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ABSTRACT  

Two Dimensional Visual Tracking in Construction Scenarios 

           The tracking of construction resources (e.g. workforce and equipment) in videos, i.e., two 

dimensional (2D) visual tracking, has gained significant interests in the construction industries. 

There exist lots of research studies that relied on 2D visual tracking methods to support the 

surveillance of construction productivity, safety, and project progress. However, few efforts have 

been put on evaluating the accuracy and robustness of these tracking methods in the construction 

scenarios. Meanwhile, it is noticed that state-of-art tracking methods have not shown reliable 

performance in tracking articulated equipment, such as excavators, backhoes, and dozers etc. 

The main objective of this research is to fill these knowledge gaps. First, a total of fifth 

(15) 2D visual tracking methods were selected here due to their excellent performances identified 

in the computer vision field. Then, the methods were tested with twenty (20) videos captured from 

multiple construction jobsites at day and night. The videos contain construction resources, 

including but not limited to excavators, backhoes, and compactors. Also, they were characterized 

with the attributes, such as occlusions, scale variation, and background clutter, in order to provide 

a comprehensive evaluation. The tracking results were evaluated with the sequence overlap score, 

center error ratio, and tracking length ratio respectively. According to the quantitative comparison 

of tracking methods, two improvements were further conducted. One is to fuse the tracking results 

of individual tracking methods based on the non-maximum suppression. The other is to track the 

articulated equipment by proposing the idea of tracking the equipment parts respectively.      

The test results from this research study indicated that 1) the methods built on the local 

sparse representation were more effective; 2) the generative tracking strategy typically 

outperformed the discriminative one, when being adopted to track the equipment and workforce 
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in the construction scenarios; 3) the fusion of the results from different tracking methods increased 

the tracking performance by 10% in accuracy; and 4) the part-based tracking methods improved 

the tracking performance in both accuracy and robustness, when being used to track the articulated 

equipment. 
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CHAPTER 1:  INTRODUCTION 

1.1. Backgrounds 

Visual Tracking is one of the most attractive research fields in modern industry and has 

different practical applications, in terms of human-computer interaction (HCI), surveillance, and 

medical imaging. Adopting visual tracking for human movements, such as manipulation, gestures, 

and even exercise, is the fundamental of HCI (Heckenberg 2006), which is performed to provide 

the scientific understanding of the interaction between humans and the computer technology. For 

example, tracking human fingers with webcam could be used to automatically execute specific 

commands on the computer. Also, visual tracking could be used to observe people from a distance 

by means of electronic equipment, such as Closed-circuit television (CCTV) cameras, for the 

purpose of managing, directing, or protecting (Cannons 2008). Apart from this, monitoring the 

position of a medical instrument could combine with Computerized Axial Tomography (PET) and 

Magnetic Resonance Imaging (MRI), in order to provide assistance during surgery. 

Recently, the use of visual tracking in construction has been promoted to facilitate 

construction automation. Vision-based tracking was applied to detect the pothole in pavement 

assessment (Koch et al. 2012), recognize dirt loading cycles during excavation (Azar and McCabe 

2012), identify construction cumulative trauma disorders (Rempel et al. 1992), and manage 

equipment and workers in real-time (Weerasinghe and Ruwanpura 2009). Another important usage 

of visual tracking in construction is safety monitoring. It is feasible to locate workers and 

equipment in order to protect workers from potential collisions (Han and Lee 2013). In addition, 

visual tracking technologies also helped to improve the safety of workers when they were working 

at heights (Auvinet et al. 2013).  
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Thanks to the development of computer science, the tracking methods have progressed 

rapidly in recent years. Lucas and Kanade (1981) firstly adopted holistic templates in tracking. In 

order to seek better templates, many visual features have been used recently, such as histograms 

of oriented gradients (HOG) (Dalal and Triggs 2005), Haar-like features (Viola and Jones 2004) 

and co-variance region descriptor (Tuzel et al. 2006). Then, the sparse-representation-based 

methods (Mei and Ling 2009) were proposed and have been improved which showed the high 

performance in tracking blurry objects. Meanwhile, the context information (Zhang et al. 2014) 

were widely employed in this domain and it has achieved significant performance than traditional 

tracking methods in dealing with occlusions. Thanks to the exploitation of machine learning, 

several effective and completed methods were proposed and applied in visual tracking, such as 

multiple-instance learning (Babenko et al. 2011), Gaussian process regression (Gao et al. 2014), 

and structures output SVM (SO-SVM) (Hare et al. 2011). Recently, deep learning methods 

adopted a deep graph of multiple processing layers to abstract and model data in high level (Wang 

et al. 2013). 

1.2. Problem Statement and Motivation  

Although several benchmarks were conducted to evaluate the performance of existing 2D 

tracking methods, few efforts have been put on evaluating the accuracy and robustness of these 

tracking methods in the construction scenarios. Most of existing benchmark studies have used 

sequences captured from general scenarios and these sequences have much differences from 

construction sequences. As an example, the Figure 1.1 displays the different sequences tested in 

computer vision fields and construction fields. The common tracking objects in computer vision 

community include: person, animals, cars and toys, while the excavators, backhoes, compactors 

and workers are frequently tracked in construction scenarios. Comparing with computer-vison 
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community, it is noticed the sequences captured from construction sites have larger illumination 

changes, more complex contents and similar backgrounds. These differences result in that the well 

performed tracking methods may not have reliable performance when tracking construction 

targets.    

 

Figure 1.1: Tracking Objects from Computer-vision (Wu et al. 2015) and Construction Scenarios    

           It is necessary to conduct a comparative study of tracking methods in construction scenarios 

in order to help researchers, which adopted vision-based tracking in construction management, 

understand the weaknesses and strengths of  state-of-art methods. At the meantime, an effective 

comparison study could enhance the successes by selecting the proper methods when tracking 

different construction targets. Park et al. (2011) presented a comparison of 2D tracking methods 

for construction resources. But the novel tracking methods which adopted different schemes and 

achieved promising performance were not considered. It is important to update existing 

comparative studies with novel tracking methods.  

Moreover, it is common in visual tracking field that an average good tracking methods 

perform unstable in different sequences or scenarios. And an average worse tracking methods may 

 

(a) Objects in Computer-vision Fields 

 

 

 

(b) Objects in Construction Scenarios 
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perform very well in specific sequences. For example, in the lemming sequence of OTB benchmark 

(Wu et al. 2013), the overall second worst method SMS showed the best performance in this 

sequence. It lacks a generic fusion methods to combine arbitrary tracking results into one result 

and build a stronger. 

On the other hand, the articulated equipment, such as excavators, backhoes, and dozers, 

have been widely employed for digging foundations, drilling piles, and handling materials in 

earthmoving works. The tracking of excavators is time-saving, cost-assuming, and convenient in 

calculating excavation productivities, such as dirt-loading cycles, excavation capability, and 

working time. But the state-of-art methods have not shown reliable performance in dealing with 

these articulated equipment, especially in dirt-loading operations. The frequent rotation and 

movement of bucket make successful tracking difficult. The Figure 1.2 shows the tracking results 

of an excavator, which is doing dirt-loading activity. This figure indicates that the tracking method 

can predict excavator’s position correctly in the beginning and then it fails from the 200th frame 

when the bucket moved in high speed.  

Figure 1.2: Example of tracking an excavator 

 

       1st frame                       100th frame                   200th frame                   300th frame 
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1.3. Research Objective and Scope 

The main objective of this research include: 

 1) Proposing a comparative study to evaluate current tracking methods under construction 

scenarios, which contain construction resources, including but not limited to excavators, backhoes, 

workers, and compactors. And, the performance of each tracking method during different 

challenge factors, including occlusions, illumination variations, motion blur, scale variation and 

background clutters, are also taken in consideration. 

2) Based on the comparative results, proposing two improvements to enhance tracking 

performance, which are tracking fusion and part-based tracking. The tracking fusion is fusing 

results of different tracking methods in one sequence in order to get better results than existing 

ones, while the part-based tracking is to track the different parts of articulated equipment and then 

combine the tracking results together for seeking the better tracking performance. 

This research is applied on both day and night time construction scenarios and the captured 

sequences were converted into the resolution of 1920*1080 pixels. Meanwhile, the tested scenarios 

are limited to open-ground earthmoving works in out-door environment and on-site construction 

period in in-door environment. Also, the tested sequences were captured under normal weather, 

which have not included raining, snowing, fogy, hail, and other extreme weather.   

1.4. Proposed Methodology and Main Conclusion 

A total of fifteen (15) visual tracking methods were selected for the proposed comparison, 

and all of these methods have been validated successful in the computer vision field. These 

tracking methods were tested with twenty (20) videos, which were captured from different 

construction sites. As mentioned before, the sequences were characterized with challenging 

attributes of occlusions, illumination variations, motion blur, scale variation and background 
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clutters. In addition, the construction resources of interest were manually annotated as ground 

truths. Furthermore, the tracking results of different methods have been measured in a quantitative 

manner, in terms of accuracy and robustness. And these tracking methods were compared from an 

overall view and attribute-based view respectively. 

After the comparison works, the first improvement is to fuse the tracking results of 

individual tracking method. For each sequence, the fifth tracking results were put together at the 

first. Then, the proposed attraction function has been adopted to remove five unreliable results and 

the similarity function based on image structure was applied to gain weights for the rest of ten 

bounding boxes. The non-maximum suppression has been implemented in order to get a new 

bounding box to represent the object. The fusion method was tested on the datasets, which was 

captured in comparison works, and compared with fifth tracking methods with the criteria of 

accuracy (bounding box overlap and location error ratio) and robustness (tracking length ratio). 

 The other improvement is the part-based tracking, which is the idea of tracking the two 

parts of articulated equipment respectively. Taking the excavator as an example, the robustness 

and accuracy tracking methods were selected out and have been applied to track buckets and ‘cab’ 

respectively. Then, two tracking boxes have been combined in order to get a new tracking box, 

which represents the prediction result of the excavator. This method was also compared with the 

same criteria of comparison works in accuracy and robustness separately.   

The test results of this research indicated that: 1) the methods based on the sparse 

representation were more effective than other methods. Furthermore, the local sparse 

representation had better performance than holistic sparse representation. 2) in construction 

scenarios, the generative tracking strategy outperformed the discriminative one, while the 

discriminative methods performed better in computer vision benchmarks for general scenarios. 3) 
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the proposed fusion methods have increased the tracking performance over 10% in accuracy when 

compare with fifteen tested methods. 4) the tracking performance has been improved in both 

accuracy and robustness for tracking articulated equipment with part-based tracking. 

1.5. Expected Contribution 

The outcomes of this research reveal that there is huge difference on performance between 

different visual tracking methods. Moreover, this research shows that deep learning methods have 

large potentials in visual tracking technologies, and this method even outperformed sparse 

representation method in some sequences. In addition, the ensemble of various tracking results is 

an efficient way in order to improve the final tracking performance. Implementing visual tracking 

could be very helpful to automation construction. For example, tracking trucks and excavators and 

could be used to estimate excavation productivities automatically, which is time and labor 

consuming. 

Research finding are encouraged for researchers from construction management to enhance 

the future applications of using visual tracking technologies. The comparison results could be used 

to select proper tracking methods when conducting certain applications, which could improve the 

precision and robustness of existing applications. The proposed fusion method is an offline and 

generic method, which is easy to achieve and has no requirement for tracking method. This method 

can be used to overcome challenging factors by integrating the advantages from individual 

methods. On the other hand, the proposed part-based method could indicate excavators’ position 

with higher accuracy, which is useful to construction safety by calculating the distance between 

buckets and workers. In this study, only two parts were considered for tracking, and it is possible 

to track three, four, or even more parts respectively in order to estimate more complex articulated 

equipment.   
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1.6. Thesis Structure 

The outline of this research is summarized below in Table 1.1 and it highlights the main 

ideas of each chapter in short sentences.  

Chapter Summary 

1) Introduction This chapter introduces the main idea of this thesis, 

points out the research gaps and objectives. Meanwhile, 

the proposed methodology and main conclusion have 

been stated briefly. At the end, the expected contribution 

and thesis structure have been presented. 

2) Literature Review This chapter reviews the current practice in vision-based 

technologies, especially the 2D visual tracking. The 

existing benchmarks and tracking applications in 

construction have also been introduced. 

3) Proposed Methodology  This chapter explains the proposed methodology step by 

step, which is followed the introduction in order to 

achieve the objectives of this thesis. 

4) Results and Discussion In this chapter, research results have been presented and 

analyzed from multiple views. Findings are highlighted 

and discussed. 

5) Conclusion and Future 

Works 

This chapter concludes the outcomes of this research. 

Also, future works have been defined.  

Table 1.1: Structure of the thesis 
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CHAPTER 2:  LITERATURE REVIEW  

In this chapter, it will conduct a review of the recent technologies and practice related to 

the computer vision field. Then, 2D visual tracking will be introduced in details. After that, 

benchmark works of visual tracking methods from computer-vision field are also presented. 

Besides, specific tracking applications in construction management will be summarized at the end. 

2.1. Computer Vison Technologies 

Computer vision is an interdisciplinary research field, which is aiming to gain higher level 

understanding of digital images and videos with computers. And it was seeking to achieve the 

automatically human visual system. The sub-domains of computer vision consist of the scene 

reconstruction, event detection, object tracking, pose estimation, motion analysis, and image 

restoration. The development of computer vision do not have long history. In the late 1980s, the 

computer vision technologies have been developed at universities that were pioneering the 

computer intelligence. Studies in the 1980s have built the early foundations of many computer 

vision algorithms, which exist today. For example, extraction of edges from images, mean-shift, 

optical flow and labeling of lines. By the 1990s, research in 3-D reconstructions resulted in the 

better understanding of camera calibration. Also, with the advance of optimization methods, it was 

recognized that the exploring in bundle adjustment was used to improve the field of 

photogrammetry. In addition, variations of graph cut were developed to solve image segmentation 

problem. In the next decade, it was the first time statistical techniques were adopted in recognizing 

faces in images. Recent work has been focused on the resurgence pf feature-based methods, which 

used in interface with machine learning techniques. A classification of computer vision tasks 
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would help researchers to reduce the difficulty of problems. The tasks of computer vision can be 

categorized into following classes:  

1) Imaging processing   

In order to improve the quality of imaging, imaging processing is aiming to decline noise 

of images. This is the fundamental of advance level of computer vision tasks. 

2) Feature extraction 

Extracting feature, for example, lines, textures, edges and regions from processed images. 

And feature extraction provides different representation of the world object information. 

3) Object recognition 

The main idea of object recognition is to identify objects in the world after being given the 

models or patterns of known objects. 

4) Motion analysis 

The aim of motion analysis is to retrieve properties or status of objects, such as structure, 

position, and velocity, according to the given motion information based on images. 

5) 3D reconstruction 

The 3D reconstruction is retrieving shape, sized of objects in the world by gaining the 3D 

coordinates of each vertex of the objects.  

2.1.1. Technologies in computer vision 

In order to achieve different tasks of computer vision, different technologies have been 

developed to simplify the state of art problems 

Image processing: Imaging processing takes raw pixels as input and produces another pixels as 

output, which have higher level of quality than original images under certain views. After image 

processing, noise, such as blurring caused by cameras and geometrical distortion caused by lens, 
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could be reduced or removed. The technologies of image processing could be divided into two 

categories: real domain and Fourier domain. The main idea of real domain processing manipulate 

the images pixel by pixel directly and the smoothing templates convolve each pixel in order to 

remove noise. Fourier domain processing performs a Fourier transform in order to gain spectrum 

representation of images. The spectrum image has been processed then. In general the Fourier 

space processing is much faster than the real domain processing. And this is because of the real 

domain processing often needs to do convolution works pixel by pixel, which are time-consuming. 

           According to the motivation of image processing, the technologies of image processing can 

be classified into image improvement and image restoration. The image improvement utilizes 

certain performance index to measure the quality of images, and adapt the image to higher quality. 

The purpose of image restoration is aiming to restore a better image based on known degeneration 

models. In general, the purpose of image improvement is to deal with images and make human 

more comfortable. And the purpose of image restoration is to process image and make it more 

understandable for computers. 

Feature extraction: In general, image feature is properties of pixels, which can be edge, region, 

texture, lines, curves, etc. There also exists complicated features, which combine basic features, 

and upgrade them with mathematic expression. The feature extraction have been applied in 

advance research fields of computer vision, for example, the image retrieval, image registration, 

object recognition, object categorization, and robot localization. 

           In order to represent the pixels, a large variety of feature have been developed. The earliest 

works could be the local derivatives (Koenderink and Van 1987). Then, Florack et al. adopted a 

series of local derivatives and constructed differential invariants for local feature representation in 

1994. The local derivatives have been extended to the local gray value invariants for the purpose 
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of image retrieval (Scihmid and Mohr 1997).  Because Gabor functions (Daugman 1980) have the 

ability to represent the receptive field profiles in cortical simple cells, Marcelja (1980) worked on 

the responses of the mammalian visual cortex based on a series of Gabor functions. Textons (Leung 

and Malik 2001) and the Varma–Zisserman model (Van et al. 1996), have been proved to have 

reliable performance in the task of texture classification. The SIFT feature, which is a 3D 

histogram of gradient magnitudes representation, have demonstrated the effectiveness. The 

advantages of SIFT is that its invariance in challenging factors in terms of illumination variation, 

background clutter, occlusion, etc. Carneiro and Jepson (2003) proposed phase-based local 

features in order to enhance the invariance to illumination changes. Ke and Sukthankar (2004) 

have simplified the SIFT by utilizing principal component analysis (PCA), which normalized 

gradient patches and shown good performance on image deformations. Lazebnik et al. (2005) 

divided each circular normalized patch into concentric rings, which put forward the rotation 

invariant. Then, the gradient location and orientation histogram have shown its significance 

(Mikolajczyk and Schmid 2005), which has applied PCA to decrease the dimension of the 

representation. The color information is very important in visual representations, Van and Schmid 

(2006) developed four color descriptors, which include histograms of RGB, hue, opponent angle, 

and spherical angle. 

Object recognition: As one of the fundamental challenges in computer vision, object recognition 

is considered as the problem of detecting and localizing objects from given categories such as 

people or cars in static images (Felzenszwalb et al. 2010). The difficulty of object recognition 

comes from the huge differences in appearance in such categories. Even in the same categories, 

the variability in shapes and other visual properties could be enormous, for example, different cars 

come in various colors and shapes.  
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           There are significant works on object recognition, which including various kinds of 

deformable template methods (Cootes et al. 2001; Coughlan et al. 2000), and a large number of 

part-based methods (Amit and Trouve 2007; Burl et al. 1998; Crandall et al. 2005). Fergus (2003) 

proposed an object recognition method based on the constellation models, the images were 

separated into parts, which are constrained to be a set of locations determined by interest point 

operators, and a Gaussian distribution was used to capture the geometric arrangement. In contrast, 

Felzenszwalb and Huttenlocher (2005) proposed the pictorial structure models, which defined a 

matching problem where each part have an individual match cost in set of locations. And in this 

model, the geometric arrangement was captured by “springs”, which connecting pairs of parts.  

           Significant variations, such as caused by viewpoint changes, are not were recognized by 

deformable models. The aspect graphs (Plantigna and Dyer 1986) has significant performance for 

capturing the changes from the viewpoint changes. Another approach is to use multiple models. It 

is widely adopted to use multiple templates to encode different views of cars or faces 

(Schneiderman and Kanade 2000). Discriminative training methods adopt the strategy to select 

model parameters in order to minimize the mistake of object recognition. This approach directly 

optimizes the boundary of positive and negative images (Dalal and Triggs 2005). On the other 

hand, the information of context for object recognition has received great attention in recent years. 

Torralba (2003) proposed a method which use low-level holistic image for defining similar 

candidates. Some methods (Hoiem et al. 2008) have adopted a coarse representation of a scene, 

which including its 3D geometry. The discriminatively trained part based model (Felzenszwalb et 

al. 2010) is good at data-mining, and this approach requires relatively few passes through the 

complete set of training examples. This method is extremely suitable for training very large date-

sets.   
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Motion analysis: Motion analysis from a sequence of images can be used to extract a lot of 

information which is difficult from static images. The most common motion analysis is image 

differencing, which means differencing neighboring few frames in a sequence, and it is possible 

to detect the edge of moving objects in order to subtract these objects from static background. The 

single Gaussian model was used in background subtraction (Wren et al. 1997) at the first, but this 

method did not consider the pixel value of images and more elaborate model was needed. After 

that, the Gaussian mixture model was extend with a hysteresis threshold (Power and Schoonees 

2002). The topology and the number of components of a Markov model was selected in a training 

procedure (Stenger et al. 2001).  

So far, human motion analysis has been a major topic because it has huge potential of 

applications. For the aim to understand the behaviors of humans, a higher level of understanding 

is required (Mao et al. 2013). The pipeline of human motion analysis involves three steps: feature 

extraction, dimension reduction and classification (Aggarwal and Ryoo 2011). In Aggarwal and 

Ryoo’s work, they concluded motion analysis scheme into two categories: Single-layered 

approach and sequential approach. The single-layered approaches recognized human activities 

from video directly, and these approaches considered each kind of activity as a specific class and 

recognize the activity based on given classes. Most single-layered methods adopted the sliding 

windows to classify candidate subsequences. Sequential approaches are extensions of single-

layered approaches by analyzing sequences of features. The sequential approaches firstly convert 

images into a sequence of feature vectors, such as degrees of joint angles, which could be used to 

describe the status of a person. 

3D reconstruction: 3D information in terms of size, position and shape of objects can be retrieved 

from images by giving the explicit geometry of the objects. The 3D reconstruction of an object 
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can be summarized as the process which begins from the data acquisition and ends at the output 

of 3D virtual model on a computer (Remondino and EI-Hakim 2006). Three are two main classes 

of methods for vision-based 3D reconstruction and they are 3D modeling from videos, 3D 

modeling from oriented images. 

Videos to 3D modeling approaches aim to obtain a 3D model from uncalibrated images or 

videos. In 1998, Fitzgibbon and Zisserman reported an automated procedure in computer vision 

community. This system extracts corner points automatically and then matches them across views. 

Some methods have been proposed for the works of extraction of image correspondences (Ferrari 

et al. 2003). These methods are heavily relied on feature extractions, which results in the results 

are affected by occlusions, illumination variations and so on. The invariant point detector 

overcame this problem. The methods based on SIFT operator (Lowe 2004) have improved the 

robustness under image variations.    

Oriented images to 3D modeling approaches automatically orient and calibrate images and 

then perform the semi-automated modeling (El-Hakim 2002; Guarnieri et al. 2004). This is a more 

common approach in 3D reconstruction especially in the case of dealing with complex geometric 

objects. In 1999, Liebowitz et al. proposed a method, which creating 3D graphical models from 

limited number of images. Then line-photogrammetric mathematical models were employed to 

recover the 3D shapes of polyhedral objects (Van et al. 1999). Dick et al. (2001) have employed a 

recognition technique based on models in order to extract higher level models from a single image.  

D’Apuzzo (2003) has developed an automated surface measurement procedure in order to match 

the homologous points.  
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2.1.2. Applications in computer vision 

Computer vision technologies have been widely applied in many industries, including 

medical application, human computer interfacing application, transport and traffic application, etc. 

Medial application: Thanks to the development of high-resolution cameras, enhanced computer-based 

has become a powerful tool for disease discovery. High-content screening cameras are able to capture 

high resolution images for cells or organisms. This technique would promise to enhance drug discovery 

pipeline (Gosai et al. 2010). On the other hand, the bright-field images can provide effective data of 

many kinds of properties (e.g. shape, size and motility), which have been used to detect helminths 

(Ramot et al. 2008).  

The counting and classification of medical objects, such as blood cells is time-consuming 

and labor-consuming. However, this task could be easily solved by computer vision technology. 

Ramoser et al. (2006) proposed an automated system to classify white blood cells by adopting 

computer vision concepts, which involved different features and classifiers. Ongun et al. (2001) 

proposed a system, which using active contours in order to track the boundaries of white blood 

cells. Lezoray et al. (1999) has introduced a region-based white blood cells segmentation using 

extracted markers, while this method relies on proper seed extraction. Kumar et al. (2002) applied 

a cell edge detector which is trying to determine the boundary of the nucleus. Sinha and 

Ramakrishnan (2003) proposed a segmentation framework using k-means clustering for a neural 

network classifier.  

A lot of effort has been devoted to developing automated image segmentation techniques 

in 3D. Recently, Yin et al. (2010) have reported a layered graph approach for optimal segmentation 

of single and multiple interacting surfaces of human bones. Tu and Xiang (2010) have introduced 

an auto-context algorithm for 3D brain image segmentation, which could learn the low-level 

appearance, implicit shape, and context information through a sequence of discriminative models. 



17 

In chromosome analysis, the properties of chromosomes can be gained using computer vision 

techniques from an interactive way. Such approaches have been proved to increase current practice 

(Jahne B, 2000). 

Human computer interfacing application: Applications based on computer vision technology 

have enhanced persons’ mobility and some applications even have the ability to support social 

interaction.  S. Schörnich et al. (2013) have used visual classification technologies to recognize 

impaired individuals’ ability to navigate. Lanigan et al. (2006) have proposed a prototype system 

named Trinetra, which used barcodes of products to help users recognize supermarket objects. 

However, this system has a limitation that the user has to be able to adjust the camera view toward 

the barcode, which could be tedious. To overcome this shortcoming, Tekin and Coughlan (2009) 

proposed an algorithm which can help users to locate the barcode by giving left or right indications. 

Another prototype application system (Winlock et al. 2010) could recognize objects in 

supermarkets that users have put in the shopping list of the phone. In this system, it detects the 

objects (using an internal database) automatically and then compares the detected objects with the 

ones on the list. This system will notify the user when it finds a match. 

Computer vison also opens a new branch of methods for fall detection. Rougier et al. (2011) 

have extracted information from the captured video in order to determine if there is a fall or not. 

This method extracted the head’s velocity and shape change information and then differentiate fall 

or non-fall activities by setting proper thresholds. But the performance of this method is strongly 

related to the threshold. Auvinet et al. (2011) also proposed a threshold-based method for fall 

detection, which used calibrated cameras to reconstruct 3D shape of people. Then, fall events were 

analyzed by the volume distribution along the vertical axis. The system would alarm when the 

distribution was abnormally changed over a period of time. Juang and Chang (2007) proposed a 
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posture recognition-based fall detection system. In this system, it defined a neural network to do 

the posture classification. Liu et al. (2010) also focused on the classifier and they replaced with a 

more common k-nearest neighbor classifier. Belshaw et al. (2011) have adopted three pattern 

recognition methods for fall detection and compared three methods (logistic regression, neural 

network, and support vector machine) and the neural network achieved the best performance. 

Transport and traffic application: Pedestrian detection is an essential task in transportation 

engineering due to its potential for enhancing human safety and there are a lot of efforts have been 

made to improve the performance of pedestrian detection (Dollar et al. 2012). On the other hand, 

road safety has become more and more crucial around the world and the traffic sign are important 

because it contains a lot of important information about current traffic environment. In 1987, 

Akatsuka and Imai proposed a study on traffic sign recognition system. This system could be used 

as an assistance for drivers for the purpose of alerting them when encountering some specific sign, 

such as the one-way street sign. Fu and Huang (2010) summarized the traffic sign recognition 

procedure as shown in the Figure 2.1. And they have divided the traffic sign recognition system 

into three stages: 1) detecting candidates of signs; 2) tracking these candidates; 3) classification of 

these candidates. 

 

Figure 2.1: Procedure of traffic sign recognition (Fu and Huang 2010) 
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2.2. Two Dimensional (2D) Visual Tracking 

2D visual tracking is one of the most important problems in the field of computer vision. 

The processing of 2D visual tracking is to estimate the states of objects (e.g., position and extent) 

in a sequence of 2D frames after given the initial state of the objects in the first frame (Wu et al. 

2015). Wang et al. (2015) explained how 2D visual tracking system works, and they broke the 2D 

visual tracking system into five constituent parts: Motion Model, Feature Extractor, Observation 

Model, Model Updater, and Ensemble Post-processor (as showed in the Figure 2.2). 

Figure 2.2: Pipeline of visual tracking system (Wang et al. 2015) 

1) Motion Model: The motion model generates a large number of candidate bounding 

boxes, which may contain the expecting object. The motion model is working based on 

the analysis of the previous frame. 

2) Feature Extractor: The feature extractor is used to represent each candidate with some 

features. 

3) Observation Model: The observation model is used to justify if the candidate box is the 

object based on the features extracted before. 

4) Model Updater: The model updater is used to decide when and how to update the 

observation model. 
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5) Ensemble Post-processor: If a tracking system contains multiple trackers, the ensemble 

post-processor combines the results of each tracker in order to get the better 

performance than individual trackers.  

A tracking system usually starts from initializing the observation model after given the 

information of object bounding box in the first frame. Then, the motion model works and generates 

candidate proposals based on the estimation of the previous frame. These candidate proposals are 

sent to the observation model in order to compute their statistical probability of being the object. 

The candidate, which has the highest probability is then selected. Based on the output of the 

observation model, the model updater decides if the observation model should be updated. At the 

end, if there exists multiple trackers, the tracking results of each tracker will be combined by the 

ensemble post-processor to obtain a better estimation result. 

In recent, modern tracking are usually complicated systems. Generally, researchers 

concluded 2D tracking methods into two categories: generative methods and discriminative 

methods. The generative methods are assuming a process to generate lots of candidate regions and 

search for the most similar candidate as the target. The discriminative methods always train a 

classifier to separate targets from the backgrounds. 

2.2.1. 2D visual tracking development 

The early work of visual tracking started from Lucas and Lanade (1981), which adopted 

raw intensity holistic templates (LK method). However, this method did not consider the 

appearance variability, which results in it performed not well in tracking objects with significant 

changes. To overcome this limitation, the subspace-based tracking methods have been proposed 

to account the changes. For example, Black and Jepson (1998) have adopted the pre-trained Eigen 

basis representation in tracking. And Hager and Belhumer (1998) have updated the LK method 
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with low-dimensional representations and gained better performance under varying conditions. 

Then, the sparse-representation-based methods (Mei and Ling; 2009) were proposed and have been 

improved which showed the high performance in tracking blurry objects. In this method, they used 

a dictionary of holistic intensity templates, which composed of target. 

In order to handle occlusions, local sparse representations have been introduced for visual 

tracking (Jia et al. 2012; Bao et al. 2012). In the works of Bao, the accelerated proximal gradient 

approach was introduced to solve L1 minimization problems. Liu et al (2011) proposed a sparse 

representation method and adopted the mean-shift algorithm to locate objects. And this methods 

efficiently increased the tracking robustness. Then, a collaborative tracking algorithm that 

combined a discriminative classifier and a generative model, was proposed (Zhong et al. 2014) to 

enhance the tracking accuracy. Zhang et al (2012) converted visual tracking to a multi-task sparse 

representation learning problem. 

As one of the most important information of images, color histograms have gained a lot of 

interests in visual tracking. Perez et al. (2002) embedded color histograms in a particle filter for 

visual tracking. And Coumaniciu et al. (2003) have proposed a color histogram-based mean-shift 

tracking method. Besides relying on pixel-wise statistics, the spatiograms was used to calculate 

both the statistical properties of pixels and their spatial relationships (Birchfield and Rangarajan, 

2005). Considering the edge information, the histograms of oriented gradients (HOGs) have been 

adopted for visual tracking (Tang et al. 2007). To combine different types of features, covariance 

region descriptors (Tuzel et al. 2006) were introduced for object tracking. On the other hand, the 

local binary patterns (Ojala et al. 2002) and Haar-like features (Viola and Jones 2004) have also 

been explored to describe the object appearance for tracking.  
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For the discriminative tracking methods, various classifiers have been proposed, such as 

support vector machine (SVM) (Avidan 2004), structured output SVM (Hare et al. 2011), and 

ranking SVM (Bai and Tang, 2012). In specific, Avidan (2004) have integrated a trained SVM 

classifier in the optical flow framework. The multiple instance learning has been applied to 

tracking (Babenko et al. 2011), in which all positive and negative samples are put together to learn 

a discriminative model finally. Grabner et al. (2006) proposed an online boosting method to select 

proper features to separate objects from the background. 

The tracking problem is now treated as an optimization framework and gradient descent 

methods can be used to locate the objects efficiently. For example, Fan et al. (2010) adopted a 

discriminative model to identify attentional regions with the gradient descent formulation to 

predict the objects. Sevilla-Lara and Learned-Miller (2012) proposed a tracking framework based 

on distribution fields. In this framework, it allows smoothing the objective function, and the object 

is located by searching for the local minimum. The dense sampling methods (Babenko et al. 2011) 

have also been adopted to solve the problem that visual tracking are usually nonlinear with local 

minima. 

So far, using online update to describe the appearance variations plays an important role 

for successful object tracking. Matthews et al. (2004) proposed a new template update method, 

which updates the template with combining the fixed reference template extracted from the first 

frame and the result from the previous frame. Grabner et al. (2008) converted the update problem 

as a semi-supervised task and the classifier was updated with both labeled and unlabeled data. In 

order to exploit the potential of the unlabeled data, Kalal et al. (2010) have developed a tracking 

system where the semi-supervised learning method was used to select positive and negative 

samples for model update. In recent, the context information have been utilized to facilitate visual 
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tracking because the context information can provide extra visual features from the surroundings 

of the objects. Dinh et al. (2011) exploited some supporters around the objects by using the method 

of sequential randomized forest. The context information is proved useful when the objects are 

fully occluded or out of the camera view. 

Another line of research have been resorted to train deep networks with large scale of data, 

and then utilize the trained models to do visual tracking. In 2010, Fan et al proposed a present 

human tracking method which could learn a specific feature extractor with CNNs from a 2000 

images dataset. Wang and Yeung (2013) have developed a deep learning tracking method which 

learns the generic features from a large scale of datasets (1 million images). Wang et al. (2015) 

used a two-layer CNN to learn hierarchical features from sequences. And this method takes into 

account complicated motion transformations in visual tracking. Zhang et al. (2016) presented a 

convolutional network based tracker which exploits the local structure and inner geometric layout 

information of the objects. Hong et al. (2015) put an additional layer of the online Support Vector 

Machine (SVM) on the top layer of CNN to learn the object appearance and discriminate it from 

the background. Nam and Han (2016) proposed a tracking method based on a CNN trained in a 

multi-domain learning framework.  

2.2.2. Evaluation criteria in visual tracking  

Considering the evaluation of tracking methods and comparison to the state-of-art, there is 

no standardized evaluation protocol right now. Current evaluation criteria focus on the robustness 

and accuracy, which have been widely adopted and proved useful. The accuracy criteria, such as 

center error (Adam et al. 2006) and region overlap score (Godec et al. 2013), demonstrate if the 

tracking correctly locates the target. The robustness criteria, such as tracking length (Kwon and 
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Lee, 2009) and failure rate (Kristan et al. 2010), describe the methods’ ability of keep tracking the 

targets. The detailed explanations of each criteria are demonstrated as following. 

Center error: The center error is one of the most popular ways of measuring tracking performance. 

It measures the distance between the center of predicted bounding box and the center of ground 

truth box. The advantage of center error comes from the minimal annotation requirement. The 

Equation 1 displays the calculation of center error CE. The Figure 2.3 is an illustration of the center 

error. 

Equation 1: 𝐶𝐸 = ‖𝑥𝑡
𝑇 − 𝑥𝑡

𝐺‖ 

𝑡 : represents a certain frame and 𝑡𝜖{1, 𝑁} 

𝑥𝑡
𝑇: the center loaction of tracked box at the 𝑡 frame 

𝑥𝑡
𝐺  : the center loaction of ground truth box at the 𝑡 frame 

 

 

 

 

 

Figure 2.3: An illustration of center error  

Region overlap score: The region overlap score is calculated as an overlap between predicted 

object region and the ground truth region. The Equation 2 displays the calculation of region overlap 

score OS and the Figure 2.4 is an illustration. 
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Equation2: 𝑂𝑆 = ‖
𝐴𝑡

𝐺∩𝐴𝑡
𝑇

𝐴𝑡
𝐺∪𝐴𝑡

𝑇‖ 

𝑡 : represents a certain frame and 𝑡𝜖{1, 𝑁} 

𝐴𝑡
𝑇: the tracked bounding area at the 𝑡 frame 

𝐴𝑡
𝐺  : the ground truth bounding area at the 𝑡 frame 

 

 

 

 

 

                              Figure 2.4: An illustration of region overlap score  

Tracking length: The tracking length reports the number of frames from the first frame to its first 

failure. The failure criterion can be manual judged or inspected. But this criterion results in 

different results even by the same person. It is better to automate the failure criterion. And, it is 

possible to place a threshold on the center or overlap. The Figure 2.5 demonstrates the tracking 

length measure. 

 

 

 

 

Figure 2.5: An illustration of the tracking length (Cehovin et al. 2014) 

Failure rate: The tracking length could be used to evaluate the robustness performance of tracking 

methods. However, it is very sensitive at the beginning stage. If the beginning of sequence contains 

a difficult tracking situation, it results in a poor initialization and then this criteria would not have 
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persuasion. The failure rate is created to solve this issue and it is working in a supervised system. 

It is calculated as the number of number of the tracking failure times over the number of the whole 

frames, which is demonstrated in the Figure 2.6. 

 

 

 

 

Figure 2.6: An illustration of the failure rate (Cehovin et al. 2014) 

 

The evaluation criteria mentioned above are always combined to evaluate the performance 

of  the tracking methods in a comprehensive manner. Wu et al. (2013) proposed the precison plot 

(Figure 2.7) and success plot (Figure 2.8) in order to do the quantitative analysis. 

Precision plot: The precision plot shows the percentage of frames whose  location errot is within 

the given threshold distance.  

 

 

 

 

 

 

         Figure 2.7: An illustration of the precision plot (Wu et al. 2013) 
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Success plot: The success plot shows the ratios of successful frames at the thresholds varied from 

0 to 1, (e.g. to=0.5). 

 

 

 

 

 

 

                          Figure 2.8: An illustration of the success plot (Wu et al. 2013) 

 

Hybrid measure: Kristan et al. (2015) proposed a hybrid measure that puts the accuracy and 

robustness scores into one graph in order to decide which method has the better performance 

overall in terms of accuracy and robustness (Figure 2.9). 

 

 

 

 

 

 

 

                         Figure 2.9: An illustration of the hybrid measure (Kristan et al. 2015) 

CoTPS: Nawaz and Cavallaro (2013) proposed a threshold-independent and overlap-based 

measure called the Combined Tracking Performance Score (CoTPS). In the CoTPS, the video 

frames where the overlap scores are higher than a pre-defined threshold are defined as the 
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successfully tracking frames. Then, the accuracy score is calculated as the number of the 

successfully tracking frames, while the robustness score is represented by the corresponding 

tracking length (Figure 2.10). 

 

 

 

 

 

 

 

               Figure 2.10: An illustration of the CoTPS measure (Nawaz and Cavallaro 2013) 

Cehovin et al. (2014) concluded the state-of-art evaluation criteria and analyzed them in a 

correlation way. This analysis helps us to find the correlation between each two evaluation criteria 

and explore the relationship between different evaluation criteria (Figure 2.11).  

 

 

 

 

 

 

 

 

Figure 2.11: An illustration of the correlation analysis of evaluation criteria (Cehovin et al. 2014) 
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2.2.3. Visual tracking benchmarks 

Until now, several benchmarks have been created to evaluate the performance of existing 

visual tracking methods. These benchmarks contained huge image data-sets and compared a large 

number of tracking methods based on different evaluation criteria. The detailed description of each 

benchmark has been summarized in Table 2.1. 

Table 2.1: Summary of some popular benchmarks 

OTB benchmark: Wu et al presented the OTB 1.0 benchmark in 2013, which tested 29 tracking 

methods on 50 different sequences. In 2015, Wu et al updated the work of OTB1.0 by OTB 2.0, 

which tested 31 tracking methods on 100 different sequences. The testing scenarios in OTB 

benchmark are general living scenarios, which is shown in the Figure 2.12. 

 

 

 

 

 

 

 

   Figure 2.12: An illustration of sequences in OTB benchmarks (Wu et al. 2013) 

Datasets Published Year Number of tracking methods Number of videos 

OTB1.0 (Wu Yi et al) 2013 29 50 

ALOV  (Smeulders et al) 2014 19 315 

VOT2013 (Kristan Matej et al) 2013 27 356 

VOT2015 (Kristan Matej et al) 2015 62 356 

OTB2.0 (Wu Yi et al) 2015 31 100 

NUS-PRO (Li Annan et al) 2016 20 365 
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In OTB datasets, they adopted success plot and precision plot to evaluate the accuracy 

performance. And then, they proposed two ways to analyze the robustness of a tracking method, 

which are perturbing the initialization temporally (i.e., start at different frames) and spatially (i.e., 

start by different bounding boxes). It is difficult to evaluating tracking method even there is proper 

criteria because many factors can affect the tracking performance. For better analysis of the 

strength and weakness of tracking methods, OTB benchmarks proposed an attribute-based 

methods, which annotate sequences with the 11 attributes shown in Figure 2.13. 

 

 

 

 

 

 

 

 

 

Figure 2.13: The list of attributes in OTB benchmarks (Wu et al. 2013) 

The OTB benchmarks indicate that: 1) Background information is important for successful 

tracking. Using advanced learning techniques to utilize the background information in the 

discriminative models (e.g., Struck). 2) The local models are effective for tracking and local sparse 

representation methods have shown reliable performance compared with other tracking methods. 

3) Motion models play a crucial for object tracking, especially when the motion of target is large. 

4) The large-scale performance benchmarks facilitate better understanding of the state-of-the-art 

visual tracking methods. 
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VOT benchmark: The visual object tracking (VOT) challenge has been proposed in 2013 and 

updated in 2015. In the VOT 2015, performance of 62 tracking methods have been presented. All 

these 62 tracking methods have been tested on 356 sequences, and this is the largest datasets in 

computer vision community. Similar with the OTB benchmark, in the VOT benchmark researchers 

also annotated their benchmark with different attributes. The description of attributes adopted in 

VOT benchmark have been summarized in the Figure 2.14. 

Figure 2.14: The list of attributes in VOT benchmarks (Matej et al. 2015) 

In the VOT benchmark, there are also accuracy and robustness criteria to evaluate the 

performance. The VOT2015 benchmark indicates that the MDNet achieved the best performance 

in both accuracy and robustness, which had very few fails. This findings prove that the deep 

learning method has huge potentials, although this method requires a large number of 

computational resources. 
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ALOV benchmark: In 2014, Smeulders et al. proposed a comparative study of 19 visual tracking 

methods. The characteristic of ALOV benchmark is that it adopted the F-scores to combine the 

accuracy and robustness evaluation. The comparison results of ALOV indicate that: 1) the 

circumstance is very important for visual tracking, especially considering the occlusion and clutter 

situations. 2) TLD method performs remarkable on camera motion results from its well-designed 

detection and motion model. 3) The using of F-score permits comparison of tracking methods from 

a statistical view. 4) There still exist some difficulties in state-of-arts tracking methods, such as 

occlusions. 5) It could be seen that simple models with a low complexity perform better in this 

benchmark. 

NUS-PRO benchmark: There were 315 video sequences downloaded and annotated from 

YouTube. All images in this benchmark have been converted to the same size, i.e., 1280×720 

pixels. The description of sequences in NUS-PRO has been summarized in the Figure 2.15. 

 

 

 

 

 

 

 

Figure 2.15: The description of sequences in NUS-PRO benchmark (Li Annan et al. 2016) 

The tracking results of NUS-PRO benchmark shows that: 1) The ASLA, SCM, and LOT 

actually achieved the overall better performance. 2) The ASLA, SCM, and OAB have showed the 

better performance in long-term tracking. 3) Existing methods are not effective in handling full 

occlusions in this benchmark. 
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2.3. 2D Visual Tracking in Construction 

The use of visual tracking in construction has been recently promoted to facilitate 

construction automation. Visual tracking has been widely utilized to track construction equipment 

and workers. For example, Yang et al. (2010) have developed a multiple tracking system to 

evaluate worker’s performance. Gong and Caldas (2011) have measured the working cycles of a 

mini loader used the mean-shift tracking method. Park and Brilakis (2012) have investigated the 

tracking performance of scale-invariant feature transform and speeded up robust features for the 

tracking of construction workers. Yang et al. (2014) presented a single Gaussian background 

tracking method, which was used to track tower crane jibs for the purpose of identifying the 

working cycle times. Zhu et al. (2016) proposed a particle filtering method to track the workers 

and equipment in construction sites.  

In 2012, Rezazadeh Azar and McCabe have adopted the visual tracking in order to 

recognize and calculate the dirt loading cycles during earthmoving works. A server-customer 

interactive tracking system has been developed to detect trucks being loaded and measure the 

loading time. Another important use of visual tracking is to monitor construction safety. It was 

used to protect workers on foot from potential collisions (Han and Lee 2013). In this study, there 

are four processes to achieve the safety monitoring for workers: Identification of Critical Unsafe 

Actions, Data Collection, Motion Capture, and Motion Recognition.  

  However, there are still limited comparative studies regarding the visual tracking methods 

in the construction scenarios. Park et al. (2011) once presented a comparative study of 2D visual 

tracking methods, where only kernel-based, contour-based, and point-based tracking methods 

were included for the comparison. The comparison results indicated that the kernel-based method 

performs better than point-based method in dealing with illumination variations and scale 

variations. Also, the kernel-based methods were considered as the most effective method for 
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tracking construction site resources. This comparison work still remains some limitations in four 

aspects: 1) the novel tracking methods which adopted different schemes and achieved promising 

performance in computer vision were not considered. 2) the test scenarios in their study were 

mainly captured from the miniatures of construction jobsites with scaled equipment models. 3) in 

Park’s study, there were only three types of attributes considered in construction sites (Illumination 

Variation, Occlusion, and Scale Variation). Actually, there exist more challenging factors in 

construction sites. 4) the evaluation criteria in that study was center location error, while the 

tracking methods should be evaluated by multiple criteria from. Therefore, the comparison results 

might not truly reflect the overall performance of the tracking methods on real construction sites. 
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CHAPTER 3:  PROPOSED METHODOLOGY 

In this chapter, the proposed methodology has been introduced in this research. In the first 

section, the methodology for visual tracking comparison will be presented in terms of methods 

selection, sequence selection, attributes annotation, and evaluation strategy. Then, the main steps 

of fusion of tracking and part-based tracking have also been illustrated.  

3.1. Visual Tracking Comparison 

The overall objective of this section is to evaluate and compare existing visual tracking 

methods in construction scenarios. The methods selected here for the evaluation and comparison 

have already shown the promising tracking performance in the computer vision community. The 

results and findings from this research are expected to help construction researchers and 

professionals select appropriate visual tracking methods that could meet their application demands, 

when dealing with complex and realistic construction conditions, such as occlusions and 

illumination changes. The overall steps adopted for the evaluation and comparison have been 

illustrated in Figure 3.1. 

Figure 3.1: Flowchart of experimental methodology 

3.1.1. Video sequence selection and attributes annotation 

The construction video sequences were all captured from real construction jobsites. 20 

videos that represent the construction of civil infrastructure, residential buildings, and municipal 

facilities were selected. These videos contain different types of common construction equipment 
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such as excavators, backhoes, and compactors. In addition, construction workers are also included 

as one of the construction resources of interest. 

Each video sequence was further annotated with the attributes to represent specific 

challenging factors which might affect the tracking results. In this study, five attributes, i.e. 

Occlusions (OCC), Illumination Variation (IV), Motion Blur (MB), Background Clutters (BC), 

and Scale Variation (SV), were defined, referring to the work of Wu et al. (2015). The definition 

of each attribute has been summarized in Table 3.1. 

Attributes Descriptions 

Illumination 

Variation (IV) 

Whether the target experiences significant illumination changes 

in the video sequence; e.g. an excavator is moving into or out 

from a shade.   

Occlusions (OCC) 

 

Whether the target is occluded in the video sequence, so that it 

could not be fully seen for a period.  

Motion Blur (MB) Whether the target is blurred in the video sequence due to its 

motions or because the camera is out of focus during the video 

capturing.  

Background 

Clutters (BC) 

Whether the target and the neighboring background objects in 

the video sequence have similar colors and/or textures. 

Scale Variance 

(SV) 

Whether the size of the target in the video sequence experiences 

significant changes; e.g. an excavator is moving close to or far 

away from the camera.  

Table 3.1: Attributes annotated to test video sequences 

Annotating the video sequences with the attributes improves the understanding of the 

tracking methods’ strength and weakness. For example, there are 5 video sequences annotated with 

OCC. They could be put together to evaluate how well a tracking method is able to deal with 

occlusion conditions. The Figure 3.2 shows the examples of the construction videos with the 

attributes, while the parameters of the video sequences, such as the targets contained, the numbers 
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of video frames, and the overall durations, have been listed in Table 3.2. It is worth noting that the 

durations of all the video sequences are less than 20 seconds in this study. The short durations are 

because only the video sequences with the challenging parts were selected for the tests. This idea 

was also supported in the computer vision community, where most of the test video sequences in 

existing benchmarks range from 5 seconds to 15 seconds (Wu et al. 2015; Kristan et al. 2015). 

Figure 3.2: Video sequence descriptions 
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Target Attributes Number of frames Duration (s) 

Backhoe Scenario 1 MB, BC 500 20 

Car Scenario 1 MB 350 14 

Truck Scenario 1 OCC 500 20 

Scenario 2 SV 400 16 

Compactor Scenario 1 OCC 500 20 

Scenario 2 SV 400 16 

Excavator Scenario 1 IV, BC 500 20 

Scenario 2 IV, BC 400 16 

Scenario 3 BC, SV 500 20 

Scenario 4 BC, SV 450 18 

Scenario 5 SV 500 20 

Worker Scenario 1 IV, MB, BC 170 7 

Scenario 2 IV, MB, BC 400 16 

Scenario 3 IV, MB, BC 300 12 

Scenario 4 OCC, SV 180 8 

Scenario 5 OCC, BC 270 11 

Scenario 6 IV, BC 300 12 

Scenario 7 BC 400 16 

Scenario 8 OCC, BC 300 12 

Scenario 9 IV, OCC, BC 200 8 

Table 3.2: Summary of video sequences 

3.1.2. Visual tracking methods selection 

 A total of fifteen visual tracking methods have been selected in this research study. The 

tracking methods selected here are not solely based on their published years. Also, their 

performances in existing object tracking benchmarks are considered. For example, the ASLA 

tracking method (Jia et al. 2012) was published in 2012, but its performance was better than many 

others published later according to the report of Wu et al. (2015). The specific selection process 

here is described as follows. First, 31 tracking methods in the OTB2.0 benchmark (Wu et al. 2015) 

were investigated. It was found that the SCM (Zhong et al. 2014), ASLA (Jia et al. 2012), CSK 

(Henriques et al. 2012), and L1APG (Bao et al. 2012) methods showed the top performance in the 

overall ranking (Wu et al. 2015). Also, Wu et al. (2015) reported that the SCM (Zhong et al. 2014), 

ASLA (Jia et al. 2012), CSK (Henriques et al. 2012), and DFT (Sevilla-Lara and Learned-Miller, 

2012) methods were better than the others when handling occlusions and illumination variations; 
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the CSK (Henriques et al. 2012), TLD (Kalal et al. 2010), L1APG (Bao et al. 2012), and LOT 

(Oron et al. 2015) methods were good at overcoming motion blurs; the SCM (Zhong et al. 2014), 

ASLA (Jia et al. 2012), CSK (Henriques et al. 2012), and MTT (Zhang et al. 2012) methods were 

successful for addressing background clutters; and the SCM (Zhong et al. 2014), ASLA (Jia et al. 

2012), CSK (Henriques et al. 2012), and L1APG (Bao et al. 2012) methods showed promising 

performance on handling scale variations. To summarize these findings, the following eight 

tracking methods, i.e. ASLA (Jia et al. 2012), CSK (Henriques et al. 2012), DFT (Sevilla-Lara and 

Learned-Miller, 2012), L1APG (Bao et al. 2012), LOT (Oron et al. 2015), MTT (Zhang et al. 

2012), SCM (Zhong et al. 2014), and TLD (Kalal et al. 2010), were first selected. 

     In addition to the eight tracking methods mentioned above, another seven visual 

tracking methods were further selected, including STC (Zhang et al. 2014), DLT (Wang et al. 

2013), CNT (Zhang et al. 2016), CF2 (Ma et al. 2015), KCF (Henriques et al. 2015), DCF 

(Henriques et al. 2015), and RPT (Li et al. 2015). The selection was mainly due to their recent 

developments and reliance on different machine learning or computer vision techniques, such as 

spatial context learning, deep learning, and kernelizing. Moreover, all of them have not been 

included and compared in existing benchmarks in the computer vision community. The detailed 

descriptions of all the tracking methods evaluated and compared in this research study have been 

summarized in Table 3.3.
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Table 3.3: Description of tracking methods in this study

Tracking Methods 

Sparse 

Representation 
Searching Scheme 

Deep 

learning 

Generative(G) or 

Discriminative(D) 
Characteristics & Selection Reasons  

Local Holistic 
Particle 

Filter 

Local 

Optimum 

Dense 

Sampling 

CNT (Zhang et al. 

2016) 
√  √   √ D Reliance on convolutional neural networks  

CF2 (Ma et al. 

2015) 
  √   √ D Reliance on convolutional neural networks 

DCF (Henriques 

et al. 2015) 
  √    D 

Reliance on linear and Gaussian correlation 

filters; Fast; Integration with HOG features 

KCF (Henriques 

et al. 2015) 
  √    D Reliance on kernelized correlation filters 

LOT (Oron et al. 

2015) 
  √    G 

Using partial-appearance representation; Top 

performance in handling BC in OTB 2.0 

RPT (Li et al. 

2015) 
  √    D 

Reliance on exploiting reliable backgrounds 

information; Kernerlizing 

SCM (Zhong et 

al. 2014) 
√  √    G&D 

Using sparse collaborative appearance model; 

Top overall performance in OTB 2.0 

STC (Zhang et al. 

2014) 
    √  G 

Learning dense spatio-temporal relationship from 

context; Fast 

DLT (Wang et al. 

2013) 
  √   √ D Reliance on convolutional neural networks 

ASLA (Jia et al. 

2012) 
√  √    G 

Using structural local sparse appearance model; 

Top overall performance in OTB2.0 

CSK (Henriques 

et al. 2012) 
    √  D 

Utilizing the circulant structure; Top overall 

performance in OTB2.0 

DFT (Sevilla-Lara 

& Learned-Miller, 

2012) 

   √   G 
Using distribution representation; Top 

performance in handling OCC in OTB 2.0 

L1APG (Bao et 

al. 2012) 
 √ √    G 

Using accelerated proximal gradient; Top 

performance in handling SV in OTB 2.0 

MTT (Zhang et al. 

2012) 
 √ √    G 

Online learning multiple instance; Top 

performance in handling BC in OTB 2.0 

TLD (Kalal et al. 

2010) 
    √  D 

Using positive and negative labels to train an 

online classifier; First detection tracking 
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3.1.3. Evaluation criteria and strategies 

In this study, both accuracy and robustness were utilized to evaluate the selected tracking 

methods. For the accuracy aspect, the overlap score (OS) and center location error (CE) are 

adopted following Eq. 1 and 2. The tracking length (TL) is calculated with Eq. 3 to evaluate 

tracking methods in terms of robustness for each video sequence.  

      The strategy of using the evaluation criteria to test one tracking method is described as 

follows. In the experiments, each test video sequence is first manually annotated to locate the 

construction target of interest as the ground truth. Then, the ground truth in the first video frame 

is directly extracted to help the method initialize the tracking process. The tracking process 

continues, until it is found that the method fails to locate the target any more (i.e. its OS is less 

than 0.5). The tracking method is not reinitialized after its first failure. Instead, its tracking 

performance in the next ten video frames after the failure are considered, when calculating its 

average sequence overlap score (AOS) and center location error ratio (CER) (Eq. 4 and 5).   

                                𝑂𝑆 = ‖
𝐴𝑡

𝐺∩𝐴𝑡
𝑇

𝐴𝑡
𝐺∪𝐴𝑡

𝑇‖       (Eq. 1) 

                                𝐶𝐸 = ‖𝑥𝑡
𝑇 − 𝑥𝑡

𝐺‖      (Eq. 2) 

                                𝑇𝐿 =
𝑛

𝑁
        (Eq. 3)       

                                𝐴𝑂𝑆 =
1

𝑛+10
∑ ‖

𝐴𝑡+10
𝐺 ∩𝐴𝑡+10

𝑇

𝐴𝑡+10
𝐺 ∪𝐴𝑡+10

𝑇 ‖𝑛+10
𝑡=1     (Eq. 4) 

                                 𝐶𝐸𝑅 =
1

𝑛+10
∑ ‖

𝑥𝑡+10
𝐺 −𝑥𝑡+10

𝑇

𝑠𝑖𝑧𝑒(𝐴𝑡+10
𝐺 )

‖𝑛+10
𝑡=1     (Eq. 5) 

     Where 𝑁 is the number of total vides frames for a test; 𝑛 is the video frame where the 

method fails; 𝑡 represents a certain frame and 𝑡𝜖{1, 𝑁}; 𝐴𝑡
𝑇 is the tracked bounding area at the 

𝑡 frame; 𝐴𝑡
𝐺  is the ground truth bounding area at the 𝑡 frame; 𝑥𝑡

𝐺  is the central location of ground 

truth box; 𝑥𝑡
𝑇 represents the central location of tracked box. 
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     In this study, CER is adopted to evaluate the accuracy of the tracking methods instead 

of CE. This is because CE completely ignores the size of the target under tracking, which results 

in its sensitivity to the ground truth through manual annotations. In addition, it is found that the 

tracking methods behaved differently after their first tracking failures (i.e. OS < 0.5). They might 

lose the targets shortly with the significant OS decrease; or still be able to follow the targets and 

have their OS slightly below 0.5 in a short period. That is why the tracking performances on 

additional ten video frames after the first failure are included in Eq. 4 and 5, to differentiate the 

tracking methods in a more comprehensive manner. 

3.2. Fusion of Tracking 

It is common to find that general better methods perform worse in specific sequences and 

some tracking methods are extremely effective in some sequences. In this research, the goal is to 

fuse the tracking results of sixteen tracking methods, which only requires the positions of bounding 

boxes as input, and achieve better tracking results in construction scenarios. The main steps of the 

fusion method has been illustrated in the Figure 3.3. For each frame, these are fifteen bounding 

boxes generated from sixteen tracking methods, which are the inputs in the fusion processing. First 

of all, these fifteen bounding boxes were imported by the attraction function, which is used for 

calculating the relationship between each bounding box and others. Then, five bounding boxes 

have been removed, which did not perform well in the attraction function. Moreover, these ten 

bounding boxes have been compared with previous bounding box in last frame by the similarity 

function. The similarity function was used to generate weights of ten bounding boxes, and each 

weight represent how similar it is with previous bounding box. Finally, these ten bounding boxes 

and weights have been fusion to one bounding box by adopting the non-maximum suppression 

method. This fusion method have been employed in all tested sequences in comparison works. 
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Figure 3.3: Flowchart of tracking fusion 
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3.2.1. Attraction function 

The attraction function is based on the idea that the stronger candidate will attract other 

candidates and be closer with others. In this study, the attraction function considered not only the 

distance but also the area between each two bounding boxes. The attraction function is calculated 

as the Eq. 6 and 7. 

𝑑(𝑏𝑗 , 𝑐) =
𝑂𝑆(𝑏𝑗,𝑐)

𝐴𝑟𝑒𝑎𝐿 𝐴𝑟𝑒𝑎𝑆⁄
                                                         (Eq.6) 

𝑎(𝑐) = ∑ 𝑑(𝑏𝑗, 𝑐)𝑗∈𝑀                                                            (Eq. 7) 

In the equation, the 𝑏𝑗 represents the bounding box from a tracking method except the c. 

The 𝑂𝑆(𝑏𝑗, 𝑐) means the Overlap Score of bounding box c and the bounding box 𝑏𝑗 . The 𝐴𝑟𝑒𝑎𝐿 

is the larger Area of these two bounding boxes, while the 𝐴𝑟𝑒𝑎𝑆 is the smaller Area of two 

bounding boxes. M represents the tracking methods adopted in this study and  𝑎(𝑐) is the attraction 

of bounding box c. For each bounding box in each frame, the attraction has been calculated 

according to the Eq. 6 and Eq. 7, and the larger attraction has been assumed the better performance. 

After the calculation of attraction, five bounding boxes that did not perform well have been 

removed and the rest of ten bounding boxes were imported into the similarity function. 

3.2.2. Similarity function 

The similarity function is used to calculate the similarity of each candidate and the tracked 

results in the previous frame. In this study, the structural similarity index method (SSIM) (Wang 

et al. 2004) has been adopted. The SSIM is based on three terms comparison between two images, 

which are the luminance term, the contrast term, and the structural term. The main function of 

SSIM has been demonstrated in the Eq. 8-Eq. 11. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾            (Eq. 8) 
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𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
                                                         (Eq. 9) 

𝑐(𝑥, 𝑦) =
2𝛿𝑥𝛿𝑦+𝐶2

𝛿𝑥
2+𝛿𝑦

2+𝐶2
                                                         (Eq. 10) 

𝑠(𝑥, 𝑦) =
2𝛿𝑥𝑦+𝐶3

𝛿𝑥𝛿𝑦+𝐶3
                                                         (Eq. 10) 

The 𝐶1, 𝐶2, 𝑎𝑛𝑑 𝐶3 are default parameters, where 𝜇𝑥, 𝜇𝑦, 𝛿𝑥, 𝛿𝑦, 𝑎𝑛𝑑 𝛿𝑥𝑦 are the local 

means, standard deviations, and cross-covariance for images x, y. After calculating the similarity 

of each candidate and the tracked result in the last frame, the SSIM outputs a value from zero to 

one. This value is considered as weight and used in the non-maximum suppression process. 

3.2.3. Non-maximum suppression 

 The non-maximum suppression (NMS) is formulated as local maximum search, which 

means to find a local maximum is greater than all its neighbors (Neubeck and Luc 2006). The 

NMS has been widely used in objection detection in order to get the proper bounding box when 

there are multiple bounding boxes. The main idea of NMS is to sort all bounding boxes according 

to their area. The bounding box with largest area has been selected and compared with others. If 

the overlap region of two bounding boxes is smaller than a threshold (0.9), the smaller bounding 

box will be suppressed. Otherwise, the overlap region will be the new bounding box and compare 

with next bounding box to repeat this process. However, this method has some limitation if it is 

used in this study directly. It is because the NMS is starting from the largest bounding box and it 

is easily to make mistakes if the beginning box cannot represent the object. In this study, the 

weights generated from similarity process have been implemented in the NMS. It means the NMS 

starts the fusion from the abounding box with largest weight or possibility.  
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3.3.  Part-based Tracking 

The tracking of articulated construction equipment is a challenging in the construction 

scenarios. It was found that that most visual tracking methods could track the articulated equipment 

with the similar performance of tracking the un-articulated one, when the articulated equipment 

was just moving from one place to another on the construction site, such as Excavator1, 

Excavator2, and Excavator5. However, when an excavator is excavating, a lot of self-occlusions 

are produced due to its boom movements. These self-occlusions significantly impact the tracking 

performances (Excavator 3 and Excavator 4) and results in non-effective tracking. The Figure 1.2 

shows an example tracking performance of an excavator. 

Generally, an excavator includes four mainly tracking components: boom, dipper, bucket 

and “house” (driving cab). The single-objects tracking algorithms usually focus on the house of 

the excavators because this component has biggest area and moves slowly, when the buckets move 

fast and hard to be predicted. Therefore, there are two initial tracking boxes adopted in this study, 

which is showed in the Figure 3.4. The first part is the “house” and grab rails, and the second part 

is bucket and dipper. And we find the two tracking boxes can always reflect the tracking box of 

the whole excavator. Then, two bounding boxes have been combined together as the final tracking  

result. 

 

 

 

 

 

Figure 3.4: Example of initial positions of tracking boxes 
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The first part (cab and rails) is relatively easy to track, while the second part (bucket and 

dipper) is harder to track due to the fast moving and self-occlusions in earth moving works. In this 

study, one better accuracy tracking method in the comparison work has been used to track the cab 

and trails part. Meanwhile, top five tracking methods have been adopted to track the bucket part 

for seeking the better performance and avoiding the invalid tracking of articulated equipment. The 

five part-based tracking methods have been tested on the Excavator sequences and adopted the 

same evaluation strategy as the comparison work. 
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CHAPTER 4:  RESULTS AND DISCUSSION 

The tracking methods for the comparison in this research study were all implemented and 

tested in the Matlab R2014b platform under the 64-bit operating system, Microsoft Windows 7 

Enterprise. The main hardware configuration includes an Intel® i7-4720HQ CPU (central 

processing Unit) @2.60 GHz, a 16 gigabytes memory, and an NVIDIA® GeForce® GTX 965M 

with 2GB GDDR5 Graphic Processing Unit. In this chapter, there are four sections. The results of 

comparison will be introduced at the first. Then, the results of tracking fusion and part-based 

tracking will be reported. In the final section, the discussion based on the previous results will be 

illustrated.  

 

4.1. Visual Tracking Comparison Results 

The detailed tracking results are summarized in Table 4.1. In all fifteen tracking methods 

tested and compared in this research study, the ASLA (Jia et al. 2012), SCM (Zhong et al. 2014), 

MTT (Zhang et al. 2012), L1APG (Bao et al. 2012), CSK (Henriques et al. 2012) and DFT (Sevilla-

Lara & Learned-Miller 2012) tracking methods were noted to achieve the overall better 

performance in both accuracy and robustness than the others. In order to statistically validate this 

finding, the paired two samples t-tests (Simonoff 2002) were further conducted to calculate the 

corresponding confidence levels. The t-test results were summarized in Table 4.2. For example, it 

could be seen that the confidence levels to accept that the ASLA (Jia et al. 2012) method was 

overall better than the STC (Zhang et al. 2014), KCF (Henriques et al. 2015), DCF (Henriques et 

al. 2015), TLD (Kalal et al. 2010), LOT (Oron et al. 2015), RPT (Li et al. 2015), CNT (Zhang et 

al. 2016), CF2 (Ma et al. 2015), and DLT (Wang et al. 2013) methods reached 95% in this study. 
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Backhoe 

AOS 0.82 0.79 0.80 0.76 0.78 0.74 0.85 0.72 0.81 0.77 0.82 0.74 0.80 0.76 0.69 

CER 0.03 0.02 0.02 0.06 0.04 0.04 0.03 0.06 0.03 0.22 0.03 0.06 0.03 0.03 0.14 

TL 0.35 0.40 0.41 0.41 0.41 0.51 0.25 0.51 0.39 1.00 0.36 0.41 0.38 0.26 1.00 

Car 

AOS 0.90 0.86 0.92 0.65 0.88 0.73 0.72 0.73 0.89 0.86 0.90 0.85 0.92 0.72 0.72 

CER 0.06 0.07 0.05 0.26 0.05 0.08 0.04 0.08 0.06 0.08 0.05 0.08 0.05 0.04 0.12 

TL 1.00 1.00 1.00 0.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.71 

Truck 

AOS 0.85 0.81 0.81 0.75 0.82 0.65 0.73 0.65 0.81 0.86 0.82 0.81 0.85 0.76 0.77 

CER 0.10 0.15 0.11 0.25 0.13 0.10 0.09 0.11 0.11 0.14 0.13 0.18 0.10 0.11 0.21 

TL 0.87 0.57 0.85 0.33 0.64 0.36 0.25 0.45 0.77 0.80 0.72 0.48 0.93 0.43 0.36 

Compactor 

AOS 0.84 0.82 0.82 0.79 0.83 0.69 0.83 0.71 0.80 0.86 0.81 0.75 0.84 0.76 0.76 

CER 0.06 0.05 0.07 0.09 0.05 0.07 0.07 0.06 0.07 0.14 0.06 0.12 0.06 0.05 0.15 

TL 0.58 0.54 0.53 0.63 0.54 0.55 0.61 0.64 0.56 0.36 0.57 0.38 0.67 0.58 0.36 

Excavator 

AOS 0.82 0.85 0.81 0.86 0.80 0.81 0.80 0.81 0.83 0.81 0.83 0.76 0.83 0.72 0.77 

CER 0.10 0.08 0.08 0.12 0.17 0.16 0.05 0.14 0.10 0.11 0.09 0.19 0.09 0.09 0.18 

TL 0.74 0.86 0.84 0.71 0.63 0.86 0.47 0.71 0.74 0.72 0.74 0.71 0.70 0.51 0.58 

Worker 

AOS 0.85 0.83 0.74 0.80 0.82 0.72 0.55 0.73 0.81 0.78 0.82 0.78 0.80 0.72 0.74 

CER 0.13 0.10 0.17 0.14 0.10 0.11 0.20 0.12 0.10 0.12 0.10 0.12 0.12 0.09 0.17 

TL 0.72 0.57 0.60 0.76 0.65 0.58 0.14 0.55 0.64 0.57 0.70 0.56 0.62 0.60 0.30 

Average 

AOS 0.84 0.83 0.79 0.80 0.82 0.73 0.68 0.74 0.82 0.81 0.82 0.78 0.83 0.73 0.75 

CER 0.10 0.09 0.12 0.14 0.11 0.11 0.12 0.11 0.09 0.12 0.09 0.14 0.10 0.08 0.17 

TL 0.72 0.65 0.69 0.64 0.65 0.64 0.33 0.61 0.67 0.65 0.70 0.58 0.68 0.56 0.44 

Table 4.1: Overall tracking performance (top five were identified with bold) 
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ASLA (Jia et al. 2012) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

SCM (Zhong et al. 

2014) 
0.95 0.95 0.95 0.95 0.85 0.95 0.90 0.90 0.95 

MTT (Zhang et al. 

2012) 
0.95 0.95 0.95 0.95 0.95 0.95 0.90 0.90 0.95 

L1APG (Bao et al. 

2012) 
0.95 0.95 0.95 0.95 0.90 0.95 0.90 0.90 0.95 

CSK (Henriques et al. 

2012) 
0.95 0.95 0.95 0.95 0.90 0.95 0.90 0.90 0.95 

DFT (Sevilla-Lara & 

Learned-Miller, 2012) 
0.95 0.95 0.95 0.95 0.85 0.95 0.90 0.90 0.95 

Table 4.2: Confidence level for the overall performance comparison 

Attributes-based Performance: In addition to the overall performance, the performance of the 

tracking methods in each attribute was also considered. OCC is one of the most common 

challenges in construction sites. In the test video sequences, there are three OCC levels: heavy 

(Worker 8 and 9), moderate (Worker 4), and slight (Truck 1 and Compactor 1). Figure 4.1 shows 

the examples of the targets under three OCC levels and the tracking results of OCC have been 

showed in the Figure 4.2.  

 

Figure 4.1. Description of different occlusion categorizes 
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Figure 4.2. Tracking performance of OCC 

In this study, the ASLA (Jia et al. 2012), DFT (Sevilla-Lara and Learned-Miler, 2012), 

SCM (Zhong et al. 2014), CSK (Henriques et al. 2012), CF2 (Ma et al. 2015), L1APG (Bao et al. 

2012) and LOT (Oron et al. 2015) methods showed the relatively robust and accurate tracking 

performance under OCC conditions. Similar to the overall performance comparison, the paired 

two samples t-tests (Simonoff, 2002) were also conducted and the results were summarized in 

Table 4.3. It could be seen that the 95% confidence level were achieved to accept that the ASLA 

(Jia et al. 2012), DFT (Sevilla-Lara and Learned-Miler, 2012), SCM (Zhong et al. 2014), CSK 

(Henriques et al. 2012), CF2 (Ma et al. 2015), L1APG (Bao et al. 2012) and LOT (Oron et al. 

2015) methods were better than the STC (Zhang et al. 2014), KCF (Henriques et al. 2015), DCF 

(Henriques et al. 2015), TLD (Kalal et al. 2010), MTT (Zhang et al. 2012), RPT (Li et al. 2015), 

CNT (Zhang et al. 2016), and DLT (Wang et al. 2013) methods in handling occlusions. In contrast, 

the confident levels to accept that these methods are better than MTT (Zhang et al. 2012) method 

under occlusion conditions only range from 60% to 90%.  
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Table 4.3. Confidence level for the OCC performance comparison 

As for handling IV, the ASLA (Jia et al. 2012) and CSK (Henriques et al. 2012) were better 

than the others. The tracking results of IV have been summarized in the Figure 4.3. The results 

from the paired two samples t-tests (Simonoff, 2002) in Table 4.4 showed 90% ~ 95% confident 

levels to accept that the ASLA (Jia et al. 2012) and CSK (Henriques e t al. 2012) methods were 

better, when being compared with the STC (Zhang et al. 2014), KCF (Henriques et al. 2015), DCF 

(Henriques et al. 2015), TLD (Kalal et al. 2010), DFT (Sevilla-Lara and Learned0Miller, 3012), 

MTT (Zhang et al. 2012), SCM (Zhang et al. 2014), LOT (Oron et al. 2015), RPT (Li et al. 2015), 

CF2 (Ma et al. 2015), and DLT (Wang et al. 2013) methods. The confident levels were 80% when 

the ASLA (Jia et al. 2012) and CSK (Henriques e t al. 2012) methods were better than the L1APG 

(Bao et al. 2012) and CNT (Zhang et al. 2016) methods under IV conditions. 
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ASLA (Jia et al. 

2012) 
0.95 0.95 0.95 0.95 0.80 0.95 0.95 0.95 

DFT (Sevilla-

Lara & Learned-

Miller, 2012) 

0.95 0.95 0.95 0.95 0.90 0.95 0.95 0.95 

SCM (Zhong et 

al. 2014) 
0.95 0.95 0.95 0.95 0.85 0.95 0.95 0.95 

CSK (Henriques 

et al. 2012) 
0.95 0.95 0.95 0.95 0.85 0.95 0.95 0.95 

CF2 (Ma et al. 

2015) 
0.95 0.95 0.95 0.95 0.60 0.95 0.95 0.95 

L1APG (Bao et 

al. 2012) 
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LOT (Oron et al. 

2015) 
0.95 0.95 0.95 0.95 0.90 0.95 0.95 0.95 
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 Figure 4.3: Tracking performance of IV 

 

 

Table 4.4: Confidence level for the IV performance comparison 

     The results under the BC and MB conditions were similar. It was found that the ASLA (Jia et 

al. 2012), L1APG (Bao et al. 2012), CSK (Henriques et al. 2012), and MTT (Zhang et al. 2012) 

methods outperformed the others. In the SV conditions, the better ones were the ASLA (Jia et al. 

2012), CSK (Henriques et al. 2012), and SCM (Zhang et al. 2014) methods. The confidence levels 

from the corresponding paired two samples t-tests (Simonoff, 2002) were shown in Table 4.5 and 
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et al. 

2012) 
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s et al. 

2012) 
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Table 4.6. And the tracking results of MB, BC, and SV have been summarized in the Figure 4.4, 

Figure 4.5, and Figure 4.6 respectively. 

Figure 4.4: Tracking performance of MB 

 

Figure 4.5: Tracking performance of BC 
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Figure 4.6: Tracking performance of SV 
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2016) 
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L1APG (Bao et al. 

2012) 
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MTT (Zhang et al. 

2012) 
0.95 0.95 0.95 0.95 0.70 0.70 0.95 0.95 0.75 0.95 

 

Table 4.5: Confidence level for the BC performance comparison 
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ASLA (Jia et al. 

2012) 
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CSK (Henriques et 

al. 2012) 
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SCM (Zhong et al. 

2014) 
0.95 0.95 0.95 0.95 0.95 0.95 0.80 0.95 0.95 0.95 0.95 0.80 

Table 4.6: Confidence level for the SV performance comparison 

 

 

 

 

 

 

 

4.2. Fusion of Tracking Results 

The detailed tracking results of fusion are summarized in Table 4.7.  Comparing with other 

fifteen tracking methods tested in this research study, the fusion method has shown better 

performance than top tracking methods, such as ASLA (Jia et al. 2012), SCM (Zhong et al. 2014), 

MTT (Zhang et al. 2012), L1APG (Bao et al. 2012), CSK (Henriques et al. 2012) and DFT (Sevilla-

Lara & Learned-Miller 2012) in accuracy. It is noticed that the fusion methods has increased the 

tracking performance over 10% in AOS than the better tracking method in each sequence. On the 

other hand, the fusion method has not shown better performance in the robustness evaluation 

criteria. In most sequences, the fusion method ranks the top five performance in TL, while it ranks 

lower in some sequences
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Backhoe 

AOS 0.82 0.79 0.80 0.76 0.78 0.74 0.85 0.72 0.81 0.77 0.82 0.74 0.80 0.76 0.69 0.90 

CER 0.03 0.02 0.02 0.06 0.04 0.04 0.03 0.06 0.03 0.22 0.03 0.06 0.03 0.03 0.14 0.02 

TL 0.35 0.40 0.41 0.41 0.41 0.51 0.25 0.51 0.39 1.00 0.36 0.41 0.38 0.26 1.00 0.41 

Car 

AOS 0.90 0.86 0.92 0.65 0.88 0.73 0.72 0.73 0.89 0.86 0.90 0.85 0.92 0.72 0.72 0.95 

CER 0.06 0.07 0.05 0.26 0.05 0.08 0.04 0.08 0.06 0.08 0.05 0.08 0.05 0.04 0.12 0.03 

TL 1.00 1.00 1.00 0.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.71 1.00 

Truck 

AOS 0.85 0.81 0.81 0.75 0.82 0.65 0.73 0.65 0.81 0.86 0.82 0.81 0.85 0.76 0.77 0.93 

CER 0.10 0.15 0.11 0.25 0.13 0.10 0.09 0.11 0.11 0.14 0.13 0.18 0.10 0.11 0.21 0.05 

TL 0.87 0.57 0.85 0.33 0.64 0.36 0.25 0.45 0.77 0.80 0.72 0.48 0.93 0.43 0.36 0.68 

Compactor 

AOS 0.84 0.82 0.82 0.79 0.83 0.69 0.83 0.71 0.80 0.86 0.81 0.75 0.84 0.76 0.76 0.92 

CER 0.06 0.05 0.07 0.09 0.05 0.07 0.07 0.06 0.07 0.14 0.06 0.12 0.06 0.05 0.15 0.03 

TL 0.58 0.54 0.53 0.63 0.54 0.55 0.61 0.64 0.56 0.36 0.57 0.38 0.67 0.58 0.36 0.61 

Excavator 

AOS 0.82 0.85 0.81 0.86 0.80 0.81 0.80 0.81 0.83 0.81 0.83 0.76 0.83 0.72 0.77 0.85 

CER 0.10 0.08 0.08 0.12 0.17 0.16 0.05 0.14 0.10 0.11 0.09 0.19 0.09 0.09 0.18 0.06 

TL 0.74 0.86 0.84 0.71 0.63 0.86 0.47 0.71 0.74 0.72 0.74 0.71 0.70 0.51 0.58 0.81 

Worker 

AOS 0.85 0.83 0.74 0.80 0.82 0.72 0.55 0.73 0.81 0.78 0.82 0.78 0.80 0.72 0.74 0.88 

CER 0.13 0.10 0.17 0.14 0.10 0.11 0.20 0.12 0.10 0.12 0.10 0.12 0.12 0.09 0.17 0.05 

TL 0.72 0.57 0.60 0.76 0.65 0.58 0.14 0.55 0.64 0.57 0.70 0.56 0.62 0.60 0.30 0.68 

Average 

AOS 0.84 0.83 0.79 0.80 0.82 0.73 0.68 0.74 0.82 0.81 0.82 0.78 0.83 0.73 0.75 0.91 

CER 0.10 0.09 0.12 0.14 0.11 0.11 0.12 0.11 0.09 0.12 0.09 0.14 0.10 0.08 0.17 0.06 

TL 0.72 0.65 0.69 0.64 0.65 0.64 0.33 0.61 0.67 0.65 0.70 0.58 0.68 0.56 0.44 0.68 

Table 4.7: Overall tracking performance with fusion method (the results of fusion method were identified with bold) 
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4.3. Part-based Tracking Results 

In this study, the two parts based tracking was applied. The overall accuracy tracking 

method ASLA (Jia et al. 2012) was selected to track the part of cab and trails. Meanwhile, five 

tracking methods, ASLA (Jia et al. 2012), CNT (Zhang et al. 2016), CF2 (Ma et al. 2015), MTT (Zhang 

et al. 2012), and SCM (Zhong et al. 2014), which perform well in overall robustness criteria, have 

been selected to track the part of bucket. Then, the two parts tracking results have been combined 

together and named AS-ASLA, AS-CNT, AS-CF2, AS-MTT, and AS-SCM. These five part-based 

tracking methods have been applied in the Excavator sequences and compared with six tracking 

methods, which perform overall better in comparison parts. The comparison results have been 

indicated in the Table 4.8. 
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Excavator1 

AOS 0.75 0.88 0.79 0.88 0.77 0.75 0.91 0.88 0.90 0.85 0.92 

CER 0.08 0.09 0.15 0.09 0.12 0.08 0.05 0.07 0.09 0.10 0.04 

TL 1.00 1.00 0.61 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 

Excavator2 

AOS 0.84 0.91 0.90 0.85 0.88 0.91 0.94 0.90 0.91 0.88 0.90 

CER 0.04 0.03 0.04 0.15 0.04 0.04 0.03 0.05 0.05 0.07 0.05 

TL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Excavator3 

AOS 0.77 0.67 0.68 0.70 0.72 0.67 0.86 0.86 0.88 0.85 0.88 

CER 0.14 0.11 0.15 0.13 0.12 0.15 0.04 0.06 0.06 0.08 0.05 

TL 0.3 0.28 0.27 0.29 0.28 0.27 1.00 1.00 1.00 1.00 1.00 

Excavator4 

AOS 0.78 0.78 0.87 0.79 0.80 0.88 0.91 0.88 0.92 0.87 0.88 

CER 0.19 0.12 0.19 0.19 0.17 0.19 0.08 0.09 0.12 0.12 0.08 

TL 0.41 1.00 0.27 0.40 0.40 0.26 1.00 1.00 1.00 1.00 1.00 

Excavator5 

AOS 0.94 0.99 0.75 0.95 0.97 0.96 0.98 0.95 0.94 0.94 0.95 

CER 0.04 0.05 0.31 0.05 0.02 0.02 0.02 0.02 0.03 0.05 0.02 

TL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Average 

AOS 0.82 0.85 0.80 0.83 0.83 0.83 0.92 0.89 0.91 0.88 0.91 

CER 0.10 0.08 0.17 0.12 0.09 0.10 0.04 0.06 0.07 0.09 0.05 

TL 0.74 0.86 0.63 0.74 0.74 0.69 1.00 1.00 1.00 1.00 1.00 

Table 4.8: Tracking performance of part-based methods 
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     It was noticed that the single object tracking methods have shown reliable performance in 

tracking Excavator1, Excavator2, and Excavator5. In these three sequences, the excavators were 

moving from one place to another. In test video sequences of Excavator 3 and Excavator 4, the 

equipment were excavating and the performance of single object tracking methods have decreased 

a lot, especially in tracking length. The proposed part-based tracking methods have gained much 

better performance than single tracking methods in both robustness and accuracy. In fact, the AS-

ASLA methods have achieved the better performance than others in tracking excavators in this 

study. 

4.4. Discussions 

In the visual tracking comparison section, those six methods with better overall tracking 

performances, four of them relied on the sparse representations, either local or holistic. On the 

other hand, the overall tracking performance for most of the methods without adopting the sparse 

representation strategy was not promising. Therefore, it indicated that the methods built upon the 

sparse representations might be more effective when tracking the targets in the construction 

scenarios. This may be because the sparse representation followed a natural, biological manner to 

simulate how human eyes capture objects; and the dictionary learning adopted in the sparse 

representation helped to build a low-rank, simplified representation model to describe a complex 

object in the scene (Zhang et al. 2015). As a result, most of the methods built upon the spare 

representations in this research study could effectively handle multiple challenging factors, such 

as illumination changes, occlusions, etc., when being tested to track construction targets.  

     Compare with the finding of computer vision community, it found that tracking methods 

that perform better in computer vision always perform well in construction sites. But there still has 

some difference. The ASLA showed the better performance under each attribute in construction 
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sites, while this method did not perform so well in Motion Blur in the OTB benchmark. Also, the 

TLD method has shown good performance in OTB benchmark, and it performed as one of the 

worst methods in this study.  

     Also, it was found that most tracking methods based on discriminative classifiers did 

not perform well in the construction scenarios, although their effectiveness has been proved in the 

computer vision community. The reason behind is partly because the construction scenarios are 

always severely cluttered with materials, equipment, tools, and workers. They are more complex 

than the test scenarios of existing benchmarks in the computer vision community. Discriminative 

tracking methods mainly conducted the target tracking by differentiating it from the test video 

sequence background. The complexity in the construction scenarios affected the differentiative 

effectiveness. The SCM method adopted a hybrid framework of using generative and 

discriminative classifiers. As a result, its overall tracking performance was ranked 2nd in AOS, 

5th in CER, and 4th in TL. In addition, the tracking methods that adopted deep learning did not 

perform well in this study; however, they still have huge potentials, especially when being used to 

track construction targets under severe occlusions. For example, it was found that the CF2 method 

could keep tracking the targets even when they were temporarily out of view for a short period of 

time.   

In this study, a new tracking fusion method has been proposed, which is aiming to combine 

the tracking results of multiple tracking methods to produce the better results. This method is based 

on the attraction function, similarity function and non-maximum suppression. Moreover, it does 

not rely on any pre-processes and would be suitable for fusion any kinds of tracking methods. It 

could be found that this fusion methods have increased the accuracy performance over 10% for all 

testing sequences. Meanwhile, this fusion method have not shown a huge improvement in 
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robustness. This may because that the fusion method is tend to close the majority tracking area and 

it is easy to fail once most of tracking methods fail. 

     The tracking of articulated construction equipment is still challenging in the 

construction scenarios. The video sequences adopted for the tests include excavators and backhoes. 

It was found that that most visual tracking methods under the tests could track the articulated 

equipment with the similar performance of tracking the un-articulated one, when the articulated 

equipment was just moving from one place to another on the construction site. For example, the 

excavators were moving without occlusions in the test video sequences of Excavator 1, Excavator 

2, and Excavator 5. However, when an excavator is excavating, a lot of self-occlusions are 

produced due to its boom movements. These self-occlusions significantly impact the tracking 

performances, as shown under the evaluation criteria of tracking length. Take the test video 

sequences of Excavator 3 as an example.  As for the video sequence of Excavator 3, there were no 

tracking methods that completed the tracking of the excavator in the whole video sequence. The 

highest TL was 0.3, achieved by the ALSA method.  

The proposed part-based methods have significantly enhanced the excavator tracking 

performance in both robustness and accuracy in this study. In fact, this concept also could be used 

in tracking other equipment. The two parts methods can be changed to three, four or more parts in 

order to track more complex equipment and activities in construction. On the other hand, the 

single- object methods used in this study can be replaced with other better performed trackers and 

it is supposed to receive better results. However, there exist certain limitations for part-based 

tracking. When the target is divided into some parts, it is easier to lose the quickly moving part 

and results in the decrease of robustness. And the part-based method may not make breakthroughs 

in tracking occlusions because it cannot exceed the ability of original tracking method 
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CHAPTER 5:  CONCLUSIONS AND FUTUER WORKS 

Visual tracking technologies are becoming more and more important in the modern 

construction sites and could be used in productivity analysis, material tracking, and safety 

monitoring. However, few efforts have been put on evaluating the accuracy and robustness of these 

tracking methods in the construction scenarios. Also, there still remains problems that current 

tracking methods have not shown reliable performance in tracking articulated equipment, such as 

excavators, backhoes, and dozers etc. 

This study proposed a comparative study of 2D visual tracking methods in the construction 

scenarios. A total of fifteen visual tracking methods from the computer vison community were 

selected for the comparison purpose. These methods were tested with twenty video sequences, 

which contain various construction resources of interest, including excavators, workers, backhoes, 

and compactors. All the video sequences were annotated manually to build the ground truths and 

characterized by the attributes (i.e. OCC, IV, BC, MB, and SV) to evaluate the tracking methods 

in quantitative and detailed manner. The paired two samples t-tests were also conducted to 

statistically validate the results. According to the quantitative comparison of tracking methods, 

two improvements were further conducted. One is to fuse the tracking results of individual tracking 

methods through the framework, which is based on the attraction function, similarity function and 

non-maximum suppression. The other improvement is to track the articulated equipment 

(excavators as an example) by the idea of part-based tracking.      

The comparison results in this research study showed that the ASLA, SCM, MTT, L1APG, 

CSK, and DFT methods overall performed better than the others. Most of them relied on the sparse 

representations and generative classifiers to implement the visual tracking. The testing results of 

the fusion of tracking have indicated that the fusion method is a strong framework in enhancing 
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the tracking accuracy and could be used to fuse the results of any tracking methods. In addition, 

the proposed part-based tracking methods have improved the tracking performance in both 

accuracy and robustness, when being used to track the articulated equipment. 

    Our future work will focus on extending the construction datasets and tracking methods 

in order to test more novel methods on more complex and challenging scenarios. Meanwhile, the 

part-based methods need to be tested on more videos which recoded from different views. On the 

other hand, it is noticed that the tracking systems are becoming diversified. And the difference 

between tracking and other vision-based technologies has been decrease. It should also be thought 

that how to combine other vision-based technologies in future tracking systems. 
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