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Abstract 

Background: The imaging assessment of paraspinal muscle morphology and fatty 
infiltration has gained considerable attention in the past decades, with reports sug-
gesting an association between muscle degenerative changes and low back pain (LBP). 
To date, qualitative and quantitative approaches have been used to assess paraspinal 
muscle composition. Though highly reliable, manual thresholding techniques are time 
consuming and not always feasible in a clinical setting. The tedious and rater-depend-
ent nature of such manual thresholding techniques provides the impetus for the 
development of automated or semi-automated segmentation methods. The purpose 
of the present study was to develop and evaluate an automated thresholding algo-
rithm for the assessment of paraspinal muscle composition. The reliability and validity 
of the muscle measurements using the new automated thresholding algorithm were 
investigated through repeated measurements and comparison with measurements 
from an established, highly reliable manual thresholding technique.

Methods: Magnetic resonance images of 30 patients with LBP were randomly 
selected cohort of patients participating in a project on commonly diagnosed lumbar 
pathologies in patients attending spine surgeon clinics. A series of T2-weighted MR 
images were used to train the algorithm; preprocessing techniques including adap-
tive histogram equalization method image adjustment scheme were used to enhance 
the quality and contrast of the images. All muscle measurements were repeated 
twice using a manual thresholding technique and the novel automated thresholding 
algorithm, from axial T2-weigthed images, at least 5 days apart. The rater was blinded 
to all earlier measurements. Inter-method agreement and intra-rater reliability for each 
measurement method were assessed. The study did not received external funding and 
the authors have no disclosures.

Results: There was excellent agreement between the two methods with inter-
method reliability coefficients (intraclass correlation coefficients) varying from 0.79 
to 0.99. Bland and Altman plots further confirmed the agreement between the two 
methods. Intra-rater reliability and standard error of measurements were comparable 
between methods, with reliability coefficient varying between 0.95 and 0.99 for the 
manual thresholding and 0.97–0.99 for the automated algorithm.
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Conclusion: The proposed automated thresholding algorithm to assess paraspinal 
muscle size and composition measurements was highly reliable, with excellent agree-
ment with the reference manual thresholding method.

Keywords: Multifidus, Erector spinae, Paraspinal muscle, Fatty infiltration, Magnetic 
resonance imaging, Automated algorithm

Background
Imaging assessment of paraspinal muscle morphology and fatty infiltration has 
attracted considerable attention over recent decades, with reports suggesting an asso-
ciation between muscle degenerative changes (e.g. atrophy, asymmetry, fatty infiltration) 
and low back pain (LBP) [1–7]. However, there remain inconsistencies in the litera-
ture related, in part, to variations in imaging modalities used, such as magnetic reso-
nance imaging (MRI), ultrasound and computed tomography (CT), and measurement 
protocols.

To date, qualitative and quantitative approaches have been used to assess paraspi-
nal muscle composition (e.g. fatty infiltration). Qualitative approaches involve the use 
of visual grading schemes to assess the degree of paraspinal muscle fatty infiltration on 
MR images. Recently, the reliability of measurements of lumbar multifidus fatty infil-
tration, using the Goutallier classification system (GCS) (0–4 grading scale) [8], which 
was initially developed to assess fatty degeneration in rotator cuff injuries, was assessed. 
Although such studies have reported good intra-rater (ICC or kappa 0.71–0.93) [8–10] 
and inter-rater reliability (ICC or kappa 0.58–0.85) [8–10], these methods do not pro-
vide precise measurement and are not suitable to evaluate changes over time. On the 
other hand, quantitative MRI measurements of paraspinal muscle composition are 
achieved by segregating pixels within the selected muscle region of interest that are 
thought to represent fat, using a manual segmentation or threshold method. As the sig-
nal intensity of each pixel from an MR image can be assigned a grey scale value, various 
thresholding techniques using different software applications have been used to quan-
tify paraspinal muscle composition. Though highly reliable [11, 12], manual thresholding 
techniques are time consuming and not always feasible in clinical and some research 
settings, and the use of proprietary image analysis software and insufficient descrip-
tions of measurement protocols hinder replication of results by others. As homogene-
ous tissue may have varying signal intensities (e.g. intensity bias) between subjects and 
within the same subject on different scan slices due to MR field inhomogeneity [12], the 
threshold limit representing lean muscle tissue needs to be identified for each subject 
and scan slice, making segmentation a time-consuming and complex task. The tedious 
and rater-dependent nature of such manual thresholding techniques for paraspinal mus-
cle composition assessment provides the impetus for the development of automated or 
semi-automated segmentation methods. Although, automated and sophisticated meth-
ods have been successfully implemented in MR image tissue segmentation of different 
anatomical structures including the brain, liver, heart [13–16], as well as the quantifica-
tion of thigh muscle and adipose tissue [17], we are aware of only one recently developed 
semi-automated interactive tool for the assessment of paraspinal muscle composition 
[18]. The threshold values in the interactive segmentation technique, however, are based 
on visual inspection and, therefore, remain rater-dependent.
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The purpose of the present study was to develop and evaluate an automated threshold-
ing algorithm for the assessment of paraspinal muscle composition. The reliability and 
validity of the muscle measurements using the new automated thresholding algorithm 
were investigated through repeated measurements and comparison with measurements 
from an established, highly reliable manual thresholding technique [11].

Methods
Sample of lumbar MRI

A sample of 30 patients (11 female and 19 male) was randomly selected from a cohort 
of patients participating in Genodisc, a European research consortium project on com-
monly diagnosed lumbar pathologies in patients attending spine surgeon clinics. All 
patients included in this study received a diagnosis of disc herniation, spinal stenosis, 
spondylolisthesis, or nonspecific LBP. Patients were excluded if they were below 18 or 
over 60 years of age, had a contract agent allergy, had reduced renal function, were not 
able to undergo MRI acquisition, or had a tumor, infection, spinal fracture, rheumatoid 
arthritis or were pregnant. All participants completed a consent form acknowledging 
that their data will be used for research purposes.

The MRI protocol included a routine T2-weighted turbo spin echo sequence for both 
axial and sagittal images acquired with a Siemens Avanto 1.5T MRI system (Siemens 
AG, Erlangen, Germany) (axial T2 parameters included repetition time =  4000, echo 
time = 113 and slice thickness = 3 mm).

Automated thresholding algorithm

Initially, a series of T2-weighted MR images from two patients were used to train the 
algorithm. Muscle measurements were then automatically calculated by the algo-
rithm, which involves a series of steps, once the muscle of interest has been manually 
segmented. First, a preprocessing technique was applied to each MR image to enhance 
the quality and the contrast of the images. This preprocessing step includes an adaptive 
histogram equalization method and image adjustment scheme. The adaptive histogram 
equalization algorithm was employed to balance the grayscale level at each point of the 
image. We have used contrast limited adaptive histogram equalization (CLAHE) algo-
rithm [19]. In this algorithm the histogram equalization is applied on small rectangles 
of the image instead of the whole image. It changes the histogram of each rectangle to 
a uniform distribution. A bilinear interpolation method was also applied to avoid the 
formation of artificially stimulated boundaries. Then, the image adjustment scheme was 
utilized to improve the contrast of the image. This modifies the contrast of the image so 
that only a small fraction (1%) of the image is saturated as low (dark) and high (bright) 
intensities [20, 21], providing a high contrast MR image (Fig.  1). These preprocessing 
steps were applied to reduce the inhomogeneity artifacts. Since our method increase the 
image contrast locally, the thresholding step was minimally affected by this noise.

In order to calculate the area of fat and muscle tissue, a threshold level was selected 
using the Otsus’s scheme [22, 23]. This threshold is calculated to minimize the inter-
class difference between black and white points, and normalized the pixel intensity val-
ues between 0 and 1. The chosen threshold value is then applied to the selected ROI, and 
the algorithm computes automatically the number of white and black pixels in the area, 
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which will represent the area of fat and muscle tissue. As the MRI images used for this 
study were of high quality, the Otsu thresholding technique was adequate for our experi-
ments. While the preprocessing steps to enhance the contrast of the image (as described 
above) provided a high contrast image and Otsu thresholding method segments the 
image with accuracy compatible with the manual segmentation. The algorithm was 
implemented in MATLAB (Mathworks, Natick, MA, USA).

Muscle measurements

All muscle measurements were acquired by one of the investigators (MF), who has 
more than 6  years of experience in quantitative MRI muscle assessment. Quantita-
tive measurements of the multifidus and erector spinae muscles were obtained from 
axial T2-weighted images at mid-disk for L4–L5 and L5–S1 for every subject. This 
image sequence was selected as it is routinely obtained in lumbosacral MRI examina-
tion and has been widely used to assess paraspinal muscle composition. The two lev-
els were selected because most lumbar pathologies and muscle morphological changes 
occur at L4–L5 and L5–S1. The paraspinal muscle measurements of interest for this 
study included: the total cross-sectional area (CSA), the functional cross-sectional area 
(FCSA), representing the area of pure muscle mass (excluding fatty infiltration) and the 
area occupied by fat, and the fat percentage.

Muscle measurements were first obtained using a manual thresholding technique 
using ImageJ image analysis software (version 1.43, National Institutes of Health, 
Bethesda, Maryland). FCSA was measured by manually selecting a threshold signal 
within the total muscle CSA to include only pixels within lean muscle tissue range. The 
grayscale range for lean muscle mass was established for each subject and scan slice. 

Fig. 1 A sample MRI image at L4–L5 and the processed image after each step of the algorithm; a the original 
MRI image, b adaptive equalized algorithm image, c adjusted contrast image, d the select area, e the cropped 
area of the selected ROI, f the resulted binary image from automated algorithm (left) and manual threshold-
ing technique (right)
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This thresholding technique has been shown to be highly reliable and is described in 
detail elsewhere [11]. Once the first set of measurements with ImageJ was completed, 
the rater was blinded to the results and the same MRI slices were then assessed using 
the automated algorithm and MATLAB software (version R2015b), a minimum of 5 days 
after the first measurements were completed. For this method, the rater manually seg-
mented the CSA of the muscle of interest on each slice, and the thresholding algorithm 
automatically calculated the muscle CSA, the fat CSA and the muscle fat percentage. 
All muscle measurements were obtained four times by the same rater, twice using the 
manual thresholding method and twice using the automated thresholding algorithm.

Statistical analysis

Descriptive statistics, such as means and standard deviations, were calculated for each 
muscle measurement of interest. The  ICC(2,1) was calculated to determine the intra-
rater reliability of measurement using the manual thresholding technique and auto-
mated algorithm, as well as the inter-method reliability using a two-way random-effects 
model and absolute agreement. The ICCs were interpreted using the following criteria, 
as suggested by Portney and Watkins: 0.00–0.49 = poor, 0.50–74 = moderate, and 0.75–
1.0 = excellent [24]. Method agreement between the measurements acquired using the 
manual thresholding technique and the automated algorithm was also evaluated using 
the 95% limits of agreement, as suggested by Bland and Altman [25, 26]. The standard 
error of measurement (SEM) was calculated to provide an estimate of the expected 
error related to a particular measurement in the same units as the initial measurement 
(SEM = S√(1 − rxx), where S = standard deviation of the test, and  rxx = reliability of the 
test). Results were analyzed according to the spinal level and muscle investigated. The 
statistical analysis was performed using Statistical Package for the Social Sciences ver-
sion 23.0 (SPSS Inc, Chicago, Illinois).

Results
Inter‑method reliability of muscle measurements using the manual thresholding technique 

and automated algorithm

The results for the inter-method correlation (ICC), SEM values, and descriptive statistics 
(mean ±  SD) for the right and left side of the multifidus and erector spinae are pre-
sented in Table 1. The inter-method reliability was analyzed by comparing the first set of 
measurements collected with each method. The ICCs for all of the different muscle com-
position measurements, regardless of the muscle analyzed, side or spinal level, showed 
excellent agreement and varied between 0.79 and 0.99. The SEM was also comparable 
for the different muscle measurements, muscle analyzed, side and spinal level.

Inter‑method agreement

Figures 2 and 3 show the combined Bland and Altman 95% limits of agreement plots for 
the FCSA and fat percentage measurement from the right multifidus and erector spi-
nae at L4–L5 and L5–S1 using the first set of measurements collected using the manual 
thresholding technique and automated algorithm. Two methods are considered to have 
good agreement when the measurement difference is small enough for both methods to 
be used interchangeably [25]. In accordance with Bland and Altman, [26] all the plots 
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show good agreement between the manual thresholding technique and automated algo-
rithm and no systematic bias; the distribution of the scores around the mean approxi-
mates zero and is spread evenly and randomly above and below the line. A histogram of 
the difference scores was also prepared for every measurement parameter, and all his-
tograms followed a normal distribution. As such, because the error is normally distrib-
uted, we can observe that about 95% of the points are between the limits of agreement 
(noted by the dashed lines on the plots) for each measure. The width of the limits of 
agreement is also small.

Intra‑rater reliability of muscle measurements using the manual thresholding technique 

and automated algorithm

The intrarater reliability (ICC), SEM values, and descriptive statistics (mean  ±  SD) 
related to the manual thresholding technique and automated algorithm for the right 
multifidus and erector spinae muscles at L4–L5 and L5–S1 are presented in Table  2. 
The results of the left side were virtually equivalent and are not presented. The ICCs for 
the intrarater reliability across both spinal levels for the manual thresholding technique 
ranged from 0.95 to 0.99 and 0.97 to 0.99 for the automated algorithm. The ICCs for the 
fat CSA and fat percentage measurements tended to be slightly lower for the manual 
thresholding technique, in comparison to the automated algorithm. The SEM associated 

Table 1 Inter-method reliability indexes between  the manual thresholding technique 
and automated thresholding algorithm for the right and left multifidus and erector spinae 
muscles at L4–L5 and L5–S1

ICC intra-class correlation coefficient, CI confidence interval, SEM standard error of measurement, CSA cross-sectional area, 
FCSA functional cross-sectional area

Parameter Right side Left side

Mean (SD) ICC (95% CI) SEM Mean (SD) ICC (95% CI) SEM

Multifidus L4–L5

 CSA  (cm2) 9.77 (1.83) 0.99 (0.98–1.00) 0.18 9.39 (1.44) 0.98 (0.97–0.99) 0.20

 FCSA  (cm2) 4.39 (1.58) 0.84 (0.68–0.92) 0.63 4.44 (1.55) 0.90 (0.76–0.95) 0.49

 Fat CSA  (cm2) 5.38 (1.38) 0.83 (0.65–0.92) 0.57 4.95 (1.10) 0.80 (0.51–0.91) 0.49

 Fat % 0.56 (0.12) 0.79 (0.57–0.90) 0.05 0.53 (0.12) 0.83 (0.55–0.92) 0.05

Erector spinae L4–L5

 CSA  (cm2) 16.36 (3.39) 0.98 (0.96–0.99) 0.48 17.35 (3.88) 0.99 (0.95–0.99) 0.39

 FCSA  (cm2) 7.25 (2.47) 0.96 (0.91–0.98) 0.49 9.64 (2.32) 0.94 (0.88–0.97) 0.57

 Fat CSA  (cm2) 9.11 (2.28) 0.94 (0.84–0.97) 0.56 9.64 (2.33) 0.91 (0.78–0.96) 0.70

 Fat % 0.56 (0.10) 0.91 (0.81–0.95) 0.03 0.56 (0.10) 0.85 (0.70–0.93) 0.04

Multifidus L5–S1

 CSA  (cm2) 11.25 (1.75) 0.97 (0.90–0.97) 0.30 11.29 (1.53) 0.98 (0.96–0.99) 0.22

 FCSA  (cm2) 5.34 (1.94) 0.93 (0.86–0.96) 0.51 5.49 (1.65) 0.90 (0.80–0.95) 0.52

 Fat CSA  (cm2) 5.91 (1.27) 0.86 (0.72–0.93) 0.48 5.80 (1.21) 0.78 (0.54–0.89) 0.57

 Fat % 0.53 (0.13) 0.90 (0.80–0.95) 0.04 0.52 (0.11) 0.82 (0.62–0.91) 0.05

Erector spine L5–S1

 CSA  (cm2) 11.26 (4.06) 0.97 (0.90–0.99) 0.70 11.43 (4.4) 0.95 (0.87–0.97) 0.98

 FCSA  (cm2) 3.77 (2.22) 0.91 (0.71–0.96) 0.67 3.88 (2.27) 0.94 (0.88–0.97) 0.62

 Fat CSA  (cm2) 7.49 (2.37) 0.97 (0.94–0.98) 0.41 7.55 (2.53) 0.91 (0.83–0.96) 0.68

 Fat % 0.68 (0.11) 0.81 (0.48–0.92) 0.04 0.68 (0.10) 0.78 (0.50–0.90) 0.05
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Fig. 2 Bland–Altman 95% limits of agreement plots for the FCSA measurements of the multifidus and erec-
tor spinae muscles at L4–L5 and L5–S1

Fig. 3 Bland–Altman 95% limits of agreement plots for the fat % measurements of the multifidus and erector 
spinae muscles at L4–L5 and L5–S1
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with each muscle parameter was generally smaller for the measurements obtained with 
the automated algorithm as compared to the manual thresholding technique.

Discussion
We have presented a new automated thresholding algorithm for quantitative paraspinal 
muscle composition assessment based on MR images. The primary goal of this study was 
to examine to validity of the measurements obtained with the novel automated thresh-
olding algorithm, as compared to those obtained with an established manual thresh-
olding segmentation method. The correlation and agreement of the related paraspinal 
muscle measurements suggest that the two methods yield comparable measurements, 
with excellent reliability when applied to a clinically relevant population. These find-
ings are further supported by the Bland and Altman limits of agreement that indicate 
inter-method agreement is within an acceptable range to use either of the two methods 
interchangeably. Moreover, the similar intra-rater reliability and SEMs indicate that the 
proposed automated algorithm produces results consistent with the reference manual 
thresholding method.

While paraspinal muscle composition (including the quantification measures of this 
study) have already been applied and investigated in different low back pain popula-
tion, literature findings are controversial with regards to their predictive clinical value. 
Currently, a wide range of methodologies and modalities are used to assess paraspinal 

Table 2 Intra-rater reliability indexes for  the manual thresholding technique and  auto-
mated thresholding algorithm for the right multifidus and erector spinae muscles at L4–L5 
and L5–S1

ICC intra-class correlation coefficient, CI confidence interval, SEM standard error of measurement, CSA cross-sectional area, 
FCSA functional cross-sectional area

Parameter Manual thresholding technique Automated thresholding algorithm

Mean (SD) ICC (95% CI) SEM Mean (SD) ICC (95% CI) SEM

Multifidus L4–L5

 CSA  (cm2) 9.87 (1.81) 0.99 (0.97–1.00) 0.18 9.87 (1.85) 0.99 (0.97–1.00) 0.19

 FCSA  (cm2) 4.54 (1.79) 0.97 (0.93–0.99) 0.31 4.23 (1.66) 0.99 (0.99–1.00) 0.20

 Fat CSA  (cm2) 5.33 (1.42) 0.95 (0.89–0.97) 0.32 5.56 (1.39) 0.99 (0.97–1.00) 0.20

 Fat % 0.55 (0.13) 0.95 (0.91–0.98) 0.03 0.57 (0.12) 0.99 (0.98–1.00) 0.01

Erector spinae L4–L5

 CSA  (cm2) 16.31 (3.38) 0.99 (0.98–1.00) 0.34 16.67 (3.53) 0.98 (0.95–0.99) 0.49

 FCSA  (cm2) 7.25 (2.51) 0.98 (0.96–0.99) 0.35 7.18 (2.55) 0.97 (0.94–0.98) 0.44

 Fat CSA  (cm2) 9.06 (2.37) 0.96 (0.92–0.98) 0.34 9.49 (2.45) 0.99 (0.99–1.99) 0.25

 Fat % 0.56 (0.11) 0.95 (0.89–0.97) 0.02 0.57 (0.11) 0.99 (0.99–1.00) 0.01

Multifidus L5–S1

 CSA  (cm2) 11.40 (1.72) 0.99 (0.98–1.00) 0.17 11.34 (1.82) 0.98 (0.96–0.99) 0.26

 FCSA  (cm2) 5.34 (1.94) 0.97 (0.88–0.98) 0.33 5.26 (1.95) 0.99 (0.98–1.00) 0.19

 Fat CSA  (cm2) 6.06 (1.52) 0.95 (0.56–0.98) 0.34 6.08 (1.17) 0.99 (0.97–0.99) 0.12

 Fat % 0.54 (0.14) 0.97 (0.78–0.99) 0.02 0.54 (0.12) 0.99 (0.98–1.00) 0.01

Erector spine L5–S1

 CSA  (cm2) 11.03 (3.97) 0.99 (0.98–1.00) 0.40 11.65 (4.05) 0.98 (0.96–0.99) 0.57

 FCSA  (cm2) 3.24 (2.21) 0.98 (0.94–0.99) 0.31 4.09 (2.21) 0.97 (0.94–0.98) 0.38

 Fat CSA  (cm2) 7.78 (2.36) 0.97 (0.66–0.99) 0.41 7.56 (2.43) 0.98 (0.97–0.99) 0.34

 Fat % 0.73 (0.12) 0.97 (0.62–0.99) 0.02 0.66 (0.10) 0.97 (0.94–0.98) 0.02
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muscle composition, which is likely related to the inconsistent findings. The developed 
algorithm greatly simplifies the complexity and tedious aspect of MR imaging assess-
ment of paraspinal muscle composition and provides a standardized procedure. More 
specifically, the results obtained using our novel automated thresholding algorithm are 
particularly encouraging and promising for the following reasons: (1) the threshold 
selection to identify the pixels representing muscle and fat tissue is completely auto-
mated, and thus easily reproducible, time efficient and rater-independent, while the 
manual thresholding method requires a trained rater to identify the threshold upper 
and lower limits, (2) the method is not affected by anatomical or image quality differ-
ences between subjects, (3) the automated algorithm can be readily used and applied to 
various datasets to produce robust measurements of paraspinal muscle composition. 
Furthermore, as could be expected with a largely automated system, the intra-rater reli-
ability was slightly higher when the measurements were obtained with the automated 
thresholding algorithm, as compared to the manual method. Overall, the SEMs of the 
related paraspinal muscle composition parameters were also smaller when measure-
ments were acquired with the automated algorithm. These findings reflect the higher 
precision of the algorithm in reproducing measurements. Furthermore, we suspect 
that spatial resolution of the MR images had a minimal impact on the accuracy of the 
segmentation. As the MR images used were selected from a database of patients that 
underwent a routine lumbosacral examination, the MRI parameters were very similar 
for each patients and the image quality and spatial resolution (e.g. pixel size between 
1 and 2  mm) was representative of the images that would be used clinically. Lastly, 
although recent studies have demonstrated that MR imaging techniques such as fat-
signal fraction using Dixon and multi-echo imaging (mostly in liver) may be superior 
in quantifying aqueous tissue [27, 28], the necessity of such techniques for the assess-
ment of skeletal muscle remains to be established, as literature findings are inconsist-
ent [29–31]. Moreover, such imaging sequences are rarely used clinically in patients 
with chronic LBP. On the opposite, T2-weigthed images are routinely obtained when 
performing lumbosacral MRI examination, have been widely used to assess paraspinal 
muscle composition in previous studies, and have been shown to provide reliable and 
accurate calculation of muscle composition when compared to muscle biopsy meas-
urements and spectroscopy [30, 31]. As a result, we believe that the imaging sequence 
and methodological approach used in this study to quantify muscle composition was 
adequate.

Although Engstrom et al. previously developed an automated algorithm for the seg-
mentation of the quadratus lumborum muscle [32], the assessment of muscle composi-
tion (e.g. threshold) was not addressed by this group. We are aware of only one recent 
study that has developed a semi-automated interactive tool for the assessment of par-
aspinal muscle composition, which considerably simplified the task of paraspinal muscle 
composition assessment [18]. However, threshold values using the interactive tool are 
based on visual inspection, thus remain rater-dependent. Agreement with a reference 
method and reliability estimates were not reported. Previous studies examining the reli-
ability of FCSA measurements using a manual thresholding technique, have reported 
intra-rater ICCs varying between 0.81 and 0.99 [33–35], which were corroborated by 
our study results. The manual thresholding technique used in the present study has 
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also been found to have excellent inter-software agreement when measurements were 
obtained with ImageJ and OsiriX [11].

Study limitations

While accurate and time-efficient, certain difficulties remain with the described auto-
mated thresholding algorithm. First, a selected muscle ROI cannot be corrected once it 
is fully traced. Thus, if the rater is not satisfied with the selected ROI, the segmentation 
needs to be repeated. We are currently working on the coding of the algorithm to modify 
this feature, and allow for the correction of the ROI. Second, the algorithm operates on 
a single slice (jpeg format), thus slice location is important and volume measurements 
 (cm3 or  mm3) cannot be directly obtained. Finally, for accurate measurement of muscle 
CSA and fat area, the rater needs to indicate the MRI matrix size in the algorithm com-
mand prior to performing any measurement.

Conclusion
In conclusion, we present an automated thresholding algorithm for the assessment and 
quantification of paraspinal muscle size and composition using axial T2-weighted MR 
images. The ROI of interest is first manually segmented and then the algorithm com-
putes the muscle total CSA, fat CSA and fat percentage automatically. This novel algo-
rithm was validated against paraspinal muscle composition measurements obtained 
using an established, highly reliable manual thresholding method, on a sample repre-
senting a clinically relevant population with chronic LBP. Our results suggest that the 
paraspinal muscle composition measurements obtained with the automated algorithm 
are in excellent agreement with those produced by the manual thresholding technique, 
with slightly higher intra-rater reliability indices and smaller SEMs. The proposed auto-
mated thresholding algorithm greatly simplifies the complexity and tedious aspects of 
MR imaging assessment of paraspinal muscle composition, and provides a standard-
ized procedure to facilitate replication and comparison among related studies. We have 
made the algorithm available online at (https://users.encs.concordia.ca/~hrivaz/codes/
SemiAutomatic_Thresholding/) for public academic use. The software is accompanied 
with a video that provides usage instructions. This algorithm can be implemented on 
the MRI devices to apply the automatic thresholding directly on the scans. While the 
development of an automated approach for the ROI selection is challenging, due to the 
variation in the paraspinal muscle morphology between individuals and spinal levels, we 
are currently working on the development of an atlas-based automated segmentation 
algorithm.
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