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Abstract

Spatial Augmented Reality in Outdoor Areas using Long-Range Vision Systems

Behnam Maneshgar

Projection mapping [also known as Spatial Augmented Reality] is a well known augmented reality technique

which changes the appearance of the physical, real-world environment by projecting media on them. Pro-

jection Mapping is currently used in a variety of applications and it is increasingly becoming more popular.

In this research, we investigate the use of computer graphics and computer vision techniques that can enable

us to create an immersive augmented reality environment in an outdoor setting with large number of par-

ticipants. Specifically, we address long range projection of stereoscopic media in anaglyph format. This is

inexpensive and less intrusive among user immersion technologies, since participants have only to wear low

cost anaglyph glasses. Since the projection surface is at a long distance, and is a real world object(s), and

there is always ambient lighting, there are many challenges. These include calibration of the cameras and

projectors, modeling the projection surface(s) geometry and light behavior and transforming the projection

media to compensate for the surface properties. We address these problems and propose an innovative new

framework which uses image-based techniques for automatic calibration, geometry and appearance proper-

ties capture, and a simulation based technique for creating compensated media. We have implemented our

framework and demonstrate its effectiveness through multiple user studies in real world settings.
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Chapter 1

Introduction

Spatial Augmented Reality, or its more commonly known name Projection Mapping (PM), is a projection

technique which transforms a real-life object or scene into a surface for video projection [RWF98]. Although

this technique has been pioneered and used by Disney since the seventies, it is only in recent years that it has

gained significant popularity due to the availability of specialized software which simplifies the otherwise

cumbersome calibration process [RWC+98]. Currently, PM is being widely used in advertising, marketing,

cultural events, live performances, theater, etc as a way of enhancing an object/scene by superimposing visual

content [RRL+14].

Stereoscopic content is one step further in PM. More detail can be exposed by adding one more dimension

to the content. Perhaps the most popular proposed method to generate stereoscopic content is the anaglyph

3D. The anaglyph 3D demonstrates the disparity using two different colours, typically red and cyan. The

anaglyph 3D media is created by blending two differently filtered coloured views of the scene one for each

eye. Viewers perceive depth by wearing anaglyph 3D glasses which filters the view which is not intended for

each eye [Wika]. In contrast with passive and active vision technologies, anaglyph 3D does not impose any

additional requirements such as the number of projectors needed [as in the case of polarized stereo or active

stereo which require two], expensive active vision/shutter glasses which also have a limited usage time-span

due to recharging requirements, or expensive passive stereo glasses with polarized optics.

Hence, in comparison with the other available techniques, it is no surprise that the anaglyph 3D is

still the most popular technique for creating stereoscopic content, primarily due to its simplicity and cost-

effectiveness. The creation of an anaglyph 3D involves the encoding of two images, one for each eye, with

different colors. Historically, the colors which have been used are red and cyan. The viewer can then perceive

3D with the use of anaglyph glasses: glasses which have one red and one cyan lens. Each colored-lens allows

only the image which is encoded with the same color to pass through therefore ensuring that only one image

is seen by each eye. The brain, and in particular the visual cortex, fuses the two images seen by the eyes into

the perception of a three-dimensional scene.

Anaglyph stereoscopic content has been successfully used in demonstrating scientific results [mar], vi-

sualizing maps [BR09] health [RGVP+14], and also used as an easy way of presenting 3D content on-

line [Wik17]. More recently, researchers from several fields including artists, designers and computer scien-

tists among others, have begun exploring the potential of stereoscopic technologies with artistic practices.
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Figure 1: Projecting stereoscopic content onto Roman Bath building. The projection is done by our partner
”elasticspaces group” (leading by Dr. Leila Sujir). (a) shows the entrance of roman bath (b) shows same
place after projecting stereoscopic 3D content onto it.

Projecting onto outdoor surfaces such as building facades, poses several challenges. Firstly, the projec-

tion surface may be coloured (not necessarily white) and may also contain parts with complex reflectance

properties or low reflectivity which may interfere with the projected content. Secondly, to be able to account

for the occurrence of these types of object properties, one has to capture the geometry and light behavior

properties of the projection surface, which typically requires the use of a calibrated camera-projector system.

The calibration of the camera-projector system becomes a non-trivial task because of the long-range. Stan-

dard procedures such as those described in [Zha00, Tsa87] require that all optical systems are focused on the

calibration board/object. However, in the case of long-range outdoor projection, the camera-projector system

is focused on the projection surface which is located at a long distance away e.g. > 15m. Capturing images

of the calibration board from such a distance leads to poor coverage within the image which in turn results

in improper calibrations. On the other hand, capturing images by placing the calibration board at a shorter

distance leads to blurry images which again results in poor calibrations.

An early example of one of our outdoor projection mapping experiments is shown in Figure 1. In this: (a)

The projected media was stereoscopic. (b) The projector alignment was done manually. (c) The media was

not compensated for the projection surface properties. (d) The viewers were wearing anaglyph 3D glasses in

order to perceive depth. Objects with complex reflectance properties such as the windows and columns could

not be handled during the projection and resulted in color distortions to the red-cyan stereo content. This

caused loss of depth perception and noticeable visual artifacts. Yet the general audience response was quite

positive.

In this work, we address many of the problems of long range projection mapping of stereoscopic content

in outdoor areas and propose a complete framework which automates the following processes: (a) system

calibration, (b) structure and appearance information acquisition, (c) approximating model of projection sur-

face’s reflectance properties, and (d) color compensation to the extent possible with the given projection

surface. The result is compensated image/video content such that its projection onto the particular surface

will produce an image/video which, when viewed, will seem as close to the original as possible. This is, of

2



course, limited by the projection surface properties, as it may not always be possible to completely compen-

sate for the surface reflectance behavior.

We have proposed two different approaches to improve the quality of long-range stereoscopic projection

mapping in outdoor areas. In the first approach, which we term as the Fixed Camera approach, we present

a solution which uses a minimum of 3 fixed video cameras and a fixed long range projector. Using this

setup, we present a complete framework for calibration, geometry acquisition and reconstruction, estimation

of reflectance properties, and finally color compensation; all within the context of outdoor long-range PM

of stereoscopic content. Using the proposed technique, the observed projections are as close as possible

[constrained by hardware limitations] to the actual content being projected; therefore ensuring the perception

of depth and immersion when viewed with stereo glasses. The 3 standard fixed video cameras are used to

reconstruct the geometry and to capture reflection samples from the scene.

Computing reflectance properties of the scene is a model fitting problem which means the more samples,

the more accurate result. However, in the Fixed Camera approach utilizing a large number of cameras to have

different samples from the scene is time consuming and expensive while the risk of confusion due to multiple

samples from different cameras is higher as well. Therefore, we proposed the second approach, termed the

Roving Camera approach, which overcomes the sampling problem. This system is composed of 2 standard

fixed video cameras, a long range fixed projector, and a roving video camera for multi-view capture. While

most of the time, we have used two fixed cameras, one on each side of the projector, in cases when we have

too many holes in 3D reconstruction caused by self-occlusions, we have experimented with a third camera on

top, and it has worked very well.

In both of the above methods, the overall computational framework comprises of four modules: (a)

calibration of a long-range vision system without the need for calibration boards, (b) dense 3D reconstruction

of projection surface geometry from the multiple calibrated camera images, (c) modeling of the reflectance

properties of the projection surface from roving camera images and, (d) the adjustment of the stereoscopic

content in an iterative manner. In addition to cleverly adapting established computer vision techniques, our

principal contribution is the system design which is distinct from previous work. The proposed methods have

been implemented and tested in real-world applications. The methods have been experimentally evaluated

in real and/or simulated environments. Specifically, the Roving Camera method has been evaluated via three

non-trivial user experience studies in public places uses stereo projection onto building facades after dark.

The results are reported and show considerable improvement in the quality of perception of the projected

media and immersion in the augmented reality space.
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Chapter 2

Background

In this chapter we present related work in the following order. First, the existing methods and techniques for

projection mapping and for controlling the appearance of objects have been reviewed. Then, the basic tech-

niques required for projection mapping including camera calibration, geometry acquisition, and reflectance

properties are explained.

2.1 Review of Related Work

Many different methods have already been proposed for controlling and adjusting the appearance1 of pro-

jections onto various surfaces. The majority of which seem to work quite well for controlled environments.

Below we provide a brief review of earlier work which is close to our research objective.

Grossberg et al. [GPNB04] presented a method to control the appearance of small objects by using one

camera and one projector. In their work, the focus is primarily on the spectral responses, spatially varying fall-

offs, and non-linear responses in the projector-camera system which creates a high dependency between the

camera view and camera response. The computed radiometric model of the system is then used to calculate

the compensated image.

In a similar approach, Aliaga et al. [AYL+12] addressed appearance editing of an object using a projector.

Multiple projections are used to improve the resolution and compensate the images by reformulating the

problem as a constrained optimization. An elliptical Gaussian is used to model projector pixels and their

interaction between projectors.

Perhaps the closest work to that proposed here is in [BWEN05]. Bimber et al. introduced a view-

dependent stereoscopic projection for compensating distortions caused by the scene’s structure. They present

an elaborate process which involves computing of inverse light transport to create compensated images and

demonstrate the success in controlled environments.

A recent work was also done by Ahmed et al. [ALLL16]. They used multiple projectors to reproduce the

appearance of an object. Their system can achieve better black levels and less contrast compression.

Several works [BGJC14, BGJ+15, SCT+15] have addressed dynamic and moving scenes. One or more

projectors have been used to continuously compensate the projected image while the present objects are
1The appearance of objects is given by the object color, emitted light and object’s light reflection and transmission
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moving. Y. Zhou et al. [ZXT+16] recently introduced a method for dynamic objects. They use a Microsoft

Kinect and a projector for their setup. In the first stage, the system needs to be calibrated. Later they require

the 3D geometric model of the object either by scanning it or using a 3D printed object. Afterward, The

scene is scanned in real time using a kinect and gives the dense point cloud of the scene. By meshing and

registering the low-density version of the scanned scene, the authors find the position and rotation of the

object in the 3D coordinate system. In the next step, the texture of the virtual model is projected onto the

real object. Since white colored objects are used, no compensation is needed. Law et al. [LAS+11] have

attempted a perceptually-based object appearance modification. They partitioned the projection surface into

patches based on the target appearance colors to make it appear as similar as possible to the target.

All the aforementioned techniques have been shown to perform reasonably satisfactorily in cases in-

volving projections of non-stereoscopic content from short-ranges i.e. ≤ 3m. The primary reason is that,

the calibration procedure involved which for longer distances in uncontrolled environments produces poor

results; both in terms of geometric and radiometric calibration.

In general, the following steps are needed to compensate for projection on the objects/scenes. System

calibration is a fundamental step in most of the machine vision systems. Hence, in our case, the first step of

the pipeline is calibration of the system. Usually, one or more camera(s) and one projector are used in the

system, and they need to be geometrically calibrated with respect to each other. Next, the geometry of the

scene is acquired which allows for the per-scene-point normal computation. As it is known, the normal is

required for computing how a surface point reflects light. In addition to the normal, the scene’s reflectance

properties e.g. diffuse, specular, transparent, translucent, etc are also required for determining the reflected

light. Lastly, the media should be compensated based on the scene’s properties, both in terms of geometry and

surface reflectance properties, which have to be modeled. In the following sections, the background theory

of each stage of the pipeline is explained in detail.

2.2 Calibration

Cameras are an intrinsic component of any vision system. Since the late 20th century, the pinhole camera has

become very popular because of its simplicity and low cost of manufacturing. The pinhole camera model is

a mathematical model which describes the projection of 3D points into the image plane of a camera. Figure

2 shows the projection of a 3D object (tree) onto a 2D plane using an ideal pinhole camera model. For

simplicity, this model describes a camera without the lens, and therefore it does not simulate lens distortions.

A pinhole camera model can be described with two matrices; one describes Intrinsic parameters of the

camera like focal length and optical center expressed in pixel coordinates and the other one describes Ex-
trinsic parameters which consist of rotation and translation of the camera. The process of determining these

two matrices is called camera resectioning or commonly known as geometric camera calibration. In another

word, camera calibration is the estimation of location, orientation, lens parameters and sensor parameters of

a camera. Camera calibration has a significant role in the field of computer vision and robotics. Moreover,

accurate calibration is of crucial importance when dealing with long-range vision-projection systems, such as

in the case of long-range projection mapping. A small error in image space i.e. few pixels, can lead to large

displacements in the projected space. In this section, we describe our system calibration requirement, which

5



Figure 2: Pinhole camera model [Matb]

involves:

• the calibration of the cameras

• the pose recovery with respect to the cameras and intrinsic parameter calibration of the projector

2.2.1 Camera Calibration

The pinhole camera model is used to describe these parameters which are specified by the camera matrix C

in the Equation 1,

C =

⎡⎢⎢⎣
α −αcot(θ) u0

0 β

sin(θ) v0

0 0 1

⎤⎥⎥⎦
  

intrinsic

⎡⎢⎢⎣
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

⎤⎥⎥⎦
  

extrinsic

(1)

where α = k fx, β = k fy, ( fx, fy) is the focal length on the x and y-axis respectively, θ is the skew angle,

u0,v0 is the principal point on the x and y-axis respectively and r1−3, tx−z determine the camera’s rotation and

translation relative to the world. An ideal pinhole camera does not account for cameras with lenses, however,

real cameras are using complex lenses. Two different distortions have been proposed for camera lenses,

• Radial Distortion which appears when light rays bending amount is different from the center of the

camera sensor to the edges. Barrel distortion results when bending near the edges is more than at the

center, and Pincushion distortion happens if bending is more at the center of the camera. [Figure 3]

• Tangential Distortion occurs once the lens and camera image plane are not parallel to each other.

Lens distortion can be modeled by following parameters:

D =
[
k1 k3 P1 P2 k3

]⊤
(2)

Perhaps the most popular technique for calibrating a camera is the one proposed in Tsai et al. [Tsa87] and

extended in Zhang et al. [Zha00]. Given a set of points in world space and their corresponding image points,

one can recover both the intrinsic and extrinsic parameters of the camera. In the method proposed by Zhang
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Figure 3: Camera radial lens distortion [Mata]

et al. [Zha00], multiple images from an in-focus checkerboard in different poses of a known geometric object

are captured. Since a checker board is a collection of planar feature points, we can suppose that Z is the same

for all points on a checkerboard which could be equal to a constant Z = c = 0. Also, the top left corner of the

checkerboard is considered as the (0,0,0). Therefore the position of all the other corners of the checkerboard

can be calculated by the size of each square of the checkerboard. For example, if the size of each square is

5cm, we will have feature points like (0,0,0), (0,5,0), (10,5,0) in each pose of the checkerboard. Next, as

using 2D and 3D correspondences, camera parameters are recovered.

Figure 4: Captured image from a checker board for calibration.

Out Of Focus Calibration method

This method encodes feature points into phase shifting patterns being displayed on a monitor visible to the

cameras. The phase shifting patterns are a sequence of periodic intensity patterns. The patterns are shifted

equally in the sequence until it covers the entire period [PMS10].The feature points can then be accurately

decoded even when the captured images are blurred, because this does not affect the phase of the pattern

sequence. To encode the feature points, one vertical and one horizontal phase map are required in which each

vertical/horizontal line has a unique phase value [Figure 6]. Thus, each pixel appearing on the monitor has

a single pair of (Φv,Φh) to identify the feature. These phase maps are carried by the phase shifting fringe

patterns. Equation 3 is used to generate N equally phase-shifted vertical and horizontal fringe patterns (Figure
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5) and is given by,

Ii
v(u,v) = 0.5

[
1+ cos(Φv +2iπ/N)

]
,

Ii
h(u,v) = 0.5

[
1+ cos(Φh +2iπ/N)

] (3)

where i is the index of the fringe pattern, Φv and Φh represent the vertical and horizontal phase maps,

respectively. Equation 4 generates the vertical and horizontal phase map (Φv, Φh) in order, for point/ monitor

pixel (ud
0 , vd

0).

Φv(ud
0 ,v

d
0) = 2πud

0/Pv,

Φv(ud
0 ,v

d
0) = 2πud

0/Ph.
(4)

After projecting and capturing the patterns, the phase value of each pixel of the captured image sequence

extracts as follows,

φ(x,y) = tan−1

[
∑

N
i=1 Ii sin(2iπ/N)

∑
N
i=1 Ii cos(2iπ/N)

]
(5)

Where Ii is the intensity of a particular pixel in the ith captured image. This equation generates a non-

continuous wrapped phase map with values in the range of [−π,π]. Next, the phase maps are unwrapped to

produce a unique phase value for each of their columns/rows in the pattern. Adding an offset to each section of

the phase map generates an unwrapped phase map which has a unique phase value at each horizontal/vertical

pixel line as shown in the following equation,

Φ(x,y) = φ(x,y)+ k×2π (6)

After decoding of the correspondences, the camera can be calibrated using the traditional technique. The

result is the intrinsic and extrinsic parameters for each camera. The extrinsic parameters are given with

respect to the first (top-left) encoded feature point in the monitor.

Figure 5: Vertical (a) and Horizontal (b) Phase-shifting fringe patterns to be displayed by a monitor or TV.
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Figure 6: This figure shows the encoding process of the feature points.

Algorithm 1: Camera calibration and pose estimation using phase shifting.

1 generate vertical and horizontal fringe patterns
2 display and capture images from monitor at different poses
3 compute wrapped phase-map
4 calculate k in Equation 6
5 calculate unwrapped phase map
6 match the encoded feature points with the decoded phase map
7 calibrate camera using the traditional technique

Self Calibration

Self-Calibration is another technique for calibrating multiple cameras set-up. In this method, multiple cam-

eras observe a common scene, and by discovering 2D correspondences between the cameras, the camera

parameters of the system can be recovered. Svoboda et al. [SMP05] proposed a fully multi-camera self-

calibration method for virtual environments. They have a detectable bright spot in the working volume and

capture the volume with at least three synchronized cameras. These points are considered as correspondences

and are validated through pairwise epipolar constraints. The system is calibrated using these correspondences.

Structure from Motion (SfM) is a simple, powerful and robust vision based technique for estimating the

3D geometry of a 3D object. It receives a sequence of 2D images taken from the object by the camera and

recovers its 3D points. Briefly, Structure from motion first uses SIFT to find and match the feature points

of the image sequence. Therefore it can track ”P” points in ”F” frames. By having the correspondences

between the frames, SfM calibrates all the cameras/frames using a self-calibration method. Afterward, it

triangulates, and reconstructs a sparse geometry of the scene. Lastly, the bundle adjustment technique is

applied to minimize the error. The bundle adjustment technique optimizes the 3D coordinates and calibration

parameters to refine the 3D structure.
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2.2.2 Projector Calibration

The projector is usually treated as an inverted camera and is calibrated using the traditional method introduced

by Zhang et al [Zha00]. Given a set of 3D world points and their corresponding 2D image positions, the

projector’s intrinsic and extrinsic parameters are recovered. Several works have been done to calibrate a

multi-camera-projector system which means calibration of all camera(s) and projector(s) of the system with

respect to one coordinate system. As an example, R. R. Garcia and A. Zakhor [GZ13] take advantage of

binary code patterns and encode each pixel of the projector. First, they project the patterns on a screen

and capture the image sequence by the cameras. Then they decode the binary codes and generate dense

correspondences between the cameras and projector. Lastly, they perform bundle adjustment to calibrate the

system. In a similar approach, An et al. [ABL+16] also calibrate a multi-camera-projector system, however

instead of using binary code patterns, they take the benefit of phase-shifting and fringe patterns. They encode

each pixel of the projector by a pair of vertical and horizontal phase amount. Cameras can capture projected

fringe patterns and decode the phase value. Using the phase shifting technique makes the system robust in

the case of an out-of-focus set-up.

2.3 Geometry and Light Response Acquisition

The geometry of the projection surface directly impacts the appearance of the surface as well as the projected

content. Identifying surface points with complex reflectance properties requires that the geometry (surface

points and normals), and reflectance properties (response to light) of the projection surface be known.

3D reconstruction is a well-studied area in computer graphics. Many techniques have been proposed

[TS67], [Pho75], [ON95], [LFTG97a] and a lot of systems exist. As an example, Y. Furukawa and J. Ponce

[FP10] proposed an algorithm to reconstruct an object/scene by using stereo cameras. The algorithm detects

feature points of each image, finds the matches between each pose and outputs a dense set of patches covering

the surface of the object/scene. Many commercial products are also available on the market. Microsoft Kinect

is one of the most popular devices and comes with game consoles. It scans the scene/object in high resolution

with high accuracy in short range. The existing methods mostly have been particularly successful in cases

where the acquisition is performed under controlled lab conditions without the presence of any dynamic

elements. Although PM can also be used indoors in a similar fashion, the majority of its applications involve

large-scale and/or outdoor objects/scenes. Perhaps the only work reported in the literature to address the

capture of complex geometry and the estimation of reflectance properties of outdoor objects is by Debevec et

al. [DTG+04].

Finding corresponding pixels between calibrated devices like projectors and cameras is the primary re-

quirement for 3D reconstruction. As an easy and straightforward but time-consuming solution, a single red

dot could traverse among all the pixels of the projector. Therefore at each moment, just one single pixel of the

projector is illuminating the scene. Simultaneously all cameras capture the scene. The single dot projected

on the building and its projection onto the camera’s image plane provides the correspondences between all

the devices. Next, by triangulation, the 3D point can be computed.
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Figure 7: Two rays X⃗L and X⃗R are generated from the devices and their intersection in
3D coordinate system is Vp. α = β = 90 [@tr]

Triangulation

By having a calibrated device like a camera, we can cast a ray for each pixel. The ray starts from the position

of the camera, and it passes through the pixel of the camera which is located on its image plane. Camera

pose and focal length are needed in order to generate a ray. The pose can be recovered by the rotation and

translation of the camera, and its focal length is used to retrieve the position of the image plane. Therefore

if we send rays from the corresponding pixels of each device, their intersection is the 3D point of the scene.

Figure 7 shows triangulation for two devices OL and OR. R and T are the rotation and translation of the

cameras according to each other, X⃗L and X⃗R are rays cast from left camera and right camera through the XL

and XR corresponding pixels respectively. As it is shown in the Figure 7, because of the possible errors during

the calibration of each device and in finding corresponding pixels, in 3D coordinates, rays rarely intersect at

a single point. Therefore, the nearest point to all of the rays i.e. (X̄), can be considered as their intersection.

By repeating this process for all corresponding pixels in the devices, we can reconstruct the scene/object.

2.3.1 Structured Light Scanning

Structured Light Scanning (SLS) [GHP14] is a fast and accurate technique for scanning objects in high

resolution. A sequence of patterns is projected on the scene and camera(s) capture the projected patterns on

the scene. By processing the captured images, the geometry of the real object is reconstructed.

As was explained before, the red dot algorithm illuminates the scene with one single pixel for a moment.

Thus the system can find the corresponding pixels between devices. However, in this method, we want to

speed up the process and capture the correspondences by projecting a small number of patterns. To achieve

this goal, SLS assigns a unique number/ID to each pixel of the projector, and by projecting this ID on the
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Figure 8: Vertical and horizontal binary patterns [GHP14]

scene, cameras can distinguish pixels. However projecting the number itself is not feasible and instead a

sequence of patterns are used. Binary patterns, shown in Figure 8 are typically used for this. This technique

presents the unique ID of the pixel in binary representation mode. Each pattern indicates one bit of the

number. If the bit is 0, the pixel is off (black), if the bit is 1, it projects white color. Therefore cameras can

read the ID of each pixel doing the inverse steps. First, it captures black and whites and then it can assign

zero and ones based on the color of the pixel. Although binary codes can be used to encode the pixels, Gray

codes have been used in SLS. Gray codes work in a similar approach to the binary codes. However, using

gray codes ensures that consecutive codes differ just in one bit. Figure 9 shows the difference between binary

codes and Gray codes. It is evident that in Gray codes each column differs from its adjacent column just in

one bit. However, in binary systems all the bits are changing in the middle columns.

Finally, the correspondences between the cameras and the projector can be defined. By triangulation

of the calibrated devices, the 3D model can be reconstructed. Despite the possibility of using one calibrated

projector and one calibrated camera, usually, two calibrated cameras are used in SLS because of the simplicity

of camera calibration compared to projector calibration.

The resolution of the projector is the most important factor in the quality of the scanned model. However,

cameras also should have enough resolution to be able to capture all the projected pixels of the projector.

Since SLS finds the 3D point related to each pixel of the projector, it also saves the 3D data into a three

channel image. Each pixel of the image has three data R, G and B that maps to X , Y and Z respectively.

Hole Filling

In most of the cases, because of the self-occlusions, which is not able to reconstruct all the points (projector

pixels) of the scene. Adding more cameras to the system, calibrating the projector and/or another scan of the

object can obtain more information about the geometry of the scene. Nevertheless, a hole filling technique

also can estimate the position of missed points/pixels during the scanning process. Since SLS saves data

in image format, pixels with no depth/position information are known, a simple method of averaging the

position of its neighbors can recover the geometry information.

Filtering

Errors in practical experiments are inevitable. Bilateral filtering [TM98] is a noise cancellation method which

reduces the error/noise of the image. The advantage of bilateral filtering compared to other methods is that
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Figure 9: In Gray codes, the codes of two consecutive numbers differ just in
one bit, however in binary code, it may vary in more than one bit [@GR]

Figure 10: Algorithm used by SLS to Re-mesh the point cloud stored in image format

edge information is preserved.

Re-meshing

SLS results a point cloud, whereas the 3D model and mesh of the scene is needed. Thus a re-meshing

algorithm is required. SLS uses a simple re-meshing algorithm. Since data is stored in image format, the

neighbors of each point are known and by connecting neighbors to each other, we can triangulate the point

cloud and generate the 3D model. Figure 10 shows how SLS connects neighbors in re-meshing process.

2.4 Reflectance Properties

There are thousands of objects with different materials in the world. Each one responds to the received light in

a specific way. Some absorb all the received light; some reflect part of the light, some of them are transparent
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Figure 11: First two figures demonstrate light reflection from surface of a specular and a diffuse object
respectively. [@re17]

(a) (b)

Figure 12: (a) Light reflection geometry model used by Cook and Torrance [CT82] and Shafer [Sha85].
[ABC11] (b) Diffuse and specular reflection lobe of a light source [JK10]

and light passes entirely or partially through. The Bidirectional Scattering Distribution Function (BSDF) is a

model which describes light behavior of an object which is illuminated by a light source directly or indirectly.

BSDF is a superset of Bidirectional Reflectance Distribution Function (BRDF) and Bidirectional Transmit-

tance Distribution Function (BTDF). BRDF models the light reflection from the object and BTDF models the

light transmitted through the object. In the context of projection mapping, Bidirectional Reflectance Distri-

bution Function (BRDF) of an object demonstrates how an observer can perceive the reflection of the light

illuminated by the projector. Diffuse and Specular are two major elements of the reflection. Diffuse objects

reflect light in all directions, whereas in pure specular reflection, the light reflects mostly in a particular angle

related to the incident light. Figure 11 shows the comparison between specular and diffuse surfaces.

2.5 Illumination model

Many BRDFs have been introduced. Each models one or more aspects of the light reflection and has its

strength. The Lambertian model is the simplest reflection model, which simulates only diffuse reflection.
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Phong illumination model

Phong illumination model [Pho75] is a simple BRDF. It introduces three different light reflection behaviours.

Ambient light, diffuse light, and specular light reflection. Ambient is the environmental light in which the

intensity of light is invariant for all the points. As it is also apparent in Figure 13, the ambient light illuminated

all the points with the same intensity and the object has no shading. The ambient light can be modeled by:

I = La ∗Ka (7)

Where I is the intensity of the light reflected from the surface of the object and received by the viewer, La

is the ambient light received by the surface and Ka is the ambient reflection constant. Diffuse reflection has

been modeled as follows:

I = Ld ∗Kd ∗ cos(θ) (8)

where Ld is the diffuse light received by the surface, Kd is the diffuse reflection constant and θ is the angle

between incident light and the normal of the surface which is equivalent to angle i in Figure 12a. Thus the

viewer position and the view direction does not affect I neither in ambient reflection nor in diffuse reflection.

Whereas specular reflection depends on view direction. (vector ”v” in Figure 12a). This means that each

observer receives unique amount of light based on view direction.

I = Ls ∗Ks ∗ cos(φ)α (9)

The above equation simulates specular reflection, where φ is the angle between the reflected light from the

surface and view direction (marked as s in Figure 12a), α is the shininess constant of the object, the larger

alpha the smaller the highlight. A small α outcome is a wide and smooth specular highlight. The Phong

illumination Equation 10 is the sum of these three components. Moreover, in real life, usually there are more

than one light source in the environment. The Phong model computes the reflection of each light separately

and the sum of all components will be the reflected light (Equation 10).

I = La ∗Ka +
∞

∑
i∈Lights

(Li,d ∗Kd ∗ cos(θ)+Li,s ∗Ks ∗ cos(φ)α) (10)

Figure 13: Phong illumination model components [Wikb]
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The Phong illumination model follows the RGB color model and computes each color separately. It

means that I, L and K consist of three RGB values for all ambient, diffuse and specular reflections.

I =

⎛⎜⎜⎝
Ir

Ig

Ib

⎞⎟⎟⎠ L =

⎛⎜⎜⎝
Lr

Lg

Lb

⎞⎟⎟⎠ K =

⎛⎜⎜⎝
Kr

Kg

Kb

⎞⎟⎟⎠ (11)

After Phong, Blinn [Bli77] introduced a BRDF known as the Blinn-Phong reflection model. Despite the

simplicity of this model, it became very popular. It is the standard lighting model used in both the DirectX

and OpenGL rendering pipelines [MSUA12]. By using (n ·h) instead of (r.v) Blinn simplified the model and

decreased computations since there is no need to compute the reflection of the light r anymore.

D(h) = (n ·h)n = cos(φ)n (12)

where h is the halfway vector and defined as follow

h =
(L+V )(L+V )

 (13)

where L is light vector and V is view vector.

This reflection model is very fast and straightforward. However, it cannot simulate complex materials.

The Lafortune [LFTG97b] introduced a more multi-functional BRDF which supports more complex objects.

This model handles multiple specular lobes which help in simulating complex objects.

fr(u,v) =
N

∑
i=1

(Cx,iuxvx +Cy,iuyvy +Cz,iuzvz)
ni (14)

Equation 14 represents this model, where u is the incident direction, and v is the extent direction, which

is not in the same plane, and C is the coefficient of each XY Z direction.

Many samples are needed with different viewpoints to acquire and model the material of an object. The

sampling process is usually performed under lab conditions. MERL [MPBM03] is a BRDF database which

contains the light reflection of an object in different conditions. After measuring the reflections and collecting

the data, they must be fitted into a BRDF model. Lafortune model is a favorite candidate. Eventually,

computed materials can be used to render realistic scenes.

2.6 Specular detection

Detection and separation of the diffuse component and specular component of the objects is a vital issue in

computer graphics, computer vision, and general vision systems including PM. Typically, techniques first try

to detect the specularity of the scene and then cancel out or reject them as an outlier [ABC11]. A plethora

of methods with different approaches have been proposed to tackle this problem, Single image techniques,

and multiple image techniques have been suggested to extract diffuse map and specular map of the scene.

Lin et al. [LLK+02] proposed a color-based method to identify and separate the specular component from an

input image sequence by using a multi-baseline stereo system. Fries et al. [FRTT04] proposed a multi-flash

method to achieve this separation. They used a fixed camera and a portable flashlight to capture images of
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the scene with different light source positions. Seitz et al. [SMK05] proposed a method for the cancellation

of n-bounced inter-reflection light. In this, they first proved the existence of a set of linear operations by

applying the inverse light transportation theory. Then, by probing the scene using a very narrow beam of the

light, they can compute the light transport operators.

Specular objects impose problems in projection mapping. In specular reflection the light received by the

observer depends on the position of the observer and its view direction. In projection mapping, participants

are watching the scene from different angles, and therefore each person receives a distinct amount of light. A

mechanism is needed to minimize its effect.

In the following chapter, we describe in detail, the two methods, Fixed Camera and the Roving Camera

and the implementation of our complete framework for projection mapping in outdoor situations.
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Chapter 3

Proposed Approaches

The previously techniques described have been applied to short-range capture and projection. The work

reported in this thesis is mainly concerned with long range and stereoscopic projection. We present our

findings in extending these existing techniques, as well as the development of new methods due to new

problems that arise during long-range capture, calibration, and projection.

There are two important factors in this work. First, the focus is long-range and we are projecting out-

doors. Second, light behavior properties of the projection surface are computed at pixel level resolution.

An overview of our system is shown in Figure 14. In the first stage, the system is calibrated; which in-

cludes calibration of the individual cameras, calibration of each camera with respect to other cameras, and

the calibration of the projector with respect to the cameras. Next, the geometry of the projection surface

is captured using a structured-light scanning technique. Using the images and geometry of the surface, the

reflectance properties at each point are estimated. Surface points with complex reflectance properties are

identified. Finally, the original stereoscopic content is compensated to account for the reflectance properties

of the projection surface prior to projecting it on the surface.

Figure 14: Smart Projection Mapping System Pipeline

As mentioned earlier, we have proposed two methods for long-range projection of stereoscopic content

in outdoor areas, the Fixed Camera method and the Roving Camera method. In the first, we encountered

the problems caused by limited number of samples of the scene (images from the scene are captured by

fixed camera(s)). Therefore in the second, we propose a more robust method which can obtain and handle a

very large number of samples from the scene. These methods are discussed further in Sections 3.1 and 3.2

18



Figure 15: One of our setups while testing the system in long range. Three cameras have been calibrated
corresponding to each other using phase-shifting method while they are focused at infinity.

respectively.

3.1 Fixed Camera Method

In this method, we use a minimum of three cameras and a projector, all fixed in their location and orientation

in the outdoor area. In the following, their use in each step of the pipeline (Figure 14) is explained.

Figure 16: Fixed camera method: this technique requires a minimum of 3 fixed cameras and a long-range
video projector.

3.1.1 Calibration

In the first stage, the system needs to be calibrated. Out-Of-Focus camera calibration 2.2.1 is used to calibrate

the cameras. Figure 17 shows a camera capturing the fringe patterns. This technique calibrates each camera

separately, and the extrinsic parameters of each camera are computed based on the position of the checker-

board on the first image. Therefore we need to either calibrate all the cameras together in one shot, which
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is not feasible if we have a larger number of cameras, or calibrate cameras two by two in such a way that it

permits linking all of them to each other. To calibrate two or more cameras, we need to capture the fringe

patterns simultaneously. Next, each camera extracts its wrapped phase map. Synchronization is necessary

to use the same offset unwrapping of their phase map. Therefore, an image with a red dot in the middle of

the screen is added to the beginning of the phase-shifting fringe pattern sequence which synchronizes the

unwrapping offset among all the cameras. Afterward, by using the traditional technique, we can extract the

rotation and translation between two cameras.

Figure 17: Phase-Shifting camera calibration set-up

The projector is treated as an inverted camera and is calibrated with the traditional method using a set of

2D to 3D correspondences resulting from the geometry acquisition. The explanation on the extraction of the

2D-3D correspondences is deferred to Section 3.1.2. Given a set of 3D world points and their corresponding

2D image locations, the projector’s intrinsic and extrinsic parameters are recovered.

3.1.2 Geometry Acquisition

Structured-Light-Scanning (SLS) [HP14] is used to capture the geometry of the projection surface. Encoded

patterns are projected onto the surface in sequence. The cameras capture one image per pattern. These images

are decoded to produce a dense correspondence between the projector’s pixels and the camera’s pixels. A

rendering of the reconstructed geometry of the Roman Baths (Figure 1) is shown in Figure 18. This was

generated from 44 images captured by three cameras.

3.1.3 Reflectance Properties

As part of the geometry, acquisition images are captured from each camera from different viewpoints. Each

image records the brightness at every visible surface point from that particular viewpoint. Given three such

measurements per surface point, we approximate the local reflectance properties.

We use the Phong illumination model, which is a local illumination model that is easy to compute and

use, to describe the local interactions between the material and the light and is given by:

I = Lκd cosθ+Lκs cosφ
α (15)

where I is the brightness of the reflected light as recorded by the camera, L is the incident radiance emitted
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Figure 18: A rendering of the reconstructed geometry of the Roman Bath. 44 images captured by three
cameras.

from the projector, Kd is the 3-vector diffuse reflection coefficient, Ks is the 3-vector specular reflection

coefficient and α is the shininess coefficient of the material.

A non-linear optimization [Lev44] is used to compute the optimal values for the material parameters such

that the energy function E( f ) is minimized,

E( f ) = Edata( f )+Esmooth( f ) (16)

where Edata( f ), the energy data term and Esmooth( f ), the energy smoothness terms are as defined below.

Energy data term Edata( f ): This term is a measure of how appropriate the optimized material parameters

are, given the observed data. It is defined as,

Edata( f ) =
n

∑
i=0
|Ii

r− Ii
m|2 (17)

where n is the number of cameras, Ii
r is the rendered image as viewed from camera i using the acquired

geometry and the material parameters being optimized, and Ii
m is the observed image captured by camera i.

Energy smoothness term Esmooth( f ): This term is a measure of the smoothness between brightness values

in neighboring pixels of the rendered image and is given by,

Esmooth( f ) =
n

∑
i=0

[w×h

∑
j=0

[ 8

∑
m
|B j−Bm|2

]]
(18)

where n is the number of cameras, j is the number of pixels within the rendered image from camera i, m is the

8-neighbourhood around the pixel j, B j is the brightness at pixel j, and Bm is the brightness at pixel m. This

term ensures that optimal values will provide smooth results. This is illustrated in Figure 19 which shows

a comparison between the smoothed/non-smoothed procedures for computing material coefficients. For the

statue in Figure 19a the specular map without smoothing can be seen in Figure 19b and with smoothing in

Figure 19c. As evidenced, without the smoothness term there is noise between neighbouring pixels which is

removed when the smoothness term is introduced.
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(a) (b) (c)

Figure 19: (a) The object/projection surface. (b) The estimation of the specular parameters without the
smoothness term and (c) the estimation with the smoothness term.

Figure 20 shows the results of the energy minimizations for three synthetic test/validation cases shown in

Figure 20(a): a perfectly specular, a diffuse/specular and a perfectly diffuse sphere, respectively from top to

bottom. Figures 20(b), 20(c), 20(d) show the progress of error minimization corresponding to the shininess,

diffuse and specular coefficient respectively.

3.1.4 Color Compensation

Changes in the appearance of the projected content caused by the reflectance properties of the projection

surface need to be compensated. We use the estimated geometry and reflectance properties at each surface

point to compensate the content prior to its projection. For each frame of the stereoscopic content-to-be-

projected, we calculate the compensated projector’s brightness Lp for each pixel p as follows,

Lo = Lp

[
κdcos(θ)+κscos(φ)α

]
Lp =

Lo[
κdcos(θ)+κscos(φ)α

] (19)

where Lo is the original image’s brightness value at pixel p, Lp is the compensated image which, when

projected on the surface, ideally yields Lo.

Due to the limited range of brightness values the projector can produce, the colors for which compensation

will work are restricted.

Furthermore, in this work, the content is stereoscopic. This means the range of values is already limited

because of the anaglyph processing. We have found that this works well for stereoscopic content being

projected on outdoor surfaces, such as building facades, where the surface is primarily diffuse with sharp

specular components in the presence of windows, light fixtures and other such objects.

As previously mentioned in section 2.3.1, the reflected color from the object depends on the material’s

reflectance properties and the emitted light. Knowing the reflectance properties of each surface point allows

us to compensate. First, using additive color mixing, we calculate an image which when projected cancels

out [if needed] the colors on the projection surface and makes the surface appear grayish. Next, we calculate

the image which when projected on top of the ’grayish’ surface will be as close to the original as possible.
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Figure 20: (a) Three synthetic test cases: perfectly specular, perfectly diffuse, and diffuse/specular. (b)
Energy minimization for shininess. (c) Energy minimization for diffuse coefficients. (d) Energy minimization
for specular coefficients.
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Figure 21: System Overview

The result is the original image with increased brightness and reduced contrast depending on how bright the

grayish image is.

3.2 Roving Camera Method

Recovering the reflectance properties of an object/scene requires sampling of the scene with an arbitrary

incident light ray direction and view direction of the sampler. Afterward, a suitable BRDF model is needed to

fit sampled data. Since it is a model fitting problem, the more samples we have, the more accurate the result

will be. In this approach, we mainly focus on covering a wide range of samples from different directions. In

this way, the result will be more accurate and, in addition, we are able to use more complex BRDF models.

The first step, as before, is calibration of the system. This involves the estimation of N + 2 camera

poses corresponding to the N frames captured by the roving camera and the 2 frames captured by the fixed

cameras. Uniquely, our proposed approach leverages the sub-pixel accuracy of the dense reconstructions

resulting from structured light scanning (SLS) techniques with the robustness and accuracy of the camera

pose estimations resulting from Structure-from-Motion techniques (SfM). On the one hand, SLS techniques

inherently involve a complex calibration procedure which becomes even more challenging as the number

of cameras increases or the distance from the projection surface increases; this is due to the fact that the

reconstruction can only be performed on the area visible to all the cameras i.e. the intersection area of all

views. However, once the calibration is complete, an accurate and dense reconstruction can be generated. On

the other hand, SfM techniques make an assumption on the scene’s rigidity, and estimate the camera poses

and intrinsic parameters, which also can be used to create a sparse reconstruction of the scene, if needed.

In this method, we overcome the difficulties of calibration and subsequent 3D reconstruction imposed

by the long-range focus of multiple cameras. We do this by first computing the camera poses and intrinsic

parameters using SfM on the set of N + 2 images captured by the roving video camera and the two fixed

cameras. In a second step, the two fixed cameras and a long-range projector are used for SLS which yields

a dense reconstruction of the scene. This involves (i) projecting encoded Grey-coded patterns, (ii) capturing

the patterns with the two cameras, (iii) decoding the patterns, and (iv) identifying the per-pixel matches. The

per-pixel matches are then triangulated to produce a dense point cloud which is further processed to generate

a dense mesh representing the projection surface.
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Figure 22: Roving camera method: this technique requires a roving camera which captures N samples from
the scene by sweeping in front of it; A minimum of two fixed cameras for geometry reconstruction, and a
long-range video projector.

With a fully calibrated system, the per-pixel reflectance function is estimated using non-linear optimiza-

tion on the N + 2 observations. This results in a reflectance map of the projection surface which is subse-

quently used for the adjustment of the images/videos to be projected. Figure 21 shows a diagram of the

proposed framework summarizing the four processing modules: long-range system calibration, reconstruc-

tion, reflectance function estimation, and adjustment. Each of these processing stages is described in greater

detail in the following sections.

We employ SfM for the calibration of the cameras. SfM involves capturing a large number of images from

different viewpoints and performing feature extraction and matching using Scale-Invariant Feature Transform

(SIFT). The roving video camera is swept randomly in front of the projection surface, which captures the

surface from different viewpoints and view angles. At the same time, the two fixed cameras are focused on the

projection surface. This process yields N+2 images. Bundle adjustment is then performed to simultaneously

refine the parameters of the camera motion [R|t]3x4, intrinsic camera parameters K3x3, and the 3D points P in

the scene while minimizing the re-projection error in all the images.

Figure 23 shows an example of the results obtained from SfM. Each camera is represented by its position

and its oriented image plane. SfM generates a sparse reconstruction of the scene’s structure which is also

shown in the figure. However as we need a dense point cloud to accurately reconstruct the projection surface

geometry, we do not use this sparse point cloud in further processing. Instead, with these calibrated fixed

cameras, we resort to the use of the SLS technique to obtain a dense 3D reconstruction.

Once the cameras are calibrated, we proceed with the estimation of the projector’s pose and intrinsic pa-

rameters with respect to the calibrated cameras. Traditional techniques for camera-projector calibration such

as [BXZ16, ABL+16, MT12, FHMF09] suffer from similar problems when applied to long-range systems.

These techniques require projecting a pattern [usually a checkerboard] onto [or next to] the calibration board

and detecting the corners in order to estimate the projector parameters. In other words, the projector is treated

as an inverted camera. However, projective geometry dictates that the farther away you move from the pro-

jector, the larger the projected pattern. Hence, it becomes almost impossible to employ these techniques in
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Figure 23: Long-range camera calibration. Traditional calibration techniques fail for long-range vision sys-
tems. In the proposed approach we use SfM for estimating the camera poses and intrinsic parameters, thereby
eliminating the need for special calibration boards and procedures [BXZ16, ABL+16]. Setup shown for ex-
periment #1.

long-range scenarios.

To overcome such problems, we employ SLS [GHP14] for simultaneously (a) calibrating the projector

with respect to the other cameras and (b) capturing the scene’s geometry accurately. This process involves

projecting encoded [with each pixel’s location] patterns which are captured by the two fixed cameras and are

then decoded to identify each pixel’s location. Given the dense correspondences between the two images,

a 3D position can be computed by triangulation. The result is a dense reconstruction of the scene’s struc-

ture which in combination with the correspondences in the 2D projected image can be used to estimate the

projector’s pose and intrinsic parameters as in [Zha00].

As previously stated, SLS yields a dense point cloud representation of the projection surface, which is

depicted as an XYZ map as shown in Figure 24a. Holes can result due to occlusions. These are filled with

neighborhood information. Bilateral filtering is used to remove noise if present in the mesh while at the same

time preserving the edges. Finally, a mesh is created by triangulating the nearest neighbors in the XYZ map;

an example is shown in Figure 24.

The quality of the reconstructions using the above method was quantitatively evaluated by reconstructing

known objects and comparing them with the ground truth. For objects located at a distance of 6m the esti-

mated surface fitting error [RMSE] between the ground truth and the reconstructed object was of the order

0.1cm2 which is comparable to the errors reported in [GHP14].

3.2.1 Bidirectional Reflectance Distribution Function

The Bidirectional Reflectance Distribution Function (BRDF) represents the light behavior (reflection) prop-

erties of the projection surfaces. The BRDF is estimated based on the per-pixel samples captured by the

roving camera and the two-fixed cameras. Given the fact that during the projection mapping the audience is

typically spread over a limited area in front or next to the projector’s direction, we only consider the BRDF
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(a) (b)

(c) (d)

Figure 24: Experiment #1: (a) The XYZ map of the scene’s structure generated with SLS. (b) The Normal
map of the scene’s structure generated with SLS. (c,d) Render from two novel viewpoints of the reconstructed
geometry.

over a range of incident light and viewing directions ranging from 0≤ θ≤ π on the horizontal and 0≤ φ≤ π

4

on the vertical.

The Lafortune BRDF [LFTG97b] is another alternative for data fitting. This analytical model leverages

the simplicity of the Phong model while capturing realistic BRDFs from measured data. It should be noted

here that our method of fitting the measured data to a BRDF analytical model is not limited to Phong and

Lafortune models.

We use the N + 2 per-pixel samples captured by the cameras to recover the BRDF parameters via non-

linear optimization. To sample the incident light from the limited area mentioned earlier, we perform a

random walk using the roving video camera in front of the building (projection surface) so as to cover the

surface and obtain an adequate number of samples. During the estimation, the per-pixel normals computed

from the XYZ map are also incorporated. The result is the per-pixel BRDF; a diffuse map is shown in Figure

25a and the corresponding specular map is shown in Figure 25b. The inset picture in Figure 25b is a close-up

of the region indicated with red and demonstrates the high level of detail we are able to capture using this
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(a) (b)

Figure 25: diffuse map(left), specular map(right). The inset picture in the specular map (b) is a close-up of
the region indicated with red and demonstrates the level of detail captured by this approach.

approach.

3.2.2 Compensation

The colors of the original image are adjusted such that any interference or colour distortions due to the sur-

face’s geometry and reflectance properties are mitigated to the fullest extent possible. Using the recovered

scene geometry, the surface’s per-pixel BRDFs, and camera poses, an image is rendered from the projector’s

viewpoint and the colour difference is iteratively diminished. The steps are summarized in the algorithm

below,

i← 0 Ii
rendered ← Raytrace(K[R|t], Ispecular, Idi f f use, Ioriginal) ||Ii

rendered − Ioriginal ||2 ≥ τ Ii
update ← Ii

rendered −
Ioriginal i← i+1 Iad justed ← Ii

rendered

where Raytrace(.) is a physics-based renderer [PJH16] which given the [inverted] camera parameters K[R|t]
i.e. projector, the two maps containing the specular and diffuse coefficients for each surface point Ispecular, Idi f f use,

and the original images Ioriginal produces a render from a virtual camera [with identical pose and parameters to

the projector] of how the original image will appear if projected onto the surface. During this simulation, the

projector is modeled as an array of N×M point light sources each emitting light only to their corresponding

surface point, where N×M is the size of the original image Ioriginal .

The second row in Figure 28 shows an example of the adjusted image after a single iteration (28c) and

upon convergence of the algorithm (28d). The iterative optimization is performed offline, since for an image

with a resolution of 1600× 1200 it typically takes 4 minutes to converge due to the rendering required at

each iteration. Given this was a proof of concept, the computations have not been optimized, though clearly

there is ample scope for it.
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3.3 Implementation

Our framework is implemented in the C++ language, and the OpenCV library is used for most of our compu-

tations. In the following section, we describe the implementation detail for each method separately.

3.3.1 Implementation of Fixed Camera Method

The implementation follows the same pipeline shown in Figure 14. First the system is calibrated using

phase shifting patterns, then the geometry is acquired using the structured light scanning method/reflectance

properties recovery, and finally the compensation of the media is applied.

Phase Shifting Camera Calibration

An application is needed to display phase shifting patterns. In this application, we generate vertical and

horizontal phase maps using the Equation 4. Then fringe patterns are produced using Equation 3. In this step,

we need to decide and determine the feature points’ location on the monitor. Since we have a grid, we just

need to keep the first row and the first column of the feature points (Figure 6). Next, we need to display and

capture patterns. For a faster and better result, we first show a black and a white image, then we can generate

the mask image by subtracting them. In the monitors that have a reflection on its frame, we added a black

border to the white image which makes our mask image more accurate. During the calibration process, we

need the exact metric distance between two feature points, while so far we only know the distance in pixels.

With this in mind, we generate a checkerboard based on our feature points. By displaying it, we can measure

the exact distance between the feature points (corners of the checkerboard). For testing the program after

decoding, we can check if the extracted feature points match the corners of checkerboard.

After capturing the patterns 10-15 times with different monitor orientations, each set of patterns should be

decoded. Each pose is independent of the others, which means that multi-threading is beneficial. We assign

each sequence a thread to decode the patterns. Although we did not use the faster GPU implementation in

this case, each pixel in a sequence is also independent and could potentially have its own thread. Equation 5

is used to extract the phase value of a pixel. However, this will produce a wrapped phase map. The value of

K in Equation 6 is known in the middle of the screen. We call it Kstart = (Kmin +Kmax)/2. Then by applying

edge detection, we can identify where exactly K is changing. We start with Kstart from the middle of the

screen (already detected via the ”Red Dot Pattern”) and traverse all the other pixels. Every time we reach an

edge, we either add or subtract one to K (K ++ or K−−). By storing all the K values in a matrix, we can

unwrap the phase by

1 Unwrapped = Wrapped + (K ∗ PI ) ;

The next step is matching the computed phase value of each pixel with our predetermined values. A point

is a feature point if both the vertical and horizontal phase amount of the pixel matches our values. In some

cases, more than one pixel (neighbors) matches with an encoded feature point. We have chosen the average

of the pixels as a feature point. Now we are able to calibrate the camera using OpenCV’s ”calibrateCamera”

function. After calibrating all the devices separately the following equation will return the rotation and
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translation of a device which corresponds with another one.

R = Rt
1 ∗R2T = Rt

1 ∗ (T2−T1) (20)

Where R1 and R2 are the rotation matrices and T1 and T2 are translation matrices of the first and second

device respectively. As in the traditional method, during the calibration process both devices should capture

one pose of the monitor simultaneously to have a common origin for their calibration.

SLS

We have used the approach presented by [GHP14] for structured light scanning and bilateral filtering. Another

minor modification that was also applied was the averaging of the 3D reconstruction of 2x2 cameras to support

multiple cameras.

Estimation of Reflectance Properties

In this step, we estimate the color of the object. The Phong Model represents a simple and fast reflection

model. To estimate Kd , Ks and α we optimize the Phong Model with our collected data.

I = LKd cosθ+LKs cosφ
α (21)

To compute cosθ and cosφ, we need the position of the projector and cameras in the world coordinate

system. The following equation will yield the position of the device based on its origin.

T =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 −Tx

0 1 0 −Ty

0 0 1 −Tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦R =

⎡⎢⎢⎢⎢⎢⎣
r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (22)

P = Rt ∗T (23)

cosθ = N.L, we already have the surface normals from SLS which allows the calculation of the light

direction via

L = Normalize(Plight −Psur f ace) (24)

Also cosφ = R.V . R and V can be computed by

V = Normalize(Pcamera−Psur f ace) (25)

R = L− ((2∗ (N ·L)∗N); (26)

After computing cosθ and cosφ, we need to minimize the Phong equation to find the unknowns. For each

pixel, we should have at least three samples. We already have the correspondences between all the devices

from SLS. Projection of a white image with maximum power (L = [1.0,1.0,1.0]) gives us a sample from the

scene.

We use C/C++ cminpack [Dev07] Levenberg-Marquardt algorithm implementation for our optimization.

The following pseudocode shows our energy function for optimization.
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1 f o r ( i n t camID = 0 ; camID < m; ++camID ) {
2 c o s P h i A l p h a = pow ( cosPh i , a l p h a ) ;

3 f v e c [ camID ] = pow ( ( ( ( L ∗ Kd ∗ cosT + L ∗ Ks ∗ c o s P h i A l p h a ) ) − ( I ) ) , 2 ) ∗ 1000 ;

4 }

As it is shown in the code, we use the square of the error and multiply by an arbitrarily large number

to make the optimization more accurate. However, this code does not include the smoothing energy. The

difference between the intensity at a pixel and the intensity of its neighbors is an additional term added to our

energy function. For a more accurate result, we have weighted the neighbors based on their distance from

the pixel. By estimating Kd , Ks and α we are able to simulate the surface behavior. Using Equation 19, we

compute our projection media.

3.3.2 Implementation of Roving Camera Method

There are two main distinguishing differences between this implementation and the previous one. An entirely

new method of camera calibration and a new algorithm for media compensation are introduced.

Camera Calibration and Reconstruction

We calibrate cameras by using the Structure from Motion technique. VisualSfM is a well established SfM

application, and we use this application for our calibration process. We pass all the captured images which

include the fixed and roving camera images. After running the SfM and the bundle adjustment, the ”N-View

Match” file will export the workspace which includes image path, 3D model, and camera information in text

format. Below is the NVM file format for camera information.

1 <Camera> = <F i l e name><f o c a l l e n g t h><q u a t e r n i o n WXYZ><camera c e n t e r><r a d i a l d i s t o r t i o n > 0

VisualSfM is an open source application. Thus we can use their implementation for loading the NVM

format. It requires ”LoadNVM” function, ”DataInterface.h” and ”interface.h” classes.

Note that, we need the calibration of all cameras to occur in the same coordinate system. To accomplish

this, we run SfM for all the images together (roving and fixed cameras/images). We use calibrations for

SLS. The same implementation of the SLS is used in this approach. However, in this version, since we do

re-projection and ray tracing, hole filling will improve the resolution of our projection. We have followed the

approach presented by Poullis [Pou13] for hole filling.

Reflectance Properties and Compensation

The next step is finding the correspondences between image pixels and 3D points. Each 3D point is re-

projected onto the image plane by using OpenCV’s ”projectPoints” function. This method receives a vector

of 3D points and the camera calibration information as input. The output is the projection of 3D points onto

the camera image plane. It is important to re-project the 3D points onto the undistorted image. Nearest

neighbour or linear interpolation can be used for getting color after re-projection onto the image. The re-

projection is valid if it is inside the image and there is no self-occlusion in the scene.

Many samples have been captured and extracted for each 3D point. Due to the large number of the

samples, we are able to fit our data into more complex BRDF models like Lafortune. However, it also works
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perfectly with the Phong Model. Once we have recovered the reflectance properties of the scene, we should

ray trace the scene to get the projection result. PBRT [PJH16] (a Physically Based Ray Tracing renderer) has

been used to ray trace and render the scene. In our test cases we suppose that the projector and camera are in

the same location, so we update our projection as follows:

1 Update map = ( Expec ted Image − Rendered Image ) ;

2 P r o j e c t i o n I m a g e += Update map / s t e p ;

Division of the update map by step guarantees that our rendered image will converge to the Expected Image.

We update the Projection Image 10 - 15 times. In each iteration we also check that the RGB values are

between zero and one. Otherwise we clamp the value to 0 or 1 and change the others to keep the ratio of R,

G and B the same. After clamping the values, we stop updating the pixel in the next iteration. The result will

be the compensated version of our image according to the scene.

Using the above implementations we conducted a number of experiments of stereoscopic projection map-

ping in real world situations and user studies through random participants who were present/passing through

the experimental sites. These experimental setups and user study results are described in the following chap-

ter.
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Chapter 4

Experiments

In this chapter we explain our projection mapping experiments for each method. The chapter is organized as

follows: in section 4.1 we show the results of the Fixed Camera method and in section 4.2 the results of the

Roving Camera method. These include one short range experiment and two long range experiments.

4.1 Fixed Camera Method

All reported results were generated using an implementation of our framework on an Intel-i7 PC with com-

modity hardware. The projector used was a Panasonic PT-VW435N projector with a native resolution of

WXGA 1280× 800. The statue of Alexander shown in the experiments has dimensions 25.5cm× 19cm×
14.5cm and was used for comparison purposes with [HP14].

A 3D print of the Roman Baths was used for experimentation due to access restrictions on the real site.

These experiments were conducted in relative scale. Figure 1 shows a projection on the real Roman Bath’s

building. Figure 26a shows a stereoscopic projection [without compensation] being projected onto the Roman

Baths. Color distortions occurring on the anaglyph image due to the reflectance properties of the projection

surface have a negative impact on the depth perception of the viewer. Figure 26b shows the stereoscopic

projection after compensation using the proposed technique. Color distortions are minimized by taking into

account the effect of the reflectance properties of the projection surface. A render of projection is shown in

Figure 26c which is the expected result.

The expected projection cannot always be achieved [as in the this case] because of the limitations of

additive color mixing and the hardware. Intuitively, a projection surface with a white-ish color can reflect

a larger percentage of the projected light by the projector, therefore, more colors can be compensated. For

example, a bright red color projected onto a white surface will appear as red. On the other hand, a projection

surface with a darker color will absorb the projected light; a bright red color projected onto a dark surface

will appear as dark red.
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(a) (b)

(c) (d)

Figure 26: (a) A stereoscopic projection without compensation. Color distortions due to the reflectance
properties of the projection surface negatively affect the depth perception of the viewer. (b) The stereoscopic
projection after compensation using the proposed technique. Color distortions are minimized by taking into
account the effect of the reflectance properties of the projection surface. (c) The expected projection. This
cannot always be achieved due to the limitations of additive color mixing and the hardware.(d) The original
stereoscopic image taken from [ste]

4.2 Roving Camera Method

The proposed framework was tested first in the lab environment and was then evaluated by human participants

during two separate experiments. In both experiments, we wanted to expose participants to the projection

mapping of stereoscopic content, with the goal of assessing the effectiveness of the proposed approach with

respect to color and depth perception, and the sense of immersion. This was done through questionnaires

which the participants had to fill out before, during, and after the experiments. The research team conducting

the experiments included three computer science researchers and a fine arts scholar. The experiments received

approval by the University Research Ethics Committee and informed consent forms were obtained from

each of the participants. Furthermore, the participants were asked to fill out a demographic and background

information form. This established their prior experience, if any, with anaglyph 3D stereo. They were

informed that they could withdraw from the experiment any time. The consent form and questionnaire are
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attached to the end of this chapter on pages [45 and 46]

4.2.1 Indoor Testing

This test was conducted in one of the university department’s reception rooms. The red color of the wall

as well as three paintings of various colors [shown in Figure 27a] test the accuracy and performance of the

system. In this test, the projection was from mid-range [i.e. around 5 meters] using a Panasonic PT-VW435N

projector with a native resolution of WXGA 1280× 800 and three Pointgrey Grasshopper 3 cameras [two

fixed and one roving]. A 3D anaglyph video [You] was projected on the wall once without compensation and

then again after compensation. As is evident in Figure 27 the projected frame after compensation shows far

more detail. Colors closer to the original coloring of the frame [so-called ”true colors”] are also apparent. As

an example, in the top half of the middle painting, trees and their separation from the sky are more prominent

and the viewer can enjoy a fuller and more vibrant scene. The specularity and shiny reflectance were also

removed, which better emphasizes the projected pathway.

4.2.2 Public Place Experiment #1

The first experiment involved projection mapping of anaglyph 3D images on a shed. The shed was already

installed as an exhibit in an indoor public place, the lobby of a building. The shed was chosen because of its

red color which would interfere with the projection of the red/cyan stereoscopic content, therefore, causing

problems with the color and depth perception of the viewers. The doors were white and provided a reference

to minimum change.

In this experiment the projection was from a medium-range [i.e. a little over 3 meters] because we

specifically wanted to address only the following questions without introducing possible bias due to the

distance of the projection:

• Does projection mapping of anaglyph 3D content on surfaces containing red or cyan colors cause

interference with the color and depth perception of the viewer?

• Does the proposed approach improve the color and depth perception of the viewer?

Participants

This experiment involved 34 participants [70.6% male, 29.4% female] which according to the demographic

form ranged from 19-39 years old [35.2% within the age group 25-26]. Of the 34 participants 44.4% had

graduated [or were in the process of] from an art field, and 55.6% had graduated [or were in the process of]

from an engineering field. These participants were random people who were around in the venue during the

time the stereo projection was set up. The majority [55.8%] of the participants indicated that they had prior

experience with anaglyph 3D although 2.9% of them could not perceive 3D.

Setup and Equipment

As previously mentioned, this experiment involved projection mapping onto a red shed with white doors.

The size of the projection surface was 1.35x2.40m and the distance of the projector 3.3m. A projector
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 27: Our test in lab environment. (a) Projection surface, (b) rendered scene. (c) one frame of our
projection media before compensation, (d) same frame after compensation. (e) Projected scene with a frame
without compensation, (f) adjusted same frame after compensation, (g) XYZ map and (h) diffuse map of the
scene.
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[SANYO PLC-ZM5000L] was used with a native resolution of 1920x1200. The two fixed cameras [Point-

grey Grasshopper 3] with a resolution of 1920x1200 were placed at a distance of 3.5. A third similar camera

[Pointgrey Grasshopper 3] was used as the roving camera to capture over 200 images of the scene.

Procedure

The participants were provided with anaglyph 3D glasses so that they could observe the stereoscopic pro-

jection. Initially, the original non-compensated stereoscopic image was projected and after 10 seconds the

adjusted stereoscopic image was projected. The participants were allowed to move freely in the general area

of the projection during the experiment and observe the projection from different viewpoints.

Results

We present the qualitative and quantitative assessment of the results from this first experiment. Figure 28

shows the stereoscopic content before and after the application of the proposed approach. The first row

shows the original non-compensated image (left) and the adjusted image (right). The middle row shows the

projection of the original image (left), and the projection of the adjusted image (right) onto the scene. In

the images in the first row, the change is almost not noticeable, however as it is evident from the images

in the second row there is a significant difference in the projections of the two. For example, the content

projected onto the red areas of the scene is almost not distinguishable in the original image which results in

very poor or no depth perception. On the other hand, the projection of the adjusted image appears brighter

and perceptually correct in these areas. Finally, the third row shows the resulting image after a single iteration

of the adjustment process (left) and the final adjusted image upon convergence of the algorithm.

Figure 29 shows a table of the statistical significance between the participants’ questionnaire responses

about any perceptual change in the projection before (vertical) and after (horizontal) the application of the

proposed approach. The question for both projections was ’Rate your color and depth perception for this

projected image/video’. A Likert scale was used ranging from [1,10]. The table shows a high statistical

significance for the improvement in the perception of the participants with the adjusted images. In particular,

50% of the participants who had rated the perception of the projection of the original image with a ’3’ had

rated their perception of the adjusted image with a ’5’ which is higher than the average of ’3’. Similarly, 45%

with an initial rating of ’6’ had increased their rating to ’8’, 67% with an initial rating of ’7’ had increased

their rating to ’10’, and 33% with an initial rating of ’9’ had increased their rating to ’10’. In Figure 30 we

show the distributions of the participants’ responses for these questions.
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(e) (f)

(g) (h)

Figure 28: An example image used in Experiment #1. First row: (left) original image, (right) adjusted image.
Second row: (left) projection of original image on scene, (right) projection of adjusted image on scene. Third
row: (left) adjusted images after one iteration, (right) adjusted image upon convergence of the algorithm. (g)
Capturing the geometry by SLS and (h) is the update map (Absolute difference between (a) and (b).
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Figure 29: Experiment #1: Statistical significance of participants’ questionnaire responses between before
(vertical) and after (horizontal) the application of the proposed approach. The question for both projections
was ’Rate your color and depth perception for this projected image/video’. A likert scale was used ranging
from [1,10]. 95% confidence level. Sample size: 34.

4.2.3 Public Place Experiment #2

The second experiment took place in an outdoor public space at night and involved a long-range projection

onto a building’s facade containing glass windows, complex decorative sculptures, carved columns, etc. with

no control over the illumination conditions.

In this experiment, the projection was from a distance of over 20 meters. Participants viewed the pro-

jection standing on the pavement of a downtown street. The experiment was conducted over two nights, as

during the first night it was drizzling. A good number of people did watch the projection in spite of the rain.

The experiment was designed to focus on the following:

• Is the proposed approachable to enhance the color and depth perception of the viewer for long-range

projections in outdoor areas?

Participants

The second experiment involved 37 participants [64.9% male, 35.1%] over two days chosen at random from

the street, which according to the demographic range from 18-68 years of age [62.1% within the age group

of 22-29]. Of the 37 participants, 73% had an engineering, 16.2% arts, 8.1% social sciences background.

One participant reported he/she had suffered or was prone to epilepsy or seizure and did not take part in the

experiment. 78.4% reported that they were able to perceive depth when using anaglyph 3D glasses in the

past.

Setup and Equipment

The experiment involved projecting stereoscopic content from the third-floor window of a building onto the

facade of another building across a busy street at a distance of over 20 meters. The third column in Figure

33 (top) shows the setup used for the second experiment. The projector and cameras remained the same as in

experiment #1 and were used in a similar fashion for all the steps in the pipeline.
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(a)

(b)

Figure 30: The distributions of the responses to the question ’Rate your color and depth perception for this
projected image/video’ with the original image (top) and adjusted image (bottom)

Procedure

Similar to experiment #1 the participants were provided with anaglyph 3D glasses. Two stereoscopic videos

[(a) a butterfly flying, (b) a roller coaster] were projected first without, and later with the adjustment. The

participants were again allowed to move freely in the general vicinity in order to observe from different

viewpoints.

Results

The analysis of the responses of the second experiment indicates a significant improvement in the color and

depth perception of the viewers. The first and second columns in Figure 33 show a sample frame from the

butterfly video, original and adjusted, and projected onto the building facade. Figure 32 shows the statistical

significance between the ratings of the participant’s perception before and after the experiment for the but-

terfly video. 83% of the participants who initially rated their perception of 3D with a ’3’ had increased their

rating to ’4’ when viewing the adjusted video which is higher than the average for ’4’. Similar reported im-

provements can be noted for those who initially rated their perception with ’1’. Almost identical results were

reported for the second video with the roller coaster. There was an 8% decrease between the two categories

for the rating of ’3’ which we believe was due to the responses of the participants of the first night’s experi-

ment. Because of the drizzle, the facade had an even darker color than the one captured and used to calculate
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the adjusted video. In the categories of ’Rate your perception of color and depth’, ’Have you experienced

nausea, dizziness, or eye strain?’, and ’Were you able to perceive 3D?’, there were no significant differences

from the earlier experiment.

The above experiments have shown that the proposed methods do indeed help improve the quality of

colour and depth perception, and correspondingly the sense of immersion in long-range out door projection

mapping.
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(a)

(b)

(c) (d)

Figure 31: In this figure (a) shows our projection setup, (b) shows the distance and direction of our viewers
and projection (c) shows the XYZ map and (d) is the normal map of the scene
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Figure 32: Experiment #2 [Butterfly video]: Participants’ questionnaire responses between before (horizon-
tal) and after (vertical) the application of the proposed approach. A likert scale was used ranging from [0,5].
95% confidence level. Sample size: 37.
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(a) (b)

(c) (d)

(e) (f)

Figure 33: An example frame (from the video) used in Experiment #2. (a) original frame, (b) adjusted frame,
(c) projection of original frame on scene, (d) projection of adjusted frame on scene, (e) the projection onto
the building’s facade; note the excessive ambient lighting present in the scene; distance over 20m, (f) diffuse
map of the surface.
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SPM EXPERIMENT- Consent Form 

Experiment Purpose & Procedure 
Dear Participant, 
 
We are conducting a study observing how people perceive anaglyph 3D content projected onto outdoor 
areas and we would like to invite you to participate. 
 
The purpose of this experiment is to study your perception of color and depth in projection mapping of 
stereoscopic content. 

The experiment consists of 2 parts during which you will be asked to observe various projections of 
stereoscopic content being projected onto an outdoor scene. After the experiment, you will be asked to 
complete a questionnaire. 

Please note that none of the tasks is a test of your personal intelligence or ability. The objective is to 
test the effectiveness of our research systems. 

If you have suffered or are prone to any form of epilepsy or seizure, we regret that we are unable to 
accept your participation in the virtual reality part of the study. 
 

Confidentiality 
The following data will be recorded: demographic data, responses to questionnaires 
 
All data will be coded so that your anonymity will be protected in any research papers and 
presentations that result from this work. 
 
 

Finding out about result 
If interested, you can find out the result of the study by contacting the researcher Mr. Behnam 
Maneshgar, after 01 July 2017. He can be contacted in room EV9.113. His phone number is x7163 and 
his email address is b_manesh@encs.concordia.ca. 
 

Record of Consent 
Your signature below indicates that you have understood the information about the SPM experiment 
and consent to your participation. The participation is voluntary and you may refuse to answer certain 
questions on the questionnaire and withdraw from the study at any time with no penalty. This does not 
waive your legal rights. You should have received a copy of the consent form for your own record. If 
you have further questions related to this research, please contact the researcher. 
 
 
Participant -----------------------------------------   Date -------------------------------------- 
 
Researcher -----------------------------------------   Date -------------------------------------- 
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Participant ID : _____

Demographic Information 

• Gender :                        Male        Female   Other: ____________ 

• Age : _______________ 

• Educational background:   

 Social Science  Engineering         Arts              Other: ___________ 

• Have you suffered or are prone to any form of epilepsy or seizure? If yes, please talk 

with one of the members of the SPM team.              YES              NO 

Experience Questions: 

• Have you ever used anaglyph 3D glasses?   YES   NO 
• If yes, were you able to perceive 3D?   YES  NO 

 ============================================================= 

Experiment Questions - Butterfly Projection #A   

Were you able to perceive 3D?     YES  NO  
Rate your perception of color and depth.       ____/ 5 
Did you experience nausea, dizziness or eye strain?    ____/ 5  

Experiment Questions - Butterfly Projection #B 

Were you able to perceive 3D?     YES  NO  
Rate your perception of color and depth.                 ____/ 5 
Did you experience nausea, dizziness or eye strain?    ____/ 5  

 ============================================================= 

Experiment Questions - Roller Coaster Projection #A 

Were you able to perceive 3D?     YES  NO  
Rate your perception of color and depth.       ____/ 5 
Did you experience nausea, dizziness or eye strain?    ____/ 5  

Experiment Questions - Roller Coaster Projection #B 

Were you able to perceive 3D?     YES  NO  
Rate your perception of color and depth.                 ____/ 5 
Did you experience nausea, dizziness or eye strain?    ____/ 5
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Chapter 5

Conclusion and Future Work

Providing low cost minimally intrusive immersive 3D experiences in outdoor public places will open up

interesting opportunities for creative artworks by media artists, commercial advertisements, messaging for

masses and public education. Anaglyph 3D is clearly a contending technology for this, provided it enables

high-quality 3D experience. Our work reported in this thesis is one step towards improving the quality of

3D stereoscopic content projected onto long range outdoor surfaces such as building facades for the public

experience. We presented a complete framework to transform stereoscopic anaglyph 3D content so that the

quality of depth and color perception is maintained even after projection onto relatively less accommodating

surfaces, i.e., surfaces with complex geometry, texture, color and material properties. We introduced two

comprehensive methods for our smart projection mapping. Firstly, we developed a framework which com-

pensated the media with minimum number of samples available. Three fixed cameras and one long range

projector have been used. By using the phase shifting calibration method, all the cameras have been cal-

ibrated corresponded to each other. Then through structured light scanning techniques we simultaneously

recover shape and reflectance properties of the surface using non-linear optimization. By applying one shot

compensation using the phong model, we are able to generate compensated media for projection. In the sec-

ond method, we use two fixed long range cameras, one long range projector, and one roving video camera to

capture the surface images from different viewpoints. With this captured data, we use structure from motion

to overcome the previously persistent problem of long range calibration. By using the same technique as pre-

vious methods we recover shape and reflectance properties of the surface. In a final step, we iteratively adjust

the projection content to mitigate depth and color perception problems due to the projection surface. We have

successfully tested our framework on a number of long range indoor and outdoor scenarios. For validation of

the improvement in the quality of 3D experience provided by the use of our framework, we specifically set

up two user study experiments with participation from random people present at the experiment venues.

Building facades often include glass windows, which scatter light in different directions, letting some of

the incident light to pass through. Our present system places cameras in front of the building and hence can

only capture reflected light. Correspondingly our framework can only model reflectance properties of the

projection surface. We would like to extend our system to model more general light scattering behavior. We

would like to make various computations in the framework more efficient. One thought which we have is that

since the physical nature of the projection surface implies material property coherence, we could consider
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clustering of the captured pixels/point cloud into regions, and then use this coherence of material property

with a cluster to improve computational efficiency. Lastly. we would also want to consider the use of GPU

computing for improving computational speeds.
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