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Abstract 

 

 

Conflict Free Airport Operations Planning and Management 

Canan Capa 

Concordia University, 2017 

 

This thesis proposes conflict-free mathematical models and solution strategies for both gate 

scheduling and taxiway scheduling problems by taking account all meaningful airport and flight 

characteristics into consideration that are not yet extensively studied in current academic literature. 

Since gate schedule performance has a great impact on the performance of the taxiway, we 

consider gate scheduling as a bi-objective optimization problem, present mathematical models and 

propose a two-phase solution approach. We also propose a mixed integer programming (MIP) 

model that considers collision avoidance on the taxiways, separation distances between aircrafts, 

speed changes and exact travelling times without adapting a state-time network in which the 

decision variables are defined with time indices. Instead, the non-time segmented model proposed 

in this thesis, determines a taxi plan for each aircraft by identifying the sequence of taxiway 

intersections represented as nodes to be visited and determines the aircrafts’ exact arrival and 

departure times to these nodes, average speed used on the taxiway represented as links between 

two consecutive nodes while ensuring the safety conditions that avoid aircraft collisions. The cost 

incurred from arrival and departure delays with total taxiing time is minimized. The model enables 

collision free airport operations considering both airlines and airport controller’s objectives in 

continuous time where we know the exact arrival and departure times which is more accurate in 

tackling collision issues. However, accuracy comes with a cost of solution time. To overcome the 

difficulty to solve, strategies are proposed. The first strategy proposed, called the iterative-TSM, 

adopts a batch by batch policy and optimizes the TSM by solving it in an iterative way where in 

each iteration, schedules of the previous iteration are fixed. The second strategy proposed 



iv 

 

motivates from the idea of decomposition the model into two as routing and timing problem and 

incorporates a genetic algorithms with TSM. All the models proposed are tested on a hypothetical 

data and the results are presented. Main contributions of this thesis can be listed as follows: 

 A MILP model is presented for flight gate scheduling problem. The model is compared to 

modified version of one of the existing MILP model in literature and efficiency of the 

proposed model is evaluated. A two phase solution approach making use of the proposed 

MILP is also presented and the characteristics of the problem are analysed. While 

utilization of gates is maximized, on time performance is also considered.  

 A MILP that considers collision avoidance on the taxiways, separation distances between 

aircrafts, speed changes and exact travelling times without adapting a state-time network 

in which the decision variables are defined with time indices. Instead, all safety constraints 

are modeled with Big-Ms. This enables us to know the exact arrival and departure times 

for each flight on each link on the ground.  

 Collision free taxiway scheduling is achieved. Since the models in the existing literature 

either assumes arbitrary capacities on the nodes of the network or discretizes time, they do 

not guarantee collision avoidance.  

 Speed changes, rerouting, and holding at gates and taxiway intersections are used as control 

options.  

 Both airlines and airport authorities’ objectives are considered. Proposed models have the 

capability to be adopted as a decision support tool for the ground controllers and they allow 

airport traffic authorities to do what-if analysis in case of a change in the flight or airport 

network information. Proposed TSM also minimizes to total taxiing time which results in 

less costly taxiway schedules for airlines in terms of fuel costs and CO2 emissions.  

 Two solution strategies are proposed for the TSM: iterative TSM and GA-TSM. While 

iterative TSM decomposes the problem into batches of flights, solves each batch by fixing 

the schedules of the previous batch in each batch, GA-TSM decomposes the problem into 

routing and timing. While GA searches for the best set of routes for the flights, fixed TSM 

solves the timing problem for a given set of routes.  
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CHAPTER I 

INTRODUCTION 

 

 

Airline industry has been growing continuously during recent years while airport capacities have 

been stagnating. Despite the negative impact of September 11 attacks and ongoing global financial 

turmoil, demand for airline services has been steadily increasing. In most of the major markets 

including Europe, North America and large part of Asia, since early 90s, both total seat capacity 

and number of airline companies have increased significantly resulting fierce competition in 

industry. Emerging market conditions brought many challenges along with its benefits. 

Overcrowding in airport terminals, airspaces around the airports particularly in North America, 

airspaces between airports in Europe and frequent delays are some of the challenges for the airline 

industry as well as for the transportation authorities to tackle. Furthermore, volatility in fuel prices, 

increasing labor costs and unpredictable weather conditions in most parts of the world are forcing 

many airline companies to face extreme financial challenges.  

Growing airline industry puts serious pressure on Air Traffic Controllers (ATCs) and Airport 

Ground Traffic Controllers (AGTCs). From taxiing to navigating in open skies, AGTCs and ATCs 

play crucial roles in delivering on-time service and ensuring the safety of aircrafts and passengers 

at all times. It is clear that, increasing ground and air traffic is becoming unmanageable for traffic 

management personnel to effectively determine a flight plan for each aircraft. Due to high traffic 

volume, traffic controllers frequently ignore economic and service objectives of airlines; rather 

they mainly focus on safety. Hence, fuel consumption cost, delays and early arrivals are frequently 

ignored.  These traffic delays due to congestion are main sources of unnecessary cost to airlines, 

passengers, and air transportation dependent businesses. Delays also have significant 

environmental effects. Sub-optimal flight plans result in unnecessary fuel burn and gaseous 



2 

 

emission that give rise to environmental concerns both globally and locally at ground level. The 

significant magnitude of air traffic delays presently observed is an indication that the current air 

traffic control infrastructure is not capable of handling present traffic levels.  

A significant proportion of the actual travel time can be spent at the airport, especially with short-

haul flights. To achieve efficient air transportation, it is crucial to more accurately manage traffic 

at the surface of airports. Congestion on the airport surface is a major constraint to the available 

capacity of the air transport system. Economically, congestion reduces the turnaround efficiency, 

whereas environmentally, the increase in both air pollutants and noise emissions negatively impact 

the local region. Surface congestion increases the taxi times of flights, leading to increased fuel 

costs and environmental impacts. Furthermore, congestion causes concerns for controller 

workload and increased risk of ground incursions. 

There are several ways to increase the efficiency of an airport. First, is to build the new facilities 

in terms of runways, taxiways, and terminal ramp areas.  However, such expansion generally will 

also increase the complexity of the airport configuration. Under most airport configurations, 

adding runways results in some runways blocking the traffic between the terminal ramp area and 

other runways further out. As the tower controllers have more flights to control, they also have 

more taxiway intersections and runway crossings to worry about. Furthermore, it also needs to 

consider land acquisition and it is costly investment, therefore it is considered to be a long term 

solution. The other way is to optimize the main airport surface resources: gates, taxiways, and 

runways. Taxiways connect the gates with the runways. Each runway may have several entry and 

exit nodes, i.e. nodes that connect the taxiways with the runway. When a flight arrives to the 

airport, it leaves the runway and taxies to its assigned gate where passengers and luggage are 

unloaded and loaded, the flight is prepared for its next departing leg. When the flight gets 

permission to depart from the air traffic controllers, then it taxies to the runway where it takes off. 

All this turnaround process, the movement of an aircraft on the ground, under its own power, 

excluding takeoff, landing, and gate utilization is defined as taxiing. Therefore, optimization of 

those airport resources can be categorized into two as gate scheduling and taxiing movement (i.e 

from the apron gate to the runway, vice versa) scheduling of aircrafts. While gate scheduling 

mainly focuses on assigning a given set of flights legs to a given set of gates available at the airport, 

as well as arrival and departure times to and from the gate it has been assigned to, taxiway 
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scheduling considers movement of the aircraft on the ground between the gates and the runways 

in order to achieve safe and efficient ground plans. All those optimization efforts aim at helping 

ground controllers, to support them in making better decisions when routing and scheduling 

aircraft on the taxiways, from the gate or runway exit to the runway entrance or back to the gate. 

Thereby, total taxi time is aimed to be reduced or, more broadly, it is aimed that the operations 

serve the other linked airport operations as smoothly as possible. Therefore the problem on hand 

is scheduling the taxiway plans in an efficient and safe way. In the airport surface taxiing 

scheduling, there are many different stakeholders involved each with different requirements. The 

air traffic controllers require ensuring the safety of the movement of aircraft on the airport surface. 

Airline managers wish for ensuring flights can depart and arrive on time to reduce delays and 

taxiing costs. Airport authorities want to improve the utilization of airport resources. Therefore, 

when scheduling aircraft movements on the ground, not only security but also efficiency should 

be considered.  

Airport taxiing scheduling for aircraft on airport surface is to determine aircraft approach time, 

departure time, and taxiing route for each aircraft under the premise of ensuring safety. The taxi 

system in the airport is composed of runway passageways, taxiways, and parking aprons. For a 

departure flight, after finishing the work in an assigned gate, such as cleaning, taking the 

passengers, and fuelling, the aircraft taxies till it reaches the departure runway. On the other hand, 

for an arrival flight, after landing on the runway, the aircraft enters the taxiway scheduling system 

in one of the runway entrance points and taxies till it reaches its assigned gate.  

This movement of aircraft between the runways and gates or parking aprons is called taxiing and 

safe and efficient movement requires some of the decisions to be made for the flights. We can 

mainly group those decisions into two categories: routing and timing decisions. Routing considers 

giving a path of taxiways to follow for each flight from their original positions to their destination 

positions. For a departure flight, this route starts from its assigned gate, includes using 

predetermined taxiway links, and ends at the runway exit. For an arrival flight, the route starts 

from the runway and ends at the gate it is assigned to. On the other hand, timing decisions complete 

the schedule of the aircraft by determining the time to pass on each taxiway link in the route. In 

doing so, locational and temporal decisions are incorporated. However, there are some operational 

and technical limitations to consider. The most important one among those is the safety issue. In 
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order to obtain a conflict-free schedules, all aircraft must keep a minimum safety separation during 

taxiing. According to the aircraft operation management manual, a minimum safety separation is 

regulated between different types of aircraft (including heavy, medium-size, and light aircraft). 

During taxiing, only one aircraft is allowed to pass the same location at one time and other aircrafts 

are required to wait to ensure safety. When two aircrafts need to taxi on the same segment of 

taxiway from different nodes, one aircraft must hold and wait. Similarly, when two aircraft is 

trailing each other, minimum separation requirements should be respected. Conflicts occur when 

two or more flights taxi through a common taxiway intersection without keeping the minimum 

safety separation, or two or more flights taxi on the same taxiway in opposite directions. In these 

cases, one aircraft must hold and wait at the entrance of the taxiway. Currently, ground controllers 

are responsible for all the ground movements and they guide all the aircraft during taxiing. When 

arriving flight gets permission to land from the runway controllers, the flight exits the runway and 

then ground controllers takes the responsibility of guiding the flight during taxiing to its gate. 

Similarly, for a departure flight, under the direction of ground controllers, the flight begins to taxi 

via the designated route and holds short of runway and then the responsibility is handed over to 

the runway controllers.  

Considering the increasing traffic on the ground, optimization of gates and taxiways in a conflict-

free, safe, and efficient way is a challenging task, a task that is performed mainly visually currently. 

Since it is difficult for controllers to manage taxiing, they are constantly suffering great pressure 

because of the responsibility they carry and this taxiing process is responsible for most of the 

flights at airports.  In Europe, for example, it is estimated that aircraft spend 10-30% of their flight 

time taxiing, and that a medium range aircraft expends as much as 5-10% of its fuel on the ground 

(Deonandan and Balakrishnan, 2010).  One way of overcoming the limitations is to design decision 

support tools/methods to guide controllers and the pilots on the ground.  

Most of the studies in taxiway scheduling literature focuses on two decision problems: routing 

problem and timing problem. The studies on the routing problem considers finding a taxiway route 

for each aircraft, some of the studies among them makes route selection from a set of 

predetermined paths (Clare and Richards, 2011, Balakrishnan and Jung, 2007), and usually 

assumes that an aircraft taxies at a constant speed (Gotteland et al. 2001, Roling and Visser, 2008). 

While others generates routes (Baik et. al. 2002, Marin 2006, Jiang et. al 2015) by assuming 
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aircraft taxi speed is constant. On the other hand, timing problem considers determining the time 

for each aircraft to cross a taxiway link based on a predetermined path (Smeltink and Soomer, 

2004). Some studies in this category allows for speed changes but a maximum speed is imposed 

(Rathinam et al, 2008, Lee and Balakrishnan, 2012, Jiang et al. 2013).  

Most widely used objective considered is to minimize the total taxiing time (TT) (Jiang et al. 2013, 

Jiang et al. 2015). The main assumption is that shorter taxi times will result in less fuel burn and 

less environmental cost. Apart from the TT as an objective, deviations from the scheduled time of 

departure or arrival and minimization of total waiting time are also considered in some studies 

(Marin 2006, Balakrishnan and Jung, 2007, Lee and Balakrishnan, 2012). When the studies are 

compared in terms of the control options they use to achieve conflict free ground traffic, we see 

three categories: holding aircraft at gates and/or on the taxiways, speed adjustments, and routing.  

Limitations of the Literature 

Most of the models considers the problem as a network problem with nodes and associated links 

representing the taxiways. However, they assume an approximate capacity on the nodes and links 

of the network without considering the real separation times. Although collision is hidden in 

capacity constraints in each node or link, none of these models consider safety restrictions, thus 

they do not consider air traffic control issues as resolution of potential conflicts between aircraft. 

Particularly at airports on the ground, ATFM and collision free flight should be merged. There is 

no such application yet. 

Another common feature of the existing models in literature which is thought to be a shortcoming 

is that almost all of them (Roling and Visser, 2008, Rathinam et al, 2008, Marin 2006) use time 

intervals as possible decision making points. Aircraft’s relative position during each time interval 

is not considered. Particularly on airports on the ground, time interval such as 2-5 minutes may 

lead to significant errors since several aircrafts would enter and leave gates and taxiways during 

that 5 minutes since taxiway lengths can be as minimum as 300 meters (0.5 minutes assuming 

600meters/minute speed). When time is discretized it is impossible to guarantee conflict free 

schedules. Hence, mathematical models using non-time indexed decision variables that determine 

exact location aircraft at all times may be more realistic models to be considered in the future. 

Although there are also some studies modeling the problem in continuous time (Clare and Richards, 
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2011, Lee and Balakrishnan, 2012) they differ in the control options they use, objectives 

considered, conflicts they consider. As far as our concern there is no study considering the problem 

from all aspects to ensure safety and efficiency.  

 

This thesis proposes conflict-free mathematical models and solution strategies for both gate 

scheduling and taxiway scheduling problems by taking account all meaningful airport and flight 

characteristics into consideration that are not yet extensively studied in current academic literature. 

Since gate schedule performance has a great impact on the performance of the taxiway, we 

consider gate scheduling as a bi-objective optimization problem, present mathematical models and 

propose a two-phase solution approach. We also propose a mixed integer linear programming 

(MILP) model that considers collision avoidance on the taxiways, separation distances between 

aircrafts, speed changes and exact travelling times without adapting a state-time network in which 

the decision variables are defined with time indices. Instead, the non-time segmented model 

proposed in this thesis, determines a taxi plan for each aircraft by identifying the sequence of 

taxiway intersections represented as nodes to be visited and determines the aircrafts’ exact arrival 

and departure times to these nodes, average speed used on the taxiway represented as links between 

two consecutive nodes while ensuring the safety conditions that avoid aircraft collisions. The cost 

incurred from arrival and departure delays with total taxiing time is minimized. The model enables 

collision free airport operations considering both airlines and airport controller’s objectives in 

continuous time where we know the exact arrival and departure times which is more accurate in 

tackling collision issues. However, accuracy comes with a cost of solution time. To overcome the 

difficulty to solve, strategies are proposed. The first strategy proposed, called the iterative-TSM, 

adopts a batch by batch policy and optimizes the TSM by solving it in an iterative way where in 

each iteration, schedules of the previous iteration are fixed. The second strategy proposed 

motivates from the idea of decomposition the model into two as routing and timing problem and 

incorporates a genetic algorithms with TSM. All the models proposed are tested on a hypothetical 

data and the results are presented. Main contributions of this thesis can be listed as follows: 
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 A MILP model is presented for flight gate scheduling problem. The model is compared to 

modified version of one of the existing MILP model in literature and efficiency of the 

proposed model is evaluated. A two phase solution approach making use of the proposed 

MILP is also presented and the characteristics of the problem are analysed. While 

utilization of gates is maximized, on time performance is also considered.  

 A MILP that considers collision avoidance on the taxiways, separation distances between 

aircrafts, speed changes and exact travelling times without adapting a state-time network 

in which the decision variables are defined with time indices. Instead, all safety constraints 

are modeled with Big-Ms. This enables us to know the exact arrival and departure times 

for each flight on each link on the ground.  

 Collision free taxiway scheduling is achieved. Since the models in the existing literature 

either assumes arbitrary capacities on the nodes of the network or discretizes time, they do 

not guarantee collision avoidance.  

 Speed changes, rerouting, and holding at gates and taxiway intersections are used as control 

options.  

 Both airlines and airport authorities’ objectives are considered. Proposed models have the 

capability to be adopted as a decision support tool for the ground controllers and they allow 

airport traffic authorities to do what-if analysis in case of a change in the flight or airport 

network information. Proposed TSM also minimizes to total taxiing time which results in 

less costly taxiway schedules for airlines in terms of fuel costs and CO2 emissions.  

 Two solution strategies are proposed for the TSM: iterative TSM and GA-TSM. While 

iterative TSM decomposes the problem into batches of flights, solves each batch by fixing 

the schedules of the previous batch in each batch, GA-TSM decomposes the problem into 

routing and timing. While GA searches for the best set of routes for the flights, fixed TSM 

solves the timing problem for a given set of routes.  

As far as our concern, this is the first study focuses the problem from both aspects: safety and 

efficiency.  
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Next chapter provides the literature review on the air traffic flow management problem (ATFM). 

Chapter 3 proposes a two phase approach for flight gate scheduling problem (FGSP). 

Mathematical formulation of the problem is also provided. In Chapter 4 we present the taxiway 

scheduling model (TSM), test performance of the model on hypothetical data using commercial 

solvers, provide strategies to deal with the solution difficulty, and present results of the model. 

Chapter 5 provides an alternative solution methodology for the TSM incorporating routing 

algorithms with a genetic algorithm. Unfortunately, because of time limitations, we couldn’t 

present the results of the method but it is considered as a future study in Chapter 6 in order to more 

deeply understand the characteristics of the problem and creating alternative ways to increase the 

solution speed.   
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CHAPTER 2 

LITERATURE REVIEW 

 

Continuous growth in air traffic as well as problems caused by increased congestion on the ground 

and in the airspace has motivated researchers all around the world to develop models to support 

ATFM and FGSP decisions. In the following sections, first we discuss the models presented for 

ATFM used for airspace traffic schedules, then we discuss the models presented for ground traffic 

scheduling (GM). The models developed for the airspace are considered to be related with the 

models developed for the ground since they both share the same problem characteristics such as 

the limitations, objectives considered, and most importantly very similar network representation. 

In parallel with the needs of practice, both the ATFM and GM evolved in two leading directions 

on the basis of time scale relative to flight operations.  While the models in the first direction, 

known as tactical models, are developed to assign ground and airborne delays to flights before 

they enter the airspace and airport systems, the models in the second direction focuses on 

developing conflict detection and resolution techniques that covers a shorter time period or even 

real-time decisions. Although there is a wide body of research on both research directions applying 

various methodologies such as metaheuristics and heuristics, in this thesis, the focus will be only 

on deterministic mathematical optimization techniques used for tactical decisions of ATFM and 

GM.  

 

2.1. AIR TRAFFIC FLOW MANAGEMENT 

The seminal work of Odoni (1987) stimulated much of the subsequent work on the first research 

path. After the problem is introduced, conceptualized, and described in detail in Odoni (1987), 

several models have been proposed for different versions of the problem. The first and the simplest 

version, known as the Single Airport Ground Holding Problem (SAGHP) considers only one 
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airport as a congested resource and assigns ground delays to flights in their departure airport if 

they are directed to the congested airport. On the other hand, multi-airport ground holding problem 

(MAGHP) considers the network of airports to make ground holding decisions. Both problems 

assume that only destination airports in the system faces arrival capacity reduction and that all air 

sectors have either unlimited capacity or do not impose ant capacity restrictions. Because of 

simplicity and computational tractability they both gained significant traction. Therefore, there are 

plenty of work on SAGHP and MAGHP (see Terrab and Odoni 1993; Richetta and Odoni 1993; 

Andreatta and Brunetta 1998, and Mukherjee and Hansen 2007). However, current applicability 

of these models are somewhat restricted since congestion in air sectors is as significant as the 

congestion in major airports nowadays. Therefore, the literature is directed to developing models 

to solve real situations that are much more complex. Given the flight paths, models for Air Traffic 

Flow management Problem (ATFMP) not only use ground holding but also airborne holding with 

speed adjustments as control options, thus determine how to control flights throughout their 

duration. On the other hand, Air Traffic Flow Management Rerouting Problem (ATFMRP) 

considers rerouting as an option.  In this problem, in case of severe weather conditions or any other 

reason resulting in decreased capacity of airspace resources, a flight might be rerouted through a 

different path from the path it originally assigned to. In this section, first, we will review the 

important works on ATFMP and ATFMRP. We will conclude this section by presenting some of 

the recent trends on these problems and some supplementary work on the subject.  

 

2.1.1. Models for Air Traffic Flow Management Problem 

One of the first attempts on ATFMP was in Helme (1992) who formulated the problem as a multi-

commodity minimum cost flow problem on a time-space network. Instead of dealing with 

individual flights, this model deals with aggregate flows and assign airborne and ground delays to 

aggregate flows since it provides a view of an optimal response at the aggregate level to the future 

capacity levels.  Although the model is straightforward and easy to understand, it is 

computationally intensive.  

One of the first readily solvable large-scale model is presented in Bertsimas and Patterson (1998).  

In this model, for each flight, a predetermined set of air sectors including the origin and destination 

airports is specified. The model determines the departure and sector entrance times from a set of 
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feasible times for each aircraft. Since the set of feasible times for arrivals into sectors is computed 

using the minimum and maximum speed that an aircraft can fly at, the model implicitly determines 

the speed used by traversing a sector. The uniqueness of the formulation lies on the definition of 

the decision variables which enables them to specify constraints very easily. The use of feasible 

time windows also reduces the size of the formulation since decision variables are only defined 

for feasible time periods. Similar to other works in the literature, the objective function minimizes 

the total delay costs. Several variants of the formulation is also presented. More specifically, it is 

shown that if sector capacity constraints are removed, the formulation corresponds to a MAGHP 

and it is proven that LP relaxation of this MAGHP formulation gives bounds that are at least as 

strong as those from the LP relaxations of two known MAGHP formulations: formulation in 

Vranas et. al. (1994) and formulation in Terrab and Paulose (1992). It is also shown how to 

integrate the interdependency between capacity of arrivals and departures for airports in which 

aircraft may use the same runways for both arrivals and departures. This interdependency is 

captured with capacity envelopes which shows all the feasible arrival and departure capacity 

combinations for a time period with a curve. Another variant of the formulation is obtained by 

modifying the flight connectivity constraints to address multiple connections at a hub airport. 

Although the formulation does not consider rerouting as an option, the authors also show two ways 

to incorporate rerouting option to their model. The first way is specified as the path approach while 

the second approach is specified as the sector approach. Besides these variants, the authors also 

show that their formulation is NP-Hard. Moreover, the authors analyze the polyhedral structure of 

the underlying linear relaxation by showing that several of the constraints provide facets of the 

convex hull of solutions. This gives insights on the usefulness of the new decision variables.  Both 

the theoretical results and the practical application to real cases point to the advantages of the 

models as opposed to others used in the literature.  Another important work, presented by Lulli 

and Odoni (2007) highlights the main practical differences between current ATFM systems in US 

and in Europe and it is also one of the first paper that draws attention to the trade-off between 

efficiency and fairness which are generally thought as the most overriding objectives of ATFM 

systems. The authors point out that the basic difference of the ATFM systems in US and in Europe 

is that while congestion in airports and the airspace around airports is the major concern in US 

systems, enroute congestion is the primary concern of ATFM in Europe. Moreover, the authors 

also state the flexibility of rerouting in US systems since it is much more harder in Europe where 
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the number of stakeholders is larger and rerouting of flights through the airspace of several 

countries require official permission from the corresponding countries. All these reasons results in 

a more complex decision making environment to control air traffic in Europe. The European 

ATFM model presented in Lulli and Odoni (2007) can be seen as a macro level model since it 

disregards some of the control options such as speed adjustments and enroute airborne delays. The 

authors assume that all aircraft in an air-sector fly with the same speed and airborne delay can be 

assigned to flights only in their terminal airspace which are not practical in real-life cases. An 

important characteristic of the model is that it ensures equity of delays assigned to flights. This is 

achieved by including cost coefficients that are a superlinear function of the tardiness of flights in 

the objective function. The most important contribution of the paper is that it presents the 

characteristics of the solutions to European ATFM by an extensive experimental analysis. For this, 

the model has been applied to several examples based on four generic network configurations to 

emphasize three important characteristics of solutions of the problem. The first characteristic is 

that the solutions may have both ground and airborne delays. Second, in some situations, 

assignment of airborne delays to some flights may decrease total delay cost considerably although 

cost of airborne delay is much higher than the cost of ground delay. And most importantly third, 

there is a conflict between efficient solutions and equitable solutions. The authors show that 

minimizing simply the total delay costs yield unfair solutions in which some of the flights are 

delayed significantly while the others departs on time. However, fairness between flights is an 

important issue in practice. The authors show the trade-off between efficiency (in terms of total 

delay) and equity between flights. Although the cases used in the experiments are inadequate to 

represent the real network structure in either Europe or US airspace, they capture all the 

interactions between different flows of traffic that compete for access to common resources, thus 

they can adequately provide insights on the important characteristics of the solutions.  

 

2.1.2. Models for Air Traffic Flow Management Rerouting Problem 

None of the models cited above consider rerouting as a flow control option. They all assume that 

the flight path is known in advance and is fixed. However, diverting flights from congested air 

sectors is a very common application in daily operations. Very often, extreme weather conditions 

force the capacities of some sectors (and airports) in the NAS to drop significantly. Flights are then 
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forced to use alternative routes.  Recently, research focus has shifted to the routing problem known 

as ATFMRP. Rather than using only ground holding and airborne holding, rerouting of flights is 

became a viable control option for air traffic flow problems.  

Bertsimas and Patterson (2000) is the first to study the ATFMRP. In this study, the authors 

formulate ATFMRP as a multi-commodity integer network flow model with side constraints and 

determine dynamically how to control flights with rerouting, delaying or adjusting speed between 

sectors to avoid congestion caused by dynamically changing weather conditions.  The objective 

function minimizes the total cost that include delay costs and rerouting costs due to change in fuel 

consumption. Their solution approach consists of an integrated mathematical programming 

approach.  Since the size of the problem is very large, to overcome dimensionality problem, instead 

of dealing with individual flights, they deal with aggregate flows. However, they also use non-

aggregate flight variables to deal with connectivity of flights. Aggregate flows are generated by 

solving a Lagrangian relaxation of the LP model. In this LP relaxation the capacity constraints are 

relaxed and penalized in the objective function. In each iteration of the Lagrangian Relaxation 

algorithm, a randomized rounding heuristic is applied to decompose the aggregate flows into a 

collection of individual flight paths. Then an integer packing problem is solved to obtain feasible, 

and near-optimal, individual flight routes. They test their solution approach on real problems for 

three problem instances reflecting three different weather scenarios. Although the results suggest 

that the solution approach is capable of efficiently solving real problems for a part of NAS, the 

computational performance of this model was not adequate for addressing problems encountered 

in realistic, very large-scale instances.  Another work worth mentioning is proposed in Churchill 

et. al. (2009). Although the model is based on the model proposed in Bertsimas and Stock (1998), 

it differentiates from the models in the literature in the design of the airspace network. They 

employ a more general airspace constructs, called airspace volumes containing airspace and 

airports to take the advantage of reduced complexity. They also define set of possibilities for each 

flight as entry and exit points in each volume. Further, they investigate the potential applicability 

of aggregate-level flow management problems. They propose a three-level approach for future air 

traffic flow management systems. Each level in this approach reflects the different planning stages 

capturing a different time horizon. The first level of the approach, known as the strategic level, is 

used to generate aggregate flows and suggested to be employed several times during the day. On 

the other hand, second and third level of the approach suggests making tactical, even real-time 



14 

 

decisions to best exploit available resource. While second level spawns regional traffic flow 

initiatives, third level determines immediate actions using the up-to-date information regarding 

capacity reductions. However, the definition of airspace volume is an important issue on its own 

and the level of details in ATFM decisions are restricted. Another important work presented in 

(Bertsimas et. al., 2011) is the extension of the Bertsimas-Stock formulation (Bertsimas and Stock, 

1998) that allows rerouting decisions, thus they use all the control options of flights say; ground 

holding and air delay, rerouting, and speed control. Their model determines the optimum departure 

time, set of sectors traversed, the time required to spend in each sector thus the speed used to 

traverse each sector, and arrival time to the destination airport by considering all the capacitated 

elements of the system, the trade-off between arrivals and departures in airports and continuity of 

flights. The originality of the work comes from the definition of the routes which enables the 

authors to model rerouting of flights without adding any extra decision variables or changing the 

definition of the decision variables used in Bertsimas- Stock formulation. The routes for any 

origin-destination (o-d) pair (routes of any flight) is represented by digraphs given that the nodes 

of the digraph corresponds to all the capacitated elements of the airspace (departure and arrival 

airports and all the sectors that a flight might traverse) and the arcs corresponds to the sequence 

relationship between these nodes. Since these digraphs are acyclic in ATFM context, describing 

all the sectors through a sequence of binary relations and hence regarding the routes as partially 

ordered sets enables the authors including rerouting options by only adding new sets of constraints. 

Note that the definition of these decision variables is first introduced in Bertsimas and Stock 

(1998). Another important note on these decision variables is that they are only defined for feasible 

(f, j, t) triples where f, j, and t corresponds to flight, sector, and time, respectively. This results in 

a decrease in the size of the problem. Moreover, since cancellation of flights is not allowed in the 

formulation, decision variables regarding the departure and arrival airports of flights always takes 

value of one, thus they are fixed. This restriction seems unrealistic at first, however, in practice, 

cancellation decision can only be made by airlines after delays are issued by FAA. As in most 

other models in the literature, the aim of the model is to minimize total delay (TD) costs. Therefore, 

the objective function minimizes the combination of ground delay (GD) and airborne delay (AD). 

However, to possess that AD per unit time is more costly than GD and to assure equity of the 

assigned delays among flights, instead of directly minimizing TD, the objective function uses cost 

coefficients that are superlinear functions of tardiness both for GD and AD. The use of these cost 
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coefficients will favor the solutions in which delays are assigned to flights in a more balanced way. 

This approach is similar to the one adopted in Lulli and Odoni (2007). However, the authors state 

that this objective function has an important problem since it cannot distinguish a solution that 

assign two units of delay to one flight and zero to the other from a solution that assigns one unit 

of delay to each flight. They also state that use of this objective function results in favoring the 

first one. To overcome this problem, the authors suggest an adjustment in the objective function. 

This feature of the objective function is unique in ATFM literature both in terms of identifying 

this issue and proposing a solution to overcome the problems caused by this issue.  

All the models discussed above tackle tactical decisions related to ATFM. Although it is possible 

to reset the parameters and solving the model dynamically, they are mainly designed to be solved 

1-2 hours before the departure of flights and to provide a baseline air traffic plan. Although mid-

air collision is hidden in capacity constraints in each air sector, none of these models consider 

safety restrictions, thus they do not consider air traffic control issues as resolution of potential 

conflicts between aircraft, altitude assignments etc. Particularly around airports, ATFM and 

collision free flight should be merged. There is no such application yet. Although Sherali et. al. 

(2002) propose a model to decide on delays and routes for a set of flights by considering all safety, 

efficiency, controller workload, and capacity constraints, its scope is far more local.   

2.1.3. Discussion  

A common feature of all the models presented in report is that they can be applied in a setting 

where one controlling entity is authorized to assign delays and reroutes to flights. This is not the 

case under the CDM paradigm, where airlines actively participate and exchange information 

during the ATFM decision making process. Moreover, FAA is investigating the “free flight” 

concept for future ATFM systems. Under free flight paradigm which first conceptualized in 

Hoekstra et. al. (1998), the aim is to transfer the responsibility of en-route flight planning task to 

individual aircrafts. All air traffic restrictions are only imposed to ensure safety, to ensure capacity 

feasibility and to prevent unauthorized flights through special use of airspace. For a recent study 

on this concept, we refer to Molina et. al. (2014).  

Another common feature of the existing models in literature which is thought to be a shortcoming 

is that all of them use time intervals as possible decision making points. Aircraft’s relative position 

during each time interval is not considered. Particularly around airports, time interval such as 15 
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minutes may lead to significant errors since several aircrafts would enter and leave airport and 

airspace around the airport during that 15 minutes. Hence, mathematical models using non-time 

indexed decision variables that determine exact location aircraft at all times may be more realistic 

models to be considered in the future. Furthermore, continuous route planning based on the 

meteorological data and feedbacks received from nearby aircrafts may comply very well with the 

objectives of NASA driven Free-Flight-Concept. 

Although the literature on ATFM is large and air transport industry is trying to engage with new 

tools and procedures due to exponential growth in air transport, these optimization models rarely 

adopted in practice. As mentioned in Leal de Matos and Ormerod (2000), optimization models are 

often regarded with suspicion by users since these users view the mathematical content as a black-

box which is hard to understand.  Second reason is that most of the optimization models are 

computationally intensive limiting especially real-time decisions. Another reason for the 

discrepancy between theory and practice is that most of the models require intensive data 

requirements. Moreover, the results of most of the models heavily depend on the parameters 

chosen. Therefore, selecting the best parameters might be hard for decision makers. Furthermore, 

since the current ATFM environment in practice is conservatively focuses more on safety than 

efficiency, adopting new models will be slower than adopting new technologies. Besides these, 

the research on ATFM is concentrated on centralized decision making. However, beside to the free 

flight concept FAA is planning to implement a more general concept called NextGen in which the 

notions of information sharing, common situational awareness and decentralized decision making 

is emphasized.  

2.2.FLIGHT GATE SCHEDULING 

FGSP has received a considerable attention and been widely studied. For an extensive review we 

refer to Dorndorf (2007). Babic et al. (1984), Bihr (1990), Mangoubi and Mathaisel (1985) are 

some of the authors formulating the problem as a mixed 0–1 linear program with the objective of 

minimizing the total passenger walking distance inside the terminal. The problem is modelled as 

a quadratic assignment problem (QAP) and reformulated as a mixed 0–1 linear program by Xu 

and Bailey (2001), Yan and Huo (2001), Ding et al. (2004a), Ding et al. (2004b), Ding et al. (2005).  

On the other hand, there are also studies considering multiple objectives. For example, by adopting 

a multi-criteria approach, Dorndorf (2002) modelled the problem as a multi-mode resource 
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constrained project scheduling problem (RCPSP). Similarly, Nikulin and Drexl (2010) modelled 

the problem as a multi-mode RCPSP and developed a pareto-simulated-annealing in order to get 

a representative approximation of the pareto front. 

 

2.3. TAXIWAY SCHEDULING 

Most of the studies in taxiway scheduling literature focuses on two decision problems: routing 

problem and timing problem. The studies on the routing problem considers finding a taxiway route 

for each aircraft, some of the studies among them makes route selection from a set of 

predetermined paths. Balakrishnan and Jung (2007) extend the formulation of Bertsimas and 

Patterson (1998) that uses gate holding and routing as control options in order to minimize TTT 

and total delays, however, they lack of claiming safety since they don’t consider all types of 

conflicts. Among the ones that makes route selection, Roling and Visser, 2008 assumes that an 

aircraft taxies at a constant speed and they propose a binary mathematical formulation addressing 

the safety separation requirements by dividing each taxiway into smaller links and allowing each 

link to hold only one aircraft at a time, resulting in a conservative estimate of the capacity. 

Moreover, for a large airport, with long taxiways, the formulation becomes too complex to solve. 

Some studies on the other hand, generates the routes (Marin 2006, Jiang et. al 2015) by assuming 

aircraft taxi speed is constant. Marin 2006 models the problem with a linear multicommodity flow 

network with discrete time variables but their model doesn’t include take off separation on the 

runways. Moreover, they only consider TTT. On the other hand, timing problem considers 

determining the time for each aircraft to cross a taxiway link based on a predetermined path.  

Smeltink and Soomer, 2004 present a continuous time formulation of the problem but their model 

does not account for all the safety requirements excluding the trail constraints. Since they use a 

sequencing based separation where only nodes, taxiway intersections are taken into account, 

separation on taxiway links is taken into account indirectly. Some studies on timing problem 

allows for speed changes but a maximum speed is imposed (Rathinam et al, 2008, Lee and 

Balakrishnan, 2012, Jiang et al. 2013). Rathinam et al (2008) presents a formulation based on the 

formulation of Smeltink and Soomer (2004) to include all types of safety constraints with fever 

variables. Lee and Balakrishnan 2012 proposes a MILP that has both continuous time variables 
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for the passage times for the nodes, and binary sequencing variables or determining the relative 

order of the flights on the nodes.  

Most widely used objective considered is to minimize the total taxiing time (TT) (Lee and 

Balakrishnan 2012). The main assumption is that shorter taxi times will result in less fuel burn and 

less environmental cost. Apart from the TT as an objective, deviations from the scheduled time of 

departure or arrival and minimization of total waiting time are also considered in some studies 

(Marin 2006, Balakrishnan and Jung, 2007, Lee and Balakrishnan, 2012). When the studies are 

compared in terms of the control options they use to achieve conflict free ground traffic, we see 

three categories: holding aircraft at gates and/or on the taxiways, speed adjustments, and routing. 

Most of the models considers the problem as a network problem with nodes and associated links 

representing the taxiways. However, they assume an approximate capacity on the nodes and links 

of the network without considering the real separation times and model the problem in discrete 

time (Roling and Visser, 2008, Rathinam et al, 2008, Marin 2006). When time is discretized it is 

impossible to guarantee conflict free schedules. As far as our concern there is no study considering 

the problem from all aspects to ensure safety and efficiency.  

 

2.4. DISCUSSION 

In this thesis we consider conflict-free ground scheduling and focus on the problem from the safety, 

efficiency aspects. Proposed (MILP) model that considers collision avoidance on the taxiways, 

separation distances between aircrafts, speed changes and exact travelling times without adapting 

a state-time network in which the decision variables are defined with time indices. Instead, the 

non-time segmented model proposed in this thesis, determines a taxi plan for each aircraft by 

identifying the sequence of taxiway intersections represented as nodes to be visited and determines 

the aircrafts’ exact arrival and departure times to these nodes, average speed used on the taxiway 

represented as links between two consecutive nodes while ensuring the safety conditions that avoid 

aircraft collisions. A common feature of the existing models in literature which is thought to be a 

shortcoming is that all of them use time intervals as possible decision making points. Aircraft’s 

relative position during each time interval is not considered. Time interval such as 5 minutes may 

lead to significant errors since several aircrafts would enter and leave airport and during that 5 
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minutes. Hence, mathematical models using non-time indexed decision variables that determine 

exact location aircraft at all times may be more realistic models to be considered in the future. The 

model enables collision free airport operations considering both airlines and airport controller’s 

objectives in continuous time where we know the exact arrival and departure times which is more 

accurate in tackling collision issues. However, accuracy comes with a cost of solution time. To 

overcome the difficulty to solve, strategies are proposed. The first strategy proposed, called the 

iterative-TSM, adopts a batch by batch policy and optimizes the TSM by solving it in an iterative 

way where in each iteration, schedules of the previous iteration are fixed. The second strategy 

proposed motivates from the idea of decomposition the model into two as routing and timing 

problem and incorporates a genetic algorithms with TSM. All the models proposed are tested on a 

hypothetical data and the results are presented. Main contributions of this thesis can be listed as 

follows: 

 A MILP model is presented for flight gate scheduling problem. The model is compared to 

modified version of one of the existing MILP model in literature and efficiency of the 

proposed model is evaluated. A two phase solution approach making use of the proposed 

MILP is also presented and the characteristics of the problem are analysed. While 

utilization of gates is maximized, on time performance is also considered.  

 A MILP that considers collision avoidance on the taxiways, separation distances between 

aircrafts, speed changes and exact travelling times without adapting a state-time network 

in which the decision variables are defined with time indices. Instead, all safety constraints 

are modeled with Big-Ms. This enables us to know the exact arrival and departure times 

for each flight on each link on the ground.  

 Collision free taxiway scheduling is achieved. Since the models in the existing literature 

either assumes arbitrary capacities on the nodes of the network or discretizes time, they do 

not guarantee collision avoidance.  
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CHAPTER 3 

A TWO-PHASE APPROACH FOR FLIGHT GATE 

SCHEDULING PROBLEM 

 

Exponential evolution of air transport traffic in recent years, strong competition between airlines 

and the demand of passengers for more comfort have led to complex planning problems that 

require new models and developments in airline operations. Scheduling of flights to available gates 

is a major and challenging issue for daily operations in airports. Flight gate scheduling problem 

(FGSP) mainly focuses on assigning a given set of flights to a given set of gates available at the 

airport, as well as arrival and departure times to/from the gate while satisfying some business 

constraints. In this chapter we consider FGSP as a bi-objective optimization problem and propose 

a two-phase solution approach. The objectives considered in our solution approach are the 

minimization of the number of flights assigned to the apron and, minimizing the total deviation of 

flights’ arrival and departure times to and from the gates from their scheduled times. We also 

propose a new mathematical formulation and a modified version of an existing mathematical 

formulation for the problem to be employed in the two-phase approach.  We compare the 

performances of the mathematical formulations on randomly generated test instances using the 

two-phase solution methodology. The results show that our mathematical formulation provides 

better results in terms of speed and quality within a reasonable time. 
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3.1. SOLUTION METHODOLOGY 

In this section, we introduce two different mathematical formulations of FGSP and present a two-

phase goal-based solution approach. Since assigning all flights to gates is difficult in congested 

airports, Phase I of the solution approach minimizes the number of flight legs assigned to the apron. 

Note that, proposed approach allows flights to enter the gates after their landing and also allows 

the flights to depart the gate before they depart the airport as long as they stays in the gate during 

their dwelling times, i.e., a flight may leave its gate and wait in the apron until its departure time. 

Therefore it is of interest to generate gate assignments with less total deviation to increase flight 

schedule punctuality. Thus, in Phase II, using the output of Phase I, the aim is to minimize total 

schedule deviation of flights’ arrival and departure times to and from the gates from their scheduled 

times, respectively. More specifically, in Phase II we search for gate schedules with minimum total 

deviation among the ones that have the same number of unassigned flights obtained in Phase I. 

We accomplish this objective basically by fixing the number of unassigned flights with an 

additional constraint in Phase II. We also propose two different mathematical formulations, Model-

I and Model-II, to be used in the two-phase solution approach. Model-I is a modified version of 

the model developed by Zhu et. al (2003) in order to consider the availability of the apron. In 

contrary to four-indexed decision variables used Model-I, in Model-II, we only use two-indexed 

decision variables. In the following subsections, we present these mathematical formulations with 

detailed explanations of input parameters, decision variables, objectives and constraints. 

 

3.1.1. MODEL-I 

 In this section we first introduce the sets and input parameters used in the model with definitions 

of decision variables then we explain the objective function and constraints of Phase I and Phase 

II of Model-I. 

 

Phase I of Model-I 

Sets and Parameters: 

𝑭: 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑓 = 1, … , |𝐹|) 𝒕𝒇: 𝑠𝑎𝑓𝑒𝑡𝑦 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑡𝑜 𝑒𝑛𝑡𝑒𝑟 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒 𝑎𝑓𝑡𝑒𝑟  

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑓𝑙𝑖𝑔ℎ𝑡 𝑙𝑒𝑎𝑣𝑒𝑠 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒 𝑮: 𝑠𝑒𝑡 𝑜𝑓 𝑔𝑎𝑡𝑒𝑠  𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑔 = 1, … , |𝐺| + 1) 

𝑻𝒂
𝒇

: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓;  𝑓 ∈ 𝐹 𝒅𝒘𝒆𝒍𝒍𝒇: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑎𝑡 𝑎 𝑔𝑎𝑡𝑒 

𝑻𝒅
𝒇

: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓;  𝑓 ∈ 𝐹 𝑴: 𝐴 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟    
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Decision Variables: 

𝒂𝒇: 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑡𝑜 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒 𝑖𝑡 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜;  ∀𝑓 ∈ 𝐹  

𝒅𝒇: 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒 𝑖𝑡 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜; ∀𝑓 ∈ 𝐹 

𝒙𝒇𝒈: 1 𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑔𝑎𝑡𝑒 𝑔, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; ∀𝑓 ∈ 𝐹   

𝒚𝒇𝒇′: 1 𝑖𝑓𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑠 𝑛𝑜 𝑙𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓′𝑙𝑎𝑛𝑑𝑠, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  ∀𝑓, 𝑓′ ∈ 𝐹 

𝒛𝑓𝑓′𝑔𝑔′: 1 𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑎𝑛𝑑 𝑓′𝑎𝑟𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑔𝑎𝑡𝑒𝑠 𝑔 𝑎𝑛𝑑 𝑔′; 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  ∀𝑓, 𝑓′ ∈ 𝐹 

 

 

Phase I of Model-I: 

 

minimize      ∑ 𝑥𝑓 (|𝐺|+1)

𝑓 ∈ 𝐹

 
 (1) 

Subject to:   

∑ 𝑥𝑓𝑔 = 1

|𝐺|+1

𝑔=1

 

∀𝑓 ∈ 𝐹 (2) 

 

𝑧𝑓𝑓′𝑔𝑔′ ≤ 𝑥𝑓𝑔 

𝑧𝑓𝑓′𝑔𝑔′ ≤ 𝑥𝑓𝑔 

 

∀𝑓, 𝑓′ ∈ 𝐹, ∀𝑔, 𝑔′ ∈ 𝐺 (3) 

         

𝑧𝑓𝑓′𝑔𝑔′ ≤ 𝑥𝑓′𝑔′  

∀𝑓, 𝑓′ ∈ 𝐹, ∀𝑔, 𝑔′ ∈ 𝐺 (4) 

    

𝑥𝑓𝑔 + 𝑥𝑓′𝑔′ − 1 ≤ 𝑧𝑓𝑓′𝑔𝑔  

∀𝑓, 𝑓′ ∈ 𝐹, ∀𝑔, 𝑔′ ∈ 𝐺 − {|𝐺| + 1} (5) 

𝑎𝑓 ≥ 𝑇𝑎
𝑓

 ∀𝑓 ∈ 𝐹 (6) 

𝑑𝑓 ≤ 𝑇𝑑
𝑓

 ∀𝑓 ∈ 𝐹 (7) 

𝑑𝑓 − 𝑎𝑓 ≥ 𝑑𝑤𝑒𝑙𝑙𝑓  ∀𝑓 ∈ 𝐹 (8) 

(𝑑𝑓 + 𝑡𝑓) − 𝑎𝑓′ + 𝑦𝑓𝑓′ ∗ 𝑀 ≥ 0 ∀𝑓, 𝑓′ ∈ 𝐹 (9) 

(𝑑𝑓 + 𝑡𝑓) − 𝑎𝑓′ − (1 − 𝑦𝑓𝑓′) ∗ 𝑀 ≤ 0    ∀𝑓, 𝑓′ ∈ 𝐹 (10) 

𝑦𝑓𝑓′ + 𝑦𝑓′𝑓 ≥ 𝑧𝑓𝑓′𝑔𝑔 ∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′, ∀𝑔 ∈ 𝐺 − {|𝐺| + 1} (11) 

𝑦𝑓𝑓′ ∈ {0,1} ∀𝑓 ∈ 𝐹 (12) 

𝑧𝑓𝑓′𝑔𝑔′ ∈ {0,1} ∀𝑓, 𝑓′ ∈ 𝐹, ∀𝑔, 𝑔′ ∈ 𝐺 (13) 

𝑥𝑓𝑔 ∈ {0,1} ∀𝑓 ∈ 𝐹, ∀𝑔 ∈ 𝐺 (14) 
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The objective function in Phase I of Model-I (1) minimizes the number of flights assigned to the 

apron. Constraint set (2) forces flights to be assigned exactly to one gate. Constraint set (3) and (4) 

forces the corresponding z variable to be zero if the flights are not assigned to the gate. Constraint 

set (5) assures that if both flights f and f’ are assigned to the same gate, corresponding z variable 

must be 1. If they are assigned to different gates, there is no restriction on z variables. Constraint 

set (7) and (8) assure the time ranges for arrival and departure times to and from gates are respected. 

Constraint set (9), (10) and (11) together guarantee that the flight couples that has a conflict in 

arrival and departure times, cannot be assigned to the same gate. Finally constraint set (12)-(14) 

gives the domain of the decision variables. 

 

Phase II of Model-I 

 In Phase II, using the schedule obtained in Phase I, we minimize total deviation of flights. In 

addition to sets and parameters used in Phase I, Phase II has two additional parameters used as 

inputs in the model. First additional parameter is the number of flights assigned to the apron which 

is basically the objective function value obtained in Phase I, and second additional parameter is 

the total deviation of flights in the schedule obtained in Phase I. By restricting the number of flights 

assigned to the apron, in Phase II, we improve the solution obtained in Phase I such that the total 

deviation is minimized. We also restrict the total deviation since we want the new schedule to be 

at least as good as the one obtained in Phase I in terms of flight deviations. Phase II uses the same 

decision variables as the ones used in Phase I. 

Additional Parameters 

 

𝑈: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎𝑝𝑟𝑜𝑛 𝑖𝑛 𝑃ℎ𝑎𝑠𝑒 𝐼  

𝐵: 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑃ℎ𝑎𝑠𝑒 𝐼 
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Phase II of Model-I: 

min      ∑(𝑎𝑓 − 𝑇𝑎
𝑓

+ 𝑇𝑑
𝑓

− 𝑑𝑓)

𝑓∈𝐹

 
 (15) 

Subject to:   

∑ 𝑥𝑓((|𝐺|+1)) = 𝑈

𝑓 ∈𝐹

  (16) 

∑ 𝑎𝑓 − 𝑇𝑎
𝑓

+ 𝑇𝑑
𝑓

− 𝑑𝑓 ≤ 𝐵

𝑓 ∈𝐹

  (17) 

 

In Phase II, the objective function minimizes the total deviation of arrival and departure times of 

flights from their scheduled times. Constraint set (16) fixes the number of unassigned flights. 

Constraint set (17) sets and upper bound on the total deviation which is the total deviation of the 

schedule obtained in Phase I. This Constraint is added just to accelerate the search time giving an 

additional cut to the feasible region of the problem. Constraint sets from (2) to (14) are exactly the 

same as in the constraints used in Phase I. 

 

3.1.2. MODEL-II 

In Phase I and Phase II of Model-II, we use the same sets and parameters used in Phase I and Phase 

II of Model-I, respectively. As in Model-I, here in Model-II, we try to minimize the number of 

flights assigned to the apron and total deviation using a two-phase solution approach. It should be 

noted that in Model-II, we only have two-indexed decision variables. There are three sets of 

additional auxiliary variables used to model the states that each flight couple can have. 

 

Phase I of Model-II 

Decision Variables: 

𝒂𝒇: 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑡𝑜 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒 𝑖𝑡 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜;  ∀𝑓 ∈ 𝐹  

𝒅𝒇: 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒 𝑖𝑡 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜; ∀𝑓 ∈ 𝐹 

𝒙𝒇𝒈: 1 𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑔𝑎𝑡𝑒 𝑔, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; ∀𝑓 ∈ 𝐹   

𝜶𝒇𝒇′: 1 𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓′𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑠, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  ∀𝑓, 𝑓′ ∈ 𝐹 

𝜷𝑓𝑓′: 1 𝑖𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓′𝑑𝑒𝑝𝑎𝑟𝑡𝑠, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  ∀𝑓, 𝑓′ ∈ 𝐹 

𝜸𝒇𝒇′: 1 𝑖𝑓 𝑔𝑎𝑡𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑓 𝑎𝑛𝑑 𝑓′𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  ∀𝑓, 𝑓′ ∈ 𝐹 
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Phase I of Model-II: 

 

Objective function is the same as in Model I (equation 1). Furthermore, constraints (2), (6), (7) 

and (8) are same as in Model I. Below, new set of constraints that are required for Model II are 

introduced.  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      ∑ 𝑥𝑓 (|𝐺|+1)

𝑓 ∈ 𝐹

 
 (1) 

s.t.   

∑ 𝑥𝑓𝑔 = 1
|𝐺|+1

𝑔=1
 

∀𝑓 ∈ 𝐹 (2) 

𝑎𝑓 ≥ 𝑇𝑎
𝑓

 ∀𝑓 ∈ 𝐹 (6) 

𝑑𝑓 ≤ 𝑇𝑑
𝑓

 ∀𝑓 ∈ 𝐹 (7) 

𝑑𝑓 − 𝑎𝑓 ≥ 𝑑𝑤𝑒𝑙𝑙𝑓 ∀𝑓 ∈ 𝐹 (8) 

𝑎𝑓′ ≥ 𝑑𝑓 + 𝑡𝑓 − 𝑀(1 − 𝛼𝑓𝑓′) − 𝑀(2 − 𝑥𝑓𝑔 −

𝑥𝑓′𝑔) 

∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′, ∀𝑔
∈ 𝐺 − {|𝐺| + 1} 

(9) 

𝑑𝑓′ + 𝑡𝑓′ ≤ 𝑎𝑓 + 𝑀(1 − 𝛽𝑓𝑓′) − 𝑀(2 − 𝑥𝑓𝑔

− 𝑥𝑓′𝑔) 

∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′, ∀𝑔
∈ 𝐺 − {|𝐺| + 1} 

(10

) 
𝛼𝑓𝑓′ + 𝛽𝑓𝑓′ + 𝛾𝑓𝑓′ = 1 ∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′

 (11

) 
𝑥𝑓𝑔 + 𝑥𝑓′𝑔 ≤ 2 − 𝛾𝑓𝑓′  ∀𝑓 ∈ 𝐹, ∀𝑔 ∈ 𝐺 (12

) 𝛼𝑓𝑓′;  𝛽𝑓𝑓′;  𝛾𝑓𝑓′;  𝑥𝑓𝑔 ∈ {0,1} ∈ {0,1} ∀𝑓, 𝑓′ ∈ 𝐹, 𝑓 ≠ 𝑓′ (13

) 
 

𝑎𝑓′ ≥ 𝑑𝑓 + 𝑡𝑓 − 𝑀(1 − 𝛼𝑓𝑓′) − 𝑀(2 − 𝑥𝑓𝑔 − 𝑥𝑓′𝑔) ∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′, ∀𝑔 ∈ 𝐺 − {|𝐺| + 1} (18) 

𝑑𝑓′ + 𝑡𝑓′ ≤ 𝑎𝑓 + 𝑀(1 − 𝛽𝑓𝑓′) − 𝑀(2 − 𝑥𝑓𝑔 − 𝑥𝑓′𝑔) ∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′, ∀𝑔 ∈ 𝐺 − {|𝐺| + 1} (19) 

𝛼𝑓𝑓′ + 𝛽𝑓𝑓′ + 𝛾𝑓𝑓′ = 1 ∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′ (20) 

𝑥𝑓𝑔 + 𝑥𝑓′𝑔 ≤ 2 − 𝛾𝑓𝑓′ ∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′, ∀𝑔 ∈ 𝐺 − {|𝐺| + 1} (21) 

𝛼𝑓𝑓′;  𝛽𝑓𝑓′;  𝛾𝑓𝑓′;  𝑥𝑓𝑔 ∈ {0,1} ∀𝑓, 𝑓′ ∈ 𝐹, 𝑓 ≠ 𝑓′ (22) 

 

 

Constraint (18), (19), (20) and (21) together guarantee that the flight couples that has a conflict in 

arrival and departure times, cannot be assigned to the same gate. Finally constraint set (22) gives 

the domain of the decision variables. 
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Phase II of Model-II 

In Phase II, using the schedule obtained in Phase I, we minimize total deviation of flights. In 

addition to sets and parameters used in Phase I, Phase II has two additional parameters used as 

inputs in the model. First additional parameter is the number of flights assigned to the apron which 

is basically the objective function value obtained in Phase I, and second additional parameter is 

the total deviation of flights in the schedule obtained in Phase I. By restricting the number of flights 

assigned to the apron, in Phase II, we improve the solution obtained in Phase I such that the total 

deviation is minimized. We also restrict the total deviation since we want the new schedule to be 

at least as good as the one obtained in Phase I in terms of flight deviations. Phase II uses the same 

decision variables as the ones used in Phase I. 

 

Additional Parameters: 

 

𝑈: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎𝑝𝑟𝑜𝑛 𝑖𝑛 𝑃ℎ𝑎𝑠𝑒 𝐼  

𝐵: 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑃ℎ𝑎𝑠𝑒 𝐼 

 

Phase II of Model-II: 

We solve the problem with the conditions stated as in Phase I Model I. The objective function of 

Phase II, equation (15), minimizes the total deviation of arrival and departure times of flights from 

their scheduled times. Constraint set (16) fixes the number of unassigned flights. Constraint set 

(17) sets and upper bound on the total deviation which is the total deviation of the schedule 

obtained in Phase I. This Constraint is added just to accelerate the search time giving an additional 

cut to the feasible region of the problem. Constraint sets (2), (6-8) and (18-22) are exactly the same 

as the constraints used in Phase I. 
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3.2. COMPUTATIONAL ANALYSIS 

In this section we provide information on problem instances and we report computational results 

on these test instances. We compare the results of each mathematical formulation with each other 

with respect to solution time and quality. The tests are performed on a computer with an Intel i5 

1.80 GHz CPU and 12 GB RAM. 

3.2.1. Problem Instances 

There is a major difference between airports with respect to congestion. For instance, in an 

uncrowded airport, flights arrive in every five to 15 minutes. On the other hand, in a congested 

airport, a time window as small as zero to two minutes may separate the arrival of two consecutive 

flights. Therefore, we generated three different test instances based on the mean interarrival time 

between flights. In the first data set, mean interarrival time between flights are 10 minutes and 

scheduled arrival time of flight f  (𝑇𝑎
𝑓
) is randomly generated in the interval [10f, 10f+5]. This 

interval models a flight landing in every 5-15 minutes. In the second data set, mean interarrival 

time between flights are 5 minutes and 𝑇𝑎
𝑓
 is randomly generated in the interval [2f, 2f+5]. This 

interval models a flight landing in every 3-7 minutes. In the third data set, mean interarrival time 

between flights are 2 minutes and 𝑇𝑎
𝑓
 is randomly generated in the interval [f, f+2]. This interval 

models a flight landing in every 0-2 minutes. On the other hand, we assume that the time between 

a flight’s arrival and its departure is a uniform variable randomly generated in the interval [𝑇𝑎
𝑓
+60 

- 𝑇𝑎
𝑓
 +70] minutes. Required time for flight f to enter the gate after previous flight leaves the 

gate,𝑡𝑓, is generated in the interval [5-10] minutes.  This buffer time assumes that there should be 

a time window (5 to 10 minutes) between the departure of flight 𝑓 and the arrival of another flight 

𝑓′ to the same gate. The dwelling time, 𝑑𝑤𝑒𝑙𝑙𝑓, which is the minimum time for a flight to spend 

on a gate is randomly generated in the interval [40, 60]. This scheme is similar to that used in Xu 

and Bailey (2001). Following the above-described rules, we generate three sets of test instances. 

The first data set includes three sets of instances each differs in the number of flights. In the smaller 

size instances, the number of flights ranges from 20 to 35. In the medium size instances the range 

is between 40 and 70 and in the large size cases the flights number differ between 80 and 110.  
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3.2.2. Comparison of Model-I and Model-II 

In this section, we compare the results of Phase I and Phase II of the solution approach obtained 

applying Model-I and Model-II. Table 1 shows the performance measures obtained in Phase I for 

each model and Table 2 shows the performance measures obtained in Phase II of the mathematical 

models for the problem instances with 11 gates. Note that the discussed FGSP models are NP-

hard, a time limit of 30 minutes is used to terminate search.  

 

Table 1. Results of Phase I obtained with Model-I and Model-II 

Flight 

Number 

Gate 

Number 

MODEL-I PHASE I MODEL-II PHASE I 
LB on 

Number 

of  

Flights 

Assigned 

to The 

apron 

Number 

of  

Flights 

Assigned 

to The 

apron 

Time 

(Seconds) 

LB on 

Number 

of  

Flights 

Assigned 

to The 

apron 

Number 

of  Flights 

Assigned 

to The 

apron 

Time 

(Seconds) 

20 11 1 1 88 0 1 1800 
25 11 1 1 312 0 1 1800 
30 11 1 2 1800 0 2 1800 
35 11 1 2 1801 1 2 1800 
40 11 3 6 1800 0.33 4 1800 
50 11 1 6 1800 0 4 1800 
60 11 0 10 1800 0 5 1800 
70 11 NFSWTL 0 10 1800 
80 11 NFSWTL 0 10 1800 
90 11 NFSWTL NFSWTL 
100 11 NFSWTL 0 11 1800 
110 11 NFSWTL 0 15 1800 
40 21 NFSWTL 0 3 1800 
50 21 NFSWTL 0 5 1800 
60 21 NFSWTL 0 11 1800 
70 21 NFSWTL 0 17 1800 
80 21 NFSWTL 0 20 1800 
90 21 NFSWTL 0 23 1800 
100 21 NFSWTL 0 22 1800 
110 21 NFSWTL 0 29 1800 
80 51 NFSWTL NFSWTL 
90 51 NFSWTL 0 0 468 
100 51 NFSWTL 0 1 1800 
110 51 NFSWTL 0 6 1800 

 *NSWTL=No Solution within Time Limit 
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Table 1 tabulates the results of Phase I obtained with Model-I and Model-II. It shows that for the 

first two instances although Model-I and Model-II gives the same objective values, Model-I can 

state that the given result is optimal within a very short time. It is because Model-I provides better 

lower bounds so identifying a solution’s optimality takes less time. However, for the rest of the 

test instances, neither Model-I nor Model-II can provide optimal schedules within given time limit. 

Moreover, while Model-II gives better upper bound on the number of unassigned flights, no 

feasible solution can be determined by Model-I within the given time limit for most test instances. 

With these in mind, we can clearly state that for the large sample sizes, Model-II is more capable 

of providing good feasible solutions. 

 

Table. 2. Results of Phase II obtained with Model-I and Model-II 

 

Flight 

Numbe

r 

MODEL-I PHASE II MODEL-II PHASE II 
Number of  

Flights 

Assigned to 

The apron 

LB on 

Total 

Deviation 

Total 

Deviation 

Total 

Deviation 

in Phase I 

Number of  

Flights 

Assigned to 

The apron 

LB on 

Total 

Deviation 

Total 

Deviation 

Total 

Deviation 

in Phase I 

20 1 10.87 184 239 1 0 184 184 
25 1 1.04 212 337 1 0 210 363 
30 2 0 394 470 2 0 - 373 
35 2 0 - 493 2 - 
40 6 0 315 435 4 0 - 470 
50 6 0 585 666 4 0 - 708 
60 10 0 517 719 5 0 - 830 

 

As shown in Table 2, Model-II cannot improve the feasible solutions determined in Phase I. On 

the other hand, Model-I is more capable of improving the solution found in Phase I in terms of 

total deviation. It should be noted that the solutions found in Phase I are better in terms of total 

deviation when model-II is used, thus this makes the solution of Phase II harder for the model 

since the limit on the number of flights assigned to the apron in Model-II is more strict. Table 3 

shows average deviation of flights in test instances.  
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Table 3. Average Deviations for Flights 

MODEL-I PHASE II MODEL-II PHASE II 

Number of  

Flights 

Assigned to 

The apron 

Total 

Deviation 

(minutes 

Average 

Deviation 

for a Flight 

(Minutes) 

Number of  

Flights 

Assigned to 

The apron 

Total 

Deviati

on 

(minute

s 

Average 

Deviation for 

a Flight 

(Minutes) 

1 184 9.2 1 184 9.2 
1 212 8.48 1 210 8.4 
2 301 10.03 2 373 12.43 
2 493 14.09 2 - 
6 315 7.88 4 470 11.75 
6 585 11.7 4 708 14.16 
10 517 8.62 5 830 13.83 

 

3.2.3. Further Analysis 

In this section, we analyze the results obtained with Model-II in terms of number of flights assigned 

to the apron and total deviation. Table 4 tabulates the results obtained in Phase I and Phase II with 

different number of gates and Figure 1 and Figure 2 show how the number of flights assigned to 

the apron and total deviation change with respect to gate number, respectively. Note that, the 

results are obtained setting a time limit of 15 minutes for each phase of the solution approach. 

Table 4. Results of Phase II and Phase II with Different Gate Capacities 

Flight 

Number 

Gate 

Number 

Number of 

Flights Assigned 

to The apron 

Total 

Deviation 
20 12 0 184 
20 11 1 184 
20 10 2 184 
20 9 3 178 
20 8 5 134 
20 7 7 91 
20 6 9 63 
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Figure 1. Number of Flights Assigned to The apron for Different Gate Capacities 

 

 

Figure 2. Total Deviation for Different Gate Capacities 

 

When we analyze Table 4, we see that these two objectives are conflicting. While the number of 

flights assigned to the apron increases, total deviation of the resulting schedule decreases with the 

decrease in gate numbers. Figure 3 shows this case. 
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             Figure 3. Total Delay vs. Number of Flights Assigned to The apron 

 

 

3.3. CONCLUSIONS AND FUTURE RESEARCH 

In this chapter, we considered gate assignment and scheduling problem as a bi-objective 

optimization problem and presented new mathematical formulations, Model-I and Model-II that 

are used in a two-phase approach to minimize the number of flights assigned to the apron and to 

minimize the total deviation of the gate schedules from flight schedules. We compared Model-I 

and Model-II with respect to solution time and solution quality. The results show that Model-II is 

more capable of handling frequent flight arrivals and is more efficient than Model-I. It is also 

shown that considered objectives are conflicting with each other. Future research may be directed 

to relaxing the assumption that the arrival and departure activity of a flight has to be in the same 

gate and developing metaheuristics that takes into account multiple objectives for the problem. 

Another extension would be in a setting where stochastic arrival and departure times are considered 

with the objective of generating robust gate schedules. 
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CHAPTER 4  

TAXIWAY SCHEDULING MODEL 

 

This chapter discusses a new formulation of taxiway traffic scheduling problem of airports with 

the objective of minimizing the total taxiing time and the deviations from the runway departures 

for arriving aircrafts and deviations from the gate departure times for departing aircrafts. A mixed 

integer linear programming (MIP) model that considers collision avoidance on the taxiways, 

separation distances between aircrafts, speed changes and exact travelling times has been 

developed without adapting a state-time network in which the decision variables are defined with 

time indices. Instead, the non-time segmented model proposed in this thesis, determines a taxi plan 

for each aircraft by identifying the sequence of taxiway intersections represented as nodes to be 

visited and determines the aircrafts’ exact arrival and departure times to these nodes, average speed 

used on the taxiway represented as links between two consecutive nodes while ensuring the safety 

conditions that avoid aircraft collisions. The cost incurred from arrival and departure delays with 

total taxiing time is minimized. 

 

4.1. PROBLEM FORMULATION 

In this section, the details of the mathematical model are provided. In the modeling of the airport 

ground traffic scheduling problem, it is assumed that all aircrafts in the set 𝐹 enter a 2D network 

in which the nodes (𝑣𝜖𝑉) are used to represent the gates, taxiway intersections, runway enter and 
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exit points and dummy nodes that represent the runways and links (𝑙𝜖𝐿) are used to represent the 

taxiways and that connects between two consecutive nodes. While arriving aircrafts (𝑓𝜖𝐹𝐴) enter 

the network from the nodes that represent the gates that they are assigned to, departing aircrafts 

(𝑓𝜖𝐹𝐷) enter the network from one of the possible entry points of the runway which they assigned 

to. All arriving aircrafts leave the system when they reach to their assigned gates through the 

taxiways and all departing aircrafts leave the system from one of the available exit points of the 

runway that is assigned. The objective of the model is to minimize the weighted sum of total taxiing 

time and total deviations of arrivals and departures from their scheduled times by determining a 

taxi plan for each aircraft without violating any safety rules. The aircraft taxi plan (𝑇𝑃𝑓) includes 

a set of links (𝑥𝑙
𝑓

=1), arrival (𝑎𝑙
𝑓
) and departure (𝑑𝑙

𝑓
) times to these links, time (𝑡𝑙

𝑓
) spent on the 

link while the aircraft is moving, and waiting time (𝑤𝑙
𝑓
) and average speed (𝑠𝑙

𝑓
) on these links. It 

is assumed that waiting can only be done when arrived to the nodes. Hence the taxi plan is defined 

as 𝑇𝑃𝑓 = (𝑥𝑙
𝑓

, 𝑎𝑙
𝑓

, 𝑑𝑙
𝑓

, 𝑡𝑙
𝑓

, 𝑤𝑙
𝑓

, 𝑠𝑙
𝑓

: 𝑓𝜖𝐹, 𝑙𝜖𝐿). The unique characteristic of the model is the use of a 

non-segmented (non-time-indexed) approach by introducing the exact arrival and departure times 

as decision variables. Moreover, instead of assuming the speed constant which is a traditional 

approach in literature, the model has the flexibility to change the flight speed based on the necessity 

at every link in the network which results in an enhancement in the control options by the addition 

of speed control to the use of waiting the aircrafts at the end of links. Knowledge of exact arrival 

and departure times to and from nodes, the speed used on the links and the exact waiting time on 

nodes is crucial for ensuring safety in real life applications. The model is also capable of dealing 

with restricted taxiways which might be due to technical or weather conditions. 

The details of the model are discussed in the following subsections. First, the assumptions made 

are discussed then the list of parameters and decision variables are presented along with their 

definitions and required explanations. Finally the formulation of the problem is provided. 
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4.1.1. Assumptions 

The assumptions made in the modeling of airport ground traffic scheduling problem along with 

discussions are provided above. 

 The taxi system in the airport is composed of runway passageways, taxiways, and parking 

apron. For a departure flight, after finishing the work in an assigned gate, such as cleaning, 

on-off passengers, catering, and fueling, the aircraft will wait for controller’s command. 

The air traffic control (ATC) in the tower will give commands about taxi path as well as 

take-off runway and entrance. The aircraft will be pushed out and begin taxiing. In general, 

more than two aircrafts taxi on the taxiway at the same time; a basic safety separation 

between aircrafts is required. According to the aircraft operation management manual, a 

minimum safety separation is regulated between different types of aircraft (including 

heavy, medium-size, and light aircraft). 

 We assume that a flight in a taxiway system has only two states, moving and holding. Any 

flight can only be held at holding areas or parking aprons, which are modeled as nodes with 

infinite capacity. 

 During taxiing, the pilot can keep safety separation with the following aircraft by adjusting 

aircraft speed. Only one aircraft is allowed to pass the same node at one time and other 

aircrafts are required to wait to ensure safety. When two aircrafts need to taxi on the same 

segment of taxiway from different nodes, one aircraft must hold and wait at the entrance 

node if the minimum safety separation is not satisfied. If an aircraft arrives at the assigned 

runway entrance, it can enter runway and take off when ATC allows. 

 For the arrival flight, the aircraft enters taxiway from assigned runway and exits according 

to ATC instructions. The taxi path and stand are assigned before the aircraft enters taxi 

system. Taxiing is over when the aircraft arrives at the gate. 

 An aircraft can visit a node only once. 

 Minimum and maximum speed that an aircraft can taxi is aircraft dependent. 
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4.1.2. Parameters and Decision Variables 

While the sets and the parameters of the formulation are shown in Table 5, Table 6 shows the 

decision variables. 

Table 5. Sets and Parameters of the Problem Formulation 

𝐹 Set of all flights indexed by 𝑓 

𝐹𝐴 Set of arriving flights: 𝐹𝐴  ⊂ 𝐹 

𝐹𝐷 Set of arriving flights: 𝐹𝐷  ⊂ 𝐹, 𝐹𝐴 ∪ 𝐹𝐷 = 𝐹  

𝑉 Set of nodes of the network indexed by 𝑣 

𝑉𝐺 Set of nodes used to represent gates: 𝑉𝐺  ⊂ 𝑉 

𝑉𝑅 Set of nodes used to represent the runways: 𝑉𝑅  ⊂ 𝑉 

𝑉𝑇 Set of nodes used to taxiway intersections: 𝑉𝑇  ⊂ 𝑉 

𝑉𝑅′ Set of nodes used to represent runway entrance and exit points: 𝑉𝑅  ⊂ 𝑉 

𝐿 Set of links of the network indexed by 𝑙 
𝑂𝑃𝑃(𝑙) The link corresponding the opposite of link 𝑙: 𝑙𝜖𝐿 

𝑣𝐼𝑁
𝑓

 Entry point of flight 𝑓 which represent the gate for arrivals and dummy 

runway node for departures: 𝑣𝐼𝑁
𝑓

 ⊂ 𝑉 

𝑣𝑂𝑈𝑇
𝑓

 Exit point of flight 𝑓 which represent the dummy runway nodes for 

departures and gates for arrivals: 𝑣𝑂𝑈𝑇
𝑓

 ⊂ 𝑉 

𝜔−(𝑣) Set of incoming nodes that can route aircrafts to node 𝑣: 𝑣𝜖𝑉 

𝜔+(𝑣) Set of outgoing nodes that node 𝑣 can route aircrafts to: 𝑣𝜖𝑉 

𝐿𝐸𝑁𝐺𝑇𝐻𝑙 Length of link 𝑙 : 𝑙𝜖𝐿 

𝑇𝐼𝑁 Scheduled entry time to the taxiway system for flight 𝑓: 𝑓𝜖𝐹 

𝑇𝑂𝑈𝑇 Scheduled exit time from the taxiway system for flight 𝑓: 𝑓𝜖𝐹 

𝐿𝐴𝑇𝐸𝐼𝑁
𝑓

 Latest entry time to the system for flight 𝑓: 𝑓𝜖𝐹 

𝐸𝐴𝑅𝐿𝑌𝑂𝑈𝑇
𝑓

 Earliest exit time from the taxiway system for flight 𝑓: 𝑓𝜖𝐹 

𝐿𝐴𝑇𝐸𝑂𝑈𝑇
𝑓

 Latest exit time from the taxiway system for flight 𝑓: 𝑓𝜖𝐹 

𝑠𝑡𝑓𝑓′
 Aircraft dependent separation distance expressed in time units for flight 𝑓′ 

following departure of 𝑓within the same nodes: 𝑓, 𝑓′𝜖𝐹 

 

Table 6. Decision Variables of the Problem Formulation 

𝑎𝑙
𝑓

𝜖 𝑅+ Arrival time of flight 𝑓 at the end of link 𝑙: 𝑓𝜖𝐹, 𝑙𝜖𝐿 

𝑑𝑙
𝑓

𝜖 𝑅+ Departure time of flight 𝑓 from link 𝑙: 𝑓𝜖𝐹, 𝑙𝜖𝐿 

𝑥𝑙
𝑓
 = {

1 if flight 𝑓 travels on link 𝑙
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

 : 𝑓𝜖𝐹, 𝑙𝜖𝐿 

𝛽𝑙
𝑓𝑓′

 = {
1 if flight 𝑓′follows flight 𝑓 on link 𝑙
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

 : 𝑓, 𝑓′𝜖𝐹, 𝑙𝜖𝐿 

𝜃𝑣
𝑓𝑓′

 = {
1 if flight 𝑓 leaves node 𝑣 before flight  𝑓′ 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            
: 𝑓, 𝑓′𝜖𝐹, 𝑣𝜖𝑉 

𝛼𝑣
𝑓𝑓′

 = {
1 if flight 𝑓′follows flight 𝑓 on link 𝑙
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

 : 𝑓, 𝑓′𝜖𝐹, 𝑣𝜖𝑉 
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The proposed formulation avoids non-linearity under all circumstances, yet achieves all of its 

objectives. Precise control of average speed on each link enables determination of exact travel 

times so the taxiway collision is avoided. The control options used in the model are average speed 

control on each link, waiting the aircrafts at the end of links, and path generation for each flight. 

The proposed mathematical model considers the minimization of total taxiing time and waiting 

times of flights at their initial nodes. Constraints of the model are categorized into 4 groups: routing 

constraints, timing constraints, speed related constraints, and safety and conflict avoidance 

constraints. 

 

4.1.3. Objective Function 

The objective of the model considers the minimization of the cost of total taxiing time including 

waiting times and it is given below: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑡𝑂𝑈𝑇
𝑓

− 𝑇𝐼𝑁))𝑓                                                   (1) 

 

4.1.4. Aircraft Routing Constraints 

Aircraft routing constraints determine a taxi plan as a set of visited links. 

∑ 𝑥𝑙
𝑓

= 1                                                    𝑓𝜖𝐹
𝑙𝜖𝜔+(𝑣𝐼𝑁

𝑓
)

                                                                                   (2)  

∑ 𝑥𝑙
𝑓

= 0                                                    𝑓𝜖𝐹
𝑙𝜖𝜔−(𝑣𝐼𝑁

𝑓
)

                                                                                   (3) 

∑ 𝑥𝑙
𝑓

= 1                                                  𝑓𝜖𝐹
𝑙𝜖𝜔−(𝑣𝑂𝑈𝑇

𝑓
)

                                                                                   (4) 

∑ 𝑥𝑙
𝑓

= 0                                                  𝑓𝜖𝐹
𝑙𝜖𝜔+(𝑣𝑂𝑈𝑇

𝑓
)

                                                                                   (5) 

∑ 𝑥𝑙
𝑓

=  ∑ 𝑥𝑙
𝑓

𝑙𝜖𝜔+(𝑣)                                    𝑣𝜖𝑉, 𝑓𝜖𝐹𝑙𝜖𝜔−(𝑣)                                                                            (6) 

𝑥𝑙
𝑓

+  𝑥𝑙′
𝑓

≤ 1                                                            𝑙, 𝑙′𝜖𝐿: 𝑙𝑂𝑃𝑃 = 𝑙′, 𝑓𝜖𝐹                                                        (7) 

∑ 𝑥𝑙
𝑓

≤ 1                                          𝑓𝜖𝐹𝐷
𝑙𝜖𝜔+(𝑣):𝑣∈𝑉∖{𝑉𝑇}                                                                                (8) 
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∑ 𝑥𝑙
𝑓

≤ 1                                           𝑓𝜖𝐹𝐴
𝑙𝜖𝜔−(𝑣):𝑣∈𝑉∖{𝑉𝑇}                                                                               (9) 

∑ 𝑥𝑙
𝑓

≤ 1                                                       𝑣𝜖𝑉 ∖ {𝑣𝐼𝑁
𝑓

}  , 𝑓𝜖𝐹𝑙𝜖𝜔−(𝑣)                                                            (10) 

∑ 𝑥𝑙
𝑓

≤ 1                                                       𝑣𝜖𝑉 ∖ {𝑣𝑂𝑈𝑇
𝑓

}, 𝑓𝜖𝐹𝑙𝜖𝜔+(𝑣)                                                           (11) 

 

Constraint (2) and (3) ensure all aircraft to enter the taxiway network from the proper entry node 

using a single link and aircraft do not go back to their origins throughout their taxiing process. 

Similarly, Constraint (4) and (5) ensures all aircraft to reach their destinations through a single 

link. Conservation constraint (6) forces all aircraft entering an interior node to leave the node. 

Constraint (7) enforces aircraft not to make use of opposite links consecutively to ensure avoidance 

of loops. Inequalities (8) and (9) ensure that no aircraft can travel through the same node and link 

more than once. The reason constraints (8) and (9) are imbedded in to the models is to reduce the 

computational complexity. In order to allow a flight to travel through the same node or link 

multiple times, either additional indices (visiting index) to differentiate each visit, or multiple links 

between node pairs (i.e., use of a multi-graph) to allow alternatives should be introduced to the 

model. Note that constraints (2) and (3) are easy to extend for systems with several entrance/exit 

points: 

∑ ∑ 𝑥𝑙
𝑓

= 1𝑙𝜖𝜔+(𝑣)𝑣𝜖𝑉𝐼𝑁
𝑓                                        𝑓𝜖𝐹                                                                        (2’) 

∑ ∑ 𝑥𝑙
𝑓

= 1𝑙𝜖𝜔+(𝑣)𝑣𝜖𝑉𝑂𝑈𝑇
𝑓                                          𝑓𝜖𝐹                                                                                (4’) 

where 𝑉𝐼𝑁
𝑓

 and 𝑉𝑂𝑈𝑇
𝑓

 are the sets of possible entry and exit points for each flight. For the arriving 

aircrafts while 𝑉𝐼𝑁
𝑓

 includes the nodes that represent the possible runways that the aircraft can land 

in, 𝑉𝑂𝑈𝑇
𝑓

 includes the nodes that represent the possible gates that the aircraft can be assigned to. 

The situation is exactly the opposite for the departing aircrafts. Notice that with this new definition, 

an integrated problem of gate assignment, taxiway scheduling and runway assignment could be 

solved.  
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4.1.5. Timing Constraints 

In this subsection, we describe the constraints setting the relationship between arrival and 

departure times on nodes and links. 

 

 𝑥𝑙
𝑓

(𝐸𝐴𝑅𝐿𝑌𝐼𝑁
𝑓

)  ≤  𝑑𝑙
𝑓

≤   𝑥𝑙
𝑓

(𝐿𝐴𝑇𝐸𝐼𝑁
𝑓

)                                                  𝑙𝜖𝜔+(𝑣𝐼𝑁
𝑓

), 𝑓𝜖𝐹                              (12) 

 𝑥𝑙
𝑓

(𝐸𝐴𝑅𝐿𝑌𝑂𝑈𝑇
𝑓

)  ≤  𝑎𝑙
𝑓

≤   𝑥𝑙
𝑓

(𝐿𝐴𝑇𝐸𝑂𝑈𝑇
𝑓

)                                            𝑙𝜖𝜔−(𝑣𝑂𝑈𝑇
𝑓

), 𝑓𝜖𝐹                            (13) 

𝑑𝑙
𝑓

≤ 𝑀𝑥𝑙
𝑓

                                                                                                   𝑙𝜖𝜔+(𝑣), 𝑣𝜖𝑉\{𝑣𝑂𝑈𝑇
𝑓

}, 𝑓𝜖𝐹              (14) 

𝑎𝑙
𝑓

≤ 𝑀𝑥𝑙
𝑓

                                                                                                   𝑙𝜖𝜔−(𝑣), 𝑣𝜖𝑉\{𝑣𝐼𝑁
𝑓

}, 𝑓𝜖𝐹                 (15) 

∑ 𝑑𝑙
𝑓

= 𝑡𝐼𝑁
𝑓

𝑙𝜖𝜔+(𝑣𝐼𝑁
𝑓

)
                                                                                    𝑓𝜖𝐹                                                 (16) 

∑ 𝑎𝑙
𝑓

= 𝑡𝑂𝑈𝑇
𝑓

𝑙𝜖𝜔−(𝑣𝑂𝑈𝑇
𝑓

)
                                                                               𝑓𝜖𝐹                                                (17) 

𝐿𝑒𝑛𝑔𝑡ℎ𝑙

𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑𝑓 ≤ 𝑎𝑙
𝑓

− 𝑑𝑙
𝑓

≤
𝐿𝑒𝑛𝑔𝑡ℎ𝑙

𝑚𝑖𝑛𝑆𝑝𝑒𝑒𝑑𝑓                                                          𝑙𝜖𝐿,   𝑓𝜖𝐹                                        (18) 

∑ 𝑎𝑙
𝑓

≤ 𝑙𝜖𝜔−(𝑉)  ∑ 𝑑𝑙
𝑓

𝑙𝜖𝜔+(𝑉)                                                                    𝑣𝜖𝑉\{𝑣𝐼𝑁
𝑓

, 𝑣𝑂𝑈𝑇
𝑓

}𝑓𝜖𝐹                        (19) 

 

While constraint set (12) and (13) ensure the departure and arrival of the aircraft to be within the 

allowed time range, Constraints (14) and (15) ensure that when an aircraft is not assigned to a link, 

then the arrival or departure time to that link is forced to be zero in order to sustain the accurate 

network flow without creating non-linearity. In the following constraints (16) and (17) specify the 

entry (𝑡𝐼𝑁
𝑓

) and exit times (𝑡𝑂𝑈𝑇
𝑓

) to and from the taxiway system for each aircraft respectively. 

Finally, while Constraint set (18) gives the speed based relation on the time required to traverse a 

link, Constraint set (19) specifies the relation between arrival and departure times on the nodes. 

 

 

 



40 

 

4.1.6. Safety and Conflict Avoidance Constraints 

In the following constraints we ensure aircraft minimum separation distances between consequent 

aircraft and we ensure avoidance of conflicts for aircraft that use the same taxiway in the opposite 

directions. Since the time needed to guarantee minimum separation distances depends on the 

leading aircraft type, we model this issue with the help of aircraft order dependent minimum 

separation time parameter 𝑠𝑡𝑓𝑓′ where 𝑠𝑡𝑓𝑓′ ≠ 𝑠𝑡𝑓′𝑓. While inequalities (23) – (26) guarantee the 

minimum separation distances for the aircraft that use the same taxiway in the same direction, 

inequalities (27) - (28) and inequalities (29) – (30) ensures conflict avoidance for the aircraft 

taxiing on the same link and approaching the same node through different links; respectively. 

 

𝑑𝑙
𝑓′

− 𝑑𝑙
𝑓

≥ 𝑠𝑡𝑓𝑓′
− 𝑀 (1 − 𝛽𝑙

𝑓𝑓′

) − 𝑀 (2 − 𝑥𝑙
𝑓

− 𝑥𝑙
𝑓′

)             𝑣𝜖𝑉\{𝑣𝑂𝑈𝑇
𝑓

}, 𝑙𝜖𝜔+(𝑣), 𝑓, 𝑓′𝜖𝐹              (23) 

𝑑𝑙
𝑓

− 𝑑𝑙
𝑓′

≥ 𝑠𝑡𝑓′𝑓 − 𝑀𝛽𝑙
𝑓𝑓′

− 𝑀 (2 − 𝑥𝑙
𝑓

− 𝑥𝑙
𝑓′

)                           𝑣𝜖𝑉\{𝑣𝑂𝑈𝑇
𝑓

}, 𝑙𝜖𝜔+(𝑣), 𝑓, 𝑓′𝜖𝐹           (24) 

𝑎𝑙
𝑓′

− 𝑎𝑙
𝑓

≥ (𝑠𝑡𝑓𝑓′
) − 𝑀 (1 − 𝛽𝑙

𝑓𝑓′

) − 𝑀 (2 − 𝑥𝑙
𝑓

− 𝑥𝑙
𝑓′

)         𝑣𝜖𝑉\{𝑣𝐼𝑁
𝑓

}, 𝑙𝜖𝜔−(𝑣), 𝑓, 𝑓′𝜖𝐹              (25) 

𝑎𝑙
𝑓

− 𝑎𝑙
𝑓′

≥ (𝑠𝑡𝑓𝑓′
) − 𝑀𝛽𝑙

𝑓𝑓′

− 𝑀 (2 − 𝑥𝑙
𝑓

− 𝑥𝑙
𝑓′

)                       𝑣𝜖𝑉\{𝑣𝐼𝑁
𝑓

}, 𝑙𝜖𝜔−(𝑣), 𝑓, 𝑓′𝜖𝐹              (26) 

 

Inequalities (23) and (24) ensure that when two aircraft are traveling on the same direction using 

the same link, a minimum separation distance of 𝑠𝑡𝑓𝑓′is guaranteed at the point when they enter 

the link from node 𝑣. Through inequalities (25) and (26), when such two aircrafts arrive to the next 

node, the minimum separation distance is sustained in order to avoid for aircrafts to pass each other 

while they are traveling on 𝑙. Binary decision variable 𝛽𝑓𝑓′ =  1 implies that flight f is the leader 

on link 𝑙.  
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The purpose of the next set of inequalities is to ensure that no two aircrafts fly on the same link 

from opposite directions at the same time. The binary decision variable 𝛼𝑓𝑓′ =  1 if flight 𝑓 

occupies the link earlier than 𝑓′. Consequently, the model enforces flight 𝑓 to keep least 

𝑠𝑡𝑓𝑓′distance from flight 𝑓 on node 𝑣.  

 

𝑑
𝑙′
𝑓′

− 𝑎𝑙
𝑓

≥ (𝑠𝑡𝑓𝑓′
) − 𝑀 (1 − 𝛼𝑙

𝑓𝑓′

) − 𝑀 (2 − 𝑥𝑙
𝑓

− 𝑥
𝑙′
𝑓′

)     

𝑣𝜖𝑉\{𝑣𝐼𝑁
𝑓

}, 𝑙𝜖𝜔−(𝑣): 𝑙′ = 𝑂𝑃𝑃(𝑙), 𝑓, 𝑓′𝜖𝐹          (27) 

𝑑𝑙
𝑓

− 𝑎𝑙′
𝑓′

≥ (𝑠𝑡𝑓𝑓′) − 𝑀𝛼𝑙
𝑓𝑓′

− 𝑀 (2 − 𝑥𝑙
𝑓

− 𝑥
𝑙′
𝑓′

)     

𝑣𝜖𝑉\{𝑣𝐼𝑁
𝑓

}, 𝑙𝜖𝜔−(𝑣): 𝑙′ = 𝑂𝑃𝑃(𝑙), 𝑓, 𝑓′𝜖𝐹     (28) 

 

Finally, the next set of inequalities ensures the separation of aircrafts by a given time 𝑠𝑡𝑓𝑓′ at any 

node. The binary decision variable 𝜃𝑣
𝑓𝑓′

=  1 if aircraft 𝑓 passes through node 𝑣 before aircraft 𝑓’. 

Consequently, a safe separation distance (time) between aircraft pairs is imposed. 

 

∑ 𝑎𝑙
𝑓′

− ∑ (𝑎𝑙
𝑓

𝜖𝜔−(𝑣)

)

𝑙𝜖𝜔−(𝑣)

≥ 𝑠𝑡𝑓𝑓′
− 𝑀 (1 − 𝜃𝑣

𝑓𝑓′

) − 𝑀(2 − ∑ 𝑥𝑙
𝑓′

− ∑ 𝑥𝑙
𝑓

𝜖𝜔−(𝑣)

   ) 

𝑙𝜖𝜔−(𝑣)

 

𝑣𝜖𝑉\{𝑣𝐼𝑁
𝑓

, 𝑣𝐼𝑁
𝑓′

}, 𝑓, 𝑓′𝜖𝐹   (29) 

∑ (𝑎𝑙
𝑓

− ∑ 𝑎𝑙
𝑓′

𝜖𝜔−(𝑣)𝑙𝜖𝜔−(𝑣)

≥ 𝑠𝑡𝑓𝑓′
− 𝑀𝜃𝑣

𝑓𝑓′

− 𝑀(2 − ∑ 𝑥𝑙
𝑓′

− ∑ 𝑥𝑙
𝑓

𝜖𝜔−(𝑣)

   ) 

𝑙𝜖𝜔−(𝑣)

 

𝑣𝜖𝑉\{𝑣𝐼𝑁
𝑓

, 𝑣𝐼𝑁
𝑓′

}, 𝑓, 𝑓′𝜖𝐹   (30) 
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4.2. IMPLEMENTATION 

In this section we provide two sets of results for two different airport layout configuration: One 

for small airport, one for medium size airport. In the following subsections, first we present the 

data for each airport network and then we present the optimization results. 

 

4.2.1. Small Airport Network 

Considered airport consists of 17 nodes: 7 gates, 8 taxiway intersections, 1 runway and one apron. 

Figure 4 shows the airport network configuration for the small airport. 

 

 

Figure 4. Small Airport Network 

 

4.2.2. Small Airport Flight Data 

It is assumed that 7 flights are ready to depart at their assigned gates, and there is one arrival on 

average in every 5 minutes. Speed is assumed to be constant 600m/minute. Earliest in and out 
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times are calculated assuming each flight can be delayed at most 30 minutes and minimum taxiing 

time on the ground is 3 minutes with an average delay ranging from 0 to 5 minutes. The following 

table shows the hypothetical flight information for the TSM considered for the small airport. 

Separation distances are assumed to be 0.5 minutes for all flights.  

 

Table 7. Flight Data for the small Airport 

id 

typ

e pair ID 

siz

e 

V 

in 

V 

out 

T 

IN 

T 

OUT 

early 

IN 

late 

IN 

early 

OUT 

late 

OU

T 

max 

Speed 

min 

Speed apron 

3 1 0 2 5 16 0 6 0 30 3 43 600 600 0 
5 1 0 3 3 16 0 8 0 30 3 43 600 600 0 
1 1 0 1 6 16 1 6 1 31 4 44 600 600 0 
2 1 0 3 7 16 1 9 1 31 4 44 600 600 0 
4 1 0 3 4 16 1 6 1 31 4 44 600 600 0 
8 2 34 3 16 2 1 9 1 31 4 39 600 600 1 
7 1 0 2 1 16 2 10 2 32 5 45 600 600 0 
6 1 0 3 2 16 5 9 5 35 8 48 600 600 0 
9 2 35 2 16 6 7 13 7 37 10 45 600 600 1 
1

0 

2 36 2 16 5 14 22 14 44 17 52 600 600 1 
1

1 

2 37 3 16 4 21 29 21 51 24 59 600 600 1 
1

2 

2 38 1 16 3 26 29 26 56 29 64 600 600 1 
1

3 

2 39 1 16 7 33 37 33 63 36 71 600 600 1 
1

4 

2 40 3 16 1 41 48 41 71 44 79 600 600 1 
1

5 

2 41 1 16 17 49 57 49 79 52 87 600 600 1 
3

4 

1 8 3 2 16 54 62 54 84 57 92 600 600 1 
1

6 

2 42 3 16 6 55 59 55 85 58 93 600 600 1 
3

5 

1 9 2 6 16 58 65 58 88 61 96 600 600 1 
1

7 

2 43 3 16 5 62 69 62 92 65 100 600 600 1 
1

8 

2 44 1 16 2 64 71 64 94 67 102 600 600 1 
3

6 

1 10 2 5 16 67 75 67 97 70 105 600 600 1 
1

9 

2 45 1 16 4 72 76 72 102 75 110 600 600 1 
2

0 

2 46 2 16 3 74 81 74 104 77 112 600 600 1 
3

7 

1 11 3 4 16 74 78 74 104 77 112 600 600 1 
3

8 

1 12 1 3 16 74 77 74 104 77 112 600 600 1 

 

 

4.2.3. Conflict Free Taxiway Scheduling Results 

In this section we present results obtained from the TSM for the considered 25 flights. Table 8 

shows the detailed taxiway schedules while Figure 5 and Figure 6 show the detailed taxiway 

schedules for the first 7 minutes and the last 6 minutes.  
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Table 8. Taxiway Schedules for 25 Flights 

Flight ID arc from to d a  Flight ID arc from to d a 

3 11 5 9 0.00 0.50  13 24 11 7 35.17 36.00 
3 21 9 11 0.50 1.17  13 34 14 11 34.17 35.17 
3 33 11 14 1.17 2.17  13 44 15 14 33.50 34.00 
3 43 14 15 2.17 2.67  13 46 16 15 33.00 33.50 
3 45 15 16 2.67 3.17  14 2 8 1 43.67 44.17 
5 5 3 8 0.00 0.50  14 20 10 8 43.00 43.67 
5 19 8 10 0.50 1.17  14 30 12 10 42.50 43.00 
5 27 10 13 1.67 2.67  14 38 15 12 41.50 42.50 
5 41 13 15 2.67 3.17  14 46 16 15 41.00 41.50 
5 45 15 16 3.17 3.67  15 42 15 13 50.50 51.00 
1 13 6 9 1.00 1.50  15 46 16 15 49.00 49.50 
1 21 9 11 1.67 2.33  15 51 13 17 51.00 52.00 
1 33 11 14 2.67 3.67  34 3 2 8 54.00 54.50 
1 43 14 15 3.67 4.17  34 19 8 10 54.50 55.17 
1 45 15 16 4.17 4.67  34 29 10 12 55.17 55.67 
2 23 7 11 1.00 1.83  34 37 12 15 55.67 56.67 
2 33 11 14 1.83 2.83  34 45 15 16 56.67 57.17 
2 43 14 15 3.17 3.67  16 14 9 6 57.67 58.17 
2 45 15 16 3.67 4.17  16 22 11 9 57.00 57.67 
4 9 4 9 2.00 2.50  16 34 14 11 56.00 57.00 
4 21 9 11 2.50 3.17  16 44 15 14 55.50 56.00 
4 31 11 12 3.17 3.67  16 46 16 15 55.00 55.50 
4 37 12 15 3.67 4.67  35 13 6 9 58.67 59.17 
4 45 15 16 4.67 5.17  35 21 9 11 59.17 59.83 
8 4 8 2 3.67 4.17  35 33 11 14 59.83 60.83 
8 20 10 8 3.00 3.67  35 43 14 15 60.83 61.33 
8 30 12 10 2.50 3.00  35 45 15 16 61.33 61.83 
8 38 15 12 1.50 2.50  17 12 9 5 65.00 65.50 
8 46 16 15 1.00 1.50  17 22 11 9 64.33 65.00 
7 1 1 8 2.00 2.50  17 32 12 11 63.83 64.33 
7 17 8 9 2.50 3.00  17 38 15 12 62.83 63.83 
7 21 9 11 3.00 3.67  17 46 16 15 62.33 62.83 
7 33 11 14 3.67 4.67  18 4 8 2 66.67 67.17 
7 43 14 15 4.67 5.17  18 20 10 8 66.00 66.67 
7 45 15 16 5.17 5.67  18 30 12 10 65.50 66.00 
6 3 2 8 5.00 5.50  18 38 15 12 64.50 65.50 
6 19 8 10 5.50 6.17  18 46 16 15 64.00 64.50 
6 27 10 13 6.17 7.17  36 11 5 9 67.00 67.50 
6 41 13 15 7.50 8.00  36 21 9 11 67.50 68.17 
6 45 15 16 8.00 8.50  36 33 11 14 68.17 69.17 
9 14 9 6 9.67 10.17  36 43 14 15 69.17 69.67 
9 22 11 9 9.00 9.67  36 45 15 16 69.67 70.17 
9 34 14 11 8.00 9.00  19 10 9 4 74.67 75.17 
9 44 15 14 7.50 8.00  19 22 11 9 74.00 74.67 
9 46 16 15 7.00 7.50  19 34 14 11 73.00 74.00 

10 12 9 5 16.67 17.17  19 44 15 14 72.50 73.00 
10 22 11 9 16.00 16.67  19 46 16 15 72.00 72.50 
10 32 12 11 15.50 16.00  20 6 8 3 76.83 77.33 
10 38 15 12 14.50 15.50  20 20 10 8 76.17 76.83 
10 46 16 15 14.00 14.50  20 30 12 10 75.67 76.17 
11 8 8 4 23.67 24.17  20 38 15 12 74.50 75.50 
11 20 10 8 23.00 23.67  20 46 16 15 74.00 74.50 
11 30 12 10 22.50 23.00  37 7 4 8 74.00 74.50 
11 38 15 12 21.50 22.50  37 19 8 10 74.50 75.17 
11 46 16 15 21.00 21.50  37 27 10 13 75.17 76.17 
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12 6 8 3 28.67 29.17  37 41 13 15 76.17 76.67 
12 20 10 8 28.00 28.67  37 45 15 16 76.67 77.17 
12 30 12 10 27.50 28.00  38 5 3 8 74.50 75.00 
12 38 15 12 26.50 27.50  38 19 8 10 75.00 75.67 
12 46 16 15 26.00 26.50  38 27 10 13 75.67 76.67 

       38 41 13 15 76.67 77.17 
       38 45 15 16 77.17 77.67 

 

 

 

 

Figure 5. Conflict free Taxiway Schedules: First 7 minutes 

 

 

 

 

 

 

Edge arc arc TIME 0.50 1.00 1.17 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.67 4.17 4.67 5.00 5.17 5.50 5.67 6.17 7.00

RANGE 0.00 0.50 1.00 1.17 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.67 4.17 4.67 5.00 5.17 5.50 5.67 6.17
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Figure 6. Conflict free Taxiway Schedules: Last 6 minutes 
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4.2.4. Airport Network for Medium Size Airport 

Considered medium size airport consists of 10 gates, two apron areas where flights can load and 

unload passengers instead of gates when there is a congestion, a shared runway for departures and 

arrivals and 17 taxiway intersections. The layout of the airport is given in the following figure. 

 

 

Figure 7. Medium Size Airport Layout for Taxiway Scheduling 
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4.2.5. Flight Information for Medium Size Airport 

We consider a set of flight data assuming that average time between arrivals is 3 minutes. Since 

there are 10 gates, it is assumed that 10 flights are ready to depart within the next 10 minutes and 

there are 5 more flights ready to take passengers from the gates between time 10 and 30. Flight 

information is generated in two steps. In the first step, we create departures and arrivals and get 

their gate schedules using the model presented in Chapter 3. In the second step, we generate a 

departure flight from each arrival using the resulting gate in and out times. 

 

Step I: Generating Flight Information for the Gate Scheduling System 

In the first step first we generate 10 departure flights ready to depart from the gates and 5 departure 

flights ready to take the passengers from the gates and take off. It is assumed that for the first 10 

flights scheduled arrival times (𝑠𝑎𝑓) to gates vary between [0,10]. Since the first 10 flights are 

ready to depart, their gate dwelling times (𝑑𝑤𝑒𝑙𝑓) are taken as 0. On the other hand, for the next 

5 departure flights, 𝑠𝑎𝑓 is assumed to be between [10,30] and their 𝑑𝑤𝑒𝑙𝑓is assumed to be constant 

25 minutes. Then we randomly create arrivals so as there is one arrival on average in every 3 

minutes. That is to say, landing (𝑇𝐼𝑁
𝑓

) times are generated using (𝑇𝐼𝑁
𝑓−1

+ 𝑅𝑎𝑛𝑑𝑜𝑚[1,5]) function. 

It is also assumed that taxiing time delays vary in between [0, 10] minutes from the minimum 

taxiing time which is 7 minutes for the considered airport network so 𝑠𝑎𝑓 are generated using 

(𝑇𝐼𝑁
𝑓

+ 7 + 𝑅𝑎𝑛𝑑𝑜𝑚[0,10])  Once flights arrive to their gates, it is assumed that they stay there 

for constant 45 minutes (𝑑𝑤𝑒𝑙𝑓) before starting their departure legs. Gate departure times 

(𝑠𝑑𝑓) are then taken as 𝑠𝑎𝑓 + 𝑑𝑤𝑒𝑙𝑓 and turnaround times (𝑡𝑓) are taken as 1 minute for all 

flights. Table 9 shows all the flights that are expected to be in the gate scheduling system in the 

next 120 minutes with their resulting gate schedules (sorted with respect to 𝑠𝑎𝑓). 
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Table 9. Flight Schedules for Gate Scheduling 

Flight No 𝑻𝑰𝑵
𝒇  𝒔𝒂𝒇 𝒅𝒘𝒆𝒍𝒇 𝒔𝒅𝒇 t Gate No 

1 9 0 0 9 1 10 
2 0 0 0 0 1 6 
3 2 0 0 2 1 10 
4 3 0 0 3 1 3 
5 4 0 0 4 1 4 
6 2 0 0 2 1 7 
7 7 0 0 7 1 5 
8 2 0 0 2 1 2 
9 5 0 0 5 1 8 

10 8 0 0 8 1 1 
15 11 11 25 36 1 4 
16 0 11 45 56 1 8 
13 12 12 25 37 1 10 
17 3 12 45 57 1 2 
12 15 15 25 40 1 7 
11 20 20 25 45 1 1 
18 6 23 45 68 1 29 
21 17 25 45 70 1 5 
19 11 28 45 73 1 9 
20 15 28 45 73 1 30 
14 30 30 25 55 1 6 
22 20 31 45 76 1 29 
23 24 33 45 78 1 3 
24 29 40 45 85 1 4 
25 32 43 45 88 1 10 
26 34 48 45 93 1 29 
27 38 53 45 98 1 1 
28 40 55 45 100 1 7 
29 43 59 45 104 1 6 
32 51 62 45 107 1 2 
31 49 63 45 108 1 29 
30 48 65 45 110 1 30 
33 55 65 45 110 1 8 
34 60 70 45 115 1 29 
36 65 77 45 122 1 5 
39 71 78 45 123 1 9 
38 70 79 45 124 1 30 
35 64 81 45 126 1 29 
37 69 84 45 129 1 30 
40 76 90 45 135 1 29 
41 80 94 45 139 1 3 
42 85 95 45 140 1 30 
43 89 99 45 144 1 29 
44 90 103 45 148 1 30 
45 91 103 45 148 1 10 
46 92 105 45 150 1 6 
47 95 105 45 150 1 4 
48 98 107 45 152 1 29 
50 105 114 45 159 1 1 
51 107 114 45 159 1 7 
49 101 116 45 161 1 2 
52 108 119 45 164 1 8 
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Step II: Generating Flight Information for Taxiway Scheduling System  

Once we obtain the gate schedules for the departure flights that are already in the airport and for 

the arriving flights, next step is to generate one departure flight from each arrival flight and 

updating the 𝑇𝑂𝑈𝑇
𝑓

 and 𝑇𝐼𝑁
𝑓

 times for arriving and departing flights, respectively. For each arrival 

flight, 𝑇𝑂𝑈𝑇
𝑓

 is taken as their 𝑠𝑎𝑓 and for each departing flight 𝑇𝐼𝑁
𝑓

 s taken as 𝑠𝑑𝑓. Following table 

shows the flight information for a total of 54 flights that are going to be in the taxiway scheduling 

system within the next 90 minutes ordered with respect to their 𝑇𝐼𝑁
𝑓

. The second column in the 

table specifies if a flight is a departure (type=1), or an arrival (type=2), while the third column 

shows the id of the pairing flight. Since we don’t allow flight pairs (an arrival and its departure) to 

use different gates, this information is used to force them to arrive and depart from the same gates. 

While  𝑉𝐼𝑁
𝑓

 specifies departure gates and runway nodes for departing and arriving flights, 

respectively,  𝑉𝑂𝑈𝑇
𝑓

 specifies runway node and arrival gates for departures and arrivals, 

respectively. Earliest time to enter the taxiway scheduling system (𝐸𝑎𝑟𝑙𝑦𝐼𝑁
𝑓

) is taken as 𝑇𝐼𝑁
𝑓

 and 

earliest time to leave the system (𝐸𝑎𝑟𝑙𝑦𝑂𝑈𝑇
𝑓

) is taken as 𝐸𝑎𝑟𝑙𝑦𝐼𝑁
𝑓

+ 7. Latest entrance and exit 

times are assumed to be large enough in order to prevent any infeasibilities. The last column in 

Table 10 specifies if a flight is allowed to land in or depart from the apron. Speed is assumed to be 

constant 600 meters per minute. 
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Table 10. Flight Schedules for Taxiway Scheduling 

ID Type Pair ID 𝑉𝐼𝑁
𝑓

 𝑉𝑂𝑈𝑇
𝑓

 𝑇𝐼𝑁
𝑓

 𝑇𝑂𝑈𝑇
𝑓

 (𝐸𝑎𝑟𝑙𝑦𝐼𝑁
𝑓

) (𝐸𝑎𝑟𝑙𝑦𝑂𝑈𝑇
𝑓

) Apron 

2 1 0 6 28 0 9 0 7 0 
16 2 53 28 8 0 11 0 7 1 
3 1 0 10 28 2 10 2 9 0 
6 1 0 7 28 2 17 2 9 0 
8 1 0 2 28 2 10 2 9 0 
4 1 0 3 28 3 11 3 10 0 

17 2 54 28 2 3 12 3 10 1 
5 1 0 4 28 4 17 4 11 0 
9 1 0 8 28 5 20 5 12 0 

18 2 55 28 29 6 23 6 13 1 
7 1 0 5 28 7 16 7 14 0 

10 1 0 1 28 8 16 8 15 0 
1 1 0 10 28 9 23 9 16 0 

15 1 0 4 28 11 52 11 18 0 
19 2 56 28 9 11 28 11 18 1 
13 1 0 10 28 12 46 12 19 0 
12 1 0 7 28 15 49 15 22 0 
20 2 57 28 30 15 28 15 22 1 
21 2 58 28 5 17 25 17 24 1 
11 1 0 1 28 20 59 20 27 0 
22 2 59 28 29 20 31 20 27 1 
23 2 60 28 3 24 33 24 31 1 
24 2 61 28 4 29 40 29 36 1 
14 1 0 6 28 30 72 30 37 0 
25 2 62 28 10 32 43 32 39 1 
26 2 63 28 29 34 48 34 41 1 
27 2 64 28 1 38 53 38 45 1 
28 2 65 28 7 40 55 40 47 1 
29 2 66 28 6 43 59 43 50 1 
30 2 67 28 30 48 65 48 55 1 
31 2 68 28 29 49 63 49 56 1 
32 2 69 28 2 51 62 51 58 1 
33 2 70 28 8 55 65 55 62 1 
53 1 16 8 28 56 68 56 63 1 
54 1 17 2 28 57 64 57 64 1 
34 2 71 28 29 60 70 60 67 1 
35 2 72 28 29 64 81 64 71 1 
36 2 73 28 5 65 77 65 72 1 
55 1 18 29 28 68 78 68 75 1 
37 2 74 28 30 69 84 69 76 1 
38 2 75 28 30 70 79 70 77 1 
58 1 21 5 28 70 85 70 77 1 
39 2 76 28 9 71 78 71 78 1 
56 1 19 9 28 73 84 73 80 1 
57 1 20 30 28 73 86 73 80 1 
40 2 77 28 29 76 90 76 83 1 
59 1 22 29 28 76 90 76 83 1 
60 1 23 3 28 78 91 78 85 1 
41 2 78 28 3 80 94 80 87 1 
42 2 79 28 30 85 95 85 92 1 
61 1 24 4 28 85 95 85 92 1 
62 1 25 10 28 88 96 88 95 1 
43 2 80 28 29 89 99 89 96 1 
44 2 81 28 30 90 103 90 97 1 
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4.2.6. Analysis and Results 

In this section, first we present the performance of the mathematical formulation with respect to 

varying flight sizes. We also propose a batch by batch solution procedure since the solution time 

of the problem increases exponentially with the increase in the flight size considered. Finally we 

present the results. The tests are performed on a computer with an Intel i5 1.80 GHz CPU and 12 

GB RAM and Cplex 12.6 is used as the solver. 

Table 11 shows the performance of the mathematical model solved with varying flight sizes.  

 

Table 11. Performance Comparison of TSM 

Flight 
Number 

Objective 
function Value 

(minutes) Solution Time 
Flight 

Number 

Objective 
function Value 

(minutes) Solution Time 

5 36.33 2.15 seconds 18 130.33 04.50.12 minutes 

6 43.67 7.10 seconds 19 137.50 4.00.08 minutes 

7 51.00 9.56 seconds 20 144.83 3.26.50 minutes 

8 58.17 10.97 seconds 21 151.83 16.58.46 minutes 

9 65.50 8.84 seconds 22 159.17 05.28.35 minutes 

10 72.50 32.32 seconds 23 166.33 12.52.59 minutes 

11 79.67 43.60 seconds 24 173.50 11.41.22 minutes 

12 87.00 38.12 seconds 25 180.83 10.18.42 minutes 

13 94.33 59.55 seconds 26 187.83 11.37.08 minutes 

14 101.50 56.69 seconds 27 195.17 10.19.03 minutes 

15 108.83 01.08.09 minutes 28 202.33 22.25.80 minutes 

16 116.16 01.42.49 minutes 29 209.50 19.06.13 minutes 

17 123.33 02.28.26 minutes 30 >1 HR  

 

 

The results show that solution time increases significantly with an increase in the number of flights 

considered in the model. Unfortunately, we could not get any feasible solution within an hour 

when the flight size is more than 29. Therefore, we adopted a batch by batch policy where we 

solve the model for a specific batch of flights and fix the route and timing variables of the flights 
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in the batch while solving the next batch of flights. Table 12 shows the results obtained for different 

sizes of batches. 

 

Table 12. Performance Comparison of TSM by batching 

Batch 
Size 

Number of 
Iterations 

Total 
Algorithm Time 

(minutes) 
Total Solution Time 

(minutes) 
Objective Value 

(minutes) 

10 6 21.07 17.63 394.33 

15 4 18.05 15.37 453.17 

20 3 9.23 7.23 388 

25 3 13.52 11.10 392.33 
 

 

The results obtained by batch by batch policy doesn’t show a linear correlation between the batch 

size and the solution time and between the batch size and the objective function value. In all cases, 

total number of flights assigned to apron was zero. Moreover, we obtained the best results with a 

batch of 20 with three iterations both in terms of solution time and objective function value. 

Therefore in the following in Table 13 we present the results obtained when the problem is solved 

with a batch of 20. 

 

Table 13. Results of TSM 

  Scheduled before 
Taxiway Model 

Solution of Taxiway Model 
Flight 

ID 𝑇𝐼𝑁
𝑓  𝑇𝑂𝑈𝑇

𝑓  𝑡𝐼𝑁
𝑓  𝑡𝑂𝑈𝑇

𝑓  
Total Arcs 

Used 
Gate Holding 

Time 𝑡𝑂𝑈𝑇
𝑓

− 𝑇𝐼𝑁
𝑓  

2 0 9 0.00 7.17 7 0.00 7.17 
16 0 11 0.00 7.33 7 0.00 7.33 
3 2 10 2.00 9.33 7 0.00 7.33 
6 2 17 2.00 9.17 7 0.00 7.17 
8 2 10 2.00 9.33 7 0.00 7.33 
4 3 11 3.00 10.33 7 0.00 7.33 

17 3 12 3.00 10.33 7 0.00 7.33 
5 4 17 4.00 11.17 7 0.00 7.17 
9 5 20 5.00 12.33 7 0.00 7.33 

18 6 23 6.00 13.00 4 0.00 7.00 
7 7 16 7.00 14.17 7 0.00 7.17 

10 8 16 8.00 15.33 7 0.00 7.33 
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1 9 23 9.00 16.33 7 0.00 7.33 
15 11 52 11.00 18.17 7 0.00 7.17 
19 11 28 11.00 18.33 7 0.00 7.33 
13 12 46 12.00 19.33 7 0.00 7.33 
12 15 49 15.00 22.17 7 0.00 7.17 
20 15 28 15.00 22.00 5 0.00 7.00 
21 17 25 17.00 24.17 7 0.00 7.17 
11 20 59 20.00 27.33 7 0.00 7.33 
22 20 31 20.00 27.00 6 0.00 7.00 
23 24 33 24.00 31.33 7 0.00 7.33 
24 29 40 29.00 36.17 7 0.00 7.17 
14 30 72 30.00 37.17 7 0.00 7.17 
25 32 43 32.00 39.33 7 0.00 7.33 
26 34 48 34.00 41.00 4 0.00 7.00 
27 38 53 38.00 45.33 7 0.00 7.33 
28 40 55 40.00 47.17 7 0.00 7.17 
29 43 59 43.00 50.17 7 0.00 7.17 
30 48 65 48.00 55.00 5 0.00 7.00 
31 49 63 49.00 56.00 5 0.00 7.00 
32 51 62 51.00 58.33 7 0.00 7.33 
33 55 65 55.00 62.33 7 0.00 7.33 
53 56 68 56.00 63.33 7 0.00 7.33 
54 57 64 57.00 64.33 7 0.00 7.33 
34 60 70 60.00 67.00 5 0.00 7.00 
35 64 81 64.00 71.00 5 0.00 7.00 
36 65 77 65.00 72.17 7 0.00 7.17 
55 68 78 68.00 75.00 6 0.00 7.00 
37 69 84 69.00 76.00 4 0.00 7.00 
38 70 79 70.00 77.00 5 0.00 7.00 
58 70 85 70.00 77.17 7 0.00 7.17 
39 71 78 71.00 78.33 7 0.00 7.33 
56 73 84 73.00 80.33 7 0.00 7.33 
57 73 86 74.50 80.00 4 1.50 7.00 
40 76 90 76.00 83.00 4 0.00 7.00 
59 76 90 76.83 83.00 5 0.83 7.00 
60 78 91 78.00 85.33 7 0.00 7.33 
41 80 94 80.00 87.33 7 0.00 7.33 
42 85 95 85.00 92.00 4 0.00 7.00 
61 85 95 85.00 92.17 7 0.00 7.17 
62 88 96 88.00 95.33 7 0.00 7.33 
43 89 99 89.00 96.00 5 0.00 7.00 
44 90 103 90.00 97.00 5 0.00 7.00 
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4.3. CONCLUSION AND DISCUSSION 

A MILP that considers collision avoidance on the taxiways, separation distances between 

aircrafts, speed changes and exact travelling times without adapting a state-time network in which 

the decision variables are defined with time indices. Instead, all safety constraints are modeled 

with Big-Ms. This enables us to know the exact arrival and departure times for each flight on each 

link on the ground. Collision free taxiway scheduling is achieved. Since the models in the existing 

literature either assumes arbitrary capacities on the nodes of the network or discretizes time, they 

do not guarantee collision avoidance. Speed changes, rerouting, and holding at gates and taxiway 

intersections are used as control options. Both airlines and airport authorities’ objectives are 

considered. Proposed models have the capability to be adopted as a decision support tool for the 

ground controllers and they allow airport traffic authorities to do what-if analysis in case of a 

change in the flight or airport network information. Proposed TSM also minimizes to total taxiing 

time which results in less costly taxiway schedules for airlines in terms of fuel costs and CO2 

emissions.  

Two solution strategies are proposed for the TSM: iterative TSM and GA-TSM. While iterative 

TSM decomposes the problem into batches of flights, solves each batch by fixing the schedules of 

the previous batch in each batch, GA-TSM decomposes the problem into routing and timing. While 

GA searches for the best set of routes for the flights, fixed TSM solves the timing problem for a 

given set of routes.  

As far as our concern, this is the first study focuses the problem from both aspects: safety and 

efficiency.  
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CHAPTER 5 

TAXIWAY SCHEDULING OF AIRCRAFTS 

WITH A GENETIC ALGORITHM 

 

 

This chapter considers the airport taxiway scheduling problem respecting all type of safety 

(minimum separation) restrictions for all arriving and departing aircraft in a dynamic environment 

of airports.  Speed arrangement, holding at gates and at the intersection of taxiways, and routing 

are used as control options in order to achieve conflict-free, efficient, and environment-friendly 

taxiway schedules. Due to the complexity of the problem, a genetic algorithm (GA) employing a 

taxiway schedule generation scheme is proposed. Evaluation of the chromosome is based on the 

results of a mathematical formulation which aims to minimize total taxiing and waiting times at 

their initial positions for all flights. This chapter is motivated by the taxiway scheduling problem of 

aircraft in a dynamic environment of airports. A mathematical programming model (Taxiway 

Scheduling Model, TSM) that makes routing and timing decisions at the same time is developed and 

presented in Chapter 4. The model uses routing, holding and speed arrangement as control options 

in order to obtain conflict-free, taxiway schedules for all arriving and departing aircraft. Due to the 

complexity of this model, a new scheduling methodology that decomposes the problem into two 

as routing and timing is proposed. In this methodology, while the best routes are searched by a 

genetic algorithm (GA), timing decisions are made by employing a taxiway schedule generation 

scheme which makes use of a fixed-path taxiway scheduling mathematical model (F-TSM). In the 

next section proposed GA methodology is detailed. Finally, in Section 3, this chapter is concluded 

with a discussion on the preliminary results. 
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5.1. FRAMEWORK OF THE PROPOSED GENETIC ALGORITHM  

Proposed GA starts with randomly creating the initial population consisting 𝑁 number of 

chromosomes. Each gene in a chromosome represents the randomly selected route number 

assigned to the corresponding flight among the set of 𝐾 shortest paths. Then fitness of each 

chromosome in the initial population is evaluated by solving the F-TSM. To form the offspring 

population, we apply reproduction steps by the use of parent selection, crossover and mutation 

operators. First we choose two chromosomes from the current population as parents, then we apply 

crossover with a predefined crossover probability to obtain two offsprings. Then, mutation 

operator is applied with a mutation probability. We continue this reproduction process until we 

obtain 𝑁 number of chromosomes in the offspring population. Before merging the current 

population with the offspring population, the fitness of each offspring is evaluated. After merging 

the populations, we sort the combined population with respect to fitness of each chromosome and 

we move the best 𝑁 chromsomosomes to the next population. We continue forming next 

population until a predefined number of generations are created. The best chromosome in the last 

generation is used as the best solution of the algorithm. Algorithm 1 gives the pseudocode of the 

algorithm. 

 

1. [Start] Generate random population of N chromosomes  

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population 

3. [New population] Create a new population by repeating following steps until the new 

population is complete 

1. [Selection] Select two parent chromosomes from a population according to their 

fitness 

2. [Crossover] With a crossover probability cross over the parents to form new 

offspring (children). If no crossover was performed, offspring is the exact copy of 

parents. 

3. [Mutation] With a mutation probability mutate new offspring at each position 

4.  [Replace] Use new generated population for a further run of the algorithm 

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population 

6. [Loop] Go to step 2 

Algorithm 1: Framework of the proposed methodology 
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5.2. CHROMOSOME REPRESENTATION 

Chromosome structure in the proposed GA is composed of a set of real numbers, from 1 to 𝑅𝑘 where 

𝑅𝑘 is the total number of routes considered for a flight.  Each number in the chromosome stands for 

the route assigned to the corresponding flight from the set of possible routes. Once a chromosome is 

created, it is decoded as a schedule through the optimization of the fixed-path taxiway schedule model 

(F-TSM) where routing variables of the model presented in Chapter 4 are fixed. 

 

5.3. CHROMOSOME EVALUATION 

Evaluation of a chromosome is based on mathematical programming formulation, fixed-path taxiway 

scheduling model (F-TSM). For a chromosome with its preassigned taxiway routes for each flight, total 

taxiing time and waiting times at initial positions is assessed by optimizing F-TSM by CPLEX solver.  

 

5.4. INITIAL POPULATION 

The initial population is comprised of N randomly selected feasible taxiway route lists. A feasible 

taxiway route for a flight is a set of positions on the airport to be followed that starts from the 

origin of the flight and ends at the destination during taxiing.  

 

5.5. CONSTRUCTION OF THE NEXT GENERATION 

Construction of the next generation starts with sorting of the current population with respect to its 

fitness function and then parent pairs are selected from the current population and the offspring 

population of size N is generated. Before the combination of the current population with the 

offspring population, F-TSM is solved for all chromosomes in the offspring population and the 

fitness scores are calculated for each offspring. After the combined population of size 2N is 

obtained, this population is reduced to the population size of N with a reduction procedure. The 

steps in constructing the next generation are given in the following subsections. 
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5.6. SELECTION OF PARENT PAIRS 

The construction of the next generation continues with the selection of parent pairs. There are many 

selection schemes for GAs, each with different characteristics. Tournament selection (see, e.g., [3] 

for details) has increasingly been used as a GA selection scheme. To obtain the parent pairs from the 

population at hand, the mother (M) population and father (F) population are generated using a binary 

tournament selection procedure. Between two randomly selected chromosomes for being an M with 

different fitness scores, the procedure prefers the one with the higher fitness score. When both 

chromosomes have the same fitness score, then makes the selection randomly. The same selection 

procedure is applied for the selection of F, but this time it is repeated until a distinct M-F pair is formed. 

 

5.7. CROSSOVER OPERATOR 

We make use of a one-point crossover operator for which one point (p) is randomly selected. Let us 

assume that parent pairs are selected for crossover, i.e., we have a mother chromosome M and a father 

chromosome F, and two child chromosomes, a daughter d and a son s, are to be constructed. To create 

the d, the genes are first chosen from M until the randomly selected point is reached, and the rest 

are then chosen from F. This crossover operator is applied to all M-F pairs until an offspring 

population of the required size is generated.  

 

5.8. MUTATION OPERATOR 

Modification of the newly produced chromosomes plays an important role in increasing a 

population's diversity. The random mutation operator generates a new route for each flight with a 

mutation probability. 

 

5.9. REDUCING THE POPULATION SIZE 

Given the current generation h, binary tournament selection, crossover, and mutation operators are 

used to create an offspring population 𝑄ℎ of size N then a combined population 𝑅ℎ = 𝑃ℎ𝑈𝑄ℎ of size 

2N is formed, where 𝑃ℎ is the current population. Then, the combined population 𝑅ℎ is sorted 
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according to fitness scores of the chromosomes. Since all the previous and current population 

members are included, elitism is ensured.  

 

5.10. DISCUSSION 

For the implementation of the proposed approach, the hypothetical data presented in Chapter 4 is 

used. All code is written in Microsoft Visual C#, and CPLEX 12.6 is used as the MIP solver. All 

tests are performed on a computer with a 3.20 GHz Intel(R) Core(TM) i7 960 processor and 8 GB of 

RAM.  

K-shortest paths for each flight is generated using Yen’s algorithm (1971). The algorithm makes 

use of the well-known Dijkstra’s shortest path algorithm. The steps of the algorithm is given in 

Algorithm 2. 

 

Algorithm 2: Yen’s Algorithm [1971] 

 

 

1. Determine the shortest path 𝑷𝟏 from source 𝒔 to destination 𝒕 in a graph 𝑮 by using the 

Dijkstra’s shortest path algorithm.  

2. Assume that 𝒌 − 𝟏 (where 𝑘 =  2, 3 . . . 𝐾) shortest paths are already determined and stored 

in 𝒍𝒊𝒔𝒕 𝑨 and candidate paths for next shortest path are stored in 𝒍𝒊𝒔𝒕 𝑩.  

3. In order to determine the shortest path 𝑷𝒌, get the shortest path 𝑷𝒌−𝟏 and let the path be and 

the set of vertices to be analysed is 𝑫𝑺 =  {𝒔, 𝒗𝟏
𝒌−𝟏, 𝒗𝟐

𝒌−𝟏, . . . 𝒗𝒍
𝒌−𝟏}.  

4. For each vertex 𝒗 in 𝑫𝑺 do  

1. If there exists a path 𝑷𝒋 in 𝒍𝒊𝒔𝒕 𝑨 that has the path as the sub path. Then set the weight 

of the edge from 𝒗 to its immediate neighbour to infinity for 𝑷𝒋.  

2.  Set the sub path < 𝒔, 𝒗𝟏
𝒌−𝟏, 𝒗𝟐

𝒌−𝟏, . . . , 𝒗> in 𝑷𝒌−𝟏 as the root path 𝑹𝒌 . Set the path to 

be determined from 𝒗 to 𝒕 is as the spur path 𝑺𝒌 . Remove the vertices in the 𝑹𝒌 from 

the graph so that they are not repeated in spur path.  

3. Compute the shortest path from 𝒗 to 𝒕 by using the Dijkstra’s algorithm.  

4. If a path is found and returned by Dijkstra’s algorithm, then add both 𝑹𝒌 and 𝑺𝒌 to 

form a candidate path, for next shortest path. Add this path into 𝒍𝒊𝒔𝒕 𝑩 and continue.  

5. Choose the path from 𝒍𝒊𝒔𝒕 𝑩 with shortest distance as 𝑃𝑘 and move it to 𝒍𝒊𝒔𝒕 𝑨.  

6. Go to step 3 and continue until 𝑲 shortest paths have been determined 
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Proposed method motivates from the idea of decomposition the model into two as routing and 

timing problem and incorporates a genetic algorithms with TSM. Main reason that this genetic 

algorithm is developed is that routing is more difficult compared to timing decisions. For the 

considered 54 flights, assuming 20 generations of GA each with 20 chromosomes, it requires 

optimization of timing variables 400 times. To get the results in a reasonable time (<10 minutes), 

each timing problem should be solved in 1.5 seconds. However, our F-TSM is not capable of 

making timing decisions for a given route within 1.5 seconds. More research should be done on 

decomposing the problem in a more efficient way.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

Airport administration involves difficult decisions concerning the trade-offs among the quality and 

cost of service. This challenge is exacerbated by the congestion and competition across the air 

transportation industry, the increasing costs of service and the growing desire for more comfort in 

the air transportation customers. Although significant strides have been made concerning the 

strategic and tactical decision-making process in airports, there is a gap in the academic literature 

on the optimization of day-to-day operational decisions. An example of such a decision in airport 

ground surfaces is “how can we optimize the aircraft routes so as to increase taxiway utilization 

by avoiding conflicts?” It is not possible to efficiently tackle the question above without detailed 

ground-level process data. Indeed, without a solid understanding of the dynamic and complex 

nature of ground surface operations, the question of “what is the total cost of lateness and earliness 

resulting from the deviations from scheduled plans?” constitutes a major challenge. 

The overarching goal of this thesis is to make contributions to the methodology and current 

practice of operational level decision-making in airports. The immediate benefits of this project 

would be the proposed ground traffic management improvements. These improvements would be 

aimed at increasing the overall quality of surface operations i.e., increased on-time performance, 

and better utilization of taxiways. The findings of this research is expected to not only have a 

significant impact on the efficiency of ground surface operations, but also to enable the airport 

authorities to have insights on the possible improvements that can be achieved.  

 



63 

 

This thesis proposes conflict-free mathematical models and solution strategies for both gate 

scheduling and taxiway scheduling problems by taking account all meaningful airport and flight 

characteristics into consideration that are not yet extensively studied in current academic literature. 

Since gate schedule performance has a great impact on the performance of the taxiway, we 

consider gate scheduling as a bi-objective optimization problem, present mathematical models and 

propose a two-phase solution approach.  

We also propose a mixed integer programming (MIP) model that considers collision avoidance on 

the taxiways, separation distances between aircrafts, speed changes and exact travelling times 

without adapting a state-time network in which the decision variables are defined with time 

indices. Instead, the non-time segmented model proposed in this thesis, determines a taxi plan for 

each aircraft by identifying the sequence of taxiway intersections represented as nodes to be visited 

and determines the aircrafts’ exact arrival and departure times to these nodes, average speed used 

on the taxiway represented as links between two consecutive nodes while ensuring the safety 

conditions that avoid aircraft collisions. The cost incurred from arrival and departure delays with 

total taxiing time is minimized. The model enables collision free airport operations considering 

both airlines and airport controller’s objectives in continuous time where we know the exact 

arrival and departure times which is more accurate in tackling collision issues. However, accuracy 

comes with a cost of solution time. To overcome the difficulty to solve, two solution methods: an 

iterative heuristic and a genetic algorithm are proposed. The first strategy proposed, called the 

iterative-TSM, adopts a batch by batch policy and optimizes the TSM by solving it in an iterative 

way where in each iteration, schedules of the previous iteration are fixed. The second strategy 

proposed motivates from the idea of decomposition the model into two as routing and timing 

problem and incorporates a genetic algorithms with TSM. All the models proposed are tested on a 

hypothetical data and the results are presented. More research is required in order to understand 

the characteristics of the problem in more detail and decrease the solution time.  
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Main contributions of this thesis can be listed as follows: 

 A MILP model is presented for flight gate scheduling problem. The model is compared to 

modified version of one of the existing MILP model in literature and efficiency of the 

proposed model is evaluated. A two phase solution approach making use of the proposed 

MILP is also presented and the characteristics of the problem are analysed. While 

utilization of gates is maximized, on time performance is also considered.  

 A MILP that considers collision avoidance on the taxiways, separation distances between 

aircrafts, speed changes and exact travelling times without adapting a state-time network 

in which the decision variables are defined with time indices. Instead, all safety constraints 

are modeled with Big-Ms. This enables us to know the exact arrival and departure times 

for each flight on each link on the ground.  

 Collision free taxiway scheduling is achieved. Since the models in the existing literature 

either assumes arbitrary capacities on the nodes of the network or discretizes time, they do 

not guarantee collision avoidance.  

 Speed changes, rerouting, and holding at gates and taxiway intersections are used as control 

options.  

 Both airlines and airport authorities’ objectives are considered. Proposed models have the 

capability to be adopted as a decision support tool for the ground controllers and they allow 

airport traffic authorities to do what-if analysis in case of a change in the flight or airport 

network information. Proposed TSM also minimizes to total taxiing time which results in 

less costly taxiway schedules for airlines in terms of fuel costs and CO2 emissions.  

 Two solution strategies are proposed for the TSM: iterative TSM and GA-TSM. While 

iterative TSM decomposes the problem into batches of flights, solves each batch by fixing 

the schedules of the previous batch in each batch, GA-TSM decomposes the problem into 

routing and timing. While GA searches for the best set of routes for the flights, fixed TSM 

solves the timing problem for a given set of routes.  

As far as our concern, this is the first study focuses the problem from both aspects: safety and 

efficiency.  
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