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ABSTRACT

Risk Decomposition for Annuity Portfolios

by Chengrong Xie

A life annuity is a series of payments made at fixed intervals while the annuitant

is alive. It has been a major part of actuarial science for a long time and it plays

an important role in life insurance operations. In order to explore the interaction of

various risks in an annuity portfolio, we decompose the liabilities by using the so called

Martingale Representation Theorem (MRT) decomposition. The MRT decomposition

satisfies all 6 meaningful properties proposed by Schilling et al. (2015).

Before presenting some numerical examples to illustrate its applicability, several

stochastic mortality models are compared and the Renshaw–Haberman (RH) model

is chosen as our projection model. Then we compare two one-factor short rate models

and estimate the parameters of CIR model to construct the stochastic interest rate

setting. Finally, we allocate risk capitals to risk factors obtained from the MRT

decomposition according to the Euler principle and analyze them when the age of

cohort and the deferred term change.
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Introduction

A life annuity is a series of payments made at fixed intervals while the annuitant is

alive. There are many forms of life annuities. It may be limited to a given term of

years, or it may be payable for the whole life. An annuity can have a deferral phase

and an annuitization phase in which the insurance company actually makes payments.

Otherwise, the payment intervals may commence immediately. There also exists

fixed and variable annuities. Annuities that make payments in fixed amounts or in

amounts that increase by a fixed percentage are called fixed annuities. Alternatively,

the payments of variable annuities are based upon the performance of some specified

portfolio of securities, such as bond or equity mutual funds.

Life annuity has been a major part of actuarial science for a long time and it plays

a major role in life insurance operations. For example, defined benefit pension plans

are a form of life annuity typically provided by employers or governments as long

as the annuitants are alive. The size of payouts is usually determined based on the

employee’s years of service, age, and salary. As a result, life annuity actually transfers

longevity risk from the annuitant to the issuer. In fact, life annuity pricing elements

include not only the mortality of the insured, but also the time value of money, the

benefits promised and loadings to cover expenses, taxes, profits, and contingencies

(Black and Skipper (2000)). That is being said, a life annuity has at least two major

sources of risk, namely, mortality risk and interest rates risk.

The interaction of various risks can be quite complex, so that identification and

quantification of each individual risk are of practical importance in view of risk man-

agement. For example, the determination of the most relevant risk drivers helps

insurance companies to develop adequate risk management strategies such as prod-
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uct modifications and hedging. To this end, different methodologies for deriving risk

factors have already been proposed. The most common approach is a conditional

expectation approach. Bühlmann (1995) use this approach to decompose the annual

loss into financial and technical losses. A desirable property of this decomposition is

that the sum of variances of risk factors amounts to the variance of the total loss. As

a result, this approach is referred to as the variance decomposition. Schilling et al.

(2015) propose the martingale representation theorem (MRT) decomposition which

provides a way to allocate the randomness of liabilities to different sources of risk.

They also introduce properties for meaningful risk decompositions and show that the

MRT decomposition satisfies all of the properties while the variance decomposition

violates some of the properties.

The first risk we analyze is the mortality risk. To better understand the variations

in human mortality and to have a reasonable way to forecast mortality rates, it

is natural to incorporate a time variable (year) and some uncertainty into models.

Lee and Carter (1992) pioneered the research of stochastic mortality models. They

introduced an age-independent time index to capture changes in the general level of

mortality. This period term can then be modeled and forecast as a random walk with

drift.

Lee-Carter model is a simple but useful model for capturing the behavior of hu-

man mortality. However, it does not include the cohort effect, which has a significant

impact on mortality. Following the proposal of Lee-Carter model, there are a number

of extensions or modifications of it, for example Brouhns et al. (2002), Booth et al.

(2002) and Renshaw and Haberman (2003). Among all of these generalizations of the

Lee-Carter model, Renshaw and Haberman (2006) proposed a model that incorpo-

rates a cohort effect. In the model, they add a random cohort term that is a function

of the year of birth.

In lieu of modifying Lee-Carter model, Cairns et al. (2006) introduced a logit model

regards to mortality rates qx,t. In fact, it can be seen as a stochastic generalization of

the Perks model (Cairns et al. (2006)). In their model (CBD model), random effects

are captured by a bivariate random walk with drift (κ
(1)
t , κ

(2)
t ), where κ

(1)
t reflects

2



general mortality decline at all ages and κ
(2)
t reflects the rate of decline with respect

to different ages.

Cairns et al. (2009) compared eight stochastic mortality models quantitatively

when fitting mortality rates in England and Wales and in the United States. They

proposed criteria when assessing models. More specifically, a nice model would have

following properties: be relatively parsimonious, provide a good fit to the historical

data, able to generate sample paths, incorporate the cohort effect, have nontrivial cor-

relation structure, and remain relatively simple. All three models have some nice fea-

tures, however none of them meet all of the criteria. For example, Lee–Carter model

does not capture the cohort effect and has a trivial correlation structure. Renshaw–

Haberman also has trivial correlation structure and suffers from a lack of robustness

(CMI (2007)). CBD model fits good for higher ages (60 years or older) while the

performance deteriorates when fitting to the whole age range. Lastly, we point out

that these three models are all extrapolative models. We choose those models since

we believe that historical patterns would continue in the future.

Life insurance products often span from years to decades. This characteristic of

life insurance makes the assumption of flat term structure of interest rates unrealistic.

Thus we resort to the so called stochastic interest models. Single-factor models are

a popular class of interest rate models. The pioneering one of this class is proposed

by Vasicek (1977). It models the short term interest rate as an Ornstein-Uhlenbeck

process. The Vasicek model is popular due to its analytical formulas for bonds pricing.

Cox et al. (1985) develop an equilibrium model where the diffusion coefficient of the

dynamics is a square-root term. Its analytical tractability and positivity make it

stand out from other models.

The thesis is organized as follows. Chapter 1 presents three different stochastic

mortality models and we choose the most suitable one to be the mortality model in

the risk decomposition setting. Chapter 2 introduces the Vasicek and CIR models

and illustrate the estimation of the parameters of the CIR model using maximum

likelihood estimation (MLE) method. Chapter 3 lays out the considered life insurance

modeling framework and introduces the MRT decomposition. Finally, Chapter 4

3



presents numerical examples using whole life and deferred life annuities.
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Chapter 1

Stochastic Mortality Models

Mortality rates play a central role in life insurance. In fact the use of life tables, some

of which had been derived from observed mortality rates, can be traced back to the

birth of actuarial science. Thus constructing or choosing good models for mortality

rates is one of the first tasks confronted by actuaries. The past 100 years have seen

many improvements in life expectancy due to improvements in medical care, to the

establishment of global health systems, etc. Demographers also reached a conclusion

that mortality rates have improved during the last century. Thus deterministic mor-

tality laws, which only describe a mortality schedule in analytical terms, cannot give

an accurate prediction for mortality improvements. Therefore, we focus on the class

of stochastic mortality models.

In this chapter, three stochastic mortality models will be fitted to Canadian pop-

ulation data and compared, based on AIC and BIC criteria. Then we derive a con-

tinuous time stochastic mortality model driven by a Wiener process from the chosen

discrete time model as a part of the risk decomposition framework.
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1.1 Notations and Data

1.1.1 Notations

Before introducing stochastic mortality models, it is important that we introduce

notations that will be used to describe different models. We adopt the notations

introduced by Cairns et al. (2009).

First, we definemc(t, x) to be the crude (observed) death rate for age x in calendar

year t. Let D(t, x) be the number of deaths during year t at age x and E(t, x) be

the exposure which represents the average number of people alive who were aged x

at time t. More specifically,

mc(t, x) =
Number of deaths

Average population
=

D(t, x)

E(t, x)
.

The average population is usually approximated by an estimate of the population

aged x in the middle of the year, that is E(t, x).

The underlying (central) death rate is then m(t, x), which is equal to the expected

number of deaths divided by the exposure, i.e.

m(t, x) =
E [D(t, x)]

E(t, x)
,

where E[·] denotes expectation.
On the one hand, we can assume that D(t, x) is a Poisson random variable. Specif-

ically, we consider that

D(t, x) ∼ Poisson (E(t, x)m(t, x)) .

This is the so called Poisson assumption. If we adopt this assumption, which is com-

monly used in the literature (Brouhns et al. (2002); Renshaw and Haberman (2006);

Cairns et al. (2009)), then the stochastic mortality models considered in this thesis

can be estimated using Poisson maximum likelihood approach. The parameters in

different models are determined in a similar manner by maximizing the log-likelihood

based on this Poisson assumption. More details will be given in Section 1.2.1.

Mortality rate q(t, x) is the probability that an individual aged exactly x at time

t will die between t and t+ 1.

6



The force of mortality μ(t, x) is a general version of the usual μ(x) which allows

for a stochastic force. For small dt, the rate of death between time t and t + dt is

approximately μ(t, x) × dt. So it can interpreted as the instantaneous death rate at

time t for individuals aged x at that time. We assume that the force of mortality

remains constant within each year of age and within each calendar year, i.e. for all

0 ≤ s, u < 1, μ(t+ s, x+ u) = μ(t, x), where t and x are integers.

The assumption can be best understood with a Lexis diagram which implies the

following:

m(t, x) = μ(t, x).

This makes statistical inference much easier since death rates are estimated by the

number of deaths, D(t, x), and E(t, x). They are contained in a typical dataset. Since

m(t, x) = μ(t, x), we immediately have

q(t, x) = 1− exp (−μ(t, x)) = 1− exp (−m(t, x)).

1.1.2 Data

In this thesis we use crude mortality rates for Canadian males between years 1960

and 2011. Since we are more concerned about longevity risk, the risk that realized

mortality rates might be lower than anticipated, to which annuity providers are ex-

posed, data at medium to higher ages (40 - 99 inclusive) will be used when we make

comparisons of the different models. A typical dataset consists of numbers of deaths

D(t, x), and corresponding exposures, E(t, x). Data were taken from the Human

Mortality Database (www.mortality.org). As we can see in Figure 1.1 , crude death

rates have been declining over the selected period.
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Figure 1.1: logmc(t, x) at age 40, 60 and 80.

1.2 Lee–Carter(LC) Model

We start from the single factor model proposed by Lee and Carter (1992). It is a

log-bilinear projection model with age and period effect, where

lnμ(t, x) = β(1)
x + β(2)

x κ
(2)
t , (1.1)

the β
(1)
x coefficients describe the average shape of the age profile, then exp(β

(1)
x ) is

the general shape of the mortality schedule (age effect). The β
(2)
x coefficients describe

the pattern of deviations from this age profile when the parameter κ
(2)
t varies. It

indicates the sensitivity of the lnμ(t, x) at age x to variations in the time index κ2
t .

The time-varying parameters κ2
t reflect the general level of mortality (period effect).

The κ
(2)
t series characterizes the general speed of mortality improvement.

Assuming we have data covering a set of consecutive calendar years t = t1, t2, ..., tn

and a set of consecutive ages x = x1, x2, ..., xm. We are trying to estimate the param-

eters appeared in this model. But before that, there is an identifiability problem to

be addressed. To see this, note that

lnμ(t, x) = β̃(1)
x + β̃(2)

x κ̃
(2)
t ,

8



where β̃
(1)
x = β

(1)
x +bβ

(2)
x , β̃

(2)
x = β

(2)
x /a and κ̃

(2)
t = a(κ

(2)
t −b).We can see that arbitrary

selection of a and b leads to an arbitrary parameterization.

Therefore, we need to impose two constraints on the parameters to circumvent

this problem. Lee and Carter (1992) propose the following constraints:

∑
t

κ
(2)
t = 0,

∑
x

β(2)
x = 1. (1.2)

Actually, there are no rules for choosing the constraints. The likelihood linked with

the model has an infinite number of equivalent maximums. The important point is

that they will lead to the same quality of fit or forecast no matter which constraints

we choose. However, the first constraint here simplifies the estimation. For each x,

the estimate for β
(1)
x is the mean over t of the lnmc(t, x), specifically,

β(1)
x =

∑tn
t=t1

lnmc(t, x)

tn − t1 + 1
.

Now we can fit the model to the data set. We first need a statistical model. Lee

and Carter (1992) use the model

lnmc(t, x) = β(1)
x + β(2)

x κ
(2)
t + ε(t, x),

where the error term ε(t, x) has mean 0 and variance σ2
ε . It reflects particular age-

specific historical influence that are not captured by the model. There are two ways

to estimate the parameters in the model, namely ordinary least square (OLS) esti-

mation and (Poisson) maximum likelihood estimation. We will discuss in details the

OLS estimation in the following subsection. The maximum likelihood estimation will

be addressed after introducing all the mortality models as a generalized estimation

method.

1.2.1 OLS Estimation

It is worth mentioning that this model is not a simple regression model, since there

are no observed independent variables on the right-hand side of (1.1). Specifically,

9



age x and time t are treated as factors and effect on death rates are captured by β
(1)
x ’s

and β
(2)
x ’s for age, and by κ

(2)
t ’s for time. Essentially this is a relational model.

As said before, β
(1)
x can be calculated as long as we adopt normal constraints (1.2).

In mathematical terms, we have

β̂(1)
x =

∑tn
t=t1

lnmc(t, x)

tn − t1 + 1
.

Secondly, if we still want to use the regression method, the κ
(2)
t values must be cal-

culated. Since the sum of β
(2)
x has been fixed to 1, we have

κ
(2)
t =

xm∑
x=x1

(
lnmc(t, x)− β(1)

x

)
.

Now, the parameter β
(2)
x can be estimated using the linear regressions over time,

performed separately for each age xi. In our linear regression, the dependent variable

is the difference between the natural logarithms over time of the crude death rates

at age x and β
(1)
x . It means that we regress y = lnmc(t, x) − β

(1)
x on x = κ

(2)
t . Then

β̂
(2)
x ’s are the estimated coefficients.

Beside this cumbersome estimation method, we can employ the singular value

decomposition (SVD) to find a least-square solution to an objective function. Specif-

ically, we need to find values of β
(1)
x , β

(2)
x and κ

(2)
t which they minimize the objective

function

OLS(β(1),β(2),κ(2)) =
xm∑

x=x1

tn∑
t=t1

(
lnmc(t, x)− β(1)

x − β(2)
x κ

(2)
t

)2

.

In fact, this is equivalent to maximum likelihood estimation provided that ε(t, x)’s

obey the Normal distribution. As usual, the β
(1)
x coefficients are estimated as the

average values over time of the lnmc(t, x) values for each x. That is

β̂(1)
x =

1

tn − t1 + 1

tn∑
t=t1

lnmc(t, x).

To see this, set ∂

∂β
(1)
x

OLS equal to 0 yields to

tn∑
t=t1

lnmc(t, x) = (tn − t1 + 1)β(1)
x + β(2)

x

tn∑
t=t1

κ
(2)
t .
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From the constraints, we know that
∑tn

t=t1
κ
(2)
t = 0, thus we get the β

(1)
x ’s. We then

obtain the β
(2)
x ’s and κ

(2)
t ’s from the first term of a singular value decomposition of

the matrix lnmc(t, x)− β
(1)
x .

Before proceeding to the application of the SVD, we brief review this concept.

SVD is based on a theorem from linear algebra which says that a rectangular matrix

A can be broken down into a product of three matrices.

Theorem 1.2.1 Suppose M is a m×n real matrix. Then there exists a factorization,

called a singular value decomposition of M , of the form

M = UΣV T

where Σ is a m× n diagonal matrix with the square roots of eigenvalues of MTM in

descending order on the diagonal and Um×m, Vn×n are orthogonal matrices.

Proof. A proof of the theorem can be found in Friedberg et al. (2003).

We list two important properties regarding U and V here:

• UTU = I, the columns of U are orthonormal eigenvectors of MMT .

• V TV = I, the columns of V are orthonormal eigenvectors of MTM .

SVD is a method for identifying and ordering the dimensions where data points

exhibit the most variation. Once we have identified where the most variation is, it

is possible to find the best approximation of the original data points using fewer

dimensions. Hence, SVD can be seen as a method for data reduction.

Now turn back to our estimation problem. Let us create the matrix

M =

⎡
⎢⎢⎢⎣
lnmc(t1, x1)− β

(1)
x1 . . . lnmc(tn, x1)− β

(1)
x1

...
. . .

...

lnmc(t1, xm)− β
(1)
xm . . . lnmc(tn, xm)− β

(1)
xm

⎤
⎥⎥⎥⎦ .

M has m rows and n columns. Now, the β
(2)
x ’s and κ

(2)
t ’s are such that they minimize

OLS(β(2),κ(2)) =
m∑
i=1

n∑
j=1

(Mij − β(2)
xi

κ
(2)
tj )2,

11



where Mij are entries of matrix M . The solution is given by the singular value

decomposition of M .

M = UΣV T using the singular value decomposition. The best approximation of

M in the least-squares sense is known to be

M ≈ M� =
√
λ1u1v

T
1

where u1 is the first column of U , v1 is the first column of V , and
√
λ1 is the first

element of the diagonal of Σ.

Then we obtain

β(2)
xj

=
Uj,1∑m
j=1 Uj,1

,

κ
(2)
ti =

√
λ1

(
m∑
j=1

Uj,1

)
Vi,1.

The constraints (1.2) are then satisfied by the β̂x’s and κ̂t’s.

If we use the κ
(2)
t ’s obtained from SVD, there will be a discrepancy between the

observed number of deaths D(t) =
∑

x D(t, x) (in year) and the fitted one. It is

mainly because we are modeling on the logarithmic scale. To solve this problem, we

adjust the κ
(2)
t by solving

∑
x

D(t, x) =
∑
x

E(t, x) exp (β(1)
x + β(2)

x κ
(2)
t ).

Now with the re-estimated κ
(2)
t we can produce exactly the same number of deaths

actually observed in the data. We note that no explicit solution is available for the

equation, which has to be solved numerically.

1.2.2 Mortality Projection

We could forecast mortality rates using the estimated parameters. In the LC model,

the time index κ
(2)
t can be seen as a time series when we need to forecast mortality

rates. It is the only source of uncertainty involved in the projection process. As in

their original paper (Lee and Carter (1992)), we first use an ARIMA(0, 1, 0) process

12



to fit the estimated κ
(2)
t values, then the derived slope and drift values can be used in

the extrapolation process. This ARIMA process is tested against by using standard

Box-Jenkins procedures in many of the empirical studies in the literature. In most

applications so far, κ
(2)
t is well-modeled as a random walk with drift:

κ
(2)
tj = κ

(2)
tj−1

+ d+ σZj

where the Zj’s are i.i.d. standard Normal random variables.

From the above κ
(2)
t modeling dynamic, we know that (κ

(2)
tj − κ

(2)
tj−1

), j = 2, 3, ..., n

are independent random variables and normally distributed with mean d and standard

derivation σ. Thus the maximum likelihood estimators of d and σ2 are given by the

sample mean and variance of the (κ
(2)
tj − κ

(2)
tj−1

)’s. They are

d̂ =
1

tn − t1

tn∑
t=t2

(κ
(2)
t − κ

(2)
t−1) =

κ
(2)
tn − κ

(2)
t1

tn − t1
,

σ̂2 =
1

tn − t1

tn∑
t=t2

(κ
(2)
t − κ

(2)
t−1 − d̂)2. (1.3)

Then for the projection period starting from tn+1, we use β
(1)
x , β

(2)
x estimated from

the model together with κ
(2)
t ’s calculated from the random walk with drift projection

model. The forecast central death rate is

lnm(tj, x) = β(1)
x + β(2)

x κ
(2)
tj ,

j = n+ 1, n+ 2, . . . .

1.3 Renshaw–Haberman(RH) Model

Renshaw and Haberman (2006) propose the following model for population mortality

with a cohort effect:

lnμ(t, x) = β(1)
x + β(2)

x κ
(2)
t + β(3)

x γ
(3)
t−x. (1.4)

This is an extension of the Lee-Carter model with an extra cohort effect term

β
(3)
x γ

(3)
t−x. To see this, notice that t− x is the year of birth of a cohort.

13



This model has similar identifiability problems as the LC model (Cairns et al.

(2009)). They use the following constraints to ensure that we are able to perform the

estimation:

∑
t

κ
(2)
t = 0,

∑
x

β(2)
x = 1,

∑
x,t

γ
(3)
t−x = 0,

∑
x

β(3)
x = 1. (1.5)

The first and third equations allow us to estimate β
(1)
x as mean over time of the

lnm(t, x). The second and fourth equations are not natural choices, but it has no

effect on the quality of fit as in the Lee–Cater model.

1.3.1 Poisson Maximum Likelihood Estimation

As we mentioned earlier,D(t, x) is a Poisson random variable with mean E(t, x)m(t, x).

Thus we can estimate parameters by maximizing the Poisson log-likelihood over all

age, period, and cohort parameters. To make it more general, we denote by φ the

full set of parameters. In RH model, there are five sets of parameters, i.e., the

β
(1)
x , β

(2)
x , β

(3)
x , the κ

(2)
t and the γ

(3)
t−x terms. The log-likelihood is

L(φ) =
∑
t,x

(
D(t, x) ln [E(t, x)m(t, x;φ)]− E(t, x)m(t, x;φ)− ln [D(t, x)!]

)
.

Brouhns et al. (2002) give an iterative algorithm using a uni-dimensional or ele-

mentary Newton method to estimate log-linear models with bilinear terms. In itera-

tion step ν +1, a single set of parameters is updated fixing other parameters at their

current estimates using the following updating scheme

θ̂(ν+1) = θ̂(ν) − ∂L(ν)/∂θ

∂2L(ν)/∂θ2
,

where L(ν) = L(ν)(θ̂(ν)).
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With respect to RH model, we can proceed as follows. First specify the starting

values, we set β
(1)
x =

∑tn
t=t1

lnmc(t,x)

tn−t1+1
, β

(2)
x = 0, β

(3)
x = 1/m for each age x. Also, set

κ
(2)
tj = n+1

2
−j, for j = 1, 2, ..., n, (arbitrary values can also be used) and each calendar

year t. Next, we set γ
(3)
t−x = 0 for each cohort year t− x. Within each iteration:

• Update each of the β
(1)
x ’s in turn, using the presented algorithm. For a given x,

this amounts to increasing the likelihood over age x cells only. The likelihood

for all other ages is unaffected.

• Update each of the γ
(3)
t−x’s in turn. For a given t− x, this amounts to increasing

the likelihood over cells, (t, x), that have a common year of birth only. The

likelihood for all other cohort years of birth is unaffected.

• Update each of the β
(2)
x ’s in the same manner.

• Update each of the κ
(2)
t ’s in turn. For a given t, this amounts to increasing the

likelihood over calendar years t cells only. The likelihood for all other calendar

years is unaffected.

• Update each of the β
(3)
x ’s in the same manner.

• Apply the identifiability constraints.

We specify a criterion to stop the procedure, usually a very small increase of

the log-likelihood function. This ensures that the log-likelihood converges within a

specified degree of tolerance. This method can easily be adapted to fit the Lee–Carter

model. In fact, we use Poisson maximum likelihood estimation to fit all the mortality

models in this thesis.

1.3.2 Mortality Projection

For the period effect, Cairns et al. (2011) argue that random walk processes have been

widely used to drive the dynamics of the period effect since the introduction of the

original Lee and Carter (1992) model. In their original paper, Renshaw and Haber-

man (2006) also project two time series κ
(2)
t and γ

(3)
t−x by using univariate ARIMA
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models. Thus we fit and forecast κ
(2)
t and γ

(3)
t−x by two independent random walks

with drift (or ARIMA(0,1,0) processes) in this thesis.

1.4 Cairns–Blake–Dowd(CBD) Model

Cairns et al. (2006) propose the following model for mortality rates q(t, x)

logit q(t, x) = κ
(1)
t + (x− x̄)κ

(2)
t ,

where x̄ is the mean of ages in the sample range and logit (x) = ln x
1−x

, 0 < x < 1.

Note that we have two stochastic time series here, which means the period effect

enters the model in two different ways. The intercept period term κ
(1)
t affects mortality

at different ages in the same way, which corresponds to the feature that mortality

rates are decreasing over time at all ages. On the other hand, the slope period term

κ
(2)
t affects mortality proportionally to age. It uses two period effect parameters to

capture the trend improvement in mortality rates (the intercept or level term) and

the differential higher age dynamics (slope term). This is a fundamental difference

when compared with Lee–Carter model since it has only one period term κ
(2)
t that

affects all ages at the same time. Moreover, this model specification does not suffer

from any identifiability problems as in the Lee–Carter model class.

1.4.1 Estimation

Again, assuming we have data covering a set of consecutive calendar years t =

t1, t2, ..., tn and a set of consecutive ages x = x1, x2, ..., xm. Now we want to estimate

κ
(1)
t and κ

(2)
t parameters. This can be done by least squares or simple linear regression.

For each year t, we havem dependent variables logit q(t, x1), logit q(t, x2), ..., logit q(t, xm)

and corresponding explanatory variables x1 − x̄, x2 − x̄, ..., xm − x̄. Now suppose a

simple regression model y = β0+β1x, then we can estimate κ
(1)
t and κ

(2)
t as using the

linear regression setting. Note that CBD model implicitly assumes that

logit q(t, x) = ln
q(t, x)

1− q(t, x)
= κ

(1)
t + (x− x̄)κ

(2)
t + ε(t, x)
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where the error terms ε(t, x) are i.i.d. normal random variables with mean 0 and

constant variance σ2. In the OLS estimation process, period parameters κ
(1)
t and κ

(2)
t

are estimated separately for each calendar year t.

There are alternative ways to fit CBD model, such as Poisson maximum likelihood

method. We only need to transform q(t, x) to m(t, x) using the relationship m(t, x) =

− ln (1− q(t, x)). Then we can maximize the log likelihood introduced in Section

1.2.1 using the elementary Newton method to get the estimated values for κ
(1)
t and

κ
(2)
t .

1.4.2 Mortality Projection

In order to forecast mortality rates improvements, we need to fit a two-dimensional

random walk with drift κ(1)(t), κ(2)(t). We suggest to adopt symbols used in their

original model. Specifically, let K(t) =
(
κ(1)(t), κ(2)(t)

)′
with dynamic

K(t+ 1) = K(t) + μ+ CZ(t+ 1),

where μ is a constant 2×1 vector of drift parameters, C is a constant 2×2 lower trian-

gular Cholesky square root matrix of the covariance matrix V (that is V = CCT ), and

Z(t) is a two-dimensional standard normal random variable. As pointed by Cairns

et al. (2006), the choice of C makes no difference in the analysis. The restriction of

C to a lower triangular form means that C is straightforward from V and that this

(Cholesky) decomposition is unique.

1.5 Models Comparison

In this section we evaluate and compare the mortality models and determine which

one produce the best fit to data for Canadian males aged between 40 and 99 over the

period 1960 to 2011.

When fitting models it is possible to increase log-likelihood by adding parameters.

As pointed by Cairns et al. (2009), such improvements are almost guaranteed if models
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Model L AIC (Rank) BIC (Rank) ν

LC -18,787 37,914 (2) 38,941 (2) 170

RH -15,585 31,934 (1) 33,983 (1) 339

CBD -20,821 41,851 (3) 42,480 (3) 104

Table 1.1: Comparison results

are nested: if one model is a special case of another, then the model with more

parameters will typically have a higher maximum likelihood, even if the true model

is the one with fewer parameters. This may result in overfitting. A overfit model has

poor predictive performance, as it overreacts to minor fluctuations in the dataset, or

we can say it is more ‘sensitive’ to the noise. To resolve this problem, we use AIC

and BIC as criteria of the selection.

They have some advantages when dealing with model selection problem. First,

their use allows to strike a balance between quality of fit and parsimony by introducing

a penalty term for the number of parameters in the model. Moreover, BIC makes no

assumptions about “prior” model rankings: that is, all models have equal status in

terms of how we rank them. In a word, the two information criteria deal with the

trade-off between the goodness of fit of the model and the complexity of the model.

The AIC and BIC for model i are specified respectively as

AICi = −2 lnL(φ̂i) + 2νi. (1.6)

BICi = −2 lnL(φ̂i) + νi lnN, (1.7)

where φi is the parameter vector for model i, φ̂i is its maximum likelihood estimate,

lnL(φ̂i) is the maximum log likelihood, N is the number of observations and νi is

the effective number of parameters being estimated. For our models, νi equals the

number of constraints subtracted from the actual number of estimated parameters.

For instance, effective number of parameters in Lee–Carter model ν1 = 2×60 (ages)+

52 (years)− 2 (number of constraints) = 170. Then the models can be ordered, with

the top model having the lowest AIC or BIC.
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Figure 1.2: Mortality rates for Canadian males for the year 2000 (dots) and fitted

RH model.

Values for the AIC and BIC, the maximum log likelihood and corresponding ef-

fective number of parameters are presented in Table 1.1. We conclude that Renshaw–

Haberman model stands out on top with the lowest AIC and BIC values. Also we

note here that RH model parameters converge very slowly to their maximum likeli-

hood estimates when compared to other two models which is observed also by other

authors (Renshaw and Haberman (2006); Cairns et al. (2009)).

Next we present the fitted mortality curve using RH model and mortality rates

for the year 2000 in our dataset in Figure 1.2 and 1.3. The fit is clearly very good,

especially for old ages. Estimated values are β
(1)
x , β

(2)
x and β

(3)
x for the ages 40-99,

κ
(2)
t for the years 2000 and 2010 and γ

(3)
t−x for corresponding cohort years.

1.6 Continuous Time Stochastic Mortality Model

In this section, a continuous Renshaw–Haberman stochastic mortality model μ(t) will

be derived as a corner stone of the life insurance modeling framework.

When we move to the continuous time model world, the Wiener process, sometimes
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Figure 1.3: Mortality rates for Canadian males for the year 2010 (dots) and fitted

RH model.

called the Brownian motion, is the fundamental building block in modern theory of

random process.

Definition 1.6.1. A stochastic process {W (t), t ≥ 0} is said to be a standard Wiener

process if

i) W (0) = 0;

ii) {W (t), t ≥ 0} has stationary and independent increments;

iii) for every t > 0, W (t) is normally distributed with mean 0 and variance t.

The name of Brownian motion goes back to the English botanist Robert Brown

who discovered a motion exhibited by a small particle that is immersed in a liquid.

The standard Wiener process can be generalized to allow W (t) has the normal dis-

tribution with mean 0 and variance σ2t for some constants σ2. From the definition of

W (t), we expect W (t) to be a continuous function of t. It turns out to be the case;

with probability 1, W (t) is indeed a continuous function of t.

To derive the dynamics of the mortality intensity process, it is inevitable to use

stochastic calculus. First we need the definition of Itô process.
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Definition 1.6.2. LetW (t), t ≥ 0, be aWiener process. An Itô process is a stochastic

process of the form

X(t) = X(0) +

∫ t

0

a(s)ds+

∫ t

0

b(s)dW (s)

where X(0) is a scalar starting point and a(t) and b(t) are adapted stochastic pro-

cesses.

a(t) and b(t) are respectively the drift and the diffusion terms. A shorthand

notation is the following stochastic differential equation for dX(t),

dX(t) = a(t)dt+ b(t)dW (t).

This can be seen as a Brownian motion with an instantaneous drift a(t) and an

instantaneous variance rate b2(t).

Theorem 1.6.1 (Itô formula) Let X(t) be an Itô process and let f(t, x) be a func-

tion for which the partial derivatives ft(t, x), fx(t, x), and fxx(t, x) are defined and

continuous, and let W (t) be a Wiener process. Then, for every T ≥ 0,

f(T,X(T )) = f(0, X(0))+

∫ T

0

ft(t,X(t))dt+

∫ T

0

fx(t,X(t))dX(t)+
1

2

∫ T

0

fxx(t,X(t))(dX(t))2.

Proof. The proof can be found in Shreve (2004).

Remark. Again we have the differential notation for this formula

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))dX(t)dX(t).

If we apply the rules dW (t)dW (t) = dt, dtdW (t) = dW (t)dt = 0, dtdt = 0, then the

Ito formula in differential form simplifies further to

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))(a(t)dt+ b(t)dW (t)) +
1

2
fxx(t,X(t))(b2(t)dt)

=

[
ft(t,X(t)) + a(t)fx(t,X(t)) +

1

2
b2(t)fxx(t,X(t))

]
dt+ b(t)fx(t,X(t))dW (t).

where dX(t)dX(t) = (a(t)dt+ b(t)dW (t))(a(t)dt+ b(t)dW (t)) = b2(t)dt.
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1.6.1 A Generalized Renshaw–Haberman Model

First, we remove the assumption that μ(t, x) remains constant over each calendar

year. Now we are ready to extend the discrete time RH model to continuous time.

In light of (1.4), a general continuous-time intensity can be written as

lnμ(t, x) = β1(x+ t) + β2(x+ t)κ(t) + β3(x+ t)γ, (1.8)

for some functions β1, β2 and β3 and a constant γ. Meanwhile, κ(t) is a stochastic

process.

In (1.8), we have assumed that the person is of age x at time 0 (which can be an

arbitrary calendar time). The parameter t then describes the time that has passed

since time 0. This explains the dependence of functions β1, β2 and β3 on age x + t

since the process μ(t, x) describes the evolution of the intensity of mortality of an

individual aged x + t at each time t. Thus, the β
(1)
x s, β

(2)
x s and β

(3)
x of expression

(1.4) must be seen as the point-wise estimates of the functions β1’s, β2’s and β3’s at

each age x+ t. Then we apply some interpolation methods to get the values of three

functions.

As we mentioned in Section 1.3.2, κ
(2)
t is modeled as a random walk with drift

κ
(2)
t = κ

(2)
t−1 + θ + σZ. So in the continuous case, it is natural to assume κ(t) has the

dynamic

dκ(t) = θdt+ σdW (t),

where θ and σ are to be estimated from the κ
(2)
t ’s as stated in (1.3).

The dynamic of μ(t, x) can be found by using Ito formula. To see this, letX(t, x) =

lnμ(t, x) and f(x) = ex, then we have μ(t, x) = f(X(t, x)), the differential of X(t, x)

is

dX(t, x) = β
′
1(x+ t)dt+ d(β2(x+ t)κ(t)) + γβ

′
3(x+ t)dt

= (β
′
1(x+ t) + γβ

′
3(x+ t))dt+ κ(t)β

′
2(x+ t)dt+ β2(x+ t)dκ(t)

=
[
β
′
1(x+ t) + γβ

′
3(x+ t) + κ(t)β

′
2(x+ t)

]
dt+ β2(x+ t)(θdt+ σdW (t))

=
[
θβ2(x+ t) + β

′
1(x+ t) + κ(t)β

′
2(x+ t) + γβ

′
3(x+ t)

]
dt+ σβ2(x+ t)dW (t).

22



Then by the Ito formula we have

dμ(t, x) = fx(X(t, x))dX(t, x) +
1

2
fxx(X(t, x))dX(t, x)dX(t, x)

= eX(t,x)dX(t, x) +
1

2
eX(t,x)β2

2(x+ t)σ2dt

= μ(t, x)

([
θβ2(x+ t) + β

′
1(x+ t) + κ(t)β

′
2(x+ t) + γβ

′
3(x+ t)

]
dt+ σβ2(x+ t)dW (t)

)

+
1

2
σ2β2

2(x+ t)μ(t, x)dt

=

(
θβ2(x+ t) +

1

2
σ2β2

2(x+ t) + β
′
1(x+ t) + κ(t)β

′
2(x+ t) + γβ

′
3(x+ t)

)
μ(t, x)dt

+ σβ2(x+ t)μ(t, x)dW (t).

(1.9)

As for the initial value, μ(0, x) = exp (X(0, x)) = exp (β1(x) + β3(x)γ + β2(x)κ(0))

for a given cohort age x. We choose as κ(0) the last estimate of κ
(2)
t in the Poisson

maximum likelihood estimation process.
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Chapter 2

Interest Rate Models

The concept of interest rates plays a very important role in modern finance. Interest

rate derivatives, i.e. derivatives with payoffs depending on interest rates or bond

prices, are also traded in large volume. From this point of view, an annuity is closely

related to a fixed income derivative since an annuity often exists over decades with

steady payments. Thus constant interest rates assumption used in textbooks when

introducing annuities is not suitable for our analysis. The main goal here is to in-

troduce the basic concepts and terminologies involved with stochastic interest rate

modeling. We begin with the definition of a bank account. Let B(t) be the value of

a bank account at time t ≥ 0. We assume that we started our bank account with

initial deposit of 1 (B(0) = 1). The value of the bank account evolves according to

the following differential equation:

dB(t) = r(t)B(t)dt.

where r(t) is a positive function of time.

Remark. Integrating over time together with initial condition B(0) = 1 leads to

B(t) = exp

(∫ t

0

r(s)ds

)
.

The above equation tells us that investing a unit amount at time 0 yields at time

t the value B(t). r(t) is the instantaneous rate at which the bank account accrues.

This instantaneous rate is referred to as short rate.
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The discount factor D(t, T ) is the amount at time t that is “equivalent” to one

unit of currency payable at time T , and is given by

D(t, T ) =
B(t)

B(T )
= exp

(
−
∫ T

t

r(s)ds

)
.

Since we are going to model the evolution of r in time through a stochastic process,

the discount factor D is also a stochastic process.

A Bond is a another fundamental instrument used in financial theory. A bond is

a debt investment in which an investor loans money to an entity which borrows the

funds for a defined period of time at a variable or fixed interest rate. Thus a bond can

be viewed as a loan. A T -maturity zero-coupon bond is a contract that guarantees its

holder the payment of one unit of currency at time T , with no intermediate payments.

The contract value at time t ≤ T is denoted by P (t, T ).

Zero-coupon bond prices play a very important role in interest-rate theory. In fact,

if we want to know the present value of a derivative or a financial product, we have

to deal with zero-coupon bond prices first. Moreover, most interest rate quantities

can be obtained from the zero-coupon bond price, and vice versa.

The continuously-compounded spot interest rate prevailing at time t for the ma-

turity T is denoted by R(t, T ) and is equivalent to the constant rate at which an

investment of P (t, T ) units of currency at time t accrues continuously to yield a unit

amount of currency at maturity T , i.e.

P (t, T )eR(t,T )(T−t) = 1.

Thus, the bond price P (t, T ) can be expressed in terms of R:

P (t, T ) = e−R(t,T )(T−t).

R(t, T ) is closely related to the short rate r(t). Indeed, time to maturity T − t can

be partitioned into infinitesimal time intervals. From this point of view, modeling

R(t, T ) is equivalent to modeling r(t). More specifically, the short rate is a limit of

the spot rate, that is, for each t,

r(t) = lim
T→t+

R(t, T ).
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2.1 Interest Rate Models

In order to price interest rate derivatives we need a model which can describe the

evolution of interest rate reasonably. In this section, we present two classical time-

homogeneous short-rate models, namely the Vasicek and the Cox, Ingersoll and Ross

models.

2.1.1 The Vasicek Model

Vasicek (1977) assumes that the instantaneous spot interest rate is driven by a one-

dimensional diffusion process, namely an Ornstein–Uhlenbeck process with constant

coefficients. That is why this model belongs to the family of one-factor short-rate

models. In his original paper, r(t) evolves under the real world measure P . But for a

suitable choice of the market price of risk, we can write the dynamics of r under the

risk-neutral measure Q as

dr(t) = κ[θ − r(t)]dt+ σdW (t), (2.1)

where r(0), κ, θ and σ are positive constants. The parameter θ represents long-term

mean. If the interest rate r is larger than mean θ, then the drift term is negative

since κ > 0, so that r will be pulled down in the direction of θ. Similarly, the drift of

r is positive whenever the interest rate is below θ, hence r(t) is pushed to be closer

to θ. We call this behavior mean reversion. Therefore, κ is the speed of reversion.

In fact, possessing the mean reversion characteristic is a compelling feature of the

interest rate model. It prevents the interest rate from rising indefinitely.

Integrating (2.1), we obtain,

r(t) = e−κt

[
r0 +

∫ t

0

eκsκθds+

∫ t

0

eκsσdW (s)

]

= r0e
−κt + e−κt

[
κθ(

1

κ
eκt − 1

κ
) + σ

∫ t

0

eκsdW (s)

]

= r0e
−κt + e−κtθ(eκt − 1) + σ

∫ t

0

e−κ(t−s)dW (s)

= r0e
−κt + θ(1− e−κt) + σ

∫ t

0

e−κ(t−s)dW (s).
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Similarly, for each s ≤ t, we have

r(t) = r(s)e−κ(t−s) + θ(1− e−κ(t−s)) + σ

∫ t

s

e−κ(t−u)dW (u).

Hence, the conditional distribution of r(t) is a Normal distribution with the mean

and variance given by

E[r(t)|Fs] = r(s)e−κ(t−s) + θ(1− e−κ(t−s)),

Var(r(t)|Fs) =
σ2

2κ
[1− e−2κ(t−s)],

where {Ft}t≥0 is the filtration generated by {W (t)}t≥0. It contains all the information

about W (t) up to time t. Consequently, we have

lim
t→∞

E[r(t)] = θ,

lim
t→∞

Var(r(t)) =
σ2

2κ
.

Again, we justify the name long-term mean θ from the asymptotic expectation. Nor-

mally distributed interest rate implies that there is a positive possibility for r(t) to

be negative, which indeed is a main drawback of the Vasicek model. However, we

value more the analytical tractability implied by the Gaussian density compared to

the shortcoming.

As stated in Brigo and Mercurio (2007), the Vasicek model possesses an affine term

structure, i.e. the continuously compounded spot rate R(t, T ) is an affine function in

the short rate r(t),

R(t, T ) = α(t, T ) + β(t, T )r(t),

where α and β are deterministic functions of time. This relationship is always satisfied

when the zero–coupon bond price can be written in the form

P (t, T ) = A(t, T )e−B(t,T )r(t).

Indeed, in the Vasicek model

A(t, T ) = exp

[(
θ − σ2

2κ2

)
(B(t, T )− T + t)− σ2

4κ
B(t, T )2

]
,

B(t, T ) =
1

κ

[
1− e−κ(T−t)

]
.
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The existence of affine term structure is a very convenient property from a com-

putational and analytical point of view, because the explicit formula for the term

structure makes the model easier to calibrate.

2.1.2 The Cox-Ingersoll-Ross(CIR) Model

Cox, Ingersoll and Ross (1985) introduce an extension of the Vasicek model which

includes a “square-root” term in the diffusion coefficient of the instantaneous short-

rate dynamics. Under the risk-neutral measure Q, the dynamics follows the stochastic

differential equation

dr(t) = κ(θ − r(t))dt+ σ
√
r(t)dW (t), (2.2)

where r(0), κ, θ and σ are positive constants.

The drift term κ(θ − r(t)) is the same as in the Vasicek model. Therefore, the

short rate r is mean reverting with long-term mean θ. If the parameters satisfy the

following condition (known as the Feller condition)

2κθ > σ2,

then the process r(t) would never reach 0, so that we can guarantee that r(t) remains

positive according to dynamics (2.2). When the interest rate approaches zero then

the volatility term σ
√
r(t) becomes very small, which decreases randomness. Conse-

quently, the evolution of short rate r(t) is dominated by the drift factor, which pushes

the rate upwards.

The process r admits a non-central chi-squared distribution rather than a Normal

distribution, see Brigo and Mercurio (2007). The density function for the interest

rate process is

fr(t)(x) = fχ2(ν,λt)
ct

(x) = ctfχ2(ν,λt)(ctx),

ct =
4κ

σ2(1− exp(−κt))
,

ν = 4κθ/σ2,

λt = ctr0 exp(−κt).
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where χ2(ν, λ) is a non-central chi-squared distribution with ν degrees of freedom and

non-centrality parameter λ.

The mean and variance of r(t) conditional on Fs are given by

E[r(t)|Fs] = r(s)e−κ(t−s) + θ(1− e−κ(t−s)),

Var(r(t)|Fs) = r(s)
σ2

κ

(
e−κ(t−s)−e−2κ(t−s))

+ θ
σ2

2κ

(
1− e−κ(t−s)

)2
.

The CIR model is tractable because its transition density has a closed-form ex-

pression in which maximum likelihood estimation (MLE) can be undertaken and there

also exists a closed formula for bond price. In fact, the CIR model also belongs to

the family of affine term-structure models. We have explicit solutions for the bond

prices. The price at time t of a zero-coupon bond with maturity T is

P (t, T ) = A(t, T )e−B(t,T )r(t), (2.3)

where

A(t, T ) =

[
2h exp{(κ+ h)(T − t)/2}

2h+ (κ+ h)(exp{(T − t)h} − 1)

]2κθ/σ2

,

B(t, T ) =
2(exp{(T − t)h} − 1)

2h+ (κ+ h)(exp{(T − t)h} − 1)
,

h =
√
κ2 + 2σ2.

2.2 Estimation

It is natural to perform the historical estimation under the real-world measure P . In

this section, we estimate the parameters of the CIR model using historical one-month

yields of the Canadian treasury bills. To preserve the same square–root structure in

(2.2) under the real-world measure P , we adopt the following formulation (Brigo and

Mercurio (2007)):

dr(t) = [κθ − (κ+ λσ)r(t)]dt+ σ
√
r(t)dW 0(t)

= (κ+ λσ)

[
κθ

κ+ λσ
− r(t)

]
dt+ σdW 0(t)

= κ∗(θ∗ − r(t)) + σ∗dW 0(t), (2.4)
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where λ is a new parameter, contributing to the market price of risk. The real-world

dynamics (2.4) now has the same form as in (2.2) and we only need to estimate κ∗,

θ∗, and σ∗. Therefore, formulas and results presented above are also available under

the real-world measure P .

For maximum likelihood estimation transition densities are required. Cox et al.

(1985) obtain the result that given rt at time t the distribution of rt+Δt at time t+Δt

is a non-central chi-square distribution and give the formulation:

p(rt+Δt|rt) = ce−u−v(
v

u
)
q
2 Iq(2

√
uv),

where

c =
2κ

σ2(1− e−κΔt)
,

u = crte
−κΔt,

v = crt+Δt,

q =
2κθ

σ2
− 1,

and Iq(2
√
uv) is a modified Bessel function of the first kind of order q.

The likelihood function for interest rate time series with N observations is

L(κ, θ, σ) =
N−1∏
i=1

p(rti+1
|rti).

It is computationally convenient to work with the log-likelihood function

lnL(κ, θ, σ) =
N−1∑
i=1

ln p(rti+1
|rti),

from which we derive the log-likelihood function of the CIR process given by

lnL = (N − 1) ln c+
N−1∑
i=1

(
− uti − vti+1

+
1

2
q ln

vti+1

uti

+ ln Iq(2
√
utivti+1

)

)
, (2.5)

where uti = crtie
−κΔt and vti+1

= crti+1
.

The monthly dataset is obtained from the CANSIM database (v122529) and covers

the period from January 1980 to February 2017, providing 446 observations. We

set the time step Δt = 1/12 here since we are using monthly data. We then find

maximum likelihood estimates of parameters κ∗, θ∗ and σ∗ by maximizing the log-

likelihood function (2.5).
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Figure 2.1: Canadian one-month treasury yields (in percents) from January 1980 to

February 2017

κ̂ θ̂ σ̂ lnL/N

MLE 0.1090 0.0236 0.0681 -0.4076

Table 2.1: Maximum likelihood estimation results for CIR model. The lnL refers to

the maximized value of the log-likelihood divided by the number of observations.

2.2.1 Empirical results

The time series of Canadian treasury yields is plotted in Figure 2.1. Table 2.1 reports

the estimates and the log-likelihood of the MLE for the CIR model. Note that the

parameters satisfy the Feller condition 2κ∗θ∗ > (σ∗)2.
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Chapter 3

Martingale Representation

Theorem Decomposition

In this chapter, we first present the properties that define a meaningful risk decomposi-

tion as proposed by Schilling et al. (2015). The life insurance modeling framework and

the martingale representation theorem (MRT) decomposition are then introduced.

We finally conclude with the discussion of the calculation of this decomposition.

3.1 Risk Decomposition

In general, an insurance contract is a transfer of risk from a policyholder to the

insurer. Life insurance liabilities are influenced by various sources of risk such as

financial factors, aggregate demographic trends, and actual deaths observed in the

portfolio of insured. The latter two cause uncertain timings of cash flows in a long

time horizon. In many cases, insurance companies need to assess the relative size of

each source of risk in order to be able to allocate resources and propose efficient risk

management strategies. Nevertheless, the interaction of various sources can be quite

complex, so that the identification and quantification of each individual risk is not

trivial. Therefore, an effective risk decomposition methodology is very important and

has great practical value from an actuarial perspective.

Suppose an insurer’s total risk is given by the (normalized) loss random variable
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L, where E[L] = 0. Assume there are k sources of risk, where Zi = Zi(t) denotes the

i-th source of risk and Z = (Z1, . . . , Zk). A decomposition methodology is a method

that assigns each source of risk a corresponding risk factor.

Schilling et al. (2015) propose 6 properties that a meaningful risk decomposition

should satisfy.

P1 Randomness

Individual risk factors are given by random variables R1, R2, . . . , Rk, where

random variable Ri corresponds to risk factor i ∈ {1, 2, ..., k}. We introduce

the relation ↔ for a decomposition methodology and write (L,Z1, . . . , Zk) ↔
(R1, R2, . . . , Rk) to indicate that the loss L depending on (Z1, . . . , Zk) corre-

sponds to the decomposition R1, R2, . . . , Rk.

P2 Attribution

Ri represents the risk factor related to risk i. Formally, we require that whenever

the loss L is σ(Zi)-measurable and Zi is independent of (Z1, . . . , Zi−1, Zi+1, . . . , Zk),

then Rj = 0 for all j 
= i.

P3 Uniqueness

The decomposition methodology yields a unique decomposition. Formally, we

require that (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk) and (L,Z1, . . . , Zk) ↔ (R̃1, R̃2, . . . , R̃k)

implies Ri = R̃i, i ∈ {1, 2, ..., k}.

P4 Order invariance

The decomposition is invariant to the order of the risks 1, 2, . . . , k. Formally,

consider a permutation π : {1, 2, . . . , k} → {1, 2, . . . , k} and assume (L,Z1, . . . , Zk) ↔
(R1, R2, . . . , Rk). Then we require:

(L,Zπ(1), . . . , Zπ(k)) ↔ (Rπ(1), Rπ(2), . . . , Rπ(k)).

P5 Scale invariance

The decomposition is invariant to changes in the scale of sources of risk. For-

mally, assume (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk), and let Z̃i(t) := fi(Zi(t)) for

33



all i = 1, . . . , k, 0 ≤ t ≤ T ∗, where, for each i, fi : R → R is a smooth, invertible

function. If (L, Z̃1, . . . , Z̃k) ↔ (R̃1, R̃2, . . . , R̃k), then we require that Ri = R̃i

for all i ∈ {1, 2, ..., k}.

P6 Aggregation

The decomposition aggregates to the total risk faced by the company. Formally,

we require that for each loss L and risksZ with (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk),

there exists a function A(L,Z) : R
k → R such that

L = A(L,Z)(R1, R2, . . . , Rk).

They also mention a special case of P6 called additive aggregation. It is a desirable

property since it allows for the natural interpretation that the risk factors sum up to

the total risk.

P6* Additive aggregation

A special case of P6 is an additive aggregation funtion, i.e. the case where L is

given as the sum of the individual risk factors:

L =
k∑

i=1

Ri.

As the chapter title suggests, we introduce a decomposition approach named MRT

decomposition in Section 4.3 that satisfies all these six meaningful risk decomposition

properties.

3.2 Life Insurance Modeling Framework

First, we fix a finite time horizon T ∗ and a filtered probability space (Ω,F ,F,P) with

F = (Ft)0≤t≤T ∗ . Throughout the chapter, Ft describes all the information available

at time t and F = FT ∗ . The main factors that affect annuity values are mortality

rates and interest rates. More formally, we assume that the uncertainty arises from

the evolution of the short rate r(t) and the mortality intensity μ(t) as well as the

observed number of deaths.
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For the former two factors, we introduce an 2-dimensional state process X(t) =

(X1(t), X2(t))
′
, 0 ≤ t ≤ T ∗, where the symbol ′ denotes transpose. In our modeling

framework, the state process is a 2-dimensional diffusion process satisfying

dX(t) = θ(t)dt+ σ(t)dW (t), (3.1)

with deterministic initial value X(0) = (X1(0), X2(0))
′ ∈ R

2. For simplicity, we

assume that the state process is driven by a 2-dimensional standard Brownian motion

W = (W1(t),W2(t))
′, where W1(t) and W2(t) are independent. Therefore, θ(t) is a

two dimensional drift vector and σ(t) is a 2 × 2 volatility matrix here. Since r(t)

and μ(t) are risk sources in an annuity, we choose them as components of the state

process X(t). Thus we write the state process as X(t) = (r(t), μ(t))′.

For the latter source of risk, i.e. the actual occurrence of deaths, we consider m

homogeneous policyholders aged x at time 0. The remaining lifetime τ ix of policyholder

i as seen from 0, i = 1, . . . ,m, is defined as the first jump time of a doubly stochastic

or Cox process with intensity (μ(t))0≤t≤T ∗ , i.e.

τ ix = inf

{
t ∈ [0, T ∗] :

∫ t

0

μ(s)ds ≥ Ei

}
, i = 1, . . . ,m, (3.2)

where Ei, i = 1, . . . ,m, are i.i.d. exponential random variables with mean 1 which

are all independent of the filtration G generated by intensity process μ(t). We use the

convention inf ∅ = ∞. Therefore the first jump time can be interpreted as the time

required to consume an exponential random variable if it is consumed at rate μ(s) at

time s. Thus this definition also gives us a way to simulate the values of τ ix.

Note that the residual lifetimes τ ix, i = 1, . . . ,m, of the homogeneous policyholders

are by construction conditionally i.i.d. random variables given the σ-algebra GT ∗ .

Finally, we denote the number of deaths up to time t by the counting process

N(t) =
m∑
i=1

I
{
τ ix ≤ t

}
, (3.3)

where I denotes indicator function, having the value of 1 when the ith policyholder

dies before time t.

In order to keep the presentation concise, we consider the time-0 present value L0

of an insurer’s future losses. It is the sum of discounted future cash flows as from
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time 0 and is given by:

L0 = C0 +
n∑

k=0

(m−N(tk))Ca,k +
n∑

k=1

(N(tk)−N(tk−1))Cad,k, (3.4)

where 0 = t0 < t1 < · · · < tn = T ∗, n ∈ N, are discrete points in time. There are

three different cash flows in (3.4):

C0 the discounted payments independent of the remaining lifetimes.

Ca,k the sum of all discounted payments at or after time tk that are conditional on

survival until time tk, k = 0, . . . , n. Discrete annuity payments fall into this

category.

Cad,k the sum of all discounted payments at or after time tk that are conditional on

death within time interval (tk−1, tk], k = 1, . . . , n.

Thus L0 represents the insurer’s total net liability at time 0. To clarify expressions,

we remind that positive payments are the amounts made by the insurance company

while payments received are negative.

For annuity portfolios, all the payments made by insurance companies are condi-

tional on the survival of policyholders. Therefore, we have C0 = 0, Ca,k = e−
∫ tk
0 r(s)ds,

and Cad,k = 0. Thus the total discount loss (3.4) can be written as

L0 =
n∑

k=0

(m−N(tk))e
− ∫ tk

0 r(s)ds. (3.5)

For the determination of superscript n, we introduce the limiting age ω, means that

for a life table ln = 0 for all n ≥ ω. Then index n can be determined by the initial

cohort age x and the limiting age ω as ω − x− 1.

Moreover, we need a total risk random variable when dealing with risk decompo-

sitions. Thus, the insurer’s risk at time 0 is identified with L := L0 − E[L0], which

has mean 0. We remark here that the net liability L0 is the (stochastic) amount of

money the insurance company needs at time 0 to pay off future contract obligations.

Since the company should at least prepare for the expected value E[L0] (equivalence

principle), risk is interpreted as the excessive part.
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3.3 MRT Decomposition

This section is mainly an introduction to the propositions and results obtained by

Schilling et al. (2015). They propose a decomposition into stochastic integrals with

respect to the compensated sources of risk. These integrals represent the risk factors

of the corresponding sources of risk.

In an annuity portfolio, we have three sources of risk, namely r(t), μ(t), and the

actual number of deaths N(t). Therefore, we have three different risk factors in the

MRT decomposition according to property P1 randomness. They are denoted by

interest risk R1, systematic mortality risk R2, and unsystematic mortality risk R3,

respectively. To see where the names come from, we note that the first two risk

factors R1 and R2 are connected with the state process X(t) = (r(t), μ(t))
′
. In fact,

they are associated with the changes in the underlying stochastic processes r(t) and

μ(t), whereas the third risk factor R3 is identified with the randomness of deaths

N(t) in a portfolio with fixed mortality intensity. That is because the process N(t)

is binomial conditionally upon the path of mortality intensity μ(t). Since R2 and R3

are all related to the mortality risk, we distinguish them by the name systematic risk

factor R2 and unsystematic risk factor R3. As Dahl and Møller (2006) point out,

the most significant difference between them is that the systematic mortality risk

is a non-diversifiable risk, which does not disappear when the size of the portfolio

increases, whereas the unsystematic mortality risk is diversifiable, i.e. it vanishes as

the number of policyholders goes to infinity.

The corresponding compensated processes, i.e. the process less their F-compensators,

are denoted by MW
1 (t), MW

2 (t), and MN(t) respectively. The notion of the com-

pensator comes from a classic theorem – Doob decomposition, which expresses a

submartingale Y (t) as the sum of a martingale M(t) and an increasing predictable

process S(t). Namely, Y (t) = M(t) + S(t). Then the process S(t) is called the

compensator of Y (t). Schilling et al. (2015) obtain the following proposition.

Proposition 3.3.1 Suppose the state process is X(t) = (X1(t), X2(t))
′, the corre-
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sponding compensated process of Xi(t) is given by

MW
i (t) =

∫ t

0

σi1(s)dW1(s) +

∫ t

0

σi2(s)dW2(s), 0 ≤ t ≤ T ∗, i = 1, 2.

The compensated process of N(t) is

MN(t) = N(t)−
∫ t

0

(m−N(s−))μ(s)ds, 0 ≤ t ≤ T ∗.

Proof. A proof can be found in Schilling et al. (2015), p.12.

In fact, the idea behind Proposition 3.3.1 is to obtain martingales. MW
i (t) is a

martingale because it is a sum of two Ito integrals. For the compensated process

MN(t), Schilling et al. (2015) use conclusions from Bielecki and Rutkowski (2013) to

prove that MN(t) is also a martingale.

Base on this proposition, Schilling et al. (2015) propose the so called MRT de-

composition

L := L0 − E[L0] =
2∑

i=1

∫ T ∗

0

ψW
i (t)dMW

i (t) +

∫ T ∗

0

ψN(t)dMN(t) (3.6)

=
2∑

i=1

Ri +R3. (3.7)

The idea and proof are constructed on the Martingale Representation Theorem, hence

a decomposition of the form (3.6) is called MRT decomposition. Each integral in this

decomposition is interpreted as the portion of the total randomness of L caused by the

associated source of risk. Thus, the risk factors are given by Ri :=
∫ T ∗

0
ψW
i (t)dMW

i (t),

i = 1, 2, and R3 :=
∫ T ∗

0
ψN
i (t)dMN

i (t).

The following more general proposition justifies this decomposition.

Proposition 3.3.2 Assuming that det σ(t) 
= 0 in (3.1) and that random variable L0

is square integrable, then there exists processes ψW
1 (t), . . . , ψW

n (t), ψN(t) such that the

MRT decomposition (3.6) holds. The representation is unique and
∫ T ∗

0
ψN(t)dMN(t)

is square integrable, i.e.

E

[(∫ T ∗

0

ψN(t)dMN(t)
)2
]
< ∞.
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Proof. Proof can be found in Schilling et al. (2015), pp. 13.

Proposition 3.3.2 ensures us the existence and uniqueness of the MRT decom-

position, which is very important, but the calculation of different risk factors is of

equivalent importance. Schilling et al. (2015) indeed also discuss this issue in their

paper. Since processes MW
i (t) and MN(t) are given by Proposition 3.3.1, the remain-

ing calculation amounts to the determination of integrands ψW
1 (t), . . . , ψW

n (t), ψN(t)

in (3.6). For each summand of L0 defined in (3.4), they provide a corresponding

calculation scheme and thus the MRT decomposition of L0 itself can be obtained by

summing up the individual decompositions.

Since our L0 in (3.5) only involves discrete survival cash flows, we focus on the

calculation of the decomposition for Ca,k.

Proposition 3.3.3 Let L0,k = (m − N(tk))Ca,k, for 0 ≤ tk ≤ T ∗ and assume that

Ca,k is of the form

Ca,k = e−
∫ tk
0 g(s,X(s))dsh(X(tk)),

where X is the state process specified in (3.1). Define f by

fk(t, x) := E
[
e−

∫ tk
t (μ(s,X(s))+g(s,X(s)))dsh(X(tk))|X(t) = x

]
. (3.8)

Then the unique integrands of the MRT decomposition of L0,k − E[L0,k] are given by

ψW
i (t) = �[0,tk](t)(m−N(t−))e−

∫ t
0 g(s,X(s))ds ∂f

∂xi

(t,X(t)), i = 1, 2,

ψN(t) = −�[0,tk](t)e
− ∫ t

0 g(s,X(s))dsf(t,X(t)).

Proof. Proof can be found in Schilling et al. (2015), p. 23.

Next we proceed to deriving the MRT decomposition of L0 defined in (3.5). First

note that Ca,k = e−
∫ tk
0 g(s,X(s))dsh(X(tk)) = e−

∫ tk
0 r(s)ds for g ≡ r and h ≡ 1. Then we

define function fk(t, r, μ) as

fk(t, r, μ) = E
[
e−

∫ tk
t (μ(s,X(s))+r(s,X(s)))ds|X(t) = x

]
,

= E
[
e−

∫ tk
t (μ(s)+r(s))ds|r(t) = r, μ(t) = μ

]
, 0 ≤ t ≤ tk. (3.9)
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Notice that we omit X(s) in the second line since μ(t) and r(t) are components of

the state process X(t). This function can be simplified by using the independence

between r and μ and the affine property of r.

Applying Proposition 3.3.3, we obtain the integrands of the MRT decomposition

of Ca,k

ψW
1,k(t) = �[0,tk](t)(m−N(t−))e−

∫ t
0 r(s)ds∂fk

∂r
(t, r, μ),

ψW
2,k(t) = �[0,tk](t)(m−N(t−))e−

∫ t
0 r(s)ds∂fk

∂μ
(t, r, μ),

ψN
k (t) = −�[0,tk](t)e

− ∫ t
0 r(s)dsfk(t, r, μ).

Summing up the decompositions of Ca,k, we obtain the MRT decomposition of L as

L = L0 − E[L0] = R1 +R2 +R3, (3.10)

where the systematic risk factors R1 and R2 implied by r and μ are given by

R1 =
n∑

k=0

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds∂fk

∂r
(t, r, μ)dMW

1 (t), (3.11)

R2 =
n∑

k=0

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds∂fk

∂μ
(t, r, μ)dMW

2 (t), (3.12)

respectively, and the unsystematic mortality risk factor R3 is given by

R3 = −
n∑

k=0

∫ tk

0

e−
∫ t
0 r(s)dsfk(t, r, μ)dM

N(t). (3.13)

Finally we obtain the explicit MRT decomposition of a whole life annuity, numer-

ical calculations and detailed analysis will be carried out in the next section.
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Chapter 4

Numerical Example

In this chapter, we demonstrate the applicability and usefulness of the MRT decom-

position by presenting some numerical examples. To calculate risk factors R1, R2, and

R3, we first project the stochastic mortality model and the interest rate model. Then

we give some details about the computation by deducing more explicit expressions

for risk factors and conditional expectations. Finally, we analyze the base scenario of

which the age is 65 years old and compare it with other scenarios.

4.1 Projection

4.1.1 Mortality Model

In Section 1.6.1, we derived a generalized RH model based on the stochastic process

κ(t). The mortality process follows the dynamic

lnμ(t, x) = β1(x+ t) + β2(x+ t)κ(t) + β3(x+ t)γ,

dκ(t) = θdt+ σdWμ(t), (4.1)

where x denotes the policyholder’s age at time 0 and Wμ(t) is a Brownian motion.

The initial mortality intensities μ(0, x) are calculated from the calibration procedure

using the last estimated value for κ
(2)
t .

The first step is to fit the RH model (1.4) to Canadian mortality data – males aged

between 40 and 99 over the period 1960 to 2011. Figure 4.1 shows the calibration
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Figure 4.1: Estimated κ
(2)
t over the fitting period 1960–2011 for ages 40–99.

results for κ
(2)
t . Based on the maximum likelihood estimators (1.3), the parameters θ

and σ in (4.1) are given by

θ =
κ
(2)
2011 − κ

(2)
1960

2011− 1960
=

−17.8133− 26.7997

51
= −0.8748,

σ =
1

2011− 1960

2011∑
t=1961

(κ
(2)
t − κ

(2)
t−1 − θ)2 = 0.5795,

where κ(0) = κ
(2)
2011 = −17.8133.

Then we are ready to project κ(t). Figure 4.2 shows the mean sample path and

its 95% confidence interval generated by the time index κ(t) where the time horizon

is set to 35 years.

From the calibration procedure, we obtain the estimated β̂
(1)
x , β̂

(2)
x and β̂

(3)
x where

x = 40, 41, . . . , 99. In continuous-regime, we need three continuous functions since

those estimated values are just point estimates at each integer age x + t. One of

the approaches to get smooth functions β1(x + t), β2(x + t) and β3(x + t) through

polynomials. We present the estimated values and graphs of smoothed functions in

Figures 4.3, 4.4, and 4.5. We assume that all policyholders are of age x = 65 at time

0, then the value of the cohort parameter γ is −13.7242 corresponding the cohort

year 1946.

In order to give readers a picture of simulated mortality intensity paths, we use an
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Figure 4.2: Mean sample path and its 95% confidence interval for κ(t) over time

0− 35.
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Figure 4.3: Estimated β̂
(1)
x (dots) and smoothed function β1(x)(line).
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x (dots) and smoothed function β2(x)(line).
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x (dots) and smoothed function β3(x) (line).
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Figure 4.6: Mean sample path and its 95% confidence interval for μ(t) over time

0− 30.

Euler scheme with n = 100 time steps per year and perform N = 10, 000 simulations.

Figure 4.6 shows the averaged path of 10, 000 runs and the 95% confidence interval.

In what follows, the initial age x is always fixed, so that we no longer indicate the

dependency on the age cohort but just write μ(t) and β(t). The limiting age ω is

set to 115 years old so β1(t), β2(t), and β3(t) are extended according to respective

smoothed functions when t ≥ 100.

4.1.2 Interest Rate Model

We choose the CIR model dr(t) = κ(θ − r(t))dt + σ
√
r(t)dWr(t) as our short rate

model. The estimation results have been obtained in Chapter 2.

First note that model parameters κ, θ, and σ are all positive and that the Feller

condition 2κθ ≥ σ2 holds. Therefore the CIR process is generated according to the
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Figure 4.7: Mean sample path and its 95% confidence interval for r(t)

following Euler method:

r(ti) = r(ti−1) + κ
(
θ − r(ti−1)

)
(ti − ti−1) + σ

√
r(ti)+

√
ti − ti−1Zi, (4.2)

where 0 = t0 < t1 < · · · < tn = T, i = 1, . . . , n. Zi is a standard normal random

variable. r(ti)
+ = max (r(ti), 0) represents the greater value of r(ti) and 0 since it is

possible to generate negative r(ti)’s in the simulation process. As in the mortality

model, we use an Euler scheme with n = 100 time steps per year and perform N =

10, 000 simulations. Figure 4.7 shows the mean sample path and its 95% confidence

interval.

4.1.3 MRT Decomposition

We demonstrate the applicability and usefulness of the MRT decomposition by pre-

senting some numerical examples involving the risk factors R1, R2, and R3 defined by

(3.10) – (3.12). Since we assume that Wr(t) and Wμ(t) are independent Brownian mo-

tions, the volatility matrix of the state process σ(t, r, μ) = diag{σr

√
r(t), σμβ2(t)μ(t)}
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is a 2 × 2 diagonal matrix, which simplifies the compensated processes MW
1 (t) and

MW
2 (t). Applying Proposition 3.3.1, we obtain the following equations:

dMW
1 (t) = σr

√
r(t)dWr(t), (4.3)

dMW
2 (t) = σμβ2(t)μ(t)dWμ(t), (4.4)

dMN(t) = dN(t)− (m−N(t−))μ(t)dt. (4.5)

Therefore risk factors R1, R2, and R3 are further simplified as

R1 =
n∑

k=0

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds∂fk

∂r
(t, r, μ)dMW

1 (t)

=
n∑

k=0

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds∂fk

∂r
(t, r, μ)σr

√
r(t)dWr(t). (4.6)

R2 =
n∑

k=0

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds∂fk

∂μ
(t, r, μ)dMW

2 (t)

=
n∑

k=0

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds∂fk

∂μ
(t, r, μ)σμβ2(t)μ(t)dWμ(t). (4.7)

R3 = −
n∑

k=0

∫ tk

0

e−
∫ t
0 r(s)dsfk(t, r, μ)dM

N(t)

= −
n∑

k=0

∫ tk

0

e−
∫ t
0 r(s)dsfk(t, r, μ)

(
dN(t)− (m−N(t−))μ(t)dt

)

=
n∑

k=0

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)dsμ(t)dt−

n∑
k=0

∫ tk

0

e−
∫ t
0 r(s)dsfk(t, r, μ)dN(t) (4.8)

Now that we have improved representations for R1, R2, and R3, we could present

more details about the calculations of risk factors before stepping into the analysis of

numerical results. At first, we generate one sample path forWr(t). Then the short rate

r(t) can be projected applying Euler discretization method (4.2). Similarly, mortality

intensity μ(t) can also be generated using (4.1). As for the counting process N(t), we
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first generate an exponential random variable Ei for each policyholder, i = 1, . . . ,m.

Then the residual lifetime τ ix for each policyholder is determined by (3.2). Therefore

N(t) is calculated using (3.3).

Once we obtain sample paths for processes r(t), μ(t), and N(t), we can focus on

the calculation of fk(t, r, μ) and its partial derivatives. By the definition (3.9),

fk(t, r, μ) = E
[
e−

∫ tk
t (μ(s)+r(s))ds|r(t) = r, μ(t) = μ

]
= E

[
e−

∫ tk
t r(s)ds|r(t) = r

]
E
[
e−

∫ tk
t μ(s)ds|μ(t) = μ

]
= A(t, tk)e

−B(t,tk)rE
[
e−

∫ tk
t μ(s)ds|μ(t) = μ

]
. (4.9)

The second line follows from the independence of the short rate r(t) and the mortality

intensity μ(t). The third line is simplified by substituting the bond price (2.3). Since

μ(t) does not possess the affine property, there is no closed-form formula for the

conditional expectation with respect to μ(t). Therefore we resort to Monte Carlo

simulations for the calculation of E
[
e−

∫ tk
t μ(s)ds|μ(t) = μ

]
. We also need two partial

derivatives of fk(t, r, μ) in the integrands of R1 and R2. From (4.9), we obtain the

partial derivative of fk(t, r, μ) with respect to r as

∂fk
∂r

(t, r, μ) = −A(t, tk)B(t, tk)e
−B(t,tk)rE

[
e−

∫ tk
t μ(s)ds|μ(t) = μ

]
. (4.10)

As for the partial derivative with respect to μ, we define a function

g(t, μ) = E
[
e−

∫ tk
t μ(s)ds|μ(t) = μ

]
to make notation concise. Thus the calculation of ∂fk

∂μ
(t, r, μ) reduces to find the

derivative of g(t, μ), which is approximated using finite difference. More precisely, we

use the equation
d

dμ
g(t, μ) ≈ g(t, μ+ h)− g(t, μ)

h
.

4.2 Analyses

Now we are able to calculate R1, R2, and R3 since we have obtained building blocks

in those integrands from above. For the numerical analysis, we consider m = 100
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Figure 4.8: Empirical distribution functions at age 65.

policyholders and perform N = 25,000 simulations to estimate the distributions of

L, R1, R2, and R3. We use the Euler scheme with n = 100 time steps per year for

projecting the risk drivers r(t) and μ(t) as well as for approximating the stochastic

integrals.

For our base scenario, policyholders are assumed to be 65 years old at time 0. We

focus on the distributions scaled by the number of policyholders in the portfolio, i.e.

we consider L̄ := L
m
, R̄i :=

Ri

m
, i = 1, 2, 3. The resulting empirical distribution func-

tions of the total risk L̄, the interest risk R̄1, the systematic mortality risk R̄2, and

the unsystematic mortality risk R̄3 are shown in Figure 4.8. We find that the distri-

bution function of the interest risk factor (R̄1) is right-skewed while the distribution

functions of all other risk factors are approximately symmetric. Moreover, the plots

indicate that the interest (R1) is the most relevant risk driver since its distribution

function is the most similar to the total risk L̄.

The tails of risk factors are also of our concerns. We sort the respective outcomes
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Figure 4.9: Probability density function estimates at age 65.

into spaced bins and plot the corresponding relative frequencies in Figure 4.9. We

observe that the tails of the interest and the unsystematic mortality risk are the two

heaviest ones among the three risk factors. The right-skewed characteristic of the

interest risk factor R1 and the symmetric characteristic of R2 and R3 is rather clear

from Figure (4.9). If we confine our attention to the systematic mortality risk factor

R2 and unsystematic mortality risk factor R3, we could find that the range of likely

outcomes of R3 is rather wide compared to the ranges of R2. Therefore, R3 is more

variable then R2.

In order to quantify contributions made by different risk factors and confirm our

observations from the empirical distribution functions presented in Fig 4.8 and the

relative frequencies Fig 4.9, we resort to the so-called Euler principle. More precisely,

for a homogeneous risk measure ρ, Tasche (2007) proposes the following principle to

uniquely determine the risk contribution of each risk factor with

ρ(Ri|L) = dρ

dh
(L+Rih)|h=0, i = 1, 2, 3. (4.11)
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L̄ R̄1 R̄2 R̄3

Std 3.4801 2.8960 (83.2%) 0.1092 (3.1%) 0.4743 (13.6%)

VaR0.99 7.3065 4.3492 (60.3%) 0.4254 (5.9%) 2.4343 (33.8%)

TVaR0.99 8.2240 4.9618 (60.3%) 0.6503 (7.9%) 2.6107 (31.7%)

Table 4.1: The total risk capital and the Euler risk contributions for a whole life

annuity portfolio with m = 100 contracts at age 65.

We use three risk measures: standard deviation (Std), Value-at-Risk at the 99%

level (VaR0.99), and Tail-Value-at-Risk at the 99% level (TVaR0.99) to report the total

risk capital ρ(L̄) as well as the risk contributions according to the Euler principle

(4.11). Table 4.1 provides results for both absolute values and percentages of the sum

of the three risk contributions.

The interest risk makes about 83% of the total risk capital in the standard devia-

tion risk measure and about 60% in the VaR risk measure. It confirms our observation

that R1 is the significant factor. The unsystematic risk R3 makes roughly 14% in the

standard deviation risk measure then increases to 34% in the VaR risk measure and

32% in the TVaR measure. It suggests that R3 becomes more important in the tail

of the aggregate risk. The systematic risk factor R2 also exhibits the same pattern

which increases from 3% to 6%, and 8%, respectively. This increasing trend indicates

that the systematic mortality risk is more sensitive in the tails.

4.2.1 Number of Policyholders

Table 4.2 provides results for the three risk measure where we set the number of

policyholders to 1000. The most striking difference between Tables (4.1) and (4.2)

is that the systematic risk factor R2 is always larger than the unsystematic risk R3.

This is caused by the intrinsic difference between the systematic mortality risk and

the unsystematic mortality risk. As we mentioned in Chapter 3, the unsystematic

mortality risk is diversifiable so that it is not surprising to see that R3 takes smaller

percentages when the number of policyholders is increased to 1000. In this case, the
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L̄ R̄1 R̄2 R̄3

Std 3.2146 3.0543 (95.0%) 0.1136 (3.5%) 0.0465 (1.4%)

VaR0.99 6.0801 4.8044 (81.4%) 0.7890 (13.4%) 0.3073 (5.2%)

TVaR0.99 6.6295 5.3515 (80.7%) 0.8769 (13.2%) 0.3995 (6.0%)

Table 4.2: The total risk capital and the Euler risk contributions for a whole life

annuity portfolio with m = 1000 contracts at age 65.
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Figure 4.10: Empirical distribution functions at age 65 for m = 1000.
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Figure 4.11: Empirical distribution functions at age 75.

interest risk is the most significant factor accounting for between about 81% and 95%,

whereas unsystematic mortality risk exhibits the smallest risk contribution which is

less than 6%. Figure 4.10 illustrates the distribution functions of the three risk

factors and the total risk for a portfolio of 1000 contracts. Clearly, the distribution

of interest risk R1 very closely resembles the distribution of the total risk L. While

the distribution functions of R2 and R3 are still symmetric, now the unsystematic

mortality risk R3 has a more concentrated distribution which is opposite from Fig 4.8

where R2 is narrower than R3.

4.2.2 Ages

In order to further explore interactions between three risk factors, we report the

analysis for ages 75 and 85. Figures 4.11 and 4.12 show the corresponding empirical

distribution functions. They look rather differently from the base scenario (Figure

4.8). More specifically, now the unsystematic mortality risk R3 is the dominant risk
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Figure 4.12: Empirical distribution functions at age 85.

factor since its distribution function is the closest to the distribution function of total

risk L. Figure 4.12 further confirms our observation in that the distribution of R3

almost coincide with the distribution of L. This seems intuitive since the unsystematic

mortality risk factor will play a more important role in the portfolio as the cohort

age increases. Since the limiting age ω is fixed to 115, increasing the cohort age

is equivalent to reducing the active period of the annuity portfolio. However, these

three empirical distribution function graphs still share some common features. If we

look closely, we would find that R2 and R3 are still approximately symmetric and the

interest risk factor R1 is still skewed.

Tables 4.3 and 4.4 provide numerical allocated risk contributions for age 75 and

85, respectively. The results confirm our observations from a quantitative point of

view. Firstly, the unsystematic risk R3 is undoubtedly the most relevant risk factor

except for the standard deviation risk measure. It makes up between about 35% and

52% of the total risk capital in Table 4.3. When the age increases to 85, R3 makes
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L̄ R̄1 R̄2 R̄3

Std 2.0640 1.1223 (54.4%) 0.2111 (10.2%) 0.7300 (35.4%)

VaR0.99 4.8730 1.7041 (35.3%) 0.6214 (12.9%) 2.5001 (51.8%)

TVaR0.99 5.5564 1.9037 (34.3%) 0.8277 (14.9%) 2.8203 (50.8%)

Table 4.3: The total risk capital and the Euler risk contributions for a whole life

annuity portfolio at age 75.

L̄ R̄1 R̄2 R̄3

Std 1.1993 0.2520 (21.0%) 0.2103 (17.5%) 0.7367 (61.4%)

VaR0.99 3.0287 0.2639 (9.0%) 0.5443 (18.6%) 2.1231 (72.4%)

TVaR0.99 3.5363 0.5012 (14.2%) 0.7008 (19.8%) 2.3331 (66.0%)

Table 4.4: The total risk capital and the Euler risk contributions for a whole life

annuity portfolio at age 85.

even larger percentage of the total risk capital accounting for more than 60% of the

total risk capital. Secondly, from these two tables we can identify that the interest

rate risk is the second-most significant factor in the case of x = 75 while systematic

mortality risk R2 is placed as the second in the case of x = 85. Figure 4.12 also

supports this observation in that the distribution function of R2 spreads more than

R1. Moreover, the total risk capital of L is strictly decreasing due to the increase of

the cohort age.

4.2.3 Deferred Annuities

Now let us bring the deferred annuities to our attention. In order to compare with the

whole life annuity issued at age 65, we consider 10-year and 20-year deferred annuity

issued at age 55 and 45, respectively. Figures 4.13 and 4.14 may seem similar at

first glance, but if we check the upper-right corner of both graphs we can find that

interest rate risk factor R1 and total risk L are closer to each other in Figure 4.14.
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Figure 4.13: Empirical distribution functions for 10-year deferred annuity issued at

age 55.

The systematic mortality risk R2 and unsystematic mortality risk R3 are also closer

in Figure 4.14. The interest rate risk R1 is the dominant risk in the two deferred

annuity cases, however, it makes up larger percentage of the risk capital allocation in

the 20-year deferred annuity.

Tables 4.5 and 4.6 provide risk capital allocation results for the two deferred

annuity examples. As we expected, the interest rate risk R1 is the most significant

factor accounting for between 77% and 93% in 10-year deferred case. Moreover, it

also makes a larger percent (between 86% and 96%) of total risk capital in the 20-year

deferred annuity portfolio. The difference between systematic mortality risk R2 and

unsystematic mortality risk R3 is obviously smaller in Table 4.6 as we inferred from

the empirical distribution function graphs. It is not very surprising to see that the

total risk capital L is increasing with respect to the deferral period in Tables 4.1, 4.5,

and 4.6 because the active period of the portfolio is increasing. That is to say we

would expect an annuity portfolio inherit more risk if it is exposed to the effects of
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Figure 4.14: Empirical distribution functions for 20-year deferred annuity issued at

age 45.

risk drivers longer. However, the last two columns of Tables 4.5 and 4.6 show that

the systematic risk factor R2 and the unsystematic risk factor R3 are decreasing in

all three risk measures as the length of the deferred phase of the annuity portfolio to

increasing. The reasons for the smaller mortality risks are twofold; the first reason is

that some of the policyholders in the portfolio will die during the deferred term. As

the deferred term gets longer, the number of deaths during this period becomes larger.

Therefore, the total number of policyholders exposed to the unsystematic mortality

risk is smaller. Another possible reason is that mortality rates evolve according to the

mortality model during the deferred term. The values of death rates q65, q66, . . . would

become smaller as the deferred term become longer. As a result, the unsystematic

mortality risk introduced by counting process N(t) would become smaller.

Figure 4.15 illustrates the empirical distribution functions of the total risk L for

three annuity portfolios in one graph. We see that the ranges of possible outcomes

of L are increasing when the cohort age is decreasing from 65 to 45. At age 65, the
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L̄ R̄1 R̄2 R̄3

Std 4.5271 4.2011 (92.8%) 0.0411 (0.9%) 0.2842 (6.3%)

VaR0.99 9.1209 7.2142 (79.2%) 0.2651 (2.9%) 1.6301 (17.9%)

TVaR0.99 10.0691 7.7558 (77.0%) 0.2954 (2.9%) 2.0202 (20.1%)

Table 4.5: The total risk capital and the Euler risk contributions for 10-year deferred

annuity portfolio issued at age 55.

L̄ R̄1 R̄2 R̄3

Std 5.0394 4.8387 (96.0%) 0.0178 (0.4%) 0.1822 (3.6%)

VaR0.99 10.5653 9.3471 (88.6%) 0.0236 (0.2%) 1.1766 (11.2%)

TVaR0.99 11.6129 9.9942 (86.1%) 0.1555 (1.3%) 1.4577 (12.3%)

Table 4.6: The total risk capital and the Euler risk contributions for 20-year deferred

annuity portfolio issued at age 45.

loss L65 exhibits the most concentrated distribution, while at age 45 it becomes the

most scattered one. It confirms our observation since the distribution function of L45

is more risky than its counterparts. Similarly, Figures 4.16 shares the same pattern.

The distribution function with the longest deferred term (20 years) is always the most

scattered one. However, this order changes in the Figure 4.17 and 4.18. The plots

of mortality distribution functions at age 45 is the most concentrated one. Again, it

confirms our observation in Tables 4.5 and 4.6.
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Figure 4.15: Empirical distribution functions for total risk L

-15 -10 -5 0 5 10
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F(
x)

Empirical CDF

R̄165
R̄155
R̄145

Figure 4.16: Empirical distribution functions for interest rate risk R1
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Figure 4.17: Empirical distribution functions for systematic mortality risk R2
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Figure 4.18: Empirical distribution functions for unsystematic mortality risk R3
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Conclusion

This thesis applies the MRT decomposition method to whole life annuities and de-

ferred annuities. The risk factors obtained from the decomposition summarize risk

in insurance liabilities associated with the different sources of uncertainty. Therefore,

risk factors can be used to allocate risk capitals by using an appropriate allocation

principle.

In Chapter 1 we introduce three candidates of stochastic mortality models that

can serve as a mortality model used in the MRT decomposition. Renshaw–Haberman

model is selected as the most suitable model. The generalization of RH model into

continuous case is also discussed. Chapter 2 is devoted to stochastic interest models.

We introduce and calibrate the Vasicek model and the CIR model, then choose the

CIR model as our stochastic interest model used in the MRT decomposition.

In Chapter 3 we give a detailed discussion on the MRT decomposition (Schilling

et al. (2015)) and obtain the explicit formula for our annuity portfolio. In Chapter 4

we provide an numerical example using the MRT decomposition to demonstrate its

applicability and usefulness. It shows that for the whole life annuity, the interest rate

risk R1 is the most relevant risk factor for young cohorts. However, when the age of

cohort is increasing, the unsystematic mortality risk R3 becomes the most relevant

risk. We also observe that the length of deferred term has a significant influence on

the unsystematic mortality risk R3 for deferred annuities.
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