is holomorphic on Tσ (possibly taking values in a complex Banach

space) then it has the following representation

u(z) = u(x+ it) =
∞∑

k=−∞

ûke
ikz = F−1

k→x
{
ûke

−kt}
where ûk is understood to be the (complex Banach space valued) Fourier transform of u(x+

i0).

Proof. By the previous lemma, there exists v(w) that is holomorphic on the Aσ such that

u(z) = v(eiz). Holomorphic functions on the annulus can be uniquely expressed as a Laurent

series

v(w) =
∞∑

k=−∞

ckw
k.

The coefficients (which may be Banach valued) are given by

ck =
1

2πi

∮
γ

v(w)

wk+1
dw

10



where γ is a closed loop inside the annulus. If we denote z = x+ it, and take γ to be a loop

around the unit circle |w| = 1 then we get

ck =
1

2π

∫ 2π

0

v(eix)

eikx
dx =

1

2π

∫ 2π

0

u(x)e−ixkdx = ûk.

Then the desired result follows immediately:

u(z) = v(w) =
∞∑

k=−∞

ûkw
k =

∞∑
k=−∞

ûke
ikz = F−1

k→x
{
ûke

−kt} .

Theorem 3.3 (Paley-Wiener Theorem for Sobolev functions). Suppose u(x) ∈ Hs(T), where

s ≥ 0 is not necessarily a whole number. Let σ > 0. Then the following statements are

equivalent:

(i) F−1
k→x{ûkeσ|k|} ∈ Hs(T)

(ii) u(x) extends to u(z) holomorphic in the strip Tσ with

sup
|t|<σ
‖u(·+ it)‖Hs(T) <∞.

Proof. =⇒ : We extend u(x) to a complex function u(z) by replacing the real variable x

with complex variable z = x+ it in the Fourier series of u(x). Thus define

u(z) =
∞∑

k=−∞

ûke
ikz =

∞∑
k=−∞

ûke
−kteikx = F−1

k→x{ûke
−kt}.

To see that the series is well defined for z ∈ Tσ, note

|u(z)| ≤
∑
k

|ûkeikz| ≤
∑
k

|ûke−kt| ≤
∑
k

|ûk|e|t||k|

=
∑
k

|ûk|eσ|k|e(|t|−σ)|k| ≤ ‖F−1
k→x

{
ûke

σ|k|} ‖L2(T)‖e(|t|−σ)|k|‖`2 <∞

where in the second line we have used the Cauchy-Schwarz inequality. Since |t| < σ, e(|t|−σ)|k|

is exponentially decaying and thus in `2. Thus the series is absolutely convergent. Similarly,

by differentiating the Fourier series with respect to z, we get

|u′(z)| ≤ ‖F−1
k→x

{
ûke

σ|k|} ‖L2(T)‖ke(|t|−σ)|k|‖`2 <∞.

11



We conclude that u(z) is complex analytic in Tσ. Furthermore, we have

sup
|t|<σ
‖u(·+ it)‖Hs(T) = sup

|t|<σ
‖F−1

k→x
{
ûke

−kt} ‖Hs(T)

≤ sup
|t|<σ
‖F−1

k→x
{
ûke

|k||t|} ‖Hs(T) = ‖F−1
k→x

{
ûke

σ|k|} ‖Hs(T) <∞.

The second line follows from the fact that the supremum over |t| < σ corresponds to the

limit as |t| → ∞. By dominated convergence theorem, we can pass to the limit and obtain

the desired result. Therefore the second statement of the theorem is satisfied.

⇐= : By 3.2 we can represent u(z) as

u(x+ it) =
∑
k

ûke
−kteikx = F−1

k→x
{
ûke

−kt} .
The first statement of the theorem follows by:

‖F−1
k→x{ûke

σ|k|}‖Hs(T) = sup
|t|<σ
‖F−1

k→x{ûke
|k|t}‖Hs(T)

≤ sup
|t|<σ
‖F−1

k→x{ûk(e
kt + e−kt)}‖Hs(T)

≤ sup
|t|<σ
‖F−1

k→x{ûke
−kt}‖Hs(T) + sup

|t|<σ
‖F−1

k→x{ûke
−kt}‖Hs(T)

= sup
|t|<σ
‖u(·+ it)‖Hs(T) + sup

|t|<σ
‖u(· − it)‖Hs(T)

<∞.

In the first line we have again used dominated convergence theorem to pull the limit |t| → ∞

out of the norm.

Note that it is immediately clear that if a function u satisfies the conditions of the above

theorem, then it is well defined on the boundaries of the strip as a limit of Hs functions on

horizontal sections of the strip (by the dominated convergence theorem). Thus we define

u(· ± iσ) = lim
t→±σ

u(·+ it) (3.2)

where this limit is understood as a limit in Hs(T). We are now ready to properly define a

space for individual analytic flow lines.
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Definition 3.4. Define Xs
σ to be the space of functions satisfying 3.3. Thus we have two

equivalent characterizations of this space, one real and the other complex.

(i)

Xs
σ =

{
u(x) ∈ Hs(T) : F−1

k→x{ûke
σ|k|} ∈ Hs(T)

}
with norm

‖u‖2
Xs
σ

=
∞∑

k=−∞

(1 + k2)se2σ|k||ûk|2.

(ii) Xs
σ is the space of functions u(z) that are complex analytic on the domain Tσ and

satisfy

sup
|t|<σ
‖u(·+ it)‖Hs(T) <∞

with norm

‖u‖2
Xs
σ

= sup
|t|<σ
‖u(·+ it)‖2

Hs(T)
∼= ‖u(·+ iσ)‖2

Hs(T) + ‖u(· − iσ)‖2
Hs(T).

Remark 3.5. By viewing Xs
σ as a weighted `2 space, it is clear that Xs

σ is a (complex) Hilbert

space.

Remark 3.6. We can define a mapping T on Hs by T : u(x) → F−1
k→x

{
ûke

−σ|k|}. Then the

first part of the definition is equivalent to the statement that T (Hs) = Xs
σ. In other words,

any function of Xs
σ can be seen as the result of taking a function in Hs and exponentially

dampening its Fourier coefficients.

Remark 3.7. Note that when s = 0, X0
σ corresponds to the usual complex Hardy space H2

in the periodic strip. We can say in general, Xs
σ is a complex Hardy space in the strip with

additional Sobolev structure.

Proposition 3.8. Xs
σ is an algebra for s > 1/2. That is, for u, v ∈ Xs

σ we have

‖uv‖Xs
σ
≤ C‖u‖Xs

σ
‖v‖Xs

σ
.

Proof. Let u, v ∈ Xs
σ. The product of two holomorphic functions is holomorphic, therefore

the product u(z)v(z) is holomorphic in Tσ. Furthermore, on every fixed horizontal section

u(· + it)v(·+ it) is a product of Hs(T) functions up to and including the boundary |t| = σ.
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Since Hs(T) is an algebra for s > 1/2, then the product u(z)v(z) is in Hs(T) on each section

up to and including the boundary. Therefore u(z)v(z) satisfies second statement of 3.3 and

is thus in Xs
σ. The desired inequality follows immediately from ‖uv‖Hs ≤ C‖u‖Hs‖v‖Hs .

Let u(x, y) ∈ Hs(Ω), where Ω = T × (0, 1). We seek to characterize the subset of these

functions which are ‘partially analytic’ (analytic in x) by proving a ‘partial’ analogue of

theorem 3.3. To do so, we must make precise in what sense an Hs(Ω) function can be

partially analytic. Let γx be an operator that restricts a function u(·, ·) on Ω to u(x, ·) on

the section (0, 1). It is a well known property of Sobolev spaces that such trace operators

are bounded and surjective from Hs(Ω) to Hs−1/2(0, 1) (as long as s > 1/2), where, the

fractional Sobolev space on (0, 1) can be defined by the Slobodetsky norm (see for example

[9] and [5]). On the other hand, if a function in Hs(Ω) has additional regularity in x, then

we expect the restriction u(x, ·) to be in Hs(0, 1). Thus we claim the following definition:

Definition 3.9. We say that a function u ∈ Hs(Ω) is analytic in x if the map

x→ γxu : T→ Hs(0, 1)

is analytic (as a Banach valued function).

The following theorem confirms this result. Note that a function on Ω can be written as

a partial Fourier series

u(x, y) =
∞∑

k=−∞

ûk(y)eikx.

Theorem 3.10 (Partial Paley-Wiener Theorem for Sobolev Functions). Suppose u(x, y) ∈

Hs(Ω), where s ≥ 0. Let σ > 0. Then the following statements are equivalent:

(i) F−1
k→x{ûk(y)eσ|k|} ∈ Hs(Ω)

(ii) u(x, y) extends to u(z, y) complex analytic on Tσ in the sense that the map

z → u(z, ·) : Tσ → Hs(0, 1)

is complex analytic (as a complex Banach valued map) and u(z, y) satisfies

sup
|t|<σ
‖u(·+ it, ·)‖Hs(Ω) <∞.

14



Proof. =⇒ : We extend u from Ω = T× (0, 1) to Tσ × (0, 1) by

u(z, y) = u(x+ it, y) =
∑
k

ûk(y)eikz =
∑
k

ûk(y)e−kteikx = F−1
k→x{ûk(y)e−kt}.

To see that u(z, ·) ∈ Hs(0, 1) for z ∈ Tσ, first note that statement one of the theorem directly

implies that ∑
k

e2σ|k|‖ûk(y)‖2
Hs(0,1) <∞.

Then we have

‖u(x+ it, ·)‖2
Hs(0,1) =

∑
p≤s

∫ 1

0

|∂pyu(x+ it, ·)|2dy =
∑
p≤s

∫ 1

0

∣∣∣∣∣∑
k

û
(p)
k (y)e−kteikx

∣∣∣∣∣
2

dy

≤
∑
p≤s

∫ 1

0

(∑
k

∣∣∣û(p)
k (y)e|k||t|

∣∣∣)2

dy =
∑
p≤s

∫ 1

0

∑
k,l

∣∣∣û(p)
k (y)

∣∣∣ ∣∣∣û(p)
l (y)

∣∣∣ e|k||t|e|l||t|dy
≤
∑
p≤s

∑
k,l

e|k||t|e|l||t|‖û(p)
k ‖L2(0,1)‖û(p)

l ‖L2(0,1) =
∑
p≤s

(∑
k

e|k||t|‖û(p)
k (y)‖L2(0,1)

)2

=
∑
p≤s

(∑
k

eσ|k|‖û(p)
k (y)‖L2(0,1)e

(|t|−σ)|k|

)2

≤
∑
p≤s

(∑
k

e2σ|k|‖û(p)
k (y)‖2

L2(0,1)

)(∑
k

e2(|t|−σ)|k|

)

=

(∑
k

e2σ|k|‖ûk(y)‖2
Hs(0,1)

)(∑
k

e2(|t|−σ)|k|

)
<∞.

Note we have used the Cauchy-Schwarz inequality between the second and third line, and

again in the fourth line. Of course the right hand term of the last line is in `2 since e(|t|−σ)|k|

is exponentially decaying when |t| < σ. Similarly, we also get

‖uz(z, ·)‖2
Hs(0,1) ≤

(∑
k

e2σ|k|‖ûk(y)‖2
Hs(0,1)

)(∑
k

|k|e2(|t|−σ)|k|

)
<∞.

Thus we have confirmed that the map z → u(z, ·) is complex differentiable from Tσ to

Hs(0, 1) and therefore it is complex analytic. Furthermore, by the Fourier series representa-

tion of u(x+ it, y) we get

‖u(·+ it, ·)‖Hs(Ω) = ‖F−1
k→x{ûk(y)e−kt}‖Hs(Ω) ≤ ‖F−1

k→x{ûk(y)e|k||t|}‖Hs(Ω).

By the dominated convergence theorem, we pass to the limit and get

sup
|t|<σ
‖u(·+ it, ·)‖Hs(Ω) = sup

|t|<σ
‖F−1

k→x{ûk(y)e|k||t|}‖Hs(Ω) = ‖F−1
k→x{ûk(y)eσ|k|}‖Hs(Ω) <∞.
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Thus we have shown ‖u(·+ it, ·)‖Hs ≤M uniformly as |t| → σ and so we have a well defined

u(· ± iσ, ·) ∈ Hs(Ω) on the boundary of Tσ. This concludes the first direction of the proof.

⇐= : By 3.2, u(z, ·) has representation

u(x+ it, ·) =
∞∑

k=−∞

ûk(·)e−kteikx = F−1
k→x

{
ûk(·)e−kt

}
.

Then the first statement of the theorem follows by the dominated convergence theorem:

‖F−1
k→x{ûk(y)eσ|k|}‖Hs(Ω) = sup

|t|<σ
‖F−1

k→x{ûk(y)e|k|t}‖Hs(Ω)

≤ sup
|t|<σ
‖F−1

k→x{ûk(y)(ekt + e−kt)}‖Hs(Ω)

≤ sup
|t|<σ
‖F−1

k→x{ûk(y)e−tk}‖Hs(Ω) + sup
|t|<σ
‖F−1

k→x{ûk(y)e−kt}‖Hs(Ω)

= sup
|t|<σ
‖u(·+ it, ·)‖Hs(Ω) + sup

|t|<σ
‖u(· − it, ·)‖Hs(Ω)

<∞.

Using the above theorem, we can define a ‘partial’ complex Hardy space which will serve

as the solution space of our problem.

Definition 3.11. Let s ≥ 0. Define Y s
σ to be the space of functions satisfying the preceding

theorem. Thus we have two equivalent characterizations of this space, one real and the other

complex.

(i)

Y s
σ =

{
u(x, y) ∈ Hs(Ω) : F−1

k→x{ûk(y)eσ|k|} ∈ Hs(Ω)
}

with norm

‖u‖2
Y sσ

=
∑
p+q≤s

∞∑
k=−∞

(k2)pe2σ|k|‖û(q)
k (·)‖2

L2(0,1).

(ii) Y s
σ is the space of functions u(z, y) on Tσ × (0, 1) that are complex analytic on Tσ in

the sense that the map

z → u(z, ·) : Tσ → Hs(0, 1)
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is complex analytic, and that satisfy

sup
|t|<σ
‖u(·+ it, ·)‖Hs(Ω) <∞.

Y s
σ has norm

‖u‖2
Y sσ

= sup
|t|<σ
‖u(·+ it, ·)‖2

Hs(Ω)
∼= ‖u(·+ iσ, ·)‖2

Hs(Ω) + ‖u(· − iσ, ·)‖2
Hs(Ω).

Remark 3.12. Completeness of Y s
σ follows immediately from the completeness of Hs. If

un(x, y) is a Cauchy sequence in Y s
σ then it converges to some function u(x, y) in Hs. Likewise

the sequence vn(x, y) = F−1
k→x

{
ûn(k, y)eσ|k|

}
converges to some v(x, y) in Hs. To see that

u(x, y) ∈ Y s
σ , note that since

‖F−1
k→x{ûn(k, y)eσ|k|}‖Hs ≤ ‖v‖Hs

then by dominated convergence theorem

‖F−1
k→x{û(k, y)eσ|k|}‖Hs = lim

n→∞
‖F−1

k→x{ûn(k, y)eσ|k|}‖Hs <∞.

Thus u ∈ Y s
σ , hence Y s

σ is complete and so it is a (complex) Hilbert space.

Remark 3.13. As in the case for Xs
σ, the first part of the definition of Y s

σ is equivalent to the

statement T (Hs) = Y s
σ where T maps u(x, y) to F−1

k→x
{
ûk(y)e−σ|k|

}
.

Remark 3.14. It should be noted that while u(x+ it, ·) ∈ Hs(0, 1) for |t| < σ, it fails to hold

as |t| → σ. In this limit we merely have u(x + it, ·) → u(x ± iσ, ·) in Hs−1/2(0, 1). This is

clear because on the boundary of the domain of analyticity, u(· ± iσ, ·) is an ordinary Hs(Ω)

function (without additional regularity) and thus has the usual trace Hs(Ω)→ Hs−1/2(0, 1).

Proposition 3.15. Y s
σ is an algebra for s > 1. That is, for u, v ∈ Y s

σ we have

‖uv‖Y sσ ≤ C‖u‖Y sσ ‖v‖Y sσ .

Proof. Consider u, v ∈ Y s
σ . Note that the map z → u(z, ·)v(z, ·) is well defined from Tσ to

Hs(0, 1) since the latter is an algebra for s > 1/2. Also we have by chain rule

d

dz
[u(z, ·)v(z, ·)] =

du

dz
(z, ·)v(z, ·) + u(z, ·)dv

dz
(z, ·) ∈ Hs(0, 1)
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since z → u(z, ·) and z → v(z, ·) are complex analytic and Hs(0, 1) is an algebra. Therefore

z → u(z, ·)v(z, ·) : Tσ → Hs(0, 1)

is complex analytic. Furthermore, since Hs(Ω) is an algebra for s > 1, the product u(· +

it, ·)v(·+ it, ·) on each section (up to and including the boundaries |t| = σ) is in Hs(Ω). Thus

by the second statement of 3.10, the product u(z)v(z) ∈ Y s
σ . The inequality follows directly

from the equivalent result for Hs(Ω).

Remark 3.16. It is worth briefly mentioning our first attempts at the problem, which were

unsuccessful. We had initially considered the space Xs
σ ⊗Hr(0, 1) for our partially analytic

functions. Despite the fact that this space also has a partial analyticity, it proved to be the

wrong space for our study. Such a space is related to spaces of the form Hs⊗Hr, which can

be identified with the Sobolev spaces of dominating mixed derivatives (see [15], [11]) because

they consist of functions whose derivatives up to ∂sx∂
r
y are in L2. Such spaces are anisotropic

in their Sobolev regularity, which causes problems when solving the Dirichlet problem for

the Poisson equation. Note that 1−∆ : Hs⊗Hr → Hs−2⊗Hr−2 is not an isomorphism. The

target space of the Laplacian instead must be chosen much more carefully. Even when the

target space is constructed correctly (as the subset of H−2 whose distributional derivatives

up to ∂sx∂
r
y are in H−2), the Dirichlet problem remains unsolvable. The issue occurs at the

boundary. We found that in order for the solution to lie in Hs⊗Hr, the boundary functions

should lie in Hs+r−1/2. In other words the boundary should be the trace of an Hs+r function,

as opposed to a Hs ⊗Hr function. One can conclude that such spaces of mixed dominating

derivatives (and hence tensor products of Sobolev spaces) are unsuitable for the boundary

value problems encountered in this work. The mistake in forming the space Xs
σ ⊗ Hr(0, 1)

was that in an attempt to introduce anisotropy in the sense of partial analyticity, we also

introduced anisotropy in the Sobolev regularity. Ultimately, this problem was remedied

by formulating the ‘correct’ space Y s
σ that was used in this work. This space successfully

incorporates partial analyticity, while remaining isotropic in Sobolev regularity.
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Chapter 4

Dirichlet Problem

To be able to apply the Implicit Function theorem, we have to show that the map

u→ (∆u, γ0u, γ1u) : Y s
σ → Y s−2

σ ×Xs−1/2
σ ×Xs−1/2

σ (4.1)

is a Banach space isomorphism, which we show in this chapter.

Proposition 4.1. The derivative operators ∂x and ∂y are well defined and bounded from Y s
σ

to Y s−1
σ as long as s ≥ 1. Likewise the Laplacian ∆ : Y s

σ → Y s−2
σ is well defined and bounded

for s ≥ 2.

Proof. This follows immediately from the Sobolev structure of Y s
σ .

Proposition 4.2. Let s > 1/2. Then the restriction to horizontal sections, defined by

u→ γyu = u(·, y) : Y s
σ → Xs−1/2

σ

is well defined and bounded.

Proof. For any u ∈ Y s
σ we can write u(z, y) =

∑
k ûk(y)eikz, where ûk(y) ∈ Hs(0, 1). Thus

it is clear that
{
eikz
}
⊗ Hs(0, 1) is dense in Y s

σ , where
{
eikz
}

is the set of trigonometric

polynomials. Furthermore since C∞[0, 1] is dense in Hs(0, 1), then
{
eikz
}
⊗C∞[0, 1] is dense

in Y s
σ . For any v(z, y) ∈

{
eikz
}
⊗C∞[0, 1], the trace γy is well defined by evaluation at y, ie

γyv(·, ·) = v(·, y) and this trace is in X
s−1/2
σ . Since γy : Hs(Ω) → Hs−1/2(T) is bounded for

s > 1/2, we have ‖v(·, y)‖
X
s−1/2
σ

≤ C‖v‖Y sσ . Thus by density, we can extend γy to a bounded

operator from all of Y s
σ to X

s−1/2
σ .
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Corollary 4.3. The map

u→ (∆u, γ0u, γ1u) : Y s
σ → Y s−2

σ ×Xs−1/2
σ ×Xs−1/2

σ

is bounded, provided s ≥ 2.

Theorem 4.4.

u→ (∆u, γ0u, γ1u) : Y s
σ → Y s−2

σ ×Xs−1/2
σ ×Xs−1/2

σ

is a Banach space isomorphism, provided s ≥ 2.

Proof. We must show that 4.1 is invertible, which corresponds to solving the Dirichlet

problem for the Poisson equation on the domain Ω = T× [0, 1] given by
∆u(x, y) = f(x, y)

u(x, 0) = a(x)

u(x, 1) = b(x).

(4.2)

Here f(x, y) ∈ Y s−2
σ and a(x), b(x) ∈ Xs−1/2

σ . We must show the solution exists in u ∈ Y s
σ .

By expanding all functions as Fourier series in x we get the series of ODEs
û′′k(y)− k2ûk(y) = f̂k(y)

ûk(0) = âk

ûk(1) = b̂k.

(4.3)

These ODEs can be solved explicitly. For the case when k = 0, straight integration yields

û0(y) =

∫ y

0

∫ η

0

f̂0(t)dtdη +

(
b̂0 − â0 −

∫ 1

0

∫ η

0

f̂0(t)dtdη

)
y + â0.

It can easily be seen that this term is in Hs(0, 1). For general k, let’s write the solution

as ûk(y) = ĥk(y) + ĝk(y) where ĥk is the solution to the homogeneous part (with non-zero

boundary conditions) while ĝk is the general part (with zero boundary conditions). Then we

get

ĥk(y) =
b̂k sinh(ky)− âk sinh[k(y − 1)]

sinh(k)
(4.4)
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and

ĝk(y) =

∫ 1

0

Gk(y, t)f̂k(t)dt. (4.5)

Here

Gk(y, t) =



sinh[k(t− 1)] sinh(ky)

k sinh(k)
y ≤ t

sinh(kt) sinh[k(y − 1)]

k sinh(k)
y ≥ t

(4.6)

is the Green’s function. Then the solution to the Dirichlet problem is given by

u(x, y) = h(x, y) + g(x, y) =
∑

ĥk(y)eikx +
∑

ĝk(y)eikx. (4.7)

Next we would like to show that u ∈ Y s
σ . That is, show

‖u‖2
Y sσ

=
∑
p+q≤s

∑
k

e2σ|k| (k2
)p ‖û(q)

k (y)‖2
L2(0,1) <∞.

First let’s check h(x, y). We have

∂qy ĥk(y) =
kq b̂k sinh(ky)− kqâk sinh[k(y − 1)]

sinh(k)

when q is even and

∂qy ĥk(y) =
kq b̂k cosh(ky)− kqâk cosh[k(y − 1)]

sinh(k)

when q is odd. Notice that,∫ 1

0

sinh2(ky)dy =

∫ 1

0

sinh2[k(y − 1)]dy =
sinh(k) cosh(k)− k

2k

and ∫ 1

0

cosh2(ky)dy =

∫ 1

0

cosh2[k(y − 1)]dy =
sinh(k) cosh(k) + k

2k
.

Therefore we get

‖∂qy ĥk(y)‖2
L2(0,1) =

∫ 1

0

|∂qy ĥk(y)|2dy ≤ (k2)q(â2
k + b̂2

k)
sinh(k) cosh(k)± k

2k sinh2(k)

and thus

‖∂qy ĥk(y)‖2
L2(0,1) ≈

(k2)q

k
(â2
k + b̂2

k).
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It follows that

e2σ|k|(k2)p‖∂qy ĥk(y)‖2
L2(0,1) ≈ e2σ|k|(k2)p+q−1/2(â2

k + b̂2
k) ≤ e2σ|k|(1 + k2)s−1/2(â2

k + b̂2
k)

since p+ q ≤ s. Summing over k, p, q we get

‖h(x, y)‖2
Y sσ
≤ C

(
‖a(x)‖2

X
s−1/2
σ

+ ‖b(x)‖2

X
s−1/2
σ

)
. (4.8)

Now let’s consider the term g(x, y). Starting with the equation

ĝ′′k = k2ĝk + f̂k

differentiating twice gives

ĝ
(4)
k = k2ĝ′′k + f̂ ′′k = k2(k2ĝk + f̂k) + f̂ ′′k = k4ĝk + k2f̂k + f̂ ′′k .

In general differentiating an even number of times gives us

ĝ
(2n)
k = k2nĝk +

n−1∑
i=0

k2(n−1−i)f̂
(2i)
k . (4.9)

Similarly an odd number of derivatives can be written

ĝ
(2n+1)
k = k2nĝ′k +

n−1∑
i=0

k2(n−1−i)f̂
(2i+1)
k (4.10)

Therefore to control the L2 norm of ĝ
(q)
k we need only to estimate the norms of ĝk and ĝ′k.

Recall ĝk satisfies ĝ
′′
k − k2ĝk = f̂k

ĝk(0) = ĝk(1) = 0

on the interval (0, 1). Multiplying both sides of the ODE by ĝk and integrating over the

interval gives ∫ 1

0

ĝ′′k ĝkdy − k2

∫ 1

0

ĝkĝkdy =

∫ 1

0

f̂kĝk.

Integrating the first term by parts using that ĝk vanishes on the end points and rearranging

gives ∫ 1

0

|ĝ′k|2dy + k2

∫ 1

0

|ĝk|2dy = −
∫ 1

0

f̂kĝkdy. (4.11)
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Applying Poincaré inequality: ∫ 1

0

|ĝk|2dy ≤ c

∫ 1

0

|ĝ′k|2dy

and Cauchy-Schwarz inequality to 4.11 we get

(1 + k2)

∫ 1

0

|ĝk|2dy ≤ c(

∫ 1

0

|f̂k|2dy)1/2(

∫ 1

0

|ĝk|2dy)1/2.

We thus obtain

(1 + k2)‖ĝk‖L2(0,1) ≤ c‖f̂k‖L2(0,1)

and so

‖ĝk‖2
L2 ≤ c

‖f̂k‖2
L2

k4
. (4.12)

Also notice from 4.11 we have∫ 1

0

|ĝ′k|2dy ≤
∫ 1

0

|ĝ′k|2 + k2|ĝk|2dy ≤ (

∫ 1

0

|f̂k|2dy)1/2(

∫ 1

0

|ĝk|2dy)1/2.

It follows that

‖ĝ′k‖2
L2 ≤ ‖f̂k‖L2‖ĝk‖L2 ≤ c

‖f̂k‖2
L2

k2
. (4.13)

We now have control of ĝk and ĝ′k, which we can use to control ĝ
(q)
k . Returning to 4.9 and

4.10 we find

‖ĝ(2n)
k ‖2

L2 ≤ (k2)2n−2‖f̂k‖2
L2 +

n−1∑
i=0

(k2)2n−2−2i‖f̂ (2i)
k ‖

2
L2

and

‖ĝ(2n+1)
k ‖2

L2 ≤ (k2)2n−1‖f̂k‖2
L2 +

n−1∑
i=0

(k2)2n−2−2i‖f̂ (2i+1)
k ‖2

L2 .

We can combine these two cases and write

‖ĝ(q)
k ‖

2
L2 ≤

q−2∑
j=0

Cj
(
k2
)q−2−j ‖f̂ (j)

k ‖
2
L2 . (4.14)

Multiplying both sides by (k2)p and using that p+ q ≤ s we get

(
k2
)p ‖ĝ(q)

k ‖
2
L2 ≤

s−2∑
j=0

Cj
(
k2
)s−2−j ‖f̂ (j)

k ‖
2
L2 .

Finally multiplying both sides by e2σ|k| and summing over k, p, q we obtain

‖g‖Y sσ ≤ C‖f‖Y s−2
σ

. (4.15)
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Combining 4.8 and 4.15 we obtain the desired result

‖u‖2
Y sσ
≤ C

(
‖f‖2

Y s−2
σ

+ ‖a‖2

X
s−1/2
σ

+ ‖b‖2

X
s−1/2
σ

)
. (4.16)

Thus there is a bounded inverse map to 4.1 and so it is a Banach space isomorphism.
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Chapter 5

Nonlinear Differential Operators

The goal of this chapter is to show that the nonlinear differential operator Φ defined in 2.2 is

an analytic operator from Y s
σ to Y s−2

σ , in the neighbourhood of a(x, ψ) = ψ. To this end, we

will need to first show such results on ordinary Sobolev spaces. Let’s start by formulating this

problem. Suppose As is some space of functions from a (real or complex) domain Ω to K (real

or complex numbers), that are s times differentiable (in some informal sense). We denote

mth order derivatives (possibly partial) by Dm. Given a function f : Ω×K× · · · ×K→ K,

we can define a nonlinear operator F on a set of functions u1, ..., uN ∈ As by the composition

Fu = f (x, u1(x), · · ·, uN(x)) .

Such operators are often referred to in literature as Composition operators, Substitution

operators or Nemytskii operators (see [10]). We can in turn define an mth order nonlinear

differential operator F (m) on u ∈ As by the composition:

F (m)u(x) = F (u(x), Du(x), · · ·, Dmu(x)) = f (x, u(x), Du(x), · · ·, Dmu(x)) .

In other words, it is given by a composition of a linear differential operator

u(x)→ (u(x), · · ·, Dmu(x)) : As → As × · · · × As−m

with a nonlinear operator F . In practice we would like F (m) to map As to As−m. To do so,

we need f to define the mapping

F : As−m × · · · × As−m → As−m.
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For our purposes, it will be enough to consider the slightly less general operator F (u1, ..., uN) =

f(u1(x), ..., uN(x)). That is, operators defined by functions that do not explicitly depend on

the domain Ω. Starting with the simplest case, suppose x ∈ Ω ⊂ R and f : K → K defines

Fu(x) = f(u(x)). Computing the first few derivatives of Fu(x) we get

DFu(x) = f ′(u)(Du)

D2Fu(x) = f ′(u)(D2u) + f ′′(u)(Du)2

D3Fu(x) = f ′(u)(D3u) + 3f ′′(u)(Du)(D2u) + f ′′′(u)(Du)3

By induction, we can write the general sth derivative as follows

DsFu(x) =
s∑

p=1

∑
(s1+···+sp)≤s

si≥1

Cs
s1...sp

(Ds1u) · · · (Dspu)f (p)(u). (5.1)

Remark 5.1. The formula 5.1 remains true if x ∈ Rn and u(x) is a vector valued function;

in this case the terms of 5.1 have an obvious tensor sense.

We are now ready to prove some properties of such composition operators on Sobolev

spaces.

Lemma 5.2. Let Ω ⊂ Rn be a bounded domain (or possibly a torus or toroidal along some

dimensions) with sufficiently smooth boundary. Let f : R → R be a Cs function. Suppose

s > n/2 + 1 (s > n/2 suffices if n is odd) is a natural number. Then f(u(x)) = Fu(x)

defines a continuous mapping

F : Hs(Ω)→ Hs(Ω).

Proof. First, to show F is well defined, we show DsFu(x) ∈ L2(Ω). Suppose s > n/2. Then

we have the inclusion Hs(Ω) ⊂ C(Ω) ([2], [9]). The factor f (p)(u) in 5.1 is thus a composition

of continuous functions and is therefore in C(Ω). Since the product of a continuous function

with an L2 function is L2 (on compact domains), it suffices to show that in each term of 5.1,

the product (Ds1u) · · · (Dspu) is in L2.

Our strategy will be to use the Sobolev Embedding Theorem (see ([2], [9] for more details)

to embed each factor (Dsiu) into Lqi with qi high enough that their products are in L2. First
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notice that because Ω is bounded, we have the inclusion Lq ⊂ L2 when q ≥ 2. We will show

each Dsiu ∈ Lqi such that 1/q1 + · · · + 1/qp ≤ 1/2. Then the above mentioned inclusion

combined with Hölder’s inequality gives

‖(Dk1u) · · · (Dkpu)‖L2 ≤ C‖(Dk1u) · · · (Dkpu)‖Lq ≤ C‖Dk1u‖Lq1 · · · ‖D
kpu‖Lqp .

Let’s proceed by applying the Sobolev embedding theorem. Each factor Dsiu ∈ Hs−si .

If s − si > k/2 then this factor is continuous and can be factored out of the L2 norm. If

s− si < n/2 then Dsiu ∈ Lqi with 1/qi = 1/2− (s− si)/n. Finally in the critical case when

s − si = n/2 (which can occur only if n is even), we instead use that Hs−si−1 ⊂ Lqi with

1/qi = 1/2− (s− si − 1)/n = 1/n.

First let’s assume n is even. In each term of 5.1, there are p number of factors

Dsiu. Let’s assume that p′ is the number of factors with s − si < n/2, p′′ is the num-

ber of factors in the critical case and p′′′ is the number of factors that are continuous.

Then p′ + p′′ + p′′′ = p. Without loss of generality, let’s order the indexes accordingly

(s1, ..., sp′), (sp′+1, ..., sp′+p′′), (sp′+p′′+1, ..., sp′+p′′+p′′′). We have

s1 + · · ·+ sp′ + p′′(s− n/2) + p′′′ ≤ s1 + · · ·+ sp = s

and therefore

s1 + · · ·+ sp′ ≤ s− p′′(s− n/2)− p′′′ ≤ s− p′′(s− n/2).

Now let’s check the condition for Hölder’s inequality (we can ignore the continuous factors):

1

q
=

1

q1

+ · · ·+ 1

qp′+p′′

=
p′

2
− p′s

n
+
s1 + · · ·+ sp′

n
+
p′′

n

≤ p′ + p′′

2
− s(p′ + p′′ − 1)

n
+
p′′

n
.

We need 1/q ≤ 1/2, so set the last line above to be ≤ 1/2. Rearranging for s we find that

we need

s ≥ n

2
+

p′′

p′ + p′′ − 1
.
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Notice though that the fraction on the right is at most 2. The denominator is never zero

because we assume at least two factors are not continuous (otherwise the result is trivial).

Therefore we need s ≥ n/2 + 2. Since n is even, this is equivalent to s > n/2 + 1.

When n is odd, the critical case does not occur. Thus take p = p′ + p′′′, where p′′′ is the

number of continuous factors and p′ is the number of factors that embed in some Lqi . We

have

s1 + · · ·+ sp′ + p′′′ ≤ s1 + · · ·+ sp = s

and therefore

s1 + · · ·+ sp′ ≤ s− p′′′ ≤ s.

Checking Hölder’s inequality we have

1

q
=

1

q1

+ · · ·+ 1

qp′
=
p′

2
− p′s

n
+
s1 + · · ·+ sp′

n
≤ p′

2
− p′s

n
+
s

n
.

Setting the right side to be ≤ 1/2 and rearranging for s we find s ≥ n/2. Since n is odd,

this corresponds to s > n/2.

To see that F is continuous, take a sequence in Hs(Ω) converging to u. Note the product

of a sequence converging in L2 and a uniformly converging sequence converges in L2. Then

by the Sobolev inequalities, each term of 5.1 converges in L2 and so the expression converges

in Hs to DFu(x).

Next we show that additional regularity of f carries forward to regularity of F .

Lemma 5.3. Suppose f is in Cs+r. Then the map F : Hs(Ω)→ Hs(Ω) is r times continu-

ously differentiable. In particular, if f is smooth then F is smooth.

Proof. Let u, v ∈ Hs(Ω). The Gâteaux derivative of F at u in direction v is given by

DF (u, v) =
d

dt

∣∣∣∣
t=0

F (u+ tv) = f ′(u)v(x).

By the previous lemma, f ′(u) ∈ Hs(Ω) as long as f ∈ Cs+1. Since Hs is an algebra for

s > n/2, the Gâteaux derivative is in Hs. Thus we see that the derivative map

DF (u, ·) : Hs(Ω)→ Hs(Ω)
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is well defined, linear because it is a multiplication operator and has a bound on the norm

|||DF (u, ·)||| ≤ C‖f ′(u)‖Hs .

Consider the map u → DF (u, ·) from Hs(Ω) to L (Hs(Ω), Hs(Ω)). It is clearly continuous

by the results of the previous lemma, thus DF (u, ·) is continuous in operator norm with

respect to u. A map that has linear bounded Gâteaux derivative, continuous in operator

norm is Fréchet differentiable (see [10]). Thus, F : Hs → Hs is continuously differentiable

in the Fréchet sense.

Higher order derivatives work much the same way. The second Fréchet derivative of F

at u, denoted by D2F (u, ·, ·) is given by the multiplication operator

(v, w)→ f ′′(u)vw : Hs(Ω)×Hs(Ω)→ Hs(Ω).

It is well defined and continuous as long as f ′′ is in Cs, that is f ∈ Cs+2. In general, we see

that DrF (u, ·) is well defined and continuous so long as f ∈ Cs+r. In particular, if f is C∞

then

F : Hs(Ω)→ Hs(Ω)

is a C∞ map.

Finally note that in the case when F acts on a vector valued function u(x), the derivative

map changes from a multiplication operator to a ‘dot product’ operator

DF (u, v) = ∇f(u) · v =
N∑
j=1

∂jf(u)vj.

Higher order derivatives are similar linear operators, summations over all components. The

rest of the proof works in the same way.

Corollary 5.4. Let f be a complex analytic function. Suppose s > n/2 + 1 (s > n/2 if n is

odd) is a natural number. Then

F : Hs(Ω,C)→ Hs(Ω,C)

is an analytic operator.
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Proof. By the previous lemmas, F is well defined and continuously complex differentiable

between complex Banach spaces. By standard results of holomorphic maps on complex

Banach spaces (see [8]), F is analytic.

Corollary 5.5. Let f be a complex analytic function. Suppose s > 2. Then

F : Y s
σ → Y s

σ

is an analytic operator.

Proof. Let u(z, y) ∈ Y s
σ . Consider the map z → Fu(z, ·). It is given by the composition

z → u(z, ·)→ f(u(z, ·)) : Tσ → Hs(0, 1)→ Hs(0, 1).

Thus it is a composition of complex analytic maps and is therefore complex analytic. Fur-

thermore, for every |t| ≤ σ the map

u(·+ it, ·)→ Fu(·+ it, ·) : Hs(Ω)→ Hs(Ω)

is well defined and continuous (in fact analytic). Therefore

sup
|t|<σ
‖Fu(·+ it, ·)‖Hs(Ω) <∞.

Thus Fu(z, y) is in Y s
σ and therefore the map F : Y s

σ → Y s
σ is well defined. Continuity of this

map follows immediately from continuity of F : Hs → Hs. As in the previous results, since

Y s
σ is an algebra, the map is continuously complex differentiable between complex Banach

spaces and therefore analytic.

Theorem 5.6. Let f : C× · · · ×C→ C be a complex analytic function that defines an mth

order nonlinear differential operator on Y s
σ by

F (m)u = F (u, · · ·, Dmu) = f(u, · · ·, Dmu).

Suppose s−m > 2. Then

F (m) : Y s
σ → Y s−m

σ

is an analytic operator.
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Proof. This follows immediately from the previous lemma. Since

u→ (u, · · ·, Dmu) : Y s
σ → Y s−m

σ × · · · × Y s−m
σ

is continuous then the composition

u→ F (u, · · ·, Dmu) : Y s
σ → Y s−m

σ

is continuous. The Fréchet derivative is given by

DF (m)(u, v) =
m∑
j=1

∂jf(u, · · ·, Dmu)Djv

with operator norm

|||DF (m)(u, ·)||| ≤ C
m∑
j=1

‖∂jf(u, · · ·, Dmu)‖Y s−mσ
.

F (m) is complex differentiable and therefore analytic.

Corollary 5.7. Suppose s > 4. Then the map Φ defined in 2.2 is an analytic operator from

Y s
σ to Y s−2

σ in a neighbourhood of a(x, ψ) = ψ.

Proof. Note that Φ is defined by composition with a rational function, hence it is ana-

lytic everywhere except at its singularity, which occurs when aψ(x, ψ) = 0. Let U be a

neighbourhood in Y s
σ such that aψ(x, ψ) 6= 0 for all a ∈ U . Then by the previous theorem,

Φ : U → Y s−2
σ is an analytic map. Thus we need only to confirm that there indeed exists such

a neighbourhood of ψ ∈ Y s
σ . Note that s is high enough that aψ ∈ Y s−1

σ ⊂ Hs−1(Ω) ⊂ C(Ω).

There exists a constant C for which ‖ · ‖∞ ≤ C‖ · ‖s−1. Take ‖a− ψ‖Y sσ < 1/C. Then

‖aψ − 1‖∞ ≤ C‖aψ − 1‖s−1 ≤ C‖a− ψ‖s ≤ C‖a− ψ‖Y sσ < 1.

But ‖aψ − 1‖∞ < 1 implies that aψ ∈ (0, 2) on T× [0, 1], and is thus never zero. Therefore

let U be the ball in Y s
σ of radius 1/C centred on a(x, ψ) = ψ. Then Φ : U → Y s−2

σ is

analytic.
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Chapter 6

Conclusion

We now have all the necessary tools to prove our main result.

Theorem 6.1 (Main Result). There exists ε > 0, such that if ‖f‖
X
s−1/2
σ

< ε, ‖g−1‖
X
s−1/2
σ

< ε

and ‖F‖Hs−2 < ε then the boundary value problem in 2.3 has a unique solution a(x, ψ) which

is parametrized analytically by f , g and F .

Proof. Define the map

A : (f, g, F, a)→ (Φ(a)− F ⊗ 1(x), γ0a− f, γ1a− g) .

First note that the map

F (ψ)→ F (ψ)⊗ 1(x) : Hs−2(0, 1)→ Y s−2
σ

is well defined, bounded linear operator. Then by 5.7, the map

(f, g, F, a)→ Φ(a)− F ⊗ 1(x)

Xs−1/2
σ ×Xs−1/2

σ ×Hs−2(0, 1)× Y s
σ → Y s−2

σ

is well defined and analytic (in a neighbourhood of a = ψ). By 4.2, the maps

γ0, γ1 : Y s
σ → Xs−1/2

σ

are bounded linear operators thus

(f, g, F, a)→ γ0a− f

32



(f, g, F, a)→ γ1a− g

Xs−1/2
σ ×Xs−1/2

σ ×Hs−2(0, 1)× Y s
σ → Xs−1/2

σ

are analytic. Therefore the map

A : Xs−1/2
σ ×Xs−1/2

σ ×Hs−2(0, 1)× Y s
σ → Y s−2

σ ×Xs−1/2
σ ×Xs−1/2

σ

is well defined and analytic. At (f, g, F, a) = (0, 1, 0, ψ), A is equal to zero and by 4.4 the

map
∂F (0, 1, 0ψ)

∂a
: Y s

σ → Y s−2
σ ×Xs−1/2

σ ×Xs−1/2
σ

defined by

a→ (−∆a, γ0a, γ1a)

is a Banach space isomorphism. Thus by the analytic implicit function theorem 2.1, there

exists a X
s−1/2
σ ×Xs−1/2

σ ×Hs−2(0, 1) neighbourhood U of (f, g, F ) = (0, 1, 0) for which 2.3

has a unique solution defined by a complex analytic map

(f, g, F )→ a : U → Y s
σ .

We have thus obtained a local parametrization for the set of flow lines on a periodic

strip. This parametrization holds in the neighbourhood of a parallel flow with constant

velocity in a straight channel, where the stream function has no critical points. Our solution

incorporates the analytic structure of the flow lines and the resulting parametrization is

also analytic. This work represents a step forward towards the goal of a global geometric

description of the set of stationary solutions to the incompressible Euler equation. Further

progress can be made by extending our results from the periodic strip to general domains.

The case when the stream function has critical points needs to be addressed as well. Such a

case presents new difficulties not encountered in this work, as the flow lines can no longer all

be represented as graphs of functions. In our work, we have incorporated the real analytic

structure of flow lines by considering only those whose complex singularities are at worst

restricted to the boundary of our chosen complex strip. In general, a real analytic flow

line can be extended to complex values until some singularity is reached. These complex

singularities of real analytic flows merit investigation.
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